
For Review
 O

nly

Software Testing Overview on Different Generalization

Levels

Journal: Computer

Manuscript ID: COMSI-2013-07-0127

Manuscript Type: Special Issue: Software Testing

Date Submitted by the Author: 10-Jul-2013

Complete List of Authors: KuĜešovs, Ivans; University of Latvia, Computer Science
Arnicāne, Vineta; University of Latvia, Computer Science
Arnicāns, Guntis; University of Latvia, Computer Science
Borzovs, Juris; University of Latvia, Computer Science

Keywords:

D.2.5.k Testing strategies < D.2.5 Testing and Debugging < D.2 Software
Engineering < D Software/Software Engineering, D.2.19 Software
Quality/SQA < D.2 Software Engineering < D Software/Software
Engineering, D.2.5 Testing and Debugging < D.2 Software Engineering < D
Software/Software Engineering

Computer

For Review
 O

nly

Software Testing Overview on Different Generalization Levels
Ivans Kuļešovs Vineta Arnicane Guntis Arnicans Juris Borzovs

Faculty of Computing Faculty of Computing Faculty of Computing Faculty of Computing

University of Latvia University of Latvia University of Latvia University of Latvia

19 Raina Blvd., Riga, 19 Raina Blvd., Riga, 19 Raina Blvd., Riga, 19 Raina Blvd., Riga,

LV-1586, Latvia LV-1586, Latvia LV-1586, Latvia LV-1586, Latvia

1. Introduction
There are many different views on software testing co-exist even within the borders of one

organization. That is why we have decided to prepare software testing overview on meta-

level indicating main influencers that make this difference. While gathering the details about

meta-level elements we have performed some structuring of elements from lower level of

software testing such as testing oracles and testing approaches, methods, and techniques.

The overview preparation has resulted into laying the scientific basis under proper use of

such terms as testing approach, testing method, and testing technique.

Our overview could be useful for making ordered introduction into software testing for fresh

minds of testing newbies, while we recognize that in practice it can be hard to make sharp-

cut edges between some software testing elements described here.

It is worth to mention that test management itself is out of scope of this study.

2. Software Testing Overview on Meta-level
Software testing mainly consists from testing strategy and testing tactics on the meta-level

(i.e. on the higher level of abstraction). Other things like contexts and schools influence on

the selection of the strategy and/ or tactics. Software testing overview on meta-level is

depicted on Figure 1.

Figure 1. General testing process schematic view

Page 1 of 13 Computer

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

Static context influences very much on the testing vision and testing mission. Static context

depends on the type of the organization (i.e. governmental, outsourcer, start-up etc.) and on

the type of the software produced (enterprise software, commercial software, web page

etc.). It is generally static during the whole product lifecycle. Testing vision is what we want

to achieve by testing. In some cases it can be to make software with all high and critical bugs

discovered and fixed, and 95% of medium severity bugs identified. In some cases it can be to

receive an acceptance sign-off of the product from the customer. Testing mission is what we

do to achieve the testing vision. For example, we use only scripted testing, or we use the

benefits of the exploratory testing as well, to receive an acceptance sign-off of the product

from the customer. Or we prepare automated tests before the development to keep our

product always deliverable to the customer as test-driven development suggests. Testing

schools are frameworks that define testing vision and testing mission based on the static

context.

All aspects of testing schools (it can also be the mix of aspects from different schools) that

prevail within the organization and is common for definite product type influence on the

testing strategy of the given software project. Testing strategy describes general approach

for testing. Testing strategy consists of the specification of the roles and responsibilities, test

levels, environment requirements, test schedule, testing tools, risks and its’ mitigations,

testing priorities, testing status reporting etc.

Testing oracles that define testing exit-criteria and that are used as the source of the

derivation of test cases should be chosen within the testing strategy definition. The selection

of quality characteristics to be covered by testing process should occur during the definition

of testing strategy as well. Test results completeness oracles can be defined when selecting

testing tactics, because often there are much more details about expected results available

during tactics selection process.

Dynamic context depends on the project phase and influences on the choice of the testing

tactics that are appropriate for the given time frame, for the definite object under test, and

for the current micro testing goal. Examples of dynamic context factors are fulfillment of test

entry criteria in time, availability of shared testing resources, the stabilization and bug fixing

phase of the development etc. Testing tactics should be consistent with the testing strategy.

Testing tactics for each object under test are depicted in the test plan. Test plan consists of

organizational and technical aspects. Testing tactic also influences on the choice of the

testing approach to be used to fulfill current micro testing goals. Thus, technical aspects of

the test plan should include the selection of the appropriate testing approaches, methods,

and techniques that make a graph. Testing artifacts (like test cases, test suites, traceability

matrix, test data etc.) to be produced by the testing process should be mentioned in the test

plan as well. It is worth to notice that some schools do not make formal and written test

plans as mandatory artifact of testing process.

3. Testing Schools1
Testing society distinguishes five testing schools. They are:

• Analytic School

Page 2 of 13Computer

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

• Standard School

• Quality School

• Context-Driven School

• Agile School

The schools are frameworks for categorization of test engineers’ believes about testing and

they guide the testing process. Testing schools are not competitive; they can be used in

collaborative mode as well. They all have exemplar techniques or paradigms, but they are

not limited to them. Usage of schools can vary within the organization from project to

project, but it is often hard to move the whole organization from one school to another.

Analytic school assumes that software is a logical artifact. It concentrates on technical

aspects, and it is keen on the white-box testing. Analytic school is associated with academia

institutions, and it is assumed to be the most suitable for safety-critical and telecom

software.

Standard school assumes that testing should be very well planned in advance and managed.

According to this school, testing main goal is to validate that software meets contractual

requirements and/or governmental standards using the most cost-effective model, thus it is

mostly applied for governmental and enterprise IT products. Requirements traceability

matrix is the most common testing artifact for the school. Software testing can be seen like

assembly line through V-model prism. IEEE standards’ boards and testing certifications are

the most valued institutions by this school.

Quality school prefers “Quality Assurance” over “Testing”. Thus testing defines and controls

the development processes. QA manager or test lead is like a gatekeeper who can decide if

software is ready or not. ISO and CMMI are the most valued institutions for followers of this

school.

Context-driven school concentrates about (skilled) people and their collaboration. The goal

of context-driven testing is to find bugs that can bother any of the stakeholders. What to

test right now is defined according to the current situation in the project. Test plans to be

constantly adapted based on the test results. Exploratory testing is this school exemplar

technique. Context-driven testing is mostly applied for the commercial, market-driven

software. The Los Altos Workshop on Software Testing held by Cem Kaner and Brian

Lawrence are thought to be the main events of this school.

Agile school main postulate is that tests must be automated. Testing answers the question if

user story is done. Test-driven development is one of the agile testing school paradigms,

thus unit tests are demonstrative exemplar of the school.

It is worth to mention that categorization of beliefs and testing goals into testing schools

helps testers to understand and to evaluate each other experience through the prism of the

specific organizational context.

Page 3 of 13 Computer

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

4. Testing Strategy
There are many things to be covered in testing strategy that define the overall approach of

testing. Here we only look into details of its most important aspects that are noticeable on

the software testing meta-level.

4.1. Testing Oracles
Testing Oracles can be divided into three major groups based on their purpose. They and

oracles per each group are shown on Figure 2.

Figure 2. Testing Oracles

Test results completeness oracles are differentiated based on the completeness of the set of

the expected test results. There are five main types of test results oracles.
2
 They are:

• True oracles – they have the complete set of expected test results;

• Stochastic oracles – they verify a randomly selected sample;

• Heuristic oracles– they can verify correctness of some values and consistency of

other values;

• Consistent oracles – they verify current test run results with previous test run results

(regression);

• Sampling oracles – they select the specific collection of inputs or results.

They all have their advantages and disadvantages, as well as their cost decreases in top-

down manner, but speed increases in the same manner.

Test case derivation oracles are differentiated based on the source test cases are derived

from.

Exit-criteria oracles define when testing can be finished. The most common, but not

complete testing exit-criteria are:

• All planned test cases are executed (Contracts and other obligations);

• All high and critical priority bugs are fixed (Contracts and other obligations);

• All planned requirements are met (Contracts and other obligations);

• Scheduled time to finish testing has come (Project budget and schedule oracle);

Page 4 of 13Computer

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

• Test manger has signed off the release (Human being’s judgment oracle).

It is worth to mention that multiple oracles of each group are often used together

depending on the software project phase.

4.2. Quality characteristics
There are 8 quality characteristics shown in the new revision of ISO/IEC 9126 standard -

ISO/IEC 25010.
3
 All quality characteristics are depicted on Figure 3.

Figure 3. Product Quality Model
3

Functional testing is a testing of functional suitability characteristic. Almost all formal testing

methods and techniques are concentrated around functional suitability quality characteristic

as well and especially are related to the functional correctness and functional completeness

sub-characteristics.

5. Testing Tactics
Testing tactics can differ depending on the phase of the project and other changeable

circumstances of the environment. Testing tactics should be consistent with testing strategy.

Thus tactics often are chosen within the static boundaries of the influencer schools.

Appropriate testing approaches, methods, and techniques should be selected for micro

testing goals fulfillment and should be depicted in the testing plan. We have structured

testing methods and techniques under black-box and white-box approaches. The borders of

grey-box testing approach are quite ambiguous, and methods and techniques under this

approach are not formally described yet in the testing theory. They do not have settled

definitions in the testing practice as well. It is worth to mention that detailed definitions of

techniques mentioned bellow can be found in the works of such authors as Black
4
,

Jorgensen
5
, Beizer

6
, and Kaner

7
.

5.1. Black-box Testing
Black-box is a software testing approach when test engineer designs test cases as if she does

not know anything about the internal structure of the software under test.

Black-box testing approach consists of six testing methods that are differentiated based on

the source used for test case design process and based on the level of formality of test case

Page 5 of 13 Computer

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

designs. The relation between black-box testing methods and techniques is shown in Figure

5.

Figure 5. Black-box Approach

5.2. White-box Testing
White-box is a software testing approach when test engineer designs test cases based on

the internal structure of the software under test. There are three most known white box

testing methods are control flow testing, data flow testing, mutation testing. The relation

between white-box testing methods and techniques is shown in Figure 6.

Figure 6. White-box Approach

Page 6 of 13Computer

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

Some static testing techniques are used for software code testing. They differ based on the

formality and thoroughness of the process. Code review is often used to improve the overall

quality of the code and to educate less experienced developers. This process helps to deliver

more qualitative and tested code from development to testing right at the moment, but

educative aspects help to improve the quality of the code for the future deliveries.

Inspections and walkthroughs are used when there is less time available to conduct the

static testing process.

6. Conclusions
We suppose that our work will help software testing practicians and those who just have

started to learn software testing to understand aspects of software testing in more holistic

and structured way, as well as to start using such terms as testing approach, testing method,

and testing technique in a proper way. We plan to continue the inventory of software

testing on lower levels that potentially can result into structuring and categorization of

testing terms and ideas. We also encourage the readers to share the testing methods and

techniques they think we have missed to make the full picture.

Page 7 of 13 Computer

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

References
1. B. Pettichord, Schools of Software Testing, 2008;

http://www.prismnet.com/~wazmo/papers/four_schools.pdf.

2. D. Hoffman, A Taxonomy for Test Oracles, in Quality Week, 1998;

http://www.softwarequalitymethods.com/Papers/OracleTax.pdf.

3. ISO (2011), ISO/IEC 25010:2011

4. R. Black, Advanced Software Testing – Vol.1, Santa Barbara, CA: Rock Nook Inc., 2009

5. P.C. Jorgensen, Software Testing: A Craftsman’s Approach, 3
rd

 Edition, Boca Raton,

FL: Auerbach Publications, 2008

6. B. Beizer, Black-Box Testing: Techniques for Functional Testing of Software and

Systems, New York: John Wiley & Sons, Inc., 1995.

7. C. Kaner, J. Falck, and H. Nguyen, Testing Computer Software, 2
nd

 Edition, John Wiley

& Sons, Inc., 1999.

8. ISTQB, in van Veenendaal, E. Ed., Standard glossary of terms used in Software

Testing, 2012; http://www.istqb.org/downloads/finish/20/101.html.

9. R. Pressman, Software Engineering: A Practitioner's Approach, 6
th

 Edition, Singapore:

McGraw-Hill, 2005.

10. J. Sommerville, Software Engineering, 8
th

 Edition, Harlow, Essex: Pearson Education

Limited, 2007.

11. B. Kumaravadivelu, UNDERSTANDING LANGUAGE TEACHING: From Method to

Postmethod, Mahwah, NJ: Lawrence Erlbaum Associates, Inc., 2006.

12. G. Hall, Exploring English Language Teaching: Language in Action. New York:

Routledge, 2011.

Page 8 of 13Computer

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

Ivans Kuļešovs is a PhD student in Computer Science at the University of Latvia and Test

Manager in C.T.Co Ltd. software development company. His research interests include

software testing in general and mobile applications testing in particular, as well as enterprise

mobility platforms.

Kuļešovs received his master degree with distinction in Computer Science from University of

Latvia and MBA degree from Blekinge Institute of Technology, Sweden. Contact him at

ivans.kulesovs@gmail.com.

Vineta Arnicane is a Senior Researcher in the Faculty of Computing at the University of

Latvia. Her research interests include software engineering, software testing, and artificial

intelligence. Arnicāne received her PhD in computer science from the University of Latvia.

Contact her at vineta.arnicane@lu.lv.

Guntis Arnicans is a Professor and Director of Bachelor program "Computer science" in the

Faculty of Computing at the University of Latvia. His research interests include software

engineering, software testing, and artificial intelligence, with a focus on creating concept

map and ontology for software testing domain. Arnicāns received a PhD in computer science

from the University of Latvia. He is a member of IEEE and ACM. Contact him at

guntis.arnicans@lu.lv.

Juris Borzovs is currently Professor and Dean of the Faculty of Computing at the University

of Latvia. His research interests include software engineering, software quality, software

testing, and IT terminology. Borzovs received his candidate of science degree from the

Institute of Mathematics of Belarusian Academy of Science, doctor of science degree and

doctor habilitatus degree from the University of Latvia.He is a member of several

organizations that focus on information technology. Contact him at juris.borzovs@lu.lv.

Page 9 of 13 Computer

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

Sidebars

Testing Controversies
There are many controversies exist in software testing. Some of them clearly belong to

definite testing school. Others are controversial because of other reasons, for example

project phase. It is worth to mention that controversies mentioned below, despite their

difference, make good testing when used together proportionally.

The controversy we should start with is testing vs. debugging controversy. The goal of

testing is to discover the defect while the goal of debugging is to find why the defect occurs.

Some schools see debugging as job of software developer only, but nowadays it is more

common for good test engineer to investigate the root cause of the defect by himself or

together with software developer.

The most known testing controversy is black-box testing vs. white-box testing. The

difference between them is the point of view on the knowledge of the internal structure of

the software that test engineer takes when designing the test cases.

Functional testing vs. non-functional testing is another important testing controversy.

Functional testing verifies software against the specification. Non-functional testing checks

software against its non-functional requirements where non-functional quality

characteristics are addressed.

Another quite old controversy is manual testing vs. automated testing. Return on

investment is taken into consideration when testing is automated, as it requires skillful

workforce and additional scripting and maintenance effort. Still, only part of the testing can

be automated. UI automation is often used for regression testing, while unit and integration

tests can be written in advance to development.

These two testing ideas are very different by their nature: scripted testing vs. exploratory

testing. Scripted testing can show the thoroughness of the testing to stakeholders, while

exploratory testing can find bugs that hardly could be discovered when using scripted

testing, because it is sometimes even hard to imagine the appropriate test cases before

investigating the behavior of the new functionality under test.

Another controversy consists of one of the oldest testing ideas: verification vs. validation.

Controversy contract vs. client happiness is closely connected to the testing missions

represented above, thus, depending on this, different testing strategies are chosen.

Verification evaluates if product meets the requirements that usually are part of the

contract while validation check if product satisfy the clients (or other stakeholders)

expectations, i.e. makes them happy.

Positive testing vs. negative testing controversy parts are hardly separated if it is needed to

make testing as complete as possible. Positive testing tends to prove that software behaves

in the way it is supposed to. Negative testing shows that software does not do that it is not

supposed to.

Page 10 of 13Computer

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

Testing of design vs. testing of implementation identifies different testing needs depending

on the software project phase. Thus different testing tactics to be used during each phase.

Testing of design also uncovers the idea that testing should be started as early as possible.

Static testing vs. dynamic testing controversy intersects with previously mentioned

controversy. Testing of designs is always a static testing, i.e. testing process without

executing the software itself. Testing of implementation (except the review of the code) in

most cases is a dynamic testing, i.e. testing of the running software.

Hierarchical vs. big bang are different approaches of the integration testing. There are two

hierarchical integration testing approaches: bottom-up and top-down. When bottom-up

approach is used then testing is started from the components on the lowest level and goes

up to the testing of integration of the next level components. Integration testing between

top level components is the first point of the top-down approach. It goes to the lower level

components testing afterwards till the lowest level is reached. On the contrary, integration

on all levels occurs simultaneously when big bang approach is used.

Final controversy we want to mention, but not the last one in the software testing is

traditional testing vs. agile testing. Agile school has completely different mission then other

ones and discovers the role of software engineer in test, the great automation specialist and

the main participant of test driven development.

Page 11 of 13 Computer

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

Systematization of Testing Terms: Approach, Method, and

Technique
The connection and clear border between testing approach, testing method, and testing

technique are not defined in testing theory. For example, Beizer
6
 defines test technique as a

systematic method: “A test strategy or test technique is a systematic method used to select

and/or generate tests to be included in a test suite.” In the same time, he uses test

technique and test method as completely equal statements: “… here I present you with

ready-made equivalence class partitioning methods (or test techniques) …” “[T]est

execution technique: The method used to perform the actual test execution, either manual

or automated”
8
. Other authors, such as Kaner et al.

 7
, Pressman

9
, and Sommerville

10
 have a

mix of using words technique, method, approach, and strategy in regard to testing as well.

The attempts of making a distinction between approach, method, and technique were

already performed by language teaching specialists in 1963, 12 years before the first

theoretic foundation of testing by Goodenough & Gerhart was published. In 1963 Anthony

provided “much needed coherence to the conception and representation of elements that

constitute language teaching:”
11

• An approach is “a set of correlative assumptions dealing with the nature of language

and the nature of language teaching and learning. It describes the nature of the

subject matter to be taught. It states a point of view, a philosophy, an article faith…”

• A method is “an overall plan for the orderly presentation of language material, no

part of which contradicts, and all of which is based on the selected approach. An

approach is axiomatic, a method is procedural”.

• A technique is described as “a particular trick, stratagem, or contrivance used to

accomplish an immediate objective”.

"The arrangement is hierarchical. The organizational key is that techniques carry out a

method which is consistent with an approach."

In 1982 Richards & Rogers
11

 performed an attempt to enhance the framework developed by

Anthony through dividing language teaching process into approach, design, and procedure.

But, despite rather vague definition of terms approach, method, and technique, and not

considering in any way of complex connections between them, exactly these terms are in

favor of the most current teacher training manuals.
12

We suggest systemizing testing approach, testing method, and testing technique in the same

hierarchical way, using the experience and keeping in mind the mistakes of language

teaching specialist. Schematic relation between terms mentioned above is shown on Figure

4.

Figure 4. Relation between approach, method, and technique

Testing approach “state a point of view, a philosophy, an article faith” that a test engineer

takes when designing test cases.

Page 12 of 13Computer

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

Testing method is “an overall plan for the orderly presentation” of testing techniques.

Testing techniques are united based on test case design formality (for black-box testing

approach) or based on other common pronounced attributes (for white-box approach).

Testing technique is “a particular trick, stratagem, or contrivance” to design the test case.

The “organizational key” stays the same as suggested by Anthony – “techniques carry out a

method which is consistent with an approach”.

Page 13 of 13 Computer

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

