LATVIJAS UNIVERSITATE

Guntis Arnicans

Informacijas apstrades riku izveide
neviendabigai un dinamiskai videi

SAISTITAS PUBLIKACIJAS

(Promocijas darba pielikums)

Publikicijas recenzéjamos starptautiskos zinatniskos izdevumos

V. Amicane, G. Amicans, and J. Bicevskis. Multilanguage interpreter. In H.-M.
Haav and B. Thalheim, editors, Proceedings of the Second International Baltic
Workshop on Databases and Information Systems (DB&IS '96), Volume 2:
Technology Track, pages 173-174. Tampere University of Technology Press, 1996.

G. Arnicans. Application generation for the simple database browser based on
the ER diagram. In Janis Barzdip$, editor, Databases and Information Systems,
Proceedings of the Third International Baltic Workshop, Volume 1, pages 198-209.
Riga, 1998.

G. Amicans, J. Bicevskis and G. Kamnitis. The Concept of Setting Up a
Communication Server. In abstracts of papers of 3™ International Conference
“Information Technologies and Telecommunications in the Baltic States”, pages 48-
57. Riga, 1999.

G. Armicans, J. Bicevskis and G. Karnitis. The Unified Megasystem of Latvian
Registers: Development of a Communication Server — the First Results and
Conclusion. In abstracts of papers of 4 International Conference *Information
Technologies and Telecommunications in the Baltic States”, pages 163-168. Riga,
2000.

G. Amicans and G. Kamnitis. Heterogeneous Database Browsing in WWW Based
on Meta Model of Data Sources. In Albertas Caplinskas, editor, Databases &
Information Systems, Proceedings of the 4" IEEE International Baltic Workshop.
Volume 1, pages 174-187. Vilnius “Technika”, 2000.

G. Amicans and G. Karnitis. Heterogeneous Database Browsing in WWW Based
on Meta Model of Data Sources. In Janis Barzdins and Albertas Caplinskas. editors.
Databases and Information Systems, Fourth International Baltic Workshop.
BalticDB&IS 2000 Vilnius, Lithuania, May 1-5, 2000, Selected Papers. pages 167-
178. Kluwer Academic Publishers, 2000.

G. Arnicans, J. Bicevskis, E. Karnitis, and G. Karnitis. Smart Integrated Mega-
system as a Basis for e-Governance. Proceedings D of the 5" International Multi-
Conference Information Society IS’2002, pages 197-201. Ljubljana, Slovenia, 2002.

G. Arnicans and G. Karnitis. Semantics for Managing Systems in Heterogeneous
and Distributed Environment. In Hele-Mai Haav and Ahto Kalja, editors,
Databases and Information Systems, Proceedings of the Fifth International Baltic
Conference BalticDB&IS 2002, Volume 1, pages 51-62. Tallinn, 2002.

G. Arnicans and G. Karnitis. Semantics for Managing Systems in Heterogeneous
and Distributed Environment. In Hele-Mai Haav and Ahto Kalja. editors,
Databases and Information Systems II, Fifth International Baltic Conference,
BalticDB&IS 2002 Tallinn, Estonia, June 3-6, 2002, Selected Papers, pages 149-160.
Kluwer Academic Publishers, 2002.

Citas publikacijas, referati un raksti

V. Amicane, G. Arnicans, and J. Bicevskis. Multilanguage interpreter. Submitted
paper to the Second International Baltic Workshop on Databases and Information
Systems (DB&IS ‘96), Tallinn, pages 14, 1996.

G. Arnicans, J. Bicevskis and G. Karnitis. Development of a Communication
Server: First Results and Conclusions. Baltic IT Review, 17(2):29-32, 2000.

G. Armicans, J. Bicevskis, G. Karnitis, and E. Karnitis. The Mega-system:
integration of National information systems. Conceptual and Methodological
Baselines. In Latvian Academic Library Grey Literature database,
http://159.148.58.74/grevdoc/megasystem_baselines/mega_base.doc, pages 17, 2001.

G. Armnicans. Doménspecifisko valodu izmantoSanas iespé€jas. Referats, Larvijas
Universitates Zinamiska Konference 2002, slaidi 41, 2002.

G. Arnicans. Information Processing Tools and Environments. Referats, Larvijas
Universitates Zinatniska Konference 2003, lapas 9, 2003.

G. Arnicans. Description of Semantics and Code Generation Possibilities for a
Multi-language Interpreter. Akceptéts iespiesanai Larvijas Universitdtes zinatniskie
raksti. Séjums 669. Datorzinatne un informdcijas tehnologijas., lapas 22, 2003.

Hele-Mai Haav, Bernhard Thalheim (Eds.)

Databases
and
Information Systems

Proceedings of the
Second International Baltic Workshop
Tallinn, June 12-14,1996- -~ - -

Volume 2: Technology Track

Multilanguage interpreter

Vineta Arnicane, Guntis Arnicans, Janis Bicevskis

University of Latvia
Faculty of Physics and Mathematics
Rainis Blvd. 19, Riga LV-1459, Latvia
e-mail: vamican@lanet.lv, gamican@lanet lv
and
Riga Institute of Information Technology
Skanstes 13, LV-1013 Riga, Latvia
e-mail: bicevskis@swh.lv

The idea of the multilanguage/multsemantics interpreter (MLI/MSI) has risen from a
plenty of problems that require to analyze the given program text and do something with
it. Some of such problems are program ranslation to another programming language or
compiladon, dynamic program execution or interpretetion, program beautifying and
clarifying, determining program complexity, creation of cross-reference tables, static
program testing, symbolic testing, automatic testing, program instrumentation with
additional text, dynamic testing supporting. i

The main characteristics that describe programming langnage are syntax,
semantics and pragmatic. The muldlanguage interpreter is a program that receives the
source language syntax, the source language semantics and the program written in
source language and performs the operations implied by this program and given
semantcs. -

We use attribute grammars as basic concept in MLI/MSI. As metalanguage for
expiessing grammars we use BNF. The syntactic structure of a given source program 2s
generated by the grammar, can be depicted as a parse wee. Conceprually we parse the
input token stream, build the parse tree, and then traverse the tree as needed to evaluate
the semantics rules at the parse tree nodes.

Semanucs are described by evaluatdon rules. Rules are not associated with some

grammar production rule but are connected to terminals and nonterminals of BNF. We

173

mailto:bicevskiS@swh.lv

have divided semantics rule for nonterminal symbol into two functions: Pre_function that
is executed if we visit node from parent or sibling node and Post_function if we visit
node from child. For terminal symbols we write only one function.

The semantics for MLI/MSI is the set of programs written in some metalanguage
and some real programming language. These programs are written in such a way that
they can be executed on computer. The special support tool is designed for
multilanguage interpreter to write semantics more quickly and compactly - Memory
Object Management System (MOMS).

MOMS operates with some basic memory objects such as name of object,
reference (handle to memory object), value (handle to byte stream that contains a value
of an object), constructor (handle to object type description). Constructor may be
primitive consfructor or combination of primitive constructors. By using of constructors
we can describe the structure and features of any memory object, for instance, type of
variable, function arguments, procedure, etc. MOMS also operates with more complex
memory objects such as dictionanies, tables, memory blocks, stacks, collections.

MOMS functions we use for describing the semantics of the subject language.
These functions provide definidon of the features of program running environment,
description of the source language basic data types, description of the source language
basic operations (+, -, *, /, <, >, min(), max(), substr(), etc.), definition of scope for
memory objects, sets of functions that allow to create easier user defined data type,
various operations with variables, constants, functions for realizing the source language
procedures and functions, and other useful functions.

The advantage of MLI/MSI is easiness and simplicity of various semantics
describing, modifying of them and linking of them to syntax during execution.

We have created convendonal semantics for the simple poor language PAM as

well as special semantics that perform ‘symbolic -execution along:the chosen -program - -

path. MOMS can be used by other tools tco. It is already used as central part of
MOSAIC (CASE 100l for business modeling).

174

Janis Barzdins (Ed.)

Databases
and
Information Systems

Proceedings of the
Third International Baltic Workshop
Riga, April 15-17, 1998

VYolume 1

Riga 1998

Application generation for the simple
database browser based on the ER
~ diagram

Guntis Arnicans

University of Latvia
Faculty of Physics and Mathematics
Rainis Blvd. 19, Riga LV-1459, Latvia
gamican@lanet.lv

Abstract

This paper describes a development technique for the rough browser of a database. The
offered data browser or data management system can be generated automatically from the a
physical data model represented by an ER diagram. The ER diagram used to generate a
target application source text is described by common simple concepts and by some
additional attributes with default changeable values. All the ER diagram elements are
mapped to standard screen object groups and are the main components in the target system
screens. Various screen templates for generated applications are defined depending on the
entities, the relationships between them and an acceptable user interface. The generated
application can be used for database browsing, data manipulating. system prototyping, fast
developing of simple information systems and data analyzing.

1. Introduction

There are many strategies for information system development and project management
in nowadays. The development of very advanced CASE tools lets us use the Rapid
Application Development (RAD) methodology. This approach includes several steps -
business modeling, data modeling, process modeling, application generation, testing and
~turnover (1} “Inthis paper the simple technique is described that allows to develop
specific information system - database browser and data manager. The main attention is
turned to the gencration of application.

Many powerful tools already exist to assist in system development with RAD
technology, for instance, Oracle Designer/2000 [2]. [3]. But practice shows that these
tools sometimes are not useful. The reasons are that they are expensive and require high

educated and trained specialists to work with them. And we have 1o work hard for some

198

mailto:gamican@lanet.lv

time. The quality of the information system mostly depends on the data model.
Especially this data model (object model) is cntical when we use Object Modeling
Technique (OMT) [4]. Let us assume that we already have designed the physical data
model for our database. Like a conceptual data model the physical data model can be
described by Entity-Relationship Diagram (ER diagram). This is popular instrument to
describe data model or database and these diagrams are known for most programmers.
Our goal is offer to the user a technique that allows to create a database browser
from the physical data model described by the ER diagram. What does the developer
have to do? He has to create a simple ER diagram for the existing or the planned
database. We do not care in whether he makes a serious analysis and design, whether he
creates the ER diagram “on the fly”. He obtains quickly generated database browser, a
simple information analysis and filtering tool, a data entering and editing tool, a
prototype for the most serious business application, simple database testing tool. Thus,

while the real system is developed, a robust information system is obtained.

2. ER diagram - the source for generation

2.1 The elements of the ER model

The ER diagram is a source for application generation. We consider only the ER
diagrams that represent physical data models. The main objects we manipulate are the
ER diagram descriptor (describing common features of database), the entities
(representing tables in our database). the relationships (representing the relations
between the entities). the fields (representing the data fields in the record of the physical
table).

Developers use various variants of the ER diagrams. Let us take a diagram that is
not oo simple and not very complex. The ER diagram can be described by the object
model shown in the Figure 1. We choose the following elements in the ER diagram:

e diagram descriptor - DiagramNamie:

e entity - EntityName, [EntityType), PrimaryKey, UniqueKey, Index;

e field - FieldName, [FieldType], DataType, [Visibility]. [ShortView]. [Longliew];

* relationship - EndEntity |. EndEntity_2, Cardinality I, Cardinality 2. Role 1.
Role_2, ForeignKey 1, ForeignKey 2.

199

The attributes in brackets are introduced for generation better applications. For
simplicity we assume that primary key and foreign key are represented only by one field.
In our simplified model we assume that an index is created from a field without using
any function. It is not so hard to expand the model to use a combination of fields as the

primary key (as the foreign key respectively) and a function of fields as the index.

Figure | The conceptual object model for the ER diagram

2.2 Additional elements of the ER diagram

Let us introduce several new attributes for the ER diagram. These attributes provide the
additional information for the application generation program (o generate a more
convenient application.

Entity type is a special aftnbute of an entity that allows us to generate
application screens with a specific information layout and data manipulation means. This
attribute is stated automatically and depends on the relationships between the entities.
The user can correct it while automatic type fixing.

Field type is an automatically calculated atiribute of the field. If the field is
defined as the primary key of Enrity via relationship has as PK (Figure 1) then the field
has type PK. Similarly we define type UK (via relationship has as UK) and type FK (via
relationship has as FK/ or has as FK2). Otherwise the field type is Attribute.

Visibility is a feature of a field. It states whether the information associated with
the field is or is not displayed tc the user. The default vaiue of visibiliny is TRUE for
fields with types UK, FK and Attribute but FALSE for type PK.

ShortView and LongView are field attnbutes that define how the entity record

can be best displayed on the screen.

2.3 Entity types

Entity type is an important concept in our application generation ideology. Let us define

the following entity types.

Domain - list of standard data elements, allowed values for an attribute or an object
property.

SimpleEntity - simple object that is determined by a set of attributes or standard data
elements.

ComplexEntity - complex object i1s similar to SimpleEntity but it includes other
simple or complex objects.

Link - logical relation between at least tv o simple or complex objects.

2.4 Algorithm for entity type determination

Scan through all the entities and fix those that have no field with type FK (foreign
key) and all the incoming ends of whose relationships are either of cardinality 1 or
0..1. We have to assign the type Domain or SimpleEntity to the fixed entities. The
type Domain is assigned by default.

. Scan through all entities without a fixed type and fix any one that has fields with type

FK referenced only to entities with type Domain and all the incoming ends of whose
remaini_ng relationships are either of cardinality | or 0..1. The type SimpleEntiry is
assigned to the fixed entities.

Scan through all entities without 2 fixed type and fix each one which at that moment
is referenced by a foreign key from any entity with type Simple Entity, ComplexEntity
or undefined type. The entity can also reference to itself. The type ComplexEntity is

assigned 1o the fixed entities.

. Scan through all entities without a fixed type and fix any one that has at least two

fields with type FK that reference to entities with type SimpleEntity or ComplexEntity.
We have to assign the type Link or ComplexEntity to the fixed entities. The type Link
is assigned by default.

. The type ComplexEntity is assigned to the any remaining entity without fixed type.

The user decides on the entity type (1. and 4. step) according to the semantics of

the entity and on how he wants to see the information on the screen.

201

2.5 Textual visualization of entity record

We need to define several textual visualizations of an entity record in our system. A
textual visualization of an entity record is mapping the field values to text. These texts
(or entity views) are used to display an entity on the screen. Let us define three functions:
shortView(), longView(), allFields(). The shortView() displays some of the record fields
in an ordered sequence. The order is defined by assigned an order number to attribute
ShortView. If the field is not included in short view the 0 is assigned to ShortView. The

similar approach is used for longView(). The allFields() displays all fields.

2.6 ER diagram for example

The ER diagram for example is given in Figure 2. The attributes of each field are given
in the following sequence - field name, data type, field type, visibility (T for TRUE, F for
FALSE), ShortView, LongView. -

Perssa

;z'::i‘“ﬁ?' UM 6} 5: ldentlity Ne, NMMIL1l, PK,
Person; | MUKILl}. P, issued_to_penon | Naae, CHAR(201, Attr,
Date. Feom, TATE, NEECE FK Perion Surname, CHAR(20), Attr,
Date_to, DATE Attr by

0t 3 oLy bas_policy | Index
iy SR el ol A Sucname ASC
e Jdentity_No ASC
|

Follcy No ASC
ate_from DESC

- - % 1D0_model, WNOM(4)., PK, T, o
is_covered_by_palicy infor w0 | podel, CHAR(30), Atte, T. 1, 1
FK Policy -

hay. moddl Model Asc

FK Model

Amts
ISM_insuc, WU, PK, F. 0, 0
e ; i L lSH{nutu. N, PE.
Tois UM, ok 5 s Registration Mo, CHAR(6), UK.
2 - 2 . e is_inwured with | Hedsl, MM, FE
Order_number, NUM|Z), Attr, T, 0, 1 - = Year, M4}, Atrr,

relare_1a_suto

index FK Auwa

Order number ASC Index

egistration_No ASC

Figure 2 ER diagram for example

3. Application generation
T'he general 1dea of generation is to create a system with a predefined user interface and

functionality. The features of the system depend on the generator. We can generate the

whole application for the ER diagram or only some components for this application.

202

3.1 Screens and menu system

The quality and usefulness of the generated system depends mainly on the generated
screen system. Let us define several standard screens that allow us to handle data in the
database. The basic generation principle in our approach is to generate the specific data
editor for one or several tables connected by relationships. We generate a set of related
screens and this enables direct transition from one screen to another.

The primary objects in our system are entities and relationships between them.
We define some screen types with different user interface and different functionality for
any entity or relationship. For instance, we can display on the screen entity, links to other
entities (relationships in the ER model), information about related entities or display
related entities by some relationship. The screens of all types are generated for each
entity (accordingly to entity type) and for each relationship if the generation options do
not define another behavior.

The menu provides access to any generated screen and standard operation

defined for any application. The screens are organized in a hierarchy for easy orientation.

3.2 Screen components

Every screen logically consists of two large sets with different screen objects.

e Information group - screen objects that display information stored in the database
and objects that are generated from the ER model. This group mainly consists from
table fields and relations between entities. The basic information subgroups are: Field
group (screen objects that display visible record fields), Entity presentation group
(screen objects that display the record of the entity or the list of records),
Relationship presentation group (screen objects that display relationship between
entities), Order button group (radio button group that determines the order in what
records are ordered).

* Management greup - screen objects that provide additional management over the
deta stored in the daiabasc. Their generaiion depends on the screen tvpe. The
following management subgroups are defined: Edit button group (a group of
buttons for entity record editing - New, Edit, Save, Delete. Cancel buttons). Locate
button group (a group of buttons for locating the desirable record - First, Next.

Previous, Last, Find buttons), Print button (a button for printing the current record

203

or a record list), OK button (a button for leaving the window), Control button

group (specific buttons included in the screens of specific type).

4. Mapping ER model objects to application objects

4.1 Mapping sequence

A rough algorithm for application generation is the following.

o

Laa

Map the ER diagram name to application name.

Generate the screens for each entity (all screen types allowed for given entity type):

Generate screen name from entity name.

Generate each information subgroup needed for the given screen type. The layout

of this group (horizontal, vertical, tabular or other) is not the subject of this

paper.
a) Generate all field groups for given entity.

b) Generate information about all related entities via foreign keys.

c) Generate information about all related entities via relationship without a

foreign key at the end of given entity. .

d) Generate order button group for given entity.

Generate all management subgroups necessary for the given screen type.

Generate screens of all allowed types for each relationship.

Generate screen name from related entity names and role names...

Generate information group as for the entity screens. . s

Generate management group as for the entity screens.

Generate menu_system organized by screen types. The deepest menu items are

generated from the entity name (for entity based screen) or from two entity names and
role names (for relationship based screen). The menu item will open the-window for .
the specified screen tvpe and entity {or relationship) as the central object.

Generate additional menu items for standard operatiens.

4.2 Field mapping

A field with type Attribute maps to screen Attribute header: | Value_with_field_data_type

object group Attributelnfo (Figure 3).

Figure 3 Screen object group Attributelnfo

204

Attribute header is TextBox object with value generated from FieldName and EditBox
object contains the value with type defined by field DataType. The EditBox length
depends on the data type but is limited by some reasonable maximal length. If necessary
scrolling through field is provided.

1 ith PK 1 k
A field with type (primary key) - Vo709 [

maps to screen object group Pklnfo (Figure
4). It is similar to Attributelnfo but it also has Figure 4 Screen object grovp Pklnfo

the button Gen. The user can manually enter a value for the record primary key or
generale a value automatically by pressing the button Gen. Key generation depends on
the selected default rule. When the user leaves EditBox the system checks whether the

value is unique.

A field with type UK (unique key) maps to

UK header: [value_with_fieki_data_type|

screen object group Uklnfo (Figure 5). This group

is similar to the screen object group Pk/nfo. Figure 5 Screen object group Uklnfo

A field with type FK (foreign key) maps to
type (E ¥) map FK neader. [X] (Enttyinto)

Figure 6 Screen object group Fkinfo

screen object group Fkinfe (Figure 6). The content

of this group depends on the screen type,
relationship type and connected entity type. Fk header 1s TextBox object with value
generated from. FieldName. CheckBox is an optional element and is generated when
corresponding relationship at the opposite end has cardinality 0..1, otherwise (cardinality
1s 1) CheckBox is not generated. We can assign an empty value to the foreign key field
by: tumning oft CheckBox. Entityinfo 1s another screen object group (see Entity

presemation). The button Go is optional and its generation depends on the screen tvpe.

4.3 Entity presentation

An instance of entity is represented by screen abject group Entityfnfo. Let us define

several subgroups for Entiryinfo.

Entity with type Domain is

) |Domnm_kev “E‘mm_valua >l
represented by Demaininfo (Figure 7). N

ComboBox provides the selection of Figure 7 Screen object group Domaininfo

domain value and shows the current value. This screen object is obligatory part of the

group. EditBox Domain_key is optional. It is generated by the following rules. At first, if

entity has the visible unique key then Domain key gets the data type from this field.
205

Otherwise, if entity has the visible primary key then it gets the data type from this field.
If entity has no visible unique or primary key then EditBox is not generated. Both objects
always reference to the same table record. EditBox can be used for selecting the domain
value by entering the key in the EditBox. Domain_value is the entity representing text
depending on the default text function.

Entity with type SimpleEntity or

ComplexEntity is presented by EntityTextInfo [E"“‘Y-““‘

(Figure 8). TextBox contains the entity Figure 8 Screen object EntityTextInfo
representing text depending on the default text
generation function.

Several similar entities with type

SimpleEntity or ComplexEntity are presented by List_of_entity_texts

EntityListinfo (Figure 9). ListBox contains

entities representing texts depending on the
. . Lo Figure 9 Screen object EntityListinfo

default text generation function. EntityListInfo

represents also entities with the type Link but in the text generation function can exclude

one field with type FK.

4.4 Relationship representation

One direction of relationship is represented

by RelationshipEndInfo (Figure 10). Let

us suppose that we represent relationship Figure 10 Screen object RelationshipEndinfo
from Entity I to Entity 2 with role Role_I. TextBox Relation role contains text
‘Role_1" and TextBox Relation_end contains text ‘Entity_2’. Button Go provides going

to the screen that represents entity Entity_2.

4.5 Mapping of the indexes

if the cntitv has at Jeast one index then ali indexes are p—
mapped to Order button group represented by @ fone

) O Index?
OrderButtonGroup (Figure 11). The first button Norne O Index2
allows to remove any previously used record sequence.

Every next button corresponds to some index. Figure 11 OrderButtonGroup

206

4.6 Traversing through screens

Traversing through screens is performed by button Go. This button is usually attached to
the screen object group representing the entity. The button brings us to another screen
that belongs to this entity. The button can work in two modes - with filter or without
one. If the filter option is chosen then in the newly opened screen we can access only
those records that are logically tied with the record or records in the previous screen. For
instance, if we fix any car model in the table Model then in the table Auto only cars with

this model are accessible.

5. Screen types

The design of screen types depends on the user's needs. Let us define screen templates
that can be regarded as basic screen types. The screen examples correspond to Figure 2.
e Simple entity view

This screen type can be used for the

representation of any entity (Figure - . I Ordered by
ID__model:!h_ue | O No order

12). The informati '
) e information group contains hlodol:) Wodei

all wvisible field groups and
. s

contains Edit button group. Locate Figure 12 Screen for entity Model

Order ButtonGroup if any index is

defined. The management group

button group, Print button, OK button.

¢ Entity view extension with links

This screen extension can be added o screens

Policy No: | oosTat i
of entities with type SimpleEntity or Person: [3] srown somoo7enizers [
ComplexErtity. All entities that have type Oate trom: [01 1297 |
Link and are directly connected via ———,

Premium: 4113 .
relationship with the given entity are shown covers_insurcd_auto. tasured st [
on the screen. The presentation is performed 1 AB1299 Foug_Escon]

2 C25 Opel_Ascona

by screen object groups RelationshipEndinfo

Figure 13 Fragment of screen for entiry

and EntiryListInfo. Figure 13 contains a .
Policy

screen fragment for the entity Policy with
insured cars (LongView option is used) for the current policy.

207

e Entity view extension with relations ne careorae |
This screen extension can be added to the screens with Mame: o]
types Domain, SimpleEntity or ComplexEntity. We Pom]
. . . has_poicy Policy
represent all relationships that have foreign key at the prrm R
3 . . 010014 05.12.97 04 1296
opposite end (it means that the other entity references to

the given entity via foreign key) and the corresponding Figure 14 Fragment of screen for
. . . entity Person

entities. For the presentation screen object groups

RelationshipEndinfo, EntityTextinfo or EntityListinfo are used. All the policies

(LongView option is used) are displayed for the current person in Figure 14.

e Simple link view
@ | 's coversa by policy Pﬂlﬁ

This screen is the special view to the entities with the P
type Link that links together exactly two entities with ==
O relate to aulo Auto
type SimpleEntity or ComplexEntity (Figure 15). The BT
ShortView option is used to represent linked entities in Order number: [2 |

EntityListinfo. A special Control button group Figure 15 Fragment of screen for
determines the main ListBox. In this case for a fixed entity Insured auto

policy 005781 all insured cars are displayed in the other ListBox with label Auto.

¢ Embedded entities view-

This screen type is useful only for the entity with type ComplexEntity. Let us take Simple
entity view as a base for such an entity. Instead of each field group Fk/nfo we incorporate
all visible fields from the related entity. We can imagine each embedded entity as a
subwindow where it is displayed with Embedded entities view for complex entity or
Simple entity view for the simple entity. E.g., in Figure 13 the objects group with header
Person is replaced by three screen object groups - /dentity No, Name, Surname from

entity Person. During the generation process we must beware of cyclic embedding and

stop embedding when we discover the cycle.

e Relationship view (@] hesmocs Mose
This screen provides a special view 1o relationship and | [Eord Fiarta
entities connected by it. Related entity is represented by]Ei B forauto Auto

RelationshipEndInfo and EntityListinfo. The main entity j'
is selected by the radio button. Figure 16 shows the

Figure 16 Fragment of screen for
relationship between entities Model

fragment for relationship [Model] is for auto /
- - and Auto

208

has_model [Auto] with ShortView option.

6. Conclusion and future directions

This approach is based on the common ER diagram elements mapping to some screen
object constructs. It is not hard (o create templates for generation - the standard code for
the whole screen and the standard SQL based code fragments for each generated screen
object group. Generation basically is code compiling from prepared code templates. This
technique partly is applied in practice - the real business applications are developed but
screen code is written by hand.

This approach has several future directions that seem very interesting. The
screens can be generated dynamically while application is running. E.g., the appropriate
HTML page can be generated and displayed. This improvement enables the information
view to be changed dynamically.

An ER diagram can be described by context-free grammar (E.g., in BNF
notation). The generator is an interpreter that reads the ER diagram as a program and
creates a source code for the screens [6]. Other graphical tools, e.g., GRADE [5] can be
used to prepare the ER diagram as input statements according to this grammar for the

generator.

7. References

[1] Tucker, A.: The Computer Science and Engineering Handbook, CRC PRESS, 1997.

[2] Billings, C., Billings, M., Tower, J.: Rapid Application Development with Oracle
Designer/2000, Addison-Wesley, 1997.

[3] Anderson, W., Wendelken, D.: The Oracle Designer/2000 Handbook. Addison-
Wesley, 1997.

[4] Rumbaugl, J.: Object-Oriented modeling and Design, Prentice-Hall, 1991.

(5] Barzdins, J., Kainins, A., Pednicks, K. et al: GRADE Windews: an I[nteprated
CASE Tool for Information System Development, Proceedings of SEKE 94, pp.54-
61, 1994.

[6] Arnicane, V., Amicans, G.. Bicevskis, J.: Multilanguage Interpreter. Proceedings of

the Second International Baltic Workshop. pp.173-174, 1996

209

International Conference
“Information Technologies and
Telecommunications in the
Baltic States”

ABSTRACTS OF PAPERS FROM THE BALTIC IT&T ‘99 CONFERENCE

RIGA, APRIL 28-30, 1999

RIGA CONGRESS PALACE

The Information Technology Committee of the Baltic Council of Ministers

DT Media Group

fclosingiPlenary:iThe:Baltic States ~"a Unified-Information’Society:#:

The Concept of Setting Up a
Communications Server

Mr. Guntis Arnicans, Dr. Janis Bicevskis, Mr. Girts Karnitis, Faculty of Physics and

Mathematics, University of Latvia

A communications server is a set of software and computer equipment
that allows a wide range of users, both domestically and internationally,
to receive information from a variety of sources (government registers,
data bases, information systems) through a single contact point. A com-
munications server identifies users, authorizes the use of the respective
data, fulfills a request that involves several information sources, and eval-
uates the cost of the process so that the appropriate financial transaction
can be made. A communications server allows users to learn where
information is being stored and what kind of information it is, as well as
to request and to receive information from various registers without any
need for in-depth knowledge about the technical aspects of its storage.
The need to establish a communications server became evident when the
governments of the Baltic States were setting up their joint data trans-
mission network. In order to allow institutions in one country to obtain
information about objects registered in another (enterprises, persons,
motor vehicles, etc.), it is useful to receive the necessary data from a sin-
gle information source, without having to study the data base structures
of the other country. The use of the communications server, as has been
seen through the elaboration of an integrated state significance informa-
tion systems project, is also of significance within one country, because. it
provides a universal resource for information exchange among various
information systems.

A communications server is a set of software and computer equipment that allows a wide range of
users (both in Latvia and in other countries) to receive information from a variety of sources (government
registers, data bases, information systems) through a single contact point. A communications server iden-
tifies users, authorizes the use of the respective data; fulfilts-arequest-that-invotves-severat-information-
sources, and evaluates the cost of the process so that the appropriate financial transaction can be made.
A cecmmunications server aliows users to learn where information is being stored and what kind of infor-
mation it is, as well as to request and to receive informaticn from various registers without any need for
in-depth knowledge about the technical aspects of its storage.

The need to establish a communications server became apparent when the governments of the Baltic
States were setting up their joint data transmission network. In order to allow institutions in one country
to obtain information about objects registered in another (enterprises, persons, motor vehicles, etc.), it is
useful to receive the necessary data from a single information source, without having to study the data
base structures of the other country. The use of the communications server, as has been seen through the
elaboration of an integrated state significance information systems project, is also of significance within
one country, because it provides a universal resource for information exchange among various informa-
tion systems.

PROBLEM IDENTIFICATION

The need to establish a communications server was noted in the national program “Informatics” [1 and
2], as well as during the elaboration of two major projects — the Baltic States Government Data
Transmission Network (hereafter in the text — the Network) [3 and 4] and the Integrated State Significance
Information System (hereafter — the Megasystem) [5]. The goal in establishing the network is to provide
fundamental improvements in the exchange of telecommunications and data among the administrative

48 Baltic IT&T ‘99, Riga April 28-30

CUTFETLSME S Closing Plenary: The'Baltic Statesi-ia:Unified Information:Society

¥,
(LE] e %

institutions of the Baltic States. During the first phase of the project (1998 and 1999), universal solution
is being set up to provide for the exchange of data among Latvia's Company Register, Motor Vehicles
Register and Lost Motor Vehicles Register, as well as between these registers and the related internation-
al information structures. So far this has involved three concrete activities:

1) Accession of the Latvian Company Register to the European Business Register (EBR);

2) Cooperation between the Motor Vehicles Register and the related European-level structure EuCaris,
as well as the establishment of a motor vehicles insurance system in Latvia (the so-called "green cards”);

3) improvements to the system whereby lost and stolen motor vehicles are registered in Latvia, includ-
ing a connection to the international data bases of Interpol in this area.

During the second phase of this project, between 2000 and 2002, more work will be done to include
Latvian registers into the Network and to integrate them into international information structures. In the
second phase, the plan is to place the Population Register, the Lost Persons Register, the Lost Personal
Documents Register, the Educational Documents Data Base, the Visas Data Base, the State Statistics
Information System, the Consular information System, the Health Care Information System and the
Narcotics Information System on the Network.

In a situation where information from various sources is available on the Network, but users have no
knowledge about the technical details of storing that information, there is an obvious need for a univer-
sal solution, and that is where the communications server comes in. The main requirement for a com-
munications server is that it must allow users to formulate their information requests in a simple way and
to receive responses to those requests without having to understand the technical aspects of the process.
Users are not, after all, informatics specialists; they are employees of other administrative structures of the
state, and there is no reason to think that they know anything about the way in which data objects are
distributed among the registers of another country. We can expect both standardized and wholly unpre-
dictable requests in this process. In terms of the urgency of requests, we can expect demands for on-line
responses that require rapid response, as well as requests for off-line responses that can take hours or even
days to fulfill. Needless to say, in setting up the communications system we must provide for all aspects
of information confidentiality and user authorization.

The setting up of the communications system is important not only in the context of the Network, but
also in the context of the Megasystem, which is a universal resource for the exchange of information
among various information systems within a single country.

THE CONCEPT OF THE SOLUTION

The communications server, which is illustrated in Figure 1, is an Internet rescurce point. Users of the
Server can access.it via various protocols — HTTP, CORBA, DCOM, SMTP (E-mail) and FTP. The server pro-
vides users with an opportunity to find out where information is stored and what kind of information s
available, and then to request and receive information from various reaisters witnout studying their struc-
ture. Because users may have access to sensitive information, users are identified with certtficates, and ail
data transmissions are coded.

Users who wish to have access to sensitive information before work with the system is begun must
receive a certificate that corresponds to the X.509 standard. The certificate must issued for a specific peri-
od of time (usually one year) by a specialized institution (presumably in Latvia this would occur under the
supervision of the Constitutional Defense Bureau). Certificates of this kind contain information that iden-
tifies the user, and they are virtually impossible to forge. The certificates are used to code data and to
identify the user. Latvia’s communications server will use a standard coding protocol such as SSL.

A user of the communications server sends information requests to it and receives responses from it.
This can happen both on-line (HTTP, CORBA, DCOM) and off-line (HTTP, E-mail, FTP).

In the on-line regime, work with the communications server is based on the following structure: At the
beginning of the process the user is identified. This means that the user sends his or her certificate to the
communications server, which reviews it and specifies the user’s rights. If the user does not have a cer-
tificate, then he or she can access the communications server as a guest and receive a limited amount of
information from it. Next the user requests information. The communications server once again identi-
fies the user and, on the basis of the level of the user’s authorization, makes the approprnate requests 10
the data registers, sending the response to the user when it is received. The register receives not only the
information request from the communications server, but also the user’s certificate, which means that the

Baltic [T&T ‘99, Riga April 28-30 49

e

i

reClosing:Plenary:The!Baltic'States = a:Unified Iriformation; Society: 48 syt

- RAdeD

register itself can identify the user and the user’s level of authorization. The result of this is that the reg-
ister provides only that information to the communications server for which the user is cleared.

T e [

gk T
<
:._1______‘_— "
— I: USER APPLICATION

REGISTERS

(APPLICATIONS) i (WWW BROWSER, ETC.)
H&I_!-\TABASES_ www

I e 1

|
REQUEST — — ——] e« REQUEST -
I
COMMUNICATIONS :
INFORMATION——— INFORMATION —
o SERVER
USER AND SERVER
VERIFICATION
USER . o
VERFCATION : e
CERTIFICATE SERVER,
DIRECTORY SERVER [

Figure 1. The operational structure of the communications server

In an coff-line regime, the user requests information via HTTP, E-mail or FTP. During periods of time
when it is less busy (usually at night), the communications server processes the request — identifies and ver-
ifies the user and then requests the respective information from the information registers. The response
is sent to the user via E-mail, or it is stored until the user asks for it on-line.

The main advantage of an on-line regime in this process is that information can be obtained immedi-
ately when the need arises. This system can be used in cases when the speed at which a response is
received is of importance, either from the point of view of the system (e.g., at border control facilities), or
from the point of view of the operation (e.g., an application in which the registration number of an auto-
mobile is entered and information is received about the automobile from the Road Traffic Safety
Department so that it need not be entered a second time).

The advantage of the off-line regime is that registers can even out the volume of work that is required,
given that at night there should be relative few on-line requests for information. Off-line requests can also
be sent in by users who have dial-up Internet connections, thus reducing costs. It is advisable to make off-
line requests less expensive than on-line ones so that users are motivated to use the off-line system.

THE FUNCTIONS OF THE COMMUNICATIONS SERVER

We can specify five main functions for a communications server:
e User identification
e Authorization with respect to the use of information
* Management of user rights
« Fulfillment of requests that involve several information sources
» Evaluation of the costs of each request for billing purposes

S0 Baltic IT&T ‘99, Riga April 28-30

feo g AU G e pLlosIngrienary: ;i Ne-Baltc:oates 73 UMW IO UL ULIELY X
USER IDENTIFICATION IN A COMMUNICATIONS SERVER

As was noted before, user identification involves X.509-standard certificates. In order to ensure that
the certificate mechanism is operational, a communications system needs both a certificate server and a
directory server. The former is a server that belongs to the certifying organization, generating and main-
taining electronic certificates ~ both server certificates (issued to the server) and client certificates (issued
to the user). The latter is a server in which the public keys of the certificates are stored, along with infor-
mation about certificates that have been issued — when a certificate has been issued, to whom it was
issued, and whether the certificate is valid or has been revoked.

The directory server is available to any interested party. For example, if a WWW server has been issued
a certificate, any WWW user can ascertain that the server is secure. If a WWW client has been issued a
certificate, in turn, the WWW server can ascertain that the client is authorized to work with the server.
Both the client and the server can check the validity of the submitted certificates by looking them up in
the directory server.

Work with certificates in WWW applications involves SSL (Secure Socket Layer) technologies, which are
supported by most WWW servers, as well as the main WWW browsers — Netscape Navigator and Microsoft
Internet Explorer. SSL technologies provide the following components of secure communications:.

1) WWW server approval: A user can ascertain the fact that the WWW server is secure and that it can
be entrusted with confidential information;

2) The privacy of information: The entire information flow between the client and the server is coded,
using a unique session key. The session key is coded by the server with the client’s public key in order to
send the respective information to the client in a secure way. Each session key is used in only one session,
which makes it difficult to decode the information without authorization. The information, in other words,
cannot be viewed by unauthorized persons, even if it is intercepted on its way between the server and the
client. -

3) The integrity of the information: Both the server and the client calculate the control code on the
basis of the content of the information, and if the information has been changed en route, the codes do
not match. This means that the receiver of the information sees precisely the same information that was
sent by the sender. -

Secure data exchange between the WWW server and the client occurs in the following way when SSL
technologies are used: .

1) The client sends a request for data exchange to the WWW server;

2) The server in response sends its certificate to the client, asking for the client’s certificate if appro-
priate;

3) The client checks the validity of the server certificate through the digital signature of the certificate
server, sending the client’s own certificate to the server if necessary;’ ' =

4) When the authorization process is complete, the client sends the session key to the server, coding
it with the public key of the server;

5) Both the server and the client know the session key, and further data flow between the server and
the client during the respective session is coded with the session key.

The certificates of the server and the client are exchanged quickly and without any involvement by the
user. The same is true with respect to an exchange of certificates among other applications.

When information is requested from the communications server (through the WWW or otherwise), the
process occurs in the following way:

1) The user is identified through the aforementioned protocol, and the communications server checks
the user in the directory server.

2) The communications server has a data base which records user rights, and the server uses this data
base to specify the authorization level of the specific user. In carrying out the user’s request, the com-
munications server checks the user’s rights in its own data base and, if the necessary level of authorization
is there, then the request is sent along to the concrete register.

3) The register is also sent identification data about the user who has requested the information.

4) The software in the register checks the information in the directory server and authorizes the user.

5) According to the level of the user's authorization, either the request is carried out and the result is
returned to the communications, server, or the communications server is told that the user does not have
the right to carry out the request.

Baltic IT&T ‘99, Riga April 28-30 51

: Closing:Plenary: The Baltic'States ~ a Unified:Information”SoCiety »iwi g sthpmvim . o5

6) The communications server returns the result to the user.

A user can also request information from the register directly, without passing through the communi-
cations server. In that case the operational mechanism is similar:

1) When the information is requested from the register, the user must supply identifying information
(a certificate). :

2) The software in the register checks the information in the directory server and authorizes the user.

3) On the basis of the user’s authorization and the level of his or her access rights, either the request
is fulfilled and the result is sent back to the user, or the user is sent information saying that he or she does
not have the right to receive the data.

This mechanism ensures that there is no need for the user to reintroduce identification each time a new
request is made. In each session, the user is identified on the first occasion that a request is made with
respect to a confidential data source, and in later requests the information is sent on to all of the respec-
tive information sources. Another advantage of the mechanism is that there is a centralized method for
distributing user rights, as well as a unified policy with respect to this. It's also true that the user’s rights
do not change depending on the way in which he or she accesses the information — via the WWW, via a
different application, or through some other method.

MANAGEMENT OF USER RIGHTS

The rights of users can be divided into several categories:

¢ The right to obtain information about what is stored in a concrete register — provided that the infor-
mation is publicly available;

* The right to obtain information about one entry in one table in one register, based on the unique
identifier of that particular entry;
- = The right to obtain a list of_data from one table in one register, selected on_the basis of specific cri-
teria;

» The right to obtain a list of data from several tables in a single register (whether the link exists or not);

e The right to obtain information from several tables in one register that are linked through a specific
relation, the data being chosen on the basis of specific criteria;

e The right to obtain information about one object from several regrsters on the basis of the primary
key of the object;

» The right to obtain information about the existence of a link among specific objects from various reg-

isters;

» The right to obtain a list of data that are selected on the basis of criteria entered by the user, the data
coming from several tables in several registers that are mutually linked. : —— ——

» The obtaining of information can be differentiated at four levels:

= A response as to whether the requested information has been found or has not been found;

* A response as to how many antries have been fcund;

* The primary keys of objects;

* The data that is being requested.

Each of these levels provides a different volume of information, and there are instances when the jump
between proximate levels is quantitative, while in other instances it is qualitative. We could consider four
different requests here:

"Does individual X own an autornobile?”

“"How many automobiles does individual X own?”

“What automobiles does individual X own?”

“Does individual X own automobile Y?”

The management of user rights is intentionally divided up so that it occurs in several places. The com-
munications server has its own user management module, in which it stores information about the right
of users to make various kinds of complex requests. Information about the right of a user to receive data
from a specific register is stored either in the communications server or in a concrete register. The place
where information about user rights is stored is harmonized between the communications server and the
register. Because it is expected that before a register issues information, it will want to check the user’s
rights to use the information, then information about the user’s rights with respect to a specific register
will usually be stored in that register. From the perspective of centralized management, it would be bet-

e Baltic IT&T 99, Riga April 28-30
B e s

.. . Closing Plenary: The Baltic States - a Unified Information Society
ter if information about user rights with respect to all registers were stored in the communications server.
For various organizational reasons, unfortunately, this is either impossible on only partly possible.
Information about user rights is stored both in the communications server and in the registers themselves.

The communications server is designed to work with both of these options, as well as with a combi-
nation of them, and the following scheme emerges:

« The communications server checks the right of the user to make a request in the first place, as well
as the right of the user to seek out a link between objects in various registers;

« The communications server checks whether the user rights with respect to the concrete register are
stored in the communications server or the register,

« If the rights are stored in the communications server, then it checks the rights before it sends the

request to the register;
« If the information is stored in the register, then the register checks the user rights before it fulfills the

request;

Cl. If the rights are not stored in the register, then the register can, if necessary, receive information about
the rights from the communications server in order to be able to check the rights of the respective indi-
vidual to make the request.

Because it is possible for users to connect to the registers not only via the communications server, but
also directly from an application, and because it should be true that in both instances the user has the
same authorization to obtain information, then the check of whether a user has the right to obtain infor-
mation from a specific register should occur not in the communications server, but in the register itself.

INFORMATION REQUESTS AND THE OBTAINING AND DEPICTION OF
INFORMATION

The basic mission of the-communications server is to provide users with access to various information
sources so that they can obtain data from them. Let us take a look at the problems that arise in this
process, devoting particular attention to the submission of requests and the obtaining of responses, and
leaving aside the issue of user authorization, control over data access, registration of who has asked for
information and what information has been requested, biliing issues and such matters.

INFORMATION SOURCES

An information source or resource facility can be any information system or data base from any organ-

ization. There are administrative regulations concerning the organizations, information systems and data
bases that are included in the communications server's network of services.
___Over the course of time, the number of information sources can reach into the tens or even hundreds
of sources. In Latvia alone there are already several dozen government registers, and their number may
increase. Communications servers should also provide access to certain foreign information sources, as
weli as to the data bases of various other organizations ir Latvia; these, toc, couid be inciuded in the range
of services provided by the communications server.

The communications server itself does not have an information sources. Each irformation source is
primarily meant to carry out concrete and specific functions inside the respective organization Information
systems and data bases that are used in an organization are chosen, designed and optimized specifically
for the needs of the respective organization. They may not be aimed at providing information to other
entities, but if such an opportunity is intended, then it can be very specific, and many limitations can be
applied to it. This means that the communications server must adapt to the information sources, and not
vice-versa. Of course some information sources can upgrade their information systems and optimize their
data exchange procedures in order to meet the communications server’s requirements.

Information sources that are part of the communications server’'s network can differ in terms of signif-
icance and volume. The more significant a data base, the better must be cooperation with it. The size of
data bases must also be taken into account, because it has much to do with the respective data process-
ing mechanisms.

Another key issue is the quality and stability of information sources. Information systems can involve a
wide variety of technologies, and they are of varying ages. Depending on the resources that have been
invested, some are of a higher quality and some - of a lower quality. Of course, it is easier to make con-
tact with a high-quality information system and data base that have been designed with modern tech-

Baltic IT&T ‘99, Riga April 28-30 53

Closing Plénary: The Baltic States - a Unified Information Sodiety.s .. ;.
nologies than with systems that are old and of a lower quality level. A communications server must cer-
tainly be ready to deal with information sources that are unstable, that make errors and that in some
instances are not even accessible.

Information systems can be designed with various systems, they may have various data bases, and their
use may involve various operating systems and computer technologies. A communications server must be
prepared to handle these problems, although this is no longer the worst possible difficulty, given that
many different solutions are in existence. -

Information can be stored in a wide variety of formats — that is the next issue. The most popular
method for data storage is still relation data bases. Object-oriented data bases, static WEB pages and
dynamic WEB pages that are generated from an internal format are becoming rapidly more influential. We
must not, however, forget other information storage methods such as files of many different structures.

A concrete information unit and a logical group of information units can be doubled, stored in various
formats, coded in various ways and stored in such a way that some of the information is kept secret.
Information can be contradictory either within a single information system or among various information
sources. This means that in the future the field of communications servers will have to involve various laws
and data processing algorithms that are based on the technologies or artificial intelligence.

All of these aspects serve to demonstrate how serious is the issue of various information sources being
highly varied. It should also be added that this heterogeneity exists among more than just information
sources. The same situation can exist within a single register or a single organization.

It must also be remembered that each information source exists fairly independently. It can be updat-
ed, changed or liquidated, it can be created anew, its operations can be suspended for a while, or it can
be withdrawn from cooperation with a communications server. This means that a communications serv-
er must exist in an environment that is not only highly varied, but also is extremely changeable:

USERS

For our purposes, we will say that a communications server user is any subject that wishes to obtain a
service from the server.

Users are usually differentiated on the basis of their level of authorization to obtain specific information
from specific information sources. These rights are regulated by law and by other normative acts, and they
are managed by a specific user management bloc within the communications server.

From the perspective of the communications server, another very important user classification is based
on a different aspect — the way in which the user requests information and the way in which the user
receives a response. A communications server should be operated on the basis of the principle that it is
there for the convenience of users, not vice-versa. This principle means that the server must be ready to
receive information requests of a great many varieties and forms, and it must be ready, every time, to pro-
vide a response that is convenient for the user in terms of its type and form.

REQUESTS AND RESPONSES

A communications server must be ready to accept information requests that are stated in various ways
and forms. The main operational regime for communications servers is an on-line connection, but this can
involve a dedicated line to the communications server, dial-up access to the server, or a connection
through informational networks (the Internet, the Latvian State Significance Data Transmission Network
(VNDPT), or the networks of other national, global or organizational networks). We must also remember
other ways to submit a request — E-mail, a request submitted on an electronic information carrier such as
a diskette, a written request submitted on paper, or even an oral request.

Responses to various requests can be prepared in the same format as the original request. It should be
added, however, that the user must have the right to select the method of response, irrespective of the
way in which the request was submitted. Limitations on the ways in which requests and responses are
formatted can be specified by administrative regulations, but in terms of technologies, a communications
server must be prepared for all kinds of cooperation methods.

The forms of requests and responses can be highly varied. The most popular cooperation form is prob-
ably a WEB page, both for requests and for responses. This form of cooperation can be highly varied, and
this is underpinned by existing WEB-type applications. The use of special procedures and functions may
also be important when the procedure itself has parameters that specify the request and its result (i.e., the

>4 Baltic IT&T ‘99, Riga April 28-30

T Closing Plenary: The Baltic States — a Unified Information Society.

ot S st - Spuapipuint St S

response to the desired request as specified by the parameters). Cooperation can also occur in the fol-
lowing forms: :

1) Special applications that can work with the communications server,

2) Active objects that can work with the communications server and can be used in the client’s appli-
cations;

3) Files with requests that are recorded in a specific format or response files in a specific format;

4) A group of files (including even data bases) for the requests and the responses;

5) Paper documents in an agreed format for requests and responses;

6) E-mail, which can be seen as a modification of items 3, 4 and 5 on this list.

It is commonly held that requests from a user can come in a dialogue regime from a human user and
in an automated regime where the user is an application on the user’s computer.

There must also be plans to work in a synchronous regime (request-wait-response) and in an asyn-
chronous regime (request-processing over a specific period of time-report to the user about the availabil-
ity of a result-response), because this ensures more efficient work for the user and the communications
server alike, especially when it comes to processing large and complex requests.

In work with the user thought must also be given to such aspects as the various levels of preparedness
among users, the language of communication, the respective text coding formats, the abilities of the user’s
computer equipment, operating systems and applications, and limitations in all of these things.

In other words, the main mission and, at the same time, the main problem that a communications serv-
er must handle is the way in which many different kinds of requests can be handled, submitting processed
information from various information sources that sometimes are not compatible, and submitting a result
to the user in the desired type and form.

INFORMATION ABOUT INFORMATION

As the number of information sources available through the communications server increases, an over-
abundance of information can quickly occur ~ one in which even the administrators of the communica-
tions server can get lost. It is necessary to classify all of the information sources and the information that
is contained therein, keeping firmly in mind that information sources can change.

Communications servers must have data source repositories that contain formal descriptions of the
sources, their properties, the data that are contained within them and the properties of the data. These
repositories must be very flexible, it must be able to change them easily and quickly so that changes in the
surrounding environment can be monitored. [f there is to be a proper reaction to user requests, other
parts of the communications system must be able to adapt to changes in the repcsitory in a dynamic way.

The repository is not, however, meant only for internal use in the communications server. The user,
too, must know where and what he can receive (of course, within the limitations of the user’s authoriza-
tion). This means that the communications server must also, so te speak, provide information about infor-
mation. Using forms and terms that the user can understand, the server must describe the intormation
that can be obtained and the ways in which it can be requested. There must also be efforts to link the
various request formulation mechanisms as closely as possible to the repository, thus making easier the
work of a user who takes advantage of the communications server’s services only seldom.

Users often don't care where and how the desired information is stored. This means that the commu-
nications server must satisfy requests that concern information from many different sources. The reposi-
tory, therefore, must also describe the links between the sources, as well as the ways in which various con-
tradictions among the sources can be resolved, data be converted, etc. The repository must be an entity
that makes it possible to consider all of the sources in a communications server to be one, big data base.

THE ABILITIES OF THE COMMUNICATIONS SERVER

A communications server Is a dynamic system which must work in a highly changeable external envi-
ronment. A communications server must be much more flexible and dynamic than a day-to-day system,
because it must work with highly heterogeneous external information systems that keep up with rapid
technological changes. When it comes to technologies, communications servers must be a step ahead of
other systems, because otherwise it may turn out that the communications server ends up unable to per-
form its functions.

The goal of this paper is not to describe the internal architecture and ideology of communications

Baltic IT&T ‘99, Riga April 28-30 53

Closing Plenary::The Baltic States - a Unified Information Society.— . . = .. - 5. 73

servers precisely. The establishment of such systems is a very serious process throughout the world these
days, and various solutions are being sought out that are linked to the following technologies:

¢ Distributed Dynamic Systems

e Distributed and Dynamic Objects

¢ Dynamic Object-Oriented Programming

¢ Reflection

¢ Domain Specific Programming Languages

e Artificial Intelligence

Many of these technologies are still quite new, and they are still being developed. This means that not
all of them have ready-made tools that support various properties or functions of the technologies. Some
tools exist, some are at the prototype stage, while some have already become popular among profession-
als (this is particularly true of prototype tools that are designed at universities and research laboratories in
order to test the latest technologies). In the design of a communications server it is worthwhile to such
modern technologies and research results as the Multilanguage Interpreter [6] and the Database Browser
Generator [7].

EVALUATION OF REQUESTS FOR BILLING PURPOSES

A billing system is part and parcel of the mechanism whereby a communications server fulfills requests.
When a specific request is fulfilled, the system not only does what has been requested, but it also auto-
matically calculates the resources that are used in the process. Within the communications server, a price
has been attached to every resource, and it can change on the basis of the volume of information that has
been requested, the time of day when the request is filed, etc. The price of each request is calculated
automatically and stored in a journal that then is used for billing purposes. -

A resource is an-information. request to a register.. The price of resources changes.on the basis of.the.
type of the request, the complexity of the request, the register that is involved, etc.

USES OF A COMMUNICATIONS SERVER
There are three major ways to use a communications server:
* As an international resource facility that'can be used to access information from Latvian reglsters :
¢ As an internal resource facility that can be used to search for information in registers;
* As a way of setting up cooperation among various registers.

I A - Certificate
i Register 1 Z‘_“V Publlc So, . /L server,
7 1

Ds,
LDAP

| L,

Register 2 — Public 1_}\ Transaction Authorization
data WL SEIVE ‘ Users (people,
Communica- registers)
. tions server HTTP,
. I Transaction DCOM,
Reglstar 3 \JA:{\/{ server E-mall,
‘_ others

Register 4

Figure 2. The structure of cooperation between a communications server and other entities

=0 Baltic IT&T ‘99, Riga Apn'l 28-30
e

s +aesei.Closing Plenary: The Baltic;States - a Unified Information Society
The need to access information from Latvian registers via a single contact facility is the main reason for
elaborating the communications server. Of course, this is more than just a trivial solution in which a single
Internet application is designed for connection to other registers via their Internet addresses. This simplified
design does not deal with the main issue — the ability to collect information from various sources (i.e., var-
ious registers) without the user having to hook up to each register separately. The information that a user
needs is collected from the various registers by the communications server, and the user himself may be
completely unaware of the technical details of this process. Thus the communications server is needed by
employees of foreign institutions in order to obtain information that is stored in Latvia's registered.

A second use for the communications server is the fulfilment of domestic information requests in Latvia. The
previously described situation in which users do not want to or are unable to understand the technical details
of information storage is typical among the personnel of Latvia’s administrative structures. Of course, given the
fact that access rights to authorization may vary for foreign users and Latvian users, the communications server
sets out a unified set of requirements in this area, and solutions are the same for both groups of users.

The third way of using a communications server is to use it in order to exchange information among
various registers. It is obviously irrational to maintain communications channels and to conduct informa-
tion exchange individually with each of many registers that are mutually linked. It is much more rational
to set up a centralized contact facility - the communications server — which is linked to all of the registers
and through which information is exchanged among them. The general process of information exchange
among registers via @ communications server is shown at Figure 2.

This diagram shows four ways in which a register can be connected to a communications server. Every
register that participates in the data exchange procedure can have its own data base in which those data
that are intended for transfer to other registers and for publication can be separated out. The data base
can be maintained by a separate computer or server so that approaches to the public data base do not
hamper work with the basic data base of the register. Data from the basic data base are regularly copied
to the public data base (an automatic replication mechanism). This solution’is rational not only from the
perspective of using communications channels; it also ensures:

« That the fulfillment of external requests does not hamper the work of the register;

* That there is higher security, i.e., that in the case of unauthorized access, the basic data base s not damaged.

The link between the communications server and the public data base can be implemented on the basis
of various technologies, such as DCOM object calls, MS Transaction servers and Oracle SQL*NET. User
authorization is provided via a certificate server, a directory server and the Lightweight Directory Access
Protocol (LDAP).

REFERENCES

1. The Latvian national program “Informatics”, Ministry of Transport, 1998, 211 pp.
2. The Latvian national program “Informatics” (summary), Ministry of Transport, 1998, 60 pp.
3. "The Baltic States Government Data Transmission Network: Conceptuai and iMethodclogica
Considerations”, Riga, 1998, 11 pp.

4. "The Baltic States Government Data Communications Network. Feasibility Study for & Data Networking
Concept to Improve the Interchange of Information Among the Baltic States”, Riga, 1998, 83 pp.

5. "The Integrated State Significance Information System (Megasystem): Conceptual and
Methodological Considerations”, Riga, 1998, 16 pp.

6. Arnicane, V., Arnicadns, G. and J. Bicevskis. “Multilanguage Interpreter”, in Proceedings of the
Second International Baltic Workshop, 1996, pp. 173-174.;

7. Arnicans, G. “Application Generation for the Simple Database Browser Based on the ER Diagram”,
in Proceedings of the Third International Baltic Workshop, 1998, pp. 198-209.

Contact information:

University of Latvia

Raina bulv. 29-331, Riga, LV-1050, Latvia
Tel.: +371 7228226

Fax: +371 7820153

E-mail: bics@lanet.lv

Baltic IT&T ‘99, Riga April 28-30 57

mailto:bics@lanet.lv

4" INTERNATIONAL CONFERENCE
INFORMATION TECHNOLOGIES AND
THECOMMUNICATIONS IN THE BALTIC STATES
The Information Society: The Future for the Baltic Region

Radisson SAS Daugava Hotel, April 6 — 7, Riga, Latvia

information Technology Committes of the Baltic Comncil of Ministers
Data Media Group

Abstracts of papers from the Baltic [T&T 2000 Conference

C-DUdH I3 ai v UG I | G D W CE VGBI ICIIL W) e e gt fed e i g St srs S e e mee e e

The Unified Megasystem of Latvian
Registers: Development of a
Communications Server — the First Results
and Conclusions

Mr. Girts Karnitis, assistant, Mr. Guntis Arnicans, lecturer, Prof. Janis BiCevskis, Head
of Department of Computer Science, Faculty of Physics and Mathematics, University

of Latvia

This paper describes a development of Communications Server, the first
realization version and conclusions. A communications server is a set of
software and computer equipment that allows a wide range of users
{(both in Latvia and in other countries) to receive information from a vari-
ety of sources (government registers, data bases, information systems)
through a single contact point. A communications server identifies users,
authorizes the use of the respective data, fulfills a request that involves
several information sources, and evaluates the cost of the process so that
the appropriate financial transaction can be made. A communications
server allows users to learn where information is being stored and what
kind of information it is, as well as to request and to receive information
from various registers without any need for in-depth knowledge about
the technical aspects of its storage.

INTRODUCTION

The need to establish a Communications Server became apparent when the governments of the Baltic
States were setting up their joint data transmission network(6]. One of the main tasks is to obtain infor-
mation about objects (enterprises, persons, motor vehicles, etc.) without having to study the data base
. structures in any country. One year ago the concept of Communications Server was defined [1] and proj-
ect of Communications Server was started in Latvia.

Data retrieval from different autonomous sources has become a hot topic during the last years not only
in Latvia but also in all countries or large enterprises. The problem is very complicated and its solution can
takes several years and many nhigh-qualified specialists to solve it {2][3][4]. There was made the choice to
develop Communications Server step by step in Latvia. Latvia has several dozens of registers and informa-
tion sources (public and with restricted ac<ess). To develop ali system at onice it is too complex due to, for
example, various organizational and technical problems. Design and implementation of all functionality for
the Communications Server also takes much time.

CORE OF THE COMMUNICATIGN SERVER

The main functions for a Communications Server are:

1. User identification

2. Authorization with respect to the use of information

3. Management of user rights

4. Fulfillment of requests that involve several information sources

5. Evaluation of the costs of each request for billing purposes

t1s more or less clear how to implement the first three funcuons, but the largest problems arise to
develop last two functions. The original technology was developed to search and obtain data from various
data sources during the design phase. This technology bases on WEB technofogies and Meta models of
data sources|5].

Baltic IT&T 2000, Riga April 6-7 163

Viewing data objects and attributes of registers

Registers ﬂ Entities ﬂl - Aftributes
Enterprise Register Information £ Inexact registration certificate No. 2]
Land Register (Cadastre Registe |Owner of vehicle Inexact registration No.
inexact chassis No.
Register of Residents Vehicle owner PI NO
Register of Taxpayers Year of production
First colour
Second colour
Mark
Model
Registration certificate No.
Registration No. -
Chassis No. |

Search information

Figure 1. Registers and data objects

For the first version of Communications Server was determined several principles or requirements:

e |t is possible define new source in couple days

e It is possible to access any type of data source

e It is easy and quickly create primitive services (wrappers) to search and obtain needed data from
source

* It is possible 1o tie related data from various data sources

= it is easy maintain all system (make changes, add new possibilities, etc.)

e The program code have to be simple and small to reduce the possibility to make mistakes

* Initially data is retrieved only from WWW (from end-user point of view)

REGISTER OF REGISTERS

The Register of registers is the information system that contains information of other information sys-
ternms maintained in Latvia. There is much useful information, such as IS name, content, owner, data model,
relations with data objects in other information systems, in database of the Register of registers.

The first version of Commurications Server widely uses information stored in Reaister of registers. For
instance, the information searching staris with high level representstion of date sources and objects stored
in them. See the Figure 1.

We can see what data sources are avzilable, what data objects are availzole from these sources and
what atiributes describe each data object. We can start brovvsing from anv caie source or data object.

BASIC ADDITIONAL REQUIREMENTS FOR COMMUNICATION SERVER

Various additional aspects and requiremi=nts were taken to create first version of Communications Server:

® some cata are very sensible (only for authorized and restricted use)

® SOmMeE Cata are available for money

For these reasons we keep a ciose atiention to security, to log all activities and
retrieved information 1o calculate accounts between information providers and con

Security is designed to fulfill requirements determined by law, government and information source
proviger. At present for each user are defined: what data objects (register, information from register, etc.)
are accessivle, what operations can be gone (searching and retrieving) and what templates of WWW

10 accounting of all

164 Baltic [T&T 2000, Riga April 6-7

User Us Usger ser ser

i Communicatio E
server :
Mediator
: w1 ! ‘ ;

T — T

R1 ' R2 l R3
! J—

Figure 2. Conceptual shema of Communication Server

pages (data retrieving, combining from various registers and presentation) are available.

All user activities are logged in special journals. The system saves not only the type of activity and user
who have done it, but also the request is stored. It is possible to track for any data object (person, for
instance) all history - who asked what and what data objects and its attributes were displayed.

We can account costs for information consumers if the cost is defined for some information. Since we
are logging any request with details then we can calculate overall accounts for any user and provider.

TECHNICAL SOLUTION

The main task for a Communications Server i< to retrieve information from data sources. Let us see the
rough view to the implementation principles (Figure 2). User asks the Mediator for information. The
Mediator translates requests to set of internal small reguests to data sources through wreppers. When the
wrapper returns data, the Mediator forms the information presentation and sends the wiwww page tc user.

To retrieve information from data source, we nave to create special small programs — data wrappers.
This approach has the following advantages:

» It allows access data source via different protokols and methds ~ ODBC, OLE DB, SQL*Net, DCOM, etc.

¢ Data source usually is made to well suit for specific business tasks, it is not primary made for data
access from other system (Communications Server). The access is limited, it is allowed execute some stored
procedures to query data. Wrapper allows us to execute only authorized functions.

» Querying data source via functions allows us to have easy transfer real data from data source physi-
¢3! data model to our logical data model (stored in meta database) that is more understandable for the
user.

« |f the data source changes we need only correct the appropriate wrappers.

Baltic IT&T 2000, Riga April 6-7 165

i Universal l
Repository Browser |1
~ X'
W1 | W2 | W
E@ ?tﬁ S —
Rt || R RS |
s s I-a__._,____,,____.-f . =

Figure 3. Universal browser

To communicate with user via Internet the special browser is designed that bases on a meta mode! of
data sources. The browser takes the information stored in meta model, generate www pages 10 commu-
nicate with user. We can image browser as Driver and Repository (Figure 3).

Repository is database that stores information about data sources, data objects in sources and relations
between them, functions that aliows us query source, screen templates (www page structure) and other
useful information.

Driver is special program that generate www pages 10 manage querying at high level and display infor-
mation. The Driver can analyze relations between data sources and merge together all related information.

Enter search criteria for data object

[R g - T T |

Inexact , " Enter search |
surmame; M criteria of group and |
RexuEt | click button .
name: "Search” of

Person appropriate group.
identity | Search | Groups are splitted I
No.: I visually with i
horizontal lines and |

Vehicle [color

internal | Search |

ISN: |

Figure 4. Search criteria input window

166 Baltic IT&T 2000, Riga April 6-7

- m— -

Owner of vehicle View Type:
01616101010 KATNS VIKTORS : O“fner of vehicle
02023512345 KALNCIEMS JURIS| -
i Person Code 01016101010
Related information | Surname KALNS i
i Name V’]K'I‘ORS
- _ — - R
Owmer of ‘Owner of Register of i Sex }M
‘vehicle ‘vehicle Motor vehicles [Passport [LA1209872
‘Ouwms vehicles -Vehicle Register of .| Passport Issue Date 12/05/1999
— ; Motor vehicles : i R
—— = Ji{ ter of : | Region RIGA ‘
Has childeren Children -;1:3 deots ||| Place VIDZEMES PRIEKSP. .
Tespapsns T Register of 1 Street VELDRES
Hasparents Parents pegidents . , || House Number 11
Information Information Register of : (Corpus -
.about person :about person rReSI dents . I Flat Number (28 |
' ; Register o
Has passport Passport i :
P R ..o A Vehicle
'CP940 1990

Figure 5. Information about car owners

DATA SEARCHING AND BROWSING SCENARIO

Let us look at small example how the Communications Server works from end-user point of view. First
step is to choose from which register and which data object information will be quered (Figure 1). Then
system asks search criteria for the choosen object (Figure 4).

User fills in search criteria and pushes button ‘Search’, system searches in appropriate the register for
necessary information and results are showed (Figure S).

From this screen user can easily get related information from other registers, for example, if user wants
Information about Person from Register of Residents, user needs only to click on appropriate link and
appropriate information are showed (Figure 6). '

CONCLUSIONS AND FURTHER DIRECTIONS

The prototype of Communications Server was made in the middle of 1999 (7). 4 registers (with test data)
were connected for testing purposes. 2 of them use Oracle as DBMS and 2 others use Microsoft SQL Server.
The prototype has shown the effectiveness of designed approach. The prototype of the system was much more
powerful, than we expected and can be used as the real system. At present additional improvements is made
and the first version of the real system is developed. This version is introduced in rea! exploitation now.

Future direction of our work is to develop & query processor that can take as input SQL-like query and
return as output the result queried from multiple data source.

Other direction that already is partially developed — to make Communications Server available not only
from WWW browsers, but also from custom programs using XML to query data and return answers.

REFERENCES .

[1]) Arnicans G, Bicevskis J, Karnitis G, “The Concept of Setting Up a Communications Server”, in
Abstracts of Papers of 3rd International Conference “Information Technologies and Telecommunications
in the Baltic States”, pp. 48-57, 1999

[2] Tomasic A, Amouroux R, Bonnet P, Kapitskaia O, Naacke H, and Raschid L, "The distributed infor-
mation search component (disco) and the World Wide Web” in Proceedings of ACM SIGMOD international

Baltic IT&T 2000, Riga April 6-7 167

E-DUSINELS dill DUIMIGuing s seves o e m e - -,

Information about persoun

01016101016 KALNS VIKTORS |

Related information

Owner of Owner of i{;gi_ster of
ivehicle vehicle Motor vehicles
o . Nyt ‘Register of
Owns vehicles Vehicle Mofor vehicles
o oy ‘Register of
.Has childeren fiChllclr(:n Residents
o i Register of
Ha_ arents j'ParenIs Residents
Information Information Register of
-about person about person Residents

o Regster of
Has passport Passport Residents

View Type: [Expanded ~]

Information about person

| Person Code 01016101010,
i Name VIKTORS

i Surname KAINS

} Sex M

[Birth Date 1961.01.01

Birth Country LATVIIA

Children

102028811223 KALNA ILZE
27058511331 KALNS ROBERTS

Passport

" Pasport Number LAl 209872
_| Issue Date 1999.05.12

Date of Expirationi2009.05.11

Parents

Figure 6. Information about person

Conference on Management of Data, Tuscon, Arizona, 1997, Prototype Demonstration.
[3] Haas L. M, Miller R. J, Niswonger B, Tork Roth M, Schwarz P. M, Wimmers E. L, “Transforming

Heterogeneous Data with Database Middleware: Beyond Integration”, Data Engineering Bulietin 1999

[4) Hammer J, Garcia-Molina H, ireland K, Papakonstantinou Y, Ullman J, ‘Widom J, “Information trans-
Iation, mediation, and Mosaic-based browsing in the TSIMMIS system™, in Proceedings of ACM SIGMOD
International Conference on Management of Data, 1995, Project Demonstration.

{5} Amicans G, "Application generation for the simple database browser based on the ER diagram”,
Proceedings of the Third international Baltic Workshop, pp.198-209, 1938.

(6] “The Baltic States Government Data Transmission Network: Conceptual and Methodological

cnsiderations”, Riga, 1998, 11 pp.
[7] www.mega.lv

Contact information:
Datorikas Institits
Raina bulv. 29-220
Riga, LV-1050

Latvia

Tel.: +371 7503383
Fax: +371 7503531
E-mail:girts@di.lv

168

Baltic IT&T 2000, Riga April 6-7

Vilnius Gediminas Technical University
Institute of Mathematics and Informatics
Lithuanian Computer Society

DATABASES&
' INFORMATION SYSTEMS -

PROCEEDINGS
OF THE
4t

\EEE
INTERNATIONAL
BALTIC
WORKSHOP

Edited by
Albertas CAPLINSKAS

Vol. 1

Vilnius
Lithuania
May 1-5
2000

Vilnius "Technika™ 2000

8. Relerences

(1
21

[3)

(4]
(5]
16]

7
[8)

9]
(10)

(1

[12]

(13]
[14]
{15)
(16)

(7

(18]

Burdett, D. Internet Open Trading Protocol Version 0.9.9. The Open Trading Protocol
Consortium, 1998.

Christoffel, M. Pulkowski, S., Schmitt, B., Lockemann, P. Electronic Commerce: The
roadmap for university libraries and their members to survive in the information jungle.
ACM Sigmod Record, 27(4), 1998, pp. 68-73.

Christoffel, M. A Trader for Services in a Scientific Literature Market. In Proceedings of the
2nd International Workshop on Engineering Federated Information Systems (EFIS 99),
Kihlungsborn, 1999, pp. 123-130.

Hewlett Packard. E-Speak - the platform for E-services. http://www,e-speak hp.com,
IBM. DB2 Digital Library. hitp://www-4 ibm.com/software/is/dig-lib/about.htm .
JavaSoft. Java Remote Method Invocation Specification. Technical Report, Sun
Microsystems, 1997. hitp://www.javasoft.comVproducts/idk/1. I/docs/guide/mi/.
Karlsruher Virtueller Katalog. http://www ubka,uni-karlsruhe.de/kvk.html.

MeDoc- The Online Computer Science Library.

Microsoft. DCOM Technical Overview. Technical Report, Microsoft Corporation,
Redmond, 1996.)

Object Management Group. CORBA 2.0/IIOP Specification. Technical Report-PTC/96-03-
04, Framingham Corporate Center, Framingham (MA), USA, 1996.

Pulkowski, S. Making Information Sources Available for a Mew Market in an Electronic
Commerce Environment. In Proceedings of the International Conference on Management of
Information and C. lcation Technology (MICT99), Copenhagen, 1999,
Pulkowski, S.: Intelligent Wrapping of Information Sources: Getting Ready for the
Electronic Market. In Proceedings of the 10th VALA Conference on Technologies for the
Hybrid Library, Melbourne, 2000. .
Rachlevsky-Reich, B., Ben-Shaul, 1. et. al. OEM: A Global Electronic Market System. In
Information Systems, 24(6), 1999, pp. 495-518. :

Schmitt, B., Schmidt, A. METALICA: An Enhanced Meta Search Engine for Literature
Catalogs. In Proceedings of the 2nd Aslan Digltal Library Conference (ADL99), Taipel,
1999,

Stanford Digital Library Project. hitp.//www-diglib.stanford edwdiglib/.

Stevens, W.R. TCP/IP lllustrated, Volume 1, The Protocols. Addison Wesley, Reading,
1995.

Wang Baldonado, W., Winogred, T. Hi-Cites: dynamically created citations with active
highlighting. In Proceedings of the International Conference on Human factors in
computing systems (CHI 98), Los Angeles, 1998, pp. 408-415.

World Wide Web Consortium. Extensible Markup Language Recommendation. 1998,

http://www w3,org/TR/| 998/REC-xml-19980210.

174

Heterogeneous Database Browsing in WWW Based on Meta
Model of Data Sources

Guntis Arnicans, Girts Karnitis

University of Latvia
Faculty of Physics and Mathematics
Ralnls Bivd. 18, Riga LV-1459, Latvia

Abstract

:I'hls paper describes a development principle and techolque for a simple universal multiple database
. The b by- getting information from del of data and acrual data .

Fom legacy data sources. Every element such as entlty, fleld, relation is mapped to some P of

HTML page with appropriate strocture and layout. Many templates of inf jon layouts can be creaied

allowing to dynamically change HTML page to ptable user interface. The wrap are used 1o

provide browser with actual dam and fo act as medlators b data and b Thls

approach allows to quickly describing new dats sources, creating wrappers, making modifications later
and managing data browsing in a simple unified style. The browser architecturs Is flexible enough to
Incorporate data sources with a variety of data models and query capabllites by various protocols, It Is
possible to select logically tied Inf ion from all available legacy data

Keywords: Web-based informaton system, distributed Inf lon system, dels, database
browsing. .

1, Introduction

Data retrieval from different autonomous sources has become a hot topic during the last
years. For instance, there are such data sources as enterprise register, register of pledges, register of
state orders. When some state institution wants to order something from private business, civil
servants are interested to know whether applicants are registered, whether they have pledges and
what is their financial situation. Civil servants need information system that can collect related
information from different Data Sources (DS) and show it.

We have found some such systems [2], [3], [4] that allow to do data querying from different
data sources. All those systems are very complex, with their own query processor, but-without
universal user end. We decided to make a simple Universal Browser (UBi that acts on DS model
during development of Megasystem and Communication server {51, [6].

Main ideas of the UB are described in [1], where the idea of database browsing based on the
ER model is described. Our approach is a modified UB, that can browse multiple DS, which can be

175

http://hUO:/lwww.e-spea!s.hp.com.
http://www-4ibmcomlloftwartlis/dJg-ljblaboul.html.
http://hltp:/lwww.ubka.uni-karlsruhc.delkvk.hlJDl.
mailto:Samican@lanet.lv,

made in different technologies and with limited access rights and passibilities. Access to the DS is

made via wrappers.

2. Repository of conceptual data models of data sources

Repository Is a database that coolains information about data sources (DS) and the links between
them — the specific ER model. Repository also contains a description of functions that can be
executed by DS.

2.1 Metamodel of repository

[Dots Source
08_Neme
Freme Sol
Unheresl Endty Ralston |Reluion Field
Ensty_Neme Role1 FK{
l-J Twe ooz ma
End1
Frame Conlent l&
ho——odqUniversel Cardinelty!
Cardinglty2
Representath Fleld List
o4
]
1
Ouput Funciion Output Field
Ne Coding_Funchon Flold_Name_Viible
4 Coding_T 5 —o+{Fleid_Namae_Table
Funciion ! ™ Fied_Type
Deis_Type
: Vebity
ot Punetion input R 4]
Ne {Coding_Function
Mandstory Coding_Type .

Figure 1. Metamodel of repasitory
Figure 1 shows an ER modec! of Universal Browser's (UB) repository. There are different parts in
this model that are used for different purposes:
o Eaotities Data Source, Entity, Ficld, Relation, Relation Field contain DS models and information
about entities and relations.
o Entities Function, Input, Input Function, Output, Output Function contain information about

functions that query information from DS and input and output fields of these functions.

176

¢ Entities Representation and Field List contain information about visual representations for each

entity i.c. what fields in what order have 1o be shown, For instance, let us take the entity Citizen
that contains information about a person. In short representation fields PK, Name, Surname are
visibl;. but in long representation ficlds PK, Name, Surname, Address have to be shown.

¢ Entities Frame Set, Frame and Content contain information about visual representation.

2.2 Conceptua! model of data source

DS is a real existing legacy data source that exposes its data to other systems. Any DS can be made
with different technologies, and expose its data in different ways. Any DS has some functions that
can be executed to get information from DS. It is not necessary for the user to know technical
dewils of DS to get information from it. The user needs a simple and understandable logical
information representation that is related to the objects from the real world.

For example, information about cars can be stored in many tables in the real sysiem. We are

interested in conceptual data model, without technical details. It means a car can be represented with

one entity in the conceptual model.

Color - Car Cars Owners Car Owner

D ISN Car ISN PK

Color i {Mumber %40wner PK PO Name
CoborlD Sumame
Model ID Last Updaled

Model Lest Updated

1D

Model

Flgure 2. Example of physical data model
There can be such technological fields in the real database, which are necessary for the real system
functioning, but they are not interesting for uscr and are not shown in the conceptual model.
There are two types of fields in the conceptual data model of DS:

¢ Fields that can be queried with some function,

* Fields from which we cannot query information. It means there are no fuactions where any
of those ficlds are outputs. Usually these fields are not showed 1o the user, and they are used
as input fields for some function. These fields are also used to link different entities.

There are links between DS entities, which means that, if you know information from one entity,
you can get information from the other entity. There are links between entities, if such functions

exist, which can query inforation from DS, using as an input information from other entity. For

177

example, if you know some information about the person (especially person’s PK (person code)),
you can query the information about the person's passport. It means there is a link from person to
passport. This function returns the passport number and the issue date. On the other hand, if you
know the passport number, you can’t get the passport’s owner PK, because, there is no function that

returns this information. It also means that there can’t be a link from passport to citizen.

2.3 Logical links between the data sources

There are entities of different types used to link together infonnation from different DS, These
calities are used as base class of DS entities and do not belong to any DS. For instance, the entity
Person with PK is such a base class. This base class has only one field PK. This field is primary key
for similar objects that concern person for most of DS. If you know the PK you can get the
information related to the persoo information from the appropriate DS. For instance, Person with

PK links together information from the entities Citizen, Passport, Car and Car Owner (Figure 3).

2.4 An example of repository

Two DS and one base class are given in Figure 3.

Car Owner {Parson with PK) " Passport
PK PR (FK)
Name . Passport Number
Sumame ' [" lssus Drte
[Car ISN] Cltizen
PK
" Name
Beiorgt b Ow Ot Sumams Hae ChYrn
| ot Puerns |Box
¥ Addrest
Cor Vne Parerte »/[Chid PK)
o le| {Pareni PK]
Number Hae CHIdren.
Color
Modet
[Owner PK}

Figure 3. Example of conceptual model of daia sources
Fields in square brackets are invisible fields used for search purposes only. Solid line with arrows
means if you know information from the entity that is a starting point of the arrow, you can get the

related Information from the entity that is at the opposite end of the arrow. Interrupted line shows

the relation between normal entity and base class éntity. The values of arrows are shown in Table 1.

178

Table 1. Description of Relations

Endl - PK1 End2 PK2 Relation name

Citizen PK | Citizea ChildPK | Has Parenss
Citizen PK Citizen Parent PK Has Children -
Citizen PK | Passpont K Has

Citizen PK | Person Wi PK | PR

Car Owner PK Car Owuer PK Owns
CarOwner | PK | Person Wi PK | PK

Car ISN | Car Owner Car ISN Belongs To
Petson Wit PK | PK__| Car Owrer PR —1s

Persoa WithPK | PK Car PK Owns

Perion Wi PK | PK | Passpont Pk |Am

Perio Wi PK | PK__| Cltzen 773 s

Person Wi PK | PK_ | Cltizen ChllaPK | Hes Pareois
Person With PK | PK Citizen Parent PK Has Children

3. Browsing principles

Oeneral idea for dynamic browsing of various data sources is to generate Web -pages with
predefined information layout and functionality, get data from data sources and put them into page.
A web page consists of a set of frames (Frame) — FrameSet. The Frameset has a prefixed

 count of Frames, its layout and sizes. We can define as many as we need different FrameSets to

organize and disp|'ay information for the user. The FrameSet is a view to related data from one or
many data sources. One of the Frames is the main Frame. The information in any other Frame is
logically connected with data in the _main Frame. The megs can contain controls to manage the
content in the other Frame, - ,

The layout of the Frame is defined by rule, lets call it Content, Theoretically the Content is 8
formula or function: Confent(frameEntity, filterExpr) where frameEntity is any entity from the
metamodel of data sources and filterExpr is logical expression that filters data from appropriate data
source. The Content defines:. 1) what is the structure and principles of layout, 2) what data from
metamodel and from actual Ieéacy data sources are required to display information, 3) what actual
instances of the defined entity are retrieved, 5) what controls are used to manage the content of the
other Frame or to op?n the other FrameSet and 5) what related entities are involved from the same

. or any other data source. If we have various predefined Contents, then we can dynamically apply

any Content to the Frame and get another data presentation for the same frameEntity and filterExpr.

179

4, Defining the Content of Frame

Let us assume that Content is the function Content(frameEntity, flterExpr). Let us determine the
means how we can define Content. We introduce the following data types:

entity - determines the entity from the metamodel,

field - determines the field of the eatity from the metamodel, -

relation - determines the relation for two ealities from the metamodel,

record - determincs the actual data from the data source for one fixed instance of the cndty.
value - determines the actual data of the field for one fixed inslance of the entity,

string - determines the character string,

ist - determines the list of elcments with any other allowed data type, we denole such types by
the element type followed by postfix “List”, '

updateAction - determines the action that updates Frame

_navigateAction - determines the action that navigates browsing to another FrameSet

sObject - determines the HTML obfect that contains string to display,

aObject - determines the HTML. object with assigned some action to perform,
fObject - determines the HTML object that is formatted for displaying, '
frame - determines the Frame,

frameSet - determines the FrameSet,

view - determines !hé list of fields that must be displayed.

Let us rewrite the Content as a function Content(entity, expr(entity)).

Let us introduce several additional functions to work with the metamode] and data sources, and to

format HTML. page.

work wi ¢el:

. SourceName(entity) Dstring — returns the source name the entity belongs to

EntityName(entity) Pstring - returns the entity name

RelationList(entity) DrelationList ~ returns all direct relations from the given entity to another
entity (including itself) from the same data source .

MetaRelation List(entity) PrelationList - returns all indirect relations from the given entity to

another entity from all available data sources

. FleldList(entity, view) SfieldList - returns the list of all the ﬁelds of the entity

RelationName(relation) Dstring - returns the name (role) of the relation
FieldName(field) Dstring - returns the name of the field

180

RelationEntity(relation)) Pentity - returns the entity at the opposite end of relation

Functions to work with data sousces through wrappers:

1.

RecordList(entity, expr(entity)) PrecordList — returns the list of instances (records) of the entity
according to the given filtering expression

ValueList(record, view) Pvaluelist — returns the list values of the given entity instance (record)

3. Value(value) -)string - retumns the ﬁeld value as character string
Functions to work with the list:
1. List(element_l, element_2, ..., element_i) Dlist_I — retusns the list of given elements and the

list type list_1 is appropriate to the element type
IterateLisi(n%dist_l, function(n%)) Dlist_2 - returns the list liss_2 that has as elements the
results applying the given function. The function is executed with each parameter n% that is
taken from the list fist_I denoted by the identifier n% (o is any unique integer) and the list type
list_2 is appropriate to the function return type
Concatenate(list_1, list_2) Plist_3 - returns the concatenation of two lists with the same
clement type. i

fo L pa

. 8O(string) FsObject - creates sObject from the character string
. StringListObject(stringList, separatorString) ?sObject — creates sObject from the list of

character strings separated by separatorString

. Update(frame, entity, expr(entity), content) PupdateAction ~ activates information update into

the frame with the given entity, filter expression and layout

. Clear(frame) PupdateAction - clears the given frame
. Navigate(frameSet , entity, expr(entity), content) PnavigateAction - navigates to another

FrameSet and update main Frame with the given entity, filter expression and layout
Link(sObject, navigateAction, updateActionList) PaObject ~ converts sObject into aObject and
assign the navigation action and set of update actions to it. Any of action parameters may be
empty.

AO(sObject) -»aObject ~ converts sObject into aObject with empty action

FO(aObject) -2fObject - converts aObject into fObject without any special formating
HorizontalTable(aObjectListList) ? fObject ~ creates fObject from the list of lists, this frame

object is displayed as table, and internal lists are placed in rows

. VerticalTable(aObjectListList) ? fObject - creates fObject from the list of lists, this frame

object is displayed as Lable, and internal lists are placed in columns

181

I1. ListBox(aObjectList) > fObject ~ creates fObje_ct from the list, this frame object is displayed as
listbox

12. Horizonlal(fObjectList) 3 fObject - creates new fObject by arranging the given list horizontally

13. Vertical(fObfectList) - fObject - creates new fObject by arranging the given list vertically.

Only frame objects with the type fObject may be displayed in the Web page.

5. Data wrappers

Function RecordList must be implemented to get information from DS, The technology we use is

simple, but effective. UB gets information from DS via Wrappers. This approach has the following
advanlhgeé:

¢ It allows to access DS via different protocols and methods - ODBC, OLE DB, SQL*Net,
DCOM. ‘

¢ DS usually are made well suited for specific business tasks. DS are not primary made for data
access from UB. The access to DS data usually is limited, it is allowed o execute some stored

procedures to query data. Wrapper allows us to execute only authorized functions.

* Querying DS via functions allows us to have casy transfer real data from DS physical data

model to logical data model that is more understandable for the uscr.

Information about functions is stored in the UB meta database: defined inpui and output fields for

cach function. Each input ficld may be mandatory or optional.

During development of the prototype, we discovered some rules for function implementation
and developing conceptual model of DS.

¢ First rule - it is desirble to have inpul and output ficlds from one entity. Tt simplifies

development of DS model and wrappers.

* Second rule - two approaches possible for making DS model and functions. One approach is that
we already have functions, and we make conceptual data model of DS using the first rule. In
case DS is a system we maintain and own, it is often possible to make functions according to
conceptual data model of DS. In such a case we make conceptual data model of DS at first and
then we make data access functions according to conceptual data model and the first rule. It is
helpful to make two'types of functions: o

182

1. The function gets information identifying the object from DS by some search criteria. For
example, get person’s PK by its name and sumame (might be partial). The answer usually is

a list of person’s identifying information according to search criteria.

2. The function gets information about one object from one entity by its identifier. An example
- get all information about the citizen by its PK.

For instance, we have two functions for.the entity Citizen:
1. Input data - Name, Surname (might be panial)._Outp\'n data - PK, Name, Surname (full).
2. Input data - PK. Outpﬁt data - PK; Name, Surpame. Address.
There are also 2 functions to get information about the citizen’s parents and children:
3. Input data - Parent PK. Output data ~ Children PK, Name, Surname.
4.‘ Input data - Child PK. Ouiput data - Parents Pk_. Name, Surname.

There is a procedure that implements the function RecordList. This procedure gels the entity and
filter expression as input and returns data from DS as output. In our implementation this procedure
gets information from the meta database about functions that can be executed over eatity from

.which we need informatién. In our implementation the filter expression is fields and corresponding

values for these fields, e.g. PK="123456-111111". There I “brute force" algorithm that finds
functions we can execute c.g. those are functions that have enough input data from the filter
expression to be executed, executes these functions and returns result. There can be, of course, other

implementations.

DS data access via wrappers allows (o connect new DS to our system easily and quickly. We
have to write a new wrapper and add information about new DS to the meta database. With some

' experience the writing of wrappers s easy and fast process, and there is no need to make any

modification in DS,

6. Templates for Web page str_ucture'and functionality

The design of FrameSet and Frames is based on template principle. With some experience the new
FrameSets and Frames can be developed quickly. The design has two main steps — FrameSet

" structure planning and creating formulas for Frame. Contents. We give some templates and ideas
- how the Web pages can be designed. The above giycn functions are used.

183 .~

6.1 Slmple entlty Instance presentation In table

The first column contains ficld names and the second - ficld values

Aleatity, record) = Vertical Table(List(Al, A2))
Al = lterateLisy(1 %FleldLIst(entity, view), AO(SO{FieldName(1%))))
A = lerateList(2%ValueList(record, view), AO(SO(Value{2%))))

fpx 12121211111

[Nuua |Andris
[Surmame [Kaing
B A

[Address [Rigs, Liepu 1-12, LV-1000

Figure 4. Example of entity instance presentation

6.2 Entity Instance presentation as text

Instance field values are concatenated according to select view,

B(record) = FO{AO{SO(StringListObject(B1, " *))))
Bl = lterateList{3% ValueList(record, view), Value(3%))

12121211111 Andris Kalns M Riga, Liepu 1-12, LV-1000

6.3 Entity relatlons presentation in vertical list

Each relation is represented as relation name concatenated with entity name at the opposite relation
end.)

Clentity) = Vertical(lerateList{4%RelatioaList(entity), Cl))
C! = Horlzontal(List{C2, FO{AQ{SO(" ")), C3)}

C2 = FO{AO{SO{RelationName(4%))))

3 = FO{AO(SO{EatityName(RelatlonEntiry(4%)))))

Has Passport
Has Parents Citizen
Has Children Citizen

Figure 5. Example of relations presentation

6.4 All relation presentation In table

The data about all relations (relation name, eatity name and data source) are placed in table with
headings.

Di{entty, expr{entity)=Horizontal Table(Concatenate(D1,D2})

DI = AOQ(StringListObject("Relation”, “Entity name”, “Data source"))
D2 = herateList(5% MetaRelationList(entity) List(D3, D4, D5))

D3 = AO(SO{RelationName(5%)))

D4 = AQ{SO(EatityName(RelationEntiry{5%))))

D5 = AQ{SO{Source Mame(RelationEntity(5%))))

184

Relation [Entity name [Desa source

W jEher WephscolRetuty
Bes . [Posspon Reginer ofResldents -
e e

6.5 An example of FrameSet

Let us look how a FrameSet can be built. Let us assume FrameSet FRS_] with 4 Frames - FR_],
FR_2, FR_J, FR_4. FR_1 is used (o list instances of entity, FR_2 — to show details of fixed instance
in FR_1, FR_3 - to list all relations to other entities in all data sources, FR_4 - to show details of
another related entity instances for FR_2 or FR_4. See Figure 7.

At first let us create three presentations or Contents (E, F, G) for_vicwing entities, We use
formulas created before in this paper,
. Content formula E() for Frame FR_4 (from FR_4 we can update all Frames in FRS_1}

E(eatity, expr(entily)) = Verical(E1, ES)

El = Horlzontal(LIsFO(E2), FO{AO(SO(" *'))), FO{AO(SO{SowrceName(entity))))))
E2 = Link({SC{EntiryName({endty)), E3, E4)

E3 = Navigate("FRS_1", entiry, expr{entity), ")

EA4 = List(Clear("FR_2"), Update("1"R_ 3", entity, expr{entity), **™"), Clear(FR_4))

ES = Verucal(lieaeLisi(6%RecordL ist(entity, expr(entity)), A(entity, 6%)))

* Content formula FQ) and () for Frame FR_2 (from FR_2 we can update this frame or update

FR_4)
Fleatity, expr(entity)) = Vertical(H, FO[AOQ{SO{" ")), E5)

Goentiry, expr(entity)) = Vertical(H, FO(AQ(SO(" ")), Vertical(ES, G1))

Gl = Clentity), where C3 is substirute with G2 in all places (we have added the aciion)
G2 = FO{Link(SO{EntityName(RelationEmtiry(4%))), NULL, G3))

G3 = Lisy(Update("FR_4", RelationEntity(4%), expr{RelationEntity(4%)), "E"))

H = ListBox(List(Link("Presentation ¥, NULL, H1), Link("Presentation G, NULL, H2)))
Hl = Update("FR_2", eotity, expr(entty), “F")
H2 = Update("FR_1", eotity, expr{entity), "G")

* Content formula I{) for Frarne FR_! (from FR_I we can update FR_2, FR3, FR_4)

I{entlty, expr(entity)) = Vertical{11, 12)
11 = Horizontal{List(FO{EntityNune(entity)}, FO{AQ(SO(" ")), FO{AD(SO{SourceName(entity))))))
12 = Horlzontal Table([terateList{ 7% RecordList, Link(B(7%), NULL, 13))
13 = List(Updat=("FR_2", entity, txpr(entity) and expe(7%), "F"),
Update("FR_3", entity, expr{entity) and expr{7%), "), Clear{"FR_4"))

= Content formula J() for Frame FR_3 (from FR_3 we can updatc FR_4)
Hentity, expr{entity)) = D{entiry, exprientity)), where D4 is substitute with 11 in all pluces (we have add the action)

185

11 = Link(SO(EntityName(RelationEntity(5%))), NULL, 12)
12 = List{Update("FR_4", RelationEntity(3%), expriRelationEntity(5%)), "E"))

]?mmmlonc =

Cluzen Reglster of Residents

-
11123712345 Asifa Kain ‘ Pk fnnni T
01010101010 Mérit Kalns ﬂ*«-- Im"__._
LLILULT111] Zane Kalon |

Relafion Entity name {Data source Car Reglster of Motor vehicles

fa Citizen llleymrol‘nmdtm s e
Hum Em Ile;mtr of Residents | Nm":"h‘l‘lgo_
HurParents Citizen Register of Residents ! i[| Coler .ﬁ"* =
Has Children _Q]_r;n [Regleter of Residents | 3 M?d_d_ Audi 100
l‘l Q«r_@_\m_ Ikeplirr of Motor \rthl:ln

Owns Cy _ _ﬁlcpﬂerol’Ml-m;r-vehdcﬂ ;

Figure 7. Example of WWW page

7. Conclusions and future directions

The prototype of the UB is made during developing Megasystem and Communication Server, Four
registers test databases are connecled to the UB for testing purposes. Two of them use Oracle as
DBMS, other rwo use Microsoft SQL Server.)

The UB prototype shows the effectivencss of our approach and Is being initiated as first version of
the real system.

There are many aspects that are very important in real life application, but not covered in this article
- security, user authorization, logging, query cost calculation. All these features are incorpomed in
the UB.

The UB is useful in many large organizations having many autonomous data sources as a browser
for these systems with integrated view, '

Future direction of our work is to develop a query processor that can take as input SQL-like query
and return as output the result queried from multiple data sources. Other directions of future work —
1o make CS available not only from WWW browsers, but also from custom programs using XML to

query data and return answers.

186

8. References

1

[2)

3]

4]

[s

(6]

Amicans G, “Application generation for the simple datahase.. browser based on the ER
diagram"”, Proceedings of the Third International Baltic Workshop, pp.198-209, 1998. .
Tomasic A, Amouroux R, Bonnet P, Kapitskaia O, Naacke H, and Raschid L, “The distributed
information search component (disco) and the World Wide Web" in Proceedings of ACM
SIGMOD International Conference on Management of Data, Tuscon, Arizona, 1997, Prototype
Demonstration.

Hass L. M, Miller R. J, Niswonger B, Tork Roth M, Schwarz P. M, Wimmers E. L,
“Transforming Heterogeneous Data with Database Middleware: Beyond Integration”, Data
Engineering Bulletin 1999. ‘
Hammer J, QarciaMolina H, Ireland K, Papakonstaotinow Y, Ullman J, Widom I,
“Information translation, mediation, and Mosaicbased browsing in the TSIMMIS system”, in
Proceedings of ACM SIGMOD International Conference on Management of Data, 1995,
Project Demonstration.

Amicans G, Bicevskis J, Kamitis G, “The Concept of Setting Up a Communications Server”,
in Abstracts of Papers of 3 International Conference “Information Technologies and
Telecommunications in the Baltic States”, pp. 48-57, 1999.

www.mega.lv

187

http://www.mega.lv

Databases and |
Information Systems

Fourth International Baltic Workshop,
Baltic DB&IS 2000 Vilnius, Lithuania,
May 1-5, 2000 Selected Papers

Edited by
Janis Barzdins

Institute of Mathematics and Computer Science, -
University of Latvia, Riga

and ‘
Albertas Caplinskas

Institute of Mathematics and Informatics,
Vilnius '

KLUWER ACADEMIC PUBLISHERS
DORDRECHT / BOSTON / LONDON

Heterogeneous Database Browsing in WWW Based on Meta
Model of Data Sources

Guntis Arnicans, Girts Karnitis

University of Latvia A
Faculty of Physics and Mathematics
Raina Blvd. 19, Riga LV-1586, Latvia
gamnican@Ianet.lv, girts@di.lv

Abstract

This paper describes a development principle and technique for 2 simpie universal multiple database
browser. The browser operates by getting information from metamodel of data sources and actual data -
from legacy data sources. Every element such as entity, field, and relation is mapped to some component
of HTML page with appropriate structurc and layout. Many templates of information layouts can be
created allowing to dynamical changing of HTML page to acceptable user interface. The wrappers are
used to provide browser with actual data and to act as mediators between data sources and browser. This
approach allows to quickly describing new data sources, creating wrappers, making modifications later
and managing data browsing in a simple unified style. The browser architecture is flexible enough to
incorporate data sources with a variety of data models and query capabilities by various protocols. It is
possible to select logically tied information from all available legacy data sources.

Keywords: Web-based mformauon system, distributed information sysu:m, metamodels, database’
 browsing. .

1. Introduction

Organisations, both governmental and business, have to manage large amount of information
stored in some form of databases or files. One of the main problems to deal ‘with information
managing is the weak interoperability between various databases and information systems.
Especially this problem is serious when we want orgamse collaboration between the information
systems of various organisations.

In nowadays a significant fraction of new information systems or services bases on the Web
solutions. Usually developers use Web applications to organise communications between data
source and data consumer (user) but data sources sometimes remain the old ones from the current or
" previous information systems. This leads to the operation with very heterogeneous data. . To deal
with problems the metadata of the data sources (data structure, content, attributes, etc.) are used to
describe the heterogeneous information models. This approach supports the creating of very
dynamical systems and it is easy to maintain system in the rapidly changing world.

In this paper we describe some results achieved during the .dcvelopmcnl of two projects - the
Integrated State Significance Information System (Megasystemn) and the Baltic States Governmeni
Data Transmission Network (Network) [2, 5]. The goal of these projects is to provide fundamental
improvements in the exchange of iclecommunications and data among the administrative
institutions of the Baltic States. The principles described in this paper were used to build up the first
implementation of Communication server. A Communication server is a set of software and

167

J. Barzdins and A. Caplinskas (eds.), Databases and Information Systems, 167-178.
© 2001 Kluwer Academic Publishers. Printed in the Netherlands.

mailto:girts@di.lv

168 G. Amicans, G. Kamnitis

computer eguipment that allows a wide range of users to reccive information from variety of
sources (governmental registers, databases, information systems) through a single contact point.
Among the other significant functions the Communication server fulfils a requests that involves
several information sources, merges together information, allows users to leam where information is
stored and what kind of information it is, and to receive information from various registers without
any need for in-depth knowledge about the technical aspects of its storage.

Data retrieval from different autonomous sources has become a hot topic during the last
years in the other countries and large enterprises also. There are many different approaches to deal
with this task. For instance, the systems described in [3, 4, 6, 7] allow data querying from different
Data Sources (DS). All those systems are very complex, with their own query processor, but without
universal user end. The development of these systems consumes many resources (time, money,
people)..

Our first aim was to make a simple Universal Browser (UB) that acts on mode] of data
sources and is very useful in practice (relative to consumed development resources). Main ideas of
the UB are described in [1}, where the idea of database browsing based on the ER model is
described. Our approach is a modified UB that can browse multiple DS, which can be made in
different technologies and with limited access rights and possibilities. Access to the DS is made via
wrappers. Information retrieval bases on logical data models, information between different data
mode! are tied via special logical data entities. The simple means are offered to obtain information
and display it on WWW page — the set of functions that allows to create executable formulas.

2. Repoéitdryof Conceptual Data Models of Data Sources

- Repository is a database that contains information about data sources (DS) and the links
between them — the specific ER model. Repository also oomams a description of functions that can
be executed by DS.

2 .1 METAMODEL OF REPOSITORY

Figure 1 shows an ER model of Universal Browser’s (UB) repository. There are dlffcrcnt
parts in this model that are used for different purposes:

o Entities Data Source, Entity, Field, Relation, Relation Field contain DS models and information
about entities and relations.

s Entities Function, Input, Input Function, Output, Owtput Function contain information about

. functions that query information from DS and input and output fields of these functions.

» Entities Representation and Field List contain information about visual representations for each
entity i.e. what fields in what order have to be shown. For instance, let us take the entity Citizen
that contains information about a person. In shor? representation fields PK, Name, Surname are
visible, but in long representation fields PK, Name, Surname, Address have to be shown.

o Entities Frame Set, Frame and Content contain information about visual representation.

2.2 CONCEPTUAL MODEL OF DATA SOURCE

DS is a reai existing legacy data source that exposes its data to other systems. Any DS can be
made with differen: technologies, and expose its data in different ways. Any DS has some functions
that can be executed to get information from DS. It is not necessary for the user to know technical
details of DS to get information from it. The user needs a simple and understandable logical
information representation that is related to the objects from the real world.

Input Function 3 Input
Nr Coding Function

Mandatory J Coding_Type

Figure 1. Metamodel of repository

Nr

Heterogeneous Database Browsing in WWW 169
Data Source
DS_Name .
Unersal o JEmy Relation Relation Field
F Entty_Name _[10o—04Role 1
Type ko—od4Role2 l+—odq P2
| End1
Frame Con\em. 5 Nen SR
Universal Cardinaiity1
Cardinality2
: !
: 1
Output Function Output Fleld
Nr bo-0H Coding_Function i Fekd_Name_Visible
" Mandatory Coding_Type bo— 4 Feld Name_Tabie
Function . y)]] Field_Type
Data_Type
Vishility

. For example, information about cars can be stored in many tables in the real system. We are
interested in conceptual data model, without technical details. It means a car can be represented with
one entity in the oonccpmal model. :

There can be such technological fields in the real database, that are essential for the réal
system functioning, but they are not necessary for user and are not shown in the conceptual model.
~ There are two types of fields in the conceptual data model of DS:
¢ Fields that can be queried with some function,
Fields from which we cannot query information. It means there are no functions where any
of those fields are outputs. Usually these fields are not showed to the user, and they are
used as.input fields for some function. These fields are also used to link different entities.

Color Car Cars Owners Car Owner
ID ISN Car ISN PK
Color I Number OqOwner PK PO "IName
Color 1D Sumame
Model {D Last Updated
Model © Last Updated .
D I+
Model

Figure 2. E.xamplc of physical data model

170 . G. Amicans, G. Kamitis

There are links between DS entities, which means that, if you know information from one
entity, you can get information from the other entity. There are links between entities, if such
functions exist, which can query information from DS, using as an input information from other
entity. For example, if you know some information about the person (especially person’s PK
(person code)), you can query the information about the person’s passport. It means there is a link
from person to passport. This function returns the passport number and the issue date. On the other
hand, if you know the passport number, you cannot get the passport’s owner PK, because there is no
function that returns this information. It also means that there cannot-be a link from passport to
citizen.

2.3 LOGICAL LINKS BETWEEN THE DATA SOURCES

" There are entities of different types used to link together information from different DS. These
entities are used as base class of DS entities and do not belong to any DS. For instance, the entity
Person with PK is such a base class. This base class has only one field PK. This field is pimary key
for similar objects that concemn person for most of DS. If you know the PK you can get the
information related to the person information from the appropriate DS. For instance, Person with
PK links together information from the entities Citizen, Passport, Car and Car Owner (Figure 3).

2.4 AN EXAMPLE OF REPOSITORY

Two Data Sources and one base class are given in Figure 3.

Car Owner [Person wih PIq . |Passpot
P o I
Name Passport Number
Sumame M izsue Date
[CarISN] Clizen
T S

{owns is ,Phne -
Benge fo Owes — Sumame Has Chédren
J l Has Parents | Sex

L ylAdiress ‘_‘

Car Has Parents— [Chid PK]
ISN ol
Number —Has Chilaren——
Color
Model
{Owner PX]

Figure 3. Example of conceptual mode! of data sources

Fields in square brackets are invisible fields used for search purposes only. Solid line with
arrows means if you know information from the entity that is a starting point of the arrow, you can
get the related information from the entity that is at the opposite end of the arrow. Interrupted iine

shows the relation between normal entity and base class entity. The values of arrows are shown in
Table 1.

Heterogeneous Database Browsing in WWW

Table 1. Description of relations

171

Endl PK End2 PK2 Relation name
Citizen PK Citizen Child PK Has Parents
Citizen PK Citizen Parent PK Has Children
Citizen PX Passport PK Has

Citizen PK Person With PK PK

Car Owner PK Car Owner PK Owns

Car Owner PK Person With PK PK

Car IS Car Owner Car ISN Belongs To
Person With PK PK Car Owner PK 1S

Person With PK PK Car PK Owns

Person With PK PK Passport PK Has

Person With PK PK Citizen PK Is

Person With PK PK Citizen - Child PK Has Parents
Person With PK PK Citizen Parent PK Has Children

3. Browsing Principles

General idea for dynamic browsing of various data sources is to generate Web pages with
predefined information layout and functionality, get data from data sources and put them into page.

A Web page consists of a set of frames (Frame) — FrameSet. The FrameSet has a prefixed
count of Frames, its layout and sizes. We can define as many as' we need different FrameSets to
organise and display information for the user. The FrameSet is a view to related data from one or
many data sources. One of the Frames is the main Frame. The information in any other Frame is
logically connected with data in the main Frame. The Frames can contain controls to manage the
content in the other Frame. . -)

The layout of the Frame is defined by rule, lets call it Content. Theoretically the Content is a
formula or function: Content(frameEntity, filterExpr) where frameEntity is any entity from the
metamnodel of data sources and filterExpr is logical expression that filters data from appropriate data
source. The Content defines:

1) what is the structure and principles of layout,)

2) what data from metamodel and from actual legacy data sources are required to display

information,
3) what actual instances of the defined entity are retrieved,
4) what controls are used to manage the content of the other Frame or to open the other
FrameSet,

5) what related entities are involved from the same or any other data source. If we have
various predefined Contents, then we can dynamically apply any Content to the Frame
and get another data presentation for the same frameEntity and filterExpr.

4. Defining the Content of Frame

Let us assume that Content is the function Conient(frameEntity, filterExpr). Le: us determine
the means how we can define Conient.

We introduce the following data types:
e entity - determines the entity from the metamode],
o field - determines the field of the entity frorh the metamodel,

172 o . G. Amicans, G. Kamitis

relation - determines the relation for two entities from the metamodel,

record - determines the actual data from the data source for one fixed instance of the entity,
value - determines the actual dara of the field for one fixed instance of the entity,

string - determines the character string,

list - determines the list of elements with any other allowed data type, we denote such types by
the element type followed by postfix “List™,

updateAction - determines the action that updates Frame,

navigateAction - determines the action that navigates browsing to another FrameSet,
sObject - determines the HTML object that contains string to display,

aObject - determines the HTML object with assigned some action to perform,

fObject - determines the HTML object that is formatted for displaying,

frame - determines the Frame,

frameSet - determines the FrameSet,

view - determines the list of fields that must be displayed. .

Let us rewrite the Content as a function Content(entity, expr{entity)).
Let us introduce several additional functions to work with the metamodel and data sources,

and 10 format HTML page.

>

Functions to work with the metamodel:

1. SourceName(entity) Pstring — returns the source name the entity belongs to.

2. EntityName(entity) Pstring — returns the entity name.

3. RelationList(entity) relationList — returns all direct relations from the given entity to
another entity (including itself) from the same data source. .

MetaRelationList(entity) SrelationList — retumns all indirect relations from the given entity
to another entity from all available data sources.

" FieldList(entity, view) fieldList — returns the list of all the fields of the entity.
RelationName(relation) Dstring — returns the name (role) of the relation. i} :
FieldName(field) -?string — returns the name of the field.

RelationEntity(relation)) Dentity — returns the entity at the opposite end of relation.

0N ona

Functions to work with data sources through wrappers:

1. RecordList(entity, expr{(entity)) PrecordList — returns the list of instances (records) of the
entity according to the given filtering expression.

2. ValueList(record, view) DvalueList — returns the list values of the given entity instance
(record). .

3. Value(value) Dstring - returns the field value as character string.

Functions to work with the list:

1. List(element_1, element_2, ..., element_i) Diist I — returns the list of given elements and
the list type Zist_J is appropriate to the element type.

2. IterateList(n%list_I, function(n%)) Dlist_2 — retarns the list list_2 that has-as elements the
results applying the given function. The function is executed with each parameter n% that is
taken from the list Lisr_J denoted by the identifier n% (n is any unigue integer) and the list
type list_2 is appropriate 1o the function renuT type.

3. Concatenate(list_I, list_2)-Dlist_3 — returns the concatenation of two lists with the same
element type.

Heterogeneous Database Browsing in WWW 173

- Functions to format HTML page:

1. SO(string) IsObject - creates sObject from the character string.
2. StringListObject(stringList, separatorString)sObject — creates sObject from the list of
character strings separated by separatorString.
3. Update(frame, entity, exprientity), content) DupdateAction — activaies mformanon update
into the frame with the given entity, filter expression and layout.
4. Clear(frame) PupdateAction — clears the given frame .
5. Navigate(frameSet , entity, expr(entity), content) PnavigateAction — navigates to another
FrameSet and update main Frame with the given entity, filter expression and layout.
6. Link(sObject, navigateAction, updateActionList) 2aObject — converts sObject into aObject
- and assign the navigation action and set of updaxc actions to it. Any of action parameters
may be empty.
AO(sObject) PaObject — converts sObject into aObject with empty action.
FO(aObject) 2fObject — converts aObject into fObject without any special formatting.
9. HorizontalTable(aObjectListList)> fObject - creates fObject from the list of lists, this
frame object is displayed as table, and internal lists are placed in rows.
10. VerticalTable(aObjectListList) - fObject — creates fObject from the list of lists, this frame
object is displayed as table, and internal lists are placed in columns. .
11. ListBox{aObjectList) > fObject — creates fObject from the list, this frame object is dxsplayed
as listbox.
12. Horizontal(fObjectList) > fObject — creates new fObject by arranging the given list
horizontally.
13. Vertical(fObjectList)-> fObject — creates new fObject by arranging the given list vertically.
Only frame objects with the type fObject may be displayed in the Web page.

o=

5. Data Wrappers

Function RecordList must be implemented to get information from DS. The technology we

use is simple, but effective. UB gets mformahon from DS via mepexs Thls approach- has the.
following advantages:

It allows accessing DS via different protocols and methods — ODBC™, OLE DB™,
SQL*Net™, DCOM™, COM+™, XML, HTTP.

DS usually are made well suited for specific business tasks. DS are not primary made for data
access from UB. The access to DS data usually is limited, it is allowed to execute some stored
procedures to query data. Wrapper allows us to execute only authorised functions.

Querying DS via functions allows us to have easy transfer real data from DS physical data
model to logical data model that is more understandable for the user.

Information about fuinctions is stored in the UB meta database: defined input and output fields

for each function. Each input field may be mandatory or optional.

During develepment of the prototype, we discovered some rules for function 1mplemcmat10n

and developing conceptual model of DS.

First rule - it is desirable to have input and output fields from one entity. It simplifies
development of DS model and wrappers.

Second rule - two approaches possible for making DS mode! and functions. One approach is that
we already have functions, and we make conceptual data mode] of DS using the first rule. In
case DS is a system we maintain and own, it is often possible to make functions according to
conceptual data model of DS. In such a case we make conceptual data model of DS at first and

174 ' G. Amicans, G. Kamnitis

then we make data access functions according to conceptual data model and the first rule. It is
helpful to make two types of functions: :

1. The function gets information identifying the object from DS by some search criteria.
For example, get person’s PK by its name and surname (might be partial). The answer
usually is a list of person’s identifying information according to search criteria.

2. The function gets information about one object from one entity by its identifier. An
example - get all information about the citizen by its PK.

For instance, we have two functions for the enuty Citizen:
e Input data — Name, Surname (might be partial). Output data — PK, Name, Sumame (full)
* Inputdata - PK. Output data— PK, Name, Sumame, Address.

There are also 2 functions to get information about the citizen's parents and children:
e Input data — Parent PK. Output data — Children PK, Name, Sumame.
¢ Input data — Child PK. Output data — Parents PK, Name, Surname.

There is a procedure that implements the function RecordList. This procedure gets the entity
and filter expression as input and retums data from DS as output. In our implementation this
procedure gets information from the meta database about functions that can be executed over entity
from which we need information. In our implementation the filter expression is fields and
corresponding values for these fields, e.g. PK="123456-111111". There is “brute force” algorithm
that finds functions we can execute e.g. those are functions that have enough input data from the
filter expression to be executed, executes these functions and returns result. There can be, of course,
other implementations.

DS data access via wrappers allows connecting new DS to our system easily and quickly. We
have to write 2 new wrapper and add information about new DS to the meta database. With some
experience the writing of wrappers is easy and fast process, and there is no need to make any
" modlﬁcauon in DS. .

6. Templat&s for Web Page Structure and Functionality

The design of FrameSet and Frames is based on template principle. With some experience the
new FrameSets and Frames can be developed quickly. The design has two main ‘steps — FrameSet
structure planning and creating formulas for Frame Contents. We give some templates and ideas
how the Web pages can be designed. The above given functions are used. Formulas are logically
divided into several subparts only for easier understanding. Some formulas use subparts of other
previously defined formulas. The example of visual presentation for each formula is given.

6.1 SIMPLE ENTITY INSTANCE PRESENTATION IN TABLE

The first column contains field names and the second — fieid values. The field values are
retrieved according to the selected view.

Afentity, record) = Vertical Table(List(A1, A2))
Al = IterateList(1 %FieldList(entity, view), AO(SO(FieidName(1%))))
= IterateList(2%ValueList(record, view), AO(SO(Value(2%))))

Heterogeneous Database Browsing in WWW 175

[PX [1212121111i
[Name {Andris
Sex M

|Address [Riga, Liepu 1-12, LV-1000

Figure 4. Exaﬁxple of entity instance presentation
6.2 ENTITY INSTANCE PRESENTKI'ION AS TEXT
Instance field values are concatenated according to the order of the selected view.

B(record) = FO(AO(SO(StringListObject(B1, " “))))
B = lterateList(3% ValueList(record, view), Value(3%))

(12121211111 Andris Kalns M Riga, Liepu 1-12, LV-1000 |

7 Figure 5. Example of entity instance presentation as text

6.3 ENTITY RELATIONS PRESENTATION IN VERTICAL LIST

Each relation is represented as relation name concatenated with entity name at the opposite
relation end.

© Clentity) = Vertical(IterateList(4 %RelationList(ertity), C1))
Cl1 = Horizomtal(List(C2, FO(AO(SO(“ “))), C3))
C2 = FO(AO(SO(RelationName(4%))))
©3 = FOLAO(SO(EntityName(RelationEtity(4%)))))

Has Passport
Has Parents Citizen
Has Children Citizen

Figure 6. Example of relations presentation

6.4 ALL RELATION PRESENTATION IN TABLE

The data about aH relations (relation name, entity name and data source) are placed in table
with headings. : .

D(entity, expr{cniity))=Horizontal Table(Concatenate(D1,D2))

Di = AQ(StringListObject(*Relation”, “Entity name”, *Data source™))
D2 = hterateList(5 %MetaRelationList{entizy) Lisi(D3, D4, DS))

D3 = AQ(SO(RelationName(5%3))

D4 = AQ(SO(EntityName(Re!ationEntity(5%))))

D5 = AQ(SO(SourceName(RelationEntity(5%))))

176

G. Amicans, G. Kamitis

[Relation ity name [Data source

fis itizen [Register of Residents

[Has assport [Register of Residents

[Has Pareats [Citizen [Register of Residents

[Has Childrea [Citizen egister of Residents

fis [Cer Owner [Register of Motor vehicles
[Owns [Car [Register of Motor vehicles

Figure 7. Example of relation presentation

6.5 AN EXAMPLE OF FRAMESET

Let us look how a FrameSet can be built. Let us assume FrameSet FRS_J with four Frames -

FR_1, FR_2, FR_3, FR_4. See Figure 8.

FR_1 (upper left) — to list instances of entity,

FR_2 (upper right) — to show details of fixed instance in FR_1,

FR_3 (lower left) — to list all relations to other entities in all data sources,
FR_4 (lower right) — to show details of another related entity instances of FR_2.

At first let us create three presentations or Contents (E, F, G) for viewing entities. We use

formulas created before in this paper:

Content formula EQ) for Frame FR_4 (from FR_4 we can update all Frames in FRS_1)

E(cnt'ny expr{entity)) = Vertical(El, ES)
= Horizontal(List(FO(E2), FO(AO(SO(* *))). FO(AO(SO(Sourchame(emﬂy))))))

: Ez Link(SO(EntityName(entity)), E3, E4)

E3 = Navigate(“FRS_1", entity, exprientity), "
E4 = List(Clear(“FR_2"), Update(*FR_3", enmy expr{entity), “"™"), Clear(FR 4))
ES = Venical(teateList(6 %R ecordList(entity, cxpr(entity)), A(entity, 6%)))

Content formula FQ and G() for Frame FR_2 (from FR_2 we can update this frame or update

FR_4)

F(entity, expr(entity)) = Vertical(H, FO(AQ(SO(* “))), ES)

Gentity, expr(entity)) = Vertical(H, FO(AO(SO(* *))), Venical(ES, G1))
= C(entity), where C3 is substitute with G2 in all places (we have added the action)

G2 = FO(Link(SO(EntityName(RelationEntity(4%))), NULL, G3))

G3 = List(Updaie(*FR_4", RelationEntity(4%), expr{RelationEntity(4%)), “E™))

H = ListBox(List(Link(*Presentation F*, NULL, H1), Link(*Presentation G”, NULL, H2)))
= Update{"FR_2", entity, expi(entity), “F)

H2 = Update("FR_2", entity, expr{entity}, “G™)

Content formula 1)) for Frame FR_1 (from FR_1 we can update FR_2, FR3, FR_4)

I{enuty, =xpr(entity)) = Venical(l1, 12)
= Horizontai(ListFO(EntityName(entity)), FO(AO{SO(" *3)), FG(AQ(SO{SourceName(entity))))))
I2 = Horizoniai Table(lierateList(7%RecordList.Link(B(7%), NULL, 13))
I3 = List(Update(“FR_2", entity, expr{entity) and expr(7%). “F"),
Update(“*FR_3", entity, expr(entity) and expr(7%), “**), Clear("FR_4"")

Heterogeneous Database Browsing in WWW 177

= Com::ht formula J) for Frame FR_3 (from FR_3 we can update FR_4)

J(entity, expr(entity)) = D{entity, expr(entity)), Wm D4 is substitute with J] in all places (we have add the
action)
= Link(SO(EntityName(RelationEntity(5%))), NULL, J2)
J2 = List(Update(“FR_4", RelationEntity(5%), expr(RelationEntity(5%)), “E™)

Citizen Register of Residents Presentation F -
12121211111 Andris Kalns .

| 11123312345 Anita Kaloa | - PK [12121211111
01010101010 Maris Kalns [Nsme [Andris

Sex M

[Address [Riga, Liepu 1-12, LV-1000

[Relation [Entity name [Data source Car Register of Motor vehicles
s Citizen [Register of Residents

Has Passport [Register of Residents oiod i

[Has Parents |Citizen [Register of Residents Color [Black

[Elas Children|Citizen [Register of Residents [Model [Audi 100

IIs Car Owner Lliegisur of Motor vehicles

[owns Car [Register of Motor vehicles

Figure 8. Example of WWW page

7. Conclusions and Future Directions

The prototype of the UB is made during developing Megasystem and Communication Server.
Four state significance registers test databases are connected to the UB for testing purposes. Two of
them use Oracle™ as DBMS, other two use Microsoft SQL Server™,
The UB prototype shows the cffsctwcnass of our appmach and is bemg initiated as first
version of the real system at present time.
Our approach differs from other systems by several aspects:
e We have developed simpie universal user-snd that still allows us to show to users information in
many different ways. We achieved this goal by implementing user-end using formal formulas.
e UB operates using logical models of DS. Related objects from these models are bound together
with base classes that do not belong to any particular DS.

s We transfer physical model of DS to our internal logical representation which is much more
comfortable for end-user. We do it by using of data wrappers.

* Qur approach allows us to maintenance system and to connect new DS or modify existing one
without interrupting operation of Communication server.

178

G. Amicans, G. Karnitis

There are many aspects that are very important in real life application, but not covered in this

article — security, user authorisation, logging, query cost calculation. All these features also are
incorporated in the UB. The UB is useful in' many large enterprises having many autonomous data
sources as a browser for these systems with integrated view.

Future direction of our work is to develop a query processor that can take as input SQL-like

query and return as output the result queried from multiple data sources. Other directions of future
work — to make Communication server available not only from WWW browsers, but also from
custom programs using XML to query data and return answers.

References

1.

2.

o

Amicans, G. Application generation for the simple database browser based on the ER diagram. Proceedings of the
Third International Balic Workshop Databases and Information Systems, Riga, 1998, pp. 198-209.

Amicans, G., Bicevskis, J., Karnitis, G. The concept of setting up a communications server. Abstracts of Papers of
3™ International ‘Conference Information Technologies and Telecommunications in the Baltic States, 1999, pp. 48-
57.

Haas, L. M, Miller, R. J., Niswonger, B, Tork Roth, M., Schwarz, P. M., Wimmers, E. L. Transforming
heterogeneous data with database middleware: beyond integration. Data Engineering Bullerin, 1999.

Hammer, J., Gan:igMoI'ma. H,, Ireland, K., Papakonstantinou, Y., Uliman, J., Widom, J. Information translation,
mediation, and Mosaicbased browsing in the TSIMMIS system. Proceedings of ACM SIGMOD International
Conference on Management of Data, 1995, Project Demonstration.

Megasysiem - Integrated State Significance Information System. hup:/fwww.mega.lv.

Singh, N. Unifying heterogeneous information models. Communications of the ACM, 41(5), 1998, pp. 37-44.
Tomasic, A., Amouroux, R., Bonnet, P., Kapitskaia, O., Naacke, H., and Raschid, L. The distributed information
scarch component (disco) and the World Wide Web. Praceedings of ACM SIGMQOD Intemational Conference on
Management of Data, Tuscon, Arizona, 1997, Prototype Demonstration.

(h

mednarodne muiti-koni=srenc e
a M !E*" on

Zbornik D 5.
Proceedings D of the 5" Internationa
INFORMACIJSKA DRUZBA 1S'200
INFORMATION SOCIETY {52002
Vzgo}ainizobraievanjév Razvojin prenovitesy
informacijskidruzbi ' informacijskihsistemoy
Educationin Developmentand
Information Society Reengineering of
Information Systems
Uredii/Edited by
lvan Rozman

Uredili/ Edited by
Sodelovanjein

Vladislav Rajkovic
Tanja Urbancic
Moica Bernik
informacijskadruzba

Collaborationand
iInformation Society
Uredila/Edited by
Marjan Hericko
Matjaz B. Juric

Upravljanjev

informacijski
druzbi

Managementin

Information

- Society

Uredil / Editea

GOVERNANCE

Guntis Arnicans, Prof. Janis Bicevskis, Prof. Edvins Karnitis, Girts Karnitis
Department of Computer Science

University of Latvia
Raina blv. 19, LV-1050 Riga, Latvia
Tel: +371 7228226; fax: +371 7820153
e-mail: gamican@lanet.lv, bics@di lv,
Edvins Kamitis@sprk.gov.lv, girts@di v

ABSTRACT

Principles and basic informatics tools for .modernizat]on of governance in-Latvia are described in the paper. Ensuring
access to well-developed information SETVICes for everyone should be envisaged as a tool for democratic development
and funétioning of society. Development of ICT directly affects political/governance procedures also, usage and
management of public sector information become the base for all govemance. procedures. Interconnection and
interoperation of public information systems, development of smart Mega-system,_mtegrauon of national information
resources of Latvia in Transeuropean telematic networks become components of umﬁed process.

UNIVERSAL INFORMATION SERVICE

Public sector information, its usage and manag
ranks high among various types of info
often the single) collector and producer ©

ement is the real base for all governance (both G2G and G2C) procedures [1]. It

rmation by its amount and significance, the public sector is the most important (and very
f information content.

Institutions
Administrative
Non-administrative
Public .
Private

Types o

Political / administrative
Business / finance

Scientific / technical

General I reference

Government
Municipalities
Businesses
Citizens

Figure 1. Public sector information

Processing and u-s,age of inform.atith that can be deemed as being the information of national significance is the .mo;u
significant component [2]. Within this term we shall mean various mformanon. that is necessary for_state or regxcfrr;] !
administration, for the development of natioral economy, for management of financial, educational and socxalkprOCfs‘sers. .
main subjects of this type of informiatien are real estate and mO:’aUlC property, iegal and private persons, substanuas jor the
country processes (legislation, statistics, 1nances, health care, etc.). . ' _ . .
In order to ensure wide and active usage .ofpubllc sector information, Latvia’s apprqach is devgl(?ped by the Nationa! Progr
Informatics and several other more detailed conceptual dOCUY_TWm? {3. 4]. In principle it is similar to EU. concept, but more
extended and methodologically more advanced. The Program implies under the universal information service a general acce{ss
to information services for everybody in an order as set by normative acts without any discrimination, a long-time service ot &

defined quality at an affordable price-

197

mailto:garnican@lanet.lv.bicS@di.Iv
mailto:Edvins.Karnitis@sprk.gov.Iv,

Ensuring technical access 1o telecommunications and data transmission networks is well known as the universal
telecommunications service. Exactly inclusion of the Internet access shows clear forward-looking vision for Latvia: developed
data transmission services, convergence of all kinds of information and communications services.

In addition universal information service means ensured access to all types of public sector information (and first of all 1o
information of national significance). An electronic delivery of information is envisaged (on-line or broadcasting, magnelic,
optical or another carrier, etc.). Services can be provided on demand or to be interactive. A number of different information
services are components of the universal information service — full set of business and finance information services, availability
of data collected in national and municipality information systems (IS), library and reference information services, reference
and entertainment services, etc.

A number of bounded up and interdependent subprograms of the National Program /nformatics are direcied to development of
the universal information service. The Program includes both macro level strategy (policy of the development) and micro leve]
measures (a number of applications and projects).

Although there are number of common principles in provision of the public sector information to all end-users, many important
differences exist 100. General access of any citizen to the public sector information (G2C) differs from utilization of the
information for state governance (G2G), there are different information compositions, level of confidentiality, demands for
completeness, correctness, updating of information. Therefore side by side with common methodological principles, different
approaches are used for development of information processing and provision systems and services. '

THE MEGA-SYSTEM: ADVANCED TOOL FOR ADMINISTRATION OF THE COUNTRY

Creation of corporative sectoral IS for interconnecting related institutions on national and international scale (e.g., EU
Programme [DA [5]) are important activities thal are going on in number of countries. The next step — interoperability of IS,
interchange of data between sectoral information systems/networks and handling requests that require processing data from
various [S.

End-users,
Remote data
entry poinis

Government

Communications

Network

Information
Systems

Figure 2. The Mega-system

Because a drastic improvement of quality and full interoperability of all IS are vital for the development of e-Government, all
set of public IS in Latvia is being developed as a logically unified and technologically distributed information processing Mega-
system with a common data field as well as unified user’s inlerface, access principles and authorization procedures. Several
basic principles are implemented into the Mega-systern:
» the Mcga-system is a set of separaiely funciioning harmonized 1S;
* ail objects of naticnal significance (persons, cars, real estate, legal entities, etc.) must be registered in 1S;
* daa must be fixed electronically in the place where they are originated; each object is allowed to be registered only in
Zn; ofdprimar_\' registers: the source of the information on the object as well as responsibility for its quality must be
elined;
¢ all IS must use information on particular object from corresponding primary register, it is not allowed to duplicate dala
enwry. it is allowed only o keep copy of the data from the basic register for improvement of access;

) 198

the registration certificate of any object (passport, certificate of legal entity, etc.) must be issued only as the result of
registration of objects; it is not allowed to repeat manual information input from registration certificate or other
documents.)
Creation of the Mega-system is not only technological decision, in fact it means solving of number. of various informative
fegal, organizational problems first of all, among them: i

« to analyze existing data flows, to formulate functions of the Mega-system and to distribute them among IS, to
formulate demands on systems and their data structure; . ’
to define subjects of various IS and the amount of stored information, as well as institutions that are responsible for the
collection, processing and distribution of data;
to define a unified user interface, access principles and authorization procedures;
to elaborate several intercompatible informative models for implementation by local authorities;
to ensure data quality and security as well as interoperability with EU 'IS; to elaborate a methodology for data
verification;

« to determine the principles of electronic archives.
The integration of primary registers has realized. In addition to various IS the Mega-system includes a portal as a gateway to
information resources, a register of registers for collection and distribution of meta information (formal and informal
description of objects, data models, data flows, etc.) on all components of the Mega-system as well as communication server —
common central access point to information resources of the Mega-system. Other IS are being attached 1o the developed central
core of the Mega-system gradually as far as they are prepared. For this purpose development of the IS is being continued, arid
primary data entry is taking place in many systems, even as other data are already being used.

E ~POPULATION
Civil registrar's office REGISTER
| Passpot department] 'iif'.-
XXX d
MEGASYSTEM

B & @

State Revenue Service

SRS IS
Road Traffic Secure Dep. RTSDIS
| XXX department

Figure 3. The Mega-system: data flows

All end-systems (various IS, their remote data entry and access points, end-users of information) are interconnected through a
high speed Government Data Communications Network, that is an essential commurications element for development of the
Mega-system. This Network must provide operative and reliable interoperability of all interconnected systems, therefore
‘requirements to the Network include: '
» high security and reliability level — there must be unirterrupted action time, undistorted data iransmission, a guarantee
of several levels of confidentiality and security of information;
e high speed data transmission, some of real timc systems need guaranteed channel capacity;
e preseace of a common gateway to public data transmission network (the [nternet environment) which contains a
reliablc security system.
On the basis of the Mega-system during following years the G2G usage of traditional paper documents will be changed to usage
of data base files, when an event or fact is assured not by a paper document, but by a record in a database. Each record in the IS

will become legally approved document.
COMMUNICATION SERVER - A CENTRAL ACCESS POINT TO INFORMATION RESOURCES

Communication server is a set of hardware and software that provides a universal resource for information exchange among
various information systems and other G2G transactions within the Mega-system as well as allows a wide range of users 10

199

receive information from a variety of public IS through a single contact point. The need to establish a communication serve,
becomes apparent when it is necessary to interconnect a lot of IS and to retrieve information from number of systems in unifieq
way.

Infzrmation becomes available on the Network, but users (most of them are employees of administrative structures) shouldn'
have no knowledge about the technical details of information storage. There is an obvious need for a universal solution, ang
that is where the communication server comes in. The main requirement for the communication server is that it must alloy,
users to formulate their information requests in a simple way and to receive responses to those requests without necessity tq
understand the technical aspects of the process and knowledge on distribution of data objects among the IS (by interconnectioy
with the register of registers).))

For these purposes the communication server identifies users, authorizes the use of the respective data, manages users rights,
fulfills requests that involves usage of several information sources. It allows users to learn where information is being stored
and what kind of information it is, as well as to request and to receive information from various registers without any need for
in-depth knowledge about the technical aspects of its storage. National [D card is a crucial part to implement person’s
identification in communication process, there might be desirable to implement not only 1D cards for citizens but also ID card
for legal entities. .

The communications server is an Internet resource point. Users of the server can access it via various protocols — HTTP, XML,
CORBA, DCOM, SMTP and FTP. The server provides users an opportunity to find out where information is stored and what
kinds of data are available, to request and receive information from various IS without studying their structure. Because users
may have access to confidential and sensitive information, they are identified with certificates, and all data transmissions are

coded.
THE MEGA-SYSTEM AS A TOOL FOR INTERNATIONAL INTEROPARABILITY

Muitilingual and multicultural Europe has a particular interest in international cooperation and united activities, because
individual national markets for information services are mostly small and ineffective. Competition on the global scale also
requires a common European strategy and intercoordinated development. For this reason, the European Commission sees
collaboration among all European states — including the associated Central and Eastern European Countries as an important
component of integrated information policy [6]. Integration of national information resources of Latvia in Transeuropean
information systems and networks is going on. _

In order to further develop national IS of Estonia, Latvia and Lithuania, to prepare their future informative and technological
connection with European IS, prime ministers of the Baltic States in 1997 made the decision to create a Baltic Governmental
Data Communications Network. The Baltic Network is considered as expanding of the Mega-system and the Government Data
Communications Network on international scale. .

The concept envisages to develop the Baltic Network as a pilot stage for integration of national IS in Transeuropean systems.
All principles of the Mega-system structure and user access, data structure and interfaces are being developed so as to allow for
integration of the Latvia’s IS into the Transeuropean corporate telematic networks. International expansion of the Mega-system
involves the creation of resources-points and interfaces for international interconnection of IS, while maintaining the basic
principles of the Mega-system.

Centralized resources of the Mega-system — register of registers and communication server support both local and international
information services. Data on international resources, that are available for Latvia’s end-users, are included in the register of
registers. Common communication server can be used for authorization and access to national information resources for foreign
end-users equally with local users.

Such approach corresponds to basic principles of the IDA Programme, it is the basis for successful participation of Latvia in the
Programme. The Programme consists of one central network connecting countries and local networks for each country, it
request one central access point for each country. The Mega-system serves as Latvia’s local network and communication server
serves as Latvia’s single access point.

A number of national [S are already participating in activities of international systems, they are pioneers among CEES at
present. The Enterprise Register has been joined to the European Business Register in order to support international financial
relations and investment processes, as well as business cooperation and foreign trade. Vehicles Register has already been
connected to European Car Register. A number of another national IS are participating in the aciivities of international systerms.

REGUIREMENTS TO THE NATIONAL PCRTAL: TO BRING ADMINISTRATION CLOSER TC CITIZENS AND
BUSINESSES

Latvia has adopted the EU recommended approach to the level of electronization of all G2B, G2C and G2G services identifies
four different levels [7]:

* level I: the provision of information — data on services are available on the [nternet;

¢ level 2: interactivity — forms and documents can be downloaded; .

200

e level 3: multi-directional interactivity — client authorization is enabled, and forms and information can be submitted
electronically;
e level 4: processing of transactions — full handling services, including the taking relevant decisions and the making
payments.

National portals in many countries ensure the first level, although the quality of the information that is provided is not always
guaranteed. The possibility to download forms and documents is also fairly common (e.g., United States, France, Estonia)
because this does not demand excessively complicated technologies.
There are different situations at the third and fourth levels. There are only very few countries that have resolved the client
authorization problem, national laws on digital signatures and electronic documents have not been adopted yet. E-transactions
are most commonly offered through Great Britain’s UK Online and Singapore’s eCitizen programs.
Usually national portals contain more than one way of looking of stored information. The following organizational types of
information can be identified:

e around everyday themes (UK Online, Danmark.dk, eCitizen Singapore);

e by regions (Danmark.dk);

» by sectors in a catalogue-type principle (in nearly all national ponals)

e around the country’s administrative structure (Bundesregienung, FirstGov, etc.);

e separately for citizens, businesses and foreigners (Canada). :
In general e-governance means that the government shifts to a more advanced model of functioning. There are changes in the
structure of the government and in relations among government institutions. The portal must be seen as an instrument in e-
government, but by no means it cannot be seen as the tool that actually implements e-government. The Mega-system (ixicluding
the portal as an interface) will provide government back office functionality.
The Latvia’s national portal has been developed as a unified access point for information services what are provided by public
agencies and institutions [8]. The first version of portal has been developed ‘and provides first level services. The first and
second levels services is provided directly by portal, while the third and fourth levels — in cooperation with the communication
server.
The Latvia’s national portal is being established defining three groups of individuals with different needs — citizens, business
people and officials. A system have reciprocal links for all of them. It is important also to define the links between all
categories of users as well as various levels of officials. Several organizational types of information are being developed at
present [9].
As a result of analysis of the Latvia’s situation and the possible demands of users, the basic principles havc been dcﬁned

e decentralization of information;

» the national portal is a portal of links;

¢ high quality (completeness, correctness, actuality) of the content;

¢ access to the public IS (in cooperation with the register of registers and the communication server);

* opportunities for contacts with officials;

e possibility to download forms and documents;

s autentification of users and personalization of content;

e availability of services in several languages (Latvian is mandatory);

o development of tools for support and maintenance of portal.
The development of the Latvia’s portal is going on, the first version is available at the WWW [10]. The process of fulfilling
portal with actual data is in progress at this moment.

OPENNESS AND TRANSPARENCY - THE MODEL OF E-GOVERNANCE

Rapid evolution of ICT 'make possible to change general requirements to the governance principles and procedures in line with
development of e-democracy.
It is very hard task to control state institutions nowadays. Usage of ICT will help to introduce number of important for
democratic society principles:

e openness — quantity and quality of information that any pubiic institution provides to society, especiaily on-line;

» transparency -- possibility to track how the institution acts and how it is making decisions;

e interactivity — possibilities that citizens and businesses have to contact with any level institution, its readiness to the

fast reaction and dialog; possibility to offer opinions as well as to influent decisions;

e control, audit, inspection — public possibility to monitor and to control institution from outside.
Governance will become fully democratic only if every member of society will have possibility to get easy detailed information
on administrative processes that are important for welfare of citizens and efficiency of businesses [11]. Citizens or officials
initiate any process. While developing the Mega-system, it becomes possible to define and identify set of processes any person

201

Databases and
Information Systems

Edited by Hele-Mai Haav and Ahto Kalja

Proceedings of the |
Fifth International Baltic Conference,
BalticDBE&tIS 2002,

Tallinn, June 3-6, 2002

Volume 1

SEMANTICS FOR MANAGING SYSTEMS IN
HETEROGENEOUS AND DISTRIBUTED
ENVIRONMENT

Guntis Arnicans and Girts Karnitis
University of Latvia

Abstract: The problem of legacy systems collaboration is being solved. Particularly we
look at collaboration as a workflow in a distributed and heterogeneous
environment. Attention is paid to the description of semantics for workflow
process definition languages. There are many solutions how semantics can be
decomposed into logica! fragments, but the problem of obtaining reusable
components, that are easy to compile into desired specific semantics, remains.
We evolve the dividing of semantics by semantic aspects, which description
bases on abstract data types (pre-build components) and connectors (meta-
programs to produce: glue:code) -between them--This-paper affers-a way; in-
which semantic aspects are linked with the intermediate representation of a
program, and performing of semantics is provided. We mix together various
semantics aspects to get a desirable semantics. '

Keywords: workflow, programming language specifications, semantics, interpreter,
compiler, reusabie components, domain specific languages, tool generation.

i. Introduction

Nowadays new technologies are emerging into a government sector,
allowing speak about e-Government. The processes are one of the core
components of e-Government [1]. We stated that practically no automation of
processes in the governmental institutions that organizes collaboration
between legacy systems among various organizations and institutions.
Document flows are manual or by email. The automated workflows have to
be introduced to make a document turnover faster and to improve a service
for citizens.

51

52

In [2] workflow is defined as “the automation of a business process, in
whole or part, during which documents, information or tasks are passed from
one participant to another for action, according to a set of procedural rules.”

Workflow management system is defined as “a system that defines,
creates and manages the execution of workflows through the use of software,
running on one or more workflow engines, which is able to interpret the
process definition, interact with workflow participants and where required,
invoke the use of IT tools and applications.”

In the latest years many researchers and developers pay attention to a
problem how organize collaboration between legacy systems, and the
exploitation of workflow is one of the most popular solutions [3,4]. Various
workflow process definition languages have been created which can be
considered as domain specific languages.

The workflow implementations commonly base on the one fixed
semantics like most of the programming languages. We are interested in
various semantics for a particular workflow, for example, a common
workflow semantics, a statistical data gathering semantics, a semantics for
debugging and simulating purposes or its composition. We need not only a
compiler or an interpreter, but the necessity for specific supporting tools
becomes a burning question due to demands for high software quality.
Interesting topic is changing of semantics for active instance of workflow on--—
the fly.

In our approach semantics are connected to syntax elements via semantic
connectors that naturally allow linking legacy systems into collaborative—-
workflow and allow define or execute multiple different semantics
simultaneously. Actually each semantic implementation is a tool, similarly to
the principle in [5]. We present fragments of semantic description for simple
programming language to demonstrate usefulness of this approach for wide
class of programming languages, and 1dea.s how to implement a simple
workflow description language. ~—— ———— —— .

2. Implementation of Domain-Specific Language

According to Kinnersley’s investigation [6], there were more then 2000
exploited languages in 1995, and most of them were classified as domain-
specific language (DSL). Together with growth of DSL many
implementations and maintenance problems arise (e.g. [7] analysis of
common problems and large annotated bibliography; [8] particular languages .
and problems). Unfortunately formal semantics descriptions loose their
position because of weak support to solve practical problems [9, 10,11].

52

In [2] workflow is defined as “the automation of a business process, 1n
whole or part, during which documents, information or tasks are passed from
one participant to another for action, according to a set of procedural rules.”

Workflow management system is defined as “a system that defines,
creates and manages the execution of workflows through the use of software,
running on one or more workflow engines, which is able to interpret the
process definition, interact with workflow participants and where required,
invoke the use of IT tools and applications.”

In the latest years many researchers and developers pay attention to a
problem how organize collaboration between legacy systems, and the
exploitation of workflow is one of the most popular solutions [3,4]. Various
workflow process definition languages have been created which can be
considered as domain specific languages.

The workflow implementations commonly base on the one fixed
semantics like most of the programming languages. We are interested in
various semantics for a particular workflow, for example, a common
workflow semantics, a statistical data gathering semantics, a semantics for
debugging and simulating purposes or its composition. We need not only a
compiler or an interpreter, but the necessity for specific supporting tools
becomes a buming question due to demands for high software quality.
Interesting topic is changing of semantics for active instance of workflow on -
the fly.

I[n our approach semantics are connected to syntax elements via semantic
connectors that naturally allow linking legacy systems into collaborative. ..
workflow and allow define or execute multiple different semantics
simultaneously. Actually each semantic implementation is a tool, similarly to -
the principle in [5]. We present fragments of semantic description for simple
programming language to demonstrate usefulness of this approach for wide
class of programming ianguages, and ideas how to implement a simple
workflow descriptioh languaée.

2. Implementation of Domain-Specific Language

According to Kinnersley’s investigation [6], there were more then 2000
exploited languages in 1995, and most of them were classified as domain-
specific language (DSL). Together with growth of DSL many
implementations and maintenance problems arise (e.g. [7] analysis of
common problems and large annotated bibliography; [8] particular languages
and problems). Unfortunately formal semantics descriptions loose their
position because of weak support to solve practical problems [9, 10,11].

Semantics for Managing Systems in Heterogeneous and Distributed 53
Environment

Like a natural language the programming language definition consists of
three components or aspects [12, 13]: syntax deals with questions of
superficial form of a language, semantics deals with underlying meaning of a
language, pragmatics deals with practical use of a language. A language’s
syntax and semantics can be formalized, and both formalizations together
form formal specification of a programming language.

The formalisms for dealing with syntax aspect of a programming
language are well developed. The theory of scanning, parsing and attribute
analysis provides not only means to perform syntactical analysis but to
generate a whole compiler as well. There are a lot of problems with a
practical use of semantics formalisms. Recently the criticism of classical
formalism arises from the difficulty of using formal methods. The main
problem to use the formal specifications of programming languages widely in
practice is that specifications become too complex, too abstruse to manage
them, often it is impossible to express all needs, and in the end — who verifies
and proves the correctness of specification?

Summarizing the best practices in compiler construction we can declare
that most of commercial compilers (interpreters or other tools that deal with
programs) are written without using any formalisms or only the first phases
(scanning and parsing) exploit some formalisms [10].

Let us look at the language description again, try to divide it into smaller
parts and see, what we can obtain from that. Traditionally the first decision is
to separate syntax from semantics, and semantics consists of two parts: static
semantics and dynamic (run-time) semantics. But we should divide syntax
and semantic further, eliminate reusable components and provide a
mechanism to stick all things together.

Syntax components are more or less visible: basic elements (for instance,
terminals and nonterminals, if we parse program) connected with some
relations (for instance, edges in the parse tree or abstract syntax tree).

To divide semantics into pieces we offer to split it by semantic aspects.
Here are some examples of semantic aspects: program control flow
management (e.2. loops, conditiona! branching), execution of commands or
statements (e.g. basic operations, assigning), dealing with symbols (e.g.
variables, constants), environment management (e.g. scopes of visibility),
pretty printing of program, dynamic accounting of statistic, symbolic
execution, specific program instrumentation, etc.

We are interested in any formalism to deal with syntax, because we want
to make intermediate representation (IR) of program or structured
information. It is a clear situation in dealing with a conventional
programming language. But our goal is a workflow implementation and we
have to take into account other languages, for instance diagrammatic visual

54

languages (e.g. Petri nets, E-R diagrams, Statecharts) and state of art in this
field (e.g. [14]).

Our approach borrows some principles from attribute grammars, for
instance, the ways to link semantics with syntax [11], modular decomposition
and reuse of specification [15], distributed computing in a real time (e.g.
Communicating Timed AG [16]).

We founded that many formalisms of semantics use abstract data types
(ADT). ADT is collection of data type and value definitions and operations
on those definitions, which behaves as a primitive data type. This software
design approach decomposes problem into components by identifying the
public interface and private implementation. Typical example is a Stack, a
Queue, a Symbol table [17, 13].

Recently one of the simple and popular methods to build some simple tool
for a programming language is parse and traverse principle [18] that means to
build intermediate representation (IR) of program or information, traverse IR
and make appropriate computations at each node. This method is similar to
the Visitor Pattern [19]. Another useful patterns are also developed [20, 21].
Besides nontraditional traversal strategies exists [e.g. 22]. Many solutions can
be obtained from Component collaboration [e.g. 23].

We take into account our experience._building prototypes of multi-

language interpreter [24]. A Multi-Language Interpreter (MLI) is a program, —

which receives source language syntax, source language semantics and a
program written in the source language, then performmg the operatlons on
the basis of the program and the relevant semantics. -

3. Principles of Semantic Definition and
Implementation
3.1 Runtime Principles T ———

Let us assume that we have fixed some formalism to describe the syntax’
of our language (e.g. BNF). Now we can define the language syntax and
develop a language parser (e.g. by using Lex/Yacc). The parser creates
intermediate representation (IR) of program (e.g. Parse tree), and IR is based
on a desirable structure and contains any needed information about the syntax
(e.g. node type (nonterminal), name (name of nonterminal), value (terminal
value), etc.).

To perform semantics at runtime we choose a principle of parse and
traverse. The Traverser that realizes our chosen traversing strategy (e.g. left-
depth tree traversing) has to be created for our IR representation. The
computations, that have to be done at each node visited by the Traverser, ar¢

e i

Semantics for Managing Systems in Heterogeneous and Distributed 55
Environment

defined in Semantic Connectors (SC). They use predefined data structures
with operations to establish cooperation between Legacy Systems (LS)

(Figure 1).

. Intermediate Traverss|
Representation = strategy

; Node

Semantic
© connector

ADT system

Figure 1. Runtime correspondence between syntax and semantics

Actually the most of work performing semantics 1s done via operations
over various Abstract Data Types (ADT). In such way we hide most of
implementation details and concentrate mainly on logic of semantic aspect.
The consequence of this approach is that we can choose the best physical
implementation of ADT for given task. For instance, Stack can be
implemented in a contiguous memory or in a linked memory. The instances
of ADT can be distributed objects in a heterogeneous computing network.

A concept of a semantic connector or simply connector is introduced to
connect the instances of ADT and LS in a desirable environment. Connector
is a2 meta-program that introduces a concrete communication connection into
a set of components, i.e., it generates the adaptation and communication glue
code for-a specific connection. This concept is adopted from similar problem:
how to connect pre-build components in distributed and heterogeneous
environment [25].

32 Semantic Definition Principles

Similarly to patterns in [11] we choose a correspondence Nonterminal
with visiting aspect = Semantic connector to establish relationships between
syntax and semantics. Nonterminal with visiting aspect means that we
distinguish computations performed at nonterminal node considering an
aspect of node visiting (e.g. PreVisit or PostVisit). Any connector can see
any instance of ADT or LS of the semantic aspect it (connector) belongs to.

56

The main problem is to find a good way to define semantics and obtain
semantic connectors for the definition. After exploring various approaches
how semantics can be described and organized, we suppose that semantic
aspect is good basic component for constructing whole semantics according
to our goals. The conceptual components of a semantics description and
relationships with other concepts are represented in Figure 2.

" Nonterminals OYNtaX Terminals
E

NT, NT, : T,
_Pre Pos Pre Pos :
7 Viesa \ris; u:. \mi: k Vg = ek
== == et | =
Semantic - "-Wd‘"_ "”m.m Semantic
N, Aspects H Ce
\ by i Actions 2N
. :13_&;1;-] ;;-.a-' !._&_k‘._.. -) s _\f?cl e "
gl T — o o e
5 Liims
= Iy P
&~ A K
i SAT '__l._S_KI__T““-—-_.h. “} gc;“\? -
_ £ . q“q'{___ -
...:_ﬁ__; —— el __.._._.__.._._._:.__:__.,____::.___.
!-og'ca' i : v W
B W Semantics view

{ o SR e - i e TR

Figure 2. The conceptual schema of semantics.

Semantics can be observed from two different sides — a logical definition’
view and a physical runtime view. From the logical viewpoint semiantics
consists from Semantic Aspects (SA). The SA states what syntax elements
(terminals, nonterminals) are involved in and what actions have to be
performed traversing internal representation and visiting the corresponding
node to realize semantic aspect. Let us define concept Semantic Action that
denotes the action performed to realize SA while visiting a ‘corresponding -
node, and — concept Implementation of Semantic Action (ISA) that denoies
meta program which implements semantic action. In our example SA;
involves nonterminal NT, and terminal T,, and ISA, is performed while
previsiting NT, and ISA, — while visiting T,.

The example of semantic aspect INDEFINITE LOOP is given in Figure 3.
There are various nonterminals and terminals organized by some syntax
description. The arrows represent a traversal strategy. The small circles
represent the semantic actions and the rectangles connected to the circles
contain implementation of semantic action (meta program). A left circle into
nonterminal stands for PreVisit and a right circle - for PostVisit. All used
abstract data types (ADT) are defined within semantic aspect. Another .
example of semantic aspect is given in Figure 4.

Semantics for Managing Systems in Heterogeneous and Distributed 57
Environment

IMPORT GLOBAL RefStack, Sort, Flag of ADT_Stack,
Trav of ADT TreeTraverser, Env of QpT_SymbolTable

Sort.pop ()
Flag.popl)

DO |—>© series O)~>| END
"Other aspects > '

A
Sort.push (INDEF) i
Flag.push (TRUE)

I WHILE }—»(O comparison

f_\f)ther aspects

! RefStack.push (NULL)

!if Sort.top(} = INDEF then |
LOCAL Ref = RefStack.popl() |
if Env.getValue{Ref) = FALSE | —

Flag.replaceTop (FALSE) if Sort.topl) = INDEF and
Trav.goSiblForw(@END) Flag.top() = TRUE |

endif i Trav.goSiblBackw (@WHILE)
endif | | endif A

J

Figure 3. Semantic aspect INDEFINITE LOOP. It “goes through” series and back to WHILE
until comparison sets NULL reference or reference with value FALSE

|
LOCAL Res = RefStack.pop() ~ |
LOCAL Var = RefStack.popl() |
LOCAL Val = Env.getValue(Res) . amd
tEEY.putValue(Var, Val)

. i A
; i

(O assignment_statement @}/
T

left_hand_side ASSIGN |—>(right_hand_side)J
Q__to hand side Q)+ AS 2l ses &
o 5. T
1_ Other aspects \ S
\ -
_ RefStack.push(NULL)J | RefStack.push (NULL) l

IMPORT GLOBAL
RefStack of ADT_ Stack,
Env of ADT_ SymbolTable

Figure 4. Semantic aspect ASSIGNMENT. It takes referénce to a variable and reference to a
value from the stack. and assigns the value to the variable. Pushing of references is simulatad,
reai references will be pushed by other aspects and simulating will be excluded

Let us look at the physical view. Semantic connector contains all
corresponding semantic actions having to be executed while visiting syntax
element (IR node). For instance, visiting any node with name T, we have to
execute the semantic connector SC, that contains the implementation of the
semantic action ISA,. Similarly SC, is some composition of ISA; and ISA,.

58

3.3 Obtaining Semantics from Semantic Aspects

From the logical point of view semantics is a composition of semantic
aspects with concrete linking to instances of abstract data types, legacy
systems and traverser that performs a traversal strategy over fixed
intermediate representation of program or structured information. We cannot
simply stick all SA together risking to get senseless semantics. A
composition of semantic aspects is operations over set of implementations of
semantic actions with aim to get one set of connectors that correspond to the
new mixed semantic aspect (Table 1).

Table 1. Fragment of semantics description for simple imperative language

compatible with ir_type ParseTree, traverser_type ParseTreeTraverser

syntax elements (program, expression, VARIABLE, ...)
semantic actions (<PROGRAM> program PreVisit {ENV .prepareProgEnv()},
<PROGRAM> program PostVisit {...}, ...)

global Trav of ADT TreeTraverser, Env of ADT_SymbolTable
create DataStack, OperatorStack, CanCreateVar, LoopSortStack, LoopCounterStack,
LoopFlagStack, IfFlagStack of ADT_Stack, InputFile, OutputFile of ADT FILE

compose aspect <COMPOSED SA> // composes semantic aspects from predefined aspects
(<PROGRAM>)
append (<ELEMENT>

replace RefStack with DataStack // replaces stack for collaborating work

rename INTEGER Visit with CONSTANT Visit) // renames according to PAM syntax
append (<ASSIGNMENT>

replace RefStack with DataStack

rename Jeft_hand_side PostVisit with VARIABLE Visit,

right_hand_side PostVisit with expression PostVisit

ignore left_hand_size PostVisit) // ignore pushing of NULL reference
append-(<INDEEINITE LOOP>__ _

replace RefStack with DataStack, —

Sert with LoopSortStack, Flag with LoopFlagStack)

end compose aspect

... /! other aspect are defined and composed together

link for <COMPOSED SA> Trav to TreeTraverser, Env to SymbolTable
use aspect <COMPOSED SA> with traverser TreeTraverser

The obtaining of semantics for the fixed syntax is achieved in several .
steps: 1) select predefined semantic aspects or define new ones for desired .
semantics, 2) rename syntax elements and traversing aspect in the selected -
semantic aspects with names from fixed syntax and traversing strategy, 3)
rename instances of abstract components to organize collaboration between .

Semantics for Managing Systems in Heterogeneous and Distributed 59
Environment

semantic aspects, 4) make composition from semantic aspects, 5) specify the
runtime environment and translate the meta-code to the code of the target
programming language, and 6) compile the semantics.

After obtaining meta-semantics (Table 1) meta-code is translated to the
target programming language, taking into account the target language (e.g.
C++), the implementation of abstract components (e.g. Stack), the operating
system (e.g. Unix), the communications between components (e.g. CORBA),
runtime components type (e.g. DLL), etc. The translation may be done by
hand or automatically (desirable in common cases).

By replacing ADT names we achieve independent working for some
semantic aspects or collaborating work between them through common
instances of ADT. Another way to get new semantics is to combine
semantics aspects as whole black-box unit. Self-evident method is to execute
several semantic aspects sequentially, for instance, we perform static
semantic first and dynamic one after that. Instances of ADT can be shared
and one semantic aspect can use results of others. More complex is a parallel
executing of many semantics where we need to organize synchronization via
instances of ADT.

4. Workflow Case Study

To demonstrate our approach we use very simple workflow definition
language that syntax is described with BNF (Table 2). We have two types of
generic statements for describing tasks in a workflow — universal statements
and specific statements.

Table 2. Fragment of BNF for simple workflow definition language

workflow -> series

series -> statement | series ; statement

statement -> generic_stm | cond_stm

cond stm -> [F compar THEN series ELSE series Fi
compar - expr relation expr

expr -> const | var

generic_stm -> universal_stm | specific_stm

universal_stm ->u_stm_type name

u_stm_type ->DCOM | CORBA | WEBSERVICE | MANUAL
specific_stm ->s stm_type name

s_stm_type -> ASK | ANSW

The wuniversal statements are used to collaborate with external
applications. The universal statement type describes connection type:

60

DCOM, CORBA, WEBSERVICE means automatic processing but
MANUAL - that human handles this operation. The specific statement 1s used
to communicate with a person — usually with a citizen who uses the particular
service. There are two types of specific statements. ASK gets information
from a person, ANSW sends some information to a person.
Lets take a look at the following simple workflow:
WEBSERVICE Application_writing_and_submitting
ASK Communication
DCOM Application_data_control_and_update
IF Is_data_control _and_updating_successful = True THEN
DCOM Printing_of passport
ANSW Positive_answer
MANUAL Passport_handing_out
ELSE
ANSW Negative answer
FI
The purpose of this workflow is to issue a new passport for a person.
Workflow has the following activities - citizen fills an application form and
submits it to official. It can be a paper form or a web based application. The
official or the application asks from person a communication kind and
address, and records data into workflow environment. Then the official
verifies correctness of the citizen’s fulfilled form with the data in Population
Register, and if all data is correct, then a passport 1s issued and delivered to
citizen. Otherwise negative answer is sent to citizen. An example of one

semantic aspect of this workflow is given in Figure 5.

[IF operatorStack.topl) = "Rsk” |
IF OperandStack.topf() = "Communication" | -
Local FK, Name, Surname, CommType, CommInfo
GetCommInfo (P¥, Name, Surname, CommType, CommInfo)
Dictionary.PutCommInfe (PK, Name, Surname, CommType, CommInfo)
OperandStack.pep ())
i // other cases
| OperatorStack-pep(})..
} | E —

A

(:‘, specific_stm ‘:) T

r——[4
© s_stm_type CH O name [—J

rs

i_OperandStack.push (Trav.NodeValue()} |

SK OperatorStack.push ("Ask™) I

i

Figure 5. Semantic aspect SPECIFIC STATEMENT ASK

Semantics for Managing Systems in Heterogeneous and Distributed 61
Environment

5. Conclusions

We have presented ideas for establishing a framework to deal with
different collaboration problems between legacy systems. The problem is
reduced to describing the collaboration (e.g. workflow) by DSL and building
various tools (various semantics) for this DSL.

There are many application generators that automatically produce
conventional compiler and interpreter, but we need not only those ones. It 1s
necessary to obtain various supporting tools that base on language text
processing. Existing formal semantics are not well accepted by language or
tool designers. We have made attempt to search for a compromise to
minimize this gap. The latest related works in this field, to establish tool-
oriented approach, are mentioned in [5], {26], [27].

We have offered ideas how semantics can be decomposed into reusable
parts and specific semantics can be composed from it, and how execution is
organized. We delegate the most of semantic actual work to pre-built
components (ADT). Our approach allows minimize semantics descriptions
for easiest management and provides good implementation in a possible
parallel, distributed and heterogeneous environment. Our approach bases on
an experience received by .constructing prototypes of multi-language
interpreter for conventional programming languages.

By doing a favor to practical needs, we lose something from precision and
benefits of classical semantic formalisms. The next step is to finish
formalization of our approach and to compare it with other formalisms,
especially with attribute grammars. Another activities have to be the
designing of useful collection of abstract data types.

References

(1] E. Kamitis. E-Government:_An _Innovative. Model of Governance in the Information
Society. Baltic IT&T Review, 1, 20C1

[2] Layna Fischer, editor. The Workflow Handbook 2001, Published in association with the
Workflow Management Coalition, 2000

[3] Workflow Standards and Associated Documents,
http://www.wfmc.org/standards/docs/Stds_diagram.pdf

(4] Workflow/BPR Tools Vendors http://www.waria.com/databases/wfvendors-A-L.htm

(5] J. Heering and P. Klint. Semantics of Programming Languages: A Tool-Oriented
Approach. ACM SIGPLAN Notices, 35(3):39-48, March 2000.

(6] W .Kinnersley, ed., The Language List. 1995. http://wuarchive.wustl.edu/doc/misc/lang-
list.txt

[7] A Deursen, P. Klint, and J. Visser. Domain-Specific Languages: An Annotated
Bibliography. ACM SIGPLAN Notices, 35(6):26-36, June 2000.

http://www.waria.com/databases/wfvendors-A-L.htm

62

,[8] Special issue on domain-specific languages. IEEE Transactions on Software Engineering,
25(3), May/June1999.

[9] David A. Schmidt. Programming Language Semantics. In Tucker [28], pp.2237-2254.

[10] Kenneth C. Louden. Compilers and Interpreters. In Tucker {28], pp.2120-2147.

[11] J. Paakki. Attribute Grammar Paradigms — A High-Level Methodology in Language
Implementation. ACM Computing Surveys, 27(2):196-255, June 1995.

[12] Frank G. Pagan. Formal Specification of Programming Languages. A Panoramic Primer.
Prentice-Hall, 1981.

[13] K. Slonneger and B. L. Kurtz. Formal Syntax and semantics of Programming Languages:
A Laboratory Based Approach. Addison-Wesly, 1995.

[14] F. Ferrucci, F. Napolitano, G. Tortora, M. Tucci, and G. Vitiello. An Interpreter for
Diagrammatic Languages Based on SR Grammars. Proceedings of the 1997 IEEE
Symposium on Visual Languages (VL '97), pages 292-299, 1997.

[15] U. Kastens and W. M. Wait. Modularity and reusability in attribute grammars. Acta
Informatica 31, pages 601-627,1994. ’

[16] T. Matsuzaki and T. Tokuda. CTAG Software Generator Model for Constructing
Network Applications. Proceedings of the Asia Pacific Software Engineering Conference,
pp.120-127, 1998.

[17] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Technigues,
and Tools. Addison-Wesley, 1986.

[18] C. Clark. Build a Tree — Save a Parse. ACM SIGPLAN Notices, 34(4):19-24, April 1999.

[19] E. Gamma, R. Helm, R. Johnson, and J. Vlisides. Design Patterns: Elements of Reusable
Software, pages 331-334. Addison-Wesley, 1995.

[20] J. Ovlinger and M. Wand. A Language for Specifying Recursive Traversals of Object

- Structures. SIGPLAN Notices, 34(10):70-81, 1999. Proceedings of the 1999 ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages &
Applications (OOPSLA ‘99).

[21] T. Kiihne. The Translator Pattern — External Functionality with Homomorphic Mappings.
Proceedings of the Tools-23: Technology of Object-Oriented Languages and Systems, pp.
48-59, 1997,

[22] B. Biswas and R. Mall. Reverse Execution of Programs. ACM SIGPLAN Notices,
34(4):61-69, April 1999.

[23] M. Mezini and K. Lieberherr. Adaptive Plug-and-Play Components for Evolutionary
Software Development. SIGPLAN Notices, 23(10):97-116, 1998. Proceedings of the
1998 ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages
& Applications (OOPSLA ‘98). '

[24] 24. V. Amicane, G. Arnicans, and J. Bicevskis. Multilanguage interpreter. In H.-M.
Haav and B. Thalheim, editors, Proceedings of the Secornd Internctional Baltic Workshop
on Databases and Information Systems (DB&IS ‘96), Volume 2: Technology Track,
pages 173-174. Tampere University of Technology Press, 1996.

[25] U. ABmann, T. GenBler, and H. Bir. Meta-programming Grey-box Connectors.
Proceedings of the Technology of Object-Oriented Languages and Systems (TOOLS 33),
pp-300-311, 2000.

[26] M. Memik, M. Leni¢, E. Avdicau$evi¢, and V. Zumer. Compiler/Interpreter Generator
System LISA. Proceedings of the 33" Hawaii International Conference on System
Sciences - 2000, pp.10, 2000.

[27] A. M. Sloane. Generating Dynamic Program Analysis Tools. Proceedings of the
Autralian Software Endineering Conference (ASWEC'97), pp.166-173, 1997.

(28] Allen B. Tucker, editor. The computer science and engineering handbook. CRC Press,
1997.

Databases and Information
Systems 11

Fifth International Baltic Conference, Baltic DB&I1S’2002
~ Tallinn, Estonia, June 3-6, 2002
Selected Papers

Edited by

HELE-MAI HAAV

Institute of Cybernetics at Tallinn Technical University,
Tallinn, Estonia

and

AHTO KALIJA

Departme;nt of Computer Engineering of Tallinn Technical University,
Tallinn, Estonia

e

KLUWER ACADEMIC PUBLISHERS

DORDRECHT / BOSTON / LONDON

SEMANTICS FOR MANAGING SYSTEMS IN
HETEROGENEOUS AND DISTRIBUTED
“NVIRONMENT

Guntis Arnicans and Girts Karnitis
University of Latvia, Riga, Latvia

Abstract

Keywords:

The problem of legacy systems collaboration is being solved. Particularly we
look at the collaboration as workflow in a distributed and heterogeneous
environment. Attention is paid to the description of semantics for workflow
process definition languages. There are many solutions how semantics can be
decomposed into logical fragments, but the problem of obtaining reusable
components that are easy to compile into desired specific semantics still
remains. We evolve the division of semantics by semantic aspects whose
description is based on abstract data types (pre-built components) and
connectors (meta-programs to produce the glue code) between them. This paper
offers a way in which semantic aspects are linked with the intermediate
representation of a program, and performing of semantics is provided. We mix
together various semantics aspects to get a desirable semantics.

workflow, programming language specifications, semantics, interpreter,
compiler, reusable components, domain specific languages, tool generation.

Introduction

Nowadays new technologies are emerging in the government sector

ving to speak about the e-Governmeni. The processes are one of the core
components of e-Government [11]. We stated that there is practically no
automation of processes in the governmental institutions that organize
collaboration between legacy systems among various organizations and
mstitutions. Document flows are manual, or by email. The automated
workflows have to be introduced to make the document turnover faster and to
improve the provided service for citizens.

149

H '7'"- Haav and A. Kalja (eds.), Databases and Information Systems I, 149-160.
002 Kiuwer Academic Publishers. Printed in the Netherlands.

150

In [8] workflow is defined as “the automation of a business process, in
whole or part, during which documents, information or tasks are passed from
one participant to another for action, according to a set of procedural rules.”

The workflow management system is defined as “a system that defines,
creates and manages the execution of workflows through the use of software,
running on one or more workflow engines which is able to interpret the
process definition, interact with workflow participants and where required,
invoke the use of IT tools and applications.”

In the latest years many researchers and developers have paid attention to
a problem how to organize the collaboration between legacy systems, and the
exploitation of workflow is one of the most popular solutions [27, 28].
Various workflow process definition languages have been created which can
be considered as domain specific languages.

The workflow implementations commonly are based on one fixed
semantics, like most of the programming languages. We are interested in
various semantics for a particular workflow, for example, common workflow
semantics, a statistical data gathering semantics, a semantics for debugging
and simulating purposes or its composition, therefore we need not only a
compiler or an interpreter, but the necessity for specific supporting tools
becomes a burning question due to demands for high software quality. An
interesting topic is changing of semantics for active instance of workflow on
the fly.

In our approach semantics are connected to syntax elements via semantic
connectors that naturally allow linking legacy systems into collaborative
workflow and allow to define or to execute multiple different semantics
simultaneously. Actually, each semantic implementation is a tool, similarly to
the principle in [10]. We present fragments of semantic description for smplc
programming language to demonstrate usefulness of this approach for a wide:
class of programming languages, and ideas how to implement a mmple*
workflow description language.

(2]

Ll

2. Implementation of Domain-Specific Language P

According to Kinnersley’s investigation [13], there were more than 2000’?
exploited languages in 1995, and most of them were classified as domain;
specific language (DSL). Together with the growth of DSL many,
implementations and maintenance problems arise (e.g. [6] analysis of
common problems and large annotated bibliography; [25] particulaf
languages and problems). Unfortunately, formal semantics descriptions lose

their position because of a weak support to solve practical problems [15, 20s
22). |

Semantics for Managing Systems in Distributed Environment 151

Like natural language, the programming language definition consists of
three components or aspects [21, 24]: syntax deals with questions of
superficial form of a language, semantics deals with the underlying meaning
of a language, pragmatics deals with the practical use of a language. The
syntax and semantics of a language can be formalized, and both
formalizations together form formal specification of a programming
language.

The formalisms for dealing with the syntax aspect of a programming
- 1guage are well developed. The theory of scanning, parsing and attribute
analysis provides not only means to perform syntactical analysis, but to
generate a whole compiler as well. There is a lot of problems with practical
use of semantics formalisms. Recently the criticism of classical formalism
has arisen from the difficulty of using formal methods. The main problem to
use widely in practice the formal specifications of programming languages is
that specifications become too complex, too abstruse to manage them, often 1t
is impossible to express all needs, and in the end — who verifies and proves

- correctness of the specification?

Summarizing the best practices in compiler construction we can declare
that most of commercial compilers (interpreters or other tools that deal with
programs) are written without using any formalisms or only the first phases
(scanning and parsing) to exploit some formalisms [15].

Let us look at the language description again, try to divide it into smaller
parts and see, what we can obtain from that. Traditionally the first decision is
to separate syntax from semantics, and semantics consists of two parts: static
wantics and dynamic (run-time) semantics. But we should divide syntax
and semantics further, eliminate reusable components and provide a
mechanism to stick all things together.

Syntax components are more or less visible: basic elements (for instance,
terminals and nonterminals, if we parse program) connected with some
relations (for instance, edges in the parse tree or abstract syntax tree).

To divide semantics into pieces we offer to split it by semantic aspects.
Here are some examples of semantic aspects: program control flow

- :2gement (e.g. loops, conditional branching), execution of commands or
statements (e.g. basic operations, assigning), dealing with symbols (e.g.
variables, constants), environment management (e.g. scopes of visibility),
pretty printing of program, dynamic accounting of statistic, symbolic
execution, specific program instrumentation, etc.

We are interested in any formalism to deal with syntax, because we want
o make intermediate representation (IR) of program or structured
information. The situation is clear what refers to conventional programming

“1ages. But our goal is a workflow implementation, and we have to take
10 account other languages, for instance, diagrammatic visual languages

152

(e.g. Petri nets, E-R diagrams, Statecharts) and the state-of-art in this field
(e.g. [7]).

Our approach has borrowed some principles from attribute grammars, for
instance, the ways to link semantics with syntax [20], modular decomposition
and reuse of specification [12], distributed computing in real time (e.g.
Communicating Timed AG [16]).

We found out that many formalisms of semantics use abstract data types
(ADT). ADT is a collection of data type and value definitions and operations
on those definitions which behave as primitive data type. This software
design approach decomposes problem into components by identifying the
public interface and private implementation. A typical example is Stack,
Queue, Symbol table [1, 24].

Recently one of the simple and popular methods to build some simple tool
for a programming language has become parse and traverse principle [5] that
means to build intermediate representation (IR) of program or information,
traverse IR and make appropriate computations at each node. This method is
similar to the Visitor Pattern [9]. Other useful patterns are also developed
[14, 19]. Besides, there exist also nontraditional traversal strategies [e.g. 4].
Many solutions can be obtained from Component collaboration [e.g. 18].

We have taken into account our experience in building prototypes of
multi-language interpreter [2]. A Multi-Language Interpreter (MLI) is a
program which receives source language syntax, source language semantics
and a program written in the source language, and then it performs the
operations on the basis of the program and the relevant semantics.

3. Principles of Semantic Definition and
Implementation
3.1 Runtime Principles

Let us assume that we have fixed some formalism to describe the syntax
of our language (e.g. BNF). Now we can define the language syntax and
develop a language parser (e.g. by using Lex/Yacc). The parser creates
intermediate representation (IR) of program (e.g. Parse tree), and IR is based
on a desirable structure and contains any needed information about the syntax
(e.g. node type (nonterminal), name (name of nonterminal), value (terminal
value) etc.). .

To perform semantics at runtime we choose a principle of parse and.
traverse. The Traverser that realizes our chosen traversing strategy (e.g. left-
depth tree traversing) has to be created for our IR representation. The
computations that have to be done at each node visited by the Traverser are

<-nantics for Managing Systems in Distributed Environment 153

defined in Semantic Connectors (SC). They use predefined data structures
with operations to establish the cooperation between Legacy Systems (LS)

(Figure 1).

Figure 1. Runtime correspondence between syntax and semantics

Actually, most of work performing semantics is done via operations over
various Abstract Data Types (ADT). In such a way we hide most of
implementation details and concentrate mainly on logic of semantic aspect.
The consequence of this approach is that we can choose the best physical
implementation of ADT for the given task. For instance, Stack can be
implemented in a contiguous memory or in a linked memory. The instances

DT can be distributed objects in a heterogeneous computing network.

A concept of a semantic connector or simply connector is introduced to
connect the instances of ADT and LS in a desirable environment. Connector
Is a meta-program that introduces a concrete communication connection into
a set of components, i.e. it generates the adaptation and communication glue
code for a specific connection. This concept is adopted from similar problem:
how to connect pre-built components in a distributed and heterogeneous
environment [3].

3.2 Semantic Definition Principles

Similarly to patterns in [20] we choose a correspondence Nonterminal
with visiting aspect = Semantic connector to establish the relationship
between syntax and semantics. Nonterminal with visiting aspect means that
we distinguish computations performed at nonterminal node considering an

~ct of node visiting (e.g. PreVisit or PostVisit). Any connector can see

:nstance of ADT or LS of the semantic aspect it (connector) belongs to.

The main problem is to find a good way to define semantics and obtain

semantic connectors for the definition. After exploring various approaches

154

how semantics can be described and organized, we suppose that semantic
aspect is a good basic component for constructing whole semantics according
to our goals. The conceptual components of a semantics description and
relationships with other concepts are represented in Figure 2.

! I.ﬂtax Terminals
NT, et T A T

1 i

el] =1 |

—t

Figure 2. The conceptual schema of semantics.

Semantics can be observed from two different sides — a logical definition
view and a physical runtime view. From the logical viewpoint semantics
consists of Semantic Aspects (SA). The SA states what syntax elements
(terminals, nonterminals) are involved, and what actions have to be
performed traversing internal representation and visiting the corresponding
node to implement the semantic aspect. Let us define the concept Semantic
Action that denotes the action performed to implement SA while visiting a
corresponding node, and the concept Implementation of Semantic Action
(ISA) that denotes a meta program which implements the semantic action. In
our exampie SA, involves nonterminal NT, and termina! T,, and ISA, is
performed while previsiting NT, and ISA, — while visiting T).

The example of semantic aspect INDEFINITE LOOP is given in Figure 3.,
There are various nonterminals and terminals organized by some syntax
description. The arrows represent a traversal strategy. The small circles
represent the semantic actions, and the rectangles connected to the circles
contain the implementation of semantic action (meta program). A left circle
into nonterminal stands for PreVisit, and a right circle - for PostVisit. All
used abstract data types (ADT) are defined within semantic aspect. Another
example of semantic aspect 1s given in Figure 4.

Zemantics for Managing Systems in Distributed Environment 155

IMPORT GLOBAL RefStack, Sort, Flag of ADT_Stack,
Trav of ADT TreeTraverser, Env of ADT SymbolTable

Sort.pop ()
Flag.pop!)

Sort.push {INDEF)
Flag.push(TRUE)

€)indefinite_joop (O

-~ - -~

{Other aspects >

~ ”

R e e S

if Sort.top() = INDEF then ‘ RefStack.push (NULL)
LOCAL Ref = RefStack.pop()
if Env.getValue(Ref) = FALSE

Flag.replaceTop (FALSE) if Sort.top{) = INDEF and
Trav.goSiblForw (REND) Flag.top{) = TRUE
endif Trav.goSiblBackw (@WHILE)
endif endif

Figure 3. Semantic aspect INDEFINITE LOOP. It “goes through” series and back to WHILE
-+zil the comparison sets NULL reference or reference with value FALSE

IMPORT GLOBAL LOCAL Res = RefStack.pop(}

RefStack of ADT_Stack, LOCAL Var = RefStack.pop()

Env of ADT SymbolTable LOCAL Val = Env.getValue(Res)
Env.putValue(Var, Val)

i 1
(O assignment_statement G}"/
*

(© teft_hand_side)+ ASSIGN | (O right_hand_side @J

..........

RefStack.push(NULi?W [RefStack.push(NULL)'

Figure 4. Semantic aspect ASSIGNMENT. It takes reference to a variable and reference to a
value from the stack, and assigns the value to the variable. Pushing of references is simulated,
real references will be pushed by other aspects and simulating will be excluded

Let us look at the physical view. The semantic connector contains ali
corresponding semantic actions having to be executed while visiting syntax
element (IR node). For instance, visiting any node with the name T, we have
to execute the semantic connector SC, that contains the implementation of
the semantic action ISA,. Similarly, SC; is some composition of ISA, and

ISA,.

156

33 Obtaining Semantics from Semantic Aspects

From the logical point of view semantics is a composition of semantic
aspects with concrete linking to instances of abstract data types, legacy
systems and traverser that performs a traversal strategy over fixed
intermediate representation of program or structured information. We cannot
simply stick all SA together risking to get senseless semantics. A
composition of semantic aspects is operations over a set of implementations
of semantic actions with the aim to get one set of connectors that correspond
to the new mixed semantic aspect (Table 1).

Table 1. Fragment of semantics description for simple imperative language

compatible with ir_type ParseTree, traverser_type ParseTreeTraverser

syntax elements (program, expression, VARIABLE, ...)
semantic actions (<PROGRAM> program PreVisit {ENV.prepareProgEnv()},
<PROGRAM> program PostVisit {...}, ...)

global Trav of ADT_TreeTraverser, Env of ADT_SymbolTable
create DataStack, OperatorStack, CanCreateVar, LoopSortStack, LoopCounterStack.
LoopFlagStack, IfFlagStack of ADT_Stack, InputFile, OutputFile of ADT_FILE

compose aspect <COMPOSED SA> // composes semantic aspects from predefined aspects
(<PROGRAM>)
append (<ELEMENT>

replace RefStack with DataStack // replaces stack for collaborating work

rename INTEGER Visit with CONSTANT Visit) // renames according to PAM syntax
append (<ASSIGNMENT>

replace RefStack with DataStack

rename left_hand_side PostVisit with VARIABLE Visit,

right_hand_side PostVisit with expression PostVisit

ignore left_hand_size PostVisit) // ignore pushing of NULL reference
append (<INDEFINITE LOOP>

replace RefStack with DataStack,

Sort with LoopSoriStack, Flag with LoopFiagStack)

end compose aspect

... Il other aspect are defined and composed together

link for <COMPOSED SA> Trav to TreeTraverser, Env to SymbolTable
use aspect <COMPOSED SA> with traverser TreeTraverser

The obtaining of semantics for the fixed syntax is achieved in several
steps: 1) select predefined semantic aspects or define new ones for desired
semantics, 2) rename syntax elements and traversing aspect in the selected
semantic aspects with names from fixed syntax and traversing strategy, 3)
rename instances of abstract components to organize the collaboration

Semantics for Managing Systems in Distributed Environment 157

.-tween semantic aspects, 4) make composition from semantic aspects, 5)
specify the runtime environment and translate the meta-code to the code of
the target programming language, and 6) compile the semantics.

After obtaining meta-semantics (Table 1) meta-code is translated into the
target programming language, taking into account the target language (e.g.
C++), the implementation of abstract components (e.g. Stack), the operating
system (e.g. Unix), the communications between components (e.g. CORBA),
~ntime components type (e.g. DLL), etc. The translation may be done by
. ..nd or automatically (desirable in common cases).

By replacing ADT names we achieve an independent working for some
semantic aspects or collaboration between them through common instances
of ADT. Another way to get a new semantics is to combine semantic aspects
as whole black-box unit. Self-evident method is to execute several semantic
aspects sequentially, for instance, we perform static semantics first and
dynamic one after that. Instances of ADT can be shared and one semantic
aspect can use the results of others. More complex is a parallel execution of

:ny semantics where we need to organize synchronization via instances of

ADT.

4. Workflow Case Study

To demonstrate our approach we use a very simple workflow definition
language that syntax is described with BNF (Table 2). We have two types of
~cneric statements for describing tasks in a workflow — universal statements
and specific statements. '

Table 2. Fragment of BNF for simple workflow definition language

workflow -> series
series -> statement | series ; statement
siatement -> generic_stm | cond_stm A
cond_stm -> IF compar THEN series ELSE series Fl
mar -> expr relation expr
-> const | var
ceneric_stm -> universal_stm | specific_stm

universal_stm -> u_stm_type name

u_stm_type -> DCOM | CORBA | WEBSERVICE | MANUAL
specific_stm ->s_stm_type name

s_stm_type -> ASK | ANSW

The universal statements are used to collaborate with external
lications. The universal statement type describes the connection type:
DCOM, CORBA, WEBSERVICE means automatic processing, but

158

MANUAL means, that a human handles this operation. The specific
statement is used to communicate with a person — usually with a citizen who
uses the particular service. There are two types of specific statements. ASK
gets information from a person, ANSW sends some information to a person.
Lets us take a look at the following simple workflow:
WEBSERVICE Application_writing_and_submitting
ASK Communication
DCOM Application_data_control_and_update
IF Is_data_control_and_updating_successful = True THEN
DCOM Printing_of_passport
ANSW Positive_answer
MANUAL Passport_handing_out
ELSE
ANSW Negative_answer
F1
The purpose of this workflow is to issue a new passport for a person. The
workflow has the following activities - a citizen fills in an application form
and submits it to the official. It can be a paper form or a web based
application. The official or the application asks from the person the
communication type and address, and records data into workflow
environment. Then the official verifies the correctness of the citizen’s filled
in form with the data in the Population Register, and if all data are correct,
then the passport is issued and delivered to the citizen. Otherwise a negative
answer is sent to the citizen. An example of one semantic aspect of this

workflow 1s given in Figure 5.

IF OperatorStack.top{) = "Ask" {
IF OperandStack.top() = "Communication” {
Local PK, Name, Surname, CommType. CommInfo
GetCommInfo (PK, Name, Surname, CormType, CommInfo)
Dictionary.PutCommInfc (PK, Name, Surname, CommType, CommInfoj
OperandStack.pop())
// other cases
OperatorStack.pop{)
}

Y

(O sjeciﬁc_sim %)
e .

@ s_stm_type O)-—»-[O\ name
~

A

[operandStack.push{Trav.NodeValue ()}

|GLA§K | OperatorStack.push("Ask*")

Figure 5. Semantic aspect SPECIFIC STATEMENT ASK

Semantics for Managing Systems in Distributed Environment 159
5. Conclusions

We have presented ideas for establishing a framework to deal with
different collaboration problems between legacy systems. The problem is
reduced to describing the collaboration (e.g. workflow) by DSL and building
various tools (various semantics) for this DSL.

There are many application generators that automatically produce

»nventional compiler and interpreter, but we need not only those ones. It is
necessary to obtain various supporting tools that are based on the language
text processing. The existing formal semantics are not well accepted by
language or tool designers. We have made an attempt to search for a
compromise to minimize this gap. The latest related works in this field to
establish tool-oriented approach are mentioned in [10, 17, 23].

We have offered ideas how semantics can be decomposed into reusable
parts, and specific semantics can be composed from them, and how execution
.. organized. We delegate most of the actual work for semantics to pre-built
components (ADT). Our approach allows minimize semantics descriptions
for an easier management and provides good implementation in, possible
parallel, distributed and heterogeneous environment. Our approach is based
on the experience received by constructing prototypes of a multi-language
interpreter for conventional programming languages.

Due to practical needs, we lose some precision and benefits of classical
semantic formalisms. The next step is to finish the formalization of our
»proach and to compare it with other formalisms, especially with attribute
grammars. Other activities have to be the designing of useful collection of
abstract data types. |

References

[1] Aho, A.V., Sethi, R, and Ullman, J. D. Compilers: Principles, Technigues, and Tools.

Addison-Wesley, 19§6.

Amicane, V., Amicans, G., and Bicevskis, J. Multilanguage irterpreter. In H.-M. Haav

and B. Thalheim, editors, Proceedings of the Second International Baltic Workshop on

Databases and Information Systems (DB&IS ‘96), Volume 2: Technology Track, pages

173-174. Tampere University of Technology Press, 1996.

(3] ABmann, U., GenBler, T., and Biar, H. Meta-programming Grey-box Connectors.
Proceedings of the Technology of Object-Oriented Languages and Systems (TOOLS 33),
2000, pp. 300-311.

(4] Biswas, B. and Mall, R. Reverse Execution of Programs. ACM SIGPLAN Notices, April
1999, 34(4):61-69.

Clark, C. Build a Tree — Save a Parse. ACM SIGPLAN Notices, 34(4):19-24, April 1999.
i¢] Deursen, A., Klint, P. and Visser, J. Domain-Specific Languages: An Annotated
Bibliography. ACM SIGPLAN Notices, June 2000, 35(6):26-36.

160

[7]1 Ferrucci, F., Napolitano, F., Tortora, G., Tucci, M., and Vitiello, G. An Interpreter for
Diagrammatic Languages Based on SR Grammars. Proceedings of the 1997 IEEE
Symposium on Visual Languages (VL '97), 1997, pp. 292-299.

[8] Fischer, L. (ed) The Workflow Handbook 2001, Published in association with the
Workflow Management Coalition, 2000

[9] Gamma, E., Helm, R., Johnson, R., and Vlisides, J. Design Patterns: Elements of
Reusable Software. Addison-Wesley, 1995, pp. 331-334.

[10] Heering, J. and Klint, P. Semantics of Programming Languages: A Tool-Oriented
Approach. ACM SIGPLAN Notices, March 2000, 35(3):39-48

[11] Kamitis, E. E-Government: An Innovative Model of Governance in the Information
Society. Baltic IT&T Review, 1, 2001

[12] Kastens, U. and Wait, W. M. Modularity and reusability in attribute grammars. Acta
Informatica 31, 1994, pp. 601-627.

[13] Kinnersley, W. (ed), The Language List. 1995. http://wuarchive.wustl.edu/doc/misc/lang-
list.txt

[14] Kiihne, T. The Translator Pattern — External Functionality with Homomorphic Mappings.
Proceedings of the Tools-23: Technology of Object-Oriented Languages and Systems,
1997, pp. 48-59.

[15] Louden, K.C. Compilers and Interpreters. In Tucker [28], pp. 2120-2147.

[16] Matsuzaki, T. and Tokuda, T. CTAG Software Generator Model for Constructing
Network Applications. Proceedings of the Asia Pacific Software Engineering Conference,
1998, pp.120-127.

[17] Mernik, M., Leni&, M., Avditauevi¢, E., and Zumer, V. Compiler/Interpreter Generator
System LISA. Proceedings of the 33rd Hawaii International Conference on System
Sciences — 2000, 2000, pp. 10.

[18] Mezini, M. and Lieberherr, K. Adaptive Plug-and-Play Components for Evolutionary
Software Development. SIGPLAN Notices, 33(10):97-116, 1998. Proceedings of the
1998 ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages & Applications (OOPSLA ‘98).

[19] Ovlinger, J. and Wand, M. A Language for Specifying Recursive Traversals of Object
Structures. SIGPLAN Notices, 34(10):70-81, 1999. Proceedings of the 1999 ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages &
Applications (OOPSLA "99).

[20] Paakki, J. Attribute Grammar Paradigms — A High-Level Methodology in Language
Implementation. ACM Computing Surveys, June 1995, 27(2):196-255.

[2i] Pagan, G.P. Formal Specification of Programming Languages: A Panoramic Primer.
Preniice-Hall, 198!,

[22] Schmidt, D.A. Programming Language Semantics. In Tucker [28], pp. 2237-2254.

[23] Sloane, A.M. Generating Dynamic Program Analysis Tools. Proceedings of the Autralian
Software Endineering Conference (ASWEC’9), 1997, pp. 166-173.

[24] Slonneger, K., and Kurtz, B.L. Formal Syntax and semantics of Programming Languages:
A Laboratory Based Approach. Addison-Wesly, 1995.

[25] Special issue on domain-specific languages. IEEE Transactions on Software Engineering,
25(3), May/June 1999.

[26] Tucker, A.B. (ed) The computer science and engineering handbook. CRC Press. 1997.

[27] Workflow Standards and Associated Documents, ‘
http://www wfmc.org/standards/docs/Stds_diagram.pdf

[28] Workflow/BPR Tools Vendors http://www._waria.com/databases/wfvendors-A-L.htm

http://www.waria.comldatabaseslwfvendors-A-L.htm

Multilanguage interpreter

Vineta Arnicine, Guntis Arnicans, Janis Bi¢evskis
University of Latvia
Faculty of Physics and Mathematics
Rainis Blvd. 19, Riga LV-1459, Latvia
e-mail: varnican@lanet.lv, garnican(@lanet.lv
and
Riga Institute of Information Technology
Skanstes 13, LV-1013 Riga, Latvia

e-mail: bicevskis@swh.lv

Abstract

The concept of multilanguage interpreter that allows with a unified method to
solve popular problems of program complexity, analysis and automated testing is
offered. The traditional program syntax analysis tools such as LEX and combined with
specific sets of commands for semantics description are used. The source program’s
execution according to the given semantics is accomplished traversing parse tree and
executing instructions corresponding to node type in this semantics. The given method
is demonstrafed on a small example. The possibility to use multilanguage interpreter

for prototyping logically complicated systems is demonstrated.

Introduction

The idea of the multilanguage interpreter has risen from a plenty of problems
that require to analyze the given program text and do something with it. Let us look at

some of such problems.

Multilanguage interpreter 1

mailto:varnican@lanet.1v.garnican@lanet.1v
mailto:bicevskis@swh.lv

Program translation to another programming language. To deal with this
problem we use the appropriate translator or compiler [2].

Dynamic program execution. For this task we usually take interpreter. An
interpreter is a program (tool) that reads a program written in source language,
translates it into intermediate representation and immediately performs the operations
implied by the source program.

Program beautifying and clarifying. That means that program text is
transformed in a such way that user can easy catch its meaning. For instance, to
display the keywords, numbers, variables in different fonts, forms or color, or show
structure of the program, etc.

Determining program complexity. Frequently we need to determine program
complexity according to some criteria. This task requires the program analysis [3, 6].

Creation of cross-reference tables. It is hard to imagine the building of a
serious system without the various cross-reference tables. These tables can contain the
following information: functions called by a given function or either functions that
call a given functiori; variables used in a given function or either functions that use a
given variable, etc.

Static program testing. Some problems in static testing are searching for the
common semantics errors (syntax errors usually is caught by compilers), finding the
relations between variables [5, 6, 8].

Symbeolic testing. Instead conventional execution we can execute the chosen
program path symbolically (real variable values are substituted by symbols). This can
help to prove program correctness and is the essential step forward to program

verification [5, 6, 8].

Multilanguage interpreter 2

Automatic testing. Any interpreter for given programming language can be
modified to record user defined tests to the data base, later automatically replay tests
and compare results with correct results stored while test accumulation [1]. The other
approach is to create tree from program text and automatically generate the test cases
for some criteria (usually for C1) [7].

Program instrumentation with additional text. There are special code
insertion is made into original program text to force program do some additional
work, for instance, dynamically control arrays boundaries [5, 6, 7].

Dynamic testing supporting. Interpreters has advantage compare with
compiler that the first one easier can deal with many of problems witch arise during
the program execution [1, 8].

Any program is written in some source language (programming language).
Conventional compiler or interpreter is designed for only the one predefined
programming language. The realization of these tools are very similar based on
compiler construction theory. Differences between implementations mainly are stated
by the features of the programming language.

The main characteristics that describe programming language are syntax,
semantics and pragmatic. “Roughly speaking, syntax deals with questions of
superficial form of a language, semantics with its underlying meaning, and pragmatic
with its practical use”. [3] In our case only the first two characteristics are meaningful
because they dictate the behavior of the tool. In most of the implementations of
interpreters and compilers both of these parts depend on each other and it is very hard
to change anything in one of them without changing the other.

Our goal is to reduce efforts in creating such tools that do something with the

text in source language. Especially it may be useful for researchers - quickly to build

Multilanguage interpreter 3

prototype or simulator for a new tool. We try to create a tool that acts like the
mentioned tools and call it the multilanguage interpreter (MLI). If we reduce the
problem by fixing one syntax and use it with various semantics then we could call it as
multisemantic interpreter (MSI). From our point of view there is not essential
difference between MLI and MSI in this paper.

The multilanguage interpreter is a program that receives the source language
syntax, the source language semantics and the program written in source language and

performs the operations implied by this program and given semantics.

Multilanguage

intrpree

This interpreter can interpret programs written in many source languages. To

Figure 1

our understanding, language is a pair <syn,sem> where syn is some syntax and sem is
some semantics. Both are defined in a formal way specially for MLL. Some pair
<syn,sem> may be senseless for a user but interpreter tries to execute the program
with this syntax and semantics.

As the most useful technique for describing the language in MLI we have
chosen attribute grammars. The syntax we describe by using of BNF (Backus-Naur
Form), but semantics - with rules connected with terminals and nonterminals of
grammar. The execution of the program is traversing through parse tree according to
semantics rules and performing of rules connected with each node of tree.

The description of language is broken into two parts: syntax and semantics.

The syntax of a language is the set of rules that determine which constructs are

Multilanguage interpreter 4

correctly formed in program and which are not. The semantics of a language is the
description of the way a syntactically correct program is interpreted.

We use attribute grammars as basic concept in MLI. As metalanguage for
expressing grammars we will use BNF. The syntactic structure of a given source
program as generated by the grammar, can be depicted as a parse tree. Most
programming languages cannot be completely specified by a context-free grammar. So
we will specify in syntax part of MLI only the context-free portion of a language
syntax.

Syntax part of MLI have to support functions for navigation through the parse
tree (such as - getOldestChild, getNextChild, getParent) and functions for gathering
the information about each node (terminal or nonterminal, name of it, if terminal -
token of it).

Conceptually we parse the input token stream, build the parse tree, and then
traverse the tree as needed to evaluate the semantics rules at the parse tree nodes.
Once an explicit parse tree is available, we are free to visit the children of each node
in any order.

‘Semantics part’ of attribute grammar used by multilanguage interpreter is not
pure attribute grammar. It is modified for practical considerations but the basic ideas
follow the attribute grammar theory. We cannot take the attribute grammar without
modifications because it is oriented to building of compilers, not to building process
of interpreters. From various approaches of language semantics describing in MLI is
preferable to use the operational approach. This approach allows to describe the
semantics in terms of such devices as abstract machine with discrete states and more-
or-less explicit sequences of the computational operations. The most known

representative of this approach is VDL (Vienna Definition Language). According the

Multilanguage interpreter 5

VDL the abstract machine interprets a program by passing through a sequence of
discrete states. The allowable state transitions are defined by a set of instruction
definitions writteﬁ in a special notation.

From VDL we have taken the idea of abstract machine that is represented by
special data structures and set of operations with them. Abstract machine operations
can be used as part of metalanguage that describes semantics. Each semantics
instructions can change the state of abstract machine. The VDL forces us to put into
attribute grammar high level functions and complicated data structures fhat allow to
easier understand “semantics rules”.

In practice the semantics for MLI is the set of programs written in some
metalanguage and some real programming language. These programs are written in
such a way that they can be executed on computer. The evaluation rule is not
associated with some grammar production rule but it is connected with the terminal or
nonterminal of BNF. Each attribute is not directly associated with each distinct
symbol of BNF but global stack is used to manage the values of attribute at the
execution time (it is the common approach to realize attribute grammar in practical
tools). The special support tool is designed for multilanguage interpreter to write
semantics more quickly and compactly - the system for memory object managing.

An essential function of a compiler is recording of identifiers used in the
source program and collecting of information about various attributes of each
identifier. The attribute may contain the information about the storage allocated for
the identifier, its type, its scope, number and types of procedure arguments, etc. The
special data structure - symbol table - is used for that purpose [2]. There is a similar
data structure created for MLI, too. This data structure not only can store the

information but also its functions can be used as part of metalanguage in defining of

Multilanguage interpreter 6

the semantics rules. We have called it as Memory Object Management System
(MOMS). We suppose that MOMS is one of the essential parts of the MLI that allows
to make the description of semantics more quickly and understandably.

MOMS operates with some basic memory objects such as name of object,
reference (handle to memory object), value (handle to byte stream that contains a
value of an object), constructor (handle to object type description). Constructor may
be primitive constructor or combination of primitive constructors. By using of
constructors we can describe the structure and features of any memory object, for
instance, type of variable, function arguments, procedure, etc.

MOMS also operates with more complex memory objects such as dictionaries,
tables, memory blocks, stacks, collections.

MOMS functions we use for describing the semantics of the subject language.
These functions provide definition of the features of program running environment,
description of the source language basic data types, description of the source language
basic operations (+, -, *, /, <, >, min(), max(), substr(), etc.), definition of scope for
memory objects, sets of functions that allow to create easier user defined data type,
various operations with variables, constants, functions for realizing the source
language procedures and functions, and other useful functions.

MOMS is designed specially for MLI, but it can be used by other tools too.

As it was mentioned above, for interpreting the source program we need the
description of syntax and semantics of object language.

We describe syntax by BNF. According this description we to generate the
code for lexical and syntactic analysis of source program with goal to built the parse
tree of source program. This code includes the functions for navigation through tree,

too.

Multilanguage interpreter 7

We describe semantics by using our own metalanguage. Our metalanguage is
C like language which includes parse tree navigation functions and specific functions
for memorizing any memory object in MLI. From this description we can generate
code in C++ which can interpret the source program according to this semantics.

For practical considerations we decide that sometimes attribute of some
grammar symbol can serve as inherited or synthesized attribute. The role of attribute
depends on direction we arrive into the node. For this reason we divide semantics rule
for nonterminal symbol into two functions: Pre function that is executed if we visit
node from parent or sibling node and Post_function if we visit node from child. In all
Pre_functions attributes are inherited but in Post_functions - synthesized. For terminal
symbols we write only one function.

So at the beginning of its work MLI makes parse tree of source program, takes

the root of it and interprets the program by carrying out semantics rules.

Example

As example we will use a statement in simple poor language PAM [3]. There
is only one data type - int (integer) - in this language, there are all arithmetic
operations with integers (except unary minus), input, output operators, conditional and
loop statements in PAM. There is semantics difference - in the language there are no
declarations of the variables. Variable is declared when the value is assigned to it first.

Let us look at a small example how we can interpret the ordinary command in
various programming languages - assignment statement. It looks in the following way:

z:=y+1.

Useful statements of BNF for this statement are:

Multilanguage interpreter 8

<assignment_statement> ::= K VARIABLE K_ASSIGN <expression>
<expression> ::= <term> | <expression> K. WEAK_OPERATOR <term>
<term> ::= <element> | <term> K_STRONG_OPERATOR <element>
<element> ::= K _CONSTANT | K VARIABLE |

K_LEFT BRACKET <expression> K_RIGHT BRACKET .

Figure 2

In this grammar the names that consist of upper case letters are terminals (the
actual terminal symbols are substituted by words starting with ‘K_"). The parse tree of
example statement is seen in Figure 3. The visiting order of tree nodes is shown by

arrows and numbers at them.

assignment_statement
1 16

K_VARIABLE [—>IK_ASSIGN 5

15

K_WEAK_OPERATOR

V|
8
7

Figure 3

Executing of this statement starts by visiting the node of nonterminal
‘assignment_statement’. At first the function ‘assignment_statement PRE’ (Figure 4)
is called. The function ‘assignment_statement POST’ is called after all the subtree of
this node will be visited (arrow 16). We used some attributes in the description of
semantics of PAM -flagDontCreateVars (because in subtree function K_VARIABLE
should know whether it can create this variable or not), bperatorStack (for storing of
operations) and DataStack (for storing of references. to variable definitions and

values).

Iint assignment_statement_PRE() { flagDontCreateVars = FALSE; return 1;}
Figure 4

Multilanguage interpreter 9

As next the function ‘K_VARIABLE’ is called. It takes the name of variable
from parse tree node and creates variable in MOMS with this name because the
flagDontCreateVars is FALSE (was assigned in function
‘assignment_statement_PRE’). Then the function takes the reference to variable from

MOMS and pushes it in DataStack.

int K VARIABLE() {
char* varName = valueFromTree();
if (flagDontCreateVars)
if(! MOMS .findVariable(variableName)) {
MessageBox(0,”Noninitialized variable”, varName,MB_OK);
return 0;}
else
MOMS.createVariable(variableName,”int_");
Ref variableRef = MOMS.getRef{variableName);
push(DataStack,Ref,variableRef); return 1;}

Figure 5

The next called function ‘K_ASSIGN’ does nothing (it is empty).

|int K_ASSIGN() {return 1; } |
Figure 6

Function ‘expression PRE’ pushes the label NOP into the OperatorStack. It

will be useful in function ‘expression POST’ as indicator of the last operation in this

expression.

int expression PRE()
push(OperatorStack, char*, NOP); return 1;}

Figure 7

Function ‘term_PRE’ pushes into the OperatorStack the NOP.

| int term_PRE() push(OperationStack, char* NOP); return 1;}
Figure 8

The function ‘element PRE’ changes flagDontCreateVars value to TRUE. It
means that the variables existing in subtree (in the right part of assignment statement)

have to be created and initialized before.

| int element_PRE() flagDontCreateVars = TRUE; return 1;}

Figure 9

Multilanguage interpreter 10

The function ‘K_VARIABLE’ works like it was in the previous call. The
single exception is that instead of the creating of the variable the function searches for
it in MOMS. If it is not in MOMS the error message will be given.

The function ‘element POST’ changesflagDontCreateVars value to FALSE.

| int element POST() flagDontCreateVars = FALSE; return 1;}
Figure 10

Function ‘term_POST’ pops operations from OperatorStack and calls for the

execution for each operation. In our case the first operation is NOP.

int term_POST()
char* operat; pop(OperatorStack, char*, operat);
while(strcmp(operat, NOP)!=0) {
if (executeOperator(operat,2)==0) return 0;
delete operat;
pop(OperationStack,char*,operat); }return 1;}

Figure 11
The function ‘K. WEAK_OPERATOR’ takes the operation symbol (‘+’ in our

case) from parse tree node and pushes it into the OperatorStack.

int K WEAK_OPERATOR(){
char* value=valueFromTree();
push(OperatorStack, char*, value); return 1;}

Figure 12

Then the functions ‘term_PRE’ and ‘element PRE’ are carried out. After that
the function ‘K_CONSTANT" is called. It takes the constant from tree, creates unique
name for it, stores it as atomic value in MOMS, get its reference from MOMS and

pushes the reference in DataStack.

int K KONSTANT({
char* text = valueFromTree();
int value; atoi(text, value, 10);
char* litName = new charfstrlen(* int_”)+ strlen(text)+1];
strepy(litName,” int); strcat(litName, text);
if (MOMS _createLiteral(litName,”int_"))
MOMS .putValue(MOMS.getRef(litName),(char*)& value));
Ref litRef = MOMS .getRef{litName);
push(DataStack, Ref, litRef); return 1;}

Figure 13

Multilanguage interpreter 11

Then the functions ‘term POST’ and ‘element POST’ are carried out. After
that the function ‘expression POST’ is called. It is the same as ‘term_POST’. At this
moment the operator in OperatorStack is ‘+’ and the function ‘executeOperator® is
called.

The function ‘executeOperator’ was created during the describing the
semantics as supplement function for clarifying the description. It takes the ‘argNum’
references from DataStack and calls the corresponding function. In our case it is the
function ‘PLUS’ which is carrying out the adding, creates reference of ;the result and

stores it in DataStack.

#define callbasefn(fnsign, fnname) \
if (stremp(funcName, fnsign) = 0) \
return faname(intArg),

int executeOperator(const char* funcName, const Uint argNum) {
RefrefArg[2]; int intArg[2];
for (Uint i=0;i<argNum;i++) {
pop(DataStack, Ref, refArg{i]);
intArg{argNum-i-1]=*(int_*)MOMS.getValue(refArg[i]);}
callbasefnn (“+”, PLUS), :
callbasefn (“-*, MINUS) ; callbasefn (“*”, MULTIPLY);
callbasefn (“/°, DIVIDE); callbasefn (“>”, G);
callbasefn (“<”, L), callbasefn (“>=", GE);
callbasefn (“<=",LE); callbasefn (“=", EQ);
callbasefn (“<>”, NE),
MessageBox(NULL,”Nondefined base function”,”executeOperator”,MB_OK);
return 0; }

int PLUS(const int_ *intArg) { //intArg - array of parameters
int_ rezult=intArg[0] + intArg[1];
Ref rezultRef=MOMS.createRef(“int_");
mm.putValue(rezultRef,(char*)(&rezult));
push(DataStack, Ref, rezultRef); return 1; }

Figure 14

At last the function ‘assignment_statement POST" is called. It takes references
to expression result and variable from DataStack, and assigns the result to variable. It

turns the value offlagDontCreateVars to TRUE, too.

Multilanguage interpreter 12

int assignment statement POST {
Ref rezRef, varRef;
pop(DataStack, Ref, rezRef);
char* value = MOMS. getValue(rezRef);
pop(DataStack, Ref, varRef);
MOMS.putValue(varRef, value);
flagDontCreateVars = TRUE; return 1;}

Figure 15

It can seem too hard and complex for such simple statement but even if the
expression on the right side of statement would be very complex, it can be executed

by the very same set of functions.

Practical results

Some practical results are achieved. Some various modifications of PAM
language syntax is created. We use some tools created by our colleagues. One tool
allows us to transfer BNF into some internal representation. This internal
representation can be translated to program text that serves as input for LEX and
YACC. These tools are available on many computer platforms and are very popular.
The result of LEX and YACC linked together with special library that allows to
navigate through parse tree we consider as syntax of given language. If the BNF is
already given then creating syntax for MLI takes some hours.

The first version of Memory Object Management System and a simple MLI
kernel is created. A special tool from BNF internal representation can create templates
for semantics instructions. Different semantics are created for PAM. As examples we
have created conventional semantics as well as special semantics that perform

symbolic execution along the chosen program path.

References

1. Boris Beizer Black-Box Testing Techniques for Functional Testing of Software and

Systems, John Wiley & Sons, Inc, USA, 1995, 294 p.

Multilanguage interpreter 13

2. Aho A., Sethi R., Ullman J.D. Compilers. Principles, Techniques, and Tools
_ADDISION-WESLEY PUBLISHING COMPANY, USA, 1988. _795 p.

3. Pagan F.G. Formal specification of programming languages New Jersey,
PRENTICE-HALL, 1981. 241 p.

4, Herbert L. Dershem, Michael J.Jipping Programming Languages: Structures and
Models, Wadsworth Publishing Company, USA, 1990, 413 p.

5. Software Testing Voll, Analysis and Bibliography, Berkshire, England, 1979.
305 p. |

6. Software Testing Vol2, Invited papers, Berkshire, England, 1979. 371 p.

7. Conference Proceedings Eighth International Software Quality Week 1995,
_Software Research Institute, USA, 1995.

8. J.Bicevskis, J.Borzovs, U.Straujums, A.Zarins, and E.F.Miller. SMOTL- a system
to construct samples for data processing program debugging. IEEE Transactions

on Software Engineering, SE-5, No. 1,1979, pp. 60-66.

Multilanguage interpreter 14

BALTIG IT
REVIEW

Journal for the Information Society

NERVE

BMTI[: STATES EIWEHI\IMENT
DATA COMMUNICATIONS

NETWORY 200

DiSCUSSION OF THE EVOLUTIGN TOWARD
NEXFGENERATION NETWORKS

INTERNET LEARNING . -4 :
IN THE BALTIC STATES ggr o

ISSN L407-291¢

HW i

771407129100

'www.dineLlv

| ADVANCED PROJECTS

Development of a
Communications Server:

First Results and
Conclusions

Guntis Arnicans, Girts Karnitis, Prof. Janis BiCevskis, Faculty of Physics and
Mathematics, University of Latvia

The authors describe a program to develop a communications server, which is a
set of software and hardware that allows a wide range of users in Latvia and in
other countries to receive information from a variety of sources (government reg-
isters, databases, information systems) through a single contact point. A com-
munications server identifies users, authorizes the use of the respective data, ful-
fills requests which involve several information sources, and assesses the costs
of the process so that the appropriate financial transaction can be made. A com-
munications server also allows users to find out where information is being
stored and what kind of information it is. Users can also request and receive in-
formation from various registers without having to have any in-depth knowl-

edge about the technical aspects of its storage.

INTRODUCTION

The need for a communications
server became evident when the gov-
ernments of the Baltic States were
establishing their joint data trans-
mission network [6]. One of the main
tasks in this process is to obtain in-
formation about objects such as en-
terprises, persons, motor vehicles,

etc., without having to study the .

database structures in any one, spe-
cific country. The concept for the com-
munications server [1] was defined a
year ago, and the project to set up the
server in Latvia was begun.

Data retrieval from different, au-
tonomous sources has been an impor-

| tant issue not only in Latvia, but also

in other countries and even in large
enterprises in recent years. The
problem is a very complicated one,

~ and solutions may require years of

time and many highly qualified spe-
cialists [2, 3, 4]. The process of devel-
oping a communications server in
Latvia has been a step-by-step one.
Latvia has several dozen registers
and information sources — some pub-
lic, cthers with restricted access. It
would have been too complex to de-

Enterprise Register Information £
Land Register (Cadastre Registe
Register of Motor vehicles I
Register of Residents
Register of Taxpayers

Search information

Inexact registration certificate No. 2
Inexact registration No. |
Inexact chassis No.

'|Vehicle owner PI NO
Year of production
First colour

i |Second colour

7 [Mark
| |Model

7 |Registration certificate No.

Registration No.

Chassis No.

L |

Figure 1. Registers and data objects

29

Repository

Universal
Browser

Figure 2. Conceptual structure of the communications server.

velop the system all at once, and
there would have been various orga-
nizational and technical problems.
The design and implementation of all
of the functions of the communica-
tions server takes a long time.

THE CORE OF THE
COMMUNICATIONS SERVER

The main functions of a communi-
cations server are:

1) User identification;

2) Authorization to use the infor-
mation;

3) Management of user rights;

4) Fulfillment of requests which
involve several information sources;

5) Evaluation of the costs of each
request for billing purposes.

The implementation of the first
three functions is more or less un-
complicated, but there have been con-
siderable problems in implementing
the latter two. Technologies to search
for and extract data from various da-
ta sources were developed during the
design phase, and they are based on
Web technologies and Meta models of
data sources [5).

Several principles and require-
ments were determined for the first
version of the communications server:

* It must be possible to define a
new source in a couple of days;

= It must be possible to access any
type of data source;

* It must be possible to create

primitive services (wrappers) to
search and obtain the needed data
from the source quickly and easily;
* It must be possible to tie togeth-
er related data from various data
sources;
* It must be easy to maintain the

entire system (make changes, add
new possibilities, etc.);

» The program code must be sim-
ple and short so as to reduce the pos-

| sibility of mistakes;

« Initially data must be retrieved
only from the WWW (from the end-
user’s point of view).

THE REGISTER OF REGISTERS

The register of registers is an in-
formation system which contains in-
formation from other information
systems that are maintained in
Latvia. It contains a great deal of
useful information — IS name, con-
tent, owner, data model, relations
with data objects in other informa-
tion systems and in the database of
the register of registers, etc.

The first version of the communi-

| cations server makes extensive use of |

information from the register of reg-
isters. Information searches, for ex-
ample, start with a high-level repre-
sentation of data sources and objects
stored within them (Figure 1).

Here we can see which data
sources are available, which data ob-

: Communicatio i
server §
; Mediator I
! 5 | :
: [wi ‘ w2 ‘ | wa ;
. . - ;
= ===
R2 ‘ R3]

Figure 3. A universal browser.

Baltic IT Review #17

ADVANCED PROJECTS

Universal
Browser

! Repaository
|
R1
— I

Figure 2. Conceptual structure of the communications server.

velop the system all at once, and
there would have been various orga-

! primitive services (wrappers) to
. search and obtain the needed data
from the source quickly and easily;

nizational and technical problems. |

The design and implementation of all

of the functions of the communica- .

tions server takes a long time.

THE CORE OF THE
COMMUNICATIONS SERVER

The main functions of a communi-
cations server are:

1) User identification;

2) Authorization to use the infor- |

mation;
3) Management of user rights;

4) Fulfillment of requests which |

involve several information sources;

5) Evaluation of the costs of each

request for billing purposes.

The implementation of the first
three functions is more or less un-
complicated, but there have been con-
siderable problems in implementing
the latter two. Technologies to search
for and extract data from various da-
ta sources were developed during the
design phase, and they are based on
Web technologies and Meta models of
data sources [5].

Several principles and require-
ments were determined for the first
version of the communications server:

« It must be possible to define a .

new source in a couple of days;

= It must be possible to access any
type of data source; '

* It must be possible to create

k)

* It must be possible to tie togeth-
er related data from various data
sources;

* It must be easy to maintain the

entire system (make changes, add
new possibilities, elc.);

* The program code must be sim-
ple and short so as to reduce the pos-
sibility of mistakes;

* Initially data must be retrieved
only from the WWW (from the end-
user’s point of view).

THE REGISTER OF REGISTERS

The register of registers is an in-
formation system which contains in-
formation from other information
systems that are maintained in
Latvia. It contains a great deal of
useful information — IS name, con-

! tent, owner, data model, relations

. with data objects in other informa-
" tion systems and in the database of
~ the register of registers, etc.

The first version of the communi-
cations server makes extensive use of
information from the register of reg-
isters. Information searches, for ex-
ample, start. with a high-level repre-
sentation of data sources and objects
stored within them (Figure 1).

Here we can see which data
sources are available, which data ob-

| Communications,__
] server

Mediator

i Wi [w2 W3 i
§ . L [' .l_ i
- s =
_—— —
R2 R3

Figure 3. A universal browser.

Baltic IT Review #17

jools are available from those sources,
1. 1 which attribules can be used to
describe each data object. Then we
can start browsing from any data
source or data object.

BASIC ADDITIONAL
REQUIREMENTS FOR
COMMUNICATIONS SERVERS

I'here are various other aspects
. il requirements Lo be taken into ac-
count in creating the first version of a
communications server:

- Some data are very sensitive (on-
ly for authorized and restricted use);

» Some data are available for
money.

For these reasons, we have main-
{zined close attention over security,
lesging in all activities and account-
ing for all information that is re-
ceived, the point being to enable us to
settle accounts between information
providers and consumers.

Our security system is designed to
fulfil the requirements of the law,
government regulations and informa-
1inn providers. With respect to each
user, we currently define the data ob-
jects (registers, information from reg-
isters, etc.) are available, what opera-
tions (searching, retrieving) can be
dene, and what WWW page tem-
plates (data retrieval, combining of
data from various registers, presenta-
tion of data) are available.

All user activities are logged in to
special journals. The system saves
information about the activity, the
user who engaged in the activity, and
also the related request. 1t is possible
to track the entire history of any data
object — who asked what, and what
data objects and attributes were dis-
piayed.

We can calculate the costs for in-
formation consumers in those cases
wheve the cost of information is de-
fined Because we log in any request
11 some detail, we can calculate the
costs of any user or provider.,

TECHNICAL SOLUTIONS

The main task for a communica-
l:uns server is to retrieve information
from data sources. A rough view of
the implementation principles is
shown in Figure 2. The user asks the
mediator for information. Th media-

Baltic IT Review #17

Enter search criteria for data object
Owner of vehicle -

Enter search
criteria of group and

click button
“Search” of
appropriate group.

Person i
Groups are splitted

N m i i

’—W)‘.No':l) " : visually with

S horizontal lines and
color

Figure 4. Search criteria input window.

tor translates the request into a set of
small, internal requests to data
sources through wrappers. When the
wrapper returns the data, the media-
tor establishes the information pre-
sentation and sends the WWW page
to the user.

_ In order to retrieve information
from a data source, we must create .
special small programs known as da-
ta wrappers. This approach has the
following advantages:

* It allows us to access the data
source via different protocols and
methods - ODBC, OLE DB,
SOL*NET, DCOM, etc.;

* Data sources are usually suited

| to specific business tasks, and their

primary function is not to provide ac-
cess to data as requested from anoth-
er system (communications server);

" access is limited, and only stored pro-
~ cedures can be used to query data; the

wrapper allows us to execute only au-
thorized functions;

* Querying the data source via
functions allows us to transfer real
data from the data source’s physical
data model to our logical data model
(stored in the meta database) easily
and in a form that is more easily un-

: derstood by the user;

* If the data source changes, we
need only to adjust the relevant wrap-
pers.

A special browser has been de-

Owner of vehicle

[01016101010 KALNS VIKTORS
[02025512345 KAINCIEMS JURIS

Related information

J er D? o FM_M] Qf - F egist_ero.f 1 |
Eeh cle jvehicle utor vehicles |
é egister of
s vehicles IVcIm:]e homr velicles |
IRegisur of |
|ﬂns childeren iChlhi‘m Residents .
. —— e B _
gister of
BS €nts [Parenls csidents
|'lnfannaiion finformation egister of |
jabout person [aboul person esidents
egister of gt
m (Passport l:e sidents [

ViewT)-pc:mE
Owner of vehicle

Person Code 01016101010 |

|

|

[Surname [KALNS

[Name VIKTORS

[i SexM -

[PasportfLA1209872

p*m,m Issue Date [12/05/1999

i Regjon IR!GA B
Place WE)MTMLKSI; |

[Sueet 1VELD‘I.ES

|- House Nuuber |11

| Corpus -

| Flut Number |i'.8-

Vehlcle

[CP940 19%0

Figure 5. Information about car owners.

K] |

ADVANCED PROJECTS

signed for communications with a
user via the Internet, and it is based
on a meta model of data sources. This
browser retrieves information that is
stored in a meta model and generates
WWW pages lo communicate with the
user. We can think of the browser as
a driver and a repository (Figure 3).

The repository is a database which
stores information about data
sources, data objects in sources and
relationships among them. It has
functions which allow us to query a
source, to screen templates (the
WWW page structure) and to obtain
other useful information.

The driver is a special program -

which generates WWW pages to
handle queries at the higher level and
to display information. The driver
can analyze relations between data
sources and merge all relevant infor-
mation.

DATA SEARCHING AND
BROWSING SCENARIOS

Let us look at a brief example of
the way in which the communications
server works from the end-user’s
point of view. The first step is to se-
lect the register and data object from
which the information will be queried

“(Figure 1). The system asks for
search criteria for the chosen object
(Figure 4).

The user fills in the search crite-
ria and pushes the “Search” button.
The system searches the appropriate
register for the necessary informa-
tion, and the results are displayed
(Figure 5).

From this screen the user can eas-
ily obtain related information from
other registers, too. If, for example,
the user wants information about a
person from the Population Register,
he needs only to click on the appro-
priate link, and the relevant informa-
tion will be displayed (Figure 6).

CONCLUSIONS AND FURTHER
MOVEMENT

The prototype of the communica-
tions server was created in mid-1999
{7]. Four registers (with test data)
were connected for testing purposes.
Two of them have Oracle as the
DBMS, while two others use the
Microsoft SQL Server. The prototype

32

Information about person

01016101010 KALNS VIKTORS |

Related information

[ans_ve icles ’Vehil:lc
|

I

| Neme[VIKTORS |
Owner of Owner of * [Register of | SI-I_I'PH'I'IE |KALNS |
vehicle vehicle otor vehicles [Sex Ii\,[I

| |

~ [Register of
otor vehicles

e L egister of
Has childeren |Children Ees:idenls
- o I) S egisier Df’
Has parents Parents Esidems
[information ormation egister of
about person about person esidents
’ egister of
Has passport Passport Eesidtnts

View Type: [Expanded =]
Information abont person

Person Code[01016101010

Birth Date[1961.01.01
[Birth Country LATVIIA

Children

[02028811223 KALNA ILZE
[27058511331 KALNS ROBERTS

Passport

[Pasport Number[LA1209872

[Issme Date [1999.05.12
'[Date of Expiration[2009.05.11

FParents

Figure 6. Information about the person.

has demonstrated the effectiveness of -

the designed approach. The proto-
type of the system was much more
powerful than we expected, and it can
be used as the real system. At pre-
sent, additional improvements have
been made, and the first version of
the real system has been developed.
It is already in use.

Further work will lead to the de- .

velopment of a queries processor
which can take an SQL-like query as

input and return the result, as :

queried from multiple data sources,
as the output.

Another area of work in which he
have made advances is making the
communications server available not
only from WWW browsers, but also
from custom software which uses
XML to query data and return an-
swers.

REFERENCES

1. Arnicans, G., J. Bicevskis and
G. Karnitis. “The Concept of Setting
Up a Communications Server”, in
Abstracts of Papers from the 3rd
International Conference “Informa-
tion Technologies and Telecommuni-
cations in the Baltic States”, 1999, pp.
48-57.

2. Tomasic, A., R. Amoroux, et. al.
“The Distributed Information Search
Component (Disco) and the World
Wide Web”, in Proceedings of the
ACM SIGMOD International
Conference on Management of Data,
Tucson, Arizona, 1997, prototype
demonstration.

3. Haas, L., R.J. Miller, et al.
“Transforming Heterogeneous Data
with Database Middleware: Beyond
Integration”, Data FEngineering
Bulletin, 1999,

4. Hammer, J., H. Garcia-Molina,
et. al. “Information, Translation,
Mediation and Mosaic-Based
Browsing in the TSIMMIS System”,
in Proceedings of the ACM SIGMOD
International Conference on
Managementi of Data, 1995, project
demonstration.

5. Arnicans, G. “Application Gene-
ration for the Simple Database
Browser Based on the ER Diagram”,
in Proceedings of the Third
International Baltic Workshop, 1998,
pp- 198-209.

6. “The Baltic States Government
Data Transmission Network:
Conceptual and Methodological
Considerations”, Riga, 1998, 11 pp.

Baltic IT Review #17

http://httpJ/www.mega.lv.

G. Amicans, J. Bicevskis, G. Kamitis, E. Karnitis

The Mega-system:
integration of National information systems

Conceptual and Methodological Baselines of the Megasystem

Because a drastic improvement of quality and full interoperability of all National
Information Systems are vital for the development of the country, all set of systems is
being developed as a logically unified and technologically distributed information
processing Mega-system with a common data field as well as unified user’s interface,
access principles and authorisation procedures.

All end-systems, irrespective of their ownership (various information systems, their
remote data entry and access points, end-users of information) will all be
interconnected through a high speed data communications network (see Fig. 1). The
unified Mega-system will be spread to all regional and rural administrative centers
and to number of cities, border checkpoints, ports, etc. Local authorities will be
connected to the Mega-system in order to conduct direct data entry into all
components of the Mega-system and to use information from all systems for local
needs. Special terminals and access points (information kiosks) are envisaged for
public access to information that is specified for general use.

D0000-00000 &=

eniry paints

! 4
L |
v L 4 v
Dial-up Common Use
‘Poal Access point
Government
Data
Communications
oiesl] Nerwork
National
Informarion
Systems

Figure 1 The Megasystem

This means that it will be possible to move basic data entry and utilization procedures
to places where the information has been originated or exploited as well as to provide
direct access to information for everyone who has the proper authorisation (see Fig.2).
It will avoid duplication of records and coincidence of records in documents and
databases as well will provide united and user-friendly access to information. In
addition to various information systems the Mega-system will include register of
registers for collection and distribution of information on all components of the Mega-
system as well as the communication server -- common central access point to

information resources of the Mega-system. Conceptual and methodological
propositions of the Mega-system and corresponding action plan has been accepted by
special direction of the Cabinet of Ministers.

In order to realize all plans and to achieve the aforementioned goals on both state and
municipal levels information systems for local authorities will be elaborated and
implemented on qualitative new advanced level and connected to the Megasystem as
soon as possible:
e to conduct direct data entry into all National Information Systems;
e to use information collected in all components of the megasystem for satisfaction
of local needs;
to provide electronic document exchange throughout the country;
to envisage general access to public information and electromc contacts of
population with State and local authorities.

Creation of the Mega-system is not only technological decision, in fact it means
solving of number of various informative, legal, organisational, financial and
qualification problems first of all. It was necessary among other issues:

to analyse existing data flows, to formulate the functions of the Mega-
system and to distribute them among information systems, to formulate
demands on systems and their data structure;

to define the subjects of various information systems and the amount of
stored information, as well as the institutions that are responsible for the
collection, processing and distribution of data;

to formulate the tasks and subjects of information systems for local
authorities and to elaborate several intercompatible informative models for
implementation by local authorities;

to define a unified user interface, access principles and authorisation
procedures;

to ensure data quality and security as well as interoperability with EU
information systems;

to elaborate a methodology for data verification;

to determine the principles of electronic archives.

—— |
& [T POPULATION
B & - REGISTER

=

State Revenue Service
L Road Traffic Secure Dep.
Driver's
liceanca
| ok XXX department
licence

Figure 2 The Mega-system: data flows

With this conception emphasised was necessity for the country to put in order during
the first stage of the Mega-system’s project its main subjects registration which
should go ahead of other systems elaboration: private persons (population), legal
persons (enterprises, establishments, organisations), real estate (land, buildings,
owners) and movable property (transport vehicles, owners), as well as state finances
(taxes). In compliance with these principles five relatively primary NIS were
proposed for the first stage as to-be-integrated systems:
e Population Register;

o Enterprise Register ;

e Real Property Register;

o State Vehicles Register;

o State Revenue Service Information System.

The integration of the primary NIS as well as elaboration and installation of the
central body (the register of registers and the communication server) were realised
during 1998-1999.

In the same time mentioned primary NIS are not declared as the only state
significance information keepers. At present in Latvia operating are over 30 branch
information systems by what understood are those NIS settling one branch, ministry,
region or one problematic issues. These information systems will be attached to the
central core of the Mega-system gradually as far as they will be prepared. It is planned
to develop during the second stage connection of the Unified Information System for
Local Governments, Education Informatization System and several information
systems that deals with real estate.

The Government Data Communications Network for the government’s and local
authorities needs is an essential communications element in establishing of the Mega-
system. This Network at the moment is the major part of integrated voice/data
network, developed by the non-profit organisation state joint stock company State
Information Network Agency VITA on a common transport network basis. The
Cabinet of Ministers approved a complex contemporary development concept for the
network in 1999.

The Government Data Communications Network must provide close and operative

interoperability of all interconnected systems. Various but similar requirements to the

network can be separated into several groups:

e rcliability; there must be uninterrupted action time, undistorted data transmission,
a guarantee of several levels of confidentiality and sécurity of information;

e high speed data transmission; some of real time systems need guaranteed channel
capacity (e.g., Vessels Traffic Management Information System);

e presence of a gateway to public data transmission network (the Internet
environment) which contains a reliable firewall system.

On-line access is becoming a basic one for data transmission, but on-line connections
by means of separate communications channels, however, must not be an end in itself,
their usage should be well grounded both technically and economically. Connection
of end-users depends on real traffic, e.g., access points of common use for several

branches or dial-up connections would have to be established in cases where the
traffic level is low. Connection of rural centers (villages) will have to be done on a
selective basis, and in many cases local centers will be able to participate via dial-up
connections or by use of diskettes to exchange and update information.

The Concept of Communications Server

A communications server is a set of software and computer equipment that allows a
wide range of users (both in Latvia and in other countries) to receive information from
a variety of sources (government registers, data bases, information systems) through a
single contact point. A communications server identifies users, authorizes the use of
the respective data, fulfills a request that involves several information sources, and
evaluates the cost of the process so that the appropriate financial transaction can be
made. A communications server allows users to learn where information is being
stored and what kind of information it is, as well as to request and to receive
information from various registers without any need for in-depth knowledge about the
technical aspects of its storage.

Figure 3. Communications between many registers and many users

The need to establish a communications server became apparent when the
governments of the Baltic States were setting up their joint data transmission network.
In order to allow institutions in one country to obtain information about objects
registered in another (enterprises, persons, motor vehicles, etc.), it is useful to receive
the necessary data from a single information source, without having to study the data
base structures of the other country. The use of the communications server, as has
been seen through the elaboration of an integrated state significance information
systems project, is also of significance within one country, because it provides a
universal resource for information exchange among various information systems.

Problem identification

The need to establish a communications server was noted in the national program
“Informatics™, as well as during the elaboration of two major projects — the Baltic
States Government Data Transmission Network (hereafter in the text — the Network)
and the Integrated State Significance Information System (hereafter — the
Megasystem). The goal in establishing the network is to provide fundamental
improvements in the exchange of telecommunications and data among the
administrative institutions of the Baltic States. During the first phase of the project
(1998 and 1999), universal solution is being set up to provide for the exchange of
data among Latvia’s Company Register, Motor Vehicles Register and Lost Motor
Vehicles Register, as well as between these registers and the related international
information structures. So far this has involved three concrete activities:

1) Accession of the Latvian Company Register to the European Business Register
(EBR);
2) Cooperation between the Motor Vehicles Register and the related European-level

structure EuCaris, as well as the establishment of a motor vehicles insurance
system in Latvia (the so-called “green cards™);

3) Improvements to the system whereby lost and stolen motor vehicles are registered
in Latvia, including a connection to the international data bases of Interpol in this
area.

Figure 4 Communication server: the principle

During the second phase of this project, between 2000 and 2002, more work will be
done to include Latvian registers into the Network and to integrate them into
international information structures. In the second phase, the plan is to place the
Population Register, the Lost Persons Register, the Lost Personal Documents
Register, the Educational Documents Data Base, the Visas Data Base, the State
Statistics Information System, the Consular Information System, the Health Care
Information System and the Narcotics Information System on the Network.

In a situation where information from various sources is available on the Network, but
users have no knowledge about the technical details of storing that information, there
is an obvious need for a universal solution, and that is where the communications

server comes in. The main requirement for a communications server is that it must
allow users to formulate their information requests in a simple way and to receive
responses to those requests without having to understand the technical aspects of the
process. Users are not, after all, informatics specialists; they are employees of other
administrative structures of the state, and there is no reason to think that they know
anything about the way in which data objects are distributed among the registers of
another country. We can expect both standardized and wholly unpredictable requests
in this process. In terms of the urgency of requests, we can expect demands for on-
line responses that require rapid response, as well as requests for off-line responses
that can take hours or even days to fulfill. Needless to say, in setting up the
communications system we must provide for all aspects of information confidentiality
and user authorization.

The setting up of the communications system is important not only in the context of
the Network, but also in the context of the Megasystem, which is a universal resource
for the exchange of information among various information systems within a single

country.

The concept of the solution

The communications server, which is illustrated in Figure 5, is an Internet resource
point. Users of the server can access it via various protocols — HTTP, CORBA,
DCOM, SMTP (E-mail) and FTP. The server provides users with an opportunity to
find out where information is stored and what kind of information is available, and
then to request and receive information from various registers without studying their
structure. Because users may have access to sensitive information, users are
identified with certificates, and all data transmissions are coded.

Users who wish to have access to sensitive information before work with the system
is begun must receive a certificate that corresponds to the X.509 standard. The
certificate must issued for a specific period of time (usually one year) by a specialized
institution (presumably in Latvia this would occur under the supervision of the
Constitutional Defense Bureau). Certificates of this kind contain information that
identifies the user, and they are virtually impossible to forge. The certificates are used
to code data and to identify the user. Latvia’s communications server will use a
standard coding protocol such as SSL.

A user of the communications server sends information requests to it and receives
responses from it. This can happen both on-line (HTTP, CORBA, DCOM) and off-
line (HTTP, E-mail, FTP).

In the on-line regime, work with the communications server is based on the following
structure: At the beginning of the process the user is identified. This means that the
user sends his or her certificate to the communications server, which reviews it and
specifies the user’s rights. If the user does not have a certificate, then he or she can
access the communications server as a guest and receive a limited amount of
information from it. Next the user requests information. The communications server
once again identifies the user and, on the basis of the level of the user’s authorization,
makes the appropriate requests to the data registers, sending the response to the user
when it is received. The register receives not only the information request from the
communications server, but also the user’s certificate, which means that the register
itself can identify the user and the user’s level of authorization. The result of this is

that the register provides only that information to the communications server for
which the user is cleared.

e P e——
—— APPLICATION
INFORMATION | .~ (WWW BROWSER,
SOURCES Etc.) L
| R —
REQUEST ——! |4 —— REQUEST -
| 3 I3
f ; COMMIIRCRoS | INFORMATION -
INFORMATION — & Server
S
User User and Server Verification
Verification
L B Server

Verification

Sertificate Server,
" Directory Server |

Figure 5 The operational structure of the communications server

In an off-line regime, the user requests information via HTTP, E-mail or FTP. During
periods of time when it is less busy (usually at night), the communications server
processes the request — identifies and verifies the user and then requests the respective
information from the information registers. The response is sent to the user via E-
mail, or it is stored until the user asks for it on-line.

The main advantage of an on-line regime in this process is that information can be
obtained immediately when the need arises. This system can be used in cases when
the speed at which a response is received is of importance, either from the point of
view of the system (e.g., at border control facilities), or from the point of view of the
operation (e.g., an application in which the registration number of an automobile is
entered and information is received about the automobile from the Road Traffic
Safety Department so that it need not be entered a second time).

The advantage of the off-line regime is that registers can even out the volume of work
that is required, given that at night there should be relative few on-line requests for
information. Off-line requests can also be sent in by users who have dial-up Internet
connections, thus reducing costs. It is advisable to make off-line requests less
expensive than on-line ones so that users are motivated to use the off-line system.

The functions of the communications server

We can specify five main functions for a communications server:

User identification

Authorization with respect to the use of information
Management of user rights

Fulfillment of requests that involve several information sources
Evaluation of the costs of each request for billing purposes

' Communication Server ‘]

‘ r_ll ¢ — > User
| Static Software | | = % '

[| .
[]] . | Metalnformation

s |
B _ | | 1" Information about |
| Dynamic Software | | Information ‘ﬂ

| ']| sources (Register
I | of Registers)

é T
s _

‘“m.q___—d_—:f—/‘ |

Register 1 | Registern |
w) S —
Figure 6 Architecture of communication server.

User identification in 2 communications server

As was noted before, user identification involves X.509-standard certificates. In order
to ensure that the certificate mechanism is operational, a communications system
needs both a certificate server and a directory server. The former is a server that
belongs to the certifying organization, generating and maintaining electronic
certificates — both server certificates (issued to the server) and client certificates
(issued to the user). The latter is a server in which the public keys of the certificates
are stored, along with information about certificates that have been issued — when a
certificate has been issued, to whom it was issued, and whether the certificate is valid
or has been revoked.

The directory server is available to any interested party. For example, if a WWW
server has been issued a certificate, any WWW user can ascertain that the server is
secure. If a WWW client has been issued a certificate, in turn, the WWW server can
ascertain that the client is authorized to work with the server. Both the client and the
server can check the validity of the submitted certificates by looking them up in the

directory server.

Work with certificates in WWW applications involves SSL (Secure Socket Layer)
technologies, which are supported by most WWW servers, as well as the main WWW
browsers — Netscape Navigator and Microsoft Internet Explorer. SSL technologies
provide the following components of secure communications:

1) WWW server approval: A user can ascertain the fact that the WWW server is
secure and that it can be entrusted with confidential information;

2) The privacy of information: The entire information flow between the client and
the server is coded, using a unique session key. The session key is coded by the
server with the client’s public key in order to send the respective information to

the client in a secure way. Each session key is used in only one session, which
makes it difficult to decode the information without authorization. The
information, in other words, cannot be viewed by unauthorized persons, even if it
is intercepted on its way between the server and the client.

3) The integrity of the information: Both the server and the client calculate the
control code on the basis of the content of the information, and if the information
has been changed en route, the codes do not match. This means that the receiver
of the information sees precisely the same information that was sent by the
sender.

Secure data exchange between the WWW server and the client occurs in the
following way when SSL technologies are used:

1) The client sends a request for data exchange to the WWW server;

2) The server in response sends its certificate to the client, asking for the client’s
certificate if appropriate;

3) The client checks the validity of the server certificate through the digital signature
of the certificate server, sending the client’s own certificate to the server if
necessary;

4) When the authorization process is complete, the client sends the session key to the
server, coding it with the public key of the server;

5) Both the server and the client know the session key, and further data flow between
the server and the client during the respective session is coded with the session
key.

The certificates of the server and the client are exchanged quickly and without any
involvement by the user. The same is true with respect to an exchange of certificates
among other applications.

When information is requested from the communications server (through the WWW
or otherwise), the process occurs in the following way:

1) The wuser is identified through the aforementioned protocol, and the
communications server checks the user in the directory server.

2) The communications server has a data base which records user rights, and the
server uses this data base to specify the authorization level of the specific user. In
carrying out the user’s request, the communications server checks the user’s
rights in its own data base and, if the necessary level of authorization is there,
then the request is sent along to the concrete register.

3) The register is also sent identification data about the user who has requested the
information.

4) The software in the register checks the information in the directory server and
authorizes the user.

5) According to the level of the user’s authorization, either the request is carried out
and the result is returned to the communications, server, or the communications
server is told that the user does not have the right to carry out the request.

6) The communications server returns the result to the user.

A user can also request information from the register directly, without passing

through the communications server. In that case the operational mechanism is
similar:

1) When the information is requested from the register, the user must supply
identifying information (a certificate).

2) The software in the register checks the information in the directory server and
authorizes the user.

3) On the basis of the user’s authorization and the level of his or her access rights,
either the request is fulfilled and the result is sent back to the user, or the user is
sent information saying that he or she does not have the right to receive the data.

This mechanism ensures that there is no need for the user to reintroduce identification
each time a new request is made. In each session, the user is identified on the first
occasion that a request is made with respect to a confidential data source, and in later
requests the information is sent on to all of the respective information sources.
Another advantage of the mechanism is that there is a centralized method for
distributing user rights, as well as a unified policy with respect to this. It’s also true
that the user’s rights do not change depending on the way in which he or she accesses
the information — via the WWW, via a different application, or through some other
method.

Management of user rights

The rights of users can be divided into several categories:

e The right to obtain information about what is stored in a concrete register ~
provided that the information is publicly available;

e The right to obtain information about one entry in one table in one register,
based on the unique identifier of that particular entry;

e The right to obtain a list of data from one table in one register, selected on the
basis of specific criteria;

e The right to obtain a list of data from several tables in a single register
(whether the link exists or not);

e The right to obtain information from several tables in one register that are
linked through a specific relation, the data being chosen on the basis of

specific criteria;
e The right to obtain information about one object from several registers on the
basis of the primary key of the object;

e The right to obtain information about the existence of a link among specific
objects from various registers;

e The right to obtain a list of data that are selected on the basis of criteria
entered by the user, the data coming from several tables in several registers
that are mutually linked.

The obtaining of information can be differentiated at four levels:

e A response as to whether the requested information has been found or has not
been found;

10

e A response as to how many entries have been found;
e The primary keys of objects;
o The data that is being requested.

Each of these levels provides a different volume of information, and there are
instances when the jump between proximate levels is quantitative, while in other
instances it is qualitative. We could consider four different requests here:

“Does individual X own an automobile?”

“How many automobiles does individual X own?”
“What automobiles does individual X own?”
“Does individual X own automobile Y?”

The management of user rights is intentionally divided up so that it occurs in several
places. The communications server has its own user management module, in which it
stores information about the right of users to make various kinds of complex requests.
Information about the right of a user to receive data from a specific register 1s stored
either in the communications server or in a concrete register. The place where
information about user rights is stored is harmonized between the communications
server and the register. Because it is expected that before a register issues
information, it will want to check the user’s rights to use the information, then
information about the user’s rights with respect to a specific register will usually be
stored in that register. From the perspective of centralized management, it would be
better if information about user rights with respect to all registers were stored in the
communications server. For various organizational reasons, unfortunately, this is
either impossible on only partly possible. Information about user rights is stored both
in the communications server and in the registers themselves.

The communications server is designed to work with both of these options, as well as
with a combination of them, and the following scheme emerges:

e The communications server checks the right of the user to make a request in
the first place, as well as the right of the user to seek out a link between
objects in various registers;

e The communications server checks whether the user rights with respect to the
concrete register are stored in the communications server or the register;

e If the rights are stored in the communications server, then it checks the rights
before it sends the request to the register;

o If the information is stored in the register, ther the register checks the user
rights before it fulfills the request;

e If the rights are not stored in the register, then the register can, if necessary,
receive information about the rights from the communications server in order
to be able to check the rights of the respective individual to make the request.

Because it is possible for users to connect to the registers not only via the
communications server, but also directly from an application, and because it should be
true that in both instances the user has the same authorization to obtain information,
then the check of whether a user has the right to obtain information from a specific
register should occur not in the communications server, but in the register itself.

11

Information requests and the obtaining and depiction of information

The basic mission of the communications server is to provide users with access to
various information sources so that they can obtain data from them. Let us take a
look at the problems that arise in this process, devoting particular attention to the
submission of requests and the obtaining of responses, and leaving aside the issue of
user authorization, control over data access, registration of who has asked for
information and what information has been requested, billing issues and such matters.

Information sources

An information source or resource facility can be any information system or data base
from any organization. There are administrative regulations concerning the
organizations, information systems and data bases that are included in the
communications server’s network of services.

Over the course of time, the number of information sources can reach into the tens or
even hundreds of sources. In Latvia alone there are already several dozen government
registers, and their number may increase. Communications servers should also
provide access to certain foreign information sources, as well as to the data bases of
various other organizations in Latvia; these, too, could be included in the range of
services provided by the communications server.

The communications server itself does not have an information sources. Each
information source is primarily meant to carry out concrete and specific functions
inside the respective organization Information systems and data bases that are used in
an organization are chosen, designed and optimized specifically for the needs of the
respective organization. They may not be aimed at providing information to other
entities, but if such an opportunity is intended, then it can be very specific, and many
limitations can be applied to it. This means that the communications server must
adapt to the information sources, and not vice-versa. Of course some information
sources can upgrade their information systems and optimize their data exchange
procedures in order to meet the communications server’s requirements.

Information sources that are part of the communications server’s network can differ in
terms of significance and volume. The more significant a data base, the better must
be cooperation with it. The size of data bases must also be taken into account,
because it has much to do with the respective data processing mechanisms.

Another key issue is the quality and stability of information sources. Information
systems can involve a wide variety of technologies, and they are of varying ages.
Depending on the resources that have been invested, some are of a higher quality and
some — of a lower quality. Of course, it is easier to make contact with a high-quality
information system and data base that have been designed with modern technologies
than with systems that are old and of a lower quality level. A communications server
must certainly be ready to deal with information sources that are unstable, that make
errors and that in some instances are not even accessible.

Information systems can be designed with various systems, they may have various
data bases, and their use may involve various operating systems and computer
technologies. A communications server must be prepared to handle these problems,

12

although this is no longer the worst possible difficulty, given that many different
solutions are in existence.

Information can be stored in a wide variety of formats — that is the next issue. The
most popular method for data storage is still relation data bases. Object-oriented data
bases, static WEB pages and dynamic WEB pages that are generated from an internal
format are becoming rapidly more influential. We must not, however, forget other
information storage methods such as files of many different structures.

A concrete information unit and a logical group of information units can be doubled,
stored in various formats, coded in various ways and stored in such a way that some
of the information is kept secret. Information can be contradictory either within a
single information system or among various information sources. This means that in
the future the field of communications servers will have to involve various laws and
data processing algorithms that are based on the technoiogies or artificial intelligence.

All of these aspects serve to demonstrate how serious is the issue of various
information sources being highly varied. It should also be added that this
heterogeneity exists among more than just information sources. The same situation
can exist within a single register or a single organization.

It must also be remembered that each information source exists fairly independently.
It can be updated, changed or liquidated, it can be created anew, its operations can be
suspended for a while, or it can be withdrawn from cooperation with a
communications server. This means that a communications server must exist in an
environment that is not only highly varied, but also is extremely changeable.

Users

For our purposes, we will say that a communications server user is any subject that
wishes to obtain a service from the server.

Users are usually differentiated on the basis of their level of authorization to obtain
specific information from specific information sources. These rights are regulated by
law and by other normative acts, and they are managed by a specific user
management bloc within the communications server.

From the perspective of the communications server, another very important user
classification is based on a different aspect — the way in which the user requests
information and the way in which the user receives a response. A communications
server should be operated on the basis of the principle that it is there for the
convenience of users, not vice-versa. This principle means that the server must be
ready to receive information requests of a great many varieties and forms, and it must
be ready, every time, to provide a response that is convenient for the user in terms of
its type and form.

Requests and responses

A communications server must be ready to accept information requests that are stated
in various ways and forms. The main operational regime for communications servers
is an on-line connection, but this can involve a dedicated line to the communications
server, dial-up access to the server, or a connection through informational networks
(the Internet, the Latvian State Significance Data Transmission Network (VNDPT), or

13

the networks of other national, global or organizational networks). We must also
remember other ways to submit a request — E-mail, a request submitted on an
electronic information carrier such as a diskette, a written request submitted on paper,
or even an oral request.

Responses to various requests can be prepared in the same format as the original
request. It should be added, however, that the user must have the right to select the
method of response, irrespective of the way in which the request was submitted.
Limitations on the ways in which requests and responses are formatted can be
specified by administrative regulations, but in terms of technologies, a
communications server must be prepared for all kinds of cooperation methods.

The forms of requests and responses can be highly varied. The most popular
cooperation form is probably a WEB page, both for requests and for responses. This
form of cooperation can be highly varied, and this is underpinned by, existing WEB-
type applications. The use of special procedures and functions may also be important
when the procedure itself has parameters that specify the request and its result (i.e.,
the response to the desired request as specified by the parameters). Cooperation can
also occur in the following forms:

1) Special applications that can work with the communications server;

2) Active objects that can work with the communications server and can be used
in the client’s applications;

3) Files with requests that are recorded in a specific format or response files in a
specific format;

4) A group of files (including even data bases) for the requests and the
responses;

5) Paper documents in an agreed format for requests and responses;
6) E-mail, which can be seen as a modification of items 3, 4 and 5 on this list.

It is commonly held that requests from a user can come in a dialogue regime from a
human user and in an automated regime where the user is an application on the user’s

computer.

There must also be plans to work in a synchronous regime (request-wait-response)
and in an asynchronous regime (request-processing over a specific period of time-
report to the user about the availability of a result-response), because this ensures
more efficient work for the user and the communications server alike, especially when
it comes to processing large and complex requests.

In work with the user thought must also be given to such aspects as the various levels
of preparedness among users, the language of communication, the respective text
coding formats, the abilities of the user’s computer equipment, operating systems and
applications, and limitations in all of these things.

In other words, the main mission and, at the same time, the main problem that a
communications server must handle is the way in which many different kinds of
requests can be handled, submitting processed information from various information
sources that sometimes are not compatible, and submitting a result to the user in the

desired type and form.

14

Information about information

As the number of information sources available through the communications server
increases, an overabundance of information can quickly occur — one in which even the
administrators of the communications server can get lost. It is necessary to classify
all of the information sources and the information that is contained therein, keeping
firmly in mind that information sources can change.

Communications servers must have data source repositories that contain formal
descriptions of the sources, their properties, the data that are contained within them
and the properties of the data. These repositories must be very flexible, it must be
able to change them easily and quickly so that changes in the surrounding
environment can be monitored. If there is to be a proper reaction to user requests,
other parts of the communications system must be able to adapt to changes in the
repository in a dynamic way.

The repository is not, however, meant only for internal use in the communications
server. The user, too, must know where and what he can receive (of course, within
the limitations of the user’s authorization). This means that the communications
server must also, so to speak, provide information about information. Using forms
and terms that the user can understand, the server must describe the information that
can be obtained and the ways in which it can be requested. There must also be efforts
to link the various request formulation mechanisms as closely as possible to the
repository, thus making easier the work of a user who takes advantage of the
communications server’s services only seldom.

Users often don’t care where and how the desired information is stored. This means
that the communications server must satisfy requests that concern information from
many different sources. The repository, therefore, must also describe the links
between the sources, as well as the ways in which various contradictions among the
sources can be resolved, data be converted, etc. The repository must be an entity that
makes it possible to consider all of the sources in a communications server to be one,
big data base.

The abilities of the communications server

A communications server is a dynamic system which must work in a highly
changeable external environment. A communications server must be much more
flexible and dynamic than a day-to-day system, because it must work with highly
heterogeneous external information systems that keep up with rapid technological
changes. When it comes to technologies, communications servers must be a step
ahead of other systems, because otherwise it may turn out that the communications
server ends up unable to perform its functions.

The goal of this paper is not to describe the internal architecture and ideology of
communications servers precisely. The establishment of such systems is a very
serious process throughout the world these days, and various solutions are being
sought out that are linked to the following technologies:

e Distributed Dynamic Systems
e Distributed and Dynamic Objects
e Dynamic Object-Oriented Programming

15

e Reflection
e Domain Specific Programming Languages
e Artificial Intelligence

Many of these technologies are still quite new, and they are still being developed.
This means that not all of them have ready-made tools that support various properties
or functions of the technologies. Some tools exist, some are at the prototype stage,
while some have already become popular among professionals (this is particularly
true of prototype tools that are designed at universities and research laboratories in
order to test the latest technologies). In the design of a communications server it is
worthwhile to such modern technologies and research results as the Multilanguage
Interpreter and the Database Browser Generator.

Evaluation of requests for billing purposes

A billing system is part and parcel of the mechanism whereby a communications
server fulfills requests. When a specific request is fulfilled, the system not only does
what has been requested, but it also automatically calculates the resources that are
used in the process. Within the communications server, a price has been attached to
every resource, and it can change on the basis of the volume of information that has
been requested, the time of day when the request is filed, etc. The price of each
request is calculated automatically and stored in a journal that then is used for billing

purposes.
A resource is an information request to a register. The price of resources changes on
the basis of the type of the request, the complexity of the request, the register that is
involved, etc.

Uses of a communications server

There are three major ways to use a communications server:

e As an international resource facility that can be used to access information
from Latvian registers;

e As an internal resource facility that can be used to search for information in
registers;

e Asaway of setting up cooperation among various registers.

The need to access information from Latvian registers via a single contact facility is
the main reason for elaborating the communications server. Of course, this is more
than just a trivial solution in which a single Internet application is designed for
connection to other registers via their Internet addresses. This simplified design does
not deal with the main issue — the ability to collect information from various sources
(i.e., various registers) without the user having to hook up to each register separately.
The information that a user needs is collected from the various registers by the
communications server, and the user himself may be completely unaware of the
technical details of this process. Thus the communications server is needed by
employees of foreign institutions in order to obtain information that is stored in

Latvia’s registered.

16

A second use for the communications server is the fulfillment of domestic information
requests in Latvia. The previously described situation in which users do not want to
or are unable to understand the technical details of information storage is typical
among the personnel of Latvia’s administrative structures. Of course, given the fact
that access rights to authorization may vary for foreign users and Latvian users, the
communications server sets out a unified set of requirements in this area, and
solutions are the same for both groups of users.

The third way of using a communications server is to use it in order to exchange
information among various registers. It is obviously irrational to maintain
communications channels and to conduct information exchange individually with
each of many registers that are mutually linked. It is much more rational to set up a
centralized contact facility — the communications server — which is linked to all of the
registers and through which information is exchanged among them.

Register can be connected to a communications server via different ways. Every
register that participates in the data exchange procedure can have its own data base in
which those data that are intended for transfer to other registers and for publication
can be separated out. The data base can be maintained by a separate computer or
server so that approaches to the public data base do not hamper work with the basic
data base of the register. Data from the basic data base are regularly copied to the
public data base (an automatic replication mechanism). This solution is rational not
only from the perspective of using communications channels; it also ensures:

e That the fulfillment of external requests does not hamper the work of the
register;

e That there is higher security, i.e., that in the case of unauthorized access, the
basic data base is not damaged.

The link between the communications server and the public data base can be
implemented on the basis of various technologies, such as DCOM object calls, MS
Transaction servers and Oracle SQL*NET. User authorization is provided via a
certificate server, a directory server and the Lightweight Directory Access Protocol
(LDAP).

17

Doménspecifisko valodu izmanto3anas
iespgjas

Doménspecifisko valodu
izmantosSanas iespéjas

.

Guntis Arnicans
Latvijas Universitate
Fizikas un matematikas fakultate

-i Valodu sadalijums

= Visparéja pielietojuma valodas
« daudziem aplikaciju doméniem (PL/1, Algol68)
= Problémorientétas valodas
« notelktam lielam aplikaciju doménam, var
izmantot ar citiem doméniem (Smalttiak, C,
Prolog, ML, Visual Basic, tcl, Pascal, Postscript,
LaTex)
= Domeénspecifiskas valodas
= konkrétam $aurdkam aplikdciju doménam, ir
doménam raksturigas abstrakcijas un operacijas
(HTML, XML, LEX, YACC, SQL)

i Valodu attistibas dinamika

= Jean E. Sammet 1993.gada fiksgja
stavokli programmeésanas valodu
lietoSanas joma iepriekSgjos 15 gados

» 1978.gada ASV tika izmantotas aptuveni
170 valodas:
= 80 vispargjas lietosanas valodas
= 90 valodas specializétas aplikacijas

Attistibas dinamika lidz
$ 1993.g.

= 1000 valodas, kuram bija nopietnas
implementacijas un kuras tika lietotas

» kadas 500 valodas bija projektesanas
vai izstrades stadija

= milzigs daudzums aprakstitu, bet reali
nerealizetu valodu

» kadas 300 valodas tika izmantotas reala
praksé

Attistibas dinamika lidz
* 1995.g.

= Kinnersley apkopotaja valodu saraksta jau
figurgja vairak ka 2000 vienibas

= 360 tika klasificétas attiecinatas uz specifisko
aplikaciju doménu

= Bija daudz vispargja pielietojama valodu
dialekti ar bitiskiem uzlabojumiem
specifiskam vajadzibam, tatad faktiski art ir
attiecinamas uz domeénspecifisko valodu saimi,

iPaéreizéjais stavoklis
= Groti novértat realo valodu skaitu, bet tas
noteikti mérams vairakos tikstoSos
= Literaturi jauno valodu aprakstus var sastapt
arvien biezak
= Lieiaka daja no tam ir attiecinama uz
domeénspecifiskam valodam

= IT strauji ieieSana visas sferas ir sekmegjusi
jaunu domeénspecifisku valodu tapsanu

Doménspecifisko valodu izmantosanas

,* Valodu implementacija

= Valodas eksistence visbiezak nav iedomajama
bez realas implementacijas, t.i. bez
kompilatora vai interpretatora.

= Izgémumi parasti ir specifiskas metavalodas,
pieméram, BNF

= Ki nodrosinat tik daudzas valodas ar
kompilatoru vai interpretatoru, ka nodrosinat
vél papildu servisu So valodu izmantosana?

* Kapec rodas jaunas valodas?

= Jaunu valodu veidoSanas iemesli ir
vairaki, un svarigakos no tiem ir fiks&jis
daudzu nozimigu un popularu valodu
autors un izstradatajs Frederick Brooks

= Iemeslus vélams visvairak nemt véra
akadémiski orient&tiem valodu
izstradatajiem

“,_é Valodu veidoSanas iemesli

= EksistgjoSo valodu uzlabosana un

parstrade, lai izlabotu kladas un

palielinatu valodas produktivitati — gan

programmu rakstisana, gan art to izpilde

= Sevidka loma ir produktivitates uziaboSans,
jo domenspecifiskas valodas, pieméram,
SQL, Excel izklzjlapa, LISP vai kiada
objektorientéta valoda, kardinali paaugstina
produktivitati

Valodu veidosanas iemesli

i

= NepiecieSamiba palieliné:c N

programmatiras uzticamibu

= "ja jiis to nevarat pateikt vispar, tad jus to
nevarat pateikt kjadaini”

= Uzlaboti valodas sintakses un piejaujamie
izteiksmes lidzek]i, lai 1si un skaidri
defingtu, kas programmai jadara

= nodrosina lielu operaciju korektu veikSanu
(pieméram, SQL pieprasijumi datu bazém
vai valodas sintaktiska koka iegiiSana ar
LEX / YACC palidzibu).

1 Valodu veidosanas iemesli

= Jaunu ideju realizacija

= Jauni jédzieni, pieméram, binding time -
mainigo piesaiste kompileanas laika vai
tiek atlikta lidz pedejam bridim izpildes
laika, nodroSinot Joti lielu dinamiskumu

= jaunu algoritmu vai tehnologiju
paradiSanas, pieméram, paralala
skaitjoSana, sadalita skaitjoSana vai kvantu
skait]oSana

i Valodu veido3anas iemesli

» PubliceSanas iespgja
= Valodas tiek ieviestas ar merki, lai batu
iemesls veidot publikacijas.
= Nereti 5ada darbiba ir traucgjosa, kas
maldina potencialos izmantotajus.

Domeénspecifisko valodu izmantoSanas

iVandu veidoSanas iemesli

» Izklaidesanas
» Ir cilveki, kuriem ir hobijs veidot valodas,
petat tas, bet ar to biei vien viss ari
beidzas
s Izglttodanas
= Nav tieSais praktiskais pielietojums
= Atvieglotu kadu specifisku zinadSanu apguvi

= studentiem ir dots uzdevums izveidot
valodu ar konkretu specializaciju

,*Valodu veidosanas iemesli

= Lietotdju loka papladinasana
= Jauj ar datoru “sarunaties” un dot
komandas ne tikai programmetajiem, bet
ari citiem specialistiem, pieméram,
« HTML WWW lapu izveidei (dizaineri),
« specifisku ekonomisko vai statistisko apréekinu
valodas (finansistiem).

_ I Valodu veido3anas iemesli

= Specifiska rika izstrade

= Doménspecifiskas valodas netiek formali
fiksetas uz papira

= Riks balstas uz kada izstradataja galva
izveidotu valodas modeli

« Protams, ka valoda var bit nepilniga,
nekonsekventa, pat vietam pretruniga un
riks pilniba tai neatbilst, tagu praktisks riks
ir radits un tiek izmantots

ﬁ_ﬁ Valodu veidosanas iemesli

= Specifikacijas lidzeklis, zindsanu vai
datu pierakstisanas lidzeklis
= Tiek pateikts, kas jaizstrada, bet
implementacija tiek realizéta atbilstosi
apstikliem
= Tiek pateikts, ka zindSanas vai dati tiek
glabati

Uz domeénu orientéti
‘-*Frisinéjumi

= K& noskirt doménspecifiskas valodas no
ctam valodam vai datora “vadisanas
idzekliem™

s Uz doménu orient&ti risingjumi:
= Funkciju vai metoZu bibliotekas
= Objektorientgéts karkass (sistéma) vai

komponentes karkass

« Doménspecifiskas valodas

Domeénspecifiskas valodas
i jédziens

= Domeénspecifiska valoda ir
programmeésanas valoda vai izpildima
specifikaciju valoda, kas, izmantojot
atbilstoSus apzimejumus un abstrakciju,
piedava izteiksmigu speku (jaudu)
konkréta apgabala problemu risinasana,
fokusgjoties un parasti pat
ierobeZojoties tikai uz So problemu
apgabalu.

Domeénspecifisko valodu izmanto$anas

iespéjas

Domeénspecifisko valodu

* labumi

» DSL atlauj risindjumu izteikt ar problémas
apgabala jédzieniem un abstrakcijas imeni.
Lidz ar to problémas apgabala specilisti, kas
var nebdt ari datorspecialisti, var saprast,
parbaudtt, modificét un pat izstradat
programmas $aja valoda.

» DSL programmas ir kodoligas, isas,
pasdokument&josas plasa apjoma un var tikt
izmantotas |oti dazadiem mérkiem.

Domeénspecifisko valodu
labumi

= DSL uzlabo produktivitati, uzticamibu,
uzturamibu un portabilitati.

» DSL sevi ietver apgabala zinaSanas un
tad&jadi nodrosina to konservaciju un 5o
zinaganu lietodanu.

= DSL nodrosina validaciju un optimizaciju
apgabala [imeni.

= DSL nodrosina labaku sistémas test&jamibu

Domeénspecifisko valodu
trakumi

= DSL projektésanas, irnplerr_ie;htEEanas un
uzturéSanas izmaksas.

= DSL lietotaju apmacibas izmaksas.

= DSL ierobeZoto pielietojamibu.

» Gritibas nospraust precizas DSL pielietoSanas
apgabala robezas.

» Gritibas balanséjot starp DSL un vispargjas
nozimes programmésanas valodas
konstrukcijam.

» Potencialais efektivitates zaudéjums, ja
salidzina ar “ar roku rakstitu” programmatdru.

| ‘*DSL attistibas metodolodgija

= Analize un projekt_ééana

. IdentificBt problémas apgabalu.

2 Savakt visas atbilsto$3s zindsanas par
izvéléto problémas apgabalu.

3 Apkopot savaktas zindSanas parocigos
semantiskos jeédzienos, apziméjumos un
operacijas.

s Uzprojekt&t domeénspecifisko valodu, kas
precizi apraksta aplikacijas problému
apgabala.

DSL attistibas metodologija

= Implementacija.

s lzveidot bibliot8ku, kas implementg semantiskos
jBdzienus.

«. Uzprojektdt kompilatoru (interpretatoru), kas
doménspedifisk3s valodas programmas translé uz
(izpilda ar) secigiem izstradatas bibliot&kas
izsaukumiem.

= Lietogana,

7. Uzrakstit programmas domé&nspecifiskaja valoda
visdm neplecle3amajdm aplikdcijdm un
vajadzibas gadijuma nokompilét tas.

.* DSL implementacija

s Jaunai valodai interpretators vai
kompilators (realizacija briva, liela
iespéja izteiksmes idzekiu joma)
= Katrai pieejai ir savi plusu un minusi
» Svariga loma valodas dinamiskumam,
atrdarbibai, kludu atkiasanai, statiskai
analizei, optimizé3anas iespéjai

= Atkariba no implement3cijas realizétaja
kvalifikacijas

Domeénspecifisko valodu izmanto8anas

iespejas

, DSL implementacija

= B3zes valodas papildind3ana ar jaunam

iesp&jam (ieguvums, ka kompilators vai

interpretators nav jabtve)

= Ieblvétas valodas vai doménspecifiskas
bibliotékas (iespéja definét savas funkcijas)

= Preprocésana vai makro proceséana
(konstrukciju apzZimésana ar
nepiecieSamajiem apziméjumiem)

= Paplasinats kompilators vai interpretators
(iesp€ja kert kildas ari domé&na imeni)

Izmantosanas jomu piemeri

» ProgramminzZenierija (finansu produkti, uzvedibas
kontrole un koordindcija, programmatiiras arhitektiira,
datub3zes)

= Sistému programmatura (Abstrakio sintaktisko
koku apraksts un analize, video iekdrtu draiveru specifikdcija,
datu struktiras, operaju sistémas specializacia)

» Multimedija (WeB, manipulscijas ar imidfiem, 30
animacja, Zimé&sana)

= Telekomunikacijas (koku valodas modeju parbaude,
komunikddju protokoli, telekomunikdciju iexdrtu spedfikacijas)

s Dazadi (simulacija, mobili agenti, robotu kontrole,
diferenciivienSdojumu risind5ana, aparatiiras projekta3ana)

*DSL valodu piemeri

= Specifiski modelé3anas valodu veidi
= Programmu interfeiss
= ADL (Assertion Definition Language)
» Multimediju aplikacijas
« MHEG-5
= Zinojumu specifikacija
» MSL (Message Specification Language)

DSL valodu piemeéri

= Telefonu interfeiss
» PML (Phone Markup Language)
= Kodoldalinu model&sana
« NAB (Nudleic Acid Buiider)
= Datorvalodus apraksta valodas
» BNF, EBNF, sinatktisids diagrammas
» Biznesa darijumu ar procentu likmém apraksts
« Risla
= Melodijas pieraksta valoda
« AMF

&DSL valodu pieméri

» Zinasanu pieraksta valodas
= SKDL (Structured Knowledge Description
Language)
= XML (eXtensible Markup Language)
= KARL (Knowledge Acquisition and
Representation Language)

| ’ DSL valodu pieméri

= Spélu programmésana
a ADL (Adventure Definition Language)
=« DDL (Dungeon Definition Language)
= ADVSYS (ADVenture SYStemn)

» Datorsimulaciju veikSana

« GPSS (General Purpose System Simulation)
- ar grafisku interfeisu

= SIMSCRIPT II- ar teksta interfeisu

Domeénspecifisko valodu izmanto3anas

%DSL valodu pieméri

= Statistiskas sistémas ar ieblvétam
specidlam valodam
- SAS
= SPSS
- 5
« NAG
= SyStat

.+ DSL valodu pieméri

= Dalito sistému apgabals
= Procesororientéta HERMES
= Objektorient&ta Oblig
= Legion
= Sheme - 48
= DP
= BSP
= Erlang
s O - PLAN

== DSL valodu pieméri

» Datubazu doméns
= SQL (Structured Query Language)
= CQL (fat-file datubazei)

» Datormizikas programmé3ana
= Score
s Orchestra

é DSL valodu piemeéri

» Paraléla izpilde

» Zinojumu nodosana (CSP, PLITS, Gypsy,
Actors)

= Attalinato procediru izsaukSana (DP,
*Mod)

» SatikSanas (SL)

= Citas (Concurent Clean, Concurent ML,
Parallasis, ALLOY, SR (Synchronizing
resources))

._,*DSL valodu pieméri

= Interaktivo jautdjumu - atbilZu aplikacijas
L] &w
= WWW interaktivu servisu programmeésana
« Maw! (the Mother of All Web Languages;
= Specifisko aplijkaciju protokolu
programmésana
= PLAN - P (Packet Language for Active Networks -
Protocols)

-* DSL valodu pieméri

= Grafisku objektu un animaciju
veidosana
= Fpic (divdimensionaliem objektiem)
« Fran (trisdimensionaliem objektiem)
= G, OpenGL (vizudlajiem efektiem — grafika,
teksts, animacija, skana)

Domeénspecifisko valodu izmantoSanas
iespéjas

,_* DSL valodu pieméri

s Iekdrtu programmésana

» IRL (Industrial Robot Language)

« AML

s MVCL (Micrion’s Vacuum Command
Language) — motoru varstu vadiba

» Devil — elektronisko iekartu vadiba

» GAL (Graphical Adaptor Language) —
videoiekartam

!L DSL valodu pieméri

« Skript&sanas valodas
» Awk
L] Scsh
" PYthOI"I
« Tcl/tk
» Regex
» ActiveHaskel

iDSL valodu pieméri

s Kosmosa aprékini
= Special Forth
» Manipulacijas ar metamodeliem
= RDL
= Programmu testé3ana
= DETOL (Directly Executable Test Oriented
Languge)
=« RATEL

i__ DSL valodu piemé&ri

= Gramatikas analizatori un generatori
= Lex/Yace
» Flex&Bison
» Aflex — ayacc
» Ox
» Gray
- Ugen
= T-gen
w1l

iDSL valodu piemeéri

» Operacijas sistému atminas vadiba
= HIPEC

= Dalitu sistému atminas vadiba
= Teapot

= Medicinas jomas informacijas apmaina
= HL7, HEAL

= WWW interaktivu aplikaciju veidosana
» WOM (Web - O — Matic)

Information Processing Tools and Environments

Guntis Arnicans

Faculty of Physics and Mathematics
University of Latvia
Raina Blvd. 19, Riga LV-1586, Latvia
garnican@lanet.lv

Abstract

The various ways exist how we can build an information system. We offer to look
at a information system like a suit of tools that are integrated into a collaborative
environment. The other tools are used to design, implement and test such
environment. They increase a convenience, productivity and quality of
development process providing the implementation of target tools, its integration
and satisfying the development methodology and requirements. These supportive
tools make a specific software environment. In the paper we present basic things
what the developers have to know following to this principle to build an
information system: 1) the concept of a tool, 2) the classical approaches for tools’
integration, 3) the principles of tools development, management and control, 4)
the questions before tool designing, and 5) the possible conceptual architecture of
a tool. The mentioned things are equally referred to both the information
processing tools and the development supporting tools.

1 Introduction

Data is a formal representation of facts or ideas with possibility to be communicated
or manipulated by some automated process. Information is a meaning that humans
assign to data during automated data processing using the definite habits to present it
(meaning of data). Disinformation is information with delusive meaning and/or off-

grade data was being used to produce information.

It is increasingly difficult to draw a line around an application system and say
that you own and control it. Data is distributed over a multitude of heterogeneous,
often autonomous information systems, and an exchange of data among them is not
easy. Let us look at a relatively simple situation — the data source and services are
located in one organization but the information consumer (user) is located into

another organization (Figure 1).

Process how the data is transformed to information and presented is long and
difficult (going through many applications, operating systems, defense systems, data
transmission protoéols, etc.). If the system builders make mistakes in some part of this

process, then we receive a disinformation but not the desirable information. The

mailto:garnican@lanet.lv

problem become more serious when we produce information from many data sources,

and when the services must work without interruptions.

| Communications

Figure 1 The information processing in heterogeneous environment

These problems emphasize the need for tools to mediate between databases,
servers and front-end application. And we néed tools to create these mediator tools
also. We need to maintain descriptions of data structures, content, data properties,
available services (metadata of data sources and services). It increases the need for
dynamic manipulating of both data and metadata. Besides we have to worry about
system quality that leads to need for testing, simulating and monitoring tools.

Over time, the number and variety of tools has grown tremendously. They range
from traditional tools like editors, compilers and debuggers, to tools that aid in
requirements gathering, design, building GUIs, generating queries, defining messages,
architecting systems and connecting components, testing, version control and
configuration management, administering databases, reengineering, reverse
engineering, analysis, program visualization, and metrics gathering, to full-scale,
process-centered software engineering environments that cover the entire lifecycle, or

at least significant portions of it [HOTO00].

2 The Concepts of Information Processing Tools and Environments

Any system that assists the programmer with some aspect of programming can be
considered a programming tool. Similarly, a system that assists in some phase of the
software development process can be considered a software tool. A programming
environment is a suite of programming tools designed to simplify programming and
thereby enhance programmer productivity. A soffware engineering environment
extends this to software tools and the whole software development process [Re196].

The definitions above we can refer to any software. Let us look to the narrower
class of software — a software for information processing. Similarly to previous
definitions we introduce the concepts of information processing tool and information

processing environment.

An information processing tool is any system that provides performing some
task while information processing. An information processing environment is a suit of
information processing tools that together makes intended information processing. On
the other hand, from the perspective of end-user the information processing

environment is simply an information system.

An information system software tool (simply a tool below in the text) is a
system that assists in some phase of the information system development process.
And finally, an information system software environment (simply an environment
below in the text) is the extension of the information processing environment with the

information system software tools.

3 Classification of Information Processing Tools

Tools can be categorized by the phase of information system development and the
particular problem that they solve. It is possible categorize them also by development

principles, integration principles, runtime behavior, etc.

3.1 (Classification by the Functionality
One of the most natural ways to classify the tools is grouping them by its
functionality. Many grouping principles exist. We offer to classify them in the

following way (only an example how it can be done):

1. Data extracting tools from data sources

9.
10.

3.2

1.1. Relation databases
1.1.1. Tool for the specific database
1.1.2. Universal tool for various databases
1.2. Object-oriented databases
1.3. Structured files
1.4. Other data source
Communication tools to work with data sources
2.1. Specific client software for particular data source
2.2. Internet Browser
2.3. Email
2.4. Other communication tool
Tools for describing of data sources
3.1. Repository for data sources descriptions
3.2. Data source describer
3.3. Data source services describer
3.4. Other
Inquiry processing tools
4.1. Inquiry definition tools
4.2. Inquiry executing tools
4.3. Other
User interface generating tools
5.1. Static, predefined interface application generator
5.2. Dynamic, varying interface application generator
5.3. Other
User management tools
6.1. User registration and general management tools
6.2. User rights management tools
6.3. Finances accounting tools for services
6.4. User profiles management tools
6.5. Other
System auditing tools
7.1. Audit journals management tools
7.2. Statistics accounting tools
7.3. Security control tools
7.4. Other
System quality tools
8.1. System testing tools
8.2. Documentation tools
8.3. Other
User temporal data management tools (temporal databases)

Other

Classification by the Runtime Behaviour

The other principle to classify the tools is grouping them by its runtime behavior.
Many grouping principles exist. We most of tools divide into two basic groups:

1.

Static tool. The tool performs the specific predefined and fixed functionality, and
this functionality can be changed only by redesigning and implementing of the

tool. It is possible that functionality can be altered by some simple predefined
configuration functions or by configuring these tools before running them.
Usually input data is in relative strong predefined format. Basically the source

code compilation is used to obtain executable software (tool).

2. Dynamic tool. The tool can vary its own functionality or in the other words —
change executing semantics before or during the tool operating time. It is possible
to vary functionality in large range. Input data format and meaning can be
different. The interpreter is more preferable to implement such tools. The tool
works interpreting commands received as a program before or during the

operating.

4 Tools Integration

We mentioned above that from the user perspective information processing
environment is an information system. If we build the information system as a set of
tools, then we need to integrate all tools into a collaborative work. These tools can be

combined together in a variety of ways using various integration techniques.

System developers choose integration techniques being guided by practical
needs, system complexity, knowledge and skills of developers, etc. It is distinguished
three the most popular approaches for an integration that involve ways for the tools to

share information and interfaces [Rei]:

1. Data integration. It assumes that tools share information. Usually a database or

repository is created. Most of the tools stores and consumes shared
information. Via this repository all tools work with the same data and data
exchanging also is organized through the repository.

2. Common front end. The user sees and uses all system together. He does not
exploit any tool separately and often does not know that the system consists
from a set of tools. The user operates with data objects and operations allowed
at the specified moment. Usually the common interface is used to integrate

tools, and tools do not share information.

3. Control integration. This approach involves message passing between the

tools. Tools send messages to other tools whenever they need to share

information or whenever a command from one tool is invocated from another.

The message exchanging mostly is organized through a central message
server. The tool send a message to the server, and the server send this message
to all other tools that are interested in to this message type. The tools can
exchange with messages directly, but this approach can arise problems if the

amount of tools is large.

A combination of the all integration types is used to develop serious and large

environment of integrated tools.

S The Principles for the Tools’ Development, Management and
Controlling

Real world changes all the time, and requirements to systems also changes. We have
to take into account these changes and to implement them into our information
system. In the distributed and heterogeneous computing environment it is a serious
problem. Besides the nowadays’ services must run without interruptions, and system
changes must be done by changing behavior of the tools sending them a new
configuration or replacing them dynamically with new tools. The tools have to satisfy
the following requirements — convenient configuration and control facilities, a
possibility to change behavior semantics, an acceptance of various input and output

formats, etc.

To deal with these problems and to provide convenient means for tools
integration and running system maintenance we advice exploit common principles of

the tools’ development, management and controlling. The most important principles

arc:

1. Common architecture. Most of the tools have a similar architecture. This

allows a designing of the tools with common components. The tool
development and maintenance becomes less resources consuming, and quality

of resulting tool is higher.

2. Common software (modules). If the ideology and architecture of the tools is

similar, then an implementation can contain common modules, subsystems,

runtime ﬁbraﬁes, etc.

3. Common configuration mechanism. It assumes that we can change the
behavior of tool (predefined changes without software changes) dynamically

in similar way according to the specific task. These leads to common modules

and easier exploiting, integration and maintenance of tools.

4, Common control mechanism. The tools have to have standardized means
(interfaces) to control and manage them. Via this interface user or other tools
gives commands to the specific tool, and it is a main mechanism for the tools

integration.

5. Common monitoring mechanism. Information systems usually have to work in

an uninterrupted regime. We need to monitor system operating, find the

weakest points and perform some actions to correct the system performance.

6. Common testing principles and means. The system quality is crucial topic for

systems. We have to test tools before deployment, and common principles and
testing tools can reduce most expensive resource costs (time, money, people).
Moreover, we have to continue testing while real system exploiting and check
every operation if we use dynamic code generation and immediate just-in-time

compilation or interpretation.

6 The Conceptual Architecture of a Tool

There are many various opinions what the conceptual architecture of a tool looks like.
Before we present our model let us state the most important questions to understand

the essence of a tool:
e What is the main task for desired tool? Why does it necessary us?

e How can we build this tool? What are the possible technologies, data

structures and algorithms? Can we use or adapt existing tools or modules?

e What is an input for our tool? Does a tool receive all input data before starting
computations or get it by portions?
e What is an output for our tool? Does a tool produce all output data after

computations or supply it by portions?

e Is a tool stateless or not? Does a tool remember the history about previous

computations?

e What is a way to manage and control the tool? What is a desirable interface

for such tool?

e Do we need to change the behavior of a tool dynamically without interrupting
all running environment or moreover while operating time? What are the
things we need to change (configuration, executing semantics, input/output

formats, etc.)?

e Have we got necessity to monitor the state and behavior of a tool before,

during or after operating time?

e Does a tool cooperate with other applications or tools excluding desired

“official input and output™? Is this cooperation synchronous or asynchronous?

o Can our tool change the state/configuration of other application or tool? Can
the other tool change our tool state/configuration? At what time (before or

during operating)?

We have created a conceptual model of tool architecture taking into account questions

above. The model is shown in Figure 2.

1
o ST TN
ga Another application/tool
2 'gl (status changing)]
B N |

S

[\’“\ l X

o

Results of monitoring
and testing

k-]
/ £s
| Another applicationftool | g 8|
(using of services) ? |
_ J HE
—_— —_— § S

S

Figure 2 A conceptual architecture of a tool

7 Conclusions

The creating of tools’ collections — environments is actual for many years [How82],
and the importance of this topic only grows day by day [HOTO0]. In this paper we
briefly review some more important concepts and principles to organize (integrate)

tools into one collaborating environment.

The main attention is paid to a subset of all possible environments — an
information processing environment (information system) and an information system
software environment that supports building of information system. There is a

challenge for developers to create information system as a suit if tools.

The most important issues in this field are separation of concerns, integration
and coordination, “plug and play”, and support for multiple views. Traditional
software development lifecycle is not acceptable for new emerging technologies, and
researchers look for new methodologies. We consider that most of the tools in one
environment have to built based on common principles, and that tool has to base on
domain specific language (DSL) that describes tool behavior. In that approach the
environment is a set of interpreters that interprets the tool specification (program in

DSL) and each interpreter acts like desired tool.

8 References
[HOTO00] W. Harrison, H. Ossher, and P. Tarr. Software Engineering Tools and Environments: A Roadmap.
Proceedings of the conference on The future of Software engineering (ICSE '00), pp.261-277, 2000.

[How82] W. E. Howden. Contemporary Software Development Environments. Communications of the ACM,
25(5):318-329, May 1982.

[Rei96] S. P. Reiss. Software Tools and Environments. ACM Computing Surveys, Vol. 28, NO. 1, March 1996.

Description of Semantics and Code Generation
Possibilities for a Multi-language Interpreter

Guntis Arnicans

Faculty of Physics and Mathematics
University of Latvia
Raina Blvd. 19, Riga LV-1586, Latvia
garnican@lanet.lv

Abstract

In this paper we describe the definition of semantics for a Multi-language
interpreter (MLI), which provides the execution of the given program, receiving
and exploiting corresponding language syntax and the desired semantics. We
analyze the simplest solution — the MLI receives the language syntax and the
semantics descriptions, which have already been compiled to executable objects.
Semantics are defined as a composition from several semantic aspects,
considering the pragmatics of a language. Semantic aspects are translated to
semantic functions by composing descriptions of the aspects. A traversing
program’s intermediate representation and the calling out of semantic functions
similarly to the principle of the Visitor pattern perform the desired semantics. To
simplify the semantic descriptions, we use abstract components that are joined by
connectors at the meta-level. The implementation of these components and
connectors can be very different. Examples of conventional and specific
semantics are given for the simple imperative language in this paper.

1 Introduction

The number of new languages that are related to the IT sector has increased rapidly
over the last several years (programming languages and data description languages,
for example). Problems associated with the implementation and use of these
languages have also expanded, of course. Kinnersley [Kin95] has reported that there
were 2,000 languages in 1995, which were being put to serious use. Even back then
specialists found that the new languages were mostly to be classified as domain-
specific languages. Most of them are not easy to implement and maintain [ITSE99,
DKV00 (DSL analysis, problems and an annotated bibliography)]. It is also true that
we need not just a compiler or an interpreter, but also a number of supportive tools.
Questions of programming quality are very important today, and these questions often

cannot be answered without specialized and automated ancillary resources.

Computers are being used with increasing dynamism today: systems have been

divided up in terms of time and space, the operational environment is heterogeneous,

mailto:garnican@lanet.lv

and we have to ensure that implementation of parallel processes while organizing
cooperation among components and systems, adapting to changing circumstances
without interrupting our work, etc. We are making increasing use of interpreters or of
code generation and compilation just in time. The formal resources that are used to
describe the semantics of a language, however, cannot fully satisfy our needs in the

modern age, and they are starting to lose their positions [Sch97, Lou97, Paa95].

The basic problem that is associated with the formal specifications of
programming languages is that these specifications are far too complex. It is not clear
how they are administered, we cannot use them to explain all of our practical needs,
and in the end we are still faced with a problem — who can prove that these complex
specifications are really correct? The literature claims that the best commercial
compilers (interpreters or other language-based tools) are written without formalism
or are used only in the first phases — scanning and parsing [e.g. Lou97]. Formalisms
are mostly elaborated and used for research purposes in educational and scientific
institutions at this time.

The development of semantics is gradually moving away from the development
of languages and tools. One way to overcome this gap is to take a fool-oriented
approach to semantics, making the definitions of semantics far more useful and
productive in practice and generating as many language-based tools as possible from
them [HKO0O]. We support this approach in principle, but our aim is to propose a
different approach toward the definition of semantics, making room for far less formal

records.

Those who prepared descriptions of semantics in the past have long since been
looking for ways in which semantics can be divided up into reusable components, and
it is not yet clear whether the formal or the partly formal methodology is best in this
case. We chose a less formal and more free form of description keeping from the
theoretical perspective, and our empirical research shows that rank-and-file

developers of tools far more easily understand this method.

2 The concept of a Multi-language Interpreter

The concept of a multi-language interpreter was introduced in [AAB96]. A Multi-
Language Interpreter (MLI) is a program which receives source language syntax,

source language semantics and a program written in the source language, then
performing the operations on the basis of the program and the relevant semantics.
Conceptually, we parse an input token stream, build a parse tree and then traverse the
tree as needed so as to evaluate the semantic functions that are associated with the
parse tree nodes. Once an explicit parse tree is available, we visit the nodes in some
order and call out an appropriate function. This approach is similar to the principle
build a tree, save a parse and traverse it [Cla99] and to a Visitor pattern [GHIV95],
except in terms of the methodology which we apply in obtaining semantic functions

and organizing physical implementation. The idea of MLI is expressed in Figure 1.

Syntax
| I %&i
S =] ' Multi-language
lSemanhciJ:> tecpratsr |:(> Results
- |

| Program lr///J>
| |

Figure 1 The concept of a Multi-language interpreter

The concept of a MLI presupposes that we can prepare several semantics for
one syntax, and we can exploit one semantic for various syntaxes. The descriptions of
syntaxes and semantics must be translated to the executable form (before or during
the running of the MLI). MLI implementation architectures may vary. The one we use
receives and exploits syntax and semantic descriptions that have already been
compiled as executable objects (Figure 2). Syntax is represented by the SyntaxObject,
and semantics by the TraverserObject, the SemanticObject, the SymbolTable, and the
necessary volume of the Component (the components A, B, C in our figure). The MLI
Kernel, which provides the initial bonding of all syntax and semantics objects,

initializes the execution of the program.

{ MLI ;
L P | hemsl I 7~ Component A Component
f A state

Component
B state]

: \ ! . Component

SyntaxObject { — % TraverserObject | — > SemanticObject _h Corr,:nnants -

Figure 2 MLI runtime architecture

Each of the components can be implemented in various ways — with a different
semantic assignment and physical implementation. Here we have a chance to combine
syntaxes and semantics in both ways — in terms of architecture and in terms of
implementation. Then, however, we immediately face the question of the

compatibility of the syntax and semantics so as to avoid senseless interpretation.

The obtaining of an executable syntax and semantic objects from their
descriptions can be done before or during the actual program execution (analogue to a
classical compiler and interpreter). Dynamic code generation is more difficult because

all generation phases must be done automatically.

3 Language Specifications for MLI

Programming language is an artificial means to communicate with a computer and to
fix the algorithms for problem solving. Like a natural language, a programming
language’s definition consists of three components or aspects: syntax, semantics and
pragmatics [Pag81, SK95]. All of these aspects are significant in dealing with our
problems. Usually exploited rarely, pragmatics deals with the practical use of a
language, and this is an important element in defining semantics.

We can look at syntax and semantics from two perspectives — the definition or
description phase and the runtime phase. Our goal is to achieve runtime components,
which can freely be exchanged or mixed together in pursuit of the desired
collaboration. First we must look at the principles of syntax and semantics

descriptions, and then we can view the target code generation steps.

Our basic principle is to divide syntax and semantics into small parts and later,
with a simple method, to stick these parts together, thus providing a mechanism to tie
together the semantic parts and the syntax elements. Our method is close to some of
the structuring paradigms of attribute grammars [Paa95]: The definition phase is
similar to the relationship Semartic aspect = Module, but the runtime phase is similar
to Nonterminal = Procedure. That means that we basically use the language

pragmatics and divide the semantics into semantic aspects.

3.1 Syntax
The formalisms for dealing with the syntax aspect of a programming language are

well developed. The theory of scanning, parsing and attribute analysis provides not

only the means to perform syntactical analysis, but also a way to generate a whole
compiler, as well. Such terms, concepts or tools as finite automata, regular expression,
context-free grammar, attribute grammar (AG), Backus-Naur form (BNF), extended
BNF (EBNF), Lex (also Flex), Yacc (also Bison), and PCCTS are well known and

accepted by the computer science community.

We do not need to reinvent the bicycle, and it is reasonable to choose existing
formalisms and generators (lexers and parsers). The main task when dealing with
syntax description for a given language is code generating which can transform the
written program, which uses the syntax, into intermediate representation (IR).
Additionally, we need to attach a library with functions, which provide the means to
manipulate with the IR and to compile the whole code. The result is the SyntaxObject
(Figure 2).

In this paper we concentrate mostly on the class of imperative programming
languages, but our method is adaptable for other languages too, such as diagrammatic
languages (e.g., Petri nets, E-R diagrams, Statecharts, VPL — visual programming
languages, etc.), which exploit other formalisms (e.g., SR Grammars, Reserved Graph
Grammar) and processing styles [FNT+97, ZZ97].

3.2 Semantics

The chosen principle for the runtime semantics parse and traverse states that the most
important things are a traversing strategy and the semantic functions which must be
executed when visiting a node (Figure 3). Therefore, the central components of the

semantics are TraversalObject and SemanticObject (Figure 2).

The TraversalObject manages the node visiting order, provides semantic
functions with information from the IR, and is the main engine of the MLIL The
SemanticObject, for its part, contains all of the necessary semantic functions and
provides for the execution environment. At the same time, we can also put into the
semantic functions certain commands which force the Traverser to search for the
needed node and to change the current execution point in the IR (traversing strategy
changes and a transition to another node are problems in the Visitor pattern [e.g.

Vis01]).

Figure 3 Runtime correspondence between syntax and semantics

Semantic functions have to be as simple and as small as possible. This can be
achieved by using a meta-language and by employing high-level expression means,
which allow for easy understanding and verification of the description. Following
this principle becomes more natural if we use abstract components so that the
underlying semantic can be clear without additional explanations (in Figure 3, the
abstract components already have a concrete implementation component — A, B and
C). This statement may lead to objections from the advocates of formal semantics,
because the components are not described with mathematic precision. At the same
time, however, formal semantics sometimes use such concepts as Stack or Symbol

table.

Let us introduce a conceptual syntax element, which is a grammar symbol with
a name (e.g., a named nonterminal symbol or a named terminal symbol). Considering
the various types of syntax elements and the traversing strategy, we separate various
visitations and introduce the concept of the traversing aspect. For instance, we can
distinguish the arriving into node from the parent node (PreVisit) from the arriving
into node from the child node (PostVisit). Thus we create the semantic functions and
name them not only on the basis of the name of the syntax element but also on the

basis of the arriving aspect (traversing aspect) into this element (Figure 3).

Runtime semantics or simply semantics for multi-language interpreters are a set
of semantic functions. We represent the runtime semantic in Table 1. There is an

executable code (o) or nothing (A) for the syntax element, according to the traversing

aspect. n depends on the size of syntax (e.g., the count of all nonterminal and terminal
symbols), and m depends on the complexity of the traversing strategy (usually 1..3).
We notice that the matrix mainly consists of empty functions (A).

Table 1 The matrix of syntax elements and semantic function correspondence

Syntax Traversing Aspect (TA)
Element (SE) | TA; | TA, | TA; | ... | TAL
SE, o O A
SE, A A O e A
SE; A A A ... o
SE, mi A A

The identification of semantic functions is realized both by the syntax name and
by the traversing aspect name. Technical implementation may differ, but it is very
advisable that functions identification and calling be performed with constant
complexity O(1).

Now we arrive at the most difficult and important problem — how can we obtain
semantic functions and ensure correct collaboration between them. and how is it
possible to create reusable semantic descriptions? Let us explain our ideas about how
to define semantics and how to gain the matrix observed above, i.e., how to generate

executable semantics from the semantic description.

4 Semantic Aspects and Abstract Components

4.1 Semantic aspects

In practice, programming languages are frequently presented through the pragmatics
of the programming language, i.e., examples are used to show how language
constructs are exploited and what their underlying meaning is. Let us call these

language constructs and their meaning semantic aspects.

We have chosen to define the semantic as a set of mutually connected semantic
aspects. Here are some examples for typical groups of semantic aspects for imperative

programming languages: execution of commands or statements (e.g., basic operations,

variable declaring, assigning of a value to the variable, execution of arithmetic
expressions), program control flow management (e.g., loop with a counter,
conditional loop, conditional branching), dealing with symbols (e.g., variables,
constants), environment management (e.g., the scopes of visibility). Here, too, are
examples of nontraditional semantic aspects: pretty printing of the program, dynamic
accounting of statistics, symbolic execution, specific program instrumentation, etc.

To describe the semantic aspect, we have chosen an operational approach — we

define the computations, which a computer has to do to perform the semantic action.

4.2 Abstract data types and abstract components

The next significant principle to define the semantic aspect is using abstract data
types (ADT) as much as possible. ADT is a collection of data type and value
definitions and operations on those definitions, which behave as a primitive data type.
This software design approach decomposes the problem into components by

identifying the public interface and the private implementation.

In our case, typical examples of ADT are Stack, Queue, Dictionary, and Symbol
table (in compiler construction theory [ASU86, FL88], in formal semantics [SK95]).
In this way we hide most of the implementation details and concentrate mainly on the
logic of the semantic aspect. Later we can choose the best implementation of ADT
for the given task. Seeing that some exploited components can be complicated (£-
mail, Graph visualization, Distributed communication, Transaction manager, etc.)
and have no standards, we use another term — abstract component. Sometimes we
want to utilize an already existing component, and the term abstract component seems

more appropriate to us.

It is advisable to describe the semantic aspect through meta-language, even if
you do not have a translator for this. Then you can translate or simply rewrite it by
hand to the target programming language, select appropriate implementation for the
abstract components, and use the needed interface, collaborating protocol and
execution environment. For instance, Stack can be implemented in a contiguous
memory or in a linked memory, Symbol table — as a list or as a dictionary with the
hashing technique. Furthermore, instances of abstract components can be viewed as
distributed objects in a heterogeneous computing network.

4.3 Examples of abstract components

Some abstract components and their operations are very popular, e.g., Stack
(createStack, push, pop, top, etc.), Queue (createQueue, enqueue, dequeue, first, etc.),
while some are guessed, e.g., E-mail (prepare, send, receive, open). Among the many
specific components we would like to emphasize one that is useful for most of
semantics - Symbol table (SymbolTable in Figure 2) or its analogue to provide the

execution environment.

While building prototypes of the MLI, we have created an implementation of
Symbol table — MOMS (Memory Object Management System) - that is appropriate
for implementing the imperative programming languages. It is possible to define basic
and user defined data types, to define base operations and functions, to operate with
variables and their values, to manage the scope of visibility of all objects, etc. The
most important data types, concepts, and operations of MOMS are listed in the
appendix to this paper so as to give the reader a better idea about MOMS.

A second important component is Traverser (TraverserObject in Figure 2). Its
main task is realizing the traversing strategy, to change the current execution point

and to organize cooperation with the syntax object.

There is a depth-first left-to-right traversing strategy, which is used in the
following examples (Table 2). This strategy has three visiting aspects: Visit (for tree
leaves - terminals), and PreVisit and PostVisit (for the other tree nodes -
nonterminals). To define semantic functions for examples, we have used the
following operations: NodeValue() returns a value for the current terminal or
nonterminal symbol (value from the current IR node), and both goSiblForw(aName)
and goSiblBackw(aName) provide for a changing of the current node, searching the

node with the name aName between siblings going forward or backward.

Table 2 A depth-first left-to-right traversing strategy

Traverse (node P)
if Isleaf (P)
Visit (P)
PreVisit (P)
for each child Q of P,
in order, do
Traverse (Q)
PostVisit (P)

It is possible to describe interfaces for SyntaxObject, TraverserObject and
SemanticObject with domain-specific language. Then interfaces for obtaining the IR,
manipulating with it and working with the symbol table can be compiled together, and
it is possible to engage in high-level optimization and verification [Eng99].

The Traversing strategy can also be described with domain-specific language.
This is important if the strategy is not trivial and depends on syntax elements and the
program state [OW99 (traversing problems and solutions for Visitor pattern)]. The
traversal strategy should be independent from syntax as much as possible and
organized (combined) by patterns [VisO1]. In addition to common traversing
strategies there are also less traditional ones, e.g., the strategy for reverse execution of
the program [BM99]

4.4 Defining the semantic aspect

It is more convenient to define the semantic aspect by using diagrams (as in Figure 7).
We can write a meta-program or a program in the target language in textual form, too.
Diagrams contain syntax elements that are important for the semantic aspect and are
visualized with graphic symbols. We can use different graphic notations. If the

visiting order of syntax elements is important, then we mark the order with arrows.

Let us call the operations that are performed during the aspect node visiting
semantic action. Semantic action is similar to semantic function, but it is written at the
meta-level and relate only to a given semantic aspect. Semantic action is shown as a
box with the meta-code connected to the syntax element and takes into account the

traversing aspect.

There are all kinds of abstract data types that are needed for the semantic aspect
into the box with the key words IMPORT GLOBAL. For better perceptibility of the
semantic aspect, it is permissible to use additional graphic symbols that are not
needed in real execution. For instance, we use Other aspects to signal that we expect

there to be a composition with the other semantic aspects.

4.5 Examples of semantic aspects

Let us look at some examples of.semantic aspects (Figure 4 - Figure 8) that are
applicable for the simple imperative programming language Pam [Pag81]. Terminal
symbols are denoted by a rectangle, while nonterminal symbols are indicated by

10

rounded rectangles. The left circle in the nonterminals corresponds to the PreVisit

semantic action, the right one — to the PostVisit semantic action, while for the

terminals, the Visit semantic action is assigned.

IMPORT GLOBAL Env of
T SymbolTable |

{Zi) program (§2
' ENV.releaseProgEnv ()

ENV.prepareProgEnv () P T
" Otheraspec‘ls]

Figure 4 The semantic aspect PROGRAM. It prepares the program environment to manage
variables, constants, etc. and operations involving them. The environment is destroyed at the end

IMPORT GLOBAL A

| CanC teVv f ADT Stack y
anCreateVar o vanable_def €
H | N T
X \CanCreateVa* pop {)

CanCreateVar.push (TRUE) | P S .
: 4 O!her aspecfs

Figure 5 The semantic aspect VARIABLE DEFINITION. It allows for variable creation

IMPORT GLOBAL Trav of ADT Treelraverser, RefStack of
ADT_Stack, Env of ADT SymbolTable, CanCreateVar of ADT_ Stack

- LOCAL VarText = Trav.nodeValue()
; CanCreateVar.push (FALSE) if CanCreateVar.top() = TRUE and

Env.findVar (VarText) = FALSE
CanCreateVar.pop() " Env.createVar(VarText, INT)
< endif

LOCAL Ref = Env.getRef (VarText)

FY
RefStack.push (Ref)

program)
LOCAL IntText = Trav.nodeValue()
ﬂ | LOCAL Ref = Env.getRef (" INT "+IntText)

VARIABLE if Ref = EMPTY

LOCAL Integer = TextTolInteger (IntText)

Ref = Env.createlit (" INT_"+IntText, INT)
INTEGER Env.putValue (Ref, Integer)

endif
| RefStack.push (Ref}

Figure 6 The semantic aspect ELEMENT. It provides for the pushing into the stack all references to
each variable encountered while traversing. Variable creation is forbidden by default. The Trav
provides for getting the values of the current terminal node in IR.

11

IMPORT GLOBAL LOCAL Res = RefStack.pop()

| RefStack of ADT_Stack, LOCAL Var = RefStack.pop(}

| Env of ADT SymbolTable LOCAL Val = Env.getValue (Res)
Env.putValue (Var, Val)

]

A

- 3
(O assignment_statement

(O let_hand_side O)—>{ ASSIGN | —>(O right_hand_side @-’
A i 4
R A r
' Other aspects)
| Pl = sl
lRefStack.push(NULL] 1 | RefStack.push (NULL) 1

Figure 7 The semantic aspect ASSIGNMENT. It takes reference to the variable and reference to the
value from the stack and assigns a value to the variable. Pushing of references is simulated

IMPORT GLOBAL RefStack, Sort, Flag of ADT Stack,
Trav of ADT TreeTraverser, Env of ADT SymbolTable
] A

| Sort.push (INDEF) : : Sort.pep ()
| Flag.push (TRUE) _glgg_. pop () |
£

DO |O series O} END }J

PR AU

r” Other aspects

/

" Otner aspects »

[!
!

!'if Sort.top() = INDEF then | RefStack.push (NULL)
LOCAL Ref = RefStack.popl() f/,;//
if BEnv.getValue (Ref) = FALSE S
Flag.replaceTop (FALSE) | if Sort.top() = INDEF and
Trav.goSiblForw (GEND} | Flag.top() = TRUE
endif Trav.goSiblBackw (@WHILE)
endif J endif |

Figure 8 The semantic aspect INDEFINITE LOOP. It “goes through” the series and back to WHILE
until the comparison sets a NULL reference or a reference with the value FALSE

5 Meta-semantics

Meta-semantics is a term, which relates to a meta-program that describes the
counterparts of which semantics consist and the way in which these counterparts are

connected together. The conceptual scheme of meta-semantics is shown in Figure 9.

If we look at semantics from the definition side (the logical view) then
semantics are formed by traversing strategy and by a set of semantic aspects that
consist of semantic actions realized while visiting the appropriate node of the

intermediate representation. If we look at semantics from the runtime side (the

12

physical view) then while visiting one node it is possible that several semantic actions
have to be realized, and we have to ensure correct collaboration between all involved
instances of abstract components into the desired environment. How can we put all of

this together correctly?

No'nt:eiminals. S ntax Terminals
NT. y ¢

: Post Pre | [Post|| =
A vuanwsn ' ‘\ﬁsitl Vian viet Lm \

r

7

e

3 Seihanﬂc mfemeq;a__ti[uns Semantic
& of Semantic connectors

Actions »

e SE J

~J ;\':*%3\7‘“@/
“““ ISA, H‘“/

)

Logical _ . Phys:ca.'
e Semantics HAE

Figure 9 The conceptual scheme of meta-semantics. For instance, SA, involves nonterminal NT; and
terminal T, and SC, is performed while previsiting. SC, is a composition of ISA, and ISA,

To solve this problem we introduce the concept of the semantic connector. This
concept has been adopted from the concept Grey-box connmector, which solves a
similar problem: how to connect the pre-built components in a distributed and
heterogeneous environment for collaborating work [AGBO00]. The Grey-box
connector is a meta-program that introduces a concrete communications connection
into a set of components, i.e., it generates the adaptation and communications glue

code for a specific connection.

6 From semantic aspects to meta-semantics and executable
semantics

The obtaining of semantics for the fixed syntax is achieved in several steps: 1) select

predefined semantic aspects or define new ones for desired semantics, 2) rename

13

syntax elements and traversing aspect in the selected semantic aspects with names
from fixed syntax and traversing strategy, 3) rename instances of abstract components
to organize collaboration between semantic aspects, 4) make composition from
semantic aspects, 5) specify the runtime environment and translate the meta-code to

the code of the target programming language, and 6) compile the semantics.

e Selection of semantic aspects (step 1)
If we have a library with previously created semantic aspects, then we can

search for appropriate ones, i.e. reuse some parts of the semantics. The traversing

strategy also has to be considered.

o Syntax element and traversing aspect renaming in semantic aspects (step 2)
Actually it is semantic action mapping. Matching to the fixed syntax elements is

achieved by mapping syntax elements of semantic aspects to fixed syntax elements

(rename with — simple mapping and duplicate to — mapping of a semantic aspect

syntax element to several fixed syntax elements):

rename <name> <traversing aspect> with <target name> <target traversing aspect™

duplicate <name> <traversing aspect > to
<target name> <target visiting aspect> [,<target name> <target visiting aspect> ...]

For instance, rename left_hand_side PostVisit with VARIABLE Visit ;

duplicate COUNTABLENODE Visit fo VARIABLE Visit, assignment_statement PostVisit

¢ Renaming of instances of abstract components (step 3)

Matching of components is necessary because there is no direct data exchange
between semantic functions, and we need collaborative work. The program state is
fixed by using the runtime states of components. At first we decide what instances

they have in common and what names they have to get, and then we rename instances
in the semantic aspects:
replace <name> with <target name>
For instance, replace RefStack with DataStack ; replace Sort with LoopSortStack
e Composition of semantic aspects (step 4)

The goal of a semantic aspect composition is to bring together several semantic
aspects into one more complicated aspect that nearly describes entire semantics.

While composing, we stick together the meta-code of semantic actions that have the

same name. The sticking principles can vary, for instance, sequential (one code is

14

appended to the other onme), parallel (codes can be executed simultaneously or
sequentially in any order), free (user can modify the code union as he likes). To
achieve better results, we ignore some semantic actions or apply the sticking principle
to the semantic aspects in the reverse order. At this time we have to be aware of

conflicts between local variable names.

compose aspect <<pew SA>> (<refined SA>) [[append | parallel free] (<refined SA>) ...] , where
<refined SA> = <<old SA>> [ignore <name> <trav aspect> [,<name> <frav aspect>]] | [reverse]

The result is meta-semantics. An example of a meta-code fragment for meta-

semantics is given in Table 3.

Table 3 An example of meta-semantics

compatible with
ir type ParseTree
traverser_type ParseTreeTraverser

syntax elements (program, expression, VARIABLE, ...)
semantic actions (<PROGRAM> program PreVisit { ENV.prepareProgEnv{)},
<PROGRAM> program PostVisit { ...}, ...)

global Trav of ADT_TreeTraverser

global Env of ADT_SymbolTable

create DataStack, OperatorStack, CanCreateVar, LoopSortStack,
LoopCounterStack, LoopFlagStack, IfFlagStack of ADT_Stack

create InputFile, OutputFile of ADT_FILE

compose aspect <Al> // composes semantic aspects from aspects given above
(<PROGRAM>) // semantic aspects PROGRAM remains the same
append (<ELEMENT> '
replace RefStack with DataStack // replaces stack for collaborating work
rename INTEGER Visit with CONSTANT Visit) //renames nonterminal according to PAM syntax
append (<ASSIGNMENT>
replace RefStack with DataStack
rename left_hand_side PostVisit with VARIABLE Visit,
right_hand_side PostVisit with expression PostVisit
ignore left_hand_side PostVisit) // ignore pushing of NULL reference
append (<INDEFINITE LOOP>
replace RefStack with DataStack,
Sort with LoopSortStack, Flag with LoopFlagStack)
append (<VARIABLE DEFINITION>
rename variable_def PreVisit with assign_statement PreVisit,
variable def PostVisit with ASSIGN Visit)
end compose aspect

compose aspect <A2>
(<A1l>

ignore expression PostVisit, comparision PostVisit)

append (

/* Others aspect are appended such as <TYPE AND OPERATOR>, <INPUT>,
<QUTPUT>, <BASE BYNARY OPERATION>, <DEFINITE LOOP>, <CONDITIONAL STATEMENT> */

cel)
end compose aspect

e Meta-code translating (step 5)
Meta-code is translated to the target programming language, taking into account
the target language (e.g. C++), the implementation of abstract components (e.g. Stack

15

in linked memory), the operating system (e.g. Unix), the communications between
components (¢.g. CORBA), MLI components type (e.g. DLL), etc. The translation

may be done by hand or automatically (desirable in common cases).

e Obtaining semantic objects (step 6)

By compiling the code we get executable objects that provide semantic
performance, i.e. they contain the semantic functions that are called while traversing
the program intermediate representation. The instances of the concrete
implementation of abstract components are created, or the existing ones are

dynamically linked via selected communications protocols.

7 Examples of alternative semantic aspects

In this section we provide a short insight on how we can build nontraditional
semantics. By adding new features to existing semantics we can create a specific tool
that works with a given programming language. We would like briefly to survey two
examples: 1) statistics accounting of program point visiting, and 2) storing of
symbolic values for variables. Both aspects are added to the conventional semantics,

and this is program instrumentation if we speak in terms of software testing.

7.1 Accounting of program point visiting

Our goal is to account for any visiting of a desirable program point. That means that
we need to set counters at these points. At first we write the semantic aspect NODE
COUNTER (Figure 10). We use the abstract component Dictionary where we can

store, read and update records in form <key, value>.

| IMPORT GLOBAL Trav of ADT_TreeTraverser,
Dict of ADT_Dictionary

COUNTABLENODE
|

|
| LOCAL key = Trav.getNodeID()
LOCARL record = Dict.getRecNum(key)
if record = 0 |
| Dict.createRec(key, 1)
| else
Dict.update(record, Dict.get{record) + 1)
endif

Figure 10 The semantic aspect NODE COUNTER

16

Defining meta-semantics, we add this semantic aspect to the others. For

instance, we define accounting for the use of any variable and assignment operation:
dublicate countable_node Visit fo VARIABLE Visit, assignment_statement Post Visit

Another semantic aspect can be built which accounts for every concrete variable
using statistics into an additional dictionary (the variable name serves as the key). We
can improve this aspect further by accounting for an aspect of variable use - defined,
modified, referenced, released, etc. In the program analysis and instrumentation area,
our approach is similar to the Wyong system (based on the Eli compiler generation
system and the ATOM program instrumentation system), because specific operations
are attached to syntax elements, and in this way we obtain a specific tool with
additional semantics [S1097].

7.2 Storing of symbolic values for variables

The second example provides for the fixing of symbolic values for variables (Figure
11). To do this task in an effective way, we have additional operations in our MOMS
(symbol table). The operation createSymbValue creates an entry for symbolic value,
and with the operations addTextToSymbValue and addVarToSymbValue, we form the
value while traversing all nodes in the desired subtree (we store all needed program

symbols and symbolic values of variables). At the end we store accumulated value

IMPORT GLOBAL Trav of ADT_TreeTraverser, SymbRefStack of - —
ADT_Stack, Env of ADT_SymbolTable, CanCreateSymbVar of ADT_Stack S(\ianl::ea:esm\’a:.push[E‘RLSE}

CanCreateSymdVar.pepl)

LOCAL SymbVar = SymbRefStack.pop()
& Env.storeSymbValue (SymbVar, SymbVal)

© assignl:'}ent_smnment C}—/_’// — J
lr—‘ L

VARIABLE

~ Other aspects ™ f\—-omarasmc‘lx_-:l LOCAL VarText = Trav.nodeValue!)
I i e — Neaemaae” LOCAL SymbVarName = " SYMB_" + VarTex:
1. RefStack.push (NULL) if CanCreateSymbVar.topi{) = TRUE

¢ if Env.findVar(SymbVarText) = FALSE
Env.createVar (SymbVarText, SYMB)

endif
LOCAL SymbRef = Env.getRef (SymbVarText) |
\ Env.createSymbValue (SymbRef}

] SympbRefStack.push(SymbRef)
LOCAL SymbText = Trav.nodeValue() else
LOCAL SymbRef = SymbRefStack.top() LOCAL SymbRef = Env.getRef (SymbVarText)
Env.addTextToSymbValue (SymbRef, SymbText} Env.addVarToSymbValue (SymbRef)

J endif

with the operation storeSymbValue.

Figure 11 The semantic aspect SYMBOLIC VALUES

17

8 Conclusions

This method was developed with the goal of reducing the gap Between practitioners
(tool developers) and theoreticians (developers of formal specifications for
semantics). Our experience shows that the remarkable acquisition is achieved if
abstract components or abstract data types realize the greater part of semantics,

because that way it is easier to perceive the full implementation of semantics.

The second acquisition of our method involves significant disjoining of syntax
and semantics from each other. It allows us to combine various syntaxes and
semantics and to find out the most desirable semantics for the given syntax So, if we
have written syntax for a new language, we can match several semantics to it in a
comparatively short time. As a result, we can develop a wide spectrum of tools in

support of our new language.

Our approach allows us to change semantics dynamically while the interpreter is
running, i.e. replace semantics or execute various ones simultaneously. It is possible
to reduce a derived parse tree (by deleting nodes with empty connectors) or to
optimize it (tree restructuring statically and dynamically, considering performance
statistics).

At this moment the environment for tool construction or semantics generation is
not completely developed. Our experience shows that tools can be developed without
significant investments, for example, by using Lex/YACC as a generator to create a
syntactic object, which produces program intermediate representation. It is not too
hard to develop a Traverser and a simple SymbolTable. And as the last job, we have
to work up semantic aspects on the basis of our method and compose them, thus
obtaining connectors, which can be written in some common programming language
(skipping meta-language use and its translation). The use of abstract components

depends on target semantics.

We believe that the development of the serious tools demands a more universal
implementation of the Symbol table. Our Symbol table implementation - MOMS - is
not applicable only for imperative language implementations. It was also the basic
object-oriented database for the commercial application Mosaik (Sietec consulting
GmbH Co. OHG, graphical CASE tool for business modeling).

18

The weakness of our method lies in the semantic aspects composition stage. At
this moment we have not analyzed all risks in terms of obtaining senseless or
erroneous semantics. The problems are not trivial, and they are similar to problems in
the proper collaboration of objects or components in object-oriented programming,
too. [e.g. ML98]. Most name conflicts can be precluded automatically, but it is
considerably harder to organize collaboration among the common components in

semantic aspects (it is easier if the semantic aspects are mutually independent).

Another problem is that the language grammar is frequently not context free
(this is true of our example above, t00). In this case we have to introduce additional
flags to memorize the context of syntax elements. It is advisable to rewrite the syntax

and to use context-free grammars.

9 References

[AAB96] V. Amicane, G. Amnicans, and J. Bicevskis. Multilanguage interpreter. In H.-M. Haav and B. Thalheim,
editors, Proceedings of the Second International Baltic Workshop on Databases and Information
Systems (DB&IS ‘96), Volume 2: Technology Track, pages 173-174. Tampere University of Technology
Press, 1996.

[AGB00]U. ABmann, T. GenBler, and H. Bar. Meta-programming Grey-box Connectors. Proceedings of the
Technology of Object-Oriented Languages and Systems (TOOLS 33), pp.300-311, 2000.

[ASUS86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Technigues, and Tools.
Addison-Wesley, 1986.

[BM99] B. Biswas and R. Mall. Reverse Execution of Programs. ACM SIGPLAN Notices, 34(4):61-69, April
2000.

[Cla99] C. Clark. Build a Tree — Save a Parse. ACM SIGPLAN Notices, 34(4):19-24, April 2000.

[DKV00] A. Deursen, P. Klint, and J. Visser. Domain-Specific Languages: An Annotated Bibliography. 4CM
SIGPLAN Notices, 35(6):26-36, June 2000.

[Eng99] Dawson R. Engler. Interface Compilation: Steps toward Compiling Program Interfaces as Languages. In
DSL-99 [ITSE99), pp.387-400.

[FL88] Charles N. Fisher, and Richard J. LeBlanc, Ir. Crafting 4 Compiler. Benjamin-Cummings, 1988.

[FNT+97]F. Ferrucci, F. Napolitano, G. Tortora, M. Tucci, and G. Vitiello. An Interpreter for Diagrammatic
Languages Based on SR Grammars. Proceedings of the 1997 IELE Symposium on Visual Languages (VL
'97), pages 292-299, 1997.

[GHIVYS]E. Gamma, R. Helm, R. Johnson, and J. Vlisides. Design Patterns: Elements of Reusable Software,
pages 331-334. Addison-Wesley, 1995.

[HKO00] J. Heering and P. Klint. Semantics of Programming Languages: A Tool-Oriented Approach. 4CM
SIGPLAN Notices, 35(3):39-48, March 2000.

[ITSE99] Special issue on domain-specific languages. IEEE Transactions on Sgftware Engineering, 25(3),
May/June1999.

[Kin95] W.Kinnersley, ed., The Language List. 1995. http://wuarchive.wustl.edu/doc/misc/lang-list.txt
[Lou97] Kenneth C. Louden. Compilers and Interpreters. In Tucker [Tuc97], pp.2120-2147,

[ML98] M. Mezini and K. Lieberherr. Adaptive Plug-and-Play Components for Evolutionary Software
Development. SIGPLAN Notices, 33(10):97-116, 1998. Proceedings of the 1998 ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages & Applications (OOPSLA ‘98).

19

http://wuarchive.wustl.eduldoc/rnisc/lang-list.txt

[OW99] J. Ovlinger and M. Wand. A Language for Specifying Recursive Traversals of Object Structures.

[Paa93]

[Pag8l]

[Sch97]
[SK95]

[S1097]

[TucS7]
[Vis01]

[2297]

SIGPLAN Notices, 34(10):70-81, 1999. Proceedings of the 1999 ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages & Applications (OOPSLA ‘99).

J. Paakki. Attribute Grammar Paradigms — A High-Level Methodology in Language Implementation.
ACM Computing Surveys, 27(2):196-255, June 1995. '

Frank G. Pagan. Formal Specification of Programming Languages: A Panoramic Primer. Prentice-Hall,
1981.

David A. Schmidt. Programming Language Semantics. In Tucker [Tuc97], pp.2237-2254.

K. Slonneger and B. L. Kurtz. Formal Syntax and semantics of Programming Languages: A Laboratory
Based Approach. Addison-Wesly, 1995.

A. M. Sloane. Generating Dynamic Program Analysis Tools. Proceedings of the Autralian Software
Endineering Conference (ASWEC’97), pp.166-173, 1997.

Allen B. Tucker, editor. The computer science and engineering handbook. CRC Press, 1997.

J. Visser. Visitor Combination and Traversal Control. SIGPLAN Notices, 36(11):270-282, 2001.
Proceedings of the 1998 ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages & Applications (OOPSLA ‘01).

D.-Q.Zhang and K.Zhang. Reserved Graph Grammar: A Specification Tool For Diagrammatic VPLs.
Proceedings of the 1997 IEEE Symposium on Visual Languages (VL '97), pages 292-299, 1997.

10 Appendix

Table 4 MOMS types
Type Description
Constructor Handle to an object type description
Value Handle to a byte stream that contains an object value
Reference Handle to a memory object
MemoryMap Main central object that organizes other objects (other MemoryMap also)
IdentifDict Dictionary of all identifiers (variables, constants, etc.)
TypesDict Dictionary of all types (basic types and user defined)
FunctDict Dictionary of all functions (basic operators, basic functions, user defined functions)
NamesTable Compact storing of all strings
ConstrTable Compact storing of all constructor descriptions
ValuesTable Storing and managing of all object values
MemoryBlock Organizing scope visibility in all dictionaries and providing memory management
...Others Stack, queue, collection, etc.

20

Table 5 System initialization and global operations

Operation Description
MemoryMap initialize(Uint Creates MOMS with internal parallel but related memories
memoryCount) (MOMS)

Uint switchMemoryTo(Uint memNum)

We can exploit only the specific internal memory

Uint getCurrentMemory(void)

Returns the number of the actual memory

defineCountOfBaseTypes(Uint Defines a count of the basic types of MOMS
countQfBaseTypes)
defineBaseType(char* typeName, Uint Defines base types. This interface is in C and depends on previously
type, Uint typeSize) defined types. Some examples:
defineBaseType("long_", LONG_, sizeof{long_));
defineBaseType("boolean_", BOOLEAN _, sizeof{boolean_));
defineBaseType("date ", DATE , sizeof{date))
defineBaseFunction(char* Defines the base operations and functions. This interface is in C and

langFunctName, char* internalName, Uint
returnType, int paramCount, ...)

depends on previously defined types. Some examples:
defineBaseFunction("+", "PLUS", LONG_, 2, LONG_, LONG_);
defineBaseFunction("day", "day”, LONG , 1, DATE)

prepareProgramEnv(Uchar scope)

Prepares a new MemoryBlock, defines the scope (visibility) of
previously defined variables, types. functions

releaseProgramEnv(void)

Releases a current MemoryBlock and all related memory in other
objects (dictionaries, tables) and restores a previously defined
MemoryBlock

defineAutomaticMemSwitching(Uint
firstMemNum, Uint lastMemNum}

Provides for automatic switching in various functions. For instance,
we look up the variable in a local memory and then in a global
memory (if the variable is not founded yet).

... Others

Table 6 Defining of user defined data types

Operation

Description

ConstrPtr createConstrArray(Uint minIndex, Uint

maxIndex, ConstrPir ptrToElemConstr)

Defines an array type with the given dimensions and
element types. Here and in other functions we can use
any previously defined (or partly defined) data type.

ConstrPtr createConstrFunct(ConstrPtr

ptrToReturnConstr, ConstrPtr purToParamConstr)

Defines a function type with the given parameters and
return tyvpe.

ConstrPtr createConstrName(char* aName, ConstrPtr

trToSubConstr)

Assigns a user-defined name for the given type.

ConstrPtr createConstrPointer(ConstrPtr
ptrToSubConstr)

Defines a pointer type to the given type.

ConstrPtr createConstrProduct(ConstrPtr
pirToSubConstrl, ConstrPtr ptrToSubConstr2)

Creates a production of two types (establishes some
relation between them). It is useful to construct a
serious data structure.

ConstrPtr createConstrRecord(ConstrPtr
ptrToSubConstr)

Defines a record data type (a set of pairs {name, type}).

... Other constructors

For instance, base data type constructors

constrArraySetMinIndex(ConstrPtr ptrToConstr, Uint

minindex)

Modifies the type description (attributes).

Uint constrArrayGetMinIndex(ConstrPtr

prToConstr)

Provides details about data type attributes.

21

Table 7 Operations with variables and similar objects

Operation

Description

createVar(char* aName, ConstrPtr prToConstr)

Creates a variable with the given name and type.

createVar(char* aName, char* typeName)

Creates a variable with the given name and type name.

createLiteral(char* aName, ConstrPtr ptrToConstr)

Creates a literal (constant) with the given name and type.

Ref createRef(ConstrPtr ptrToConstr)

Creates an object without a name with the given type, for
instance, internal loop counter, return value of function.

ConstrPtr getConstrRef(char* typeName)

Returns pointer to type with the given type name.

createSynonym(char* aName, Ref aRef)

Creates another reference by name to the existing object.

... Other

Table 8 Operations with value

Operation

Description

putValue(Ref aRef, char* aValue)

Sets a new value for the object.

char* getValue(Ref aRef)

Returns a value for the object.

char* createDynamicValue(ConstrPtr
ptrToConstr)

Provides dynamic memory allocation for the object given by
type.)

deleteDynamicValue(char* aValue)

Releases dynamically allocated memory.

setValueProtectionOn(char* aName)

Protects a value of the given object against modification, for
instance, protects constants.

setValueProtectionOff{char* aName)

Takes off a value protection.

gotoArrayElementConstr(Ref& aRef, Sint
index)

Sets a virtual mark to element constructor and to a given array
element value. aRef is modified, it refers to the array element.

gotoNameConstr(Ref& aRef)

Moves the virtual mark to the name constructor.

gotoPointerConstr(Ref& aRef)

Moves the virtual mark to the pointer subconstructor and to the
start of value.

gotoProductionLeftConstr(Ref& aRef)

Moves the virtual mark to the left subconstructor and to the start
of the corresponding value.

gotoProductionRightConstr(Ref& aRef)

Moves the virtual mark to the right subconstructor and to the
start of the corresponding value.

| gotoRecordConstr(Ref& aRef)

Moves the virtual mark to the start of record.

gotoNameInList(Ref& aRef, char* aName)

Moves to the appropriate type and value (list of named types
linked by productions) E.g., search a field in the user-defined
structure.

.. Other

22

