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A B S T R A C T

In this work, we report proof-of-concept results on the synthesis of Si core/ ZnO shell nanowires (SiNWs/ZnO) by
combining nanosphere lithography (NSL), metal assisted chemical etching (MACE) and atomic layer deposition
(ALD). The structural properties of the SiNWs/ZnO nanostructures prepared were investigated by X-ray dif-
fraction, Raman spectroscopy, scanning and transmission electron microscopies. The X-ray diffraction analysis
revealed that all samples have a hexagonal wurtzite structure. The grain sizes are found to be in the range of
7–14 nm. The optical properties of the samples were investigated using reflectance and photoluminescence
spectroscopy. The study of photoluminescence (PL) spectra of SiNWs/ZnO samples showed the domination of
defect emission bands, pointing to deviations of the stoichiometry of the prepared 3D ZnO nanostructures.
Reduction of the PL intensity of the SiNWs/ZnO with the increase of SiNWs etching time was observed, depicting
an advanced light scattering with the increase of the nanowire length. These results open up new prospects for
the design of electronic and sensing devices.

1. Introduction

Silicon (Si) continues to be the most widely used semiconductor [1].
Such great interest in this material is due to its beneficial features such
as high stability and non-toxicity, quantum confinement effects, high
carrier mobility, and well-established fabrication technique [2]. Be-
cause of morphological and energetic features, silicon nanomaterials
are one of the most studied types of nanomaterials. Nowadays, one
dimensional (1D) silicon nanostructures, i.e., silicon nanowires (SiNWs)
and Si nanopillars, are of great interest because of their abilities to
scatter and trap incident light, large surface to volume ratio, and other
unique electronic and optical properties that make possible their use as
promising blocks for a wide range of applications including electronic
devices [3–5], energy storage devices [6,7], thermoelectrics [8–10],
and biosensors [11–14].

The first preparation of Si whiskers with 〈1 1 1〉 orientation or fila-
mentary Si crystals with macroscopic dimensions was reported in 1957
by Treuting and coworkers [15]. In 1964, Wagner and Ellis performed
an illuminating work and established the vapor-liquid-solid (VLS) me-
chanism for the growth of Si whiskers [16]. These pioneering studies
opened up exciting possibilities for the fabrication and investigation of
SiNWs. In 2002, Peng and coworkers introduced an HF-etching-assisted
nanoelectrochemical strategy to synthesize wafer-scale aligned SiNWs
[17]. To date, there are many different techniques to produce SiNWs
such as chemical vapor deposition using the VLS (Vapor—Li-
quid—Solid) mechanism [18], laser ablation [19], molecular beam
epitaxy [20], chemical etching [21], and solution growth [22]. Among
these preparation methods, the metal-assisted chemical etching (MACE)
of silicon substrates in combination with nanosphere lithography (NSL)
has recently emerged as a promising method to fabricate large areas of
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ordered SiNWs [7,23]. The combination of MACE and NSL techniques is
under increasing attention, mainly because MACE is an inexpensive and
straightforward process that allows controlling various parameters of
the etched nanostructures such as cross-sectional shape, diameter,
length, and crystallographic orientation [24–26]. The main advantages
of NSL are its short preparation time, high level of hexagonal structure
orientation, and the possibility of application of large and monolayered
masks directly onto different types of surfaces [27–29].

The addition of zinc oxide (ZnO) as shells around SiNWs (as cores)
can have substantial and beneficial impact on the stability, as well as on
the mechanical, photoelectrochemical, and sensing properties when
compared to bare ZnO nanowires fabricated with other techniques
[30–32]. Si wafer is an attractive substrate because of its low cost, good
thermal conductivity, high crystalline quality, and availability of large
size substrates with different types of conductivity (doping). Also, si-
licon is the best candidate for miniaturized electronic devices and the
further development of modern nanoelectronic technology.

ZnO is a wide bandgap (3.4 eV) semiconductor, which has a stable
wurtzite structure with lattice spacing a=0.325 nm and c=0.521 nm
[33,34]. It has attracted intensive research effort for its unique prop-
erties such as thermal and chemical stability, optical transparency, and
piezoelectricity [35].

ZnO thin films can be prepared using various techniques, but the
conformality of the deposit required for its preparation as a shell
around NWs requires the use of atomic layer deposition (ALD) [36–39].
ALD is a vapor phase deposition route based on self-limiting chemical
reactions, allowing for the preparation of nanomaterials with controlled
structures at the nanoscale [36,40–43]. The conformality, uniformity
and atomic level control of the films that can be achieved using this
technique makes it useful for a wide range of applications, especially
microelectronics,[44] but also biosensing,[45] catalysis [46,47] and
membranes.[48] Nowadays it is becoming a promising deposition
method for growing uniform thin and ultra-thin films, especially in the
cases where precise film thickness control, high reproducibility, thick-
ness uniformity, and excellent conformity are required [45,49].

In the present work, silicon nanowires produced by gold-assisted
chemical etching in combination with nanosphere lithography followed
by an ALD deposition of ZnO are investigated. The structural and op-
tical properties of the obtained nanostructures are evaluated.

2. Materials and methods

2.1. Materials

Microparticles based on polystyrene, size 1 μm, 10wt% aqueous
solution (89904), sodium dodecyl sulfate (436143), Hydrofluoric acid
HF 40% (47590), Perdrogen H2O2 30% (31642), Nitric acid (30709),
Hydrochloric acid (258148), Diethyl zinc (DEZ) (Zn(CH2CH,)2, 95%
purity, CAS: 557-20-0) were purchased from Sigma Aldrich. Boron-
doped (8–25Ω cm) p-type (1 0 0) crystal orientation Si wafers (LG
Siltron Inc. Korea) were used as substrates.

2.2. Synthesis of SiNWs

The organized silicon nanowires were produced by gold-assisted
chemical etching in combination with nanosphere lithography [23]. For
this experiment, the monolayers were prepared with polystyrene par-
ticles (diameter 1 µm). The 1x1 and 2x2 cm2 pieces of Si wafers were
cleaned sequentially with deionized water (18.2 MΩ cm), ethanol and
acetone by ultrasonication for 15min in each solvent. Then the sub-
strates were treated by O2 plasma to have a hydrophilic surface. After
the pretreatment, an ordered monolayer of polystyrene spheres (PSS)
was prepared by self-assembly. The floating-transferring technique was
utilized to deposit PSS on Si substrate. The polystyrene solution (40 µl)
diluted by an equal amount of ethanol, was applied onto the modified
substrate, which spread all over the substrate. After holding the sub-
strate stationary for a while to obtain good dispersion of the suspension,
the wafer was then slowly immersed into the glass vessel filled with
deionized water and PSS started to form an unordered monolayer on
the water surface. Then, one drop of 10% sodium dodecyl sulfate (SDS)
solution was added to the water to change the surface tension and to
consolidate the particles. The addition of SDS solution was an important
step to produce 2D ordered colloidal array [50]. As a result, a large
monolayer with highly ordered areas was obtained. Then this mono-
layer of PSS was transferred to the target substrate.

The quality of the PSS monolayer mask can be assessed right away
by looking at the uniformity of the color throughout the whole area.
The reflected color of the pattern varies with the size of the spheres and
its quality. After the sample was dried in air at room temperature, the
spheres were self-assembled into a close-packed, two-dimensional or-
dered lattice via attractive capillary forces [51,52]. Then the diameter
of spheres was decreased by O2 plasma etching for 5min to expose the
surface of the wafer for metal deposition. Plasma etching is capable of
uniform and fast modification of nanospheres, and it can control the
sphere diameter by adjusting the etching time [53]. In order to stick the
PS spheres to the Si surface, a heat treatment at 100 °C for 30min was
performed. On the next step, a thin Au film was deposited by physical
vapor deposition (PVD). The sputtering was carried out at a discharge
of 25mA in a vacuum with a pressure below 0.1mbar. The samples
covered by Au were etched with a solution of H2O/H2O2/HF with a
volume ratio of 1:0.15:0.3 at room temperature for 1, 2, 5, and 7min.
To remove the metal, the samples were dipped in an aqua regia solution
(a mixture of nitric acid and hydrochloric acid). After removing the Au,
the PS spheres were etched by O2 plasma. Fig. 1 represents the overall
process for the synthesis of SiNWs.

2.3. ALD deposition of ZnO on Si NWs

A custom-made ALD reactor was used for the synthesis of ultrathin
ZnO films. ALD was performed using sequential exposures of DEZ and
H2O separated by a purge of Argon with a flow rate of 100 standard
cubic centimeters per minute (sccm). The deposition regime for ZnO
consisted of 0.2 s pulse of DEZ, 40 s of exposure to DEZ, 60 s of purging

Fig. 1. Schematic representation of the fabrication of SiNWs by the combination of MACE and NSL.
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with argon followed by 2 s pulse of H2O, 40 s of exposure to H2O, and
finally 60 s of purging with argon. Thus, 20 and 50 nm thick ZnO layers
were deposited on silicon nanowires using 100 and 250 ALD cycles,
respectively. The deposition was performed at 100 °C. The typical
growth rate for ZnO coating during these cycles was found to be 0.2 nm
per cycle.

2.4. Characterization

Structural and chemical compositions of the SiNWs/ZnO were
analyzed by scanning electron microscopy (SEM, S-4800, Hitachi),
atomic force microscopy (AFM, NANOMAN 5 from Veeco controlled
with the Nanoscope V software), and X-Ray diffraction (XRD,
PANAlyticalXpert-PRO diffractometer equipped with a X’celerator de-
tector using Ni-filteredCu Kα radiation). The XRD spectra were mea-
sured in the 2θ angular region between 10° and 60° with a scan speed of
2° min−1 and a step rate of roughly 0.02° per second. From the XRD
spectra, the grain size was calculated using the Debye-Scherer equation.
SiNWs covered by ALD of ZnO were also investigated by transmission
electron microscopy (TEM) (JEOL ARM 200F high-resolution trans-
mission electron microscope (200 kV) with an EDX analyzer). The cross-
sections and lamellas for TEM investigations were prepared by Focused
Ion Beam (FIB) with procedures described elsewhere [54]. The FIB
milling was carried out with a JEOL, JIB-4000.

Raman scattering measurements were performed using a Renishaw
micro-Raman spectrometer equipped with a confocal microscope
(Leica). The samples were measured in backscattering geometry with a
spectral resolution of 1.0 cm−1. The incident light was not polarized,
and also the light detector contained no polarization filters. The Raman
scattering spectra were excited by a 488 nm laser. The beam was fo-
cused on the samples with a 50×microscope objective with a nu-
merical aperture of 0.4. The incident optical power was changed by
using neutral density filters in the beam path.

Optical properties of the samples have been studied by diffuse re-
flectance spectroscopy (the spectral range 200–1400 nm). The diffuse
reflectance spectroscopy has been performed using standard Shimadzu
UV-3600 spectrophotometer with a scanning step of 1 nm.
Photoluminescence spectroscopy was studied in the spectral range of
350–800 nm. The measurements were performed with a standard
fluorometer (FS5 Spectrofluorometer (Edinburg instruments Ltd, 2 Bain
Square, Kirkton Campus, EH54 7DQ, UK)). The excitation of lumines-
cence was performed at a wavelength of 280 nm.

3. Results and discussion

Fig. 2 represents a dependence of the diameter of PSS as the func-
tion of different etching times by O2 plasma (insets: 1 [Fig. 2b], 5
[Fig. 2c], and 10min [Fig. 2d]). The etching of PSS by O2 plasma from 1
to 10min allows decreasing the PSS diameter from 960 ± 10 nm to
610 ± 10 nm. Fig. 2a shows the SEM image of PS spheres deposited on
a Si wafer, which confirms the possibility to obtain a relatively large
area, close-packed, hexagonal polystyrene monolayer produced by the
floating-transferring technique. Fig. 2f shows a photograph of a
monolayer pattern of PSS prepared by the mentioned technique on a
2x2 cm2 silicon wafer. The color of the substrate observed in this
photograph is due to the diffraction of light.

Fig. 3 shows the final structure of Si NWs (etching time is 5min)
after depositing 50 nm ZnO film by ALD. The SEM images indicate a
conformal coating of Si substrate by ALD.

Fig. 4 shows (a) 2D and (b) 3D images of the SiNWs covered with a
50 nm ZnO layer by ALD. The array of SiNWs exhibit hexagonal packing
over a large area of 15x15 µm as previously shown by SEM. Due to the
high aspect ratio of the SiNWs, the AFM probe cannot reach the bottom
part of the sample and degrades quickly. For this reason, the total
length of the SiNWs cannot be seen by AFM and would require the use
of exotic FIB milled tips and carbon nanotube/fiber tips [55].

XRD spectra of SiNWs (etched for 7min) covered with 20 and 50 nm
of ZnO by ALD are shown in Fig. 5. Three prominent peaks appear at
2θ=31.78°, 34.35°, 36.25°, and 56.69°, which correspond to the
(1 0 0), (0 0 2), (1 0 1), and (1 1 0) reflections of the hexagonal wurtzite
phase of ZnO, respectively. This result indicates that both films are
polycrystalline, as commonly reported for ZnO films deposited by ALD
([38,39,56]). A peak with low intensity at 2θ=47.46° appears for the
50 nm thick sample, which corresponds to the (1 0 2) reflection of ZnO.

The grain sizes (D) of the deposited films are estimated using the
following formula [34]:

=D λ
β θ

0.9
cos( )

where λ is the wavelength of X-ray used (λ=0.154 nm), β is the full
width at half maximum intensity in radians, and θ is the Bragg angle.
The average value of grain size is found to be 7.5 ± 0.45 nm, and
14 ± 6.5 nm for samples etched for 7min and covered with 20 and
50 nm of ZnO, respectively.

Fig. 6 shows the high-resolution TEM images of ZnO-Si nanowires
with different ZnO layer thicknesses. Silicon nanowires coated with
20 nm of ZnO by ALD are presented in Fig. 5a. The TEM images show
that the 20 nm ZnO layer covers conformally and homogenously the
SiNWs. The distance between the nearest wires is narrowed to the
bottom from 150 to 300 nm. We can notice that the diameter of the
wires is about 450 nm on the top and 850 nm at the bottom. Thus, the
wires have the shape of a truncated trapezoid. This shape could be due
to the longer exposure time of the top part with the etching solution
according to Dawood et al. [57]. Macroporous structure of the wires
could also be observed (Fig. 6a). This can be explained by the lateral
transport of the charge carriers [23].

Fig. 6b shows a TEM image of individual silicon nanowires covered
by 50 nm ALD ZnO layer. The total thickness of the layer is approxi-
mately 50 nm (having amaximum value of 55 nm on the top). For both
samples, the ZnO layers have a polycrystalline phase. The size of na-
nocrystallites was estimated using elliptical shape fitting, and the
longer axis was used as the nanocrystallite size. The average grain size
for the 50 and 20 nm ZnO layers was almost the same (11.8 ± 2.5 nm
and 10 ± 2.5 nm, respectively). These results confirmed the data ob-
tained by XRD. The TEM images demonstrate the ability to produce
highly uniform layers of ZnO covered silicon nanowires by the ALD-

Fig. 2. Diameter of PSS as a function of the O2 plasma etching time. The insets
show SEM images of (a) a PSS monolayer prepared by the floating transferring
technique, PSS after being etched by O2 plasma for (b) 1min, (c) 5 min, and (d)
10min, and photographs of (e) a monolayer of PSS on the air-water interface
and (f) on a 2x2 cm2 silicon wafer.
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based process.
Raman spectroscopy was used to confirm the composition of SiNWs

covered by ALD of ZnO. Fig. 7 shows the Raman spectra of Si nanowires
(7 min. etching) with 20 and 50 nm of ZnO by ALD. An intense peak
(E2high mode) of Si is observed at 520 cm−1 due to light penetrating
through the thin ZnO films [58]. However, by increasing the number of
accumulations, a Raman peak at 432 ± 2 cm−1 (E2high mode) that
corresponds to the wurtzite phase of ZnO, was observed (inset of Fig. 7).
This mode is associated with the motion of oxygen atoms [58-61]. The
E2high mode peak (full width half maximum [FWHM] of∼ 20 cm−1) is
broader than the one for the bulk ZnO (FWHM is less than 10 cm−1)
and is shifted to higher frequencies or blue shifts. The broadening of the
peak and the blue shift are attributed to phonon confinement effects
[62].

Fig. 8 shows the reflectance of Si nanowires arrays etched for 2, 5

and 7min and covered with (a) 20 and (b) 50 nm of ZnO, respectively.
It was found that the reflectance decreases with the increase of the
etching time,(which produces longer nanowires) as reported by others
[63]. This decrease may be explained by the increased light trapping
and absorption of longer nanowires [64]. We observed that the re-
flectance is less than 5% and 8% for the SiNWs (etched for 5min)
covered with ZnO 20 and 50 nm, respectively. This low reflectance
could be explained by the energy band structure of the sample. The
multiple band gaps in the system cause a variety of near band-edge
absorptions from sunlight in different frequency ranges, reducing re-
flectivity. Also, the change of the refractive indexes of the materials
may be related to the decrease of reflection[65,66]. . These excellent
antireflective properties can be used to harvest photons in different
applications such as solar cells [66], and laser-assisted desorption/io-
nization (LDI) measurements [67].

Fig. 3. SEM images of SiNWs (etched for 5min) with a 50 nm ZnO layer deposited by ALD.
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Fig. 4. (a) 2D and (b) 3D AFM images SiNWs covered with a 50 nm ZnO layer by ALD.
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The band gap values of SiNWs prepared at different etching times
(2, 5 and 7min) and covered with (a) 20 (and (b) 50 nm of ZnO by ALD,
were graphically calculated in the linear part of the absorption edge
and showed in Fig. 9. As we can see, the obtained values (presented in
Table 1) are lower than the typical value of a ZnO single crystal
(Eg= 3.37 eV). As reported before, this difference could be due to the
concentration of point defects (such as vacancies and interstitials of Zn
and O) [38]. We can also observe a small increase in the band gap value
with the increase of the ZnO thickness. This could be associated with
the improvement of the crystalline structure of the deposited samples
[38].

The PL of 3D ZnO nanostructures with different thicknesses are
plotted in Fig. 10. The PL spectra showed strong peaks in the range of
410–450 nm with a long PL tail going to higher wavelengths. Decon-
volution of the PL spectra on separate lines has been performed using
Gauss fitting in Origin software (see supporting information, Figure S1).
The spectra deconvolution showed peaks centered at 376–379,
411–415, 434–437, 447–480, 490–540, 570–640 nm, and 660–740 nm
related to free exciton, Zn interstitials, Zn vacancies, neutral oxygen
vacancies, single charged oxygen vacancies, double charged oxygen
vacancies, and surface defects, respectively [38,56,68,69]. The

domination of defect emission bands points to deviations in the stoi-
chiometry of the prepared 3D ZnO nanostructures. The decrease of PL
intensity for ZnO samples deposited on 7min etched SiNWs could be
related to higher light scattering caused by their length. It is suggested
that both the high surface area and the antireflective properties of the
nanostructures might have an impact on the overall PL emission [64].

4. Conclusion

In summary, we have demonstrated a simple method for the fabri-
cation of ordered aligned SiNWs/ZnO core shell nanostructures. The
method utilizes a 2D non-close-packed polystyrene sphere template in
combination with the MACE technique for the preparation of the NWs.
Next, the conformal deposition of ZnO films as shells was performed on
the highly-ordered vertical SiNWs array using the ALD route. The or-
dered SiNWs readily produced by the present method may find many
applications in array devices such as field-effect transistors, sensors,
electrodes, and two-dimensional photonic crystals. The high aspect
ratio and anti-reflective characteristics inherent to the structure of the
nanowires can be exploited for fabricating future nanoelectronic and
optoelectronic devices. The detailed study of structural and optical
properties of the core-shell SiNWs/ZnO heterostructures was presented.
The X-ray diffraction analysis revealed that all samples have a

Fig. 5. XRD spectra of SiNWs/ZnO with different thicknesses (20 and 50 nm) of
ZnO layers on SiNWs with 7min etching. XRD spectra of SiNWs (etched for
7 min) covered with 20 and 50 nm of ZnO by ALD.

Fig. 6. Cross-sectional TEM images of SiNWswith (a) 20 and (b) 50 nm of ZnO by ALD.

Fig. 7. Raman spectra of bare SiNWs (etched for 7min) and after the deposition
of ZnO (20 and 50 nm) by ALD.
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hexagonal wurtzite structure. The grain sizes, as measured using XRD
data, were found to be in the range of 7–14 nm and were confirmed by
TEM. The TEM and SEM images demonstrated the ability to produce
highly uniform layers of ZnO covered silicon nanowires by the ALD
technique. The optical reflectance spectra for SiNWs/ZnO confirmed
the low optical reflection of the thin films. The layer of ZnO on SiNWs
can be applied as an antireflection coating. The study of photo-
luminescence (PL) spectra of SiNWs/ZnO showed the domination of
defect emission bands, which points to deviations in thestoichiometry
of the prepared 3D ZnO nanostructures. We also observed the reduction

of the PL intensity of SiNWs/ZnO etched for 7min that could be due to
the higher light scattering caused by increasing the length of the na-
nowires. These results open new perspectives for the preparation of
optical and sensing devices.

Fig. 8. Reflection spectra of SiNWs (etched for 2, 5, and 7min) covered with (a)
20 and (b) 50 nm of ZnO by ALD.

a b 

Fig. 9. Band gap estimation of SiNWs covered with (a) 20 nm and (b) 50 nm of ZnO layer by ALD.

Table 1
Band gap of SiNWs covered with 20 and 50 nm ZnO.

Etching time (min) 2 5 7

Eg (eV)

ZnO 20 nm 2.90 ± 5–7% 3.00 ± 5–7% 3.11 ± 5–7%
ZnO 50 nm 3.22 ± 5–7% 3.16 ± 5–7% 3.05 ± 5–7%

b 

a 

Fig. 10. Photoluminescence spectra of SiNWs (etched for 2, 5, and 7min)
covered with (a) 20 and (b) 50 nm of ZnO by ALD.
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