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Nowadays a large variety of applications are based on solid nanoparticles dispersed in 
liquids—so called nanofluids. The interaction between the fluid and the nanoparticles 
plays a decisive role in the physical properties of the nanofluid. A novel approach based 
on the nonradiative energy transfer between two small luminescent nanocrystals 

(GdVO4:Nd
3

 and GdVO4:Yb
3

) dispersed in water is used in this work to investigate 

how temperature affects both the processes of interaction between nanoparticles and the 
effect of the fluid on the nanoparticles. From a systematic analysis of the effect of 

temperature on the GdVO4:Nd
3

 → GdVO4:Yb
3

 interparticle energy transfer, it can be 

concluded that a dramatic increase in the energy transfer efficiency occurs for 
temperatures above 45 °C. This change is properly explained by taking into account a 
crossover existing in diverse water properties that occurs at about this temperature. The 
obtained results allow elucidation on the molecular arrangement of water molecules 
below and above this crossover temperature. In addition, it is observed that an energy 
transfer process is produced as a result of interparticle collisions that induce irreversible 
ion exchange between the interacting nanoparticles.  

 
 
 
 

 

1. Introduction 
 
Luminescent nanofluids (LNFs) are colloidal suspensions of 

luminescent nanoparticles (LNPs) in liquid media. LNFs have 

recently emerged as versatile and powerful tools capable of 

providing innovative solutions in a wide range  

 
 
 
 

 
of fields, including analytical chemistry, renewable ener-gies, and 

biomedicine.
[1]

 From a fundamental point of view, LNFs 

constitute a novel scenario for the study of the physical 

mechanisms governing interaction processes between nano-

particles, and the effect of the solvent on the nanoparticles at the 

nanoscale level by using the luminescence generated 

 



 

 

by LNPs as a tool. For instance, approaches already used to get 

information on these interaction mechanisms involve the study of 

the Brownian colloidal nature of LNFs due to the interaction of 

the molecules of the fluid with the LNPs,
[2]

 radiation trapping 

between LNPs,
[3]

 the enhancement of the stability of the 

luminescence of silica nanocrystals,
[4]

 or even efficient 

nonradiative energy transfer processes between LNPs in close 

proximity.
[5]

 The physics of LNFs is even more mysterious and 

challenging when dealing with colloidal small (≈3 nm) 

luminescent nanoparticles (SLNPs). In such small NP sizes, over 

80% of constituent atoms are located on the surface. Therefore, an 

enormous fraction of the constituent atoms is in physical contact 

with the solvent molecules or with other SLNPs. As a 

consequence, any change in the envi-ronment of an SLNP or even 

the interparticle interactions affects most of their atoms, and thus 

has a major impact on their luminescent properties. Thus, we 

expect that a thorough analysis of the luminescence generated by 

LNFs containing SLNPs will provide information about both the 

molecular status of the liquid solvent and the nature and 

magnitude of interaction events between SLNPs. 

 
The use of LNFs for nanoscale molecular investiga-tions is 

especially exciting when applied to water—the most common 

substance on earth and indispensable in life and human 

development. Although water has been studied for decades and 

most of its properties are well known, the inter-actions between 

water molecules are not fully understood. In particular, thermal 

anomalies in liquid water properties are still a matter of debate.
[6]

 

Indeed most water proper-ties have been studied by macroscopic 

techniques, such as optical and dielectric spectroscopy, and they 

do not provide details at the molecular level. Questions about the 

molecular dynamics of water remain unanswered, such as a 

crossover at around 45 °C that affects a large variety of water 

properties and the thermal stability of biological macromolecule 

as pro-teins.
[7]

 As this anomaly takes place within the 

physiological temperature range, it is expected to have a great 

impact in the use of nanofluids for biomedical applications.
[8]

 The 

use of nanoscopic techniques capable of monitoring dynamic 

molecular interactions at the molecular scale will enable us to 

better understand the dynamics of water, the use of LNFs 

containing SLNPs in particular. 

 
The goal of this work is to understand the crossover in the 

molecular behavior of water at ≈45 °C by means of inter-particle 

energy transfer (IPET) between two different kind of SLNPs 

(donor and acceptor SLNPs), both coexisting in the same LNF.
[9]

 

As previously reported by Sarkar et al.,
[9b]

 after the optical 

excitation of donor SLNPs, energy transfer to the acceptor SLNPs 
may occur via collision-assisted processes caused by the thermal 

motion of both donor and acceptor SLNPs in the solvent fluid.
[2]

 

Thus energy transfer in colli-sion-assisted IPET (CA-IPET) takes 
place when the donor and acceptor SLNPs collide, such that the 
superficial lumi-nescent ions of the interacting SLNPs are in a 
distance range allowing nonradiative energy transfer. CA-IPET 

efficiency (φCA-IPET) is strongly correlated with the molecular 

struc-ture of the solvent and, consequently, temperature-induced 
changes in the water molecular properties will strongly affect 

 

 

2. Results and Discussion 
 

The used SLNPs consist of GdVO4 small nanocrystals doped with 

either Nd
3

 (donor nanoparticles) or Yb
3

 ions (acceptor 

nanoparticles), hereafter designated SLNPs:Nd and SLNPs:Yb, 
respectively. Trivalent rare-earth-ion-doped SLNPs are excellent 
optical probes and display narrow absorption and emission 

bands.
[10]

 In addition, the energy levels of both Nd
3

 and Yb
3

 

lead to a phonon-assisted spectral overlap between the emission of 

Nd
3

 ions and the absorption of Yb
3

 ions, which ensures the 

possibility of an efficient Nd
3

 → Yb
3

 nonradiative energy 

transfer when the SLNPs:Nd and SLNPs:Yb are close to each 

other.
[11]

 Details about synthesis procedure and morphological 

properties of these SLNPs are supplied in the Experimental 

Section and in Sections S1 and S2 (Supporting Information). 
Figure 1a,b shows that the average diameter of both SLNPs:Nd 

and SLNPs:Yb is DNP =  2.9 ± 0.5 nm. Figure 1a shows a trans-

mission electron microscopy (TEM) image revealing that the 

crystallographic structure is preserved even at small sizes. Figure 
1c shows digital pictures of the SLNPs:Nd and SLNPs:Yb LNFs, 
which were prepared separately in stable colloidal aqueous 

suspensions. Figure 1e displays a digital picture of LNF 
containing both SLNPs:Nd and SLNPs:Yb, which was obtained 
by mixing certain volumes of the original suspensions. Both 

original and mixed LNFs are colloidal, and even over a period of 
months do not precipitate. Figure 1d shows a room temperature 
emission spectra generated by the original (unmixed) LNFs under 

808-nm laser excitation, i.e., under a selective excitation of Nd
3

 

ions (see the absorp-tion of LNFs in Figure S7 in the Supporting 
Information). As expected, no luminescence is generated by the 
LNF containing only SLNPs:Yb (see also Figure S8 in the Sup-
porting Information). On the other hand, the emission spec-trum 

generated by the LNFs containing only SLNPs:Nd in the studied 
spectral range (950–1125 nm) is the well-known 
 

 
4
F3/2 → 

4
I11/2 infrared emission band of Nd

3
 ions centered at 

≈1060 nm. Taking into account the energy level diagrams of  
Nd

3
 and Yb

3
 ions (shown schematically in Figure 1c,e), only 

SLNPs:Nd generate luminescence under 808-nm excitation 

(which matches the 
4
I9/2 → 

4
F5/2 absorption band of Nd

3
 ions). 

Figure 1f shows the emission spectra (optically excited by 808-nm 
laser light) obtained at different temperatures when the LNF 
contains both SLNPs:Nd and SLNPs:Yb. All display the 1060-nm 

emission band of Nd
3

 and the characteristic  
emission band of Yb

3
 centered at 980 nm (

2
F5/2 → 

2
F7/2 transi-

tion), revealing that Nd
3

 → Yb
3

 energy transfer takes place,  
i.e., the IPET process. In this IPET process, SLNPs:Nd are donor 
units that absorb 808 nm of excitation energy and par-tially 
transfer energy to the SLNPs:Yb acceptor units. Note that for 
close to ambient temperatures (20–30 °C in Figure 1f) we see 

only weak traces of Yb
3

 ion emission, but when tem-peratures 

exceed 45 °C (80 °C in Figure 1f) we observe a substantial 

increase in the Yb
3

 ions emission and a corre-sponding decrease 

in the emission of Nd
3

 ions, which indi-cates a strong increase in 

the IPET. The nonradiative nature of this IPET process has been 
confirmed by the shortening of the emission lifetime of the donor 

ion (Nd
3

) in the presence of SLNPs:Yb (see Section S3 in the 
Supporting Information).  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.  Characterization of the SLNPs and emission of the LNFs. a) TEM image of a mix of SLNP:Nd and SLNP:Yb (dashed circles 
show the positions of the SLNPs). b) Size distribution obtained from the analysis of TEM images. c) Schematic representation of the 

energy levels of Nd
3

 and Yb
3

 ions accounting for the emission (dotted arrow) obtained under selective excitation of Nd
3

 ions (808 nm; 
gray arrow) and optical image of the cuvettes containing the LNFs with either SLNP:Nd or SLNP:Yb. d) Emission spectra of the LNFs 

shown in (c). e) Schematic representation of the energy levels of Nd
3

 and Yb
3

 ions accounting for the emissions (gray arrow Nd
3

 and 

black arrow Yb
3

) obtained from the mixed LNF under optical excitation of Nd
3

 ions (dotted arrow) and the IPET process (an optical 
image of the cuvette containing the mixed LNF is also shown). f) Emission spectra of this LNF at three different temperatures . 

 

Thus the data in Figure 1 evidence the presence of IPET in 

LNFs containing both SLNPs:Nd and SLNPs:Yb, but it does not 

reveal the responsible mechanism. The litera-ture indicates two 

possible mechanisms that could explain IPET. The first one is the 

well-known Dexter–Förster IPET (DF-IPET) that assumes that 

electric dipole interaction causes noncontact energy transfer 

between donor and acceptor units. The second one is the CA-

IPET described above,
[9b]

 in which the IPET from donor to 

acceptor particles occurs when they collide. As explained in 

Section S4 (Sup-porting Information), we can discriminate 

between DF-IPET  
and CA-IPET by studying the dependence of φCA-IPET on fluid 

viscosity (η). An increase in η reduces the collision rate,  
and thus φCA-IPET, for a CA-IPET process. On the other hand, η 

does not affect φIPET for a dominant DF-IPET pro-cess. Figure 
2a shows the emission spectra obtained from  
mixed LNFs of different η that preserve the same average 

 

interparticle distances. The procedure for controlling the η 

variation is described in the Experimental Section. Figure 2b 

shows how φCA-IPET decreases as the solvent fluid η increases. 

We also obtain a φCA-IPET ∝1/η trend, identical to that expected 

for a pure CA-IPET process (see Section S4 in the Supporting 

Information). We thus conclude that collisions are the dominant 

mechanism leading to the interparticle energy transfer in the 

mixed LNF.  
Figure 3a shows the dependence of φCA − IPET on the LNF 

temperature in the 20–80 C range obtained during  
a heating and cooling cycle. Two regimes are observed during the 

heating process. In the 10–40 C range, the  
φCA-IPET increases linearly with temperature at a rate of dφCA-

IPET/dT ≈ 0.45% C
–1

. In the 60–80 C range, φCA-IPET 
increases linearly with temperature but with a much larger  
rate of dφCA-IPET/dT ≈ 3.2% C

–1
. Note that these two regimes 

cannot be correlated to morphological changes affecting the 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Dependence of IPET efficiency on viscosity. a) Emission spectra of the mixed LNF under optical excitation at 808 nm (i.e., 

optical excitation of doped SLNP:Nd) as obtained for two different viscosities of the solvent. b) Dependence of the CA-IPET efficiency on 

the inverse of fluid viscosity η. Symbols are experimental data and dashed line is a guide for the eyes. 

 
SLNPs caused by, e.g., particle agglomeration or temperature-

induced Ostwald ripening. Figure 3b shows SLNPs average size 
from TEM experiments conducted on the mixed LNF at different 

temperatures (see Figure S3 in the Supporting Information), 
confirming that within the error bars the size of the SLNPs 

remains unchanged. The two trends observed in the φCA-IPET 

versus temperature experiment may reveal the existence of a 

crossover in the molecular structure of water at 45 C, which 
would modify the dynamics of interparticle  
collisions and change the dependence of φCA-IPET on tem-

perature. Note also that the molecular structure of water at  
temperatures below 45 C minimizes the interaction between 

SLNPs, which makes φCA-IPET weakly dependent on tempera-

ture in this range. As mentioned above, the existence of this 45 C 

water crossover was reported in several studies of the optical, 

mechanical, and dielectric properties of water.
[7]

 We 

 
will relate this anomaly to the temperature-induced dissocia-tion 

of water molecules clusters later in this report. 

Figure 3a shows that although φCA-IPET increases by more 

than one order of magnitude when subjected to a heating  
cycle, it remains temperature independent when cooled. This 

nonreversibility is not due to a CA-IPET process, in which the 

SLNPs involved in the collision events should not be altered. 

Clearly, the collision events permanently modify the SLNPs 

somehow. Figure 3b shows TEM results that rule out structural 

and morphological changes in the nanoparticles after collision 

events. Therefore the observed spectral hys-teresis may be due to 

interparticle ion exchange during col-lision events. Figure 3c 

shows a schematic representation of the ion-exchange 

mechanism. When an SLNP:Nd and an SLNP:Yb collide, during 

the time interval of physical contact the SLNPs exchange 

superficial atoms, Nd
3

 and Yb
3

 ions 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.  Dependence of IPET efficiency on temperature. a) Temperature dependence of the CA-IPET efficiency as obtained during a 

heating (black) and cooling (gray) cycle. Dashed lines are guides to the eyes in order to make evident the existence of two distinguished 

regimes. b) Diameter of the SLNPs estimated from TEM images of mixed LNF heated at diverse temperatures. c) Schematic 

representation of a collision-assisted interparticle ion exchange process. d) Long-term evolution of CA-IPET efficiency as obtained at two 

different temperatures (25 C (gray) and 50 C (black)). Symbols are experimental data and dashed lines are guides to the eyes. 

 



among them, and a fraction of Yb
3

 (Nd
3

) ions are incorpo- where  t is the measurement lap time at each T (where 
                   i 

rated on the surface of the SLNP:Nd (SLNP:Yb). After this Ti−1 is the previous measured temperature), and φ is the 

collision-assisted ion exchange occurs, the distance between total number of successful collisions between LNPs (i.e., 

Nd
3

 (donor) and Yb
3

 (acceptor) ions is on the order of the collisions leading to ion exchange) per unit time. The suc- 

SLNP size (2.9 nm), much lower than the average distance cessful collisions are quantified by multiplying the total 

between SLNPs in the LNF (≈10 nm), which was the dis- number of collisions per unit time by the probability of 

tance between ions initially. Due to the fact that the distance obtaining ion transfer (κ) and the probability that there 

between donor and acceptor ions is significantly reduced is energy transfer between ions (W). Because the total 

after the ion exchange, φCA-IPET increases. This explains the number of collisions per unit time is proportional to the 

maximum value of φCA-IPET  experimentally obtained after temperature-dependent diffusion constant (D), the propor- 

the heating and cooling cycle. In addition, once ion exchange tionality expression for κ is:    
has occurred, no further collisions are needed for the effi- 

 

 

 

cient energy transfer. Thus the lower collision rate (the lower   

temperature) during the cooling procedure does not lower    
        

φ
CA-IPET

. 

        

                            (2)         

To experimentally verify the presence of interparticle ion            

exchange in the LNFs, we keep their temperature constant The diffusion constant is given by D   = kB T/(3πηDNP), 

and measure the long-term evolution of φCA-IPET. Note that where kB is the Boltzmann constant. Knowing the tempera- 

at any given temperature collisions between SLNPs happen ture dependence of W and η (see the data in Section S6 in 

at a given rate that is proportional to this temperature. Thus the Supporting Information), we can determine the temper- 

ion exchange is occurring, and the φCA-IPET increases with ature dependence of κ from the experimental data shown 

time until it reaches saturation. The time needed to reach in Figure 3a. Figure 4a shows the temperature dependence 

saturation is strongly temperature dependent. Higher tem- of κ, which remains approximately constant below 45 °C 

peratures increase collision rates, speed up the ion exchange and is thermally activated at higher temperatures, growing 

process, and shorten the time to saturation. Figure 3d shows according to logarithmic dependence on the inverse of the 

the long-term evolution of φCA-IPET at 25 and 50 °C for a absolute temperature. The low φCA-IPET values below 45 °C 

mixed LNF. As predicted for the CA-IPET process in the are  caused  by  the  formation  of  water  molecule  cages 

presence of ion exchange, experimentally we find saturation around the SLNPs that fluctuate in time, impede collisions, 

dynamics at both temperatures and a shorter saturation time and inhibit ion exchange. These cages disappear when tem- 

at the higher temperature. Figure 3d and Figure S9 (Sup- perature increases and therefore the collision-assisted ion 

porting Information) also reveal that a more efficient inter- exchange is thermally activated.
[7d]

 The insets in Figure 4d  

particle ion exchange is produced at higher temperatures, 
schematically show both 
situations.    

as higher φCA-IPET  values, together with a corresponding The temperature-induced dissociation of water cages 

important shortening of the lifetime of the donor ions, are around the SLNPs indicates that, as previously proposed,
[7] 

observed after long-term evolution at 50 °C. X-ray diffrac- there is a crossover between the regular water state and a 

tion measurements and TEM images of the LNF after these hydrogen-bonded state. We now further explore the exist- 

experiments (Figures S2 and S4 and Table S1, Supporting ence of this crossover by examining the dielectric behavior 

Information) confirm that the LNP has not suffered signifi- of liquid water to quantify at each temperature the value of 

cant morphological modifications during long-term evolu- i) the dipole moment and ii) the associated critical temper- 

tion. Figure 3d shows experimental data indicating that the ature (Tc) in terms of Curie–Weiss behavior.
[13]

 Figure 4b,c 

changes in the luminescent properties of the mixed LNF can shows the results for (i) and (ii), respectively. Note how the 

only be understood in terms of a synergy between interpar- dipole moment value falls between the accepted gas and ice 

ticle collisions and ion exchange events. Note that we assume values for the water molecule (1.84D and 2.6D, respectively), 

that ion exchange occurs in a colloidal suspension of LNPs. and how liquid water is always in the paraelectric phase. 

This has also been reported by several researchers, although Since the value of the dipole moment of the water molecule 

they did not correlate it with interparticle collisions.
[12]

 The is dependent upon the average number of clustered water 

effect of the long-term evolution at diverse temperatures molecules,
[14]

 the average number of water molecules in each 

(i.e., ion exchange saturation in the two regimes of water) cluster at a given temperature (i.e., the number of water mol- 

on the temperature dependence of the φCA-IPET is studied in ecules able to interact between them to form cages) shown 

Section S5 (Supporting Information).   in Figure 4d is determined from the temperature dependence 

Figures 2 and 3 show experimental data that we now of the dipole moment shown in Figure 4b. Note that, for tem- 

analyze using a simple model in order to correlate the tem- peratures above ≈45 °C, the existence of pairs of hydrogen- 

perature dependence of φCA-IPET  with a crossover in the bonded water molecules starts to be unlikely, and this implies 

molecular behavior of water at ≈45 °C. For short time periods a decrease in the stability of the hydrogen bonded clusters 

and far from saturation, the transfer efficiency (φCA-IPET) at a surrounding the LNPs. This explains the disappearance of the  

given temperature (Ti) is:        

         rates, and the temperature dependence of φCA-IPET shown in 

φ CA-IPET (Ti) = φCA-IPET (T i−1)) + φ (Ti)t   
 

(1) 
 

Figure 3a. 
       

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.  Crossover between water molecular behaviors. a) Logarithm of the ion transfer probability (except for a temperature 
independent constant) as a function of the inverse of temperature. A 1/T linear dependence is only experimentally found for temperatures 

above 45 C (dashed line). b) Dipole moment of water and c) critical temperature Tc (also known as Curie temperature) estimated from 

dielectric data as a function of temperature. d) Number of interacting molecules in water as a function of temperature. Insets: Schematic 

diagram of water molecules (top) interacting between them and so forming a cage that inhibits collisions and (bottom) being unable to 
interact among them and so allowing for interparticle collisions. Dashed arrow points out the crossover temperature. 

 

 

3. Conclusion 
 

In summary, we have used small luminescent nanoparticles doped 

with different rare earth ions as colloidal donor and acceptor units 

to study the interparticle energy transfer pro-cess in water-based 

nanofluids. We have found that there is interparticle energy 

transfer between colloidal small lumi-nescent nanoparticles. This 

process is mediated by inter-particle collisions, which increase the 

rate of nonreversible exchange of the luminescent ions between 

nanoparticles. The experimental data show that the interparticle 

energy transfer efficiency displays an unusual temperature 

depend-ence: A weak trend is observed below 45 C and strong 

one above this temperature. This unusual temperature-dependent 

behavior indicates that there is a change in the molecular behavior 

of water at this temperature that is due to the exist-ence of a 

diffuse crossover at 45 C between a hydrogen-bonded and a 

regular state of water. 

 
This indicates that the molecular structure of the solvent plays 

a decisive role in the interparticle dynamics of nano-fluids. In 

addition, the optical spectroscopy of colloidal small luminescent 

nanoparticles is a powerful tool in the study of molecular 

interactions of liquids. Therefore, the results pre-sented in this 

work open new avenues in which small lumi-nescent 

nanoparticles can be used as local molecular probes to study the 

molecular interactions of not just water but also a variety of other 

liquids. 

 

 

4. Experimental Section 
 

Reagents and Synthesis: Ammonium metavanadate (NH4VO3; min. 

99.0%, Alfa Aesar), trisodium citrate dihydrate (Na3C6H5O7; 99+%, 

Sigma-Aldrich), gadolinium(III) nitrate hexahydrate (Gd(NO3)3 × 6H2O; 

99.9%, Alfa Aesar), neodymium(III) nitrate hex-ahydrate (Nd(NO3)3 × 

6H2O; 99.9%, Alfa Aesar), and ytterbium(III) nitrate pentahydrate 

(Yb(NO3)3 × 5H2O; 99.9%, Alfa Aesar) were used without further 

purification. Milli-Q deionized water (electrical resistivity = 18.2 MΩ 

cm
−1

) was utilized as a solvent. Spectra/Por 3 dialysis membrane, 

Standard RC Tubing, MWCO: 3.5 (Spectrum Laboratories, Inc.) was 

used for the dialysis of prepared colloidal suspensions. Colloidal 

suspensions of Nd
3+

 and Yb
3+

 doped GdVO4 SLNPs were prepared by 

following the procedure which is described in a recent paper.
[15]

 A 

detailed description of the procedure is included in Section S1 

(Supporting Information).  
General Conditions for Structural Characterization: Samples for 

structural characterization were obtained by evaporation of 

aqueous colloidal solutions. X-ray diffraction measurements were 

performed with Rigaku SmartLab diffractometer using CuKα1.2 

radiation (λ = 0.15405 nm). Diffraction data were recorded with a 

step of 0.01° and a counting time of 1° min
−1

 over the 2θ range 

from 10° to 100°. The study of particle morphology was accom-

plished using transmission electron microscope Tecnai G2 F20 

(FEI) operated at 200 kV. The samples for TEM studies were 

placed on an ultrathin carbon film (3 nm) mounted on top of a 

supporting carbon holey film S187-4 (agar Scientific). 

 
 



 
General Conditions for Optical Characterization: Emission 

measurements were performed under excitation at 808 nm by means of 

a single-mode fiber-coupled laser diode. Laser light was collimated 

using a fiber port and focused through a 20× NA = 0.4 microscope 

objective, that at the same time collects the lumines-cence of the NPs. 

Emission and excitation light were discriminated by means of a 

wavelength selective mirror and a 830-nm long-pass filter. Finally, the 

luminescence of the LNPs was analyzed by a spec-trometer (Andor, 

Oxford Instruments) and recorded by an InGaAs detector. The 

temperature of the LNFs was controlled by employing a heating plate 

with an uncertainty of 0.1 °C. The temperature was 

increased/decreased at a maximum rate of 2.5 °C min
−1

. In order to 

guarantee the homogeneous heat distribution in the cuvette containing 

the sample, a thermal stabilization time of 15 min was hold before each 

measurement. A thermal gradient in the cuvette of less than 1 °C was 

achieved. The intensity decay curves of the luminescence of the donor 

ions in LNFs were obtained by exciting the LNFs at 808 nm using an 

optical parametric oscillator source (Spectra Physics). The light emitted 

by the LNFs was spectrally ana-lyzed by means of a spectrometer and 

then the intensity decay at  
892 nm. 

4
F3/2 → 

4
I9/2 transition was measured by using a photo-

multiplier tube (R636-10, Hamamatsu) and a digital oscilloscope  
(LT372, LeCroy). Notice that this allows to measure the decay 

time of the 
4
F3/2, excited state which is also the one 

responsible for the 1060-nm emission.  
General Procedure for Controlled Variation of Viscosity and 

Viscosity Estimation: Small controlled amounts of soap (Liquinox, 

Alconox) (with a viscosity of ≈500 mPa s) were added to the LNF 

up to a volume 2.3% of the total volume of the LNF. The density of 

LNPs in the LNF was varied through this process by no more than 

a 2.3%, which means that the average distance between LNPs was 

only increased up to 0.09 nm. These variations are not significant in 

terms of spectral modifications. 
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