LATVIJAS UNIVERSITATE

Baiba Apine

Programmatiras izstrades procesa
diagnosticéSana un attistiSana

SAISTITAS PUBLIKACIJAS

(promocijas darba pielikums)

. _ Latviias
. o?.ﬁa‘;l Universitdtes
4~ % BIBLIOTEKA

Riga - 2003

Baibas Apines public&to darbu saraksts

Zinatniskas publikacijas:

Izdevumos no LZP visparatzito recenzéjamo zindatnisko izdevumu saraksta:

1. Baiba Apine. "Software Development Risk Management Survey". Information
Systems Development. Advances in Methodologies, Components, and
Management, 2002, Kluwer Academic Publishers, USA, Ipp. 241-251.

2. Baiba Apine. "Measurements and risks Based Method to Support Software
Development Process Planning". Databases and Information Systems II, selected
papers of BalticDB&IS 2002, 2002, Kluwer Academic Publishers, The
Netherlands, Ipp. 187-199.

3. Baiba Apine. "Measurements and risks Based Method to Support Software
Development Process Planning”. Proceedings of the Fifth International Baltic
Conference, BalticDB&IS 2002, 2002, Tallinn, Estonia, lpp. 3-14.

4. Baiba Apine, Martins Gills, Janis Plume. "Software Development Process
Improvement through Measurements and Requirements Traceability".
Proceedings of the Fifth International Baltic Conference, BalticDB&IS 2002,
2002, Tallinn, Estonia, Ipp. 65-76.

5. Baiba Apine, Ilgvars Apinis, Ojars Krasts, Uldis Sukovskis. "Meta-model Based
and Component Based Approach for Information Systems Design”. Proceedings of
the 4th IEEE International Baltic Workshop: Baltic DB&IS ‘2000, 2000, Vilnius,
Lithuania, lpp. 78-83.

6. Baiba Apine, Uldis Smilts, Uldis Sukovskis. "Software Measurement Practice to
Address Customer Satisfaction". Scientific Proceedings of Riga Technical
University, 2000, Applied Computer Systems. — 1st thematic issue, lpp. 11 — 18.

7. Baiba Apine. "Practitioner’s approach to software cost estimation". Abstracts of
the international conference: DB & IS 98, 1998, Riga, Latvia, Ipp. 134-140.

8. Baiba Apine, Amis Kleins, Ojars Krasts, Uldis Sukovskis, Artis Teilans, Vita
Zviedre. "Modelling methodology and tool for business systems: Registrator".

Abstracts of the international conference: Simulation, Gaming, Training and
Business Process Reengineering in Operations, 1996, Riga, Latvia, Ipp. 44-45.

Paréjos izdevumos:

9. Baiba Apine. "4 Visualisation and Analysis of Experimentally Gathered Results in
an User-Friendly Mode". Informatica, 1995, Vol.6, No 4., Ipp. 387-396.

17.03.2003.

SOFTWARE DEVELOPMENT RISK
MANAGEMENT SURVEY

Baiba Apine’

1. INTRODUCTION

Software development is rather complex process consisting of different activities. It is
dependent on skills' level of different specialists as well as on usage of different
technologies. One of the activities supporting software development process is risk
management. Risk management requires knowledge and experience from people
involved. This paper addresses software development risk management. The survey
among software development experts was performed to find the risks, which are live to
software developers in Latvia. This paper summarizes the results of the survey.

2. PROBLEM
There are two activities within risk management process requiring special expertise
and experience: risk identification and finding activities for risk mitigation. The task was

to identify software development process risks for software developers in Latvia and
activities for risk mitigation.

3. BACKGROUND

3.1 Definition of Risk

The definition of risk is very simple: the possibility of loss, injury, disadvantage or
destruction, as it is defined in Webster’s dictionary'.

* Baiba Apine, Riga Information Technology Institute, Kuldigas iela 45, LV-1083 Riga, Latvia

’“f?mmr‘m Systems Development: Advances in Methodologies, Components, and Management
Edited by Kirikova et al., Kluwer Academic/Plenum Publishers, 2002 241

242 B. AP

Risk related to information systems is defined in’ as the potential that a given thrm!i
will exploit vulnerabilities of an asset or group of assets to cause loss of/or damage to
assets.

In the context of software engineering and development, risk can be defined ag
possibility of suffering a diminished level of success within a software-depenq
development program’.

Risk is usually measured by a combination of impact and probability of occurrence
Consider a sample, where a potential threat to software development project is leaving g
the leading programmer at the peak of the development process. The probability of
realizing of this threat is 25%. Let’s try to calculate the impact of the threat. We have
arrange new leading programmer from the development team, it will cause the laggi
behind the project schedule and paying penalties for $2000, hire new programmer and
train him/her for $1200. The total impact of the threat is $3200. The risk is calculated ga¢
follow: 25% from $3200 gives $800. This is a quantitative risk assessment. Sometimes
is not possible to assess the impact of risk quantitatively. Then qualitative risk assessm
is used, where probability and impact are assessed using terms like low, medium, hi
etc.

There are a lot of risk management methods, which define when and how to identi
threats, how to assess and prioritize them, etc.

3.2 Risk Management Methods

Risk management is a practice with processes, methods and tools for managing risks
in a project. It provides a disciplined environment for proactive decision making to assess
continuously*:

3

1. What could go wrong (risks).
2. Determine which risks are important to deal with (prioritise risks).
3. Implement strategies to deal with those risks.

Risk management is used in the software development process if it is necessary’. Risk
management process is iterative process, consisting of three basic activities:

I. Planing of the risk management® °, when potential threats are identified, ri
assessment method chosen, responsibility of risk assessment and monitori
assigned, frequency of reassessing risks defined etc.

The identification of potential threats is an activity, which requires expertise arn

experience. It could be said, that this is the state of the art. _

2. Risk analysis, when the probability and impact of each threat is assessed, 1S
are prioritized according the results of the assessment and preventative, detect!
and corrective actions planned" (in * this activity is part of planning).)

The most complex part of the risk analysis is identification of preventative, detectl

and corrective actions. It could be also said, that this is the state of the art requ!
knowledge of management and experience.

3. Risk mitigation and monitoring, when developers and managers follow
activities for risk mitigation and responsible managers monitor continuously
situation with the potential threat® .

There are a lot of risk management methods available, based on standards,
concentrating more on some risk management aspects. For instance, RiskIt method, D3¢

S0 FTWARE DEVELOPMENT RISK MANAGEMENT SURVEY 243

CMM, concentrating on clear and structured definition of risk’, or method
Lpcentrating on maximum involvement of customer in planing of risk management
d It is possible to choose any convenient method, but identification of threat and
8 vities to prevent, detect or correct the risk (or mitigate) will require expertise and

The survey was organized to find out risks, which are actual to software developers in
Patvia, and activities for risk mitigation.

METHOD USED FOR IDENTIFICATION OF RISKS

- Expert polling method was used to find risks, which are important to software
Jevelopers in Latvia. The "Delphi" method” '® was chosen. "Delphi" is an iterative
fecision making method. The method has three steps:

1. Forming the group of respondents — the expert group in the terms of the method.
2. Forming of the questionnaire and spreading among the experts.
3. Analysis of the results.

=

e second and the third steps are performed iteratively, while group of experts has
on the topic.

(=9

RPree

Group of experts should consist of 10 to 20 experts having the same level of
expertise'®. Thirteen experts were chosen. Experts where chosen from software

serving other business units within the same company (13% of respondents). Each expert
Suited the following requirements to ensure the same level of expertise for all respondents
yithin the group of experts.

1. Expert is currently working as software development project manager.

2. Expert has the position of project manager for at least 2 and no more than 8
years.

3. Expert has managed at least 2 software development projects.

Questionnaire

_ According to the method used for survey, the first step is to prepare the list of
woperties experts must agree on. Experts were asked to provide lists of risks having
me impact on the software development process. After analysis of the lists of risks, the
= major risks were highlighted (see Table 1).

244 B. APINE

Table 1. List of risks
No. | Risk
Customer risks
1. Lack of hardware on the customer side

2. Difficult communication with customer
Requirements risks

3. Low quality of software requirements

4. Unstable software requirements

Project management risks

5. Unrealistic schedules and budgets
6. Weak project management

Developers risks
7. Software development environment bugs
8. Lack of developers motivation

9. Lack of hardware on developers side

10. | Change of qualified personal

11. | Lack of knowledge in software development technologies and environment
12. | Difficult communication among developers

Table 2. Risk relevance matrix
Frequency
Rarely Often
Expert
viewpoint

<
N

Low impact

O 90~ O a B W N e

(=)

11
Heavy impact 12

OO0 00 00 X0 | hh L L IN N N N b
0 00 0 W hh L L N N N NS
00 OO0 00 OO |Lh b h n [N N N Mo
00 00 00 OO |Lh Lhh LA WIN N N e
O O O OIS ON W W W W [

SRR R F N N N) (SO e
NN NNA A A s e
U RN F U U O G [N I U0
PR PN O (S0 I S
VoV RN N Fo = N = > Y [P R R WO oY)
O OV VN W W W W
© 0V OV Vvl | LW

The next step was to put all the risks from the list in order of decreasing frequency
(see Table 4 in “8 Appendix™) and decreasing impact (see Table 5 in “8 Appendix”™).

Risk frequency and impact given by each expert was consolidated using risk
frequency and impact matrix (see Table 2). This matrix is prepared using qualitative risk
assessment, according to the project of cabinet law''. Consolidated frequency and impact
forms the risk relevance. The final risk relevance is given in the Table 3.

soPTWARE DEVELOPMENT RISK MANAGEMENT SURVEY 245

Table 3. Risk relevance

Average
Risks Experts relevance]

1]2 3|4 |(S|6 |7 {89 ([10]11]12]13

mmunication
ong developers 2|1 (8|25 |1 |5[8|1[s5]|5|4]|5 4
pifficult
pommunication with
customer 819191919 9|93 |1]2[6|9]|5] 7
Change of qualified
rsonal 7S5 [1 {34519 |8|5]|]S5|S5]|] 5
i ack of developers
motivation 4 |2 |14V]S|9 V|V]T1T]2]S5 3
| ack of knowledge
un software
development
kechnologies and

environment 35|64 (57|55 |2|6|5|5|5]| 5
I ack of hardware on

developers side 2111]1 319121 1|2 2
Software

development
environment bugs 4 14 ([5]6 5|21 9175|5515 5

Unrealistic schedules

d budgets 91619 8|9(9]|9(6]|]6|9]|9|8]|9| 8
Low quality of

sofiware

equirements 6 | 819719594 [8]9]8]9]8] 8
I .ack of hardware on

the customer side 2|34 |2|1]4 1952|255 3
Unstable software

uirements 619519191994 |8|6|]9|9|8]| 8
Weak project

anagement 7171251255159 |5]|5|5]| 5

Finally the concordance is calculated on the risk relevance according to the "Delphi”
method. Concordance rate is between O and 1. If the rate is close to 1, it means that
experts agree about the topic. If the concordance is closer to 0, then the survey is
Corrected, updated, the reasons for disagreement among experts are discussed and survey
is spread among experts once more. This survey was spread twice and finally has
concordance rate 0.91. It means that experts have agreed on risks actual for software
developers.

If comparing software development risks identified by our experts and those found in
different sources, we can see that mostly risks are the same: unstable or low quality
software requirements, unrealistic schedules and budgets, lack of knowledge in software
development technologies and environment, change of qualified personal'® ' 158,

Risks, which are listed in the expert list, but not often found in sources about software
development risks, are:

246 . B. APINE

1. Lack of appropriate hardware on the customer side as well as on the developer's
side.
2. Difficult communication with customer as well as among developers.

5. RISK MITIGATION ACTIVITES
Experts were asked to provide activities for each risk mitigation.
5.1 Unstable software requirements

Unstable software requirements might be the king of the risks for software
development as it is named in many sources (see above). Nevertheless some creep of
requirements is normal during software development process. T. C. Jones comments, that
monthly rate of change after the requirements are first identified runs from 1% to more
than 3% per month during the subsequent design and coding stages is considered as
normal®,

To prevent creeping requirements, the effective action is contracting of a sliding scale
making the implementation of changes financial disadvantageous later in the software
development life cycle". Only one expert approved this as a preventative action.

The most popular preventative action is the establishment of project change request
board consisting of customers and developers. All experts mentioned this in the
questionnaire. Change request board conduct meetings on regular basis. Changes
approved by project change request board are implemented only.

Using the iterative software development life cycle with some administratively
limited time period of "freezing requirements" is another preventative activity popular
among the experts. Dealing with unstable software requirements is the main advantage of
the iterative software development life cycle introduced by B. Boehm'* '°.

5.2 Unrealistic schedules and budgets

The common problem in the software industry is that of intense but artificial schedule
pressure applied to the programmers by their managers and customers'” '’. This is the
significant risk mentioned by the experts as well.

There are four preventative actions proposed by the experts:

I. Use of formal methods for software development cost estimation before the
development starts. There are a lot of formal software development cost and
schedule estimation models available and the supporting tools. The most popular
is COCOMO". This as a preventative action is proposed by T. C. Jones'* as well.

2. Use the advantages of technology (automated tools for configuration
management, project management etc.).

3. Plan the software architecture so that it is possible to use previously developed
and tested components.

4. Review of the software development plans, whether all is correct.

The corrective actions proposed were:

SOFTWARE DEVELOPMENT RISK MANAGEMENT SURVEY 247

1. Negotiate the schedule with customer or executives in order to set the priorities
for deliverables or extend the schedule.

2. Increase the workload for experienced team members, which are able to generate
original solutions. This gives the result rather quickly, but is not a solution for
long term'’.

3. Change inexperienced team members with the experienced ones working in the
similar problem area. This is the alternative to adding the extra staff, giving no
expected results'®.

5.3 Difficult communication with customer

Preventative actions:

1. Regular meetings on the project management level. It would be better to conduct
these meetings on the customer site. If it isn’t possible to meet, customer has to
be informed about project development by phone or via e-mail. All the experts
agreed, that this is the most effective preventative action.

2. More than half of the experts assume that cause of the communication problems
is customers’ lack of knowledge about software development life cycle. In this
case the only action must be taken is education of the customer.

The only corrective action provided was to change of the contact person on the
customer side to the person having more procuration in the customer’s company and
knowing the business area.

5.4 Low quality of software requirements

Preventative actions:

1. Don't cut time for software requirements specification. This job must end with
mutually agreed (signed) software requirements specification.
2. Build prototype of the system under development.

The only corrective action provided was to find out more about requirements
informally. It could be done by finding informal requirements pioneers on the customer
side as well as on the developers' side.

5.5 Other Risks and Mitigation Activities

Lack of hardware on the customer side. Lack of hardware on customer side is one of
the risks, which is specific for software developers in Latvia. This risk must be
considered carefully during planning, hardware specification must be provided to
customer as early as possible and these aspects must be negotiated carefully. All the
€xperts agreed, that this is the most effective preventative action.

If corrective action is necessary, there are two possibilities:

1. Bye or rent hardware specified. This is the most effective corrective action giving
the results immediately.

248 B. APINE

2. Optimization of the software. Half of the experts agreed that this would help.
Another half said that this would never help and this was rather risky way,
because new bugs would be introduced during optimization.

Software development environment bugs. Preventative actions:

Don’t use software development environments developers are not familiar with.

2. Don’t use new environment versions entering the market before the
benchmarking information is available.

3. Establish company wide benchmarking bulletin and motivate developers post
there information about problems highlighted during the software development
process.

4. Building and using unified components where it is possible.

There are two corrective actions recommended by experts:

1. Find roundabouts on Internet or contact vendors. -
2. Change the software development environment and train the developers in using
new environment.

Weak project management. The first activity coming in mind is change of the project
manager. Experts are rather cautious about change, saying that it may give the expected
result as well as aggravate the situation in project. It is the last thing should be done. The
other corrective actions proposed are:

Provide the experienced assistant to the project manager covering the areas in the
project management field, where project manager is not so successful.

Encourage and assist to project manager in deeper analysis of the situation in the
project helping to find out the most painful areas in development process and concentrate
on them.

Lack of developers motivation. All the experts agree, that material benefits are
important, but it is not enough. It is important, that developers see the result of their job.

Lack of hardware on developers side. This is an issue of planning. The only way is to
purchase, rent or use customers’ equipment.

Change of qualified personal. Preventative action proposed by experts is:

1. Assign responsibility about development of software component, module,
function etc. to two developers always.

2. Document everything during software development process, even if customer
doesn’t request it.

These two as preventative actions of change of the personal is also recommended in 2
Lack of knowledge in software development technologies and environment. The

preventative action is developers’ training. All experts mentioned this. There were two
groups within experts’ group regarding corrective actions:

SoFrWARE DEVELOPMENT RISK MANAGEMENT SURVEY 249

1. More than half of experts suggested involving of consultants — software
developers, who are able to communicate with the rest of the group and assist
during the development process.

2. Another group didn’t advise involvement of external experts. They suggested
finding a developer or group of developers within software development team,
who are able to self-education.

There were three experts cautioning of developers, who claimed of bei-ng pioneers.

pifficult communication among developers. This risk has very high probability in the
case, when development of some software components is outsourced to the third party.
The preventative actions suggested by experts are as follows:

1. Regular meetings of the developers, weekly or twice a week, discussing
problems during software development process.

2. Organise small development teams.

3. Define responsibilities.

4, Organize off-hour meetings, sports etc.

6. CONCLUSIONS

Software development practitioners have agreed, that software development risk
management is important activity. Top twelve risks are identified and mitigation
activities are highlighted. Software development managers could use the identified risks
as a checklist for initial risk analysis. The preventative and corrective actions proposed by
experts could be used as guidelines for planning software development risk mitigation
activities.

There are two very important steps in software development risk management, which
could be considered as a state of art:

1. Identification of risk.
2. Finding the appropriate preventative or corrective action.

Communication among software developers as well as communication between
customer and developer is very important for successful software development. The
further research is needed to provide effective methods for accumulation and appliance of
software managers' experience in risk identification and mitigation.

7. REFERENCES

1. G.,P. Babcock, Editor. Webster's Third New International Dictionary: Unabridged (MA: Merrian-Webster,
Springfield , 1981).

2. Information Systems Audit and Control Association (2002 CISA Review Manual, 2002)

3. Software Engineering Institute. “The SE! Approach to Managing Software Technical Risks.” Bridge
(October 1992), p.19-21

4. Camegic Mellon Software Engineering Institute, Software Engineering Risk Management FAQ. (21® of
March, 2001); http://www.sei.cmu.edu/publications.

5. CMark, B.Curtis, M.B.Chrissis, and C.V. Weber, Capability Maturity Model for Software, Version 1.1,
(Software Engineering Institute, CMU/SEI-93-TR-24, February (1993)).

250

6.

1.
12.

13.
14.
15.

16.
17.

8.

Table 4. Risks ordered by frequency (12 - the most frequently, 1 - the least frequently)

B. APINE

IEEE P1540/D11.0, “Draft Standard for Software Life Cycle Processes — Risk Management”, (IEEE
Standards Department, 2000).

R.Basili, J.Kontio, “Riskit: Increasing Confidence in Risk Management™ (21% of April 2001);
http://satc.gsfc.nasa.gov/support.)

B.W. Bochm, "Software Risk Management: Principles and Practices” (IEEE Software, Jan 1991), pp. 32.
41.

JLB.Huueuxu#, JL.IL.Hoenuxut “/lpumenenue memodos sxcnepmuozo onpoca Ons oyewxu xavecmsg
OQuanozoebix obyvarouyux cucmem”. MeTofel H CpencTBa KHOEPHETHKH B YNPABNCHHH Y4yeOHpn
npoueccom Beicwieh wkonbl. C6opHHK HayuHsiX Tpyaos, (Pura PITH, 1986).

. "Teopus npoznosuposanus u rpunamus pewenui”. Ilon pen. C.A. Capxucsna. (M.: Beicwas wiona,

1977).

Informicijas sistému riska analizes metodika (23rd of February 2002); http://www.lddk lv,.

K.Lockyer, J.Gordon, Project Management and Project Network Techniques (Bell and Bain Ltd, 1996) pp.
49-51.

T. Capers Jones. Estimating Software Costs._McGraw-Hill, USA, 1998.

B.Hetzel, Making Software Measurement Work._John Wiley & Sons, Inc., 1993, 290 p.

B. Bochm "4 Spiral Model of Software Development and Enhancement” (IEEE Computer, vol 21, #5, May
1988), pp 61-72.

G. Holt, “Software Risk Management — the Practical Approach” (Mei Technology Corporation, 2000, #2)

E.Yourdon, DEATH MARCH. The complete Software Developer's Guide to Surviving ‘Mission Impossible"
Prajects (Prentice Hall, 1997) 218 p.

. C.Abts, B.Boehm, B.Clark, S.Devnani-Chulani. COCOMO [l Model Definition Manual_(University of

Southern California) 68 p.

. R.S. Pressmann, Software engineering, a practicioner's approach (McGraw-Hill, 1992).

APPENDIX

Risk Expert Ave
11213456789 10[11]12]13
Difficult communication
among developers 835|651]17|8|3|6]|5]|4]5 5
ifficult communication with

customer 6 |12]10]10[10]9 |10f11]| 2| 6|9 |[I0] 8 9
Change of qualifiedpersonal | 4 [S | 4 [9|4 |6 |4]|12|1 | 8|[6]|6]6 6
Lack of developers motivation | 3 312 |13]2]|5]12 4 14([5]5 4
Lack of knowledge in software
development technologies and
environment 98 |9|4|[7]13|8]8 9 | 8|7 1|7 7
Lack of hardware on
developers side Sttt {1 ji2 5/1414]6 4
Software development
environment bugs 1 {4 17|11 [8[5][3]12 7161716 6
Unrealistic schedules and
budgets 10f11f11] 8912911 10j10| 79 10
Low quality of software
requirements 12{ 7 (12{3({12]7/[12(3 9 (8 |11]|7 8
Lack of hardware on the
customer side 7{10{2]|7[2]|4[2]12 s5|el6]6 6
Unstable software
requirements o8 fr2ftfo|]3 9(9[9]8 9
[Weak project management 2(2]|6|5|]6[8]6]3 10| 5517 5

SOFTWARE DEVELOPMENT RISK MANAGEMENT SURVEY 251

Table 5. Risks ordered by impact (12 - heavy impact, 1 - very little impact)

Risks Expert Average
1 2 3 4 5167 8 9 10|11]12(13
ifficult communication 1129418127103]|5|5|6]|°¢6 5

ong developers .
Difficult communicationwith [10 (12|12 9 (1012|103 | 1 4| 8 |10 8 8

customer

Change of qualified personal 3 (3175 12 10| 6
6 3 12| 3 4|3

i ack of developers motivation 5
i ack of knowledge insoftwarel 4 [5 | 7 (8 |6 |9 | 8|8 3|77
development technologies and
environment

b ack of hardware on 3[af2l 1214112334474 4
developers side

Software development 718 s 7]s5|t]3|n2{ulse|7]7]6 7
environment bugs
Unrealistic schedules and 127 (1111079 (109 | 8(5|12]9|9]10 9

budgets

Low quality of software g|1r|1oft2)12| 7)12 8|10 9 |10[111]10 10
pequirements
I_ack of hardware on the 2|1 81213 (8|2 |11]5|2(4]|5]|S5 4
customer side

Unstable software 6l10)e6 (111181089 |10}9 9
requirements

[Weak project management

MEASUREMENTS AND RISKS BASED METHOD
TO SUPPORT SOFTWARE DEVELOPMENT
PROCESS PLANNING

Baiba Apine
Riga Information Technology Institute, Kuldigas iela 45, LV-1083 Riga, Latvia
Baiba.Apine@dati.ly

Abstract This paper describes the way in which software development process
measurement data together with results of risk analysis are used for software
development project planning. The Measurements and Risks Based Method
(MERIME) to support software development process planning is proposed. The
first results of using this method are announced.

Keywords: software development process planning, software development process
measurements, risk analysis.

1. Introduction

Software development is rather complex process, consisting of different
activities. It is often said that software development is very hard to manage
and projects are out of schedule and out of budget. Planning of the
development process is very important activity. The software development
process is dependent on skills level of different specialists as well as on usage
of different technologies. A lot of various factors must be kept in mind while
planning the software development process. Therefore any information
submitted to support full-cycle software development process planning as
well as short-term planning is helpful.

There are two software development supporting processes providing
useful information for planning: risk analysis and measuring. Several
methods are used in software development companies for planning using the
information produced by these two processes. For instance, analytical

187

H.-M. Haav and A. Kalja (eds.), Databases and Information Systems 11, 187-198.
© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

188

software development cost estimation methods like COCOMO 1II [1],
Experience Pro [4], which use statistical data about many software
development projects probably developed in different companies. The results
are used to forecast effort and schedule for software development projects. It
is recommended to adjust the results given by formal analytical methods
using software development process measurement information collected
within the company [4], as formal results are might be too general and might
not meet the specific project needs.

We have six-year experience of using COCOMO II method for software
development effort and schedule planning. As well as the Measurement
program is implemented as a set of activities on the company level to
measure software development process. Gathered measurement data are used
to adjust results of formal methods to our software development projects for
more than two years. We often face the following drawbacks:

1. Analytical software development process effort and schedule
estimation methods available are used to estimate the whole software
development process only. It would be very useful for project short-
time planning to forecast, for instance, the distribution of effort or
any other project characteristic.

2. Itis quite easy to gather the measurement data, but it worth nothing if
not appropriately used. The effective usage of software development
measurement data is a key success factor of Measurement program
[3, 6]. It has to be shown continuously that measurement data are
analysed properly and used efficiently.

To find the way how to use software development process measurement
data for software project short-term planning, we started to use them together
with results of risk analysis. This paper describes Measurements and Risks
Based Method (MERIME) developed to support software development
process planning. The method formalizes the experience of software
managers and developers in such a way it could be spread among other
software developers and used for software development planning.

Initially lets have a look at the method as a "black box" (see Figure /) and
discuss results expected from the usage of MERIME method for planning
and input data necessary to apply the method.

Measurements and Risks Based Method for Software Development 189

Risk Analysis

Measurements and

Risks Based Method DWE peen'enca 33 characteristics Plannin
(MERIME) I 3 &

Development process measurements
Activities for risk mitigation

Measuring Software
Development Process

Figure |. Measurements and Risks Based Method relationships with other processes

2. Output of the Method

There are two results from using MERIME method:

e Development process characteristics for planning: the percentage of
effort had to be spent on developments as well as on different
activities within software development process for next months. For
instance, the result could be the following forecast: work amount spent
on project documentation for the project with unstable software
requirements will be 6% of total project development work amount for
next month.

e Tips based on experience from other projects of software development
risk mitigation activities. For instance, consider that the live risk for
the project under development is instability of software requirements.
The tip could be: "Establish project level control structure: change
request board consisting of two developers and two customers".

These results could be used for project short-term planning. Nevertheless

it must be kept in mind that these are forecasted characteristics and
recommendations only, so these results must be treated carefully.

3. Input of the Method

There are two software development support processes creating input data
for MERIME method: software development risk analysis and software
development process measurement.

There are no special restrictions how to organize the software
development process risk analysis. It is possible to use any software
development risk analysis method, for instance, standards IEEE P1540/D11.0

190

[7] or CMMI [10] for software development process risk analysis.

Nevertheless the results of risk analysis must satisfy the following criteria:

1. Results of the risk analysis must be summarized regularly. For instance,
monthly.

2. Each identified risk must be graded. For instance, using grades from 1
(the lowest mark) to 5 (the highest mark) according to grading scale given
in Table 1, which is used in our company.

Table]. Risk grading scale

Risk Criteria for Choosing Risk Grade
Grade

1 Risk is not applicable to this project.

2 The probability that the risk will have negative influence to the development
process is very low. It is not necessary to plan any activities for risk mitigation.

3 The probability that the risk will have negative influence to the development
process is quite low. It is necessary to think about special activities for risk
mitigation.

4 The probability that the risk will have negative influence to the development
process is high. It is necessary to plan special activities for risk mitigation and
monitor the risk continuously.

5 The risk will have negative influence to the development process. It is necessary
to plan special activities for risk mitigation, monitor the risk continuously and
involve top management in risk mitigation activities.

There are risk analysis methodologies grading separately risk probability
and impact [8, 9] by assigning grades from 1 to 3. Total risk exposure is
calculated by multiplying probability and impact. Although it is allowed to
choose other risk grading scales, all the development processes, which are
using MERIME method for planning, must be graded using one and the same
risk grading scale.

MERIME method uses risk sequences as input data. Lets have a look at
the sample. Risk analysis results suitable as input information for MERIME
method are given in the Table 2, where risk analysis grades are chosen
according to the criteria given in the Table I.

Another software development supporting process producing information
suitable for planning is measuring. Even if the official Measurement program
doesn’t exist at a company level, there are some traditions in each software
development company regarding the software development process
measuring. And again, like in the case with risk analysis data, MERIME
method doesn’t set any limitations on measurement information gathered in
the company, the only restriction is that all the processes using MERIME
method for planning must be measured according one and the same
measurement methodology. This could be ensured by implementing
Measurement program at a company level.

Measurements and Risks Based Method for Software Development

Table 2. Sample of risk analysis results (risk sequences)

191

Risk Jan-G0 | Feb-00 Mar-00 Apr-00 May-00
Unstable software requirements 2 3 2 3 4
Schedule shortage] I 2 4 4

Lets have a look at the Measurement program sample, which results are
suitable for using in MERIME method.

Software development process measurement activities have to be planned
along with software development project planning. Each project gathers the
following measurement data:

1. The amount of functionality has to be implemented (function points, lines
of code etc.).

2. Work amount spent on different activities within software development
process.

Each project developer writes down work hours spent on software
development at the end of each working day.

3. Planned activities for risk mitigation.

During risk analysis, if the grade for the particular risk exceeds the
accepted risk gap, risk mitigation activities are planned. For instance, if the
grade for risk “Difficult communication with customer” increases 3, possible
activity is “Conduct regular meetings on the project management level. It
would be better to conduct these meetings on the customer site. If it isn’t
possible to meet, customer has to be informed about project development by
phone or via e-mail.” This is recorded by the project team member whose
responsibility 1s project level risk management.

The head of Measurement program performs initial analysis of the
measurement data by forming reports suitable for input data of MERIME
method.

It 1s highly recommended that measurement data about problem reports
are gathered and analysed also, but this is out of scope of this paper.

4. How does It Work ?

The idea of the method is to store risk analysis and measurement
information (hereinafter risks and measurements) in MERIME information
base and use it for new projects' planning (hereinafter current projects).
MERIME method searches for relationships between risks and measurements
in MERIME information base to find software development projects, which
are similar to the current project, and therefore their measurement
information could be used as guidelines for current project.

192

To illustrate how risks and measurements are stored in the MERIME

information base, lets have a look at its meta-model [2] (see Figure 2):

1.

Project is software development project, which risk analysis and
measurement information is stored in the MERIME information base.
Project attributes are name, development environment, problem area, etc.
Risk is, analysed and graded risk. "Unstable software requirements” and
"Lack of knowledge in problem area" are samples of Risk. Name is an
attribute of the Risk.

Measurement is project development process measurement information.
"Percentage of work amount spent on documentation”, "Average response
time to problem report (days)" are samples of Measurement. Name is an
attribute of the Measurement.

Activity is activity for risk mitigation. "Establish change request board",
"Close project” are samples of Activity. Name is an attribute of the
Activity.

Sequence is a sequence of measurement information or risk grades. For
sample see Table 2. Name of the risk, month, for which risk is graded,
grade and length of the sequence are attributes of the Sequence.

:

forms
is farmed from

- has
Project H

hes +{ Risk), foms
has a negative | + :
influence to ; / is formed from
lis mitigated by
Imitigates

[Activity]

Figure 2. Meta-model of the MERIME method information base

Process diagram in Figure 3 illustrates steps of using MERIME method

for project development planning.

The first task is Store risk analysis results. To use MERIME method for

new project planning (for current project), the following activities must be
carried out:

1.

Perform current project risk analysis and store results in MERIME
information base for at least three months following the guidelines given
in chapter "3 Input”.

Perform current project risk analysis for the next time period. For
instance, if MERIME method is used for planning for next two months,
risk analysis must be performed for next two months also.

The results of the task Store risk analysis results are stored in the

MERIME information base.

Measurements and Risks Based Method for Software Development 193

Task Store measurement information shows, that measurement data for
new project must be gathered, summarised and stored in the MERIME
information base for at least three months. The result of Store measurement
information is stored in the MERIME information base.

Storing risk analysis and measurements information for current projects
guarantees, that MERIME information base is updated continuously.

The next task is Search for similar projects, where all the projects
satisfying the following criteria are found in MERIME information base:

1. Approximately the same amount of functionality must be implemented.
The amount of functionality could be measured in function points, lines of
code etc. -

2. Software development projects follow the same software development
life-cycle.

3. Have at least one risk sequence similar to the risk sequence of the current
project.

In MERIME method two risks’ sequences are considered as similar, if
they are of equal length and there are no corresponding risk grades difference
more than one. For instance, risk sequence V1=1,2,3,3,2 and V2=1,3,3,2,1,
are similar. Sequence V3=3,2.33.2 is similar to neither V1 nor V2, because
the first element of V3 differs from the first element of V1 and V2 for two.

The result of the Search for similar projects is Risk and measurement
sequence for sample project satisfying the criteria defined above. The sample
projects are considered as similar to the current project and will be used to
generate guidelines for current project planning.

Example in Figure 4 illustrates how to apply the criteria to find the
sample projects. PROJ_4 is current project, but PROJ_1, PROJ_2 and
PROJ_3 are sample projects found in the MERIME information base. The
PROJ_4 satisfies the following requirements:

1. The same amount of functionality must be implemented.

2. Software development projects follow the same software development
life-cycle.

3. PROJ_4 risks’ sequence of length 5 is similar to PROJ_1, PROJ_2 and
PROIJ_3 appropriate risks’ sequences.

The next task is Process characteristics forecast. Process characteristics
are forecasted to keep the measurement sequences for the current project the
same as for sample projects. Process characteristics are the result of the
usage of the MERIME method.

194

Y
of mstanca monthly

Store measurement
information

Store risk analysis
resufits

Measurements

Risk grades

Risk Measurement
sequence| | sequence Risk and measurement

~ Sequerces
l Search for similar projects)

Risk mitigation
activities

|
Risk grade is less than or Risk grade is higher than'
equals to accepted accepted

Risk and measurement sequence {ar sample Risk

Risk and measurement [

sequerce {or sampile project project sequerce
Process characteristics Search for advices
forecast
Process - ———
. Risk mitigation
characteristics aclivities
oo === ===
W Planning N
N e i

Figure 3. Business process of MERIME method. Business process is described using
GRAPES/BM business modelling language (5].

Have a look at the sample in the Figure 4 once more. We shall forecast
the work amount spent on documentation for the next month for PROJ_4.
The sample projects used are PROJ_], PROJ_2 and PROJ_3. The work
amount for documentation for the next time period for PROJ_4 will be 7.8%
from work amount spent on project development (see Figure 4). This value is
chosen as the closest for keeping measurement sequence for the PROJ_4
within the range of measurement sequences of PROJ_I, PROJ_2 and
PROJ_3.

The last task is Search for advices. This task is executed only in the case
when the risk grade in the sequence is higher than accepted. Risk sequence of
the current project is used for searching in the MERIME information base.
All projects having at least one risk sequence similar to the risk sequence of
the current project and having the last risk grade in the sequence quite high
are considered as sample projects. For instance, if the scale for risk grading
given in Table 1 is used, high-risk grades are 4 or 5. The result is the list of
Risk mitigation activities stored in the MERIME information base.

Measurements and Risks Based Method for Software Development 195

5. Application of the MERIME Method

Although MERIME method is still under development 1t is already used
for planning for three software development projects within one software
development company for half a year. The MERIME method information
base contains risk analysis and measurement information about seven
projects. _

This software development company focuses on development of large
tailored information systems for customers in Latvia and Western Europe,
where short-term planning is very important and might be rather complex
activity. '

There are already established risk analysis traditions in the company, but
risk analysis procedure is not formally defined yet. All the project level risks
(unstable requirements, lack of knowledge in the problem area, squeezed
development schedule etc.) are discussed weekly on the project level
meetings.

There are some measurement traditions established in the company. The
following measurement information is captured on the regular basis:

1. All development teams capture information about defects, usually
including identifier, description, function and version where defect fixed,
defect fix date, severity, current defect status, status fix date etc.

2. Some development teams capture information about time spent on
different activities during project development.

There is accepted Software development measurement program in the
company concentrating on usage of the existing data captured in different
software development projects. These measurement data are gathered and
analysed monthly. Standard set of measurement data reports is generated
monthly and provided to the software developers. The measurement program
1s discussed in [3] in more details.

The first step was to fill data into the MERIME information base. Seven
software development projects from approximately 40 currently running
projects were chosen having the following advantages:

1. Project development teams have captured information about time spent on
different activities during software development process.

2. Project manager loyalty to usage of formal methods to support software
development planning.

196

Amount of functionality

PROJ_I 1221 Function points

PROJ_2 | 802 Function points

PROJ_3 964 Function points

PROJ_4 1008 Function points

Month 1 2 | 3 4 | 5 6
Life cycle activity

PROJ_1 | Design [Design Implement. | Implement. | Implement. | Testing
PROJ_2 | Design | Implement. | Implement. Implement. Implement. | Testing
PROJ_3 | Design [Design Implement. | Implement. | Testing Testing
PROJ_4 | Design | Design Implement. Implement. Implement.

Risk: unstable software requirements

PROJ_1 |3 2 3 3 3 2
PROJ_2 | 2 3 2 2 2 3
PROJ_3 |2 2 3 4 3 3
PROJ 4 | 2 2 2 3 2

Risk: difficult communication with customer

PROJ_1 2 2 2] |]
PROJ_2 |2] 2 2 2 3
PROJ_3 |2 2 1 1 1 1
PROJ. 4 | 1 2 2 1 2

Risk: lack of knowledge about development environment and technologies used

PROJ_1 | 4 4 4 4 4 3
PROJ_2 |3 2 2 2 2 3
PROJ_ 3 | 4 3 2 2 2 2
PROJ_ 4 | 4 4 3 3 3

Measurement: percentage of work-amount spent on documentation

PROJ_] 37.8% 20.0% 17.3% 13.3% 3.0% 6.3%
PROJ_2 | 4.5% 4.3% 5.4% 2.9% 4.8% 1.0%
PROJ_3 | 20.0% 17.3% 13.3% 10.9% 6.3% 3.5%
PROJ_4 12.2% 11.0% 11.8% 7.8%

Percentage of Workamount Spent on Documentation (Normed against Average)

Month

Figure 4. Searching for sample project in the MERIME information base

Measurements and Risks Based Method for Software Development 197

Questionnaires were provided to these five project managers asking to
restore the risk sequences for their projects’ risks following the scale given in
Table I. One month was chosen as a frequency period for the grading of
risks, because measurement information is summarised monthly also. The
results of the questionnaires were filled into the MERIME information base.

Measurement information for the initial filling into the MERIME
information base was taken from the Measurement program reports. The
following measurements information about each project was stored in the
MERIME information base:

1. Percentage of work amount spent on development of the concept of
operation, requirements specification, design, implementation, testing,
deployment, maintenance, documentation, quality assurance, management,
and training.

2. Average response time to problem reports generated by customers.

3. Activities for mitigation of risks having grade higher than 3.

The next step was to test the method for the projects under development.
Three projects were chosen having the same advantages as those seven
projects already stored in MERIME information base. Questionnaires were
provided to project managers asking to restore the risk sequences for their
projects’ level risks following the scale given in Table I from the beginning
of the project. The results of the questionnaires for the first 4 months of
projects’ development were filled into the MERIME information base.
MERIME method was used to get the measurement values forecasts for the
next two months regarding the work amount spent on different activities
during software development. The results were compared with real
measurement values of the projects.

6. Conclusions and Further Work

The following conclusions can be made:

1. Method gives rather precise forecasts for the values of development
process supporting activities: documentation, quality assurance,
management and training. The average error of forecasts is 19.89% with
deviation 15.02%.

2. Usage of this method shows that measurement information is used
continuously and effectively, which is key success factor of the
Measurement program successful implementation.

3. It is possible to use incomplete measurement and risk analysis data. It is
very important that the first benefits from gathering measurement and risk
analysis data could be obtained after first three months.

198

4.

5.

It is possible to use this method even if there are no data available about
large number of software development projects. This is very important for
software development companies in small countries like Latvia. Another
reason why it is not possible to use large number of software development
projects as a source for forecasting is rapid changes in technologies. Even
in large companies and countries with high IT development level statistical
data gathered becomes obsolete because of rapid changes in software
development technologies and skills level of staff.

The method is very flexible as it determines neither risk analysis nor
measuring process. It is possible to use this method in different software
development companies with different software development process
traditions.

Acknowledgement

This paper is partly supported by the Latvian Science Council programme

No. 02.0002.

References

(1
[2]

(3]

(4]
(5]
(6]

(71

(8]
(9]

Abts, C., Boehm, B., Clark, B., Devnani-Chulani, S. COCOMO II Model Definition
Manual,_University of Southern California, 68 p.

Apine, B., Apinis, 1, Krasts, O., Sukovskis, U. Meta-model Based and Component Based
Approach for Information Systems Design, Proceedings of the 4th IEEE International
Baltic Workshop: Baltic DB&IS '2000, 2000, Vilnius, Lithuania, pp. 78-83.

Apine, B., Smilts, U., Sukovskis, U. Software Measurement Practice to Address
Customer Satisfaction, Scientific Proceedings of Riga Technical University, Applied
Computer Systems. — Ist thematic issue, 2000, pp. 11-18.

Experience Pro, http://www.sttf.fi, 03.02.2002

GRADE Business Modeling. Language reference. INFOLOGISTIK GmbH., 1998

Hetzel, B. Making Software Measurement Work. New York: John Wiley & Sons, Inc.,
1993.

IEEE P1540/D11.0, Draft Standard for Software Life Cycle Processes-Risk Management,
IEEE Standards Department, 2000.

Informacijas sistému riska analizes metodika, http://www.lddk.lv, 03.02.2002.

Microsoft, material No: 1516ACP, Principles of Application Development

{10} Paulk, M.C., Curtis B., Chrissis, M.B., Weber, C.V. Capability Maturity Model for

Software, Version |.1, Software Engineering Institute, CMU/SEI-93-TR-24, February
1993.

MEASUREMENTS AND RISKS BASED METHOD
TO SUPPORT SOFTWARE DEVELOPMENT
PROCESS PLANNING

Baiba Apine
Riga Infarmation Technology Institure, Kuldigas iela 45, LV-1083 Riga, Latvia
Baiba Apine@dati. lv

Abstract: This paper describes the way in which software development process
measurement data together with results of risk analysis are used for software
development project planning. The Measurements and Risks Based Method
(MERIME) to support software development process planning is proposed The
first results of using this method are announced.

Keywords: Software development process planning, software development process
measurements, risk analysis.

7 Acknowledgement

This paper is partly supported by the Latvian Science Council programme
No. 02.0002.

Z Introduction

Software development is rather complex process, consisting of different
activities. It 1s often said that software development is very hard to manage
and projects are out of schedule and out of budget. Planning of the
development process is very important activity. The software development
process is dependent on skills level of different specialists as well as on usage
of different technologies. A lot of various factors must be kept in mind while
planning the software development process. Therefore any information

submitted to support full-cycle software development process planning as
well as short-term planning is helpful.

There are two software development supporting processes providing
useful information for planning: risk analysis and measuring. Several
methods are used in software development companies for planning using the
information produced by these two processes. For instance, analytical
software development cost estimation methods like COCOMO 11 [1],
Experience Pro [2], which use statistical data about many software
development projects probably developed in different companies. The results
are used to forecast effort and schedule for software development projects. It
is recommended to adjust the results given by formal analytical methods
using software development process measurement information collected
within the company [2], as formal results are might be too general and might
not meet the specific project needs.

We have six-year experience of using COCOMO Il method for software
development effort and schedule planning. As well as the Measurement
program is implemented as a set of activities on the company leve] to
measure software development process. Gathered measurement data are used
to adjust results of formal methods to our software development projects for
more than two years. We often face the following drawbacks:

1. Analytical software development process effort and schedule
estimation methods available are used to estimate the whole software
development process only. It would be very useful for project short-
time planning to forecast, for instance, the distribution of effort or
any other project characteristic.

2. ltis quite easy to gather the measurement data, but it worth nothing if
not appropnately used. The effective usage of software development
measurement data is a key success factor of Measurement program
(3], (4]. It has to be shown continuously that measurement data are
analysed properly and used efficiently.

To find the way how to use software development process measurement
data for software project short-term planning, we started to use them together
with results of risk analysis. This paper describes Measurements and Risks
Based Method (MERIME) developed to support software development
process planning. The method formalizes the experience of sofiware
managers and developers in such a way it could be spread among other
software developers and used for software development planning.

Initially lets have a look at the method as a "“black box" (see Figure /) and
discuss results expected from the usage of MERIME method for planning
and input data necessary to apply the method.

Measurements and Risks Based Method to Support Software 5
Development Process Planning

Risk Analysis

t

2

J'Risk assessma

Measurements and

Risks Based Method g:;::&pnrz:nl process characteristics Planning
(MERIME)

Development process measurements
Activities for risk mitigation

Measuring Software
Development Process

Figure 1. Measurements and Risks Based Method relationships with other
processes

3. Output of the Method

There are two results from using MERIME method:
¢ Development process characteristics for planning: the percentage of
effort had to be spent on developments as well as on different
activities within software development process for next months. For
instance, the result could be the following forecast; work amount spent
on project documentation for the project with unstable software
requirements will be 6% of total project development work amount for
next month.
¢ Tips based on experience from other projects of software development
risk mitigation activities. For instance, consider that the live risk for
the project under development is instability of software requirements.
The tip could be: “Establish project level control structure: change
request board consisting of two developers and two customers”.
These results could be used for project short-term planning. Nevertheless
It must be kept in mind that these are forecasied characteristics and
recommendations only, so these results must be treated carefully.

4. Input of the Method

There are two software development support processes creating input data
for MERIME method: software development risk analysis and software
development process measurement.

There are no special restrictions how to organize the software
development process risk analysis. It is possible to use any software
development risk analysis method, for instance, standards 1EEE P1540/D11.0
[S] or CMMI [6] for software development process risk analysis.
Nevertheless the results of risk analysis must satisfy the following criteria:

1. Results of the risk analysis must be summarized regularly. For instance,
monthly.
2. Each identified risk must be graded. For instance, using grades from |

(the lowest mark) to 5 (the highest mark) according to grading scale given

in Table 1, which is used in our company.

Table . Risk grading scale

Risk Criteria for Choosing Risk Grade
Grade
1 Risk is not applicable to this project.
2 The probability that the risk will have negative influence to the development
process is very low. It is not necessary to plan any activities for risk mitigation.
3 The probability that the risk will have negative influence to the development
process is quite low. It is necessary to think about special activities for risk
mitigation.

4 The probability that the risk will have negative influence to the development
process is high. [t is necessary to plan special activities for risk mitigation and
monitor the sk continuously.

S The risk will have negative influence to the development process. It is necessary
1o plan special activities for risk mitigation, monitor the risk continuously and
involve top management in risk mitigation activities.

There are risk analysis methodologies grading separately risk probability
and impact [7], [8] by assigning grades from | to 3. Total risk exposure is
calculated by multiplying probability and impact. Although it is allowed to
choose other risk grading scales, all the development processes, which are
using MERIME method for planning, must be graded using one and the same
risk grading scale.

MERIME method uses risk sequences as input data. Lets have a look at
the sample. Risk analysis results suitable as input information for MERIME
method are given in the Table 2, where risk analysis grades are chosen
according to the criteria given in the Table /.

Another software development supporting process producing information
suitable for planning is measuring. Even if the official Measurement program
doesn't exist al a company level, there are some traditions in each software
development company regarding the software development process
measuring. And again, like in the case with risk analysis data, MERIME
method doesn’t set any limitations on measurement information gathered in
the company, the only restriction is that all the processes using MERIME
method for planning must be measured according one and the same

Measurements and Risks Based Method to Support Software 7
Development Process Planning

measurement methodology. This could be ensured by implementing
Measurement program at a company level.

Table 2. Sample of risk analysis results (risk sequences)

Risk Jan-00 Feb-00 | Mar-00 | Apr-00 | May-00
Unstable sofiware requirements 2 3 2 3 4
Schedule shortage |] 2 4 4

Lets have a look at the Measurement program sample, which results are
suitable for using in MERIME method.

Software development process measurement activities have to be planned
along with sofiware development project planning. Each project gathers the
following measurement data:

1. The amount of functionality has to be implemented (function points, lines
of code etc.).

2. Work amount spent on different activities within software development
process.

Each project developer writes down work hours spent on software
development at the end of each working day.

3. Planned activities for risk mitigation.

During risk analysis, if the grade for the particular risk exceeds the
accepted risk gap, risk mitigation activities are planned. For instance, if the
grade for risk “Difficult communication with customer” increases 3, possible
activity is “Conduct regular meetings on the project management level. It
would be better to conduct these meetings on the customer site. 1f 1t isn"t
possible to meet, customer has to be informed about project development by
phone or via e-mail.” This is recorded by the project team member whose
responsibility is project level risk management.

The head of Measurement program performs initial analysis of the
measurement data by forming reports suitable for input data of MERIME
method.

It is highly recommended that measurement data about problem reports
are gathered and analysed also, but this is out of scope of this paper.

5. How does It Work ?

The idea of the method is 1o store risk analysis and measurement
information (hereinafter risks and measurements) in MERIME information
base and use it for new projects' planning (hereinafter current projects).
MERIME method searches for relationships between risks and measurements
in MERIME information base to find software development projects, which

are similar to the current project, and therefore their measurement

information could be used as guidelines for current project.

To illustrate how risks and measurements are stored in the MERIME

information base, lets have a look at its meta-model [9] (see Figure 2):

1. Project is software development project, which risk analysis and
measurement information is stored in the MERIME information base.
Project attributes are name, development environment, problem area, etc.

2. Riskis, analysed and graded risk. "Unstable software requirements" and
"Lack of knowledge in problem area" are samples of Risk. Name is an
attribute of the Risk.

3. Measurement is project development process measurement information.
"Percentage of work amount spent on documentation”, "Average response
time to problem report (days)" are samples of Measurement. Name is an
attribute of the Measurement.

4. Activity is activity for risk mitigation. "Establish change request board",
"Close project” are samples of Activity. Name is an attribute of the
Activity.

5. Sequence is a sequence of measurement information or risk grades. For
sample see Table 2. Name of the risk, month, for which risk is graded,
grade and length of the sequence are attributes of the Sequence.

. foms
8 formed from

Sequence

characlerize

forms

Risk
has a negative s {ormed from
influence 1o
s mitigated by
mitigates
Activity

Figure 2. Meta-model of the MERIME method information base

Process diagram in Figure 3 illustrates steps of using MERIME method
for project development planning.

The first task is Store risk analysis results. To use MERIME method for
new project planning (for current project), the following activities must be
carried out:

1. Perform current project risk analysis and store results in MERIME
information base for at least three months following the guidelines given
in chapter "4 INPUT".

2. Perform current project risk analysis for the next time period. For
instance, if MERIME method is used for planning for next two months,
risk analysis must be performed for next two months also.

Measurements and Risks Based Method to Support Software 9
Development Process Planning

The results of the task Store risk analysis results are stored in the
MERIME information base.

Task Store measurement information shows, that measurement data for
new project must be gathered, summarised and stored in the MERIME
information base for at least three months. The result of Store measurement
information is stored in the MERIME information base.

Storing risk analysis and measurements information for current projects
guarantees, that MERIME information base is updated continuously.

The next task is Search for similar projects, where all the projects
satisfying the following criteria are found in MERIME information base:

1. Approximately the same amount of functionality must be implemented.
The amount of functionality could be measured in function points, lines of
code etc.

2. Software development projects follow the same software development
life-cycle.

3. Have at least one risk sequence similar to the risk sequence of the current
project.

In MERIME method two risks’ sequences are considered as similar, if
they are of equal length and there are no corresponding risk grades difference
more than one. For instance, risk sequence V1=1,2,3,3,2 and V2=1,3,3,2,1,
are similar. Sequence V3=32,3,3,2 is similar to neither V1 nor V2, because
the first element of V3 differs from the first element of V1 and V2 for two.

The result of the Search for similar projects is Risk and measurement
sequence for sample project satisfying the criteria defined above. The sample
projects are considered as similar to the current project and will be used to
generate guidelines for current project planning.

Example in Figure 4 illustrates how to apply the criteria to find the
sample projects. PROJ_4 is current project, but PROJ_I, PROJ_2 and
PRQOJ 3 are sample projects found in the MERIME information base. The
PROJ_4 satisfies the following requirements:

1. The same amount of functionality must be implemented.

2. Software development projects follow the same software development
life-cycle.

3. PROJ_4 risks’ sequence of length S is similar to PROJ_1, PROJ_2 and
PROJ_3 appropriate risks’ sequences.

The next task is Process characteristics forecast. Process characteristics
are forecasted 1o keep the measurement sequences for the current project the
same as for sample projects. Process characteristics are the result of the
usage of the MERIML method.

odicely
or nstanca monthy

Store meayuremant
Information

Store risk snalysis
resufts

Risk Maagurement \
sequerce| | saquerce

Risk and &0
saquences MER IVE :;;: mitigation
(Besrch for similar projects Information bas s
Risk grade s higher than
accepind

Risk grade |s |eas than or
squals 1o accapwd
Risk and massurement
saquerce [sample

profeci

Risk and messurement
10quence | or asmple promct

Risk
squerce

]

Search for advices

Proceas charsderistics
forecast

Process

- isk mitigation
chamctermics

sctiviims

- TSTS======a

Figure 3. Business process of MERIME method. Business process is described using
GRAPES/BM business modelling language (10].

Have a look at the sample in the Figure 4 once more. We shall forecast
the work amount spent on documentation for the next month for PROJ 4.
The sample projects used are PROJ_1, PROJ_2 and PROJ_3. The work
amount for documentation for the next time period for PROJ_4 will be 7.8%
from work amount spent on project development (see Figure 4). This value is
chosen as the closest for keeping measurement sequence for the PROJ_4
within the range of measurement sequences of PROJ 1, PROJ_2 and
PROJ_3.

The last task is Search for advices. This task is executed only in the case
when the risk grade in the sequence is higher than accepted. Risk sequence of
the current project is used for searching in the MERIME information base.
All projects having at |least one risk sequence similar to the risk sequence of
the current project and having the last risk grade in the sequence quite high
are considered as sample projects. For instance, if the scale for risk grading
given in Table | is used, high-risk grades are 4 or 5. The result is the list of
Risk mitigation activities stored in the MERIME information base.

Measurements and Risks Based Method to Support Software [}
Development Process Planning

6. Application of the MERIME method

Although MERIME method is still under development it is already used
for planning for three software development projects within one software
development company for half a year. The MERIME method information
base contains risk analysis and measurement information about seven
projects.

This software development company focuses on development of large
tailored information systems for customers in Latvia and Western Europe,
where short-term planning is very important and might be rather complex
activity.

There are already established risk analysis traditions in the company, but
risk analysis procedure is not formally defined yet. All the project level risks
(unstable requirements, lack of knowledge in the problem area, squeezed
development schedule etc.) are discussed weekly on the project level
meetings.

There are some measurement traditions established in the company. The
following measurement information is captured on the regular basis:

1. All development teams capture information about defects, usually
including identifier, description, function and version where defect fixed,
defect fix date, severity, current defect status, status fix date etc.

2. Some development teams capture information about time spent on
different activities during project development.

There is accepted Software development measurement program in the
company concentrating on usage of the existing data captured in difterent
software development projects. These measurement data are gathered and
analysed monthly. Standard set of measurement data reports is generated
monthly and provided to the software developers. The measurement program
is discussed in [4] in more detatls.

The first step was to fill data into the MERIME information base. Seven
software development projects from approximately 40 currently running
projects were chosen having the following advantages:

I. Project development teams have captured information about time spent on
different activities during software development process.

2. Project manager loyalty to usage of formal methods to support software
development planning.

12

Amount of functionality

PROJ | 1221 Function points

PROJ 2 802 Function points

PROJ 3 964 Function points

PROJ 4 1008 Function points

Month 1 2 3 1 4 1 5 6

Life cycle activity

PROJ 1 Design [Design Implement. | Implement. | Implement. | Testing

PROJ 2 | Design | Implement. [Implement. | Implement. | Implement. | Testing

PROJ 3 | Design | Design Implement. | Implement. | Testing Testing

PROJ 4 | Design | Design Implement. | Implement. | Implement.

Risk: unstable software requirements

PROJ 1 |3 2 3 3 3 2

PROJ 2 |2 3 2 2 2 3

PROJ 3 |2 2 3 4 3 3

PROJ 4 |2 2 2 3 2

Risk: difficult communication with customer

PROJ 1 |2 2 2 1 1 |

PROJ 2 |2 1 2 2 2 3

PROJ 3 |2 2 | 1 1 |

PROJ 4 || 2 2 | 2

Risk: lack ofknowlcdggabou(development environment and technologies used

PROJ 1 |4 4 4 4 4 3

PROJ 2 3 2 2 2 2 3

PROJ 3 | 4 3 2 2 2 2

PROIJ 4 4 4 3 3 3

Measurement: percentage of work-amount spent on documentation

PROJ | 37.8% 20.0% 17.3% 13.3% 3.0% 6.3%

PROJ 2 4.5% 4.3% 5.4% 2.9% 4.8% 1.0%

PROJ 3 20.0% 17.3% 13.3% 10.9% 6.3% 3.5%
11.0% 11.8% 7.8%

PROJ 4 12.2%

Percentage of Workamount Spent on Documentation {Normad against Average)

Figure 4. Searching for sample project in the MERIME information base

Month

Measurements and Risks Based Method to Support Software 13
Development Process Planning

Questionnaires were provided to these five project managers asking 1o
restore the risk sequences for their projects’ risks tollowing the scale given in
Table /. One month was chosen as a frequency period for the grading of
risks, because measurement information is summarised monthly also. The
results of the questionnaires were filled into the MERIME information base.

Measurement information for the initial filling into the MERIME
information base was taken from the Measurement program reports. The
following measurements information about each project was stored in the
MERIME information base:

1. Percentage of work amount spent on development of the concept of
operation, requirements specification, design, implementation, testing,
deployment, maintenance, documentation, quality assurance, management,
and training.

2. Average response time to problem reports generated by customers.

3. Activities for mitigation of risks having grade higher than 3.

The next step was to test the method for the projects under development.
Three projects were chosen having the same advantages as those seven
projects already stored in MERIME information base. Questionnaires were
provided to project managers asking to restore the risk sequences for their
projects’ level risks following the scale given in Table / from the beginning
of the project. The results of the questionnaires for the first 4 months of
projects’ development were filled into the MERIME information base.
MERIME method was used to get the measurement values forecasts for the
next two months regarding the work amount spent on different activities
during software development. The results were compared with real
measurement values ol the projects.

7. Conclusions and further work

The following conclusions can be made:

1. Method gives rather precise forecasts for the values of development
process supporting activities: documentation, quality assurance,
management and training. The average error of forecasts is 19.89% with
deviation 15.02%.

2. Usage of this method shows that measurement information is used
continuously and effectively, which is key success factor of the
Measurement program successful implementation.

3. Itis possible to use incomplete measurement and risk analysis data. It is
very important that the first benefits from gathering measurement and risk
analysis data could be obtained after first three months.

14

4.

5.

It is possible to use this method even if there are no data available about
large number of software development projects. This is very important for
software development companies in small countries like Latvia. Another
reason why it is not possible to use large number of software development
projects as a source for forecasting is rapid changes in technologies. Even
in large companies and countries with high IT development level statistical
data gathered becomes obsolete because of rapid changes in software
development technologies and skills level of staff.

The method is very flexible as it determines neither risk analysis nor
measuring process. It is possible to use this method in different software
development companies with different software development process
traditions.

References

{1

(2)
(3]

(4]

(5
(6]
(7]

(8]
(9

C.Abts, B.Boehm, B.Clark, S.Devnani-Chulani. COCOMO Il Mode! Definition

Manual, University of Southern California, 68 p.

Experience Pro, hitp://www.snf.fi, 03.02.2002

Hetzel, B. 1993. Making Software Measurement Work. New York: John Wiley & Sons,
Inc.

Baiba Apine, Uldis Smilts, Uldis Sukovskis. Software Measurement Practice to Address
Customer Satisfaction, Scientific Proceedings of Riga Technical University, 2000,
Applied Computer Systems. — st thematic issue, 11 - 18

IEEE P1540/D11.0, Drafi Standard for Software Life Cycle Processes-Risk Management,
IEEE Standards Department, 2000.

Mark C. Paulk, Bill Cuntis, Mary Beth Chrissis, and Charles V. Weber, Capability
Maturity Model for Sofrware, Version 1.1, Software Engineering Institute, CMU/SEI-93-
TR-24, February (1993).

Informécijas sistému riska analizes metodika, http://www.lddk.lv, 03.02.2002
Microsoft, material No: 1516ACP, Principles of Application Development

Baiba Apine, ligvars Apinis, Ojars Krasts, Uldis Sukovskis. Meta-mode! Based and
Component Based Approach for Information Systems Design, Proceedings of the 4th
IEEE International Baltic Workshop: Baltic DB&IS *2000, 2000, Vilnius, Lithuania, 78-
83

[10] 1998. GRADE Business Modeling. Language reference. INFOLOGISTIK GmbH.

PATTERNS AS A MEANS FOR MANAGING
KNOWLEDGE IN THE INFORMATION
SYSTEMS ENGINEERING PROCESS

Per Backlund {per.backlund@ida.his.se}
Ingi Jonasson {ingi.jonasson@ida.his.se}
University of Skévde

P.O. 408, S-541 28 Skdvde, Sweden

Abstract; The traditional Information Engineering Process tends to be cumbersome and
hard to manage. For example there are problems in managing knowledge and
reusing past experiences. This is essentially a knowledge management problem.
We propose the use of patterns as a means 1o resolve these problems. In order
to be created, managed and retrieved, patterns must be organised in a
repository. We have identified a number of problems that have to be dealt with,
some of which are: problems concerning the strategies for the elicitation and
evaluation of patierns as well as problems with regard to the documentation,
storing, searching, and retrieval of patterns.

Keywords: Knowledge management, patterns, reuse, information systems engineering

1. Background

Information Systems Engineering (ISE) can be defined as an
interdisciplinary approach to enable the realisation of successful information
systems. The disciplines involved are integrated into a team effort with the
goal of providing a quality product that meets both business and technical
needs of all stakeholders. The ISE process is a highly knowledge intensive
process. For example, developing an e-business application requires that a
number of different competencies are coordinated in order to achieve success.
Furthermore, the development time has to be shortened and the costs have 1o
be reduced in order to stay in competition. Patterns, commonly described as
core solutions to recurring problems, and software components have been

SOFTWARE DEVELOPMENT PROCESS
IMPROVEMENT THROUGH MEASUREMENTS
AND REQUIREMENTS TRACEABILITY

Baiba Apine, Martins Gills, Janis Plume

°Rt'ga Information Technology Institute, Kuldigas iela 45, LV-1083 Riga, Latvia
{Baiba.Apine, Martins.Gills)@dati.lv

“IT Alise, Brivibas iela 68, LV-1011 Riga, Latvia

J.Plume@alise.lv

Abstract: Quality becomes more and more critical aspect of software development - most
companies are looking for possibilities to improve quality and begin their
improvement initiatives. Authors seek to develop a predictable environment for
software development as groundwork for process improvement. The paper
outlines a method that comprises quality and document system development.
including the integration of measurement program and improved management
of project information by means of a traceability tool. Lessons from real-life
experience in two software development companies are analysed.

Keywords: Software process improvement, process measurements, quality assurance.
traceability.

1. Introduction

Quality becomes more and more critical aspect of software development -
most companies are looking for possibilities to improve quality and begin
their improvement initiatives. Developers in the two software development
companies in Latvia have identified the main problems related to project
development. Problems are due to company and project level unawareness of
the risks present. The process enhancement actions have to be taken. This
paper outlines three aspects of software process improvement (SPI) for
different levels:

1. Development of quality management system as a solution at company
level (see Chapter 2).

66

2. Measuring software development process for organisational level as
well as at project level (see Chapter 3).

3. Traceability issues and the tool Tracelt at project level (see Chapter 4).

The traceability concem within a project is guided, for example, by the
necessity to know the impact of a particular change in a set of project items,
or when there is a question of requirement coverage.

2. Software Process Improvement Initiatives at
Company Level

Quality management systems are one of the most common ways for a
process improvement initiative. It is an integral measure and involves almost
all functions of the company.

Most process improvement paradigms impose continuous improvement.
That means, after implementation of quality system, companies must go on
with their improvement activities. In such phase SPI effort is more
implemented in small steps, sometimes referred to as process improvement
experiments. Here a short experience on how quality management system
was implemented in one company is reported.

Measurement
and situation
anglysis

/

Project

S T i
: Indusiris) ‘[Menunmcnf St
praclices
i Pl | !‘_ base - / Tl
N PR T R
\ _ Toning | vatonng_|
L/ e -
A ™~

-
T~

3
Orpamzain |
I mecen
L desenpion

Process
deseription Rkt

Figure /. Conmlinuous process improvement

2.1 General approach

Industry practice adoption and leaming of the company from its
experience are the most evident sources for process improvement. [11] One
more widely used practice, as input generator for process improvement is
measurement program, which is a particular kind of experience summary.
Thus, following general system can be drawn as shown in the Fig. |.

Sofrware Development Process Improvement through Measurements 67
and Requirements Traceability

This system reflects continuous approach for process improvement,
emphasised by most common process improvement paradigms (ISO 9001,
TQM, EFQM).

There are a lot of problems arising from introduction of such kind of
system. Most of them are of cultural nature and must be handled with a great
precaution. These aspects are widely discussed in various sources including

[11).
2.2 Process training and quality system usage

Development of processes is learning process by itself. Before the
processes are put as formal text in a procedure, it is untimely to say that
everything is clear in it. One of the most important benefits from process
description activities is additional understanding of the process by developer
of process documentation.

Other aspect of the process document usage is its role in training of new
employees. A very popular way for a newcomer to start in company is to start
reading of procedures, instructions, job descriptions and other documents,
provided that these documents are reflection of the actual situation.

Accezsss per week

1 4 7 10 13 6 19 22 25 8

Numbes ol week, 2001

Figure 2. Example of quality document database access intensity

Document control system allows monitoring of intensity of the document
usage, Analysis of such information may reveal inleresting aspects of
employee habits in using the system. Fig. 2 shows number of document
access per week.

Number of document access shows peaks. Analysis of such peaks showed
two reasons of additional activity of document usage:

68

- External motivation (e.g. external and internal audits)
- New employee recruitment

2.3 Document system development

Document types and common understanding of their meaning
(procedures, instructions, guidelines, standards, templates, etc.) are
preconditions for starting document system development.

Number of documents in the quality system differs, depending on
practices adopted for the company, size of company and scope of quality
system. For instance, a software company having about 100 employees owns
following number of documents during ISO 9001 certification: 23
procedures, 21 instructions, 16 guidelines, 45 templates and 9 internal
standards.

Initiated .
ostpone Rejected

n develop n reconcili
ment ation

Ready ublishe

Figure 3. Document status transition diagram

As the total number of documents is high, a document control system can
help quite significantly. Main functions for such system are the following:

- Document initiation and development start-up

- Document development (co-ordination and reconciliation)

- Document approval and document accessibility assurance

- Document version control, which means initiation of changes and
control of implementation in the same way as the development of a new
document.

These functions are subject to automated support by appropriate software
tools. Significant concept of document development system is "Document
status”. Fig. 3 shows a possible status transition diagram of a quality
document. Nevertheless experience shows that too strict implementation of
the document life cycle may slow down the real process of document
development.

Sofrware Development Process Improvement through Measurements 69
and Requirements Traceability

3. Measurement Process Development

Measurement process is another important part of the quality management
system at the company level as information from different software
development projects are analysed. Measurement process can be considered
at the project level also as measurement data are analysed to improve project
monitoring. The experience of two software development companies is
analysed here.

A lot of information is generated by software development process
suitable for measuring [4], [5]. For instance, productivity of software
developers, time spent for single requirement implementation, number of new
defects per fix, etc. [t must be kept in mind that measuring takes some project
development resources as well as project management, configuration
management etc. Therefore it is very essential not to choose very large
variety of measurements but concentrate on the most relevant ones. Our goal
is to use measurement data in order to increase software development process
transparency and minimise software development risks.

As these goals are rather abstract, we have to find out what are the major
software development process risks. We have questioned 20 software
projects managers to range a list of risks in the order of decreasing frequency.
The list of risks was taken from different sources [6], [10]. Managers where
allowed to add their own risks to the proposed list as well. Those software
project managers have experience of managing at least two software
development projects and at least 3 years in the position of software
development manager. More than a half of the respondents (56%) said that
the software development projects had different problems related to software
requirements: poor quality, unstable. This is the most frequent source of risks
yielding cost and schedule overruns and other software development
problems.

Our task was to provide methods and tools to monitor software project
development process because the real situation awareness is the very first
step to the mitigation of risks. Measuring software development process and
using measurement data effectively is the key to software development
process transparency. The mitigation process itself is creative and must be
left to managers and developers responsibility while measurements provide
information for project monitoring. Hence two issues are essential:

I. Information provided by mcasurcment process has to be analysed and
discussed regularly, let say monthly, in order to follow changes of
development process characteristics continuously.

2. Some reference information from best practices is necessary 1o
compare current process measurements.

70

Incoming Problem Reports Versus Resoived

A

csBEHEEERS

O Incoming '
.m Resohed |

¥ 2 3 456 86 7 8 9 10112131415
Month

Number of Problem
Reports

2

Figure 4. Sample chant illustrating defects' analysis on monthly basis

Monthly measurement reports for each software development project
consist of:

1. Overall effort spent on project development: actual effort versus
planned.

2. Time spent on different activities during software project development.
This includes time spent on software design, implementation, testing etc. as
well as on different supporting processes.

3. Classification of defects by types, by severity etc. This measurement is
the most prevalent in projects.

4. Defect distribution throughout the software. Defects are grouped by
source file, configuration unit, functional unit etc. It can help to find the most
erroneous chunks of software as well as those, which aren't tested enough.

5. Problem report status changes over time. This measurement is very
useful for early identification of problems in software development process.
See Fig. 4 illustrating the project crisis starting at the first months and ending
on the third month.

6. Defect resolve time (see Fig. 5). Defect response time data rises more
questions than answers, for instance, is this response time profile what we
actually want, or what are we going to do to change it.

Is it enough to gather all these measurements in order to improve project
monitoring? The answer is NO, because measurement information must be
properly analysed regularly, otherwise there is no sense to spend effort on
capturing measurement data.

At the end of the project all the project measurement information is
summarised and stored in the database of closed projects. The following
information is stored:

1. Size of the functionality of the project expressed in the function points
or lines of code. Function points are used for the new software development
projects. Lines of code are used for software maintenance projects.

Software Development Process Improvement through Measurements 71
and Requirements Traceability

2. Effort distribution by different activities during software project
development. This measurement is essential for ratio-based software
development process estimation. The basic problem with ratio-based
estimation is the false assumption that there are constant ratios between
coding, testing, project management and other key activities [9]. This
distribution differs from one project to another.

3. Staff assigned to project development.

4. Cumulative number of fixed and resolved defects over time. This
characterises "health" of the project and whether software developed is used
by end users or not.

Number of Defects

LRI RS
criigEcerei ”
HUHHHIT

Time inlenal ’

Figure S Sample chart illustrating defeets resolve time

Software measurements proposed are enough to provide information for
project monitoring, but in real life measurement team faces some problems
while gathering real measurement data from development projects: different
methodologies and different tools are used by development teams even in one
company. For instance, the following measurement information is captured
traditionally: :

1. All development teams capture information about defects, usually
including identifier, description, function and version where defect fixed,
defect fix date, severity, current defect status, status fix date etc.

2. Some development teams capture information about time spent on
different activities during project development,

There are various defect-tracking systems used to record information
about defect reports. Such a situation is common for companies developing
custom software, because:

72

1. Some software development teams have customer-defined defect
tracking tools.

2. Some software development teams historically have developed their
own tools for defect tracking using spreadsheets or simple database systems.

Different data sources are rather complex to analyse properly: data of
different structure and from different sources must be summarised in case to
create defect status reports. There are two alternatives to handle the situation:

1. Define unified format for defect tracking information and recommend
using it in all software development projects.

2. Use the existing data captured in different formats.

The first solution seems to be rather complex and resource consuming,
Switching to unified defect tracking format for all software development
teams at different projects' development stages will be very time consuming.
This solution doesn't fit to outsourced projects at all.

The second alternative left, and it was chosen. Using measurement data
already available and let development teams continue to capture
measurement information in the way they did for years. This way matches
with organisational culture and is less staff resistant, but is more complex for
measurement data analysis team,

4. Project Process Improvement Through Traceability

As software process improvement and measurement process discussed in
previous chapters concentrate on the software development process as a
whole at the company level, possibility of a more detailed analysis of project
development process is very important as well. Within projects there always
are some relations between the project items - between various documents,
modules, tests and reported problems, but it is often problematic to answer to
questions like "What are the dependencies? How some change in one
requirement will impact the code or the tests?" The relations between items
may not be indicated explicitly, but there are numerous questions produced
about if and how any two project items are related.

Questions of project item relations mentioned above rise the project
traceability concerns. There has been an extensive research made by
0.C.Z.Gotel and A.C.W Finkelstein {2] indicating requirements traceability
issues that take place prior and after the requirements specification is created.
Analysing the project information structure, one can conclude that
requirements traceability is a subset of a more general traceability mechanism
within the set of related project items.

Software Development Process Improvement through Measurements 73
and Requirements Traceability

Feature traceability: an ability to follow from one project item to another
via relations with evolutionary (one is created as a result of another) or event
character.

Formally, the existence of a traceability mechanism or process property
within the software development life cycle is required by industry standards,
like ISO/IEC 12207 [8). Also the interpretation of the standard 1SO
9001:2000 for software development TickIT Guide Issue 5.0 in a number of
requirements includes the traceability issue [1]. Also, the standard J-STD-016
[7] requires traceability presence among produced deliverables.

4.1 Traceability model definition

There may be multiple ways of how several items may be related. First,
there may be evolution-provoked relations like ones that can exist between
requirements and tests. In most cases they may belong to class called strong
relations, as they may be often tied with a strong dependence. Second, there
may be event-provoked relations that do not propagate necessity for change
from one item to another. These are called weak relations, and they may take
place between test and test log. The project items could be the information of
almost any sort, but the main criterion is its relation to project development
or subject under development. Some most typical items are: requirement,
design item, function, module, screen form, test, test case, test log, problem
report, individual task, change request, e-mail of the customer, review report.
Each item may have one or more several items that reference to it, and it may
reference to one or more other items.

The identification of project item types and their possible relations defines
a traceability model. A sample model is shown in Fig. 6, this model was
identified in one real-life project. Arrows signify relation direction (e.g.
forming the phrase "Test is based on business function") where solid line
corresponds to a strong relation, but dofted - to a weak one.

4.2 Experience report - tool for traceability managing

Seeking the ways of how the traceability model could be implemented in
the real-life projects, the requirements were defined for the traceability tool
[3). The very basic requirement for the traceability tool was the ability to
support the universal approach in terms of the project type and the
methodology used. This includes the possibility to define the item types,
relation types and the traceability model. A tool named Tracelt was
developed in one software company. It is web-based application, and
effectively supports definition of traceability model, individual items and

74

supports multiple users. It is possible to work with item lists, work with
relations, to see the relations for particular item in a form of a tree, to analyse
the impact of changes.

is part ol ® pan of

™, 7N

n based on
F Test

Business
function

b o
it panof % “v.f / s pant of
ot maks =
4 -.b o‘}# sreculion of 2 .\\
. - /
. " relaled 10
Window is retated 1o | Review [...
""""""" record
ﬁf\o/' ‘\,.qv. 1
‘-; pan of plements \: \f’\g\,‘t7 " related lu!
3 o R

report
Figure 6. Sample traceability model

Tracelt was successfully used into 4 projects in pilot mode, and new
software development projects are being considered for further research. The
main gain for projects was that this tool did not introduce a completely new
methodology. In this pilot usage, it also did not challenge developers to
change the project culture, but it did improve some particular activities of the
software development process and reduced the internal diversity of different
media where exact item is placed. [t was discovered to be difficult to place
completely in the traceability database items like requirements or the code,
but at the same time entirely all the testing information was maintained in
Tracelt repository. Contents of items that did not contain the complete
information consisted of a reference in a form of an ID, title and a basic
classifying descriptor information only. The application reduced considerably
the risk of ignoring important dependencies or deviating from the initial
requirements in the further development process.

No detailed information workflow management was supported within the
current version of Tracelt, and the workflow feature is evaluated to be useful
especially in large project teams.

4.3 Requirement change tracking

Although the tool did not provide specific means for requirement
engineering, it proved to be useful to control the transition phases from
informal requirements to formal ones, and from the formal requirements to
system design components. As it was mentioned earlier, there are almost no

Software Development Process Improvement through Measurements 75
and Requirements Traceability

projects that do not change their requirements over the development time.
Due to Tracelt capability to indicate all item dependencies it proved to be
extremely useful to evaluate the change impact and to reassign some relations
from old requirements to new ones.

4.4 Problem resolution tracking

Process of problem reporting and handling took place in those projects
where the tool was used extensively for testing documentation and defect
tracking purposes. First, the complete set of test descriptions was placed into
traceability database, marking the related requirements, functions, windows,
etc. Second, all the results of test execution were documented with relation
information kept. Third, all the problem reports were maintained in the
database, allowing developers to find out the corresponding test or
requirement. Also the information on problem resolution was exchanged
through this tool.

5. Conclusions

As a result of the experience of SPI initiatives in two companies, the
following conclusions are declared:

1. The confirmation was found that at the company level the management
commitment is essential for any SPI initiative. '

2. Quality management system may show no immediate improvement that
is reflected by some measurements or financial indicators, but in the long run
project transparency increases. This confirms the well-known SPI practices.

3. All practices described in literature and required by quality standards
must work as a whole. Lack of good integration of, say, measurement
program, with the process change management will make personnel not to
understand the system as integral unit. If the components (even very good
ones) will work as separate units - it will not provide sufficient effectiveness
and efficiency.

4. Human factors have to be taken into account during the improvement -
it is easy to invent a system, but it is hard to make it work. It is true both for
SPI initiatives at the company level as well as for measurement process at the
company and the project level.

5. Implementation of any kind of improvements needs to be evaluated - is
the improvement really observable. The only way to answer to these
questions is @ measurement program.

76

6. Software measurements proposed in the chapter 3 cover the main issues

to provide information for project status monitoring.

7. Traceability in projects cannot be ignored as it gives good resulls in
improving project monitoring at the project level.

8. The traceability model helps to understand and improve the project
information structure. Tool for traceability support can provide not only
reference information, but additionally serve as project information base for
certain activities. Introduction of a Tracelt too} does not break the current
methodologies used in project development, it adapts to the existing ones.

Acknowledgement

This paper is partly supported by the Latvian Science Council programme
no. 02.0002.

References

(1] British Standards Institution. The Tick/T Guide Issue 5.0 (2001)

[2] Orlena C.Z. Gotel Anthony C.W. Finkelstein. An Analysis of the Requirements
Traceability Problem. 1994. http://citeseer.nj.nec.com/78573.html

(3] Gills, Martins. The Concept of a Universal Traceability Tool for Software Development
Projects. Scientific Proceedings of Riga Technical University. Serics - Comp.Sc., Applied
Computer Systems. 2nd issue (2001).

(4] Grady, R.B.. Practical Software metrics for project Management and Process
Improvement. New York: Prentice-Hall. (1992).

(5] Hetzel, B. Making Software Measurement Work. New York: JW&S, Inc. (1993).

[6] HyauL.E, Rosénbcrg L. H., Software Metrics Pragram for Risk Assessment, (2001).
hutp://satc.gsfe.nasa.gov/support/IAC_OCT96

[7] [EEE, J-STD-016-1995. Standard for IT Software Life Cycle Processes. (1995).

[8] ISO. Std ISONEC 12207. Standard for IT- SW Life Cycle Processes, (1995).

(9) Jones, T.C. Estimating Software Costs. London: McGraw-Hill. (1998).

[10] Mark C. Paulk, Bill Curtis, Mary Beth Chrissis, and Charles V. Weber, Capability
Maturity Model for Software, Version 1.1, Software Engineering Institute, CMU/SE]-93-
TR-24, February (1993).

(11] Zahran, S. Software Process Improvement - Practical Guidelines for Business Success,
Addison-Wesley, (1997).

Meta-model Based and Component Based Approach for
Information Systems Design

Baiba Apine, Ilgvars Apinis, Ojars Krasts, Uldis Sukovskis

Riga Institute of Information Technology
Kuldigas 45, LV-1083 Riga, Latvia
uldis.sukovskis @dati.lv

Abstract

The paper lawoduces an object-oricated and component based approach for software design. This
approach allows to design software in convenient and casy 10 understand manner using metamodce! of real
world sysiem. The first step - building of the eatity-relationship diagram, is discussed using project
management suppon informaton system as an example. Universal repository as a storage of model
objecu it proposed to build uxlng meta-meta-model based three-layer architecture. And the final siep -

jon of the designed model using COM objects is described with lllusmations from the same
cumple of project manager's m{onmuon sysiem.

Keywords: sofrware development, object-orienied, mew-model.

1. Meta-model Based Tool for Registering of Objects

One particular implementation of meta-model based universal repository will be used to
explain an approach applicable to design of different types of information systems. PARK is a tool
for registering various kinds of objects and their attributes into universal repository. We created the
ool for registering information about software development projects. This includes information
about project itself, staff involved, activitics and documents. Documents could be generated using
information in the repository and preliminary designed document templates. Tool accepts MS
Word, MS Excel and MS Project documents, The PARK too! is considered as sample of usage of
the repository only.

The main features of this tool are:

* a relatively small number of concepts used: only eight object classes and 14 types of
relations between objects, with the terms defined intuitive and easily interpreted even by a
novice:

* new types of objects and relationships could be added easily:

* information from the repository could be retrieved in various ways;

* project documentation could be generated using information from the repository.

The entity-relationship diagram shown in Figure 1 is the formal meta-model for PARK. All
objects have their own attributes depending on object type. Besides individual attributes there are
some aplicable 1o all objects: for example, name, type and who and when created or modified this
object in the repository.

Project is an object containing information about software development project. Usually there
is one Project object in the repository only. Individual attributes for the Project object are: identifier,
development environment, start date, end date etc.

Performer is an object containing information about a man involved in the project
development process. This could be project manager, programmer, customer ¢tc. Name, position,
phone, fax and ¢-mail address are attributes of the Performer object.

78

m b
s responsile of

_has manager
j s manager of

(" Partormat

(Project He

nas customer
responsble

"8 cusiomer responsibie & ncluded In
o cuoes

has coniacl person
" s conlaci person of

__has cusiomsr manage:
" I8 cuslomer manager ol

_has pedlormer

s porl o ee———
has pot! ormar

=
as

{ Process Geoup }
konsism of
s relonse of
has
reloase o
¥s pari ol has sccess bsi

(Rocusn) hus docurant_J
I document of

Figure 1. Object types and relationships

Process group is used for grouping of some processes. Process group samples are primary
soltware life cycle processes, supporting processes etc.

Process is an object describing any activity within software development process. Start date,
end date, description are attributes of the Process object. Samples of the Process object are coding,
testing, auditing ete

Document group is a head object for some group of documents. Document is an object
describing a peace of project documentation. User manual, software requirements specification are
samples of the Document object.

Access list is an object describing whether the particular Performer object has read, read/write
or write access to the particular Document object.

PARK presents a model in the window which shows the objects and their relationships in a
tree-like structure (see Figure 2). The way in which objects are displayed on the object tree is user
defined. The branches of the tree are objects interconnected by relationships.

2. Repository of Models

The data describing a model are interrelated in a complex manner. Several versions of model
need to be saved. Each model consists of various objects and relationships between them described
by meta-model. Also a model itself may be considercd as a complex object which refers to other
models.

79

i l’ I'MIK l) \Ilmhn\l‘ l\l’munm\l'“ks NI)II
por .

i AMach. \\I'ml\l'mnmm\l'\ll Mlm .

2-&@ Environment
I -%3 has PRJ FIG
%hu PRJ Sample
3 has DOCG Plans
vk-@hu D0OCG Specifications
i . @ consists of 0OC Operational Concept Descriplion
, ®- O connists of DOC SoAwars Requiraments Spacificalion
4 Tr has PRCG Primary lifs cycle processes
/¥ consiste of PRC Acquisition process
{ 8-/ consists of PRC Davelopmaent process
¢, @-0 has document DOC Sofware Requirements Specification
v a8 has access list AL Developmani
[-k
. Aconsists of PRC Supply process
t K has PRF Uldis Su

Figure 2. PARK window presenting information about saftware development project

Taking this into account we designed “universal” Repository. Structure of the Repository
could be described with meta-meta-model (see Figure 3).

Meta_Object stores information what types of objects contain the meta-model. Long and short
names of the object type are essential attributes for this object. For instance, objects of type named
Performer and short name PRF (see Figure 2) could be stored in the Repository for the PARK meta-
model.

Meta_Link stores information about relationships in the meta-model. Name of the
relationship, two role names and cardinalities are the attributes of this object. For instance, PARK
meta-model contains relationship consists_of / is_part_of with cardinalities 1..1 and 0..N (se¢ Figure
2).

Meta_Object_Link stores information what objects are connected with what retationships.

Object stores specific information about objects of all types defined by meta-model (sce
Figure 2). This entity stores information about project as well as about performers. Values of
atributes specific for every object type are coded as string. Role stores information about
relationships berween Objects.

There are three layers, related to design and usage of the Repository:

1) Physical layer: the lowest level of abstraction, at which it is described HOW the data are
actually stored,

2) Conceptual layer: the next level of abstraction at which it is described WHAT data are
actually stored in the data base and the relationships that exist among data. At this level it is
possible to manipulate with generalized objects in a standard fashion, of course using methods
which are supplied by a Physical layer.

3) Logical view layer: this is the highest level of abstraction at which only a part of the entire
data basc is described. This level is for particular lool. Many logical views may be provided for the

same Conceptual level. The Logical view layer can't use functions provided by the Physical layer
directly.

80

Mas au type

Cojct
deines tor
has oucoming o
relatiors Np
i outcoming relslibnahip
tor
has incoming Mala Ooject
reutiorehp has as type

- Fole t has oucoming or

® ncoming relalonshp \ V4 celines fype lor

Tor ki reoming Ink
Mata Link

Kelhes cardinally | oucaming or ncoming
fnk

Mets Coject Link

Figure 3. Meta-meta-model of the Repository

Such the layered architecture allows relatively easy changing of the underlying physical level
database (for the case if it is necessary to change a platforms, or in the case of performance

problems). If a new tool is created, then corresponding Logical view can be added. We use PARK
meta-model as the base of such Logical view.

Taking into account the layered architecture of the Repository, we choose object - oriented
approach in tool architecture. Object - oriented approach fits together with MS COM application
architecture. Each object is implemented as COM object. There are attributes and functions
common for all object types. Each object inherits those and has its own attributes and functions (see
Figure 4). Objects expose their functions which are legal for the particular object type. These
functions could be used by any software 1ool. We created one - Browser. Browser operates with
objects on the Logical view layer. The main function of the Browser is to show the contents of the
Repository according to the meta — model. Browser itself doesn't support any objects’ function. It
calls those implemented in corresponding object (see Figure 4).

This approach allows easy to change meta-model. For instance, add new object types. New
Meta_Object and appropriate links to other object types must be registered in the Repository and
corresponding COM object has to be implemented.

3. Functionality of Objects

Every object defined in the meta-model has functions applicable for this object. There is
functionality corresponding to the conceptual layer and functionality corresponding to the logical
view layer. Every object is implemented as COM object having its own set of functions. There are
some functions equal for all objects defined in the meta-model. Those functions are defined in the

conceptual layer. They don't depend on the type of object. Examples of functions defined in the
conceptual layer are:

¢ functions Edit and View for entering or changing of the attributes of the object or viewing
object attributes without ability to change them;

» functions Add object and Delete object for adding and deleting objects in the repository;

function Add object allows add objects having some relationship with the particular object
only:

81

* functions Add relationship and Delete relationship for adding and deleting relationship
starting from the particular object;

* function Rename for global renaming of the object.

, | Logeal vew layer

Projeci Dot |
Edirf), Edinf)
Viewd): Viewt):
Repanr) Baperil
Crvaie_Docemant |

\ Opan, Docomens].
o

A —
K

Ojeet
M:l,“ Conceptual yer
View().
Repani);
Bomamal |

| i

Physical layer

Figure 4. Object layers

Functions declared above have some implementation on the Conceptual layer. As all objects
must be derived from an abstract Object defined on the Conceptual layer (see Figure 4), this set of
functions is considered as default for objects defined in the meta-model and stored in the repository.

If the new object type is added to the meta-model, it by default has this set of functions with
implementations on the Conceptual layer. If other implementation is necessary for some function, it
is redefined on the Logical view layer,

Some functions are defined and implemented in the logical view layer. These are functions
specific for document objects. For instance, function Create document for creating MS Word, MS
Excel or MS Project document for the document object. Documents are generated on basis of the
predefined document templates. Values from the repository are filled in the document.

3.1 Generation of Documents

Sample of implementation of the objects’ functionality on the Logical view layer is generation
of documents.

MS Word, MS Excel or MS Project documents could be generated using information from the
repository. This is the essential function for the document object. Documents are generated on basis
of predefined document templates. Function uses predefined document properties and user defined
document properties. Function Generate documents fills values of the predefined and user defined
properties from the information stored in the repository (see Figure 5).

22

;
SOFTWARZ REQUIREMINTS SPLCIFICATION -
a2l

Preject Docwsnentsciep
EAMPLLYROLTIa 197

Profont o ko | Ul Bedenbly
BB TR

Figure 5. Docwnent sample with auiomalicaly filled properties

There are two steps to define document \emplale:

¢ define properties to the document template;

¢ add fields of previousty defined properties in the docurnent text in appropaate places (see
Figure 6). Standard properties of the document could be also used.

| TITLE * MEZRGEZFORMAT)
({ DOCTROPERTY "DOC_VER™ * MERGEYORMAT)
| DOCPROPZRTY “DOC_TYPI™ \" MYRCEY ORMAT)
(SUBJECT * MEROLFORMAT}

Projen manager | | BOCYROFIRTY * FROJ_BMLAN_MAME” * MIAOXPORMAT) =
(DOCTROYIATY “FROS MAM _YHONE™ * MEROITORMAL) J

D W T T LY G WY A% I R ST 0% R Gl

Figure 6. Document template

83

SCIENTIFIC PROCEEDINGS OF RIGA TECHNICAL UNIVERSITY
Series - Computer Science. Applied Computer Systems. - 1* themalic issue:

ISBN
2000

Software Measurement Practice to Address Customer Satisfaction

Baiba Apine, Uldis Smilts & Uldis Sukovskis
Riga Institute of Information Technology, Riga, Latvia

Keywords: Software measurement, Software development process improvement, Software quality

ABSTRACT: Monitoring of customer satisfaction is necessary to evaluate and validate whether the soft-
ware under development meets requirements or not. Experience in implementation of measurement pro-
gram in the software development company is analysed in this paper. The Goal Question Metric method
is used as guidance for the measurement program, set of goals is determined and measurements to capture
are defined. Case study describes implementation of measurement program in the real software develop-
ment project.

1 INTRODUCTION

Customer satisfaction and loyalty are key drivers of profit. The saying "if you aren't measuring it, you
aren't managing it" certainly applies to software development companies. True "customer satisfaction" is
an organisation’s ability to attract and retain customers and enhance the customer relationship over time.
It is not simple and the answer cannot be collapsed into a single "customer satisfaction index". Address-
ing customer satisfaction is a key issue in the ISO 9004:2000 (I1SO 2000).

Monitoring of customer satisfaction is necessary to evaluate and validate whether the product under
development meets requirements or not. On the one hand, it is not possible to create single customer satis-
faction index and monitor its change during whole software development process. On the other hand, we
can not manage what we can not measure. The set of measurements is necessary to monitor whether the
software product meets requirements provided by customer and whether it is on time and within budget.

2 GOAL QUESTION METRIC METHOD

The principle behind the Goal Question Metric (GQM) (Solingen et al. 1999) method is that measure-
ment should be goal-oriented. GQM defines a certain goal, refines this goal into questions, and defines
metrics that should provide the information to answer these questions. By answering the questions, the
measured data defines the goals operationally, and can be analysed to identify whether or not the goals
are attained. Thus, GQM defines metrics from a top-down perspective and analyses and interprets the
measurement data bottom-up.

The GQM method contains three phases:

1. The Definition phase, during which goals, questions and measurements are defined.

2. The Data Collection phase, during which actual data collection takes place, resulting in collected
data.

The Interpretation phase, during which collected data is processed to provide answers to the defined
questions.

There are some sources indicated problems to apply GQM method (Hetzel 1993):

* The experience in many companies (especially the bigger ones), is that no one knows or there are un-
able to agree what the right set of goals should be. Some measurements are necessary to set the goals.
Some goals and questions are fairly easy to set but extremely difficult to measure effectively. For in-
stance, how to measure increasing or decreasing customer satisfaction?

Nevertheless having clear goals in mind it is easier to sell the measurement program to senior com-

Pany management.

(98]

11

SCIENTIFIC PROCEEDINGS OF RIGA TECHNICAL UNIVERSITY
Series - Computer Science. Applied Computer Systems. - 1% thematic issue:
1SBN
2000

3 MEASUREMENT PROGRAM

Facts discussed in this paper are taken from measurement program’s implementation experience in large
software development company in Latvia. This company is ten years old and has approximately 500 em-
ployees working on 40 different software development projects at the same time. Main business of the
company is development of the systems projects for state institutions as well as for customers from fi-
nance, telecommunication and transport.

Quality management of the company is oriented towards development, implementation and mainte-
nance of information systems and software at the highest level. This means developing only high quality
products, which meet client requirements, without deviating from contractually agreed technical require-
ments. The decision was made to start to implement software measurement program in the company as a
part of the entire quality management system. The Goal Question Metric method (GQM) was chosen as
guidance for the measurement program.

4 SETTING GOALS

A set of the most common measurement programs’ goals (SPC 1999), (Grady 1992), (Solingen et al.

1999) were chosen and provided for discussion among software development team leaders and senior

management. As a result of the discussion some of them, like improving productivity, improving software

performance, minimise schedule etc., were scratched out from the list as not relevant. Priorities were as-
signed to the remaining measurement program’s goals. Top five measurement program goals in the order
of decreasing priority:

1. Improve software estimation: avoid development cost and schedule overruns, minimise software
development risks, accurate projects’ proposals

2. Improve project tracking

3. Improve software quality: meet product requirements, reduce delivered defects, reduce time spent on
rework etc.

4. Minimise development cost

5. Increase customer satisfaction

From the list above we can see that increasing customer satisfaction has the lowest prlonty Project
managers in their everyday life deal with problems like creeping requirements resulting in slipping
schedule and cost overrun, etc. Nevertheless respondents avoided of scratching off this goal of the whole
list of the goals, probably, because of politeness. In fact, increasing customer satisfaction is derived from
all goals having higher priority. For instance, improving accuracy of the software cost and schedule esti-
mation increases customer satisfaction.

While thinking about the list of goals listed above, two questions rise:

I. Where do we are now on the way of achieving each of the goals? This question could be analysed
further: Do we have software cost overruns and how often? How do we track project progress at the
project management level and at the company’s management level? What is the quality of the devel-
oped products? How satisfied are our customers?

2. What exactly do we want to achieve?

Seeking the answers to the questions above, a set of measurements is defined to provide information
for analysis. Important is that measurements themselves do not answer any question, they provide infor-
mation for analysis only. Software development specialists must carry out analysis.

There is a lot of information provided by software development process for measuring. For instance,
productivity of developers, time spent by single requirement implementation, number of new defects per
fix, etc. It must be kept in mind that measuring takes some project development resources as well as pro-
ject management, quality management etc. So very important is to select the minimum set of measure-
ments to answer the selected questions.

12

SCIENTIFIC PROCEEDINGS OF RIGA TECHNICAL UNIVERSITY
Series - Computer Science. Applied Computer Systems. - 1* thematic issue:

ISBN
2000

To answer the questions above the following measurements should be useful:

¢ Actual number of person hours/days/months to complete each activity during project development.
This must include software requirements specification, implementation, testing and other software
development activities as well as activities like internal and external project audits, project manage-
ment, quality management etc.

o Date the particular activity started and ended.

¢ Defect type, severity, date defect discovered, item or function defect dlSCOVCI‘Cd defect status, date
the defect closed etc.

5 DEFINING SET OF MEASUREMENTS

There are some measurement traditions established traditionally. Every software development team cap-
tures some measurement data, but in many cases without clear goals in mind. The following measurement
information is captured traditionally:

o All development teams capture information about defects, usually including identifier, description,
function and version where defect fixed, defect fix date, severity, current defect status, status fix date
etc.

+ Some development teams capture information about time spent on different activities during project
development.

There are various defect- tracking systems used to record information about defect reports. Such a
situation is common for companies developing system software for particular customers, because:

o Some software development teams have customer-defined defect tracking tools. This is common for
outsourced projects.

¢ Some software development teams historically have developed their own tools for defect tracking us-
ing spreadsheets or simple database systems (MS Access, for instance).

A lot of different data sources are rather complex for measurement program: data of different structure
and from different sources must be summarised in case to create defect status reports. There are two al-
teatives to handle the situation:

1. Define unified format for defect tracking information and recommend using it in all software devel-
opment projects.

2. Use the existing data captured in different formats.

The first solution seems to be rather complex: switching to unified defect tracking format for 40 soft-
ware development teams at different projects’ development stages will be very time consuming. This so-
lution doesn’t fit to outsourced projects at all.

The second alternative was chosen: to use measurement data already available and let development
teams continue to capture measurement information in the way they did for years. Those teams which ha-
ven’t customer restrictions on the defect tracking tool and haven’t their own tools use configuration man-
agement tool PVCS Tracker for defect tracking. Choosing PVCS Tracker for defect tracking is recom-
mended only, project manager is free to choose different tool.

6 DEFINING FEEDBACK

Having a good feedback mechanism in place ensures that the information obtained from the program is
effectively communicated and used. Monthly measurement program reports for each project are generated
and send to the project leads. These reports consist of:
* Overall cffort spent on project development: actual effort versus planned.
* Time spent on different activities during software project development. This includes time spent on
software design, implementation, testing etc. as well as on different supporting processes (see Figure
1).
This measurement is very useful for ratio-based software development process estimation in the com-
pany. The basic problem with ratio-based estimation is the false assumption that there are constant ratios
between coding, testing, project management and other key activities (Jones 1998). Measurement about

13

SCIENTIFIC PROCEEDINGS OF RIGA TECHNICAL UNIVERSITY
Series - Computer Science. Applied Computer Systems. - 1* thematic issue-
ISBN
2000

time spent on different activities within software development process gives information how does ration
varies depending on software type and development process risks in the particular company.

1% -—
1% - -
2% - -

6% 6% 6%

26%
O Inspections
1 m Documentation
[O Requirements Analysis
’ 0O Configuration

i Management
| B Planning

' O Requirements Definition
' Project Management

a Project Acquisition

! m Softw are Design

Figure 1. Sample monthly report about time spent on different activities within software development process.

e Tables containing classification of defects by types, by severity etc.

This measurement is the most prevalent in projects; because all projects use some kind of defect clas-
sification. Nevertheless this measurement shouldn’t be used to compare different project development
processes, because different projects use different classification of defects.

e Defect distributions throughout the software.

Defects are grouped by source file, configuration unit, functional unit etc. It can help to find the most
erroneous chunks of software as well as those, which aren’t tested enough.
¢ Problem report status changes over time.

This measurement is very useful for early identification of problems in software development process
(see Figure 4 and the case study for project A).

e Defect response time (see Figure 2).

This metric is the most important as customer satisfaction measurement. At the same time these data
rises more questions than answer, for instance, is this response time profile what we want, or what are we
going to do to change it.

This set of measurements is summarised in the monthly report for every project team. The monthly re-
ports consisting of 9 tables and 9 charts are sent to the leads of the projects. Analysis of the received
measurement data reports at the project level is time consuming, therefore it is no sense to summarise
measurement information weekly or biweekly: it shouldn’t be analysed properly.

14

SCIENTIFIC PROCEEDINGS OF RIGA TECHNICAL UNIVERSITY
series - Computer Science. Applied Computer Systems. - 1* thematic issue:

ISBN
2000

200 - - -
@2 180 - - = -
g 160 —- e
© 140 -
2 120 -
5 100 ———~-— —HH - -
3 8 s
. |
2 8 oo N e
28_ 0 , [| | O (1 1]
T R IRF BT EIRET s ELELELELELEELELEEEELE R
2Pl e333288egE555855 568658 >8
TeNew w0 e~ 22 EEEEEEEEEEET D
V vV g 8 o S v o~ o 90 - Yy
. . vV Vv Vv Vv Vv vV Vv v Y Y wn
x_\c_,;'...,....vv_.t_:,-a
L O .CIDWU)II)U)U)V)..C
2 ¢ § 2 £ £ £ 5 £ £ g g5 2
&l 2565 58858 EEE
rae EEEEEEBEES S T oA
A N ™ ¢ v © ~ © A
AAAAAAA?\’Q
A
Time Intenval

Figure 2. Sample chart illustrating defects response time.

7 CASESTUDY: MEASURING PROJECT ALPHA

This sample project describes the implementation of a measurement process on a real project. This case
study shows how measuring software development process helped to get over the project crisis. Special
consideration is given to use software measurement data that is readily available within the established
software and project management processes.

Project ALPHA is State register information system; therefore software quality has extremely high
importance. It is a project of typical scope and size for software development market of Latvia. This new
information system replaces the old one developed in MS-DOS environment. The project is under devel-
opment for several years. The total amount of effort involved in project development is about 200 person-
years. Developers are involved in the implementation and maintenance of the developed IS, as well as in
the user training. They are assisting in the administration and maintenance of the corporate network,
which covers the whole territory of Latvia with offices located in across the country. Figure 3 shows the
architecture for the information system under development.

Decreasing customer satisfaction has become a serious project development risk factor. Customer dis-
covered a lot of defects after every product delivery, as usually. Customer laid the blame on the software
development process on the developers side resulting in long response time complaints. The measuring
was introduced with clear goal in mind: to increase customer satisfaction through increasing product qual-
1ty and development process tracking.

Fortunately there was information available about defects detected during preliminary testing. Data
qbout defect reports received from customer was also available. Data was captured for a year, the collec-
tion procedure is well established, but data weren’t summarised and used for real decision support. In or-
der to answer the following question: what are the rea) measurement values defining poor customer satis-
faction, all historical data were analysed.

Figure 4 contains a sample bar chart illustrating number of incoming reports versus the resolved ones.
T.his sample clearly illustrates crisis in the project ALPHA during the 1% and the 2™ months. In reality the
Situation was even worth: defect removal efficiency was 23%. This was far from good product quality:
the approximate U.S. norm for defect removal efficiency is about 85% (Jones 1996).

15

SCIENTIFIC PROCEEDINGS OF RIGA TECHNICAL UNIVERSITY
Series - Computer Science. Applied Computer Systems. - 1* themalic issue:
ISBN
2000

| S
\ (===l | | DB| - 4
Local office \ / Local office
Rt

Central
office DB

Data

warehouse o
Individual users

WWW interface

o
Copy of Central | 422V

office DB

Extemal users

Figure 3. System architecture for project ALPHA.

Incoming Problem Reports Versus Resolved

450 Mt e e
400
350
300 1
250 -

200 4|
150 {{
100 H

SOT

o‘.[[@ A I8 1M

1 2 3 4 5 6 7 8 9 10 1112 13 14 15
Month

"~ ‘O lncoming

Reports

~ 'mResolved,

Number of Problem

Figure 4. Sample monthly report for project ALPHA.

The reasons of the crisis were:

e A lot of new functionality was provided to customer with the newest version of the software. Soft-
ware wasn’t tested enough.

e Users had used system developed in MS-DOS environment. They weren’t trained enough to use
Windows applications: data entry on client side in local offices was slow, legacy data wasn’t con-
verted to new structure.

SCIENTIFIC PROCEEDINGS OF RIGA TECHNICAL UNIVERSITY
Series - Computer Science. Applied Computer Systems. - 1* thematic issue:

ISBN
2000

After measurement data analysis, the decision was made to concentrate on testing and resolving of the
already received and incoming problem reports and customer training. The following actions were carried
out to take over the development crisis and to eliminate future crisis:

e Problem reports were ordered by severity and priorities were assigned to each problem report. De-
fects were corrected in the order of decreasing prionty. New software versions were delivered to cus-
tomer quite often.

e System users were trained to use software as well as basic principles of working in Windows envi-
ronment. Biweekly inspections increased customer and developer understanding in real system func-
tionality.

e Data capturing was continued using the same templates; because changing the metrics definition dur-
ing project development is time consuming and may result in receiving inconsistent and unreliable
data while new collection procedure establishes. Since then monthly data analysis was performed us-
ing the captured data.

The first two activities together gave customer ability to follow project development process.
Quantitative measures progress slowly, number of incoming problem reports exceeded the handled ones
for next 3 months (see Figure 4), but customer has feeling that project development goes on.

All the previously discovered problems were resolved, defect removal efficiency for software versions
delivered increased to 80% and users were trained to use the system.

Nevertheless discussions about software process improvement continued. Further analysis of the de-
fect report data showed, that problems with development process are not on the developer side only.
Figure 5 shows that delivery of new upgrade is held on the customer side for 2 months and more before
accepted. This is because of complex acceptance procedure or lack of resources on the customer side.

Initially all measurement information was treated as confidential. As project development has become
more stable, project leads started to use measurement data in negotiations with customer. Discussing any
information concerning project development process from inside is rather risky: information must be in-
terpreted carefully. Nevertheless if information is captured and analysed the software development proc-
ess is under control.

Defect Acceptance Time on the Customer Side

120 e m e el e f i e e e o e e e e e e — e —_— -

100 - - _—
] —] .
Q
2 80 T H _
(]
a :
N~ —
N 60 - r I
'] . .
£ 1
E 40 - B

20 — - H - _J _ -

. n o0
C o 2 2 o o o 2 & 4 \3
& P B ,.\%6’# _,\0"} S & & o‘§\ o<§\ o<§\ o<§ & o“\(\ & o<§\ &
DRSS SN ,L«@,b@ ROPROPROSROIRS q@@@\\@ A
I3 L L L L & I3 N
F oo S 6 LB o e e o e b E S
AN . Q
L °6‘0§§§0§° FF T E
v N € € fEEEF S
7 1 4 ~
45 % A x b o AN % <&,
77 1 1 7 1 1 2 0

Time Interval

Figure 5. Sample chart for the project ALPHA illustrating defects’ acceptance time.

SCIENTIFIC PROCEEDINGS OF RIGA TECHNICAL UNIVERSITY
Series - Computer Science. Applied Computer Systems. - 1* thematic issue:
1ISBN
2000

8 CONCLUSIONS

GQM method is hard to apply without any customisation in companies having no any measurement and
quality management traditions.

For companies having software development experience it is better to use data already captured. This
allows achieving results with less additional investments.

[t is relatively easy to collect data and a lot of companies have done it for years. The most difficult part
of the measurement program 1s to use data effectively.

The experience in real projects shows that measuring software development process significantly de-
crease project development risk factors and improves customer satisfaction.

References

Grady, R.B. 1992. Practical Software metrics for project Management and Process Improvement. New York:
Prentice-Hall.

Hetzel, B. 1993. Making Software Measurement Work. New Yark: John Wiley & Sons, Inc.

International Organization for Standartization 1999. Quality management systems — Requirements.

Jones, T.C. 1996. Conflict and Litigation between Software Clients and Developers. Software Productivity Re-
search, Inc.

Jones, T.C. 1998. Estimating Software Costs. London: McGraw-Hill.

Software Productivity Centre, 1999. http://www.spc.ca

Solingen, R, & Berghout, E. 1999. The Goal/Question/Metric Method. London: McGrawHill.

Baiba Apine, Riga Institute of Information Technology, Kuldigas 45, LV-1083 Riga, Latvia, phone: + 371
7067703, fax: + 371 7619573, e-mail: baiba.apine(@dati.lv

Uldis Smilts, Riga Institute of Information Technology, Kuldigas 45, LV-1083 Riga, Latvia, phone: + 371
7067782, fax: + 371 7619573, e-mail: uldis.smilts@dati.lv

Uldis Sukovskis, Riga Institute of Information Technology, Kuldigas 45, LV-1083 Riga, Latvia, phonc: + 37}
7067703, fax: + 371 7619573, e-mail: uldis.sukovskis@dati.lv

Apine B., Smilts U., Sukovskis U. Software Measurement Practice to Address Customer Satisfaction

Monittoring of customer satisfaction is necessary to evaluate and validate whether the software under d cvelop-
ment meets requirements or not. Experience in implementation of measurement program in the software develo p-
ment company is analysed in this paper. The Goal Question Metric method is used as guidance for the mea surement
program, set of goals is determined and measurements to capture are defined. Case study describes implementation
of measurement program in the real software development project.

Apine B., Smilts U., Sukovskis U. Mérijumu programmas ievieSana pasiititaju prasibu apmierinaSanai

Raksta analiz€ta mérjjumu programmas ievie$anas pieredze programmatiras izstrades uzpémuma. Mérfjjumu
programmas ieviesana realizéta saskapa ar Goal Question Metric metodi: aprakstiti izvirzitie mérki un vicamo méri-
jumu kopa. Darba aprakstits reals programmatiras izstrades projekts, kura reguldra mérjjumu uzkra$ana un interpre-
tacija palidzeja parvarét krizi projekta izstrades gaita.

Annne b., Cmunre Y., Cykosckre Y. MOHHTOPHHT YA0B/IeTBOPeHHs NoTpeGHOCTElH KAHEHTOB

MOHHTOPHHT yAOBAETBOPEHHA NOTPeOHOCTER IKJIHEHTOB HeoOXOAMM I/ ONpefeneHHs COOTBETCTBHS
pa3pabaTbiBaeMOro nporpaMMHOro obecneyeHHs TpeboBaHusM. B cTaTbe aHaNM3UpYeTbCA ONBIT BHEAPEHHA
nporpamMms! H3MepeHHi Ha ¢upme paspabareiBatomtedt nporpamMmuoe obecnederre. Meroanka Goal Question Met-
riC NpHMEHAETRCA B KaYeCTBE PYKOBOACTBA AN NPOTPaMMbl H3MEDEHHH, ONpPEAECNEHO MHOXECTBO UE/CH
NpOrpaMMbl ¥ HAKaIJIHBaEMHEIX H3MEpEHHH. TIpHBORHTBCA HMCCNENOBAHME HA KOHKPETHOM NpHUMEpE BHEAPCHHSA
NporpaMMBel H3MEPEHHIT B peanbHOM NMpoeKTe pa3paboTku nporpaMMHOro obecneyeHus.

18

PRACTITIONER'S APPROACH TO SOFTWARE COST ESTIMATION

Baiba Apine
Riga Institute of Information Technology
Skanstes iela 13, LV-1013 Riga, Latvia
E-mail: baiba.apine@dati.lv

the workamount of the software projects we have
1o develop and do it as early as possible.
Sa&wm mul cost means the cost of the whole

p speuﬁclnom
coding, ummg. doc ing, figuration
management etc. This p could be estimated

I'rom various npecu produr.uwl)r output of the

quality - how
software developed uu!fws the needs of
and functionality - how the software is

KEYWORDS

Soft project estimation, COCOMO, function
point, software development

ABSTRACT

One of the most difficult and imp fty

development activities is effective software
estimation. Nevertheless it is one of the most
important. Number of formal software project
estimation methods have been developed.
Several methods based on function peints are
discussed and problems dealing with practical
usage of these methods are highlighted. Our
experience in Basic COCOMO, COCOMO 11
and ObjectPoint methods is presented.

INTRODUCTION

Effective software estimation is one of the most
difficult software development activities.
Nevertheless it is one of the most important
Underestimating a project will lead to under
staffing it, under scoping the quality assurance
effort, and setting too short a schedule. That can
lead to staff bumout, low quality, loss of
credibility as deadlines are missed, and
ultimately to an inefficient development effort
that takes longer than nominal [IFPUG].

Overestimating a project can be almost bad, the
project will take as long as.

Usually estimates are made using past
experience only. This solution is good in cases
when new project is of the same size and

ires the same of effort. Number of
formal software projects estimation methods
have been developed. All of them have their own
strength and weaknesses.

We are going to use these methods to estimate

built [PRESM]. Let us concentrate on functional
aspect of the software development process: how
o estimate the cost of the software functions.
The first who proposed this method was Albrecht
[ALBRE). Now there are various modifications
of this method.

METHOD

From the user's point of view system functions
would be grouped in five groups [PRESM]: user
inputs, user outputs, user inquiries (on-line input
that results in the g ion of some

software mponse] logical files (logical
grouping of data, and there is no difference
whether it is a database or temporary data for
internal use only), extemal interfaces (machine
readable interface used for data transmission to
another application). Each item of the each group
should be estimated as simple, average or
complex. Multiple each counted item with
appropriate weighting factor given in Table I,
and count total. The total you get is called
unadjusted function points (FP). Determination
of complexity is considered 10 be subjective, but
there are resources giving more formal criteria
for determination [BOEHM].

Measurement parameter Weighting factor

Simpl Average Compl
Number of user inputs 3 4 6
Number of user outputs 4 5 7
Number of user inquires k] 4 6
Number of files 7 10 15
Number of extemal interfaces S 7 10

Table 1. Function oriented estimation weighting coefficients

Most of software cost estimation methods based
on COCOMO (COCOMO 1) use unadjusted
function points as input data.

Function points are independent from the
software development environment and this
makes the method especially convenient in the
large companies with a diversity of software
platforms being used in projects. To estimate the
number of lines of code, convertion coefficients
are used. These cocfficients differs for cach
software develop t envi and gives
average number of lines of code per function
point [PRESM), [BOEHM). Figures of estimated
lines of code are very important In companies
having large softiware development experience
these figures may give very precise estimation of
the person months and calendar months
necessary for software development.

A lot of different factors should be kept in mind,
for instance, previous experience in solving
similar problems, scheduling, communications,
etc. A cost driver refers to a particular
characteristic of the software development that
has the effect of increasing or decreasing the
amount of development effort, e.g. required
product reliability, execution time constraints,
project tcam experience.

Method could be adjusted for software
maintenance, reengineering etc. In most cases we
use onc of the COCOMO estimation models -
the Early Design model. This model is used in
the very carly stages of a software project when
little may be known about the size of the product
to be developed, the natmre of the target
platform, or deailed specifics of the process to
be used [BOEHM].

Another useful model is the Application

composition model (ObjectPoint method). This
model addresses applications composed from
interoperable components [BOEHM).

Our experience is that the most difficult and the
most dangerous activity of the estimation process
is calculation of function points.

ESTIMATION ACCURACY

In the earliest stages of software development
life cycle, when the request for proposal is
received from a customer, very little may be
known about software development
environment, staff involved, etwc. Some
functionality may be not specified or imprecise.
Chart given in Figure | {BOEHM] indicates the
accuracy of software cstimation. In cases when
request for proposal is the only available
document with functionality of the system
described very approximately, project could be
overestimated or underestimated up to four
times, that could lead to significant project
management problems. It is very important to
involve experienced system analysts in software
estimation process to achieve more precise
results.

o

Relative Size Range

proposal operation specification design

Figure 1. Estimation accuracy of software projects.

COMMON PROBLEMS AND SOLUTIONS

We use estimati hods in the earliest stages
of soft devel o get
preliminary mulr.l when mquell for proposal is
received. Hence there are not enough useful
information which could be used for counting of
function points or estimating the software
development platform and staff being nvolved
in potential project. Some information may be
omitted in these documents. Additional
information could be gathered during interviews
with potential customers, but in most cases
request for proposal is the only document
available. Results of estimation must be included
in proposal as accurate figures, but very often
there is a lack of information 1o get them,

Not all customers provides clearly formulated

requests. Some of them are brilliant experts in

their own professional area, but have nol enough

experience in softwarc systems. In this case

interviews highlight basic software system

dmund.l Results of intcmews are l.'he mput
ial for both preliminary

Request for Concepl o/ Requirements Product Detall design Accepted

speciiication software
specification

and the softwa

In cases when at least software requirements
specification is available, estimation results are
very close to real development effort, estimation
error is approximately 15% - 25% (see Figure 1).
From the developers viewpoint, it is better to
overestimale project (50% or more) than
underestimate it

"
Y S prof

Situation, when customer is another software
company that project, differs from
described above. Bmu!.ly they aiready have
done some estimation with their own methods
and provide some initial figures. In most cases
these figures are believable, but tend to
underestimate the software development effort.

It is hard in the large variety of methods to
choose the best one. For several years we are
using COCOMO and COCOMO I methods for
software estimation. The main reason we choose
COCOMO was that it supports different quality
levels of input data different quality,. More
precise input gives more precise output and it
would be kept in mind.

90

80

70

60

Person - 50
Months 40
30

20

10

0 4

Function points

mPerson - months COCOMO Il

mPerson - months Real

PR BRICCIR
q*"‘q@?ofa@?q@é""

Figure 1. Comparison of estimation results

Basic COCOMO was the first method we started
with. This method was quite good. Nevertheless
some important aspects of software development
process were ignored. Basic COCOMO method
uses 14 very important cost drivers [PRESM]
besides the classification of the software project's
W'mk» o hed or embedded. They
cover software system itself, but do not touch the
software development process. Cost drivers
covering soft develop p are
added in COCOMO I1. For instance, whether the

software develop envir supports
software development life cycle, whether
devel ! k i pported, staff

capability and interactions, etc. While COCOMO
1l method's Early Design Model gives more
precise cstimation results, we still use both
COCOMO and COCOMO 11 to achieve more
believable results (see Figure 2).

Chart given in Figure 2 shows software projects
developed by using of Microsoft software
development environments (MS Access, MS
Visual Basic and MS Visual C++). All these
projecis were estimated using Basic COCOMO
and COCOMO Il Early design model with
software requirements specification used as input

data for the estimation. The real workamount for
the project development is compared with the
result of estimation. Basically both methods
overestimate projects. There are (wo projects
underestimated by Basic COCOMO method (see
Figure 2). The reason is that the software design
specification was not precise and approximately
60% of code had to be thrown away. Percentage
of breakage must be counted o adjust the
effective size of the product.

Chart given in Figure 2 shows differences
between estimation results given by Basic
COCOMO and COCOMO II. The reason is
appliance of cost drivers not supported by Basic
COCOMO, but affecting estimation results of
COCOMO 11 significantly. These cost drivers
deal with personnel capability and experience.
Values of the cost drivers are adjusted
experimentally, so in different companies they
may differ. Even in one particular company it is
necessary to adjust values for each software
development group.

mPerson - months Basic COCOMO

18 —
14
2 2
; 10 mBasic COCOMO
s 81— mCOCOMO i
6
} mReal
W 4
Q
2
ol

3 ¥ B0 5F a8
KL L

Funetion Points

Figure 3, Time schedule estimation with Basic COCOMO and COCOMO 11

Both methods Basic COCOMO and COCOMO
] prtmdc devel
Chart in Figure 3 shows development schedule
estimation tesults for the software projects,
which development effort in person-months is
given in Figure 2. Adjusting calendar menths for
software development process is very important
activity, In most cases Basic COCOMO lnd
COCOMO 11 o

Y for soft devel P
Nevertheless there are two projects
underestimated in schedule by Basic COCOMO
(see Figure 3 Project_5 and Project_6).
Underestimation is relatively small: average 14%
(see Figure 1).

Besides Basic COCOMO and COCOMD Il we
have tried o0 use ObjectPoint method for
relatively small and simple applications, which
could be built using standard data and user
interfaice modules and without complex
algorithms. Currently ObjectPoint method was
rejected, because we have only few projects with
wnwlm betns developed by “ready to use”

perable ¢ ts only. This method
tend to underestimate projects with additional
programming activities (see Figure 4). Projects
estimated with ObjectPoints method were
developed using data access objects and standard
visual objects connecied to them (for mstance,
MS Access table and database grid control

connected to this parncular database table) and

some additional prog g was y for
data selection.
Software develop envi are

changing and coefficients used for
transformation of the function points to lines of

code must be adjusted for new envi nts.
After ex:rnmmg 10 d:ﬂ'er\em prt}jccu developed
using M ft soft develap wols in

our company, we found the following
coefficients for converting function points to
lines of code (Table 2).

Sometimes software system is initially divided
into subsystems or could be divided during the
development process. The software system could
be estimated as the whole one or by its
subsystems. Figure 5 shows the difference
between estimation results for whole system and
for decomposed one both estimated by using
COCOMO I1. There are three reasons for higher
values for whole project than for decomposed
one:

* product complexity increases,

- Adin, 1 il
project, B

e staff communications are more time
consuming.

y for larger

35
30 {—
22
g e e
= 20 @ ObjectPoints
§ 15 mReal
& 10
5 4
0
Project_1 Project_3 Project_2
Projects
Figure 4. Software project estimation with ObjectPoint method
T
Software develof envir 'Source lines of code per unadjusted
|funcllﬂu point
SLOC / UFP

Visual Basic 4.0, 5.0 2s
Visual C4+ 27

Table 2. CoefMicients used for converting function points to lines of source code

The conclusion from tendency given in Figure 5
should be: decompose complex system into

getting them.
Thc most r.on-pl:: and responsible part in the

subsystems and the pn:e of the whole proj
will be lower. Besides it, chart given in Flg'urc 6
shows difference in estimated calend:

process is o get precise
count of function pomlx The rrmn reason of
faults is g of functi

between the whole system and decomposed one.
This difference grows faster than difference in
cost (see Figure 5). Divided systems need more
development time. If time limit allows, some
decomposition could be made 1o lower wtal cost
of the whole project.

CONCLUSIONS

The main problem in the estimation process is
lack of input information. Especially if formal
estimation methods are used for software
projects “could be”. Results of estimation must
be included in proposal as accurate figures, but
very often there is a lack of information for

points. Therefore experienced system analysts
could be involved in estimation process.

Although estimation process is based on formal
models, it is the kind of arv It is very hard to
make accept estimation results, which
may be overestimated up to 4 times (see Figure
1). From the opposite side, upper level managers
and administration tend to think that evaluation
results are ideally precise,

Figure 5. Estimation results for whole and decomposed system

Calendar Months

8 88 8 8 3

o

Function Points

1000

~——— Divided into
subsystems

~..~. Whole project

Figure 6. Estimation of calendar months for decomposed and whaole systems

REFERENCES

[IFPUG) http//www.ifpug.org/ifpug
[ALBRE] AJ.Albrecht Measuring
Applicati ! Productivity._Proc.

IBM Applic.
California, 1979, pp. 83-92.

[PRESM]

Engineering:
Approach._McGraw-Hill, 1992, pp 41-91,

Dev.

R.Pr

Symposium, Monterey,

St

A Practitioner's

[BOEHM] C.Abts, B.Bochm, B.Clark,
S.Devnani-Chulani. COCOMO [l Model
Definition Manual,_University of Southem
California, 68 p.

Modeling methodology and tool for business
systems: Registrator: Baiba Apine, Arnis Kleins,
Ojars Krasts, Uldis Sukovskis, Artis Teilans, Vita
Zviedre

Riga Institute of Information Technology

Skanstes 13, LV-1013 Riga, LATVIA
E-mail: teilans@swh.lv

The paper introduces a methodology and a tool for modeling anc
simulation of different kind of large scale business systems with a numbe
of hierarchically structured objects and complex information, material o
another flows between them. The too! for the discussed methodology i
named REGISTRATOR witch is being developed in Riga Institute o
Information Technology. REGISTRATOR supports the modeling ¢
organizational and/or technical systems. Behavior of any active object ca
be described using a simulation script language witch is classified as th
discrete event simulation language. The simulation process can b
animated to get visual impression about system behavior, appearance um
of every passive object and their routes within the system. Durnin
simulation experiments events are traced and statistics are collected TF
simulation procedure is discussed in details. The main features of this to

«“

are'? a relatvely small number of concepts used in the building of the
static model: only live object clisses snd 16 types ol relations between
objects, with the terms defined intuitive and easily interpreted even by a
novice.? REGISTRATOR allows for the implementation of ditferent
building strategies for the model, including: classic (top-down) strategies,
reverse (bottom-up) strategies, mixed strategies;”? the possibility of
checking the completeness and consistency of the model and of generating
a list ol inconsistencies and Miws

INFORMATICA, 1995, Vol. 6, No. 4. 387-396

A VISUALIZATION AND ANALYSIS OF
EXPERIMENTALLY GATHERED RESULTS
IN AN USER-FRIENDLY MODE

Baiba APINE

Riga lnstitute of Information Technology
Skanstes St. 13, Riga, Latvia, LV1013

Abstract. Software development consists of several phases, where each phase has its
own results. Language, which allows to describe collected results, their transformation
and displaying, is discussed in this paper. A software tool is offered as an interpreter for
this Janguage. The language and software tool form a complex for data apalysis. The
tompiex is open and could be adapted for usage in different software system development
stages. Object-oriented methodology for system specification design is used to show
structure of the language and software tool.

Key words: computer aided system engineesing, CASE, data analysis, information
presentation, data description languages, software systems.

Specialists involved in software system development process use different
software tools to study various aspects of the system. Tools accumulate infor-
mation and create results, which must be organised and passed to the developer
in the user-friendly mode (reports, charts, tables, etc.). Problem has three
solutions:

o The first - to create results analysis tool for every aspect of software
system. Results analysis tool provides minimum of calculations and
reports, but supports data export to more powerful data analysis tool.
This approach is very labour - consuming and depends on specific data,

o The second - to use already existing mhlti-purpose resulls analysis tools,
spreadsheets, statistical packages, for instance. These tools are powerful,
they have their own languages for data description. User must profit by
the experience of using them. Frequently user doesn’t need even fifty
per cents of all features provided by universal data analysis tool.

+ The third - 1o create a simple data description language, which de-

388 A visualization and analysis of experimentally gathered results

scribes collected information structure, transformation and visualisation,
and software todl as interpreter for this language. Software tool is inde-
pendent of the process, which stores results.

The third solution is provided in this paper. Solution is a midway of creating
the particular results analysis tool for every software development tool and usage
of universal data analysis tools. Process, which stores data, hasn't take care
about collected data visualisation, but user won’t need special skills for working
with collected data (Fig. 1).

. A

Software development tool

e
o~

Users

Results analysis tool

———— (' Results desaiiption)
/

Fig. 1. Language for data description and tool as interpreter for this
language.

Results analysis complex may be used by different processes. It is con-
venient to consider results analysis complex as closed system, which interacts
with environment via separate objects, and choose the object-oriented method-
ology (Rumbaugh, 1991) for its specification design. Object model shows data
description language structure as well as structure of the software tool (Fig. 2).

Object Data description and its subclasses show the data description lan-
guage structure. Subclass Data transformation is the part of the language, which
describes how get results from previously collected data by using of predefined
functions (Fig. 3). For instance, a sequence of events is accumulated during
some time interval. Each event in the sequence may be a seizing of a computer
or it's releasing. Following attributes describe each event: time moment when
event is registered, computer identification and event type (seizing or releasing).
One of possible functions is calculate the total and average seances of computer
usage during fixed time period.

Object Data structure shows, how data stores in data storage (Fig. 4).

s |
slorage

descriptian

8. Apine

Dala deseription
(name: siving

Uee

frand(): wiring

<

Ve |ntorage

Kor——

389

Aesond

LK
flangt . at

Has an row

arguments: slring
rasuit: atring
type: airing

read(). stnng

1
Data fransferm atisn Data swruchure Data visuslissnan
nehon » shuctare alnng
i rary siring

narvar

-

'.l!:l_l analysar

L]
weriplion{namae siving)
leali{eade siringl:boalaan

Werks with

l_j’)ﬁ :

(s latus:
wxscule(] Bu

Translermer

fav

writeriraader

mn!:!&lzlnl
save_lnpul_paramaiurs(]

Chan
ype: Int

draw()

=L

walu

Has . »
value

Flig. 2. Data description language and interpreter makes a whole unit for
gathered results analyze.

380 A visualization and analysis of experimentally gathered rezults

One instance of the object Data transforrmation:

|library = CAEXAMPLE\EX1
ipooedule =get_sum
parameters = C\TMPC100.tmp
results = C\RESULTS\2000.tmp
type =DLL

caption = Total of the resource usage|

C\TMPO100.rmp

oo

/

C\EXAMPLEEX1.0LL
gat_sum(C\TVPO100.trrp)

/

N

C\RESULTS2000tmp

Fig. 3. Sample of data transformation description.

Irstance of the object Data structure:
structire = char{32] # long # long # long
~
Drta, which structure is described ;| PC conpuer 7 { 7
Laptop 10 3 7
SUN 5 10|

Flg. 4. Sample of data structure description.

B. Apine 391

Irstance of the obyect Table description:

icaption = Total About Resource Usage

headings = Resource # Tatal tinme used # Average searce length # Miximum
seance length

fields =0#1#2#3

format =# DURATION# DURATION # DURATION

sartDefault =0
Dota:
PCcamputer 7 0
Lapop 0f 3 |7
Table generated by tool SUN el s)
accaording to this
description: /

Rescurce Tdtal time used lAwqpaB':ijmm
lergth searce lengh

PC computer 7s 7s 0s
Leptop 10s K 7s
SN 12 & 108

Fig. 5. Sample of table description.

Object Data visualisation shows how collected and transformed data have
been shown to user. Its subclasses Table description and Chart description
show data representation in table or in chart. Every instance of these objects
describes one table (Fig. 5) or chart (Fig. 6).

Software tool is an interpreter of the language. It takes collected data, trans-
forms them, if necessary, and displays according to description. Object model
highlights, which objects of the software tool are essential for interacting with
an environment. For instance, user will interact with the software tool via object
Visual object. This part of the software tool is interactive process, thercfore it
would be better to implement it in an event-driven environment. Part, which
transforms (object Transformer) data may be considered as continuocs process
and implemented by using of a procedural environment.

392 A visualization and analysis of experimentally gathered results

Object Chart description instance:

X=1

Y=2#3

Xlabel = Resource

Ylabel = Total tine wsed # Average seance lengh # Maximumseance length
formatY = Seconds # Seconds # Second

stle =4

Data:

10| 3| 7|
2/ 5| 10]

B Total time used

B Avernge seance length
O Mmdmum seance length)

Fig. 6. Sample of chart description.

Software tool is implemented and used by some modelling tools. Software
tool is the component of the set of GRADE (1993) system development tools.
Its npame is Trace Browser. Trace Browser is used by business modelling
component for displaying of collected results (GRAPES-BM, 1995). Results
may be described as follows:

o Task name - task name, at which events queue is considered. Task is a
function, for which all necessary resources are fixed. For instance, task
is to register an order and necessary resource for its carrying out is a
computer.

B. Apine 393

¢ Event name — event name at the task identifies events queue. Event is
an initiator of the beginning of the task execution. For instance, entering
of an order invokes order’s registration task,

¢ Maximum (average, minimum) length of queue-maximum (average, min-
imum) of events, located at the task during fixed time period.

Business modelling tool stores data. If business model designer wants to
work with collected data, business modelling tool generates data description
according to the data description language, calls Trace Browser and passes
collected data and generated data description.

For instance, data are collected in data storage, which structure is described

as follows: structure = char[33J#char{33}#double#double#double (Fig. 7).

((Process)
Business modelling tool
(Record)
0
0
| Send | Review | 8 |42 2 |
(Record)
I
9

| Registrate | Thesis | 11 | 812 24 |

Fig. 7. Part of instance diagram, which shows data storage contents.

Business modelling tool assigns semantics to collected data, when generates
data visualisation description. The following fragment is necessary to show
collected data in a table (Fig. 8):

caption = Events Queues Length

headings = Task Name # Event Name # Maximum Queue Length # Average

Queue Length # Minimum Queue Length

Sfields = O#142#3#4

format = #HFLOATHFLOATR#FLOAT

394 A visualization and analysis of experimentally gathcred resuirs

T Flie

Thasis 17563000
‘Review 72 6210
Thasis £7.40000C

Fig. 8. Table generated by Trace Browser according to table description.

‘Table caption is the value of the attribute caprion. Values of the attributes
headings, fields and format arc lists separated by “#°. Their values are inter-
preted simultaneously: value from data storage zeroes field is collected in the
fust column of the table in the same format as it stores in the data storage. The
first column caption is Task name. And so on with every item of the lists.

The following fragment is necessary to display collected data in bar chart
(Fig. 9%

caption = Events Queues Length

Xlabel = Task Name # Event Name

Ylabel = Maximum Queue Length # Average Queue Length

Minimum Queue

Length
X = 0#]
Y = 243#4

The heading of the chart is the value of the attnibute caption. Labels on the
honzonta] axis are values from zeroes and first fields from data storage (attribute
X value). Three values are shown for every record in the data storage. Values
from second, third and fourth fields (attribute Y value).

B. Apine 395

! t

file Tools Qons _Vjindw Help

IPFECEDIR
e

Lvents Oy

B Vaomem Queue
Lengh

§ Average Queue
Length

% Wumun Queu
Lengh

Fig. 9. Chart generated by Trace Browser according to table description.

Described approach has some advantages:

¢ Results analysis tool (Trace Browser) is independent from process, which
stores data, and can be used by vanous processes.

¢ Results analysis tool may be updated with new functions for data trans-
formation.

o It is better, if the whole set of software development tools use one and
the same results analysis tool.

REFERENCES

GRADE V1.0 (Windows): Modeling and Development Environment for GRAPES-86
and GRAPES/4GL. User Guide. (1993). Siemens Nixdorf Informationssysteme AG.
282pp.

396 A visualization and analysis of experimentally gathered results

GRAPES-BM: Version 2.1: New Features of Language and Tool Support, Simulation
Part. (1995). August 3. 23pp.

Rumbaugh, J. (1991). Object-Oriented modelling and design. Prentice-Hall, Inc.
542pp.

Received November 1995

B. Apine is a programmer at the Riga Institute of Information Technology
(Latvia), Master of computer sciences. His current research interests include
computer aided system engineering (CASE) and software systems, data analysis
and information presentation methods. '

APIE EKSPERIMENTO DUOMENU PATEIKIMA IR
ANALIZE VARTOTOJUI PATOGIU BUDU

Baiba APINE

Programy sistemos kuriamos etapais. Kiekviename etape gaunami rezultatai. Siame
darbe aptariama kalba, skirta gautiems rezultatams bei naudojamiems jy transformavi-
mo ir vizualizavimo biidams apra¥yti. Apralylas tos kalbos interpretatorius. Kalba ir
interpretatorius sudaro duomeny analizés priemoniy kompleksg. Kompleksas gali biti
pritaikytas bet kurio programy sistemos kirimo etapo duomenims apdoroti. Kalbai ir
interpretatoriui apra¥yti panaudota objektiné metodika.

	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000002.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000003_2R.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000004_2R.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000005.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000006.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000007.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000008.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000009.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000010.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000011.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000012.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000013.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000014.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000015.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000016.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000017.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000018.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000019.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000020.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000021.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000022.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000023.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000024.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000025.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000026.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000027_2R.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000028_1L.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000028_2R.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000029_1L.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000029_2R.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000030_1L.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000030_2R.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000031_1L.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000031_2R.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000032_1L.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000032_2R.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000033_1L.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000033_2R.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000034_2R.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000035_1L.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000035_2R.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000036_1L.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000036_2R.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000037_1L.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000037_2R.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000038_1L.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000038_2R.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000039_1L.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000039_2R.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000040_1L.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000041_1L.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000041_2R.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000042_1L.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000042_2R.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000043_1L.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000043_2R.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000044.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000045.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000046.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000047.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000048.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000049.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000050.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000051.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000052_1L.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000052_2R.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000053_1L.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000053_2R.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000054_1L.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000054_2R.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000055_1L.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000055_2R.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000056_1L.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000056_2R.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000057_2R.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000058_1L.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000058_2R.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000059_1L.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000059_2R.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000060_1L.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000060_2R.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000061_1L.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000061_2R.tif
	Zarina_R_Vistu_kokcidijas_un_kokcidioze_1965_00000062_1L.tif

