
Draft Version

Inventory of Testing Ideas and Structuring of Testing Terms
Ivans Kuļešovs Vineta Arnicane Guntis Arnicans Juris Borzovs
Faculty of Computing Faculty of Computing Faculty of Computing Faculty of Computing
University of Latvia University of Latvia University of Latvia University of Latvia
19 Raina Blvd., Riga, 19 Raina Blvd., Riga, 19 Raina Blvd., Riga, 19 Raina Blvd., Riga,
LV-1586, Latvia LV-1586, Latvia LV-1586, Latvia LV-1586, Latvia

Abstract
Study includes software testing terms and ideas inventory, software testing overview and

schematization on meta-level and structuring of lower level elements related to software

testing such as testing oracles, testing levels, software quality characteristics, testing

approaches, methods, and techniques. Main testing controversies are collected and

described. Scientific basis is laid under proper use of such terms as testing approach, testing

method, and testing technique.

1. Introduction
In year 1975, the first theoretic foundation of testing by Goodenough & Gerhart was

published. Since those times, theory and practice of testing has evolved quite significantly

through emergence of testing activists (Myers, Beizer, Kaner, Bach, Pettichord, Black etc.)

and under the influence of different software development approaches (waterfall, rapid

application development, agile, etc.).

Despite the attempts of standardization of testing terms and ideas by different authorities,

such as ISTQB and IEEE, there is still a little chaos prevailing in the testing literature, and

between testers themselves on the explicit usage and definition of the terms.

An attempt to systemize the main testing ideas and terms ordering them into definite

structure has been performed using the tool that adopts the term graph building algorithm

developed by one of the publication co-authors (Arnicans, 2012). ISTQB Standard glossary of

terms used in Software Testing (ISTQB Glossary further in text)(ISTQB, 2012) was used as the

main source of terms. During the systematization process testing ideas have been selected

and divided into eight categories.

During the research process the scope of this publication was enlarged with meta-level

overview of software testing and introduction of our own way of testing terms

systematization to eliminate the misuse or vague use of testing terms that we find

confusing. For example such terms as testing approach, testing method, and testing

technique are often treated as they have the same meaning, but it is not so. Even in the

texts of one author the usage of the terms for the same statements is not systemized. For

example, “A test strategy or test technique is a systematic method used to select and/or

generate tests to be included in a test suite.” (Beizer, 1995, p.8-9); “… here I present you

with ready-made equivalence class partitioning methods (or test techniques) …”(Beizer,

1995, p.xiv); “[T]est execution technique: The method used to perform the actual test

execution, either manual or automated” (ISTQB, 2012).

Draft Version

Our systematization concept of testing ideas could be useful for making ordered

introduction to software testing for fresh minds of testing newbies, while we recognize that

in practice it can be very hard to make sharp-cut edges between some of the ideas.

It is worth to mention that test management is out of scope of this publication.

2. Inventory of Testing Ideas
Inventory of testing ideas has been performed manually, separately by every co-author.

After acknowledgment with each other’s inventory results and quite long disputes five main

parts of the publication have been crystallized: structuring of the testing ideas into eight

categories, enlarging main ideas with those emerged through building terms and ideas

graphs using the concept map genarating tool output results after feeding ISTQB Glossary

(ISTQB, 2012) in to it, description and schematization of software testing on meta-level,

description of software testing controversies, and laying the scientific basis under proper use

of such terms as testing approach, testing method, and testing technique.

Merge process of four lists of testing ideas has resulted into such division of testing ideas:

 Fundamental ideas;

 How to detect the accuracy of the test?

 How to detect the completeness of the testing?

 How to test (approach, method, technique)?

 What to test (object)?

 Which quality attribute (characteristic) to test?

 When to test (phase)?

 Unclassified

The same coloring of the ideas above is used in the results of the graphs that were built

using the tool mentioned above. The graphs produced by tool can be found at link:

http://home.lu.lv/~garnican/baka.

Authors have identified three millennial fundamental testing ideas. They are:

 Errare humanum est – To err is human.

 Aliena vitia in oculis habemus, a tergo nostra sunt - The vices of others we have in

the eyes, in the rear of our own.

 In propria causa nemo judex - No one can be judge in his own cause.

Please see other fundamental ideas and ideas from other categories at the link provided

above.

3. Software Testing Overview on Meta-level
Software testing mainly consists from testing strategy and testing tactics on the meta-level

(i.e. on the higher level of abstraction). Other things like contexts and schools influence on

the selection of the strategy and/ or tactics. Software testing overview on meta-level is

depicted on Figure 1.

http://home.lu.lv/~garnican/baka

Draft Version

Figure 1. General testing process schematic view

Static context influences very much on the testing vision and testing mission. Static context

depends on the type of the organization (i.e. governmental, outsourcer, start-up etc.) and on

the type of the software produced (enterprise software, commercial software, web page

etc.). It is generally static during the whole product lifecycle. Testing vision is what we want

to achieve by testing. In some cases it can be to make software with all high and critical bugs

discovered and fixed, and 95% of medium severity bugs identified. In some cases it can be to

receive an acceptance sign-off of the product from the customer. Testing mission is what we

do to achieve the testing vision. For example, we use only scripted testing, or we use the

benefits of the exploratory testing as well, to receive an acceptance sign-off of the product

from the customer. Or we prepare automated tests before the development to keep our

product always deliverable to the customer as test-driven development suggests. Testing

schools are frameworks that define testing vision and testing mission based on the static

context.

All aspects of testing schools (it can also be the mix of aspects from different schools) that

prevail within the organization and is common for definite product type influence on the

testing strategy of the given software project. Testing strategy describes general approach

for testing. Testing strategy consists of the specification of the roles and responsibilities, test

levels, environment requirements, test schedule, testing tools, risks and its’ mitigations,

testing priorities, testing status reporting etc.

Testing oracles that define testing exit-criteria and that are used as the source of the

derivation of test cases should be chosen within the testing strategy definition. The selection

of quality characteristics to be covered by testing process should occur during the definition

of testing strategy as well. Test results completeness oracles can be defined when selecting

testing tactics, because often there are much more details about expected results available

during tactics selection process.

Draft Version

Dynamic context depends on the project phase and influences on the choice of the testing

tactics that are appropriate for the given time frame, for the definite object under test, and

for the current micro testing goal. Examples of dynamic context factors are fulfillment of test

entry criteria in time, availability of shared testing resources, the stabilization and bug fixing

phase of the development etc. Testing tactics should be consistent with the testing strategy.

Testing tactics for each object under test are depicted in the test plan. Test plan consists of

organizational and technical aspects. Testing tactic also influences on the choice of the

testing approach to be used to fulfill current micro testing goals. Thus, technical aspects of

the test plan should include the selection of the appropriate testing approaches, methods,

and techniques that make a graph. Testing artifacts (like test cases, test suites, traceability

matrix, test data etc.) to be produced by the testing process should be mentioned in the test

plan as well. It is worth to notice that some schools do not make formal and written test

plans as mandatory artifact of testing process.

Testing Controversies
There are many controversies exist in software testing. Some of them clearly belong to

definite testing school. Others are controversial because of other reasons, for example

project phase. It is worth to mention that controversies mentioned below, despite their

difference, make good testing when used together proportionally.

The controversy we should start with is testing vs. debugging controversy. The goal of

testing is to discover the defect while the goal of debugging is to find why the defect occurs.

Some schools see debugging as job of software developer only, but nowadays it is more

common for good test engineer to investigate the root cause of the defect by himself or

together with software developer.

The most known testing controversy is black-box testing vs. white-box testing. The

difference between them is the point of view on the knowledge of the internal structure of

the software that test engineer takes when designing the test cases.

Functional vs. non-functional testing is another important testing controversy. Functional

testing “verifies a program by checking it against ... design document(s) or specification(s)"

(Kaner et al., 1999, p.52). Non-functional testing checks software against its non-functional

requirements where non-functional quality characteristics are addressed. System testing is

different from functional testing because it "validate[s] a program by checking it against the

published user or system requirements"(Kaner et al., 1999, p.52).

Another quite old controversy is manual testing vs. automated testing. Return on

investment is taken into consideration when testing is automated, as it requires skillful

workforce and additional scripting and maintenance effort. Still, only part of the testing can

be automated. UI automation is often used for regression testing, while unit and integration

tests can be written in advance to development.

These two testing ideas are very different by their nature: scripted testing vs. exploratory

testing. Scripted testing can show the thoroughness of the testing to stakeholders, while

exploratory testing can find bugs that hardly could be discovered when using scripted

testing, because it is sometimes even hard to imagine the appropriate test cases before

investigating the behavior of the new functionality under test.

Another controversy consists of one of the oldest testing ideas: verification vs. validation.

Draft Version

4. Testing Schools
(Pettichord, 2008)

Testing society distinguishes five testing schools. They are:

 Analytic School

 Standard School

 Quality School

 Context-Driven School

 Agile School

The schools are frameworks for categorization of test engineers’ believes about testing and

they guide the testing process. Testing schools are not competitive; they can be used in

collaborative mode as well. They all have exemplar techniques or paradigms, but they are

not limited to them. Usage of schools can vary within the organization from project to

project, but it is often hard to move the whole organization from one school to another.

Controversy contract vs. client happiness is closely connected to the testing missions

represented above, thus, depending on this, different testing strategies are chosen.

Verification evaluates if product meets the requirements that usually are part of the

contract while validation check if product satisfy the clients (or other stakeholders)

expectations, i.e. makes them happy.

Positive testing vs. negative testing controversy parts are hardly separated if it is needed to

make testing as complete as possible. Positive testing tends to prove that software behaves

in the way it is supposed to. Negative testing shows that software does not do that it is not

supposed to.

Testing of design vs. testing of implementation identifies different testing needs depending

on the software project phase. Thus different testing tactics to be used during each phase.

Testing of design also uncovers the idea that testing should be started as early as possible.

Static testing vs. dynamic testing controversy intersects with previously mentioned

controversy. Testing of designs is always a static testing, i.e. testing process without

executing the software itself. Testing of implementation (except the review of the code) in

most cases is a dynamic testing, i.e. testing of the running software.

Hierarchical vs. big bang are different approaches of the integration testing. There are two

hierarchical integration testing approaches: bottom-up and top-down. When bottom-up

approach is used then testing is started from the components on the lowest level and goes

up to the testing of integration of the next level components. Integration testing between

top level components is the first point of the top-down approach. It goes to the lower level

components testing afterwards till the lowest level is reached. On the contrary, integration

on all levels occurs simultaneously when big bang approach is used.

Final controversy we want to mention, but not the last one in the software testing is

traditional testing vs. agile testing. Agile school has completely different mission then other

ones and discovers the role of software engineer in test, the great automation specialist and

the main participant of test driven development.

Draft Version

Analytic school assumes that software is a logical artifact. It concentrates on technical

aspects, and it is keen on the white-box testing. Analytic school is associated with academia

institutions, and it is assumed to be the most suitable for safety-critical and telecom

software.

Standard school assumes that testing should be very well planned in advance and managed.

According to this school, testing main goal is to validate that software meets contractual

requirements and/or governmental standards using the most cost-effective model, thus it is

mostly applied for governmental and enterprise IT products. Requirements traceability

matrix is the most common testing artifact for the school. Software testing can be seen like

assembly line through V-model prism. IEEE standards’ boards and testing certifications are

the most valued institutions by this school.

Quality school prefers “Quality Assurance” over “Testing”. Thus testing defines and controls

the development processes. QA manager or test lead is like a gatekeeper who can decide if

software is ready or not. ISO and CMMI are the most valued institutions for followers of this

school.

Context-driven school concentrates about (skilled) people and their collaboration. The goal

of context-driven testing is to find bugs that can bother any of the stakeholders. What to

test right now is defined according to the current situation in the project. Test plans to be

constantly adapted based on the test results. Exploratory testing is this school exemplar

technique. Context-driven testing is mostly applied for the commercial, market-driven

software. The Los Altos Workshop on Software Testing held by Cem Kaner and Brian

Lawrence are thought to be the main events of this school.

Agile school main postulate is that tests must be automated. Testing answers the question if

user story is done. Test-driven development is one of the agile testing school paradigms,

thus unit tests are demonstrative exemplar of the school.

It is worth to mention that categorization of beliefs and testing goals into testing schools

helps testers to understand and to evaluate each other experience through the prism of the

specific organizational context.

5. Testing Strategy
There are many things to be covered in testing strategy that define the overall approach of

testing. Here we only look into details of its most important aspects that are noticeable on

the software testing meta-level.

5.1. Testing Oracles
Testing Oracles can be divided into three major groups based on their purpose. They and

oracles per each group are shown on Figure 2.

Draft Version

Figure 2. Testing Oracles

Test results completeness oracles are differentiated based on the completeness of the set of

the expected test results. There are five main types of test results oracles. (Hoffman, 1998)

They are:

 True oracles – they have the complete set of expected test results;

 Stochastic oracles – they verify a randomly selected sample;

 Heuristic oracles– they can verify correctness of some values and consistency of

other values;

 Consistent oracles – they verify current test run results with previous test run results

(regression);

 Sampling oracles – they select the specific collection of inputs or results.

They all have their advantages and disadvantages, as well as their cost decreases in top-

down manner, but speed increases in the same manner.

Test case derivation oracles are differentiated based on the source test cases are derived

from.

Exit-criteria oracles define when testing can be finished. The most common, but not

complete testing exit-criteria are:

 All planned test cases are executed (Contracts and other obligations);

 All high and critical priority bugs are fixed (Contracts and other obligations);

 All planned requirements are met (Contracts and other obligations);

 Scheduled time to finish testing has come (Project budget and schedule oracle);

 Test manger has signed off the release (Human being’s judgment oracle).

It is worth to mention that multiple oracles of each group are often used together

depending on the software project phase.

5.2. Quality characteristics
There are 8 quality characteristics shown in the new revision of ISO/IEC 9126 standard -

ISO/IEC 25010 (ISO 2011). All quality characteristics are depicted on Figure 3.

Draft Version

Figure 3. Product Quality Model3

Functional testing is a testing of functional suitability characteristic. Almost all formal testing

methods and techniques are concentrated around functional suitability quality characteristic

as well and especially are related to the functional correctness and functional completeness

sub-characteristics.

5.3. Testing Levels
There are four main testing levels differentiated in the software development project. Their

applicability differs from project phase and scale of the object under test. These levels are:

 Unit Testing – testing of single component on the code level; it is usually performed

by developers;

 Integration Testing – testing of cooperation of several components; comparison with

expected result can be done both on the code level and manually by human; can be

performed either by developer, or by tester;

 System Testing – testing of the whole complete system; usually is performed by

tester;

 Acceptance Testing - testing of the whole system to verify that it meets some

contract obligation and/ or satisfies users’ expectation about the software product;

usually is performed by the customer;

All levels starting from integration testing can be scaled out till system of systems testing

when product consists of other or is dependent on different multiple systems.

6. Testing Tactics
Testing tactics can differ depending on the phase of the project and other changeable

circumstances of the environment. Testing tactics should be consistent with testing strategy.

Thus tactics often are chosen within the static boundaries of the influencer schools.

Appropriate testing approaches, methods, and techniques should be selected for micro

testing goals fulfillment and should be depicted in the testing plan. Testing artifacts (like test

cases, test suites, traceability matrix, test data etc.) to be produced by the testing process

should be mentioned in the test plan as well. We have structured testing methods and

techniques under black-box and white-box approaches. The borders of grey-box testing

approach are quite ambiguous, and methods and techniques under this approach are not

Draft Version

formally described yet in the testing theory. They do not have settled definitions in the

testing practice as well.

6.1. Testing Artifacts
Software testing usually produces testing artifacts mentioned below:

 Test Data – multiple sets of values to be used as inputs for testing definite

functionality often combined into one file;

 Test Script – code that substitutes user activity and/or interaction with software UI;

 Test Case – consists of preconditions, steps, inputs, and expected results to test

some part of the functionality;

 Test Scenario – test case with higher level of abstraction that depicts scenarios in

which user is considered to use the software;

 Test Suite – the set of test cases or test scenarios for given functionality or testing

type (i.e. regression, smoke, or sanity);

 Test Plan – document that depicts testing tactics to test definite software product in

the definite testing run; often consists of test suites to be executed and testing

approach to be used.

Traceability matrix is the example of cross-referring document that can be used to depict the

relations between test cases/test scenarios/ test suites (depending on the scale) and

requirements.

Test harness is a virtual, to testing related artifact that consists of many aspects to make

testing under given conditions and configurations possible. It can consist of the specific IT

infrastructure, tools, big samples of test data etc.

Despite the fact that testing artifacts mentioned above to be produced during other testing

processes, the need for them and high level description of approach to be used to produce

them to be defined in the testing strategy.

Systematization of Testing Terms: Approach, Method, and Technique
The connection and clear border between testing approach, testing method, and testing

technique are not defined in testing theory. For example, Beizer (1995, p.8-9) defines test

technique as a systematic method: “A test strategy or test technique is a systematic method

used to select and/or generate tests to be included in a test suite.” In the same time, he uses

test technique and test method as completely equal statements: “… here I present you with

ready-made equivalence class partitioning methods (or test techniques) …” (Beizer, 1995,

p.xiv); “[T]est execution technique: The method used to perform the actual test execution,

either manual or automated” (ISTQB, 2012). Other authors, such as Kaner et al. (1999),

Pressman (2005), and Sommerville (2007) have a mix of using words technique, method,

approach, and strategy in regard to testing as well.

The attempts of making a distinction between approach, method, and technique were

already performed by language teaching specialists in 1963, 12 years before the first

theoretic foundation of testing by Goodenough & Gerhart was published. In 1963 Anthony

provided “much needed coherence to the conception and representation of elements that

Draft Version

6.2. Black-box Testing
Black-box is a software testing approach when test engineer designs test cases as if she does

not know anything about the internal structure of the software under test.

Black-box testing approach consists of six testing methods that are differentiated based on

the source used for test case design process and based on the level of formality of test case

designs. The relation between black-box testing methods and techniques is shown in Figure

5.

constitute language teaching:”(as cited in Kumaravadivelu, 2006)

 An approach is “a set of correlative assumptions dealing with the nature of language

and the nature of language teaching and learning. It describes the nature of the

subject matter to be taught. It states a point of view, a philosophy, an article faith…”

 A method is “an overall plan for the orderly presentation of language material, no

part of which contradicts, and all of which is based on the selected approach. An

approach is axiomatic, a method is procedural”.

 A technique is described as “a particular trick, stratagem, or contrivance used to

accomplish an immediate objective”.

"The arrangement is hierarchical. The organizational key is that techniques carry out a

method which is consistent with an approach."

In 1982 Richards & Rogers (as cited in Kumaravadivelu, 2006) performed an attempt to

enhance the framework developed by Anthony through dividing language teaching process

into approach, design, and procedure. But, despite rather vague definition of terms

approach, method, and technique, and not considering in any way of complex connections

between them, exactly these terms are in favor of the most current teacher training

manuals. (Hall, 2011)

We suggest systemizing testing approach, testing method, and testing technique in the same

hierarchical way, using the experience and keeping in mind the mistakes of language

teaching specialist. Schematic relation between terms mentioned above is shown on Figure

4.

Figure 4. Relation between approach, method, and technique

Testing approach “state a point of view, a philosophy, an article faith” that a test engineer

takes when designing test cases.

Testing method is “an overall plan for the orderly presentation” of testing techniques.

Testing techniques are united based on test case design formality (for black-box testing

approach) or based on other common pronounced attributes (for white-box approach).

Testing technique is “a particular trick, stratagem, or contrivance” to design the test case.

The “organizational key” stays the same as suggested by Anthony – “techniques carry out a

method which is consistent with an approach”.

Draft Version

Figure 5. Black-box Approach

Specification-based testing is a testing method which includes all formal test case design

techniques. As can be derived from the name of the method, specification (or requirements)

documents are used as a source for test case design. Formal test case design techniques or

groups of techniques are Domain Analysis, Logic-Based Testing, Combinatorial Testing, State

Transition Testing, Use Case Testing, and Syntax Testing.

Domain analysis group consists of two closely connected testing techniques: Equivalence

Class Partitioning and Boundary Value Analysis. The first technique defines the group (class)

of inputs that produces the same output. The second technique checks the boundary values

of the equivalence classes.

Logic-based testing group consists of two testing techniques: Decision Tables and Karnaugh-

Veitch Charts. They all are used when combination of different inputs results into specific

output. They are used for checking business logic and user interface. According to Copeland

(2003), a decision table consists of conditions, combinations of every condition alternatives

that result into single rules, actions, and actions occurrence under every rule. It is worth to

mention that cause-effect graphing can also be used for designing decision tables according

to Myers (1979/2004).

Karnaugh-Veitch (KV) charts are used to simplify the Boolean algebra expressions. They were

introduced by E. Veitch in 1952 and improved by Karnaugh in 1953. They allow decreasing

the amount of calculation needed through humans' pattern-recognition capability (Beizer,

1990). From our experience usage of decision tables is more common in the field of business

application testing, especially nowadays.

State Transition Testing is a group of techniques that are used when some part of the

functionality of the system can be represented as “finite-state machine”. Finite state

machine is an abstract machine that has finite states, that can be in only one state at once,

Draft Version

and whose transitions from one state to another are triggered by some event or condition.

There are two common techniques that are used for state transition testing: State Transition

Diagrams and State Transition Tables. State transition diagram is a schematic representation

of machine’s states and transitions between them. State transition table is more complete

and systematic way of representation of the same machine’s states and transitions. Only

valid state-transition combinations are depicted through state transition diagrams, while all

possible state-transition combinations are covered by state transition tables that can be

required for testing high-critical software.16

Combinatorial Testing is a group of testing techniques that are most often used for testing

combinations of configurations or input parameters. The most popular techniques are

Orthogonal Arrays and Allpairs Algorithm. Orthogonal array is a two-dimensional array that

has an interesting property – “all the pairwise combinations will occur in all the column

pairs” (Copeland, 2003, p.66). This part of discrete math was introduced into testing field by

Tatsumi in 1987. Allpairs algorithm invented by Bach allows achieving the coverage of

testing of all pairs combination with less steps when input parameters have different

number of possible values (Kaner et al., 2001).

Use Case Testing is a technique that allows to test system’s functionality that is described as

a use case. Use case is a type of quite detailed specification that concentrates on user (or

another system) interaction with the system under test to complete some specific task or to

deliver some other business value. It often has a main, the most commonly used flow and

extensions or some special cases. The test scenario for main flow and every extension or

special case should be created when use case testing is performed. Use case can be

described using natural language or depicted using different modeling languages, for

example UML.

Model-based testing is a testing method which unites testing techniques that use different

types of software or software usage models as basis for test cases design. The main

representatives of this method are previously described state transition testing and use case

testing (when use case is described using different modeling languages).

User story testing method includes acceptance testing techniques in combination with

exploratory testing techniques that are described later. User story is a way of non-detailed

software specification that describes it using the mask “As an <actor> I want (or need)

<action> so that <achievement>” (in practice, sometimes <achievement> part is not formally

specified). User story must come to the development team together with acceptance criteria

to align the constraints of the business value to be delivered. User stories are mostly used

when software is developed using such Agile software development practices as Scrum,

Kanban, and XP. Acceptance tests are executed to verify if implemented user story meets

the acceptance criteria. More thorough testing using exploratory testing techniques is

performed after acceptance criteria is met. Sometimes, depending on the complexity of the

system, usage of more formal testing techniques also takes place.

Experience-based testing method unites less formal testing techniques, but some of them

are still very powerful when are used by professionals. These techniques are Checklist-based

Testing, Exploratory Testing, Error Guessing, and Ad-hock Testing.

Draft Version

Very high level checklist of quality attributes or items that are important for the system

under test is used for checklist-based testing. Such list should be constantly improved to

cover things that are important to some of stakeholders or are parts of some regulation

standard (for example, operating system UI guidelines) while product is evolving during the

development process.

Test engineer intuition and experience to evaluate the test results are the basis of

exploratory testing technique. The design of new test cases occurs on the fly using the

information discovered from the testing of the software itself. Exploratory testing to be

productive must be performed in definite time frames and the scope of testing must be

defined in advance. Test charters are often used to make these two “musts” possible and

also show the productivity of the testing session to the stakeholders by notifying its results.

Such exploratory testing management was developed by Jonathan and James Bach in 2000.

They named it session-based testing, but we suppose that exploratory testing without

clearly defined objectives and time frames is ad-hock testing that is the least formal testing

technique of the experience-based testing method. Usage of ad-hock testing technique

should be avoided. (Black, 2009)

Error-guessing is a testing technique that uses most common programming errors as test

case basis. Examples of such errors are null pointers, division by zero, wrong types of

parameters etc. Even if tester does not have knowledge of programming she will often

discover such errors while testing the software and will reuse this experience afterwards.

That is why this technique is part of experience-based testing method. In most cases error-

guessing is used as informal supplementary of formally scripted testing techniques.

Defect-based testing method uses the knowledge about defects taxonomies for test cases

design or selection. According to Beizer, there are eight categories to be used for defects

classification: Functional, System, Process, Data, Code, Documentation, Standards, and

Other. There are also five supplementary categories to be used for defects housekeeping:

Duplicate, Not a problem, Bad Unit, Root cause needed, Unknown. Black (2009) uses the

same defects classification. From our experience this method can be hardly used

independently for test cases design. It can only point out which test cases may lead to more

defects discovery based on historical data if it is available. What is more, such analysis of

defects is quite expensive and such bookkeeping options are supported by only few tools by

default.16

Random testing method uses randomly generated inputs from the definite subset as test

data. It can be a powerful method for functional testing when operational profile (input

domains) of the system and effective oracle are available. In such cases systems are tested

with condition that whole test fails if it fails on at least one of the inputs. But in real situation

the options mentioned above are hardly available. Even if uniform distribution can be

applied to the input values, it is very hard to substitute the effective oracle for outputs. That

is why random testing is mostly used for reliability testing of the complex systems. It can

prove that system can work without failures for given amount of time (Hamlet, 1994). When

reliability of the system is tested with totally random input values it means that Fuzz Testing

technique is applied.

Draft Version

Syntax testing is a static, black box testing method for testing syntactic specification of a

system’s (or protocol’s) input values. “Anti-parser” can be used to compile the grammar to

produce “structured garbage”. This “structured garbage”, that can contain misplaced or

missing elements, illegal delimiters, and so on, is used to test how object under test behaves

when inputs deviate from the defined syntax. (Beizer, 1990)

6.3. White-box Testing
White-box is a software testing approach when test engineer designs test cases based on

the internal structure of the software under test. There are three most known white box

testing methods are control flow testing, data flow testing, mutation testing. The relation

between white-box testing methods and techniques is shown in Figure 6.

Figure 6. White-box Approach

Control flow testing concentrates about testing the sequence of statements in which system

under test operates. There are two main programming paradigms that influence on the

statements’ sequence execution. They are conditions and loops. The main technique of

control flow testing is called Decision-to-Decision Path Testing (Jorgensen, 2008). Decision-

to-Decision path testing technique uses program graph to represent all possible statements

(graph nodes) and conditions (graph edges). Coverage of different code aspects to be

checked when using this technique.

Dataflow testing method concentrates about the points of program graph where variables

receive values and where these variables are used. Thus dependent pairs of DD-paths

coverage of previously mentioned Decision-to-Decision Path Testing technique is most

efficient exit criteria for such testing method while the whole lifecycle of the variable is

monitored.

Draft Version

Mutation testing method is used to prove that the set of unit tests that pass actually is

complete. To prove that unit tests are correct, mutation (i.e. wrong peace of code) is

introduced into the program itself. For example, operators or commands execution order

can be changed, or even some code can be removed. If unit tests still pass after mutation

introduction then it means that unit test is wrong or that mutated code is never executed.

Some static testing techniques are used for software code testing. They differ based on the

formality and thoroughness of the process. Code review is often used to improve the overall

quality of the code and to educate less experienced developers. This process helps to deliver

more qualitative and tested code from development to testing right at the moment, but

educative aspects help to improve the quality of the code for the future deliveries.

Inspections and walkthroughs are used when there is less time available to conduct the

static testing process.

7. Conclusions
Inventory and structuring of testing ideas and terms has resulted into discovering of eight

categories of testing ideas. Initiation of such process has helped to understand the need of

making the clear definition of such terms as testing approach, testing method, and testing

techniques that has been achieved using the solution made by Anthony in the field of

language teaching. Structuring of ideas have also made it possible to schematize the

software testing on meta-level defining the relation between such concepts as testing

strategy, testing tactics, testing schools, testing mission, testing vision, different

(organizational and project-wide) contexts, testing approach, testing method, testing

technique, testing plan etc.

We suppose that our work will help software testing practicians and those who just have

started to learn software testing to understand aspects of testing process in more holistic

way, as well as to start using such terms as testing approach, testing method, and testing

technique in a proper way.

Draft Version

List of References
1. Arnicans, G. & Straujums, U. (2012), Transformation of the Software Testing Glossary

into a Browsable Concept Map, International Conference on Engineering Education,

Instructional Technology, Assessment, and E-learning (EIAE 12); International Joint

Conferences on Computer, Information, and Systems Sciences, and Engineering

(CISSE 12), December 7 - 9, 2012.

2. Beizer, B. (1990), Software Testing Techniques, 2nd Edition, New York: Van Nostrand

Reinhold Co.

3. Beizer, B. (1995), Black-Box Testing: Techniques for Functional Testing of Software

and Systems, New York: John Wiley & Sons, Inc.

4. Black, R. (2009), Advanced Software Testing – Vol.1, Santa Barbara, CA: Rock Nook

Inc.

5. Copeland, L. (2003), A Practitioner's Guide to Software Test Design, Norwood, MA:

Artech House, Inc.

6. Goodenough, J. & Gerhart, S. (1975), Toward a Theory of Test Data Selection. IEEE

Transactions on Software Engineering, Volume 1 (2), 156-173

7. Hall, G. (2011), Exploring English Language Teaching: Language in Action. New York:

Routledge.

8. Hamlet, R. (1994), Random Testing, in Marciniak, J., ed., Encyclopedia of Software

Engineering, Wiley, 970-978, [Online], Available:

http://web.cecs.pdx.edu/~omse535/hamlet94random.pdf.

9. Hoffman, D. (1998), A Taxonomy for Test Oracles, in Quality Week, 1998; [Online],

Available: http://www.softwarequalitymethods.com/Papers/OracleTax.pdf.

10. ISO (2011), ISO/IEC 25010:2011.

11. ISTQB (2012), in van Veenendaal, E. Ed., Standard glossary of terms used in Software

Testing, [Online], Available: http://www.istqb.org/downloads/finish/20/101.html.

12. Jorgensen, P.C. (2008), Software Testing: A Craftsman’s Approach, 3rd Edition, Boca

Raton, FL: Auerbach Publications.

13. Kaner, C., Falck, J., & Nguyen, H. (1999), Testing Computer Software, 2nd Edition,

John Wiley & Sons, Inc.

14. Kaner, C., Basch, J. & Pettichord, B. (2001), Lessons Learned in Software Testing: A

Context-Driven Approach, New York: John Wiley & Sons, Inc.

15. Kumaravadivelu, B. (2006), UNDERSTANDING LANGUAGE TEACHING: From Method

to Postmethod, Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

16. Myers, G. (1979/ 2004), The Art of Software Testing, 2nd Edition, Hoboken, New

Jersey: John Wiley & Sons, Inc.

17. Pettichord, B. (2008), Schools of Software Testing, [Online], Available:

http://www.prismnet.com/~wazmo/papers/four_schools.pdf.

18. Pressman, R. (2005), Software Engineering: A Practitioner's Approach, 6th Edition,

Singapore: McGraw-Hill.

19. Sommerville, J. (2007) Software Engineering, 8th Edition, Harlow, Essex: Pearson

Education Limited.

20. Tatsumi, K. (1987), “Test Case Design Support System”, Proceedings of International

Conference on Quality Control (ICQC), Tokyo, pp. 615-620, [Online], Available:

http://www.pairwise.org/docs/icqc87.pdf

http://web.cecs.pdx.edu/~omse535/hamlet94random.pdf
http://www.softwarequalitymethods.com/Papers/OracleTax.pdf
http://www.istqb.org/downloads/finish/20/101.html
http://www.prismnet.com/~wazmo/papers/four_schools.pdf
http://www.pairwise.org/docs/icqc87.pdf

Draft Version

Ivans Kuļešovs is a PhD student in Computer Science at the University of Latvia and Test

Manager in C.T.Co Ltd. software development company. His research interests include

software testing in general and mobile applications testing in particular, as well as enterprise

mobility platforms.

Kuļešovs received his master degree with distinction in Computer Science from University of

Latvia and MBA degree from Blekinge Institute of Technology, Sweden. Contact him at

ivans.kulesovs@gmail.com.

Vineta Arnicane is a Senior Researcher in the Faculty of Computing at the University of

Latvia. Her research interests include software engineering, software testing, and artificial

intelligence. Arnicane received her PhD in computer science from the University of Latvia.

Contact her at vineta.arnicane@lu.lv.

Guntis Arnicans is a Professor and Director of Bachelor program "Computer science" in the

Faculty of Computing at the University of Latvia. His research interests include software

engineering, software testing, and artificial intelligence, with a focus on creating concept

map and ontology for software testing domain. Arnicans received a PhD in computer science

from the University of Latvia. He is a member of IEEE and ACM. Contact him at

guntis.arnicans@lu.lv.

Juris Borzovs is currently Professor and Dean of the Faculty of Computing at the University

of Latvia. His research interests include software engineering, software quality, software

testing, and IT terminology. Borzovs received his candidate of science degree from the

Institute of Mathematics of Belarusian Academy of Science, doctor of science degree and

doctor habilitatus degree from the University of Latvia. He is a member of several

organizations that focus on information technology. Contact him at juris.borzovs@lu.lv.

mailto:ivans.kulesovs@gmail.com
mailto:vineta.arnicane@lu.lv
mailto:guntis.arnicans@lu.lv
http://mail.inbox.lv/horde/imp/compose.php?to=mailto%3ajuris.borzovs%40lu.lv

