
LATVIJAS UNIVERSITĀTES
RAKSTI
733. SĒJUMS733. SĒJUMS

Datorzinātne un
informācijas tehnoloģijas

SCIENTIFIC PAPERS
UNIVERSITY OF LATVIA
VOLUME 733VOLUME 733

Computer Science and
Information Technologies

LURaksti733-datorzin.indd 1LURaksti733-datorzin.indd 1 2008.03.31. 15:05:152008.03.31. 15:05:15

SCIENTIFIC PAPERS
UNIVERSITY OF LATVIA
VOLUME 733VOLUME 733

Computer Science and
Information Technologies

Latvijas Universitāte

LURaksti733-datorzin.indd 2LURaksti733-datorzin.indd 2 2008.03.31. 15:05:202008.03.31. 15:05:20

Latvijas Universitāte

LATVIJAS UNIVERSITĀTES
RAKSTI
733. SĒJUMS733. SĒJUMS

Datorzinātne un
informācijas tehnoloģijas

LURaksti733-datorzin.indd 3LURaksti733-datorzin.indd 3 2008.03.31. 15:05:202008.03.31. 15:05:20

UDK 004(082)
 Da 814

Editor-in-Chief:
prof. Jānis Bārzdiņš, University of Latvia, Latvia

Deputy Editors-in-Chief:
prof. Rūsiņš-Mārtiņš Freivalds, University of Latvia, Latvia
prof. Jānis Bičevskis, University of Latvia, Latvia

Members:
prof. Mikhail Auguston, Naval Postgraduate School, USA
prof. Guntis Bārzdiņš, University of Latvia, Latvia
prof. Juris Borzovs, University of Latvia, Latvia
prof. Janis Bubenko, Royal Institute of Technology, Sweden
prof. Albertas Caplinskas, Institute of Mathematics and Informatics, Lithuania
prof. Jānis Grundspeņķis, Riga Technical University, Latvia
prof. Hele-Mai Haav, Tallinn University of Technology, Estonia
prof. Ahto Kalja, Tallinn University of Technology, Estonia
prof. Audris Kalniņš, University of Latvia, Latvia
prof. Jaan Penjam, Tallinn University of Technology, Estonia
prof. Kārlis Podnieks, University of Latvia, Latvia
prof. Māris Treimanis, University of Latvia, Latvia

Scientifi c secretary:
Lelde Lāce, University of Latvia, Latvia

Proof-reader:
Māra Antenišķe

Visi krājumā ievietotie raksti ir recenzēti.
Pārpublicēšanas gadījumā nepieciešama Latvijas Universitātes atļauja.
Citējot atsauce uz izdevumu obligāta.

All the papers published in the present volume have been rewieved.
No part on the volume may be reproduced in any form without the written permision
of the publisher.

ISSN 1407-2157 © Latvijas Universitāte, 2008

ISBN 987-9984-825-47-0

LURaksti733-datorzin.indd 4LURaksti733-datorzin.indd 4 2008.03.31. 15:05:202008.03.31. 15:05:20

Contents

SOFTWARE DEVELOPMENT AND TESTING
Darja Šmite, Juris Borzovs. Managing Uncertainty in Globally

Distributed Software Development Projects 9
Zane Bičevska, Jānis Bičevskis. Application of Smart Technologies

in Software Development: Automated Version Updating 24
Krišs Rauhvargers, Jānis Bičevskis. Towards a Semantic Execution

Environment Testing Model 38
Andris Paikens, Guntis Arnicans. Use of Design Patterns in

PHP-Based Web Application Frameworks 53

MDA AND MODEL TRANSFORMATIONS
Sergejs Rikacovs. The Base Transformation Language L0+ and Its

Implementation 75
Edgars Rencis. Model Transformation Languages L1, L2, L3 and Their

Implementation 103
Agris Sostaks, Audris Kalnins. The Implementation of MOLA to

L3 Compiler 140
Oskars Vilitis, Audris Kalnins. Technical Solutions for the

Transformation-Driven Graphical Tool Building Platform METAclipse 179

MATHEMATICAL FOUNDATIONS
Alina Vasiljeva. Quantum Query Algorithm Constructions for

Computing AND, OR and MAJORITY Boolean Functions 215

QUALITY MODELS
Uldis Straujums. Conceptualising Informatization with the Onto6

Methodology 241
Anita Jansone, Juris Borzovs. An Approach to Cadastral Map Quality

Evaluation in the Republic of Latvia 261

METHODOLOGY
Juris Borzovs. An Outstanding Example of University-Industry Partnership:

The Latvian Case 291

LURaksti733-datorzin.indd 5LURaksti733-datorzin.indd 5 2008.03.31. 15:05:202008.03.31. 15:05:20

LURaksti733-datorzin.indd 6LURaksti733-datorzin.indd 6 2008.03.31. 15:05:202008.03.31. 15:05:20

SOFTWARE DEVELOPMENT
AND TESTING

LURaksti733-datorzin.indd 7LURaksti733-datorzin.indd 7 2008.03.31. 15:05:202008.03.31. 15:05:20

LURaksti733-datorzin.indd 8LURaksti733-datorzin.indd 8 2008.03.31. 15:05:202008.03.31. 15:05:20

Managing Uncertainty in Globally Distributed
Software Development Projects

Darja Šmite, Juris Borzovs

University of Latvia
Rai�a bulv. 19, LV-1586, R�ga, Latvia
{Darja.Smite, Juris.Borzovs}@lu.lv

Abstract. Global software development is not a phenomenon but a reality
nowadays. However, it is still poorly explored. Lack of awareness of the
particular factors inherited in the nature of globally distributed software projects
makes practitioners struggle and invent new approaches to survive. It uncovers
the necessity to support risk management activities. This paper describes a
Knowledge Base and a Risk Barometer developed to support practitioners who
lack experience in global projects. Particularities of globally distributed projects
and their effect on project performance are formalized in a reusable framework
for managing uncertainty. The described tools provide input for risk
identification and help to evaluate risks based on the experience from former
projects.

1 Introduction

Global Software Development (GSD; also known as Global Software Engineering
(GSE), and Globally Distributed Software Development (GDSD)) has become the key
trend in the area of software engineering. It is motivated by the opportunities of
reaching mobility in resources, obtaining extra knowledge, speeding time-to-market,
and increasing operational efficiency. And yet, GSD is accompanied by both
opportunities and problems. Many specialists recognize globally distributed software
development as more complex than even the most complex project managed entirely
in house [8], [6]. Globally distributed software development expands the concept of
traditional outsourcing and addresses transition of common in-house manner of
software development to more complex software life cycle activities distributed
among teams separated by various boundaries, such as contextual, organizational,
cultural, temporal, geographical, and political. This type of development environment
can therefore be characterized by its heterogeneity, virtualness, and inter-
organizational collaboration that are impediments for effective communication and
cooperation of the teams involved in completion of a joint project. New unique
pressures of project management that appear to have nothing to do with the technical
nature of the project and at the same time are reasons that can doom a virtual project
is something even capable managers often overlook [8]. Practitioners claim that they
have to experiment and quickly adjust their tactical approaches for leveraging global
software development risks [2]. Researchers admit that although a body of knowledge

LATVIJAS UNIVERSITĀTES RAKSTI. 2008, 733. sēj.:
DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS 9.–23. lpp.

LURaksti733-datorzin.indd 9LURaksti733-datorzin.indd 9 2008.03.31. 15:05:202008.03.31. 15:05:20

on global software development has been crafted over time, the art and science of
organizing and managing globally distributed software development is still evolving
[4]. However, despite the fact that global software development is said to be different
from common in-house software development projects [11], [9], [8], peculiarities of
globally distributed software projects have not been explicitly formalized.

Risk analysis concepts have been applied to identify and evaluate particular
negative events that might cause globally distributed software project failure. Threats
that endanger globally distributed software project success are found to be quite
distinctive from in-house project threats. Global risks are proved as just the part of
everyday existence that cannot be avoided [11], [10], and must be confronted on a
continuous basis. However, empirical results that would help evaluating the
magnitude of consequences of these environmental factors and threats provide
contradictious views. In addition, related studies describe [3] that as simple as it
sounds, many organizations are unable to manage risks effectively. Accordingly, the
research described in this paper (also published in related research papers [12] and
[13]) focuses on exploring the unique threats of globally distributed projects, effect of
these threats on project performance, and ways to overcome these threats before they
lead to project failure.

2 Research Methodology

2.1 Grounded Theorizing

Grounded theory building methodology developed by Glaser and Strauss [5] was
chosen as the basis for the study. This methodology introduces a qualitative approach
that generates theory from observation [14]. Theory-creating studies are very suitable
for exploratory investigations, i.e., when there is no prior knowledge of a part of
reality or a phenomenon [7]. Grounded theories, because they are drawn from data,
are likely to offer insight, enhance understanding, and provide a meaningful guide to
action [15].

Understanding of global factors and threats evolved grounded by systematically
gathered and analyzed data about the phenomenon. The data was gathered from a
variety of sources, including qualitative interviews and enhanced analysis of related
research literature. Data analysis was performed according to principles prescribed by
grounded theory through applying open, axial, and selective coding techniques [14],
also called as theoretical sampling. A Lotus Notes-based database was used for data
maintenance facilitating in easy categorization.

10 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 10LURaksti733-datorzin.indd 10 2008.03.31. 15:05:212008.03.31. 15:05:21

2.2 Data Sources

Various data sources were used for building the theory, including qualitative
interviews with experienced project managers from the investigated software house,
research literature (journal articles, papers form conference proceedings), and books
on global software development.

We conducted 13 interviews with 9 project managers, who represented all software
development departments of the investigated software house running projects with
customers from different remote locations and were appointed by the heads of
departments as the most experienced ones. The interviews were held by means of
semi-structured interviewing and open questions. The interviews were written down
for further analysis.

We performed an extensive literature analysis using input from 33 research articles
on global software development published in the related conference proceedings and
journals such as IEEE Software, and Communications of ACM.

Literature analysis and interviews with experienced project managers provided a
representative input regarding the phenomenon under study.

2.3 Data Analysis

We created a Lotus Notes based database to maintain the gathered data items and
support data analysis. Sources of information and each data analysis iteration results
were kept within the certain item’s history for traceability opportunities.

Data analysis started with an open coding for data breaking down, examining,
comparing, conceptualizing, and categorizing. While examining data sources,
expressions related to particular project characteristics, different negative events,
consequences or practices were identified and labelled. Data analysis resulted in total
of 253 GSD related issues, which were then stored into the database. Open coding
then continued with categorizing. Each issue at the beginning represented a single
category, the existing labels then were analyzed in order to identify issues that are
similar in meaning. Those were then grouped under more general concepts called
"categories". E.g., the labels “Cultural barriers”, “Cultural distance”, and “Poor
cultural fit” were coded under a joint category “Poor cultural fit”.

This reduced the number of GSD related categories to 163.
Examination of the existing categories showed that many issues were interrelated

and formed cause-effect interconnections. Axial coding was used for deriving
connections between the existing categories and the risk management concepts,
during which the identified GSD related issues from open coding were categorized
into a hierarchy of sub-categories as follows:

� Global factors – root of global threats, that distinguish global projects;
� Global threats – items or activities that have potential for negative

consequences and result from one or a combination of global factors;
� Consequences – negative outcome of a threat;
� Practices – recommendations for leveraging the risks.

Selective coding was used for systematically validating relationships and filling in
categories that needed further refinement and development. Axial coding showed that

11Darja Šmite, Juris Borzovs. Managing Uncertainty in GSD Projects

LURaksti733-datorzin.indd 11LURaksti733-datorzin.indd 11 2008.03.31. 15:05:222008.03.31. 15:05:22

some of the existing categories had to be reconsidered. For some categories identified
during open coding this meant dividing into two or even more categories.

E.g., the category “E-mail communication causes time delays and
misunderstandings” was divided into “E-mail communication” – a threat, and “Time
delays” and “Misunderstandings” – consequences. “E-mail communication” was then
united with one of the more general existing categories – “Asynchronous
communication”. The relations between the three categories were then produced.

Refining the dependences between the new issues and tagging the categories with
the sources were performed through selective coding.

To strengthen the results of this study regarding global factors and threats, only
items that appeared more than once were selected, i.e. the threats that are strongly
dependent on particular environment were omitted. Due to the industrial background
of the research, customer related issues were also omitted after data analysis. New
versions of records were processed, saving the history and notes reflecting the
decisions within the database.

2.4 Results

Grounded theorizing resulted in 7 global factors, 32 supplier related threats, 7 supplier
related major consequences, and 32 supplier related practices (for more detail see the
following chapters). As the theory has been built, we conclude that the most valuable
results refer to global factors and threats. In its turn consequences and relationships
between the global factors, threats, and consequences are weak and inconsistent.
Therefore, we conducted a survey on 38 globally distributed projects to validate these
considerations empirically and improve the theory.

3 Particularities of GSD Projects

The nature of global software development brings forward new areas of concern that
require careful attention from project managers. Practitioners that have for a long time
successfully managed in-house projects, now face new challenges that make them
struggle to bring the projects to the end within the budget, time schedule, and with the
satisfied customers. One may think that the influence of globalization on software
development remains limited by distributing end customers from their software
development suppliers and at the same time having no effect on the life cycle
processes. However, the concept of globally distributed software development
prescribes separated teams from different organizations and/or locations work
together on a joint project execution. These organizations form supply chains of
different complexity thus increasing the complexity of software process distribution.

12 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 12LURaksti733-datorzin.indd 12 2008.03.31. 15:05:222008.03.31. 15:05:22

3.1 Global Factors

The major distinguishing factors of globally distributed software projects identified
by this research are the following [12]:
� Multisourcing – multiple distributed member involvement in a virtual team that

develops software by joint effort, characterized by a number of collaboration
partners;

� Geographic distribution – distance between the partners involved in the
project;

� Temporal diversity – the level of working hours overlay, which most
frequently differs from exact time zone differences;

� Socio-cultural diversity – level of social, ethnic, and cultural fit that can differ
even between the teams from one national location;

� Linguistic diversity – language difference, characterized by the level of
language skills of the project members;

� Contextual diversity – the level of organizational fit or heterogeneity,
characterized by diversity in process maturity and inconsistency in work
practices;

� Political and legislative diversity – level of legislative consistency and sources
of political threat.

Inter-organizational projects involve joint inter-organizational resources and are
developed by global software teams also referred to as virtual teams. Accordingly,
software processes are distributed between the remote team members and are affected
by organizational work practices and habits. The differences between in-house and
globally distributed projects can be also illustrated as follows (see Fig.1 and Fig.2).

Fig. 1. Intra-organizational projects

Fig. 2. Inter-organizational globally distributed projects

13Darja Šmite, Juris Borzovs. Managing Uncertainty in GSD Projects

LURaksti733-datorzin.indd 13LURaksti733-datorzin.indd 13 2008.03.31. 15:05:222008.03.31. 15:05:22

Global factors inherited in the nature of GSD projects are recognized as roots of
global threats that can endanger the success of a global project. They indeed
demonstrate the peculiar nature of globally distributed software development and
indicate the forces that act as impediments during a project. Each of the global factors
and their combination causes various threats and conditions for negative outcomes.

Therefore we emphasize the uniqueness of globally distributed environment and
mark that awareness of global factors that are inherited in the nature of globally
distributed project environment can help practitioners either reduce the probability or
the magnitude of unexpected negative outcomes. However, if the global factors exist,
they often cannot be avoided.

3.2 Global Threats

Global factors characterize different impediments for joint collaboration grounded in
different types of diversity existent between the remote partners. These factors have
considerable impact on the software life cycle processes. To limit or avoid the impact
of global factors, project managers require knowledge on what to be aware of.
Accordingly, in order to support project managers in timely risk management, we
have collected information on global threats that endanger global projects. Global
threats discovered within the research are as follows [12]:

� Customer has complex hierarchy and/or several problem escalation levels
� Supplier has complex hierarchy and/or several problem escalation levels
� Diversity in process maturity and/or inconsistency in work practices
� Lack of understanding of each other’s context of decision making
� The customer believes that the work cannot be done from a far off location
� Lack of trust and commitment
� Increased cost of logistics of holding face to face meetings
� Increased level of reporting on project progress to the customer
� Increased virtualness
� Lack of language skills by supplier
� Terminology differences
� Customer’s employees unwillingness to collaborate caused by threat of being

fired due to switching to outsourcing mode
� Faulty effort estimates
� Increased level of complexity of project management
� Increased level of unstructured poorly-defined tasks
� Increased complexity of spreading awareness and knowledge
� Lack of common goals
� Lack of experience and expertise of the customer with outsourcing projects
� Lack of experience and expertise of the supplier with outsourcing projects
� Lack of joint risk management
� Lack of team spirit
� Poor or disadvantageous distribution of software development activities
� Relatedness with other suppliers

14 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 14LURaksti733-datorzin.indd 14 2008.03.31. 15:05:232008.03.31. 15:05:23

� Poor cultural fit
� Dominant use of asynchronous communication with the customer
� Time zone difference
� Lack of clarity about responsibility share
� Poor or complex project measurement
� Increased complexity of project, activity, human resources, and delivery

planning
� Poorly defined or inconsistent SRSs
� Poorly defined or inconsistent software design and/or architecture
� Poor artefact version control

The identified global threats are not categorized according to their root factors,
because a threat can be caused by a combination of global factors. These threats also
tend to be general. We aimed to avoid too detailed categorization of the threats to
eliminate the complexity of correlated threat hierarchy. It also relieves the process of
threat identification – too long checklists with odd issues are rarely used.

Accordingly, this list of threats does not comprise all possible negative events that
can endanger a global project. However, it is a useful guide to risk management that is
based on previous experiences.

4 Outcome Predictions in Global Projects

As previously emphasized, awareness of global factors and threats is essential for
global project success. However, knowing about possible threats does not mean that
organizations can evaluate the extent of each factor and threat. Limited experience
and expertise in globally distributed software development often drives organizations
to sudden problems due to underestimation of the hidden threats. Accordingly,
awareness of the negative outcome of each factor plays an important role in
estimating its severity.

We therefore offer an experience-based risk-oriented approach to leverage global
threats [13]. Traditional risk management concepts in this approach are introduced by
components that characterize the effect of global threats on project performance.
These are: probability of a threat to endanger a certain project success criteria and the
magnitude of the negative outcome of a threat. We additionally calculate the
probability of negative outcome for each threat based on global project survey data,
which extends traditional risk analysis concepts and introduces an approach to
calculate future outcome predictions.

Experience data for effect evaluation were collected through a survey of global
software projects run by Latvian software houses. We have gathered data from 38
globally distributed software projects that provide a representative insight in what and
how endanger global projects considering specifics of Latvia.

15Darja Šmite, Juris Borzovs. Managing Uncertainty in GSD Projects

LURaksti733-datorzin.indd 15LURaksti733-datorzin.indd 15 2008.03.31. 15:05:232008.03.31. 15:05:23

4.1 Basic Concepts

Software risk management can be defined as an attempt to formalize risk oriented
correlates of development success into a readily applicable set of principles and
practices [1]. However, practitioners often misuse risk terminology. Therefore the
basic concepts and rules are defined as follows:
1) Term threat is used to describe possible negative events that can lead a project to

its failure. E.g. Lack of experience with outsourcing projects.
2) Each threat has its probability of occurrence evaluated through the frequency of

occurrence within the surveyed projects.
3) Each threat is evaluated for its negative outcome. The following criteria are used

in negative outcome evaluation for this research 1:
� Budget overrun;
� Unexpected management costs;
� Customer cost escalation;
� Time delays;
� Late product delivery;
� Customer dissatisfaction;
� Supplier team’s undermined morale;
� Disputes and litigations.

4) A threat can cause different levels of negative outcome. E.g. dominant
asynchronous communication may cause considerable time delays, but
insignificant temporal distance only minor delays.

5) Evaluation of the level of negative outcome of the threat is called magnitude of the
negative outcome. To conform to traditional risk management concepts,
magnitude of the negative outcome is calculated for each pair [threat;
consequence]. In other words, the threat of poor cultural fit can cause e.g. minor
time delays, considerable customer dissatisfaction, disastrous undermined morale
of the supplier team and none effect on other success criteria.

6) Magnitude of the negative outcome and frequency of occurrence are evaluated
according to a quantitative scale with an equivalent qualitative scale for
interpretation as seen in Table 1.

1 Project compliance with budget and schedule, customer satisfaction and software product

quality are the major success criteria for the project according to related literature. However,
software product quality was not included in the list of indicators due to high risk of bias of the
given evaluation. On the other hand, the list of project success criteria was extended due to the
following reasons:
� Differentiation of causes of budget overrun;
� Time delays have been emphasized as a source of downtime, which does not obligatory

drive to late product delivery;
� Supplier team’s undermined morale is an important success criteria considering the

industrial research background (supplier side of the project);
� Disputes and litigations are also possible negative outcomes that were additionally explored

as possible causes of project cancellation.

16 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 16LURaksti733-datorzin.indd 16 2008.03.31. 15:05:242008.03.31. 15:05:24

Table 1. Rating scales

Magnitude of the negative
outcome

0
1
2
3
4
5

None
Negligible
Minor
Moderate
Significant
Disastrous

Frequency of
occurrence

Probability

0
(0-10%]
(10-20%]
(20-40%]
(40-80%]

(80-100%]

Improbable
Doubtful
Unlikely
Possible
Probable
Certain

7) The combination of Magnitude of the negative outcome and frequency of its

occurrence (for each pair [threat; consequence]) form risk exposure [1] that is
widely used in traditional risk comparison and prioritization. Multiplication can be
used for quantitative evaluation, and matrixes for qualitative evaluation.
Accordingly it helps to identify threats that have the most severe effect on the
project performance separately for budget overrun, time delays, customer
dissatisfaction, etc.

4.2 Approach to Calculate Outcome Predictions

In order to support risk management activities for practitioners, Probability of
negative outcome is evaluated using frequency of occurrence of the negative
outcome of the threat on the certain level by computing frequencies of lower effect
levels with those of higher effect levels, in other words cumulative values, according
to the following equation [13]:

 5

Prob (t, ci,j) =
 Freq (t, ci,k)
 k=j

(1)

Variables and functions:
t – threat;
ci,j – outcome, where first index indicates the certain negative outcome

(budget overrun, time delays, etc.) and the second – its level (1, 2,
3, 4 or 5)

Freq (t, ci,j) – frequency of occurrence of the negative outcome of the certain
level of the certain threat;

Prob (t, ci,j) – probability of the negative outcome of the certain level of a threat.

Darja Šmite, Juris Borzovs. Managing Uncertainty in GSD Projects 17

LURaksti733-datorzin.indd 17LURaksti733-datorzin.indd 17 2008.03.31. 15:05:242008.03.31. 15:05:24

4.3 Survey Overview

The previously compiled list of threats was offered to various project managers and
team leads for evaluation. Representative data set was collected using a survey
instrument by mailing the developed questionnaire to a selected sample of employees
in the investigated company, whose job title was project manager or equivalent, e.g.,
development manager or development team leader. In addition, the questionnaire was
made accessible in other 4 small software houses, where the project managers could
participate in the survey if interested.

The complexity of lifecycle distribution in the investigated projects varied from
direct subcontracting to a complex chain of 10 subcontractors involved in completion
of a joint project. Respondents‘ experience varied from 3 to 30 years. Other
characteristics considering the investigated projects under study are given in Table 2.

Table 2. Characteristics of the Surveyed Projects

Characteristics Survey results
Collaboration type

Describes entities involved in the joint
project, e.g. customer� supplier (1�1), or
customer � multiple suppliers (1�N)

1�1�1 13 projects
1�1 10 projects
1�N 7 projects
1�1�N 6 projects
1�N�N 2 projects

Number of partners 2 11 projects
3 16 projects
4 3 projects
more than 4 5 projects

Successful: 15,8% 10
9

4 projects
2 projects

Somewhat
successful: 50,0%

8
7

7 projects
12 projects

Project success

Subjective evaluation given by the project
managers considering budget and calendar
compliance, and customer satisfaction,
using the scale 1-10.

Unsuccessful:
34,2%

6
5
4
3
1

5 projects
4 projects
2 projects
1 project
1 project

The following data were gathered during the survey:
� Project characteristics (collaboration model, project activity distribution,

location of partners, project type, project status, success evaluation, etc.);
� Report of frequency of occurrence of the listed threats in the projects;
� Evaluation of the impact of each experienced threat on the project results.

18 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 18LURaksti733-datorzin.indd 18 2008.03.31. 15:05:252008.03.31. 15:05:25

4.4 Survey Data Analysis

Survey data were kept in and analyzed using SPSS ® 14.0 tool2, which provided a
broad range of capabilities for the entire analytical process, including easy data search
and categorization, powerful statistics, tabular and graphical representation of the
results. Data was recorded within 316 variables.

Quantitative analysis of 38 globally distributed project survey data was performed
to evaluate the effect of global factors and threats on GSD project performance.
Survey responses have been statistically analyzed to compute the following values for
each threat:

� Frequency of occurrence;
� Average outcome;
� Probability of certain level of the certain negative outcome.

Frequency of occurrence is based on the historic information from the survey.
Average outcomes of a threat are minimum conditions that practitioners have to

take into account while collaborating in the globally distributed project environment.
Survey data contain evaluation of the magnitude of the negative outcome of each
threat. Magnitude of the negative outcome of each threat is evaluated using a linear
scale: [0, 1, 2, 3, 4, 5] or its equivalent [None, Negligible, Minor, Moderate,
Significant, Disastrous] as described earlier.

Probability of certain level of the negative outcome or negative outcome
predictions are evaluated as cumulative values using frequency of occurrence of each
threat to cause negative outcome of a certain level by computing frequencies of lower
levels of impact with those of higher according to the definition given above.

4.5 Risk Barometer

Considering the length of the list of global threats and complexity of risk analysis, we
developed a tool that computerizes project outcome predictions correspondingly
labelled as “Risk Barometer” [13].

Risk Barometer is developed as a Lotus Notes based function aiming to support
outcome predictions in global projects especially for project managers who lack
awareness of possible negative events and their consequences in globally distributed
environment. Risk Barometer performs its predictions on the basis of historical data
from post-project risk evaluation reports. Risk Barometer and historical data is
integrated in the Knowledge Base that serves as a central repository for organizational
learning support. The survey provided the first input for outcome predictions from
anonymous survey data gathered during the research and kept within the Knowledge
Base. New project experiences can be added to continuously support Risk Barometer
prediction improvements.

Risk Barometer is intended for project managers to evaluate global project threats,
considering the probability of occurrence and possible negative impact that can be
compared with historical data from other projects. We foresee that hidden threats and
their outcomes, such as hidden costs, unobvious sources of time delays and customer

2 SPSS Software Solutions Online – http://www.spss.com/

Darja Šmite, Juris Borzovs. Managing Uncertainty in GSD ProjectsDarja Šmite, Juris Borzovs. Managing Uncertainty in GSD Projects 19

LURaksti733-datorzin.indd 19LURaksti733-datorzin.indd 19 2008.03.31. 15:05:252008.03.31. 15:05:25

dissatisfaction, will help inexperienced project managers prepare against impediments
inherited in the nature of globally distributed projects.

An example of Risk Barometer predictions for a threat of lacking experience and
expertise in outsourcing projects can be seen in Fig.3.

Fig. 3. Example of predictions by the Risk Barometer: for a threat

5 Discussion

5.1 Particularities of Global Projects

The derived lists of global factors and threats make the peculiarity and complexity of
globally distributed software development obvious. Global software development puts
new demands on the software processes stressed by an increased complexity of
project coordination (through temporal and geographical distances), communication
(lacking proximity and cultural diversity), cooperation (lacking trust and

20 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 20LURaksti733-datorzin.indd 20 2008.03.31. 15:05:252008.03.31. 15:05:25

commitment), infrastructure management (uniting heterogeneous contexts) and other
aspects of distributed software development. The global factors characterize the
distinguishing nature of globally distributed software development projects by
emphasizing unavoidable elements that are inherited in this kind of work environment
and shall be analyzed throughout the project.

The list of global threats provides guidance for effective risk identification and
demonstrates the various ways that global factors may act. This knowledge is
especially demanded by practitioners that lack previous experiences in developing
software with globally distributed partners.

Furthermore, practices applied for global risk mitigation shall act as a counterforce
against global threats and reduce the effect of global factors and threats on project
results (see Fig.4).

Fig. 4. Project practices as a counterforce for global threats

The extent of the effect of global factors and threats on project results shows that
they indeed may drive projects to failure if not managed on time. Global threats may
lead to a considerable negative outcome on project budget, cause calendar deviations
and customer dissatisfaction.

5.2 Application of Risk Barometer

Risk Barometer provides a general overview of the outcome of each threat and
probability of its occurrence. Since global projects are so different and the extent of
global factors may influence occurrence of global threats in particular circumstances,
project managers may not ground their risk predictions only on personal experience. It
is therefore recommended to use an experience-based approach to analyse global risks
and monitor them on a regular basis among different projects in an organization.

Application of Risk Barometer is feasible in any global project despite its size and
complexity. Global factors and threats inherited in the nature of globally distributed
environment will not vanish if the project will last only a month or consider a well-
known task that shall be performed by well-trained developers. Project managers shall
use outcome predictions to see what kind of effect they may cause and report on real
situation after the end of the project.

Risk Barometer can also be used to evaluate the sources of necessary investments
in globally distributed projects by analyzing sources of budget overrun, unexpected
management costs, and customer cost escalation. It can be also useful to point out
sources of time delays for better effort estimation.

Darja Šmite, Juris Borzovs. Managing Uncertainty in GSD Projects 21

LURaksti733-datorzin.indd 21LURaksti733-datorzin.indd 21 2008.03.31. 15:05:262008.03.31. 15:05:26

Conclusions

The results of the research reported in this paper support conclusion that globally
distributed software development significantly differs from in-house software
development [12]. Global factors and threats provide a valuable ground for effective
risk identification supplemented by project outcome predictions that support further
risk analysis for practitioners. In contradiction to many studies conducted from the
customer perspective, this study investigates and includes global project problems
from supplier perspective thus providing a useful support for Latvian and other
software houses that operate as outsourcing service providers.

GSD project case studies range from announcements of tremendous success to
total failure. No research so far has provided a clear vision of the true amount of
investments necessary to make global software projects work. Risk Barometer forms
a ground for an experience-based risk-oriented approach for GSD project outcome
evaluation [13]. The results of Risk Barometer performance include observations of
budget, schedule, and customer satisfaction threats – their significance and historical
frequency of occurrence. Risk Barometer extends the traditional risk analysis
approach and provides automatic prediction calculations on the basis of previous
project data.

Acknowledgments: The authors appreciate valuable research input received from the
project managers within the investigated software house. This research is partly
supported by the European Social Fund and the Latvian Council of Science project
No. 02.2002 “Latvian Informatics Production Unit Support Program in the Area of
Engineering, Computer Networks, and Signal Processing”.

References

[1] Boehm B.W., “Software Risk Management: Principles and Practices”, IEEE
Software, Vol. 8, No.1, 1991, pp. 32-41

[2] Carmel, E., Agarwal, R. “Tactical Approaches for Alleviating Distance in
Global Software Development”, IEEE Software, Vol. 18, No. 2, 2001, pp.22-29

[3] Carr M.J., “Counterpoint: Risk Management May Not Be for Everyone”, IEEE
Software, Vol.30 No.5, 1997, pp. 21-24

[4] Damian D. and Moitra D., “Global Software Development: How Far Have We
Come?”, IEEE Software, Vol. 23, No.5 2006, pp.17-19

[5] Glaser B., Strauss A. “The discovery of grounded theory: Strategies of
qualitative research”, Wiedenfeld and Nicholson, London, 1967

[6] Iesalnieks J., Gulbe B. “Old and New Europe as IT Partners”, Baltic IT&T
Review, Nr.2 (33), 2004, pp.38-40

[7] Jarvinen P. “On Research Methods”, Opinpajan Kirja, Tampere, 2001
[8] Karolak D.W., “Global Software Development: Managing Virtual Teams and

Environments”, IEEE Computer Society, 1998
[9] Merriam-Webster Online Dictionary. Available online www.m-w.com

22 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 22LURaksti733-datorzin.indd 22 2008.03.31. 15:05:262008.03.31. 15:05:26

[10] Pavlovs S., “��
� ���������, ��� ���������������” ���������� Baltic daily
/ 25.04.2005, Nr.78, pp.5

[11] Sahay S., Nicholson B., Krishna S., “Global IT Outsourcing: Software
Development across Borders”. Cambridge University Press, 2003

[12] Smite D., Borzovs J., „A Framework for Overcoming Supplier Related Threats
in Global Projects”, In Proceedings of the Int. Conf. on European Software
Process Improvement (EuroSPI), published in LNCS by Springer Verlag,
October 2006, Finland, pp. 49-60

[13] Smite D., “Project Outcome Predictions: Risk Barometer Based on Historical
Data”, In proceedings of the Int. Conf. on Global Software Engineering (ICGSE)
by IEEE Computer Society, August 2007, Germany, pp.103-112

[14] Strauss A., Corbin J. “Basics of Qualitative Research – Grounded Theory
Procedures and Techniques”, Sage Publications, Newbury Park Ca, 1990

[15] Strauss, A., Corbin, J., “Basics of Qualitative Research: Techniques and
Procedures for Developing Grounded Theory”. Thousand Oaks, CA: Sage
Publications, 1998

Darja Šmite, Juris Borzovs. Managing Uncertainty in GSD Projects 23

LURaksti733-datorzin.indd 23LURaksti733-datorzin.indd 23 2008.03.31. 15:05:272008.03.31. 15:05:27

Application of Smart Technologies in Software
Development: Automated Version Updating

Zane Bi�evska, J�nis Bi�evskis

Datorikas Instit�ts DIVI, A.Kalni�a str. 2-7, R�ga, Latvia

University of Latvia, Rai�a blvd. 19, R�ga, Latvia
Zane.Bicevska@di.lv, Janis.Bicevskis@lu.lv

Abstract. This paper proposes software version update solutions in
compliance with smart technologies [1] - architectural designs and software
components which using metainformation on the system and its operation
requirements are able to solve efficiently the problems of software maintenance.

In order to ensure automated version update the authors propose several
mutually independent mechanisms such as environment testing, software
version update, automated data migration to the latest versions as well as
automated self-testing of the installed version on internal consistency.

Based on experience in software development, distribution and introduction,
the authors identify and describe particular framework principles for integration
of automated function of software version update into produced software.

Keywords: Software engineering, Maintenance, Testing,
Smart Technologies.

1 Introduction

The IT industry is characterized by multiplicity of infrastructure, applications and
executable environments. Also, significant resources are required to adapt customized
software for usage in multiple environments. The fierce competition in IT industry
dictates fast appearance of high quality and innovative products on the market. Thus,
the software developers encounter serious challenge – under significant time pressure
to develop and deliver a software usable in multiple environment.

There are two approaches used in the praxis to ensure usability of developed and
delivered software. In the first case requirements for software usability are defined,
e.g. minimal requirements for hardware and version of operating system. However,
this approach may cause problems such as mutually conflicting software versions.
Additional difficulties arise if users are not ready or do not understand how to satisfy
the defined requirements.

LATVIJAS UNIVERSITĀTES RAKSTI. 2008, 733. sēj.:
DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS 24.–37. lpp.

LURaksti733-datorzin.indd 24LURaksti733-datorzin.indd 24 2008.03.31. 15:05:272008.03.31. 15:05:27

The other approach foresees that developers ensure usage of software in multiple
environments and their combinations. The platform independence that foresees usage
of software in various operating systems, on different data base management systems
and using various browsers might require significant additional resources. In fact, all
efforts to develop “universally applicable” software result in necessity to develop
technical solutions for each of the environments.

Usage of universal algorithms and metadata only partially can unburden
development of “universally applicable” software, for in result the executable code
will remain platform dependent. Therefore, users of software are forced to encounter
difficulties arising from software installing and updating – considerable time
consumption and efforts are spent analyzing collision and problem causes, for
consultations and for improving software to ensure its adequacy to the specific
environment.

Consequently, the need arises for certain software development principles to
ensure collision free (or reduced to minimum) software installation and download of
software version updates. The following parts of the paper deal with smart
technologies principle in essence – software should comprise features that support
installing the latest versions without user assistance and ensuring the following:

1) automated analysis of the software compliance with environmental
requirements

2) automated download and installation of the latest version of the software
modules

3) automated personalization and individual data migration to the latest version

4) self-testing of the latest version, checking operating correctness of the
information system on critical functionality

5) generation of back-up files and system renewal in case of failure

Even partial application of these principles (we are not aware of the cases when
such principles were applied in full extent) has proven to be very useful.

2 Software Life Cycle Models and Smart Technologies

Over the years a number of discussions have been devoted to software
development life cycle models [2] and analysis on strengths and weaknesses of linear
and incremental models have been performed. A new approach (e.g. principles agile
software development process) has been added to lengthy discussions. Nevertheless,
the main attention in software life cycle models traditionally is being paid to software
development, including requirement gathering (specification), design, implementation
and testing. Less research is devoted to the system maintenance and operation despite
the fact that these aspects take up the main part of the duration of a successful system.

Zane Bičevska, Jānis Bičevskis. Application of Smart Technologies in Software .. 25

LURaksti733-datorzin.indd 25LURaksti733-datorzin.indd 25 2008.03.31. 15:05:272008.03.31. 15:05:27

In real life development of software is just the very first phase of software life
cycle. The most time consuming phase of software life cycle is software maintenance
including user support, software upgrade, and functionality extension services (e.g.
MS Windows is being under development for more than 15 years!)

Every successful software solution has been used and improved for significantly
longer time period that it was created for. A successfully developed system might be
used for many years simultaneously modified, improved with new functions
permanently satisfying occurring client needs. Thus, every time changes occur in
software or operational environment, the issue of testing software’s correctness
becomes crucial.

Therefore, to ensure software reliability in long-term, the system already in its
early development phases should comprise not only client defined functionality but
also additional mechanisms to support usage, maintenance, and further development
of software.

The smart technology is based on the idea about “smart” software that like living
beings is able to “self-management”. It means the software should be able to handle
unpredictable events in unknown environments. A smart technology conform
software should be able to deal with internal (related to internal structure and
functioning of the system) and external (originated outside of the system) events
adequately.

The targets set in the self-adaptive software [3, 4] partially overlap with the
principles of the smart technologies. Self-adaptive software researchers are focusing
on software ability to adapt itself to implementation environment. This report sets
different targets: troubleshooting SW exploitation failures by applying automatic
indication of possible failures and reporting them to staff. Implementation of this
approach is more convenient to use in practice.

Smart technology oriented approach is illustrated in the succeeding figure (Fig.1).
It demonstrates that the core functionality of software solution should be enhanced
with several additional features supporting the usage, maintenance, and further
development of software. These additional features called smart technologies are
created in the process of software design and implementing similar to scaffolding in
the construction process of a building. However unlike the building process the
“scaffolding” of an information system is never taken down; it stays in the
information system for its whole life time.

Relatively, these features are divided into two main groups:

1) External stability – ability to analyse environment consistency to its
performance conditions

2) Internal stability – ability to check and maintain internal consistence

26 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 26LURaksti733-datorzin.indd 26 2008.03.31. 15:05:282008.03.31. 15:05:28

Security
testing

Business
model

Data
quality

Fig. 1. Components of Smart Technology

Software fits to the principles of smart technology if it provides the following
features:

1) Business model is incorporated into software

2) Version management – automatic updating of versions from the central server,
including the adequate conversion of data structures and data

3) License management – automatic control of licence conditions, updating of
standard and specific software according to them

4) Context help – integrated functionality of context sensitive help system

5) Environment testing - ability to analyse the external environment (for
example, options of operating system and data base management system) and
to adapt itself to the specific environment

6) Self-testing - ability to check the internal integrity by automatic execution of
test cases in the productive environment and to inform users and developers
about detected inconsistencies

7) Load testing - ability to provide monitoring of performance and load balancing

8) Availability testing – monitoring of system availability using agent
technologies; ability to inform remote about the status of the software and
additional components needed for a correct functioning

9) Security testing - monitoring of system security using agent technologies

Self-testing

Load
testing

Version
management

License
management

Environment
testing

Context
help

Availability
testing Core

functions
Core

functions

Zane Bičevska, Jānis Bičevskis. Application of Smart Technologies in Software .. 27

LURaksti733-datorzin.indd 27LURaksti733-datorzin.indd 27 2008.03.31. 15:05:282008.03.31. 15:05:28

10) Data quality monitoring - ability to check the completeness and integrity of
data accumulated in the database

Detailed analysis of the features of smart technologies can serve as a subject of a
separate research paper. This paper discusses only one of the smart technology
features – automated version updating.

3 Automated Version Updating

It is a common practice in IT industry to pass (accept) the latest software version in
the test environment before it is introduced in the production environment. However,
in cases when system is used on many workstations and/or on several scattered
servers, no warranty can be provided that this version will function problem-free for
the following reasons:

1) each workstation and/or server contains individual data including e.g.
personalization values, user rights, and even sophisticated definitions of
processes

2) each workstation and/or server may be equipped with a different environment
- different operating system, different versions of system database
administration, file layout, regional settings, and other external systems
operating parallely to the new software version

The first of proposed criteria is related to the field of delivering and installing
(distributing) software. Information system equipped with smart technology is able to
analyze the environment which it is put into from viewpoint of standard and specific
parameters.

As standard parameters are supposed to be, for example, the operational system,
the data base management system, browsers etc. used on the concrete server or
workstation.

The specific parameters include checking of the evidence of previous (possibly
damaged) software versions as well as evidence of other specific solutions on the
workstation.

Automated software version updating includes both, external and internal stability
criteria, since the environment analysis is performed before software version update
and functionality self-testing after installation of version update.

Full cycle of automated version updating includes sequenced actuation of the
following mechanisms in compliance with smart technology principles:

1) environment test

2) system back-up administration

3) downloading and installation of software version

4) data migration

28 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 28LURaksti733-datorzin.indd 28 2008.03.31. 15:05:292008.03.31. 15:05:29

5) self-testing

6) system renewal in cases of failure

3.1 Environment Test

The idea is taken from the real world which shows the ability of living beings to
adjust themselves to specific conditions. Environment test includes the analysis of
specific parameters by benchmarking their values and adapting functions to pre-
defined decision-making flow.

In a similar way the software equipped with the smart technologies should be able
to analyze versions and other configurations of the operating and data base
management systems according to the requirements of the software, and react
adequately to inconsistencies by generating necessary messages to users.

Although at the first glance, the task seems trivial, in fact the environment analysis
(its compliance with the requirements) and subsequent decision-making (choice of the
optimal way to adapt) are the most crucial tasks. In effect this analysis is much more
complicated, because the version number and some of the configuration only partly
determine the ability of the given application to fulfill their functions. An appropriate
reaction depends on external factors, e.g. availability of internet connection to the
necessary resources etc.

One of the solutions [5] aimed to simplify the analysis of an external environment
is introduction of software application requirement passport that is created during the
software development process in which the requirements against the environment are
fixed: for operating system and other of its components, detailed on the level of object
classes, of DLL's and of others - .ini-files, registry entries, location of files and
folders, regional and language settings, workstation settings etc. The creation of the
passport is an obligation for the developer; it happens by generation of the passport
from the development environment in which the application is created and is able to
work. The created passport is integrated into the software.

After implementation of the application in the production environment a module
prepared by the developer compares the production environment parameters with the
passport parameters (analysis of environment).

Differences between target environment parameters and values in passport may
cause various reactions depending on adaptation mechanism. The most trivial
reaction is when the user is notified about the differences and further steps necessary
to correct environment configuration („Please, change regional settings”).

High developed solutions are equipped with mechanisms aimed at collecting the
missing components, e.g. automated component update is done from producer
resources. These mechanisms are also able to reconfigure the environment according
to the requirements [6].

Zane Bičevska, Jānis Bičevskis. Application of Smart Technologies in Software .. 29

LURaksti733-datorzin.indd 29LURaksti733-datorzin.indd 29 2008.03.31. 15:05:292008.03.31. 15:05:29

Such automated mechanisms involved in environment adaptation also may
seriously endanger operations of external software solutions. Therefore, it is
reasonable to include into solution a compliance passport, a type of passport similar to
the requirement passport that is delivered together with the software. This compliance
passport fixes and indicates compulsory requirements of the external systems and
parameters eventually conflicting with the software. The first application of smart
technologies is related to the field of delivering and installing (distributing) of
software. Information system equipped with smart technology is able to analyse the
environment which it is put into from viewpoint of standard and specific parameters.
As standard parameters are supposed to be for example the operational system, the
data base management system, browsers etc. used on the concrete server or
workstation.

Specific parameters are checked for evidence of previous (possibly damaged)
software versions as well as evidence of other specific solutions on the workstation. A
typical example of a dangerous software - “neighbour” are antivirus solutions which
can classify smart technology software as a virus and even block it up.

Similarly, as for installation of a new version SW users should have a reverse link
to SW developer. Due to this reverse link developers can receive complete
information on performance, including failure reports and statistics on activities that
would allow developers to improve SW quality. As a rule including of above
mentioned features into SW requires components that are functioning throughout the
whole life cycle of software and are considered as the extension of core functionality
that sometimes client remains unaware.

3.2 Installation of Software Version

The solution and installation of the new software version highly depends on
architectural design.

Traditionally, web applications are the most uncomplicated in terms of installation,
for their operation they use standardized Internet browsers for data illustration. In
fact, at least three problems refer to updating process of web applications. They are as
follows:

1) Partial conformity of browsers. Development of Internet and other browsers
is a natural process that cannot be influenced by system developers. Therefore,
in practice it is impossible to ensure identical functioning (at least display of
information) of all available browsers.

2) Decentralized data storing. Companies and public institutions usually do not
store their data in centralized system but on individual servers; therefore
software and its modules have to be developed and distributed on many
mutually independent servers.

3) Different settings on local workstations. Personalization as a solution for
increased user comfort becomes more and more popular, however conflicts

30 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 30LURaksti733-datorzin.indd 30 2008.03.31. 15:05:292008.03.31. 15:05:29

with the data centralization idea. Additional difficulties arise from different
regional settings, that are necessary in exploiting different systems, e.g.
decimal separator, date format).

Furthermore, the paper deals with client-server software [7, 8] version distribution
due to importance and sophistication of the proposed solutions over centralized web
applications.

The installation of the latest software version is done automatically through the
Internet and includes the following steps:

1) Installation of the latest version on the server

The latest software version together with the parameter file containing numbers of
the latest version of system components and parameters necessary for system
operation are placed on centralized server.

In order to enhance version downloading the system is dividend into components,
which are relatively independent parts of the system and can be updated
independently. For each system component the number of the latest version as well as
implementation parameters are recorded in the parameter file.

If the latest version of one of the components is dependent on the latest version of
other component then numbers of for both components are increased in the parameter
file.

2) Identification of parameters of the latest version

At the moment when a user from the local workstations connects to the system, a
built-in mechanism turns to central database and downloads the parameter file of the
latest software version.

3) Comparison of software versions

The numbers of the latest version of system components are compared with the
numbers of component versions on local work station. For those components whose
workstation numbers are smaller than the number on central server, downloading of
the latest versions should proceed.

4) Downloading and installing new components

The system downloads the necessary batch of the latest software versions and
installs them onto local workstations. During the installation, conformity of the
operating system with the parameters indicated in file is controlled. The successfully
finished installation has the fixed parameter file on the local workstation by
equalizing the version of installed components with the number of installed version.
If for some reason downloading or installing of the latest version has failed, version
numbers of components in parameter file are not modified, respectively updating of
components will be repeated next time when system is turned on.

Zane Bičevska, Jānis Bičevskis. Application of Smart Technologies in Software .. 31

LURaksti733-datorzin.indd 31LURaksti733-datorzin.indd 31 2008.03.31. 15:05:302008.03.31. 15:05:30

3.3 Data Migration

Software modifications are often caused by changes in database structure, settings,
exchange formats etc.

Data migration as an integrated part of automated version updating mechanism can
be analyzed from two aspects: first, matching data structures to the new software
version, and second, periodical data synchronization among local workstations
(sometimes might work off-line) and central data pool.

Adaptation of data structures to the new software version is ensured by special
scripts that are distributed together with the latest software version and activated
immediately after software installation. Frequently, complementing data structures is
related to complementing historical data with new data, e.g. default, or data migration
(structural changes). Though this is relatively simple task, data synchronization is a
much more complicated task.

Data synchronization represents a much more complicated task. Data
synchronization comprises the main problem when software has client-server
architecture and work is ensured in both off-line (on workstations) and online
(connecting to the central server). Within data synchronization a threefold task should
be solved: first, problem of unambiguous object identification, second, rollback
functionality, third, automated synchronization of conflicting and inconsistent data.

One of the most commonly used solutions is extraction of identifier segment,
where objects are identified by belonging to a certain instance. If solution is run
online, all objects are stored centralized. If, for some reasons running of system online
is not available or not used, the system automatically switches to working offline and
ensures data storing on local data base instance. After online connection is
established, software automatically performs data synchronization by referring to
object identifiers and object creation/modification timestamp. During
synchronization, instance of data creation (local working station) is identified by
using object interval. Then values stored in central database are compared with the
actual values taken form local databases and if necessary outdated values in central
database are substituted with the actual values.

The specific data migration is needed in those cases when personalization for each
software user is provided. If personalization is kept on each individual workstation,
then installation of the latest software version initiates migration of the
personalization parameters to the new version. If personalization is centralized, the
migration should be done on server level. A very characteristic example of
personalization is user and rights administration, which is an integral part of any
system.

In case of smart technologies migration of the personalized data (user and rights
control) is automatically done by internal component, thus relieving user form
working with incomprehensible scripts.

32 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 32LURaksti733-datorzin.indd 32 2008.03.31. 15:05:302008.03.31. 15:05:30

3.4 Self-Testing

A very important feature of smart technologies is self-testing. Like living beings
who can control themselves and are able to understand the limits of their possibilities,
a smart software must be able to check itself before it is run [9,10]. In the hardware
industry it is a usual feature that the equipment tests itself as soon as it is switched on.
In the case of smart technology software the self-testing means the ability of software
to run predefined set of test cases in the production’s environment automaticly to
check its status.

Functionality of self-testing contains two basic components:

1) Test cases of critical functionality (data component)

2) Built-in mechanism (software component) providing automatic running of
test cases

 The critical functionality is a set of system functions which are substantial for
using of the system. It is impossible to use the system valuably if these features do not
function. The critical functionality covers all basic functional requirements of a
system – for instance, calculation algorithms, workflows etc. - but does not include
non-functional requirements like performance, navigation, and others. To implement
self-testing functionality the developers should prepare tests that are appropriate to the
selected testing parameter [11] (e.g. full set of test cases [12,13,14]) covering all
critical system’s functions and incorporating them into the software and the database/
file system.

In addition to that an automatic test running and comparing of results with
benchmark values should be implemented [15]. The most important feature of self-
testing is an ability to test the software in the productive environment using real data
in the read-only mode without changing data entries in production database.

The key feature that differs self-testing from conventional testing [16] is running of
self-testing in the productive environment, including an access to the real database of
system. The self-testing should be executable in nearly every moment of the system’s
functioning without disturbing users.

Moreover, each self-testing session includes regressive testing accordingly to the
accrued test data. Along with changes in the system a test set and benchmark values
are modified/improved accordingly.

System self-testing differs significantly from the traditional testing processes
passed during the development phase and performed by the group of independent
experts. Self-testing involves developer, thus ensuring that developer’s work is not
only the written source code but also the result of source code and module tests that
ensure self-testing function. Regarding the accrued tests the developer has to prove
conformity of his/her work results with the requirements. The need for this procedure
appears especially when problems occurred in production environment can not be
transferred to the test environment.

Zane Bičevska, Jānis Bičevskis. Application of Smart Technologies in Software .. 33

LURaksti733-datorzin.indd 33LURaksti733-datorzin.indd 33 2008.03.31. 15:05:302008.03.31. 15:05:30

Role of self-testing in software development life cycle differs from the role of
testing in traditional life-cycle, as for example in model „V”. The self-testing in
software development life cycle has double application - first, it is a tool for developer
to check system operation before testing by the group of independent experts. Second,
it indicates readiness of the system tested in production environment.

Though self-testing suggests an increased possibility that the delivered software is
a high quality and reliable, it should be emphasized again that implementation of self-
testing function requires additional development efforts as well as designing of
specific architecture.

3.5 Back-up Administration

Automated version updating modifies application set, environmental settings as
well as database structure and even data. Therefore back-up administration should be
integral part of the automated version updating mechanism.

The above mentioned system components (application, database, environmental
settings) should be provided with two following groups of functions:

1) Back-up generation

2) Roll-back functionality to ensure recovery of prior state in case of failure

Back-up generation is a relatively simple task – before downloading the latest
version into special directories software files are copied and databases back-up copy
is saved. Also a file with environmental settings is filled (conform to a software
requirements passport described in previous sections).

Roll-back functionality is a much more sophisticated task, since, first, due to
limited hardware ability duration of historical records is finite, second, recovery of
environment to the prior state is not always possible just by modifying standard
settings.

Important part of roll-back functionality is detection of failures, respectively, set of
unambiguous indications that signal failure in installation of the latest software
version and necessity to recover to the prior state from back-up files. Moreover, due
to the limited ability of keeping historical records it is absolutely crucial that
generated and available back-up files are created from feasible software version not
from the previously failed installation efforts! The analysis of failures, especially, the
set of indications signaling capability or incapability of the software is a subject of
separate research paper. In most simplistic solutions all components are checked and
main application window is opened without getting to the error handling routine.

In our proposed solution the roll-back functionality ensures repeated downloading
and installing of the last successfully installed version including reconstruction of the
appropriate database structure. Unfortunately, in this case all the data accrued after
the last successful installation are endangered; respectively they are saved in
modernized data structure though by incomplete software version.

34 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 34LURaksti733-datorzin.indd 34 2008.03.31. 15:05:302008.03.31. 15:05:30

4. Use Cases

The above described principles of smart technologies are implemented and
approbated in software development and implementation projects [8,18,19]. However,
in neither of software products smart technologies were implemented to the full
extent. These software products support only several features; furthermore,
functionality of most of these features is narrowed.

Henceforth, the paper deals with the results of particular project, referring to
automated version updating.

The task of the project was to develop software that would ensure structured
gathering of financial information on several hierarchal levels. The system was
supposed to run in 600 public offices located throughout the territory of Latvia
ensuring regular gathering of information by different time periods. It was required
that the system should be able to run not only in offices provided with Internet
connection but also in offices with irregular and instable Internet connection or even
in offices without Internet connection. The requirements suggested remote software
installation and very limited financial and human resources were allocated for
maintenance (user support) services. Furthermore, the specific requirements dictated
that in certain periods most users will use the system simultaneously.

An application that provided all required functions has already been developed;
therefore project task was to adapt application according to the requirements of
automated version updating. Additional human resources for the system adaptation
accounted for c.a. 10% of the initial system developing resources. The most part of
these 10% were invested into extensive testing and code review. In order to ensure
reliability of the developed mechanisms, software testing with different infrastructure
configurations was performed on virtual machines.

The achievements and results of this work have been used successfully in all local
governments and many public institutions on different levels of hierarchy in Latvia
since 2005. Automated version updating has significantly improved system
maintenance and reduced the need for user consulting resources. We believe that the
idea has proven to the successful and we have continued implementing it in several
other projects.

5. Indications for further research:

1) Implementation of smart technology principle in software takes fewer
resources than full-range configuration support. At the same time, smart
technology places fewer constraints on the acceptable means of expression.

2) Smart technologies allow reducing the efforts for software testing and setting
up, thus increasing the client service level significantly.

Zane Bičevska, Jānis Bičevskis. Application of Smart Technologies in Software .. 35

LURaksti733-datorzin.indd 35LURaksti733-datorzin.indd 35 2008.03.31. 15:05:312008.03.31. 15:05:31

3) Smart technologies assist to provide software performance in a changing
environment and environment containing heterogeneous platforms and
infrastructure. Nevertheless mechanisms of smart technologies need regular
adaptation to the environment changes, especially in case of standardized
software. It is very important to provide in-depht reporting mechanism to
inform the developers about indicated problems in time.

4) Adding smart technologies to the software after the development is useful
though requires more resources than including smart technology already in the
software architecture design phase.

5) Although the clients approve opportunities provided by the smart
technologies, usually, they are not willing to provide additional financial
means to ensure them. The smart technologies are certainly costly – effective
and should pay-off in long-term business projects and long-term cooperation
with client when the number of users exceeds 10 or if workstations are
configured differently. Opportunities provided by the smart technologies pay-
off and enhance software distribution and user support even if a company has
only two geographically separate subdivisions.

Acknowledgements

The research is supported by the European Regional Development Fund (ERDF).

References

[1] Bicevska Z., Bicevskis J.: Smart Technologies in Software Life Cycle. In:
Münch J., Abrahamsson P. (eds.): Product-Focused Software Process Improvement.
Lecture Notes in Computer Science, Vol. 4589. Springer-Verlag, Berlin Heidelberg
(2007): 262-272

 [2] Roger S.Pressman, Software Engineering. A Practitioner’s Approach. Sixth
Edition. McGrawHill. 2005

 [3] Roger Laddaga, Paul Robertson Self Adaptive Software: A Position Paper,
International workshop on Self Adaptive Software Properties in Complex Information
Systems, 2004, Bertinoro, Italy

[4] Qianxiang Wang Towards a Rule Model for Self-adaptive Software ACM
SIGSOFT Software Engineering Notes, January 2005, Vol. 30, N. 1

 [5] Rauhvargers K. and Bicevskis J., Towards a semantic execution
environment testing model (this volume)

 [6] Beydeda, S.: Research in Testing COTS Components - Built-in Testing
Approaches. In: ACS/IEEE 2005 International Conference on Computer Systems and
Applications. Bonn, Germany (2005)

36 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 36LURaksti733-datorzin.indd 36 2008.03.31. 15:05:312008.03.31. 15:05:31

[7] Andzans A., Mikelsons J.,Medvedis I. And others. ICT in Latvian
Educational System - LIIS Approach, Proceedings of The 3rd International
Conference on Education and Information Systems: Technologies and Applications,
July 14 - 17, 2005, Orlando, Florida, USA

[8] Latvian Education Informatization System – LIIS [on-line]. Available on the
internet: http:/www.liis.lv

[9] Sami Beydeda: Self-Metamorphic-Testing Components. COMPSAC (2)
2006: 265-272

[10] Beydeda, S.: Research in Testing COTS Components - Built-in Testing
Approaches. In: ACS/IEEE 2005 International Conference on Computer Systems and
Applications. Bonn, Germany (2005)

[11] Boris Beizer. Black-Box Testing Techniques for Functional Testing of
Software and Systems. John Wiley & Sons, Inc, USA, 1995

[12] Bicevskis J., Borzovs J., Straujums U., Zarins A., Miller E.F. SMOTL - A
System to Construct Samples for Data processing Program Debugging. IEEE Trans.
Software Engineering, 1979, SE-5, No.1

[13] Bicevskis J., Bicevska Z., Borzovs J. Regression Testing of Software System
Specifications and Computer Programs. Conf. Proc. Quality Week, San Francisco,
1995, Software Reserch Institute.

[14] Bicevskis J. The Effictiveness of Testing Models. Proc. of 3d Intern. Baltic
Workshop “Databases and Information Systems”, R�ga, 1998

[15] Hans Buwalda Essentials of Testing and Test Automation. Proc. of 15th
Quality Week 2002, San Francisko, 2002

[16] Surya Kumar Role of Test Tools in Product Testing and Automation. Proc.
of 6th ICSTEST Conf, Dusseldorf, 2005

[17] A.Auzins, J.Barzdins, J.Bicevskis, K.Cerans, A.Kalnins. Automatic
construction of test sets: theoretical approach. Lecture Notes in Computer Science.
Vol. 502, Springer - Verlag, 1991.

[18] [on-line]. Available on the internet: http://www.numuri.lv

[19] [on-line]. Available on the internet: http://www.liaa.gov.lv

Zane Bičevska, Jānis Bičevskis. Application of Smart Technologies in Software .. 37

LURaksti733-datorzin.indd 37LURaksti733-datorzin.indd 37 2008.03.31. 15:05:312008.03.31. 15:05:31

Towards a Semantic Execution Environment Testing
Model

Krišs Rauhvargers, J�nis Bi�evskis

University of Latvia, Rai�a blvd. 19, R�ga, Latvia
Kriss.Rauhvargers@bank.lv, Janis.Bicevskis@lu.lv

Abstract. The paper analyzes one component of "smart technologies" – a
model for program execution environment verification that employs software
meta-data descriptions of quality requirements to ensure the conformity of
characteristics of the surrounding environment to those necessary. The study
is based on practical software deployment and maintenance experience in ar-
eas where the production environment is inadequate and defies normal soft-
ware operation. The solution is to develop a "profile" for each software item
which would contain information about software requirements regarding its
execution, for instance, OS version, configuration file and registry entries, re-
gional settings, etc. The profile document is added to software deliverables
together with a set of tools capable of verifying the adequacy of the execution
environment according to the document. The profile document can be used in
both the installation and operational phases of software.

Keywords. Maintenance, Testing, Smart Technologies, Self-healing systems.

1 Introduction

As new computing paradigms, such as distributed computing, service-oriented archi-
tecture, and business process support are emerging, software becomes more complex
and more difficult to maintain. Quite much of the software being developed today is
aimed to serve a single business and the customers are willing to invest as little
funds as possible. Therefore, the software is built for a specific environmental plat-
form and may have strong bonds to it.

One of the core principles of developing "Smart Technology Compatible Soft-
ware" [1] is to create software that is able to analyze the external environment and,
like a cognitive being, adapt to it or at least to state that the environment is not suit-
able for normal existence. If this kind of software were feasible, the installation
process and maintenance would be greatly simplified.

The present paper analyzes the requirement stated in [1] and provides a method-
ology that, when properly implemented, solves the problem. Methodology discussed
in the paper is based on describing knowledge about software dependencies on ex-
ternal environment outside the executable code, and creating a human and computer-
readable document – a software profile document, based on the collected data. Using
the profile document, environment may then be checked during initial software de-
ployment and later in the software life-cycle.

LATVIJAS UNIVERSITĀTES RAKSTI. 2008, 733. sēj.:
DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS 38.–52. lpp.

LURaksti733-datorzin.indd 38LURaksti733-datorzin.indd 38 2008.03.31. 15:05:322008.03.31. 15:05:32

The paper is further organized as follows: the next chapter describes the back-
ground of the research and states the research questions. Chapter 3 discusses work in
related directions of software engineering. In chapter 4 we present our methodology
and aspects to consider when implementing the methodology. Chapter 5 is a short
report on first practical experiences already achieved.

2 Background

When a company reaches certain size or functional business area coverage, it may
need custom-tailored software applications to be able to handle its business func-
tions. Independently from the chosen software platform, there is a selection to be
made – whether to outsource the development from other company or to develop the
applications in-house. The former allows to “keep out of IT” by not requiring much
involvement of company’s staff in the development work, while the latter allows to
be more flexible in specifying requirements and maintenance since the software
code is available and can be modified upon request.

The historical basis of this paper is formed by an in-house solutions development
and maintenance model where security and safety are highly significant. Because of
such priorities in this model, the software is being “pushed” through testing and ac-
ceptance-testing environments before it may be installed in “live” environment. To
install software at a particular operational environment (that is, any environment
other than development), a special code compilation is carried out for the particular
environment and then it is installed manually according to instructions given by the
developers.

The manual installation model is reasonable in the particular case, since the soft-
ware is designed to be installed easily and the software applications are not distrib-
uted to many users. To be more precise, in the client-server architecture, the client
components are developed somewhat like “portable applications”, i.e. applications
that do not need client-side installation at all and are fetched from the server for exe-
cution. However, the server side of the applications has to be configured and in-
stalled manually.

All the instructions for setup and installation are prepared in textual form by the
developers and are executed by people authorized to do so (systems administrators).
The instructions typically include tasks such as compilation, copying executable
files and libraries to servers, registering and configuring components, altering oper-
ating system configuration.

The instructions also contain information that can be treated as requirements re-
garding the execution of the particular piece of software – needs for other specific
software items to be installed, configuration settings, file locations, specific tasks to
be performed before the installation – to be summarized as “execution require-
ments”.

The execution requirements hold through the lifetime of the particular software
application, i.e., they must be satisfied whenever the software application is exe-
cuted.

Upon software migration to another physical or logical environment – for in-
stance, moving to a newer server – a series of questions arises. For instance, what

Krišs Rauhvargers, Jānis Bičevskis. Towards a Semantic Execution Environment .. 39

LURaksti733-datorzin.indd 39LURaksti733-datorzin.indd 39 2008.03.31. 15:05:322008.03.31. 15:05:32

are the current execution requirements of system? What else directories should we
re-create in the new environment? Which configuration file does this system use?
Did we have to open any specific ports in the network firewall for this system?

2.1 Systems Interaction

In realistic environments, different software applications may be installed in the
same computer. The execution requirements may differ from system to system and
some of them may be contradictory. For instance, system A may require date format
setting as specified by ISO 8601:2001 (yyyy-mm-dd) and, at the same time, system
B may rely on American English date format (mm/dd/yyyy). Of course, work-
arounds exist for the situation described, if only the problem is known during the in-
stallation of whichever system is installed later.

Software systems' integration may be necessary to avoid data and functionality
duplication in systems. For instance, the organization's customer data may be shared
between the CRM (Customer Relationship Management) software system as the
“host” of the data and other “guest” systems such as inventory system, accountancy
system etc. The integration may be carried out by using public interfaces of the host-
ing system – an API (Advanced Programming Interface), if such exists or by using
internal mechanisms of the host system. The latter solution is technically possible
only in the in-house development model and may sometimes be used.

Of course, the interface that the host system provides and the guest systems are
dependent of may change by time. It is not a very likely scenario in the case of inte-
gration using public API, but quite likely when private interfaces are exploited. This
leads to unpredictable effects at maintaining the guest systems when updates for the
host system are deployed – in-depth regressive integration tests are required.

2.2 The Research Question

In many systems, typically those designed to support unique business process in-
stances rather than process outcomes (documents); it is not possible to perform a
“test run” of the system to verify that the system still works. Such tests could have
unpredictable effect on the business process. Hence, if business processes occur
rarely but are significant to their owners, there is a need for methods to verify the
software system configuration and to check if it is up-to-date without running the
business support applications.

Automated software installers are another option for software deployment. How-
ever, neither the maintenance model described here, nor the automated installers
provide a way for checking if execution requirements of different systems are not
contradictory and if all requirements are satisfied. The easiest known way is per-
forming manual checks of all requirements. Of course, in the real world it may ap-
pear too time-consuming.

Installation package wizards such as Macrovision InstallShield or NullSoft NSIS
offer features for checking pre-installation requirements. Also, they may provide a
“repair” feature if the system is known not to be malfunctioning. However, this does

40 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 40LURaksti733-datorzin.indd 40 2008.03.31. 15:05:322008.03.31. 15:05:32

not allow performing a preventive checking to find out if the configuration is still
acceptable.

The present paper is a study on formalization of system execution requirements
taking into account the semantic nature of every requirement.

The main questions of research are:
- Is it possible to automate the verification of execution requirements?
- If the process is automated, can the requirements still be human-readable?
- Can the verification process be unified throughout the enterprise?

3 Related Work

The field of automated software testing has been studied extensively; however
mainly research concentrates on testing the software internals, trying to verify that
the software is built according to the specification. Formal verification frameworks
such as Context UNIT and Mobile UNITY [2] have been described as well as practi-
cal implementations such as Java PathExplorer [3] are present.

The concept of an execution requirement indicates that the system under test is
not aware of the particular circumstance – it will work fine if the conditions are met.
The software system may have a built-in mechanism of self-protection, but it is not
intended to adapt the situation.

The present research concentrates on aspects of the execution environment that
the system is not aware of.

3.1 Self-Healing Systems and Built-In Tests

The topic of self-healing systems can be considered relatively close to the research
topic of this paper. Both research topics share the same goal – a system working at
an operating environment that is known not to be perfect.

A comprehensive study in the field of self-healing systems by D. Tosi [4] identi-
fies and analyzes the key elements of a self-healing system.

The concept of self-healing software is defined as a system that monitors the sur-
rounding environment at run-time, detects failures and, knowing its “normal” way of
operation, can “heal” itself. Such a system can then be called a “fully autonomic sys-
tem”, which is, according to classification of [5], the highest (5th) level AS (Auto-
nomic System). Such systems are far beyond the scope of current research which
concentrates on practical support for transition between 2nd level (Managed Level1)
and 3rd level (Predictive Level2) of autonomic systems.

1 Managed Level: At this level, system management technologies can be used to collect in-

formation from different systems. It helps administrators to collect and analyze information.
Most analysis is done by IT professionals. This is the starting point of automation of IT
tasks.

2 Predictive Level: At this level, individual components monitor themselves, analyze changes,
and offer advice. Therefore, dependency on persons is reduced and decision making is im-
proved.

Krišs Rauhvargers, Jānis Bičevskis. Towards a Semantic Execution Environment .. 41

LURaksti733-datorzin.indd 41LURaksti733-datorzin.indd 41 2008.03.31. 15:05:332008.03.31. 15:05:33

In D. Tosi’s paper [4], the self-management objective is decomposed into a num-
ber of dimensions: requirements (security, performance), monitoring/detection (in-
cludes self-adaptation, self-optimization, and self-healing), and repair. According to
this decomposition, the current paper is a research on monitoring and detection, spe-
cifically on system’s reaction to changes in the runtime environment.

The author of [4] also mentions the need for a knowledge base that describes the
“normal” environment of the system.

In [6] Wang et al. present a concept of software component with built-in tests. A
built-in test (BIT) is a set of code functions that perform verifications, if the compo-
nent is working as predicted. Authors of [6] suggest that a component should contain
one or more BITs that can be executed; and implement some specific interface to be
called when the system is run in maintenance mode. Here, the authors define a con-
cept of “maintenance mode” [6] for a software system, which is proposed as a spe-
cial execution mode of the system when built-in tests can be activated but the busi-
ness functionality of the system is not touched.

The authors of [7] propose a framework named Component+ that mainly focuses
on benefiting from the use of BITs in software components. Authors note that every
component implements its fixed interface which other components may rely on. This
can be called a „contract“ between components. Authors of the paper suggest that
BITs are used for testing, whether the component is capable of serving the defined
interfaces, i.e. if contracts between components are not violated. It is remarkable that
the authors mention the importance of „Quality of Service“ (QoS) testing for verifi-
cation of the operating environment, but their proposed model concentrates on test-
ing the contracts between the components, hence, QoS testing is a „by-product“.

3.2 Unit Testing and Test-Driven Development

At a first glance, the test-driven development [8] seems to be a good solution for the
research problem. Though unit testing technique has a great effect at improving
software quality and results at integration testing, trying to use the unit tests for vali-
dating the surrounding environment would be a misuse of the particular technology.
This is because unit testing is designed to focus on testing a single unit. According
to the guidelines, a unit test shouldn't pass the boundaries of the unit to be tested. To
overcome the need for “outside world” reactions during tests, the unit testing model
proposes the use of mock objects and fake objects [9]. Both kinds of objects are used
to simulate the interface of external units required by the unit under test. The use of
such substitute code indicates that unit testing may not be useful for integration be-
tween components, and, moreover, integration between the system and the surround-
ing environment.

3.3 Similar Ideas in Hardware Appliances

A similar topic has been investigated quite profoundly in hardware engineering.
Runtime checks of the surrounding environment seem to be natural and have been
studied extensively in hardware world. Research is being carried out in different ar-
eas – both on self-tests of internal state of the item, for instance, for a CPU or a

42 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 42LURaksti733-datorzin.indd 42 2008.03.31. 15:05:332008.03.31. 15:05:33

RAM module, during the stand-by time [10], and on overall inspections of the sur-
rounding environment, i.e. parts of the “hosting” system. A system embedded in a
car is a good example. Upon initialization, the central processor performs a compre-
hensive examination of all the distributed sensors and sub-processor units; if any of
them fails, it shows a warning sign to the driver or even does not allow starting the
engine.

Similarly to software systems, nowadays the hardware systems have also become
component-based. For instance, a digital photo camera relies upon a specific type of
interface for its memory chip (e.g. Compact Flash type I cards supported only).
Upon initialization, the camera checks whether the card is currently available, the
type and the capacity of the flash card. The user may be prompted “Error, wrong
card inserted!”, “CF full”. This can be compared to the “contract testing” described
in [7].

The idea of the current paper is similar to the methodology described here - veri-
fication if the external components the system under test relies on, fulfills their du-
ties.

4 The Proposed Model

4.1 Model Summary

Methodology proposed by this paper is based on describing knowledge about the
software system outside the executable code (as some sort of meta-data about the
system), and using the collected data for creation of a computer document – a soft-
ware „profile“. Such document is later used for execution requirement testing.

A software requirements profile document contains listings of both the internal
links between software components and dependencies on external services, facilities
and interfaces. Using appropriate tools, the profile document can be employed for
different purposes throughout the life-time of the system. The present paper de-
scribes the usage of software profile document as the core of execution environment
verification by external verification modules – small pieces of software aimed to
perform verification routines (further in text – EVM), but other applications may ex-
ist.

The following model is offered:
1. bonds of the program code with the environment are registered as software meta-

data during development;
2. upon finishing development of a particular software item, a software profile – a

document summarizing execution requirements for the particular item is gener-
ated from the code meta-data;

3. the software item is delivered into other execution environment together with its
profile document;

4. conformance of the execution environment is verified using data from the profile
document.

A summary of the model is shown in Figure 1

Krišs Rauhvargers, Jānis Bičevskis. Towards a Semantic Execution Environment .. 43

LURaksti733-datorzin.indd 43LURaksti733-datorzin.indd 43 2008.03.31. 15:05:332008.03.31. 15:05:33

The described situation applies to internally stable [1] systems. That is, the sys-
tem under test has already passed the integration tests in the development environ-
ment and is known to be working under certain circumstances.

There are two areas of software life-cycle where the software profile methodology is
useful – the initial verification of execution requirements during software installa-
tion into an environment where the software has not yet been used, and the routine
re-validation of run-time requirements every time the software application is exe-
cuted. Re-validations take place in the same way as initial validation; the only dif-
ference is that the user is not prompted for initiation data.

Development environment Another environment

Code

Databases Network
services

Configuration
files

Regional
settings

Software
libraries

Other
resources

Environment properties

Dependance

Execu-
table

Compilation

Profile
doc.

Databases Network
services

Configuration
files

Regional
settings

Software
libraries

Other
resources

Environment properties

D
el

iv
er

ab
le

s Execu-
table

Profile
doc.

Profile
generation

Dependance
extraction by tools

Installation Target
environment

Profile
validation

Information
gathering by

tools

Fig. 1. The Tool-Driven Process of Software Profile Generation it the Development Environ-
ment and Use in Other Environments.

4.2 Motivation for the Proposed Model

The model proposed in the paper helps overcome several shortcomings of other
related technologies that could possibly be used to achieve the same goals.

When compared to built-in tests, the software profile methodology has the advan-
tage of test descriptions not being encoded in the system itself. As a result, the
knowledge is not hidden from software maintainers and the list of known require-
ments may be supplemented without recompiling the software.

The contents of software profile document should rather be treated as descriptions
of software properties than test descriptions, and hence the tests can be more flexi-
ble.

It is possible to execute different tests per single requirement to verify different
aspects of the requirement. It is also possible to replace the test algorithm if and
when needed. The scenario is quite likely since the properties of environment may
change. For instance, the software may require that “Outgoing TCP traffic on 80
shall be allowed on the computer”. Verification of the requirement in a program-

44 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 44LURaksti733-datorzin.indd 44 2008.03.31. 15:05:342008.03.31. 15:05:34

matic manner relies heavily on the kind of firewall software installed on the particu-
lar computer and hence, upon changing the firewall software, the EVM should also
be replaced with an updated version.

4.3 General Architecture of Runtime Validation Framework

As recommended by [6, 7], runtime validation should not interrupt the regular work
of the system under test. Our model conforms with the thesis completely and is de-
signed to separate not only the regular and maintenance modes, but also the execu-
table code.

The software profile approach is different from a typical BIT architecture in a
way that the tests are actually not embedded in the system. To enable a component
for self-testing of the execution environment, only functionality for loading the
software profile validation runtime („loaders“) have to be encoded into the system.

When software is run in maintenance mode, the loader functions are used for
loading the verification runtime core and handing the execution control to it. As the
core is loaded, it looks for the software profile document of the system under test
and analyzes it. Knowing the EVMs currently available for testing specific require-
ments, the core parses the software profile document and invokes an appropriate test
routine using a specific EVM (or multiple modules) on each requirement listed in
the document.

Hence, the model relies strongly on the dynamic loading feature of the execution
environment. The feature is first employed to load the verification runtime core
module and later, to load the specific verification tools. The required effect can be
achieved easily in today's execution frameworks - using the reflection and dynamic
load feature of .Net framework, using the ClassLoader interface of Java, even easier
in scripting languages such as PHP or Python.

4.4 Execution Requirements and External Verification Modules

In the context of the paper, an execution requirement is a verifiable demand state-
ment about the execution environment that typically has some human-
understandable meaning and that holds through the lifetime of the system. For in-
stance, a requirement may be formulated as “TCP traffic to host 192.168.1.1 on port
21 must be allowed” or “Write access is necessary to directory
/home/$USERNAME”.

Other typical types of execution requirements include:
- Other components – versions, names, availability. An application typically

depends on one or more external code libraries to be available - for instance,
XML support, specific database drivers, MS Excel object model API etc.

- Configuration files – INI files, Windows registry, .Net framework configura-
tion files. The requirements of this kind typically ask for a configuration file
to be located at a specific location or for values to be set for specific keys.

- File system access – requirements regarding existence or non-existence of
specific nodes in the file system, permissions on file shares, etc.

Krišs Rauhvargers, Jānis Bičevskis. Towards a Semantic Execution Environment .. 45

LURaksti733-datorzin.indd 45LURaksti733-datorzin.indd 45 2008.03.31. 15:05:352008.03.31. 15:05:35

- Network dependencies – requirements on protocols, ports, required network
locations to be available.

- Relational data bases – requirements, specific to DB vendor, defining a de-
pendence of the software system upon a certain data base. The requirements
may include database locations, names, and requirements for existence of
certain DB objects (tables, stored procedures, functions) or even the interface
definitions of DB objects. For instance, one may require that a table
“CUSTOMERS” having a field “NAME” exists in the database.

This list can be continued and is by no means limited to kinds of requirements
listed here. Nearly every technology used in contemporary software development
has some properties that may be significant for a software component employing the
technology. For instance, both Microsoft’s COM+ or Java’s Hibernate (and of
course, other products, too) services allow the configuration of distributed transac-
tions’ isolation level to be set declaratively [11, 12]. In both cases, a component rely-
ing on the particular technology can claim for a specific setting for distributed trans-
action configuration. Such a claim can be formulated as an execution requirement.

It is also advisable to define business system-specific requirements, that is, re-
quirements that are useful only in the context of the system under test. For instance,
“at least one administrator account must be present in the users’ registry” or “all `in-
box` folders of the system should be user writable” are system-specific, as the con-
cepts of “administrator account”, “user’s registry” and „inbox folders” achieve their
semantic meaning only in the context of the system. One should also provide EVMs
that support verification of such requirements. This kind of EVM is actually a built-
in test that is externalized from the system, but it is more concerned to checking if
other components are in order rather than checking if the component itself is fulfill-
ing its contracts. The verification modules used for this kind of tests can be bundled
in the same code assemblies as the business system, and hence be versioned together
with the system. Such approach allows the tests focus more on the internal stability
[1] of the system and complies well with the component built-in testing as described
in [13].

A specific kind of requirements is the transitivity requirement which can be read
as “I will do my job if some other particular component does what it is supposed to
do”; that is, a requirement for another component or application to pass the verifica-
tion process successfully. For instance, in the client-server model, client components
may not be able to perform their duties if the server component is not configured
properly.

To complete the list of vital elements of the software profile framework (hereinaf-

ter - SWPF), one must mention the EVM – external verification modules.
An EVM is a small functional component that encapsulates logic for verifying

one or a few execution requirements. Technically, an EVM looks for evidences in
the execution environment and hence decides if the particular requirement is satis-
fied. The nature of an EVM should be similar to the way humans would verify the
requirements – first analyzing the requirement and deciding what evidences are re-
quired to be sure that the requirement is fulfilled, second – performing the verifica-
tion. Different kinds of evidences may exist and it is a task for the EVM developer
to decide which ones are satisfactory.

46 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 46LURaksti733-datorzin.indd 46 2008.03.31. 15:05:362008.03.31. 15:05:36

For instance, when developing an EVM that verifies if a specific Windows secu-
rity patch is installed in the system, the first idea would be to use Windows Man-
agement Instrumentation1 to read the list of all patches installed and then look
through the list to see if it contains the name of the needed patch. However, this may
be a bit tricky, because WMI may not be installed on the particular computer or may
not itself be updated and hence the specific function for reading the patch list may
not work. When looking for another approach, one will notice that every patch in-
stallation results in a new “uninstall” directory created in Windows installation di-
rectory, for instance “$NtUninstallKB825119$” where KB825119 MS is a knowl-
edge base number for the patch. Hence, one may consider that the existence of such
a directory is a good enough evidence for validation.

A clear distinction must be set between validating a requirement in whole and
validating the evidences for a requirement. There exists an N:N type of relation be-
tween the two (validating a requirement may mean looking for N evidences, a single
evidence may refer to different requirements). The resolution of requirements into
evidence searches is a task of the SWPF core, but technical implementation details
are out of the scope of the present paper and are a question of further research.

4.5 Kinds of Data Employed by the SWP Framework

To achieve the functionality described in the previous chapters, different kinds of
data are required for the software run in maintenance mode.

The most obvious knowledge base is the software profile document itself. It sup-
plements the system under test and is delivered into particular execution environ-
ment together with binary deliverables or source code. The knowledge – listings of
execution requirements - is first summarized by the developers and can later be
complemented by other parties involved. The data format for storing requirements is
not dictated by the methodology and may vary upon implementation; however a
possibility to store complex data structures is essential. Other requirements for the
description language are modularity and possibility to extend the available markup
as new kinds of requirements may appear. Hence, we propose the use of XML as the
carrier and XSD as a validation tool and reference. An in-depth study of the format
is a question of further research.

Another knowledge base employed by the methodology, is the „inventory“ list
that belongs to a particular execution environment. The list contains information
about the EVMs that can be used at the environment. Since the EVMs should be de-
signed to handle verification of requirements as specific as possible, the full spec-
trum of EVMs may be quite ample. For instance, it includes a wide variety of EVMs
that handle requirements specific to a single business system only (e.g., an EVM for
a requirement “Version 2.9.4 of the HR system shall not be present at the environ-
ment”). Not all the EVMs owned by the organization may be needed at every par-
ticular environment and hence “inventory list” should be bound to the environment.

1 Windows Management Instrumentation (WMI) is the Microsoft implementation of Web-

based Enterprise Management (WBEM), which is an industry initiative to develop a stan-
dard technology for accessing management information in an enterprise environment
(MSDN library, 2007)

Krišs Rauhvargers, Jānis Bičevskis. Towards a Semantic Execution Environment .. 47

LURaksti733-datorzin.indd 47LURaksti733-datorzin.indd 47 2008.03.31. 15:05:372008.03.31. 15:05:37

Another task for the inventory list is to tell the verification runtime, when to use the
particular EVM described in the list. That is, the list describes patterns to look for in
the software profile document that are related to the particular EVM. In the XML-
based form of software profile document, the names (and the namespaces) of the
XML elements recognized by the EVM should be depicted in the inventory list.

4.6 Creating a Software Profile Document

The software profile notion is essential for systems which are developed in a differ-
ent environment than the operational one (where the concept “operational environ-
ment” includes development, testing and/or acceptance testing environments, pro-
duction environment).

It is assumed that the system under test is internally stable, i.e. that system devel-
opers have assured that the system is functioning and have managed to run the sys-
tem in the development environment. This should be true in order to allow transition
to the testing phase. Since the satisfactory requirements are met in the development
environment, it can be a good sample for gathering the requirements.

The gathering of data required for generation of the software profile should be
begun as close to the beginning of information system life-cycle as possible in order
to minimize the documentation work to be done close to the delivery date.

A good time span for registering requirements is the coding phase when detailed
system design specification is transformed into executable code. All kinds of de-
pendencies become known to the developers during this phase: the ones dictated by
the business problem (declared in the requirements specification document), the
ones discovered during system planning (functional specification, class, and compo-
nent diagrams) and the technical limitations that have arisen due to development
methods, organizational standards, etc.

The methodology anticipates that requirement descriptions needed for the crea-
tion of the profile document are gathered from source code where it has been previ-
ously entered by the coders.

A substantial part of dependencies is known even before the coding phase i.e.,
during the design phase. If software is developed using model driven development
approach, requirements can be recorded at an earlier phase than development. De-
pendency information could be attached to the model as object stereotypes if a UML
model is used. During the PSM (platform specific model [14]) transformation to
program code, the stereotypes would be transformed into code meta-attributes as de-
scribed further in this chapter. Hence, the initial dependencies would be recorded
even before the coding phase begins.

.NET framework provides a convenient way for describing code meta-data. It is
called “declarative attributes” – a supplementary information block that is assigned
to a particular code class, function or the software assembly all together. The .NET
framework allows defining one’s own attribute classes to extend the set of available
declarative attributes.

Hence it is possible to define one or more declarative attribute classes for each
type of requirements and use the attributes to describe the code.

For instance, an attribute class “NetworkDependency” with parameters protocol,
direction, and port can be defined. When creating a program which depends on net-

48 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 48LURaksti733-datorzin.indd 48 2008.03.31. 15:05:372008.03.31. 15:05:37

work services, a function ReadData that accesses the network (or the class contain-
ing the ReadData function) can be assigned the declarative attribute:

<NetworkDependency(Protocol.TCP, Direction.Out, 80)> _
Public Function ReadData()

Upon preparing the system for delivery, a tool for dependency extraction would
scan the program code and find the meta-data attribute attached to the function ‘Re-
adData()’. As a result, a record line would be created in the software profile docu-
ment.

Most parts of the software profile document can be generated by using the fol-
lowing approach:

- data needed for the profile document header part are encoded as meta-
attributes of the whole .Net assembly (or analogous concept in different
platform, for instance, a component in terms of Java technology)

- dependencies on execution environment, i.e. requirements, are described as
declarative meta-attributes of the code object which demands particular de-
pendency, or at a higher hierarchical level if fine-grained requirements do
not matter. Part of the requirements may be generated using MDA tools.

- all requirements listed in the program code are gathered by help of specific
code analysis tools

- the requirements list is reviewed:
o dependencies that do not require more information are instantly

transformed into requirements
o for dependencies referencing the development environment (for

instance, a requirement “Short date format – the same as in devel-
opment environment”) specific tools are used to get the requested
information from the environment (in case of the example – a
function that queries the operating system for the short date for-
mat)

- the gathered list of requirements is merged with requirements from linked
code libraries’ profile documents, using the minimum supplement approach

- the obtained software profile document is reviewed by the developer to
eliminate redundant requirements and to add the missing items.

5 First Practical Experience

Initial practical development has already been carried out according to the method-
ology provided in the paper. The development has resulted in a fully functional
proof-of-concept version of the software profile verification toolset.

The demonstration software was developed using Microsoft .Net framework 2.0
platform. The chosen framework supports dynamic loading of modules from user
code, which is a significant requirement for a good implementation of SWPF.

The code was separated into code assemblies according to the architecture of
SWPF: the "business application program" which can be launched at maintenance

Krišs Rauhvargers, Jānis Bičevskis. Towards a Semantic Execution Environment .. 49

LURaksti733-datorzin.indd 49LURaksti733-datorzin.indd 49 2008.03.31. 15:05:372008.03.31. 15:05:37

mode (1), core module of SWPF (2), and an assembly containing implementations
of some typical verification modules (3).

When the program (1) is loaded, it enters the “maintenance” mode and performs
environment testing. To do the testing, it loads the SWPF core assembly (2) which
further handles the tests. The SWPF core looks for an adequate software profile
document. It considers that the software profile file is located in the same directory
as the (1) executable files and named according to format <executablefile>.swp.

The SWP file is an XML file containing assembly identification information (for
ensuring that the application currently under test is the correct one) and a listing of
requirements each described using an XML element. The profile document used in
the experiment was created manually.

When the SWP document is loaded, it is parsed into individual requirements. In
the conceptual model we have introduced support only for two very simple, but po-
tentially useful used requirement types:

- Regional settings – short date format requirement. In Latvian grammar, the
format “dd.mm.yyyy” is advised. However, in Microsoft Windows the de-
fault locale settings are different and short date format is provided as
“yyyy.mm.dd”. The format string is frequently being changed during instal-
lation of the OS to the grammatically correct one; hence the actual setting in
deployment environment may vary. In an isolated enterprise environment,
the setting is typically the same on all computers and therefore the systems
developed in-house are more likely not to be aware of the possible differ-
ences.

- File system – checking if specific path exists. In our experiment, the path ex-
istence evidence was used to check if “Windows XP service pack 2” is pre-
sent in the system. The service pack was known to install itself at a specific
location in the file system.

To find the appropriate tool for testing a particular requirement, the SWPF uses
an “inventory list” – another XML file describing locations of EVMs. The concep-
tual model does not introduce distinction between requirements and requirement
evidences; it assumes a 1:1 relation between requirements and EVMs (an EVM may
handle one type of requirements). Therefore, items in the inventory list have a prop-
erty describing the name of the requirement XML node that the current EVM can
handle. When an appropriate EVM is found for evaluating a requirement, the as-
sembly containing EVM’s code is loaded and the requirement information is handed
to the EVM object which further evaluates the requirement.

A test run of the application was performed on several computers in different en-

vironments and it was found out that even such a trivial environmental test may
show inadequacies on some computers. Some of the computers tested did not have
the required short date format, all had Windows XP SP 2 installed.

50 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 50LURaksti733-datorzin.indd 50 2008.03.31. 15:05:382008.03.31. 15:05:38

6 Conclusion

The paradigm of the software execution profile document is a step towards the de-
velopment of smart technology compatible software. The methodology can be
adapted in a fully manual manner – by composing the requirements profile docu-
ment based on the know-how obtained during development and later using the
document to check if the installation environment conforms to the requirements (this
process can be reduced to textual installation descriptions as used by classical meth-
ods). However, the full power of the methodology provided can be gained when
specific tools are used to generate the profile document and to validate the execution
environment.

The use of the software profile concept described in the paper – verification of
execution environment during installation and at run-time – is not the only one pos-
sible. Some of the other applications are:
� documentation used for systems maintenance
� discovery of cross-system bonds without inspecting the environment
� environment clean-up upon disposal of an outdated system (or previous version

of the system)
� by creating a centralized registry of software execution profiles, it can automati-

cally be perceived as a registry of available resources which allows answers to
maintenance questions such as “Is this database still in use?”, “Why do we have
to have port 80 open on the external firewall?”

� the ideology of the software execution profile can be applied not only to executa-
ble code programs and libraries, but also, for instance, SQL “applications”
The solution for testing execution environment provided in the paper can be im-

plemented incrementally – by expanding the set of resource types that can be veri-
fied.

The first practical experience in applying the described methodology has already
been achieved and indicates that the approach is suitable for practical use.

Acknowledgements

The research is supported by the European Social Fund (ESF).

References

1. Bi�evska Z., Bi�evskis J.: Smart Technologies in Software Life Cycle. In: Münch J.,

Abrahamsson P. (eds.): Product-Focused Software Process Improvement. Lecture Notes in
Computer Science, Vol. 4589. Springer-Verlag, Berlin Heidelberg (2007)

2. Roman, G.-C., Julien, C., Payton, J.: A Formal Treatment of Context-Awareness. In: Wer-
melinger, M., Margaria-Steffen, T. (eds.): Proceedings of the 7th International Conference
on Fundamental Approaches to Software Engineering. Lecture Notes in Computer Sci-
ence, Vol. 2984. Springer-Verlag, Berlin (2004)

Krišs Rauhvargers, Jānis Bičevskis. Towards a Semantic Execution Environment .. 51

LURaksti733-datorzin.indd 51LURaksti733-datorzin.indd 51 2008.03.31. 15:05:382008.03.31. 15:05:38

3. Havelund, K., Rosu, G.: An Overview of the Runtime Verification Tool Java PathEx-
plorer. Formal Methods in System Design Vol. 24(2), pp 189-215 (2004)

4. Tosi, D.: Research Perspectives in Self-Healing Systems. Report of the University of Mi-
lano-Bieocca (2004)

5. Nami, M., R., Bertels, K.: A Survey of Autonomic Computing Systems. In: ICAS '07: Pro-
ceedings of the Third International Conference on Autonomic and Autonomous Systems.
IEEE Computer Society. Washington, DC, USA. (2007)

6. Wang, Y., King, G. Wickburg, H.: A Method for Built-in Tests in Component-based Soft-
ware Maintenance. In: Proceedings of the Third European Conference on Software Main-
tenance and Reengineering, IEEE Computer Society, Washington, DC, USA. (1999)

7. Barbier, F., Belloir, N.: Component Behavior Prediction and Monitoring through Built-In
Test. In: 10th IEEE International Conference and Workshop on the Engineering of Com-
puter-Based Systems (ECBS'03). IEEE Computer Society, Los Alamitos, CA, USA (2003)

8. Janzen, D. Saiedian H.: Test-Driven Development: Concepts, Taxonomy, and Future Di-
rection. IEEE Computer. September 2005 (Vol. 38, No. 9) pp. 43-50 (2005)

9. Kim, T., Park, C., Wu, C.: Mock Object Models for Test Driven Development. In: SERA
'06: Proceedings of the Fourth International Conference on Software Engineering Re-
search, Management and Applications. IEEE Computer Society. Washington, DC, USA
(2006)

10. Shamshiri, S., Esmaeilzadeh, H., Navabi, Z.: Instruction Level Test Methodology for CPU
Core Software-Based Self-Testing. In: HLDVT '04: Proceedings of the High-Level Design
Validation and Test Workshop, 2004. Ninth IEEE International. IEEE Computer Society.
Washington, DC, USA (2004)

11. Troelsen, A.: Developer's Workshop to COM and ATL 3.0. Worldwide publishing, 2000
12. Hibernate Reference Documentation http://www.hibernate.org/hib_docs/reference/en

/html/session-configuration.html
13. Beydeda, S.: Research in Testing COTS Components - Built-in Testing Approaches. In:

ACS/IEEE 2005 International Conference on Computer Systems and Applications. Bonn,
Germany (2005)

14. Kleppe, A., Warmer, J. Bast, W.: MDA Explained: The Model Driven Architecture--
Practice and Promise. Addison Wesley, (2003)

52 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 52LURaksti733-datorzin.indd 52 2008.03.31. 15:05:392008.03.31. 15:05:39

Use of Design Patterns in

PHP-Based Web Application Frameworks

Andris Paikens, Guntis Arnicans

Department of Computing University of Latvia
Rai�a blvd 19, R�ga, Latvia LV-1586

Andris.Paikens@di.lv, Guntis.Arnicans@lu.lv

Abstract. It is known that design patterns of object-oriented programming are
used in the design of Web applications, but there is no sufficient information
which data patterns are used, how often they are used, and the level of quality
at which they are used. This paper describes the results concerning the use of
design patterns in projects which develop PHP-based Web application
frameworks. Documentation and source code were analysed for 10
frameworks, finding that design patterns are used in the development of Web
applications, but not too much and without much consistency. The results and
conclusions can be of use when planning and developing new projects
because the existing experience can be taken into account. The paper also
offers information which design patterns are not used because they may be
artificial or hard-to-use in real projects. Alternatively, developers may simply
lack information on the existence of the design patterns.

1 Introduction

The rapid increase in the number of Web users over the last two decades, the
expanded opportunities and accessibility of software design, and the greater demand
for such applications – all of this has contributed to an enormous increase in the
number of people who are working on the design of Web applications. Web
applications used to be nothing more than an add-on to some other serious system
for a period of time not so long ago; and design of these web applications involved
people with a great deal of experience in other areas of software. But today eager
young people begin designing Web pages without being aware of even the simplest
principles of software design. The complexity of applications has increased, and
their use has become more serious.

The authors of this paper are interested in the use of design patterns in
frameworks related to Web application design, because the true use of design
patterns in actual projects has not been yet described to any great extent, which
means that it is not yet clear whether this approach is of use for the relevant
assignments.

LATVIJAS UNIVERSITĀTES RAKSTI. 2008, 733. sēj.:
DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS 53.–71. lpp.

LURaksti733-datorzin.indd 53LURaksti733-datorzin.indd 53 2008.03.31. 15:05:392008.03.31. 15:05:39

2 Problems in the Use of Design Patterns

2.1 Design patterns

One can agree with Jason E. Sweath [1], who has argued that many software
design problems are resolved again and again, and many fundamental solutions are
established with the goal of speeding up the development processes, reducing the
amount of work that has to be done, and improving the quality of software and, by
extension, that of the resulting products. Many of these solutions can be brought
together under the heading of “design patterns”.

How to describe the concept of design patterns in one sentence? Design patterns
represent theoretical material collected by experts in the field regarding the
principles which should be used in solving a specific problem, the issues that should
be taken into account, and the issues that are unimportant in the context of the
relevant problem.

Use of design patterns may seem quite natural when working with a language that
supports the object-oriented software design and programming approach (OOP), but
it is a fact that languages which support OOP are not mandatory. However, even if a
language that does not support OOP principles is used, it is necessary to be familiar
with the foundations of OOP to understand the principles of design patterns and
their use.

The literature about design patterns offers several definitions [2], [3], [1]. If we
correlate these, we come up with a new definition of design patterns:

Design patterns describe a specific design problem which is repeatitive and which
appears in the context of a specific design, offering a proven and general scheme to
solve the problem. The solution scheme is detailed through a description of its
components, their responsibilities and relationships, and the way in which they work
together.

Here we present the three-part scheme which is at the foundation of every design
pattern [9]:
1. Context – the situation in which the problem occurs;
2. Problem – the problem which repeatedly occurs in this context;
3. Solution – a proven resolution to the problem.

The context of a design pattern refers to the environment in which a problem
arises. Context also covers all steps that have been taken before the specific problem
occurred. Context can also include the steps that will have to be taken after the
problem occurs.

Problem in this regard is an issue which must be handled by implementing
specification requirements and by taking the context into account. When the
problem is identified, its overall specifications must be designed, and its essence
must be understood – what is the specific design problem that has to be solved?

Problem can be divided into several sections:
1. Requirements for the solution, e.g., it must be effective;
2. Issues that must be taken into account, e.g., which standards should be observed;
3. The desired properties.

Solution in a design pattern shows how to resolve the repeated problem and how
to balance out related issues. There are two parts to the solution – the structural part,

54 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 54LURaksti733-datorzin.indd 54 2008.03.31. 15:05:392008.03.31. 15:05:39

which is the static part of the solution, and the performance part, which is the
dynamic part of the solution.

2.2 Properties of Design Patterns

Each design pattern is different from others, because each is intended for the
solution of a different problem, or for a different solution to one and the same
problem. At the same time, all design patterns have certain properties in common.

In [9], [1], [10], and other sources, the following properties of design patterns are
mentioned; to a greater or lesser extent, all design patterns have them in common:
� A design pattern focuses on a design problem which is repeatitive and which

occurs in specific design situations, offering a solution to the problem;
� Design patterns document existing, proven, and applied design solutions;
� Design patterns identify and make more precise abstractions, which is more than

just defining an individual class, instance, or component;
� Design patterns ensure common vocabulary and understanding regarding the

relevant design principles;
� Design patterns are a way of documenting software architecture;
� Design patterns support the development of software with certain desirable

properties;
� Design patterns help to design complicated and heterogeneous software systems;
� Design patterns help to put reins on the complexity of software.

2.3 The Specifics of Web Applications

Web applications are quite different from other types of software. The execution
process is one of the main differences – most of the processing is carried out on the
server, the result is sent to the user’s browser, and then the user can engage in other
activities related to the application. For that reason, it is harder to work with objects
– the PHP software design language, for instance, establishes an object which exists
only for a short period of time – while the code is responsible for handling the
particular request execution. Not all software design languages that are used in the
design of Web applications are supported by OOP, and that makes it more difficult
to deal with more complicated problems and to use design patterns.

The most important difference between Web applications and others is that most
people have to use a Web browser to employ the software, and that covers some of
the relevant functionality. Web applications are also affected by the fact that they are
stored on servers, are called up, and are carried out both on the server and on the
workstation of the user.

Andris Paikens, Guntis Arnicans. Use of Design Patterns in PHP-Based Web .. 55

LURaksti733-datorzin.indd 55LURaksti733-datorzin.indd 55 2008.03.31. 15:05:402008.03.31. 15:05:40

2.4 Positioning the Problem

While researching the use of design patterns in Web applications, we sought to
learn the current situation in terms of whether design patterns are used in Web
applications at this time at all and, if so, to what extent.

Theories about software design are good if they can be sooner or later applied in
practice. Much time has passed since the first publications about design patterns, and
design patterns also are of use in the design of Web applications. Hence, review of
several projects can lead to the discovery of overall trends in the use of the design
patterns.

There are many different design patterns, but many popular OOP design patterns
must be viewed differently when it comes to Web applications. From all available
design patterns, these were reviewed: Abstract Factory, Application Controller,
Active Record, Adapter, Builder, Command, Composite, Custom Tag, Data Mapper,
Decorator, Dependency Injection, Domain Model, Factory Method, Front Controller,
Handle-Body, Iterator, MockObject, Model-View-Controller, Mono State, Observer,
Proxy, Registry, Server Stub, Singleton, Specification, State, Strategy, Table Data
Gateway, Template View, Template Method, Transform View, ValueObject, View
Helper, Visitor. For detailed description of these design patterns see Appendix A.

Some of these have emerged in a natural way. Others are artificial and seldom
used in real life. The review of the situation told us which design patterns are more
popular and how many projects use them. The results could be used as hypotheses
regarding the purposes toward which design patterns are used – are they used to
reuse fragments of source code? Are they used to divide up the project into logical
components to reduce the complexity of understanding and development? Or are
they merely a fashion statement aimed at advertising one’s own product?

2.5 Benefits from Researching the Existing Situation

The benefits of learning about the existing situation in the use of design patterns
for the development of Web applications might be the following:
� Information about the existing situation helps others to start using design patterns,

achieving the level which specialists in this area achieved after years of practice
in testing the proposed design patterns more quickly. A beginner can immediately
use the most popular tested design patterns, which means that he or she has more
time to look for other design patterns aimed at specific tasks.

� Additional information is obtained about the diversity and use of design patterns.
Research cannot immediately lead to precise answers to all the possible questions,
but it outlines the directions and areas in which answers could be obtained
through additional research. Our research showed that not all design patterns are
actually needed from the list of so many. There are a few seemingly attractive
design patterns that are not used at all.

� One can draw conclusions whether design patterns fulfil their mission in the first
place. Do they help people to understand software architecture and logic? To
what extent do design patterns support the principle of “divide and conquer”, i.e.,
to what extent are the logic of systems described via design patterns?

56 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 56LURaksti733-datorzin.indd 56 2008.03.31. 15:05:402008.03.31. 15:05:40

� One gets an idea about the attitude of designers vis-à-vis design patterns. Is the
use of design patterns in source code displayed openly, or is it hidden and thus
hard to recognise?

� There is a better understanding of problems which are not solved via the use of
design patterns. Hence, existing design patterns can be reworked, and new ones
can be developed. It may well be that many design patterns which are used in
classical object-oriented projects are defined as inappropriate for the development
of Web applications.

2.6 The Method for Studying Design Patterns

To gain an objective idea about the use of design patterns, the research was based
on the following principles:
1. Several solutions in one and the same class of tasks must be studied, i.e., the

relevant Web applications must be used for more or less the same task;
2. Web applications basically use one and the same software design language;
3. There is access to documentation about the application and the source code (open

code software is reviewed);
4. Developers have at least minimal knowledge about design patterns, learned from

available books about design patterns.
Framework development projects which are written in the PHP language

corresponded to these principles quite well. All of the selected projects were based
on open source software, so project documentation and source code were available.

 Web application frameworks are ideologically close to design patterns because
they handle many of the same functions, albeit at a different level. This means that
the developers of web application frameworks are far better informed and
knowledgeable about design patterns than is the average Web application designer;
and this is very believable. The first review of project documentation confirmed it –
design patterns were discussed to a sufficient degree.

It was decided that the research would be based on the price/performance ratio,
thus obtaining information about the existing situation via sensible use of resources.
Without preliminary knowledge, it is hard to choose the frameworks which are
needed for the research if more than 40 frameworks are available. The research was
essentially based on reviewing 10 PHP frameworks that were mentioned in the
article [5]. On the basis of various criteria, these are among the best and most
popular frameworks. In terms of projects, researchers studied project documentation,
project Web page, and the source code.

Many design patterns which are frequently mentioned in the literature were
chosen. The researchers checked whether each selected design pattern is mentioned
in some way in documentation, the homepage, and the source code. The source code
was examined to look for the names of the methods as well as comments.

The information allowed researchers to determine whether the relevant design
pattern was being used for project implementation. Unclear situations were also
noted. The researchers did not analyse whether the design patterns were used in
strict accordance with the principles defined in the literature.

Initially, the goal was to interview the organiser of each project, but that would
have required greater resources and would not have had all that much effect on the

Andris Paikens, Guntis Arnicans. Use of Design Patterns in PHP-Based Web .. 57

LURaksti733-datorzin.indd 57LURaksti733-datorzin.indd 57 2008.03.31. 15:05:412008.03.31. 15:05:41

results. We wanted to learn about the most important trends in the use of design
patterns, and small omissions in the process could not have had a major effect on the
results.

3 The Research Object

3.1 Design Patterns Used in the Research

Information on design patterns can be found in many books, for example [6] and
[7], and we used many resources in our work. We would particularly like to point
out three resources and the information about design patterns contained therein.

First, the book [1], which contains many design patterns and also explains the
implementation of these patterns in PHP (Value Object, Factory, Singleton,
Registry, Mock Object, Strategy, Iterator, Observer, Specification, Proxy,
Decorator, Adapter, Active Record, Table Data Gateway, Data Mapper, Model-
View-Controller).

A clear and understandable description of design patterns is found in
www.dofactory.com – Factory Method, Adapter, Builder, Bridge, Proxy, State,
Strategy, Template Method, Visitor.

Very useful information is also found in Wikipedia (http://en.wikipedia.org),
although that resource does not provide information on all specific design patterns
(Dependency Injection, Abstract Factory, Mock Object, Singleton, Composite,
Decorator, Chain-of-Responsibility, Observer, Iiterator, Active Record, Model-
View-Controller).

For detailed description of these design patterns see Appendix A.

3.2 Frameworks Used in the Research

“A framework is a basic conceptual structure used to solve a complex issue. This
very broad definition has allowed the term to be used as a buzzword, especially in a
software context.

A software framework is a re-usable design for a software system (or subsystem).
A software framework may include support programs, code libraries, a scripting
language, or other software to help develop and glue together the different
components of a software project. Various parts of the framework may be exposed
through an API.” [8]

The frameworks used in the research are defined in [5], which has all-
encompassing information on each of them – see Table 1. Some of the information
is unquestionably out of date, but we must remember that many frameworks are
constantly being developed and improved, and that makes it difficult to complete the
list.

Table 1 is presented not to define the best framework, but instead to give the
reader a sense of what each framework does. The functions could influence the

58 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 58LURaksti733-datorzin.indd 58 2008.03.31. 15:05:412008.03.31. 15:05:41

decision to use or not to use a specific design pattern. Detailed description of
frameworks listed below can be found in Appendix B.

Table 1: Comparison of 10 different frameworks

PH
P4

PH

P5

M
V

C

M
ul

tip
le

D

B
's

O
R

M

D
B

 O
bj

ec
ts

Te
m

pl
at

es

C
ac

hi
ng

D

at
a

V
al

id
at

io
n

A
ja

x
A

ut
he

nt
ifi

ca
t

io
n

m
od

ul
e

M
od

ul
es

Zend Framework + + + + + + + + + +
CakePHP + + + + + + + + + + +
Symfony Project + + + + + + + + +
Seagull Framework + + + + + + + + + + +
WACT + + + + + + +
Prado + + + + + + + +
PHP on TRAX + + + + + + +
ZooP Framework + + + + + + + + + +
eZ Components + + + + + +
CodeIgniter + + + + + + + +

3.3 The Results of the Study of Frameworks

Before we analyse the results in depth, we must stress once again that using or not
using design patterns cannot be the indicator to determine the best or worst
framework. The comparison of two different frameworks only makes it possible to
draw conclusions about the methods used by their developers. It is not possible to
decide that one is better than the other – unless, of course, the comparison is based
on the use of a specific design pattern in both frameworks, also looking at other
indicators such as the amount of time that is needed to update the project code and to
make the relevant changes in designing the project. However, these indicators are
not really appropriate for comparison because if a project represents more than the
strict implementation of a specific design pattern, then it includes several design
patterns or, perhaps, solutions which have nothing to do with design patterns.
Business logic and databases are mutually related, and it is all but impossible to
measure the amount of time spent on the implementation of a single design pattern.

In other words, we evaluated the use of design patterns, not the frameworks
within which the design patterns were used.

The research allowed us to create several result tables which have been combined
for the purposes of this article in Table 2. The following notations are used:

 “d” – the design pattern is mentioned in project documentation or on the
homepage;

“c” – the design pattern is mentioned in the comments on the software code;
“m” – the design pattern’s name is part of the name of the software design

method;

Andris Paikens, Guntis Arnicans. Use of Design Patterns in PHP-Based Web .. 59

LURaksti733-datorzin.indd 59LURaksti733-datorzin.indd 59 2008.03.31. 15:05:422008.03.31. 15:05:42

Table 2: Research results

Z
e
n
d

F

r
a
m

e
w

o
r
k

C
a
k
e
P

H
P

S
y
m

f
o
n
y

P

r
o
j
e
c
t

S
e
a
g
u
l
l

F
r
a
m

e
w

o
r
k

W
A

C
T

P
r
a
d
o

P
H

P

o
n

T

R
A

X

Z
o
o
P

F
r
a
m

e
w

o
r
k

e
Z

C

o
m

p
o
n
e
n
t
s

C
o
d
e
I
g
n
i
t
e
r

“
d
”

“
c
”

a
n
d

“
m

”

“
c
”

a
n
d

“
m

”

a
n
d

“
d
”

Abstract Factory c 1 1

Application

Controller

c c c d cd c mc 2 6 7

Active Record d cmd mcd dc 4 3 4

Adapter mdc cm c m c 1 5 5

Builder mc mc c m d cm 1 5 6

Command ? ? mc ? ? ? ? ? ? 9 9

Composite mc cd ? m 1 4 4

Custom Tag

Data Mapper d cm 1 1 2

Decorator mc cmd cd m cm 2 5 5

Dependency

Injection

Domain Model d 1 1

Factory Method c c dc c c 1 5 5

Front Controller cmd d d c cd c 4 4 6

Handle-Body

Iterator cm cm d c m c 1 5 6

MockObject c c 2 2

Model-View-

Controller

d dc d cd d c d d cd 8 4 9

Mono State

Observer cm m cm cd m m 1 6 6

Proxy cmd ? cmd 2 3 3

Registry m mc m cd c c 1 6 6

Server Stub c 1 1

Singleton c c cm ?d c c c c c 1 9 9

Specification ? ? ? ? 4 4

State ? ? ? ? ? ? 6 6

Strategy cm ?d ? 1 3 3

Table Data

Gateway

Template View d d 2 2

Template Method c 1 1

Transform View

ValueObject mc mc 2 2

View Helper d c 1 1 2

Visitor c c 2 2

“d” 5 4 3 11 5 2 3 1 2

“c” and “m” 17 7 13 18 13 13 5 2 5 8

“c” and “m” and

“d”

19 10 15 19 16 14 6 5 5 7

�

60 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 60LURaksti733-datorzin.indd 60 2008.03.31. 15:05:422008.03.31. 15:05:42

“?” – the design pattern’s name is mentioned in the name of the class or method,
but without detailed analysis, so it cannot be understood whether the method or class
implements the design pattern, or whether the name of the design pattern simply
coincides with the name of the method or class.

3.4 Mention of Design Patterns in Documentation

Before examining the overall situation, let us look at those design patterns which
are mentioned in documentation. Documentation for us meant the homepage, the
user instructions, or any other documentation offered by the project developer
(except for software comments).

The frequency of use is seen in column “d”, but it has to be remembered that this
is perhaps not a depiction of the actual situation. Still, it does point to overall trends.
Some of the design patterns might be a marketing trick with which the project
developers try to attract users. Some design patterns may be mentioned but not
really used, being planned only for the next project versions. Many of the indicated
design patterns are used, but it is hard to tell the extent to which they are. An
additional survey of developers would not change the results substantially because
we assume that there are no cardinal differences between the documentation and
reality.

It is also impossible to determine whether the noted design patterns have been the
only ones used in each specific project because it is possible that a specific design
pattern was used but is not mentioned in the documentation. Some projects had
fairly incomplete information sections in terms of homepages and documentation.
However, the general trends can be determined with certainty.

Table 2 shows that the MVC (Model-View-Controller) design pattern has been
used most often in frameworks – in 8 projects in total. Other frequently used include
Front Controller and Active Record (4 times). Still other design patterns are used in
just one or two projects, and there are some design patterns which are not used at all.

Table 2 shows that the framework which uses most design patterns is Seagull –
11 different design patterns are used in it.

3.5 Mention of Design Patterns in Source Code

When it comes to the design patterns mentioned in documentation, it can be
asserted that they have been used in the implementation of frameworks, or at least
the developers have wanted to use them but have not done so for various reasons.
The use of design patterns described in comments and methods is perhaps more
questionable because of the unambiguous way in which methods and classes are
named and comments about them are developed. Only in the guidelines to the Zend
Framework there is a mention of the fact that the name of a design pattern must be
included in the name of a class or method if it is used therein.

The names of some of the design patterns may coincide with the names that have
been chosen by the developers for methods designed for very different purposes. It
is impossible to make the design patterns table more precise because that would
require not only a complete study of all the design patterns, which is very difficult,

Andris Paikens, Guntis Arnicans. Use of Design Patterns in PHP-Based Web .. 61

LURaksti733-datorzin.indd 61LURaksti733-datorzin.indd 61 2008.03.31. 15:05:432008.03.31. 15:05:43

but also an in-depth insight into all of the frameworks. That is almost impossible
considering how many different frameworks there are. The task would be unrealistic
for a few people who have a few months to spend on the task. Certainly the amount
of resources that would be needed is not justified in terms of the results that could be
obtained.

Table 2 suggests that the scene is very different if we compare the design pattern
usage in code (column “c and m”) to the mention of design patterns in
documentation (the column “d”). There is no distinct leader here – the Singleton
design pattern is used most often (9 times). The Command design pattern is used
with equal frequency, but this fact is quite questionable because the design pattern
bears a name which is also used for many software design methods; hence it may
well be that in some cases the Command design pattern was not used at all. The
design patterns Application Controller and Observer are used six times apiece.
Others are used quite often but with less frequency. Still other design patterns are
not used at all.

Among the frameworks in terms of the use of design patterns, Seagull
Framework is the leader with 18 design patterns.

3.6 The Timeframe of the Research and Evolution of Frameworks

Initial research took place in late 2005 and at the beginning of 2006. Up to date
results were collected until October 2007. Several things have changed since the
authors of this paper investigated the subject for the first time, but these changes are
not shocking as evolving products are upgraded time after time. The authors
upgraded the original research by refreshing information on the usage of design
patterns and related conclusions; some information was added in separate chapters
of this paper so that readers could get an insight of how various frameworks have
been developed and improved. As it can be observed, most of the products have not
changed much over this period of time.

It is interesting how different frameworks have evolved over time. In Table 3,
information is presented about the versions that were available in the spring of 2006
and the versions that are available in the autumn of 2007.

Improvements over time are not an unusual phenomenon if we speak about
software. Changes show us the activities and intensity of development. The maturity
level of the software can also be observed from such record of change as products do
not change too much if a stable version is reached and no new functionality is
demanded. Table 4 contains differences between the use of design patterns in spring
2006 and autumn 2007. Use of patterns mentioned here is implemented in recent
versions of these frameworks and was absent in early 2006.

As we can see from Table 4, there are no many changes.

62 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 62LURaksti733-datorzin.indd 62 2008.03.31. 15:05:432008.03.31. 15:05:43

Table 3: Framework version evolution

Framework Spring 2006 Autumn 2007
Zend Framework Preview 0.1.3 1.0.2
CakePHP 1.0.1.2708 1.2.0
Symfony Project Beta 0.6.2 1.0.7
Seagull Framework 0.6.0RC2 0.6.2
WACT - Web Application
Toolkit

0.2 alpha 0.2alpha

Prado 3.0.0 RC2 3.1.0
PHP on Trax 0.13.0 0.14.0
ZooP Framework 1.1 1.3
eZ Components 1.0.1 1.3.1
CodeIgniter 1.3.2 1.5.4

Table 4: Changes in the use of design patterns in the period 2006-2007

Ze
nd

Fr

am
ew

or
k

C
ak

eP
H

P

Sy
m

fo
ny

 P
ro

je
ct

Pr
ad

o

PH
P

on
 T

R
A

X

Zo
oP

Fr

am
ew

or
k

eZ
 C

om
po

ne
nt

s

C
od

eI
gn

ite
r

Abstract Factory c
Application Controller c

Active Record cmd d
Adapter c
Builder mc d cm

Command ? ? ? ? ? ?
Data Mapper cm

Decorator c
Factory Method c
Front Controller cm

Iterator c
Model-View-Controller c

Observer cm
Proxy cm

Registry c
Server Stub c
Singleton c c c c

Specification ?
Strategy c
Visitor c

Andris Paikens, Guntis Arnicans. Use of Design Patterns in PHP-Based Web .. 63

LURaksti733-datorzin.indd 63LURaksti733-datorzin.indd 63 2008.03.31. 15:05:442008.03.31. 15:05:44

3.7 Conclusions on the Use of Design Patterns

For a more complete understanding, the two aforementioned results were joined
together to get an overall sense of the main trends in the use of design patterns in
frameworks (column “c+m+d”). It cannot be said that the result is dramatically
different, but the numbers are adjusted to a certain extent here.

The leading design patterns are MVC and Singleton, which are used in 9 of 10
frameworks. Next on the list is Application Controller, which is used 7 times.
Builder, Front Controller, Iterator, Observer, Registry, and State are following with
6 times. Adapter, Decorator, and Factory Method are used 5 times each.

The following design patterns were not used in any projects among the studied:
Abstract Factory, Custom Tag, Dependency Injection, Handle Body, Mock Object,
Mono State, Table Data Gateway and Transform View. Apparently the problems
which are resolved by these design patterns are not all that important for the
designers of frameworks.

The overall view regarding frameworks is quite similar to the previous ones, but
there are slightly higher number of design patterns that are used. Seagull Framework
remains the leader, sharing first position with Zend Framework.

The most accurate idea about the use of design patterns in Web application
frameworks is seen in the gray-shaded boxes of Table 2, as they indicate that the
design pattern is mentioned both in the documentation and in source code.

3.8 Additional Observations

During our basic research, we noticed a few other important issues that have to do
with the subject discussed here.

Our first observation is displayed in Table 2 – documentation and the actual
software code are often not in line with one another. This does not necessarily mean
that most frameworks are poorly documented, but the fact is that in most cases, there
is no unambiguous link between the documentation and the source code. What is
more, the design patterns that are used probably are cited in the documentation of
the developers, but they are not noted in the code. This may occur because the use of
a design pattern often involves development of several classes, each of which is well
commented. However, the source code does not mention the design pattern which all
of the classes have in common.

We already mentioned that documentation can be affected by a marketing trick –
the desire to present wishes as facts. It is also possible that the opposite is true –
developers do not want their competitors to learn about the most important elements
of their project, although they can be studied through the analysis of the source code.

What might it mean?
1. If the basic goal is to ensure understanding of an open source project by dividing

it up into logical segments in which design patterns are one of the instruments,
then the goal has not been achieved. Documentation and the source code are
incomplete and sometimes contradictory.

2. If the developers offer their own frameworks and ask others to trust them, then
they should also popularise more standard approaches, i.e., the use of design
patterns.

64 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 64LURaksti733-datorzin.indd 64 2008.03.31. 15:05:442008.03.31. 15:05:44

3. More precise use of design patterns would make it easier for new participants to
become involved in projects.
Neither should we forget about the psychology of software designers. It is hard to

place them in strict frameworks. Each software designer likes to reinvent the
bicycle. The use of design patterns is something of a manufacturing line, and the
creativity of the software designer can apply only to the details. Open source
projects are based on enthusiasm and freedom of participation, and it is quite
possible that the developers have greater knowledge about design patterns than is
seen in their projects. However, they want to design software without any limitations
on what they are doing.

It must also be remembered that large projects involving large or medium-sized
groups of developers will inevitably move away from the intended route sooner or
later. Over the course of time, people will forget agreements about standards related
to coding and preparation of commentary, production of test examples, and
procedures related to the submission of code. This creates a certain disorder as well
as problems with documentation. Only strict control can prevent this; it is most
possible if overall responsibility is taken by a small group of people such as Zend in
the case of the “Zend Framework.”

4 Conclusions

It may seem that the task of researching the use of design patterns in the design of
Web applications is simple, but as soon as the work begins, it becomes clear that the
situation is far more complicated than it has been expected. Some frameworks have
good homepages, which most framework developers have not really ensured. Hence,
finding information about projects can be very complicated or even impossible.
Most developers have taken the time to prepare sensible comments in relation to
their software codes, but sometimes it is quite hard to understand whether the
method has a name because a specific design pattern has been used, or the developer
has simply decided on what he or she considers to be the most appropriate name
without even thinking about the design pattern.

After collecting all the information, we found that MVC and Singleton are still the
leading design patterns. That is logical because the separation of data, business
logic, and visualisation are the basic ideas in designing complicated systems.

Other design patterns which are frequently used include Application Controller,
Builder, Front Controller, Iterator, Observer, Registry, and State. However, these
are not the only design patterns used, which reminds us once again how very diverse
the frameworks are – each uses a different set of design patterns which suggests that
developers have encountered various problems during the development process.

Further research could focus on drafting the design for a framework which uses
as many design patterns as possible, taking into account the experience in the use of
design patterns in the surveyed projects. This could show the strength of design
patterns in the way that most of the functionality could be described through known
design patterns while new design patterns could be developed for the rest.
Alternatively, researchers might find out that not everything can be described with
the help of design patterns.

Andris Paikens, Guntis Arnicans. Use of Design Patterns in PHP-Based Web .. 65

LURaksti733-datorzin.indd 65LURaksti733-datorzin.indd 65 2008.03.31. 15:05:452008.03.31. 15:05:45

Still other alternative might be the attempt to create and study a completely
functional open code project such as the E-store, which is based on a certain
framework. The analysis of such a project might allow researchers to identify the
real problems that can be resolved or hindered by the use of design patterns.

When we analysed the use of design patterns, we found it necessary to group all
design patterns into logical groups because it is hard to manage a large number of
design patterns which each is completely independent; therefore, it is also necessary
to indicate the links and interaction among various design patterns.

In conclusion, we must also say that the success of a project does not depend on
the use or omission of a design pattern. There are frameworks which use very few
design patterns while others use many of them. It can never be claimed that this fact
accounts for one framework being better or worse than other.

References

1. Jason E. Sweat. PHP | Architect’s Guide to PHP Design Patterns. Marco Tabini &
Associates, Inc., 2005

2. Dirk Riehle, Heinz Züllighoven. Understanding and Using Patterns in Software
Development. Theory and Practice of Object Systems 2, 1, 1996

3. Richard P. Gabriel. Patterns of Software: Tales from the Software Community. Oxford
Univ. Pr., April 1, 1996

4. Christopher Alexander. The Timeless Way of Building. Oxford University Press, 1979
5. Dennis Pallett. Taking a look at ten different PHP frameworks. [online] www.phpit.net

[referenced 13.10.2007]. Available online:
http://www.phpit.net/article/ten-different-php-frameworks

6. Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley
Professional, 2002

7. Design Patterns – Elements of Reusable Object-Oriented Software. Erich Gamma, Richard
Helm, Ralph Johnson, John Vissides, Addison Wesley Professional, March 1995

8. http://en.wikipedia.org/wiki/Framework [referenced 30.11.2007]
9. Tony Marston. Design patterns – a personal perspective. [online] [referenced 14.05.2006].

Available online: http://www.tonymarston.net/
10. Brad Appleton. Patterns and Software: Essential Concepts and Terminology.

[online] [referenced 15.05.2006]. Available online:
http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html

66 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 66LURaksti733-datorzin.indd 66 2008.03.31. 15:05:452008.03.31. 15:05:45

Appendix A: Design Patterns

The description of all design patterns mentioned in this table was taken from book [1].

Design pattern Description

Abstract Factory “Facilitates the building of families of related objects”

Application Controller “A central point for handling navigation for an
application, typically implemented in an index.php file
dispatching based on URL query parameters.”

Active Record “Creates an object that wraps a row from a database
table or view, provides database access one row at a
time, and encapsulates relevant business logic.”

Adapter “Allows classes to support a familiar interface so you
can use new classes without refactoring old code.”

Builder “Facilitates the initialization of complex object state.”

Command “Encapsulates a request as an object.”

Composite “Manages a collection of objects where each "part" can
stand in as a "whole". Typically organized in a tree
hierarchy. ”

Custom Tag “Improves presentation separation by encapsulating
components to appear as new HTML tags.”

Data Mapper „An object that acts as a translation layer between
domain objects and the database table that contains
related data.”

Decorator “Attaches responsibilities to an object dynamically. Can
simplify class hierarchies by replacing subclasses.”

Dependency Injection “Constructs classes to accept collaborators through the
constructor or setter methods, so that a framework can
assemble your objects.”

Domain Model “An object model of business logic that includes both
data and behavior.”

Factory Method “Facilitates the creation of objects.”

Andris Paikens, Guntis Arnicans. Use of Design Patterns in PHP-Based Web .. 67

LURaksti733-datorzin.indd 67LURaksti733-datorzin.indd 67 2008.03.31. 15:05:462008.03.31. 15:05:46

Front Controller “A controller that handles all requests for a web
application.”

Handle-Body “A collective name for design patterns that hold a
reference to a subject object (for example, Proxy,
Decorator, and Adapter).”

Iterator “Easily manipulates collections of objects.”

MockObject “Supplies a stub that validates whether certain methods
were or were not called during testing.”

Model-View-
Controller

“An application layering pattern that separates concerns
between your domain model, presentation logic and
application flow.

The Model-View-Controller (MVC) pattern organizes
and separates your software into three distinct roles:

• the Model encapsulates your application data,
application flow, and business logic;

• the View extracts data from the Model and formats it for
presentation;

• the Controller directs application flow and receives
input and translates it for the Model and View.”

Mono State “Allows all instances of an object to share the same
state.”

Observer “Registers objects for later callback. Event-based
notification. Publish/Subscribe.”

Proxy “Provides access to an object through a surrogate object
to allow for delayed instantiation or protection of subject
methods.”

Registry “Manages references to objects through a single, well-
known object.”

Server Stub “Simulates a portion of your application for testing
purposes.”

Singleton “Provides global access to a single instance of an
object.”

68 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 68LURaksti733-datorzin.indd 68 2008.03.31. 15:05:462008.03.31. 15:05:46

Specification “Flexible evaluation of objects against dynamic
criteria.”

State “Has an object change its behaviour depending on state
changes.”

Strategy “Allows for switching between a selection of algorithms
by creating objects with identical interfaces.”

Table Data Gateway “An object that acts as a gateway to a database table or
view, providing provide access to multiple rows.”

Template View “Renders a page by replacing embedded markers with
domain data.”

Template Method “Defines an algorithm with "hook" methods allowing
subclasses to change the behavior without changing the
structure.”

Transform View “Processes domain data sequentially to transform it to
some form of output.”

ValueObject “Handles objects whose equality is determined by the
value of the objects' attributes, not by the identity of the
objects.”

View Helper “A class that helps the View by collecting data from the
Model.”

Visitor “Defines an algorithm as an object that "visits" each
member of a aggregate performing an operation.”

Appendix B: PHP Frameworks

Descriptions of the frameworks are taken from their own homepages.

Zend Framework
Extending the art & spirit of PHP, Zend Framework is based on simplicity,

object-oriented best practices, corporate friendly licensing, and a rigorously tested
agile codebase. Zend Framework is focused on building more secure, reliable, and
modern Web 2.0 applications & web services, and consuming widely available APIs
from leading vendors like Google, Amazon, Yahoo!, Flickr, as well as API providers
and cataloguers like StrikeIron and ProgrammableWeb.

Expanding on these core themes, we have implemented Zend Framework to
embody extreme simplicity & productivity, the latest Web 2.0 features, simple

Andris Paikens, Guntis Arnicans. Use of Design Patterns in PHP-Based Web .. 69

LURaksti733-datorzin.indd 69LURaksti733-datorzin.indd 69 2008.03.31. 15:05:472008.03.31. 15:05:47

corporate-friendly licensing, and an agile well-tested code base that your enterprise
can depend upon.

http://framework.zend.com [referenced 03.11.2007]

CakePHP
Cake is a rapid development framework for PHP which uses commonly known

design patterns like ActiveRecord, Association Data Mapping, Front Controller and
MVC. Our primary goal is to provide a structured framework that enables PHP
users at all levels to rapidly develop robust web applications, without any loss to
flexibility.

http://www.cakephp.org/ [referenced 03.11.2007]

Symfony
Based on the best practices of web development, thoroughly tried on several

active websites, symfony aims to speed up the creation and maintenance of web
applications, and to replace the repetitive coding tasks by power, control and
pleasure.

http://www.symfony-project.org/ [referenced 03.11.2007]

Seagull
Seagull is a mature OOP framework for building web, command line and GUI

applications. Licensed under BSD, the project allows PHP developers to easily
integrate and manage code resources, and build complex applications quickly.

Many popular PHP applications are already seamlessly integrated within the
project, as are various templating engines, testing tools and managed library code.
If you're a beginner, the framework provides a number of sample applications that
can be customised and extended to suit your needs. If you're an intermediate or
advanced developer, take advantage of Seagull's best practices, standards and
modular codebase to build your applications in record time.

http://seagullproject.org/ [referenced 03.11.2007]

Wact
The Web Application Component Toolkit is a framework for creating web

applications. WACT facilitates a modular approach where individual, independent
or reusable components may be integrated into a larger web application. WACT
assists in implementing the Model View Controller pattern and the related Domain
Model, Template View, Front Controller and Application Controller patterns.

The WACT framework is developed with the philosophy of continuous refactoring
and Unit Testing. WACT encourages these activities in applications based on the
framework. WACT uses Simple Test as a unit testing framework.

http://www.phpwact.org/ [referenced 03.11.2007]

Prado
PRADO is a component-based and event-driven framework for rapid Web

programming in PHP 5. PRADO reconceptualizes Web application development in
terms of components, events and properties instead of procedures, URLs and query
parameters.

http://www.xisc.com/ [referenced 03.11.2007]

70 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 70LURaksti733-datorzin.indd 70 2008.03.31. 15:05:472008.03.31. 15:05:47

PHP On Trax
Php On Trax (formerly Php On Rails) is a web-application and persistance

framework that is based on Ruby on Rails and includes everything needed to create
database-backed web-applications according to the Model-View-Control pattern of
separation. This pattern splits the view (also called the presentation) into "dumb"
templates that are primarily responsible for inserting pre-build data in between
HTML tags. The model contains the "smart" domain objects (such as Account,
Product, Person, Post) that holds all the business logic and knows how to persist
themselves to a database. The controller handles the incoming requests (such as
Save New Account, Update Product, Show Post) by manipulating the model and
directing data to the view.

In Trax, the model is handled by what's called a object-relational mapping layer
entitled Active Record. This layer allows you to present the data from database rows
as objects and embellish these data objects with business logic methods.

http://www.phpontrax.com/ [referenced 03.11.2007]

ZOOP Framework
Zoop is an object oriented PHP framework. Zoop is modeled after the MVC

design pattern. It is a high performance, secure, and scalable framework for PHP. It
is designed to be very fast and efficient and very nice for the programmer to work
with. Zoop has been built in a modular way so it is both easily extensible, and light.
It has been in development and production use since 2001 and is quite mature.

http://zoopframework.com/ [referenced 03.11.2007]

eZ Components
eZ Components is an enterprise ready general purpose PHP components library

used independently or together for PHP application development.
http://ez.no/ezcomponents [referenced 03.11.2007]

CodeIgniter
CodeIgniter is a powerful PHP framework with a very small footprint, built for

PHP coders who need a simple and elegant toolkit to create full-featured web
applications. If you're a developer who lives in the real world of shared hosting
accounts and clients with deadlines, and if you're tired of ponderously large and
thoroughly undocumented frameworks.

http://www.codeigniter.com/ [referenced 03.11.2007]

Andris Paikens, Guntis Arnicans. Use of Design Patterns in PHP-Based Web .. 71

LURaksti733-datorzin.indd 71LURaksti733-datorzin.indd 71 2008.03.31. 15:05:482008.03.31. 15:05:48

LURaksti733-datorzin.indd 72LURaksti733-datorzin.indd 72 2008.03.31. 15:05:482008.03.31. 15:05:48

MDA AND MODEL
TRANSFORMATIONS

LURaksti733-datorzin.indd 73LURaksti733-datorzin.indd 73 2008.03.31. 15:05:482008.03.31. 15:05:48

LURaksti733-datorzin.indd 74LURaksti733-datorzin.indd 74 2008.03.31. 15:05:482008.03.31. 15:05:48

The Base Transformation Language L0+ and Its
Implementation

Sergejs Rikacovs

 University of Latvia, IMCS, 29 Rai�a blvd, R�ga, Latvia

sergejs.rikacovs@lumii.lv

Abstract. An efficient implementation of high level model transformation
languages is well known as a complex problem. It is believed that the most
appropriate way to implement transformation languages is bootstrapping.
However, bootstrapping is not possible without an efficient base language. In
this paper, a new low level model transformation language L0+ is proposed, for
which there exists an efficient implementation. This language can be used as a
base language in the bootstrapping process. L0+ does not have advanced pattern
definition facilities, but the expressive power of this language is comparable to
some more advanced languages. In spite of the fact that L0+ is quite a low level
language, it can also be used for the development of model transformations
directly. The presented paper is an extended version of the second chapter of
[1].

Keywords: model transformation language, compiler, bootstrapping.

1 Introduction

During the last few years a new approach to complex system building was developed
– MDA. Model transformations are considered to be one of the pillars of this
approach [2].

Model transformation languages are a comparatively new kind of languages. The
first standardization effort in this area was OMG MOF 2.0
Query/Views/Transformations (QVT) request for Proposal (RFP) [3]. In response to
this request, QVT specification was developed [4]. QVT defines the standard way of
defining transformations. According to this specification, source and target models
should correspond to the MOF metamodel. QVT consists of three sublanguages:

� Relations – a high level declarative language;
� Core – also a declarative language, but it is more verbose and does not

provide an implicit creation of trace instances, the semantics of the Relations
language is defined in terms of this language;

� Operational mappings – a language allowing either to define transformations
using a fully imperative approach (operational transformations), or to
complement relational transformations with imperative operations
implementing the relations (hybrid approach).

LATVIJAS UNIVERSITĀTES RAKSTI. 2008, 733. sēj.:
DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS 75.–102. lpp.

LURaksti733-datorzin.indd 75LURaksti733-datorzin.indd 75 2008.03.31. 15:05:482008.03.31. 15:05:48

There are several independent model transformation languages apart from QVT.
These languages can be divided into two groups: graphical and textual languages. It is
worth noting that QVT belongs to both groups, because of its dual forms: the
graphical and the textual one. While specifying transformations in a graphical form,
transformation developer has the opportunity to represent mappings between patterns
of source and target models in a direct and natural way. Graphical languages, such as
GReAT[5] or MOLA[6], define transformations as a set of transformation rules.
Every rule has a pattern part and an action part, in which the pattern specifies instance
sets to be processed according to transformations described in the rule action part.
The difference between various graphical transformation languages is in the
expressiveness of patterns and control flow structures. Typical representatives of
textual model transformation languages are [7, 8, 9]. Most of the textual model
transformation languages are declarative languages also having some kind of pattern
definition facilities. A recursion is usually used as the main control flow facility.

However, the research in the area of model transformations and effective
implementation of model transformation languages is still topical.

In this paper, a new low level model transformation language called L0+ is
proposed. This language has two important features:

� it is very simple, so being easy learnable by transformation developers;
� it has a very efficient implementation (principles of this implementation are

also described in this paper).
The main use case for this language is the implementation of higher level

languages (through the bootstrapping approach). The so called Lx language family is
implemented this way [10]. Despite the importance of the use case mentioned above,
several other use cases also exist. As an example (quite a significant one), the
Transformation Based Graphical Tool Building Platform [11] can be mentioned,
where L0+ is used as the main language for transformation development.

A more important feature of this language is that L0+ works not only with the
model as a significant part of model transformations do, but also with the metamodel
level (a notable example of a transformation language containing metamodel
processing facilities is Viatra [12]). More precisely, L0+ = L0 + MM, where L0 is
oriented towards model processing, and MM is oriented towards metamodel
processing.

2 The Base Transformation Language L0

2.1 Basic Ideas

The language L0 contains minimal but sufficient constructions for model
processing:

� creation/deletion of objects;
� getting/setting the value of an attribute of an object;
� creation/deletion of links;

76 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 76LURaksti733-datorzin.indd 76 2008.03.31. 15:05:492008.03.31. 15:05:49

� iteration through instances;
� low level control flow instructions;
� labels;
� unconditional control flow transfer operator;
� conditional control flow transfer operators.

2.2 Precise Definition of L0

To give a precise definition of L0 syntax and semantics, we should precisely fix the
allowed metamodeling constructs. OMG suggests using MOF 2.0 for such purposes
[13]. However, more simple approaches are usually used in practice. We will follow
this tradition and will use a subset of MOF 1.4[14] seen in Fig. 1. to define
metamodeling constructs to be allowed in metamodel definitions.

Attribute
name : String

Enumeration Literal
name : String

Data Type
name : String

self.isComposite impiles self.
Association.memberrEnd->first()=self

AssociationEnd
name : String
isOrdered : Boolean
isComposite : Boolean
lower : Integer
upper : UnlimitedNatural

Generalization

Class
name : String

Association

Primitive Type Enumeration

ownedLiteral
{ordered}

 *

specific
 0..1

1general
 *

 1

type 1
 1

 *
memberEnd
{ordered} 2

ownedAttribute
 *

opposite1 1

Fig. 1. Meta-metamodel

One can notice that packages are not present as an independent concept in this
metamodel. In L0+, packages are simulated through qualified names.

L0 transformation program contains the following elements:
� transformation header, i.e. transformation <transformationName>;
� global variable definition part;
� the “useMM” directive – a path to a metamodel definition file is given

through this directive. This file can contain following commands:
o class <className>;
 Defines a class with a given name.

Sergejs Rikacovs. The Base Transformation Language L0+ and Its Implementation 77

LURaksti733-datorzin.indd 77LURaksti733-datorzin.indd 77 2008.03.31. 15:05:492008.03.31. 15:05:49

o attr <className>.<attrName>:<ElementaryTypeName>;
 Defines an attribute with a given name and type.
o assoc <className>.{ordered}<card><roleName>/

 <roleName><card>{ordered}.<className>;
Defines an association with corresponding properties.

o compos <compositeClassName>.{ordered}<card><roleName>/
<roleName><card>{ordered}.<partClassName>;

 Defines a composition with corresponding properties.
o rel <subClassName>.subClassOf.<superClassName>;

Defines a generalization relationship between given classes.
o enum <enumName>:{ <enumLiteral1> , < enumLiteral2>};

Defines an enumeration with given elements.
� A “native” subprogram (function or procedure) declaration part (headers of

C++ functions used in the transformation). Like in every programming
language, there can be some tasks for which L0 is not quite suitable (for
instance, string processing, text parsing, etc.). To deal with these situations in
L0, there exists a possibility to call a C++ function. For example, there is a
String data type in L0, but the language per se does not define some such
useful operations as Length, CharAt, and Substring on this type. If needed,
transformation developers can easily implement these functions in C++ and
then access them from L0 by using the concept of “native” subprograms.

� An L0 subprogram definition part (it is expected that exactly one subprogram
of this part is labeled with the reserved word main thus defining the entry
point for the transformation). An L0 subprogram definition also consists of
several parts:

o the subprogram header;
o local variable definitions;
o the keyword begin;
o the subprogram body definition;
o the keyword end;

� a transformation footer, i.e. endTransformation;

An elementary unit of any L0 transformation program is a command (an

imperative statement). Before giving a detailed description of individual commands, it
should be noted that the name of the meta-model element (i.e. class name, role name,
attribute name, enumeration name, and enumeration literal name) can be specified in
two different ways:

� as a String literal; for example, addObj x : Person;
� as a String variable; for example, addObj x : (s); In this case, the name of a

meta-model element will be equal to the value of the corresponding String
variable at the command execution time.

L0 contains the following commands:

1. transformation <transformationName>; Starts the transformation definition.
2. endTransformation; Ends the transformation definition.
3. pointer <pointerName> : <className>; Defines a pointer to an object of the

class <className>.

78 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 78LURaksti733-datorzin.indd 78 2008.03.31. 15:05:502008.03.31. 15:05:50

3.1. pointer <pointerName> : Void ; Void pointer can point to objects of an
arbitrary class.

4. var <varName> : <ElementaryTypeName>; Defines a variable of elementary
data type – Boolean, Integer, Real or String.

5. procedure <procName>(<formalPrmList>); Formal parameter list consists of
formal parameter definitions separated by “,”. A parameter definition consists of
its name, the parameter type (the type can be an elementary type, a class from the
meta-model or the reserved word Void), and the passing method (parameters can
be passed by reference or by value). If the parameter is passed by reference, its
type name is preceded by the & character.

6. function <funcName>(<formalPrmList>):<returnTypeName>; Return type name
can be an elementary type name, class name or the reserved word Void.

7. begin; Starts subprogram definition.
8. end; Ends subprogram definition.
9. return; Returns execution control to the caller.
10. return <identifier>; Returns the value of <identifier> to the caller. The type of

<identifier> must coincide with the return type of the function. <identifier> is an
elementary variable name or a pointer name. Instead of <identifier>, the reserved
word null can be used. In this case function return type must be class or Void.

11. call <subProgName>(<actualPrmList>); Actual parameter list can be empty.
It consists of binary expressions (<binExpr>) separated by “,”. More about
<binExpr> can be found in the item 23.

12. first <pointerName> : <className> else <labelName>; Positions
<pointerName> to an arbitrary [the first object (ordering is implementation dependent)]
object of <className>. Typically, this command is used in combination with
next command to traverse all objects of the given class. If <className> has no
objects, <pointerName> becomes equal to null, and execution control is
transferred to <labelName>. <className> in this command must be the same as
or a subclass of the class used in the pointer definition. If it is a subclass, the
value set of the pointer is narrowed (for the following executions of next).
12.1. first <pointerName> : (<stringVarClassName>) else <labelName>;

13. first <pointerName>1: <className> from <pointerName>2 by <roleName> else
<labelName>; Positions <pointerName>1 to an arbitrary [the first (object ordering is
implementation dependent)] object, which is reachable from <pointerName>2 by a link
<roleName>. Typically, this command is used in combination with the next
command to traverse all objects connected to the given object by a link with the
specified type. If there are no such objects, <pointerName>1 becomes equal to
null, and execution control is transferred to <labelName>. It should be noted that
this command specifies (narrows) the value set of the pointer, which is taken into
account when performing the next execution and assignment. After the command
is executed, the value set of the pointer is narrowed to those objects, which are
reachable from <pointerName>2 by links with the given type (specified by
<roleName>).
13.1. first <pointerName>1 : (<stringVarClassName>) from <pointerName>2 by

(<stringVarRoleName>) else <labelName>;
14. next <pointerName> else <labelName>; Gets the next object satisfying

conditions formulated during the execution of “first” command and not visited

Sergejs Rikacovs. The Base Transformation Language L0+ and Its Implementation 79

LURaksti733-datorzin.indd 79LURaksti733-datorzin.indd 79 2008.03.31. 15:05:512008.03.31. 15:05:51

(iterated) with this variable yet. If there is no such object, <pointerName>
becomes null, and execution control is transferred to <labelName>.

15. goto <labelName>; Unconditionally transfers control to <labelName>.
<labelName> should be located in the current subprogram definition.

16. label <labelName>; Defines a label with the given name.
17. addObj <pointerName>:<className>; Creates a new object of the class

<className>.
17.1. addObj <pointerName>:(<stringVarClassName>);

18. addLink <pointerName>1.<roleName>.<pointerName>2; Creates a new link (of
type specified by <roleName>) between objects pointed to by <pointerName>1
and <pointerName>2 , respectively.
18.1. addLink <pointerName>.(<stringVarRoleName>).<pointerName>;

19. deleteObj <pointerName>; Deletes an object pointed to by <pointerName>.
20. deleteLink <pointerName>1.<roleName>.<pointerName>2; Deletes a link,

whose type is specified by <roleName>, between objects pointed to by
<pointerName>1 and <pointerName>2, respectively.
20.1. deleteLink <pointerName>1.(<stringVarRoleName>).<pointerName>2;

21. setPointer <pointerName>1=<pointerName>2; Sets <pointerName>1 to the
object pointed to by <pointerName>2. If the value set of <pointerName>1 does
not contain the object pointed to by <pointerName>2, then <pointerName>1 is set
to null. In place of <pointerName>2 null can be used. In this case
<pointerName>2 will not point to any object (it will point to null).

22. setPointerF <pointerName>=<funcName>(<actualPrmList>); Sets
<pointerName>1 to the object returned by <funcName>.

23. setVar <varName> = <binExpr>; <binExpr> is a binary expression consisting of
the following elements: elementary variables, subprogram parameters, literals,
attribute values (<pointerName>.<attrName>) and standard operators (+,-
,*,/,&&,||,!) of elementary types. Besides the traditional way (i.e.
<pointerName>.<attrName>) of getting/setting values of object attributes, there
is a special way to do it: <pointerName>.(<stringVarAttrName>). The result type
of this operation is String. For example, setVar <varName> =
<pointerName>.(<stringVarAttrName>). Here, the value of the attribute is stored
as a string in <varName>.

24. setVarF <identifier>=<funcName>(<actualPrmList>); This command can be
used to obtain the result value of the function of an elementary type. Identifier is
a name of a variable. Variable type must coincide with the return type of the
function.

25. setAttr <pointerName>.<attrName>=<binExpr>; Sets the value of the attribute
<attrName> of the object pointed to by <pointerName> to the value of
<binExpr>.
25.1. setAttr <pointerName>.(<stringVarAttrName>) = <stringExpr>;

26. type <pointerName> == <className> else <labelName>; If the type of the
object is identical to <className>, the control is transferred to the next
command, else the control is transferred to <labelName>. Instead of equality
symbol == inequality symbol != can be used. Inheritance is not taken into
account (i.e. this command works as oclIsTypeOf meaning the result of the
comparison will be true, if and only if types are identical).

80 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 80LURaksti733-datorzin.indd 80 2008.03.31. 15:05:522008.03.31. 15:05:52

26.1. type <pointerName> == (<stringVarClassName>) else <labelName>;
27. var <varName>==<binExpr> else <labelName>; If condition is not true, the

control is transferred to <labelName>. Instead of equality symbol, other (<, <=,
>, >=, !=) relational operators compatible with argument types can be used.

28. attr <pointerName>.<attrName> == <binExpr> else <labelName>; If condition
is not true, the control is transferred to <labelName>. Instead of equality symbol
other (<, <=, >, >=, !=) relational operators compatible with argument types can
be used.

29. link <pointerName>.<roleName>.<pointerName> else <labelName>; Checks
whether there is a link (which type is specified by <roleName>) between objects
pointed to by <pointerName>1 and <pointerName>2, respectively. If condition is
not true, the control is transferred to <labelName>.
29.1. link <pointerName>.(<stringVarRoleName>).<pointerName> else

<labelName>;
30. noLink <pointerName>.<roleName>.<pointerName> else <labelName>;

Checks whether there is no link (its type is specified by <roleName>) between
objects pointed to by <pointerName>1 and <pointerName>2, respectively. If
condition is not true, the control is transferred to <labelName>.
30.1. noLink <pointerName>.(<stringVarRoleName>).<pointerName> else

<labelName>;
31. pointer <pointerName>1==<pointerName>2 else <labelName>; Checks whether

objects pointed to by <pointerName>1 and <pointerName>2, respectively, are
identical. Instead of == inequality symbol != can be used. If condition is not true,
the control is transferred to <labelName>. Instead of <pointer2> null can be
used.

It is easy to see that the language L0 contains only the very basic facilities for
defining transformations. At the same time, it is obviously complete in the sense of
its functional capabilities. Namely, this is why L0 is called the base transformation
language.

2.2.1 Object-Oriented L0 constructs

L0 was designed as a low level language, and originally it was not supposed to be
used for direct development of transformations. However, experiments proved that it
is possible to use this language for direct development of transformations without
significant loss of development speed.

For example, L0 is used for development of transformations in the context of
Transformation Based Graphical Tool Building Platform. The total size of the source
code of transformations developed in this project exceeds 20000 lines of L0. It is clear
that it is becoming more and more difficult to ensure adequate modularization of code
base of such a size with the only modularization facility being the concept of sub
procedure.

Today the most popular code modularization method is OO. According to [15], OO
has several fundamental elements:

� Class
� Object

Sergejs Rikacovs. The Base Transformation Language L0+ and Its Implementation 81

LURaksti733-datorzin.indd 81LURaksti733-datorzin.indd 81 2008.03.31. 15:05:532008.03.31. 15:05:53

� Method
� Message passing
� Inheritance
� Encapsulation
� Abstraction
� Polymorphism

It is easy to see that when we are working with model transformation language we
have many of these constructs readily available through the metamodel definition or
because of the fact that we are working with models. However, several important
concepts are absent (most notably the concepts of method, message passing and
polymorphism).

To let L0 users take advantages of OO approach, L0 is supplemented with the
notion of method. It can be defined in the following ways:

� procedure <ClassName>::<methodName>(<formPrmList>);
� function <ClassName>::<methodName>(<formPrmList>):<ReturnType>;

To reference to the object, this method is called on from the body of the method,
reserved word this can be used.

As it can be seen, the only difference between the method declaration and the
ordinary function or procedure declaration is the fact that method declaration is linked
to a certain class.

In a similar way constructs for method calling are introduced:
� call <pointerName>.<methodName>(<actPrmList>);
� setVarF <varName> = <pointerName>.<methodName>(<actPrmList>);
� setPointerF <pointerName> =

<pointerName>.<methodName>(<actPrmList>);
Every method call is polymorphic – it depends on the actual type of the object this

particular method is called on. An example of using these new constructs can be
found in section 2.3.

It should be noted that there are transformation languages providing much more
advanced constructs. For example, in QVT Operational Mappings it is allowed to
define the so called mapping operation. That can be defined in the following way:

mapping <dirkind> <contexttype>::<mappingname>
(<parameters>,) : <result-parameters>
when {<exprs>}
where { <exprs>}
{
init { … }
population { … }
end { … }
}

A mapping operation is syntactically described by a signature, a guard (a when
clause), a mapping body and a post-condition (a where clause). The init section
contains a code to be executed before the instantiation of the declared outputs. The
population section contains a code for populating the result parameters, and the end

82 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 82LURaksti733-datorzin.indd 82 2008.03.31. 15:05:542008.03.31. 15:05:54

section contains an additional code to be executed before exiting from the operation.
In its simplest case (in case when and where clauses are not used), a QVT mapping
operation is almost equivalent to an L0 method.

2.3 Example of an L0 Transformation

Let us consider oriented graphs. Fig. 2. presents one possible metamodel for

oriented graphs.

Fig. 2. Metamodel for oriented graphs

According to this metamodel, a graph in Fig. 3. corresponds to the instance found
in Fig. 4..

Fig. 3. An example of an oriented graph

Fig. 4. Instances of the metamodel for oriented graphs

Several other metamodels (for example, the one found in Fig. 5.) are also possible
for oriented graphs.

Sergejs Rikacovs. The Base Transformation Language L0+ and Its Implementation 83

LURaksti733-datorzin.indd 83LURaksti733-datorzin.indd 83 2008.03.31. 15:05:552008.03.31. 15:05:55

Fig. 5. Another metamodel for oriented graphs

According to this metamodel, a graph found in Fig. 3. will correspond to the
instances found in Fig. 6..

Fig. 6. Instances of another metamodel for oriented graphs

As it can be seen from the examples, we get different instances (models) for one
and the same graph. At the same time it seems that these different models are quite
close to each other. A natural problem arises – how to define a transformation taking
a graph model corresponding to the metamodel A and producing a graph model
corresponding to the metamodel B. The basic idea is to create one BNode for every
ANode and to transform every AEdge to BEdge with corresponding Start and End.

To simplify this transformation we add a mapping association to the metamodel
between classes ANode and BNode.

84 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 84LURaksti733-datorzin.indd 84 2008.03.31. 15:05:552008.03.31. 15:05:55

AEdge

ANode BNode

Start End

BEdge

outgoing

startNode

 *

 1

incoming

endNode

 *

 1
connectedStart

node
 *

 1
connectedEnd

node
 *

 1

outgoing
 start
 1

 1
incoming

 end

 1

 1

mappedA
mappedB 1

 1

Fig. 7. Metamodel for oriented graphs with a mapping association

Transformation program in L0 implementing this algorithm can be found below.
transformation Graphs;
main procedure Graph2Graph();
 pointer a : ANode;
 pointer b : BNode;
 pointer aEd : AEdge;
 pointer bEd : BEdge;
 pointer edgeStart : Start;
 pointer edgeEnd : End;
 pointer aEdgeStNode : ANode;
 pointer aEdgeEnNode : ANode;
 pointer mapBNode : BNode;
begin;
//copy nodes;
 first a : ANode else aNodeProcessed;
label loo
 addObj

pANode;
 b : BNode;

 addLink a . mappedB . b;
 next a else aNodeProcessed;
 goto loopANode;
label aNodeProcessed;
//copy edges;
 first aEd : AEdge else aEdgesProcessed;
label loopAEdge;
 addObj bEd : BEdge;
 addObj edgeStart : Start;
 addObj edgeEnd : End;
 addLink bEd.start.edgeStart;
 addLink bEd.end.edgeEnd;
 //quit if not found;
 first aEdgeStNode : ANode from aEd by startNode
 else aEdgesProcessed;
 first mapBNode : BNode from aEdgeStNode by mappedB
 else aEdgesProcessed;

Sergejs Rikacovs. The Base Transformation Language L0+ and Its Implementation 85

LURaksti733-datorzin.indd 85LURaksti733-datorzin.indd 85 2008.03.31. 15:05:562008.03.31. 15:05:56

 addLink edgeStart.node.mapBNode;
 first aEdgeEnNode : ANode from aEd by endNode
 else aEdgesProcessed;

first mapBNode : BNode from aEdgeEnNode by mappedB
else aEdgesProcessed;

 addLink edgeEnd . node. mapBNode;
 next aEd else aEdgesProcessed;
 goto loopAEdge;
label aEdgesProcessed;
end;
endTransformation;

This transformation can be rewritten to use object-oriented L0 constructs:

transformation graphsOO;

procedure ANode::mapToBNode();
 pointer b : BNode;
begin;
 addObj b :
 addLink

 BNode;
 this . mappedB . b;

end;

procedure AEdge::mapToBEdge();
 pointer bEd : BEdge;
 pointer edgeStart : Start;
 pointer edgeEnd : End;

 pointer aEdgeStNode : ANode;
 pointer aEdgeEnNode : ANode;
 pointer mapBNode : BNode;
begin;
 addObj bEd : BEdge;
 addObj edgeStart : Start;
 addObj edgeEnd : End;
 addLink bEd.start.edgeStart;
 addLink bEd.end.edgeEnd;

 first aEdgeStNode : ANode from this by startNode
 else quit;
 first mapBNode : BNode from aEdgeStNode by mappedB
 else quit;
 addLink edgeStart.node.mapBNode;
 first aEdgeEnNode : ANode from this by endNode
 else quit;
 first mapBNode : BNode from aEdgeEnNode by mappedB

86 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 86LURaksti733-datorzin.indd 86 2008.03.31. 15:05:572008.03.31. 15:05:57

 else quit;
 addLink edgeEnd . node. mapBNode;

 label quit;
end;

//main pr
procedure

ocedure Graph2Graph_OO();
 Graph2Graph_OO();

 pointer a : ANode;
 pointer aEd : AEdge;
begin;

//cop
first

y nodes;
 a : ANode else aNodeProcessed;

label loopANode;

 call a.mapToBNode();

 next a else aNodeProcessed;
 goto loopANode;
label aNodeProcessed;

//cop
first

y edges;
 aEd : AEdge else aEdgesProcessed;

label loopAEdge;

 call aEd.mapToBEdge();

 next aEd else aEdgesProcessed;
 goto loopAEdge;
label aEdgesProcessed;

end;
endTransformation;

It is obvious that the body of the procedure “Graph2Graph_OO” is now more

readable (and thus maintainable) than that of “Graph2Graph”.

2.4 L0 and Higher Level Model Transformation Languages

One of the main features of model transformation languages is pattern definition
facilities. In transformation languages, the pattern is used to select a set of objects
satisfying some known constraints (there are several kinds of constraints: type
constraints, attribute value constraints, and structure constraints). L0+ does not
provide pattern definition facilities. It is an intentional decision, because, on the one
hand, an efficient implementation of patterns is one of the main challenges in the

Sergejs Rikacovs. The Base Transformation Language L0+ and Its Implementation 87

LURaksti733-datorzin.indd 87LURaksti733-datorzin.indd 87 2008.03.31. 15:05:572008.03.31. 15:05:57

implementation of transformation languages [16], and ,on the other hand, pattern
match can be relatively easily specified with the help of L0 imperative constructs.

Fig. 8. Example of MOLA pattern

For instance, an example of MOLA foreach loop containing a pattern can be seen
in Fig. 8.. Semantically this means to iterate through all the instances of the class
Person that satisfy the given attribute constraint (the value of the attribute “age” must
be greater than 20). Despite the fact that L0 does not have explicit pattern definition
facilities, the abovementioned MOLA pattern can be relatively easily specified in L0:

first p : Person else done;
 label loop_Person;
 var p.age > 20 else try_next_inst;
 //...;
 //process matched instance;
 //...;
 label try_next_inst;
 next p else done;
 goto loop_Person;
label done;

In more general terms, automatic pattern matching is a process that can be reduced

to iteration through instances and checking a list of elementary conditions. These
conditions are quite trivial – for example, check if the value of some attribute of the
given object is equal to the corresponding value in the pattern specification. Another
example – check whether or not there is a link with the given type between two
objects. Consequently, if a language allows iterating through instances and there are
conditional control flow operators, and it is possible to conduct abovementioned
checks, it is possible to select a set of objects that satisfies the given constraints in this
language. That allows us to assert that our language will be as powerful as a typical
transformation language, but certainly transformation specification will be more
verbose in this case.

88 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 88LURaksti733-datorzin.indd 88 2008.03.31. 15:05:572008.03.31. 15:05:57

3 An Extension of the Base Transformation Language L0 –
Metamodel Processing Constructs
There are use cases for model transformation languages where an access not only to a
model level, but also to a metamodel level is necessary. A substantial part of the
existing transformation languages does not allow to process entities found at the
metamodel level. To overcome this drawback, in the case of L0 we supplement it with
constructs for metamodel processing, thus obtaining the language L0+.

3.1 Choosing Metamodel Processing Constructs

To allow transformation developer to process metamodels, we provide constructs to
work with concepts defined in the metamodel found in figure 1. These are:

� classes
� attributes
� generalizations hierarchies
� associations
� enumerations and enumeration literals

Language users should have the possibility to create new, delete the existing and
iterate through the existing elements of the metamodel. To satisfy these requirements,
new commands for processing metamodel elements are introduced. These elements
are identified by their names or by combinations of names.

The first activity a metamodel processing usually starts from, is the creation of the
metamodel. While constructing the metamodel, the user can create classes, attributes
of these classes, and associations (including composition) between classes. It is
possible to create generalization hierarchies as well. In a similar way users can delete
classes, attributes, associations, and generalization hierarchies. Precise syntax for
these commands can be found in section 3.2.1.

The next group of commands deals with metamodel element scanning. Taking into
account the fact that metamodel elements are identified by their names or by
combinations of names, iterating through the elements of the metamodel actually
means to iterate through the names of these elements. For example, to traverse classes
of the metamodel, the commands firstClass and nextClass can be used. The
semantics of these commands is close to the semantics of the ordinary first and next
commands (again, precise syntax can be found in section 3.2.2.). Analogous
commands are introduced for scanning each kind of metamodel elements:

� associations starting from the given class
� direct associations starting from the given class
� attributes of the given class
� subclasses of the given class
� enumerations
� enumeration elements

With the word “direct” we understand associations and attributes that are defined
in the given class and not in superclasses of this class.

Sergejs Rikacovs. The Base Transformation Language L0+ and Its Implementation 89

LURaksti733-datorzin.indd 89LURaksti733-datorzin.indd 89 2008.03.31. 15:05:582008.03.31. 15:05:58

Using the abovementioned L0+ constructs, it is possible to dynamically explore
and modify an arbitrary (potentially unknown at the compile time) metamodel. Now
let us get back to the model level.

When working with a model which corresponds to a metamodel, we are not limited
with only those metamodel elements that are known at the compile time. Since we
have the possibility to explore an arbitrary metamodel, we need to have a way both to
reference the name of an arbitrary element of this metamodel, and to reference objects
of an arbitrary class (this can be done with the help of a Void pointer). With such a
possibility it is sufficient to be able to process arbitrary models of an arbitrary
metamodel.

For example, with the abovementioned L0+ constructs it is possible to create a new
class at runtime and populate it with instances.

var currClassName : String;
pointer x : Void;
//...;
addClass (currClassName);
addObj x : (currClassName);
//...;

The situation with attributes is special in some way, because problems with

expression compilation can arise in case the attribute type is not known. One can
notice that the type of a dynamically created attribute is unknown only at the compile
time, but is known to the programmer creating this program. That is why the values of
dynamically created attributes can be manipulated only as strings. To get the value of
an attribute of a previously unknown type, a special form (in which the name of the
attribute is specified as a String variable) of the command getting the attribute value
should be used. For instance, setVar attrValStr = x.(attrNameStr); Here, x is a pointer
name and attrNameStr is a String variable containing the name of the attribute.
attrValStr is a String variable as well. After execution of this command, the value of
attrValStr will be equal to the value of the corresponding attribute of the object
encoded as a string. If attrNameStr value is equal to “weight” and x points to an
object for which the value of an Integer attribute named “weight” is equal to 10, then
attrValStr will be equal to a String value “10”.

It should be noted that for Void pointers it is the only way to receive the value of
an attribute. To simplify conversions between different representation forms of
values, special built-in functions are introduced:

� IsInt (str : String) : Boolean;
� IsReal (str : String) : Boolean;
� IsBool (str : String) : Boolean;
� StrToInt (str : String) : Integer;
� StrToBool (str : String) : Bool;
� StrToReal (str : String) : Real;
� IntToStr (i : Integer) : String;
� BoolToStr (b : Bool) : String;
� RealToStr (r : Real) : String;

90 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 90LURaksti733-datorzin.indd 90 2008.03.31. 15:05:592008.03.31. 15:05:59

3.2 The Definition of Metamodel Processing Commands

Before giving a precise definition of L0+ commands, it should be stressed that the
names of metamodel elements can be specified in two ways (a similar situation was
with the names of metamodel elements in the case of L0):

� as literals, for instance, addClass Person;.
� as String variables, for instance, addObj x : (s); In this case the name of the

metamodel element will be equal to the value of the corresponding String
variable.

3.2.1 Metamodel Building Commands

This part of language definition describes commands for dynamic meta-model
building.

1. addClass <clName>;
Dynamically creates a class with a specified name. If a class with specified name
already exists, a warning message is issued.

1.1. addClass (<strVarClName>);

2. addAttr <clName>.<attrName>:<ElementaryTypeName>;
Dynamically creates an attribute belonging to the specified class with a specified
name and type. If an attribute with specified properties already exists, a warning
message is issued.

2.1. addAttr (<strVarClName>).(<strVarAttrName>):
 (<strVarElemTypeName>);

3. addAssoc <clName>.{ordered}<card><roleName>/
 <roleName><card>{ordered}.<clName>;
Dynamically creates an association with specified properties. If an association
with specified properties already exists, a warning message is issued.

3.1. addAssoc (<strVarClName>).{ordered}<card>(<strVarRoleName>)/
 (<strVarRoleName>)<card>{ordered}.(<strVarClName>);

4. addCompos <compositeClName>.{ordered}<card><roleName>/
 <roleName><card>{ordered}.<partClName>;
Dynamically creates a composition with specified properties. If a composition
with specified properties already exists, a warning message is issued.

4.1. addCompos (<strVarClName>).{ordered}<card>(<strVarRoleName>)/
 (<strVarRoleName>)<card>{ordered}.(<strVarClName>);

Sergejs Rikacovs. The Base Transformation Language L0+ and Its Implementation 91

LURaksti733-datorzin.indd 91LURaksti733-datorzin.indd 91 2008.03.31. 15:06:002008.03.31. 15:06:00

5. addRel <subClName>.subClassOf.<superClName>;
Dynamically creates a generalization relation between the specified classes. If a
generalization relation between these classes already exists, a warning message is
issued.

5.1. addRel (<strVarSubClName>).subClassOf. (<strVarSuperClName>);

6. deleteClass <clName>;
Deletes a class with a specified name.

6.1. deleteClass (<strVarClName>);

7. deleteAttr <clName>.<attrName>;
Deletes an attribute with the given properties.

7.1. deleteAttr (<strVarClName>).(<strVarAttrName>);

8. deleteAssoc <clName>.<roleName>.<clName>;
Deletes an association with a given role name between the given classes.

8.1. deleteAssoc (<strVarClName>).(<strVarRoleName>).(<strVarClName>);

9. deleteRel <subClName>.subClassOf.<superClName>;
Deletes a generalization relation between the specified classes.

9.1. deleteRel (<strVarSubClName>).subClassOf. (<strVarSuperClName>);

10. addEnum <enumName>:{ <enumElem1>, <enumElem2>, … };
Dynamically creates an enumeration with a specified name and specified
enumeration literals.

10.1. addEnum (<strVarEnumName>):{<enumElemName>,
(strVarEnumElemName),…};

11. deleteEnum <enumName>;
Deletes an enumeration with a specified name.

11.1. deleteEnum (<strVarEnumName >);

12. addEnumElem <enumElemName> to <enumName>;
Adds an enumeration literal to an enumeration.

12.1. addEnumElem (<strVarEnumElemNameIn>) to (<strVarEnumNameIn>);

13. deleteEnumElem <enumElemName> from <enumName>;
Removes an enumeration literal form an enumeration.

92 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 92LURaksti733-datorzin.indd 92 2008.03.31. 15:06:002008.03.31. 15:06:00

13.1. deleteEnumElem (<strVarEnumElemNameIn>) from
(<strVarEnumNameIn>);

3.2.2 Meta-Model Element Scanning Commands

This part of language definition describes commands for scanning meta-model
elements.

1. firstClass <strVarClNameOut> else <labName>;

Stores the name of the first class (ordering is implementation dependent) in the
<strVarClNameOut>. If there are no classes, then <strVarClNameOut> value is
not changed and execution control is transferred to <labName>. Typically, this
command is used in combination with the nextClass command to iterate through
all class names.

2. nextClass <strVarClNameOut> else <labName>;

Stores the name of the next class which has not yet been visited (iterated) in
<strVarClNameOut>. If there is no such class, <strVarClNameOut> value is not
changed, and execution control is transferred to <labName>.

3. firstAssoc <clName>.<strVarRoleNameOut>/

 <strVarInvRoleNameOut>.<strVarClNameOut> else <labName>;
Stores the role name, inverse role name, and target class name of the first
association (ordering is implementation dependent) starting from <clName> in
<strVarRoleNameOut>, <strVarInvRoleNameOut> and <strVarClNameOut>,
respectively. If there are no associations starting from <clName>, then
<strVarRoleNameOut>, <strVarInvRoleNameOut> and <strVarClNameOut>
values are not changed and execution control is transferred to <labName>.
Typically, this command is used in combination with the nextAssoc command to
iterate through all associations starting from the given class (or from ancestors of
this class).
3.1. firstAssoc (<strVarClNameIn>).<strVarRoleNameOut>/

 <strVarInvRoleNameOut>.<strVarClNameOut> else <labName>;

4. firstAssocDirect <clName>.<strVarRoleNameOut>/

 <strVarInvRoleNameOut>.<strVarClNameOut> else <labName>;
This command is similar to the previous one, the difference is that it takes into
account only those associations which are defined exactly for this class and
ignores associations which are defined in ancestor classes.
4.1. firstAssocDirect (<strVarClNameIn>).<strVarRoleNameOut>/

 <strVarInvRoleNameOut>.<strVarClNameOut> else <labName>;

5. nextAssoc <clName>.<strVarRoleNameOut>/
 <strVarInvRoleNameOut>.<strVarClNameOut> else <labName>;
Stores the role name, inverse role name, and target class name of the next
association starting from <clName>, which has not yet been visited (iterated), in

Sergejs Rikacovs. The Base Transformation Language L0+ and Its Implementation 93

LURaksti733-datorzin.indd 93LURaksti733-datorzin.indd 93 2008.03.31. 15:06:002008.03.31. 15:06:00

<strVarRoleNameOut>, <strVarInvRoleNameOut> and <strVarClNameOut>,
respectively. If there are no such associations, <strVarRoleNameOut>,
<strVarInvRoleNameOut>, <strVarClNameOut> values are not changed, and
execution control is transferred to <labName>.
5.1. nextAssoc (<strVarClNameIn>).<strVarRoleNameOut>/

 <strVarInvRoleNameOut>.<strVarClNameOut> else <labName>;

6. nextAssocDirect <clName>.<strVarRoleNameOut>/
 <strVarInvRoleNameOut>.<strVarClNameOut> else <labName>;
Similar to the previous one, but associations from ancestors are ignored.
6.1. nextAssocDirect (<strVarClNameIn>).<strVarRoleNameOut>/

 <strVarInvRoleNameOut>.<strVarClNameOut> else <labName>;

7. firstAttr <clName>.<strVarAttrNameOut>.<strVarAttrTypeNameOut >
 else <labName>;
Stores the name and type name of the first attribute (ordering is implementation
dependent) of <clName> in <strVarAttrNameOut>, <strVarAttrTypeNameOut >,
respectively. If <clName> has no attributes, then <strVarAttrNameOut>,
<strVarAttrTypeNameOut > values are not changed and execution control is
transferred to <labName>. Typically, this command is used in combination with
the nextAttr command to iterate through all attributes of the given class
(including ancestor attributes).
7.1. firstAttr

(<strVarClNameIn>).<strVarAttrNameOut>.<strVarAttrTypeNameOut>
else <labName>;

8. firstAttrDirect <clName>.<strVarAttrNameOut>.<strVarAttrTypeNameOut >

else <labName>;
This command is similar to the previous one, the difference is that it takes into
account only those attributes which are defined exactly in this class and ignores
attributes which are defined in ancestor classes.
8.1. firstAttrDirect

(<strVarClNameIn>).<strVarAttrNameOut>.<strVarAttrTypeNameOut>
else <labName>;

9. nextAttr <clName>.<strVarAttrNameOut>.<strVarAttrTypeNameOut >

 else <labName>;
Stores the name and type name of the next attribute of <clName>, which has not
yet been visited (iterated), in <strVarClNameOut> and
<strVarAttrTypeNameOut>, respectively. If there are no such attributes,
<strVarClNameOut> and <strVarAttrTypeNameOut > values are not changed
and execution control is transferred to <labName>.
9.1. nextAttr

(<strVarClNameIn>).<strVarAttrNameOut>.<strVarAttrTypeNameOut>
else <labName>;

94 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 94LURaksti733-datorzin.indd 94 2008.03.31. 15:06:012008.03.31. 15:06:01

10. nextAttrDirect <clName>.<strVarAttrNameOut>.<strVarAttrTypeNameOut>
 else <labName>;
Similar to the previous one, the difference is that it takes into account only those
attributes which are defined exactly in this class and ignores attributes which are
defined in ancestor classes.
10.1. nextAttrDirect

(<strVarClNameIn>).<strVarAttrNameOut>.<strVarAttrTypeNameOut>
else <labName>;

11. firstSubClass <superClName>.<strVarSubClNameOut> else <labName>;

Stores the name of the first subclass (ordering is implementation dependent) in
<strVarSubClNameOut>. If there are no subclasses, then
<strVarSubClNameOut> value is not changed and execution control is
transferred to <labName>. Typically, this command is used in combination with
the nextSubClass command to iterate through all subclasses.
11.1. firstSubClass (<strVarSuperClNameIn>).<strVarSubClNameOut> else

<labName>;

12. nextSubClass <superClName>.<strVarSubClNameOut> else <labName>;
Stores the name of the next subclass of <superClName>, which has not yet been
visited (iterated), in <strVarSubClNameOut>. If there are no such classes,
<strVarSubClNameOut> value is not changed, and execution control is
transferred to <labName>.
12.1. nextSubClass (<strVarSuperClNameIn>).<strVarSubClNameOut> else

<labName>;

13. firstEnum <strVarEnumNameOut> else <labName>;
Stores the name of the first enumeration (ordering is implementation dependent)
in <strVarEnumNameOut>. If there are no enumerations, then
<strVarEnumNameOut> value is not changed and execution control is transferred
to <labName>. Typically, this command is used in combination with the
nextEnum command to iterate through all enumeration names.

14. nextEnum <strVarEnumNameOut> else <labName>;

Stores the name of the next enumeration which has not yet been visited (iterated)
in <strVarEnumNameOut>. If there are no such enumerations,
<strVarEnumNameOut> value is not changed and execution control is transferred
to <labName>.

15. firstEnumElem <enumName>.<strVarEnumElemNameOut> else <labName>;

Stores the name of the first <enumName> enumeration literal (ordering is
implementation dependent) in the <strVarEnumElemNameOut>. If there are no
enumeration literals in <enumName>, then <strVarEnumElemNameOut> value
is not changed and execution control is transferred to <labName>. Typically, this
command is used in combination with the nextEnumElem command to iterate
through all given enumeration literals.

Sergejs Rikacovs. The Base Transformation Language L0+ and Its Implementation 95

LURaksti733-datorzin.indd 95LURaksti733-datorzin.indd 95 2008.03.31. 15:06:012008.03.31. 15:06:01

15.1. firstEnumElem (<strVarEnumNameIn>).<strVarEnumElemNameOut>
else <labName>;

16. nextEnumElem <enumName>.<strVarEnumElemNameOut> else <labName>;

Stores the name of the next <enumName> enumeration literal, which has not yet
been visited (iterated) in <strVarEnumElemNameOut>. If there are no such
enumeration literals, <strVarEnumNameOut> value is not changed and execution
control is transferred to <labName>.
16.1. nextEnumElem (<strVarEnumNameIn>).(<strVarEnumElemNameOut>)

else <labName>;

17. existsClass <className> else <labName>;
If a class with a specified name exists, execution control is transferred to the next
command, otherwise execution control is passed to <labName>.
17.1. existsClass (<strVarClassNameIn>) else <labName>;

18. existsEnum <enumName> else <label>;

If an enumeration with a specified name exists, execution control is transferred to
the next command, otherwise execution control is passed to <labName>.
18.1. existsEnum (<strVarEnumNameIn>) else <labName>;

19. existsEnumElem <enumName>.<enumElemName> else <label>;

If an enumeration with a specified name has an enumeration literal with a
specified name, execution control is transferred to the next command, otherwise
execution control is passed to <labName>.
19.1. existsEnumElem (<strVarEnumNameIn>).(<strVarEnumElemNameIn>)

 else <labName>;

20. existsAttr <clName>.<attrName>.<typeName> else <labName>;
If an attribute with specified properties exists, execution control is transferred to
the next command, otherwise execution control is transferred to <labName>.
20.1. existsAttr

(<strVarClNameIn>).(<strVarAttrNameIn>).(<strVarAttrTypeNameIn>)
else <labName>;

21. existsAssoc <clName>.<roleName>.<clName> else <label>;

If an association with specified properties exists, execution control is transferred
to the next command, otherwise execution control is transferred to <labName>.
21.1. existsAssoc

(<strVarClNameIn>).(<strVarRoleNameIn>).(<strVarClNameIn>) else
<labName>;

22. existsCompos <clName>.<roleName>.<clName> else <label>;

If a composition with specified properties exists, execution control is transferred
to the next command, otherwise execution control is transferred to <labName>.

96 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 96LURaksti733-datorzin.indd 96 2008.03.31. 15:06:022008.03.31. 15:06:02

22.1. existsCompos
(<strVarClNameIn>).(<strVarRoleNameIn>).(<strVarClNameIn>)
 else <labName>;

23. existsRel <subClName>.subClassOf.<superClName> else <label>;

If there is a generalization relationship between specified classes,execution
control is transferred to the next command, otherwise execution control is
transferred to <labName>.
23.1. existsRel (<strVarSubClNameIn>).subClassOf. (<strVarSuperClNameIn>)

else <labName>;

4 Implementation of L0+

4.1 Selection of the Runtime Environment

The implementation of a transformation language starts from the selection of a
runtime environment. The selection of the run-time environment is not limited to the
selection of a target language, because we have to provide a way of storing and
accessing persistent data (metamodel and its instances) while implementing a model
transformation language.

Quite natural choices in this situation are in-memory metamodel-based data stores
(repositories) [17, 18, 19].

For the implementation of L0 and L0+, the in-memory data store developed at the
IMCS was selected [19]. This repository proved to be reasonably efficient. For
instance, in [19] it is shown, that this data store is at least as efficient in typical
instance selection tasks as one of the most popular open-source RDF data stores
Sesame [20].

The API of the chosen repository is implemented as a library of C++ functions.
This library provides the following possibilities:

� a set of functions for creation and deletion of metamodel elements, as well as
iteration through them;

� model processing functions that can be divided into two subcategories:
o functions for creation and deletion of instances (objects and links) and

functions for getting/setting the value of an attribute, for example:
long CreateObject(long ObjectTypeId);
int DeleteObjectHard(long ObjectId);
int CreateLink(long LinkTypeId, long ObjectId1, long ObjectId2);
int DeleteLink(long LinkTypeId, long ObjectId1, long ObjectId2);

o efficient searching functions (these functions are based on
sophisticated indexing mechanisms):

int GetObjectNum(long ObjectTypeId);
long GetObjectIdByIndex(long ObjectTypeId, int Index);
int GetLinkedObjectNum(long ObjectId, long LinkTypeId);

Sergejs Rikacovs. The Base Transformation Language L0+ and Its Implementation 97

LURaksti733-datorzin.indd 97LURaksti733-datorzin.indd 97 2008.03.31. 15:06:032008.03.31. 15:06:03

long GetLinkedObjectIdByIndex(long ObjectId, long LinkTypeId,
int Index);

The main advantage of the use of this repository is that there are close counterparts
for a substantial part of L0 and L0+ commands in the repository API. It means that it
will be quite easy to implement these commands, and there will be no substantial
difference (at least in the aspect of efficiency) between a hand-written and a compiler-
generated code.

Taking into account the fact that the selected repository provides a C++ API, C++
was chosen as a target language for L0 and L0+ compilation. Since effective C++
compilers are known, it is possible to generate a C++ code without thinking of its
extensive optimization, because all optimizations of the C++ code will be done by the
C++ compiler. Thus we can omit final phases of traditional compilers i.e.
intermediate code generation and optimization.

4.2 Compilation Schema

L0 and L0+ compilation process consists of four phases:
� Preprocessing phase, when compiler directives (for example, “useMM”) are

analyzed;
� Lexical analysis phase, when transformation program is divided into lexemes;
� Syntactical analysis phase, when the list of lexemes of the program is divided

into groups of lexemes corresponding to definite commands;
� Code generation phase, when C++ code is generated from a group of lexemes,

corresponding to a definite command.
L0 and L0+ languages do not contain recursive constructs. Moreover, the start and

the end of every command are easily identifiable. Because of these two facts,
syntactical and lexical analysis is quite simple and will not be described further.

C++ code generation seems to be more interesting. Let us start with some general
principles. Firstly we have to understand how to compile general constructs:
subprograms (with corresponding parameters passing mechanisms), control flow
commands, elementary variables and pointers to class instances. It is not difficult to
spot similarities between C++ functions and L0 subprograms, C++ elementary
variables and L0 elementary variables, C++ control flow possibilities, and L0 control
flow possibilities.

However, the situation with L0 pointers (references to class instances) is somewhat
more special, because in C++ there is no direct way of simulating them. To represent
L0 pointers in C++ program, we define a C++ class L0_Var_2 with operations
corresponding to L0 commands. This class has the following operations:

� bool moveNext();
� bool isNull();
� bool setFirstToRoot(const string & className),;
� bool setFirstFrom(const L0_Var_2 & rhs , const string & assocName);
� bool setStringAttributeValue(const string & attrName, const string &

newValue);
etc.

98 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 98LURaksti733-datorzin.indd 98 2008.03.31. 15:06:042008.03.31. 15:06:04

The implementation of the class L0_Var_2 is based on model processing functions
from the Repository API.

Now, when it is clear how individual constructs are compiled, an overall
compilation schema can be given:

� Every L0 subprogram is compiled to a corresponding C++ function;
� Every elementary L0 variable is compiled to a corresponding C++ variable;
� Every L0 pointer is compiled to an object of the C++ class L0_Var_2;
� Every L0 command call on a given L0 pointer is compiled to a corresponding

C++ method call on a C++ object.
The situation with L0+ commands is similar. Every L0+ command is mapped to a

C++ function that relies on the metamodel processing functions from the Respository
API.

4.3 Elementary Tracing Facilities

If a program flow is specified with conditional and unconditional control flow transfer
operators (i.e. structured programming constructs are not used), then it becomes rather
difficult to trace program execution flow (as a consequence, it is difficult to debug
these programs). L0 does not provide structured programming constructs. That is why
typical errors in L0 programs are related to incorrectly specified control flows. To
simplify L0 transformation debugging, L0 compiler can generate code in debugging
mode. When a program generated in this mode runs, it logs execution path and other
significant information. For example, the following program finds the least of three
numbers.

transformation traceDemo;

DEBUG_ON;
main procedure p();
 var i1 : Integer;
 var i2 : Integer;
 var i3 : Integer;
 var min: Integer;
begin;
 setVar i1 = 10;
 setVar i2 = 8;
 setVar i3 = 6;

 var i1 < i2 else i2LessThani1;
 var i1 < i3 else i3LessThani1;
 setVar min = i1;
 return;

 label i3LessThani1;

 setVar min = i3;

Sergejs Rikacovs. The Base Transformation Language L0+ and Its Implementation 99

LURaksti733-datorzin.indd 99LURaksti733-datorzin.indd 99 2008.03.31. 15:06:042008.03.31. 15:06:04

 return;

 label i2LessThani1;

 var i2 < i3 else i3LessThani2;
 setVar min = i2;
 return;

 label i3LessThani2;

 setVar min = i3;
 return;
end;

endTransformation;

When running this program in debug mode, it will produce the following output:
 12 : procedure p

 18 : setVar i1 = 10
 i1 = 10
 19 : setVar i2 = 8
 i2 = 8
 20 : setVar i3 = 6
 i3 = 6
 22 : var i1 < i2 else i2LessThani1
 32 : label i2LessThani1
 34 : var i2 < i3 else i3LessThani2
 38 : label i3LessThani2
 40 : setVar min = i3
 min = 6
 41 : return
 Return from p

To implement this functionality, generated C++ code is appended with some code

fragments logging activities of the program.
For example, when L0 compiler receives a command “setVar i1 = 10;”, it

emits the following C++ code: “elemVar___p_i1_ = 10;”. But if L0 compiler
is generating debug code, it will emit substantially different code for the same L0
command:

„
Logger::inst().wrtLineNum(17);
 Logger::inst().wrtLine("setVar i1 = 10");
elemVar___p_i1_ = 10 ;
Logger::inst().wrtPref(); Logger::inst().wrt("i1 =
");

100 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 100LURaksti733-datorzin.indd 100 2008.03.31. 15:06:052008.03.31. 15:06:05

Logger::inst().wrtInt(elemVar___p_i1_);
Logger::inst().newLine();
”.

5 Conclusions

This paper was devoted to the problems of effective implementation of model
transformation languages. It was stated that direct implementation of high level
transformation languages is a difficult and costly process that does not guarantee
effectiveness of the obtained implementation. It is believed that a more optimal way
to implement high level model transformation language is to use bootstrapping.
Bootstrapping in its turn is not possible without an effective base language.

One of the main results of this paper is the definition of a new low level model
transformation language L0+, that can be used as a base language in bootstrapping
process. L0 is called a base language, because:

� it contains minimal, but sufficient model transformation constructs;
� an effective implementation for this language does exist.

One more reason justifying L0+ usage in bootstrapping process is the increased
portability of a high level language being compiled to L0+. L0+ naturally becomes a
kind of a repository abstraction layer, meaning that if we want to port an
implementation of a high level language to another target environment (that uses L0+
as a target language), it is sufficient to port only the implementation of L0+.

The second notable result of this paper is principles of an effective implementation
of this language. According to these principles, an effective implementation of L0+
was obtained.

L0+ was designed to be of as low level as possible to simplify its implementation,
and it does not contain some the of constructs (mainly, patterns) found in more
advanced languages. Nevertheless, this language is also used for a direct development
of model transformations.

References

1. J. Barzdins, A. Kalnins, E. Rencis, S. Rikacovs, Model Transformation Languages and
their Implementation by Bootstrapping Method, Pillars of Computer Science: Essays
Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of His 85th Birthday, Arnon
Avron, Nachum Dershowitz, and Alexander Rabinovich, editors, Lecture Notes in
Computer Science, vol. 4800, Springer-Verlag, Berlin, 2008.

2. A.Kleppe, J. Warmer, W. Bast, MDA Explained: The Model Driven Architecture --
Practice and Promise, Addison Wesley, 2003.

3. Request for Proposal : MOF 2.0 Query / Views / Transformations RFP, URL:
http://www.omg.org/docs/ad/02-04-10.pdf

4. OMG, MOF 2.0 Query/View/Transformation Specification. URL:
http://www.omg.org/docs/ptc/07-07-07.pdf

Sergejs Rikacovs. The Base Transformation Language L0+ and Its Implementation 101

LURaksti733-datorzin.indd 101LURaksti733-datorzin.indd 101 2008.03.31. 15:06:052008.03.31. 15:06:05

5. Agrawal A., Karsai G, Shi F.: Graph Transformations on Domain-Specific Models.
Technical report, Institute for Software Integrated Systems, Vanderbilt University, ISIS-
03-403, November 2003.

6. A.Kalnins, J. Barzdins, E.Celms. Basics of Model Transformation Language MOLA. -
ECOOP 2004 (Workshop on Model Transformation and execution in the context of
MDA), Oslo, Norway, June 14-18, 2004.

7. ATL. URL: http://www.sciences.univ-nantes.fr/lina/atl/
8. MTF. URL: http://www.alphaworks.ibm.com/tech/mtf
9. Tefkat.URL: http://www.dstc.edu.au/Research/Projects/Pegamento/tefkat/
10. E.Rencis. Model Transformation Languages L1, L2, L3 and their Implementation,

Scientific Papers. University of Latvia, “Computer Science and Information
Technologies”, 2008.

11. J. Barzdins, A. Zarins, K. Cerans, A. Kalnins, E. Rencis, L. Lace, R. Liepins, A. Sprogis,
GrTP: Transformation Based Graphical Tool Building Platform, MODELS 2007,
Workshop on Model Driven Engineering Languages and Systems, 2007.

12. VIATRA2 URL: http://dev.eclipse.org/viewcvs/indextech.cgi/gmt-home/subprojects/
VIATRA2/index.html

13. Meta Object Facility (MOF) Specification Version 2.0 URL : http://www.omg.org/
docs/formal/06-01-01.pdf

14. Meta Object Facility (MOF) Specification Version 1.4.1 URL : http://www.omg.org/
docs/formal/05-05-05.pdf

15. Deborah J. Armstrong, The quarks of object-oriented development, Communications of
the ACM, 2006.

16. A.Sostaks., A.Kalnins. The implementation of MOLA to L3 compiler, Scientific Papers
University of Latvia, “Computer Science and Information Technologies”, 2008.

17. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.: Eclipse Modeling
Framework. Addison Wesley, 2003.

18. Metadata Repository (MDR). URL: http://mdr.netbeans.org/
19. J. Barzdins, G. Barzdins, R. Balodis, K. Cerans, A. Kalnins, M. Opmanis, K. Podnieks.

Towards Semantic Latvia. Communications of the 7th International Baltic Conference on
Databases and Information Systems (Baltic DB&IS’2006 , 2006), pp. 203-218.

20. Sesame. URL: http://www.openrdf.org/

102 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 102LURaksti733-datorzin.indd 102 2008.03.31. 15:06:062008.03.31. 15:06:06

Model Transformation Languages L1, L2, L3 and Their
Implementation

Edgars Rencis1

University of Latvia, IMCS, 29 Rai�a Blvd, R�ga, Latvia
Edgars.Rencis@lumii.lv

Abstract. In this paper a family of model transformation languages L1, L2,
and L3 following the language L0 is introduced. The first language L0, not
being part of this paper, is very simple and serves as a base language. It is
implemented through an efficient compiler to C++ [1]. Each of the next
languages L1, L2, and L3 is an extension of the previous one, and they are
implemented by the bootstrapping method based on the language L0, that is,
three compilers are written in L0: from L1 to L0, from L2 to L1, and from L3
to L2. The language L1 contains powerful pattern definition facilities, L2 –
loops, and L3 – the branching facility. The language L3 is considered to be
both sufficiently easy-to-use to serve as an intermediate language in the
implementation of higher-level transformation languages, and expressive
enough to be used in real model transformation tasks. The presented paper is
an extended version of sections 4 – 6 of [10].

Keywords. Model transformation languages, L0, Lx, L1, L2, L3, compiler,
bootstrapping.

1 Introduction

Although model transformation languages are the very heart of the MDA [2] – the
most advanced architecture used to build systems nowadays – the implementation of
various model transformation languages encountered in the world has not been very
extensively researched. Actually, there exist only a few attempts to implement a
model transformation language through some other language by using bootstrapping
method [3-5]. The goal of this paper is to demonstrate the use of such an approach. It
includes defining a sequence of model transformation languages and then
implementing these languages by bootstrapping method one through another until the
base transformation language is reached. In addition, another goal is to propose a
language L3 that is, on the one hand, simple enough to be easily implementable, and,
on the other hand, expressive enough to be used in practical model transformation
tasks. Some the of results expounded on in this paper are also briefly outlined in [10].

1 Partially supported by ESF (European Social Fund),

project 2004/0001/VPD1/ESF/PIAA/04/NP/3.2.3.1/0001/0001/0063

LATVIJAS UNIVERSITĀTES RAKSTI. 2008, 733. sēj.:
DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS 103.–139. lpp.

LURaksti733-datorzin.indd 103LURaksti733-datorzin.indd 103 2008.03.31. 15:06:062008.03.31. 15:06:06

The structure of this paper is the following:
1) the base transformation language L0 is described in Section 2 – it is very

simple and contains only the basic transformation facilities; an efficient
compiler to C++ is built for this language [1];

2) a sequence of model transformation languages L0’, L1, L2, and L3 is
introduced in Section 3; every next language of the so called Lx family is
made based on the previous one by adding some new features; both the
metamodel and the textual syntax is provided for each of languages; the
language L3 is of a sufficiently high level to be used in practical model
transformation tasks, however, it is still sufficiently easy-to-use to be used as
an intermediate language in the implementation of higher-level model
transformation languages (for example, the graphical transformation language
MOLA [6,7,15]) by using the bootstrapping method;

3) the implementation of languages L0’, L1, L2, and L3 is provided in Section 4;
every next language is compiled to the previous one using the bootstrapping
method.

2 Model transformation language L0

L0 is a textual model transformation language. It offers simple commands to work
with arbitrary fixed instances of a given metamodel (for example, a command for
creating a new instance, deleting an instance, getting and setting attribute’s values,
making and deleting links between instances, searching for instances etc.) and to
handle simple control flows (it is done using the so called “goto” commands, as well
as “else” branches that are attached to some L0 commands). To store persistent data,
an in-memory repository has been developed at the University of Latvia, Institute of
Mathematics and Computer Science [8].

An effective compiler from the language L0 to the language C++ has been
developed. It means that it is possible to translate a program written in L0 into a C++
code, which can further be compiled to a “.dll” file. When it is done, the resulting
“.dll” file can be executed on a metamodel given by the user.

A more detailed description of the language L0 is available in [1], however, an
overview of this language (commands + metamodel) is given in the next sections of
this paper in order to make this paper understandable without the necessity to read the
abovementioned paper.

2.1 Command of the Transformation Language L0

Base model transformation language L0 is a fully procedural language and contains
the following commands (that can be found in the body of any procedure or function)
[9]:

1) call <subProgName> (<actualParamList>) – calls the subprogram with the
given parameters;

2) return – returns the control to the calling program;
3) return <identifier> – returns the value of <identifier> to the calling program;

104 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 104LURaksti733-datorzin.indd 104 2008.03.31. 15:06:072008.03.31. 15:06:07

4) first <pointerName> : <className> [else <labelName>] – positions the
pointer <pointerName> to an arbitrary instance of the class <className>. If
there are no instances of the given class, the control is given to the label
<labelName> ;

5) first <pointerName1> : <className> from <pointerName2> by <roleName>
[else <labelName>] – positions the pointer <pointerName1> to such an
arbitrary instance of the class <className> that is reachable from the pointer
<pointerName2> by the role <roleName>. If there are no such instances, the
control is given to the label <labelName>. After the command has been
executed, the value set of the pointer <pointerName1> is limited to exactly
those instances of the class <className>, which are reachable from the
pointer <pointerName2> by the role <roleName> ;

6) next <pointerName> [else <labelName>] – positions the pointer
<pointerName> to the next instance that satisfies conditions raised by the
respective “first” command (the previous one with the same pointer
<pointerName>) and that is not yet visited by commands “first” or “next”. If
there are no such instances, the control is given to the label <labelName> ;

7) goto <labelName> – gives the control the label <labelName> ;
8) label <labelName> – defines the label <labelName> ;
9) addObj <pointerName> : <className> – creates a new instance of the class

<className> ;
10) addLink <pointerName1> . <roleName> . <pointerName2> – creates a link

between instances <pointerName1> and <pointerName2> with the role name
<roleName> at the end of the instance <pointerName2> ;

11) deleteObj <pointerName> – deletes the instance <pointerName> ;
12) deleteLink <pointerName1> . <roleName> . <pointerName2> – deletes the

link between instances <pointerName1> and <pointerName2> with the role
name <roleName> at the end of the instance <pointerName2> ;

13) setPointer <pointerName1> = <pointerName2> – positions the pointer
<pointerName1> to the instance pointed to by the pointer <pointerName2> ;

14) setPointerF <pointerName> = <funcName> (<actualParamList>) – positions
the pointer <pointerName> to the instance returned by the function
<funcName> called with the given parameters ;

15) setVar <varName> = <binExpr> – sets the value of the variable <varName>
to the value of the binary expression <binExpr> ;

16) setVarF <varName> = <funcName> (<actualParamList>) – sets the value of
the variable <varName> to the value returned by the function <funcName>
called by given parameters ;

17) setAttr <pointerName> . <attrName> = <binExpr> – sets the value of the
attribute <attrName> of the instance <pointerName> to the value of the binary
expression <binExpr> ;

18) type <pointerName> == <className> [else <labelName>] – if the pointer
<pointerName> points to the instance of the class <className>, the control is
given to the next command, otherwise the control is given to the label
<labelName>. Inequality (“!=”) is allowable instead of the equality as well;

Edgars Rencis. Model Transformation Languages L1, L2, L3 and Their Implementation 105

LURaksti733-datorzin.indd 105LURaksti733-datorzin.indd 105 2008.03.31. 15:06:072008.03.31. 15:06:07

19) var <varName> == <binExpr> [else <labelName>] – if the value of the
variable <varName> is equal to the value of the binary expression <binExpr>,
the control is given to the next command, otherwise the control is given to the
label <labelName>. Any other comparison operators (“<”, “<=”, “>”, “>=”,or
“!=”) are allowable instead of the equality as well;

20) pointer <pointerName1> == <pointerName2> [else <labelName>] – if
pointers <pointerName1> and <pointerName2> point to the same instance, the
control is given to the next command, otherwise the control is given to the
label <labelName>. Inequality (“!=”) is allowable instead of the equality as
well;

21) attr <pointerName> . <attrName> == <binExpr> [else <labelName>] – if the
value of the attribute <attrName> of the instance <pointerName> is equal to
the value of the binary expression <binExpr>, the control is given to the next
command, otherwise the control is given to the label <labelName>. Any other
comparison operators (“<”, “<=”, “>”, “>=” or “!=”) are allowable instead of
the equality as well;

22) link <pointerName1> . <roleName> . <pointerName2> [else <labelName>] –
if there exists a link with the role name <roleName> at the end of the instance
<pointerName2> between instances <pointerName1> and <pointerName2>,
the control is given to the next command, otherwise the control is given to the
label <labelName> ;

23) nolink <pointerName1> . <roleName> . <pointerName2> [else <labelName>
] – if there does not exist a link with the role name <roleName> at the end of
the instance <pointerName2> between instances <pointerName1> and
<pointerName2>, the control is given to the next command, otherwise the
control is given to the label <labelName> ;

24) DEBUG_ON – turns on the debugging mode;
25) DEBUG_OFF – turns off the debugging mode.

Since the transformation language L0 is a strongly typified language, it is required

that any variable is declared in a separate block in each procedure or function in the
following manner:

1) var <varName> : <typeName> – declares a variable with a primitive data type
(Integer, Real, String or Boolean)

2) pointer <pointerName> : <className> – declares a pointer to instances of the
class <className>

There actually exists an extension of the language L0 – language L0+. In the
language L0+, commands working in metamodel level are added. Namely, it is
possible, for example, to make and delete classes, associations and attributes in L0+.
So it is possible to make a specific metamodel in L0+ and then to execute the program
written in L0 (or L0+) on this metamodel. As it is not the goal of this paper,
commands of the language L0+ have not been discussed here.

106 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 106LURaksti733-datorzin.indd 106 2008.03.31. 15:06:072008.03.31. 15:06:07

2.2 The Metamodel of the Language L0

Since metamodels of the further introduced transformation languages will be based on
the metamodel of the language L0, it is necessary to discuss this metamodel in detail
(see Fig. 1).

The metamodel of the language L0 is quite intuitive – every transformation
program (an instance of the class “Transformation”) contains procedures/functions
that in their turn contain command blocks starting with one command while every
command does not have more than one next command. Every procedure/function has
its variable definition block as well.

In the language L0, four types of commands exist:
1) instances of the class “GotoCom” – control flow commands;
2) instances of the class “FNCom” – instance searching commands (“first” and

“next”);
3) instances of the class “ECom” – commands with a possible “else” branch

(“type”, “var”, “pointer”, “attr”, “link” and “noLink”);
4) instances of the class „SCom” – other commands (“call”, “return”, “label”,

“addObj”, “addLink”, “deleteObj”, “deleteLink”, “setPointer”, “setPointerF”,
“setVar”, “setVarF”, “setAttr”, “DEBUG_ON” and “DEBUG_OFF”).

Transformation
name: String

DefBlock

ProcFunct
name: String
type: String
is_main: Boolean
is_native: Boolean
debug_mode: Boolean

GotoCom
labName: String

Directive
val: String
file_name: String

ComBlock

SCom
text: String

ECom
text: String
else: String

FNCom
isFirst: Boolean
name: String
text: String
else: String

Command

Defin
name: String
type: String

Variable Pointer

Parameter
name: String
type: String
byRef: Boolean

defBlock0..1

pf
0..1

owner
0..1

param 0..1

prev
0..1

next0..1

tr 0..1

pf*

dir
*tr

0..1

pf
0..1 block

0..1
block 0..1

start
0..1

def*
block 0..1

prev
0..1

next0..1

Fig 1. The metamodel of the language L0

Edgars Rencis. Model Transformation Languages L1, L2, L3 and Their Implementation 107

LURaksti733-datorzin.indd 107LURaksti733-datorzin.indd 107 2008.03.31. 15:06:082008.03.31. 15:06:08

2.3 Model Transformation Example in the Language L0

Let’s assume we have given a metamodel consisting of two classes (Fig. 2). Students
have name, age, and average marks in each of the eight bachelor’s study examination
periods. Instances of the class “Course” are courses of master studies and the attribute
“hasGoodStudents” shows whether the average mark of all bachelor’s examination
periods for all adult students of the particular course is at least 8. The attribute “title”
of the class “Course” is supposed to be unique. It must be mentioned that the given
metamodel is not the best solution for such a fragment of the world, but it is in return
very appropriate for the demonstration of the use of languages Lx.

Student
name: String
age: Integer
mark1: Real
mark2: Real
mark3: Real
mark4: Real
mark5: Real
mark6: Real
mark7: Real
mark8: Real

Course
title: String
hasGoodStudents: Boolean course

* student
1..*

Fig. 2. Metamodel used in the example

The problem to solve is as follows – set the correct value of the attribute

“hasGoodStudents” for the course named “Operating Systems”. The solution written
in the language L0 is given below.
transformation example;
 main procedure main();
 pointer c:Course;
 pointer s:Student;
 var x:Real;
 var avg:Real;
 var count:Integer;
 begin;
 first c:Course else endOfProg;
 label startFinding;
 attr c.title=="Operating Systems" else getNextCourse;
 goto courseFound;
 label getNextCourse;
 next c else endOfProg;
 goto startFinding;
 label courseFound;
 setVar x=0;

108 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 108LURaksti733-datorzin.indd 108 2008.03.31. 15:06:082008.03.31. 15:06:08

 setVar count=0;
 first s:Student from c by student
 else noMoreStudents;
 label startCounting;
 attr s.age>=18 else getNextStudent;
 setVar count=count+1;
 setVar avg=s.mark1;
 setVar avg=avg+s.mark2;
 setVar avg=avg+s.mark3;
 setVar avg=avg+s.mark4;
 setVar avg=avg+s.mark5;
 setVar avg=avg+s.mark6;
 setVar avg=avg+s.mark7;
 setVar avg=avg+s.mark8;
 setVar avg=avg/8;
 setVar x=x+avg;
 label getNextStudent;
 next s else noMoreStudents;
 goto startCounting;
 label noMoreStudents;
 var count>0 else writeGood;
 setVar x=x/count;
 var else writeGood; x<8
 setAttr c.hasGoodStudents=false;
 goto endOfProg;
 label riteGood; w
 setAttr c.hasGoodStudents=true;
 label endOfProg;
 ;
endTransformation;
end

3 Model transformation languages L0’ until L3

Transformation languages Lx (or, the so called Lx language family) contain the
transformation language L0 and its related transformation languages L0’, L1, L2, and
L3. Each of these languages is built based on the previous language of this family by
adding some extra features. The syntax and semantics of languages L0’, L1, L2, and
L3 are described in this section.

3.1 Transformation Language L0’

Model transformation language L0’ (read – „L0 prim”) is based on the language L0.
The new feature of L0’ is the possibility to make long arithmetic expressions (in L0,
only unary and binary expressions were allowed).

Edgars Rencis. Model Transformation Languages L1, L2, L3 and Their Implementation 109

LURaksti733-datorzin.indd 109LURaksti733-datorzin.indd 109 2008.03.31. 15:06:092008.03.31. 15:06:09

Arithmetic expressions of an arbitrary length are allowed in L0’. It means that it is
allowed to use each of the four arithmetic operators and traditional brackets (“(” and
“)”) when building long expressions. Variables, constants, attributes, and functions
can be used as operands in such expressions. The use of operators with respect to the
data types is shown in Table 1.

Table 1. The use of arithmetic operators with respect to data types

Operator Left hand operand Right hand operand Result
Integer Integer Integer
Integer Real Real

Real Integer Real
Real Real Real

+

String String String
Integer Integer Integer
Integer Real Real

Real Integer Real -

Real Real Real
Integer Integer Integer
Integer Real Real

Real Integer Real *

Real Real Real
Integer Integer Real
Integer Real Real

Real Integer Real /

Real Real Real

The traditional operator execution sequence is taken into account (from the highest

to the lowest):
1) function calls;
2) brackets;
3) multiplication and division;
4) addition and subtraction.
The metamodel of L0’ is made by taking the metamodel of L0 and supplementing

it with some new classes and associations. In this metamodel, the class “Expression”
together with some other classes is added. Every expression can be attached either to
some instance of the class “Ecom” (if it is a comparison) or to some instance of the
class “Scom” (if it is an assignment). Every expression contains one starting primitive
(instance of the class “Eelem”), and every expression’s primitive has at most one next
primitive. Primitives can be of various types – variables, attributes, function calls,
constants, operators, and brackets (Fig. 3, bold classes and associations are new in
L0’).

110 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 110LURaksti733-datorzin.indd 110 2008.03.31. 15:06:092008.03.31. 15:06:09

DefBlock

ProcFunct
name: String
type: String
is_main: Boolean
is_native: Boolean
debug_mode: Boolean

GotoCom
labName: String

ComBlock

SCom
text: String

ECom
text: String
else: String

FNCom
isFirst: Boolean
name: String
text: String
else: String

Defin
name: String
type: String

Variable Pointer

Parameter
name: String
type: String
byRef: Boolean

Directive
val: String
file_name: String

Command

Transformation
name: String

Expression

EElem

Attr
name: String
classPointer: String
type: String

Funct
name: String
type: String

Param
name: String
type: String

Const
val: String
type: String

Op
val: String

Brack
val: String

Var
name: String
type: String
isPointer: Boolean

owner
0..1

param 0..1

prev
0..1

next0..1 dir
*tr

0..1

pf
0..1 block

0..1

def*
block 0..1

defBlock
0..1 pf

0..1
block 0..1

start0..1

tr 0..1

pf*

expr0..1

sCom
0..1

expr
0..1 eCom

0..1
expr 0..1

start0..1
prev
0..1

next0..1

funct 0..1
start0..1

prev
0..1

next0..1

prev
0..1

next0..1

Fig. 3. The metamodel of the transformation language L0’

Commands of L0 are the same in L0’. The only difference is in those places where

some binary expression could be in the language L0 – now an expression of an
arbitrary length is allowed in the language L0’. So it needs to be specified how to
write so long expressions. An arithmetic expression can be defined as one of the
following:

1) a constant of the type String (for example, “17”);
2) a positive constant of the type Integer (for example, 17) or Real (for example,

17.0);
3) (-C), where C – a positive constant of the type Integer or Real;
4) a variable of the type Integer, Real or String;
5) an attribute of the type Integer, Real or String that is written in the following

way – <pointerName> . <attributeName> : <typeName>, where
<pointerName> is declared as a pointer to the class whose attribute is to
inspect;

Edgars Rencis. Model Transformation Languages L1, L2, L3 and Their Implementation 111

LURaksti733-datorzin.indd 111LURaksti733-datorzin.indd 111 2008.03.31. 15:06:102008.03.31. 15:06:10

6) a function call, where the function is of the type Integer, Real or String;
7) (E), where E – an arithmetic expression;
8) E+F, where E and F – arithmetic expressions with compatible types;
9) E-F, where E and F – arithmetic expressions with compatible types;
10) E*F, where E and F – arithmetic expressions with compatible types;
11) E/F, where E and F – arithmetic expressions with compatible types.
For example, correct commands in the language L0’ are as follows (if based on the

metamodel shown in Fig. 4):
1) setVar x=x+y+2;
2) setVar s=z+”:”+z+”...”+s1;
3) var x==i*(y+(17/2));
4) attr p.age!=i+person1.age:Integer-1;
5) var y==17.5+3*5/(x+y);
It is assumed in those commands that variables and pointer are defined like this:
var x:Real;
var y:Real;
var i:Integer;
var s:String;
var s1:String;
var z:String;
pointer p:Person;
pointer person1:Person;

Person
age: Integer
hasParentUnder18: Boolean

father
0..1

son*

Fig.4. The metamodel used in L0’ examples

The transformation that solves the problem proposed in Section “2.3. Model

transformation example in the language L0” can resemble this in the language L0’:
transformation example;
 main procedure main();
 pointer c:Course;
 pointer s:Student;
 var x:Real;
 var count:Integer;
 begin;
 first c:Course else endOfProg;
 label startFinding;
 attr c.title=="Operating Systems" else getNextCourse;
 goto courseFound;
 label getNextCourse;
 next c else endOfProg;
 goto startFinding;

112 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 112LURaksti733-datorzin.indd 112 2008.03.31. 15:06:112008.03.31. 15:06:11

 label courseFound;
 setVar x=0;
 setVar count=0;
 first s:Student from c by student
 else noMoreStudents;
 label startCounting;
 attr s.age>=18 else getNextStudent;
 setVar count=count+1;
 setVar x = x + (s.mark1:Real + s.mark2:Real +
 s.mark3:Real + s.mark4:Real + s.mark5:Real +
 s.mark6:Real + s.mark7:Real + s.mark8:Real) / 8;
 label getNextStudent;
 next s else noMoreStudents;
 goto startCounting;
 label noMoreStudents;
 var count>0 else writeGood;
 setVar x=x/count;
 var x<8 else writeGood;
 setAttr c.hasGoodStudents=false;
 goto endOfProg;
 label writeGood;
 setAttr c.hasGoodStudents=true;
 label endOfProg;
 end;
endTransformation;

3.2 Transformation Language L1

Transformation language L1 (if compared to L0’) is supplemented with a pattern
matching facility, so that it is possible to search for some instances satisfying a given
pattern. Any L1 pattern can contain conditions put on values of variables or attributes,
links between instances and other. Although pattern matching can be considered to be
one of the most fundamental modeling concept, the only thing that differs L1
metamodel from the metamodel of the language L0’ is one association between
classes “FNCom” and “ComBlock” (Fig. 5, the new association is drawn in bold).

So it is now possible to attach the so called “suchthat” block to every instance
searching command (these are instances of the class „FNCom”). This block can
contain arbitrary L1 commands and thus the pattern can be specified.

Edgars Rencis. Model Transformation Languages L1, L2, L3 and Their Implementation 113

LURaksti733-datorzin.indd 113LURaksti733-datorzin.indd 113 2008.03.31. 15:06:122008.03.31. 15:06:12

DefBlock

ProcFunct
name: String
type: String
is_main: Boolean
is_native: Boolean
debug_mode: Boolean

GotoCom
labName: String

ComBlock

SCom
text: String

ECom
text: String
else: String

FNCom
isFirst: Boolean
name: String
text: String
else: String

Defin
name: String
type: String

Variable Pointer

Parameter
name: String
type: String
byRef: Boolean

Directive
val: String
file_name: String

Command

Transformation
name: String

Expression

EElem

Attr
name: String
classPointer: String
type: String

Funct
name: String
type: String

Const
val: String
type: String

Op
val: String

Brack
val: String

Param
name: String
type: String

Var
name: String
type: String
isPointer: Boolean

owner
0..1

param 0..1

prev
0..1

next0..1
dir
*tr

0..1

pf
0..1 block

0..1

def*
block 0..1

defBlock
0..1 pf

0..1
block 0..1

start0..1

tr 0..1

pf*

expr0..1

sCom
0..1

expr
0..1 eCom

0..1
expr 0..1

start0..1
prev
0..1

next0..1

funct 0..1
start0..1

prev
0..1

next0..1

com
0..1

suchthat
0..1

prev
0..1

next0..1

Fig. 5. The metamodel of the transformation language L1

In textual syntax, the only difference between languages L0’ and L1 is in

commands “first” and “next”. Now it is possible to attach a pattern to them:
first <pointerName1> : <className> from [
 <pointerName2> by <roleName>] [suchthat
begin
 <L1 om
end];

C mands>

next <pointerName> [suchthat
begin
 <L1Commands>
end];
What is the semantics of the “suchthat” block at all? Commands of this block can

always give an answer to the question – does the particular instance satisfy the given
pattern or not? Therefore the pattern matching block can be treated like a novel

114 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 114LURaksti733-datorzin.indd 114 2008.03.31. 15:06:122008.03.31. 15:06:12

expression of the logical type (Boolean) that will further be called the begin-end
expression [10]. In more formal terms – a begin-end expression is any construction
built like this:
begin
 <L1
end

Commands>

Now it is possible to define the semantics of a “suchthat” block (or a begin-end
expression) – a begin-end expression is true if, taking into account particular instance
and executing all the commands of the given block one by another (starting from the
first one), it is possible to successfully reach the end of the block (meaning –
successfully execute its last command).

What does it mean in L1 to successfully execute a command? In order to answer
this question it will be enough to inspect commands of just two types – “goto”
command and commands with a possible “else” branch (“ECom” and “FNCom”
instances in the metamodel). In the case of any other L1 command it is assumed that
these commands are always successfully executable. Let's take a more detailed view
of the two types of commands mentioned above:

1) “goto” commands in the language L0 must be supplemented with exactly one
label name (to which label the control must be given after the execution of this
“goto” command). In L1, “goto” commands – if used in begin-end expressions
– must be supplemented with no more than one label. It means the label
attached to this command can be empty. If that is the case, the value of the
particular begin-end expression becomes equal to false when reaching such a
“goto” command, and no more commands of this block are to be executed. So
the “goto” command is successfully executable if there is exactly one label
name attached to it.

2) “ECom” and “FNCom” commands in L0 can contain no more than one “else”
branch. If some command contains no “else” branch and it is the case when
some comparison of instance searching fails, the control is given to the end of
this particular procedure/function. In L1, a non-existing “else” branch in the
situation the control would have given to the label specified in this “else”
branch leads to the false value of the particular begin-end expression that
contains this command. So a command that is an instance of the class “ECom”
or an instance of the class “FNCom” is successfully executable if it contains
either an “else” branch or the comparison, or instance searching does not fail.

Since the semantics of the instance searching commands (“first” and “next”) might
not be intuitively precisely clear, it is necessary to explain it in detail. In L0, the
semantics of these commands are explained in the following manner:

1) When reaching the “first” command with a pointer <pointerName> to the class
<className> attached, a possible value set is assigned for this pointer, that is
– those instances of the class <className> are distinguished to which it will
be further possible for this particular pointer to point. If there is no “from ... by
...” part in this command, the value set contains all the instances of the class
<className>, otherwise the value set of <pointerName> is limited to exactly
those instances of the class <className> that are reachable from the instance
by the role specified in the “from ... by ...” part. After the value set is
determined, an arbitrary instance from this set is assigned to <pointerName>

Edgars Rencis. Model Transformation Languages L1, L2, L3 and Their Implementation 115

LURaksti733-datorzin.indd 115LURaksti733-datorzin.indd 115 2008.03.31. 15:06:132008.03.31. 15:06:13

and then withdrawn from the set. If the set is found to be empty, the control is
given to the label specified in the “else” branch (if it exists).

2) When reaching the “next” command with a pointer <pointerName> attached
(the same pointer that has been attached to some “first” command before), an
arbitrary instance of the previously made value set of this pointer is assigned
to <pointerName> and then withdrawn from the set. If the set is found empty,
the control is given to the label specified in the “else” branch (if it exists).

3) When reaching the “next” command with a pointer attached that is not yet
processed in any “first” command (so the value set is not determined for it),
program execution semantics is not defined.

In L1, the semantics of instance searching commands is adopted from the language
L0, and some conditions according to the semantics of the pattern matching block are
added:

1) When reaching the “first” command with a pointer <pointerName> attached,
its value set is determined in the same way it was done in the case of the
language L0. After that, an arbitrary instance of this value set that satisfies the
given begin-end expression (if it exists) is assigned to <pointerName> and
then withdrawn from the set. If there are no such instances, the control is given
to the label specified in the “else” branch (if it exists).

2) When reaching the “next” command with a pointer <pointerName> attached
that has previously determined value set (the “first” command on this pointer
is executed before), an arbitrary instance of this value set that satisfies the
given begin-end expression (if it exists) is assigned to <pointerName> and
then withdrawn from the set. If there are no such instances, the control is given
to the label specified in the “else” branch (if it exists).

3) When reaching the “next” command with such a pointer attached that is not
yet processed in any “first” command (so the value set is not determined for
it), program execution semantics is not defined.

Let’s consider some examples now. A simple pattern based on which the first
instance of the class “Person” is found, where the condition holds that the age of the
particular person is 24 (examples used in this section are based on the metamodel
shown in Fig. 4):
first p:Person suchthat
begin
 p.age==24;
end;
In this case, first such p from the class “Person” will be found whom it will be

possible to successfully execute this only command – “p.age==24;”. Since it is a
command of type “ECom” and it does not contain an “else” branch, the only possible
way for this command to be able to execute successfully is the way when the
comparison holds. So the begin-end expression is true in this case if the value of the
attribute “age” of the instance pointed to by p is equal to 24.

To find the next instance of the same class based on the same condition, the “next”
command with a pattern matching block needs to be executed:
next p suchthat
begin
 attr p.age==24;

116 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 116LURaksti733-datorzin.indd 116 2008.03.31. 15:06:132008.03.31. 15:06:13

end
else no_more_persons;
A pattern based on which the first instance of the class “Person” is found whom a

condition holds that it is 24 years old and it is the son of another person pointed to by
the pointer father:
first p:Person suchthat
begin
 attr p.age==24;

end
link father.son.p;

else no_such_persons;
A problem might arise – find the persons that have a 24 year-old son. In this case,

the command in L1 that finds the first such person can look like this:
first parent:Person suchthat
begin
 first p:Person suchthat
 begin
 link parent.son.p;
 attr p.age==24;

end
end;

else no_such_persons;
If this command executes and the control is not given to the “else” label, the

pointer parent will point to such instance of the class “Person” that satisfies the
condition specified above (moreover – the pointer p will point to the instance of the
class “Person” that has the link with the given name to the instance pointer to by
parent). The inner “first” command can be read as “exists”, that is, all the pattern can
be read as “Find the first parent whom there exists such p that is in a relation son with
the pointer parent and that is 24 years old”.

The transformation that solves the problem proposed in Section “2.3. Model
transformation example in the language L0” can resemble this in the language L1:
transformation example;
 main procedure main();
 pointer c:Course;
 pointer s:Student;
 var x:Real;
 var count:Integer;
 begin;
 first c:Course suchthat
 begin
 attr c.title=="Operating Systems";
 end else endOfProg;
 setVar x=0;
 setVar count=0;
 first s:Student from c by student suchthat
 begin
 attr s.age>=18;
 end else noMoreStudents;

Edgars Rencis. Model Transformation Languages L1, L2, L3 and Their Implementation 117

LURaksti733-datorzin.indd 117LURaksti733-datorzin.indd 117 2008.03.31. 15:06:132008.03.31. 15:06:13

 label startCounting;
 setVar count=count+1;
 setVar x = x + (s.mark1:Real + s.mark2:Real +
 s.mark3:Real + s.mark4:Real + s.mark5:Real +
 s.mark6:Real + s.mark7:Real + s.mark8:Real) / 8;
 next s suchthat
 begin
 attr s.age>=18;
 end else noMoreStudents;
 goto startCounting;
 label noMoreStudents;
 var count>0 else writeGood;
 setVar x=x/count;
 var x<8 else writeGood;
 setAttr c.hasGoodStudents=false;
 goto endOfProg;
 label riteGood; w
 setAttr c.hasGoodStudents=true;
 label endOfProg;
 end;
endTransformation;

3.3 The Comparison of L1 and a First-Order Logic

How expressive exactly are the pattern definition blocks of the transformation
language L1? What are the types of problems solvable by these constructions? This
section is devoted to these questions.

Pattern definition block (or to be more precise – the begin-end expression attached
to it) gives exactly one answer of the logical data type (true or false) for each object of
the set under consideration. If looking at the pattern block in such a way, one can start
to draw an analogy with formulae of first-order logic that are objects of the logical
type as well. While transformation language L1 is known only by a small set of
people, first-order logic is considered to be a classic and is ranked as one of the basic
disciplines of mathematics. Therefore the comparison of L1 and a first-order logic
would give us a better notion of the scope of L1.

Let’s consider a many-sorted first-order logic [11]. According to the definition, the
alphabet of such a language consists of seven sets of symbols:

1) a countable set S � {bool} of sorts (or types) containing the special sort bool
such that S is non-empty and does not contain bool;

2) logical connectives: � (conjunction), � (disjunction), � (implication) and �
(equivalence) that are all of rank (bool 	 bool � bool),
 (negation) of rank
(bool � bool) and � (a bottom concept) of rank (� � bool);

3) quantifiers:
s (universal quantifier) and �s (existential quantifier) for every set
s�S;

4) an equality symbol: =s of rank (s 	 s � bool) for every set s�S;

118 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 118LURaksti733-datorzin.indd 118 2008.03.31. 15:06:142008.03.31. 15:06:14

5) variables: a countably infinite set Vs = {x0, x1, x2, ...} for every set s�S each
variable xi being of rank (� � s);

6) auxiliary symbols: “(” and “)”;
7) an alphabet L of non-logical symbols consisting of:

a. function symbols: a countable set FS = {f0, f1, ...} and a rank function r: FS
� S+ 	 S (S+ contains all the words of S excepting the empty word, that is,
all the strings of length n>0 whose all elements belong to the set S),
assigning a pair r(f) = (u,s) called rank to every function symbol f; the
string u is called the arity of f, and the symbol s�S – the sort (or type) of f;

b. constants: a countable set CSs = {c0, c1, ...} for every set s�S each ci being
of rank (� � s);

c. predicate symbols: a countable set PS = {P0, P1, ...}and a rank function r:
PS � S* 	 {bool} (S* contains all the words of S including the empty
word) assigning a pair r(P) = (u, bool) to each predicate symbol P; the
string u is called the arity of P.

It is assumed that all the sets Vs, FS, CSs and PS is mutually disjoint for every
possible value of s�S.

Taking into account such a definition, terms and atomic formulae in the first-order
logic are defined as follows:

1) every constant and every variable of sort s is a term of sort s;
2) if t1, ..., tn are terms, each ti of sort ui, and f is a function symbol of rank (<u1,

..., un> � s), then f(t1, ..., tn) is a term of sort s;
3) every predicate symbol of arity �, as well as the bottom concept (�) is an

atomic formula;
4) if t1 and t2 are terms of sort s, then =s(t1, t2) is an atomic formula;
5) if t1, ..., tn are terms, each ti of sort ui, and P is a predicate symbol of arity u1,

..., un, then P(t1, ..., tn) is an atomic formula.
Formulae are defined as follows:
1) every atomic formula is a formula;
2) for any two formulae A and B, (A�B), (A�B), (A�B), (A�B) and
A are also

formulae;
3) for any variable x of sort s and any formula A,
sx(A) and �sx(A) are also

formulae.
Let’s look now at a subset of full many-sorted first-order logic called the language

P-, that contains only binary predicate symbols and functions with only one argument.
In that case, the alphabet of the language P- can be defined in the following manner:

1) a countable set S � {bool} of sorts (or types) containing the special sort bool
such that S is non-empty and does not contain bool;

2) logical connectives: � (conjunction) and � (disjunction) of rank (bool 	 bool
� bool),
 (negation) of rank (bool � bool) and � (a bottom concept) of rank
(� � bool);

3) quantifiers:
s (universal quantifier) and �s (existential quantifier) for every
set s�S;

4) an equality symbol: =s of rank (s 	 s � bool) for every set s�S;
5) variables: a countably infinite set Vs = {x0, x1, x2, ...} for every set s�S each

variable xi being of rank (� � s);

Edgars Rencis. Model Transformation Languages L1, L2, L3 and Their Implementation 119

LURaksti733-datorzin.indd 119LURaksti733-datorzin.indd 119 2008.03.31. 15:06:152008.03.31. 15:06:15

6) auxiliary symbols: “(” and “)”;
7) an alphabet L of non-logical symbols consisting of:

a. function symbols: a countable set FS = {f0, f1, ...} and a rank function r: FS
� S 	 S, assigning a pair r(f) = (s,s) to every function symbol f;

b. constants: a countable set CSs = {c0, c1, ...} for every set s�S each ci being
of rank (� � s);

c. predicate symbols: a countable set PS = {P0, P1, ...}and a rank function r:
PS � S2 	 {bool}, assigning a pair r(P) = (<s,s>, bool) to each predicate
symbol P.

So terms and atomic formulae in P- can be defined as follows:
1) every constant and every variable of sort s is a term of sort s;
2) if t is a term of sort u, and f is a function symbol of rank (u � s), then f(t) is a

term of sort s;
3) � is an atomic formula;
4) if t1 and t2 are terms of sort s, then =s(t1, t2) is an atomic formula;
5) if t1 and t2 are terms, each ti of sort ui, and P is a predicate symbol of arity <u1,

u2>, then P(t1, t2) is an atomic formula.
Formulae in P- are defined as follows:
1) every atomic formula is a formula;
2) for any two formulae A and B, (A�B), (A�B) and
A are also formulae;
3) for any variable x of sort s and any formula A,
sx(A) and �sx(A) are also

formulae.
Now it is possible to see some similarities between languages P- and L1. Although

different terms are used to define these two languages, it is possible to establish some
links between them (see Table 2).

Table 2. Linking concepts of languages P- and L1

Concept of P- Concept of L1
The set of sorts S The set C � {Integer, Real, String,

Boolean} where C – the set of all
classes found in the metamodel used

The bottom concept �� Boolean value false
Other logical connectives Will be interpreted in the context
Existential quantifier �s where s�C,
and C – the set of all classes found in
the metamodel used

The command “first”

Universal quantifier
s where s�C, and
C – the set of all classes found in the
metamodel used

Will be interpreted by transforming the
expression containing the universal
quantifier into the form of that
containing an existential quantifier

The equality symbol =s where
s�{Integer, Real, String, Boolean}

The command “var”

The equality symbol =s where s�C, and
C – the set of all classes found in the
metamodel used

The command “pointer”

120 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 120LURaksti733-datorzin.indd 120 2008.03.31. 15:06:152008.03.31. 15:06:15

The set of variables Vs where
s�{Integer, Real, String, Boolean}

Variables of primitive data types,
declared by the keyword “var”

The set of variables Vs where s�C, and
C – the set of all classes found in the
metamodel used

Pointers to instances, declared by the
keyword “pointer”

Auxiliary symbols “(” and “)” Will be interpreted in the context
The function symbol with one
argument

The attribute of a class

Constants of types Constants of primitive data types
Binary predicate symbols P(t1, t2)
where t1, t2�C, and C – the set of all
classes found in the metamodel used

The command “link”

Theorem. For each formula of the predicate language P-, there exists a begin-end

expression in the language L1 of the same truth value.
Proof. A constructive proof is provided for this theorem. For the theorem to be

proven it is sufficient to produce a valid begin-end expression for each type of
formulae of P- shown in Table 2. To do this, two auxiliary formulae need to be
introduced:

1) expr: <P- formula> � <L1 begin-end expression> – a function assigning an
L1 begin-end expression to the given P- formula;

2) insert: <L1 begin-end expression> 	 <String> � <L1 begin-end expression> –
a function calculating a new begin-end expression from the existing one by
adding the given label name (second parameter) to missing places of the initial
expression (to “goto” commands without a label and to non-existing “else”
branches of those commands that can contain an “else” branch).

All types of P- formulae and their respective L1 begin-end expressions are shown
in Table 3. (labels “unicalLabel”, “unicalLabelForA”, and “endLabel”, as well as
pointers “unicalPtrName1” and “unicalPtrName2”, and variables “unicalVarName1”
and “unicalVarName2” are considered to be unique in the whole given
procedure/function).

Table 3. Construction of an L1 code from P- formulae

F expr(F)
�� goto;
=s(t1,t2) where s�{Integer,
Real, String, Boolean}

setVar unicalVarName1=t1;
setVar unicalVarName2=t2;
var unicalVarName1==unicalVarName2;

=s(t1,t2) where s�C, and C –
the set of all classes found in
the metamodel used

setPointer unicalPtrName1=t1;
setPointer unicalPtrName2=t2;
pointer unicalPtrName2==unicalPtrName2;

P(t1, t2) setPointer unicalPtrName1=t1;
setPointer unicalPtrName2=t2;
link unicalPtrName1.P.unicalPtrName2;

Edgars Rencis. Model Transformation Languages L1, L2, L3 and Their Implementation 121

LURaksti733-datorzin.indd 121LURaksti733-datorzin.indd 121 2008.03.31. 15:06:152008.03.31. 15:06:15

A�B expr(A)
expr(B)

A�B insert(expr(A),”unicalLabel”)
goto endLabel;
label unicalLabel;
expr(B)
label endLabel;

A insert(expr(A),”unicalLabel”)
goto;
label unicalLabel;

�sx(A) first x:S suchthat
begin
 expr(A)
end;

sx(A) �
�sx(
A) first x:S suchthat
begin
 insert(expr(A),”unicalLabelForA”)
 goto;
 label unicalLabelForA;
end else unicalLabel;
goto;
label unicalLabel;

It is worth mentioning that it is easier to use the form of an existential quantifier

and to produce a begin-end expression based on that in the case of a universal
quantifier.

In order to get a clearer understanding of the functions used to construct the L1
code, examples of all the different cases are given in Table 4.

Table 4. Construction of an L1 code from P- formulae – examples

F expr(F)
�� goto;
=Integer(x,17) setVar unicalVarName1=x;

setVar unicalVarName2=17;
var unicalVarName1==unicalVarName2;

=Person(p,q) setPointer unicalPtrName1=p;
setPointer unicalPtrName2=q;
pointer unicalPtrName1== unicalPtrName2;

father(p,q) setPointer unicalPtrName1=p;
setPointer unicalPtrName2=q;
link unicalPtrName1.father.unicalPtrName2;

(father(p,q)��
Integer(age(p),18))

setPointer unicalPtrName1=p;
setPointer unicalPtrName2=q;
link unicalPtrName1.father.unicalPtrName2;
setPointer unicalPtrName3=p;
attr unicalPtrName3.age==18;

122 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 122LURaksti733-datorzin.indd 122 2008.03.31. 15:06:162008.03.31. 15:06:16

((father(p,q) � =
Integer (age(p), 18)) �=
Integer (age(q),18))

setPointer unicalPtrName1=p;
setPointer unicalPtrName2=q;
link unicalPtrName1.father.unicalPtrName2 else
unicalLabel;
setPointer unicalPtrName3=p;
attr unicalPtrName3.age==18 else unicalLabel;
goto endLabel;
label unicalLabel;
setPointer unicalPtrName4=q;
attr unicalPtrName4.age==18;
label endLabel;

=Integer(age(p),18) setPointer unicalPtrName1=p;
attr unicalPtrName1.age==18 else unicalLabel;
goto;
label unicalLabel;

�Personp (=Integer(age(p),18)) first p:Person suchthat
begin
 setPointer unicalPtrName1=p;
 attr unicalPtrName1.age==18;
end;

Personp (=Integer(age(p),18)) �

�Personp
(
=Integer(age(p),18))

first p:Person suchthat
begin
 setPointer unicalPtrName1=p;
 attr unicalPtrName1.age==18 else
unicalLabelForA;
 goto;
 label unicalLabelForA;
end else unicalLabel;
goto;
label unicalLabel;

Although the construction of begin-end expressions is inductive in most cases, it is

easy to see that it is indeed possible to construct a begin-end expression with the same
truth value as that of the given P- formula in each case. End of proof.

Actually, begin-end expressions are even more powerful than the predicate
language mentioned above. This is so mainly because of three reasons [10]:

1) it is possible to operate with variables of primitive types in begin-end
expressions;

2) a begin-end expression specifies the command execution order during the
pattern matching (i.e., the order in which instances are traversed);

3) when a pattern is matched, all its elements are assigned an identity which can
be used further for referencing these elements.

Edgars Rencis. Model Transformation Languages L1, L2, L3 and Their Implementation 123

LURaksti733-datorzin.indd 123LURaksti733-datorzin.indd 123 2008.03.31. 15:06:162008.03.31. 15:06:16

3.4 Transformation Language L2

The new feature of the language L2 if compared to the language L1 is the possibility
to make loops. A special command exists in L2 with which it is possible to visit either
all instances of the specified class or just those instances of the class that match the
given pattern.

In the metamodel of L2, one class is added (“ForeachCom”) if compared to the
metamodel of L1 (Fig. 6, bold class and associations are new in L2). Two
associations from this class to the class “ComBlock” exist – one for the commands of
the loop and the other for the pattern definition block of the loop.

DefBlock

ProcFunct
name: String
type: String
is_main: Boolean
is_native: Boolean
debug_mode: Boolean

GotoCom
labName: String

ComBlock

SCom
text: String

ECom
text: String
else: String

FNCom
isFirst: Boolean
name: String
text: String
else: String

Defin
name: String
type: String

Variable Pointer

Parameter
name: String
type: String
byRef: Boolean

Directive
val: String
file_name: String

Command

Transformation
name: String

Expression

EElem

Attr
name: String
classPointer: String
type: String

Funct
name: String
type: String

Const
val: String
type: String

Op
val: String

Brack
val: String

Param
name: String
type: String

ForeachCom
name: String
text: String

Var
name: String
type: String
isPointer: Boolean

owner
0..1

param 0..1

prev
0..1

next0..1
dir
*tr

0..1

pf
0..1 block

0..1

def*
block 0..1

defBlock
0..1 pf

0..1
block 0..1

start0..1

tr 0..1

pf*

expr0..1

sCom
0..1

expr
0..1 eCom

0..1
expr 0..1

start0..1
prev
0..1

next0..1

funct 0..1
start0..1

prev
0..1

next0..1

stCom
0..1

suchthat
0..1

feCom
0..1

foreach
0..1

prev
0..1

next0..1

stCom_For
0..1

suchthat
0..1

Fig. 6. The metamodel of the transformation language L2

124 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 124LURaksti733-datorzin.indd 124 2008.03.31. 15:06:172008.03.31. 15:06:17

The textual syntax for a loop command is as follows:
foreach <pointerName1> : <className> [from
 <pointerName2> by <roleName>] [suchthat
begin
 <L2Commands>
end]
do
begin
 <
end;

L2Commands>

The semantics of the “suchthat” block is the same as in the case of the language
L1. Since this block is optional, the semantics of the “foreach” command is as follows
– every instance of the specified class that matches the given pattern (if such exists;
otherwise it is considered that every instance is to be taken) is traversed and all the
commands of the “do” block are executed for it.

Let’s consider some examples. Increase the value of the attribute “age” of all
instances of the class “Person” by 1 (all examples in this section are based on the
metamodel seen in Fig. 4):
foreach p:Person do
begin

end;
setAttr p.age=p.age+1;

Increase the age of all persons younger than 18 by 1:
foreach p:Person suchthat
begin
 attr p.age<18;
end
do
begin

end;
setAttr p.age=p.age+1;

Nested loop example – set the value of the attribute “hasParentUnder18” to true for
those persons that are sons of a person younger than 18:
foreach parent:Person suchthat
begin
 attr parent.age<18;
end
do
begin
 foreach p:Person suchthat
 begin
 link parent.son.p;
 end
 do
 begin
 setAttr p.hasParentUnder18=true;

end;
end;

Edgars Rencis. Model Transformation Languages L1, L2, L3 and Their Implementation 125

LURaksti733-datorzin.indd 125LURaksti733-datorzin.indd 125 2008.03.31. 15:06:172008.03.31. 15:06:17

The transformation that solves the problem proposed in Section “2.3. Model
transformation example in the language L0” can resemble this in the language L2:
transformation example;
 main procedure main();
 pointer c:Course;
 pointer s:Student;
 var x:Real;
 var count:Integer;
 begin;
 first c:Course suchthat
 begin
 attr c.title=="Operating Systems";
 end else endOfProg;
 setVar x=0;
 setVar count=0;
 foreach s:Student from c by student suchthat
 begin
 attr s.age>=18;
 end
 do
 begin
 setVar count=count+1;
 setVar x = x + (s.mark1:Real + s.mark2:Real +
 s.mark3:Real + s.mark4:Real + s.mark5:Real +
 s.mark6:Real + s.mark7:Real + s.mark8:Real) / 8;
 end;
 var count>0 else writeGood;
 setVar x=x/count;
 var x<8 else writeGood;
 setAttr c.hasGoodStudents=false;
 goto endOfProg;
 label writeGood;
 setAttr c.hasGoodStudents=true;
 label endOfProg;
 end;
endTransformation;

3.5 Transformation Language L3

The new feature of the language L3 if compared to the language L2 is the branching
command – a standard “if-then-else” construction than can be used instead of
constructions made using “goto” commands in some cases.

A new class is added in the metamodel of L3 if compared to the metamodel of L2
– “IfCom” (Fig. 7, bold class and associations are new in L0’). Three associations
from this command to the class “ComBlock” exist – one for the “if” clause, one for
the “then” clause, and one for the “else” clause of the command.

126 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 126LURaksti733-datorzin.indd 126 2008.03.31. 15:06:182008.03.31. 15:06:18

Fig. 7. The metamodel of the transformation language L3

The situation with “then” and “else” blocks is intuitively quite clear – these blocks

must contain commands to be executed in the case of respectively true and false value
of some condition. But what about the “if” block? This is again the case of begin-end
expressions – an expression is attached to the “if” clause of an “IfCom” command,
and so the condition of the “IfCom” command is true if the respective begin-end
expression is true.

The textual syntax of the branching command is as follows:

Edgars Rencis. Model Transformation Languages L1, L2, L3 and Their Implementation

DefBlock

ProcFunct
name: String
type: String
is_main: Boolean
is_native: Boolean
debug_mode: Boolean

GotoCom
labName: String

ComBlock

SCom
text: String

ECom
text: String
else: String

FNCom
isFirst: Boolean
name: String
text: String
else: String

Defin
name: String
type: String

Variable Pointer

Parameter
name: String
type: String
byRef: Boolean

Directive
val: String
file_name: String

Command

Transformation
name: String

Expression

EElem

Attr
name: String
classPointer: String
type: String

Funct
name: String
type: String

Const
val: String
type: String

Op
val: String

Brack
val: String

Param
name: String
type: String

ForeachCom
name: String
text: String

IfCom

Var
name: String
type: String
isPointer: Boolean

owner
0..1

param 0..1

prev
0..1

next0..1 dir *
tr0..1

pf
0..1 block 0..1

def*
block 0..1

defBlock
0..1 pf

0..1 block 0..1

start0..1

tr 0..1
pf*

expr0..1

sCom
0..1

expr
0..1 eCom

0..1
expr 0..1

start0..1
prev
0..1

next0..1

funct 0..1 start
0..1

prev
0..1

next0..1

stCom
0..1

suchthat
0..1

feCom
0..1

foreach
0..1

iCom
0..1

if
0..1

tCom
0..1

then
0..1

eCom
0..1

else
0..1

prev
0..1

next0..1

stCom_For
0..1

suchthat
0..1

127

LURaksti733-datorzin.indd 127LURaksti733-datorzin.indd 127 2008.03.31. 15:06:182008.03.31. 15:06:18

if
begin

<L3Commands>
end
then
begin

<L3Commands>
end
[else
begin

<L3Commands>
end];
Since the “else” part is optional, it is possible that no commands are to be executed

in the case of false value of the condition.
Let’s consider some examples. Let’s assume we have a pointer p pointing to some

instance of the class “Person”. Increase the value of the attribute 'age” of this instance
by 1 if it is less than 18 (all examples in this section are based on the metamodel
shown in Fig. 4):
if
begin
 attr p.age<18;
end
then
begin
 setAttr p.age=p.age+1;
end;
Increase the age of the person pointed to by p by 1 if it is less than 18, otherwise

decrease it by 1:
if
begin

end
attr p.age<18;

then
begin
 setAttr p.age=p.age+1;
end
else
begin
 setAttr p.age=p.age-1;
end;
A more complicated example – assign a value “Less than hundred” or “Hundred or

more” to a String variable s based on the fact whether the total age of all persons
younger than 18 is less than 100 or not:
if
begin
 setVar sum=0;
 foreach p:Person suchthat
 begin

128 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 128LURaksti733-datorzin.indd 128 2008.03.31. 15:06:202008.03.31. 15:06:20

 attr p.age<18;
 end
 do
 begin
 setVar sum=sum+p.age;
 end;
 var sum<100;
end
then
begin
 setVar s=”Less than hundred”;
end
else
begin
 setVar s=”Hundred or more”;
end;
In this example, the value of the variable sum could also be calculated before the

branching command, however, it can easily be done in the same command when the
semantics of the variable tells it is only needed in the “IfCom” command.

The transformation that solves the problem proposed in Section “2.3. Model
transformation example in the language L0” can resemble this in the language L3:
transformation example;
 main procedure main();
 pointer c:Course;
 pointer s:Student;
 var x:Real;
 var count:Integer;
 begin;
 first c:Course suchthat
 begin
 attr c.title=="Operating Systems";
 end else endOfProg;
 setVar x=0;
 setVar count=0;
 foreach s:Student from c by student suchthat
 begin
 attr s.age>=18;
 end
 do
 begin
 setVar count=count+1;
 setVar x = x + (s.mark1:Real + s.mark2:Real +
 s.mark3:Real + s.mark4:Real + s.mark5:Real +
 s.mark6:Real + s.mark7:Real + s.mark8:Real) / 8;
 end;
 if
 begin
 var count>0;

Edgars Rencis. Model Transformation Languages L1, L2, L3 and Their Implementation 129

LURaksti733-datorzin.indd 129LURaksti733-datorzin.indd 129 2008.03.31. 15:06:212008.03.31. 15:06:21

 setVar x=x/count;
 var x<8;
 end
 then
 begin
 setAttr c.hasGoodStudents=false;
 end
 else
 begin
 setAttr c.hasGoodStudents=true;
 end;
 label endOfProg;
 end;
endTransformation;
A full syntax definition of the transformation language L3 based on Backus-Naur

notation [12] is given in Appendix A.

4 The implementation of model transformation languages L0’, L1,
L2, and L3

4.1 The Main Principles of the Implementation of L0’ Until L3

As mentioned in the first sections of this paper, there already exists an effective
implementation of the language L0, that is, a compiler to the language C++. Since
languages L0’, L1, L2, and L3 have been built based on the language L0, a very
logical step would be the implementation of these languages through the language L0.
So actually the basic idea of the implementation of languages L0’ until L3, is to build
a compiler for each of the languages L0’, L1, L2, and L3 to L0. However, for the task
to be accomplished more easily, each compiler will be built to the language that is a
direct ancestor to it instead of building each compiler to the language L0. Since every
next language in the Lx family was built based on the previous one by just adding
some new features, such an implementation is possible. The algorithm used to
implement these compilers is called the bootstrapping algorithm [13]. The
bootstrapping principle is to build a compiler of one language to the other language
that is written in the target language. So, translating this into the language of Lx – to
write a compiler in L0 that transforms an L0’ program into an L0 program, then to
write a compiler in L0’ that transforms an L1 program into an L0’ program, then to
write a compiler in L1 that transforms an L2 program into an L1 program, and finally
to write a compiler in L2 that transforms an L3 program into an L2 program. When
turning to the details of the actual implementation, it is worth mentioning that each
compiler can actually be written in L0 (because L0 is a subset of every other Lx
language). In doing so, the idea of bootstrapping algorithm is not violated – it can still
be considered that each compiler is written in the target language perhaps just without
using all features the language offers.

In contrast with the ideas of the traditional compiler building [14] in which an
analysis of textual forms of programs is taken for a base, the idea of the bootstrapping

130 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 130LURaksti733-datorzin.indd 130 2008.03.31. 15:06:212008.03.31. 15:06:21

algorithm is very convenient in the case of model transformation languages – any
program in a model transformation language is considered as a particular model in the
metamodel of that particular language. If both metamodels of the source and target
languages are known, as well as the particular source model corresponding to the
program to be compiled is known, the compilation task transforms into a standard
model transformation task.

When consideringthe possibility to implement the bootstrapping algorithm, it must
be verified whether it is really possible for each program of the source language to
make an equivalent program in the target language (this could not be possible due to
new features of the target language). Therefore it must be verified for the case of
languages Lx immediately.

The main question about the compiler from L0’ to L0 is whether it is possible for
every arithmetic expression of L0’ to build an equivalent construction in L0. It is easy
to see that every such expression can be divided into some binary or unary
expressions that are allowed in L0 (by assigning intermediate results to temporary
variables). Consequently it is really possible to build a compiler from L0’ to L0.

In L1, a pattern matching is possible. The question that arises – is each L1 pattern
block translatable into L0’? The answer is – yes. Every pattern block can be simulated
with L0’ commands (see Table 5). The general idea is to make some extra labels and
to add a label to commands without any labels to intercept those control flows that
correspond to the situation in L1 the pattern matching fails.

Table 5. The principle of the implementation of a pattern definition block

L1 L0’
first <ptrName1>:<className>
[from <ptrName2> by <roleName>]
suchthat
begin
 <command_1>;
 <command_2>;
 ...
 <command_n>;
end
[else <labelName>];

first <ptrName1>:<className> [from
<ptrName2> by <roleName>] [else
<labelName>];
label ___L_i;
<command_1> [else ___L_i+1];
<command_2> [else ___L_i+1];
...
<command_n> [else ___L_i+1];
goto ___L_i+2;
label ___L_i+1;
next <ptrName1> [else <labelName>];
goto ___L_i;
label ___L_i+2;

next <ptrName> suchthat
begin
 <command_1>;
 <command_2>;
 ...
 <command_n>;
end
[else <labelName>];

next <ptrName> [else <labelName>];
label ___L_i;
<command_1> [else ___L_i+1];
<command_2> [else ___L_i+1];
...
<command_n> [else ___L_i+1];
goto ___L_i+2;
label ___L_i+1;

Edgars Rencis. Model Transformation Languages L1, L2, L3 and Their Implementation 131

LURaksti733-datorzin.indd 131LURaksti733-datorzin.indd 131 2008.03.31. 15:06:222008.03.31. 15:06:22

next <ptrName> [else <labelName>];
goto ___L_i;
label ___L_i+2;

Of course, “else” branches are attached to only those commands which can (but do

not) have an “else” branch. A label in the form “___L_i” is considered to be a new
label that cannot be found in any L0’ program written by the user. If a command of
the pattern definition block proves to be an instance searching command with a
“suchthat” block, it needs to be expanded to L0’ commands recursively.

The question about the language L2 – is every “foreach” loop writable in L1?
Again, the answer is implicitly clear – it is! Since there are commands “goto” and
“label” in L1, as well as “else” branches, the control flow can be moved around to
one’s liking, inter alia, making a loop over either all instances of some particular
class, or just those instances that match the specified pattern (pattern matching
constructions are present in L1, so they do not need to be transformed in any way).
The scheme of the implementation of loops is shown in Table 6.

Table 6. The principle of the implementation of a “foreach” loop

L2 L1
foreach <ptrName> : <className>
[suchthat
begin
 <command_1>;
 <command_2>;
 ...
 <command_n>;
end]
do
begin
 <do_command_1>;
 <do_command_2>;
 ...
 <do_command_k>;
end;

first <ptrName> : <className>
[suchthat
begin
<command_1>;
<command_2>;
...
<command_n>;
end]
else __L_i;
label __L_i+1;
<do_command_1>;
<do_command_2>;
...
<do_command_k>;
next <ptrName> [suchthat
begin
<command_1>;
<command_2>;
...
<command_n>;
end]
else __L_i;
goto __L_i+1;
label __L_i;

Again, labels in form “__L_i” are not supposed to be found in any L1 program

written by the user.

132 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 132LURaksti733-datorzin.indd 132 2008.03.31. 15:06:222008.03.31. 15:06:22

The question about the language L3 – is every branching construction writable in
L2? The answer is even more obvious in this case than in the previous ones – every
branching construction can be simulated using “goto” and “label” commands in a
standard way (Table 7). As shown above, “else” branches are added here to intercept
the cases when the “if” condition (begin-end expression) fails.

Table 7. The principle of the implementation of a branching command

L3 L2
if
begin
 <if_command_1>;
 <if_command_2>;
 ...
 <if_command_n>;
end
then
begin
 <then_command_1>;
 <then_command_2>;
 ...
 <then_command_k>;
end
[else
begin
 <else_command_1>;
 <else_command_2>;
 ...
 <else_command_l>;
end];

<if_command_1> [else _L_i];
<if_command_2> [else _L_i];
...
<if_command_n> [else _L_i];
<then_command_1>;
<then_command_2>;
...
<then_command_k>;
goto _L_i+1;
label _L_i;
[<else_command_1>;
<else_command_2>;
...
<else_command_l>;]
label _L_i+1;

Again, labels in form “_L_i” are not supposed to be found in any L2 program

written by user.

4.2 Main Problems of the Implementation of L0’ Until L3

When compiling a program from one language to another, new “label” commands
may appear that must be unique in the scope of the whole particular
procedure/function. Therefore, some limitations of naming conventions must exist. In
the case of languages L0’ until L3 these limitations are as follows – the user cannot
make labels in L1 starting with three underscores (“_”), in L2 – starting with two
underscores, and in L3 – starting with at least one underscore. If so, compilers of L1,
L2, and L3 can make new labels starting with some underscores (so many that the
user is allowed to make such a label in the target language, but is not allowed in the
source language) and following by the symbol “L” and an integer uniquely generated
for every new label. In the case of the L0’ compiler, no labels are made, so no action
needs to be performed.

Edgars Rencis. Model Transformation Languages L1, L2, L3 and Their Implementation 133

LURaksti733-datorzin.indd 133LURaksti733-datorzin.indd 133 2008.03.31. 15:06:222008.03.31. 15:06:22

In the case of L0’ compilation, some new variables may appear that must be
unique in the scope of the whole particular procedure/function. Therefore, some
limitations of naming conventions must exist. The limitation offered is similar to the
case of labels – to forbid declaring variables starting with an underscore in languages
L0’, L1, L2, and L3. So the compiler of L0’ will make variables starting with an
underscore and followed by a string “var” and an integer.

When compiling an L2 program to an L1 program, two instance searching
commands (“first” and “next”) arise from each loop command. If the loop command
contains a pattern definition block, both instance searching commands will contain
this block as well. In terms of models, this means that there is one command block
assigned to two “FNCom” commands. When passing to the next step – the
compilation of L1 – a problem arises – a compiler processes the first of two instance
searching commands mentioned above and then deletes the pattern definition block
from the metamodel (in order to make the model respective to L0’ program). So the
information about the fact that the other command had this block as well is lost.
Hence to solve this problem, it is forbidden to have one command block attached to
more than one command. Therefore, in the compilation of L2, a copy of the command
block must be made. It means that a copy of each command of the particular block
must be made. There is no problem in regard to other commands, but a problem arises
when “label” commands come in place – how to preserve the uniqueness of labels?
The solution here is to make a new unique label from the old unique label by simply
concatenating the label name with itself. For example, if the old label name was
“__L17”, the new one is “__L17__L17”; if the old one was “myLabel”, the new one
is “myLabelmyLabel”. The same conventions relate to “goto” commands and “else”
branches as well.

4.3 The Whole Compilation Process – From L3 Up To L0

Before turning to the compilation process, one more concept needs to be explained,
and that concept is the lexem of the transformation language L3. The metamodel of
lexems – basic syntactical elements of a program – is very simple (Fig. 8). Lexems
are one of the intermediate steps in the full compilation process from L3 up to L0.

Le
val: String
sort: String

prev
0..1

next0..1

Fig. 8. The metamodel of lexems

The full compilation process transforming one text file to another consists of the

following components:
1) initialization tasks – the deletion of any old models of metamodels of L3 and

lexems, and the generation of the new model of lexems from the input text file
specified by the user;

134 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 134LURaksti733-datorzin.indd 134 2008.03.31. 15:06:222008.03.31. 15:06:22

2) transformation of the model of lexems into an L3 model;
3) transformation of the L3 model into an L2 model;
4) transformation of the L2 model into an L1 model;
5) transformation of the L1 model into an L0’ model;
6) transformation of the L0’ model into an L0 model;
7) printing of the L0 model to an output text file specified by the name of the

transformation.
Owing to the fact that pre- and post-conditions of each component are precisely

clear, it is possible to easily use just a subset of all components instead of using the
full compiler as well. It can be useful, for example, in cases when L3 is used as an
intermediate language in the compilation of some higher-level language as it is done
in the compilation of the graphical model transformation language MOLA [15] –
there is no need to perform neither initialization tasks nor the “lexems to L3”
transformation because the L3 model has got into the metamodel of L3 in some other
way.

The full L3 to L0 compiler is available in the Lx homepage [16].

5 Conclusions and future work

It has been evidenced that the bootstrapping method justifies itself in the use of
compiler building if operating with model transformation languages. With this
method, it is possible to build higher and higher-level model transformation languages
that are easy to compile to some lower-level language. The sequence of such
languages – the Lx language family – has been stopped at the language L3 which is of
sufficiently high level to be used in practical model transformation tasks. As a proof
of this, a transformation-based graphical tool-building platform GrTP is being
developed using the language L3 as its base language [17]. The other use case of the
language L3 is the implementation of even higher-level languages. The graphical
model transformation language MOLA [6,7] has been implemented by bootstrapping
method, using the language L3 as an intermediate language in this process [15].

The further work relating to the Lx language family includes, but is not limited to
supplementing languages L0’, L1, L2, and L3 with the features of the language L0+ –
the extended version of L0 [1].

References

1. S. Rikacovs, The base transformation language L0+ and its implementation,

Scientific Papers, University of Latvia, “Computer Science and Information
Technologies”, 2008.

2. MDA Guide Version 1.0.1. OMG, document omg/03-06-01, 2003.
3. E.D.Willink, UMLX - A Graphical Transformation Language for MDA, 2nd

OOPSLA Workshop on Generative Techniques in the context of Model Driven
Architecture , OOPSLA'2003, Anaheim, 2003.

4. T. Clark, A. Evans, P. Sammut, J. Willans. Language Driven Development and
MDA, BPTrends, MDA Journal, Oct 2004.

Edgars Rencis. Model Transformation Languages L1, L2, L3 and Their Implementation 135

LURaksti733-datorzin.indd 135LURaksti733-datorzin.indd 135 2008.03.31. 15:06:232008.03.31. 15:06:23

5. J. Bezivin, E. Breton, G. Dupe, P. Valduriez. The ATL Transformation-based
Model Management Framework, Research Report No 03.08, 2003, IRIN,
Universite de Nantes.

6. A. Kalnins, J. Barzdins, E. Celms, Model Transformation Language MOLA.
Proceedings of MDAFA 2004, Vol. 3599, Springer LNCS, 2005, pp. 62-76.

7. MOLA project, http://mola.mii.lu.lv
8. J. Barzdins, G. Barzdins, R. Balodis, K. Cerans, A. Kalnins, M. Opmanis, K.

Podnieks, Towards Semantic Latvia. Communications of the 7th International
Baltic Conference on Databases and Information Systems (Baltic DB&IS’2006),
Vilnius, 2006, pp. 203-218.

9. The Base Transformation Language L0,
http://lx.mii.lu.lv/L0_plus_CurrVers_2_4.pdf

10. J. Barzdins, A. Kalnins, E. Rencis, S. Rikacovs, Model Transformation
Languages and their Implementation by Bootstrapping Method. Pillars of
Computer Science, Vol. 4800, Springer LNCS, 2008, pp. 130-145.

11. J. Gallier, Logic for Computer Science: Foundations of Automatic Theorem
Proving, Wiley, 1986.

12. L.M. Garshol, BNF and EBNF: What are they and how do they work?,
http://www.garshol.priv.no/download/text/bnf.html

13. B. Efron, R.J. Tibshirani, An Introduction to the Bootstrap, Chapman &
Hall/CRC, 1994, p. 436.

14. A.V. Aho, R. Sethi, J.D. Ullman, Compilers - Principles, Techniques, and Tools,
Addison-Wesley Publishing Company, 1986, p. 796.

15. A. Sostaks, A. Kalnins, The implementation of MOLA to L3 compiler, Scientific
Papers, University of Latvia, “Computer Science and Information Technologies”,
2008.

16. The Lx transformation language set home page, http://Lx.mii.lu.lv
17. J. Barzdins, A. Zarins, K. Cerans, A. Kalnins, E. Rencis, L. Lace, R. Liepins, A.

Sprogis, GrTP: Transformation Based Graphical Tool Building Platform,
MODELS 2007, Workshop on Model Driven Engineering Languages and Systems,
2007.

Appendix

A. L3 syntax definition based on Backus-Naur notation

<L3Program> ::= <transformation> [<L3Program>]
<transformation> ::= transformation <identifier> ;
<transfPartList> endTransformation;
<identifier> ::= <letter> [<string>]
<specialID> ::= <specialLetter> [<string>]
<string> ::= <letter> [<string>] | <digit> [
<string>]
<letter> ::= <specialLetter> | _
<specialLetter> ::= a | b | c | d | e | f | g | h | i |
j | k | l | m | n | o | p | q | r | s | t | u | v | w | x

136 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 136LURaksti733-datorzin.indd 136 2008.03.31. 15:06:232008.03.31. 15:06:23

| y | z | A | B | C | D | E | F | G | H | I | J | K | L |
M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
9
<transfPartList> ::= <transfPart> [<transfPartList>]
<transfPart> ::= <nativeProc> | <nativeFunct> |
<directive> | <debug> | <varDeclaration> | <procedure> |
<function>
<nativeProc> ::= native procedure <identifier> ([
<paramList>]);
<paramList> ::= <parameter> [, <paramList>]
<simpleParamList> ::= <identifier> [, <simpleParamList>
]
<parameter> ::= <identifier> : <primTypeOrMMElem>
<nativeFunct> ::= native function <identifier> ([
<paramList>]): <primTypeOrMMElem> ;
<directive> ::= <dirType> ” <fileName> ”;
<dirType> ::= useMM | include | useLib | useUnit
<fileName> ::= [<specialLetter> :\] [
<folderList>] <string> [. <string>]
<folderList> ::= <string> \ [<folderList>]
<debug> ::= DEBUG_ON; | DEBUG_OFF;
<varDeclaration> ::= imitiveVarDec > | <pointerDecl<pr l >
<primitiveVarDecl>::= var <specialID> : <primTypeName> ;
<primTypeName> ::= Integer | Real | String | Boolean
<pointerDecl> ::= pointer <identifier> :
<metaModelElement> ;
<metaModelElement>::= <letter> [<stringPlus>]
<stringPlus> ::= <stringPlusElem> [<stringPlus>]
<stringPlusElem> ::= <letter> | <digit> | # | ::
<procedure> ::= [main] procedure <identifier> ([
<paramList>]); [<varList>] begin; [<L3CommandList>]
end;
<function> ::= function <identifier> ([
<paramList>]): <primTypeOrMMElem> ; [<varList>]
begin; [<L3CommandList>] end;
<primTypeOrMMElem>::= <primTypeName> | <metaModelElement>
<varList> ::= <varDeclaration> [<varList>]
<L3CommandList> ::= <L3Command> [<L3CommandList>]
<L3Command> ::= <call> | <return> | <first> |
<next> | <goto> | <label> | <addObj> | <addLink> |
<deleteObj> | <deleteLink> | <setPointer> | <setPointerF>
| <setVar> | <setVarF> | <setAttr> | <type> | <var> |
<pointer> | <attr> | <link> | <noLink> | <debug> |
<foreach> | <if>
<call> ::= call <identifier> ([
<simpleParamList>]);
<return> ::= return [<identifier>] ;

Edgars Rencis. Model Transformation Languages L1, L2, L3 and Their Implementation 137

LURaksti733-datorzin.indd 137LURaksti733-datorzin.indd 137 2008.03.31. 15:06:242008.03.31. 15:06:24

<first> ::= first <identifier> :
<metaModelElement> [from <identifier> by
<metaModelElement>] [suchthat begin [<L3CommandList>]
end] [else <specialID>] ;
<next> ::= next <identifier> [suchthat begin
[<L3CommandList>] end] [else <specialID>] ;
<goto> ::= goto [<specialID>] ;
<label> ::= label <specialID> ;
<addObj> ::= addObj <identifier> :
<metaModelElement> ;
<addLink> ::= addLink <identifier> .
<metaModelElement> . <identifier> ;
<deleteObj> ::= deleteObj <identifier> ;
<deleteLink> ::= deleteLink <identifier> .
<metaModelElement> . <identifier> ;
<setPointer> ::= setPointer <identifier> =
<identifier> ;
<setPointerF> ::= setPointerF <identifier> =
<identifier> ([<simpleParamList>]);
<setVar> ::= setVar <specialID> = <expression> ;
<setVarF> ::= setVarF <specialID> = <identifier>
([<simpleParamList>]);
<setAttr> ::= setAttr <identifier> .
<metaModelElement> = <expression> ;
<type> ::= <identifier> <pointerRelOp>
<metaModelElement> [else <specialID>] ;
<var> ::= <identifier> <relationOperator>
<expression> [else <specialID>] ;
<pointer> ::= <identifier> <pointerRelOp>
<identifier> [else <specialID>];
<attr> ::= attr <identifier> .
<metaModelElement> <relationalOperator> <expression> [
else <specialID>];
<link> ::= link <identifier> .
<metaModelElement> . <identifier> [else <specialID>] ;
<noLink> ::= noLink <identifier> .
<metaModelElement> . <identifier> [else <specialID>] ;
<foreach> ::= foreach <identifier> :
<metaModelElement> [from <identifier> by
<metaModelElement>] [suchthat begin [<L3CommandList>]
end] do begin [<L3CommandList>] end;
<if> ::= if begin [<L3CommandList>] end
then begin [<L3CommandList>] end [else begin [
<L3CommandList>] end] ;
<expression> ::= <boolExpr> | <notBoolExpr>
<boolExpr> ::= true | false
<notBoolExpr> ::= <exprPart> [<arithmeticOper>
<notBoolExpr>]

138 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 138LURaksti733-datorzin.indd 138 2008.03.31. 15:06:242008.03.31. 15:06:24

<exprPart> ::= <const> | <identifier> |
<attribute> | <functionCall>
<arithmeticOper> ::= + | - | * | /
<const> ::= <integerConst> | <realConst> |
<stringConst>
<integerConst> ::= <positiveNum> | (– <positiveNum>)
<positiveNum> ::= <digit> [<positiveNum>]
<realConst> ::= <positiveNum> . <positiveNum> | (–
<positiveNum> . <positiveNum>)
<stringConst> ::= ” <extendedString> ”
<extendedString> ::= <symbol> [<extendedString>]
<symbol> ::= <letter> | <digit> |
<relationOperator> | ~ | ` | ! | @ | # | $ | % | ^ | & |
(|) | { | } | : | < | > | ? | [|] | ; | ‘ | \ | , | .
| <space>
<attribute> ::= <identifier> . <metaModelElement> :
<primTypeName>
<functionCall> ::= <identifier> ([<simpleParamList>
])
<relationOperator>::= <pointerRelOp> | < | > | <= | >=
<pointerRelOp> ::= == | !=
<space> ::=

Note – the non-terminal symbol <space> is considered to be a space symbol (32th
symbol in the ASCII code table).

Edgars Rencis. Model Transformation Languages L1, L2, L3 and Their Implementation 139

LURaksti733-datorzin.indd 139LURaksti733-datorzin.indd 139 2008.03.31. 15:06:242008.03.31. 15:06:24

The Implementation of MOLA to L3 Compiler

Agris Sostaks1, Audris Kalnins2

1,2 University of Latvia, Institute of Mathematics and Computer Science,
 Raina blvd 29,LV-1459 Riga, Latvia

1Agris.Shostaks@gmail.com, 2Audris.Kalnins@mii.lu.lv

Abstract. The implementation of the model transformation language MOLA
compiler to the L3 language is described in the paper. It is shown that L3 is a
suitable low-level model transformation language for efficient implementation
of pattern matching in MOLA. A rationale for the chosen compiler architecture
is offered. The detailed description of mappings from MOLA to L3 is also
given. Some general approach to the graphical language compiler development,
such as model-driven compiling and debugging, is also sketched.

Keywords: Graphical model transformation language, MOLA, L3, Lx,
compiler, model-driven compiling.

1 Introduction

Model transformations play an important role in the Model-Driven Software
Development (MDSD) [1]. The main idea of MDSD is a systematic use of models as
primary software engineering artefacts throughout the software development
lifecycle. Model-Driven Development refers to a range of development approaches
that are based on the use of software modelling. A model expresses a particular aspect
of a software system in a certain level of detail. A code of the software system is
generated from models built by a system developer. The generated code varies
ranging from a system skeleton to a complete product. It depends on the abstraction
level of models used as a source for the generator. If the created models are at high
level of abstraction, then model transformations are applied to create more detailed
models that can be used for code generation. The model transformation is the
automatic generation of a target model from a source model, according to a
transformation definition [2]. Model transformation languages are used to define
model transformations. Models that are used by model transformations must conform
to metamodels. A metamodel defines a language which specifies a model. A model
transformation language uses metamodels to define the model transformation. A
meta-language specifies the metamodels. The general architecture of model
transformations is shown in Fig.1.
The best known Model-Driven Software Development initiative is the Object
Management Group (OMG) [3] Model-Driven Architecture (MDA) [4], which is a
registered trademark of OMG. The OMG has developed the set of standards related to

1 Partially supported by ESF (European Social Fund),

project 2004/0001/VPD1/ESF/PIAA/04/NP/3.2.3.1/0001/0001/0063

LATVIJAS UNIVERSITĀTES RAKSTI. 2008, 733. sēj.:
DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS 140.–178. lpp.

LURaksti733-datorzin.indd 140LURaksti733-datorzin.indd 140 2008.03.31. 15:06:252008.03.31. 15:06:25

MDA, including the Meta-Object Facility (MOF) [5] (a meta-language), Object
Constraint Language (OCL) [6], Unified Modelling Language (UML) [7] (a software
development language), and MOF Queries/Views/Transformations (MOF-QVT) [8]
(a model transformation language).

Model1Model1

Meta-
model1
Meta-
model1

Model2Model2

Meta-
model2
Meta-
model2

Meta-
meta-
model

TLTL

Fig. 1 Model transformation

The MDA approach defines system functionality using a platform-independent
model (PIM) that is written in an appropriate modelling language (for example,
UML). Then the PIM is transformed to one or more platform-specific models (PSMs),
which include platform- or language-specific details. For example, the UML Profile
for Java [9] can be used to specify the PSM. Then the PSM is translated to the code
written in the language appropriate to the PSM.

Today the application area for model transformation languages is much broader.
One such area is generic meta-model-based modelling tool building. The model
transformation languages can be used (and are used [10, 11, 12]) as a much more
effective domain specific substitute for the general purpose languages that are used
for tool building up to now. This paper shows that model transformation languages
also become appropriate facilities for compiler building. Thus, domains for
applications of model transformation languages are quite different, but the typical
language constructs used for model processing in all these domains are quite similar.

The OMG was the first to state precisely the requirements what should be a model
transformation language [13]. The MOF-QVT language, which is an answer by OMG
itself to these requirements, becomes the OMG standard for model transformations
[8]. In MOF-QVT source and target meta-models conform to the MOF. There are two
variants of MOF defined – the EMOF (Essential MOF) and the CMOF (Complete
MOF). The MOF can be viewed as a general standard to write metamodels, but, more
specifically, EMOF is used for metamodel definition in MOF-QVT. The MOF-QVT
standard defines two languages of transformation development – the Relations and the

Agris Sostaks, Audris Kalnins. The Implementation of MOLA to L3 Compiler 141

LURaksti733-datorzin.indd 141LURaksti733-datorzin.indd 141 2008.03.31. 15:06:262008.03.31. 15:06:26

Operational Mappings. The Relations language is at the highest level of abstraction
and uses patterns and a declarative transformation definition style whenever possible.
This language has two semantically equivalent concrete syntaxes – a graphical and a
textual one. The Operational Mappings language is an imperative textual language.
The syntax of the Operational Mappings provides constructs commonly found in
imperative languages (loops, conditions, etc), while the management of model
elements is based on extended OCL constructs. Actually, the MOF-QVT specification
[8] also contains the third language – the Core. The role of this language is to serve
for semantic definition of the first two OMG languages and also for possible
implementation of these languages. There are several realizations of the MOF-QVT
language. The Relations textual language is implemented in the medini QVT [14]. The
Operational Mappings language is implemented in the SmartQVT [15], several less
complete implementations are also available.

There are many other model transformation languages which also satisfy the OMG
requirements. There are textual model transformation languages – ATL [16],
VIATRA2 [17], the Lx language family (L0-L3) [18] and also graphical model
transformation languages – Fujaba [19], GReAT [20], MOLA [21]. In fact, model
transformation languages existed even before the OMG coined this concept. These
were the graph transformation languages, which were used to transform a source
graph to a target graph in a rule-based manner. The structure of both graphs was
defined by means of graph grammars which, in fact, are the same metamodels. There
are several such graph transformation languages that are now being used as the model
transformation languages, for example, AGG [22] and PROGRES [23].

Most of the model transformation languages rely on an EMOF-compatible meta-
language for defining metamodels. For example, Fujaba and GReAT use class
diagram notations close to EMOF, and ATL uses KM3 [24] (a certain extension of
EMOF). Sometimes meta-languages are used that are much more expressive than
EMOF, for example, VTML [25] for the VIATRA2 language. An implementation of
a metamodelling language is closely related to the specific repository used for storing
models.

An efficient implementation of model transformation languages is still a topical
issue. There are several possibilities of implementation. A direct compilation to a
general purpose programming language is a common approach (AGG, Fujaba,
GReAT). The result of the compilation contains invocations of the API of the
repository used to manage models and the corresponding metamodel. Another
possibility is a compilation to an intermediate “very low-level” transformation
language, for example, ATL uses the so called ATL byte-code [26]. It is also possible
to build a direct interpreter of a model transformation language, as it is done for the
VIATRA2 language.

The model transformation language MOLA is developed by the University of
Latvia, Institute of Mathematics and Computer Science. This paper describes the
implementation of the MOLA compiler. The MOLA compiler uses a different
approach by compiling MOLA to L3, which is a lower-level textual model
transformation language, but still has features typical of a transformation language.
The L3 language is an imperative language which also includes imperative facilities
for pattern definition; therefore, the compilation of declarative patterns in MOLA is
the only complicated part of MOLA to L3 compiler realization. The L3 language is

142 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 142LURaksti733-datorzin.indd 142 2008.03.31. 15:06:272008.03.31. 15:06:27

efficient regarding implementation [27], and it is also developed by UL, IMCS. The
L3 language is also used for the development of MOLA compiler. In other words, the
compiler itself is built as a model transformation. Therefore, the chosen
implementation is relatively simple and at the same time guarantees efficiency of
implementation.

A brief introduction to the MOLA language is given in chapter 2. The experience
gained in building the previous MOLA realizations is described in chapter 3. The
language family Lx is introduced in chapter 4. The general architecture of the MOLA
compiler and a brief overview of the model-driven compiling are given in chapter 5.
Mappings from MOLA to L3 are described in details in chapter 6. Chapter 7 contains
MOLA environment problem descriptions and possible solutions that are not directly
related to the compiling process.

2 MOLA Language

MOLA is a graphical model transformation language, which is used for transforming
an instance of a source metamodel (the source model) into an instance of the target
metamodel (the target model). A transformation definition in MOLA consists of the
source and target metamodel definitions and one or more MOLA procedures.

Agris Sostaks, Audris Kalnins. The Implementation of MOLA to L3 Compiler

Fig. 2. The metamodel of the MOLA metamodelling language

143

LURaksti733-datorzin.indd 143LURaksti733-datorzin.indd 143 2008.03.31. 15:06:272008.03.31. 15:06:27

Source and target metamodels are jointly defined in the MOLA metamodelling
language, which is quite close to the OMG EMOF specification [8]. These
metamodels are defined by means of one or more class diagrams, packages may be
used in a standard way to group the metamodel classes. Actually, the division into
source and target parts of the metamodel is quite semantic, as they are not separated
syntactically (the complete metamodel may be used in transformation procedures in a
uniform way). Typically, additional mapping associations link the corresponding
classes from source and target metamodels; they facilitate the building of natural
transformation procedures and document the performed transformations. The source
and target metamodel may be the same – that is the case for in-place model update
transformations. The MOLA metamodelling language is defined formally in the
Kernel package of the MOLA metamodel (see Fig. 2).

MOLA procedures form the executable part of a MOLA transformation. One of
these procedures is the main one, which starts the whole transformation. MOLA
procedure is built as a traditional structured program, but in a graphical form.
Similarly to UML activity diagrams (and conventional flowcharts), control flow
arrows determine the order of execution of MOLA statements. Call statements are
used to invoke sub-procedures. However, the basic language statement of MOLA
procedures is specific to the model transformation domain – it is the rule. Rules
embody the pattern match paradigm, which is typical of model transformation
languages. Each rule in MOLA has the pattern and the action part. Both are defined
by means of class-elements and -links. A class-element is a metamodel class,
prefixed by the element (“role”) name (graphically shown in a way similar to UML
instance). An association-link connecting two class-elements corresponds to an
association linking the respective classes in the metamodel. A pattern is a set of class-
elements and -links which are compatible to the metamodel for this transformation. A
pattern may simply be a metamodel fragment, but a more complicated situation is also
possible – several class-elements may reference the same metamodel class – certainly,
their element names must differ (these elements play different roles in the pattern,
e.g., the start and end node of an edge). A class-element may also contain a constraint
– a Boolean expression in a simplified subset of OCL. The main semantics of a rule is in
its pattern match – an instance set in the model must be found, where an instance of
the appropriate class is allocated to each class-element so that all required links are
present in this set and all constraints evaluate to true. If such a match is found, the
action part of the rule is executed. The action part also consists of class-elements and
links, but typically these are create-actions – the relevant instances and links must be
created. An end of a create-link may also be attached to a class-element included in
pattern. Assignments in class-elements may be used to set the attribute values of the
instances. Instances may also be deleted and modified in the action part. Thus a rule
in MOLA typically is used to locate some construct in the source model and build a
required equivalent construct in the target model. If several instance sets in the model
satisfy the rule pattern, the rule is executed only once (on an arbitrarily chosen
match). Such a situation should be addressed by another related construct in MOLA –
the loop construct. In addition, the reference mechanism (a class-element may be a
reference to an already matched or created instance in a previous rule) is used to
restrict the available match set. Thus, rules are typically used in MOLA in situations
where at most one match is possible. Certainly, there may be a situation when no

144 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 144LURaksti733-datorzin.indd 144 2008.03.31. 15:06:282008.03.31. 15:06:28

match exists – then the rule is not executed at all. To distinguish this situation, a rule
may have a special ELSE-exit (a control flow labelled ELSE), which is traversed
namely in this situation. Thus, a rule plays in MOLA the role of an if-then-else
construct as well.

Another essential construct in MOLA is the loop (more concretely, for-each loop).
The loop is a rectangular frame, which contains one special rule – the loophead. The
loophead is a rule which contains one specially marked (by a bold border) element –
the loop variable. The semantics of a for-each loop is that it is executed for all
possible matches for the loophead, which differ by instances allocated to the loop
variable (possible variations for other loop head elements are not taken into account).
In fact, a for-each loop is an iterator which iterates through all possible instances of
the loop variable class that satisfy the constraint imposed by the pattern in the
loophead. With respect to other elements of the pattern in the loop head, the
“existential semantics” is in use – there must be a match for these elements, but it
does not matter whether there are one or several such matches. Thus a for-each loop is
the main MOLA construct, which is used to code a situation: “for each instance of . . .
which satisfies . . . perform the following transformation. . . ”. Namely such situations
in informal descriptions of model transformations are frequently called transformation
rules, but in MOLA they must be formalised as for-each loops. In addition to the
loophead, a loop typically contains the loop body – other MOLA statements whose
execution order is organised by control flows. The loop body is executed for each
iteration of the loop. Since the loop head is a rule, it may also contain create actions,
thus simple transformations of source model elements may be coded in MOLA by
loops consisting of the loop head only. For nested loops the main organising feature is
the possibility to reference the loop variable (and other elements) of the main loop in
the pattern of the nested loop head, thus specifying an iteration over all related
instances (to the current instance in the main loop).

There also are other available constructs in MOLA procedures. Procedures may
have parameters (of type of a metamodel class or a primitive type) and local
variables (also of both types). These elements may be used in MOLA rules, in
addition, text-statements (consisting of a constraint and assignments) may be used to
process these elements more directly. For primitive-typed variables the text statement
is the only option. A text statement containing a constraint (a Boolean expression)
may also have an ELSE-exit and serve as an if-then-else construct (in addition to rule).
Besides MOLA procedures, external (coded in an OOPL) procedures can also be
invoked; this feature is used for low-level data processing (e.g., model data import). It
should be noted that MOLA has no built-in UI support (MOLA is oriented towards
behind-the-scenes transformations), therefore diagnostic messages and similar
situations should be addressed via a library of external procedures. All MOLA
procedure elements are defined formally in the MOLA package of the MOLA
metamodel (see Fig. 3).

Agris Sostaks, Audris Kalnins. The Implementation of MOLA to L3 Compiler 145

LURaksti733-datorzin.indd 145LURaksti733-datorzin.indd 145 2008.03.31. 15:06:282008.03.31. 15:06:28

Fig. 3. The metamodel of the MOLA procedure elements

146 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 146LURaksti733-datorzin.indd 146 2008.03.31. 15:06:292008.03.31. 15:06:29

The execution of a MOLA transformation on a source model starts from the main
procedure. A loop is executed while there are instances to iterate over, then the next
construct according to the control flow is executed. If a rule without a valid match is
to be executed, and this rule has no ELSE-exit, then the current procedure is
terminated (if this occurs outside a loop) or the next iteration of the loop is started
(within a loop body). When the main procedure reaches its end, the transformation is
completed.

3 Previous Realizations of MOLA

The most critical part of the implementation of a pattern-based transformation
language is the implementation of the pattern matching. It has been already shown
[28] that an efficient MOLA pattern matching implementation is possible. This
realization is based on only few specific low-level operations needed to iterate over a
model. They are:

� getNext(Class Cl) – returns the next instance of a metaclass Cl upon
each call. There is also an initialization for it –
initializeGetNext(Class Cl)

� getNextByLink(Association as, Cl1 inst, Class Cl2) –
returns one by one instances of a metaclass Cl2 that can be reached by links
corresponding to association as from a fixed instance inst. There is also
an initialization for it, with similar parameters –
initializeGetNextByLink(Association as, Cl1 inst,
Class Cl2)

� checkLink(Cl1 inst1, Cl2 inst2, Association as) –
checks whether a link of the required type is between these instances

� eval(Cl inst, Expr exp) – evaluates a local constraint on
attributes

Thus, the target language of the MOLA compiler or the API of a repository that is
used for realization of the MOLA interpreter (Virtual Machine) must contain similar
operations. This approach requires the implementation of the pattern matching
algorithm using such low-level constructs. That is a sufficiently complicated task.
Another approach that can be used for pattern matching is to rely on some powerful
high-level pattern matching language and build mappings from MOLA to it. An
appropriate model repository must also be chosen.

The previous realization of MOLA [29] used SQL queries as a pattern matching
language and a relational database as the model repository. A fixed database schema
had been defined in the most natural way by storing the metamodel in tables which
correspond to the EMOF metamodel classes. The storage of model elements –
instances of metamodel classes, associations, and attributes was completely
straightforward in the corresponding tables. A MOLA program was also naturally
stored in tables according to the MOLA metamodel. The main idea was to map a
MOLA pattern to a single SQL statement. SQL queries generated by this realization
were large self-join queries that are non-typical of standard database applications. The
database engines were performing efficiently for queries if the number of class

Agris Sostaks, Audris Kalnins. The Implementation of MOLA to L3 Compiler 147

LURaksti733-datorzin.indd 147LURaksti733-datorzin.indd 147 2008.03.31. 15:06:292008.03.31. 15:06:29

elements in a MOLA pattern did not exceed a certain number. Experiments and
benchmark tests had shown that the implemented MOLA Virtual Machine performed
satisfactorily and MOLA is a suitable transformation language for typical MDSD
tasks. However, for an industrial usage of MOLA a special in-memory repository and
a compiler/interpreter that implements the principles described in [28] is required.

The next step in the realization of the model transformation language MOLA was
to search for a solution which satisfies the requirements mentioned above.

4 Lx Language Family

The search for a suitable solution for the MOLA realization revealed that an
appropriate language and also a repository could be found nearby. The model
transformation languages Lx [18] (the so called Lx language family) fulfil the
requirements mentioned in the previous chapter. Textual model transformation
languages Lx contain the base transformation language L0 and its related
transformation languages L0’, L1, L2 and L3. Each of these languages is based on the
previous language of this family by adding some extra features.

The model transformation language L3 has been chosen as a target language for the
MOLA compiler. A more detailed description of the Lx language family is available
in [32] and [27]; however, a brief overview of all these languages is given in this
chapter in order to make this paper understandable without reading the papers
mentioned above.

4.1 Lx Metamodelling Facilities

The Lx language family, as any other model transformation language, uses some sort
of metamodelling language. It is quite close to the OMG EMOF specifications. The
main difference is that multiple generalization is not allowed and there are no
packages in this metamodelling language. The metamodel of this language is shown
in Fig. 4.

Fig. 4. The metamodel of Lx metamodelling language

148 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 148LURaksti733-datorzin.indd 148 2008.03.31. 15:06:302008.03.31. 15:06:30

Classes and binary associations are core elements of this language. Classes can have
attributes which can be primitive or enumeration-typed. There are four pre-defined
primitive types – String, Integer, Boolean, and Real. There are no possibilities to
define new ones.
The basic commands (constructs for a textual definition of a metamodel) of the Lx
family metamodelling language are the following:

o class <className>; – defines class with a given name.
o attr <className>.<attrName>:<ElementaryTypeName>; – defines

attribute with a given name and type.
o assoc

<className>.{ordered}<card><roleName>/<roleName><card>{or
dered}. <className>; – defines association with corresponding
properties.

o compos
<compositeClassName>.{ordered}<card><roleName>/<roleName
><card> {ordered}.<partClassName>; – defines compositions
with corresponding properties.

o rel <subClassName>.subClassOf.<superClassName>; – defines a
generalization relationship between given classes.

o enum <enumName>:{ <enumLiteral1> , < enumLiteral2>, … }; –
defines enumeration with given elements.

4.2 Language L0

An elementary unit of L0 transformation is a command (an imperative statement). L0
transformation contains several parts:

� global variable definition part;
� native subprogram (function or procedure) declaration part (used C++ library

function headers);
� L0 subprogram definition part. Exactly one subprogram in this part is the

main. The main subprogram defines the entry point of the transformation.
An L0 subprogram definition also consists of several parts:

o Subprogram header
� procedure <procName>(<paramList>); Subprogram

header, the (formal) parameter list can be empty.
Parameter list consists of formal parameter definitions
separated by “,”. A parameter definition consists of its
name, the parameter type (the type can be an elementary
type or a class from the metamodel), and the passing
method (parameters can be passed by reference or by
value). If the parameter is passed by reference, its type
name is preceded by the & character.

� function <funcName>(<paramList>): <returnType>; –
return type name can be an elementary type name or class
name.

o Local variable definitions

Agris Sostaks, Audris Kalnins. The Implementation of MOLA to L3 Compiler 149

LURaksti733-datorzin.indd 149LURaksti733-datorzin.indd 149 2008.03.31. 15:06:302008.03.31. 15:06:30

� pointer <pointerName> : <className>; – defines a
pointer to objects of class <className>.

� var <varName> : <ElementaryTypeName>; – defines a
variable of elementary type. <ElementaryTypeName> is
one of elementary types.

o Keyword begin – starts subprogram body definition
o Subprogram body definition
o Keyword end - ends subprogram body definition.

The subprogram body definition may contain the following commands:
1. return; – returns execution control to caller procedure or function.
2. call <subProgName>(<actPrmList>); – calls a subprogram. Actual parameters list

can be empty. Actual parameter list consists of binary expressions separated by
“,”.

3. label <labelName>; – defines a label with the given name.
4. goto <label>; – unconditionally transfers control to <label>. <label> should be

located in the current subprogram.
5. first <pointer> : <className> else <label>; – positions <pointer> to an arbitrary

object of <className>. Typically, this command in combination with the next
command is used to traverse all objects of the given class (including subclass
objects). If <className> does not have objects, <pointer> becomes null, and
execution control is transferred to the <label>. The <className> in this command
must be the same as (or a subclass of) the class used in pointer definition. If it is a
subclass, then the pointer value set is narrowed (for the subsequent executions of
next).

6. first <pointer1> : <className> from <pointer2> by <roleName> else <label>; –
similar to the previous command. The difference is that it positions <pointer1> to
an arbitrary class object, which is reachable from <pointer2> by the link
<roleName>. Similarly, this command in combination with the next command is
used to traverse all objects linked to an object by the given link type.

7. next <pointer> else <label>; – gets the next object, which satisfies conditions,
formulated during the execution of the corresponding first and which has not been
visited (iterated) with this variable yet. If there is no such object, the <pointer>
becomes null, and execution control is transferred to <label>.

8. addObj <pointer>:<className>; – creates a new object of the class
<className>.

9. addLink <pointer1>.<roleName>.<pointer2>; – creates a new link (of type
specified by <roleName>) between the objects pointed to by the <pointer1> and
<pointer2> , respectively.

10. deleteObj <pointer>; – deletes the object, which is pointed to by <pointer>.
11. deleteLink <pointer1>.<roleName>.<pointer2>; – deletes link whose type is

specified by <roleName> between objects pointed to by <pointer1> and
<pointer2>, respectively.

150 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 150LURaksti733-datorzin.indd 150 2008.03.31. 15:06:302008.03.31. 15:06:30

12. setPointer <pointer1>=<pointer2>; – sets <pointer1> to the object which is
pointed to by <pointer2>. Instead of <pointer2> the null constant can be used.

13. setVar <variable> = <binExpr>; – sets <variable> to <binExpr> value.
<binExpr> is a binary expression consisting of the following elements: elementary
variables, subprogram parameters (of elementary types), literals, object
attributes, and standard operators (+,-,*,/,&&,||,!).

14. setAttr <pointer>.<attrName>=<binExpr>; – sets the value of attribute
<attrName> (of the object, pointed to by <pointer>) to the <binExpr> value.

15. type <pointer> == <className> else <label>; – if the type of the pointed object is
identical to the <className>, then control is transferred to the next command,
else control is transferred to <label>. Instead of the equality symbol == an
inequality symbol != can be used. This command is used for determining the exact
subclass of an object.

16. var <variable>==<binExpr> else <label>; – if the condition is true, then control is
transferred to the next command, else control is transferred to <label>. Instead of
equality symbol other (<, <=, >, >=, !=) relational operators compatible with
argument types can be used.

17. attr <pointer>.<attrName> == <binExpr> else <label>; – if the condition is true,
then control is transferred to the next command, else control is transferred to
<label>. Other relational operators (<, <=, >, >=, !=) can be used too.

18. link <pointer1>.<roleName>.<pointer2> else <label>; – checks whether there is a
link (with the type specified by <roleName>) between the objects pointed to by
<pointer1> and <pointer2>, respectively.

19. pointer <pointer1>==<pointer2> else <label>; – checks whether the objects
pointed to by <pointer1> and <pointer2> are identical. Instead of <pointer2> null
constant can be used. The inequality symbol (!=) can be used too.

It is easy to see that the language L0 contains only the very basic facilities for
defining transformations [32].

4.3 Languages L0’ – L3

Language L0’ – model transformation language L0’ is based on the language L0.
The new feature of L0’ is the possibility to make long arithmetic expressions (in L0,
only unary and binary expressions were allowed).
Language L1 – is supplemented with an imperative pattern matching feature, so that
it is possible to search for instances that match some condition. Any L1 pattern can
contain conditions on values of variables or attributes, links between instances and
other. In fact, all L1 commands can be used to specify pattern condition.
The textual syntax for the pattern (such-that block) is as follows:
suchthat
begin
<L1Co
end;

mmands>

Agris Sostaks, Audris Kalnins. The Implementation of MOLA to L3 Compiler 151

LURaksti733-datorzin.indd 151LURaksti733-datorzin.indd 151 2008.03.31. 15:06:312008.03.31. 15:06:31

The condition holds if it is possible to successfully [27] reach the end of the block
(i.e., successfully execute its last command). The “conditional” commands in L0
(commands that have an else branch) may be used without the else branch in the such-
that block. If in such a command the undefined else branch is to be executed, then the
condition defined by the pattern fails.
The such-that block may be used with first and next commands.
Language L2 – has the possibility to make loops. A special command exists in L2
with which it is possible either to visit all instances of the specified class or just those
instances of the class that match the given pattern. The textual syntax for the loop is
as follows:
foreach <pointerName1> : <className> [from
<pointerName2> by <roleName>] [suchthat
begin

end]

<L2Commands>

do
begin
 <L2Commands>
end;

Language L3 – has the branching command – a standard if-then-else construct can be
used. The textual syntax of the branching command is as follows:
if
begin

<L3Commands>
end
then
begin

<L3Commands>
end
[else
begin

<L3Commands>
end];
The L3 metamodel (the Lx language family metamodel) is shown in Fig. 5.

4.4 MOLA and L3

The main reasons why the Lx model transformation language family and the L3
language, particularly, have been chosen are described in this section.

One of the main requirements that must be met is the compatibility of
metamodeling languages. In our case metamodelling languages are EMOF-based for
both MOLA and Lx language family. There are no significant differences between
both languages, but such minor issues like absence of packages in Lx family
metamodeling language can be resolved using name prefixes for class names. Thus,
we can claim that MOLA and Lx metamodeling languages are fully compatible.

152 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 152LURaksti733-datorzin.indd 152 2008.03.31. 15:06:312008.03.31. 15:06:31

Fig. 5. The metamodel of L3 language

Agris Sostaks, Audris Kalnins. The Implementation of MOLA to L3 Compiler 153

LURaksti733-datorzin.indd 153LURaksti733-datorzin.indd 153 2008.03.31. 15:06:322008.03.31. 15:06:32

It has already been shown [28] that MOLA language can be implemented
efficiently using a set of low-level operations for patterns. There is a direct mapping
from the required operations to the commands of Lx model transformation family.

� initializeGetNext(Class Cl)and getNext(Class Cl)
operations can be mapped to first c:Cl and next c commands. These
commands return all instances of a given meta-class. In the beginning the
first c:Cl command must be called to initialize the iteration through required
instances and afterwards the next c must be called to iterate through.

� initializeGetNextByLink(Association as, Cl1 inst,
Class Cl2) and getNextByLink(Association as, Cl1
inst, Class Cl2) operations can be mapped to the first c:Cl2 from
inst by as and next c commands. These commands return all instances of a
given meta-class navigable by links of the given type from a fixed instance.
The iteration must be done similarly to the previous case.

� checkLink(Cl1 inst1, Cl2 inst2, Association as)
operation can be mapped to the link inst1.as_rolename.inst2 command. The
semantics of this command is the same as the semantics of this operation –
check the existence of a link of the given type between two fixed instances.

� eval(Cl inst, Expr exp) operation is an expression interpreter and
the MOLA realization to L3 must implement a generator of sequences of L3
commands that interprets the given expression. The core elements of such
expressions are attribute or variable value checks. These operations can be
mapped to attr inst.<attrname><relation><expression> and var
<varname><relation><expression> commands accordingly. Arithmetic
expressions can be mapped to expressions introduced by the L0’ language.
Constraints that are complex (Boolean) expressions where conjunction,
disjunction and negation are used can be mapped to a sequence of commands
which interprets the given expression.

MOLA operations that create update and delete instances and links can be mapped

to addObj, addLink, setAttr, deleteObj, deleteLink commands. The control flows
in MOLA can be mapped to label and goto commands in L3 language. L3 language
as well as MOLA has such concepts as procedure, parameter, variable, sub-
procedure call. These concepts can be mapped directly from MOLA to L3 language.
Thus L3 language provides all necessary features that allow us to build an efficient
MOLA compiler.

These basic features are included in the L0’ language, but commands introduced in
the following languages L1-L3 (pattern matching, looping, and branching commands)
allow much easier implementation of the MOLA compiler. That is possible because
these commands are at an abstraction layer much closer to MOLA concepts, such as
for-each loop and rule, than basic, L0 and L0’, commands.

A detailed description of the mapping from MOLA to L3 is given in chapter 6 of
this paper.

154 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 154LURaksti733-datorzin.indd 154 2008.03.31. 15:06:322008.03.31. 15:06:32

5 Architecture of MOLA Compiler

This chapter describes the general architecture of the MOLA compiler. It includes the
chain of compilers from MOLA to L3, L3 to L0, L0 to C++, and C++ to executable
code. An introduction to the model-driven compiling is also included in this chapter.

5.1 Implementation of the Lx Language Family

An efficient compiler has been already built [18] for the Lx language family.
Actually, an efficient realization of the L0 language has been built, and a compiler for
each next language is built using the bootstrapping method [30]. It means that the
previous language in the family is used to build the compiler for the next one (L0 for
L0’ compiler, L0’ for L1 compiler, and so on).

The metamodel-based in-memory repository [31] developed by the UL IMCS has
been chosen to store metamodel and its instances for the implementation of L0
language. This repository has an appropriate low-level API implemented as a C++
function library. Therefore, the intermediate result of the L0 compilation is a C++
program. The final result of the L0 compilation is a dynamic link library (DLL file)
that can be executed over a repository instance which contains the appropriate
metamodel and model and must be loaded into memory. The experiments have shown
that the repository itself and the selected way of compilation to the API [32] are
efficient for the implementation of a model transformation language.

The bootstrapping method used to build compilers for the rest of the Lx family
languages requires that programs written in L0’ to L3 must be stored in the repository
that is used by L0 language. Thus, the metamodel of the L3 language is required. All
other languages of the Lx family are described by the same metamodel because each
next language is derived from the previous one by adding some new features;
therefore, the metamodel of the last language in the chain (L3) also describes all the
previous languages.

The first step in the compilation of an L3 program is to obtain a model – an
instance of the L3 metamodel. It is a representation of the L3 program in the
metamodel-based repository. This step is a separate step in the whole process of the
compilation which requires parsing of the text file and building a model. It is
implemented using a traditional programming language (C++). Obtained lexemes [33,
chapter 3] are stored in the repository as a very simple lexeme model [27]. Next, the
transformation language L0 is used to obtain the L3 program model from the lexeme
model.

When a program model has been built, the actual compilation is being performed.
The L3 (also L2, L1, L0’) compiler actually is a model transformation. In this case, an
in-place transformation is used – the L3 program model is overwritten by the
semantically equivalent L2 program model (also L2 by L1, etc.). The final result of
the chain of compilation steps is an L0 program model which is semantically
equivalent to the initial L3 program given as the input file. The chain of compilation
steps (from L3 to L0) can be treated as one step (the corresponding transformations
are invoked one after another).

The last step in the compilation process is the code generation (a model to text
transformation). An L0 language text file is generated. This step is also carried out

Agris Sostaks, Audris Kalnins. The Implementation of MOLA to L3 Compiler 155

LURaksti733-datorzin.indd 155LURaksti733-datorzin.indd 155 2008.03.31. 15:06:332008.03.31. 15:06:33

using the L0 language extended with native functions for file handling written in C++.
Actually, only one write to file function is needed.

5.2 MOLA Compiler

Since the whole L3 compilation process has been divided into three separate steps,
there is a possibility to start with any step if the appropriate model has been prepared.
This fact is used by MOLA to L3 compiler – MOLA program is being compiled
directly to an L3 model. This allows to decrease significantly the complexity of the
implementation of MOLA to L3 compiler. Actually, it allows to use transformation
language L3 to build MOLA to L3 compiler.

The first MOLA Transformation Definition Environment (MOLA Editor) [34] was
built on the basis of Generic Modelling Framework [35] – a domain-specific
modelling framework, developed by the UL IMCS together with the company Exigen
Services DATI. The models (MOLA program and metamodel) were stored in a
compatible format to the repository used by the L0 language. Thus, the input for the
MOLA to L3 compiler, a model of a MOLA transformation, already could be
obtained. In fact, no other natural representation of a MOLA program than a model
can be obtained because MOLA is a graphical transformation language. The most
appropriate way to implement MOLA compiler to any suitable language is by using
model transformations. Thus, the first MOLA compiler was implemented using L3
language.

Since the MOLA Editor required more sophisticated features than the GMF domain
specific modelling framework could offer, the next MOLA Editor – MOLA2 Tool –
has been built. MOLA2 Tool uses the METAclipse framework [10], which is based
on Eclipse platform [36] and model transformations. It should be noted that
METAclipse uses the same repository as the L0 realization. Therefore it was possible
to develop transformations for MOLA2 Tool using MOLA itself and the first MOLA
compiler. The second version of MOLA to L3 compiler has been built for MOLA2
Tool, also using L3 language.

Although there are two implementations of MOLA to L3 compiler, there are no
significant differences in the architecture and general ideas of the implementations of
both compilers. The main difference between these two implementations is the
MOLA metamodel. The MOLA metamodel for MOLA2 Tool was improved by
eliminating metamodel restrictions enforced by GMF and making it more suitable for
compilation. The experience and a significant part of the code from the first version of
MOLA to L3 compiler is reused in the second version. This paper is based on the
second version of MOLA to L3 compiler.

Compilation of a MOLA transformation is divided into four steps. Each of them is
performed by a separate component – compiler. These components are:

� MOLA to L3 compiler,
� L3 to L0 compiler,
� L0 to C++,
� C++ to executable file.

The general architecture of MOLA compiler is shown in Fig. 6.

156 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 156LURaksti733-datorzin.indd 156 2008.03.31. 15:06:332008.03.31. 15:06:33

MOLAMOLA L3L3 L0L0 L0L0 C++C++

DLLDLL

MOLA
MM
MOLA
MM

L3
MM

L0
MM

L3
MM

L0
MM

L0
MM
L0
MM

Fig. 6. The general architecture of MOLA compiler
A question may arise – why such a large number of compilers are used? Why do

not use direct compilation from MOLA to C++? The answer is in the low complexity
and reusability of each step. Each compiler transforms a higher-level language to a
lower-level language. It is much easier to build compiler to a language that is at a
closer abstraction level to the source language. Especially it is so if the general
concepts of both languages are similar. This is the reason why L3 (and not L0) is used
as the target language for MOLA. Another issue is the reusability. The compiler of L3
language was already built and this implementation was efficient. The efficiency of
the generated code does not suffer if MOLA compiler is built on top of the compiler
chain. In addition, if we will decide to implement MOLA on another EMOF
compatible repository, for example, EMF [37] or Gralab [38], then only L0 compiler
must be rewritten. Even less, only the actual code generator in L0 compiler must be
rewritten – the lexical and syntax analyzers can be reused. The last compiler (L0 to
code) is dependent on the programming language that implements the API of the
model repository, but for most programming languages it is already built and free, or
open-source versions are available. For example, there are free compilers for Java
[39] and C++ [40]. The only disadvantage of a long compiler chain is longer
compilation time, but it is not a significant problem in areas where transformation
languages are used.

5.3 Model-Driven Compiling

The usage of models and transformation languages in the process of compilation is
not new. The ATL model transformation language [16] has already been used to
compile CPL to SPL [41] and FIACRE to LOTOS [42]. The ATL language itself is
also compiled using a domain-specific language created only for this purpose – ACG
(ATL Code Generation language) [43]. All of these are textual languages and the
model-to-model transformation is used for actual compilation similarly to the way it
was used in the example of the L3 to L0 compilation [27]. A similar idea is also used
in the SmartQVT [15] implementation. The QVT code is parsed to obtain the model
representation of a QVT transformation, and the actual compilation to the Java file is
performed using this model.

A similar pattern of compilation is used in all examples. Three basic steps are
performed:

� parse an input program and obtain the model of it,
� compile the model of the input program to the model of an output program,

Agris Sostaks, Audris Kalnins. The Implementation of MOLA to L3 Compiler 157

LURaksti733-datorzin.indd 157LURaksti733-datorzin.indd 157 2008.03.31. 15:06:332008.03.31. 15:06:33

� generate the code of the output program from the model.
This approach may be called model-driven compiling – models are used as core
elements of the compilation process (see Fig. 7).

Lang1Lang1 Lang2Lang2

Lang1
MM
Lang1
MM

Lang2
MM
Lang2
MM

Lang2Lang2Lang1Lang1

Fig. 7. Model-driven compiling – general architecture

These steps are similar to the phases of compilation in the traditional compilation
technique [33, chapter 1]. The lexical and syntactical analyses are performed by the
parser. The semantic analysis, intermediate code generation (target program model),
and optimization are performed by compiler (model transformation). The code
generation is done in the last step. The model of a source program is stored according
to the language metamodel. Actually, the parse trees used in the traditional
compilation technique can be treated as sort of models. Thus, the similarity is
obvious.

All three steps of the model-driven compiling require appropriate metamodels
already built for both input and output languages and transformation written using a
model transformation language suitable for the compilation tasks. Actually, text-to-
model (T2M), model-to-model (M2M), and model-to-text (M2T) languages are
needed. An exporter or importer written in the general purpose programming
language can be used instead of the T2M and M2T transformations. Certainly, the
choice of the programming language depends on the repository used to store models.

The model-driven compiling is even more appropriate for graphical languages such
as MOLA. Since programs of graphical languages are stored as models, the first step
can be omitted – the model-to-model transformation that implements a compiler can
be applied directly.
The main advantages of using model-driven compiling:

� The higher level of abstraction that is provided by model transformation
languages allows reducing the complexity of compiler implementation.

� This is the most appropriate way to compile graphical languages because
they are mostly implemented using some metamodel [37] or graph-based
[38] repository. Actually, programs (diagrams) of such languages are models
and the usage of a model transformation language is the most natural
approach.

158 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 158LURaksti733-datorzin.indd 158 2008.03.31. 15:06:352008.03.31. 15:06:35

� If the concrete syntax of the input language is based on some general
“coding” language, like XML [44], then model transformations can be
applied to obtain the model of the program from its “coding”. In this case, a
standard parser can be used to obtain the model of the “coding”. Next, the
model transformation can be used to obtain the model conforming to the
input language metamodel. A similar approach is also applicable for the
output language.

� Since attribute grammars have been used to specify the semantics of
programming languages [45], a precise definition of the model
transformation between source language and target languages can be used to
define the semantics of the source language in even more readable way.

The first experience in using model-driven compiling was quite promising. The
MOLA to L3 and L3 to L0 [27] compilers have been developed. The implementation
of both compilers has shown that using transformation language for compilation tasks
reduces the complexity of the implementation. However, the best practice of model-
driven compiling has yet to be developed, and comparison to the traditional
compilation techniques [33] must be drawn.

6 Mapping from MOLA to L3

This chapter contains detailed description of the mapping from MOLA to L3. That
includes mapping of metamodeling language constructs and mapping of MOLA
procedure and its elements to constructs of the L3 language.

6.1 Mapping of Metamodelling Languages

Both MOLA metamodelling language and the Lx family metamodelling language are
based on EMOF. So the mapping is straightforward. For the description of this
mapping, we will use the meta-class names from MOLA and Lx family
metamodelling language metamodels shown in Fig. 2 and Fig. 4. The MOLA related
meta-class names are prefixed by the Kernel prefix, but the Lx related meta-class
names are prefixed by the Lx prefix.

� Each Kernel::Class instance is transformed to Lx::Class with the same
name, but since there are no packages in Lx, the Lx::Class name is prefixed
by all parent package names. For example, the Kernel::Class “Lifeline”,
which is owned by the package “Interactions”, which is in package “UML”,
is transformed to Lx::Class named “UML::Interactions::Lifeline”

� Both languages have pre-defined primitive types. All the primitive types that
are in MOLA – String, Integer, Boolean – are also in Lx.

� Each Kernel::Enumeration instance is transformed to Lx::Enumeration
instance and each Kernel::EnumerationLiteral instance is transformed to
Lx::EnumerationLiteral instance owned by the appropriate enumeration.

� Each Kernel::Generalization instance is transformed to Lx::Generalization
instance. Of course, general and specific links are set to the appropriate
classes. This implementation of the L0 does not allow multiple
generalization; thus, it cannot be used in MOLA either.

Agris Sostaks, Audris Kalnins. The Implementation of MOLA to L3 Compiler 159

LURaksti733-datorzin.indd 159LURaksti733-datorzin.indd 159 2008.03.31. 15:06:372008.03.31. 15:06:37

� Each Kernel::Association instance is transformed to Lx::Association, and
appropriate association ends that are represented as Kernel::Property
instances linked by memberEnd link to the association are transformed to
Lx::AssociationEnd instances. They are linked to the appropriate class
instances. Multiplicity, ordering and composition information of association
ends are also transformed directly to Lx.

� Each Kernel::Property instance that is an attribute is transformed to an
Lx::Attribute instance. Since MOLA allows only primitive or enumeration-
typed attributes, the correspondence is direct.

An example of the transformation is given in Fig. 8.

class Kernel::Classifier;
class Kernel::Class;
class Kernel::Property;
enum VisibilityKind : {public,private,package};

 compos Kernel::Class.[0..1]class/
 ownedAttribute[*].Kernel::Property;

attr Kernel::Classifier.isAbstract:Boolean;
attr Kernel::Property.isDerived:Boolean;
attr Kernel::Property.isReadOnly:Boolean;
attr Kernel::
 Property.AggregationKind:AggregationKind;
attr Kernel::Property.VisibilityKind:VisibilityKind;
rel Kernel::Class.subClassOf.Kernel::Classifier;

Fig. 8. An example of MOLA to Lx metamodelling language

6.2 Mapping of the Procedure Headers

MOLA procedures form the executable part of a MOLA transformation. The L3
language also has procedures. Both MOLA and L3 procedures may have parameters
that may be in (passed by value) or in-out (passed by reference). Both languages may
have variables declared. In L3, the class-typed variables and parameters are called
pointers and have a different syntax, so compiler must distinguish class-typed
variables from enumeration and primitive-typed variables. Each non-reference class-
element that is used in rules in a MOLA procedure is transformed to a pointer
declaration. Actually, the transformation of procedure header is straightforward and
does not need detailed description. An example of the transformation of a MOLA
procedure header is shown in Fig. 9 (the L3 code in all examples is used to better

160 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 160LURaksti733-datorzin.indd 160 2008.03.31. 15:06:382008.03.31. 15:06:38

illustrate the result of compilation. Actually, the compiler produces instances of the
model of an L3 program)

main procedure ExampleProcedure
 (Param:String, Param1:
&Interactions::Lifeline);

var Var:Enumeration1;
pointer Var1:Interations::Message;
pointer ClElem:Interactions::Message;

Fig. 9. Procedure header to L3

6.3 Mapping of the Execution Control Flows

The basic statements of MOLA are rule and for-each loop. There also are other
MOLA statements – text-statement, call-statement, etc. Control flows are used to
determine the order of execution of MOLA statements within one MOLA procedure.

There is exactly one start-statement in a MOLA procedure. It defines the entry
point of the MOLA procedure. Other statements may pass the execution control to
another statement or terminate the execution of the procedure. End-statements are
used to terminate the execution of the procedure. They define the exit points of the
MOLA procedure. The execution of the procedure may also be terminated by a text-
statement or a rule if the corresponding control flow is not present. Actually, a text-
statement and a rule are used as traditional branching constructs (they may have two
outgoing control flows, one of them labelled ELSE). A for-each loop contains nested
MOLA statements (loop-body) that are executed during each iteration. It has a special

Agris Sostaks, Audris Kalnins. The Implementation of MOLA to L3 Compiler 161

LURaksti733-datorzin.indd 161LURaksti733-datorzin.indd 161 2008.03.31. 15:06:382008.03.31. 15:06:38

statement – loop header (rule-based loophead), which defines the entry point to the
loop-body. There may be any other MOLA statement in the loop (except start-
statement) – nested loops are also allowed. A statement that has no outgoing control
flow terminates the current iteration of the loop. A branching statement may also
terminate the current iteration of the loop if one of outgoing control flows is not
present. Other statements (call-statement, etc) just pass the execution control to the
next statement. Control flows in MOLA procedure may connect statements in an
almost arbitrary way, there are only few restrictions. Incoming control flows are not
allowed to the start-statement and loophead. Outgoing control flows are not allowed
from end-statements. It is not allowed to “jump” into a loop from an outside statement
either (it is allowed to “jump” out).

Control flows and MOLA statements form a directed graph, where some nodes
(loops) may contain a nested graph. This graph is the control flow graph (CFG) of a
MOLA procedure. The control flow graph is a data structure used by traditional
compilers for analysis and optimization of program execution [33, chapter 10].

The most natural way to code the control flow graph in a textual language is to use
a labelled block of code for every node and a “jump” command for every edge. Thus
each node of the MOLA control flow graph will compile to the block of L3 code. The
block of code must start with a label command that unambiguously identifies the
block. The execution control is passed to another code block using a goto command.
If the execution of the MOLA procedure must be terminated, then a return command
is used.
According to the different types of statements described above, we can distinguish
five types of nodes in the control flow graph of the MOLA procedure and define the
mapping to L3 language for these types:

� Entry node (start-statement) is a unique and mandatory node. Here we do a
little optimization – no L3 code block is created for start-statement. The
outgoing control flow determines the first MOLA statement that in turn
determines the first code block of the procedure.

� Exit node (end-element) is compiled to the following code block (in what
follows, a simple template language is used – L3 keywords are bolded, other
parts of code are shown in angular braces containing an intuitive
description):

label <label name>;
return;

� Simple node (call-statement) may not have an outgoing ELSE control flow.
It is compiled to a simple code block – a sequence of commands depending
on the actual type of MOLA statement and the goto command to the label
command of the code block that is created from the MOLA statement
connected by the outgoing control flow.

label <label name>;
<sequence of commands>;
goto <next label name>;

� Branching node (rule, text-statement) may have two outgoing control flows,
where one of them may be an ELSE control flow. It is compiled to an if-
then-else command. The if-block contains the condition, then-block contains
the action part of the MOLA rule or text-statement and else-block contains a

162 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 162LURaksti733-datorzin.indd 162 2008.03.31. 15:06:392008.03.31. 15:06:39

goto command to the label command of the code block that is created from
the MOLA statement connected by the outgoing ELSE control flow. The last
command in the main code block is the goto command to the label command
of the code block that is created from the MOLA statement connected by the
other (non-ELSE) outgoing control flow.

label <label name>;
if

begin
<condition commands>;

end
then

begin
<action commands>;

end
else

begin
goto <next else label name>;

end;
goto <next label name>;

� Loop node (for-each loop) contains a nested control flow graph. Since a loop
and its loophead can not be used separately, a common L3 code block is
created for both nodes. A loop is compiled to a foreach command. The such-
that block contains the condition, the do block contains the action part of the
loophead. The do block also contains a goto command to the label command
of the code block that is created from the MOLA statement connected by the
outgoing from the loophead control flow. The last command in the do block
is a label command. This label is used to receive back the execution control
from the code blocks that terminate an iteration of the loop. Thus, a MOLA
statement which terminates the execution of the current iteration of the loop
passes the execution control to this label command instead of terminating the
execution of the whole procedure. In fact, the execution control is passed
away from the do block of a foreach command, but it is received back just at
the end of an iteration. Thus, the code blocks that are created from MOLA
statements within the loop body are included in the corresponding L3 loop
body indirectly – using goto and label commands. The last command in the
main code block is a goto command to the label command of the code block
that is created from the MOLA statement connected by the outgoing control
flow of the loop.

label <label name>;
foreach <loop variable name> suchthat

begin
<loophead condition commands>;

end
do

begin
label <loophead label name>;
<loophead action commands>;
goto <loophead next label name>;
label <loop iteration end label name>;

end
goto <next label name>;

Agris Sostaks, Audris Kalnins. The Implementation of MOLA to L3 Compiler 163

LURaksti733-datorzin.indd 163LURaksti733-datorzin.indd 163 2008.03.31. 15:06:392008.03.31. 15:06:39

The complete code of the procedure is assembled using code blocks obtained in the
way just described. The first code block is determined by the start-statement. All other
code blocks may be added to the procedure in an arbitrary order because the order of
execution is determined only by label and goto commands – not by the order in which
command blocks are added to the procedure.
The result will be likely a sort of “spaghetti code” [46], but this causes no danger
because the L3 code is just an intermediate code which is compiled further. This code
is not read by a transformation developer. The wide usage of the goto commands does
not cause any loss in the overall performance.

6.4 Mapping of MOLA Statements

The control structure aspect of the mapping of MOLA statements to L3 commands
has already been described in the previous section. This section contains a detailed
description of the mapping for each MOLA statement including data processing and
pattern matching aspects.
The mapping for start and end statements has already been described. The start-
statement is used to determine the first MOLA statement and end-statement is
transformed to the return command.

6.4.1 Call-Statement

The call-statement is transformed to the call command. Since the mapping from a
MOLA procedure to L3 procedure is one-to-one, the called L3 procedure is the same
that is mapped from the MOLA procedure called by the MOLA call-statement. The
L3 language allows only binary expressions to be used as actual parameters of the call
command. MOLA allows arbitrary expressions (of appropriate type) to be used as
actual parameters (the same problem is for calling functions in an expression). Our
solution is to use temporary variables or pointers (depending on the actual type of a
parameter) and setVar or setPointer commands to calculate the values of
expressions. These commands must be executed before the call command. If the
actual parameter is a MOLA variable, parameter, or class element identifier, then a
temporary variable is not used. An example of the compilation is shown in Fig. 10.

var temp_var1:String;
var temp_var2:Integer;
begin
…
label id_lab1;
setVar temp_var1=”constant”;
setVar temp_var2=564+c.intAttr:Integer;
call test(a,temp_var1,temp_var2);
goto id_labx;
…

Fig. 10. The compilation of the call-statement

164 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 164LURaksti733-datorzin.indd 164 2008.03.31. 15:06:392008.03.31. 15:06:39

6.4.2 Text-Statement

As it was described before, the text-statement is transformed to the if-then-else
command. MOLA text-statement has two main parts – a condition (constraint), which
is expressed using OCL-style expression, and a list of assignments. The condition
holds if the expression evaluates to true. The condition is compiled to the if block of
the if-then-else command. Assignments are compiled to the then block of the if-then-
else command.

Assignments are used in the text statement to assign values to elementary variables
and pointers. The L3 commands that are used for this task are setVar and setPointer.
In MOLA the value that is being assigned is expressed using a simple expression of
an appropriate type. A simple expression of Integer type may contain Integer-typed
variable, parameter or attribute specifications, Integer constants, pre-defined functions
(size, indexOf, toInteger) and arithmetic operations (addition, subtraction,
multiplication). A simple expression of String type may contain String-typed variable,
parameter or attribute specifications, String constants, pre-defined functions (toLower,
toUpper, substring, toString), and a concatenation operation. A simple expression of
Boolean type may contain Boolean-typed variable, parameter or attribute
specifications, Boolean constants (true and false), or pre-defined function (isTypeOf,
isKindOf, toBoolean). A simple expression of enumeration type may contain
enumeration-typed variable, parameter or attribute specification, enumeration literals
or a pre-defined function toEnum. A simple expression of class type may contain a
class-typed variable or parameter specification (pointer), null constant or typecast.

In L3 similar expressions are allowed, but there are a few differences: there is no
direct typecast of a pointer, actual parameters in a function call may be only a binary
expression of an appropriate type. The list of pre-defined functions in L3 does not
match all the pre-defined functions of the MOLA language either. The solutions to
these problems are rather simple. In addition, some kinds of expressions in L3 allow
more features than in MOLA, but these features are not relevant for MOLA compiler.
The complete table of correspondence is shown in Table 1.

Table 1. Correspondence of elements used in expressions in MOLA and L3

MOLA L3

String, Integer, Boolean, enumeration-
typed constants, NULL constant +

elementary variables, pointers +
attribute specification +
+,-,*,concatenation +
direct typecast (class-typed) temporary variable and extra

setPointer command used
function call temporary variables and extra

setVar commands for complex
parameters used

Agris Sostaks, Audris Kalnins. The Implementation of MOLA to L3 Compiler 165

LURaksti733-datorzin.indd 165LURaksti733-datorzin.indd 165 2008.03.31. 15:06:402008.03.31. 15:06:40

pre-defined functions extended library of native functions
used

toEnum, toInteger, toString, toBoolean +
indexOf, toLower, toUpper extended library used
size, substring +
isTypeOf, isKindOf temporary variable and type

command used
The left column describes features used in MOLA expressions and the right column
shows the correspondence in L3. The plus sign (+) means that the mapping is direct.
If there is no direct mapping, the basic principles of a solution are shown. It may be
the usage of a temporary variable (typecast and function call) or the usage of an
extended library of native functions (indexOf, toLower, toUpper functions).

Though L3 expressions allow Boolean operations, they cannot be used with
relations. Relational operators (<, >, etc) may be used only in var and pointer
commands. That makes the compilation of Boolean expressions used in MOLA more
difficult.

In MOLA the simplest condition is a simple expression of the Boolean type. Then it
is compiled using a temporary variable and a var command in the following way:

Condition:

<simple boolean
expression>

if
begin

[<extra commands>]
setVar temp_var=<simple boolean expression>;
var temp_var==true;

end…
Usually a condition also contains a relation (>, <, >=, <=, =, <> operators can be

used). Since the left and the right operands may be arbitrary expressions of the same
type, the value of each expression is computed and stored in a temporary variable.
Then these variables are compared using a var or pointer command depending on the
type of expressions.

Condition:

<expression1><relation>
<expression2>

if
begin

[<extra commands>]
setVar/setPointer temp_var1=<expression1>;
[<extra commands>]
setVar/setPointer temp_var2=<expression2>;
var/pointer temp_var1<relation>temp_var2;

end
...

A condition in MOLA may also contain Boolean operations – conjunction (and),
disjunction (or), and negation (not) – together with relational operators. The L3 has
no such features, but it is shown [18, chapter 4] that it is possible to construct L3 code
that implements the Boolean operations. The algorithm implemented in MOLA to L3
compiler uses the same principles.

Our template language will be used to explain this algorithm. An extension of the
template language is required – let us define a function

166 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 166LURaksti733-datorzin.indd 166 2008.03.31. 15:06:402008.03.31. 15:06:40

PrintBooleanExpression(variable_name,boolexpression) that returns the block of L3
code that calculates the value of the Boolean expression boolexpression and stores it
in the variable whose name is passed by the parameter variable_name. The use of this
function means that the code block returned by the function replaces the function call.
We will also need an auxiliary procedure CreateBooleanVariable(varname), which
adds the declaration of a new Boolean variable whose name is passed by the
parameter varname. Variable and label names having a prefix unique are considered
to be unique within the procedure.

If the parameter boolexpression is a simple expression of type Boolean or a
relation, then the function PrintBooleanExpression will return the following code:

boolexpression=<simple
boolean expression>

[<extra commands>]
setVar variable_name =
 <simple boolean expression>;

boolexpression=
<expression1><relation>
<expression2>

setVar variable_name =false;
[<extra commands>]
setVar unique_temp_var1=<expression1>;
[<extra commands>]
setVar unique_temp_var2=<expression2>;
var unique_temp_var1<relation>
unique_temp_var2 else unique_label;
setVar variable_name =true;
label unique_label;

If the parameter boolexpression contains Boolean operators and, or, not, then the
function will return the following code

boolexpression=
boolexpression1 or
boolexpression2

CreateBooleanVariable (“unique_temp_var1”)
CreateBooleanVariable (“unique_temp_var2”)
PrintBooleanExpression(“unique_temp_var1”,
 boolexpression1)
PrintBooleanExpression(“unique_temp_var2”,
 boolexpression2)
setVar variable_name=true;
var unique_temp_var1==false else unique_label;
var unique_temp_var2==false else unique_label;
setVar variable_name=false;
label unique_label;

boolexpression=
boolexpression1 and
boolexpression2

CreateBooleanVariable (“unique_temp_var1”)
CreateBooleanVariable (“unique_temp_var2”)
PrintBooleanExpression(“unique_temp_var1”,
 boolexpression1)
PrintBooleanExpression(“unique_temp_var2”,
 boolexpression2)
setVar variable_name=false;
var unique_temp_var1==true else unique_label;
var unique_temp_var2==true else unique_label;
setVar variable_name=true;
label unique_label;

Agris Sostaks, Audris Kalnins. The Implementation of MOLA to L3 Compiler 167

LURaksti733-datorzin.indd 167LURaksti733-datorzin.indd 167 2008.03.31. 15:06:402008.03.31. 15:06:40

boolexpression= not
boolexpression1

CreateBooleanVariable (“unique_temp_var1”)
PrintBooleanExpression(“unique_temp_var1”,
 boolexpression1)
setVar variable_name=true;
var unique_temp_var1==true else unique_label;
setVar variable_name=false;
label unique_label;

An example of the compilation of a MOLA text-statement is shown in picture Fig. 11.

if begin
setVar _mvar_6=false;
setVar _mvar_9=s;
setVar _mvar_10="Star";
var _mvar_9==_mvar_10 else
_mlabel_8;
setVar _mvar_6=true;
label _mlabel_8;
setVar _mvar_7=false;
setVar _mvar_12=par;
setVar _mvar_13=0;
var _mvar_12>_mvar_13 else
_mlabel_11;
setVar _mvar_7=true;
label _mlabel_11;
setVar _mvar_4=false;
var _mvar_6==true else _mlabel_5;
var _mvar_7==true else _mlabel_5;
setVar _mvar_4=true;
label _mlabel_5;
var _mvar_4==true;

end then begin
setVar _mvar_14=
c.name:String+"Star";
setVar s= toUpper(_mvar_14);
setVar par= Length(s)+1;

end else begin
return;

end;

Fig. 11. The compilation of the text-statement

6.4.3 Rule

Another, and the most important, decision statement in MOLA is a rule. It is also
compiled to the if-then-else command. The condition of the rule is expressed using a
pattern. The implementation of pattern matching typically is the most demanding
component to implement and also the key factor determining the implementation
efficiency. The efficiency of the implementation of the pattern matching is not the

168 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 168LURaksti733-datorzin.indd 168 2008.03.31. 15:06:412008.03.31. 15:06:41

central theme of this paper. The chosen realization of the pattern matching
implements some ideas that have been already described in [28]. This approach
guarantees sufficient efficiency of the pattern matching for typical MOLA use cases.

The basic elements of the pattern are class-elements and association-links. A class-
element represents the instance of the particular class. There are several types of
class-elements, but only normal and delete class-elements are used to specify a
pattern. Let us call them pattern elements. In addition, only normal and delete
association-links are used to specify a pattern. Let us call them pattern links. Pattern
elements and pattern links form the pattern graph. Pattern elements that are linked by
pattern links form the pattern fragment (connected component of the pattern graph).
A pattern may contain several pattern fragments that can be treated as separate
patterns. All pattern fragments must match for the whole pattern to match. The main
goal of the pattern matching is to find particular instances that match the given
pattern. The sought instances are represented by non-reference pattern elements. The
pattern links, reference class elements, and constraints on class elements form the
pattern constraint. Actually, such a set of instances is sought that matches the pattern
constraint.

The pattern is compiled to a block of L3 code which is placed in the if block of the
if-then-else command. Several pattern fragments are compiled to separate L3 code
blocks following each other. Natural constructs in L3 language that implement
patterns are first-suchthat and first-from-by-suchthat commands. A pattern
fragment is thus compiled to a nested first-suchthat or first-from-by-suchthat
command.

To achieve this goal, the pattern graph must be traversed and appropriate
commands built. The classical graph traversing techniques are used – a recursive
algorithm that marks already traversed nodes and edges [47].

The first task is to decide which pattern element will be processed first – let us call
it a root node. This is an important task because this decision affects the overall
performance of the pattern matching. The main idea is to reduce the number of
instances that must be examined to match or fail the pattern. If the pattern fragment
contains a reference element, then the traversing of the pattern graph must be started
from this element. This version of MOLA language also allows to denote the root
element manually, using special compiler-related annotations.

The algorithm starts the processing of the graph with the root node:
� root node – is marked as traversed.

o If it is a non-referenced class-element, then the first-suchthat
command is created. The such-that command block of the
command is selected as the current command block. L3 commands
that are obtained from the local constraint of the class-element are
placed in the such-that block of the created command.

o If it is a referenced class element, then L3 commands that are
obtained from the local constraint of the class element are placed in
the if block of the if-then-else command.

o All nodes connected by adjacent edges (pattern links that have not
yet been traversed) are processed.

� Other (non-root) nodes are processed in the following way – the edge which
is used to reach this node is marked as traversed.

Agris Sostaks, Audris Kalnins. The Implementation of MOLA to L3 Compiler 169

LURaksti733-datorzin.indd 169LURaksti733-datorzin.indd 169 2008.03.31. 15:06:412008.03.31. 15:06:41

o If the node has been already traversed, then a link command is
added to the current command block.

o If the node has not been traversed, then it is marked as traversed.
� If it is a reference class-element, then a link command is

added to the current command block. L3 commands that
are obtained from the local constraint of the class element
are placed in the if block of the if-then-else command.

� If it is a non-reference class-element, then the first-from-
by-suchthat command is added to the current command
block. The such-that command block of the this command
is selected as the current command block. L3 commands
that are obtained from the local constraint of the class
element are placed in the such-that block of the created
command.

� All nodes connected by adjacent edges that have not yet
been traversed are processed.

The local constraints of pattern elements are processed in the same way as the
condition of the text-statement.
An example of the compilation of a pattern is given in Fig. 12.

if begin
first p:Kernel::Property from c
by ownedAttribute suchthat
begin

setVar _mvar3=p.name:String;
setVar _mvar4=”value”;
var _mvar3==_mvar4;
first t:Kernel::Type from p by
type;

end;
end
then
….

Fig. 12. The compilation of the rule-pattern
Actually, the algorithm described above realizes the principles of MOLA Virtual

Machine described in [28]. This algorithm builds an efficient L3 code if MOLA
language constructs are used in a natural way. The practical usage of MOLA compiler
has also shown that the natural use of MOLA constructs leads to an efficient pattern
matching. Thus, the current implementation is sufficient enough for typical tasks
(MDA, tool building). However, the algorithm can be enhanced in order to achieve a
better performance in less typical situations. For example, if the pattern does not
contain a reference pattern-element or annotated pattern-element, then a more detailed
analysis of the pattern graph should be performed. The multiplicities of the
associations that correspond to the association-links used in the pattern could be
analyzed. The direction of traversing the graph should be chosen so that the “going”
along an association in the direction of ‘*’ multiplicity is minimized. More
complicated algorithms for the pattern matching have been used typically in rule-

170 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 170LURaksti733-datorzin.indd 170 2008.03.31. 15:06:422008.03.31. 15:06:42

based transformation languages, for example, VIATRA [48]. This problem (the
pattern matching efficiency) is not the main topic of this paper; therefore, it is not
discussed in-depth.

The action part of a rule consists of class-elements, association links, and attribute
assignments that are included in class elements. The create and delete class-elements
are used to create and delete particular instances. The create and delete association-
links are used to create and delete links. The assignment is used to assign the value of
the attribute of a particular instance. The value is specified by using expressions that
have been already described in previous sections. The correspondence between
MOLA and L3 constructs is shown in Table 2.

Table 2. Correspondence of constructions used in the action part of the rule

MOLA L3

create, delete class-elements addObj, deleteObj commands
create, delete association-links addLink, deleteLink commands
attribute value assignments setAttr commands

The L3 code that is created for the action part of the rule is placed in the then block

of the if-then-else command. An example of the compilation of the action part of a
rule is shown in Fig. 13.

If begin …end
then begin

addObj pr:Kernel::Property;
addLink pr.type.c;
setAttr c.name="Student";
setAttr pr.name="attendant";
deleteLink
c.owningPackage.pack;
deleteObj pack;

end else
…

Fig. 13. The compilation of the rule – action part

6.4.4 For-each loop

The last MOLA statement described in this chapter is the for-each loop. The
implementation of a loop is one of the crucial issues in the implementation of the
MOLA compiler. An incorrectly chosen search structure may cause serious efficiency
problems.

Agris Sostaks, Audris Kalnins. The Implementation of MOLA to L3 Compiler 171

LURaksti733-datorzin.indd 171LURaksti733-datorzin.indd 171 2008.03.31. 15:06:422008.03.31. 15:06:42

The condition of a loop is expressed by using the pattern of the loophead, which
contains a special class-element – the loop variable. The iteration is performed over
all instances that correspond to the loop variable.

The loop is compiled to the foreach command. The condition of the loop is
compiled to the such-that block of the foreach command. The compilation of the
loophead pattern is similar to the compilation of the rule pattern. The pattern match
starts from the loop variable (it is chosen as the root node). Usually there is a
restriction-path – a path from a referenced class element to the loop variable where
all multiplicities of the corresponding associations are ‘0..1’ or ‘1’. Then for this path,
first-from-suchthat commands are created and added to the code block before the
foreach command. The loop variable is used as the loop variable in the foreach
command. All nodes and edges that have been already processed (appropriate
commands built for the loop variable and class-elements in the restriction path) are
marked traversed, and the algorithm used for the compilation of a rule is executed.

This algorithm is not the most optimal either, but it is suitable for most of typical
examples – usually there is a restriction path. Further optimization of the algorithm is
not addressed in this paper.

The action part of the loophead is compiled in the same way as the action part of a
rule. The created code is added to the do block of the foreach command. Fig. 14
illustrates an example of the compilation of a loop.

foreach p:Kernel::Property from c
by ownedAttribute suchthat
begin

first type:Class from p by
type;

end do begin
setAttr p.name=c.name:String
+ type.name:String;
goto _mlabel_10;
label _mlabel_9;

end;
goto _mlabel_23;
...
label _mlabel_10;
call test(type);
goto _mlabel_9;
...

Fig. 14. The compilation of the loop

The mapping of the most important MOLA constructs to L3 has been defined in this
chapter.

172 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 172LURaksti733-datorzin.indd 172 2008.03.31. 15:06:432008.03.31. 15:06:43

7 The surrounding of the MOLA compiler

This chapter introduces the problems that have been discovered during the
implementation of the MOLA compiler. The compiler is the most important part of
the implementation of a programming or transformation language. However, there are
other parts needed in a proper development environment.

7.1 Error handling in MOLA

The compiler detects syntax errors in a program. Usually a development environment
of a textual programming language provides the possibility to navigate to errors in a
code. A list of errors is shown and the appropriate “problematic” line of code is
highlighted. Similar requirements can also be applied to the MOLA development
environment. Since MOLA is a graphical language, there are no “lines of code”, as it
is in textual languages. Each element that has a visual representation (MOLA
statement, class-element, etc) can be treated as a “line of code”. The MOLA compiler
must detect errors in a program and point to the appropriate element. Actually,
MOLA compiler does not “know” anything about the visual representation of a
MOLA element. Thus, the visualization of an error is done by the development
environment.

Our solution is to store the error information in the error model. The error
metamodel is very simple (see Fig. 15).

Fig. 15. The error metamodel

In fact, there is only one class (ErrorMessage). It represents a particular error. There
are two attributes – the attribute text contains the textual information and type
determines whether it is a warning or an error. The association element represents an
“error pointer” to the appropriate element in a MOLA transformation (any MOLA
element inherits from the Kernel::Element, see Fig. 3). The MOLA compiler deletes
the existing error model and creates a new one in the process of compilation. The
MOLA2 Tool reads the error model and visualizes it. An example of the error
visualization is shown in Fig. 16.
The list of errors is shown in the properties tab. It is possible to navigate to the
corresponding MOLA procedure from there. The elements pointed by the compiler
are highlighted. This is an adequate way to treat the error handling problem in a
graphical language.

Agris Sostaks, Audris Kalnins. The Implementation of MOLA to L3 Compiler 173

LURaksti733-datorzin.indd 173LURaksti733-datorzin.indd 173 2008.03.31. 15:06:432008.03.31. 15:06:43

Fig. 16. The visualization of errors in a MOLA procedure.

7.2 Structuring a program in MOLA

Another feature provided by modern development environments is the possibility to
compile only part of the code if the whole program has already been compiled. This is
needed for large programs, when a compilation takes a significant amount of time. To
achieve this goal, the program has to be structured. The most common approach is to
use code units. Each unit is compiled to a separate object. Next, a linker is used to
obtain a single executable.

A similar idea is also used in the MOLA2 Tool. Packages are used to structure a
MOLA program. A package may be defined as a MOLA unit. It means that all MOLA
procedures that are contained by the unit are compiled to a separate L0 unit. This
allows using L0 compiler as a linker that assembles all L0 units into one C++ project.
Thus, model transformations (MOLA and L3-L0’compilers) can work with smaller
models that helps to improve the overall performance of the compilation process.

7.3 Debugging in MOLA

If a program is successfully compiled, it means that it is syntactically correct, but it
does not mean that the program is semantically correct. Testing is a common
approach used by a program developer. If a bug is found, then it must be fixed. This

174 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 174LURaksti733-datorzin.indd 174 2008.03.31. 15:06:442008.03.31. 15:06:44

process is called debugging. The debugging process requires a tool support to ease
this process. Tools used for debugging are called debuggers.

Typically, debuggers offer functions such as running a program step by step and
pausing the program to examine the current state of the program to track the values of
some variables. Some debuggers have the ability to modify the state of the program
while it is running. The importance of a good debugger is very high. The existence of
such a tool can often be the deciding factor in the use of a language, even if another
language is more suited to the task.

However, a debugger for the MOLA2 Tool has not yet been developed. There are
examples of a debugger of a graphical language, for example, the UML Model
Debugger [49]. There are differences between the debugger of a textual language and
the debugger of a graphical language. The main difference is in the representation of
the single-stepping approach. Since graphical languages are usually represented in
diagrams, an animation of the program execution is required. Other representations
could also be used, but they would be rather far from the concepts of the language.

An interpreter or instrumentation by an additional code in the compilation result
may be used for the debugging purposes. The execution of a single MOLA statement
could be considered as one step in the step-by-step debugging process. The result of
the compilation of a MOLA program is L3 code. Since this code consists of code
blocks that correspond to one MOLA statement, these blocks could be supplemented
with a debugging code in a rather simple way.

There is another widely used but not so sophisticated way of the debugging. The
trace (log) files can be used to trace the execution of a program. The current version
of the MOLA compiler uses the L0 debugging feature – the L0 trace file. It logs an
execution of every L0 command. However, the L0 tracing operates with L0 concepts.
Therefore, a tracing that is at a closer abstraction level to the MOLA is needed.

8 Conclusions and Future Work

A sufficiently efficient implementation of the MOLA to L3 compiler has been
described in this paper. The MOLA compiler has already been used practically in the
area of tool building. The transformations that are used for implementation of the
MOLA2 Tool within the METAclipse framework are developed using the MOLA to
L3 compiler. The MOLA2 Tool that includes the second version of the MOLA
compiler is successfully being used in the European IST 6th framework project
ReDSeeDS [50]. Traditional MDA tasks are being implemented in MOLA there.
These tasks include transformations from formalized software requirements to an
architecture model of the system to be built and then to a detailed design model. Thus,
the efficiency of the chosen architecture has been approved by practical usage. In both
cases, non-trivial MOLA transformations have been developed and applied to
sufficiently large models.

On the one hand, the future work is related to the problems discussed in chapter 7.
The practical usage of MOLA has shown that the problem of debugging is quite
significant. It should be noted that building both a user-friendly and sufficiently high-
level debugger for model transformation languages, especially for graphical ones, is
quite a challenging task. On the other hand, improvements in the implementation of
the MOLA compiler are also expected – a more advanced algorithm of pattern

Agris Sostaks, Audris Kalnins. The Implementation of MOLA to L3 Compiler 175

LURaksti733-datorzin.indd 175LURaksti733-datorzin.indd 175 2008.03.31. 15:06:442008.03.31. 15:06:44

matching for MOLA will be developed. These improvements should ensure more
efficient execution for less typical MOLA transformations. In addition, the model-
driven compiling briefly sketched in this paper also deserves a more detailed research.

References

1. Volter M. and Stahl T., Model-Driven Software Development. John Wiley & Sons,
2006.

2. A.G. Kleppe, J.B. Warmer, & W. Bast, MDA explained: The model driven
architecture: Practice and promise (Boston: Addison-Wesley, 2003)

3. The Object Management Group (OMG) URL: http://www.omg.org/
4. OMG Model-Driven Architecture URL: http://www.omg.org/mda/
5. Meta Object Facility (MOF) 2.0 Core Specification URL:

http://www.omg.org/docs/ptc/04-10-15.pdf
6. OCL 2.0 Specification Version 2.0 URL: http://www.omg.org/docs/ptc/05-06-06.pdf
7. OMG Unified Modelling Language (UML), version 2.1.1 URL:

http://www.omg.org/technology/documents/formal/uml.htm
8. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification URL:

http://www.omg.org/docs/ptc/07-07-07.pdf
9. Metamodel and UML Profile for Java and EJB Specification URL:

http://www.omg.org/docs/formal/04-02-02.pdf
10. Kalnins, A., Vilitis, O., Celms, E., Kalnina, E., Sostaks, A., Barzdins, J.: Building

Tools by Model Transformations in Eclipse. Proceedings of DSM’07 workshop of
OOPSLA 2007, Montreal, Canada, Jyvaskyla University Printing House, 2007, pp.
194–207.

11. I. Rath, D. Varro. Challenges for advanced domain-specific modelling frameworks.
Proc. of Workshop on Domain-Specific Program Development (DSPD), ECOOP
2006, France.

12. Ermel, C., Ehrig, K., Taentzer, G., Weiss, E.: Object Oriented and Rule-based Design
of Visual Languages Using Tiger. Proceedings of GraBaTs'06, 2006, pp. 12

13. Request for Proposal: MOF 2.0 Query / Views / Transformations RFP URL:
http://www.omg.org/docs/ad/02-04-10.pdf

14. ikv++ - mediniQVT URL:
http://www.ikv.de/index.php?option=com_content&task=view&id=75&Itemid=77

15. SmartQVT URL: http://smartqvt.elibel.tm.fr/index.html
16. ATL. URL: http://www.eclipse.org/m2m/atl/
17. VIATRA2 URL: http://dev.eclipse.org/viewcvs/indextech.cgi/gmt-

home/subprojects/VIATRA2/index.html
18. J. Barzdins, A. Kalnins, E. Rencis, S. Rikacovs, Model Transformation Languages

and Their Implementation by Bootstrapping Method, Pillars of Computer Science:
Essays Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of His 85th Birthday,
Arnon Avron, Nachum Dershowitz, and Alexander Rabinovich, editors, Lecture
Notes in Computer Science, vol. 4800, Springer-Verlag, Berlin, 2008.

19. T. Fischer, J. Niere, L. Torunski, and A. Zundorf. Story diagrams: A new graph
rewrite language based on the Unified Modelling Language. In G. Engels and G.
Rozenberg, editors, Proc. of the 6th International Workshop on Theory and
Application of Graph Transformation, volume 1764 of LNCS, pages 296–309.
Springer Verlag, 1998.

20. Agrawal A., Karsai G., Shi F. Graph Transformations on Domain-Specific Models.
Technical report, Institute for Software Integrated Systems, Vanderbilt University,
ISIS-03-403, 2003

176 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 176LURaksti733-datorzin.indd 176 2008.03.31. 15:06:442008.03.31. 15:06:44

21. Kalnins, A., Barzdins, J., Celms, E.: Model Transformation Language MOLA.
Proceedings of MDAFA 2004, Vol. 3599, Springer LNCS, 2005, pp. 62–76.

22. C. Ermel, M. Rudolf, and G. Taentzer. The AGG Approach: Language and Tool
Environment. In H. Ehrig, G. Engels, H. J. Kreowski, and G. Rozenberg, editors.
Handbook of Graph Grammars and Computing by Graph Transformation, Vol. 2:
Applications, Languages and Tools, pages 551–603. World Scientific, 1999

23. Schürr, A., Winter, A., Zündorf, A.: The PROGRES approach: Language and
environment. In Ehrig, H., Engels, G.,Kreowski, H.J., Rozenberg, G., eds.: Handbook
on Graph Grammars and Computing by Graph Transformation: Application,
Languages, and Tools. Volume 2. World Scientific (1999) pp. 487–550

24. F. Jouault and J. Bézivin. KM3: a DSL for Metamodel Specification. In Procs.
FMOOD’06, volume 4037 of LNCS, pages 17–185

25. Balogh, A., Varro, D. Advanced Model Transformation Language Constructs in the
VIATRA2 Framework, ACM SAC2006, Dijon, France, 2006

26. ATL: Atlas Transformation Language Specification of the ATL Virtual Machine
URL:
http://www.eclipse.org/m2m/atl/doc/ATL_VMSpecification%5Bv00.01%5D.pdf

27. E. Rencis, Model Transformation Languages L1, L2, L3 and Their Implementation,
Articles of the University of Latvia, “Computer Science and Information
Technologies” 2008.

28. Kalnins A., J. Barzdins, E. Celms. Efficiency Problems in MOLA Implementation.
19th International Conference, OOPSLA’2004 (Workshop “Best Practices for Model-
Driven Software Development”), Vancouver, Canada, October 2004

29. A. Kalnins, E. Celms, A. Sostaks. Simple and Efficient Implementation of Pattern
Matching in MOLA Tool. Proceedings of the 7th International Baltic Conference on
Databases and Information Systems (Baltic DB&IS’2006), Vilnius, Lithuania, July
3–6, 2006, pp. 159–167.

30. B. Efron, R.J. Tibshirani, “An Introduction to the Bootstrap”, Chapman & Hall/CRC,
1994, 436 p

31. Barzdins, J., Barzdins, G., Balodis, R., Cerans, K., Kalnins, A., Opmanis, M.,
Podnieks, K.: Towards Semantic Latvia. Proceedings of Seventh International Baltic
Conference on Databases and Information Systems, Communications, Vilnius,
Lithuania, O. Vasileckas, J. Eder, A. Caplinskas (Eds.), Vilnius, Technika, 2006, pp.
203–218.

32. S. Rikacovs, The base transformation language L0+ and its implementation, Articles
of the University of Latvia , “Computer Science and Information Technologies”,
2008

33. A. Aho, R. Sethi, J. Ullman, Compilers: Principles, Techniques, and Tools. Bell
Laboratories, 1986

34. A. Kalnins, E. Celms, A. Sostaks. Tool support for MOLA. Fourth International
Conference on Generative Programming and Component Engineering (GPCE'05).
Proceedings of the Workshop on Graph and Model Transformation (GraMoT),
Tallinn, Estonia, September 2005, pp. 162–173

35. Celms E., A. Kalnins, L. Lace. “Diagram definition facilities based on metamodel
mappings”. Proceedings of the 18th International Conference, OOPSLA’2003
(Workshop on Domain-Specific Modeling), Anaheim, California, USA, October
2003, pp. 23–32

36. Eclipse – an open development platform. URL: http://www.eclipse.org/
37. Eclipse Modelling Framework (EMF, Eclipse Modelling subproject),

http://www.eclipse.org/emf/
38. Peter Dahm and Friedbert Widmann. GraLab - Das Graphenlabor. Projektbericht

4.3.0, University of Koblenz-Landau, Institute for Software Technology, 07 2003.

Agris Sostaks, Audris Kalnins. The Implementation of MOLA to L3 Compiler 177

LURaksti733-datorzin.indd 177LURaksti733-datorzin.indd 177 2008.03.31. 15:06:442008.03.31. 15:06:44

39. Java Technology URL: http://java.sun.com/
40. GCC, the GNU Compiler Collection URL: http://gcc.gnu.org/
41. Jouault, F., Bezivin, J., Consel, C., Kurtev, I., Latry, F. Building DSLs with

AMMA/ATL, a Case Study on SPL and CPL Telephony Languages. In: Proceedings
of the 1st ECOOPWorkshop on Domain-Specific Program Development (DSPD),
July 3rd, Nantes, France. (2006)

42. ATL Use Case – Compiling a new formal verification language to LOTOS (ISO
8807) URL: http://www.eclipse.org/m2m/atl/usecases/FIACRE2LOTOS/

43. F. Jouault, and F. Allilaire, An introduction to the ATL Virtual MachineV1.0 draft
URL: http://www.eclipse.org/m2m/atl/doc/ATL_VM_Presentation_%5B1.0%5D.pdf

44. Extensible Markup Language (XML) 1.1 (Second Edition) URL:
http://www.w3.org/TR/xml11/

45. Slonneger, K. and B. Kurtz. Formal Syntax and Semantics of Programming
Languages. A Laboratory Based Approach, Addison-Wesley Publishing Company,
1995.

46. E. W. Dijkstra, GOTO Statement Considered Harmful, Letter of the Editor,
Communications of the ACM, March 1968, pp. 147–148.

47. Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L. (1990). Introduction to
Algorithms, first edition, MIT Press and McGraw-Hill.

48. G. Varro, D. Varro and K. Friedl. Adaptive graph pattern matching for model
transformations using model-sensitive search plans. In G. Karsai and G. Taentzer
editors, Proc. of Int. Workshop on Graph and Model Transformation (GraMoT’05),
volume 152 of ENTCS, pages 191–205, Tallinn, Estonia, September 2005.

49. D. Dotan, A. Kirshin, Debugging and Testing Behavioral UML Models, Proceedings
of OOPSLA 2007, Montreal, Canada

50. ReDSeeDS. Requirements Driven Software Development System. European FP6 IST
project. http://www.redseeds.eu/, 2007.

178 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 178LURaksti733-datorzin.indd 178 2008.03.31. 15:06:442008.03.31. 15:06:44

Technical Solutions for the Transformation-Driven
Graphical Tool Building Platform METAclipse

Oskars Vilitis1, Audris Kalnins

Institute of Mathematics and Computer Science, University of Latvia, 29 Rai�a blvd., R�ga,
LV-1459, Latvia, ph.: (+371) 6 7224 363

Oskars.Vilitis@gmail.com, Audris.Kalnins@mii.lu.lv

Abstract. The paper gives a detailed description of technical solutions
developed for the implementation of a metamodel-based graphical tool building
platform whose main area of application is the development of DSL editors. As
opposed to the well-known static-mapping-driven approach, the implementation
described here provides more flexible means for the definition of the
correspondence between the domain and presentation metamodels, using model
transformations. The solutions described in the paper form the basis of a newly
developed Eclipse plugin METAclipse that allows an easy use of
transformations and materializes the ideas of the transformation-driven tool
building platform. METAclipse has proven its flexibility and efficiency in the
development of a new generation graphical editor for the model transformation
language MOLA.

Keywords. DSL Editors, model transformations, metamodel-based graphical
tool building platform, transformation-driven, Eclipse

1 Introduction

Due to the increasing interest in the MDA approach and the growing popularity of
various domain-specific languages (DSLs), various graphical tool building
environments have gained continuously increasing attention in recent years. The first
simple generic metamodel-based tool environments, such as MetaEdit [1], Kogge [2]
and early versions of Dome [3] and [4], appeared already in the mid-nineties, but their
capabilities were quite limited.

The second generation of such metamodel-based environments with much wider
possibilities, such as MetaEdit+ [5], GME [6], and ATOM3 [7], appeared around
2000 (the first version of MetaEdit+ actually appeared much earlier [8]). They already
had domain metamodeling facilities close to MOF [9] and more advanced graphical
capabilities. Therefore the popular tool paradigm of a visual language being based on
a presentation-independent domain (as it is e.g., for UML [10]) could be supported.
But the presentation metamodel (the description of graphical elements) still had to be
close to the domain metamodel, only relatively simple mappings between them were

1 supported partially by ESF (European Social Fund),

project 2004/0001/VPD1/ESF/PIAA/04/NP/3.2.3.1/0001/0001/0063

LATVIJAS UNIVERSITĀTES RAKSTI. 2008, 733. sēj.:
DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS 179.–212. lpp.

LURaksti733-datorzin.indd 179LURaksti733-datorzin.indd 179 2008.03.31. 15:06:442008.03.31. 15:06:44

permitted, and everything else had to be defined by OOPL code (e.g., C++ in GME).
The previous tool framework by UL IMCS, the Generic Modeling Tool environment
[11], also belongs to this category.

A completely new generation of tool frameworks has emerged in recent years in
response to the need of the MDA community to make DSLs an everyday software
development practice. One such group of environments is based on the open-source
Eclipse platform. Eclipse, together with its EMF plugin [12], is a broadly used
metamodeling environment, close to MOF. In addition, the GEF plugin [13] is a basic
“diagram drawing engine.” Only something linking the two was required for a
complete tool building environment. The first and the most popular solution is the
static metamodel mapping-driven GMF platform [14]. Alternative solutions are
provided by the Pounamu/Marama [15] environment and the coming GEMS project
[16].

A popular alternative to Eclipse on a commercial basis is offered by Microsoft
DSL Tools [17] in Visual Studio 2005; however, the logical capabilities there are
quite close to GMF. The already mentioned MetaEdit+ has significantly evolved and
has also become a key player in this area.

The above-mentioned solutions are quite appropriate for relatively simple cases,
where the domain and presentation metamodels are close and no complicated
mapping logic is required. However, DSL support frequently requires much more
complicated and flexible mapping logic. Therefore a new approach has appeared: to
define this mapping by model transformation languages. Model mappings in tools
actually lie very close to the traditional MDA tasks, for which model transformation
languages were invented. Therefore they can be considered very appropriate DSLs for
metamodel-based tool building, yielding development efficiency that is an order of
magnitude higher when compared to that of OOPL.

The first frameworks using this approach to a degree are the Tiger project [18] and
the ViatraDSM framework [19]. Both are based on Eclipse and use GEF as a drawing
engine. The Tiger project is based on the graph transformation language AGG [20].
However, a specific domain modeling notation is used there, which still forces the
domain metamodel of a language to be close to the presentation metamodel. Standard
editing actions (create, delete, etc.) are specified by graph transformations, which act
on the domain model, and the presentation model is updated accordingly. The
ViatraDSM framework is based on the Viatra2 transformation language [21]. In this
framework, the domain metamodel must be close to the presentation metamodel too,
but larger freedom is allowed, and the transformation approach can, to a degree, be
combined with the static mapping approach. There are also plans to use the Fujaba
[22] transformation language in the MOFLON framework [23].

A detailed analysis of the two approaches and their strengths and weaknesses has
been done in the paper “Building Tools by Model Transformations in Eclipse” [24].
This paper concentrates on a thorough description of the technical solutions
developed in order to implement the fully transformation-driven tool building
platform METAclipse. METAclipse is partly being developed within the project
“New Generation Modeling Tool Framework,” which is funded by ERDF (2006–
2008). Within this project, another tool implementing similar ideas, GrTP [25], is also
being developed, however with a different profile: its aim is to handle various tasks
related to the semantic web.

180 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 180LURaksti733-datorzin.indd 180 2008.03.31. 15:06:452008.03.31. 15:06:45

In METAclipse there are no restrictions on the correspondence between the
domain and presentation metamodels. The mappings are defined dynamically by
transformations in the model transformation language MOLA [26]. METAclipse is
implemented as an Eclipse plugin and reuses the basic Eclipse components such as
EMF and GEF, as well as parts of the GMF runtime [14]. METAclipse obeys
traditional Eclipse style and behavior guidelines and therefore can be integrated in
other eclipse-based development environments. Also, it is possible to integrate other
Eclipse technologies like model-to-text generation. An overview of the platforms
architecture and the rationale behind the METAclipse framework will be presented in
section 2.

The main distinguishing feature of METAclipse is an appropriately built
presentation metamodel, which is discussed in detail in section 4. It enables a clear
separation of responsibilities between the METAclipse presentation engines, which
handle all the low-level presentation and layout-related tasks, and transformations,
which create and maintain only the domain and the logical structure of presentation.

Section 5 provides a brief sketch of transformations in METAclipse, however, they
are not the main topic of this paper. The emphasis of this paper is on the structure and
functionality of the METAclipse framework itself.

METAclipse is already proven to be useful in practice by creating an editor for the
MOLA language itself (MOLA is a graphical model transformation language, thus
being a remarkable example of a DSL). This editor is successfully being used in the
European IST 6th framework project ReDSeeDS [27]. All figures containing class
diagrams in the paper have been created with the MOLA metamodel editor.

2 Overall METAclipse Architecture

A graphical modeling tool must deal with many complex tasks, such as proper
domain element representation; intuitive and standardized element editing; correct
model modifications in response to the graphical editing events; providing a
convenient way of navigating through models and a clear way of model element
property representation; etc. The most complex and time consuming tasks are the ones
concerned with the graphical representation and user interface handling. Luckily, a
number of these tasks are common to all graphical tools (i.e., they are domain-
independent) and can be handled at the tool-building platform framework level.

2.1 Basic Principles of the METAclipse Framework

In METAclipse, a well-defined framework is provided for the tool builders. The top-
level view of the METAclipse architecture is very simple (see Fig. 1). METAclipse
itself consists of a set of Eclipse plugins that define the framework of the tool
building platform and comprise several so-called presentation engines, each of which
deals with a particular set of graphical editor tasks (project tree engine, element
property engine, etc.). Each of these engines will be discussed later in this paper in
section 4.

Oskars Vilitis, Audris Kalnins. Technical Solutions for the Transformation-Driven .. 181

LURaksti733-datorzin.indd 181LURaksti733-datorzin.indd 181 2008.03.31. 15:06:452008.03.31. 15:06:45

METAclipse plugins contain all the common functionality needed for the tools and
relieves the creator of the tool from the need to worry about many technical user
interface issues. The part that defines a concrete tool and that must be written by the
toolsmith is the transformation library containing all the necessary model
transformations that change the model according to the user actions in the tool.

Fig. 1. High-Level view of the METAclipse architecture

In METAclipse the toolsmith must start with the creation of the domain metamodel
and proceed with wiring the domain metamodel to the presentation metamodel
through writing the model transformations. Thus the only items the toolsmith builds
for a concrete tool are the domain metamodel and the transformation library defining
the functionality. In the paper the combined metamodel of presentation and domain
metamodels will be referred to as METAclipse metamodel. Accordingly, the
combination of domain and presentation models will be called simply model.
Manipulations with the domain model are completely the responsibility of the
transformation writer. METAclipse framework provides no support for the domain
model modifications.

Every framework engine exposes its features to the transformations through a
strictly defined metamodel that serve as an interface between the transformations and
editors. Metamodels of the engines will be discussed in more detail in later sections of
this paper. Part of each engine’s metamodel is also the available set of commands that
could occur as a result of user actions. Commands are used to trigger the
transformations and a single command instance represents one atomic user action,
which constitutes the smallest piece of work in the framework. All actions that make
purely graphical changes are handled directly by METAclipse framework. Only
semantic actions (actions causing domain model changes or any changes in the
presentation model that are specific to a concrete tool) are transformed into the
commands and passed to the transformations for execution.

Together metamodels of all engines form the presentation metamodel of
METAclipse. Each element displayed in the tool, created using METAclipse,
corresponds to a presentation model element (an instance of some presentation
metamodel class). Presentation model as well as domain model (model on which the
tool actually operates) are stored in the model repository and are changed by the

182 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 182LURaksti733-datorzin.indd 182 2008.03.31. 15:06:452008.03.31. 15:06:45

transformations as a reaction to the user triggered events. Every semantic user action
in METAclipse results in the following sequence of actions:

� The presentation engine that gets some user action writes the command
corresponding to the action taken (right click on a project tree node, creation of an
element, drawing a link between elements, etc.) to the model repository and
invokes the main transformation (steps 1 and 2 in Fig. 1);

� The main model transformation recognizes the command written and makes the
necessary changes to the presentation and/or domain models (step 3 in Fig. 1);

� Presentation engines read the model changes and react accordingly: show context
menu, show newly created element or edge, etc. (step 4 in Fig. 1).

Such top-level view of METAclipse architecture can be compared to the traditional
MVC approach: the role of the controller is played by transformations; the repository
serves as the model, and the presentation engines act as the view. It must be noted that
METAclipse leverages the abstraction level of the MVC approach: the controller
(transformations) receives only the semantic actions.

In order to make the METAclipse architecture and functionality more clear, an
example state of the project tree engine is given in Fig. 2. A visual representation of
the project tree engine is given on the left. In the middle, a part of the simplified
project tree engine metamodel is shown. Here one can see how the visual editor
elements are represented to the transformations: ProjectTreeNode class represents one
node in the project tree. The ShowMenuCommand class represents a right-click event
on the tree node and expresses user request to show the context menu.

Fig. 2. Example of a project tree engine and its metamodel and model states

Let us imagine that one has right-clicked the node called “menu” in the tree and the
project tree engine has written the ShowMenuCommand instance to the repository
(step 1 in Fig. 1). At the right side of Fig. 2 the presentation model part is given,
showing the instances involved in the handling of the right-click event. As the next
step in event processing, the engine will invoke the transformation (step 2 in Fig. 1).

Oskars Vilitis, Audris Kalnins. Technical Solutions for the Transformation-Driven .. 183

LURaksti733-datorzin.indd 183LURaksti733-datorzin.indd 183 2008.03.31. 15:06:452008.03.31. 15:06:45

The transformation will find that ShowMenuCommand has been written in the
repository and will create presentation metamodel instances (not shown in the Fig. 2)
comprising the needed context menu (step 3 in Fig. 1). No domain model changes are
needed in this example. At last, Eclipse will get back the control and presentation
engines will be notified of the model elements changed. The menu engine will see
that a menu has been created, so it will show the context menu for the project tree
node called “menu.”

2.2 Solutions Chosen for the METAclipse Implementation

METAclipse is built on top of Eclipse technologies and is packaged in the form of
several Eclipse plugins. Eclipse was chosen as a mature and widely appreciated
platform, providing a large number of frameworks covering many needs of the tool
developers. Eclipse is also a very popular choice of a wide variety of leading
production-quality software development platforms that could potentially gain from
integration of modeling and DSL editor tools.

The transformation language MOLA [26, 28], developed by LU IMCS, was chosen
for the implementation of transformations. MOLA has a rich set of language elements
and it had already proven its performance and stability in practice, so it was a natural
choice. The current implementation of MOLA is compiled to a Windows DLL file
and works against the repository MIIREP (codenamed “OUR” in the paper “Towards
Semantic Latvia” [29]), also developed by LU IMCS. Therefore, the choice of the
repository was also clear. However, to make METAclipse more flexible, it was
decided to make the access to transformations and the repository transparent so that it
would be possible to switch to other transformation languages and/or repositories.
The repository access solution will be described in Section 3.

As discussed in the previous section, every METAclipse presentation engine
exposes its features to the transformations through its metamodel. What is actually
displayed in the editor is a visual representation of the engine metamodel instances,
i.e., models. In Eclipse, Java code needs to access this model information. To
accomplish this, physical in-memory model storage is needed. The framework fitting
these purposes already exists and is called EMF [12]—Eclipse Modeling Framework.
EMF is being used in many Eclipse-based tool building platforms as the model
repository.

EMF was also chosen for implementation of the METAclipse model repository, as
it has several features that fit the framework needs. EMF provides a generator for the
creation of Java classes that correspond to the model elements. This eases the creation
of the runtime model classes. Another important feature of EMF is the model change
notification mechanism implemented through model listeners that allow easy and
dynamic model change transfer to various presentation engine parts. There are also
some aspects of the EMF that are currently less important for METAclipse, which
however could turn useful in time: XMI import/export, OCL implementation, etc.

This leads to the presentation model in METAclipse being stored in the EMF
repository. Transformations, however, also need to operate on this model. As
transformations work on an external repository, a challenge rises to synchronize the

184 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 184LURaksti733-datorzin.indd 184 2008.03.31. 15:06:462008.03.31. 15:06:46

EMF model instances with information in the MIIREP. More details on the non-
trivial solution will be given in Section 3.

The EMF framework is not the only Eclipse framework used in METAclipse. For
various METAclipse needs, others are used as well:

� The property engine uses the tabbed properties framework for dynamic generation
of the element property sheets (see Section 4.5 for detailed description of the
property engine);

� The project tree engine (described in Section 4.3) uses the navigator framework;
� The graph diagram engine (described in Section 4.6) uses the Graphical Editing

Framework GEF [13] and parts of the Graphical Modeling Framework GMF [14]
runtime.

3 Interaction with the Repository and Transformations

As already stated before, editor interaction with the repository and transformation
invocation was intended to be made as generic as possible in order to maintain the
possibility to change the implementation of repository or transformations if necessary.
To achieve such independence, two problems had to be solved. First of all, an
interface to the set of external repository operations used in METAclipse (such as find
object, store object, change object property etc.) had to be defined. Transformation
invocation is also part of this interface, as transformations are always related to a
particular repository. Secondly, a generic mechanism to transfer the repository data to
EMF object instances had to be developed in order to allow the handling of repository
objects in Eclipse as if they were normal EMF objects, thus giving the access to the
entire infrastructure provided by EMF.

3.1 Repository Interface

The repository interface itself is nothing special; it is a regular Java interface
containing all the operations required by METAclipse. The interface contains the
following sets of operations:

� Metamodel (object type) manipulations, such as creating a class, adding a class
attribute, finding classes, creating associations, etc.

� Model (object) manipulations, such as finding an object of a certain class, creating
objects and setting object attributes, etc.

� Transformation invocation. Only one function for this is required, as
transformations have just one entry point in the METAclipse architecture.

Oskars Vilitis, Audris Kalnins. Technical Solutions for the Transformation-Driven .. 185

LURaksti733-datorzin.indd 185LURaksti733-datorzin.indd 185 2008.03.31. 15:06:462008.03.31. 15:06:46

Fig. 3. MIIREP repository interface implementation

MOLA transformations currently are compiled against the MIIREP repository,
which is developed in C++ and released as a Windows DLL file. MOLA
transformations themselves are also compiled to a DLL file, which directly accesses
the MIIREP DLL loaded in memory. This implies that the MIIREP repository
interface implementation currently used in METAclipse (see Fig. 3) uses a JNI (Java
Native Interface) wrapper for the repository operations (see [30] for information on
JNI). The wrapper delegates all repository access operations (model and metamodel
manipulations) to the appropriate MIIREP repository API functions and the
invocation of transformations to the transformation library.

3.2 The Link Between Eclipse and the Repository: “Wise” Objects

As stated before, all presentation engines (Eclipse plugins) developed work with EMF
runtime objects in order to gain all the benefits the EMF framework is offering.
Transformations, on the other hand, work with the external repository, so
synchronization between the repository and EMF is required.

The task of integrating the external repository seamlessly into the Eclipse EMF
framework was quite challenging. Simple interface did not satisfy the requirement to
keep Java-side code unaware that anything other than EMF is used, which is why the
“wise” object mechanism was created. The main reason for such a requirement was
the wish to keep the possibility to switch to a clean EMF implementation in the future
(meaning that no external repository would be used, with EMF itself serving as the
repository), as well as to be able to use clean EMF infrastructure.

Another aspect that had to be taken into account was performance. As every little
action in the editor results in changes in the repository through the invocation of the
transformation, a complete re-read of all repository data after each operation is
unacceptable. Only the “dirty” or changed information has to be transferred back to
EMF object instances.

To comply with the given requirements, a special mechanism was developed,
consisting of alternative EMF runtime objects that conform to the EMF interfaces and
externally look like normal EMF objects, but internally do all the synchronization
with the repository. These objects were named “wise” objects, as they show certain

186 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 186LURaksti733-datorzin.indd 186 2008.03.31. 15:06:462008.03.31. 15:06:46

“intelligence”: though from the interface perspective they look like normal EMF
objects and support all EMF framework operations, internally they know when and
how it is necessary to read or write some information to the repository. The standard
EMF notification mechanism is used to notify any changes occurring in the
repository. “Wise” objects can be considered the second level of repository
abstraction, which introduces the caching mechanism, conforms to the EMF object
interfaces and uses first level abstraction—repository interface—to read and write
data to the repository.

ECore, the core metamodel in EMF, is very similar to the EMOF (Essential MOF),
a subset of the MOF model [9]. In fact, there are just some small, mostly notational,
differences between these two. According to the MOF hierarchy, ECore is at the M3
layer, the same as MOF itself. The code generation facility provided by EMF can be
used to generate Java runtime classes for a particular metamodel (M2 layer) defined
by ECore. Instances of the generated runtime classes then correspond to the M1 layer
in MOF.

ECore metamodel classes (ECore base classes) define the class hierarchy that
forms the basis for the Java runtime. All EMF runtime classes generated for a
particular metamodel extend these base classes. ECore base classes provide all the
functionality to the generated classes and allow using them in EMF infrastructure by
providing all the EMF framework features. Therefore, base classes are the best place
where the repository synchronization should be implemented.

“Wise” Objects as an EMF Extension

Base ECore classes were extended and a set of “wise” object base classes was defined
(see Fig. 4). By analogy to ECore classes, base “wise” object classes, together with
some helper classes comprising the whole “wise” object concept, were called WCore.
In WCore, the methods inherited from ECore for getting and setting the properties are
extended with functionality of reading and writing data from and to the repository
through the repository interface described in the previous section. For performance
considerations, “Wise” objects keep track of the state of every object property and
cache the data from the repository in the object instance, so the consequent reads of
the same property will result only in one read of the property from the repository.

The fact that the parent of all ECore classes is a single class—EObject (see [12] for
complete ECore structure)—simplified the extension of ECore. For “wise” object
needs it was enough to extend just two ECore classes, EObject and EFactory, with the
corresponding WObject and WFactory classes. WObject contains all the caching and
synchronization logic and, as it is the superclass of all the other framework classes,
the logic is available all across the framework. The WFactory extension of the factory
class was needed, as some initialization of the “wise” object on its creation was
required.

Oskars Vilitis, Audris Kalnins. Technical Solutions for the Transformation-Driven .. 187

LURaksti733-datorzin.indd 187LURaksti733-datorzin.indd 187 2008.03.31. 15:06:462008.03.31. 15:06:46

WCore Base Classes
ECore Base

Classes

„Wise” ObjectsEMF Standard Objects

ewdkjq

wev

ewrvw

„Wise” Object
Runtime Classes

ewdkjq

wev

ewrvw

EMF Runtime
Classes

EMF
Dynamic

Templates

„Wise”
Object

Dynamic
Templates

Fig. 4. “Wise” object dependencies

To put the WCore classes in action, the EMF generator also had to be extended so
that it produced “wise” objects extending WCore base classes. The EMF framework
uses the so-called dynamic code templates (using another Eclipse framework for the
code generation—JET [31]) during the generation process of the runtime classes. The
EMF generator reads the serialized form of the metamodel and then, using the set of
templates, generates the runtime classes (see Fig. 4). Default templates producing
EMF runtime classes were extended so that they would generate the code using
WCore instead of ECore.

The complete set of classes comprising the WCore can be seen in Fig. 5. The
above-mentioned extension of getter and setter methods of ECore is divided into two
classes. Reading of the attributes from the repository was easiest to implement in the
WObjectImpl class itself, in the inherited getter methods. Writing the attributes,
however, was easier to move to a separate class WObjectChangeObserver, which
implements the EMF change listener and is attached to every instance of WObject.
The change observer listens to any changes done to the WObject from the engine side
and if any occurs, writes the data to the repository.

188 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 188LURaksti733-datorzin.indd 188 2008.03.31. 15:06:462008.03.31. 15:06:46

Fig. 5. WCore class diagram

To be able to read and write the repository data, “wise” objects need to have a
possibility to map the classes, attributes and associations to the corresponding
repository objects. Such mapping can be defined only at M2 level and thus it is
necessary to have the WCore class and feature mapping to the repository metadata at
the M2 layer. As it is inefficient to read these mappings every time any object is
accessed, class metadata mappings are cached. The WRepositoryMetadata object
represents the class metadata. The map of WCore class to repository metadata
mappings is held in the WRepositoryController object and the mappings are attached
to every WObject instance for convenience when instantiating it (as a reference to the
cached mappings).

Repository Change Notification in METAclipse

Extending the ECore base classes covers the synchronization needs only from the
METAclipse perspective, i.e., if changes to the model are done from the engines.
However, the most intense model changes happen on the other side—in the
transformations. Therefore, another missing piece is a change notifier back from the
transformation, which would trigger the EMF change events for all objects that have
been changed in the repository. In WCore, the WRepositoryController class takes care
of this. There, a special method is defined for change detection, which has to be
invoked after each transformation execution.

Transformation change notification is not a trivial task, as it is also constrained
with tight performance requirements. It is very inefficient to detect the changes
already after transformation execution, as it means inspection of all object instances in
the repository. This means that a support from the side of the transformations is
required in order to make an efficient implementation of the change notification. This
is why WRepositoryController change notification method is designed in a way that it
calls special functions of the repository interface in order to get the lists of the
changed or deleted objects. Functionality of tracking changes is left to the

Oskars Vilitis, Audris Kalnins. Technical Solutions for the Transformation-Driven .. 189

LURaksti733-datorzin.indd 189LURaksti733-datorzin.indd 189 2008.03.31. 15:06:482008.03.31. 15:06:48

implementation of the interface. When changed or deleted object lists are read from
the repository, WRepositoryController issues the corresponding EMF notifications
and the changed features of the object instances that have changed are set “dirty,” so
that they are once again read from the repository instead of using the cached values
from the WObject instances. The concept of “wise” objects is not trivial and is best
understood on a concrete example. One such example is provided in Section 4.2.

In case of the repository and transformations currently used in METAclipse, it was
very easy to track object deletions, as the MIIREP repository itself has the
functionality to track such changes. However, the tracking of the changes to the
existing objects had to be incorporated in the transformations. For this reason, a
special class “Changes” was introduced in the presentation metamodel. Each
transformation is responsible not only for making the actual changes, but also for
adding a link from the “Changes” singleton object to the objects actually changed.
See Section 4.1 for more information on the “Changes” object and the singleton
concept.

Of course, it would be more convenient to have also detection of changes to the
existing objects automated and incorporated at the repository level, but unfortunately
MIIREP does not provide such a possibility. In case of MOLA, as its transformations
are compiled, it is also possible to add special functionality in the MOLA compiler
that automatically adds the “Changes” link. However, at the moment such
functionality is not implemented.

4 Presentation Engines

As already stated before, METAclipse consists of several presentation engines.
Although there are some additional smaller helper parts in METAclipse, four main
presentation engines can be named that together comprise the whole tool building
platform (in Fig. 6 all of them can be seen in action).

1. Project tree engine, responsible for organization of projects, models and model
elements in a hierarchical tree structure;

2. Graph diagram engine: the main engine of METAclipse, providing editing
capabilities to the graph diagrams;

3. Property engine: provides property editing capabilities for other engines (like
properties for a selected item in the project tree or a selected diagram element);

4. Menu engine: used by other engines for the displaying of context menus (like by
project tree engine for showing context menus of the tree nodes or by graph
diagram engine for showing context menus on the diagram elements).

Besides these four engines, additionally there are some less important components
in METAclipse responsible for common functionality like drag-and-drop, clipboard,
METAclipse perspective; utility functions; transformation control etc. These will not
be discussed here. In the following sections the focus will be put on the interaction
between the engines and transformations, and special attention will be paid to the
description of all the presentation metamodels, as they form one of the most important
aspects describing the METAclipse functionality.

190 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 190LURaksti733-datorzin.indd 190 2008.03.31. 15:06:482008.03.31. 15:06:48

The look and feel and general operation principles in METAclipse engines were
adopted from Eclipse standard editors so that the editors would fit smoothly in the
Eclipse environment. This means that some eclipse standards were obeyed. For
example, METAclipse does not use dialogs for the diagram element creation. Instead,
all element properties are assigned default values, which can later be changed to the
desired values through the properties view. Properties are displayed in one single
view for all editors, implying that just one editor is in focus at all times.

Fig. 6. METAclipse presentation engines in action

In the development of the presentation engines, one simple rule drove the splitting
of functionality between the engine and transformations:

� Every task that needs any information read from the domain model, i.e., that is
domain-specific, has to be done by transformation;

� All tasks that do not require any knowledge of the domain have to be done by the
engines.

So, for example, the right click on the project tree node for showing the context
menu needs the knowledge of what kind of node it is in order to know what menu
options to offer. This means that this is a task for a transformation. Another
example—the move of a diagram element within the borders of the same parent—
does not require any knowledge of the domain. Such operation requires only changing
of some presentation model attributes, thus it can be carried out by the engine itself.
If, in contrast, the diagram element was dragged out of the borders of the parent
element (for example, dragged from one sub-diagram to another), this again would
require some domain model changes and thus it is a semantic operation that has to be
performed by transformations.

Oskars Vilitis, Audris Kalnins. Technical Solutions for the Transformation-Driven .. 191

LURaksti733-datorzin.indd 191LURaksti733-datorzin.indd 191 2008.03.31. 15:06:492008.03.31. 15:06:49

4.1 Presentation Metamodel Structure

The transformation library is the changing part in METAclipse from one tool
implementation to other. That is why transformation creation must be made as easy as
possible in order to make METAclipse useful and convenient for the toolsmiths. In
order to accomplish this there are several prerequisites to be met:

� A well-established set of base transformations common to all or at least most
editors must be provided. This would form the base framework for transformations
to be created by the toolsmith. This would allow the toolsmith to concentrate on
semantic tasks for mapping of domain elements to presentation elements and
would remove the need to worry about some tasks that could be done by the
framework (for example, handling of the element styles, parts of copy and paste
logic, building of standard menus, etc.);

� A set of helper transformations must be provided, so that the transformation creator
has decent artillery at hand for handling of different kind of tasks (utility
functions);

� It is very important to create a good interface to the presentation engines. In this
case engine metamodels compose this interface. A proper presentation metamodel
is extremely important for the transformation creators to make work with the
editors easy and convenient.

A very short overview on the solutions provided by METAclipse for the first two
will be given in Section 5. The focus in this paper however is on the last—proper
design of the presentation metamodel. A large amount of effort and time was invested
in the design of this metamodel to make it best usable from transformations. The
following few sections will give a thorough description of various parts of it, i.e., of
various presentation engine metamodels.

The presentation engines rely heavily on various Eclipse frameworks. Therefore,
the metamodels of the engines could be partially extracted from them. It must be
noted, however, that none of the used Eclipse frameworks had a metamodel already
defined. Metamodel of every engine had to be synthesized from the corresponding
framework API. Then it had to be amended with the METAclipse-specific classes
needed for the engine.

As the metamodel is an interface between two parties, transformations and Java
code, it has to be conveniently usable from both sides. However, more importance
must be given to the transformation requirements for the metamodel. It was decided
to adopt the naming and structuring standards of classes from the Java coding
standards, keeping in mind not to make any transformation tasks complicated. As it
turned out, it is very convenient for both sides if the metamodel is structured in
strictly hierarchical and logically split packages. The whole presentation model
contains the following packages:

� the general package contents include the base classes used by the presentation
metamodel, classes common to all engines and various types used across the
presentation metamodel;

192 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 192LURaksti733-datorzin.indd 192 2008.03.31. 15:06:492008.03.31. 15:06:49

� the project package contains all the classes needed for project handling in
METAclipse and classes for steering the project tree engine (see section 4.3 for the
description);

� the menu package contains classes for steering the menu engine (see section 4.4 for
the description);

� the properties package contains classes for steering the properties engine (see
section 4.5 for the description);

� the graphDiagram package contains classes for steering the graph diagram engine,
excluding the classes for palette organization (see section 4.6 for the description);

� the palette package contains classes for creation of the editor palettes. This was
created as a separate package, because palettes may be required not only by graph
diagrams. Palette elements could be reused also if another kind of editor engine
were created.

The Common Part of the Presentation Metamodel (general Package)

The general package defines the core classes of the METAclipse presentation
metamodel (see Fig. 7). In this and following figures a special color-coding will be
used. Normal metamodel classes will be shown in white. Light gray color will
represent the command classes. For more information on what a command is, see
Sections 2.1 and 4.1, as well as descriptions of METAclipse presentation engines. The
dark gray classes will denote the singletons. The description of the term “singleton” is
given below.

Fig. 7. The general part of the presentation metamodel

Oskars Vilitis, Audris Kalnins. Technical Solutions for the Transformation-Driven .. 193

LURaksti733-datorzin.indd 193LURaksti733-datorzin.indd 193 2008.03.31. 15:06:492008.03.31. 15:06:49

As the metamodeling practice shows, and also as the preliminary experience of
METAclipse technology evaluation proved, it is very convenient to have one
superclass for all classes in the metamodel and to organize all classes in strict
hierarchies. Just as Java has a superclass of all classes, “Object”, the METAclipse
presentation metamodel also includes such a superclass, JRObject. One example of
how the introduction of such a superclass helps is the case when there is a need to
define a very general association to any kind of object. This can be done only if there
is a superclass for every object needed to be referenced. In the general package this is
used to model the concept that any presentation model element can be displayed in
the project tree engine as a node: association between PresentationElementNode and
JRObject (see Fig. 7).

A concept used across all metamodels by engines for finding the starting points of
various parts of models is singletons. Singletons are classes that have exactly one
instance. This fact is used by the presentation engines to find the only instance just by
knowing the class name. Singleton classes are used in METAclipse engines
everywhere where there is a need for an entry point in the model. In the general
package one example of singletons is the Changes class. This class is an important
singleton, which is used to find all the changed or deleted objects after the execution
of a transformation.

As discussed in Section 3.2, for wise objects to work there is a need for change
tracking after each transformation invocation. Current implementation of the MIIREP
repository and MOLA transformations does allow automatic tracking of deletions;
however changes must be tracked by each transformation manually. The Changes
singleton instance must be linked through “changes” association to every presentation
model object changed by the transformation. Engines will then use the singleton
nature of the Changes class to find the only instance and read the list of the changed
model objects.

The general package also contains the supporting and base classes for one of the
backbones of METAclipse, namely, the command infrastructure. Commands have
already been discussed before. A command in a presentation metamodel corresponds
to a possible user action in the editor that requires some reaction from the engine, i.e.,
the invocation of a transformation. Command class in the metamodel is the superclass
for all the command classes. Command base class defines the “context” association:
every command can have links to some JRObject instances that form the context of
the command. All commands are structured in a strict class hierarchy: for every
logical set of commands, an additional superclass is defined (as GeneralCommand
and ClipboardCommand in Fig. 7). This opens diverse command parsing possibilities
in transformations.

The sequence of command execution in METAclipse is described in Section 2.1.
After any user action, a corresponding command is written to the repository.
CommandStack singleton instance is linked to the written command. Transformations
then seek the command to execute by querying the “command” link of the
CommandStack singleton. Currently this link points to at most one instance of a
command. After execution, the transformation may write back some results to the
executed command by setting some attributes or links. Finally, engines read the
command after the transformation execution in order to get the transformation results,
if needed.

194 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 194LURaksti733-datorzin.indd 194 2008.03.31. 15:06:492008.03.31. 15:06:49

The rest of the general package classes shown in Fig. 7 are common classes used
by many presentation engines. This includes some common command classes and the
clipboard-supporting classes. NavigateCommand is used as a response to double-
clicking on some project tree node or diagram element. Such action would result in
opening a diagram in the editor and possibly selecting some diagram element (or
multiple elements), if the element under the cursor were a diagram or diagram
element. Transformations must return the diagram to open or diagram elements to
select by setting the navigationTargets link. It will be queried by the engines after the
execution of the transformation to find the objects to open / select.

SelectCommand is executed if any object is selected. It must be used by
transformations to generate the property sheets corresponding to the selected object.
See section 4.5 for more information about the properties engine. Command
DefaultDeleteCommand is executed if the delete button is pressed on any of the
selected objects. As the name suggests, transformations should carry out the default
delete action when processing this command. Such a command is especially useful for
diagrams—usually it is possible to delete an element from the diagram while retaining
the domain element or to delete both the diagram and the model element. Different
tools require different default logic on such operation.

For clipboard operations, the Clipboard singleton and two commands for copying
and pasting are defined. The Clipboard singleton contains links to the copied or cut
objects (through “contents” association); the deleteAfter flag is used to distinguish the
copy and cut operations. Copy command is executed when the selection is copied.
Selected objects are linked to the command through the “context” association. Paste
command is executed when users executes the paste operation in the engines.

Fig. 8. General type part of the presentation metamodel

Oskars Vilitis, Audris Kalnins. Technical Solutions for the Transformation-Driven .. 195

LURaksti733-datorzin.indd 195LURaksti733-datorzin.indd 195 2008.03.31. 15:06:492008.03.31. 15:06:49

Finally, the last set of classes found in the general package consists of the various
types used across the entire METAclipse presentation metamodel. These include
definitions of enumerations like Alignment, ShapeType, Orientation, etc., as well as
some type classes like Color, Font and Point.

4.2 Interaction between the Transformations and Engines

The mechanism of the interaction between the engines and transformations has
already been outlined. Now, as all the concepts of the components involved in
METAclipse (engines, wise objects, repository, transformations and presentation
metamodel) have been introduced, it is time to put it all together. This section will
give an example of how all of the METAclipse components fit together before
proceeding to the detailed descriptions of the separate engines in the sections to
follow. See Fig. 9 for a detailed operation schema of the opening of a new diagram
from the project tree. Solid lines in the figure represent the control flow; dashed lines,
simple operations like creation of objects.

Fig. 9. Opening a new diagram from the project tree:
an example of the METAclipse component interaction

Let us imagine that a user has double-clicked a node in the project tree that
represents a graph diagram. This results in invocation of the project tree engine
(discussed in more detail in section 4.3). This engine must react so that a
corresponding diagram is opened. Such operation includes the following steps:

� 1: The project tree engine asks WRepositoryController to find the singleton
instance of the CommandStack class (see previous section for information about
singletons, repository controller, and command stack).

196 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 196LURaksti733-datorzin.indd 196 2008.03.31. 15:06:502008.03.31. 15:06:50

� 2: If this is the first time CommandStack singleton is used, WRepositoryController
searches the repository for the single instance of the class with the name
“CommandStack.” As it is a singleton, there will be exactly one instance. The
repository controller loads the CommandStack wise object instance and caches it,
so that the next time the CommandStack is queried, it would be retrieved from the
cache.

� 3: The CommandStack wise object is returned to the project tree engine.
� 4: The project tree engine creates a new instance of NavigateCommand wise object

and links it to the project tree node wise object, on which the double-click was
performed (not shown in the figure). As the NavigateCommand has not been yet
saved to the repository, for the time being no synchronization with repository is
carried out.

� 5: The project tree engine links the newly created command to the CommandStack.
At this moment CommandStack wise object notices that a new link has occurred.
As the linked object is not yet saved to the repository, it asks the
NavigateCommand instance to save itself to the repository (5A). Then the
CommandStack wise object links the repository instance of CommandStack to the
newly created instance of NavigateCommand (5B).

� 6: Now, when the command is written to the repository, the transformation library
is invoked.

� 7: Transformation detects the NavigateCommand instance linked to the
CommandStack and finds which project tree node was double-clicked. Then it
searches for the corresponding diagram to be opened.

� 8: Transformation links the Diagram instance found to the NavigateCommand as a
result of the execution. Additionally, it puts a link from the Changes singleton (see
previous section) to the NavigateCommand in order to signal that
NavigateCommand instance has changed.

� 9: Control is given back to the project tree engine.
� 10: The project tree engine calls the WRepositoryController in order to invoke the

repository change notification process and synchronize the wise object state with
the repository.

� 11: WRepositoryController reads the Changes singleton to detect that the wise
object instance of NavigateCommand has changed. It then notifies the
NavigateCommand wise object that it must read its contents from the repository
instead of its cached data (11A). This also causes the instantiation of the linked
Diagram object (11B).

� 12: Control is given back to the project tree engine.
� 13: Finally, the project tree engine delegates control to the graph diagram engine

and passes the Diagram wise object to be displayed. Graph diagram engine then
uses the Diagram object as the root for reading all the contents to be displayed on
the diagram.

All engines operate similarly and the wise object technology is used throughout all
METAclipse for synchronization with the repository. This ensures consistent
interaction with the transformations. It must be noted that only one transformation at a
time can be executed. This, however, does not cause any problems, because in the
graphical editors the user makes just one action at a time and actions are sequential.

Oskars Vilitis, Audris Kalnins. Technical Solutions for the Transformation-Driven .. 197

LURaksti733-datorzin.indd 197LURaksti733-datorzin.indd 197 2008.03.31. 15:06:502008.03.31. 15:06:50

We could continue describing property generation for the element that is currently
selected. However, the operations for that would be very similar to the ones already
described. The only additional operation for building of the properties would be the
querying and modification of the domain model. This, however, is hidden from the
METAclipse framework, as only transformations are responsible for the operations
with it and only transformations can access the domain model.

4.3 Project Tree Engine

Every graphical tool needs some means of organizing the model objects in a
hierarchical tree structure to enable the navigation through models—similarly to how
files and folders are organized on the computer hard drive. At the minimum, it is
required to display the diagrams as a list, so that the user could choose the one he/she
desires to edit.

Eclipse defines the notion of “project” as the highest level of organization.
Different tools built on Eclipse provide different kinds of projects: for example, Java,
C++, GMF and others. METAclipse also defines a separate kind of project, the
METAclipse project. A METAclipse project corresponds to one repository instance,
which is created together with the project. All elements of the project model are
stored in this repository, e.g., if there are several diagrams in one METAclipse
project, they all will be stored in the same repository instance.

For organization of project artifacts, Eclipse provides the so-called navigator
framework, which provides a view for displaying of items in a tree. The METAclipse
project tree engine is built using this framework and implements its own view (see
Fig. 6, part 1). The Eclipse navigator framework already provides all the functionality
required to manage the project tree. The only thing needed to implement a specific
project tree is the implementation of Navigator interfaces for the retrieving of the
model data (or the so-called provider-interfaces, which is a concept used also in other
Eclipse frameworks). This is an easy task, as the interfaces require an implementation
of a few very simple methods like one for getting the children of a given node and
another for getting the parent of a given node. METAclipse provides the
implementations of these interfaces for reading the project tree data from the
repository. This implementation was very easy to create: just about 100 LOC was
required, which was clearly less than would be needed if all functionality had to be
created from scratch.

198 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 198LURaksti733-datorzin.indd 198 2008.03.31. 15:06:502008.03.31. 15:06:50

Fig. 10. Project part of the presentation metamodel

Fig. 10 shows the metamodel of the project tree engine. When a METAclipse
project is opened, first the Project singleton is used to find the ProjectNode instance,
which then is interpreted as the root of the project tree. Every METAclipse project
will always have exactly one ProjectNode. Project is a singleton that represents the
METAclipse project opened in the platform (recall that there is one-to-one
correspondence between a METAclipse project and a repository instance).

The ProjectTreeNode class is the superclass of all kinds of tree nodes, ProjectNode
included. This class allows defining the hierarchical structure of the tree through the
parent-children association. Every instance of one of its subclasses will appear in the
project tree engine as a separate node with the given text and icon and ordered by the
relativePosition. Transformations are free to define any kind of project tree structures,
using the ProjectTreeNode building blocks. There are five kinds of nodes at their
disposal, each with a slightly different support from the engine’s side:

� ProjectNode. Interpreted by the engine as the root project node;
� ModelNode. Interpreted as the node defining the boundaries of one model. The

model term is introduced to allow further grouping of project items in smaller
pieces of work. On possible use of the ModelNode and Model classes could be for
the demarcation of the nodes that correspond to the packages in the domain or, if
the domain metamodel provides the term of model (like UML domain model [10]),
to the models;

� DiagramNode. Interpreted as a node that can be opened and represents a diagram.
Transformations must make sure that tree nodes of this kind are linked to a
corresponding Diagram instance;

� PresentationElementNode. Interpreted as a node that represents some diagram
presentation element. Can be used for navigation;

� DomainElementNode. Interpreted as a node that corresponds to an element from
the domain model.

Oskars Vilitis, Audris Kalnins. Technical Solutions for the Transformation-Driven .. 199

LURaksti733-datorzin.indd 199LURaksti733-datorzin.indd 199 2008.03.31. 15:06:502008.03.31. 15:06:50

ProjectTreeNode is the only class that represents the original metamodel of the
Navigator framework according to its API. METAclipse project tree engine also does
not really need all the various subclasses of the ProjectTreeNode. The subclasses have
been introduced in order to ease the creation of the transformations.

There are only two commands specific to the project tree engine that can occur.
One is CreateProjectCommand, which is invoked when a METAclipse project is
created. It must be interpreted by transformations to initialize the models with some
startup data—for example, to initialize the singletons, to set up the default context
menus and property editors, to initialize styles, etc. Second is OpenProjectCommand,
which is invoked when the project is opened in METAclipse. It can be interpreted by
the transformations to carry out some initialization routines required for the opening
of the project.

4.4 Menu Engine

The menu engine is the simplest engine of all and provides just the functionality
needed for the creation of context menus (see Fig. 6, part 2). It uses the standard
Eclipse infrastructure for the generation of the menus. Therefore the implementation
of the menu engine in METAclipse was even easier than the implementation of the
project tree engine.

The menu engine metamodel defines one singleton class, RootMenu (see Fig. 11),
which points to the root of the active menu through the “menu” association. If the
RootMenu instance does not have this property set, it means that no menu will be
displayed. Menu structure is defined by the Menu and MenuItem classes. The Menu
class is interpreted by the engine as a menu container (like the root of the context
menu or any submenu popping out when an item containing the submenu is selected).
Menu consists of menu MenuItem classes, which correspond to the items displayed in
the menu. Submenus are shown by the engine only for those MenuItem instances that
have the submenu property set.

Fig. 11. Menu part of the presentation metamodel

Only two specific commands can occur in the menu engine. ShowMenuCommand
is invoked when the user right-clicks any node in the project tree or any element in
the diagram. Selected JRObject instances (whether tree nodes or diagram elements)

200 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 200LURaksti733-datorzin.indd 200 2008.03.31. 15:06:512008.03.31. 15:06:51

will be linked to the ShowMenuCommand through the context association defined in
the general Command class. Transformations must react to this command by building
the context-sensitive menu (using the context information from the context
association) and setting the RootMenu singleton “menu” association to it. The menu
engine then will consult the RootMenu singleton to read the menu to be shown.

ChooseMenuItemCommand is written to the repository if the user chooses an item
from the menu. Then transformations must carry out the corresponding action. Action
can be anything necessary for the chosen menu item, starting from creation of some
element up to very complicated tasks like model simplification, compiler invocation
for visual DSL languages and so on.

4.5 Properties Engine

A very important part of the tools is the properties editor. This editor is used to
display and edit various properties of elements displayed in editors. For example, in
the UML class diagram editor there is a need to edit the properties of a class or
association. In Eclipse property editing is done through a special properties view,
which is common to all editors and can be seen at all times (see Fig. 6, part 3). Any
time the selection in Eclipse changes, the contents of the properties view are also
updated to reflect the properties of the currently selected item. Properties can be
arranged in the so-called tabs for better structuring.

The properties view is driven by yet another Eclipse framework, the tabbed
properties framework [32], which is used by the properties engine of METAclipse.
When the development of METAclipse began, the tabbed properties framework did
not provide all the capabilities needed for the tool building platform. Particularly, it
was not possible to define the structure of the property sheets at runtime. The
framework allowed only definition of what should be displayed in the property sheets
during the time of development, and this information had to be compiled in the
released plugins.

Because of this, in the beginning the tabbed properties framework was extended to
add this functionality. Later, however, the functionality of the framework was
widened to include the possibility to define the property sheets dynamically at
runtime. This allowed switching to a clean tabbed properties framework without the
need to extend its classes. Tabbed properties with dynamic property support will be
released in Eclipse 3.4 M3, which is not yet available at the time of this writing.
However, Eclipse 3.4 M2 nightly builds already include the new dynamic tabbed
property capabilities, so this is what is being used for the time being.

General Part of the Properties metamodel
In METAclipse transformations are responsible for building of the property sheets.
The select command is issued by editors so that transformations could carry out this
task (already introduced in Section 4.1 and shown in Fig. 7). The main part of the
property engine metamodel can be seen in Fig. 12.

Oskars Vilitis, Audris Kalnins. Technical Solutions for the Transformation-Driven .. 201

LURaksti733-datorzin.indd 201LURaksti733-datorzin.indd 201 2008.03.31. 15:06:512008.03.31. 15:06:51

Fig. 12. Property part of the presentation metamodel: main classes

The properties singleton is queried every time after the selection of any element
and execution of the SelectCommand to read the current state of the properties view.
Through this singleton the whole structure describing the contents of the property
page can be read. The title and icon attributes of the Properties singleton are used for
the title of the properties view. The class Tab represents one property sheet tab and is
linked to the Properties singleton through the “tabs” link. The attribute name is the
title shown on the tab and is used to name the contents of the tab. For example, both
properties views in Fig. 13 consist of three tabs: “General,” “Attributes,” and “Style.”

Every tab in the tabbed properties framework consists of the so-called sections.
Sections group the properties shown in the tab in logical groups. The corresponding
class in the metamodel is the abstract Section class. The Tab class has a composite
association with Section. As many section implementations as necessary could be
provided in Eclipse. Two implementations turned out to be most useful in practice:

� A data grid that shows the properties in the form of a table with headers. Such a
section can be used for the representation of properties that have one-to-many
relationship with the element owning them. An example could be the list of
attributes for a class in the UML class diagram (see Fig. 13, bottom);

� A group of key-value pairs that can be used for the representation of properties that
have one-to-one relationship with the element owning them. An example
application of this can be seen in Fig. 13, at the top, where the “General” tab of the
class properties contains various values describing the class—such as “abstract”
flag, name of the class, etc.

202 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 202LURaksti733-datorzin.indd 202 2008.03.31. 15:06:512008.03.31. 15:06:51

Fig. 13. KeyValueGroup properties section implementation (at the top) and

DataGrid implementation (at the bottom) in action

These two kinds of section are implemented as part of the properties engine in
METAclipse. DataGrid and KeyValueGroup classes in the metamodel (see Fig. 12)
correspond to the data grid and key-value pair group section implementations,
respectively. Both section implementations use the same metamodel structure for the
description of their contents. This turned out to be particularly useful for the
development of transformations, as it allowed a uniform design of the property-
building transformations.

The structure used for the two section implementations consists of three main
classes: GridColumn, GridRow, and RowElement. In case of the DataGrid section
implementation, GridColumn corresponds to the table column. The title attribute will
be shown as the header of the table. Attribute inplaceEditorType denotes the kind of
editor that will be used for editing of the data found in the column. Possible values are
defined by the InplaceEditorType enumeration and include such editors as text field,
combo-box, checkbox, radio group etc. A special kind of editor is
CUSTOM_EDITOR, which means that an external dialog has to be shown instead of
in-place editor. This will be discussed in more detail below. For editing of the combo-
box or radio group fields, additionally a set of possible values must be defined. This is
done through the possibleValues association from the GridColumn class to the
ValueVariant class.

The GridRow class corresponds to one row in the grid. The DataGrid class will
hold an ordered reference to all row classes through “rows” association. Actual data
of the table cells is represented by the RowElement class. The association “column”
of this class will define what column the row element belongs to, while the
association “row” will indicate in which row it should be displayed.

As stated before, the KeyValueGroup section implementation uses the same model.
To understand how the structure is applied to the KeyValueGroup implementation,
we can imagine that this implementation is nothing more than DataGrid with one row,

Oskars Vilitis, Audris Kalnins. Technical Solutions for the Transformation-Driven .. 203

LURaksti733-datorzin.indd 203LURaksti733-datorzin.indd 203 2008.03.31. 15:06:512008.03.31. 15:06:51

which is displayed vertically instead of horizontally. So, there will be exactly one
GridRow instance and each GridColumn instance will correspond to the label of one
key-value pair in the KeyValueGroup section (for example, “name” or “abstract” at
the property view shown at the top of Fig. 13). RowElement instances correspond to
the value part of key-value pairs, i.e., the values of the properties that can be edited.

Property Editors and Commands
Not all properties can be edited directly in the properties view—some require more
advanced editing capabilities. For example, editing of a property denoting a color or a
font requires a proper color dialog to be shown. Also properties that must be chosen
from a list with lots of entries are inconvenient to be edited with a simple combo-box.
The metamodel of the properties engine contains an additional set of classes for the
definition of external editors (see Fig. 14).

Fig. 14. Property part of the presentation metamodel: editor classes

Theoretically it would also be possible to create a universal dialog engine, so that
any kind of dialogs could be constructed. However, it would require very large effort
to build such engine. Therefore, it was decided to build concrete dialogs for different
tasks. In the metamodel, a common superclass PropertyEditor is introduced for all
dialogs. Three implementations are provided by the engine: the FontEditor class
representing the font dialog, the ColorEditor class representing the color dialog and
the ChooseFromListEditor representing the dialog for showing large lists.

If an external dialog is needed for a particular column, the inplaceEditorType
attribute of the GridColumn instance must be set to CUSTOM_EDITOR. The engine
will then display a button for invoking the external editor. If the button is pressed, the
ShowEditorCommand (see Fig. 15) will be invoked and transformations will have to
construct the dialog to be shown. The editor constructed then has to be linked to the
CurrentPropertyEditor singleton, because the engine will consult this singleton to find
which editor to show.

204 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 204LURaksti733-datorzin.indd 204 2008.03.31. 15:06:522008.03.31. 15:06:52

Fig. 15. Property part of the presentation metamodel: command classes

After showing the dialog and having the user choose something, the corresponding
command is executed, containing the information about user actions in the dialog.
Thus, for the font dialog, ChooseFontCommand is executed with the chosen font
attached through the font association. Similarly, ChooseColorCommand is executed
after choosing any color from the color dialog and ChooseFromListCommand, after
choosing some list item from the list dialog.

The remaining commands not yet discussed are ChangePropertyValueCommand,
which is invoked when any of in-place property editors is used to change the value of
some property; MoveRowCommand, which is used to change the order of the
DataGrid rows; DeleteRowComand, which deletes DataGrid rows; and
AddRowCommand, which creates new DataGrid rows.

4.6 Graph Diagram Engine

The most important of all engines is the graph diagram engine. This engine is used for
visual graph diagram editing (see Fig. 6, part 4). Eclipse technologies used for the
graph diagram engine are the Graphical Editing Framework GEF [13] and the
Graphical Modeling Framework GMF [14]. GMF is the most popular metamodel-
based graphical tool building platform for Eclipse. GMF utilizes EMF (Eclipse
Modeling Framework) and GEF (Graphical Editing Framework) technologies. EMF
is used for model management and GEF, for graphical user interface.

GMF uses a static-mapping-driven approach. It defines a set of metamodels:
graphical (presentation), tooling and mapping metamodels. In addition, it uses ECore
as the domain metamodel. The graphical metamodel defines the graphical element
types. The tooling metamodel defines the palette and menus. The mapping metamodel
defines the mapping possibilities between the models. To build an editor in GMF, the

Oskars Vilitis, Audris Kalnins. Technical Solutions for the Transformation-Driven .. 205

LURaksti733-datorzin.indd 205LURaksti733-datorzin.indd 205 2008.03.31. 15:06:522008.03.31. 15:06:52

domain, graphical, tooling and mapping models are defined, then generation is
performed and manual code in Java added. An analysis of the GMF and a comparison
of the static-mapping-driven approach as such to the transformation-driven approach
described here are given in the paper “Building Tools by Model Transformations in
Eclipse” [24].

The graphical (presentation) metamodel is well adapted to the generation step in
GMF, but cannot be used directly by the transformation approach. The same situation
is true for the tooling metamodel. Therefore, nothing of the GMF definition part can
actually be reused in the proposed METAclipse approach. As a consequence, there
are no explicit graphical element types to be used by transformations.

Fortunately, the GMF runtime [34] uses another metamodel—the notation
metamodel. This metamodel describes graphical instances in the runtime—nodes,
edges, compartments and labels (exactly, the layer required by transformations to
build graphical objects dynamically). In fact, the GMF runtime is a graphical engine
for Eclipse, significantly extending GEF in the direction required for diagram
building. This allows at least partial reuse of the GMF runtime in METAclipse.

The created graph diagram engine does not fall back from professional Eclipse-
based tools like RSA [35] in its diversity of features and graphical quality. The
developed metamodel, presented further, allows relatively simple control of quite
advanced graphical structures and behavior. Although the graph diagram engine was
the most difficult to implement, the reuse of GMF runtime and GEF components
allowed keeping the required effort for building it reasonably low.

The General Part of the Graph Diagram Engines Metamodel

The main part of the graph diagram engines metamodel in METAclipse is quite
similar to the GMF notation metamodel. However, it is not the same. It has been
made more accessible for the transformations and more easily usable in various
contexts of METAclipse (see Fig. 16).

The root element corresponding to the actual diagram is the Diagram class. It
consists of DiagramElement class instances, which can be either Node or Edge. Node
class instances correspond to the graph diagram nodes and Edge instances correspond
to edges. Note that Diagram itself is also a kind of node. This allows the use of sub-
diagrams. The Diagram element defines the general attributes of all elements, such as
line style and width. Node defines the general attributes of all kinds of nodes. The
Edge class defines the routing of the edges via the routing style attribute and
association with Bendpoint instances. Routing style defines how the line should be
laid out on the diagram and Bendpoint instances define the layout constraints.

Besides Diagram itself, the nodes are divided into two categories—SimpleNode
and CompositeNode. SimpleNode denotes the nodes that may not contain any
children. CompositeNode, on the other hand, may contain children. Theoretically,
Diagram also is a composite node. However, because of its specific nature, it is not in
the class hierarchy of the composite nodes.

206 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 206LURaksti733-datorzin.indd 206 2008.03.31. 15:06:522008.03.31. 15:06:52

Fig. 16. Graph diagram part of the presentation metamodel without commands and palette

There is just one kind of SimpleNode type—the Label class. Labels are static text
elements that may also display an icon. CompositeNode is not abstract, thus it may be
instantiated itself, but there is also one special type of the composite node, i.e.
Compartment. Compartment is a kind of grouping, used, for example for class
diagrams in UML [10].

Just as an example, let us consider the UML class Diagram (like the one in Fig.
16). Diagram itself is represented with the Diagram class instance. It consists of
CompositeNode-s, which in turn consist of one label for class icon and name, one
compartment with labels for attributes, and one compartment with labels for
operations (operations not shown in the figure). Associations are edges with different
sets of attribute values for different kinds of associations. These are the bricks for
building class diagrams in the METAclipse framework.

In Fig. 17 the command part of the graph diagram engines metamodel is shown.
There are just four commands specific to the graph diagram engine:

� CreateEdgeCommand, used for creation of the edges;
� CreateNodeCommand, used for the creation of the nodes;
� MoveNodeCommand, used for the semantic moving of the nodes (in case the node

is dropped in another node, for example);
� RedirectEdgeCommand, used for relocating the edge start or end to a different

node.

Oskars Vilitis, Audris Kalnins. Technical Solutions for the Transformation-Driven .. 207

LURaksti733-datorzin.indd 207LURaksti733-datorzin.indd 207 2008.03.31. 15:06:522008.03.31. 15:06:52

Fig. 17. Graph diagram command part of the presentation metamodel

Additionally, there are some already discussed common commands accessible in
graph diagram engine, like NavigateCommand, SelectCommand, etc. These are used
for the tasks that are common to more than just one METAclipse engine.

Palette Part of the Graph Diagram Engines Metamodel

The metamodel for description of the palettes has been separated from the graph
diagram metamodel as it could be reused also for other diagram kinds. Fig. 18 shows
the palette part of the graph diagram engines metamodel.

Fig. 18. Palette part of the presentation metamodel

The structure of the palette metamodel represents the possibilities to build palette
in Eclipse. The Palette class represents the palette itself. It consists of
AbstractPaletteElement instances. There are four kinds of palette elements that can be
used:

208 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 208LURaksti733-datorzin.indd 208 2008.03.31. 15:06:522008.03.31. 15:06:52

� PaletteElement—a simple palette element with an icon and an label;
� Separator—a separating line;
� PaletteElementGroup—a container for similar palette elements grouped together.

Groups cannot be nested and may be shown or hidden on user request;
� PaletteElementVariantGroup—a special kind of palette element group used for

displaying the variants of the same palette element. Visually this group is shown as
a normal palette element; however, it allows the switching to another palette
element variant upon user request.

5 Transformation Structure

Describing the transformation part of the framework is not the objective of this paper.
Therefore transformations will be discussed very briefly. As already stated,
transformations in METAclipse are written in the MOLA model transformation
language [28]. The MOLA compiler uses another model transformation language
developed at UL IMCS, i.e. Lx language series [33]. Lx then is compiled to efficient
C++ code, which is able to work with large models in fractions of a second. Only by
accomplishing such performance is it possible to satisfy all needs of METAclipse, as
every semantic user operation results in non-trivial transformations.

Fig. 19. Example of a MOLA transformation: a small excerpt of command handling procedure

Oskars Vilitis, Audris Kalnins. Technical Solutions for the Transformation-Driven .. 209

LURaksti733-datorzin.indd 209LURaksti733-datorzin.indd 209 2008.03.31. 15:06:532008.03.31. 15:06:53

In METAclipse there is only one entry point for the transformations, i.e., it is
always the same transformation that gets called when executing a command. It is then
the task of the transformation to call different procedures that implement model
transformations that correspond to the particular command. In Fig. 19, one small part
of the command parsing or main transformation is shown. It serves as an example of
what MOLA transformations look like visually and at the same time displays how the
single main transformation calls the sub-transformations in order to react to particular
commands.

The transformation library is actually the key component that finally defines a
concrete DSL tool created with METAclipse. Different tools built in METAclipse
will have different transformation libraries. In order to build a tool, the toolsmith must
first define the domain metamodel. Then he/she must link the domain metamodel to
the presentation metamodel described in the previous section through model
transformations. The presentation metamodel may be augmented for the
transformation needs with new links or attributes. The only restriction is that existing
classes, attributes and associations must remain intact. Finally, if necessary, the
toolsmith must implement various functions through transformations that are needed
for a particular tool.

6 Future Work

Currently METAclipse already has all the functionality needed for successful building
of rich DSL editors. So, for example, the MOLA editor, built with METAclipse, has
proved to be a powerful tool for editing MOLA transformations and is being
successfully used. There is still a lot of work to be done in order to make the creation
of transformations easier, so that tools could be built with much less effort. This
would include generalization of common transformations, creation of reusable
transformation frameworks (small frameworks for properties, styles, etc.),
incorporation of the static mapping approach, definition of helper-functions, etc.
Analysis of the transformation part, however, is beyond the scope of this paper.

Of course, there are also tasks to be done in order to make the METAclipse
presentation framework (engines) more convenient and easier to use. Additional
features could be implemented to enable more functionality for the tools. Some of
these tasks are:

� Creating a more advanced property engine in order to allow building of more
customized property pages. Currently the layout and contents of property sheets are
very rigid and only a limited number of various controls can be used. There are
cases when it is necessary to have richer property editors;

� Introducing the possibility for transformations to impact the engines, meaning that
some special commands could be issued from transformations, which then would
be interpreted by engines. This would be necessary, for example, to provide
interactive debugging support for DSL editors.

� Adding possibilities to include animations. This would also be particularly useful
for debugging.

210 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 210LURaksti733-datorzin.indd 210 2008.03.31. 15:06:532008.03.31. 15:06:53

� Implementing XMI import/export for domain part of the models. EMF already has
the functionality needed for serialization and de-serialization of the models to
XMI, however, currently only the presentation model is loaded via wise objects.

� Enhancement of the current graph diagram engine to allow more advanced
constructs, such as swimlanes and pins used in UML activity diagrams.

� Creation of new engines for editing of other kinds of diagrams.

The named tasks represent just several areas in which it is already thought of to
extend the METAclipse framework. The effort needed to implement the features
listed above is relatively small compared to what has been already invested to provide
the basic functionality of METAclipse, and all these tasks can be considered as
“extras.” Of course, the number of new features that could be added and that could be
useful for the toolsmiths, as well as for tool users, is virtually unlimited.

References

1. Smolander, K., Martiin, P., Lyytinen, K., Tahvanainen, V-P.: Metaedit—a flexible
graphical environment for methodology modeling. Springer-Verlag, 1991.

2. Ebert, J., Suttenbach, R., Uhe, I.: Meta-CASE in Practice: a Case for KOGGE.
Proceedings of the 9th International Conference, CAiSE'97, Barcelona, Spain, 1997, pp.
203–216.

3. DOME Users Guide, http://www.htc.honeywell.com/dome/support.htm
4. Karsai G.: A Configurable Visual Programming Environment: A Tool for Domain-

Specific Programming, IEEE Computer Society Press, pp. 36–44, 1995.
5. MetaEdit+, http://www.metacase.com/
6. Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason IV, C., Nordstrom,

G., Sprinkle, J., Volgyesi, P.: The Generic Modeling Environment. Workshop on
Intelligent Signal Processing, Budapest, Hungary, May 17, 2001.

7. de Lara, J., Vangheluwe, H., Alfonseca, M.: Meta-Modeling and Graph Grammars for
Multi-Paradigm Modeling in AToM3. Software and System Modeling, 3(3), 2004, pp.
194–209.

8. Steven Kelly, Kalle Lyytinen, Matti Rossi: MetaEdit+ A fully configurable multi-user and
multi-tool CASE and CAME environment Lecture Notes in Computer Science, Volume
1080, Proceedings of the 8th International Conference on Advances Information System
Engineering, pp. 1–21, Springer-Verlag, 1996.

9. Meta-Object Facility (MOF), http://www.omg.org/mof/
10. OMG, Unified Modeling Language: Superstructure, version 2.0,

http://www.omg.org/docs/formal/05-07-04.pdf
11. Celms, E., Kalnins, A., Lace, L.: Diagram definition facilities based on metamodel

mappings. Proceedings of the 18th International Conference, OOPSLA’2003, Workshop
on Domain-Specific Modeling, Anaheim, California, USA, October 2003, pp. 23–32.

12. Eclipse Modeling Framework (EMF, Eclipse Modeling subproject),
http://www.eclipse.org/emf/

13. Graphical Editor Framework (GEF, Eclipse Tools subproject),
http://www.eclipse.org/gef/

14. Graphical Modeling Framework (GMF, Eclipse Modeling subproject),
http://www.eclipse.org/gmf/

Oskars Vilitis, Audris Kalnins. Technical Solutions for the Transformation-Driven .. 211

LURaksti733-datorzin.indd 211LURaksti733-datorzin.indd 211 2008.03.31. 15:06:532008.03.31. 15:06:53

15. N. Zhu1, J. Grundy and J. Hosking. Pounamu: a meta-tool for multi-view visual language
environment construction. Proc. IEEE Symposium on Visual Languages and Human
Centric Computing (VLHCC’04), pp. 254–256, 2004.

16. The Generic Eclipse Modeling System (GEMS), http://www.eclipse.org/gmt/gems/
17. S. Cook, G. Jones, S. Kent and A. C. Wills. Domain-Specific Development with Visual

Studio DSL Tools. Addison-Wesley, 2007.
18. Ermel, C., Ehrig, K., Taentzer, G., Weiss, E.: Object Oriented and Rule-based Design of

Visual Languages using Tiger. Proceedings of GraBaTs'06, 2006, pp. 12.
19. I. Rath, D. Varro. Challenges for advanced domain-specific modeling frameworks. Proc.

of Workshop on Domain-Specific Program Development (DSPD), ECOOP 2006, France.
20. Taentzer, G: AGG: A Graph Transformation Environment for Modeling and Validation of

Software. Application of Graph Transformations with Industrial Relevance (AGTIVE’03),
Vol. 3062, Springer LNCS, 2004.

21. Visual Automated Model Transformations (VIATRA2), GMT subproject, Budapest
University of Technology and Economics,
http://dev.eclipse.org/viewcvs/indextech.cgi/gmt-home/subprojects/VIATRA2/index.html

22. Fujaba. Universitat Paderborn, Institut fur Informatik.
http://wwwcs.uni-paderborn.de/cs/fujaba/documents/user/manuals/FujabaDoc.pdf

23. C. Amelunxen, A. Königs, T. Rötschke, A. Schürr: MOFLON: A Standard-Compliant
Metamodeling Framework with Graph Transformations. Model Driven Architecture—
Foundations and Applications: Second European Conference, Lecture Notes in Computer
Science, Vol. 4066, pp. 361–375, Springer 2006.

24. Kalnins, A., Vilitis, O., Celms, E., Kalnina, E., Sostaks, A., Barzdins, J.: Building Tools
by Model Transformations in Eclipse. Proceedings of DSM’07 workshop of OOPSLA
2007, Montreal, Canada, Jyväskylä University Printing House, 2007, pp. 194–207.

25. Barzdins, J., Zarins, A., Cerans, K., Kalnins, A., Rencis, E., Lace, L., Liepins, R.,
Sprogis, A.: GrTP: Transformation Based Graphical Tool Building Platform. Proceedings
of MODELS 2007, MDDAUI 2007 workshop, Nashville, Tennessee, USA,
September 30–October 5, 2007, pp. 4.

26. Kalnins, A., Barzdins, J., Celms, E.: Model Transformation Language MOLA.
Proceedings of MDAFA 2004, Vol. 3599, Springer LNCS, 2005, pp. 62–76.

27. ReDSeeDS. Requirements Driven Software Development System. European FP6 IST
project. http://www.redseeds.eu/, 2007.

28. UL IMCS, MOLA pages, http://mola.mii.lu.lv/
29. Barzdins, J., Barzdins, G., Balodis, R., Cerans, K., Kalnins, A., Opmanis, M.,

Podnieks, K.: Towards Semantic Latvia. Proceedings of Seventh International Baltic
Conference on Databases and Information Systems, Communications, Vilnius, Lithuania,
O. Vasileckas, J. Eder, A. Caplinskas (Eds.), Vilnius, Technika, 2006, pp. 203–218.

30. Java Native Interface Specification,
http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/jniTOC.html

31. Eclipse Model To Text project,
http://www.eclipse.org/modeling/m2t/

32. The Eclipse Tabbed Properties View,
http://www.eclipse.org/articles/Article-Tabbed-Properties/tabbed_properties_view.html

33. Lx Transformation Language Set, http://Lx.mii.lu.lv/, 2007.
34. R. Gronback, Build Better Graphical Editors with the Graphical Modeling Framework,

Slides, Eclipseworld 2006,
http://wiki.eclipse.org/images/0/08/Gronback_EclipseWorld2006_GMF.ppt.zip

35. Rational Software Architect (RSA),
http://www-306.ibm.com/software/awdtools/architect/swarchitect/

212 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 212LURaksti733-datorzin.indd 212 2008.03.31. 15:06:532008.03.31. 15:06:53

MATHEMATICAL FOUNDATIONS

LURaksti733-datorzin.indd 213LURaksti733-datorzin.indd 213 2008.03.31. 15:06:532008.03.31. 15:06:53

LURaksti733-datorzin.indd 214LURaksti733-datorzin.indd 214 2008.03.31. 15:06:532008.03.31. 15:06:53

Quantum Query Algorithm Constructions for Computing
AND, OR and MAJORITY Boolean Functions

Alina Vasiljeva *

Institute of Mathematics and Computer Science University of Latvia

Rai�a bulv�ris 29, R�ga, LV-1459, Latvia
Alina.Vasiljeva@gmail.com

Abstract. Quantum algorithms can be analyzed in a query model to compute
Boolean functions where input is given in a black box and the aim is to compute
function value for arbitrary input using as few queries as possible. We concentrate
on quantum query algorithm designing tasks in this paper. The main aim of the
research was to find new efficient algorithms and develop general algorithm
designing techniques. First, we present several exact quantum query algorithms
for certain problems that are better than classical counterparts. Next, we introduce
algorithm transformation methods that allow significant enlarging of exactly
computable functions sets. Finally, we propose quantum algorithm designing
methods. Given algorithms for the set of sub-functions, our methods use them to
design a more complex one, based on algorithms described before. Methods are
applicable for input algorithms with specific properties and preserve acceptable
error probability and number of queries. Methods offer constructions for
computing AND, OR and MAJORITY kinds of Boolean functions.

Keywords. Quantum computing, quantum query algorithms, complexity theory,
Boolean functions, algorithm design.

1 Introduction

Let be a Boolean function. We have studied the query
model, where a black box contains the input

1 2(, ,...,) :{0,1} {0,1}n
nf x x x �

1 2(, ,...,)nx x x and can be accessed by
questioning xi values. The goal here is to compute the value of the function. The
complexity of a query algorithm is measured by the number of questions it asks. The
classical version of this model is known as decision trees [1]. Quantum query
algorithms can solve certain problems faster than classical algorithms. The best-
known exact quantum algorithm was designed for PARITY function with n/2
questions vs. n questions required by classical algorithm [2,3].
The problem of quantum algorithm construction is not that easy. Although there is a
large amount of lower and upper bound estimations of quantum algorithm complexity
[2, 6, 7], examples of non-trivial and original quantum query algorithms are very few.
Moreover, there is no special technique described to build a quantum algorithm for a
certain function with complexity defined in advance.

* Research supported by the European Social Fund

LATVIJAS UNIVERSITĀTES RAKSTI. 2008, 733. sēj.:
DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS 215.–238. lpp.

LURaksti733-datorzin.indd 215LURaksti733-datorzin.indd 215 2008.03.31. 15:06:532008.03.31. 15:06:53

Most probably it would take a lot of time even for experienced quantum computation
specialist to construct an efficient query algorithm, for example, for such functions:

� � � �4 1 2 3 4 1 2 3 4(, , ,)F x x x x x x x x�
 � �
 �

6 1 2 2 3 4 5 5() (() ()) (() ())6F X x x x x x x x x�
 � �
 � �
 � �
 �

or

10 1 2 3 1 2 4 1 3 4 2 3 4() () () () ()F X f f f f f f f f f f f f� � � � � � � � � � � � ,where

1 1 2 3 4 2 5 6 3 7 8 8 9 4 1() (); ; () (); 0f x x x x f x x f x x x x f x� � � � � � �
 � �
 � �

In our work we have tried to develop general constructions and approaches for
computing Boolean functions in quantum query settings.
Boolean functions are widely adopted in real life processes, that is the reason why our
capacity to build a quantum algorithm for an arbitrary function appears to be
extremely important. While working on common techniques, we are trying to collect
examples of efficient quantum algorithms to build up a base for powerful computation
using the advantages of the quantum computer.
The paper is organized as follows. Section 2 consists of theoretical background and
definitions. In section 3 two exact quantum query algorithm are presented, which will
be used as a base in further sections. In section 4 we present three algorithm
transformation methods. Section 5 contains the major part of results - algorithm
constructions for computing AND, OR and MAJORITY kinds of Boolean functions.
Finally, the summary of results is given in section 6.

2 Notation and Definitions

Let be a Boolean function. We use 1 2(, ,...,) :{0,1} {0,1}n
nf x x x � � to denote

XOR operation (exclusive OR). We use f for the function 1 - f. We also use
abbreviation QQA for “quantum query algorithm”.

2.1 Quantum Computing

We apply the basic model of quantum computing. For more details see textbooks by
Gruska [4] and Nielsen and Chuang [5].

An n-dimensional quantum pure state is a vector nC� � of norm 1. Let 0 , 1 ,..,

-1n be an orthonormal basis for . Then, any state can be expressed as

|��=

nC

ian

i i� �

�

1

0 for some . Since the norm of |�� is 1, we havea Ci � 1
21

0
�� �

�

n

i ia .

States |0�,|1�,…,|n-1� are called basic states. Any state of the form ian

i i� �

�

1

0 is
called a superposition of |0�,…,|n-1�. The coefficient ai is called an amplitude of |i�.

216 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 216LURaksti733-datorzin.indd 216 2008.03.31. 15:06:542008.03.31. 15:06:54

The state of a system can be changed using unitary transformations. Unitary

transformation U is a linear transformation on that maps vector of unit norm to
vectors of unit norm.

nC

The simplest case of quantum measurement is used in our model. It is the full
measurement in the computation basis. Performing this measurement on a state
|��=a0|0�+…ak|k� gives the outcome i with probability |ai|2. The measurement changes
the state of the system to i and destroys the original state � .

2.2 Query Model

Query algorithm is a model for computing Boolean functions. In this model, a black
box contains the input 1 2(, ,...,)nx x x and can be accessed by questioning xi values.
Query algorithm must be able to determine the value of a function correctly for
arbitrary input contained in a black box. The complexity of the algorithm is measured
by the number of queries to the black box which it uses. The classical version of this
model is known as decision trees. For details, see the survey by Buhrman and de Wolf
[1].
We consider computing Boolean functions in the quantum query model. For more
details, see the survey by Ambainis [6] and textbooks by Gruska [4] and de Wolf [2].
A quantum computation with T queries is a sequence of unitary transformations:

0 0 1 1 1... T TU Q U Q U Q U�� � � � � � � T

Ui's can be arbitrary unitary transformations that do not depend on the input bits

1 2, ,..., nx x x . Qi's are query transformations. Computation starts in the state 0
�

. Then

we apply U0, Q0,…, QT-1, UT and measure the final state.

There are several different, but equally acceptable ways to define quantum query
algorithms [2]. The most important consideration is to choose an appropriate
definition for the query black box, defining a way of asking questions and receiving
answers from the oracle.
Next we will precisely describe the full process of quantum query algorithm
definition and notation used in this paper.
Each quantum query algorithm is characterized by the following parameters:

1) Unitary transformations
All unitary transformations and the sequence of their application (including the query
transformation parts) should be specified. Each unitary transformation is a unitary
matrix.
Here is an example of an algorithm sequence specification with T queries:

0 1 10 ... N NU Q Q U QM�� � � � � �
�

[] ,

where 0
�

 is initial state, [QM] – quantum measurement.

Alina Vasiljeva. Quantum Query Algorithm Constructions for Computing .. 217

LURaksti733-datorzin.indd 217LURaksti733-datorzin.indd 217 2008.03.31. 15:06:542008.03.31. 15:06:54

For convenience we will use bra notation to describe state vectors and algorithm
flows. Quantum mechanics employs the following notation for state vectors [5]:

Ket notation:
1

...

n

�
�

�

� �
�� �
� �
� �

�
� Bra notation: � �1*, ..., *n� � � � � �

Algorithm designed in bra notation can be converted to ket notation by replacing each
unitary transformation matrix with its adjoint matrix (conjugate transpose):

Quantum query algorithm flow in bra notation: 0 0 10 ... N NU Q Q U� ��

Quantum query algorithm flow in ket notation: 1 0 0... 0N NU Q Q U�
��

�

2) Queries
We use the following definition of query transformation: if input is a state

ii
a i� �� , then the output is � �1 xk

ii
a i! � �� , where we can arbitrary

choose variable assignment xk for each amplitude i� . Assume we have a quantum
state with m amplitudes 1 2(, ,...,)m� � � �� . For the n argument function, we define
a query as 1 1(,...,)i mQQ k km� �� � � , where i is the number of question and

is the number of queried variable for j-th amplitude (QQ abbreviates

“quantum query”). If , a query will change the sign of the j-th amplitude to

the opposite sign; in other case, the sign will remain as-is. Unitary matrix that
corresponds to query transformation

{1.. }jk � n

m

1
jkx �

1 1(,...,)i mQQ k k� �� � � is:

� �
� �

� �

1

2

1 0 ... 0

0 1 ... 0
...

0 0 ... 1

k

k

km

X

X

i

X

QQ

� ��� �
� ��� � �
� �
� �� ��� �

3) Measurement
Each basic state of a quantum system corresponds to the algorithm output. We assign
a value of a function to each output. We denote it as 1 1(,...,)m mQM k k� �� � � ,

where (QM abbreviates “quantum measurement”). The result of running
algorithm on input X is j with a probability that equals the sum of squares of all
amplitudes, which corresponds to outputs with value j.

{0,1}ik �

Very convenient way of quantum query algorithm representation is a graphical picture
and we will use this style when describing designed quantum query algorithms.

218 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 218LURaksti733-datorzin.indd 218 2008.03.31. 15:06:542008.03.31. 15:06:54

2.3 Query Algorithm Complexity

The complexity of a query algorithm is based on the number of questions it uses to
determine the value of a function on worst-case input.
The deterministic complexity of a function f, denoted by D(f), is the maximum number
of questions that must be asked on any input by a deterministic algorithm for f [1].
The sensitivity of f on input (x1,x2,…,xn) is the number of variables xi with the
following property: f(x1,…,xi,…,xn)"f(x1,…,1-xi,…,xn). The sensitivity of f is the
maximum sensitivity of all possible inputs. It has been proved that [1]. () ()D f s f#

A quantum query algorithm computes f exactly if the output equals f(x) with a
probability 1, for all . Complexity is denoted by Q{0,1}nx� E(f) [1] .

A quantum query algorithm computes f with bounded-error if the output equals f(x)
with probability , for all . Complexity is denoted by Q1/ 2p $ {0,1}nx� P(f) [1].

3 Basic Exact Quantum Query Algorithms

In this section we present two basic exact quantum query algorithms, which will be
used as a base for construction methods in further sections.
First algorithm computes 3-argument Boolean function, but second one computes 4-
argument Boolean function. Both algorithms are interesting; first of all, because they
are better than the best possible classical algorithms. Secondly, algorithms satisfy
specific properties, which make them useful for computing more complex Boolean
functions.

3.1 3-Variable Function with 2 Queries

In this section we present quantum query algorithm for 3-variable Boolean function
that saves one query comparing to the best possible classical deterministic algorithm.

Problem: Check if all input variable values are equal.

Possible real life application is, for example, automated voting system, where
statement is automatically approved only if all participants voted for
acceptance/rejection equally. We provide solution for 3-party voting routine. We
reduce a problem to computing the following Boolean function defined by the logical
formula: . 3 1 2 2() () ()EQUALITY X x x x x�
 � �
 � 3

Deterministic complexity: D(EQUALITY3)=3, by sensitivity on any accepting input.

Algorithm 1. Exact quantum query algorithm for EQUALITY3 is presented in Figure
1. Each horizontal line corresponds to the amplitude of the basic state. Computation
starts with amplitude distribution �0 1,0,0,0� �

�
. Three large rectangles correspond

to the 4x4 unitary matrices (U0, U1, U2). Two vertical layers of circles specify the
queried variable order for each query (Q0, Q1). Finally, four small squares at the end
of each horizontal line define the assigned function value for each output.

Alina Vasiljeva. Quantum Query Algorithm Constructions for Computing .. 219

LURaksti733-datorzin.indd 219LURaksti733-datorzin.indd 219 2008.03.31. 15:06:552008.03.31. 15:06:55

Fig. 1. Exact Quantum Query Algorithm for EQUALITY3

We show the computation process for accepting input X=111:

� = � � 0 1 1 21/ 2, 1/ 2, 1/ 2, 1/ 2 Q U Q U = � � 1 1 21/ 2, 1/ 2, 1/ 2, 1/ 2 U Q U� � � � =

= � � 1 21/ 2, 1/ 2, 0, 1/ 2 Q U� � � = � � 21/ 2, 1/ 2, 0, 1/ 2 U = (1,0,0,0)

[ACCEPT] %

Table 1 shows computation process for each possible input. Processing result always
equals EQUALITY3 value with probability p=1.

Table 1. Quantum Query Algorithm Computation Process for EQUALITY3

X after 0 00 U Q
�

 after 0 0 1 10 U Q U Q
�

 final state result

000
1 1 1 1, , ,
2 2 2 2

� �
� �
� �

 1 1 1, ,0,
2 22

� �
�
� �

� (1,0,0,0) 1

001
1 1 1 1, , ,
2 2 2 2

� �
� �
� �

 1 1 1, ,0,
2 2

� �
� ��
� �2 �

 (0,0,0,-1) 0

010
1 1 1 1, , ,
2 2 2 2

� �� �� �
� �

 1 1 1,0, ,
2 2

� �
��

� �2 �
 (0,0,1,0) 0

011
1 1 1 1, , ,
2 2 2 2

� �� �� �
� �

 1 1 1,0, ,
2 22

� �
��
� �

� (0,-1,0,0) 0

100
1 1 1 1, , ,
2 2 2 2

� �� �� �
� �

 1 1 1,0, ,
2 22

� �
��
� �

� (0,-1,0,0) 0

101
1 1 1 1, , ,
2 2 2 2

� �� �� �
� �

 1 1 1,0, ,
2 2

�
��

� �2
�
� (0,0,1,0) 0

110
1 1 1 1, , ,
2 2 2 2

� �� � � �� �
� �

 1 1 1, ,0,
2 2

�
2
�� ��

� �
�
 (0,0,0,-1) 0

111
1 1 1 1, , ,
2 2 2 2

� �� � � �� �
� �

 1 1 1, ,0,
2 22

� �
�
� �

� (1,0,0,0) 1

220 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 220LURaksti733-datorzin.indd 220 2008.03.31. 15:06:552008.03.31. 15:06:55

3.2 4-Variable Function with 2 Queries

In this section we present our solution for the computational problem of comparing
elements of a binary string.

Problem: For a binary string of length 2k check if elements are equal by pairs:

x1=x2, x3=x4, x5=x6,..., x2k-1=x2k

We present an algorithm for string of length 4. We reduce the problem to computing
the Boolean function of 4 variables. Boolean function can be represented by formula:

� � � �4 1 2 3 4 1 2 3 4_ (, , ,)PAIR EQUALITY x x x x x x x x�
 � �
 � .

Deterministic complexity: D(PAIR_EQUALITY4)=4, by sensitivity on accepting
input.

Algorithm 2. Exact quantum query algorithm for PAIR_EQUALITY4 is presented in
Figure 2.

Fig. 2. Exact Quantum Query Algorithm for PAIR_EQUALITY4

Computational flow for each function input is presented in Table 2.

Table 2. Quantum Query Algorithm Computation Process for PAIR_EQUALITY4

X after 0 00 U Q
�

 after 0 0 1 10 U Q U Q
�

 final state result

0000
1 1, ,0,0
2 2

� �
� �
� �

 1 1 1 1, , ,
2 2 2 2

�
�
� �

�
� (1,0,0,0) 1

0001
1 1, ,0,0
2 2

� �
� �
� �

 1 1 1 1, , ,
2 2 2 2

� �� ��
� �

� (0,1,0,0) 0

0010
1 1, ,0,0
2 2

� �
� �
� �

 1 1 1 1, , ,
2 2 2 2

� �� ��
� �

� (0,-1,0,0) 0

0011
1 1, ,0,0
2 2

� �
� �
� �

 1 1 1 1, , ,
2 2 2 2

� �� � � �� �
� �

 (-1,0,0,0) 1

Alina Vasiljeva. Quantum Query Algorithm Constructions for Computing .. 221

LURaksti733-datorzin.indd 221LURaksti733-datorzin.indd 221 2008.03.31. 15:06:552008.03.31. 15:06:55

0100
1 1, ,0,
2 2

� ��� �
� �

0 1 1 1 1, , ,
2 2 2 2

� � ��
� �

�
� (0,0,1,0) 0

0101
1 1, ,0,
2 2

� ��� �
� �

0 1 1 1 1, , ,
2 2 2 2

� �� ��
� �

� (0,0,0,1) 0

0110
1 1, ,0,
2 2

� ��� �
� �

0 1 1 1 1, , ,
2 2 2 2

�� ��
� �

�
� (0,0,0,-1) 0

0111
1 1, ,0,
2 2

� ��� �
� �

0 1 1 1 1, , ,
2 2 2 2

� �� ��
� �

� (0,0,-1,0) 0

1000
1 1, ,0,0
2 2

� ��� �
� �

 1 1 1 1, , ,
2 2 2 2

� �� ��
� �

� (0,0,-1,0) 0

1001
1 1, ,0,0
2 2

� ��� �
� �

 1 1 1 1, , ,
2 2 2 2

�� ��
� �

�
� (0,0,0,-1) 0

1010
1 1, ,0,0
2 2

� ��� �
� �

 1 1 1 1, , ,
2 2 2 2

� �� ��
� �

� (0,0,0,1) 0

1011
1 1, ,0,0
2 2

� ��� �
� �

 1 1 1 1, , ,
2 2 2 2

� � ��
� �

�
� (0,0,1,0) 0

1100
1 1, ,0,0
2 2

� �� �� �
� �

 1 1 1 1, , ,
2 2 2 2

� �� � � �� �
� �

 (-1,0,0,0) 1

1101
1 1, ,0,0
2 2

� �� �� �
� �

 1 1 1 1, , ,
2 2 2 2

� �� ��
� �

� (0,-1,0,0) 0

1110
1 1, ,0,0
2 2

� �� �� �
� �

 1 1 1 1, , ,
2 2 2 2

� �� ��
� �

� (0,1,0,0) 0

1111
1 1, ,0,0
2 2

� �� �� �
� �

 1 1 1 1, , ,
2 2 2 2

� �
�
� �

� (1,0,0,0) 1

4 Algorithm Transformation Methods

In this section we introduce quantum query algorithm transformation methods that
can be useful for enlarging a set of exactly computable Boolean functions. Each
method receives exact QQA on input, processes it as defined, and as a result slightly
different exact algorithm is obtained that computes another function.

4.1 Output Value Assignment Inversion

The first method is the simplest one. All we need to do with original algorithm is to
change assigned function value for each output to the opposite.

222 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 222LURaksti733-datorzin.indd 222 2008.03.31. 15:06:552008.03.31. 15:06:55

First transformation method - Output value assignment inversion

Input. An arbitrary exact QQA that computes f(X).
Transformation actions.

� For each algorithm output change assigned value of function to opposite.

If original assignment was 1 1(,...,)m mQM k k� �� � � , where , {0,1}ik �

Then it is transformed to 11' (,...,)mmQM k k� �� � � , where 1i ik k� � .

Output. An exact QQA that computes ()f X .

Box 1. Description of the First Transformation Method

4.2 Output Value Assignment Permutation

Describing next method we will limit ourselves to using only exact QQA with
specific properties as an input for transformation method.

Property 1. We say that exact QQA satisfies Property 1 IFF on any input system state
before a measurement is such that for exactly one amplitude i� holds true that

2 1i� � . For other amplitudes holds true that
2

0j� � , for j i
 " .

Algorithm 1 and Algorithm 2 from section 3 satisfy Property 1.

Second transformation method - Output value assignment permutation

Input.
� An exact QQA satisfying Property 1 that computes f(X).
� Permutation & of the set { , ,..., }1 2OutputValues k k km� .

Transformation actions.
� Permute function values assigned to outputs in order specified by& .

If original assignment was 1 1(,...,)m mQM k k� �� � � , where {0,1}ik � ,
Then it is transformed to 1 1' ((),..., ())m mQM k k� & � &� � � .

Output. An exact QQA for some function g(X).

Box 2. Description of the Second Transformation Method

Proof of correctness. Application of the method does not break the exactness of
QQA, because the essence of Property 1 is that before the measurement we always
obtain non-zero amplitude in exactly one output. Since function value is clearly

Alina Vasiljeva. Quantum Query Algorithm Constructions for Computing .. 223

LURaksti733-datorzin.indd 223LURaksti733-datorzin.indd 223 2008.03.31. 15:06:562008.03.31. 15:06:56

specified for each output we would always observe specific value with probability 1
for any input.

The structure of new function g(X) strictly depends on internal properties of original
algorithm. To explicitly define new function one needs to inspect original algorithm
behavior on each input and construct a truth table for new output value assignment.

4.3 Query Variable Permutation

Let & be a permutation of the set { , where elements correspond to variable
numbers. By saying that function g(X) is obtained by permutation of f(X) variables we
mean the following:

1, 2,..., }n

� �() , ,...,(1) (2) ()g X f x x x n& & &� . In our third transformation

method we expand the idea of variable permutation to QQA algorithm definition.

Third transformation method – Query variable permutation

Input.
� An arbitrary exact QQA that computes fn(X).
� Permutation & of variable numbers {0,1,..., }VarNum n� .

Transformation actions.
� Apply permutation of variable numbers & to all query transformations.

If original i-th query was defined as QQ 1 1(,...,)i m mk k� �� � �
QQ k k

,
Then it is transformed to 1 1' ((),..., ())i m m� & � &� � � {1,.., }ik n�, .

Output. An exact QQA computing a function � �() , ,...,(1) (2) ()g X f x x x n& & &� .

Box 3. Description of the Third Transformation Method

Proof of correctness. If we apply transformation method described in Box 3, variable
values will influence new algorithm flow according to the order specified by
permutation & , thus an algorithm computes g(X) instead of f(X).

4.4 Results of Applying Transformation Methods

Now we will demonstrate transformation methods application results for basic exact
algorithms from section 3.
By using EQUALITY3 function we obtained a set of 3-argument Boolean functions,
we denote it with QFunc3, where for each function there is an exact QQA which
computes it with 2 queries. In total 8 different functions were obtained 3 8QFunc � .
Functions are presented in Table 3.

224 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 224LURaksti733-datorzin.indd 224 2008.03.31. 15:06:562008.03.31. 15:06:56

Table 3. Results of Applying Transformation Methods for EQUALITY3 Algorithm (set
QFunc3)

EQUALITY
Output value assignment

pernutation
Output value assignment

inversion X
(1,0,0,0) (0,1,0,0) (0,0,1,0) (0,0,0,1) (0,1,1,1) (1,0,1,1) (1,1,0,1) (1,1,1,0)

000 1 0 0 0 0 1 1 1
001 0 0 0 1 1 1 1 0
010 0 0 1 0 1 1 0 1
011 0 1 0 0 1 0 1 1
100 0 1 0 0 1 0 1 1
101 0 0 1 0 1 1 0 1
110 0 0 0 1 1 1 1 0
111 1 0 0 0 0 1 1 1
D(f) 3 3 3 3 3 3 3 2
QE(f) 2 2 2 2 2 2 2 2

By using PAIR_EQUALITY4 function we obtained a set of 4-argument Boolean
functions, we denote it with QFunc4, where for each function there is an exact QQA
which computes it with 2 queries. In total 24 different functions were obtained

4 24QFunc � and half of it is presented in table 4.

Table 4. Results of Applying Transformation Methods for PAIR_EQUALITY4 Algorithm

PAIR
EQUALITY 2nd method

3rd method + 2nd method
1234
1324VarNum&
� �

� � �
� �

3rd method + 2nd method
1234
3124VarNum&
� �

� � �
� �

X 1
0
0
0

� �
� �
� �
� �
� �� �
� �

0
1
0
0

� �
� �
� �
� �
� �� �
� �

0
0
1
0

� �
� �
� �
� �
� �� �
� �

0
0
0
1

� �
� �
� �
� �
� �� �
� �

1
0
0
0

� �
� �
� �
� �
� �� �
� �

0
1
0
0

� �
� �
� �
� �
� �� �
� �

0
0
1
0

� �
� �
� �
� �
� �� �
� �

0
0
0
1

� �
� �
� �
� �
� �� �
� �

1
0
0
0

� �
� �
� �
� �
� �� �
� �

0
1
0
0

� �
� �
� �
� �
� �� �
� �

0
0
1
0

� �
� �
� �
� �
� �� �
� �

0
0
0
1

� �
� �
� �
� �
� �� �
� �

0000 1 0 0 0 0 0 0 1 1 0 0 0
0001 0 1 0 0 0 1 0 0 0 1 0 0
0010 0 0 1 0 0 1 0 0 0 0 1 0
0011 0 0 0 1 0 0 0 1 0 0 0 1
0100 0 1 0 0 0 0 1 0 0 0 1 0
0101 1 0 0 0 1 0 0 0 0 0 0 1
0110 0 0 0 1 1 0 0 0 1 0 0 0
0111 0 0 1 0 0 0 1 0 0 1 0 0
1000 0 0 1 0 0 0 1 0 0 1 0 0
1001 0 0 0 1 1 0 0 0 1 0 0 0
1010 1 0 0 0 1 0 0 0 0 0 0 1
1011 0 1 0 0 0 0 1 0 0 0 1 0
1100 0 0 0 1 0 0 0 1 0 0 0 1
1101 0 0 1 0 0 1 0 0 0 0 1 0
1110 0 1 0 0 0 1 0 0 0 1 0 0
1111 1 0 0 0 0 0 0 1 1 0 0 0
D(f) 4 4 4 4 4 4 4 4 4 4 4 4
QE(f) 2 2 2 2 2 2 2 2 2 2 2 2

Alina Vasiljeva. Quantum Query Algorithm Constructions for Computing .. 225

LURaksti733-datorzin.indd 225LURaksti733-datorzin.indd 225 2008.03.31. 15:06:562008.03.31. 15:06:56

5 Algorithm Constructing Methods

In this section we will present several quantum query algorithm constructing methods.
Each method requires explicitly specified exact QQAs on input, but as a result a
bounded-error QQA for more complex function is constructed. Our methods maintain
quantum query complexity for complex function in comparison to increased
deterministic complexity, thus enlarging the gap between classical and quantum
complexities of an algorithm. We offer a general constructions for computing AND,
OR and MAJORITY kinds of Boolean functions.

5.1 Bounded-error QQA for 6-Variable Function

We consider composite Boolean function, where two instances of EQUALITY3
(section 3.1) are joined with logical AND operation:

2
3 1 6 1 2 2 3 4 5 5 6(,...,) (() ()) (() ())EQUALITY x x x x x x x x x x� �
 � �
 � �
 � �
 �

Deterministic complexity. 2
3(D EQUALITY �) 6� , by sensitivity on X=111111.

Algorithm 3. Our approach in designing an algorithm for is to
employ quantum parallelism and superposition principle. We execute algorithm
pattern defined by original algorithm for EQUALITY

2
3EQUALITY �

3 in parallel for both blocks of
2

3EQUALITY � variables. Finally, we apply additional quantum gate to correlate
amplitude distribution. Algorithm flow is depicted explicitly in figure 3.

Fig. 3. Bounded-error QQA for 2
3EQUALITY �

Quantum complexity. Algorithm 3 computes 2
3EQUALITY � using 2 queries with

correct answer probability : 3 / 4p � 2
3 / 4 3()Q EQUALITY � 2� .

Proof.
To calculate probabilities of obtaining correct function value it is enough to examine
4 cases depending on the value of each term of 2

3EQUALITY � . Results are presented

226 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 226LURaksti733-datorzin.indd 226 2008.03.31. 15:06:572008.03.31. 15:06:57

in a table below. We use wildcards “?” and “*” to denote that exactly one value under

the same wildcard is 1
2

' (we don’t care which one), but all others are zeroes.

Table 5. Calculation of Probabilities Depending on Algorithm Flow for . 2
3EQUALITY �

3

1 2 3(, ,)
EQUALITY
x x x

 3

4 5 6(, ,)
EQUALITY
x x x

 Amplitude distribution
before last gate

Amplitude distribution
after last gate

("1")p

0 0 (0,?,?,?,0,*,*,*) (0,?,?,?,0,*,*,*) 0

0 1 10,?,?,?, ,0,0,0
2

� �
� �
� �

 1 1,?,?,?, ,0,0,0
2 2

� ��� �
� �

 1/4

1 0
1 ,0,0,0,0,?,?,?
2

� �
� �
� �

 1 1,0,0,0, ,?,?,?
2 2

� �
� �
� �

 1/4

1 1
1 1,0,0,0, ,0,0,0
2 2

�
�
� �

�
� (1,0,0,0,0,0,0,0) 1

So, we have and ("1") 1p � ("0") 3/ 4p � , we did not use additional queries, thus
estimation 2

3 / 4 3(Q EQUALITY �) 2� is proved.

5.2 First Constructing Method – AND(f1,f2)

In this section we will generalize approach used in previous section. To be able to use
generalized version of the method we will limit ourselves to examining only exact
QQA with specific properties.

Property 2+ We say that exact QQA satisfies Property2+ IFF there is exactly one
accepting basic state and on any input for its amplitude C� � only two values are
possible before the final measurement: either 0� � or 1� � .

Algorithm 1 presented in section 3.1 satisfies Property 2+.

Property 2- We say that exact QQA satisfies Property2- IFF there is exactly one
accepting basic state and on any input for its amplitude C� � only two values are
possible before the final measurement: either 0� � or 1� � � .

Lemma 1. It is possible to transform an algorithm that satisfies Property2- to an
algorithm that satisfies Property2+ by applying additional unitary transformation.

Proof. Let’s assume that we have QQA satisfying Property2- and k is the number of
accepting output. To transform algorithm to satisfy Property2+ apply the following

quantum gate: U u
0, if

() 1, if
1, if

"(
)� � � "*
)� �+

ij

i j

�
i j k
i j k

Alina Vasiljeva. Quantum Query Algorithm Constructions for Computing .. 227

LURaksti733-datorzin.indd 227LURaksti733-datorzin.indd 227 2008.03.31. 15:06:572008.03.31. 15:06:57

First constructing method - AND(f1,f2)

Input.
� Two exact QQAs A1 and A2 satisfying Property2+ that compute

correspondingly Boolean functions f1(X1) and f2(X2).

Transformation actions.

1) If A1 and A2 utilize quantum systems of different size, extend the smallest
one with auxiliary space to obtain an equal number of amplitudes. We denote
the dimension of obtained Hilbert spaces with m.

2) For new algorithm utilize a quantum system with 2m amplitudes.
3) Combine unitary transformations and queries of A1 and A2 in the following

way: , here O’s are
1

2
i

i
i

U O
U

O U

� �
��
�
� �

�
�

m m	 zero-matrices, and are

either unitary transformations or query transformations of A1 and A2.

1
iU 2

iU

4) Start computation from the state � �1/ 2, 0,...,0, 1/ 2, 0,..,0� � .

5) Before the final measurement apply additional unitary gate. Let’s denote the
positions of accepting outputs of A1 and A2 by acc1 and acc2. Then the final
gate is defined as follows:

� �

1 2

1

1 2 2

2

 1, if () & () & (())

 1/ 2, if ()

 1/ 2, if () & (()) OR (()) & ()

1/ 2, if (())
 0, otherwise

ij

i j i acc i m acc

i j acc

U u i acc j m acc i m acc j acc

i j m acc

� " " (
)

� �)
)� � � � � �*
)
� � �)
)
+

1

6) Define as accepting output exactly one basic state 1acc .

Output. A bounded-error QQA A computing a function 1 1 2 2() () ()F X f X f X� �
with probability and complexity is 3 / 4p � 3/ 4 1 2() max((), ())E EQ A Q A Q A� .

Box 4. Description of the First Constructing Method for AND(f1,f2)

5.3 Bounded-error Quantum Algorithm for 8-Variable Function

Next step is to realize similar approach for OR operation. This time we take the
second exact algorithm for PAIR_EQUALITY4 as a base.
We consider composite Boolean function, where two instances of PAIR_EQUALITY4
are joined with OR operation:

228 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 228LURaksti733-datorzin.indd 228 2008.03.31. 15:06:572008.03.31. 15:06:57

2
4 1 8 4 1 2 3 4 4 5 6 7 8_ (,...,) _ (, , ,) _ (, , ,)PAIR EQUALITY x x PAIR EQUALITY x x x x PAIR EQUALITY x x x x� � �

� � � �� � � � � �� �2
4 1 8 1 2 3 4 5 6 7 8_ (,...,)PAIR EQUALITY x x x x x x x x x x� �
 � �
 � �
 � �
 �

We succeeded in constructing quantum algorithm for 2
4_PAIR EQUALITY � ,

however algorithm structure is more complex than in AND operation case.

Algorithm 4. This time we use 4 qubit quantum system, so totally there are 16
amplitudes. First, we execute PAIR_EQUALITY4 algorithm pattern in parallel on first
8 amplitudes, and then apply two additional quantum gates USWAP and UOR:

, -

, -
, -

, -

1 0 0 0 0 0 0 0 0 0 .. 0
0 0 0 0 1 0 0 0 0 0 .. 0
0 0 1 0 0 0 0 0 0 0 .. 0
0 0 0 1 0 0 0 0 0 0 .. 0
0 1 0 0 0 0 0 0 0 0 .. 0
0 0 0 0 0 0 0 0 1 0 .. 0
0 0 0 0 0 0 1 0 0 0 .. 0
0 0 0 0 0 0 0 1 0 0 .. 0
0 0 0 0 0 1 0 0 0 0 .. 0
0 0 0 0 0 0 0 0 0 1 .. 0
..
0 0 0 0 0 0 0 0 0 0 .. 1

SWAPU

� �
� �
� �
� �
� �
� �
� �
�
�

� �
�
�
�
�
�
�
�
�
� �

�
�
�
�
�
�
�
�
�
�
�

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2

0 0 1/ 2 1/ 2 1/ 2 1/ 2 0 0 0 0 0 0 0 0 0 0
0 0 1/ 2 1/ 2 1/ 2 1/ 2 0 0 0 0 0 0 0 0 0 0
0 0 1/ 2 1/ 2 1/ 2 1/ 2 0 0 0 0 0 0 0 0 0 0
0 0 1/ 2 1/ 2 1/ 2 1/ 2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1/ 2 1/ 2 1/ 2 1/ 2 0 0 0 0 0 0
0 0 0 0 0 0 1/ 2 1/ 2

 U =OR

�

� �
� �

� �

� 1/ 2 1/ 2 0 0 0 0 0 0
0 0 0 0 0 0 1/ 2 1/ 2 1/ 2 1/ 2 0 0 0 0 0 0
0 0 0 0 0 0 1/ 2 1/ 2 1/ 2 1/ 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
� �

� �

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

�

Quantum measurement:
, - , - , -� �1,1 , 1,0,0,0 , 1,0,0,0 ,0,0,0,0,0,0QM �

Alina Vasiljeva. Quantum Query Algorithm Constructions for Computing .. 229

LURaksti733-datorzin.indd 229LURaksti733-datorzin.indd 229 2008.03.31. 15:06:582008.03.31. 15:06:58

Complete algorithm structure is presented in Figure 4.

Fig. 4. Bounded-error QQA for 2
4_PAIR EQUALITY �

Quantum complexity. Algorithm 4 computes 2
4_PAIR EQUALITY � using 2 queries

with correct answer probability 5 / 8p � : 2
5 / 8 4(_)Q PAIR EQUALITY � 2� .

Proof. We demonstrate computation process results, what cover all possible inputs.

I 4 1 2 3 4_ (, , ,) 1PAIR EQUALITY x x x x � and 4 5 6 7 8_ (, , ,) 1PAIR EQUALITY x x x x �

Amplitude distribution before UOR
Amplitude distribution before the

measurement ("1")p

1 1, , 0,0,0,0 , 0,0,0,0 ,0,0,0,0,0,0
2 2

� �. /
' ' . / . /� �0 1 2 3 2 3� �2 3� �

� �1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0'

or
� �0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0'

1

230 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 230LURaksti733-datorzin.indd 230 2008.03.31. 15:06:582008.03.31. 15:06:58

II 4 1 2 3 4_ (, , ,) 1PAIR EQUALITY x x x x � and 4 5 6 7 8_ (, , ,) 0PAIR EQUALITY x x x x �

Amplitude distribution before
UOR

Amplitude distribution before the
measurement ("1")p

1 ,0 , 0,0,0,0 , ?,?,?,0 ,
2

0,0,0,0,0,0

� �. /
' . / . /� �0 1 2 3 2 3

� �2 3
� �
� �

1 1, , 0,0,0,0 ,
2 2

1 1 1 1, , , ,0,0,0,0,0,0
2 2 2 2 2 2 2 2

� �. /
' ' . /� �2 30 1
2 3� �
� �. /� �' ' ' '0 1� �2 3� �

1 1 1
4 4 8

5
8

 �

�

III 4 1 2 3 4_ (, , ,) 0PAIR EQUALITY x x x x � and 4 5 6 7 8_ (, , ,) 1PAIR EQUALITY x x x x �

Amplitude distribution before
UOR

Amplitude distribution before the
measurement ("1")p

10, , ?,?,?,0 , 0,0,0,0 ,
2

0,0,0,0,0,0

� �. /
' . / . /� �0 1 2 3 2 3

� �2 3
� �
� �

1 1 1 1 1 1, , , , ,
2 2 2 2 2 2 2 2 2 2

0,0,0,0 ,0,0,0,0,0,0

� �
,

. /. /' ' ' ' ' '� �0 10 1
2 3� �2 3
� �� �. /2 3� �

1 1 1
4 4 8

5
8

 �

�

IV 4 1 2 3 4_ (, , ,) 0PAIR EQUALITY x x x x � and 4 5 6 7 8_ (, , ,) 0PAIR EQUALITY x x x x �

Amplitude distribution before
UOR

Amplitude distribution before the measurement ("1")p

0,0 , ?,?,?,0 , *,*,*,0 ,

0,0,0,0,0,0

� �. / . / . /2 3 2 3 2 3� �� �
� �

1 1 1 10,0 , , , , ,
2 2 2 2 2 2 2 2

1 1 1 1, , , ,0,0,0,0,0,0
2 2 2 2 2 2 2 2

� �. /
' ' ' '. /� �0 12 3

� �2 3
� �
. /� �' ' ' '0 1� �2 3� �

 1 1 1
8 8 4
 �

Correct function result is always obtained with probability not less than 5/8, thus
complexity estimation is proved.

5.4 Second Constructing Method – OR(f1,f2)

In this section we generalize approach for computing composite Boolean functions
matching OR(f1,f2) pattern.
First, we define next QQA property.

Property 3 We say that exact QQA satisfies Property3 IFF
� it satisfies Property1;
� there is exactly one accepting basic state;
� on any input accepting state amplitude value before measurement is

{ 1,0,1}� � �

Algorithm 1 and Algorithm 2 from section 3 both satisfy Property3.

The following lemma will be useful during method application.

Lemma 2. For any QQA on any computation step it is possible to swap amplitude
values in arbitrary order by applying specific quantum gate.

Alina Vasiljeva. Quantum Query Algorithm Constructions for Computing .. 231

LURaksti733-datorzin.indd 231LURaksti733-datorzin.indd 231 2008.03.31. 15:06:582008.03.31. 15:06:58

Proof. Assume we need to swap amplitude values according to permutation
1 2

1 2

...

...
n

n

� � �
&

4 4 4
�

� �
� �

�
� u. Then we can define quantum gate { }SWAP ijU � elements as:

� ; {1... }: 1
k k

k n u� 4
 � �

� 0iju � , in all other cases.

Now we are ready to formulate a method for computing OR(f1,f2) kind of functions.
For simplicity we consider only such input algorithms, which employ 2 qubit system.
However, approach can be generalized for quantum systems of arbitrary size.

Second constructing method – OR(f1,f2)

Input.
� Two exact QQAs A1 and A2 satisfying Property3, which use quantum

systems with 2 qubits and compute correspondingly Boolean functions f1(X1)
and f2(X2).

Transformation actions.

1) Use 4 qubit quantum system for new algorithm, totally 42 16� basic states.

2) Convert initial state � �0 1,0,0,0,...,0�
�

 into state:

1 1,0,0,0 , ,0,0,0 ,0,0,0,0,0,0,0,0
2 2

�
� �. / . /

� � �0 1 0 1
2 3 2 3� �

3) Combine A1 and A2 unitary and query transformations in the following way:

, where [I

, -

1
4 4 4 8

2
4 4 4 8

8 4 8 4 8

i x

i x i x

x x

U O O

U O U O

O O I

� �. /2 3� �
� . /� 2 3� �
� �
� �

x

� 8] is 8x8 identity matrix.

4) Apply amplitude swapping gate USWAP, which was defined in the proof of

lemma 2, to arrange amplitudes in the following order:

� 1st amplitude 5 first sub-algorithm accepting amplitude;

� 2nd amplitude second sub-algorithm accepting amplitude; 5

� 3rd , 4th , 5th amplitudes 5 first sub-algorithm rejecting amplitudes;

� 7th , 8th , 9th amplitudes 5 second sub-algorithm rejecting amplitudes.

232 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 232LURaksti733-datorzin.indd 232 2008.03.31. 15:06:582008.03.31. 15:06:58

5) Apply the last quantum gate, which was precisely defined in previous section:

, -
, -

, -
, -

2 2 4 2 4 2 6

4 2 4 4 4 4 6

4 2 4 4 4 4 6

6 2 6 4 6 4 6

x x x

x x
OR

x x x

x x x

H O O O
O H O O

U
O O H O
O O O I

� �
� �
� �� � �
� �� �
� �

x

6) Assign function values to algorithm outputs s follows:

, - , - , -� �1,1 , 1,0,0,0 , 1,0,0,0 ,0,0,0,0,0,0QM �

Output. A bounded-error QQA A computing a function 1 1 2 2() () ()F X f X f X� �
with probability and complexity is5 / 8p � 5 / 8 1 2() max((), ())E EQ A Q A Q A� .

Box 5. Description of the Second Constructing Method for OR(f1,f2)

5.5 Bounded-error Quantum Algorithm for 12-Variable Function

Let us try to increase the effect gained by employing quantum parallelism. Next idea
is to execute 4 instances of algorithm in parallel, adjusting algorithm parameters in
appropriate way. We will take as a pattern function EQUALITY3 from section 3.1.
Designed algorithm and additional gates are presented in Figure 5 and below.
Algorithm computes some 12-variable Boolean function with bounded-error.

Algorithm 5

Fig. 5. Bounded-error Quantum Query Algorithm for 12-Variable Function

Alina Vasiljeva. Quantum Query Algorithm Constructions for Computing .. 233

LURaksti733-datorzin.indd 233LURaksti733-datorzin.indd 233 2008.03.31. 15:06:592008.03.31. 15:06:59

Additional quantum gates (empty matrix cells correspond to “0”):

'U �

1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 2
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0

0
0

1 10 0 0 0 0
2 2

0 1 0
0 1 0
0 1 0

1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 2
0 0 1 0
0 0 1 0
0 0 1 0

1 1
0 0 0 0

2 2
0 0 1
0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

� �
� �
� �
� �
� �
� �
� �
� �
� ��
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

�� �
� �
� �
� �
� �
� �
� �
� �

''U0

0
0
0

0

0
1 0

�

1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 2
0 1 0 0
0 1 0 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0

1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2

0 0 1
0 0 1
0 0 1
0 0 1
0 0
0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

�� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �� �
� �

0
0
0
0
0

0
0
0
0

1 0
1 0

After examination of algorithm computational flow and calculation of probabilities
we obtained the result that is formulated in the next statement.

Quantum complexity. Algorithm 5 computes function defined as:

1 3

1 12 4 6 7 9

10 12

Not less than 3 functions from: (,..,),
(,...,) 1 (,...,), (,...,),

(,...,) give value "1".

EQUALITY x x
F x x EQUALITY x x EQUALITY x x

EQUALITY x x

� �
� �� 6 � �
� �
� �

and complexity is 9 /16 (Algorithm5) 2Q � .

Deterministic complexity. This time we did not achieve maximal possible gap. From
the definition of function F we find that sensitivity is () 9s F � , thus in this case we
can only register a gap vs. Q() 9D f # 9/16(f)=2.

5.6 Third Constructing Method - MAJORITY

We examined the structure of algorithm in the previous section 5.5 and concluded that
such approach would be useful for computing Boolean functions that belong to
MAJORITY class.

Definition 1. Boolean function MAJORITYn(X), with 2 1, n k k N� � arguments is
defined as:

2 1
2 1 =1

() 1 k
k ii

MAJORITY X x k

 � 6 $�

When number of arguments is odd, then there always is a clear majority of “0” or “1”
in input vector. When number of function arguments is even, the case when number

234 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 234LURaksti733-datorzin.indd 234 2008.03.31. 15:06:592008.03.31. 15:06:59

of “0” and “1” is equal is not defined. We define another one class of Boolean
functions for the case when number of function arguments is even.

Definition 2. Boolean function MAJORITY_EVENn(X), with 2 , , 0n k k N k� � $
arguments is defined as:

2
2 =1

_ () 1 k
k ii

MAJORITY EVEN X x k� 6 $�

So, when number of “0” and “1” in input vector is equal, then function value is “0”.
In addition to MAJORITY function we define also MAJORITY composite
construction. The difference is that in MAJORITY construction we use other Boolean
functions as MAJORITY arguments.

Definition 3. We define MAJORITYn construction (2 1, n k k N� �) as a Boolean
function where arguments are arbitrary Boolean functions fi and which is defined as:

� �2 1
2 1 1 2 2 1 =1

[, ,...,]() 1 ()k
k k i ii

MAJORITY f f f X f x k

 � 6 $� ,

where 1 2 2 1... kX x x x �

Construction MAJORITY_EVENn is defined in a similar way.

Let’s again consider quantum algorithm 5 from the section 5.5. Definition of Boolean
function was:

1 3

1 12 4 6 7 9

10 12

Not less than 3 functions from: (,..,),
(,...,) 1 (,...,), (,...,),

(,...,) give value "1".

EQUALITY x x
F x x EQUALITY x x EQUALITY x x

EQUALITY x x

� �
� �� 6 � �
� �
� �

Now we can rewrite it as:

1 12 4 3 1 12 4

3 1 3 3 4 6 3 7 9 3 10 12

(,...,) _ [](,...,) _ (
(,...,), (,...,), (,...,), (,...,))

F x x MAJORITY EVEN EQUALITY x x MAJORITY EVEN
EQUALITY x x EQUALITY x x EQUALITY x x EQUALITY x x

� �

Next, we formulate a general algorithm constructing method for computing
MAJORITY_EVEN4 construction.

Third constructing method - MAJORITY

Input.
� Four exact QQAs A1, A2, A3, A4 satisfying Property2+ that compute

correspondingly Boolean functions f1(X1), f2(X2), f3(X3), f4(X4).
Transformation actions.

1) If any of input algorithms satisfy Property2-, then transform it to algorithm
which satisfies Property2+ by applying lemma 1.

2) Combine unitary and query transformations of input algorithms in the

Alina Vasiljeva. Quantum Query Algorithm Constructions for Computing .. 235

LURaksti733-datorzin.indd 235LURaksti733-datorzin.indd 235 2008.03.31. 15:06:592008.03.31. 15:06:59

following way: , where U is k-th algorithm

transformation. O’s are zero sub-matrices, size depends on number of input

algorithm amplitudes.

1

2

3

4

i

i
i

i

i

U O O O

O U O O
U

O O U O

O O O U

� �
� �
� �

� � �
� �
� �� �
� �

k
i

3) Start computation in a state:

1 1 1 1, 0,...,0, , 0,...,0, , 0,...,0, , 0,...,0
2 2 2 2

� � �� � �
� �

where positions of 1/2 correspond to positions of the first amplitude of input
algorithms.

4) Before the measurement apply two additional quantum transformations. We

denote input algorithm accepting amplitude numbers as 1 2 3, , and 4� � � � .

7 8

1 2 3 4

1 3

2 4'

1 2 2 1

3 4 4 3

1, if () () () ()

1/ 2, if () ()

1/ 2, if () ()

1/ 2, if (&) (&)

1/ 2, if (&) (&)
0, otherwise

ij

i j i j i j i j

i j i j

i j i j
U u

i j i j

i j i j

� � �

� �

� �

� � � �

� � � �

� " � � " � � " � � "(

� � � � �

� � � � � �
� �

� � � � �

� � � � �

)
)
)
)
*
)
)
)
)+

�

7 8

1 2 3 4

1
''

3

1 3 3 1

1, if () () () ()

1/ 2, if ()

1/ 2, if ()

1/ 2, if (&) (&)
0, otherwise

ij

i j i j i j i j

i j

U u i j

i j i j

� � �

�

�

� � � �

� " � � " � � " � � "(
)

� �)
)� � � � �*
)

� � � � �)
)
+

�

5) Define as accepting state exactly one basic state 1� , that correspond to

algorithm A1 accepting state.

Output. A bounded-error QQA A computing a function
4 1 2 3 4_ [, , ,]()MAJORITY EVEN f f f f X , where 1 2 3 4X X X X X� with probability

 and complexity is 9 /16p � 9 /16 1 2 3 4() max((), (), (), ())E E E EQ A Q A Q A Q A Q A� .

Box 6. Description of the Third Constructing Method for MAJORITY_EVEN4

236 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 236LURaksti733-datorzin.indd 236 2008.03.31. 15:07:002008.03.31. 15:07:00

() 1f x �By using a constant function as one of constructing method input algorithms
it is possible to achieve that resulting algorithm computes:

4 1 2 3 3 1 2 3_ (, , ,1) (, ,)MAJORITY EVEN f f f MAJORITY f f f�

6 Results of Applying Methods

We applied transformation and designing methods to two basic exact QQAs described
in section 3. In total we obtained 32 exact QQAs and 512 QQAs with bounded error.
Each algorithm computes different Boolean function and uses only 2 queries. Results
are summarized in table 6. Here n is number of variables of computable function.

Table 6. Results of Transformation and Constructing Methods Application

Basic exact quantum algorithms

Set Size Number of
arguments

Number of
questions Probability

QFunc3 8 3 2 1

QFunc4 24 4 2 1

Constructed algorithms sets

Set Size Number of
arguments

Number of
questions Probability

QFunc_AND 16 6 2 3/4

QFunc_OR 256 6,7,8 2 5/8

QFunc_MAJ_EVEN4 256 12 2 9/16

QFunc_MAJORITY3 64 9 2 9/16

Total 832

The important point is that invention of each brand-new exact QQA with required
properties will at once significantly increase a set of efficiently computable functions.

7 Conclusion
In this work we consider quantum query algorithm constructing problems. We have
tried to develop some general approaches for designing algorithms for computing
Boolean functions defined by logical formula. The main goal of research is to develop
a framework for building ad-hoc quantum algorithms for arbitrary Boolean functions.
In this paper we describe general constructions for designing quantum algorithms for
AND, OR and MAJORITY kinds of Boolean functions.
First, we presented two exact quantum query algorithms for 3 and 4 argument
functions. Both algorithms save questions comparing to the best possible classical

Alina Vasiljeva. Quantum Query Algorithm Constructions for Computing .. 237

LURaksti733-datorzin.indd 237LURaksti733-datorzin.indd 237 2008.03.31. 15:07:002008.03.31. 15:07:00

algorithm. Algorithms are used in further sections as a base for algorithm
transformation and constructing methods.
Next, we proposed techniques that allow transformation of an existing quantum query
algorithm for a certain Boolean function so that the resulting algorithm computes a
function with other logical structure. We illustrated methods by applying them to two
basic exact algorithms.
Finally, we suggested approaches that allow building bounded-error quantum query
algorithms for complex functions based on already known exact algorithms.
Constructing methods include efficient solutions for AND, OR and MAJORITY
constructions.
Combination of these three aspects allowed us to construct large sets of efficient
quantum algorithms for various Boolean functions.
Further work in this direction could be to invent new efficient quantum algorithms
that exceed already known separation from classical algorithms. Another important
direction is improvement of general algorithm designing techniques.

8 Acknowledgments

I would like to thank my supervisor Rusins Freivalds for introducing me with
quantum computation and for permanent support.
This research is supported by the European Social Fund.

References

[1] H. Buhrman and R. de Wolf: “Complexity Measures and Decision Tree Complexity: A

 Survey”. Theoretical Computer Science, v. 288(1): 21–43 (2002).

[2] R. de Wolf: “Quantum Computing and Communication Complexity”. University of

 Amsterdam (2001).

[3] R. Cleve, A. Ekert, C. Macchiavello, et al. “Quantum Algorithms Revisited”. Proceedings

 of the Royal Society, London, A454 (1998).

[4] J. Gruska: “Quantum Computing”. McGraw-Hill (1999).

[5] M. Nielsen, I. Chuang: “Quantum Computation and Quantum Information”. Cambridge

 University Press (2000).

[6] Ambainis: “Quantum query algorithms and lower bounds (survey article)”. Proceedings of

 FOTFS III, to appear.

[7] Ambainis and R. de Wolf: “Average-case quantum query complexity”. Journal of Physics A

 34, pp 6741–6754 (2001).

[8] Ambainis. “Polynomial degree vs. quantum query complexity”. Journal of Computer and

 System Sciences 72, pp. 220–238 (2006).

238 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 238LURaksti733-datorzin.indd 238 2008.03.31. 15:07:002008.03.31. 15:07:00

QUALITY MODELS

LURaksti733-datorzin.indd 239LURaksti733-datorzin.indd 239 2008.03.31. 15:07:002008.03.31. 15:07:00

LURaksti733-datorzin.indd 240LURaksti733-datorzin.indd 240 2008.03.31. 15:07:002008.03.31. 15:07:00

Conceptualising Informatization with the Onto6
Methodology

Uldis Straujums

University of Latvia, 19 Raina Blvd., Riga, LV-1586, Latvia
uldis.straujums@lu.lv

Abstract This paper presents a way of conceptualising informatization through
a new methodology that is called Onto6. Informatization is defined as the
maintained process of creating the technical, economic, and social conditions
which are necessary for the fulfilment of information needs. The Onto6
methodology identifies objects and determines their interaction and
functionality. The methodology is based on meta-ontology, and it involves the
creation of an instance in accordance with the domain. The initial ontology is
created from the ontology instance, and it is extended during the
informatization. In the initial ontology, root metaphors and the relationship
among same must be defined by the planner of informatization. More work is
being done by the implementers of informatization to refine the initial ontology.
This creates an ontology cluster which consists of meta-ontology, a meta-
ontology instance, the initial ontology, and the refinements of that ontology.
This reflects a conceptualisation of informatization in a particular domain. The
author has taken part in the conceptualisation and maintenance of
informatization in several domains. The Onto6 methodology that is proposed in
this paper has been applied to several domains at the national level.

1 Defining Informatization

Use of the term “informatization” on the Internet has increased continuously over the
course of time. The Google search engine found 40,400 links to the word in
November 2004, 258,000 in January 2006, and 1.24 million in September 2007. The
Alta Vista engine found only 1,868 references in April 1998. Despite this fact,
however, it is difficult to come up with a precise definition of the term. Different
sources provide slightly different definitions. The South Korean National Computing
Agency [Lim01] defines “informatization” as “converting the main goods and energy
of a social economy to information through the revolution of high data
communication technology and utilising information produced by gathering,
processing and distributing data within the vast fields of the society.” A report
prepared for the United Nations Economic Commission for Europe [Haf03], the
definition says that “informatization” is the process whereby information technologies
transforme economies and societies.
In this paper, we shall use the definition produced by Bicevskis, Andzans, Ikaunieks,
Medvedis and Straujums in Education Media International [BAIMS04]:

LATVIJAS UNIVERSITĀTES RAKSTI. 2008, 733. sēj.:
DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS 241.–260. lpp.

LURaksti733-datorzin.indd 241LURaksti733-datorzin.indd 241 2008.03.31. 15:07:002008.03.31. 15:07:00

“Informatization is the maintained process of creating the technical, economic and
social conditions for the fulfilment of information needs.”
All of these definitions make it clear that while informatization covers the area of
computerisation, it is, in fact, a broader term than just that. This author has
participated in the conceptualisation of informatization and the maintenance of
informatization for several domains, ranging from domains at the national level to the
domain of an educational institution. These are the case studies which are examined
in this paper:

� The Latvian Education Informatization System (LIIS) project, which deals
with the whole range of information issues – educational content,
management, information services, infrastructure, as well as user training at
several levels – schools, school boards, and the Ministry of Education and
Science. The LIIS project is an essential component of the Latvian National
Informatics Programme;

� The Unified State Library Information System project (VVBIS), which was
developed on the basis of the requirement of the National Informatics
Programme that Universal Information Services be created;

� The informatics curriculum standard for Latvia’s general education schools.
The analysis of the needs of the people of Latvia in terms of an ICT-
educated workforce has been conducted, and solutions have been proposed
as to the content of informatics courses. Detailed plans on how to provide
the necessary training for existing and future informatics teachers have been
drawn up.

All of the projects which are examined in this paper have actually been implemented
over the course of many years and with considerable success.

2 An Ontological Approach to the Conceptualization of
Informatization

Conceptualisation of informatization is a process with several phases – analysis of the
existing situation, setting of goals, planning of activities, and evaluation of costs.
This tends to be an iterative process, and several alternatives are compared. The
consequence is that a framework must be established so as to correlate the knowledge
that has been acquired during the developmental process. The requirements for such
a framework include:

� The ability to organise the essential quality in a hierarchical form;
� The mapping of the qualities in the context of recognised standards;
� The interaction of organisational, domain-specific and technological aspects

of the process.
All of these requirements led to the introduction of several different approaches in
accumulating and then reusing knowledge – controlled vocabularies, thesauri,
classification schemes, taxonomies, topic maps, frame languages, logical theories, and
meta-models. There are many other approaches called ontologies. In formal terms,
an ontology is the explicit specification of a conceptualisation for a domain [Gru95].
This specification can take the form of a logical theory, accounting for the intended

242 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 242LURaksti733-datorzin.indd 242 2008.03.31. 15:07:012008.03.31. 15:07:01

meaning [Gua98], or it can strive to make use of the notion of linguistic relativism
[Wys04]. According to Crubézy and Musen [CM04, p. 321], “ontologies support the
creation of repositories of domain-specific reference knowledge – domain knowledge
bases – for communication and sharing of this knowledge among people and
computer applications.” The differences lie in the ability to describe terms and to
define relations among them. The differences at the level of formality create an
ontology spectrum [Wil04].
The controlled vocabulary, i.e., the list of enumerated terms, is at one end of the
spectrum. Ideally, each term should have just one meaning. In practice, however,
terms are qualified in accordance with different meanings in different domains. If
several terms have the same meaning, one is preferred, while the others are classified
as synonyms or aliases. The controlled vocabulary is used to built up more advanced
ontologies. For example, a thesaurus is built up by adding associative relationships to
vocabulary. Frame languages have the ability to express the properties, logical
constraints, and detailed relationships of terms. A meta-model is an explicit model
within a domain of interest, containing terms and rules that are needed to build
specific models. A meta-model is an ontology, but it is a richer notion – it can be
used as a set of building blocks and rules which apply to the construction of models,
as a model of a domain of interest, or as an instance of another model.

3 Onto6 – a Methodology for the Conceptualization of
Informatization

This author has developed a methodology that can be used in the early
conceptualisation of informatization in different domains. The target audience for
this methodology is made up of the users of the domain which is undergoing
informatization. These users are usually unaware of formal means for describing
systems – UML, OWL, GRAPES, OMT, etc.
If we take into account the skills and the knowledge of these clients, we understand
that the methodology which is proposed to them must be simple, understandable, and
extendable. The Onto6 methodology was inspired by several sources, particularly the
GRAPES-86 modelling language, the Object Modelling Technique (OMT), and the
6W approach.
GRAPES (Graphical Engineering System) [GRA02] is a method for system
development which supports the entire software development process, from problem
analysis to implementation. The GRAPES-86 modelling language is the central
element, making it possible to specify the structure, behaviour, and data of
information processing systems, particularly distributed systems such as company
organisations and network architectures. GRAPES-86 has a formal, defined text and
graphic syntax, which means that it can be statically assessed. Furthermore,
GRAPES-86 includes a dynamic processing model. The dynamic behaviour of
GRAPES models can, therefore, be simulated and analysed. A modelling and
development environment GRADE implementing GRAPES is developed [PKB93].

Uldis Straujums. Conceptualising Informatization with the Onto6 Methodology 243

LURaksti733-datorzin.indd 243LURaksti733-datorzin.indd 243 2008.03.31. 15:07:012008.03.31. 15:07:01

The level of formalism is too high, however, and the learning curve is too steep for
typical informatization clients to make effective use of GRAPES-86. More concise
means for the conceptualisation of informatization had to be defined.
The attractive approach developed by Rumbaugh [Rum97] is called Object Modelling
Technology, or OMT. It is simpler than GRAPES, using object-oriented modelling to
think clearly about problems and to draw three kinds of diagrams. The need to study
the precise notion of diagrams and the preoccupying attention to software
development, however, make this approach difficult for the typical informatization
user to understand.
The 6W approach is extensively used in various areas – knowledge management
[KMO07], context analysis [Mot00], architectural design [Lan04], etc. The approach
involves six questions about the topic – what, where, when, how, why, and who. The
approach was created by Rudyard Kipling back in 1902 [Kipl02]. This may seem to
oversimplify the complexity of the topic that is being considered, but in reality there
is a vast amount of sub-questions which arise from the points of view and
expectations of those who are doing the asking.
The author proposes a methodology based on the 6W approach as a top-level structure
which can be understood by every client, one which supplies the most typical sub-
questions (terms) for further investigation of the relevant topic.

3.1 Meta-ontology

The developed Onto6 methodology identifies the object and determines interaction
and functionality. The methodology is based on a meta-ontology which creates an
instance in accordance with the domain. This instance remains stable and unchanged
during the informatization process. The initial ontology is created from the ontology
of the instance, and then it is extended during the process of informatization.
The proposed meta-ontology is shown in Figure 1.

Fig 1. The Meta-ontology of the Onto6 Metodology

244 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 244LURaksti733-datorzin.indd 244 2008.03.31. 15:07:012008.03.31. 15:07:01

The meta-ontology contains the most abstract terms and the relations among those
terms, presenting them in a simple form. The level of simplicity is based on the level
of competence in the sense of the formal notations of the system’s users, i.e., the
clients of the process of informatization.
The top-level terms that have been chosen by the author are inspired by the 6W
approach. Each term has its attributes and sub-terms. There can be vast numbers of
sub-terms which characterise each top-level term. Lower-level terms themselves can
have sub-terms. This means the emergence of a hierarchy, possible one that is
recursive.
The author has proposed a set of terms for top-level term attributes. These reflect the
most abstract aspects of each top-level term and should be mapped in relation to the
real entities when creating the initial ontology. Table 1 shows the attributes of the
top-level terms. The attributes are introduced into the Onto6 meta-ontology with a
selective subset of attributes from a number of component ontologies [Goed99,
Lep05, Hoss06, Sowa06]. The root metaphor and related concepts described in
[Bar94, Mot00, VB01, Fon02, Gaz02, Pul03, Lan04, VZSS04 and Sowa07] are also
taken into account. The goal is to create a relatively small set of attributes that can be
understood by unsophisticated users and that is sufficient for the conceptualisation of
informatization.

Table 1. Top-level Terms in the Onto6 Meta-ontology and their Attributes

Top level term Attribute
What Concept

Sign
Referent
Reality
Resource
Plan
Tool
Knowledge
Information
System
Model
Paradigm

Where Subjective reality
Physical reality
Location

When Time
State
Transition
Event
Life cycle

How Abstraction
Concretizing
Rule

Uldis Straujums. Conceptualising Informatization with the Onto6 Methodology 245

LURaksti733-datorzin.indd 245LURaksti733-datorzin.indd 245 2008.03.31. 15:07:012008.03.31. 15:07:01

Role
Why Point of view

Perspective
Universe of discourse
Context
Goal
Goal-producing context
Reason
Problem
Strength
Weakness
Opportunity
Threat

Who Thing
Subjective reality
Physical reality
Property
Relationship
Framework
Actor
Organization
Human
Action
Service
User

In addition to the top-level terms as such, there must also be the definition of the
relationships among them. The semantics of these relationships, as defined by the
author, are presented in Table 2.

Table 2. The Semantics of Relationships in the Onto6 Meta-ontology

Relationship between terms Semantics
[What, Where]
[What, When]
[What, How]
[What, Why]
[What, Who]

Relationship [T1, T2] defines specific
attributes characterizing the cell in two-
dimensional informatization grid. The
dimensions of the grid are T1 and T2,
where T1=What and T2= one of (Where,
When, How, Why, Who)

Relationships are symmetrical, i.e., the relationship [T1, T2] is the same as the
relationship [T2, T1].

246 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 246LURaksti733-datorzin.indd 246 2008.03.31. 15:07:012008.03.31. 15:07:01

3.2 A Meta-ontology Instance

In order to provide an informatization-based description of a particular domain, an
instance of the meta-ontology must be created. This meta-ontology instance reflects
the characteristic aspects of a particular domain. The initial ontology of the domain is
created on the basis of this meta-ontology instance.
A meta-ontology instance is created by perhaps eliminating some of the top-level
terms from the meta-ontology.

3.2.1 Input for creating a metaontology instance
The domain of informatization must have a description of the existing situation –
usually in terms of a document that is prepared by a working group. This description
serves as the main input for creating the meta-ontology. Another input is a
documented statement of goals – the vision of the desirable situation in the future.
In situations when there is lack of documents describing the situation and stating the
goals the input needed can be obtained by organizing interviews or brainstorming
sessions with representatives of interested organizations.

3.2.2 Stages in the creation of a metaontology instance
There are several stages in the creation of a meta-ontology instance:
1) Analysis of input documents. At this stage, the matches between the entities of
input documents and the corresponding terms in the meta-ontology are determined;
2) Marking of insignificant terms in the meta-ontology. The threshold parameters hw
and ht are applied to eliminate insignificant words and terms. The parameter hw is
defined as the percentage of appearance vis-à-vis the appearance of the most frequent
word. The word w is marked as insignificant if it occurs less often than hw does; The
parameter ht is defined as the percentage of appearance vis-à-vis the appearance of
the most frequent term. The term t is marked as insignificant if it occurs less often
than ht does;
3) Creation of the meta-ontology instance. The terms which remain in the meta-
ontology after the elimination of insignificant terms in the second stage are chosen for
the meta-ontology instance.
The resulting meta-ontology instances can differ, depending on the values of hw and
ht.

3.3 The Initial Ontology

The root metaphors of the initial ontology and the relationship among those
metaphors must be defined by the informatization planner. The definition process
uses the top level terms included in the meta-ontology instance. The attributes of the
terms are analyzed – the corresponding instances significance is evaluated. The
process of attributes evaluation is similar by its structure to the process of elimination
of insignificant terms during the creation of the meta-ontology instance. For the
attribute evaluation the same threshold parameter criterion can be used as the
parameter used for the elimination of insignificant terms during the creation of the

Uldis Straujums. Conceptualising Informatization with the Onto6 Methodology 247

LURaksti733-datorzin.indd 247LURaksti733-datorzin.indd 247 2008.03.31. 15:07:012008.03.31. 15:07:01

meta-ontology instance. Usually some weights are applied to the attribute evaluation.
Most significant instances are included in the initial ontology.
The visual representation of the initial ontology usually is chosen by the domain
experts taking into account their previous representations of facts concerning that
particular domain.

3.4 Refinements of the Initial Ontology

After the initial ontology is created further work has to be done by informatization
implementers refining the initial ontology. The refinement process uses some instance
included in the initial ontology. The instance is considered itself as a term with
possible attributes. The process of adding the relevant attributes with their instances
resembles the process of creating the meta-ontology instance but takes place at more
detailed level. The refinement process usually is being applied to several terms
leading to several refinements of the initial ontology. In this sense, an ontology cluster
which consists of a meta-ontology, a meta-ontology instance, an initial ontology, and
the refinements of that initial ontology – these come together to reflect the
conceptualisation of informatization in a particular domain. [SB06] describes the
creation of initial ontologies and their refinement, as conducted with the participation
of this author for several different domains.
The essential phases of the Onto6 methodology proposed by the author are seen in
Figure 2.

Onto6 metaontology

Metaontology instance

Initial ontology

Ontology refinements

Fig. 2. The Onto6 Methodology

248 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 248LURaksti733-datorzin.indd 248 2008.03.31. 15:07:022008.03.31. 15:07:02

4 Analysis of Several Domains for Informatization

Next we can review the ontologies which the author has defined for three domains
which have not changed during the informatization of the corresponding domain.

4.1 Application of Onto6 Methodology to Education Informatization

According to the general Onto6 methodology the informatization conceptualization
for a particular domain should be created in several stages:

� Creation of the meta-ontology instance,
o Analysis of input documents,
o Marking of significant terms in meta-ontology,
o Building the meta-ontology instance;

� Creation of the initial ontology,
� Refinement of the initial ontology.

4.1.1 Creation of the meta-ontology instance
Education informatization is a significant subprogram of the national “Informatics”
program [BBB98]. As the main input document for the meta-ontology instance
creation the “Informatics” program document was used. The document consists of
239 pages. For the analysis of the document a full text indexing is required. The
indexing can take place either manually or automatically. The author has tried both
approaches. Manual indexing is very time consuming. A convenient way of an
automatic indexing is to use a Word macro counting the frequency of words in
Microsoft Word document. The author has modified such a macro [GenC07] adding
the specifics of processing Latvian language words and taking into account the large
size of documents to be processed.
The national program “Informatics” document contains 9753 words. Author has taken
the decision to consider only the words occurring in the text at least three times. The
number of such words is 3303. From the remaining words the redundant words were
stripped, such as: a, the, and, at etc. The number of remaining words was 2985. The
threshold parameter hw = 10 was applied to the remaining words allowing to obtain
the significant words in the input document. There were 28 significant words left.
After determining the significant words the matches between the words in the input
document and the corresponding terms in the meta-ontology were calculated. In the
Table 3 the result of the analysis is presented.

Uldis Straujums. Conceptualising Informatization with the Onto6 Methodology 249

LURaksti733-datorzin.indd 249LURaksti733-datorzin.indd 249 2008.03.31. 15:07:022008.03.31. 15:07:02

Table 3. Significant Words in the Input Document “Informatics”

Meta-ontology
terms

Number of
significant words

What
Where
When
How
Why
Who

19
3
0
0
3
3

From the Table 3 it can be seen that the number of the significant words in term
“What” substantially exceeds the numbers of the significant words in other terms. If
we apply the threshold parameter ht = 40, we obtain very sparse meta-ontology
instance consisting only of the term “What”. Taking into account that the initial
document describes the whole national program “Informatics” but our task is
specifically aimed at a subprogram “Education”, a further analysis was required.
Author has analyzed the chapter 6 “Education subprogram” of the national
“Informatics” program. The document contains 2190 words. Only 426 words occur in
the text at least three times. Stripping the redundant words, such as: a, the, and, at etc.
337 words were left. Again the threshold parameter hw = 10 was applied to the
remaining words allowing to obtain the significant words in the input document.
There were 73 significant words left. After determining the significant words the
matches between the words in the input document and the corresponding terms in the
meta-ontology were calculated again. In the Table 4 the result of the analysis is
presented.

Table 4. Significant Words in the Input Document “Education”

Meta-ontology
terms

Number of
significant words

What
Where
When
How
Why
Who

41
17
2
2
4
7

From the Table 4 it can be seen that the numbers of the significant words in two terms
“What”and “Where” substantially exceed the numbers of the significant words in
other terms. Therefore we can apply a restricting threshold parameter ht = 40 thus
retaining only the most significant terms for the meta-ontology instance. The resulting
meta-ontology instance is seen in Fig 3.

250 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 250LURaksti733-datorzin.indd 250 2008.03.31. 15:07:022008.03.31. 15:07:02

Fig. 3. The Meta-ontology Instance for the Informatization of Education

4.1.2 Initial ontology creation
The next step was to develop the initial ontology for the informatization of education,
basing this on the meta-ontology instance. The requirements of the national
“Informatics” programme were taken into account [BBB98]. The resulting ontology
is seen in Figure 4.

Fig. 4. The Initial Ontology for the Informatization of Education

The informatization of education was co-ordinated under the framework of the
Latvian Education Informatization System (LIIS) project and on the basis of the
initial ontology.

4.1.3 Refinements of the initial ontology
The initial ontology was refined several times during the implementation of the
project to reflect more concrete aspects of the informatization grid that was presented
at first. Figure 5 shows a typical example of how the initial ontology was refined in
the context of information services.

Uldis Straujums. Conceptualising Informatization with the Onto6 Methodology 251

LURaksti733-datorzin.indd 251LURaksti733-datorzin.indd 251 2008.03.31. 15:07:022008.03.31. 15:07:02

Fig.5. Refinement of the Initial LIIS Ontology for Information Services

Another refinement is seen in Figure 6. A structure of the education system is
presented on the basis of the initial ontology, taking into account the fact that the
same structure of the education informatization system is being implemented at all
stages and levels of education.

Figure 1. Structure of education system

Education Management Information services

Internet

Computer network

Computers & Software

Infrastructure

Staff

Functions

Information services

Fig. 6. Refinement of the initial LIIS ontology for the structure of the education informatization

system

252 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 252LURaksti733-datorzin.indd 252 2008.03.31. 15:07:022008.03.31. 15:07:02

Many different activities are necessary to maintain the structure of the education
system. Certain goals must be achieved – measurable improvements to infrastructure,
enhancement of management services, supply of teaching materials, etc. Existing
resources and routines must be used effectively, and activities aimed at the creation of
new resources must be introduced and scheduled. The organisational aspects of
planning the use of educational materials can be seen in Figure 7.

What to use

Adapted
products

Training how to use

Teachers training

Students
training

Trainers
training

Lifelong education

Basic
training

Advanced
training

Pupils training

User contribution

Approbation of all products,
recommendations on them

Adult training

Creation of
methodical products

EDUCATION INFORMATIZATION PRODUCTS

Original
products

Fig. 7. Refinement of the Initial LIIS Ontology for the Organizational Aspects of

Informatization

The proposed refinements of the initial otology differ in their form of representation
and in their content. The authors recognise, however, that they served as the leading
motif during the implementation of the LIIS project between 1997 and 2005. No
significant changes were made to the initial ontology instead the fact that the
implementation of the informatization permanently creates the needs for further
refinements of the initial ontology.

Uldis Straujums. Conceptualising Informatization with the Onto6 Methodology 253

LURaksti733-datorzin.indd 253LURaksti733-datorzin.indd 253 2008.03.31. 15:07:032008.03.31. 15:07:03

4.2 Application of the Onto6 Methodology to the Unified State Library
Information System (VVBIS) Project

The goal of the VVBIS project is to establish a harmonised information system for
national and public libraries, one which allows them to make use of the opportunities
that are offered by modern information technologies [AVGK01]. These are the main
functions of the VVBIS:

� Searching for information. The system allows users to seek out information
of interest, and it must ensure access to sources of information such as
books, documents, publications, government registers, statistics, and
transnational sources of information.

� Ordering of information: Once search results are obtained, the user must be
able to order the necessary book, report or document, and alternative means
for delivering the documents must be established.

� Delivery of information: The system for delivering books, documents,
publications, multimedia items, and other sources of information must ensure
not only that users can use the information at a library, but also that copies of
publications can be supplied in print or electronic form. The world’s leading
document delivery centres must be used, and supply centres must also be
established in Latvia so as to ensure that information sources can be supplied
to users in Latvia and beyond This must also involve the services of
interlibrary systems.

� Services: The library must be able to provide information services to users,
offering information about all kinds of subjects – the law, culture, education,
etc. Librarians must become information brokers who are aware of sources
for all kinds of information and who can evaluate both the status of the
service (basic, value-added, fee-based, limited, etc.) and the scope of the
service. Libraries must offer public access to universal information services.

� Creating resources: Libraries must be aware of local information resources
which are of lasting value and can be offered to users (including remote
users). This is because libraries are a component in the national heritage.
The resources must be digitalised, with databases concerning the history of
the relevant region, tourism destinations, etc. Unique documents must be
copied in electronic form.

� Training of librarians and users: Librarians must be aware of their mission
as intermediaries between users and information. They can greatly enhance
the process of obtaining information, thus becoming very important
members of the Information System. It is vitally important, therefore, to
improve the system under which librarians are trained. Librarians must learn
how to do the various things that are a part of their job. Libraries must
establish user training systems, too, so that users can work more
independently.

� Marketing of information: Information is increasingly becoming a product.
Research must be conducted to determine the need for value added services,
while existing services must be tested and advertised.

� Unified user registration. Users can receive information from many different
libraries, and the existing system of user registration must be changed to

254 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 254LURaksti733-datorzin.indd 254 2008.03.31. 15:07:032008.03.31. 15:07:03

reflect this. People must have individual codes which allow for clear
identification, examination of their relationship to other libraries, and
specification of their right to receive information. Libraries must accept
anyone who is seeking universal information services.

� Establishment of a national bibliography and conversion of retrospective
data: Because Latvia’s informational resources are part of an international
framework, they must be catalogued and made available through
internationally accepted formats for the exchange of metadata. All materials
which have been published in Latvia must be catalogued, with retrospective
cataloguing of information resources. This must be done in accordance with
demand for such resources.

The meta-ontology instance which was created for the VVBIS on the basis of the
aforementioned requirements is shown in Figure 8.

Fig. 8. The Meta-ontology Instance for the Unified State Library Information System

Refinements to the initial ontology for data flows in the Unified State Library
Information System project are shown in Figure 9. This schema remained unchanged
during the creation of the VVBIS concept.

Uldis Straujums. Conceptualising Informatization with the Onto6 Methodology 255

LURaksti733-datorzin.indd 255LURaksti733-datorzin.indd 255 2008.03.31. 15:07:032008.03.31. 15:07:03

Fig. 9 Refinement of the Initial VVBIS Ontology for Data Flow

4.3 Application of the Onto6 Methodology to the Informatics Curriculum
Standard at Latvia’s General Education Schools

The standard for the informatics curriculum for Latvia’s general education schools
was prepared in 2002 by a team which included this author [VBS03]. The standard
was based on a questionnaire which determined the frequency of ICT usage at that
time and the relevant existing needs. The respondents were divided into three groups
– infrequent users of ICT, everyday users of ICT, and ICT professionals. The results
were used to propose new content for the teaching of information. The standard for
the curriculum is in line with the requirements of the European Computer Driving
Licence (ECDL), with a few departures that are based on the needs and traditions
which exist in Latvia. Because of the need for activities in support of the introduction
of the new curriculum, the development team also created a timetable for a
transitional period to run from 2003 to 2005. Special attention was focused on the
training of existing and future informatics teachers. Textbooks were written, lesson
plans were drawn up and tested at schools, and the ECDL certification system was
introduced for teachers.

256 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 256LURaksti733-datorzin.indd 256 2008.03.31. 15:07:042008.03.31. 15:07:04

Fig. 10. The Meta-ontology Instance for the Informatics Curriculum Standard

The initial ontology for the informatics curriculum standard includes curriculum
topics, their relationship to ECDL topics, as well as links to the relevant textbooks
and lesson plans.

5 Common Methodology for Informatization

This author has dealt with many projects related to informatization, with the scope of
domains ranging from the national level to an individual educational institution. The
projects have been successful in creating positive changes in the planned timeline.
The author’s approach is to analyse the nature of properties in a semi-formal way.
The resulting ontology cluster is then checked for comprehensibility and relevance.
This approach combines the general methodology for ontological analysis [WG01]
with the specific requirements for information systems [2290, DR02, Gre05].
The essence of the proposed Onto6 methodology is to use the meta-ontology to create
a meta-ontology instance which is relevant to the problematic domain. Then the
initial ontology is developed on the basis of situational analysis and agreement among
team members. An incremental plan is set up to refine the various aspects of
informatization which are presented in the initial ontology. The result is a cluster of
ontologies. Levels of formalisation and unification can differ during the development
process, that depends on the potential end user.

Conclusion

The Onto6 methodology which is proposed in this paper identifies objects, determines
their interaction, and specifies their functionality. The methodology is based on a

Uldis Straujums. Conceptualising Informatization with the Onto6 Methodology 257

LURaksti733-datorzin.indd 257LURaksti733-datorzin.indd 257 2008.03.31. 15:07:052008.03.31. 15:07:05

meta-ontology, and it involves the creation of an instance in accordance with the
relevant domain. The initial ontology is created on the basis of the instance ontology,
and it is then extended during the process of informatization. The planner of
informatization must define the root metaphors of the initial ontology and the
relationship among them. The implementers of informatization then do more work in
refining the initial ontology. This creates an ontology cluster which consists of the
meta-ontology, the meta-ontology instance, the initial ontology, and the refinements
of the initial ontology. These reflect the conceptualisation and informatization of a
particular domain.

References

[AVGK01] Aldis Abele, Andris Vilks, Arnis Gulbis, Arts Klints, Dzintra Mukane,
Gatis Pogulis, Ieva Vitolina, Ivars Indans, Janis Bicevskis, Jurgis
Kirsakmens, Margarita Marcinkevica, Sandra Ozolina, Uldis Straujums. A
Unified Information System for Latvia’s Libraries. In Baltic IT Review
1(20), 2001, pp. 40-46.

[BAIMS04] Janis Bicevskis, Agnis Andzans, Evalds Ikaunieks, Inga Medvedis, Uldis
Straujums, Viesturs Vezis. Latvian Education Informatization System LIIS.
In Education Media International, 41:1, Routledge, Taylor & Francis
Group, 2004, pp. 43 – 50.

[Bar94] Barsalou, Lawrence, W. Flexibility, Structure, and Linguistic Vagary in
Concepts; Manifestations of a Compositional System of Perceptual
Symbols. In Theories of Memory, edited by Alan F. Collins, Susan E.
Gatherhole, Martin A. Convey and Peter E. Morris. Memory Research
Unit, Lancaster University, UK, 1994, pp. 29-101.

[BBB98] National Program Informatics (in Latvian). Contributors: R.Balodis,
J.Barzdins, J.Bicevskis, J.Borzovs, V.Briedis, E.Karnitis, V.Lauks,
J.Mikelsons, A.Virtmanis, K.Zeila. Riga, 1998.

[CM04] Monica Crubézy, Mark A.Musen. Ontologies in Support of Problem
Solving. In Steffen Staab and Rudi Studer (Eds.). Handbook on Ontologies,
Springer-Verlag, 2004.

[DR02] Brian O’Donovan, Dewald Roode.A Framework for Understanding the
Emerging Discipline of Information Systems. In Information Technology &
People, Volume 15, Number 1, 2002, pp. 26-41.

[Fon02] Fonseca, Frederico, Martin, James, Rodriguez, Andrea. From Geo to Eco-
Ontologies. 2002, 16p

[Gaz02] Gazendam, Henk, W. M. "Information System Metaphors.”, The Journal of
Management and Economics, Vol. 3, No. 2, Buenos Aires, Argentina:
University of Buenos Aires, 1999, 20p. Revised Edition, 2002, 25p.

[GenC07] Generating a Count of Word Occurrences. Available:
http://wordtips.vitalnews.com/Pages/T1510_Generating_a_Count_of_Word
_Occurrences.html

[Goed99] Goedvolk, Hans, de Bruin, Hans, Rijsenbrij, Daan. Integrated Architectural
Design of Business and Information Systems. Vrije Universiteit,
Amsterdam, The Netherlands, 1999, 16p.

[GRA02] The Complex Method GRAPES. 2002. Available:
http://www.informatik.uni-bremen.de/gdpa/methods/m-grapes.htm

258 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 258LURaksti733-datorzin.indd 258 2008.03.31. 15:07:052008.03.31. 15:07:05

[Gre05] Peter Green. Ontological Analysis of Business Systems Analysis
Techniques, In Business Systems Analysis with Ontologies. UQ Business
School, Australia; Queensland University of Technology, Australia, Idea
Group Publishing, 2005., 27p.

[Gru95] Thomas Gruber. Towards Principles for the Design of Ontologies Used for
Knowledge Sharing. In International Journal of Human-Computer Studies,
43(5/6), 1995, pp. 907-928.

[Gua98] Nicola Guarino. Formal Ontology and Information Systems. In N.Guarino
(ed). Formal Ontology and Information Systems. Proceedings of FOIS’98,
Trento, Italy, 6-8 June 1998. IOS Press, Amsterdam, pp. 3-15.

[Haf03] Nancy J. Hafkin. Gender Issues in ICT Statistics and Indicators, with
particular Emphasis on Developing Countries [online]. Statistical
Commission and United Nations Economic Commission for Europe
(UNECE) Conference of European Statisticians. 2003. Available:
http://www.unece.org/stats/documents/ces/sem.52/3.e.pdf

[Hoss06] Hoss, Allysson M. Ontology Based Methodology for Error Detection in
Software Design. Louisiana State University, USA, 2006, 147p.

[Kipl02] Kipling, Rudyard. The Elephants Child. 1902.
[KMO07] Knowledge Management Online. Available: http://www.knowledge-

management-online.com
[Lan04] Lan, Ju-Hung, A Preliminary Study of Knowledge Management in

Collaborative Architectural Design.CAADRIA2004, Seoul, Korea, 2004,
p.35-p.47

[Lep05] Leppänen M., An Ontological Framework and a Methodical Skeleton for
Method Engineering, Dissertation Thesis, Jyväskylä Studies in Computing
52, University of Jyväskylä, 2005, 708 p. Available:
http://dissertations.jyu.fi/studcomp/9513921867.pdf

[Lim01] Lim, S. K. A Framework to Evaluate the Informatization Level. In
Gremberg, W. (ed). Information Technology Evaluation: methods &
management. Hershey: IGP, 2001.

[MABM05] Juris Mikelsons, Agnis Andzans, Janis Bicevskis, Inga Medvedis, Andrievs
Niedra, Uldis Straujums, Viesturs Vezis, Leo Truksans. ICT in Latvian
Education – LIIS approach. In The 3-rd International Conference on
Education and Information Systems: Technologies and Applications
EISTA’05 Proceedings, Volume II, Orlando, Florida, USA, 2005, pp. 94 –
98.

[Mot00] Motschnig-Pitrik R. Contexts as Means to Decompose Information Bases
and Represent Relativized Information. Workshop on Context of CHI 2000,
April, Den Haag, Netherlands.

[PCP07] Principia Cybernetica Project. Available: http://pespmc1.vub.ac.be
[PKB93] Podnieks K., Kalnins A., Barzdins J. GRADE V1.0: Modelling and

Development Environment for GRAPES-86 and GRAPES/4GL: Language
description. Siemens Nixdorf, Munich, Germany, 1993, 246p.

[PR07] Protégé. An ontology editor. [online]. Available: http://protege.stanford.edu
[Pul03] Pulkkinen, Jyrki. The paradigms of e-Education. An analysis of the

communication structures in the research on information and
communication technology integration in education in the years 2000–
2001, 2003, 175p. Available:
http://herkules.oulu.fi/isbn9514272463/isbn9514272463.pdf

[Rum97] Rumbaugh, James. OMT Insights: Perspective on Modeling from the
Journal of Object-Oriented Programming (SIGS Reference Library).
Cambridge University Press, 1997, 412p.

Uldis Straujums. Conceptualising Informatization with the Onto6 Methodology 259

LURaksti733-datorzin.indd 259LURaksti733-datorzin.indd 259 2008.03.31. 15:07:052008.03.31. 15:07:05

[SB06] Straujums, Uldis, Bicevskis, Janis. Ontologic Aproach to Informatization.
In Databases and Information Systems, Seventh International Baltic
Conference on Databases and Information Systems, Communications,
Vilnius, Lithuania, 2006, pp. 276 – 287.

[Sowa06] Sowa, John F. A Dynamic Theory of Ontology. In Formal Ontology in
Information Systems, edited by B. Bennett & C. Fellbaum, IOS Press,
Amsterdam, 2006.

[Sowa07] Sowa, John F. Knowledge Representation. Available:
http://www.jfsowa.com/krbook

[Str05] Uldis Straujums. Shaping of Learning Process Using Ontologies.
University of Latvia, 63-rd scientific conference, Riga, 2005.

[VB01] De Vasconcelos, José Ângelo Braga. An Ontology-Driven Organisational
Memory for Managing Group Competencies. The University of York,
2001, 306p.

[VBS03] Viesturs Vezis, Janis Bicevskis, Uldis Straujums. Computer Literacy
Acquisition Strategy in Latvia: problems and solutions. BalticIT&T2003
conference, Riga, 2003

[VZSS04] Antonio Geraldo da Rocha Vidal, Ronaldo Zwicker, José de Oliveira
Siqueira, Cesar Alexandre de Souza. Informatization in Brasilian
Companies: an exploratory study. University Sao Paolo, 2004, 24p.
Available: http://www.ead.fea.usp.br/WPapers/2004/04-001.pdf

[WG01] Christopher Welty, Nicola Guarino. Supporting Ontological Analysis of
Taxonomic Relationships. In Data and Knowledge Engineering, 39(1),
2001, pp. 51-74.

[Wil04] Ruth Wilson. The Role of Ontologies in Teaching and Learning [online].
JISC Technology and Standards Watch Report TSW0402, 2004. Available:
http://www.jisc.ac.uk/index.cfm?name=techwatch_reports_0402

[WW90] Y. Wand, R. Weber. An Ontological Model of an Information System. In
IEEE Transactions on Software Engineering, November 1990 (Vol. 16, No.
11), pp. 1282-1292.

[Wys04] Boris Wyssusek. Ontology and Ontologies in Information Systems
Analysis and Design: A Critique. In Proceedings of the Tenth Americas
Conference on Information Systems, 2004., pp. 4303-4308.

260 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 260LURaksti733-datorzin.indd 260 2008.03.31. 15:07:062008.03.31. 15:07:06

An Approach to Cadastral Map Quality Evaluation in the
Republic of Latvia

Anita Jansone, Juris Borzovs

University of Latvia, Rai�a bulv�ris 19, R�ga,. Latvija, LV-1586

anita.jansone@vzd.gov.lv, juris.borzovs@lu.lv

Abstract. An approach to cadastral map quality evaluation is proposed, which
is elaborated and implemented by State Land Service of the Republic of Latvia.
The approach is based on opinion of Land Service experts about cadastral map
quality that depends on its usage points. Quality parameters of cadastral map
objects identified by experts and its limit values are used for evaluation. The
assessment matrix is used, which allow to define cadastral map quality that
depends on its usage purpose. The matrix is used to find out, of what quality a
cadastral map should be in order to be used for the chosen purpose. The given
approach is flexible, it gives a possibility to change sets of quality parameters
and their limit values as well as to use the approach for other type data quality
evaluation.

1 Introduction

Scientific literature identifies several aspects of quality: data quality has several
components such as accuracy, relevance, timeliness, completeness, reliability,
accessibility, precision, consistency, etc. [1], [2]. There are currently two main
research streams, which address the problem of ensuring a high level of data and
information quality. One is a technical, database-oriented approach, while the second
is a management and business-oriented approach. Engineering of information system
brings both streams together and addresses issues related to the design and modeling
of information systems [3]. Geographical data are data describing an object’s spatial
location and various properties. High quality geographical data will include space
location and object properties at given times (where-what-when) [4].

Data quality is the degree to which data meet the specific needs of a specific
customer. Note that one customer may find data to be of high quality (for one use of
the data), while another finds the same data to be of low quality (for another use) [5].
What features do experts working with geographical data (data entry, map drawing,
supervision of maps, etc.) use to judge the quality of data? The authors are not aware
of any published studies in this area to date. This paper presents an approach to the
evaluation of the quality of cadastral map that caters for the differing levels of quality
required of various parameters in order to meet different goals.

The subjective assessments of experts in geographical data processing are sought
to determine the factors which have the most impact upon the quality of geographical

LATVIJAS UNIVERSITĀTES RAKSTI. 2008, 733. sēj.:
DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS 261.–288. lpp.

LURaksti733-datorzin.indd 261LURaksti733-datorzin.indd 261 2008.03.31. 15:07:062008.03.31. 15:07:06

data. When these assessments are evaluated, freed from subjective elements and,
classified, it becomes possible to specify parameters for the evaluation of data quality,
their values, and the required levels of quality. The result of this is a matrix for quality
assessment which can be used to determine the data quality level that is necessary for
specific purposes or, alternatively, the specific goals for which data at a specific level
of quality may be used.

This paper describes the method that is to be uses in preparing the quality
assessment matrix and how this approach is used for cadastral map evaluation in State
Land Service of the Republic of Latvia.

2 An Approach to Data Quality Evaluation

The discussion of quality must begin with the identification of the objects of interest.
Every object will have a number of quality parameters (QP1, QP2, etc.) (Fig.1). Each
quality parameter QPn has values taken from one or more sets of values QPnVSk
(Table 1), where QPnVS1 may contain the best values. QPnVS2 contains the second
best values for some particular goal, etc. [6]

The quality of the object is based upon several or all quality parameters. For
instance, an object can belong to the highest level of quality if all of the estimated
values of the relevant quality parameters belong to the best sets of values. It belongs
to the second level of quality if the values of the relevant quality parameters belong to
the second best sets of values, etc.

Object quality

Object quality parameter 1
(QP1)

Object quality parameter N
(QP N)………...

Object quality parameter 1
values set 1
(QP1VS1)

Object quality parameter 1
values set K’
(QP1VSK’)

Object quality parameter N
values set 1
(QPNVS1)

Object quality parameter N
values set K’’
(QPNVSK’’)

………... ………...

Object quality class1
(QC1)

Object quality class M
(QC M)………...

Object quality class m
(QC m)

Fig. 1. An Approach to Data Quality Evaluation

262 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 262LURaksti733-datorzin.indd 262 2008.03.31. 15:07:062008.03.31. 15:07:06

Table 1. Quality Parameter Value Set

Quality parameter value set (QPVS) Quality parameter (QP)
QPnVS1

(high)
QPnVS2 ... QPnVSk

(low)
QPn from-until from-until ... from-until

As a result the object quality evaluation matrix (Table 2) is obtained, which is used
to determine, which quality class the object belongs to, as well as to determine, which
should be quality parameter values so that the object would correspond to the chosen
aim of use.

Table 2. Quality Assessment Matrix

Quality parameter/ Quality parameter value set Object quality class (QC)
QP1 QP2 ... QPn

QC1 (high) QP1VS1 QP2VS1 ... QPnVS1
QC2 QP1VS2 QP2VS2 ... QPnVS2
...
QCm (low) QP1VSk’ QP2VSk’’ ... QPnVSk’’’

Quality parameter quality class (QP_QC) depends on a quality parameter value set,
to which belongs the quality parameter value (Formulae 1).

QPn_QC=1, if QPn�QPnVS1; 2, if QPn�QPnVS2,...., M, if
QPn�QPnVSk, n={1...N}, k={1...K}

(1)

In its turn, object corresponds to the lowest quality parameter quality class (“hard”
principle for object evaluation) (Formulae 2).

QC=lowest (QP1_QC, QP1_QC, … , QP N_QC,) (2)

The aim of object quality evaluation is to determine, which quality class the object
belongs to and which aims it can be used for. In order to evaluate an object (Fig. 2):

a) check the correspondence of an object to quality criterions (Fig. 2, P1),
obtain the list or the number (QPn_list, QPn_count) of items not corresponding to the
quality criterions,

b) evaluate each object quality according to quality parameters and obtain a
quality class:

� calculate object quality parameter values (Fig. 2, P2), obtain QPn,

� determine, which parameter value set (Table 1) it belongs to (Fig. 2, P3),
obtain QPnVSk,

� determine, which quality class the value belongs to (Table 2, Formulae 1)
(Fig. 2, P4), obtain quality parameter class QPn_QC,

� determine object quality class (Formulae 2) (Fig. 2, P5), obtain Object QC

Anita Jansone, Juris Borzovs. An Approach to Cadastral Map Quality Evaluation .. 263

LURaksti733-datorzin.indd 263LURaksti733-datorzin.indd 263 2008.03.31. 15:07:062008.03.31. 15:07:06

P2 Calculate object quality
parameter values

n<=N

n-quality parameter
count

Yes

n:=n+1

No

Object

n:=1

P5 Determine object quality
class Object QC

QPn_QC

QPn

P4 Determine, which quality class
the value belongs to

P3 Determine, which parameter
value set it belongs to QPnVSk

P1 Check the correspondence of an
object to quality criterions

QPn_list
QPn_count

QPn value set
Table 1

Quality assessment matrix
Table 2, Formula1

Formula 2

Fig. 2. Object Quality Class

This approach is implemented in State Land Service (SLS) of the Republic of
Latvia for cadastral map evaluation and is based on the defined by field experts
quality parameters, which describe the usage purpose of a certain cadastral map.

3 Cadastral Map Quality Evaluation in the Republic of Latvia

In the Republic of Latvia, cadastral map (CM) is created in Latvian coordinate system
LKS-92 in Transverse Mercator (TM) projection. The following elements are
represented in CM: land parcels- boundaries of parcels and their cadastral
designations; buildings- outlines of buildings and their cadastral designations;
encumbrances- areas occupied by encumbrances of right to use real property and their
designations; parts of land parcels- leaseholds and their cadastral designations;
boundaries of cadastral territories and cadastral groups. The CM is used to locate
cadastral objects with precision so that any changes in boundaries for administrative
or other purposes may be accurately described and to describe the relationships
between objects for the purposes of environmental and town planning and for various
reports. The principles and content of the CM are established by Regulation, which is
an ordinance of the SLS of Latvia. The Cadastral IS databases consist of two parts:

264 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 264LURaksti733-datorzin.indd 264 2008.03.31. 15:07:072008.03.31. 15:07:07

the textual part (TP) and the graphical part, which includes the CM in vector graphics
form [7].

CM quality depends on the quality of each object, whereof the CM is made. CM
can consist of such objects as land parcel, building, encumbrance and part of land
parcel. Therefore, in order to evaluate CM quality, firstly, it is necessary to evaluate
qualities of land parcel, building, encumbrance and part of land parcel – wherewith
the approach described above (Fig. 1) has to be applied for each CM object.

3.1 Cadastral Map Objects Quality Parameters

In this article an approach to CM quality evaluation is proposed, which is based on
experts' opinions about CM quality that depends on its usage points. Expert opinions
are obtained from more than 50 expert interview surveys. Having summarized the
results of surveys, such quality criteria are obtained: the CM meets the legal
regulation requirements, CM objects are topologically correct, coordinates of CM
land parcels are precise, CM objects (land parcels, building, encumbrance and part of
land parcel) are in both Cadastral databases and the data is the same – in the TP and in
the CM. Quality criteria are given in Table 3.

Table 3. Cadastral Map Quality Criteria

Code Title
C1 CM meets the legal regulation requirements
C2 CM objects are topologically correct
C3 Coordinates of CM land parcels are precise
C4 Object data in the TP and the CM are identical:
C4.1 A cadastral object (land parcels, building, encumbrance and part of land parcel)

has to be in both Cadastral databases – in the TP and in the CM:
C4.1.1 the object marked in a CM has to be in the TP
C4.1.2 the object in a TP has to be marked in the CM
C4.2 Cadastral object data in both Cadastral databases:
C4.2.1 the surveying type for land parcel has to be the same in both databases
C4.2.2 cadastral surveyed land parcels’ and parts of land parcels’ legal area

(indicated in the documents) and area defined by graphical methods
(marked in the cadastral map, further in the text – geographical area) cannot
be larger or smaller than the acceptable space difference defined in the
Regulations

C4.2.3 a building, in both databases, has to be attached to one and the same land
parcel

Experts’ opinions about CM quality are subjective and therefore have to be

structured and, according to normative acts and existing IT solutions in State Land
Service, we obtain cadastral object quality parameters (QPn) (Fig. 1) – for land parcel
(LP) 5 quality parameters are defined (LP_QPn, n=1…5) (Table 4), for building (BD)
– 4 quality parameters (BD_QPn, n=1…4) (Table 7), for encumbrance (EB) – 2
quality parameters (EB_QPn, n=1…2) (Table 8), for part of land parcel (PLP)– 3
quality parameters (PLP_QPn, n=1…3) (Table 9).

Anita Jansone, Juris Borzovs. An Approach to Cadastral Map Quality Evaluation .. 265

LURaksti733-datorzin.indd 265LURaksti733-datorzin.indd 265 2008.03.31. 15:07:072008.03.31. 15:07:07

3.1.1 Land Parcel Quality Parameters

Land parcel quality is described by 5 quality parameters (Table 4).

Table 4. Land Parcel Quality Parameters

Code Description Value
High - low

Quality
criteria

LP_QP1 Describes how much (%) of CM land parcels are
missing in the TP

0%-100% C4.1.1

LP_QP2 Describes how much (%) of TP land parcels are not
marked in the CM

0%-100% C4.1.2

LP_QP3 Describes how much (%) of CM land parcels
surveying type differs from TP surveying type

0%-100% C4.2.1

LP_QP4 Describes how much (%) of CM cadastral surveyed
land parcels’ geographical area is larger or smaller
than the acceptable space difference of TP legal area

0%-100% C4.2.2

LP_QP5 Describes how much (%) of CM land parcels are
cadastral surveyed

100%-0% C3

LP_QP1 and LP_QP2 characterize land parcels completeness in Cadastral IS TP
and CM databases.

LP_QP1 describes how much (%) of CM land parcels are missing in the TP.
Quality parameter values can vary from 0% (all the cadastral map land parcels are
also in the textual part) to 100% (none of cadastral map land parcels are in the textual
part). Quality parameter value is obtained by applying Formulae 3, where
LP_QP1_count – number of cadastral map land parcels, which are not in the textual
part, CM_LP_count – number of cadastral map land parcels.

LP_QP1 = LP_QP1_count/CM_LP_count*100 (3)

LP_QP2 describes how much (%) of TP land parcels are not marked in the CM.
Quality parameter values can vary from 0% to 100%. Quality parameter value is
obtained by applying Formulae 4, where LP_QP2_count – number of land parcels in
the textual part, which are not in the cadastral map, TD_LP_ number – count of land
parcels in the textual part.

LP_QP2 = LP_QP2_count/TD_LP_count*100 (4)

LP_QP3 characterizes land parcels survey type (Table 5) consistency between in
TP and CM and describes how much (%) of CM land parcels surveying type differs
from TP surveying type. Quality parameter values can vary from 0% to 100%.
Quality parameter value is obtained by applying Formulae 5, where LP_QP3_count –
number of cadastral map land parcels, which surveying type does not match the
surveying type in the textual part, CM_LP_count – number of cadastral map land
parcels.

LP_QP3 = LP_QP3_count/CM_LP_count *100 (5)

266 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 266LURaksti733-datorzin.indd 266 2008.03.31. 15:07:072008.03.31. 15:07:07

Table 5. Land Parcel Survey Types

Survey type in CM Survey type in TP
surveyed land parcels � instrumental survey

� global positioning,
� photogram survey

allocated land parcels � allocation
� allocation in orthophoto maps
� allocation in photoplan

designed land parcels designed land parcel do not have survey type

LP_QP4 characterize trusted land parcels area. In accordance with the Regulations
for CM, the graphical area of a surveyed land parcel listed in the CM (which is
calculated on the basis of coordinates) can possibly differ from the legal area of the
land parcel shown in the TP (which is declared in legal documents) but within
prescribed limits. The admissible level of variation is determined by Regulation
(Table 6). LP_QP4 describes, how much (%) of CM cadastral surveyed land parcels’
geographical area is larger or smaller than the acceptable space difference of TP legal
area. Quality parameter values can vary from 0% to 100%. Quality parameter value is
obtained by applying Formulae 6, where LP_QP4_count – number of cadastral map
land parcels, which area is smaller or larger than the allowed difference of the legal
area, CM_LP_count– number of cadastral map land parcels

LP_QP4 = LP_QP4_count/CM_LP_count*100 (6)

Table 6. The Allowed Area Difference of the Surveyed Land Parcel Graphical Area

1)in towns:
Area
(ha)

Up to
0.50

0.51-
1.00

1.01-
5.00

5.01-
10.00

10.01-
50.00

50.01-
100.00

More than
100.00

The allowed
difference (%) ' 3.00 2.30 1.80 1.50 1.25 1.05 1.00

2)settlement, summer cottage and gardening areas, country region:
a) the difference, which is determined using formula ± 0,1 P (P – land parcel or part
of land parcel area (ha)), if the area is not larger than 1.0 ha;

b) the difference, which is determined using formula ± 0,25 P (P – land parcel or part
of land parcel area (ha)), if the area is larger than 1.0 ha;
c) the difference, which is determined using formula ± 0,3 P (P – land parcel or part
of land parcel area (ha)), if the area is not larger than 200 ha.

Comment: This parameter relates only to cadastral surveyed land parcels, cadastral
unsurveyed land parcels, t.i. cadastral allocated and cadastral designed land parcels,
graphical area is not analysed because historically no conditions are proposed to it.

LP_QP5 characterize accuracy of land parcels co-ordinate. The database which
includes the graphic component of the cadastral register includes graphic data to
various levels of accuracy. The database of land parcels includes data at three
different levels of data accuracy – surveyed land parcels, allocated land parcels, and
designed land parcels. The coordinates of the surveyed land parcels are obtained by

Anita Jansone, Juris Borzovs. An Approach to Cadastral Map Quality Evaluation .. 267

LURaksti733-datorzin.indd 267LURaksti733-datorzin.indd 267 2008.03.31. 15:07:072008.03.31. 15:07:07

surveying the relevant parcel with the appropriate instruments. Coordinates of
allocated land parcels may have been obtained with older measuring instruments that
are no longer in use (field compasses, tape measures), or through conversion from
other co-ordinate systems which differ from the specified LKS-92 TM coordinate
system. The coordinates of designed land parcels are approximate, because they are
usually obtained from orthophoto maps, photo plans or other materials. These
coordinates are not based on direct land measurement. LP_QP5 describes, how much
(%) of CM land parcels are cadastral surveyed. Quality parameter values can vary
from 100.00% (all cadastral map land parcels are cadastrally surveyed) to 0% (none
of cadastral map land parcels are cadastrally surveyed). Quality parameter value is
obtained by applying Formulae 7, where LP_QP5_count – number of cadastrally
surveyed land parcels in a cadastral map, CM_LP_count – number of cadastral map
land parcels.

LP_QP5 = LP_QP5_count/CM_LP_count *100 (7)

Comment: This quality parameter gives statistical information – how many land
parcels are cadastrally surveyed. The most precise coordinates in the cadastral map
and the most arranged textual data are cadastral for the surveyed land parcels,
therefore – the more cadastral map land parcels are cadastrally surveyed, the higher
the quality of cadastral map data is. However, SLS cannot affect cadastral map quality
by this parameter, because it depends only on its owners and dealings with land
parcels.

3.1.2 Building Quality Parameters

Quality of a building is described by 4 quality parameters (Table 7).

Table 7. Building Quality Parameters

Code Description Value
High - low

Quality
criteria

BD_QP1 Describes how much (%) of CM buildings are missing in the
TP

0%-100% C4.1.1

BD_QP2 Describes how much (%) of TP buildings are not marked in
the CM

0%-100% C4.1.2

BD_QP3 Describes how much (%) of CM buildings have different land
parcel cadastral designation in TP, to which the building is
attached

0%-100% C4.2.3

BD_QP4 Describes how much (%) of CM buildings are cadastrally
surveyed

100%-0% C3

BD_QP1 and BD_QP2 characterize building completeness in Cadastral IS TP and
CM databases. Both quality parameters values can vary from 0% to 100%.

BD_QP1 value is obtained by applying Formulae 8, where BD_QP1_count–
number of cadastral map buildings, which are not in the textual part, CM_BD_count -
number of cadastral map buildings.

268 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 268LURaksti733-datorzin.indd 268 2008.03.31. 15:07:072008.03.31. 15:07:07

BD_QP1 = BD_QP1_count/CM_BD_count*100 (8)

BD_QP2 value is obtained by applying Formulae 9, where BD_QP2_count-
number of textual part buildings, which are not in the cadastral map, TD_BD_count–
number of textual part.

BD_QP2 =BD_QP2_count/TD_BD_count*100 (9)

BD_QP3 characterizes building land parcel attachment consistency between TP
and CM (in both databases the building has to be attached to one and the same
parcel). BD_QP3 describes how much (%) of CM buildings has different land parcel
cadastral designation in TP, to which the building is attached. Quality parameter value
can vary from 0% to 100%. Quality parameter value is obtained by applying
Formulae 10, where BD_QP3_count – number of buildings in the cadastral map,
which designation of land parcel does not match with the designation of land parcel in
the textual part, which it is attached to, CM_BD_count – number of buildings in the
cadastral map.

BD_QP3 = BD_QP3_count/CM_BD_count*100 (10)

BD_QP4 characterize accuracy of building co-ordinate. The database which
includes the graphic component of the cadastral register includes graphic data to
various levels of accuracy. The database of building includes data at three different
levels of data accuracy – surveyed building, stereo vectorized building, and
vektorized building. The coordinates of the surveyed building are obtained by
surveying with the appropriate instruments. A stereo vectorized building contour is
marked by a stereo tool, but a vectorized building – by scanned material, the building
is not surveyed. BD_QP4 describes, how much (%) of CM buildings are cadastral
surveyed. Quality parameter values can vary from 100.00% to 0%. Quality parameter
value is obtained by applying formulae 11, where BD_QP4_count – number of
cadastrally surveyed buildings in the cadastral map, CM_BD_count – number of
buildings in the cadastral map.

BD_QP4= BD_QP4_count/CM_BD_count*100 (11)

Comment. This quality parameter gives statistical information – how many
buildings are cadastrally surveyed. The most precise coordinates in the cadastral map
and the most arranged textual data have cadastrally surveyed buildings; therefore the
more buildings in the cadastral map are cadastrally surveyed, the higher the quality of
cadastral map data is. However, SLS cannot affect cadastral map quality by this
parameter, because it depends only on its owners and dealings with land parcels.

Anita Jansone, Juris Borzovs. An Approach to Cadastral Map Quality Evaluation .. 269

LURaksti733-datorzin.indd 269LURaksti733-datorzin.indd 269 2008.03.31. 15:07:072008.03.31. 15:07:07

3.1.3 Encumbrance Quality Parameters

Encumbrance quality is described by 2 quality parameters (Table 8).

Table 8. Encumbrance Quality Parameters

Code Description Value
high - low

Quality
criteria

EB_QP1 Describes how much (%) of CM encumbrances are
missing in the TP

0%-100% C4.1.1

EB_QP2 Describes how much (%) of TP encumbrances are not
marked in the CM

0%-100% C4.1.2

EB_QP1 and EB_QP2 characterize encumbrance completeness in Cadastral IS TP

and CM databases. A CM for encumbrances has been drawn from the 1st of July 2002
and only road servitudes. Both quality parameters values can vary from 0% to 100%.

EB_QP1 value is obtained by using Formulae 12, where EB_QP1_count – number
of cadastral map encumbrances, which are not in the textual part, CM_EB_count –
number of cadastral map encumbrances.

EB_QP1 = EB_QP1_count/CM_EB_count*100 (12)

EB_QP2 value is obtained by applying formulae 13, where EB_QP2_count –
number of encumbrances in the textual part, which are not marked in the cadastral
map, TD_EB_count – number of encumbrances in the textual part.

EB_QP2 = EB_QP2_count/TD_EB_count*100 (13)

3.1.4 Part of Land Parcel Quality Parameters

Quality of part of land parcel is described by 3 quality parameters (Table 9)

Table 9. Part of Land Parcel Quality Parameters

Code Description Value
high - low

Quality
criteria

PLP_QP1 Describes how much (%) of CM parts of land
parcels are missing in the TP

0%-100% C4.1.1

PLP_QP2 Describes how much (%) of TP parts of land
parcels are not marked in the CM

0%-100% C4.1.2

PLP_QP3 Describes, how much (%) of CM cadastral
surveyed parts of land parcels’ geographical area is
larger or smaller than the acceptable space
difference of textual part legal area

0%-100% C4.2.2

PLP_QP1 and PLP_QP2 characterize part of land parcels completeness in
Cadastral IS TP and CM databases. Both quality parameters values can vary from 0%
to 100%.

270 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 270LURaksti733-datorzin.indd 270 2008.03.31. 15:07:082008.03.31. 15:07:08

PLP_QP1 value is obtained by Formulae 14, where PLP_QP1_count – number of
parts of land parcels in the cadastral map, which are not in the textual part,
CM_PLP_count – number of parts of land parcels in the cadastral map.

PLP_QP1 = PLP_QP1_count/CM_PLP_count*100 (14)

PLP_QP2 value is obtained by applying Formulae 15, where PLP_QP2_count –
number of parts of land parcels in the textual part, which are not in the cadastral map,
TP_PLP_count – number of parts of land parcels in the textual part.

PLP_QP2 =PLP_QP2_count/TP_PLP_count*100 (15)

PLP_QP3 characterizes trusted part of land parcels area. The purpose of this
parameter is the same as that of quality parameter LP_QP5.

PLP_QP3 = PLP_QP3_count/CM_PLP_count*100 (16)

3.2 Cadastral Map Quality Class

In collaboration with experts and in the result of experiments, sets of quality
parameter values are defined. There are three sets of values for all the parameters:
excellent, good, and bad values (Fig. 1, QPnVSk, k=1...3).

Parameter values of excellent quality are such as ones, which describe that an
object meets quality criteria; values of good quality are such as ones, which do not
overrun the defined acceptable error rate, but values of bad quality are such as ones,
which overrun the defined rate (Table 10). Parameter value of excellent quality to any
quality parameter (except for land parcels and buildings) is 0%, but to the surveyed
land parcels and buildings – 100%. Value of good quality to any quality parameter
(except for land parcels and buildings) is from 0.01% to 5%, but to the surveyed land
parcels and buildings – from 99.99% to 10%. Value of bad quality to any quality
parameter (except for land parcels and buildings) is from 5.01% to 100%, but to the
surveyed land parcels and buildings – from 9.99% to 0%.

Table 10. Quality Parameters Values Sets

Quality parameter values sets
Quality parameters QPiVS1

excellent
QPiVS2

good
QPiVS3

bad
- LP_QP1, LP_QP2, LP_QP3, LP_QP4,
- BD_QP1,BD_QP2,BD_QP3,
- EB_QP1, EB_QP2,
- PLP_QP1,PLP_QP2, PLP_QP3

0% 0.01-5.00% 5.01-100%

- LP_QP5,
- BD_QP4 100% 99.99%-10% 9.99%-0%

Theoretically, object quality parameters and sets of values can be chosen in
thousands of variants, but practically, suitable is only such a variant, where

Anita Jansone, Juris Borzovs. An Approach to Cadastral Map Quality Evaluation .. 271

LURaksti733-datorzin.indd 271LURaksti733-datorzin.indd 271 2008.03.31. 15:07:082008.03.31. 15:07:08

parameters are defined by field experts that depends on what object (in this case – a
CM) will be used for.

Taking into account the purpose of a CM and collaborating with experts, three
quality classes of objects are defined (Table 11): high, medium and low (Fig. 1) QCm,
m=1…3.

Table 11. Quality Classes

Quality class Description
High 1st quality class

(QC1)
A CM can be used for making decisions and other
activities, where information from the CM is needed

Medium 2nd quality class
(QC2)

A CM can be used for making decisions, but it is necessary
to be sure about quality of a certain object, which is used
for making the decision

Low 3rd quality class
(QC3)

A CM cannot be used for making decisions, it can be used
to get primary information

Having summarized quality parameter sets of values and quality classes, an object
quality assessment matrix (Table 12) is obtained. According to quality parameter
values, object quality is: High (QC1), if quality parameter value is excellent –
appertains to the set of values QPnVS1. Medium (QC2), if quality parameter value is
good – appertains to the set of values QPnVS2. Low (QC3), if quality parameter
value is bad – appertains to the set of values QPnVS3.

Table 12. Object Quality Assessment Matrix

Object quality class Quality parameters value set

High 1st quality class (QC1) QPnVS1
Medium 2nd quality class (QC2) QPnVS2
Low 3rd quality class (QC3) QPnVS3

The main principle of using the quality evaluation matrix – an object corresponds
to its quality class, which the worst quality parameter value belongs to.

Land parcel quality class ‘LP_QC’ (Fig. 3) depends on the lowest quality
parameter quality class (Formulae 17).

LP_QC

LP_QP1 LP_QP2 LP_QP3 LP_QP4

LP_QP1_QC LP_QP2_QC LP_QP3_QC LP_QP4_QC

LP_QP5

LP_QP5_QC

Fig. 3. Land Parcel Quality Class

LP_QC= MAX(LP_QPn_QC),
LP_QPn_QC= 1, if LP_QPn� QPnVS1; 2, if LP_QPn� QPnVS2;

3, if LP_QPn� QPnVS3, n={1..5}

(17)

272 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 272LURaksti733-datorzin.indd 272 2008.03.31. 15:07:082008.03.31. 15:07:08

In its turn, quality parameter LP_QPn, n={1...5} is calculated according to
Formulae 3 – Formulae 7.

Building quality class ‘BD_QC’ depends on the lowest quality parameter quality
class (Formulae 18).

BD_QC= MAX(BD_QPn_QC),
BD_QPn_QC= 1, if BD_QPn� QPnVS1; 2, if BD_QPn � QPnVS2;

3, if BD_QPn � QPnVS3, n={1..4}

(18)

In its turn, quality parameter BD_QPn, n={1...4} is calculated according to
Formulae 8 – Formulae 11.

Encumbrance quality class ‘EB_QC’ depends on the lowest parameter quality class
(Formulae 19).

EB_QC= MAX(EB_QPn_QC),
EB_QPn_QC= 1, if EB_QPn� QPnVS1; 2, if EB_QPn � QPnVS2;

3, if EB_QPn� QPnVS3, n={1..2}

(19)

In its turn, quality parameter ‘EB_QPn, n={1,2} is calculated according to
Formulae 12, Formulae 13.

Part of land parcel quality class ‘PLP_QC’ depends on the lowest quality
parameter quality class (Formulae 20).

PLP_QC= MAX (PLP_QPn_QC),
PLP_QPn_QC = 1, if PLP_QPn� QPn VS1; 2, if PLP_QPn� QPnVS2;

3, if PLP_QPn� QPnVS3, n={1..3}

(20)

In its turn, quality parameter ‘PLP_QPn’, n={1...3} is calculated according to
Formulae 14 – Formulae 16.

Cadastral map quality class (Fig. 4) depends on the lowest cadastral map object
quality class (Formulae 21).

CM_QC

LP BD EB PLP

LP_QC BD_QC EB_QC PLP_QC

Fig. 4. Cadastral Map Quality Class

CM_QC = MAX(LP_QC; BD_QC; EB_QC; PLP_QC) (21)

Anita Jansone, Juris Borzovs. An Approach to Cadastral Map Quality Evaluation .. 273

LURaksti733-datorzin.indd 273LURaksti733-datorzin.indd 273 2008.03.31. 15:07:082008.03.31. 15:07:08

Now we can evaluate quality of the chosen CM, because we have defined quality
parameters (Table 4, Table 7, Table 8, Table 9) and sets of quality parameter values
(QPnVSk) (Table 3) and Formulae 2 - Formulae 16, as well as object quality
assessment matrix (Table 12) un Formulae 17 - Formulae 21 to calculate quality
classes.

3.3 Cadastral Map Quality Evaluation Steps

The purpose of cadastral map quality evaluation is to define which quality class a
cadastral map belongs to and what purposes the cadastral map cannot be used for.
Cadastral map quality depends on the quality of its objects (Fig. 4), that is, on land
parcel, building, encumbrance and part of land parcels quality classes (Formulae 21).

To evaluate the quality of the chosen cadastral map, the following steps are made
(Fig. 5):

The first step: find out, which objects forms the cadastral map and obtain the
binding cadastral map data of the textual part. A cadastral map can be formed by four
objects maximum: land parcel, building, encumbrance, and part of land parcel
(i={1…4}). The defined method does not depend on cadastral map size – you can
choose a cadastral map, which is formed of one land parcel and evaluate it, or choose
all possible cadastral maps and evaluate them. Wherewith a cadastral map can be
formed by several objects of one type, for example, several land parcels, buildings,
etc. Object quality depends on the quality of each object item. Prior to cadastral map
evaluation, obtain the number of object items: number of land parcels in the cadastral
map ‘CM_LP_count’, in the textual part ‘TP_LP_count’, number of buildings in the
cadastral map ‘CM_BD_count’, in the textual part ‘TP_BD_count’, number of
encumbrances in the cadastral map ‘CM_EB_count’, in the textual part
‘TP_EB_count’ and number of parts of land parcels in the cadastral map
‘CM_PLP_count’, in the textual part ‘TP_PLP_count’ (Fig. 5, P1a, P1b).

The second step: evaluate each object quality by the parameters (Table 4, Table 7,
Table 8, Table 9) and obtain object quality class (LP_QC, BD_QC, EB_QC,
PLP_QC):

a) check the eligibility of object to quality criterions (Table 3), obtain the
number or list of ineligible items QPn_count’ or ‘QPn_list’ (Fig. 5, P2a),

b) obtain object quality class:
� calculate quality parameter QPn values (Formula 3 – Formula 16), obtain

QPn (Fig. 5, P2b),
� determine, which quality parameter value set (Table 10) the obtained value

belongs to. Obtain QPnVSk (Fig. 5, P2c),
� determine, which is the class of a quality parameter QPn (Table 12), obtain

QPn_QC (Fig. 5, P2d),
� determine, which quality class an object corresponds to (Formulae 17 –

Formulae 21), obtain LP_QC, BD_QC, EB_QC and PLP_QC. (Fig. 5, P2e).
The third step: determine cadastral map quality (Fig. 4), which depends on the

lowest object quality class (Formulae 21), obtain CM_QC (Fig. 5, P3).

274 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 274LURaksti733-datorzin.indd 274 2008.03.31. 15:07:082008.03.31. 15:07:08

For demonstrating the approach for CM evaluation let’s choose a map, which
contains 19 land parcels, 7 buildings, 2 encumbrances and 1 part of land parcel (Fig.
6). Data in the CM and TP are shown in Table 13- Table 16.

Let’s evaluate the quality of land parcels in the chosen CM. We have: five quality
parameters for land parcels LP_QPn, n=1…5 (Table 4), three sets of values for
quality parameters LP_QPn_VSj, n=1…5, j=1…3 (Table 10) and three land parcel
quality classes – high, medium, low LP_QCm, m=1…3 (Table 12), CM and TP data,
which are given in Table 13.

Evaluation of a land parcel consists of the following steps:
1st step – acquire the number of land parcels in the chosen CM (Fig. 5): the number

of CM land parcels is 19, CM_LP_count=19. Also in the TP the number of land
parcels for the chosen region is 19, TP_LP_count=19.

2nd step –
a) calculate how many land parcels do not comply with the proposed criterions,

the result is ‘LP_QPn_count’ or ‘LP_QPn_list’, n=1...5.
b) then calculate LP_QPn- how many percents it is (Formulae 3 - Formulae 7)

and using the sets of values for quality parameters (QPnVSk) and the quality
assessment matrix (QAM), acquire quality parameter quality class LP_QPn_QC,
n=1...5. Finally, get LP_QC (Formulae 17) (Fig. 3).

3.step

2.step

1.step

P2b Calculate quality parameter value
QPn

n<=N

n-count of object
quality parameters

Yes

n:=n+1

No

Object i

n:=1

P2e Determine object i
quality class

i=i+1

P1a
Determine

cadastral map
contents

Cadastral map

P1b
Obtain cadastral
map binding data
of the textual part

i:=1

i<=N

i- count of CM
objects,
i={1...4}

Yes P3 Determine cadastral
map quality classNo CM_QC

LP_QC
BD_QC
EB_QC
PLP_QC

QPn_QC

QPn (%)

P2d Determine quality parameter QPn
quality class

P2c Determine quality parameter QPn
value set QPnVSk

P2a Check object eligibility to quality
criterions

QPn_count
QPn_list

Formula 3-
Formula 16

QPnVSk

QAM

Formula 17-
Formula 20

Formula 21

CM_LP_count
CM_BD_count
CM_EB_count
CM_PLP_count

TP_LP_count
TP_BD_count
TP_EB_count
TP_PLP_count

Fig. 5. Cadastral Map Quality Evaluation

Anita Jansone, Juris Borzovs. An Approach to Cadastral Map Quality Evaluation .. 275

LURaksti733-datorzin.indd 275LURaksti733-datorzin.indd 275 2008.03.31. 15:07:082008.03.31. 15:07:08

Fig. 6. Detail from the Durbe Country Cadastral Map

Table 13. Land Parcels CM and TP data

CM TP

Nr Cadastral
number of land

parcel

Survey
type

Graphical
land area

m2

Nr Cadastral
number of land

parcel

Survey
type

Legal
land area

m2
1 64270020045 allocated 73349 1 64270020045 allocated 82000

2 64270020094 allocated 43925 2 64270020094 allocated 51000

3 64270020103 allocated 91950 3 64270020103 allocated 91000

4 64270020104 allocated 65236 4 64270020104 allocated 59000

5 64270020107 allocated 163022 5 64270020107 allocated 158000

6 64270020117 allocated 40520 6 64270020117 allocated 38000

7 64270020119 allocated 12563 7 64270020119 allocated 15000

8 64270020135 allocated 54089 8 64270020135 allocated 64000

9 64270020146 surveyed 192035 9 64270020146 surveyed 192100

10 64270020148 allocated 81174 10 64270020148 allocated 82000

11 64270020151 surveyed 121532 11 64270020151 surveyed 121600

12 64270020189 designed 19453 12 64270020189 designed 18000

276 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 276LURaksti733-datorzin.indd 276 2008.03.31. 15:07:092008.03.31. 15:07:09

13 64270020190 designed 12905 13 64270020190 designed 13000

14 64270020191 designed 4411 14 64270020191 designed 4000

15 64270020194 allocated 49874 15 64270020194 allocated 53000

16 64270020200 surveyed 2114825 16 64270020200 surveyed 2115500

17 64270020251 designed 119254 17 64270020251 designed 119000

18 64270020266 allocated 322332 18 64270020266 allocated 320000

19 64270020317 surveyed 2690 19 64270020317 surveyed 2700

Table 14. Building CM ant TP Data

CM TP

Nr Cadastral number
of building

Survey type Cadastral
number of
land parcel

Nr Cadastral number
of building

Cadastral
number of
land parcel

1 64270020119001 Vectorized 64270020119 1 64270020119001 64270020119

2 64270020119002 Vectorized 64270020119 2 64270020119002 64270020119

3 64270020119003 Vectorized 64270020119 3 64270020119003 64270020119

4 64270020119004 Vectorized 64270020119 4 64270020119004 64270020119

5 64270020195001 Vectorized 64270020317 5 64270020195001 64270020317

6 64270020195002 Vectorized 64270020317 6 64270020195002 64270020317

7 64270020195003 Vectorized 64270020317 7 64270020195003 64270020317

Table 15. Encumbrance CM ant TP Data

CM TP

Nr Cadastral number
of land parcel

Encumbrance
code Nr Cadastral number of

land parcel Encumbrance code

1 64270020200 050301 001 1 64270020200 050301 001
2 64270020146 050301 003 2 64270020146 050301 003

Table 16. Part of Land Parcel CM ant TP Data

CM TP
Nr Cadastral number

of part of land
parcel

Graphical land
area m2

Nr Cadastral number of
part of land parcel

Legal land area m2

1 642700202008001 58766 1 642700202008001 55800

LP_QP1_QC acquisition (Fig. 7):
a) check, how many land parcels are not in the TP. After the check let us make

sure that all land parcels in the CM are also in the TP, therefore LP_QP1_count=0
(Fig. 7, P1, P2),

b) calculate the rate LP_QP1=LP_QP1_count/CM_LP_count*100=
0/19*100=0% (Formulae 3) (Fig. 7, P3). Using the QPVS we see that LP_QP1 value
appertains to the set of values LP_QP1_VS1 (Fig. 7, P4) and using the QAM, the
value corresponds to the High class LP_QC1, we acquire that LP_QP1_QC=1 (Fig. 7,
P5).

Anita Jansone, Juris Borzovs. An Approach to Cadastral Map Quality Evaluation .. 277

LURaksti733-datorzin.indd 277LURaksti733-datorzin.indd 277 2008.03.31. 15:07:092008.03.31. 15:07:09

LP_QP2_QC acquisition:
a) check, how many land parcels in the TP of the chosen area are not marked in

the CM. After the check let us make sure that all land parcels of the TP are marked in
the CM, therefore LP_QP2_count=0.

b) calculate the rate: P2_QP2=LP_QP2_count/TP_LP_count*100=
0/19*100=0% (Formulae 4). Using the QPVS we see that LP_QP2 value appertains to
the set of values LP_QP2_VS1 and using the QAM, the value corresponds to the High
class, LP_QP2_QC=1.

LP_QP3_QC acquisition:
a) check, how many land parcels in the CM have surveying type different from

the surveying type in the TP. In the result let us make sure that surveying types in
both databases are the same, therefore LP_QP3_count=0.

b) calculate the rate: LP_QP3=LP_QP3_count/CM_LP_count*100=
0/19*100=0% (Formulae 5). Using the QPVS we see that LP_QP3 value appertains to
the set of values LP_QP3_VS1 and using the QAM, the value corresponds to the High
class, LP_QP3_QC=1.

LP_QP4_QC acquisition:
a) check, how many of surveyed land parcels in the CM have graphical land

area larger/smaller than the acceptable difference from legal land is (Table 17):
� calculate the acceptable difference between graphical land area and legal

land area (Table 6),
� calculate the actual (fact) difference,
� compare the acceptable difference with the actual area difference. In the

result let us make sure that acceptable differences of graphical land area for
all land parcels in the CM are within permissible limits, therefore
LP_QP4_count=0.

b) calculate the rate: LP_QP4=LP_QP4_count/4*100= 0/4*100=0% (Formulae
6). Using the QPVS we see that LP_QP4 value appertains to the set of values
LP_QP4_VS1 and using the QAM, the value corresponds to the High class,
LP_QP4_QC=1.

LP_QP5_QC acquisition:
a) calculate, how many land parcels are surveyed in the CM and acquire that

LP_QP5_count=4.
b) calculate the rate: LP_QP5= LP_QP5_count/CM_LP_count*100=

4/19*100=21.05% (Formulae 7). Using the QPVS we see that LP_QP5 value
appertains to the set of values LP_QP5_VS2 and using the QAM, the value
corresponds to the Medium class, LP_QP5_QC=2.

278 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 278LURaksti733-datorzin.indd 278 2008.03.31. 15:07:092008.03.31. 15:07:09

b)

a)
P1 Check CM LP

presence in the TP

Presence
?

P2
Allocate the missing

LP cadastral
designation CM in

LP list

No

Yes

CM LP

Next
LP

Yes

No

P3
Calculate

LP_QP1 value
(%)

Formula 3

P5 Determine
LP_QP1_QC QAM

LP_QP1_count
LP_QP1_list

LP_QP1 (%)

LP_QP1_QC

P4
Determine

LP_QP1VSj
value set

QP1VSk LP_QP1VSj

Fig. 7. Quality Parameter LP_QP1 Quality Class

Table 17. Calculation of the Difference between Graphical and Legal Land Area

Difference (ha)
Nr.

Cadastral
number of
land parcel

Graphical
land area(a)

ha

Legal
land area

(b)
ha

Acceptable
(±x b) Fact ABS(a-b)

Result

1 64270020146 19.20 19.21 1.10 0.01 Acceptable

2 64270020151 12.15 12.16 0.87 0.01 Acceptable

3 64270020200 211.48 211.55 4.36 0.07 Acceptable

4 64270020317 0.27 0.27 0.05 0.00 Acceptable

Finally, land parcel quality depends on the lowest quality class in every quality
parameter: LP_QC=MAX (LP_QPi_QC), i=1…5 (Fig. 3, Formulae 17) and it is
Medium class LP_QC=2 - CM (taking into account land parcel quality only), it is

Anita Jansone, Juris Borzovs. An Approach to Cadastral Map Quality Evaluation .. 279

LURaksti733-datorzin.indd 279LURaksti733-datorzin.indd 279 2008.03.31. 15:07:092008.03.31. 15:07:09

permitted to use it for making decisions (Table 11), by ascertaining that land units,
which were not surveyed, do not influence the decision. However, if CM usage
purpose is not connected with it or land parcels are surveyed (do not take into account
LP_QP5, therefore it is not a necessary requirement to be surveyed), then quality of
the CM is already High class – LP_QC=1.

If CM usage purpose is connected with involvement of all the objects, it is
necessary to evaluate the quality of the other objects. The quality of the other objects
is evaluated in a similar way as the quality of land parcels. The quality evaluation of
all the objects is given in Table 18.

Table 18. Object quality classes

Land parcel Building Encumbrance Part of land parcel
LP_QP1_QC = 1 BD_QP1_QC = 1 EB_QP1_QC = 1 PLP_QP1_QC = 1
LP_QP2_QC = 1 BD_QP2_QC = 1 EB_QP2_QC = 1 PLP_QP2_QC = 1
LP_QP3_QC = 1 BD_QP3_QC = 1 PLP_QP3_QC = 1
LP_QP4_QC = 1
LP_QP5_QC = 2

BD_QP4_QC = 3

LP_QC = 2 BD_QC = 3 EB_QC = 1 PLP_QC = 1

Evaluation for the chosen CM (Fig. 5, 3rd step) is acquired taking into account the
lowest quality class of each object: CM_QC= MAX(LP_QC, BD_QC, EB_QC,
PLP_QC) (Fig. 4, Formulae 21).

As a result we obtain that quality class of the given CM (taking into account
quality of all the objects) is the Low class – CM_QC=3 and it cannot be used for
making decisions, it can be used to get primary information.

The evaluation method is based on object usage purpose and 1) if CM usage
purpose does not depend on whether a building is surveyed (quality parameter
BD_QP4 is not taken into account), then CM quality is of Medium class – CM_QC=2
and it can be used for making decisions, 2) if CM usage purpose does not depend on
survey of land parcels and buildings (quality parameters LP_QP5 and BD_QP4 are
not taken into account), then quality class is High class - CM_QC=1 and the CM and
be used for any purpose.

3.4 Cadastral Map Quality Evaluation Software

Cadastral map quality is evaluated according to the defined quality parameters (Table
4, Table 7, Table 8, Table 9) and formulae for calculating their values (formulae 3 –
Formulae 16) and used 22 data types (Table 19).

To provide fast and effective data quality evaluation, software for data quality
evaluation is developed, which provides:

1) obtainment of data necessary for quality evaluation,
2) quality evaluation according to the defined quality parameters,
3) preparation of data for analysis and quality improvement

280 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 280LURaksti733-datorzin.indd 280 2008.03.31. 15:07:102008.03.31. 15:07:10

As the basis when elaborating data quality evaluation software (DQES) is taken
Cadastral Information System Graphical Software (CISGS), which offers the
following possibilities (Table 19):

1) make reports (R) on cadastral map and textual part objects,
2) check (C) data quality,
3) search (S),
4) create SQL queries (SQL),
5) save the selected data in MS Excel file.
Functionality of CISGS practically ensures the first step of cadastral map quality

evaluation – obtain data about cadastral map content, including data from the textual
part (Fig. 5, 1st step). This is provided by CISGS report creating function (report
‘CAD7’). In the report ‘CAD7’ only textual part data about encumbrances are not
used, because in the report there are all the textual part encumbrances for the chosen
area, but for evaluation only servitudes are necessary (Table 9). That’s why number of
textual part encumbrances (servitudes) is obtained by applying an SQL query.

CISGS provides almost all the necessary quality checks (Fig. 5, 2nd step P2a) and
selects items ineligible to quality criteria, which can be saved in MS Excel file, but
the number of the surveyed objects can be obtained by creating reports ‘CAD1_LP’
and ‘CAD1_BD’. CISGS does not offer two encumbrance quality checks: cadastral
map encumbrances not included in the textual part (EB_QP1_list, EB_QP1_count)
and textual part encumbrances not included in the cadastral map (EB_QP2_list,
EB_QP2_count).

Table 19. CISGS Data

Nr Data type Quality
parameter CISGS Name of data

type Formula

1. Number of LP in CM LP_QP1,
LP_QP3-
LP_QP5

CAD7 (R) CM_LP_count 3,5-7

2. Number of LP in TP LP_QP2 CAD7 (R) TP_LP_count 4
3. Number of BD in CM BD_QP1,

BD_QP,
BD_QP4

CAD7 (R) CM_BD_count 8, 10,
11

4. Number of BD in TP BD_QP2 CAD7 (R) TP_BD_count 9
5. Number of EB in CM EB_QP1 CAD7 (R) CM_EB_count 12
6. Number of EB in TP EB_QP2 TP_EB_list

(SQL)
TD_EB_count 13

7. Number of PLP in CM PLP_QP1,
PLP_QP3

CAD7 (R) CM_PLP_count 14,16

8. Number of PLP in TP PLP_QP2 CAD7 (R) TD_PLP_count 15
9. List of cadastral map land parcels,

which are not in the textual part
LP_QP1 LP_QP1_list

(C)
LP_QP1_list
LP_QP1_count

3

10. List of land parcels in the textual
part, which are not in the cadastral
map

LP_QP2 LP_QP2_list
(C)

LP_QP2_list
LP_QP2_count

4

11. List of cadastral map land parcels
with different survey type

LP_QP3 LP_QP3_list
(C)

LP_QP3_list
LP_QP3_count

5

12. List of cadastral map land parcels
with different area

LP_QP4 LP_QP4_list
(C)

LP_QP4_list
LP_QP4_count

6

13. Number of surveyed cadastral map
land parcels

LP_QP5 CAD1_LP LP_QP5_count 7

Anita Jansone, Juris Borzovs. An Approach to Cadastral Map Quality Evaluation .. 281

LURaksti733-datorzin.indd 281LURaksti733-datorzin.indd 281 2008.03.31. 15:07:102008.03.31. 15:07:10

Nr Data type Quality
parameter CISGS Name of data

type Formula

14. List of cadastral map buildings not
included in the textual part

BD_QP1 BD_QP1_list
(C)

BD_QP1_list
BD_QP1_count

8

15. List of textual part buildings not
included in the cadastral map

BD_QP2 BD_QP2_list
(C)

BD_QP2_list
BD_QP2_count

9

16. List of cadastral map buildings,
which land parcel designations do
not match with the designations of
land parcels in the textual part, to
which it is attached

BD_QP3 BD_QP3_list
(C)

BD_QP3_list
BD_QP3_count

10

17. Number of surveyed cadastral map
buildings

BD_QP4 CAD1_BD (R) BD_QP4_count 11

18. List of cadastral map
encumbrances not included in the
textual part

EB_QP1 CM_EB_list (S) EB_QP1_list
EB_QP1_count

12

19. List of textual part encumbrances
not included in the cadastral map

EB_QP1 TP_EB_list (S) EB_QP2_list
EB_QP2_count

13

20. List of parts of land parcels in the
cadastral map not included in the
textual part

PLP_QP1 PLP_QP1_list
(C)

PLP_QP1_list
PLP_QP1_count

14

21. List of parts of land parcels in the
textual part not included in the
cadastral map

PLP_QP2 PLP_QP2_list
(C)

PLP_QP2_list
PLP_QP2_count

15

22. List of parts of land parcels in the
cadastral map with different area

PLP_QP3 PLP_QP3_list
(C)

PLP_QP3_list
PLP_QP3_count

16

R- report, C- check , S - search functionality of CISGS

Although CISGS provides the data necessary for quality evaluation and performs
almost all quality checks, the software does not provide data quality evaluation.

According to the present situation, obtain, that DQES tasks are (Fig. 8):
1) to import data to DQES data base,
2) to make encumbrance data quality checks,
3) to evaluate cadastral map quality according to quality parameters and quality

evaluation matrixes (Fig. 5, 2nd step P2b. – P2e, 3rd step) and to display them
in MS Excel file,

4) to prepare data in MS Excel file for analysis and improvement of quality.

282 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 282LURaksti733-datorzin.indd 282 2008.03.31. 15:07:102008.03.31. 15:07:10

CM

Data Quality Evaluation Software

Cadastral Information System Graphical Software

TP CMMS Excel
file

CISGS

DB
DQES

MS Excel
file

Fig. 8. CISGS and DQES

3.4.1 Data Import and Quality checks

CISGS offers to save data selected in reports, checks, searches and SQL queries in
MS Excel file. For data import, using DQES, strictly keep to the definite folder
structure (Fig. 9): 1) As cadastral map quality evaluation data (Table 19) are taken on
the same date, they are stored in a folder with a name: YYYYMMDD, 2) for each
cadastral map object – LP, BD, EB, PLP and the report ‘CAD7’ a folder is created,
into which MS Excel files created with CISGS are placed. The number of files
depends on the size of the chosen area and data errors. Work with a cadastral map in
SLS is organised in regional departments and department offices. Within offices
cadastral maps are created for cadastral areas and cadastral groups. This principle for
work with cadastral maps is introduced into CISGS and the data necessary for
evaluation are obtained through cadastral areas. For example, information about the
South Kurzeme regional department can be obtained from CISGS from up to 79 MS
Excel files: LP -22, BD -15, EB -24, LPL -15 and CAD7-3.

Prior to data import DQES processes encumbrance data: replacing the number of
encumbrances in the textual part in ‘CAD7’ report with the number of encumbrances
in the textual part, which is necessary for evaluation, as well as encumbrance checks.
Thus, in the data base are stored only the data, which are necessary for evaluation
process. DQES DB imported data are stored in 15 tables respectively.

Anita Jansone, Juris Borzovs. An Approach to Cadastral Map Quality Evaluation .. 283

LURaksti733-datorzin.indd 283LURaksti733-datorzin.indd 283 2008.03.31. 15:07:102008.03.31. 15:07:10

 Table 19

YYYYMMDD

LP BD EB PLPCAD7

LP_QP1_list

LP_QP2_list

LP_QP3_list

LP_QP4_list

CAD1_LP

ED_QP1_list

ED_QP2_list

ED_QP3_list

CAD1_BD

EB_QP1_list

EB_QP2_list

PLP_QP1_list

PLP_QP2_list

PLP_QP3_list

1.-8. 9. 13. 14.-
17.

18.,
19.

20.-
22.

Fig. 9. Folder Structure for Data Import

3.4.2 Data Quality Evaluation and Mapping of the Results

DQES provides cadastral map quality evaluation according to the definite quality
parameters (Table 4, Table 7, Table 8, Table 9), formulas (Formulae 3 – Formulae
16), determines object quality classes according to quality matrix (Table 12) and
formulas (Formulae 17 – Formulae 21).

The obtained evaluation results DQES maps in MS Excel file, in the worksheet for
each cadastral map object (Table 20), which can contain various cadastral areas,
� horizontally (as object item) displayed:

1-cadastral area code and title,
2-for each quality parameter (QPn) three data types are displayed: number of
items eligible/ineligible to criteria (Count), according to formulae calculated
percents of parameter value (%) and the class corresponding to the obtained value
(QC),
3-cadastral area quality class (QC) that depends on each quality parameter quality
class,

� vertically (as quality parameter QPn) displayed:
4-each quality parameter quality class (QPn QC)
5-object quality class (QC)

Table 20. Structure of Evaluation Data Mapping

Cadastral map
territorial code and
name

Quality parameter QP1 .. Quality parameter QPN Quality
class

1 2’ 2’’ 2’’’ 3

 Count % QC ... Count % QC Cad. ter.
QC.

...
 4’

QP1 QC
4’’ 4’’’

QPN QC
5

Object QC

284 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 284LURaksti733-datorzin.indd 284 2008.03.31. 15:07:102008.03.31. 15:07:10

The maximum a file can contain is 4 worksheets with quality evaluation data – a
separate worksheet for each object (LP, BD, EB, PLP).

As an example for land parcel evaluation data mapping (Fig. 10) are given data
from South Kurzeme regional department in Liep�ja office for towns cadastral
territorial land parcel quality evaluation on August 9, 2007.

 Fig. 10. Liep�ja Office for Towns Land Parcel Quality Evaluation

3.4.3 Data Preparation for Analysis

Quality evaluation data for analysis are displayed in charts. DQES prepares two types
of charts: charts describing charts for cadastral map object quality parameter values
(%) and charts describing cadastral map and its object quality classes.

For object quality parameters (Table 4, Table 7, Table 8, Table 9) can be 7 charts
maximum: PLP – 1, EB – 1, but LP and BD have 2 charts each, because quality
parameter LP_QP5 and BD_QP4 value sets (Table 10) are different from other
quality parameter value sets, as well as the chart, in which are given quality parameter
values, which describe objects – LP_QP1, LP_QP2, BD_QP1, BD_QP2, EB_QP1,
EB_QP2, PLP_QP1, PLP_QP2.

As an example of land parcel analysis data mapping are given the data of South
Kurzeme regional department Liep�ja office for towns cadastral area land parcel
evaluation on August 9, 2007 by parameters LP_QP1, LP_QP2, LP_QP3, LP_QP4
(Fig. 11) and LP_QP5 (Fig. 12).

Fig. 11. Liep�ja Office Land Parcel Analysis Data

Anita Jansone, Juris Borzovs. An Approach to Cadastral Map Quality Evaluation .. 285

LURaksti733-datorzin.indd 285LURaksti733-datorzin.indd 285 2008.03.31. 15:07:112008.03.31. 15:07:11

Fig. 12. Liep�ja Office Land Parcel Analysis Data

For quality parameter quality classes can be 5 charts maximum: each cadastral map
object quality parameter quality classes and cadastral map quality classes.

As an example of land parcel quality parameter quality class analysis data mapping
are given the data of South Kurzeme regional department Liep�ja office for towns
cadastral area land parcel evaluation on August 9, 2007 by parameters LP_QP1,
LP_QP2, LP_QP3, LP_QP4 and LP_QP5 quality class (Fig. 12).

Fig. 13. Liep�ja Office Land Parcel Quality Parameter Quality Classes

As an example for cadastral map object quality class analysis data mapping are
given the data of South Kurzeme regional department Liep�ja office for towns
cadastral area land parcel evaluation on August 9, 2007 (Fig. 14).

286 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 286LURaksti733-datorzin.indd 286 2008.03.31. 15:07:112008.03.31. 15:07:11

Fig. 14. Liep�ja Office Cadastral Object Quality Classes

3.4.4 Storage of Quality Evaluation Data

DQES maps quality evaluation data and analysis data in MS Excel file. The file, if it
is necessary, can be stored in the chosen location and name.

In general MS Excel file created by DQES can contain 16 worksheets maximum: 4
worksheets with quality evaluation data, 7 worksheets with charts for object quality
parameter values and 5 worksheets with charts for quality classes (object quality
parameter and for the cadastral map.

For development of DQES such tools are chosen: My SQL, MS Visual Basic and
MS Excel. DQES DB contains 30 tables (15 data tables, 6 classifiers, 4 data quality
evaluation result tables and 5 support tables), the interface consists of 5 display forms,
but program code contains approximately 4300 rows. Software specification and
design are made by A.Jansone, but code is made by K.Griet�ns.

The defined method does not depend on the size of each cadastral map – you can
choose a cadastral map with one land parcel with existing objects- and evaluate it, as
well as you can choose all the cadastral maps in the data base and evaluate them.

4 Conclusion

The described approach can be applied to any CM. Quality assessments can be
obtained not only for CM of small territories but also for big areas, e.g., cities,
regions. The example given in this paper is an assessment of a portion of the Latvian
country Durbe and reveals where the weaknesses of the map may be.

The insights gained from this analysis are varied. For example, lists of land parcels
for which data quality is poor and where data quality needs to be improved in order to
be useful for given purposes. In particular, approximate calculations can be done to
estimate the time and financial commitment required to bring a CM to a desired
quality; for example, to carry out border adjustments in particular territories.

The elaborated method can be used for quality evaluation of objects of any type and
the main steps of the method are: firstly, from experiments obtain subjective opinion
about object quality descriptive parameters - which value depends on object usage

Anita Jansone, Juris Borzovs. An Approach to Cadastral Map Quality Evaluation .. 287

LURaksti733-datorzin.indd 287LURaksti733-datorzin.indd 287 2008.03.31. 15:07:112008.03.31. 15:07:11

purpose. Secondly, perform structuring of expert subjective opinion and define object
quality parameters and their values, according to object binding normative documents
and existing IT solutions in the company. Thirdly, together with experiments define
object quality classes depending on object usage purposes and what quality parameter
values create each quality class, consequently, obtain object quality evaluation matrix,
which is used to evaluate the use of an object for the chosen purpose.

This paper presents an object corresponding to the lowest quality parameter quality
class - “hard” principle for object evaluation. Other principles (for example, “soft”
principle) are going to describe in coming research papers.

In order to make everyday use of a cadastral map easy and simple, support
software (Data Quality Evaluation Software) is elaborated for calculating values of
quality parameters and for quality class determination, as well as for obtaining charts
to analyse data and to elaborate a plan for improving data quality. If without DQES
data quality evaluation of one regional unit (i.e. South Kurzeme regional unit)
required 2-3 days, now the needed time is 1-2 hours. DQES data quality evaluation
algorithms tested in practice can be used for supplementing CISGS.

Continuing research is aimed at identifying more quality parameters and ensuring
that extracted quality parameters conform to the initial subjective opinions of experts.

5 Acknowledgment

The authors would like to thank the SLS experts A.Side#ska, I.Rudz�te, I.Pauli�a, and
all Regional Offices experts who took part in the interviews for their assistance in
giving freely of their time and expertise with CM, as well as K.Griet�ns, master
student of Liep�ja Academy of Pedagogy, for coding DQES.

The research was partly funded by the European Social Fund and the Latvian
Science Council.

References

1 Olson, J. E.: Data Quality: The Accuracy Dimension, pp 24-27. Morgan Kaufmann
Publisher (2003)

2 Batini, C., Scannapieco, M.: Data Quality: Concepts: Methodologies and Techniques, pp 19-
49. Springer (2006)

3 Eppler, M. J., Helfert, M., Pernici, B.: Preface. In: 16th Conference on Advanced
Information Systems Engineering (CAiSE’04), DIQ’04 Workshop Chairs, pp 3-4. R�ga
(2004)

4 NCGIA Core Curriculum in Geographic Information Science,
http://www.ncgia.ucsb.edu/giscc/units/u100/u100_f.html

5 Redman,T.,C.: Data Quality: The Field Guide, pp 223, Digital Press, (2001),
6 Borzovs, J., Jansone, A.: An Approach to Geographical Data Quality Evaluation. In 7th

International Baltic Conference Databases and Information Systems, pp 125 – 131, Vilnius
(2006)

7 Cadastral Template a Worldwide Comparison of Cadastral Systems,
http://www.geo21.ch/cadastraltemplate/countrydata/lv.htm

288 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 288LURaksti733-datorzin.indd 288 2008.03.31. 15:07:122008.03.31. 15:07:12

METHODOLOGY

LURaksti733-datorzin.indd 289LURaksti733-datorzin.indd 289 2008.03.31. 15:07:122008.03.31. 15:07:12

LURaksti733-datorzin.indd 290LURaksti733-datorzin.indd 290 2008.03.31. 15:07:122008.03.31. 15:07:12

An Outstanding Example of University-Industry
Partnership: the Latvian Case1

 Juris Borzovs
University of Latvia, Riga Information Technology Institute, Exigen Services DATI

Rai�a bulv�ris 19, LV-1586 R�ga, Latvija
juris.borzovs@lu.lv

Abstract. The Latvian ICT sector is unquestionably the leader in co-operation
with educators. In the year 2000, leading Latvian professional ICT associations
established the Council of Professional Education. The Council on behalf of
employers and industry has coordinated the development of requirements for
needed professionals, has established requirements for qualification exams, and
approves membership of qualification commissions. Based on these
requirements and on ACM/IEEE Computing Curricula, the University of Latvia
performs an innovative computing study programme that organically comprises
academic and professional education, and covers all the five ACM/IEEE
Computing Curricula disciplines: computer science, software engineering,
information systems, information technology, and computer engineering.

Keywords: computing, study programme, university-industry partnership.

1 Introduction

Relations between academy and industry are nearly always somewhat contradictory.
The former relies on long-term research and education process, while the latter needs
immediate solutions and narrowly, however, deeply educated employees.
Overcoming the gap between the two parties is by no means easy.

The ICT sector is unquestionably the leader in co-operation with educators in Latvia.
In the year 2000, leading Latvian professional ICT associations established the
Council of Professional Education. The Council on behalf of employers and industry
has coordinated the development of requirements for needed professionals, has
established requirements for qualification exams, and approves membership of
qualification commissions. Based on these requirements and on ACM/IEEE
Computing Curricula [1], the University of Latvia performs an innovative computing
study programme that organically comprises academic and professional education,
and covers all the five ACM/IEEE Computing Curricula disciplines: computer
science, software engineering, information systems, information technology, and
computer engineering.

1 This paper originally was presented at the 2nd IT STAR Workshop on Universities & the

ICT Industry (UNICTRY '07), Genzano di Roma, 26 May 2007.

LATVIJAS UNIVERSITĀTES RAKSTI. 2008, 733. sēj.:
DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS 291.–302. lpp.

LURaksti733-datorzin.indd 291LURaksti733-datorzin.indd 291 2008.03.31. 15:07:122008.03.31. 15:07:12

Levels of ICT education are described in section 2. Current situation in ICT sector is
covered in section 3. Latvian professional higher education system is explained in
section 4. The unique employer' s ability to influence Latvian universities’ study
programmes and their presentation is given in section 5. The University of Latvia
computing study programme as an innovative approach to education is presented in
section 6. Bologna process movement in the right direction is questioned in section 7.

2 Levels of ICT Education

The Organisation for Economic Co-operation and Development (OECD) has
recommended that skills related to information and communications technologies
(ICT) be classified into three major categories:
Professional IT skills: The ability to use complex IT tools and/or to design, repair or
create such tools;
Applied IT skills: The ability to use simple IT tools in general places of employment
(not ones related to IT);
Basic IT skills: The ability to use IT tools for simple tasks and as an educational tool.

At this point it is worth explaining that the concept of ICT is interpreted in Europe as
referring to information technologies, telecommunications or electronic
communications, and electronics. In other words, it regards a sector of economy in
which various kinds of electronic equipment are manufactured, including computers
and electronic communications equipment, communications networks are established,
software and information systems are designed, and relevant services are provided.
Among these, of course, the most common ones are telephone and Internet services.
The concept of “IT”, however, has several meanings. In the narrowest sense, it refers
to the design of computer software or information systems, while the concept of IT
skills refers to the ability to use this software. However, in a broader sense, IT and
ICT are synonyms.

ICT is a special sector because its products and services are used by almost everyone
and everywhere. In this sense it reminds one of the infrastructure sectors-
transportation. It is no accident that until 2003, the ICT sector in Latvia was governed
by the Ministry of Transport. Not everyone has to know how to build motor vehicles
and roads, but people do have to study before they can drive a motor vehicle. Not
everyone must know how to design ICT tools, but there is usually a need to study
them before use

There are 13 institutions of higher education in Latvia where one can pursue a degree
in IT – in R�ga, Daugavpils, Liep�ja, Jelgava, R�zekne, Ventspils, Valmiera, J�rmala
and J�kabpils. There are also some 10 professional IT high schools. 80% of those
who receive a degree in ICT come from the Riga Technical University, the University
of Latvia and the Transport and Communications Institute.

292 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 292LURaksti733-datorzin.indd 292 2008.03.31. 15:07:122008.03.31. 15:07:12

In Latvia applied IT skills can be learned through a programme known as the
European Computer Driving Licence (ECDL). The programme was introduced in
Latvia in 2001 by the Riga Information Technology Institute (RITI). The programme
licence holder is the Latvian Association of Information and Communications
Technologies (LIKTA). Currently the programme is being implemented by the
University of Latvia, but certification exams can also be taken in Latvia’s regional
centres. It must be emphasised that a certificate issued in Latvia is valid in more than
40 countries, including all the European Union member states .

Latvia is the first country in the world to introduce the ECDL programme in the
general national education programme. Since the autumn of 2003, basic IT skills have
been taught at the elementary school level, while applied skills to satisfy all ECDL
requirements are taught at high schools. There are several companies that offer
training in this area on a commercial basis. Still, we are at the beginning of the road,
because only about 2,000 certificates have been issued so far. In nearby Sweden, by
comparison, nearly one million certificates have been issued.

3 What Is Happening in the ICT Sector?

The days when anyone who knew how to switch on a computer could hope for a
salary of USD 100,000 per year in America are long gone, and they are irretrievable.
Neither is it true any longer that naïve investors are in a hurry to invest all their
money in any company that has anything to do with information technologies.
Economic stagnation in America, Germany and many other “engines of the global
economy” in the early part of the 21st century made people think about every dollar
and euro before it was spent. Research and development budgets were the first to be
cut, and there was also less spending on the development of information systems and
on outsourcing. These, however, are the three major pillars of the entire ICT sector.
The economies have recovered, and the pillars are back in place, but there are far
fewer pointless investments and thoughtless spending projects in the area of
information systems. National economies require experts with in-depth knowledge,
skills and experience in the area of ICT and and in its relevant areas. “Soft” skills will
also be of key importance – the ability to read, speak and write in several languages,
dedication, responsibility, the ability to manage others, etc. It will be very hard to find
job without the aforementioned “soft” skills and professional experience. University
students need to think about professional and “soft” skills while they are still at
school, and they should accumulate as much professional experience as possible.

 We understand increasingly that there are two possible routes in the ICT profession –
the “deep” and the “broad” route. In the first case, the professional has very detailed
technical skills and knowledge in a fairly narrow sector in which he or she will
always be able to find job – although not always in Latvia. In the second case, the
knowledge and skills will be broader, but the professional will not always have
sufficiently detailed or precise skills for a specific job. Compensation for this will be
provided by a wealth of “soft” skills. As one person humorously put it, those who

Juris Borzovs. An Outstanding Example of University-Industry Partnership .. 293

LURaksti733-datorzin.indd 293LURaksti733-datorzin.indd 293 2008.03.31. 15:07:122008.03.31. 15:07:12

know how will always have work, and those who know why will always be their
bosses.

There are several places on the Internet [2, 3] where one can learn about the specific
knowledge, skills and properties that are needed in the ICT sector. The first of these
was established by a consortium of prominent European ICT companies so as to
encourage universities to adapt their ICT study programmes to the demands of the
labour market to a greater extent. The second site was established by the Professional
Education Administration of the Latvian Ministry for Education and Science. The
PEA is the institution which maintains professional standards. These standards are
defined by the state so that employers can inform educators about the kinds of
workers and qualifications that are required No professional education programme
may be launched in Latvia before the relevant professional standard has been
implemented. ICT is the only sector in the economy which, thanks to the sector’s
Professional Education Council, has drafted all the necessary standards (Table 1).

Table 1. The standards of the ICT profession

 IT Telecommunications Electronics
5th-level
qualification

IT project manager;
Systems analyst;
Software engineer

Telecommunications
engineer

Electronics engineer

4th-level
qualification

Software developer;
Tester; Computer
network
administrator

Telecommunications
specialist

Electronics
specialist

3rd-level
qualification

Software technician;
Computer systems
technician

Telecommunications
technician

Electronics
technician

It is worth looking at the level of education among European ICT specialists.
Research shows that the proportions vary from one EU member state to another, but
on average 50 to 70% of ICT specialists hold at least a bachelor’s degree, while 30 to
50% have the so-called sub-degree education. In Latvia, this applies to people who
have pursued their education at a college or a professional secondary education
institution. There is a view that in quantitative terms, demand for ICT specialists is
currently satisfied in Europe, but there is a need for a greater proportion of specialists
with a college diploma or bachelor’s degree. The education structure in Latvia’s ICT
world is dominated by bachelor’s degree programmes, and there are more master’s
degree students than there are college students. This structure would be considered
mistaken in Europe, but in Latvia it may be quite commendable. The labour market
for our ICT specialists cannot be limited to Latvia alone. Specialists will be able to
compete abroad only if they have higher education – a master’s or doctoral degree.

294 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 294LURaksti733-datorzin.indd 294 2008.03.31. 15:07:122008.03.31. 15:07:12

Latvia is a very small country, and its ICT market will not be worth more than EUR
60 million per year in the foreseeable future. This means that no more than 2,000
specialists will find work in the near future. Others will have to find jobs in state,
local government and other organizations, taking care of their information systems.
Perhaps several thousand specialists can find work in these areas. This is not good
news, given that each year more than 1,000 specialists graduate from higher education
institutions. The good news, however, is that since May 2004, the ICT market has
become 200 times larger, because Latvia is now a member state of the European
Union. Of course, without preparedness and only with Latvian and Russian language
skills no one is going to find a job outside Latvia, but another bit of good news is that
the proportion of small companies in Latvia will triple and draw closer to the
European level. This will mean a major increase in the use of information
technologies at such companies. If one ICT specialist can provide services to 10 small
companies, that will mean a need for approximately 8,000 specialists .

4 Professional Higher Education

Over the last 15 years, massive changes have taken place in the Latvian economic
system, and one of the negative side effects to this was the breakdown of connection
between the economy and the education system. New study programmes were often
based on the capacities of education institutions, not on the requirements of the labour
market. There was no one to formulate that demand in any event. During the previous
era, internship in industrial setting was an integral part of study programmes, but that
was no longer true. Employers regularly complained about the fact that the
knowledge and skills of graduates were not in line with modern requirements,
particularly in the field of information technologies and other areas of engineering.
There was concern about the fact that Latvia, in comparison to the “old” countries of
Europe, had proportionally low numbers of students at the so-called post-secondary
non-tertiary level of education (the phase between secondary and higher education, as
defined in UNESCO ISCED-97 [4], the 4th level, and in Latvia’s case, approximately
at the level of former “tehnikums”). This suggests that there were some areas in
which graduates suitable for the market could be trained in a shorter period of time –
just a few years after graduation from high school.

Here it should be explained that the issue back then was not the present-day trend of
insisting that everyone pursue a three-year bachelor’s degree. Instead, the aim was to
ensure that high school graduates pursued areas of specialisation that were in demand
in the labour market. Later this process unofficially became known as college
education – the first level of a professional higher education. Officials at various
universities were afraid of the competition and the possibility that their students might
be tempted to attend colleges instead. Making use of competition among the various
departments of the Ministry of Education and Science, they achieved the inclusion of
colleges in the system of higher education. This was completely in opposition to the
initial goals of the reforms, as well as to the intentions of the minister of that time,
J�nis Gaigals. The numerical disproportion between students pursuing higher

Juris Borzovs. An Outstanding Example of University-Industry Partnership .. 295

LURaksti733-datorzin.indd 295LURaksti733-datorzin.indd 295 2008.03.31. 15:07:122008.03.31. 15:07:12

education, professional secondary education and post-secondary non-tertiary
education has expanded, not shrunk. Latvia has become a country in which there is
basically no opportunity to pursue education that corresponds to the aforementioned
4th level of the UNESCO ISCED-97.

We know this now, but we could not know it in 1999, when the author of this article
invited several leading specialists from IT companies to visit the Riga Information
Technology Institute (RITI, a research institute belonging to the stock company
Exigen Services DATI) so as to draft requirements related to the professional
qualifications of specialists in the area of software development and design of
information systems.2 First to respond were Valdis Lauks from Fortech, Ivo Od�tis
from the Bank of Latvia, J�nis Pl�me from IT Alise, and Uldis Sukovskis from RITI.
Employers wanted to dissociate from fruitless criticisms of the education system and
its universities and to become involved instead in the restructuring of study
programmes in a practical way. There was a certain degree of serendipity. Shortly
after the working group was assembled, I was sought out by Aleksandra Joma, a
project director for the Professional Education Development Programme. She was
looking for people who could handle a PHARE-financed programme, “Professional
Education 2000”. The working group immediately became involved in what proved
to be an enormously successful and sustainable project, “Establishing a Structure of
Professional Qualifications”. Our aim was to study the condition of the information
technology sector (the construction industry was also studied), to consider the
professions that are needed therein, to select one or two most highly demanded areas
(we sensed that this could be in line with the so-called fourth professional
qualifications level in the understanding of the law on professional education, with
employees of this kind trained by the intended colleges), to draft descriptions or
standards for the professions and to prepare sample study programmes. We hoped that
the methodology that we were designing and testing would serve as an example for
similar standards in other professions and sectors.

2 This was not the only Exigen Services DATI and RITI initiative in the area of education

and research. One can cite, for instance, the co-operation between RITI and DATI with the
University of Latvia Institute of Mathematics and Computer Science on the design of the
well-known GRADE system. The RITI introduced the European Computer Driving License
programme in Latvia in 2001. It served as a cornerstone for research and development in the
IT industry, including the writing of doctoral dissertations. DATI guaranteed Hansabanka
loans for students before the national government began to do so. We have worked with the
Latvian Education Fund and its “For Education, Science and Culture” programme to award
scholarships to doctoral students and prizes to the authors of the best master’s degree,
bachelor’s degree and engineering papers. DATI holds conferences for computer science
students each year. The Latvian Academy of Sciences works with DATI and the Latvian
Education Fund to award the Eižens \ri�š prize. There is ongoing support for informatics
olympiads for schoolchildren at the Latvian, Baltic, and global level. RITI is also the “seat”
for the Sub-Commission on Information Technologies and Telecommunications of the
Terminology Commission of the Latvian Academy of Sciences, and of the Council on
Professional Education in the Fields of Information Technologies, Telecommunications and
Electronics.

296 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 296LURaksti733-datorzin.indd 296 2008.03.31. 15:07:122008.03.31. 15:07:12

By September 2000, we had prepared the description for the information technology,
telecommunications and electronics (now known as the ICT) sector [5], as well as a
professional standard for the category “Software Developer” [6]. We had also
prepared a sample programme of study. The work was done by a group of educators
under the leadership of Professor J�nis Grundspe�^is of the Riga Technical
University. All that remained was a seemingly petty issue – ensuring that project
director Aleksandra Joma would not be concerned about whether the ICT sector
would declare the results to be good and about who would be able to do so in the
name of the entire sector. At that time the author was the president of the Latvian
Information Technology and Telecommunications Association (then the LITTA, now
the LIKTA), and he had involved people from three other professional organisations
in the sector in the work that was done. These were the Latvian Association of the
Electronics and Electronic Technologies Industry (LETERA), the Latvian
Telecommunications Association (LTA), and the Latvian Computer Technology
Association (LDTA). It was not therefore difficult to reach agreement with the fellow
presidents (the well known In�rs K#avi�š, P�teris Šmidre, and Dzintars Zari�š) on
how to evaluate and approve the project results. This gave the green light for the Sub-
Council on Tripartite Professional Education and Employment Co-operation
(PINTSA) to give its approval as well. In January 2001, as a result of this, the
Minister for Education and Science officially confirmed Latvia’s first professional
standard on behalf of the government. The four association presidents also reached
agreement on the establishment of a Professional Education Council for the sector. It
was entrusted with representing the sector in the area of education – coordinating and
confirming professional standards, coordinating and confirming requirements for
examination of qualifications, and confirming experts who would represent employers
when those examinations occurred. It is easier to walk down a beaten path, and so it
was far easier to draft the following standards after the first one was in place. Today
there are 14 standards which have been implemented with the direct or coordinating
participation of the Professional Education Council. The ICT sector is unquestionably
the leader in co-operation with educators. Since 2006, the Professional Education
Council has been chaired by the vice president of Exigen Services DATI, Uldis
Smilts.

5 The Employer's Ability to Influence Study Programmes and
Their Presentation

As was mentioned in the previous section, employers, via the offices of the
Professional Education Council established by professional associations, participate
in the preparation of standards in the profession, but that is not the only way how they
participate. According to government rules, at least a half of members of examination
commissions must represent employers, and that includes the chairperson of the
commission. Membership of commissions is approved by the Professional Education
Council.

Juris Borzovs. An Outstanding Example of University-Industry Partnership .. 297

LURaksti733-datorzin.indd 297LURaksti733-datorzin.indd 297 2008.03.31. 15:07:132008.03.31. 15:07:13

The same commissions also award professional qualifications. To make sure that the
work of the commissions is not arbitrary, the Professional Education Council
approves qualification requirements that are afterwards examined by members of the
commission. Educators will prepare students to satisfy the qualification requirements.

Another way to influence the study process is to establish study programme councils
at universities on the principle of parity between educators, students, and employers.
Each major change to the curriculum must be first discussed and confirmed by this
council. That does not mean that university Senates will automatically approve
changes, but there have to be very fundamental arguments to get the Senate to
disagree with the solution of such councils.

Employers make an enormous investment by offering internships to many students.
These internships last for four to six months. Industry experts with higher education
are often asked to serve as academic advisors to final theses, particularly at colleges
and at the bachelor’s degree level.

At the national level, an important annual event is the meeting between members of
the Professional Education Council and directors of ICT study programmes at
universities and colleges. Education issues are also usually on the agenda of the
annual LIKTA conference, as well as of the international “Baltic IT&T” conference.
The most important requirements of the ICT sector are included in LIKTA
declarations which are then submitted to the government.

Universities and colleges are willing to include elective courses in their curricula
which are provided by ICT companies. Companies are expected to provide the
necessary equipment, software, textbooks and lector. Alternatively, they can provide
financing for the course. This approach has led to the fact that many Latvian
universities and colleges have the Microsoft IT Academy, CISCO Academy, and
study courses provided by the Exigen Services DATI, the Baltic Technology Group,
Tilde, IBM Latvia, etc.

A particularly high level of academic co-operation involves doctoral dissertations
written on subjects that are of interest to companies in the ICT sector. Authors can
use the infrastructure and information base of these companies as they write their
dissertations.

6 The University of Latvia Computing Study Programme as an
Innovative Approach to Education

The ICT sector in Latvia and the world has experienced a very rapid growth over the
last 10 years. According to the Ministry of Economics of Latvia, the sector produces
5 to 6% of Latvian GDP, and exports are worth nearly EUR 150 million. The sector
has been declared a national priority by several governments, but in the Latvian
language, sadly, it does not have a single name. The terms that are used, as translated

298 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 298LURaksti733-datorzin.indd 298 2008.03.31. 15:07:132008.03.31. 15:07:13

into English, include “computer studies”, “informatics”, “information technologies”
and “information and communications technologies.” On April 4, 2006, the Cabinet
of Ministers approved the order No. 267 [7] to announce that the word “datorika” is to
be used as a translation for the word “computing”. The term “computing”, as we
know [1] refers to a thematic part of education – the one which covers computer
sciences, information technologies, information systems, software engineering, and
computer engineering. The objectives of higher education in terms of supporting the
further development of the computing sector are the following:

1. Prepare highly qualified and export-capable specialists for practical work at
companies and government institutions – specialists who not only can design
and produce complex information systems, but also manage projects and
independently learn about new technologies in the rapidly changing
environment of computing;

2. Prepare academically educated specialists who are prepared to do scientific
work in the computing sector – research projects in the computer sciences in
Latvia, as well as expert participation in the evaluation of new technologies
and systems.

These are contradictory requirements because an academic higher education is based
on science, while the knowledge that is needed in practice is based on engineering
and the study of production processes.

The proposal is to train computing specialists on the basis of a four-level pyramid:
1) The college level, which trains software designers and computer network
administrators with a level of knowledge and skills equal to the first-level higher
professional education standard;
2) The bachelor’s level, where students learn not only about software design, but also
about the design and development of complex software systems;
3) The master’s level, where students learn to analyse and design large systems, and
to run projects;
4) The doctoral level, where highly qualified specialists are trained to work with
major and complex projects and to work at universities.

This proposal regarding the training of computing specialists has been approved at
several meetings of company representatives and university representatives (the first
in 2000, with the participation of Ministers of Economics and Education, another
during the November 2004 LIKTA conference, the third organised by Exigen in
March 2005, etc). The focus on the demands of the Latvian economy for highly
qualified computing specialists is very different from other exact science study
programmes at the University of Latvia, because these programmes are focused, at
least formally, on the training of scientists and teachers.

The objective of the proposed programmes [8] is not only to ensure that specialists are
trained at all four higher education levels, but also to ascertain that there are
opportunities to pursue all five areas of specialization (disciplines):
1) Computer science (CS), where the programme covers the mathematic processes of
computer science, system modelling and issues related to artificial intellect;

Juris Borzovs. An Outstanding Example of University-Industry Partnership .. 299

LURaksti733-datorzin.indd 299LURaksti733-datorzin.indd 299 2008.03.31. 15:07:132008.03.31. 15:07:13

2) Information technologies (IT), covering the design and use of computer networks
and clusters, as well as sound and image processing;
3) Information systems (IS), focusing primarily on database management systems, as
well as the design, implementation and maintenance of information systems;
4) Software engineering (SE), focusing primarily on software design and production
of software, including embedded systems;
5) Computer engineering (CE), which covers the design and manufacturing of
electronic equipment.

In what sense are these study programmes original?
1) All areas of computing are covered in one programme at each level of higher
education. During the first two study years, students can choose to pursue SE to
receive the qualification of “Software designer”, or they can study IT and receive the
qualification of “Computer network administrator”. This is a choice that has to be
made at the beginning of the second study year. During the first two years, the two
areas of specialisation differ only in terms of internships that are worth 24 ECTS
credits (16 weeks). The internships are organised in the fourth semester. There are
also 12 ECTS credits for writing the thesis, and work on that begins in the third
semester. Those specialising in SE need software design practice and a qualification
thesis in software design. Those pursuing IT must engage in an internship focused on
computer network administration and also write a paper of the same kind. Internships
can begin before the fourth semester. In the third study year (the fifth semester),
students can choose any of the five areas of specialisation, irrespective of the
diplomas or qualifications that they already have: CS (more theoretical), SE (more
focused on software design), IS (more focused on the design and maintenance of
information systems), IT (more focused on computer networks), or CE (more focused
on the construction of electronic equipment). This study programme organically
merges the study of fundamental aspects of the profession with vast opportunities for
specialisation and theoretical study. It is the only programme of this kind in Latvia.

2) To a certain extent, this programme represents a return to the Soviet system, which
provided for a mandatory semester-long internship outside of the educational
institution at the conclusion of the 2nd year of studies. This internship allows young
people to decide whether they have made the right choice in terms of their study
programme and their selection of a profession. They also begin to accumulate
professional experience, and that is often the first criterion for hiring a new employee.

3) There are very close links to the industry – representatives of employers are on the
councils of study programmes and on the commissions which test people’s
qualifications. There are more than 50 contracts on internships and specialised
courses of study provided by leading IT companies such as Microsoft, CISCO, the
Exigen Services DATI, the Baltic Technology Group, etc.

4) There are still powerfully academic and research-based studies in the upper years
of bachelor’s degree studies and, of course, at the master’s and doctoral level.
Instructors at the University of Latvia are equally strong in theory and practice. The
science citation index of peer reviewed scholarly publications produced by instructors

300 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 300LURaksti733-datorzin.indd 300 2008.03.31. 15:07:132008.03.31. 15:07:13

at the University exceeds the total number of science citation index of such
publications produced by all other instructors and scientific researchers in Latvia,
Lithuania and Estonia taken together.

5) The study plan is structured so that when a student receives a diploma, he or she
can pursue further studies in any other area of specialisation without having to take a
catch-up course. The specialization does not have to be selected before the young
people start their studies – often they have a fairly unclear understanding of the
programme of study and of their future profession. The first choice – software
designer or computer network administrator – must be made at the beginning of the
second year, while the second – CS, SE, IT, IS or CE – must be made at the start of
the third year. The first university diploma (college level) is received at least one year
sooner than elsewhere in Latvia.

7 Is the Bologna Process Moving in the Right Direction?

Once we come to the firm understanding that there are very different areas of
knowledge and that those which are of use in theology are not of use in physics and
vice versa, it will be easier for us to understand that a unified process is not possible
without specific exceptions. Europeans tend to move toward three-year bachelor’s
degree programmes, which may be all right for humanities, but is certainly
unacceptable for those areas of study which cannot be imagined without serious
internships (medicine and engineering, including computing). One cannot understand
at what expense Europeans are trying to achieve the main goal of the so-called
Bologna process – to compete with the United States and to surpass the USA in terms
of the level of higher education. Do we have far better instructors and far more
talented students so that we can achieve in three years what the Americans achieve in
four?

This means that in the higher education system related to ICT, there should be no
study programmes which allow students to receive a diploma without a serious
internship. Three-year programmes with no internship opportunities are at all absurd.
The so-called academic study programmes in engineering produce hundreds of young
people each year – young people without the slightest industrial experience.

Acknowledgments. The author would like to extend his gratitude to colleagues that
participated in creation of ICT professional standards and qualification requirements:
Vit�lijs Aišpurs, Inna Allena, Baiba Apine, Sandijs Aploks, Anda \damsone, Elm�rs
Be^eris, Normunds Bergs, Modris B�rzonis, Vilnis B�ts, Zane Bi�evska, J�nis
Bi�evskis, J�nis Bikše, Juris Binde, Harijs I. Bondars, J�nis Brants, Liene Br�vule,
Solvita Brokule, Ziedonis Bunžs, Ivars Ciesalnieks, Inese Cvetkova, P�teris ~aurs,
Harijs ~ivkulis, Dainis Dosbergs, Ain�rs Dubra, Avroms Dušanskis, Renata
Frolkova, Ain�rs Galv�ns, M�rti�š Gills, Egils Ginters, Irvins Gustsons, Sergejs
Ilnickis, Andris Jakubovskis, Aleksandra Joma, J�nis Grundspe�^is, J�nis Ka�is,
Ed�te Kalni�a, Helga Kaukule, Arts Klints, In�rs K#avi�š, Andris Kova#evskis, P�teris

Juris Borzovs. An Outstanding Example of University-Industry Partnership .. 301

LURaksti733-datorzin.indd 301LURaksti733-datorzin.indd 301 2008.03.31. 15:07:132008.03.31. 15:07:13

Krasti�š, J�nis Kru�eks, Didzis Kukainis, Inga Kullesa-Lapi�a, Edv�ns Laucis,
Gun�rs Lauks, Valdis Lauks, J�nis Lelis, Inese Lenša, Ed�te Liekmane, Sanda Linde,
Andrejs L�sis, Maija �aksa, Jekaterina �ev�enkova, Juris Majors, Arnis Mamajs,
�irts Mamontovs, Gun�rs Matisons, Ainis M�si�š, Boriss Obermanis, Ivo Od�tis,
Ilm�rs Osmanis, V.P�tersons, Romass Pauliks, Anda Pavlova, Voldem�rs Plavoks,
J�nis Pl�me, M�ris Puri�š, Inese Purmale, Guntis Romanovskis, Olga Sabanska,
Nadežda Semjonova, J�nis Sili�š, Uldis Smilts, Romualds Smi#�is, Arnis Smirnovs,
Ilze Spektore, Uldis St�re, Uldis Sukovskis, Dainis Susejs, Nat�lija Suvorova,
Normunds Sv�ti�š, Darja Šmite, Zied�te Šmite, Agris Šnepsts, Evija Tauni�a, Sandra
Tene, Ilona Valdate, Larisa Zaiceva, Anna Zalucka, Dzintars Zari�š, Viesturs Z�lis.
This work was partly supported by the EU PHARE Program’s “Professional
Education 2000” project “Establishment of a Professional Qualifications Structure”.
The innovative computing study programme at the University of Latvia was designed
mainly by Guntis Arnic�ns, Guntis B�rzdi�š, J�nis B�rzdi�š, J�nis Bi�evskis, J�nis
C�rulis, K�rlis ~er�ns, R�si�š-M�rti�š Freivalds, �valds Ikaunieks, Audris Kalni�š,
Paulis �ikusts, K�rlis Podnieks, Uldis Straujums, M�ris Treimanis, Juris V�ksna,
M�ris V�ti�š. This work partly was supported by European Union Structural Fund
project VPD1/ESF/PIAA/04/APK/3.2.3.2/0069/0063 “Modernization of Computer
Science Degree Programs in the University of Latvia”.

References

1. Computing Curricula 2005: The Overview Report, 2005, p. 62 See
http://www.acm.org/education/curric_vols/CC2005-March06Final.pdf . Last viewed 18
September 2007.

2. Curriculum Development Guidelines. New ICT curricula for the 21st century: designing
tomorrow’s education. Luxembourg: Office for Official Publications of the European
Communities, 2001, p. 58 See http://people.ac.upc.edu/toni/papers/CurrITEng.PDF . Last
viewed 18 September 2007.

3. See www.izmpic.lv . Last viewed 18 September 2007.
4. International Standard Classification of Education ISCED-97. United Nations Educational,

Scientific and Cultural Organisation, May 2006, re-edition, p. 48. See
www.uis.unesco.org/TEMPLATE/pdf/isced/ISCED_A.pdf . Last viewed 18 September
2007.

5. L�sis, A., Sili�š, J., Sukovskis, U., Zari�š, D., Bikše, J., Borzovs, J., Ginters, E., Ka�is, J.,
K#avi�š, I. and Lelis J. Inform�cijas tehnolo�ijas, telekomunik�cijas un elektronikas nozares
apraksts (A Description of the Information Technology, Telecommunications and
Electronics Sector). R�ga: PIAPA and PIC (2000), p. 51.

6. The professional standard “Software developer”. Registration No. PS 0001. Approved by
order of the Ministry of Education and Science, No. 145, 12 March 2001, amended by order
No. 649, 29 December 2003. See http://www.izmpic.lv/index2.html . Last viewed 18
September 2007.

7. The Republic of Latvia education classification, approved by order of the Cabinet of
Ministers, No. 267, 4 April 2006. See
http://izm.izm.gov.lv/normativie-akti/mknoteikumi/932.html . Last viewed 18 September
2007.

8. See http://www.aiknc.lv/lv/prog_view.php?id=5361 . Last viewed 18 September 2007.

302 DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

LURaksti733-datorzin.indd 302LURaksti733-datorzin.indd 302 2008.03.31. 15:07:132008.03.31. 15:07:13

LURaksti733-datorzin.indd 303LURaksti733-datorzin.indd 303 2008.03.31. 15:07:132008.03.31. 15:07:13

LATVIJAS UNIVERSITĀTES RAKSTI
733. sējums, DATORZINĀTNE UN INFORMĀCIJAS TEHNOLOĢIJAS

Latvijas Universitātes Akadēmiskais apgāds
Baznīcas ielā 5, Rīgā, LV-1010

Tālr. 67034535

LURaksti733-datorzin.indd 304LURaksti733-datorzin.indd 304 2008.03.31. 15:07:132008.03.31. 15:07:13

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

