
LATVIJAS UNIVERSIT ATE

Guntis Arnicans

Inforrnacijas apstrades riku izveide
neviendabigai un dinamiskai videi

SAISTIT As PUBLIKA.CIJAS

(Promocijas darba pielikums)

K' -

(
,. "\ La:v!ios

.. '.J.7r:;1·· ~:I Universitates
. ~.~. . '

~_. SISLIOTEKA

Publikacijas recenzejamos starptautiskos zinatniskos izdevumos

1. V. Arnicane, G. Amicans, and J. Bicevskis. Multilanguage interpreter. In H.-M.
Haav and B. Thalheim, editors, Proceedings of the Second International Baltic
Workshop on Databases and Information Systems (DB&1S '96), Volume 2:
Technology Track, pages 173-174. Tampere University of Technology Press, 1996.

2. G. Arnicans, Application generation for the simple database browser based on
the ER diagram. In Janis Barzdins, editor, Databases and Information Systems,
Proceedings of the Third International Baltic Workshop, Volume 1, pages 198-209.
RIga, 1998.

3. G. Arnicans, J. Bicevskis and G. Kamitis. The Concept of Setting Up a
Communication Server. In abstracts of papers of]'" International Conference
"Information Technologies and Telecommunications in the Baltic States ", pages 48-
57. Riga, 1999.

4. G. Arnicans, J. Bicevskis and G. Kamitis. The Unified Megasystem of Latvian
Registers: Development of a Communication Server - the First Results and
Conclusion. In abstracts of papers of 4'd International Conference "Information
Technologies and Telecommunications in the Baltic States ", pages 163-168. Riga,
2000.

5. G. Arnicans and G. Karnitis. Heterogeneous Database Browsing in WWW Based
on Meta Model of Data Sources. In Albertas Caplinskas, editor, Databases &
Information Systems, Proceedings of the 4th IEEE International Baltic Workshop.
Volume 1, pages 174-187. Vilnius "Technika", 2000.

6. G. Arnicans and G. Kamitis. Heterogeneous Database Browsing in W'VW Based
on Meta Model of Data Sources. In Janis Barzdins and Albenas Caplinskas. editors,
Databases and Information Systems, Fourth International Baltic Workshop.
BalticDB&1S 2000 Vilnius, Lithuania, May 1-5, 2000, Selected Papers, pages 167-
178. Kluwer Academic Publishers, 2000.

7. G. Arnicans, J. Bicevskis, E. Karnitis, and G. Karnitis. Smart Integrated Mega-
system as a Basis for e-Governance. Proceedings D of the s" International Multi-
Conference Information Society IS '2002, pages 197-20 I. Ljubljana, Slovenia, 2002.

8. G. Arnicans and G. Kamitis. Semantics for Managing Systems in Heterogeneous
and Distributed Environment. In Hele-Mai Haav and Ahto Kalja, editors,
Databases and Information Systems, Proceedings of the Fifth international Baltic
Conference BalticDB&1S 2002, Volume 1, pages 51-62. Tallinn, 2002.

9. G. Arnicans and G. Karnitis. Semantics for Managing Systems in Heterogeneous
and Distributed Environment. In Hele-Mai Haav and Ahto Kalja, editors,
Databases and Information Systems II, Fifth International Baltic Conference,
BalticDB&JS'2002 Tallinn, Estonia, June 3-6,2002, Selected Papers, pages 149-160.
Kluwer Academic Publishers, 2002.

Citas publikacijas, referati un raksti

1. V. Amicane, G. Arnicans, and J. Bicevskis. MultiJanguage interpreter. Submitted
paper to the Second International Baltic Workshop on Databases and Information
Systems (DB&IS '96), Tallinn, pages 14, 1996.

2. G. Arnicans, J. Bicevskis and G. Karnitis. Development of a Communication
Server: First Results and Conclusions. Baltic IT Review, 17(2):29-32,2000.

3. G. Arnicans, J. Bicevskis, G. Karnitis, and E. Karnitis. The Mega-system:
integration of National information systems. Conceptual and Methodological
Baselines. In Latvian Academic Library Grey Literature database,
http://159.148.58.74/grevdoc/megasystem baselines/mega base.doc,. pages 17, 200l.

4. G. Arnicans. Domenspecifisko valodu izmantosanas iespejas. Referats, Latvijas
Universitates Zinatniskd Konference 2002, slaidi 41, 2002.

5. G. Arnicans. Information Processing Tools and Environments. Referats, Latvijas
Universitates Ziniitniskd Konference 2003, lapas 9, 2003.

6. G. Arnicans. Description of Semantics and Code Generation Possibilities for a
Multi-language Interpreter. Akceptets iespiesanai Latvijas Universitates ziniitniskie
raksti. Sejums 669. Datorzintitne un informacijas tehnologijas., lapas 22, 2003.

Hele-Mai Haav, Bernhard Thalheim (Eds.)

Databases
and

Information Systems

Proceedings of the
Second International Baltic Workshop
Tallinn, June-12~14,--1996- -------

Volume 2: Technology Track

Multilanguage interpreter

Vineta Arnicane, Guntis Arnicans, Janis Bicevskis

University of Latvia
Faculty of Physics and Mathematics

Rainis Blvd. 19, Riga LV-1459, Latvia
e-mail: varnican@lanetlv, gamican@lanetJv

and
Riga Institute of Information Technology

Skanstes 13, LV -1013 Riga, Latvia
e-mail: bicevskiS@swh.lv

The idea of the multilanguage/multisemanrics interpreter (MLI/MSn bas risen from a

plenty of problems that require to analyze the given program text and do something with

it Some of such problems are program translation to another programming language or

compilation, dynamic program execution or interprererion, program beautifying and

c1arifying, determining program complexity, creation of cross-reference tables, static

program testing, symbolic testing, automatic testing, program instrumentation with

additional text, dynamic testing supporting. _

The main characteristics that describe programming language are syntax,

semantics and pragmatic. The multilanguage interpreter is a program that receives the

source language syntax, the source language semantics and the program written in

source language and performs the operations implied by this program and given

semantics.

We use attribute grammars as basic concept in MU/MSI. As metalanguage for

expressing grammars we use BNF. The syntactic structure of a given source program as

generated by the grammar, can be depicted as a parse tree. Conceptually we parse the

input token so-earn, build the parse tree, and then traverse the tree as needed to evaluate

the semantics rules at the parse tree nodes.

Semantics are described by evaluation rules. Rules are not associated with some

grammar production rule out are connected to terminals and nonterminals of BNF. We

173

mailto:bicevskiS@swh.lv

have divided semantics rule for nonterminal symbol into two functions: Pre_function that

is executed if we visit node from parent or sibling node and Post_function if we visit

node from child. For terminal symbols we write only one function.

The semantics for MLI/MSI is the set of programs written in some metalanguage

and some real programming language. These programs are written in such a way that

they can be executed on computer. The special support tool is designed for

mulrilanguage interpreter to write semantics more quickly and compactly - Memory

Object Management System (MOMS).

MOMS operates with some basic memory objects such as name of object,

reference (handle to memory object), value (handle to byte stream that contains a value

of an object), constructor (handle to object type description). Constructor may be

primitive constructor or combination of primitive constructors. By using of constructors

we can describe the structure and features of any memory object, for instance, type of

variable, function arguments, procedure, etc. MOMS also operates with more complex

memory objects such as dictionaries, tables, memory blocks, stacks, collections.

MOMS functions we use for describing the semantics of the subject language.

These functions provide definition of the features of program running environment,.

description of the source language basic data types, description of the source language

basic operations (+, -, *, /, <, >, mint), maxt), substrt), etc.), definition of scope for

memory objects, sets of functions that allow to create easier user defined data type,

various operations with variables, constants, functions for realizing the source language

procedures and functions, and other useful functions.

The advantage of MLI/MSI is easiness and simplicity of various semantics

describing, modifying of them and linking of them to syntax during execution.

We have created conventional semantics for the simple poor language PAM as

well as special -semantics-that perform symbolic -exeeution along thechosenprograrn .. ,

path. MOMS can be used by other tools too. It is already used as central pan of

MOSAIC (CASE tool for business modeling).

174

Janis Barzdins (Ed.)

Databases
and

Information Systems

Proceedings of the
Third International Baltic Workshop

Riga, April 15-17, 1998

Volume 1

RIga 1998

Application generation for the simple
database browser based on the ER

diagram

Guntis Arnicans

University of Latvia
Faculty of Physics and Mathematics

Rainis Blvd. 19, Riga LV-1459, Latvia
gamican@lanet.lv

Abstract

This paper describes a development technique for the rough browser of a database. The
offered data browser or data management system can be generated automatically from the a
physical data model represented by an ER diagram. The ER diagram used to generate a
target application source text is described by common simple concepts and by some
additional attributes with default changeable values. All the ER diagram elements are
mapped to standard screen object groups and are the main components in the target system
screens. Various screen templates for generated applications are defined depending on the
entities, the relationships between them and an acceptable user interface. The generated
application can be used for database browsing, data manipulating, system prototyping, fast
developing of simple information systems and data analyzing.

1. Introduction

There are many strategies for information system development and project management

in nowadays. The development of very advanced CASE tools lets us use the Rapid

Application Development (RAD) methodology. This approach includes several steps -

business modeling, data modeling, process modeling, application generation, testing and

. - turnover I lj.rtnthis paper the simple technique is described that allows to develop

specific information system - database browser and data manager. The main attention is

turned to the generation of application.

Many powerful tools already exist to assist m system development with RAD

technology, for instance. Oracle Designer/2000 [2]. [3]. But practice shows that these

tools sometimes are not useful. The reasons are that they are expensive and require high

educated and trained specialists to work with them. And we have to work hard for some

198

mailto:gamican@lanet.lv

time. The quality of the information system mostly depends on the data model.

Especially this data model (object model) is critical when we use Object Modeling

Technique (OMT) [4). Let us assume that we already have designed the physical data

model for our database. Like a conceptual data model the physical data model can be

described by Entity-Relationship Diagram (ER diagram). This is popular instrument to

describe data model or database and these diagrams are known for most programmers.

Our goal is offer to the user a technique that allows to create a database browser

from the physical data model described by the ER diagram. What does the developer

have to do? He has to create a simple ER diagram for the existing or the planned

database. We do not care in whether he makes a serious analysis and design, whether he

creates the ER diagram "on the fly". He obtains quickly generated database browser, a

simple information analysis and filtering tool, a data entering and editing tool, a

prototype for the most serious business application, simple database testing tool. Thus,

while the real system is developed, a robust information system is obtained.

2. ER diagram - the source for generation

2. (The elements of the ER model

The ER diagram is a source for application generation. We consider only the ER

diagrams that represent physical data models. The main objects we manipulate are the

ER diagram descriptor (describing common features of database), the entities

(representing tables in our database). the relationships (representing the relations

between the entities). the fields (representing the data fields in the record of the physical

table).

Developers use various variants of the ER diagrams. Let us take a diagram that is

not too simple and not very complex. The ER diagram can be described by the object

model shown in the Figure 1. We choose the following elements in the ER diagram:

• diagram descriptor: Diagramtvame;

• entity - Entitylvame, [EnlilyType], PrimaryKey, Unique Key, Index;

• field - FieldName, [FieldType), Data'Iype. [Visibilily]. [Shorlf/iew]. [Longf'iew];

• relationship - Endiintityjt , EndEnlily_2, Cardinaliry T, Cardinaliry Z. Role I.

Role _2, ForeigriKey _I, ForeigriKey _ 2.

/99

The attributes in brackets are introduced for generation better applications. For

simplicity we assume that primary key and foreign key are represented only by one field.

In our simplified model we assume that an index is created from a field without using

any function. It is not so hard to expand the model to use a combination of fields as the

primary key (as the foreign key respectively) and a function of fields as the index.

Rob••••
ENOl CARDINAUTY
END2= CAROINA1.JTY ftas_1:.\ _ flo;. I
ROLE_I
ROLE_2 1'w_a1_fKl

.-odd
flfio-NAME
OATA)VPE
IFIELD _TYPE]
(V1SlBIUTY]
(S1lOllT _VIEW]
ILONG_ VIEW]

Figure I The conceptual object model for the ER diagram

2.2 Additional elements of the ER diagram

Let us introduce several new attributes for the ER diagram. These attributes provide the

additional information for the application generation program to generate a more

convenient application.

Entity type is a special attribute of an entity that allows us to generate

application screens with a specific information layout and data manipulation means. This

attribute is stated automatically and depends on the relationships between the entities.

The user can correct it while automatic type fixing.

Field type is an automatically calculated attribute of the field. If the field is

defined as the primary key of Entity via relationship has as PK (Figure 1) then the field

has type PK. Similarly we define type UK (via relationship has as UK) and type FK (via

relationship has as FK / or has as FK2). Otherwise the field type is Attribute.
-- - --- ------

Visibility is a feature of a field. It states whether the information associated with

the field is or ;s not displayed to the user. The default value of visibility is TRUE for--

fields with types UK, FK and Attribute but FALSE for type PK.

ShortView and LongView are field attributes that define how the entity record

can be best displayed on the screen.

200

2.3 Entity types

Entity type is an important concept in our application generation ideology. Let us define

the following eruity types.

• Domain - list of standard data elements. allowed values for an attribute or an object

property.

• SimpleEntily - simple object that is determined by a set of attributes or standard data

elements.

• CompJexEntity - complex object IS similar to Simple Entity but it includes other

simple or complex objects.

• Link - logical relation between at least tv 0 simple or complex objects.

2.4 Algorithm for entity type determination

I. Scan through all the entities and fix those that have no field with type FK (foreign

key) and all the incoming ends of whose relationships are either of cardinality I or

0 .. 1. We have to assign the type Domain or Simplelintity to the fixed entities. The

type Domain is assigned by default.

2. Scan through all entities without a fixed type and fix anyone that has fields with type

FK referenced only to entities with type Domain and all the incoming ends of whose

remaining relationships are either of cardinality 1 or 0 ..1. The type Simple Entity is

assigned to the fixed entities.

3. Scan through all entitieswithout a}ixed type and fix each one w~jch at that moment

is referenced by a foreign key from any entity with type Simple Entity, Complex Iintity

or undefined type. The entity can also reference to itself. The type ComplexEntity is

assigned to the fixed entities.

4. Scan through all entities without a fixed type and fix anyone that has at least two

fields with type FK thatreference to, entities with type Simplelintity or Complexlintity.

We have to assign the type Link or Complex Entity to the fixed entities. The type Link

is assigned by default.

5. The type Complexlintity is assigned to the any remaining entity without fixed type.

The user decides on the entity type (1. and 4. step) according to the semantics of

the entity and on how he wants to see the information on the screen.

201

2.5 Textual visualization of entity record

We need to define several textual visualizations of an entity record In our system. A

textual visualization of an entity record is mapping the field values to text. These texts

(or entity views) are used to display an entity on the screen. Let us define three functions:

short ViewO, long ViewO, al/FieldsO. The shortl/iewt) displays some of the record fields

in an ordered sequence. The order is defined by assigned an order number to attribute

Short View. If the field is not included in short view the 0 is assigned to Short View. The

similar approach is used for longl/iewt), The allFieldsO displays all fields.

2.6 ER diagram for example

The ER diagram for example is given in Figure 2. The attributes of each field are given

in the following sequence - field name, dora type, field type. visibility (T for TRUE, F for

FALSE), Short View, LongView.

Poli<y

1St' policy, KUM,
PollcyNo. NUMf6).
Peraon:- NUH1111.
O.t. trolll. DATI:..
D.t~ - to, DAtt.
Pr..Iua. OEC(10,2).

PK, r. o, 0
UK. T. 1. 1
rx. 1. O. ·2
Attr. T. O. J
Attr. T, 0, C
A.ttr. 'T. O. 0

issued _ 10yU'Wfl

FK Penon

Identlty Ho. N'tI1ftll, Pte.. T, 0,
t.lule. - C'HAAt201, A.ttr. T. 2,
Surn&ae. CHARI20L Attr. T. 1,

Index
Pol icy No ASC

t. tio. OESC •... -:....'r-

coven _i:nsuruI_ aIlO

is_CO'ICI'ed_byJOlicy
FK Policy

la.a.ured_auro

i5_inwrcd_~th

rcll,IC_IO_.U10

f1(Aula

ISH' AUtO. NOI. PIC.
Reqr.tntion No. CHARI'). UK.
Hod_L - NlItUI. FIt.
Y•• r, NtI'Il4>. Attr.

ISN ~n.ur, NTJM, PK,
PolIcy, NtIH, nc
Auto, NUK. 0:.. T. 2, J
Ord.ec_tILJaber, HUHI2J. Attr, T. 0, 1

I Dd ••.
Order nwaber ASC

Ind.x
ReQi3ltr.t1on_No ASC

Figure 2 ER diagram for example

3. Application generation

Fhe general idea of generation is 10 create a system with a predefined user interface and

functionality. The features of the system depend on the generator. We can generate the

whole application for the ER diagram or only some components for this application.

202

3.1 Screens and menu system

The quality and usefulness of the generated system depends mainly on the generated

screen system. Let us define several standard screens that allow us to handle data in the

database. The basic generation principle in oUI approach is to generate the specific data

editor for one or several tables connected by relationships. We generate a set of related

screens and this enables direct transition from one screen to another.

The primary objects in OUI system are entities and relationships between them.

We define some screen types with different user interface and different functionality for

any entity or relationship. For instance, we can display on the screen entity, links to other

entities (relationships in the ER model), information about related entities or display

related entities by some relationship. The screens of all types are generated for each

entity (accordingly to entity type) and for each relationship if the generation options do

not define another behavior.

The menu provides access to any generated screen and standard operation

defined for any application. The screens are organized in a hierarchy for easy orientation.

3.2 Screen components

Every screen logically consists of two large sets with different screen objects.

• Information group - screen objects that display information stored in the database

and objects that are generated from the ER model. This group mainly consists from

table fields and relations between entities. The basic information subgroups are: Field

group (screen objects that display visible record fields), Entity presentation group

(screen objects that display the record of the entity or the list of records),

Relationship presentation group (screen objects that display relationship between

entities), Order button group (radio button group that determines the order in what

records are ordered).

• Management group - screen objects that provide additional management over the

data stored in the database. Their generation depends ()n the screen tvpe. The

following management subgroups are defined: Edit button group (a group of

bunons for entity record editing - New, Edit, Save, Delete. Cancel buttons). Locate

button group (a group of buttons for locating the desirable record - First, Next,

Previous, Last, Find buttons), Print button (a burton for printing the current record

203

or a record list), OK button (a button for leaving the window), Control button

group (specific buttons included in the screens of specific type).

4. Mapping ER model objects to application objects

4.1 Mapping sequence

A rough algorithm for application generation is the following.

• Map the ER diagram name to application name.

• Generate the screens for each entity (all screen types allowed for given entity type):

1. Generate screen name from entity name.

2. Generate each information subgroup needed for the given screen type. The layout

of this group (horizontal, vertical, tabular or other) is not the subject of this

paper.

a) Generate all field groupS for given entity.

b) Generate information about all related entities via foreign keys.

c) Generate information about all related entities via relationship without a

foreign key at the end of given entity.

d) Generate order button group for given entity.
'---.,~- -, ~

3. Generate all management subgroups necessary for the given screen type.

• Generate screens of all allowed types for each relationship.

I. Generate screen name from related entity names and role names ..

2. Generate information groUp as for the entity screens.

3. Generate management group as for the entity screens.

• Generate menu system organized by screen types. The deepest menu items are

generated from the entity name (for entity based screen) or from two entity names and

role names (for relationship based screen). The menu item will open thewindow.for.

the specified screen type ..and entitytor rela~i()nship),as the central object.

• Generate adciitional m~nu items for standard operations.

4.2 Field mapping

A field with type Attribute maps to screen I Attribute heade--: IVa/ue_ ••••th_fiekUlata_1ype II
object group Attributelnfo (Figure 3).

Figure 3 Screen object group Arrributelnfo

204

Attribute header is TextBox object with value generated from FieldName and EditBox

object contains the value with type defined by field Data Type. The EditBox length

depends on the data type but is limited by some reasonable maximal length. If necessary

scrolling through field is provided.

A field with type PK (primary key)

maps to screen object group Pklnfo (Figure

4). It is similar to Attributelnfo but it also has

the button Gen. The user can manually enter a value for the record primary key or

generate a value automatically by pressing the button Gen. Key generation depends on

the selected default rule. When the user leaves EditBox the system checks whether the

Figure4 Screenobjectgroup Pklnfo

value is unique.

A field with type UK (unique key) maps to

screen object group Uklnfo (Figure 5). This group

is similar to the screen object group Pklnfo.

A field with type FK (foreign key) maps to

screen object group Fklnfo (Figure 6). The content

of this group depends on the screen type. Figure6 Screenobject group Fklnfo

relationship type and connected entity type. Fk header is TextBox object with value

generated from FieidName. CheckBox is an optional element and is generated when

corresponding relationship at the opposite end has cardinality 0 .. 1, otherwise (cardinality

is I) CheckBox is not generated. We can assign an empty value to the foreign key field

by turning off CheckBox. Entitylnfo IS another Screen object group (see Entity

presentation). The button Go is optional and its generation depends on the screen type.

Figure5 Screenobjectgroup Uklnfo

I FK header 0 (Enlltylnto) _I

4.3 Entity presentation

An instance of entity is represented by screen object group Entitylnfo Let us define

several subgroups for Entitylnfo,

Entity with type Domain IS

represented by Domain/lifo (Figure 7).

ComboBox provides the selection of Figure7 Screenobject group Domainlnfo

domain value and shows the current value. This screen object is obligatory part of the

group. EditBox Domainjey is optional. It is generated by the following rules At first, if

entity has the visible unique key then Domain_key gets the data type from this field

205

Otherwise, if entity has the visible primary key then it gets the data type from this field.

If entity has no visible unique or primary key then EditBox is not generated. Both objects

always reference to the same table record. EditBox can be used for selecting the domain

value by entering the key in the EditBox. Domain value is the entity representing text

depending on the default text function.

Entity with type Simple Entity or

Complex Entity is presented by EntityTextlnfo

(Figure 8). TextBox contains the entity

representing text depending on the default text

generation function.

Several similar entities with type

SimpleEntity or ComplexEntity are presented by

Entityl.istlnfo (Figure 9). ListBox contains

entities representing texts depending on the

default text generation function. Entityl.ist Info

represents also entities with the type Link but in the text generation function can exclude

one field with type FK

4.4 Relationship representation

One direction of relationship is represented

by Relationshiplindlnfo (Figure 10). Let

us suppose that we represent relationship

Figure 8 Screen object EntityTextlnfo

Figure 9 Screen object EntityListlnfo

Figure 10 Screen object RelationshipEndlnfo

from Entity _I to Entity j with role Role _I. TextBox Relation Jole contains text

'Role T' and TextBox Relation end contains text 'Entity_2'. Button Go provides going

to the screen that represents entity Enlityj.

4.5 Mapping of the indexes

If the cniitv has at least one index then all indexes are

mapped to Order button group represented by

OrderButtonGroup (Figure II). The first button None

allows to remove any previously used record sequence.

Every next button corresponds to some index.

206

D None

o
o

Index 1

Index 2

Figure I I OrderBunonGroup

4.6 Traversing through screens

Traversing through screens is performed by button Go. This button is usually attached to

the screen object group representing the entity. The button brings us to another screen

that belongs to this entity. The button can work in two modes - with filter or without

one. If the filter option is chosen then in the newly opened screen we can access only

those records that are logically tied with the record or records in the previous screen. For

instance, if we fix any car model in the table Model then in the table Auto only cars with

this model are accessible.

5. Screen types

The design of screen types depends on the user's needs. Let us define screen templates

that can be regarded as basic screen types. The screen examples correspond to Figure 2.

• Simple entity view

This screen type can be used for the

representation of any entity (Figure
Model

I

I~···-':'~~~~·I~ ~ ~ ~l!.!I!!SI

I~~~~~J --

12) The information group contains

all visible field groups and

Order Buuonciroup if any index is

defined. The management group

contains Edit bunon group. Locate

button group. Print button. OK button.

• Entity view extension with links

This screen extension can be added to screens

of entities with type Simple Entity or

Complex Sntity. All entities that have type

Link and are directly connected via

relationship with the given entity are shown

on the screen. The presentation is performed

by screen object groups Relationshiplindlnfo

and Entityl.istlnfo. Figure 13 contains a

lD_model:~ ~

Model: ford_E~

Figure 12 Screen for entity Model

Policy No: I 00518' j
Person: 0 I3tvwn John 03016012418 !11

c.,. from: ~

~w to: 130 1-1 !iNS ·1

Premium: l A11. i
ccrveP'S_.nlurcd_auto Lnaurcd _uta ~

I

' A8'~ F__ ~ .j
,C4~ ()pol.""""'"

Figure 13 Fragment of screen for entity
Policy

screen fragment for the entity Policy with

insured cars (LongView option is used) for the current policy.

207

types Domain, Simplelinuty or ComplexEntity. We

represent all relationships that have foreign key at the

opposite end (it means that the other entity references to

the given entity via foreign key) and the corresponding

entities. For the presentation screen object groups

RelationshipEndlnfo, Entity'Iextlnfo or EntityListlnfo are used. AI.l the policies

• Entity view extension with relations

This screen extension can be added to the screens with
~ No: I 030760,24181

N-~F ~
s..m-:=:E========
005781 01.12.97 30." M
0100'-<& OS.12.97 (M 12M

Figure 14 Fragment of screen for
entity Person

(LongView option is used) are displayed for the current person in Figure 14.

• Simple link view

This screen is the special view to the entities with the

type Link that links together exactly two entities with

type SimpleEntity or Complex Entity (Figure 15). The

Short View option is used to represent linked entities in

EntityListlnfo. A special Control button group

determines the main ListBox. In this case for a fixed
Figure 15 Fragment of screen for

entity Insured auto

policy 005781 all insured cars are displayed in the other ListBox with label Auto.

• Embedded entities view

This screen type is useful only for the entity with type ComplexEntity. Let us take Simple

entity view as a base for such an entity. Instead of each field group FkJnfo we incorporate

all visible fields from the related entity. We can imagine each embedded entity as a

subwindow where it is displayed with Embedded entities view for complex entity or

Simple entity view for the simple entity. E.g., in Figure 13 the objects group with header

Person is replaced by three screen object groups - Identity _No, Name, Surname from

entity Person. During the generation process we must beware of cyclic embedding and

stop embedding when we discover the, cy~~ ...

• Relationship view

This screen provides a special view to relationship and

entities connected by it. Related entity is represented by

Relationshiplindlnfo and Entityl.istlnfo, The main entity

is selected by the radio button. Figure 16 shows the

fragment for relationship [Model] is for auto

208

ha.~:)1 Model B

I ::F:'M I
bforl~to Auto •

I~~ I
Figure 16 Fragment of screen for

relationship between entities Model
and Auto

has_model [Auto] with Shortt/iew option.

6. Conclusion and future directions

This approach is based on the common ER diagram elements mapping to some screen

object constructs. It is not hard to create templates for generation - the standard code for

the whole screen and the standard SQL based code fragments for each generated screen

object group. Generation basically is code compiling from prepared code templates This

technique partly is applied in practice - the real business applications are developed but

screen code is written by hand.

This approach has several future directions that seem very interesting. The

screens can be generated dynamically while application is running. E.g., the appropriate

HTML page can be generated and displayed. This improvement enables the information

view to be changed dynamically.

An ER diagram can be described by context-free grammar (E.g., in BNF

notation). The generator is an interpreter that reads the ER diagram as a program and

creates a source code for the screens [6]. Other graphical tools, e.g., GRADE [5] can be

used to prepare the ER diagram as input statements according to this grammar for the

generator.

7. References

[1] Tucker, A.: The Computer Science and Engineering Handbook, CRC PRESS, 1997.

[2] Billings, c., Billings, M., Tower, J.: Rapid Application Development with Oracle

Designer/2000, Addison- Wesley, J 997.

[3] Anderson, W., Wendelken, D.: The Oracle Designer12000 Handbook. Addison-

Wesley, 1997.

[4] Rumbaugh, 1.: Object-Oriented modeling and Design. Prentice-Hall, 1991.

[5] Barzdins, J., Kalnins, A., Podnicks, K. et a1: GRADE Windows: ali lntegrated

CASE Tool for Information System Development, Proceedings of SEKE '94. pp.54-

61,1994.

[6] Amicane, V., Amicans, G.. Bicevskis, 1.: Multilanguage Interpreter. Proceedings of

the Second International Baltic Workshop. pp.173-174, 1996.

209

International Conference
"Informatlon Technologies and

Telecommunications in the
Baltic States"

ABSTRACTS OF PAPERS FROM THE BALTIC IT&T ·99 CONFERENCE

RIGA. APRIL 28-30. 1999

RIGA CONGRESS PALACE

-------------------- -

The Information Technology Committee of the Baltic Council of Ministers

DT Media Group

The Concept of Setting Up a
Communications Server

Mr. Guntis Arnlcans, Dr. Janis Bicevskis, Mr. Girts Karnitis, Faculty of Physics and

Mathematics, University of latvia

A communications server is a set of software and computer equipment
that allows a wide range of users, both domestically and internationally,
to receive information from a variety of sources (government registers,
data bases, information systems) through a single contact point. A com-
munications server identifies users, authorizes the use of the respective
data, fulfills a request that involves several information sources, and eval-
uates the cost of the process so that the appropriate finandal transaction
can be made. A communications server allows users to learn where
information is being stored and what kind of information it is, as well as
to request and to receive information from various registers without any
need for in-depth knowledge about the technical aspects of its storage.
Theneed to establish a communications server became evident when the
governments of the Baltic States were setting up their joint data trans-
mission network. In order to allow institutions in one country to obtain
information about objects registered in another (enterprises, persons,
motor vehicles, etc.), it is useful to receive the necessary data from a sin-
gle information source, without having-tostiidjthedlira-/iase-strtiCtures-
of the other country. The use of the communications server, as has been
seen through the elaboration of an integrated state significance informa-
tion systems project, is-also of significance-within-ane countr}t.--becauseJt.
provides .a universal resource for information exchange among various
information systems.

A communications server is a set of softvvare and computer equipment that allows a wide range of
users (both in Latvia and in other countries) to receive information from a variety of sources (government
registers, data bases, information systems)through a single contact point. A communications server iden-
tifies users, authorizes the use of the respective-data;fatfillsa Iequest thattrwolves severaJiAformation
sources, and evaluates the cost of the process so that the appropriate financial transaction can be made.
A communications server allows users to learn where information is be:ng stored and what kind of infor-
mation it is, as well as to request and to receive information from various registers without any need for
in-depth knowledge about the technical aspects of its storage.

The need to establish a communications server became apparent when the governments of the Baltic
States were setting up their joint data transmission network. In order to allow institutions in one country
to obtain information about objects registered in another (enterprises, persons, motor vehicles, etc.). it is
useful to receive the necessarydata from a single information source, without having to study the data
base structures of the other country. The use of the communications server, as has been seen through the
elaboration of an integrated state significance information systems project, is also of significance within
one country, because it provides a universal resource for information exchange among various informa-
tion systems.

PROBLEM IDENTIFICATION
The need to establish a communications serverwas noted in the national program "Informatics" [1 and

2], as well as during the elaboration of two major projects - the Baltic States Government Data
Transmission Network (hereaher in the text - the Network) [3 and 4] and the Integrated State Significance
Information System (hereafter - the Megasystem) [5]. The goal in establishing the network is to provide
fundamental improvements in the exchange of telecommunications and data among the administrative

48 Baltic IT&T '99, Riga April 28-30

:-;::;~~O';',~;~;~!,.~;~~:1::rv~: ~->;'~~",Clo~j~g-Pleij~iiy:The;'Bal~i~':'ste)tis~2~~Jlnifie(rl.iifo.rP.l~~9JI~S:9~i~~~~\

institutions of the Baltic States. During the first phase of the project (1998 and 1999), universal solution
is being set up to provide for the exchange of data among latvia's Company Register, Motor Vehicles
Register and Lost Motor Vehicles Register, as well as between these registers and the related internation-
al information structures. So far this has involved three concrete activities:

1) Accession of the Latvian Company Register to the European Business Register (EBR);
2) Cooperation between the Motor Vehicles Registerand the related European-level structure EuCaris,

as well as the establishment of a motor vehicles insurance system in Latvia (the so-called "green cards");
3) Improvements to the system whereby lost and stolen motor vehicles are registered in Latvia, includ-

ing a connection to the international data bases of Interpol in this area.
During the second phase of this project, between 2000 and 2002, more work will be done to include

Latvian registers into the Network and to integrate them into international information structures. In the
second phase, the plan is to place the Population Register, the Lost Persons Register, the lost Personal
Documents Register, the Educational Documents Data Base, the Visas Data Base, the State Statistics
Information System, the Consular Information System, the Health Care Information System and the
Narcotics Information System on the Network.

In a situation where information from various sources is available on the Network, but users have no
knowledge about the technical details of storing that information, there is an obvious need for a univer-
sal solution, and that is where the communications server comes in. The main requirement for a com-
munications server is that it must allow users to formulate their information requests in a simple way and
to receive responses to those requests without having to understand the technical aspects of the process.
Usersare not, after all, informatics specialists; they are employees of other administrative structures of the
state, and there is no reason to think that they know anything about the way in which data objects are
distributed among the registers of another country. We can expect both standardized and wholly unpre-
dictable r~~ests ~this process.._~ terr!!s of the urg!n0' of requests, we can expect demands for on-line
responsesthat require rapid response, aswell as requests for off-line responsesthat can take hours or even
days to fulfill. Needless to say, in setting up the communications system we must provide for all aspects
of information confidentiality and user authorization.

The$ettlngup~l)f thecornrrrorucationssysternis important not only in the context of the Network, but
also in the context of the Megasystem, which is a universal resource for the exchange of information
among various information systems within a single country.

THE CONCEPT OF THE SOLUTION
The communications server, which is iilustrated in Figure 1, is an Internet resource point. Users of the

.server can access it via vazious.pzotccols - HTIP, CORBA.J2.CQM.~MI~([~mail) and FTP. The server pro-
vides users with an opportunity to find out where information is stored and whet kind of information IS

available, and then to request and receive information from various registers without studying their struc-
ture. Because users may have accessto sensitive information, users are identfied with certificates, and ail
data transmissions are coded.

Users who wish to have access to sensitive information before work with the system is begun must
receive a certificate that corresponds to the X.S09 standard. The certificate must issued for a specific peri-
od of time (usually one year) by a specialized institution (presumably in Latvia this would occur under the
supervision of the Constitutional Defense Bureau). Certificates of this kind contain information that iden-
tifies the user, and they are virtually impossible to forge. The certificates are used to code data and to
identify the user. latvia's communications server will use a standard coding protocol such as SSL,

A user of the communications server sends information requests to it and receives responses from it.
This can happen both on-line (HTIP, CORBA,DCOM) and off-line (HTIP, E-mail, FTP).

In the on-line regime, work with the communications server is based on the following structure At the
beginning of the process the user is identified. This means that the user sends his or her certificate to the
communications server, which reviews it and specifies the user's rights. If the user does not have a cer-
tificate, then he Of she can accessthe communications server as a guest and receive a limited amount of
information from it. Next the user requests information, The communications server once again identi-
fies the user and, on the basis of the level of the user's authorization, makes the appropriate requests to
the data registers, sending the response to the user when it is received, The register receives not only the
information request from the communications server, but also the user's certificate, which means that the

Baltic IT&T '99, Riga April 28-30 49

register itself can identify the user and the user's level of authorization. The result of this is that the reg-
ister provides only that information to the communications server for which the user is cleared.

I

I
REQUEST----I

I
INFORMATION----~ COMMUNICAllONS

I SERVER

REQU

I
I

USER APPlICATION
N'N'JIN BROWSER, ETC)

--
A

EST-

MAnON-INFOR

USER
VERIFICATION

USERAND SERVER
VERIFICATION

I

I CERTIFICA: SERVER,
DIRECTORY SERVER

SERVER-
VERIFICATION

Figure 1. The operational structure of the communications server

In an off-line regime, the user requests information via HTTP, E-mail or FTP. During periods of time
when it is lessbusy (usually at night), the communications server processesthe request - identifies and ver-

- ifies the user and then requeSts the respectlveinformatlon from the information registers. The response
is sent to the user via E-mail, Of it is stored until the user asks for it on-line.

The main advantage of an on-line regime in this process is that information can be obtained immedi-
ately when the need arises. This system can be used in caseswhen the speed at which a response is
received is of importance, either from the point of view of the system (e.g., at border control facilities), or
from the point of view of the operation (e.g., an application in which the registration number of an auto-
mobile is entered and information is received about the automobile from the Road Traffic Safety
Department so that it need not be entered a second time).

The advantage of the off-line re'Jime is that registers can even out the volume of work that is required,
given that at night there should be relative few on-line requests for information. Off-line requests can also
be sent in by users who have dial-up Internet connections, thus reducing costs. It is advisable to make off-
line requests less expensive than on-line ones so that users are motivated to use the off-line system.

THE FUNCTIONS OF THE COMMUNICATIONS SERVER
We can specify five main functions for a communications server:

• User identification
• Authorization with respect to the use of information
• Management of user rights
• Fulfillment of requests that involve several information sources
• Evaluation of the costs of each request for billing purposes

50 Baltic IT&T '99, Riga April 28-30

USER IDENTIFICATION IN A COMMUNICATIONS SERVER
As was noted before, user identification involves X.509-standard certificates. In order to ensure that

the certificate mechanism is operational, a communications system needs both a certificate server and a
directory server. The former is a server that belongs to the certifying organization, generating and main-
taining electronic certificates - both server certificates (issued to the server) and client certificates (issued
to the user). The latter is a server in which the public keys of the certificates are stored, along with infor-
mation about certificates that have been issued - when a certificate has been issued, to whom it was
issued, and whether the certificate is valid or has been revoked.

The directory server is available to any interested party. For example, if a WWW server has been issued
a certificate, any WWW user can ascertain that the server is secure. If a WWW client has been issued a
certificate, in turn, the WWW server can ascertain that the client is authorized to work with the server.
Both the client and the server can check the validity of the submitted certificates by looking them up in
the directory server.

Work with certificates in WWW applications involves SSL(Secure Socket Layer) technologies, which are
supported by most WWW servers,aswell as the main WWW browsers - Netscape Navigator and Microsoft
Internet Explorer. SSLtechnologies provide the following components of secure communications:

1) WV'NV server approval: A user can ascertain the fact that the WWW server is secure and that it can
be entrusted with confidential information;

2) The privacy of information: The entire information flow between the client and the server is coded,
using a unique session key. The session key is coded by the server with the client's public key in order to
send the respective information to the client in a secure way. Eachsession key is used in only one session,
which makes it difficult to decode the information without authorization. The information, in other words,
cannot be viewed by unauthorized persons, even if it is intercepted on its way between the server and the
client.

3) The inteqrity of the information: .Both the server and the client calculate the control code on the
basis of the content of the information, and if the information has been changed en route, the codes do
not match. This means that the receiver of the information sees precisely the same information that was
sent by the sender. .

Secure data exchange between the W\NW server and the client occurs in the following way when SSL.
technologies are used:

1) The client sends a request for data exchange to the WWW server;
2) The server in response sends its certificate to the client, asking for the client's certificate if appro-

priate;
3) The client checks the validity of the server certificate through the digital signature of the certificate

server, sending the client's own certificate to the server if necessary;'
4) When the authorization process is complete, the client sends the session key to the server, coding

it with the public key of the server;
5) Both the server and the client know the session key, and further data flow between the server and

the client during the respective session is coded with the session key.
The certificates of the server and the client are exchanged quickly and without any involvement by the

user. The same is true with respect to an exchange of certificates among other applications.
When information is requested from the communications server (through the WWVV or otherwise), the

process occurs in the following way:
1) The user is identified through the aforementioned protocol, and the communications server checks

the user in the directory server.
2) The communications server has a data base which records user rights, and the server usesthis data

base to specify the authorization level of the specific user. In carrying out the user's request, the com-
munications server checks the user's rights in its own data base and, if the necessary level of authorization
is there, then the request is sent along to the concrete register.

3) The reqister is also sent identification data about the user who has requested the information.
4) The software in the register checks the information in the directory server and authorizes the user.
5) According to the level of the user's authorization, either the request is carried out and the result is

returned to the communications, server, or the communications server is told that the user does not have
the right to carry out the request.

Baltic IT&T '99, Riga April 28-30 51

6) The communications server returns the result to the user.
A user can also request information from the register directly, without passing through the communi-

cations server. In that case the operational mechanism is similar:
1) When the information is requested from the register, the user must supply identifying information

(a certificate).
2) The software in the register checks the information in the directory server and authorizes the user.
3) On the basis of the user's authorization and the level of his or her access rights, either the request

is fulfilled and the result is sent back to the user, or the user is sent information saying that he or she does
not have the right to receive the data.

This mechanism ensures that there is no need for the user to reintroduce identification each time a new
request is made. In each session, the user is identified on the first occasion that a request is made with
respect to a confidential data source, and in later requests the information is sent on to all of the respec-
tive information sources. Another advantage of the mechanism is that there is a centralized method for
distributing user rights, as well as a unified policy with respect to this. It's also true that the user's rights
do not change depending on the way in which he or she accessesthe information - via the WWW, via a
different application, or through some other method.

MANAGEMENT OF USER RIGHTS
The rights of users can be divided into several categories:
• The right to obtain information about what is stored in a concrete register - provided that the infor-

mation is publicly available;
• The right to obtain information about one entry in one table in one register, based on the unique

identifier of that particular entry;
. • The right to obtain a list oLdata_ITomone-1abl.e-io.one-register,selected_on_tbebasis-Otspecifiu:ri_- _

teria;
• The right to obtain a list of data from several tables in a single register (whether the link exists or not);
• The right to obtain information from several tables in one register that are linked through a specific

relation, the data being chosen on the basis OT specific critena; ~ - - --------
• The right to obtain information about one object from several registers on the basis of the primary

key of the object;
• The right to obtain information about the existence of a link among specific objects from various reg-

isters;
• The right to obtain a list of data that are selected on the basis of criteria entered by the user, the data

coming from.several.tables in several rogisters that are mutually linked~--------------
• The obtaining of information can be differentiated at four levels:
• A response as to whether the requested information has been found or has not been found;
• A response as to how many entries have been found;
• The primary keys of objects;
• The data that is being requested.
Each of these levels provides a different volume of information, and there are instances when the jump

between proximate levels is quantitative, while in other instances it is qualitative. We could consider four
different requests here:

"Does individual X own an automobile?"
"How many automobiles does individual X own?"
"What automobiles does individual X own?"
"Does individual X own automobile Y?"
The management of user rights is intentionally divided up so that it occurs in several places. The com-

munications server has its own user management module, in which it stores information about the right
of users to make various kinds of complex requests. Information about the right of a user to receive data
from a specific register is stored either in the communications server or in a concrete register. The place
where information about user rights is stored is harmonized between the communications server and the
register. Because it is expected that before a register issues information, it will want to check the user's
rights to use the information, then information about the user's rights with respect to a specific register
will usually be stored in that register. From the perspective of centralized management, it would be bet-

52 Baltic IT&T '99, Riga April 28-30

ter if information about user rights with respect to all registers were stored in the communications server.
For various organizational reasons, unfortunately, this is either impossible on only partly possible.
Information about user rights is stored both in the communications server and in the registers themselves.

The communications server is designed to work with both of these options, as well as with a combi-
nation of them, and the following scheme emerges:

• The communications server checks the right of the user to make a request in the first place, as well
as the right of the user to seek out a link between objects in various registers;

• The communications server checks whether the user rights with respect to the concrete register are
stored in the communications server or the register;

• If the rights are stored in the communications server, then it checks the rights before it sends the
request to the register;

• If the information is stored in the register, then the register checks the user rights before it fulfills the
request;

• If the rights are not stored in the register, then the register can, if necessary, receive information about
the rights from the communications server in order to be able to check the rights of the respective indi-
vidual to make the request.

Because it is possible for users to connect to the registers not only via the communications server, but
also directly from an application, and because it should be true that in both instances the user has the
same authorization to obtain information, then the check of whether a user has the right to obtain infor-
mation from a specific register should occur not in the communications server, but in the register itself.

INFORMATION REQUESTS AND THE OBTAINING AND DEPICTION OF
INFORMATION

The basic-mission of the~communications server is to provide users with access to various information
sources so that they can obtain data from them. Let us take a look at the problems that arise in this
process, devoting particular attention to the submission of requests and the obtaining of responses, and
leaving aside the issue of user authorization, control over data access, registration of who has asked for
information and what information has been requested, billing issues and such matters.

INFORMATION SOURCES
An information source or resource facility can be any information system or data base from any organ-

ization. There are administrative regulations concerning the organizations, information systemsand data
basesthat are included in the communications server's network of services.

Over the course-oilirn.e+-tban.UJnb_e.I~U[1formatlon sources can reach into the tens or even hundreds
of sources. In Latvia alone there are already several dozen government registers, and their number may
increase. Communications servers should also provide access to certain foreign information sources, as
well 2S to the data bases of various other organizations in Latvia; these, toe, could be inoudeo j:-: the range
of services provided by the communications server.

The communications server itself does not have an information sources. Each ir:formation source is
primarily meant to carry out concrete and specific functions inside the respective organization Information
systems and data bases that are used in an organization are chosen, designed and optimized specifically
for the needs of the respective organization. They may not be aimed at providing information to other
entities, but if such an opportunity is intended, then it can be very specific, and many limitations can be
applied to it. This means that the communications server must adapt to the information sources, and not
vice-versa. Of course some information sources can upgrade their information systems and optimize their
data exchange procedures in order to meet the communications server's requirements

Information sources that are part of the communications server's network can differ in terms of signif-
icance and volume. The more significant a data base, the better must be cooperation WIth it. The size of
data bases must also be taken into account, because it has much to do With the respective data process-
ing mechanisms.

Another key issue is the quality and stability of information sources. Information systems can involve a
wide variety of technologies, and they are of varying ages. Depending on the resources that have been
invested, some are of a higher quality and some - of a lower quality. Of course, it is easier to make con-
tad with a high-quality information system and data base that have been designed with modern tech-

Baltic IT&T '99, Riga April 28-30 53

nologies than with systems that are old and of a lower quality level. A communications server must cer-
tainly be ready to deal with information sources that are unstable, that make errors and that in some
instances are not even accessible.

Information systems can be designed with various systems, they may have various data bases, and their
use may involve various operating systems and computer technologies. A communications server must be
prepared to handle these problems, although this is no longer the worst possible difficulty, given that
many different solutions are in existence.·

Information can be stored in a wide variety of formats - that is the next issue. The most popular
method for data storage is still relation data bases. Object-oriented data bases, static WEB pages and
dynamic WEBpages that are generated from an internal format are becoming rapidly more influential. We
must not, however, forget other information storage methods such as files of many different structures.

A concrete information unit and a logical group of information units can be doubled, stored in various
formats, coded in various ways and stored in such a way that some of the information is kept secret.
Information can be contradictory either within a single information system or among various information
sources. This means that in the future the field of communications servers will have to involve various laws
and data processing algorithms that are based on the technologies or artificial intelligence.

All of these aspects serve to demonstrate how serious is the issue of various information sources being
highly varied. It should also be added that this heterogeneity exists among more than just information
sources. The same situation can exist within a single register or a single organization.

It must also be remembered that each information source exists fairly independently. It can be updat-
ed, changed or liquidated, it can be created anew, its operations can be suspended for a while, or it can
be withdrawn from cooperation with a communications server. This means that a communications serv-
er must exist in an environment that is not only highly varied, but also is extremely changeable.

USERS
For our purposes, we will say that a communications server user is any subject that wishes to obtain a

service from the server.
Users are usually differentiated on the basisof their level of authorization to obtain spec:Jftcinfurmation-

from specific information sources. These rights are regulated by law and by other normative ac;tsL~ndthey
are managed by a specific user management bloc within the communications server.

From the perspective of the communications server, another very important user classification is based
on a different aspect - the way in which the user requests information and the way in which the user
receives a response. A communications server should be operated on the basis of the principle that it is
there for the convenience of users, not vice-versa. This principle .means that the server must be ready to
receive information requests of a great many varieties and forms, and it must be ready, every time, to pro-
vide a response that is convenient for the user in terms of its type and form.

REQUESTS AND RESPONSES
A communications server must be ready to accept information requests that are stated in various ways

and forms. The main operational regime for communications servers is an on-line connection, but this can
involve a dedicated line to the communications server, dial-up access to the server, or a connection
through informational networks (the Internet, the Latvian State Significance Data Transmission Network
(VNDPT), or the networks of other national, global or organizational networks). We must also remember
other ways to submit a request - E-mail, a request submitted on an electronic information carrier such as
a diskette, a written request submitted on paper, or even an oral request.

Responsesto various requests can be prepared in the same format as the original request. It should be
added, however, that the user must have the right to select the method of response, irrespective of the
way in which the request was submitted. Limitations on the ways in which requests and responses are
formatted can be specified by administrative regulations, but in terms of technologies, a communications
server must be prepared for all kinds of cooperation methods.

The forms of requests and responses can be highly varied. The most popular cooperation form is prob-
ably a WEB page, both for requests and for responses. This form of cooperation can be highly varied, and
this is underpinned by existing WEB-type applications. The use of special procedures and functions may
also be important when the procedure itself has parameters that specify the request and its result (i.e.. the

54 Baltic IT&T '99, Riga April 28-30

response to the desired request as specified by the parameters). Cooperation can also occur in the fol-
lowing forms:

1) Special applications that can work with the communications server;
2) Active objects that can work with the communications server and can be used in the client's appli-

cations;
3) Fileswith requests that are recorded in a specific format or response files in a specific format;
4) A group of files (including even data bases) for the requests and the responses;
5) Paper documents in an agreed format for requests and responses;
6) E-mail, which can be seen as a modification of items 3, 4 and 5 on this list.
It is commonly held that requests from a user can come in a dialogue regime from a human user and

in an automated regime where the user is an application on the user's computer.
There must also be plans to work in a synchronous regime (request-wait-response) and in an asyn-

chronous regime (request-processing over a specific period of time-report to the user about the availabil-
ity of a result-response), because this ensures more efficient work for the user and the communications
server alike, especially when it comes to processing large and complex requests.

In work with the user thought must also be given to such aspects as the various levels of preparedness
among users, the language of communication, the respective text coding formats, the abilities of the user's
computer equipment, operating systems and applications, and limitations in all of these things.

In other words, the main mission and. at the same time, the main problem that a communications serv-
er must handle is the way in which many different kinds of requests can be handled, submitting processed
information from various information sources that sometimes are not compatible. and submitting a result
to the user in the desired type and form.

INFORMATION AB_OUIINFORMATION
As the number of information sources available through the communications server increases,an over-

abundance of information can quickly occur - one in which even the administrators of the communica-
tions server can get lost. It is necessary to classify all of the information sources and the information that
is contained therein, keeping firmly in mind that information sources can change.

Communications servers must have data source repositories that contain formal descriptions of the
sources, their properties, the data that are contained within them and the properties of the data. These
repositories must be very flexible, it must be able to change them easily and quickly so that changes in the
surrounding environment can be monitored. If there is to be a proper reaction to user requests, other
parts of the cornrnunications system must be able to adapt to changes in the repository in a dynamic way.

The repository is not, however, meant only for internal use in the co~munications ~rver. The us~r,
too, must know where and what he can receive (of course, within the limitations of the user's authoriza-
tion). This means that the communications server must also, so to speak. provide information about infor-
marion Using forms and terms that the user can understand, the server must describe the intorrnation
that can be obtained and the ways in which it can be requested. There must also be efforts to link the
various request formulation mechanisms as closely as possible to the repository, thus making easier the
work of a user who takes advantage of the communications server's services only seldom.

Users often don't care where and how the desired information is stored. This means that the commu-
nications server must satisfy requests that concern information from many different sources. The reposi-
tory, therefore, must also describe the links between the sources, as well as the ways in which various con-
tradictions among the sources can be resolved. data be converted, etc. The repository must be an entity
that makes it possible to consider all of the sources in a communications server to be one, big data base.

THE ABILITIES OF THE COMMUNICATIONS SERVER
A communications server is a dynamic system which must work in a highly changeable external envi-

ronment. A communications server must be much more flexible and dynamic than a day-to-day system,
because it must work with highly heterogeneous external information systems that keep up with rapid
technological changes. When it comes to technologies. communications servers must be a step ahead of
other systems, because otherwise it may turn out that the communications server ends up unable to per-
form its functions.

The goal of this paper is not to describe the internal architecture and ideology of communications

Baltic IT&T'99, Riga April 28-30 55

servers precisely. The establishment of such systems is a very serious process throughout the world these
days, and various solutions are being sought out that are linked to the following technologies:

• Distributed Dynamic Systems
• Distributed and Dynamic Objects
• Dynamic Object-Oriented Programming
• Reflection
• Domain Specific Programming Languages
• Artificial Intelligence
Many of these technologies are still quite new, and they are still being developed. This means that not

all of them have ready-made tools that support various properties or functions of the technologies. Some
tools exist, some are at the prototype stage, while some have already become popular among profession-
als (this is particularly true of prototype tools that are designed at universities and research laboratories in
order to test the latest technologies). In the design of a communications server it is worthwhile to such
modern technologies and research results as the Multilanguage Interpreter [6] and the Database Browser
Generator [7].

EVALUATION OF REQUESTS FOR BILLING PURPOSES
A billing system is part and parcel of the mechanism whereby a communications server fulfills requests.

When a specific request is fulfilled, the system not only does what has been requested, but it also auto-
matically calculates the resources that are used in the process. Within the communications server, a price
has been attached to every resource, and it can change on the basis of the volume of information that has
been requested, the time of day when the request is filed, etc. The price of each request is calculated
automatically and stored in a journal that then is used for billing purposes.

A resource is an-information request to a register. The price of .resourceschances.on.the basis of.the.
type of the request, the complexity of the request, the register that is involved, etc.

USES OF A COMMUNICATIONS SERVER
There are three major ways to use a communications server:
• As an international resource facility that can be used to access information from Latvian registers;
• As an internal resource facility that can be used to search for information in registers;
• As a way of setting up cooperation among various registers.

Register 1
Certificate

Public
data

Register 2 /Lf\, Transaction,
\rv'1 server

i Users (people,
registers)

Register 3 :=:J Transaction
n/: server

HTIP,
DeOM,
E-mail,
others

Register 4

Figure 2. The structure of cooperation between a communications server and other entities

56 Baltic IT&T '99, Riga April 28-30

~;;.~;<;.~.,y;;"~:l<9o~ing-.!T~~.~!Y.:~th~.:~al!ic;~~!a!~~-,~a <~llif.!~Hln!~r~a!i.o~~_ocle!y._;
The need to access information from Latvian registers via a single contact facility is the main reason for

elaborating the communications server. Of course, this is more than just a trivial solution in which a single
Internet application is designed for connection to other registers via their Internet addresses. This simplified
design does not deal with the main issue - the ability to collect information from various sources (i.e., var-
ious registers)without the user having to hook up to each register separately. The information that a user
needs is collected from the various registers by the communications server, and the user himself may be
completely unaware of the technical details of this process. Thus the communications server is needed by
employees of foreign institutions in order to obtain information that is stored in Latvia's registered.

A secondusefor the communications server is the fulfillment of domestic information requests in Latvia. The
previouslydescribed situation in which usersdo not want to or are unable to understand the technical details
of information storage is typical among the personnel of Latvia'sadministrative structures. Of course,given the
fact that accessrights to authorization may vary for foreign usersand Latvian users, the communications server
setsout a unified set of requirements in this area, and solutions are the same for both groups of users.

The third way of using a communications server is to use it in order to exchange information among
various registers. It is obviously irrational to maintain communications channels and to conduct informa-
tion exchange individually with each of many registers that are mutually linked. It is much more rational
to set up a centralized contact facility - the communications server - which is linked to all of the registers
and through which information is exchanged among them. The general process of information exchange
among registers via a communications server is shown at Figure 2.

This diagram shows four ways in which a register can be connected to a communications server. Every
register that participates in the data exchange procedure can have its own data base in which those data
that are intended for transfer to other registers and for publication can be separated out. The data base
can be maintained by a separate computer or server so that approaches to the public data base do not
hamper work wit~ the basic data base of the register. Data from the basic data base are regularly copied
to the public data base (an automatic replication mechanism). This solution 'is rational not only from the
perspective of using communications channels; it also ensures:

• That the fulfillment of external requests does not hamper the work of the register;
-!hat there is higher security, i.e., that in the caseof unauthorized access,the basicdata baseis not damaged.
The link between the communications server and the public data base can be implemented on the basis

of various technologies, such as DCOM object calls, MS Transaction servers and Oracle SQL""NET. User
authorization is provided via a certificate server, a directory server and the Lightweight Directory Access
Protocol (LDAP).

REFERENCES
1. The Latvian national program "Informatics", Ministry of Transport, 1998,211 pp.
2. The Latvian national program "Inforrnatics " (summary), Ministry of Transport, 1998, 60 op
~ "The Baltic States Government Data Transmission Network: Conreotual and iv1etnoce:1ocicci

Considerations", Riga, 1998, 11 pp. -
4. "The Baltic States Government Data Communications Network. Feasibility Study for a Data Networkinq

Concept to Improve the Interchange of Information Among the Baltic States", Riga, 1998, 83 pp. -
5. "The Integrated State Significance Information System (Megasystern): Conceptual and

Methodological Considerations", Riga, 1998, 16 pp.
6. Arnicans, V., Arnicans, G. and J. Bicevskis. "Multilanguage Interpreter", in Pi"oceedinqsof the

Second International Baltic Workshop, 1996, pp. 173-174.;
7. Arnicans, G. "Application Generation for the Simple Database Browser Based on the ERDiagram",

in Proceedings of the Third International Baltic Workshop, 1998, pp. 198-209.

Contact information:
University of Latvia
Raina bulv. 29-331, Riga. LV-1050, Latvia
Tel.: +371 7228226
Fax: +371 7820153
E-mail: bics@lanet.lv

Baltic IT&T '99, Riga April 28-30 57

mailto:bics@lanet.lv

Baltic
11&1

200

4th ~TlONAL Cll\lFERB\lCE
INFORMATION TECHNOLOGIES AND

TB.ECOMMUNICATlONS IN THE BALTIC STATES

Tbe Information Society: TIle Future for the Baltic Region

Radisson SAS Daugava Hotel, AJri G - 7, Riga, lItvia

InfDPtmrtion Technology Committee of the Baltic CoIIJciI of PJinisters
Data Media Group

Abstracts of papers from the Baltic iT&T 2000 Conference

~"'DU::'IIIC:~ allY JUII.u.gUI'~ • ~"''',""I~ • ..,t;;Vt;;;.ut"'.I.g,,, ""••.•. ...-~ _":;:'"".. "~." ~ ... _ ... _.. - - - -_ ... _- __ ._

The Unified Megasystem of Latvian
Registers: Development of a

Communications Server - the First Results
and Conclusions

Mr. Girts Karnitis, assistant, Mr. Guntis Arnicans, lecturer, Prof. Janis Bicevskis, Head
of Department of Computer Science, Faculty of Physics and Mathematics, University
of latvia

This paper describes a development of Communications Server, the first
realization version and conclusions. A communications server is a set of
software and computer equipment that allows a wide range of users
(both in Latvia and in other countries) to receive information from a vari-
ety of sources (government registers, data bases, information systems)
through a single contact point A communications server identifies users,
authorizes the use of the respective data, fulfills a request that involves
several information sources, and evaluates the cost of.the process so that
the appropriate finandal transaction can be made. A communications
server allows users to learn where information is being stored and what
kind of information it is, as well as to request and to receive information
from various registers without any need for in-depth knowledge about
the technical aspects of its storage.

INTRODUCTION
The need to establish a Communications Server became apparent when the governments of the Baltic

States were setting up their joint data transmission network[6] One of the main tasks is to obtain infor-
mation about objects (enterprises, persons. motor vehicles. etc) without having to study the data base
structures in any country. One year ago the concept of Communications Server was defined [1] and proj-
ect of Communications Server was started in Latvia.

Data retrieval from different autonomous sources has become a hot topic during the last years not only
in Latvia but also in all countries or large enterprises. The problem is very complicated and its solution can
takes several years and many high-qualified specialists to solve it :2][3][4]. There was made the choice to
develop Communications Server step by step in Latvia. Latvia has several dozens of registers and informa-
tion sources (public and with restricted access). To develop ali system at once it is too complex due to, for
example. various organizational and technical problems. Design and implementation of all functionality for
the Communications Server also takes much time.

CORE OF THE COMMUNICATIOf\J SERVER
The main functions for a Communications Server are:
1 User identification
2. Authorization with respect to the use of information
3 Management of user rights
4. Fulfillment of requests that involve several information sources
5 Evaluation of the costs of each request for billing purposes
It IS more or less clear how to implement the first three tuncuons. but the largest problems arise to

develop last two functions. The original technology was developed to search and obtain data from various
data sources during the design phase. This technology bases on 'NEB technologies and Meta models of
data sources[5].

Baltic IT&T 2000, Riga April 6-7 163

Viewing data objects and attributes of registers

Registers ~ Entities ~ Attributes

Enterprise Register Information ~
Land Re ister (Cadastre Re iste Owner of vehicle

Vehicle Inexact registration certificate No.•
Inexact registration No.
Inexact chassis No.
Vehicle owner PI NO
Year of production
First colour
Second colour
Mark
Model
Registration certificate No.
Registration No.
Chassis No. .:J

•. I

Register of Residents
Register of Taxpayers

Search information

Figure 7. Registers and data objects

For the first version of Communications Server was determined several principles or requirements:
• It is possible define new source in couple days
• It is possible to access any type of data source
• It is easy and quickly create primitive services (wrappers) to search and obtain needed data from

source
• It is possible to tie related data from various data sources
• It is easy maintain all system (make changes, add new possibilities, etc.)
• The program code have to be simple and small to reduce the possibility to make mistakes
• Initially data is retrieved only from WWW (from end-user point of view)

REGISTER OF REGISTERS
The Register of registers is the information system that contains information of other information sys-

tems maintained in Latvia. There is much useful information, such as IS name, content. owner, data model,
relations with data objects in other information systems, in database of the Register of registers.

The first version of Communications Server widely uses information stored In Re'glster of registers. For
instance, the information searching starts with high level representation of data sources and object stored
in them. See the Figure 1.

We can see what data sources are available. what data objects are available from these sources and
what attribu es describe each data object. \\le can start brovvsinq from anv ca:", :>:)ur(" or data object.

BASIC ADDITIONAL REQUIREMENTS FOR COMMUNICATION SERVER
venous additional aspects and reouirerne.us were taken to create first version of Cornrnururaucns Server
• some data are very sensible (only for authorized and restricted use)
• some data are available for money
For thesE' reasons we keep a Close attention to security, to log all activities and to accounting of all

retrieved rntorrnstion to calculate accounts between i:l:ormation orov.ders and consume-s
Secunty IS cesiqned to fulfill reouuemerus determined by law, government and information source

provider At present for each user are defined: what data objects (register, information from register, etc)
are accessible, what operations can be Gone (searching and retrtevingJ and what templates of WVI/W

164 Baltic fT&T 2000. Riga April 6-7

o o o o o
ser

Communicatio
server

Mediator

Figure 2. Conceptual sheme of Communication Server

pages (data retrieving, combining from various registers and presentation) are available.
All user activities are logged in special joumals. The system saves not only the type of activity and user

who have done it, but also the request is stored. It is possible to track for any data object (person, for
instance) all history - who asked what and what data objects and its attributes were displayed.

We can account costs for information consumers if the cost is defined for some information. Since we
are logging any request with details then we can calculate overall accounts for any user and provider.

TECHNICAL SOLUTION
The main task for a Communications Server i~to retrieve information from data sources. Let us see the

rough view to the implementation principles (Figure 2). User asks the Mediator for information. The
Mediator translates requests to set of internal ~mail requests to data sources through wrappers When the
wrapper returns data. the Mediator forms the inforrnatio« presentation and sends the vvwVv page tc user.

To retrieve information from data source, we have tu create special small orograms - data wrappers
This approach has the following advantages:

• It allows access data source via different protokols and methds- ODBC, OLE DB, SQL"Net, DCOM. etc
• Data source usually is made to well suit for specifrc business tasks. it is not primary made for data

access from other system (Communications Server) The access is limited, it is allowed execute some stored
procedures to query data Wrapper allows us to execute only authorized functions

• Querying data source via functions allows us to have easy transfer real data from data source phYSI-
ca! data model to our logical data model (stored in meta database) that is more understandable for th'?
user.

• If the data source changes we need only correct the appropriate wrappers.

Baltic IT&T 2000, Riga April 6-7 165

Repository

Universal
Browser

Figure 3. Universal browser

To communicate with user via Internet the special browser is designed that bases on a meta model of
data sources The browser takes the information stored in meta model, generate WNIN pages to commu-
nicate with user. We can image browser as Driver and Repository (Figure 3)

Repository is database that stores information about data sources, data objects in sources and relations
between them, functions that allows us query source, screen templates (WV"lIN page structure) and other
useful information. -

Driver is special program that generate www pages to manage querying at high level and display infor-
mation. The Driver can analyze relations between data sources and merge together all related information.

Enter search criteria for data object
.'.:......~

Inexact I »J
surname: Kalrlj'O

Inexact I
name:

Search j

Person
identity 1--------------

No.:
Search I

Vehicle
intemall---------------

ISN:
Search I

Enter search
criteria of group and
click button
bSearch- of
appropriate group.
Groups are splitted
visualty with
horizontal lines and
color

Figure 4. Search criteria input window

166 Baltic IT&T 2000, Riga April 6-7

Ow'u er of vehicle

Owner of vehicle:01016101010 KALNS \llh."TORS ,.

ii~0255In45I0\LNcra1SJURIS I

Related information
Person Code101016101010

Swname JKPJ.NS

.Owner of iOwner of Register of
'vehi cl t yehic1e !Motor vehicles

:Ov.'IIS vehicles Vehicle
Register of
:Motor vehicles

Hm: childeren Children
Register of
Residents

I Register of
Ha;; parent" Parents Residents

Information Wormation Register of
I Residents'about person .about person

Ha:::passport Passport
~egister of
Residents

•• _. ___ ·__ 0 __ ·_·'_

Name ;vIKTORS
-------- -----

SexlM
J Passport !LA1209872
rPassport Issue Date 11210511999

Region !RIGA
Place [VIDZEMES PRIEKSP. :

Street;vELDRES
HouSe Nuinber;11

Corpusf-
Flat Number 128

Vehicle

:CP940 1990

Figure 5. Information about car owners

DATA SEARCHING AND BROWSING SCENARIO
Let us look at small example how the Communications server works from end-user point of view. First

step is to choose from which register and which data object information will be quered (Figure 1). Then
system asks search criteria for the choosen object (Figure 4).

User fills in search criteria and' pushes button 'Search', system searches in appropriate the register for
necessary information and results are showed (Figure 5).

From this screen user can easily get related information from other registers, for example, if user wants
Information about Person from Register of Residents, user needs only to click on appropriate link and
appropriate information are showed (Figure 6).

CONCLUSIONS AND FURTHER DIRECTIONS
The prototype of Communications Server was made in the middle of 1999 [7]. 4 registers (with test data)

were connected for testing purposes. 2 of them use Orade as DBMS and 2 others use Microsoft SQL Server.
The prototype has shown the effectiveness of designed approach. The prototype of the system was much more
powerful. than we expected and can be used as the real sys1em. At present additional improvements is made
and the first version of the real system is developed. This version is introduced in rea: exploitation now

Future direction of our work is to develop 2. query processor that can take as Input SOL-like query and
return as output the result queried from multiple data source.

Other direction that already is partially developed - to make Communications Server available not only
from WV'/W browsers, but also from custom programs using XML to query data and return answers.

REFERENCES
[1] Arnicans G, Bicevskis J, Karnitis G, "The Concept of Setting Up a Communications Server", In

A.bstracts of Papers of 3rd International Conference "Information Technologies and Telecommunications
In the Baltic States", pp. 48-57,1999

[2J Tomasic A, Amouroux R, Bonnet P, Kapitskaia 0, Naacke H. and Raschid L, "The distributed infor-
mation search component (disco) and the World Wide Web" in Proceedings of ACM SIGMOD International

Baltic IT&T 2000, Riga April 6-7 167

t:-tsuSln~.~ dilU .:IlUIUu-tOY11::I ••.• ""•••..•..•-. __ • _. - 1 ----~~="".......-'="-'"

information about person View Type: IExpandedOj

- -- -,---- ----- --
01016101010 KAL~S VllCTORS i Inrorrnanon about person

Related information I Person CodeiOlO16101010

I Name :vIk'lORS
: Surname KAI.NS

i Sex:M
[Birth Date 1961.01.01
:Birth Countrv LA TVLTA; .. ,

O\'I/11erof Owner of Register of
.vehicle vehicle ;Motor vehicles

Owns vehicles Vehicle Register of
Motor vehicles

I Register ofBas childeren !Children Residents

Ba<; parellts Parents Register of

, Residents
'Information lnformati on Register of
about person .ahout person Residents

H<C" P assn 011 Passport Register of
Residents~-~~-

Children

102028811223 KALNA lLZE I
;27058511331 KALNS ROBERTS!~ ,

Passport

i Pasport Number lLA1209872 :

I Issue Date ;1999.05.12
!Date of Expiration 12009.05.11

Parents

Figure 6. Information about person

Conference on Management of Data, Tuscan, Arizona, 1997, Prototype Demonstration.
[3J Haas L M, Miller R. J, Niswonger B, Tork Roth M, Schwarz P M, Wimmers E. L, "Transforming

Heterogeneous Data with Database Middleware: Beyond Integration", Data Engineering Bulletin 1999
[4J Hammer J, Garcia-Molina H, Ireland K, Papakonstantinou Y, Ullman J, Widom J, "Information trans-

iiition, medration, and Mosaic-based browsing in the TSIMMIS system", in Proceedings of ACM SIGMOD
International Conference on Management of Data, 1995, Project Dernonstrauon

i5J Arnicans G, "Application generation for the simple database browser based on the ER diagram",
Proceedmgs of the Third :nternational Baltic Workshop, pp. 198-209, 1998~

[61 'The Baltic States Government Data Transmission Network: Conceptual and Methodological
Ccnsicera Ions", Rigd, '1998, 11 pp

17) VoJ\'v"N .mega .lv

Contact information:
Oatorikas InstitUts
Raina bulv. 29-220
Riga. LV-10S0
Latvia
Tel.: +371 7503383
Fa>e +371 7503531
E-mail:girts@di.1v

163 Baltic rrsT 2000, Riga April 6-7

Vilnius Gediminas Technical University
Institute of Mathematics and Informatics
Uthuanian Computer Society

DATABASES&
INFORMATION SYSTEMS

PROCEEDINGS
OF THE

4th
IEEE
INTERNATIONAL
BAlTIC
WORKSHOP

Edited by
A1bertas CAPUNSKAS

Vol. 1

Vilnius
uthuania
May 1-5

2000

Vilnius "Technika" 2000

8. References
[IJ Burden, D. lnternet Open Trading Protocol Version 0.9.9. The Open Trading Protocol

Consortium. 1998.
[2J Christoffel, M. Pulkowskl, S., Schmitt, B., Lockemann, P. Electronic Commerce: The

roadmap for university libraries and their members to survive in the infonnation jungle.
ACM Sigmod Record, 27(4),1998, pp. 68-73.

[3) Christoffel, M. A Trader for Services in a Scientific Literature Market. In Proceedings oftM
2nd International Workshop on Engineering Federated Information Systems (EFIS'99),
KUhlungsborn, 1999, pp. 123-130.

[4] Hewlett Packard. E·Speak.· the platform for Erservtces, hUO:/lwww.e-spea!s.hp.com.
[5] IBM. DB2 Digital Library. http://www-4ibmcomlloftwartlis/dJg-ljblaboul.html.
16J JavaSoft. Java Remote Method Invocation Speciflcalion. Technical Report, Sun

Microsystems, 1997. http://www.layuoft.comlproduet~/idkll.lldocs!guidelnnV.
[7J Karlsruher Virtueller Katalog. hltp:/lwww.ubka.uni-karlsruhc.delkvk.hlJDl.
[8J MeDoc- The Online Computer Science Library.

hltp://medoc.informatill.!Y-muenchen.delengllshlmedoc.htmJ. '
(9J Microsoft. DCOM Technical Overview. Technical Report, Microsoft Corporation.

Redmond. 1996.
[10J Object Management Group. CORBA 2.0mOp Specification. Technical Report,PTCI96-03-

04, Framingham Corporate Center, Framingham (MA), USA. 1996.
[11 J Pulkowski, S. Making Infonnation Sources Available for a New Market in an Electronic

Commerce Environment. In Proceedings of the International Conference on Management 0/
Information and Communication Technology (MICT'99), Copenhagen, 1999.

[12] Pulkowski, S.: lntelligent Wrapping of Information Sources: Oetting Ready for the
Electronic Market. In Proceedings a/the 10th VALA Conference on Technologies/or the
Hybrid Library. Melbourne, 2000. '

113] Rachlevsky-Reich. B., Ben-Shaul, I. et. al, GEM: A Global Electronle Market System. In
lnformatlon Systems, 24(6), 1999, pp. 495-518. '

[14J Schmitt, B" Schmidt, A. METALICA: An Enhanced Meta Search Engine for Literature
Catalogs. In Proceedings of the 2nd Asian Digital Library Conference (ADL"99), Taipei,
1999.

[15 J Stanford Digital Library Project bllp:/lwww-digljb.slallforsl-.&!lliL!lislihl.
[16J Stevens, W.R. rCP/IP Illustrated, Volume I. 77u Protocols. Addison Wesley, Reading,

1995,
[17 J Wang Baldonado. W,. Wlnogred, T. HI-Cites: dynamically created citations with active

highlighting. In Proceedings of the International Conferenr« 0" Human factors I"
computing systems (CHI Y8), Los Angeles, 1998, pp. 408-415.

[18J World Wide Web Consortium. Extensible Markup Language Recommendation. 1998.
http://www,w3,org[[R/1998/REC-xm!·19980210.

Heterogeneous Database Browsing in WWW Based on Meta
Model of Data Sources

Gtintfs ArnJcans, Girts KarnJtls
University of LaMa

FaCUlty of Physics and Mathematics
Ralnls Blvd. 19. Alga LV·141l9, LaMa

Samican@lanet.lv, gir!s@dUy

Abstract

ThIs paper describes a developOleDIpriDclple aDd techDlque for, a Ilmple universal multiple database
browser. The browser openleS by'renina information !'tom metamodel of dall IOIIrCeIIIld acrual data '
li'om 'eaacy daliIOUfCeI. Every elemeDI ,iIcb u eetlty. field, relation II mapped 10lOme COmpoDelllof
HTML pare with appropriate I!rUClureaDdlayout MIDY!emplatel of information Iayoull CIDbe created
a1lowlollO dyoamlcally cbIDle IfTML paae lO'acceptable user 'Interface. The wrappers are used 10
provide browser with acrual dalll and to acl u medlalors berweea dall IOIIrCeIIIld browser. lbla
approacb allows to quickly describlna Dew data lourceI, 'creat.llla wrappen, maldna modl8catloal larer
IDd lDlDaalna dall browlloa 10a Ilmple Uillfied Ityle. lbe browser arebltecture II nellble eDOUp 10
Incorporate data lowcel with a variety of data modell IDd qUerycapabUItlel by varlolll prOlocoll. It II
JlOSlIlbleto selocl Joclcally tied Ioformadoo 1T0ma1laVlUable Jelacy dalilowcel.

K'Jwordl: Web-based lDtormadon system, dlilribured loformatloD Iyltem, mellmodeJl, database
browsIna.

1. Introduction

Data retrieval from different autonomous sources bas become a bOI topic dUrlog the last

years. For instance, there are such data sources as enterprise register, reg ISler of pledges, reilister of

Slate. orders. When some slate Institution wants to order something from private business, civil

servants are Interested 10 Jcnow whether 'applicants are registered, wbether they have pledges and

what is their financial situation. Civil servants need Information system that can collect related

information from different Data Sources (DS) and sbow it.

We have found some such systems [2], [3]. [4] that allow to do data querying from different

data sources. All those systems are very complex, with their own query processor, but, without

universal user end. We decided 10 make a simple Universal Browser (UB) that acu on OS model

during development of Meluystem and Communication server [5]. [6].

Main Ideas of the UB are described In [I], where the idea of dalllbase browslna based OD the

fiR model is described. Our approach Is a m'odlfied UB. thai can browse multiple OS, which can be

174 17S

http://hUO:/lwww.e-spea!s.hp.com.
http://www-4ibmcomlloftwartlis/dJg-ljblaboul.html.
http://hltp:/lwww.ubka.uni-karlsruhc.delkvk.hlJDl.
mailto:Samican@lanet.lv,

made in different technologies and with limited access righlS. and possibilities. Access 10 the OS is

made via wrappers.

2. Repository of conceptual data models of data sources

Repository Is a database that contains informallon about data sources (OS) and the linJcs between

them - the specific ER model. Repository also contains a description of functions that can be

executed by OS.

2.1 Metamodel of repOiltory

• Entities Representation and Field List contain information about visual representations for each

entity l.e, what fields In what order have 10 be sbown. Por instance, let us take the entity Citizen

that contains iDformatlon about a penon. In short representation fields PK, Name, Surname arc

visible, but in long representation fields PK, Name. Surname, Address have 10 be shown.

• Entitles Frame Set, Frame and Content contain informal Ion about visual representarion.

2.2 Conceptual model of data source

R••••••••••• ~

FlU
FI<2

OS is a real existing legacy data source thai exposes its data 10 other systems. Any DS can be made

with different technologies, and expose its data in different ways. Any DS has some functions that

can be executed to get information from OS. It is not necessary for the user to know technlcal

details of OS to get information from it. The user needs a simple and understandable logical

Information representation that ls related to the objects from the real world.

For example. information about cars can be stored in many tables in the real system. We arc

Interested In conceptual data model, without technlcat details. It means a car can be represented with

one entity in the conceptual model.

Color
10
Color

Car
ISN
Number
COIJrID
ModeilD
Last Updated

Can ONnen

Car ISN
OwnerPK

Car Owner

PK
Neme
Surname
Last Updaled

,1Il:l

••••~..N••••_~
FIIl:l..,Naml... T.bIII
FIIl:l_TIPO
Dt••_~

~
Nt

Model

10
Model

F1Cure 2. Example of physical dA•• model

There can be such technological fields in the real database. which are necessary for the real system

functioning, but they are not interesting for user and are nOI shown in the conceptual model.

There are two types of fields in the conceptual data model of OS:

Plelds that can be queried with some function,

• Fields from which we cannot query information. II means there are no functions where any

of those fields are OUtpULl.Usually these fields are not showed 10 the user, and they are used

as input fields for some function. These fields are also used 10 link different entities.

There are links between DS entities, which means that, if you know information from one entity,

you can get information from the other entity. There are links between entities, if such functions

exist, whlcb can query infonuation from OS, using as an input information from other entity. For

F1cure I. MelJ.lllodel or repoJllory

Flc•••.• I sbows an ER model of Universal Browser's (UB) repository. There are different parts in

tbls model that are used for different purposes:

• Entities Data Source, Entity, Field, Relation, Relation Field contain OS models and information

about entities and relations.

• Entities Function, InpUI. Input Function, Output, Output Function contain lnformatlon about

functions that query information from DS and input and output fields of these functions.

176
177

example. if you know some information about the person (especially person's PK (person code»,

you can query the information about the person's passport. It means there is a link from person to

passport. This function returns the passport number and the issue date. On the other hand, If you

know the passport number, you can't get the passport's owner PK, because. there is DO function that

returns this information. It also means that there can't be a link from passport to citizen.

Table I. Descripllonor Relations

2.3 Logical links between the data sources

Endl· PKI Endl PKl Relallon name
Cllizen PK CItizen ChUdPK HuPueDlS

Cilizen PK Cillun ParenlPK Hu Children
Citizen PK Passport PK Hu

Cltlzen PK Penon WltbPK PK
CarOwoer PK Car OwoerPK Owns
CarOwoer PK PersonWltbPK PK .

Car ISN CarOwner CarISN BelonalTo
PerldnWithPK PK CarOwoer PK IS
PerldDWithPK PK Car PK Owns
PerIODWithPK PK Pallpon PK Hu'

Pelion WithPK PK CltlzeD PK II
PerIODWithPK PK Clrlzen ChUdPK Hu Parents
PerIODWithPK PK Citizen PareDtPK Hu Children

There are entities of different types used to link together information from different DS. These

entitles are used as base class of DS entities and do not belong to any OS. For instance, the entity

Person with PK is such a base class. This base class has only one field PK. This field Is primary key

for slmilar objects that concern person for most of OS. If you know the PK you CtID get the

information related to the person information from the appropriate OS. For instance, Person with

PK links together information from the entities Cit/ztn. Passport, Car and Car Ownu (Fllure 3).

2.4 An example of repository

Two DS and one base class are given in Figure J.
3. Browsing principles

General Idea for dynamic. browsing of various data sources is to generate Web pages with

predefined information layout and functionality, get data from data sources and put them into page.

A web page consists or a set of frames (Frame) - FrameSet. The Frameset has a prefixed

count of Frames. Its layout and sizes. We can define as many as we need different FrameSets to

organize and displ'ay information for the user. The FrameSet is a view to related data from one or

many data sources. One of the Prames Is the main Prame. The information in any other Frame is

logically connected with data in the main Frame. The Frames can contain controls to manage the

content in the other Frame.

The layout of the Frame Is defined by rule, lets cail it Content. Theoretically the C~ntent is a

formula or function: Cont,nt(framtEntlty, jflt,rExpr) where fralMEntlty Is any entity from the

metamodel of data sources andfilltrExpr is logical expression that filters data from appropriate data

source. The Content definesr.I) what is the structure and principles of layout, 2) what data from

metamodel and from actual legacy data sources are required to display Information, 3) what actual

Instancea of the defmed entity are retrieved, S) what controls are used to mauage the content of the

other Frame or to.open the other FrameSet and S) what related entities are involved ftom the same

or any other data source. If we have various predefined Contents, then we can dynamically apply

any Content to the Frame and get another data presentation for the sameframtEnlity audJlltlrExpr,

...
PI•• port
(PI<)

.--to P••• port 'bnw
luue 0".

C.rOwn ••.

....-
lIN
Number
COlor
Modol
(o.mar PKI

Figure3. Elaropleor conceptual modelof daa lources

Fields In square brackets are invisible fields used for search purposes only. Solid Hoe with arrows

means if you know information from the entity thaI is a starting point of the arrow, you can get the

related Information from the entity that is at the opposite end of the arrow. Interrupted line shows

the relation between nomll1l entlty and base class emit». The values of arrows are shown in T.ble I.

178 t79

4. DennlD&the Content of Frame

Let us assume that Content is the' function Conl,nl(jram,Endty. jflt"Expr). Let us determine the

means bow we can define Content. We introduce the following data types:

•. entity. determines the entity from the metamodel,

• neld. determines the field of the entity from the metamodel,

• relation- determines the relation for two entities from the metamodel,

• record. detcrmlDes the actual data from the data source for one fiXed Instance of the entity,

• value. determines the actual data of the field for one fixed Instance of the entity,

• string. determines the character sttlng,

lI.t • determlaes the list of elements with any other allowed data type, we denote such types by

the elementlype followed by postfix "List",

• updlteActlon. determines the action that updates Frame

• . nlv.lglteActlon • determines the action that navigates browsing to another FraineSet

• .Object • determines the HTML object that contains string to display,

• IObject. determines the HTML object with assigned some action to perform,

• fObject. determines the HTML object that is formatted for displaying,

• frlme • determines the Frame,

• rrllJllcSet • determines the FrameSet,

• view. determines the list of fields that must be displayed.
Let us rewrite lbe Content as a function Conl,nl(,nllly, upr(,ndty».
Let us introduce several additional functions to work with the metamodel and data sources, and to

format HTML page.

Functions to work with the metamodel:

I. Saurc,Nam,(,ndty) 751rlng - returns the source name the entity belongs to

2. EndtyNam,(endty) -htring - returns the entity name
3. R,lationU51(,ndty) -ntlationLi51 - returns all direct relatlons from the given entity to another

entity (Including itself) from the same data source
4. M,/aR,latlonUs/(entity) 7relaJionUs/ - returns all indirect relations from the given entity to

another entity from all available data sources
S. FI,ldUs/(entlty, vI,w) 7ji,IdU5/- returns the list of all the fields of the entity

6. R,laJionNam,(rtlolion) 751rlng - returns the name (role) of the relation

7. FI,ldNam,(ji,Id) 75trlng - returns the name of the field

8. R,lotianEntlty(rtlollon» 7enlity - returns the entity at the opposite eod of relation

Functions to work with da~ through wrappers:

I. RecordUsl(entlty, IXpr(erlllty»7rtcordUsi - returns tbe list of instances (records) of the entity

according to the given filtering expression

2. ValueUsl(record, vI,w) 7valueUsl- returns the list values of the given entity instance (record)

3. Valu,(valu,) 7string - returns the field value as cbaracter string

FWlctiops to work with !be.llli:

I, Listielement], ",mene2, ...• elementl) 7l1sel- returns the list of given elements and the

list type 1151_1is appropriate 10 the element type

2. Iterat,Usl(n'7'dlsel, jlmclion(n%» 7I1st..) - returns !be list /15,-2 that bas as elements !be

results applying \he given function. The function is executed with eacb parameter n% that is
taken from the listlis,_J denoted by the identifier n% (n is any unique integer) and the list type

IIse2 is appropriate to the function return type

3. Conca/,nat,(llsel, Iist..) 7115/_3- returns the concatenation of two lists with the same

element type,

functioDS tQformat HTML page:

I. SO(string) -hObjecl- creates sObject from the cbaracter string

2. SlrlngUsIObjecl(strlnglis/, sepuratorStrlng)7s0bjecl - creates sObjecl from the list of

cbaracter strings separated by separotorstring

3. Updat,(framc, ,ndty, ,xpr(,ntlty), content) 7updal,Actlon - activates information update into

the frame wi\h the given entity, filler expression and layout

4. CI,ar(fram,) 7updat,Actiol/ - clears the given frame

S. Navlgal,(fram,S,I, entity, ,xpr(tnlity), conl,nt)7navigal,Actlon - navigates to another

FrameSet and update main Frame with !be given entity, filter expression and layout

6. Unk(sObjecl. navigateAction, updat,AcllonLi51)7aObj,cI - converts sObject into aObject and

assign the navigation action and set of update actions to it. Any of action parameters may be

empty.

7. AO(sObjecl) 700bjecl- converts sObject into aObject wi!b empty action

8. FO(aObjecl)7jObjeci - converts aObject into fObjecl without any special formating

9. HorlzonlaITnbJe(aObjecILisIUs/)7/0bjecl - creates fObject from !be list of lists. Ibis frame

object is displayed as table. 3J1dinterna.1lists are placed in rows

10. VerticaITable(aObjecILi5/U5/)7/0bjecl- creates fObject from the list of lists, this frame

object is displayed as table. and internal lists are placed in columns

180 181

11. UstBox(aObjectUst) ~ fObject- creates IDbject from the list, this frame object is displayed as
listbox

12. Horiloll/al(fObjec/List) ~ /Object - creates new robject by arranging the given list horizontally

13. Vertical(fObjec/Ust) ~ jObjec/ - creates new robject by arranging the given list vertically.

Only frame objects with the type robject may be displayed in the Web page.

t. The function gets information identifying the object from OS by some search criteria. For

example. get person's PK by its name and surname (might be partial). The answer usually Is

a Iist of person's identifying information according to search criteria.

2. The function gets information about one objeci from one entity by its identifier. An example

- get all information about the citizen by ilS PK.

5, Data wrappers For instance. we have two functions for the entity Citizen:

Function Recordl.ls! must be implemented to get information from OS. The technology we we Is

simple, but effective. UB gets information from OS via Wrappers. Thls approach has the following
advantages:

I. Input data - Name, Surname (might be partial). Output data - PK, Name. Surname (full).

2. Input data - PK. Output data - PK; Name. Surname, Address.

There are also 2 functions to get information about the citizen's parents and children:

• It allows to access OS via different protocols and methods - OOBe, OLE DB, SQL*Nel,
DeOM.

3. Input data - Parent PK. Output data - Children PK, Name, Surname.

• OS usually are made well suited for specific business tasks. OS are not primary made for data

access from VB. The access to OS data usually is limited, it is allowed to execute some stored
procedures to query data. Wrapper allows us to execute only authorized functions.

4. Input data - Child PK. Output data - Parents PK. Name, Surname.

There is a procedure that implements the function RecordUst. This procedure gelS the entity and

filter expression as input and returns data from OS as output. In our implementation this procedure

gets information from the meta database about functions that can be executed over entity from

which we need information. In our implementation the fLlterexpression is fields and correspondini

values fo~ these fields, e.g. PK","1234S6-111111". Then! Is "brute force" algorithm that fUlds

functions we can execute e.g. those are functions that have enough input data from the filter

expression to be executed. executes these functions and returns result. There can be, of course, other
implementations.

OS data access via wrappers allows to connect new OS to our system easily and quickly. We

have to write a new wrapper and add information about new OS to the meta database. With some

. experience the writing of wrappers Is easy and fast process, and there Is no need to make any
modification in OS.

• Querying OS via functions allows us to have easy transfer leal data from OS physical data
model to logical data model that is more understandable for the user.

information about functions is stored in the UB meta database: defined input and output fields for
each function. Each input field may be mandatory or optional.

During development of the prototype, we discovered some rules for function implementation
and developing conceptual model of OS.

• Firsl rule - il is desirable to have input and output fields from one entity. 'It simplines
development of OS model and wrappers.

• Second rule . two approaches possible for making DS model and functions. One approach Is that

we already have functions, and we make conceptual data model of OS wing the first rule. In

case DS is a system we maintain and own, It is often possible to make functions according to

conceptual data model of OS. In such a case we make conceptual data model of OS at first and

then we make data access functions according to conceptual data model and the flflit rule. It is
helpful 10 make two' types of functions:

6. Templates for Web page structure and functionality

The design of PrameSet and Prames Is based on template principle. With some experience the new

FrarneSelS and Frames can be developed quickly. The design has two main steps - FrarneSel
structure planning and creating formulas for Frame Contents. We give some templates and Ideas

how the Web pales can be designed. The above aiven functions are used.

182 t83

6.1 Simple entity Instance presentation In table

The first column contains field names and the second - field values

A(entley. record) - VertkalTable(Ult(AI. A2))
AI - IrenreLlsl(I~FleldLlsl(endey, view), AO(SO(FleldName(l ~»)))
Al. Il&rlrelbt(l'l.ValueLlIl(record. view). AO(SO(Valuc(l~»)))

~1121ml11l1

~~----I"'UDe dri. .
I·····.....•......•...•............-_.__.•.........•_..
,SW1lUDe lin.rsn- --
.~d~!.!..IiiJ.!'·~.!.~.~·ll..:.~y.l~

Flaurc 6. Example or releuen preseutetica

P1aure4. Example or cnury lnatanee presenlluon

6.5 An example of Fram~Set

Let us look how a FrameSet can be built. Let us assume FrameSet FRS_J with 4 Frames - FR_J.

FR_2. fR_3. FR_ 4. FR_t is used to Jist instances of entity, FR_2 -10 show details of fixed instance

in FR_I. FR_3 - to list all relations to other entities in all data sources, FR_ 4 - to show details of

another related entity instances for FR_2 or FR_ 4. See Figure 7.

At first let us create three presentations or Contents (E, F. 0) for viewing entities. We use

formulas created before in thls paper.

• Content formula EO for Frame FR_ 4 (from FR_ 4 we can update all Frames in FRS_I)

E(eouty, expr(eDllty» - Verllcal(El,~)
EI - HorlzoDtal(L1sl(FO(E2).FO(AO(SO(" "))), FO(AO(SO(SourceNamc(eDllry))))))
El- LIok(S()(EDllryName(eudry)),El, E4)
ID- Nlvlglre("FRS_I", entlry, e,pr(eDdry), "")
E4 - L1st(C1ear<"FR_2"l,UpdalC("FR.Y', entlry, expr(eDllry),"'.'), Clear(FR_4))
E'. Verllcal(lr.eaICUst(6'1>RecordLisl(eDdey,expr(eDuey», A(entity, 6'1>)))

• Content formula FO and GO for Frame FR_2 (from FR_2 we can update this frame or update

6.1 Entity In.tance presentation 8lI text

Instance field values are concatenated according to select view.
B(record) • FO(AO(SO(StrloglislObJecl(B I. ""))))
BI - JrenleLlIl(3~VaI"eLlsl(record, view). VaI"e(3~))

12121211111 Andris KailIlI M Rl8a. Liepu 1-11, LV-IOOO

6.3 Entity relatlonl presentation In verllca1l1lt

~eb relation II represented as relation name concatenated with entity name at the opposite relation

end.

Qeolley) - Vertlcal(lrenleLlSl(4~Relldoollsl(enlley), CI»
CI • HOriZOlltal(lbl(Cl, FO(AO(SO(" "))), C3))
a- FO(AO(SO(RellllonName(4'1>))))
CJ • FO(AO(SO(E.ollryName(RelltlooEDliry(4'1.)))))

Hu Pusport
Hu PlII'enll Citizen
Hu Children Citlzen

FR_4)

F(eDllty,expr(enllty»" Venical(H, FO(AO(SO(" "))), ES)
G(entley. expr(enlily)) • Venical(H, FO(AO(SO(" "))), VenlcaJ(ES, GI))
GI "C(eDliey), where CJ is substltat« with G21n all places (we have added the actian)
G2" FO\LInk(SO(EDtieyNlDle(RtlatiooEDlity(4%))).NUlL. GJ»
G3 - L11l(Updare("FR_4", RelatiooEntlry(4'1», eXpr(RelatiooEDlily(4'1>))."E"»
H" LlslBox(Ust(LIok("Pres<DtatiODP', NUlL, HI), LinJc("Prc&eDtatiobG", Nl.n.L, H2)))
HI • Updare("FR_2", eDlity,exprfeunry), "F')
H2. Updare("FR...l", enriry, exprtentity), "G")

• Content formula 10 for Frame FR_I (frOID FR_l we can update FR_2, FR3. FR_ 4)

J(eDtiry,expr(entlry)) e Verticahl l , (2)
11• Horizontal(li,t(FO(E.olilyN~LDe(eDtlry)),FO(AO(SO(" "))). FO(AO(SO(SolllceName(eDlity))))))
12. HorlzoDtalTable(lteraICLlst(7'J,RecordList,LinJc(B(7%),Nl.n.L, 13))
Il • U'tIUpda"("FR_2", eDtiry,expnenury) and e.pr(7%), "F'),

Updale("FR_l", ennry, e"pr("nury) and expr(7%), ''''), Oear("FR_ 4"))

• Content formula JO for frame FR_3 (from FR_3 we can update FR_ 4)

F1aure5. Example ohelatloDs presentatloa

6.4 All relaUon presentation In table

The data about all relations (relation name, entity name and data source) are placed in table with

beadings,

Dlendey, expr(eDtily»-HorlzontalT Ible(CoDcateDlle(O1,02»
01 • AO(StrIogLI.lObJecl("Re'ltion", "EDllryDame", "Data louree"))
02· IterlteUsl(''l.MetaRelltloollst(eDllry),LIII(03, 04, 0'))
Ol. AO(S()(RelltlonNllDe(S'I.)))
D4. AO(SO(EDtlryName(RelltlooEollty(S'I.»))
m - AO(SO(SourceName(RelauooEDliry(S'I>»))

l(eDlily, e.pr(eDllry)) = D(enliry, txpr(enlily». where D4 is sub"itlllt wi,h 11 ill ali places (we /"lI'e add ,he acriun)

184 185

J I c Link(SO(EnliryN.me(RelallonEnllly(5%»), NULL, J2)
J2 c 1.i.r(Updale("FR_ 4", RelallonEnliryO%), expr(RelallonEnlhy(5%», "E"»

lPi<jiiliifiiiii
rN..... I~dri.-
~-';;:;'~;iKii~ -,
's~'---'-1M --- ---- ..---.- "?":

~~~:~~~~~~I~-"!~Li~Y:'~_O~i

8. References

[I] Arnicans 0, "Application generation for the simple database browser based on the ER

diagram", Proceedings of the Third International Baltic Workshop, pp,198.209, 1998.

[2] Tomasic A, Amouroux R, Bonnet P, Kapitskaia 0, Naacke H, and Raschid L, "The distributed

information search component (disco) and the World Wide Web" in Proceedings of ACM

SIOMOD International Conference on Management of Data, Tuscon, Arizona, 1997, Prototype

Cttlzen Rogl~ler of Resldents

12121211111 I\ndri. KabUl
lmm"@.·~~pa 'I
01010101010 MIri. Kain.
iliiiiij iJ IZ';;;;'jSiij,,! j

R,l;dion Entity .w;;;,:O;;;-'-;O~ce I
I.it ~ "!Regi,t er ·ofRllideDIIH.. ~ -!R.g;ntrofR •• iJ;;;U--- ~

it•.•rllTtnlJ £i.iim; !Reiiot •..-ofRe~id'rii~.. ,Y
i-i •.• Children :~&n !Resill., ofRe'identJ i ~:'
11 Q.~O;;""e'r 1Ji..gi.ter orMo'or vehiel" I f
Own. ~ .. ~~'8i"~r~f.Molor~.hici;;I f:

~

Car Reglster of Molor \'ehlcle~

N~.rji.A 1000
'C~~r.!Biilclc--
1-:i°d<.i:-'t~[i~iJ

Demonstration.
[3] Haas L, M, Miller R. J, Niswonger B, Tork Roth M, Schwarz P. M, Wlmmers E, L,

"Transforming Heterogeneous Data with Database Middleware: Beyond Integration", Data

Engineering Bulletin 1999,
[4] Hammer J, OarciaMolina H, Ireland K, Papakonstantinou Y, Ullman J, Widom J,

"informatIon translation, mediation, and Mosaicbased browsing in the TSlMM1S system", .in

Proceedings or ACM SIOMOD International Conference on Management or Data, 1995,

Project Demonstration.
[5] Amicans 0, Bicevskis J, Karnitis 0, "The Concept of Setting Up a Communications Server",

in Abstracts of Papers of 3rd International Conference "Information Technologies and

Telecommunications In the Baltic States", pp. 48-57, 1999,

[6] www.mega.lv

Figure 7. Example of WWW page

7. Conclusions and future dlrectlous

The prototype of the UB is made during developing Megasystern and Communication Server. Four

registers lest databases are connected to the UB for testing purposes. Two of them use Oracle as
DBMS, other two use Microsoft SQL Server.

The UB prototype shows the effectiveness of our approach and Is being initiated as first version of
the real system.

There are many aspects that are very important in realllfe application. but not covered in this article

- security, user authorization, logging, query cost calculatlon. All these features are incorporated in
the UB,

The UB is useful in many large organizations having many autonomous data sources as a browser

for these systems with integrated view,

Future direction of our work is to develop a query processor that can \like as Input SQL-1lke query

and return as output the result queried from multiple data sources. Other directions of future work -

10 make CS available not only from WWW browsers, but also from custom programs using XML to

query data and return answers.

186
187

http://www.mega.lv


Databases and
Information Systems
Fourth International Baltic Workshop,
Baltic DB&IS 2000 VilIiius, Lithuania,
May 1-5, 2000 Selected Papers

Edited by

Janis Barzdins
Institute of Mathematics and Computer Science.
University of Latvia, Riga

and

Albertas Caplinskas
Institute of Mathematics and Informatics;
Vilnius

KLUWER ACADEMIC PUBLISHERS
DORDRECHT/BOSTON/LONDON



Heterogeneous Database Browsing in WWW Based on Meta
Model of Data Sources

GunWi Amicms, Girts Kamitis

University of Latvia
Faculty of Physics and Mathematics

Raina Blvd. 19. Riga LV-1586, Latvia
gamican@lanetlv. girts@di.lv

Abstract

This paper describes a development principle aDd technique for a simple universal multiple database
browser, The browser operates by getting information from metamodcl of data soerees aDd aclUa1data
from legacy data sources. Every element such as entity. field, and relation is mapped to some component
of HTML page with appropriatesiruaure aDd layouL Many templates of information Jayouts can be
created allowing to dynamical chaJliing of IITML page to acceptable user interface, 1De wrappers are
used to provide browser with actual data and to act as mediatoes between data sources aDd browser. This
approach allows to quickly describing new data sources, creating wrappers. making modifications later
and managing data browsing in a simple unified style. 1De browser architecture is flexible enough to
incorporate data sources with a variety of data models and query capabilities by various protocols. II is
possible to select logically tied informatioo from all available legacy data sources.

Kqwords: Web-based infonnation system. distributed informatioo system. melamOdels, database
browsing.

1. Introduction

Organisations. both governmental and business, have to manage large amount of information
stored in some form of databases or files. One of the main problems to deal with information
managing is the weak interoperability between various databases and information systems.
Especially this problem is serious when we want organise collaboration between the information
systems of various organisations.

10 nowadays a significant fraction of new information systems or services bases on the Web
solutions. Usually developers use Web applications to organise communications between data
source and data consumer (user) but data sources sometimes remain the old ones from the current or
previous information systems. This leads to the operation with very heterogeneous data "To deal
with problems the metadata of the data sources (data structure, content, attributes, etc.) are used to
describe the heterogeneous information models. This approach supports the creating of very
dynamical systems and it is easy to maintain system in the rapidly changing world.

10 this paper we describe some results achieved during the "development of two projects - the
Integrated State Significance Information System (Megasystem) and the Baltic States Government
Data Transmission Network (Network) [2, 5]. The goal of these projects is to provide funda ••nental
improvements in the exchange of telecommunications and data among the administrative
institutions of the Baltic States. The principles described in this paper were used to build up the first
implementation of Communication server. A Communication server is a set of software and

167

J. Barzdins and A. Caplinskas (eds.}; Databases and Informarion Systems, 167-178.
© 2001 Kluwer Academic: Publishers. Printed in 1M Netherlands.

mailto:girts@di.lv


168 G. Amicans, G. Kamitis

computer equipment that allows a wide range of users to receive information from variety of
sources (governmental registers, databases, information systems) through a single contact point,
Among the other significant functions the Communication server fulfils a requests that involves
several infonnation sources, merges together information, allows users to learn where information is
stored and what kind of information it is, and to receive information from various registers without
any need for in-depth knowledge about the technical aspects of its storage.

Daia retrieval from different autonomous sources has become a hot topic during the last
years in the other countries and large enterprises also. There are many different approaches to deal
with this task.. For instance, the systems described in [3,4, 6, 7] allow data querying from different
Data Sources(DS). All those systems are very complex, with their own query processor, but without
universal user end. The development of these systems. consumes many resources (time, money,
people).

Our first aim was to make a simple Universal Browser (UB) that acts on model of data
sources and is very useful in practice (relative to consumed development resources). Main ideas of
the UB are described in [1], where the idea of database browsing based on the ER model is
described, Our approach is a modified UB that can browse multiple DS, which can be made in
different technologies and with limited access rights and possibilities. Access to the DS is made via
wrappers. Information retrieval bases on logical data models, information between different data
model are tied via special logical data entities. The simple means are offered to obtain information
and display it on WWW page - the set of functions that allows to create executable formulas.

2. Repository of Conceptual Data Models of Data Sources

. Repository is a database that contains information about data sources (DS) and the links
between them - the specific ER model. Repository also contains a description of functions that can
be executed by DS.

2.1 METAMODEL OF REPOSITORY

Figure 1 shows an ER model of Universal Browser's (VB) repository. There are different
parts in this model that are used for different purposes:

• Entities Data Source, Entity, Freid, Relation, Relation Field contain DS models and information
about entities and relations.

• Entities Function, Input, Input Function, Output, Output Function contain information about
functions that query information from DS and input and output fields of these functions.

• Entities Representation and Field List contain information about visual representations for each
entity i.e. what fields in what order have to be shown. For instance, let us take the entity Citizen
that contains information about a person. In short representation fields PK, Name, Surname are
visible, but in long representation fields PK, Name, Surname, Address have to be shown.

e Entities Frame Set. Frame and Content contain infmmation about visual representation.

2.2 CONCEPTIJAL MODEL OF DATA SOURCE

DS is a real existing legacy data source that exposes its data to other systems. Any DS can be
made with different technologies, and expose its data in different W2yS. Any DS has some functions
that can be executed 10 get information from DS. It is not necessary for the user to know technical
details of DS to get information from it. The user needs a simple and understandable logical
information representation that is related to the objects from the real world.



Heterogeneous Database Browsing in WWW

Figure L Metamodel of repository

169

ReIalion FIIlId

FK1
FK2

Fietl
Fietl_Name_ VISbIe
FlBtLName_ Table
Fietl_Type
Data_Type

isa.ty
Nr

For example, information about cars can be stored in many tables in the real system. We are
interested in conceptual data model, without technical details. It means a car can be represented with
one entity in the conceptual model. -

There can be such technological fields in the real database, that are essential for the real
system functioning, but they are not necessary for user and are not shown in the conceptual model.

There are two types of fields in the conceptuaI data model of DS:
••. Faelds that can be queried with some function,
• Fields from which we cannot query information. It means there are no functions where any

of those fields are outputs. Usually these fields are not showed to the user, and they are
used as input fields for some function. These fields are also used to link different entities.

Color

10
Color

car

ISN
Number
ColorlD
Model 10
Last Updated

Figure 2. Example of physical data model

Car Owner

PK

'.Il,~:-Itast. Updated



170 G. Arnicans, G. Kamitis

There are links between DS entities, which means that, if you know information from one
entity, you can get information from the other entity. There are links between entities, if such
functions exist, which can query information from DS, using as an input information from other
entity. For example, if you know some information about the person (especially person's PK
(person code», you can query the information about the person's passport. It means there is a link
from person to passport. This function returns the passport number and the issue dale. On the other
hand, if you know the passport number, you cannot get the passport's owner PK. because there is no
function thai returns this information. It also means that there cannot be a link from passport to
citizen.

2.3 LOGICAL LINKS BEIWEEN TIlE DATA SOURCES

There are entities of different types used to link together information from different DS. These
entities are used as base class of DS entities and do DOtbelong to any DS. For instance, the entity
Person with PK is such a base class. This base class has only one field PK. This field is primary key
for similar objects that concern person for most of DS. If you know the PK you can get the
information related to the person information from the appropriate DS. For instance, Person with
PK links together information from the entities Citizen. Passport, Car and Car Owner (Figure 3).

2.4 AN EXAMPLE OF REPOSITORY

Two Data Sources and one base class are given in Figure 3.

Car Owner

PI{
N8meS..-
(ClIr1SNj

•••

[CNd PI<]
IParent PI<]

Is --
Car

ISH
Nlmler
CoIar
Model
[OwnerPK]

Figure 3. Example of conceptual model of data sources

Fields in square brackets are invi~ible fields used for search purposes only. Solid line with
arrows means if you know information from the entity that is a Starling point of the arrow, you can
get the related information from the entity that is at the opposite end of the arrow. Interrupted line
shows the relation between normal entity and base class entity. The values of arrows are shown in
Table 1.



Heterogeneous Database Browsing in WWW 171

Table 1. Desaiption of relations

Elldl PK E0d2 PIa ReJatioD_
1

Citizen PK Citizen ClIiId PK HasPamn
CitizaI PK Citizen PareDl PK Has Oilldreu
CilizeD PK Passoort PK Has
Citizen PK Person With PK PK
CarOwncr PK Car OwnerPK Owns
CarOwncr . PK Person With PK PK
Car IS Car Owner earlSN Belongs To

N
PmoDWithPK PK Car Owner PK IS
Person Wdh PK PK Car PK Owns
Person Wdh PK PK P3SSPOrt PK Has
PeISODWIlh PK PK Citizen PK Is
Person WIlh PK PK Citizen . OliIdPK HasPamlts
Person Wdh PK PK Citizen ParemPK Has Oilldren

3. Browsing Principles

General idea for dynamic browsing of various data sources is to generate Web pages with
predefined infonnation layout and functionality, get data from data sources and put them into page.

A Web page consists of a set of frames (Frame) - FrameSet The FrameSet has a prefixed
count of Frames, its layout and sizes. We can define as many as we need different FrameSets to
organise and display information for the user. The FrameSet is a view to related data from one or
many data sources, One of the Frames is the main Frame. The information in any other Frame is
logically connected with data in the main Frame. The Frames can contain controls to manage the
content in the other Frame. .

The layout of the Frame is defined by rule, lets call it Content Theoretically the Content is a
formula or. function: Conlenl(frameEntity, jiJJerExpr) where frameEntity is any entity from the
metamodel ofdata sources andfilterExpr is logical expression that filters data from appropriate data
source. The Cootent defines:

1) what is the structure and principles of layout,
2) what data from metamodel and from actual legacy data sources are required to display

information.
3) what actual instances of the defined entity are retrieved,
4) what controls are used to manage the content of the other Frame or to open the other

FrameSet,
5) what related entities are involved from the same or any other data source. If we have

various predefined Contents, then we can dynamically apply any Content to the Frame
and get another data presentation for the sameframeEntiry andfilterExpr.

4. Defining the Content of Frame

Let us assume that Content is the function Conient(frameEntily,ftlterExpr). Let us determine
the means how we can define Con lent.

We introduce the following data types:
• entity - determines the entity from the metarnodel,
• field - determines the field of the entity from the rnetarnodel,



172 G. Arnicans, G. Kamitis

• relation - determines the relatioo for two entities from the metarnodel,
• record - detennines the aetuaI data from the data source for one fixed instance of the entity,
• value - determines the actual daIa of the field for one fixed instance of the entity,
• string - determines the character string,
• list - determines the list of elements With any other allowed data type, we denote such types by

the element type followed by postfix "List",
• opdateAction - determines the acrioo that updates Frame,
• navigateAction - determines the action that navigates browsing to another FrameSet,
• sObject - determines the HTML object that contains suing to display,
• aObject - determines the IfIML object with assigned some action to perform.
• fObject - determines the HTML object that is formatted for displaying,
• frame - determines the Frame,
• frameSet - determines the FrameSet,
• view - determines the list of fields that must be displayed.. .

Let us rewrite the Content as a function Content(entity, expr(entity».
Let us introduce several additional functions to work with the metamodel and data sources,

and to format HfML page.

• Functions to work with the metamodel:
1. SourceN~(entity) -7string - returns the source name the entity belongs to.
2. EntityName(entity) -?string - returns the entity name.
3. RelalionList( entity) ?re/otionlist - returns all direct relations from the given entity to

another entity (including itself) from the same data source.
4. MeutRelalionList(entity) *elatioRList - returns all indirect relations from the given entity

to another entity from all available data sources.
5. FuldList(entity, view) ~ - returns the list of all the fields of the entity.
6. Re1aIionName(rellllion)-ntrlng - returns the name (role) of the relation.
7. FuldName(fiel4) -ntring - returns the name of the field.
8. Re1atWtlEntity(rellllion» *"tity - returns the entity at the opposite end of relation.

• Functions to work With data sources through wrappers:
1. RecordList(entity, expr(entitJ»?recortllist - returns the list of instances (records) of the

entity according to the given filtering expression.
2. ValueList(record, view) -7valueList - returns the list values of the given entity instance

(record).
3. Value(value) ?string ~ returns the field value as character string.

• Functions to work With the list:
1. List(el€ment_l, elemenc2, ",", element_i) ~iisf_l - returns the list of given elements and

the list type list ] is appropriate to the element type.
2. IterateList(n%lisCl,junction(n%» 7UsC2 - returns the list lisC2 that has as elements the

results applying the given function. The function is executed with each parameter n% that is
taken from the list lise] denoted by the identifier n% (n is any unique integer) and the list
type lise2 is appropriate to the function return type.

3. Conauenasetlist ]; list_2) -JlisC3 - rerums the concatenation of two lists with the same
element type.



Heterogeneous Database Browsing in WWW 173

• Functions to format HTML page:
1. SOCstring) *Object - creates sObject from the character string.
2. StringListObject(stringlist, separatorString) *Object - creates sObject from the list of

character strings separated by separatorString.
3. Updale(frame, entity, upr(entity), content)?updauAction - activates information update

into the frame with the given entity, filter expression and layout.
4. Cletu(frrune) 7uptl.oUAction - clears the given frame.
5. Navigate(frameSet, entity, expr(entity), content)~auAction - navigates to another

FrameSet and update main Frame with the given entity, filter expression and layouL
6. LinJc(sObjeet,navig~Action, updoUActionlist) -*ZObject - converts sObject into aObject

. and assign the navigation action and set of update actions to it, Any of action parameters
maybe empty.

7. AO(sObject) -*zObject - converts sObject into aObject with empty action.
8. FO(IlObject)-#Object - converts aObject into fObject without any special formatting.
9. Horizo~Table(IlObjectIistList)~ /Object - creates fObject from the list of lists, this

frame object is displayed as table, and internal lists are placed in rows.
10. VerticlllTable(IlObjectlistlist) ~ fObject - creates fObject from the list of lists, this frame

object is displayed as table, and internal lists are placed in colunms.
11.ListBo;r(IlObjectlist) ~ fObjecl- creates fObject from the list, 'this frame object is displayed

as listbox.
12.Horizontal(fObjectIist) ~ /Objed - creates new fObject by arranging the given list

horizontally.
13. Vertical(fObjectList)~ /Object - creates new fObject by arranging the given list vertically.

Only frame objects with the type fObject may be displayed in the Web page.

5. Data Wrappers

Function RecordLisJ must be implemented to get information from DS. The technology we
use is simple, but effective. UB gets information from DS via Wrappers. This approach has the
following advantages:
• It allows accessing DS via different protocols and methods - ODBCTM. OLE DBTM,

SQL*Net™, DCOM"", COM+TM, XML, lfITP.
• DS usually are made well suited for specific business tasks. DS are not primary made for data

access from UB. The access to DS data usually is limited, it is allowed to execute some stored
procedures to query data Wrapper allows us to execute only authorised functions ..

• Querying DS via functions allows us to have easy transfer real data from DS physical data
model to logical data model that is more understandable for the user.

Information about functions is stored in the UB meta database; defined input and output fields
for each function, Each input field may be mandatory or optional.

During development of the prototype, we discovered some rules for function implementation
and developing conceptual model of DS.
• First rule - it is desirable to have input and output fields from one entity. It simplifies

development of DS model and wrappers.
• Second rule - two approaches possible for making DS mode! and functions. One approach is that

we already have functions, and we make conceptual data model of DS using the first rule. ill
case DS is a system we maintain and own, it is often possible to make functions according to
conceptual data model of DS. In such a case we make conceptual data model of DS at first and



174 G. Arnicans, G. Kamitis

then we make data access functions according to conceptual data model and the first rule. It is
helpful to make two types of functions:

I. The function gets information identifying the object from DS by some search criteria
For example, get person's PK by its name and surname (might be partial). The answer
usually is a list of person's identifying information according to search criteria

2. The function gets information about one object from one entity by its identifier. An
example - get all infonnation about the citizen by its PK.

For instance, we have two functions for the entity Citizen:
• Input data - Name, Surname(might be partial). Output data - PK, Name, Surname(full).
• Input data - PK. Outputdata - PI(, Name, Surname, Address.

There are also 2 functions to get information about the citizen's parents and children:
• Input data - Parent PK Output data - Children PI(, Name, Surname.
• Input data - Child PIC.Output data - Parents PI(, Name, Surname.

There is a procedure that implements the function RecordList. This procedure gets the entity
and filter expression as input and returns data from DS as output In our implementation this
procedure gets information from the meta database about functions that can be executed over entity
from which we need information, In our implementation the filter expression is fields and
corresponding values for these fields, e.g. PK="123456-IIIIII". There is "brute force" algorithm
that finds functions we can execute e.g. those are functions that have enough input data from the
filter expression to be executed, executes these functions and returns result There can be, of course,
other implementations.

DS data access via wrappers allows connecting new DS to our system easily and quickly. We
have to write a new wrapper and add information about new DS to the meta database. With some
experience the writing of wrappers is easy and fast process, and there is no need to make any
modification in DS.

6. Templates for Web Page Structure and Functionality

The design of FrarneSet and Frames is based on template principle. With some experience the
new FrarneSets and Frames can be developed quickly. The design has two mainsteps - FrameSet
structure planning and creating formulas for Frame Contents. We give some templates and ideas
how the Web Pages can be designed. The above given functions are used. Formulas are logically
divided into several subparts only for easier understanding. Some formulas use subparts of other
previously defined formulas. The example of visual presentation for each formula is given.

6.1 SIMPLE ENTITY INSTANCE PRESENTATION IN TABLE

The first column contains field names and the second - field values. The field values are
retrieved according to the selected view.

A(entity. record) = VerticalTable(List(Al, A2»
AI = llel'3leList(1 %FieldList(entity, view), AO(SO(FieldName(l %»))
A2 = lterateList(2%ValueList(record, view), AO(SO(V;ilue(2%)j)



Heterogeneous Database Browsing in WWW

!pI( p:2121211111
jNlIIIle jAIldris
~1Ka1ils

!Sa 1M
·!Address IRi88: Liepu 1-12, LV -1000

Figure 4. Example of entity instance presentation

6.2 ENTITY INSTANCE PRESENTATION AS TEXT

Instance field values are concatenated according to the order of the Selected view.

B(record) =FO(AO(SO(StringListObjea(Bl, "i»)
BI = IterateList(J%ValueUst(record, view). VaIue{3%»

112121211111 Audris Kalns M Riga, Liepu 1-12, LV-lOOO I
Figure 5. Example of entity instance presentation as text

6.3 ENTITY RELATIONS PRESENTATION IN VERTICAL UST

175

Each relation is represented as relation name concatenated with entity name at the opposite
relation end.

C(entity) = Vertical(lter1lleList(4'1>RelationList(entity). ell)
CI = Horizonta](List(C2, FO(AO(SO(" i». C3»
C2 = FO(AO(SO(RelationNamc(4%»)))
C3 = FO(AO(SO(EntityName(RelationEntity(4%»))))

Has Passport
Has Parents Citizen
Has Children Citizen

Figure 6. Example of relations presentation

6.4 ALL RELATION PRESENTA.1"10NIN TABLE
The data about all relations (relation name, entity name and data source) are placed in table

with headings. .

D(entity. expr( entity»=HorizontaITable(CoIlC3lenate(D 1,D2»
D i = AO(StringListObject("Relation", "Entity name". "Da:a source")
D2 = IterateLi~(5%MetaRelationList{entj:y).List(D3. 04, D5»
D3 = AO(SO(RelationName(.5%))
D4 = AO(SO(EntiryNarne(Re:ationEntity(5%»»
D5 = AO(SO(SourceName(RelationEntity(5%))))



176 G. Amicans, G. Kamitis

/Relation ~ty name !Data source

lIS !Citizen: !Register ofResideDls

!Has ~assport !Register of Residents
!HasParads !Citizen !Register ofResideots
!Has ChildrenlCitizen !Register of Residents

lIS IC8f"Owner !Register ofMotor vehicles
IOwns lC3r !Register of Motor vehicles

Figure 7. Example of relation presentation

6.5 AN EXAMPLE OF FRAMESET

Let US look how a FrameSet can be built, Let us assume FrameSet FRS_l with four Frames -
FR_l, FR_2, FR_3, FR_ 4. See Figure 8.

FR_I (upper left) - to list instances of entity,
FR_2 (upper right) - to show details of fixed instance in FR_l,
FR_3 (lower left) - to list all relations to other entities in all data sources,
FR_ 4 (lower right) - to show details of another related entity instances of FR_2.

At first let us create three presentations or Contents <E, F, G) for viewing entities. We use
formulas created before in this paper:

• Content formula EO for Frame FR_ 4 (from FR_ 4 we can update all Frames in FRS_I)

E(entity, expr( entity» '" Venical(EI, E5}
EI '" Horizoolal(List(F0(E2), FO(AO(SO\ j»)' FO(AO(SO(SourceName(entity))))))
E2 '" Link(SO(EntityName(entity}), E. FA)
E3 '" Navigate("FR!U",.entity, expr(emiIy). '-)
E4 = List(CJear("FR_2'J. Update\FR_3M

, entity. expr(entity), -J. Qear(FR_ 4»
E5 = Venical(lteateList(6%RecordList(entity, expr(entity}). A(entily. 6%»)

• Content formula FO and GO for Frame FR_2 (from FR_2 we can update this frame or update
FR_4)

F(entity, exprtentityj) = Venical(H. FO(AO(SO(" "))), E5}
G(entity. expr(eruity}) '" VenicalOL FO(AO(SO(" "))), VenicaJ(E5. GIl)
GI = C(entity}, where C3 is substiJJaewith G2 in all places (we have added the action)
G2 = FO(Link(SO(EntityName(RelationEmity(4%)}). NULL, G3»
G3 = List(Update("FR_ 4", RelatiooEntily(4'h}, expr{RelationEruily(4%», "E)
H = ListBox(List(Link("Preseotation P,NUll., HI). Link("Presentation G". NUll .•ill)))
HI = Upd:ue(rR]', entity. expr(enlity),"p)
P.1 '" Update\FR]', ennty, expr(entity), "G")

• Content formula 10 for Frame FR_I (from FR_I we can update FR_2, FR3, FR_ 4)

I(entity, ~pr(enlity}) = Venical(l!, 12)
!! = Honzontai(LiSl(FO(bti!yName(entity», FO(AO(SOC" ";}), FO(AO(SO\SourceName(entityl)))))
12= HorizonlaiTable(!teraleLisI(7'1>RecordLisl.Link(B(7%). NULL, 13»
I3 = Lisl(Update\FR_2", entity, expr(enlity) and expr(7%). "P}.
Update(''FR_Y. entity. expr(entity) and expr(7%}. ""), Oear("FR_ 4'')



Heterogeneous Database Browsing in WWW 177

J(entity, exprtentiry) = D(emity, expr{emity», where D4 is subnilvu with J1 in all places (we have add the
action)

J 1 = Link(SO{EntityName(RelationEntity(5'1.»), NULL, 12)
J2 = List(Update("FR_ 4fl

, RelationEntity(5'1.>' expr{RelationEntity(5'1.», 'Y)

Citizen Register of Residents tt'!!i'!'l
112121211111 Andris Kalns

~K 112121211111111123312345 AnitaKalna
101010101010 Maris Kalns IN- IADdris
111111111111 Zane Kalna ~1II1IlIIIle IKlIlDS

/S8x ~
[Address !Riga,Liepu 1-12, LV-l 000

!Relation IEJltity name !Data source Car Register of Motor vehicles
rrs PtiZeD !Register ofResidents

lNumberlLA 1000raas [PllSSPOrt !Register of Residents
~Parents ~ .!Register ofResidents ]Color !Blade

raas Children ~ !Register of Residents ~1ADdi100

rrs ICar Owner !Register ofMotor vehicles

fOWDS ©!!: !Register ofMotor vehicles

Figure 8. Example of WWW page

7. Conclusions and Future Directions

The prototype of the VB is made during developing Megasystem and Communication Server.
Four state significance registers test databases are connected to the UB for testing purposes. Two of
them use Oracle™ as DBMS, other two use Microsoft SQL Server™.

The UB prototype shows the effectiveness of our approach and is being initiated as first
version of the real system at present time.

Our approach differs from other systems by several aspects;
• We have developed simple universal user-end that still allows us to show to users information in

many different ways. We achieved this goal by implementing user-end using formal formulas.
• DB operates using logical models of DS. Related objects from these models are bound together

with base classes that do not belong to any particular DS.
• We transfer physical model of DS to our internal logical representation which is much more

comfortable for en<l-user. We do it by using of data wrappers.
• Our approach allows us to maintenance system and to connect new DS or modify existing one

without interrupting operation of Communication server.



178 G. Amicans, G. Kamitis

1bere are many aspects that are vel)' important in real life application, but not covered in this
article - security. user authorisation, logging, query cost calculation. All these features also are
incorporated in the 00. The 00 is useful in many large enterprises having many autonomous data
sources as a browser for these systems with integrated view.

Future direction of our work is to develop a query processor that can take as input SQL-lilce
query and return as output the result queried from multiple data sources. Other directions of future
work - to make Communication server available not only from WWW browsers, but also from
custom programs using XML to query data and retum answers.

References

1. Amicans, G. Application generation for the simple database browser based on the ER diagram Proceedings of the
Third International Baltic Workshop Databases and lnformaiion Systems, Riga. 1998, pp. 19S-2OO.

2. Amicans, G~ Bicevskis, J~ Kamitis, G. The coocept of sening up a communications server. Absrraro of Papers of
r ImernationalConference Information Technologies and Telecommunications in the Babic Suues, 1999. pp. 48·
57.

3. Haas, L M~ Miller, R. J., Niswonger, B~ Tork Roth, M., Schwan, P. M., Wirnmers, E 1.. Transforming
hetero8eneous data with database middleware: beyond integration. Data Engineering BWIe1in., 1999.

4. Hammer. J.• GarciaMolina, H., Ireland, K., PapakOllSlllntinou, y ~Ullman. J~ Widom, J. lnfonnatioo translation,
mcdilIIiOII,and Mosaicbased browsing in the TSIMMlS system. Proceedings of ACM SIGMOD Iniernational
Conjerma on Managemem of Data, 1995. Projea Demonstrarion.

5. Megasynem - lniegrated State Significance /nformaIion System. httll;Uwww megaJv.

6. Singh, N. Unifying heterogeneous information models. Communications of the ACM, 41(5), 1998, pp. 37-44.
7. Tomasic. A.. Amouroux, R., Bonnet, P., Kapitskaia, 0., Naacke. H~ and Raschid, L The distributed information

search component (disco) and the World Wide Web. Proceedings of ACM SIGMOD lnzemauonal Conference on
Management of Data, Tuscan, Arizona. 1997, Prototype Demonstration.



Zbornik 0 5. mednarodne rn u it r-x o nie re nc e
Pro c e e din 9 s D 0 f the 5 II' In t ern a t ion aiM u It i - Con fer e nee

INFORMACIJSKA DRU78/~ IS'2002
I N FOR f\~AT ION SOC lET Yl S '2 002

Vzgoja in iz o b r az ev a nj e v
informacijski d r uzbi

Education in
Information Society

Uredili / Edited by
Vlad islavR aj kov it

Tanja Ur b an cic
Mojca Bernik

Razvoj in p r e n ov lt s v
in f o rm a c ijs k ih s is t e rn o v

Development and
Reengineering o f

Information Systems
Uredii / Editedby

Ivan Rozman

Sodelovanje in
informacijska druz ba

Collaboration and
Info rmat ion Society

Uredila! Edited by
Ma rj an He r ick o
Matj az B. Jur ic

Upravljanje v
informacijski

d r u z b i
Management in

l nf o r m a t io n
Society

U r e di!' Edited b)
Ce n e Ea v e c



SMART INTEGRA TED MEGA-SYSTEM AS A BASIS FOR E-
GOVERNANCE

Guntis Arnicans, Prof Janis Bicevskis, Prof Edvins Kar . . . , ..
. Departme t f C . nuts, Girts Karnitis

n 0 omputer SCIence
University of Latvia

Raina blv. 19, LV-I050 Riga, Latvia
Tel: +371 7228226; fax: +371 7820153
e-mail: garnican@lanet.lv.bicS@di.Iv

Edvins.Karnitis@sprk.gov.Iv, cirts@di.'lv

ABSTRACT

Principles and basic informatics tools for modernization of governance in Latvia are dese ·bed· th E'. . . . nine paper. nsunng
access to well-developed informatIon services for eve?,one should be e~~lSaged as a tool for democratic development
and functioning of society. Developme~t of leT directly affects political/governance procedures also, usage and
management of public sector information become the base for all governance procedures. Interconnection and
interoperation of public information systems: development of smart Mega-system, integration of national information
resources of Latvia in Transeuropean telematic networks become components of unified process.

UNIVERSAL INFORMATION SERVICE

Public sector information, its usage and ~em~t is the real b~e ~or all governance (both G2G and G2C) procedures [1]. It
ranks high among various types of infonna.non by I~ amount and significance, the public sector is the most important (and very
often the single) collector and producer of information content,

Types
Political I adrn inistrative

Business I finance
Scientific I technical
General I reference

Institutions
Administrative

Non-adm inistrative
Public
Private

., -' :-:-:-:-:-:-,-:-:.:-:- ":-:"> :-:.:.: .
:•••:p.~~iJt:f.~.~~t{J(.kif() rma ti6. ~.: •• :: ..•..•.•. :.:.: .•.:.....•.:-.

-..". :-:-: ...

Government
Municipalities
Businesses

Citizens

Figure I. Public sector information

Processing and usage of infonnation that can be deemed as being the information of national significance is the most
significant component [2]. Within this~rm we shall mean various information that is necessary for state or regional
administration, for L'1t: development of national economy, for management of financial, educational and social processes. The
main subjects of this type of inf0m1atio~ are real estate and movable property, iegal and private persons, sU!)S!?"'1tialfor UJe

country processes (legislation, statistics, nnances: health care, etc.).
In order to ensure wide and active usage of pub he sector information, Latvia's approach is developed by the National Program
Informalics and several other more detailed conceptual documents [3,4]. In principle it is similar to EU concept, but more
extended and methodologically more advanced. The Program implies under the universal information service a general access
to information services for everybody in an order as set by normative acts without any discrimination, a long-time service of a
defined quality at an affordable price.

197

mailto:garnican@lanet.lv.bicS@di.Iv
mailto:Edvins.Karnitis@sprk.gov.Iv,


Ensuring technical access to telecommunications and data transmission networks is well known as the universal
telecommunicaJions service. Exactly inclusion of the Internet access shows clear forward-looking vision for Latvia: developed
data transmission services, convergence of all kinds of information and communications services.
In addition universal information service means ensured access to all types of public sector information (and first of all to
information of national significance). An electronic delivery of information is envisaged (on-line or broadcasting, magnetic,
optical or another carrier, etc.). Services can be provided on demand or to be interactive. A number of different information
services are components of the universal information service - full set of business and finance information.services, availability
of data collected in national and municipality information systems (IS), library and reference information services, reference
and entertainment services, etc.
A number of bounded up and interdependent subprograms of the National Program Informatics are directed to development of
the universal information service. The Program includes both macro level strategy (policy of the development) and micro level
measures (a number of applications and projects).
Although there are number of common principles in provision of the public sector information to all end-users, many important
differences exist too. General access of any citizen to the public sector information (G2C) differs from utilization of the
information for state governance (G2G), there are different information compositions, level of confidentiality, demands for
completeness, correctness, updating of information. Therefore side by side with common methodological principles, different
approaches are used for development of information processing and provision systems and services.

THE MEGA-SYSTEM: ADVANCED TOOL FOR ADMINISTRATION OF THE COUNTRY

Creation of corporative sectoral IS for interconnecting related institutions on national and international scale (e.g., ED
Programme IDA [5]) are important activities that are going on in number of countries. The next step - interoperability of IS,
interchange of data between sectoral information systems/networks and handling requests that require processing data from
various IS.

End-users.
Remote data
entry points

Go~.nrmenJ

Network

IrrjormaJion
Systems

Figure 2. The Mega-system

Because a drastic improvement of quality and full interoperability o·fallIS are vital for the development of e-Governrnent, all
set of public IS in Larvia is being developed as a logically unified and technologically distributed information processing Mega-
system with a common data field as well as unified user's interface, access principles and authorization procedures. Several
basic principles are implemented into the Mega-system:

the ;.~Lga-syste'T.is a se: of separately functioning harmonized IS;
• ail objects of national significance (persons, cars, real estate, legal entities, etc.) must be registered in IS;
• data must be fixed electronically in the place where they are originated; each object is allowed to be registered only in

one of primary registers: the source of the information on the object as well as responsibility for its quality must be
defined;

• all IS must use information on particular object from corresponding primary register, it is not allowed lO duplicate data
entry: it is allowed only lO keep copy of the data from the basic register for improvement of access;

198



• the registration certificate of any object (passport, certificate of legal entity, etc.) must be issued only as the result of
registration of objects; it is not allowed to repeat manual infonnation input from registration certificate or other
documents. .

creation of the Mega-system is oot only technological decision, in fact it means solving of number. of various informative
I gal.Organizational problems first of all, among them: '
e • to analyze existing data flows, to formulate functions of the Mega-system and to distribute them among IS t

formulate demands on systems and their data structure; , 0

• to define subjects of various IS and the amount of stored information, as well as institutions that are responsible for the
collection, processing and distribution of data;

• to define a unified user interface, access principles and authorization procedures;
• to elaborate several intercompatible informative models for implementation by local authorities;
• to ensure data quality and security as well as interoperability with EU· IS; to elaborate a methodology for data

verification;
• to determine the principles of electronic archives.

The integration of primary registers has realized. In addition to various IS the Mega-system includes a portal as a gateway to
information resources, a register of registers for collection and distribution of meta information (formal and infonnaI
description of objects, data models, data flows, etc.) on all components of the Mega-system as wellas communication server _
commoncentral access point to information resources of the Mega-system. Other IS are being attached to the developed central
core of the Mega-system gradually as far as they are prepared. For this purpose development of the IS is being continued, arid
primarydata entry is taking place in many systems, even as other data are already being used.

~ ~ POPULATION

Civil registrar"s ollice
REGISTER

Passpot department [d:]
XXX department

MEG SYSTEM a
~ ~ EJ

Slate Revenue Service
SRS IS

Road Traffic Secure Dep. RTSDIS

XXX IS
XXX department

Figure 3. The Mega-system: data flows

All end-systems (various IS, their remote data entry and access points, end-users of information) are interconnected through a I
high speed Government Data Communications Network, that is an essential communications element for development of the
Mega-system. This Network must provide operative and reliable interoperability of all interconnected systems, therefore
requirements to the Network include: I

• high security and reliability level - there:must be uninterrupted action time, undistorted datil transmission, a guarantee
of several levels of confidentiality and security of information;
high speed data transmission, some of real time systems need guaranteed channel capacity;

• presence of 1'. common gateway to public data transmission network (the Internet environment) which contains a I
reliable security system,

On the basis of the Mega-system during following years the G2G usage of traditional paper documents will be changed to usage
of data base files, when an event or fact is assured not by a paper document, but by a record in a database. Each record in the IS
will become legally approved documenl I
COMMUNICA TION SERVER - A CENTRAL ACCESS POll\'T TO INFORMA nON RESOURCES

Co~unication server is a set of hardware and software that provides a universal resource for information exchange among
various information systems and other G2G transactions within the Mega-system as well as allows a wide range of users to I

199

I



receive information from a variety of public IS through a single contact point. The need to establish a conununication server
becomes apparent when it is necessary to interconnect a lot of IS and to retrieve information from nwnber of systems in unified
way.
Information becomes available on the Network, but users (most of them are employees of administrative structures) shouldn't
have no knowledge about the technical details of information storage. There is an obvious need for a universal solution, and
that is where the communication server comes in. The main requirement for the communication server is that it must allow
users to formulate their information requests in a simple way and to receive responses to those requests without necessity to
understand the technical aspects of the process and knowledge on distribution of data objects among the IS (by intercormection
with the register of registers).
For these purposes the communication server identifies users, authorizes the use of the respective data, manages users rights,
fulfills requests that involves usage of several information sources. It allows users to learn where information is being stored
and what kind of information it is, as well as to request and to receive information from various registers without any need for
in-depth knowledge about the technical aspects of its storage. National lD card is a crucial part to implement person's
identification in conununication process, there might be desirable to implement not only lD cards for citizens but also lD card
for legal entities. .
The communications server is an Internet resource point Users of the server can access it via various protocols - HTTP, XML,
COREA, DCOM, SMTP and ITP. The server provides users an opportunity to find out where information is stored and what
kinds of data are available, to request" and receive information from various IS without studying their structure. Because users
may have access to confidential and sensitive information, they are identified with certificates, and all data trartsrnissions are
coded.

THE MEGA-SYSTEM AS A TOOL FOR INTERNATIONAL INTEROPARABILITY

Multilingual and multicultural Europe has a particular interest in international cooperation and united activities, because
individual national markets for information services are mostly small and ineffective. Competition on the global scale also
requires a common European strategy and intercoordinated development For this reason, the European Commission sees
collaboration among all European states - including the associated Central and Eastern European Countries as an important
component of integrated irtformation policy [6]. Integration of national irtformation resources of Latvia in Transeuropean
information systems and networks is going on.
In order to further develop national IS of Estonia, Latvia and Lithuania, to prepare their future informative and technological
connection with European IS, prime ministers of the Baltic States in 1997 made the decision to create a Baltic Governmental
Data Communications Network. The Baltic Network is considered as expanding of the Mega-system and the Government Data
Communications Network on international scale.
The concept envisages to develop the Baltic Network as a pilot stage for integration of national IS in Transeuropean systems,
All principles of the Mega-system structure and user access, data structure and interfaces are being developed so as to allow for
integration of the Latvia's IS into the Transeuropean corporate telematic networks. International expansion of the Mega-system
involves the creation of resources-points and interfaces for international interconnection of IS, while maintaining the basic
principles of the Mega-system.
Centralized resources of the Mega-system - register of registers and communication server support both local and international
information services. Data on international resources, that are available for Latvia's end-users, are included in the register of
registers. Common communication server can be used for authorization and access to national information resources for foreign
end-users equally with local users.
Such approach corresponds to basic principles of the IDA Programme, it is the basis for successful participation of Latvia in the
Programme. The Programme consists of one central network connecting countries and local networks for each country, it
request one central access point for each country, The Mega-system serves as Latvia's local network and communication server
serves as Latvia's single access point
A number of national IS are already participating in activities of international systems, they are pioneers among CEES at
present The Enterprise Register has been joined to the European Business Register in order to support international financial
relations and investment processes, as well as business cooperation and foreign trade. Vehicles Register has already been
connected to European Car Register. A number of another national IS are participating in the activities of international systems

REGUlREMEl'.1"S TO THE NATIONAL PORTAL: TO BRING ADMiNISTRATION CLOSER TO CITIZENS AND
BUSINESSES

Latvia has adopted the EU recommended approach to the level of electronization of all G2B, G2C and G2G services identifies
four different levels (7):

level I: the provision of information - data on services are available on the Internet;
level 2: interactiviry - forms and documents can be downloaded..

200



• level 3: multi-directional interactivity - client authorization is enabled, and forms and information can be submitted
electronically;

• level 4: processing of transactions - full handling services, including the taking relevant decisions and the making
payments.

National portals in many countries ensure the first level, although the quality of the information that is provided is not always
guaranteed. The possibility to download forms and documents is also fairly common (e.g., United States, France. Estonia)
because this does not demand excessively complicated technologies.
There are different situations at the third and fourth levels. There are only very few countries that have resolved the client
authorization problem. national laws on digital signatures and electronic documents have not been adopted yet E-transactions
are most commonly offered through Great Britain's UK Onliire and Singapore's eCitizen programs.
Usually national portals contain more than one way of looking"of stored information. The following organizational types of
information can be identified:

• around everyday themes (UKOnline, Danmark.dk, eCitizen Singapore);
• by regions (Danmark.dk);
• by sectors in a catalogue-type principle (in nearly all national portals);
• around the country's administrative structure (Bundcsregienmg, FirstGov, etc.);
• separately for citizees, businesses and foreigners (Canada).

In general e-governance means that the government shifts to a more advanced model of functioning. There are changes" in the
structure of the government and in relations among government institutions. The portal must be seen as an instrument in e-
government, but by no means it cannot be seen as the tool that actually implements e-government, The Mega-system (including
the portal as an interface) will provide government back office functiooality. ,
The Latvia's national portal has been developed as a unified access point for information services what are provided by public
agencies and institutions [8]. The first version of portal bas been developed and provides first level services. The first and
second levels services is provided directly by portal., while the third and fourth levels - in cooperation with the communication
server.
The Latvia's national portal is being established defining three groups of individuals with different needs - citizens, business
people and officials. A system have reciprocal links for all of them. It is important also to define the links between all
categories of users as well as various levels of officials. Several organizational types of information are being developed at
present [9].
As a result ofanaJysis of the Latvia's situation and the possible demands of users, the basic principles have been defined:

• decentralization of information;
• the national portal is a portal oflinks;
• high quality (completeness, correctness, actuality) of the content;
• access to the public IS (in cooperation with the register of registers and the communication server);

opportunities for contacts with officials;
• possibility to download forms and documents;
• autentificarion of users and personalization of content;

availability of services in several languages (Latvian is mandatory);
• development of tools for support and maintenance of portal.

The development of the Latvia's portal is going on, the first version is available at the WWW [10]. The process of fulfilling
portal with actual data is in progress at this moment

OPENNESS AND TRANSPARENCY - THE MODEL OF E-GOVERNAt'l/CE

Rapid evolution of ICT make possible to change general requirements to the governance principles and procedures in line with
development of e-democracy.
It is very hard task to control state institutions nowadays. Usage of ICT will help to introduce number of important for
democratic society principles:

openness - quantity and quality of information that any public institution provides to society, especially on-line;
transparency - possibility to track how the institution acts and how it is making decisions;
interactivity - possibilities that citizens and businesses have to contact with any level institution, its readiness to the
fast reaction and dialog; possibility to offer opinions as well as to influent decisions;
control, audit, inspection - public possibility to monitor and to control institution from outside"

Governance will become fully democratic only if every member of society will have possibility to get easy detailed inforrnation
on administrative processes that are important for welfare of citizens and efficiency of businesses [11]. Citizens or officials
initiate any process." While developing the Mega-system, it becomes possible to define and identify set of processes any person

201



Databases and
Information Systems

Edited by Hele-Mai Haav and Ahto Kalja

- Proceedings of the
Fifth International Baltic Conference,
BalticDBEtIS 2002,
Tallinn. June 3-6. 2002

---

Volume 1



SEMANTICS FOR MANAGING SYSTEMS IN
HETEROGENEOUS AND DISTRIBUTED
ENVIRONMENT

Guntis Amicans and Girts Karnitis
University of Latvia

Abstract: The problem of legacy systems collaboration is being solved. Particularly we
look at collaboration as a workflow in a distributed and heterogeneous
environment. Attention is paid to the description of semantics for workflow
process definition languages. There are many solutions how semantics can be
decomposed into logical fragments, bV1the. problem of obtaining reusable
components, that are easy to compile into desired specific semantics, remains.
We evolve the dividing of semantics by semantic aspects, which description
bases on abstract data types (pre-build components) and connectors (meta-
programs to produce glue code) between theme-This-paper offers-a way,i:in,
which semantic aspects are linked with the intermediate representation of a
program, and performing of semantics is provided .. We mix together various
semantics aspects to get a desirable semantics.

Keywords: workflow, programming language specifications, semantics, interpreter,
compiler, reusable components, domain specific languages, tool generation.

1. Introduction

Nowadays new technologies are emerging into a government sector,
allowing speak about e-Govemment. The processes are one of the core
components of e-Govemment [1]. We stated that practically no automation of
processes in the governmental institutions that organizes collaboration
between legacy systems among various organizations and institutions.
Document flows are manual or by email. The automated workflows have to
be introduced to make a document turnover faster and to improve a service
for citizens.

51



52

In [2] workflow is defined as "the automation of a business process, in
whole or part, during which documents, information or tasks are passed from
one participant to another for action, according to a set of procedural rules."

Workflow management system is defined as "a system that defines,
creates and manages the execution of workflows through the use of software,
running on one or more workflow engines, which is able to interpret the
process definition, interact with workflow participants and where required,
invoke the use of IT tools and applications."

In the latest years many researchers and developers pay attention to a
problem how organize collaboration between legacy systems, and the
exploitation of workflow is one of the most popular solutions [3,4]. Various
workflow process definition languages have been created which can be
considered as domain specific languages.

The workflow implementations commonly base on the one fixed
semantics like most of the programming languages. We are interested in
various semantics for a particular workflow, for example, a common
workflow semantics, a statistical data gathering semantics, a semantics for
debugging and simulating purposes or its composition. We need not only a
compiler or an interpreter, but the necessity for specific supporting tools
becomes a burning question due to demands for high software quality.
Interesting topic is changing of semantics -[or-actIve -iTIstance of workflow on---
the fly.

In our approach semantics are connected to syntax elements via semantic
connectors that naturally allow linking legacy-systems into collaborative---
workflow and allow define or execute multiple different semantics
simultaneously. Actually each semantic implementation is a tool, similarly to
the principle hi [5]. We present fragments of semantic description for simple
programming language to demonstrate usefulness of this approach for wide
class of prqgr~~_ languages, and ideas how to implement a simple
workflow description language. ---------- -"

2. Implementation of Domain-Specific Language

According to Kinnersley's investigation [6], there were more then 2000
exploited languages in 1995, and most of them were classified as domain-
specific language (DSL). Together with growth of DSL many
implementations and maintenance problems arise (e.g. [7] analysis of
common problems and large annotated bibliography; [8] particular languages
and problems). Unfortunately formal semantics descriptions loose their
position because of weak support to solve practical problems [9,10,11].

i,



52

In [2J workflow is defined as "the automation of a business process, in
whole or part, during which documents, information or tasks are passed from
one participant to another for action, according to a set of procedural rules."

Workflow management system is defined as "a system that defines,
creates and manages the execution of workflows through the use of software,
running on one or more workflow engines, which is able to interpret the
process definition, interact with workflow participants and where required,
invoke the use ofIT tools and applications."

In the latest years many researchers and developers pay attention to a
problem how organize collaboration between legacy systems, and the
exploitation of workflow is one of the most popular solutions [3,4]. Various
workflow process definition languages have been created which can be
considered as domain specific languages.

The workflow implementations commonly base on the one fixed
semantics like most of the programming languages. We are interested in
various semantics for a particular workflow, for example, a common
workflow semantics, a statistical data gathering semantics, a semantics for
debugging and simulating purposes or its composition. We need not only a
compiler or an interpreter, but the necessity for specific supporting tools..
becomes a burning- questionxluejojlemands for high software quality.
Interesting topic is changing of semantics for active instance of workflow on
the fly.

In our approachsemantics are connected to syntax elements via semantic
connectors that naturally allow linking legacy systems into collaborative-
workflow and allow define or execute multiple different semantics
simultaneously. Actually each semantic implementation is a tool, similarly t()
the principle in [5]. We present fragmentsof semantic description for simple
programming language to demonstrate usefulness of this approach for wide
class of .programming languages, and ideas how to implement a simple
workflow description language.

2. Implementation of Domain-Specific Language

According to Kinnersleys investigation [6J, there were more then 2000
exploited languages in 1995, and most of them were classified as domain-
specific language (DSL). Together with growth of DSL many
implementations and maintenance problems arise (e.g. [7] analysis of
common problems and large annotated bibliography; [8J particular languages
and problems). Unfortunately formal semantics descriptions loose their
position because of weak support to solve practical problems [9, 10,11].



Semantics for Managing Systems in Heterogeneous and Distributed 53
Environment

Like a natural language the programming language definition consists of
three components or aspects [12, 13]: syntax deals with questions of
superficial form of a language, semantics deals with underlying meaning of a
language, pragmatics deals with practical use of a language. A language's
syntax and semantics can be formalized, and both formalizations together
form formal specification of a programming language.

The formalisms for dealing with syntax aspect of a programming
language are well developed. The theory of scanning, parsing and attribute
analysis provides not only means to perform syntactical analysis but to
generate a whole compiler as. well. There are a lot of problems with a
practical use of semantics formalisms. Recently the criticism of classical
formalism arises from the difficulty of using formal methods. The main
problem to use the formal specifications of programming languages widely in
practice is that specifications become too complex, too abstruse to manage
them, often it is impossible to express all needs, and in the end - who verifies
and proves the correctness of specification?

Summarizing the best practices in compiler construction we can declare
that most of commercial compilers (interpreters or other tools that deal with
programs) are written without using any formalisms or only the first phases
(scanning and parsing) exploit some formalisms [10].

Let us look at the language description again, try to divide it into smaller
parts and see, what we can obtain from that. Traditionally the first decision is
to separate syntax from semantics, and semantics consists of two parts: static
semantics and dynamic (run-time) semantics. But we should divide syntax
and semantic further, eliminate reusable components and provide a
mechanism to stick all things together.

Syntax components are more or less visible: basic elements (for instance,
terminals and nonterminals, if we parse program) connected with some
relations (for instance, edges in the parse tree or abstract syntaxJ.reeL __ . _

To divide semantics into pieces we offer to split it by semantic aspects.
Here are some examples of semantic aspects: program control flow
management (e.g. loops, conditional branching), execution of commands or
statements (e.g. basic operations, assigning), dealing with symbols (e.g.
variables, constants), environment management (e.g. scopes of visibility),
pretty printing of program, dynamic accounting of statistic, symbolic
execution, specific program instrumentation, etc.

We are interested in any formalism to deal with syntax, because we want
to make intermediate representation (IR) of program or structured
information. It is a clear situation in dealing with a conventional
programming language. But our goal is a workflow implementation and we
have to take into account other languages, for instance diagrammatic visual



54

languages (e.g. Petri nets, E-R diagrams, Statecharts) and state of art in this
field (e.g. [14]).

Our approach borrows some principles from attribute grammars, for
instance, the ways to link semantics with syntax [11], modular decomposition
and reuse of specification [15], distributed computing in a real time (e.g.
Communicating Timed AG [16]).

We founded that many formalisms of semantics use abstract data types
(ADT). ADT is collection of data type and value definitions and operations
on those definitions, which behaves as a primitive data type. This software
design approach decomposes problem into components by identifying the
public interface and private implementation. Typical example is a Stack, a
Queue, a Symbol table [17, 13].

Recently one of the simple and popular methods to build some simple tool
for a programming language is parse and traverse principle [18] that means to
build intermediate representation (IR) of program or information, traverse IR
and make appropriate computations at each node. This method is similar to
the Visitor Pattern [19]. Another useful patterns are also developed [20, 21].
Besides nontraditional traversal strategies exists [e.g. 22]. Many solutions can
be obtain_edfrom Component collaboration [e.g. 23].

We take into account our experience.building __prototypes of multi-
language interpreter [24]. A Multi-Language Interpreter cMLU is a program,--
which receives source language syntax, source language semantics and a
program written in the source language, then performing the operations on
the basis of the program and the relevant semantics.

3. Principles of Semantic Definition and
implementation

3.1 Runtime Principles
---- ---- _._~--._--

-- - --._-~--

Let us assume that we have fixed some formalism to describe the -synta.x --
of our language (e.g. BNF). Now we can define the language syntax and
develop a language parser (e.g. by using Lex/Yacc). The parser creates
intermediate representation (IR) of program (e.g. Parse tree), and IR is based
on a desirable structure and contains any needed information about the syntax
(e.g. node type (nonterminal), name (name of nonterminal), value (terminal
value), etc.).

To perform semantics at runtime we choose a principle of parse and
traverse. The Traverser that realizes our chosen traversing strategy (e.g. left-
depth tree traversing) has to be created for our IR representation. The
computations, that have to be done at each node visited by the Traverser, are ~

.
~-'



Semanticsfor Managing Systems in Heterogeneous and Distributed 55
Environment

defined in Semantic Connectors (SC). They use predefined data structures
with operations to establish cooperation between Legacy Systems (LS)
(Figure 1).

Intermediate

Representation. ., -;

Traversal
strategy

Node

. -\ .

;" , .•..- "' Semantic
[ connector
. " ' ". ".-'-.- .---.---, ...•.

Legacy

ADT system
.--" -_.

-"-

Figure I. Runtime correspondence between syntax and semantics

Actually the most of work performing semantics is done via operations
over various Abstract Data Types (ADT). In such way we hide most of
implementation details and concentrate mainly on logic of semantic aspect.
The consequence of this approach is that we can choose the best physical
implementation of ADT for given task. For instance, Stack can be
implemented in a contiguous memory or in a linked memory. The instances
of ADT can be distributed objects in a heterogeneous computing network.

A concept of a semantic connector or simply connector is introduced to
connect the instances of l~DT and LS in a desirable environment. Connector
is a meta-program that introduces a concrete communication connection into
a set of components, i.e., it generates the adaptation a..'1dcommunication glue
code for-a specific connection. This concept is adopted from similar problem:
how to connect pre-build components in distributed and heterogeneous
environment [25j.

3.2 Semantic Definition Principles

Similarly to patterns in [11] we choose a correspondence Nonterminal
with visiting aspect = Semantic connector to establish relationships between
syntax and semantics. Nonterminal with visiting aspect means that we
distinguish computations performed at nontenninal node considering an
aspect of node visiting (e.g. PreVisit or PostVisit). Any connector can see
any instance of ADT or LS of the semantic aspect it (connector) belongs to.



56

The main problem is to find a good way to defme semantics and obtain
semantic connectors for the definition. After exploring various approaches
how semantics can be described and organized, we suppose that semantic
aspect is good basic component for constructing whole semantics according
to our goals. The conceptual components of a semantics description and
relationships with other concepts are represented in Figure 2.

Nontermmeis . Syntax Tenninals
NT, .~. NT, T, T,

Pre Post Pre Post

.~~Y_~ll;\ v;~ VIsit VISil

i Semantic: hn~tJons
r-, Aspects of S.,.,."tJc
j " Actions

~~ >---:----' ~~'=
-.I~,-_"

__ -- ISA, ""•..

ISA, •

: -" SC,
.:><

-~::-~:SC2
'---._~ " .<

:. SC, .
I

-'-- ---.... ----' ~.---r:-:.~~- .,--~---- ..-.-,.--'.----- ---- ~~.~-.",

; .:Jc~lcal Semantics < ~-:

I VieW '.~ I
~-- -- - --~ -----------~~--

Figure 2. The conceptual schema of semantics.

Semantics can be observed from two different sides - a logical definition"
view and a physical runtime view. From the logical viewpoint semantic-s··
consists from Semantic Aspects (SA). The SA states what syntax elements
(terminals, nonterminals) are involved in and what actions have to be
performed traversing internal representation and visiting the corresponding _
node to realize semantic aspect. Let us defme concept Semantic Action that
denotes the action performed to realize SA while visiting a 'corresponding -
node, and -,---,-conceptlmpJementation of Semantic Action (ISA) that denotes
meta program which implements semantic action. In our example SA I

involves nonterminal NT! and terminal Tj, and ISA1 is performed while
previsiting NT! and ISAz - while visiting TI.

The example of semantic aspect INDEFINITE LOOP is given in Figure 3.
There are various nonterminals and terminals organized by some syntax
description. The arrows represent a traversal strategy. The small circles
represent the semantic actions and the rectangles connected to the circles
contain implementation of semantic action (meta program). A left circle into!
nonterminal stands for PreVisit and a right circle - for PostVisit. All used
abstract data types (ADT) are defined within semantic aspect. Another
example of semantic aspect is given in Figure 4.



Semantics for Managing Systems in Heterogeneous and Distributed 57
Environment

IMPORT GLOBAL Ref Stack, Sort ,-Flag -;fADT_Stack;--l
Trav of ADT TreeTraverser, Env of ADT SymbolTable

Sort.push(INDEF)
Flag. push (TRUE)

-_'!._,-----

~~~6theraspect~~>
..•. _--_ .._---_ ..

series 0

C~~~r-;~;~~~~:./
I RefStack.push (NULL) J ;/if Sort.top() = INDEF then

LOCAL Ref = RefStack.pop()
if Env.getValue(Ref) = FALSE

Flag. replaceTop (FALSE)
Trav.goSibIForw(@END)

endif
endif

if Sort. top!) = INDEF and
Flag.top() = TRUE

Trav.goSiblBackw(@WHILE)
endif

Figure 3. Semantic aspect INDEFINITE LOOP. It "goes through" series and back to WHILE
until comparison sets NULL reference or reference with value FALSE

IMPORT GLOBAL
Ref Stack of ADT_Stack,
Env of ADT_SymbolTab~e

LOCAL Res RefStack.pop()
LOCAL Var RefStack.pop()
LOCAL Val Env.getValueiResl

~ Env.putValue(Var, Val)

~~~~~~~~;~~~:.\
\I RefStack.pushINULL) RefStack.push(NULL)

Figure 4. Semantic aspect ASSIGNMENT. It takes reference to a variable an-areference to a
value from the stack, and assigns the value to the variable. Pushing of references is simulated,
real references will be pushed by other aspects and simulating will be excluded

Let us look at the physical view. Semantic connector contains all
corresponding semantic actions having to be executed while visiting syntax
element (rR node). For instance, visiting any node with name T1 we have to
execute the semantic connector SC2 that contains the implementation of the
semantic action ISA2• Similarly SCI is some composition of lSA1 and lS~.



58

3.3 Obtaining Semantics from Semantic Aspects

From the logical point of view semantics is a composition of semantic
aspects with concrete linking to instances of abstract data types, legacy
systems and traverser that performs a traversal strategy over fixed
intermediate representation of program or structured information We cannot
simply stick all SA together risking to get senseless semantics. A
composition of semantic aspects is operations over set of implementations of
semantic actions with aim to get one set of connectors that correspond to the
new mixed semantic aspect (Table I).

Table 1. Fragment of semantics description for simple imperative language
compatible with ir_type ParseTree, traverser_type ParseTreeTraverser

syntax elements (program, expression, VARlABLE, ...)
semantic actions «PROGRAM> program Pre Visit {ENV .prepareProgEnvO},

<PROGRAM> program PostVisit {... }, ...)

global Trav of ADT_TreeTraverser, Env of ADT_SymbolTable
create DataStack, OperatorStack, CanCreateVar, LoopSortStack, LoopCounterStack,
LoopFlagStack, IfFlagStack of ADT _Stack, InputFile, OutputFile of ADT _FILE

compose aspect <COMPOSED SA> II composes semantic aspects from predefined aspects
«PROGRAM> )
append «ELEMENT>

replace RefStack with DataStack II replaces stack for collaborating work
rename INTEGER Visit with CONSTANT Visit) II renames according to PAM syntax

append «ASSIGNMENT>
replace RefStack with DataStack
rename left hand side PostVisit with VARlABLE Visit

right hand side PostVisit with expression PostVisit
ignore left_hand_size PostVisit) II ignore pushing ofNlJLL reference

append-(~-OOXE.LOOJ>? _
replace RefStack with DataStack,

Sort with Loop.s.ortSt?~k,Jl~g with_~oopFlag_Stack)

end compose aspect
... II other aspect are defined and composed together
link for <COMPOSED SA> Trav to TreeTraverser, Env to SymbolTable
use aspect <COMPOSED SA> with traverser TreeTraverser

The obtaining of semantics for the fixed syntax is achieved in several
steps: 1) select predefined semantic aspects or define new ones for desired.
semantics, 2) rename syntax elements and traversing aspect in the selected
semantic aspects with names from fixed syntax and traversing strategy, 3)
rename instances of abstract components to organize collaboration between



Semanticsfor Managing Systems in Heterogeneous and Distributed 59
Environment

semantic aspects, 4) make composition from semantic aspects, 5) specify the
runtime environment and translate the meta-code to the code of the target
programming language, and 6) compile the semantics.

After obtaining meta-semantics (Table 1) meta-code is translated to the
target programming language, taking into account the target language (e.g.
C++), the implementation of abstract components (e.g. Stack), the operating
system (e.g. Unix), the communications between components (e.g. CORBA),
runtime components type (e.g. DLL), etc. The translation may be done by
hand or automatically (desirable in common cases).

By replacing ADT names we achieve independent working for some
semantic aspects or collaborating work between them through common
instances of ADT. Another way to get new semantics is to combine
semantics aspects as whole black-box unit. Self-evident method is to execute
several semantic aspects sequentially, for instance, we perform static
semantic first and dynamic one after that. Instances of ADT can be shared
and one semantic aspect can use results of others. More complex is a parallel
executing of many semantics where we need to organize synchronization via
instances of ADT.

4. Workflow Case Study

To demonstrate our approach we use very simple workflow definition
language that syntax is described with BNF (Table 2). We have two types of
generic statements for describing tasks in a workflow - universal statements
and specific statements.

Table 2. Fragment ofBNF for simple workflow definition language
workflow -> series
senes
statement
cond strn
COr.1p3I

expr
generic_stm
universal stm
u_stm_type
specific _stm
s_stm_type

-> statement i series; statement
-> generic_stm I cond_stm
-> IE compar THEN series ELSE series Fl
-> expr relation expr
-> const I var
-> universal_stm I specific_stm
-> u_stm_type name
-> DC OM ICORBA I WEBSERVICE I MANUAL
-> s_ stm _type name
-> ASK I ANSW

The universal statements are used to collaborate with external
applications. The universal statement type describes connection type:



60

DCOM, CORBA, WEBSERVICE means automatic processing but
MANUAL - that human handles this operation. The specific statement is used
to communicate with a person - usually with a citizen who uses the particular
service. There are two types of specific statements. ASK gets information
from a person, ANSW sends some information to a person.

Lets take a look at the following simple workflow:
WEB SERVICE Application_ writing_and _submitting
ASK Communication
DeOM Application_data _ control_and _update
IF Is_data _ control_and _updating_ successful = True THEN

DeOM Printing , of'passport
ANSW Positive answer
MANUAL Passport _ handingout

ELSE
ANS W Negative_answer

FI
The purpose of this workflow is to issue a new passport for a person.

Workflow has the following activities - citizen fills an application form and
submits it to official. It can be a paper form or a web based application. The
official or the application asks from person a communication kind and
address, and records data into workflow environment. Then. the official
verifies correctness of the citizen's fulfilled form with the data in Population
Register, and if all data is correct, then a passport is issued and delivered to
citizen. Otherwise negative answer is sent to citizen. An example of one
semantic aspect-of this workflow is given inFigure 5.

IF OperatorStack. top I) ~. "As kn
- !

IF OperandStack.top() ~ "Communication" (
Local fK, Name, Surname, CommType, Commlnfo
GetCommlnfo(PK, Name, Surname, Co~Type, Commlnfo)
Dictionary.?utCommlnfo(PK, Name, Surname, CommType,
OperandStack.pc?_O. }

Ii oth"r ca~es
OperatorStack·. pop.t )

~--------- ---------------------------------------'

~ \,

Cornm I nf o )

s_slm_type name

~

_. I. OperandStack.. push (Trav. NodeValue ())
,;) SK I OperatorStack.pushl"Ask")

--~.__.--- --:...;;.;=-

Figure 5. Semantic aspect SPECIFIC STATEMENT ASK



Semantics for Managing Systems in Heterogeneous and Distributed 61
Environment

5. Conclusions

We have presented ideas for establishing a framework to deal with
different collaboration problems between legacy systems. The problem is
reduced to describing the collaboration (e.g. workflow) by DSL and building
various tools (various semantics) for this DSL.

There are many application generators that automatically produce
conventional compiler and interpreter, but we need not only those ones. It is
necessary to obtain various supporting tools that base on language text
processing. Existing formal semantics are not well accepted by language or
tool designers. We have made attempt to search for a compromise to
minimize this gap. The latest related works in this field, to establish tool-
oriented approach, are mentioned in [5], [26], [27].

We have offered ideas how semantics can be decomposed into reusable
parts and specific semantics can be composed from it, and how execution is
organized. We delegate the most of semantic actual work to pre-built
components (ADT). Our approach allows minimize semantics descriptions
for easiest management and provides good implementation in a possible
parallel, distributed and heterogeneous environment. Our approach bases ·on
an experience received by .constructing prototypes of .multi-language
interpreter for conventional programming languages.

By doing a favor to practical needs, we lose something from precision and
benefitsrof ..classical semantic formalisms. The next step is ,to finish
formalization of our approach and to compare it with other formalisms,
especially with attribute grammars. Another activities have to be the
designing of useful collection of abstract data types.

References

[I] E .. Kamitisv.Eet.iovemmenti.An .Innovative Model of Governance in the Information
Society. Baltic IT&T Review, 1, 20CI

[2] Layna Fischer, editor. The Workflow Handbook 200 I, Published in association with the
W orkflow Management Coalition, 2000

[3] Workflow Standards and Associated Documents,
http://www. wfmc.org/standards/docs/Stds _diagram. pdf

[4] WorktlowlBPR Tools Vendors http://www.waria.com/databases/wfvendors-A-L.htm
[5] J. Heering and P. Klint. Semantics of Programming Languages: A Tool-Oriented

Approach. ACM SIGPLAN Notices, 35(3):39-48, March 2000.
[6] W.Kinnersley, ed., The Language List. 1995. http://v..'Uarchive.wustl.edu/doc/misc/lang-

list.txt
[7] A Deursen, P. Klint, and J. Visser. Domain-Specific Languages: An Annotated

Bibliography. ACM SIGPLAN Notices, 35(6):26-36, June 2000.

http://www.waria.com/databases/wfvendors-A-L.htm


62

,[8] Special issue on domain-specific languages. IEEE Transactions on Software Engineering,
25(3), May/June 1999.

[9] David A. Schmidt. Programming Language Semantics. In Tucker [28], pp.2237-2254.
[10] Kenneth C. Louden. Compilers and Interpreters. In Tucker [28], pp.212Q-2147.
[11] J. Paakki. Attribute Grammar Paradigms - A High-Level Methodology in Language

Implementation. ACM Computing Surveys, 27(2): 196-255, June 1995.
[12] Frank G. Pagan. Formal Specification of Programming Languages: A Panoramic Primer.

Prentice-Hall, 1981.
[13] K. Slonneger and B. L. Kurtz. Formal Syntax and semantics of Programming Languages:

A Laboratory Based Approach. Addison-Wesly, 1995.
[14] F. Ferrucci, F. Napolitano, G. Tortora, M. Tucci, and G. Vitiello. An Interpreter for

Diagrammatic Languages Based on SR Grammars. Proceedings of the 1997 IEEE
Symposium on Visual Languages (VL '97), pages 292-299, 1997.

[15] U. Kastens and W. M. Wait. Modularity and reusability in attribute grammars. Acta
Informatica 31, pages 601-627,1994.

[16] T. Matsuzaki and T. Tokuda. CTAG Software Generator Model for Constructing
Network Applications. Proceedings of the Asia Pacific Software Engineering Conference,
pp.120-127,1998.

[17] Alfred V. Abo, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Technigues,
and Tools. Addison-Wesley, 1986.

[18] C. Clark. Build a Tree - Save a Parse. ACM SIGPLAN Notices, 34(4):19-24, April 1999.-
[19] E. Gamma, R. Helm, R. Johnson, and J. Vlisides. Design Patterns: Elements of Reusable

Software, pages 331-334. Addison-Wesley, 1995.
[20] J. Ovlinger and M. Wand. A Language for Specifying Recursive Traversals of Object

Structures. SIGPLAN Notices, 34(10):70-81, 1999. Proceedings of the 1999 ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages &
Applications (OOPSLA '99).

[21] T. KUhne. The Translator Pattern - External Functionality with Homomorphic Mappings.
Proceedings of the Tools-23: Technology of Object-Oriented Languages and Systems, pp.
48-59, 1997.

[22] B. Biswas and R. Mall. Reverse Execution of Programs. ACM SIGPLAN Notices,
34(4):61-69, April 1999.

[23] M. Mezini and K. Lieberherr. Adaptive Plug-and-Play Components for Evolutionary
Software Development. SIGPLAN Notices, 33(10):97-116, 1998. Proceedings of the
1998 ACM SIGPLAN Conference on Object-Oriented Programming, Systems. Languages
& Applications (OOPSL4. '98).

[24} 24. V. Arnicane, G. Arnicans, and J. Bicevskis, Multilanguage interpreter. In H.-M.
Haav and B. Thalheim, editors, Proceedings of the Secord International Baltic Workshop
on Databases and Information Systems (DB&IS '96), Volume 2: Technology Track,
pages 173-174. Tampere University of Technology Press, 1996.

[25] U. AJ3mann, T. GenBler, and H. Bar. Meta-programming Grey-box Connectors.
Proceedings of the Technology of Object-Oriented Languages and Systems (FOOLS 33),
pp.300-311,2000.

[26J M. Mernik, M. Lenic, E. Avdicausevic, and V. Zumer. CompilerlInterpreter Generator
System LISA. Proceedings of the 33,d Hawaii International Conference on System
Sciences - 2000, pp.1 0,2000.

[27J A. M. Sloane. Generating Dynamic Program Analysis Tools. Proceedings of the
Autralian Software Endineering Conference (ASWEC'97), pp.166-173, 1997.

[28] Allen B. Tucker, editor. The computer science and engineering handbook. CRC Press,
1997.



Databases and Information
Systems II

Fifth International Baltic Conference, Baltic DB&IS'2002
Tallinn, Estonia, June 3-6, 2002

Selected Papers

Edited by

HELE-MAI HAAV
Institute of Cybernetics at Tallinn Technical University,

Tallinn, Estonia

and

AHTOKAUA
-

Department of Computer Engineering of Tallinn Technical University,
Tallinn, Estonia

KLUWER ACADEMIC PUBLISHERS
DORDRECHT / BOSTON / LONDON



SEMANTICS FOR MANAGING SYSTEMS IN
HETEROGENEOUS AND DISTRIBUTED
{:'NVIRONMENT

Guntis Arnicans and Girts Karnitis
University of Latvia, Riga, Latvia

Abstract The problem of legacy systems collaboration is being solved. Particularly we
look at the collaboration as workflow in a distributed and heterogeneous
environment. Attention is paid to the description of semantics for workflow
process definition languages. There are many solutions how semantics can be
decomposed into logical fragments, but the problem of obtaining reusable
components that are easy to compile into desired specific semantics still
remains. We evolve the division of semantics by semantic aspects whose
description is based on abstract data types (pre-built components) and
connectors (meta-programs to produce the glue code) between them. This paper
offers a way in which semantic aspects are linked with the intermediate
representation of a program, and performing of semantics is provided. We mix
together various semantics aspects to get a desirable semantics.

Keywords: world1ow, programming language specifications, semantics, interpreter,
compiler, reusable components, domain specific languages, tool generation.

1. Introduction

Nowadays new technologies are emerging in the government sector
.ing to speak about the e-Government, The processes are one of the core

components of e-Government [11]. We stated that there is practically no
automation of processes in the governmental institutions that organize
collaboration between legacy systems among various organizations and
Institutions. Document flows are manual, or by email. The automated
wcrkflows have to be introduced to make the document turnover faster and to
improve the provided service for citizens.

149

11.\1. Haav and A. Kalja (eds.), Databases and Information Systems II, 149-160
~002 Kluwer Academic Publishers. Printed in the Netherlands.



150

In [8] workflow is defined as "the automation of a business process, in
whole or part, during which documents, information or tasks are passed from
one participant to another for action, according to a set of procedural rules."

The workflow management system is defined as "a system that defines,
creates and manages the execution of workflows through the use of software.
running on one or more workflow engines which is able to interpret the
process definition, interact with workflow participants and where required,
invoke the use of IT tools and applications."

In the latest years many researchers and developers have paid attention to
a problem how to organize the collaboration between legacy systems, and the
exploitation of workflow is one of the most popular solutions [27, 28].
Various workflow process definition languages have been created which can
be considered as domain specific languages.

The workflow implementations commonly are based on one fixed
semantics, like most of the programming languages. We are interested in
various semantics for a particular workflow, for example, common workflow
semantics, a statistical data gathering semantics, a semantics for debugging
and simulating purposes or its composition, therefore we need not only a
compiler or an interpreter, but the necessity for specific supporting tools
becomes a burning question due to demands for high software quality. An
interesting topic is changing of semantics for active instance of workflow on
the fly.

In our approach semantics are connected to syntax elements via semantic
connectors that naturally allow linking legacy systems into collaborative
workflow and allow to define or to execute multiple different semantics
simultaneously. Actually, each semantic implementation is a tool, similarly to
the principle in [10]. We present fragments of semantic description for simpl~:,
programming language to demonstrate usefulness of this approach for a wide
class of programming languages, and ideas how to implement a simple-
workrlow description language. J

J
~
I,f-

. 1..
~

According to Kinnersley's investigation [13], there were more than 2000~
exploited languages in ]995, and most of them were classified as domain-
specific language (DSL). Together with the growth of DSL many,-
implementations and maintenance problems arise (e.g. [6] analysis o~:
common problems and large annotated bibliography; [25] particular
languages and problems). Unfortunately, formal semantics descriptions lo~·
their position because of a weak support to solve practical problems [15, 20~
22].

2. Implementation of Domain-Specific Language



Semantics for Managing Systems in Distributed Environment 151

Like natural language, the programming language definition consists of
three components or aspects [21, 24]: syntax deals with questions of
superficial form of a language, semantics deals with the underlying meaning
of a language, pragmatics deals with the practical use of a language. The
syntax and semantics of a language can be formalized, and both
formalizations together form formal specification of a programming
language.

The formalisms for dealing with the syntax aspect of a programming
iguage are well developed. The theory of scanning, parsing and attribute

analysis provides not only means to perform syntactical analysis, but to
generate a whole compiler as well. There is a lot of problems with practical
use of semantics formalisms. Recently the criticism of classical formalism
has arisen from the difficulty of using formal methods. The main problem to
use widely in practice the formal specifications of programming languages is
that specifications become too complex, too abstruse to manage them, often it
is impossible to express all needs, and in the end - who verifies and proves

~,correctness of the specification?
Summarizing the best practices in compiler construction we can declare

that most of commercial compilers (interpreters or other tools that deal with
programs) are written without using any formalisms or only the first phases
(scanning and parsing) to exploit some formalisms [15].

Let us look at the language description again, try to divide it into smaller
parts and see, what we can obtain from that. Traditionally the first decision is
to separate syntax from semantics, and semantics consists of two parts: static
~'1antics and dynamic (run-time) semantics. But we should divide syntax

and semantics further, eliminate reusable components and provide a
mechanism to stick all things together.

Syntax components are more or less visible: basic elements (for instance,
terminals and nonterminals, if we parse program) connected with some
relations (for instance, edges in the parse tree or abstract syntax tree).

To divide semantics into pieces we offer to split it by semantic aspects.
Here are some examples of semantic aspects: program control flow

.agernent (e.g. loops, conditional branching), execution of commands or
-uuernents (e.g. basic operations, assigning), dealing with symbols (e.g.
variables, constants), environment management (e.g. scopes of visibility),
pretty printing of program, dynamic accounting of statistic, symbolic
execution, specific program instrumentation, etc.

We are interested in any formalism to deal with syntax, because we want
10 make intermediate representation (IR) of program or structured
information. The situation is clear what refers to conventional programming

.rages. But our goal is a workflow implementation, and we have to take
;;;lO account other languages, for instance, diagrammatic visual languages



152

(e.g. Petri nets, E-R diagrams, Statecharts) and the state-of-art in this field
(e.g. [7]).

Our approach has borrowed some principles from attribute grammars, for
instance, the ways to link semantics with syntax [20], modular decomposition
and reuse of specification [12], distributed computing in real time (e.g.
Communicating Timed AG [16]).

We found out that many formalisms of semantics use abstract data types
(ADT). ADT is a collection of data type and value definitions and operations
on those definitions which behave as primitive data type. This software
design approach decomposes problem into components by identifying the
public interface and private implementation. A typical example is Stack,
Queue, Symbol table [1, 24].

Recently one of the simple and popular methods to build some simple tool
for a programming language has become parse and traverse principle [5] that
means to build intermediate representation (IR) of program or information,
traverse IR and make appropriate computations at each node. This method is
similar to the Visitor Pattern [9]. Other useful patterns are also developed
[14, 19]. Besides, there exist also nontraditional traversal strategies [e.g. 4].
Many solutions can be obtained from Component collaboration [e.g. 18].

We have taken into account our experience in building prototypes of
multi-language interpreter [2]. A Multi-Language Interpreter (MLI) is a
program which receives source language syntax, source language semantics
and a program written in the source language, and then it performs the
operations on the basis of the program and the relevant semantics.

3. Principles of Semantic Definition and
Implementation

3.1 Runtime Principles

Let us assume that we have fixed some formalism to describe the syntax
of our language (e.g. BNF). Now we can define the language syntax and
develop a language parser (e.g. by using LexlYacc). The parser creates
intermediate representation (IR) of program (e.g. Parse tree), and IR is based
on a desirable structure and contains any needed information about the syntax
(e.g. node type (nonterminal), name (name of nonterminal), value (terminal
value) etc.).

To perform semantics at runtime we choose a principle of parse and
traverse. The Traverser that realizes our chosen traversing strategy (e.g. left-
depth tree traversing) has to be created for our IR representation. The
computations that have to be done at each node visited by the Traverser are



,('mantics for Managing Systems in Distributed Environment 153

defined in Semantic Connectors (SC). They use predefined data structures
with operations to establish the cooperation between Legacy Systems (LS)
(Figure 1).

Figure J. Runtime correspondence between syntax and semantics

Actually, most of work performing semantics is done via operations over
various Abstract Data Types (ADT). In such a way we hide most of
implementation details and concentrate mainly on logic of semantic aspect.
The consequence of this approach is that we can choose the best physical
implementation of ADT for the given task. For instance, Stack can be
imolemented in a contiguous memory or in a linked memory. The instances

.·,DT can be distributed objects in a heterogeneous computing network.
A concept of a semantic connector or simply connector is introduced to

connect the instances of ADT and LS in a desirable environment. Connector
is a meta-program that introduces a concrete communication connection into
a set of components, i.e. it generates the adaptation and communication glue
code for a specific connection. This concept is adopted from similar problem:
how to connect pre-built components in a distributed and heterogeneous
"''''ironment [3].

3.2 Semantic Definition Principles

Similarly to patterns in [20] we choose a correspondence Nonterminal
with visiting aspect = Semantic connector to establish the relationship
between syntax and semantics. Nonterminal with visiting aspect means that
we distinguish computations performed at nonterminal node considering an

'ct of node visiting (e.g. PreVisit or PostVisit). Any connector can see
.nstance of ADT or LS of the semantic aspect it (connector) belongs to.

The main problem is to find a good way to define semantics and obtain
semantic connectors for the definition. After exploring various approaches



154

how semantics can be described and organized, we suppose that semantic
aspect is a good basic component for constructing whole semantics according
to our goals. The conceptual components of a semantics description and
relationships with other concepts are represented in Figure 2.

Figure 2. The conceptual schema of semantics.

Semantics can be observed from two different sides - a logical definition
view and a physical runtime view. From the logical viewpoint semantics
consists of Semantic Aspects (SA). The SA states what syntax elements
(terminals, nonterminals) are involved, and what actions have to be
performed traversing internal representation and visiting the corresponding
node to implement the semantic aspect. Let us define the concept Semantic
Action that denotes the action performed to implement SA while visiting a
corresponding node, and the concept Implementation of Semantic Action
(ISA) that denotes a meta program which implements the semantic action. In
our example SA. involves nonterrninal NT. and terminal TJ, alia ISA1 is
performed while previsiting NT1 and ISA2 - while visiting T1•

The example of semantic aspect INDEFINITE LOOP is given in Figure 3e ,

There are various nonterminals and terminals organized by some syntax
description. The arrows represent a traversal strategy. The small circles
represent the semantic actions, and the rectangles connected to the circles
contain the implementation of semantic action (meta program). A left circle
into nonterminal stands for PreVisit, and a right circle - for PostVisit. All
used abstract data types (ADT) are defined within semantic aspect. Another
example of semantic aspect is given in Figure 4.



::emantics for Managing Systems in Distributed Environment 155

IMPORT GLOBAL Ref Stack, Sort, Flag of ADT_Stack,
Trav of ADT TreeTraverser, Env of ADT Symbol Table

Sort. push (INDEF)
Flag. push (TRUE)

if Sort.top() = INDEF then
LOCAL Ref = RefStack.pop()
if Env.getValue(Ref} = FALSE

Flag.replaceTop(FALSE)
Trav.goSiblForw(@END)

endif
endif

if Sort.top() = INDEF and
Flag.top() = TRUE

Trav.goSiblBackw(@WHILE)
endif

Figure 3. Semantic aspect INDEANITE LOOP. It "goes through" series and back to WHILE
:;:i1 the comparison sets NULL reference or reference with value FALSE

IMPORT GLOBAL
Ref Stack of ADT_Stack,
Env of ADT_SymbolTable

LOCAL Res = RefStack.pop()
LOCAL Var = RefStack.pop()
LOCAL Val = Env.getValue(Res)
Env.putValue(Var, Val)

Figure 4. Semantic aspect ASSIGNMENT. It takes reference to a variable and reference to a
value from the stack. and assigns the value to the variable. Pushing of references is simulated.
fr;,! references will be pushed by other aspects and simulating will be excluded

Let us look at the physical view. The semantic connector contains all
corresponding semantic actions having to be executed while visiting syntax
element (IR node). For instance, visiting any node with the name T) we have
to execute the semantic connector SC2 that contains the implementation of
the semantic action ISA2• Similarly, SCI is some composition of ISA, and
IS~.



156

3.3 Obtaining Semantics from Semantic Aspects

From the logical point of view semantics is a composition of semantic
aspects with concrete linking to instances of abstract data types, legacy
systems and traverser that performs a traversal strategy over fixed
intermediate representation of program or structured information. We cannot
simply stick all SA together risking to get senseless semantics. A
composition of semantic aspects is operations over a set of implementations
of semantic actions with the aim to get one set of connectors that correspond
to the new mixed semantic aspect (Table 1).

Table 1. Fragment of semantics description for simple imperative language
compatible with iCtype ParseTree, traverser type ParseTreeTraverser

syntax elements (program. expression. VARIABLE .... )
semantic actions (<PROGRAM> program PreVisit {ENV.prepareProgEnvO)'

<PROGRAM> program PostVisit {... }, ...)

global Trav of ADT_TreeTraverser, Env of ADT_SymbolTable
create DataStack, OperatorS tack. CanCreateVar. LoopSortStack. LoopCounterStack.
LoopFlagStack, IfFlagStaek. of ADT _Stack, InputFile, OutputFile of ADT _FILE

compose aspect <COMPOSED SA> 1/ composes semantic aspects from predefined aspects
(<PROGRAM»
append (<ELEMENT>

replace RefStack with DataStack II replaces stack for collaborating work
rename INTEGER Visit with CONSTANT Visit) II renames according to PAM syntax

append (<ASSIGNMENT>
replace RefStack with DataStack
rename left_hand_side PostVisit with VARIABLE Visit.

right_hand_side PostVisit with expression Post Visit
ignore left_hand_size Post Visit) !I ignore pushing of NULL reference

append «INDEFINITE LOOP>
replace RefStack with Datastack,

Sort with LoopSortStack, Flag with Loopf'lag Stack)

end compose aspect
... 1/ other aspect are defined and composed together
link for <COMPOSED SA> Trav to TreeTraverser, Env to SymbolTable
use aspect <COMPOSED SA> with traverser TreeTraverser

The obtaining of semantics for the fixed syntax is achieved in several
steps: 1) select predefined semantic aspects or define new ones for desired
semantics, 2) rename syntax elements and traversing aspect in the selected
semantic aspects with names from fixed syntax and traversing strategy, 3)
rename instances of abstract components to organize the collaboration



Semantics for Managing Systems in Distributed Environment 157

;.'.:·tweensemantic aspects, 4) make composition from semantic aspects, 5)
specify the runtime environment and translate the meta-code to the code of
the target programming language, and 6) compile the semantics.

After obtaining meta-semantics (Table 1) meta-code is translated into the
target programming language, taking into account the target language (e.g.
C++), the implementation of abstract components (e.g. Stack), the operating
system (e.g. Unix), the communications between components (e.g. CORBA),
-untirne components type (e.g. DLL), etc. The translation may be done by
.. .id or automatically (desirable in common cases).

By replacing ADT names we achieve an independent working for some
semantic aspects or collaboration between them through common instances
of ADT. Another way to get a new semantics is to combine semantic aspects
as whole black-box unit. Self-evident method is to execute several semantic
aspects sequentially, for instance, we perform static semantics first and
dynamic one after that. Instances of ADT can be shared and one semantic
aspect can use the results of others. More complex is a parallel execution of

ny semantics where we need to organize synchronization via instances of
ADT.

4. Workflow Case Study

To demonstrate our approach we use a very simple workflow definition
language that syntax is described with BNF (Table 2). We have two types of
',::~nericstatements for describing tasks in a workflow - universal statements
and specific statements.

TabLe 2. Fragment of BNF for simple workflow definition language
workflow -> series
series -> statement I series; statement
Statement -> generic_stm Icond_stm
cond_stm -> IF compar THEN series ELSE series FI

npar -> expr relation expr
-» const I var

genericjstm -> universal_stm I specific_stm
universal_stm -> u_stm_type name

-> DCOM I CORBA I WEBSERVICE I MANUALu_stm_type
specific_stm
s_stm_type

-> s_stm.:..type name
-> ASK I ANSW

The universal statements are used to collaborate with external
_'iications. The universal statement type describes the connection type:

DCOM, CORBA, WEBSERVICE means automatic processing, but



158

MANUAL means, that a human handles this operation. The specific
statement is used to communicate with a person - usually with a citizen who
uses the particular service. There are two types of specific statements. ASK
gets information from a person, ANSW sends some information to a person.

Lets us take a look at the following simple workflow:
WEBSERVICE AppJication_writin~and_submitling
ASK Communication
DeOM Applieation_data_controI_and_update
IF Is_data_controI_and_updatin~successful = True THEN

DeOM Printingofpassport
ANSW Positive_answer
MANUAL Passporrhanding.out

ELSE
ANSW Negative_answer

F1
The purpose of this workflow is to issue a new passport for a person. The

workflow has the following activities - a citizen fills in an application form
and submits it to the official. It can be a paper form or a web based
application. The official or the application asks from the person the
communication type and address, and records data into workflow
environment. Then the official verifies the correctness of the citizen's filled
in form with the data in the Population Register, and if all data are correct,
then the passport is issued and delivered to the citizen. Otherwise a negative
answer is sent to the citizen. An example of one semantic aspect of this
workflow is given in Figure 5.

IF operatorStack.top() = "Ask" (
IF OperandStack.top() = 'Communication' (

Local PK, Name, Surname. CornrnType, CommInfo
GetCommInfo(PK, Name. Surname. Co~mType, CommInfo)
Oictionary.PutCOmmInfc(PK. Name. Surname, CornmType. Commlnfo)
OperandStack.pop() J

/1 other cases
OperatorStack.pop()

name

OperandStack.push(Trav.NodeValue() )

OperatorStack.push("Ask")

Figure 5. Semantic aspect SPECIFIC STATEMENT ASK



Semantics for Managing Systems in Distributed Environment 159

5. Conclusions

We have presented ideas for establishing a framework to deal with
different collaboration problems between legacy systems. The problem is
reduced to describing the collaboration (e.g. workflow) by DSL and building
various tools (various semantics) for this DSL.

There are many application generators that automatically produce
inventional compiler and interpreter, but we need not only those ones. It is

necessary to obtain various supporting tools that are based on the language
text processing. The existing formal semantics are not well accepted by
language or tool designers. We have made an attempt to search for a
compromise to minimize this gap. The latest related works in this field to
establish tool-oriented approach are mentioned in [10, 17,23].

We have offered ideas how semantics can be decomposed into reusable
parts, and specific semantics can be composed from them, and how execution
, organized. We delegate most of the actual work for semantics to pre-built

components (ADT). Our approach allows minimize semantics descriptions
for an easier management and provides good implementation in, possible
parallel, distributed and heterogeneous environment. Our approach is based
on the experience received by constructing prototypes of a multi-language
interpreter for conventional programming languages.

Due to practical needs, we lose some precision and benefits of classical
semantic formalisms. The next step is to finish the formalization of our
)proach and to compare it with other formalisms, especially with attribute

grammars. Other activities have to be the designing of useful collection of
abstract data types.

References

(! J Aho, A.V., Sethi, R., and Ullman, J. D. Compilers: Principles. Technigues, and Tools.
Addison-Wesley, i986 .

. _; Arnicane, V" Arnicans, G., and Bicevskis, J. Multilanguage interpreter. In H.-M. Haav
and B. Tnalheirn, editors, Proceedings of the Second International Baltic Workshop on
Databases and Information Systems (DB&IS '96). Volume 2: Technology Track, pages
173-174. Tampere University of Technology Press, 1996.

(3] ABmann, U., GenBler, T., and Bar, H. Meta-programming Grey-box Connectors.
Proceedings of the Technology of Object-Oriented Languages and Systems (TOOLS 33).
2000, pp. 300-311.

[4J Biswas, B. and Mall, R. Reverse Execution of Programs. ACM SIGPLAN Notices. April
1999,34(4):61-69.
Clark, C. Build a Tree - Save a Parse. ACM SIGPLAN Notices, 34(4): 19-24, April 1999.

[oj Deursen, A., Klint, P. and Visser. J. Domain-Specific Languages: An Annotated
Bibliography. ACM SIGPLAN Notices, June 2000, 35(6);26-36.



160

[7] Ferrucci, F., Napolitano, F., Tortora, G., Tucci, M., and Vitiello, G. An Interpreter for
Diagrammatic Languages Based on SR Grammars. Proceedings of the J 997 IEEE
Symposium on Visual Languages (VL '97), 1997, pp. 292-299.

[8] Fischer, L (ed) The Workflow Handbook 2001, Published in association with the
Workflow Management Coalition, 2000

[9] Gamma, E., Helm, R., Johnson, R., and Vlisides, J. Design Patterns: Elements of
Reusable Software. Addison-Wesley, 1995, pp. 331-334.

[10] Heering, J. and Klint, P. Semantics of Programming Languages: A Tool-Oriented
Approach. ACM SIGPLAN Notices, March 2000, 35(3):39-48

[11] Karnitis, E. E-Government: An Innovative Model of Governance in the Information
Society. Baltic IT&T Review, 1,2001

[12] Kastens, U. and Wait, W. M. Modularity and reusability in attribute grammars. Acta
Informatica 31, 1994, pp. 60 I -627.

[13] Kinnersley, W. (ed), The Language List. 1995. http://wuarchive.wustJ.eduldocJmiscllang-
Iist. txt

[14] Kuhne, T. The Translator Pattern - External Functionality with Homomorphic Mappings.
Proceedings of the Tools-23: Technology of Object-Oriented Languages and Systems,
1997, pp. 48-59.

[15] Louden, K'C. Compilers and Interpreters. In Tucker [28], pp. 2120-2147.
[16] Matsuzaki, T. and Tokuda, T. CT AG Software Generator Model for Constructing

Network Applications. Proceedings of the Asia Pacific Software Engineering Conference,
1998, pp.120-127.

[17] Mernik, M., Lenic, M., Avdicausevic, E., and Zumer, V. CompilerlInterpreter Generator
System LISA. Proceedings of the 33rd Hawaii International Conference on System
Sciences - 2000, 2000, pp. 10.

[18] Mezini, M. and Lieberherr, K. Adaptive Plug-and-Play Components for Evolutionary
Software Development. SIGPLAN Notices, 33(10):97-116, 1998. Proceedings of the
1998 ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages & Applications (OOPSLA '98).

[19] Ovlinger, J. and Wand, M. A Language for Specifying Recursive Traversals of Object
Structures. SIGPLAN Notices, 34( 10):70-81, 1999. Proceedings of the 1999 ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages &
Applications (OOPSLA '99).

[20] Paakki, J. Attribute Grammar Paradigms - A High-Level Methodology in Language
Implementation. ACM Computing Surveys, June 1995, 27(2): 196-255.

[2 l ] Pagan, G.P. Formal Specification of Programming Languages: A Panoramic Primer.
Prentice-Hall, 1981,

[22] Schmidt, D.A. Programming Language Semantics. In Tucker [28], pp. 2237-2254.
[23] Sloane, A.M. Generating Dynamic Program Analysis Tools. Proceedings of the Autralian

Software Endineering Conference (ASWEC'9), 1997, pp. 166-173.
[24] Slonneger, K., and Kurtz, B.L. Formal Syntax and semantics of Programming Languages:

A Laboratory Based Approach. Addison-Wesly, 1995.
[25] Special issue on domain-specific languages. IEEE Transactions on Software Engineering,

25(3), MaylJune 1999.
[26] Tucker, A.B. (ed) The computer science and engineering handbook. CRC Press. 1997.
[27] Workflow Standards and Associated Documents, ,

http://www. wfmc.orglstandardsldocs/Stds_ diagram. pdf
[28] WorkflowlBPR Tools Vendors http://www.waria.comldatabaseslwfvendors-A-L.htm

http://www.waria.comldatabaseslwfvendors-A-L.htm


Multilanguage interpreter

Vineta Arnicane, Guntis Arnicans, Janis Bieevskis

University of Latvia

Faculty of Physics and Mathematics

Rainis Blvd. 19, Riga LV-1459, Latvia

e-mail: varnican@lanet.1v.garnican@lanet.1v

and

Riga Institute of Information Technology

Skanstes 13, LV-1013 Riga, Latvia

e-mail: bicevskis@swh.lv

Abstract

The concept of multi language interpreter that allows with a unified method to

solve popular problems of program complexity, analysis and automated testing is

offered. The traditional program syntax analysis tools such as LEX and combined with

specific sets of commands for semantics description are used. The source program's

execution according to the given semantics is accomplished traversing parse tree and

executing instructions corresponding to node type in this semantics. The given method

is demonstrated on a small example. The possibility to use multi language interpreter

for prototyping logically complicated systems is demonstrated.

Introduction

The idea of the multi language interpreter has risen from a plenty of problems

that require to analyze the given program text and do something with it. Let us look at

some of such problems.

Multilanguage interpreter 1

mailto:varnican@lanet.1v.garnican@lanet.1v
mailto:bicevskis@swh.lv


Program translation to another programming language. To deal with this

problem we use the appropriate translator or compiler [2].

Dynamic program execution. For this task we usually take interpreter. An

interpreter is a program (tool) that reads a program written in source language,

translates it into intermediate representation and immediately performs the operations

implied by the source program.

Program beautifying and clarifying. That means that program text is

transformed in a such way that user can easy catch its meaning. For instance, to

display the keywords, numbers, variables in different fonts, forms or color, or show

structure of the program, etc.

Determining program complexity. Frequently we need to determine program

complexity according to some criteria. This task requires the program analysis [5,6].

Creation of cross-reference tables. It is hard to imagine the building of a

serious system without the various cross-reference tables. These tables can contain the

following information: functions called by a given function or either functions that

call a given function; variables used in a given function or either functions that use a

given variable, etc.

Static program testing. Some problems in static testing are searching for the

common semantics errors (syntax errors usually is caught by compilers), finding the

relations between variables [5,6,8].

Symbolic testing. Instead conventional execution we can execute the chosen

program path symbolically (real variable values are substituted by symbols). This can

help to prove program correctness and is the essential step forward to program

verification [5,6, 8].

Multilanguage interpreter 2



Automatic testing. Any interpreter for given programming language can be

modified to record user defined tests to the data base, later automatically replay tests

and compare results with correct results stored while test accumulation [1]. The other

approach is to create tree from program text and automatically generate the test cases

for some criteria (usually for Cl) [7].

Program instrumentation with additional text. There are special code

insertion is made into original program text to force program do some additional

work, for instance, dynamically control arrays boundaries [5,6, 7].

Dynamic testing supporting. Interpreters has advantage compare with

compiler that the first one easier can deal with many of problems witch arise during

the program execution [1, 8].

Any program is written in some source language (programming language).

Conventional compiler or interpreter is designed for only the one predefined

programming language. The realization of these tools are very similar based on

compiler construction theory. Differences between implementations mainly are stated

by the features of the programming language.

The main characteristics that describe programming language are syntax,

semantics and pragmatic. "Roughly speaking, syntax deals with questions of

superficial form of a language, semantics with its underlying meaning, and pragmatic

with its practical use". [3] In our case only the first two ,characteristics are meaningful

because they dictate the behavior of the tool. In most of the implementations of

interpreters and compilers both of these parts depend on each other and it is very hard

to change anything in one of them without changing the other.

Our goal is to reduce efforts in creating such tools that do something with the

text in source language. Especially it may be useful for researchers - quickly to build

Multilanguage interpreter 3



prototype or simulator for a new tool. We try to create a tool that acts like the

mentioned tools and call it the multilanguage interpreter (MLI). If we reduce the

problem by fixing one syntax and use it with various semantics then we could call it as

multi semantic interpreter (MSI). From our point of view there is not essential

difference between MLI and MSI in this paper.

The multi language interpreter is a program that receives the source language

syntax, the source language semantics and the program written in source language and

performs the operations implied by this program and given semantics.

Syntax

Multilanguage
Interpreter ResultsSemantic

Program

Figure 1

This interpreter can interpret programs written in many source languages. To

our understanding, language is a pair <syn,sem> where syn is some syntax and sem is

some semantics. Both are defined in a formal way specially for MLI. Some pair

<syn,sem> may be senseless for a user but interpreter tries to execute the program

with this syntax and semantics.

As the most useful technique for describing the language in MLI we have

chosen attribute grammars. The syntax we describe by using of BNF (Backus-Naur

Form), but semantics - with rules connected with terminals and nonterminals of

grammar. The execution of the program is traversing through parse tree according to

semantics rules and performing of rules connected with each node of tree.

The description of language is broken into two parts: syntax and semantics.

The syntax of a language is the set of rules that determine which constructs are

Multilanguage interpreter 4



correctly formed in program and which are not. The semantics of a language is the

description of the way a syntactically correct program is interpreted.

We use attribute grammars as basic concept in MLI. As metalanguage for

expressing grammars we will use BNF. The syntactic structure of a given source

program as generated by the grammar, can be depicted as a parse tree. Most

programming languages cannot be completely specified by a context-free grammar. So

we will specify in syntax part of MLI only the context-free portion of a language

syntax.

Syntax part of MLI have to support functions for navigation through the parse

tree (such as - getOldestChild, getNextChild, getParent) and functions for gathering

the information about each node (terminal or nonterminal, name of it, if terminal -

token of it).

Conceptually we parse the input token stream, build the parse tree, and then

traverse the tree as needed to evaluate the semantics rules at the parse tree nodes.

Once an explicit parse tree is available, we are free to visit the children of each node

in any order.

'Semantics part' of attribute grammar used by muItilanguage interpreter is not

pure attribute grammar. It is modified for practical considerations but the basic ideas

follow the attribute grammar theory. We cannot take the attribute grammar without

modifications because it is oriented to building of compilers, not to building process

of interpreters. From various approaches of language semantics describing in MLI is

preferable to use the operational approach. This approach allows to describe the

semantics in terms of such devices as abstract machine with discrete states and more-

or-less explicit sequences of the computational operations. The most known

representative of this approach is VDL (Vienna Definition Language). According the

Multilanguage interpreter 5



VDL the abstract machine interprets a program by passing through a sequence of

discrete states. The allowable state transitions are defined by a set of instruction

definitions written in a special notation.

From VDL we have taken the idea of abstract machine that is represented by

special data structures and set of operations with them. Abstract machine operations

can be used as part of metalanguage that describes semantics. Each semantics

instructions can change the state of abstract machine. The VDL forces us to put into

attribute grammar high level functions and complicated data structures that allow to

easier understand "semantics rules".

In practice the semantics for MLI is the set of programs written in some

metalanguage and some real programming language. These programs are written in

such a way that they can be executed on computer. The evaluation rule is not

associated with some grammar production rule but it is connected with the terminal or

nonterminal of BNF. Each attribute is not directly associated with each distinct

symbol of BNF but global stack is used to manage the values of attribute at the

execution time (it is the common approach to realize attribute grammar in practical

tools). The special support tool is designed for multilanguage interpreter to write

semantics more quickly and compactly - the system for memory object managing.

An essential function of a compiler is recording of identifiers used in the

source program and collecting of information about various attributes of each

identifier. The attribute may contain the information about the storage allocated for

the identifier, its type, its scope, number and types of procedure arguments, etc. The

special data structure - symbol table - is used for that purpose [2]. There is a similar

data structure created for MLI, too. This data structure not only can store the

information but also its functions can be used as part of metalanguage in defining of

Multilanguage interpreter 6



the semantics rules. We have called it as Memory Object Management System

(MOMS). We suppose that MOMS is one of the essential parts of the MLI that allows

to make the description of semantics more quickly and understandably.

MOMS operates with some basic memory objects such as name of object,

reference (handle to memory object), value (handle to byte stream that contains a

value of an object), constructor (handle to object type description). Constructor may

be primitive constructor or combination of primitive constructors. By using of

constructors we can describe the structure and features of any memory object, for

instance, type of variable, function arguments, procedure, etc.

MOMS also operates with more complex memory objects such as dictionaries,

tables, memory blocks, stacks, collections.

MOMS functions we use for describing the semantics of the subject language.

These functions provide definition of the features of program running environment,

description of the source language basic data types, description of the source language

basic operations (+, -, *, /, <, >, mint), maxt), substn), etc.), defmition of scope for

memory objects, sets of functions that allow to create easier user defined data type,

various operations with variables, constants, functions for realizing the source

language procedures and functions, and other useful functions.

MOMS is designed specially for MLI, but it can be used by other tools too.

As it was mentioned above, for interpreting the source program we need the

description of syntax and semantics of object language.

We describe syntax by BNF. According this description we to generate the

code for lexical and syntactic analysis of source program with goal to built the parse

tree of source program. This code includes the functions for navigation through tree,

too.

Multilanguage interpreter 7



We describe semantics by using our own metalanguage. Our metalanguage is

C like language which includes parse tree navigation functions and specific functions

for memorizing any memory object in MLI. From this description we can generate

code in e++ which can interpret the source program according to this semantics.

For practical considerations we decide that sometimes attribute of some

grammar symbol can serve as inherited or synthesized attribute. The role of attribute

depends on direction we arrive into the node. For this reason we divide semantics rule

for nonterminal symbol into two functions: Pre_function that is executed if we visit

node from parent or sibling node and Post_function if we visit node from child. In all

Pre_functions attributes are inherited but in Post_functions - synthesized. For terminal

symbols we write only one function.

So at the beginning of its work MLI makes parse tree of source program, takes

the root of it and interprets the program by carrying out semantics rules.

Example

As example we will use a statement in simple poor language PAM [3]. There

IS only one data type - int (integer) - in this language, there are all arithmetic

operations with integers (except unary minus), input, output operators, conditional and

loop statements in PAM. There is semantics difference - in the language there are no

declarations of the variables. Variable is declared when the value is assigned to it first.

Let us look at a small example how we can interpret the ordinary command in

various programming languages - assignment statement. It looks in the following way:

z := y + 1.

Useful statements ofBNF for this statement are:

Multilanguage interpreter 8



<assignment_statement> ::= K_VARIABLE K_ASSIGN <expression>
<expression> ::= <term> I <expression> K_WEAK_OPERATOR <term>
<term> ::= <element> I <term> K_STRONG_OPE:RATOR <element>
<element> ::= K_CONSTANT I K_VARIABLE I

K LEFT BRACKET <expression> K RIGHT BRACKET

Figure 2

In this grammar the names that consist of upper case letters are terminals (the

actual terminal symbols are substituted by words starting with 'K_'). The parse tree of

example statement is seen in Figure 3. The visiting order of tree nodes is shown by

arrows and numbers at them.

assignment_statement

Figure 3

Executing of this statement starts by visiting the node of nonterminal

'assignment_statement'. At first the function 'assignment_statement_PRE' (Figure 4)

is called. The function 'assignment_statement_POST' is called after all the subtree of

this node will be visited (arrow 16). We used some attributes in the description of

semantics of PAM -jlagDontCreate Vars (because in subtree function K_VARlABLE

should know whether it can create this variable or not), OperatorStack (for storing of

operations) and DataStack (for storing of references to variable definitions and

values).

lint assignment_statement]REO { flagDontCreateVars = FALSE; return I;} I
Figure 4

Multilanguage interpreter 9



As next the function 'K VARIABLE' is called. It takes the name of variable

from parse tree node and creates variable in MOMS with this name because the

flagDontCreate Vars IS FALSE (was assigned in function

'assignment_statement_PRE'). Then the function takes the reference to variable from

MOMS and pushes it in DataStack.

int K_ VARIABLEO {
char* varName = valuefrom'Ireet);
if (flagDontCreate Vars)

if(! MOMS.findVariable(variableName» {
MessageBox(O,"Noninitialized variable", varName,MB _OK);
return O;}

else
MOMS. create Variable( variableName,"int_");

Ref variableRef = MOMS.getRef{variableName);
push(DataStack,Ref, variableRet); return 1;}

Figure 5

The next called function 'K_ASSIGN' does nothing (it is empty).

lint K_ASSIGNO {return 1; }
Figure 6

Function 'expression_PRE' pushes the label Nap into the OperatorStack. It

will be useful in function ' expression_POST' as indicator of the last operation in this

expression.

int expression ]REO
push(OperatorStack, char*, NOP); return I;}

Figure 7

Function 'term_PRE' pushes into the OperatorStack the Nap.

I rot term]REO push(OperationStack, char*,NOP); return I;}
Figure 8

The function 'element_PRE' changesjlagDontCreateVars value to TRUE. It

means that the variables existing in subtree (in the right part of assignment statement)

have to be created and initialized before.

lint element]REO flagDOIltCreateVars = TRUE; return 1;}
Figure 9

Multilanguage interpreter 10



The function 'K_ VARlABLE' works like it was in the previous call. The

single exception is that instead of the creating of the variable the function searches for

it in MOMS. If it is not in MOMS the error message will be given.

The function 'element_POST' changesjlagDontCreate Vars value to FALSE.

I int element POSTO flagDontCreateVars = FALSE; return I;}
Figure 10

Function 'term_POST' pops operations from OperatorStack and calls for the

execution for each operation. In our case the first operation is NOP.

int term ]OSTO
char* operat; pop(OperatorStack, char", operat);
while(strcmp(operat,NOP)!=O) {

if (executeOperator( operat,2)=O) return 0;
delete operat;
pop(OperationStack,char*,operat); }return I;}

Figure 11

The function 'K_ WEAK_OPERATOR' takes the operation symbol ('+' in our

case) from parse tree node and pushes it into the OperatorStack.

int K_WEAK_OPERATORO{
char* value=valueFromTreeO;
push(OperatorStack, char*, value); return I;}

Figure 12

Then the functions 'term PRE' and 'element PRE' are carried out. After that- -

the function 'K_ CONSTANT' is called. It takes the constant from tree, creates unique

name for it, stores it as atomic value in MOMS, get its reference from MOMS and

pushes the reference in DataStack.

int K_KONSTANTO{
char" text = valueFromTreeO;
int value; atoi(text, value, 10);
char" litName = new char[strlen(" int_")+ strlen(text)+ I]; .
strcpy(litName," int); strcat(litName,text);
if (MOMS.createLiterai(litName, "int_"»

MOMS. putValue(MOMS.getRef(litName ),( char*)&value »;
Ref litRef = MOMS.getRef(litName);
push(DataStack, Ref, litRe£); return I;}

Figure 13

Multilanguage interpreter 11



Then the functions 'term POST' and 'element POST' are carried out. After- -

that the function 'expression_POST' is called. It is the same as 'term_POST'. At this

moment the operator in OperatorStack is '+' and the function 'executeOperator' is

called.

The function 'executeOperator' was created during the describing the

semantics as supplement function for clarifying the description. It takes the 'argNum'

references from DataStack and calls the corresponding function. In our case it is the

function 'PLUS' which is carrying out the adding, creates reference of the result and

stores it in DataStack.

#define callbasefn( fnsign, fnname ) \
if (strcmp(funcName, fnsign) = 0)

return fnname(intArg);

int executeOperator(const char* funcName, const Uint argNum) {
RefrefArg[2]; int_ intArg[2];
for (Uint i=O;i<argNum;i++) {

pop(DataStack, Ret: refArg[i]);
intArg[ argNum-i-l ]=*(int_ *)MOMS.getV alue(refArg[i]);}

callbasefn ( "+", PLUS );
callbasefn ("-", MINUS) ; callbasefn ("*", MULTIPLY);
callbasefn ( "I", DIVIDE ); callbasefu ( ">", G);
callbasefn ("<", L); callbasefn (">=", GE);
callbasefn ("<=", LE); callbasefu ("=", EQ );
callbasefu ("<>", NE);
MessageBox(NULL,"Nondefined base function" ,"executeOperator" ,MB _OK);
return 0; }

int PLUS(const int_ *intArg) {//intArg - array of parameters
int_ rezult=intArg[O] + intArg[l];
Ref rezu ItRef= MOMS .createRef("int _");
mm.putV alue(rezultRef,( char*)( &rezult»;
push(DataStack, Ref, rezultRef); return 1; }

Figure 14

At last the function 'assignment_statement_POST' is called. It takes references

to expression result and variable from DataStack, and assigns the result to variable. It

turns the value ofjlagDontCreateVars to TRUE, too.

Multilanguage interpreter 12



int assignment_statement]OST {
RefrezRef, varRef;
pop(DataStack, Ref, rezRef);
char" value = MOMS.getValue(rezRef);
pop(DataStack, Ref, varRef);
MOMS.putValue(varRef, value);
flagDontCreateVars = TRUE; return 1;}

Figure 15

It can seem too hard and complex for such simple statement but even if the

expression on the right side of statement would be very complex, it can be executed

by the very same set of functions.

Practical results

Some practical results are achieved. Some vanous modifications of PAM

language syntax is created. We use some tools created by our colleagues. One tool

allows us to transfer BNF into some internal representation. This internal

representation can be translated to program text that serves as input for LEX and

YACC. These tools are available on many computer platforms and are very popular.

The result of LEX and YACC linked together with special library that allows to

navigate through parse tree we consider as syntax of given language. If the BNF is

already given then creating syntax for MLI takes some hours.

The first version of Memory Object Management System and a simple MLI

kernel is created. A special tool from BNF internal representation can create templates

for semantics instructions. Different semantics are created for PAM. As examples we

have created conventional semantics as well as special semantics that perform

symbolic execution along the chosen program path.

References

1. Boris Beizer Black-Box Testing Techniques for Functional Testing of Software and

Systems, _John Wiley & Sons, Inc, _USA, _1995, _294 p.

Multilanguage interpreter 13



2. Aho A., Sethi R., Ullman J.D. Compilers. Principles, Techniques, and Tools

_ADDIS ION-WESLEY PUBLISHING COMPANY, _USA, 1988. _795 p.

3. Pagan F.G. Formal specification of programming languages _New Jersey,

PRENTICE-HALL, 1981. _241 p.

4. Herbert 1. Dershem, Michael J.Jipping Programming Languages: Structures and

Models, _Wadsworth Publishing Company, _USA, 1990, _413 p.

5. Software Testing Voll, Analysis and Bibliography, _Berkshire, _England, 1979.

_305 p.

6. Software Testing Vo12, Invited papers, _Berkshire, _England, 1979. _371 p.

7. Conference Proceedings Eighth International Software Quality Week 1995,

_Software Research Institute, _USA, 1995.

8. J.Bicevskis, J.Borzovs, U.Straujums, A.Zarins, and E.F.Miller. SMOTL- a system

to construct samples for data processing program debugging. IEEE Transactions

on Software Engineering, SE-5, No. 1,1979, pp. 60-66.

Multi1anguage interpreter 14



---200 ~
DISCUSSiOr. OF THE EVOLUTION TOWARD
NEXT-GENERATION NETWORKS

INTERNET LEARNING
IN THE BALTIC STATES

ISSN 1407-2912
04

9771407 291001



ADVANCED PROJECTS

Development of a
Communications Server:
First Results and
Conclusions
Guntis Arniciins, 9irts Karnitis, Prof. Janis Biceoskis, Faculty of Physics and
Mathematics, University of Latvia

The authors describe a program to develop a communications Se17Jer,which is a
set of software and hardware that allows a wide range of users in Latvia and in
other countries to receive'information from a variety of sources (government reg-
isters, databases, information systems) through a single contact point. A com-
munications server identifies users, authorizes the use of the respective data, ful-
fills requests which involve several information sources, and assesses the costs
of the process so that the appropriate financial transaction can be made. A com-
munications server also allows users to find out uihere information is being
stored and what kind of infonnation it is. Users can also request and receive in-
formation from various registers without having to have any in-depth knowl-
edge about the technical aspects of its storage.

, Inexact registration certificate No.•
Owner of vehicle ! Inexact registration No.

Inexact chassis No.
i. Vehicle owner PI NO
Year of production
First colour
Second colour
Mark
Model
Registration certificate No.

•r. Registration No.
Chassis No.

INTRODUCTION
The need for a communications

server became evident when the gov-
ernments of the Baltic States were
establishing their joint data trans-
mission network [6J. One of the main
tasks in this process is to obtain in-
formation about objects such as en-
terprises, persons, motor vehicles,
etc., without having to study the
database structures in anyone, spe-
cificcountry. The concept for the com-
munications server [I] was defined a
year ago, and the project to set up the
server in Latvia was begun.

Registers ~

• •
Register of Residents
Register of TIDCJl"Yf'rs

Search information

Figure I. Registers and data objects

Data retrieval from different, au-
tonomous sources has been an impor-
tant issue not only in Latvia, but also
in other countries and even in large
enterprises in recent years. The
problem is a very complicated one,
and solutions may require years of
time and many highly qualified spe-
cialists [2, 3, 4]. The process of devel-
oping a communications server in
Latvia has been a step-by-step one.
Latvia has several dozen registers
and information sources - some pub-
lic, others with restricted access. It
would have been too complex to de-

.•.•.tt-, •

29



Repository

Universal
Browser

Figure 2. Conceptual structure of the communications server.

velop the system all at once, and
there would have been various orga-
nizational and technical problems.
The design and implementation of all
of the functions of the communica-
tions server takes a long time.

THE CORE OF THE
COMMUNICATIONS SERVER

The main functions of a communi-
cations server are:

1) User identification;
2) Authorization to use the infor-

mation;
3) Management of user rights;
4) Fulfillment of requests which

involve several information sources;
5) Evaluation of the costs of each

request for billing purposes.
The implementation of the first

three functions is more or less un-
complicated, but there have been con-
siderable problems in implementing
the latter two. Technologies to search
for and extract data from various da-
ta sources were developed during the
design phase, and they are based on
Web technologies and Meta models of
data sources [51-

Several principles and require-
ments were determined for the first
version of the communications server:

• It must be possible to define a
new SOUl"Cein a couple of days;

• It must be possible to access any ,
type of data source;

• It must be possible to create

30

primitive services (wrappers) to
search and obtain the needed data
from the source quickly and easily;

• It must be possible to tie togeth-
er related data from various data
sources;

• It must be easy to maintain the

entire system (make changes, add
new possibilities, etc.);

• The program code must be sim-
ple and short so as to reduce the pos-
sibility of mistakes;

• Initially data must be retrieved
only from the WWW (from the end-
user's point of view).

THE REGISTER OF REGISTERS
The register of registers is an in-

formation system which contains in-
formation from other information
systems that are maintained in
Latvia. It contains a great deal of
useful information - IS name, con-
tent, owner, data model, relations
with data objects in other informa-
tion systems and in the database of
the register of registers, etc.

The first version of the communi-
cations server makes extensive use of I

information from the register of reg-I
isters, Information searches, for ex-
ample, start with a high-level repre-]
sentation of data sources and objects .
stored within them (Figure 1).

Here we can see which data
sources are available, which data ob-

Mediator

Figure 3. A universal browser.

Baltic IT Review #17



ADVANCED PROJECTS
~---~----------------------------.

~,,,;lll----

Wl

Universal
Browser

R3

Figure 2. Conceptual structure of the communications server.

velop the system all at once, and
there would have been various orga-
nizational and technical problems.
The design and implementation of all
of the functions of the communica-
tions server takes a long time.

THE CORE OF THE
COMMUNICA nONS SERVER

The main functions of a communi-
cations server are:

1) User identification;
2) Authorization to use the infor-

mation;
3) Management of user rights;
4) Fulfillment of requests which

involve several information sources;
5) Evaluation of the costs of each

request for billing purposes.
The implementation of the first

three functions is more or less un-
complicated, but there have been con-
siderable problems in implementing
the latter two. Technologies to search
for and extract data from various da- '
ta sources were developed during the
design phase, and they are based on
Web technologies and Meta models of
data sources [51

Several principles and require-
ments were determined for the first
version ofthe communications server:

• It must be possible to define a
new source in a couple of days;

• It must be possible to access any
type of data source;

• It must be possible to create

30

primitive services (wrappers) to
search and obtain the needed data
from the source quickly and easily;

• It must be possible to tie togeth-
er related data from various data
sources;

• It must be easy to maintain the I

entire system (make changes, add
new possibilities, etc.);

• The program code must be sim-
ple and short so as to reduce the pos-
sibility of mistakes;

• Initially data must he retrieved
only from the WWW (from the end-
user's point of view).

THE REGISTER OF REGISTERS
The register of registers is an in-

formation system which contains in-
formation from other information
systems that are maintained in
Latvia. It contains a great deal of
useful information - IS name, con-
tent, owner, data model, relations
with data objects in other informa-
tion systems and in the database of
the register of registers, etc.

The first-version of the communi-
cations server makes extensive use of
information from the register of reg-
isters. Information searches, for ex-
ample, start. with a high-level repre-
sentation of data sources and objects
stored within them (Figure 1).

Here we can see which data
sources are available, which data ob-

I
I

L:~ ~ @~Rt=J
Figure 3. A universal browser.

Mediator

Baltic IT Review #17



••••••••••••••••••••••••••••••••••••• il~ll~'(',~li~~Ij~~D

ie, Is are available from those sources,
,l : which at.tributes can be used to
de,;t:ribe each data object. Then we
can start browsing from any data
source 01' data object.

BASIC ADDITIONAL
REQUIREMENTS FOR
COMMUNICATIONS SERVERS

There are various other aspects
,,: d requirements to be taken into ac-
wLint in creating the first version of a
communications server:

• Some data are very sensitive (on-
ly for authorized and restricted use);

• Some data are available for
money.

For these reasons, we have main-
f,:ined close attention over security,
kJging in all activities and account-
ing for all information that is re-
ceived, the point being to enable us to
settle accounts between information
providers and consumers.

Our security system is designed to
fulfil the requirements of the law,
government regulations and informa-
Iion providers. With respect to each
user, we currently define the data ob-
jects (registers, information from reg-
isters, etc.) are available, what opera-
tions (searching, retrieving) can be
dene, and what WWW page tem-
plates (data retrieval, combining of
data from various registers, presenta-
tion of data) are available.

All user activities are logged in to
special journals. The system saves
information about the activity, the
user who engaged in the activity, and
also the related request. It is possible
to track the entire history of any data
object - who asked wbat, and what
data objects and attributes were dis-
played.

We can calculate the costs for in-
formation consumers in those cases
where the cost of information is de-
fined Because we log in any request
in some detail, we can calculate the
costs of any user 01' provider.

TECHNICAL SOLUTIONS
The main task for a communica-

t .ins server is to retrieve information
from data sources. A rough view of
the implementation principles is
shown in Figure 2. The user asks the
mediator for information. Th media-

Baltic IT Review #17

Enter search criteria for data object
Owner of vehicle

':::&1

Enter search
criteria of group and
click button
·Search" of
appropriate group.
Groups are splitted
visually with
horizontal lines and
color

p.rwon
;;!dlfltlty-I --------,_
-...•i~_()·: '_'"-_'.

:
Figure 4. Search criteria input window.

tor translates the request into a set of
small, internal requests to data
sources through wrappers. When the
wrapper returns the data, the media-
tor establishes the information pre-
sentation and sends the WWW page
to the user.

In order to retrieve information
from a data source, we must create
special small programs known as da-
ta wrappers. This approach has the
following advantages:

• It allows us to access the data
source via different protocols and
methods ODBC, OLE DB,
SOL*NET, DOOM, etc.;

• Data sources are usually suited
to specific business tasks, and their

Owner of vehicle

101016101010 KAlNS VIKTORS

[02023312343 KAlNClEMS JURIS

Related information

~ ----or-- egister of - -I
!vehicle otor vehicles I

£-wn-s -ve-h-ic-le-s-lU.hicle tglt' ster °h~ I .~ I" 0 or ve rc es
,-----b;---!R:egisler o-f--

I
I

fHas child.ren I--':Idren !R .d

~-C ~::S~~:fji1&8 parents rareolS ~.sidenls

ormation ~;:;;;--lRegjster ~
aboul ersou_laboot ptf1!Oll !Residents

Iu J: egister ofIHas passport rassport Residents _

Figure 5. Information about car owners.

primary function is not to provide ac-
cess to data as requested from anoth-
er system (communications server);
access is limited, and only stored pro-
cedures can be used to query data; the
wrapper allows us to execute only au-
thorized functions;

• Querying the data source via
functions allows us to transfer real
data from the data source's physical
data model to our logical data model
(stored in the meta database) easily
and in a form that is more easily un-
derstood by the user;

• If the data source changes, we
need only to adjust the relevant wrap-
pers.

A special browser has been de-

ViewT}pe:mll

Owner or vehicle

31



ADVANCED PROJECTS

signed for communications with a
user via the Internet, and it is based
on a meta model of data sources. This
browser retrieves information that is
stored in a meta model and generates
WWW pages to communicate with the
user. We can think of the browser as
a driver and a repository (Figure 3).

The repository is a database which
stores information about data
sources, data objects in sources and
relationships among them. It has
functions which allow us to query a
source, to screen templates (the
WWW page structure) and to obtain
other useful information.

The driver is a special program
which generates WWW pages to
handle queries at the higher level and
to display information. The driver
can analyze relations between data
sources and merge all relevant infor-
mation.

DATA SEARCHING AND
BROWSING SCENARIOS

Let us look at a brief example of
the way in which the communications
server works from the end-user's
point of view. The first step is to se-
lect the register and data object from
which the information will be queried
(Figure 1). The system asks for
search criteria for the chosen object
(Figure 4).

The user fills in the search crite-
ria and pushes the "Search" button.
The system searches the appropriate
register for the necessary informa-
tion, and the results are displayed
(Figure 5).

From this screen the user can eas-
ily obtain related information from
other registers, too. If, for example,
the user wants information about a
person from the Population Register,
he needs only to click on the appro-
priate link, and the relevant informa-
tion will be displayed (Figure 6).

CONCLUSIONS AND FURTHER
MOVEMENT

The prototype of the communica-
tions server was created in mid-1999
[7]. Four registers (with test data)
were connected for testing purposes.
Two of them have Oracle as the
DBMS, while two others use the
Microsoft SQL Server. The prototype

32

Information about person

Related in formation

Owner of fawner of -!Regisler of
vehicle vehicle !Motor vehicles

I.Owns vehic~lvehicie /R-egisterof
/Motor vehicles

~as child::-IChiIdren egister ofI&! esidents
c-rn-~er;;f
IH¥ parents rarenls !Residents

IInformation ormation --~ster 0[-
about person about person /Residents

I

Has passport Ip ort egister ofassp esidents

Figure 6. Information about the person.

has demonstrated the effectiveness of
the designed approach. The proto-
type of the system was much more
powerful than we expected, and it can
be used as the real system. At pre-
sent, additional improvements have
been made, and the first version of
the real system has been developed.
It is already in use.

Further work will lead to the de-
velopment of a queries processor
which can take an SQL-like query as
input and return the result, as
queried from multiple data sources,
as the output.

Another area of work in which he
have made advances is making the
communications server available not
only from WWW browsers, but also
from custom software which uses
XML to query data and return an ..
swers.O

REFERENCES
1. Arnicans, G., J. Bicevskts and

G. Karnitis. "The Concept of Setting
Up a Communications Server", in
Abstracts of Papers from the 3rd
International Conference "Informa-
tion Technologies and Telecommuni-
cations in the Baltic States", 1999, pp.
48-57.

View Type: IExpRl1ded::J

Informalion about person

I P•••.•on Co<l••101016101010

I NAm~~TO~~

I SlIrnAmelKALNSr-_ ~<;ex~ _

I Binh DAtel1961.01.01

IBIrth c;untrY!LATVUA
-- -- --

Children

102028811223l\ALNA ILZE
12705851133 lKALNS ROBERTS

Passport

,------IT---
I PA5J'ort Nom"er['-'AI209872
I IsmeO.te ~mo5T2-
'!DAte of Expinlti.; !Z009. 05. 11

Parents

2. Tomasic, A., R. Amoroux, et. al.
"The Distributed Information Search
Component (Disco) and the World
Wide Web", in Proceedings of the
ACM SIGMOD International
Conference on Management of Data,
Tucson, Arizona, 1997, prototype
demonstration.

3. Haas, L., R.J. Miller, et al.
"Transforming Heterogeneous Data
with Database Middleware: Beyond
Integration", Data Engineering
Bulletin, 1999.

4. Hammer, J., H. Garcia-Molina,
et. al. "Information, Translation,
Mediation and Mosaic-Based
Browsing in the TSIMMIS System",
in Proceedings of the ACM SIGMOD
International Conference on
Management of Data, 1995, project
demonstration.

5. Arnicaus, G. "Application Gene-
ration for the Simple Database
Browser Based on the ER Diagram",
in Proceedings of the Third
International Baltic Workshop, 1998,
pp. 198-209.

6. "The Baltic States Government
Data Transmission Network:
Conceptual and Met.hodological
Considerations", Riga, 1998, 11 pp.

7. httpJ/www.mega.lv.

Baltic ITReview #17

http://httpJ/www.mega.lv.


G. Amicans, J. Bicevskis, G. Kamitis, E. Karnitis

The Mega-system:
integration of National information systems

Conceptual and Methodological Baselines of the Megasystem

Because a drastic improvement of quality and full interoperability of all National
Information Systems are vital for the development of the country, all set of systems is
being developed as a logically unified and technologically distributed information
processing Mega-system with a common data field as well as unified user's interface,
access principles and authorisation procedures.

All end-systems, irrespective of their ownership (various information systems, their
remote data entry and access points, end-users of information) will all be
interconnected through a high speed data communications network (see Fig. 1). The
unified Mega-system will be spread to all regional and rural administrative centers
and to number of cities, border checkpoints, ports, etc. Local authorities will be
connected to the Mega-system in order to conduct direct data entry into all
components of the Mega-system and to use information from all systems for local
needs. Special terminals and access points (information kiosks) are envisaged for
public access to information that is specified for general use.

00000········00000

\ \ ~ \
!

End-users,
Remote data
enTry POints

Government

Data

Communications

Network

National
Information

Systems

Figure 1 The Megasystem

This means that it will be possible to move basic data entry and utilization procedures
to places where the information has been originated or exploited as well as to provide
direct access to information for everyone who has the proper authorisation (see Fig.2).
It will avoid duplication of records and coincidence of records in documents and
databases as well will provide united and user-friendly access to information. In
addition to various information systems the Mega-system will include register of
registers for collection and distribution of information on all components of the Mega-
system as well as the communication server -- common central access point to



information resources of the Mega-system. Conceptual and methodological
propositions of the Mega-system and corresponding action plan has been accepted by
special direction of the Cabinet of Ministers.

In order to realize all plans and to achieve the aforementioned goals on both state and
municipal levels information systems for local authorities will be elaborated and
implemented on qualitative new advanced level and connected to the Megasystem as
soon as possible:
• to conduct direct data entry into all National Information Systems;
• to use information collected in all components of the megasystem for satisfaction

of local needs;
• to provide electronic document exchange throughout the country;
• to envisage general access to public information and electronic contacts of

population with State and local authorities.

Creation of the Mega-system is not only technological decision, in fact it means
solving of number of various informative, legal, organisational, financial and
qualification problems first of all. It was necessary among other issues:

• to analyse existing data flows, to formulate the functions of the Mega-
system and to distribute them among information systems, to formulate
demands on systems and their data structure;

• to define the subjects of various information systems and the amount of
stored information, as well as the institutions that are responsible for the
collection, processing and distribution of data;

• to formulate the tasks and subjects of information systems for local
authorities and to elaborate several intercompatible informative models for
implementation by local authorities; .

• to define a unified user interface, access principles and authorisation
procedures;

• to ensure data quality and security as well as interoperability with ED
information systems;

• to elaborate a methodology for data verification;
• to determine the principles of electronic archives.

~ ~ ~
"POPULATION I

Civil registrars office
REGISTER I

~
Passpotdepartment I[J:J ~

xxx department

ME

g ~
; lcooe I

State Revenue Service
5RS IS

~ Road Traffic Secure Dep.

XXX department

Figure 2 The Mega-system: data flows

2



With this conception emphasised was necessity for the country to put in order during
the first stage of the Mega-system's project its main subjects registration which
should go ahead of other systems elaboration: private persons (population), legal
persons (enterprises, establishments, organisations), real estate (land, buildings,
owners) and movable property (transport vehicles, owners), as well as state finances
(taxes). In compliance with these principles five relatively primary NIS were
proposed for the :first stage as to-be-integrated systems:

• Population Register;
• Enterprise Register ;
• Real Property Register;
• State Vehicles Register;
• State Revenue Service Information System.

The integration of the primary NIS as well as elaboration and installation of the
central body (the register of registers and the communication server) were realised
during 1998-1999.

In the same time mentioned primary NIS are not declared as the only state
significance information keepers. At present in Latvia operating are over 30 branch
information systems by what understood are those NIS settling one branch, ministry,
region or one problematic issues. These information systems will be attached to the
central core of the Mega-system gradually as far as they will be prepared. It is planned
to develop during the second stage connection of the Unified Information System for
Local Governments, Education Informatization System and several information
systems that deals with real estate.

The Government Data Communications Network for the government's and local
authorities needs is an essential communications element in establishing of the Mega-
system. This Network at the moment is the major part of integrated voice/data
network, developed by the non-profit organisation state joint stock company State
Information Network Agency VITA on a common transport network basis. The
Cabinet of Ministers approved a complex contemporary development concept for the
network in 1999.

The Government Data Communications Network must provide close and operative
interoperability of all interconnected systems. Various but similar requirements to the
network can be separated into several groups:
• reliability; there must be uninterrupted action time, undistorted data transmission,

a guarantee of several levels of confidentiality and security of information;
• high speed data transmission; some of real time systems need guaranteed channel

capacity (e.g., Vessels Traffic Management Information System);
• presence of a gateway to public data transmission network (the Internet

environment) which contains a reliable firewall system.

On-line access is becoming a basic one for data transmission, but on-line connections
by means of separate communications channels, however, must not be an end in itself,
their usage should be well grounded both technically and economically. Connection
of end-users depends on real traffic, e.g., access points of common use for several

3



branches or dial-up connections would have to be established in cases where the
traffic level is low. Connection of rural centers (villages) will have to be done on a
selective basis, and in many cases local centers will be able to participate via dial-up
connections or by use of diskettes to exchange and update information.

The Concept of Communications Server

A communications server is a set of software and computer equipment that allows a
wide range of users (both in Latvia and in other countries) to receive information from
a variety of sources (government registers, data bases, information systems) through a
single contact point. A communications server identifies users, authorizes the use of
the respective data, fulfills a request that involves several information sources, and
evaluates the cost of the process so that the appropriate financial transaction can be
made. A communications server allows users to learn where information is being
stored and what kind of information it is, as well as to request and to receive
information from various registers without any need for in-depth knowledge about the
technical aspects of its storage.

Figure 3. Communications between many registers and many users

The need to establish a communications server became apparent when the
governments of the Baltic States were setting up their joint data transmission network.
In order to allow institutions in one country to obtain information about objects
registered in another (enterprises, persons, motor vehicles, etc.), it is useful to receive
the necessary data from a single information source, without having to study the data
base structures of the other country. The use of the communications server, as has
been seen through the elaboration of an integrated state significance information
systems project, is also of significance within one country, because it provides a
universal resource for information exchange among various information systems.

4



Problem identification

The need to establish a communications server was noted in the national program
"Informatics", as well as during the elaboration of two major projects - the Baltic
States Government Data Transmission Network (hereafter in the text - the Network)
and the Integrated State Significance Information System (hereafter - the
Megasystem). The goal in establishing the network is to provide fundamental
improvements in the exchange of telecommunications and data among the
administrative institutions of the Baltic States. During the first phase of the project
(1998 and 1999), universal solution is being set up to provide for the exchange of
data among Latvia's Company Register, Motor Vehicles Register and Lost Motor
Vehicles Register, as well as between these registers and the related international
information structures. So far this has involved three concrete activities:

1) Accession of the Latvian Company Register to the European Business Register
(EBR);

2) Cooperation between the Motor Vehicles Register and the related European-level
structure EuCaris, as well as the establishment of a motor vehicles insurance
system in Latvia (the so-called "green cards");

3) Improvements to the system whereby lost and stolen motor vehicles are registered
in Latvia, including a connection to the international data bases of Interpol in this
area.

Figure 4 Communication server: the principle

During the second phase of this project, between 2000 and 2002, more work will be
done to include Latvian registers into the Network and to integrate them into
international information structures. In the second phase, the plan is to place the
Population Register, the Lost Persons Register, the Lost Personal Documents
Register, the Educational Documents Data Base, the Visas Data Base, the State
Statistics Information System, the Consular Information System, the Health Care
Information System and the Narcotics Information System on the Network.

In a situation where information from various sources is available on the Network, but
users have no knowledge about the technical details of storing that information, there
is an obvious need for a universal solution, and that is where the communications

5



server comes in. The main requirement for a communications server is that it must
allow users to formulate their information requests in a simple way and to receive
responses to those requests without having to understand the technical aspects of the
process. Users are not, after all, informatics specialists; they are employees of other
administrative structures of the state, and there is no reason to think that they know
anything about the way in which data objects are distributed among the registers of
another country. We can expect both standardized and wholly unpredictable requests
in this process. In terms of the urgency of requests, we can expect demands for on-
line responses that require rapid response, as well as requests for off-line responses
that can take hours or even days to fulfill. Needless to say, in setting up the
communications system we must provide for all aspects of information confidentiality
and user authorization.

The setting up of the communications system is important not only in the context of
the Network, but also in the context of the Megasystem, which is a universal resource
for the exchange of information among various information systems within a single
country.

The concept of the solution

The communications server, which is illustrated in Figure 5, is an Internet resource
point. Users of the server can access it via various protocols - HTTP, CORBA,
DCOM, SMTP (E-mail) and FTP. The server provides users with an opportunity to
find out where information is stored and what kind of information is available, and
then to request and receive information from various registers without studying their
structure. Because users may have access to sensitive information, users are
identified with certificates, and all data transmissions are coded.

Users who wish to have access to sensitive information before work with the system
is begun must receive a certificate that corresponds to the X.509 standard. The
certificate must issued for a specific period oftime (usually one year) by a specialized
institution (presumably in Latvia this would occur under the supervision of the
Constitutional Defense Bureau). Certificates of this kind contain information that
identifies the user, and they are virtually impossible to forge. The certificates are used
to code data and to identify the user. Latvia's communications server will use a
standard coding protocol such as SSL.

A user of the communications server sends information requests to it and receives
responses from it. This can happen both on-line (HTTP, CORBA, DCOM) and off-
line (HTTP, E-mail, FTP).

In the on-line regime, work with the communications server is based on the following
structure: At the beginning of the process the user is identified. This means that the
user sends his or her certificate to the communications server, which reviews it and
specifies the user's rights. If the user does not have a certificate, then he or she can
access the communications server as a guest and receive a limited amount of
information from it. Next the user requests information. The communications server
once again identifies the user and, on the basis of the level of the user's authorization,
makes the appropriate requests to the data registers, sending the response to the user
when it is received. The register receives not only the information request from the
communications server, but also the user's certificate, which means that the register
itself can identify the user and the user's level of authorization. The result of this is

6



that the register provides only that information to the communications server for
which the user is cleared.

~
~
J INFORMATION I tJ
~

I

I

I ! i

I
USER

APPLICATION II I

1

0JVWW BROWSER,
. Etc.) _-

I I. I

I [ I
I r-r-r--« ~ I II
REQUEST ----'-- REQUEST ~

I C . ti I, cmmunlca ons '__ INFORMATION _
INFORMATION _ Server

User
Verification

I

User and Server Verification

, Server
Verification

Sertificale Server,
------~. Directory Server -1·-------

I

I

Figure 5 The operational structure of the communications server

In an off-line regime, the user requests information via HTTP, E-mail or FTP. During
periods of time when it is less busy (usually at night), the communications server
processes the request - identifies and verifies the user and then requests the respective
information from the information registers. The response is sent to the user via E-
mail, or it is stored until the user asks for it on-line.

The main advantage of an on-line regime in this process is that information can be
obtained immediately when the need arises. This system can be used in cases when
the speed at which a response is received is of importance, either from the point of
view of the system (e.g., at border control facilities), or from the point of view of the
operation (e.g., an application in which the registration number of an automobile is
entered and information is received about the automobile from the Road Traffic
Safety Department so that it need not be entered a second time).

The advantage of the off-line regime is that registers can even out the volume of work
that is required, given that at night there should be relative few on-line requests for
information. Off-line requests can also be sent in by users who have dial-up Internet
connections, thus reducing costs. It is advisable to make off-line requests less
expensive than on-line ones so that users are motivated to use the off-line system.

The functions of the communications server

We can specify five main functions for a communications server:

• User identification
• Authorization with respect to the use of information
• Management of user rights
• Fulfillment of requests that involve several information sources
• Evaluation of the costs of each request for billing purposes

7



I Communication SeNer I

·11 Static Software r-~-====-=-===--~--1
i ·W Me~lnformat;: I

I Information about! I
Dynamic Software I Information r

"I sources (Register I
I of Registers)

User

Jid
~

Register 1

Figure 6 Architecture of communication server.

User identification in a communications server

As was noted before, user identification involves X.S09-standard certificates. In order
to ensure that the certificate mechanism is operational, a communications system
needs both a certificate server and a directory server. The former is a server that
belongs to the certifying organization, generating and maintaining electronic
certificates - both server certificates (issued to the server) and client certificates
(issued to the user). The latter is a server in which the public keys of the certificates
are stored, along with information about certificates that have been issued - when a
certificate has been issued, to whom it was issued, and whether the certificate is valid
or has been revoked.
The directory server is available to any interested party. For example, if a WWW
server has been issued a certificate, any WWW user can ascertain that the server is
secure. If a WWW client has been issued a certificate, in turn, the WWW server can
ascertain that the client is authorized to work with the server. Both the client and the
server can check the validity of the submitted certificates by looking them up in the
directory server.

Work with certificates in WWW applications involves SSL (Secure Socket Layer)
technologies, which are supported by most WWW servers, as well as the main WWW
browsers - Netscape Navigator and Microsoft Internet Explorer. SSL technologies
provide the following components of secure communications:
1) WWW server approval: A user can ascertain the fact that the WWW server is

secure and that it can be entrusted with confidential information;

2) The privacy of information: The entire information flow between the client and
the server is coded, using a unique session key. The session key is coded by the
server with the client's public key in order to send the respective information to

8



the client in a secure way. Each session key is used in only one session, which
makes it difficult to decode the information without authorization. The
information, in other words, cannot be viewed by unauthorized persons, even if it
is intercepted on its way between the server and the client.

3) The integrity of the information: Both the server and the client calculate the
control code on the basis of the content of the information, and if the information
has been changed en route, the codes do not match. This means that the receiver
of the information sees precisely the same information that was sent by the
sender.

Secure data exchange between the WWW server and the client occurs in the
following way when SSL technologies are used:

1) The client sends a request for data exchange to the WWW server;

2) The server in response sends its certificate to the client, asking for the client's
certificate if appropriate;

3) The client checks the validity of the server certificate through the digital signature
of the certificate server, sending the client's own certificate to the server if
necessary;

4) When the authorization process is complete, the client sends the session key to the
server, coding it with the public key of the server;

5) Both the server and the client know the session key, and further data flow between
the server and the client during the respective session is coded with the session
key.

The certificates of the server and the client are exchanged quickly and without any
involvement by the user. The same is true with respect to an exchange of certificates
among other applications.

When information is requested from the communications server (through the WWW
or otherwise), the process occurs in the following way:

1) The user is identified through the aforementioned protocol, and the
communications server checks the user in the directory server.

2) The communications server has a data base which records user rights, and the
server uses this data base to specify the authorization level ofthe specific user. In
carrying out the user's request, the communications server checks the user's
rights in its own data base and, if the necessary level of authorization is there,
then the request is sent along to the concrete register.

3) The register is also sent identification data about the user who has requested the
information.

4) The software in the register checks the information in the directory server and
authorizes the user.

5) According to the level of the user's authorization, either the request is carried out
and the result is returned to the communications, server, or the communications
server is told that the user does not have the right to carry out the request.

6) The communications server returns the result to the user.

A user can also request information from the register directly, without passing

9



through the communications server. In that case the operational mechanism is
similar:

1) When the information is requested from the register, the user must supply
identifying information (a certificate).

2) The software in the register checks the information in the directory server and
authorizes the user.

3) On the basis of the user's authorization and the level of his or her access rights,
either the request is fulfilled and the result is sent back to the user, or the user is
sent information saying that he or she does not have the right to receive the data.

This mechanism ensures that there is no need for the user to reintroduce identification
each time a new request is made. In each session, the user is identified on the first
occasion that a request is made with respect to a confidential data source, and in later
requests the information is sent on to all of the respective information sources.
Another advantage of the mechanism is that there is a centralized method for
distributing user rights, as well as a unified policy with respect to this. It's also true
that the user's rights do not change depending on the way in which he or she accesses
the information - via the WWW, via a different application, or through some other
method.

Management of user rights

The rights of users can be divided into several categories:

• The right to obtain information about what is stored in a concrete register -
provided that the information is publicly available;

• The right to obtain information about one entry in one table in one register,
based on the unique identifier of that particular entry;

• The right to obtain a list of data from one table in one register, selected on the
basis of specific criteria;

• The right to obtain a list of data from several tables in a single register
(whether the link exists or not);

• The right to obtain information from several tables in one register that are
linked through a specific relation, the data being chosen on the basis of
specific criteria;

• The right to obtain information about one object from several registers on the
basis of the primary key of the object;

• The right to obtain information about the existence of a link among specific
objects from various registers;

• The right to obtain a list of data that are selected on the basis of criteria
entered by the user, the data coming from several tables in several registers
that are mutually linked.

The obtaining of information can be differentiated at four levels:

• A response as to whether the requested information has been found or has not
been found;

10



• A response as to how many entries have been found;

• The primary keys of objects;

• The data that is being requested.

Each of these levels provides a different volume of information, and there are
instances when the jump between proximate levels is quantitative, while in other
instances it is qualitative. We could consider four different requests here:

"Does individual X own an automobile?"

"How many automobiles does individual X own?"

"What automobiles does individual X own?"

"Does individual X own automobile Y?"

The management of user rights is intentionally divided up so that it occurs in several
places. The communications server has its own user management module, in which it
stores information about the right of users to make various kinds of complex requests.
Information about the right of a user to receive data from a specific register is stored
either in the communications server or in a concrete register. The place where
information about user rights is stored is harmonized between the communications
server and the register. Because it is expected that before a register issues
information, it will want to check the user's rights to use the information, then
information about the user's rights with respect to a specific register will usually be
stored in that register. From the perspective of centralized management, it would be
better if information about user rights with respect to all registers were stored in the
communications server. For various organizational reasons, unfortunately, this is
either impossible on only partly possible. Information about user rights is stored both
in the communications server and in the registers themselves.

The communications server is designed to work with both of these options, as well as
with a combination of them, and the following scheme emerges:

• The communications server checks the right of the user to make a request in
the first place, as well as the right of the user to seek out a link between
objects in various registers;

• The communications server checks whether the user rights with respect to the
concrete register are stored in the communications server or the register;

• If the rights are stored in the communications server, then it checks the rights
before it sends the request to the register;

• If the information is stored in the register, then the register checks the user
rights before it fulfills the request;

• If the rights are not stored in the register, then the register can, if necessary,
receive information about the rights from the communications server in order
to be able to check the rights of the respective individual to make the request.

Because it is possible for users to connect to the registers not only via the
communications server, but also directly from an application, and because it should be
true that in both instances the user has the same authorization to obtain information,
then the check of whether a user has the right to obtain information from a specific
register should occur not in the communications server, but in the register itself.

11



Information requests and the obtaining and depiction of information

The basic mission of the communications server is to provide users with access to
various information sources so that they can obtain data from them. Let us take a
look at the problems that arise in this process, devoting particular attention to the
submission of requests and the obtaining of responses, and leaving aside the issue of
user authorization, control over data access, registration of who has asked for
information and what information has been requested, billing issues and such matters.

Information sources

An information source or resource facility can be any information system or data base
from any organization. There are administrative regulations concerning the
organizations, information systems and data bases that are included in the
communications server's network of services.

Over the course of time, the number of information sources can reach into the tens or
even hundreds of sources. In Latvia alone there are already several dozen government
registers, and their number may increase. Communications servers should also
provide access to certain foreign information sources, as well as to the data bases of
various other organizations in Latvia; these, too, could be included in the range of
services provided by the communications server.

The communications server itself does not have an information sources. Each
information source is primarily meant to carry out concrete and specific functions
inside the respective organization Information systems and data bases that are used in
an organization are chosen, designed and optimized specifically for the needs of the
respective organization. They may not be aimed at providing information to other
entities, but if such an opportunity is intended, then it can be very specific, and many
limitations can be applied to it. This means that the communications server must
adapt to the information sources, and not vice-versa. Of course some information
sources can upgrade their information systems and optimize their data exchange
procedures in order to meet the communications server's requirements.

Information sources that are part of the communications server's network can differ in
terms of significance and volume. The more significant a data base, the better must
be cooperation with it. The size of data bases must also be taken into account,
because it has much to do with the respective data processing mechanisms.
Another key issue is the quality and stability of information sources. Information
systems can involve a wide variety of technologies, and they are of varying ages.
Depending on the resources that have been invested, some are of a higher quality and
some - of a lower quality. Of course, it is easier to make contact with a high-quality
information system and data base that have been designed with modem technologies
than with systems that are old and of a lower quality level. A communications server
must certainly be ready to deal with information sources that are unstable, that make
errors and that in some instances are not even accessible.

Information systems can be designed with various systems, they may have various
data bases, and their use may involve various operating systems and computer
technologies. A communications server must be prepared to handle these problems,

12



although this is no longer the worst possible difficulty, given that many different
solutions are in existence.

Information can be stored in a wide variety of formats - that is the next issue. The
most popular method for data storage is still relation data bases. Object-oriented data
bases, static WEB pages and dynamic WEB pages that are generated from an internal
format are becoming rapidly more influential. We must not, however, forget other
information storage methods such as files of many different structures.

A concrete information unit and a logical group of information units can be doubled,
stored in various formats, coded in various ways and stored in such a way that some
of the information is kept secret. Information can be contradictory either within a
single information system or among various information sources. This means that in
the future the field of communications servers will have to involve various laws and
data processing algorithms that are based on the technologies or artificial intelligence.

All of these aspects serve to demonstrate how serious is the issue of various
information sources being highly varied. It should also be added that this
heterogeneity exists among more than just information sources. The same situation
can exist within a single register or a single organization.

It must also be remembered that each information source exists fairly independently.
It can be updated, changed or liquidated, it can be created anew, its operations can be
suspended for a while, or it can be withdrawn from cooperation with a
communications server. This means that a communications server must exist in an
environment that is not only highly varied, but also is extremely changeable.

Users

For our purposes, we will say that a communications server user is any subject that
wishes to obtain a service from the server.

Users are usually differentiated on the basis of their level of authorization to obtain
specific information from specific information sources. These rights are regulated by
law and by other normative acts, and they are managed by a specific user
management bloc within the communications server.

From the perspective of the communications server, another very important user
classification is based on a different aspect - the way in which the user requests
information and the way in which the user receives a response. A communications
server should be operated on the basis of the principle that it is there for the
convenience of users, not vice-versa. This principle means that the server must be
ready to receive information requests of a great many varieties and forms, and it must
be ready, every time, to provide a response that is convenient for the user in terms of
its type and form.

Requests and responses

A communications server must be ready to accept information requests that are stated
in various ways and forms. The main operational regime for communications servers
is an on-line connection, but this can involve a dedicated line to the communications
server, dial-up access to the server, or a connection through informational networks
(the Internet, the Latvian State Significance Data Transmission Network (VNDPT), or

13



the networks of other national, global or organizational networks). We must also
remember other ways to submit a request - E-mail, a request submitted on an
electronic information carrier such as a diskette, a written request submitted on paper,
or even an oral request.

Responses to various requests can be prepared in the same format as the original
request. It should be added, however, that the user must have the right to select the
method of response, irrespective of the way in which the request was submitted.
Limitations on the ways in which requests and responses are formatted can be
specified by administrative regulations, but in terms of technologies, a
communications server must be prepared for all kinds of cooperation methods.

The forms of requests and responses can be highly varied. The most popular
cooperation form is probably a WEB page, both for requests and for responses. This
form of cooperation can be highly varied, and this is underpinned by,existing WEB-
type applications. The use of special procedures and functions may also be important
when the procedure itself has parameters that specify the request and its result (i.e.,
the response to the desired request as specified by the parameters). Cooperation can
also occur in the following forms:

1) Special applications that can work with the communications server;

2) Active objects that can work with the communications server and can be used
in the client's applications;

3) Files with requests that are recorded in a specific format or response files in a
specific format;

4) A group of files (including even data bases) for the requests and the
responses;

5) Paper documents in an agreed format for requests and responses;

6) E-mail, which can be seen as a modification of items 3, 4 and 5 on this list.
It is commonly held that requests from a user can come in a dialogue regime from a
human user and in an automated regime where the user is an application on the user's
computer.

There must also be plans to work in a synchronous regime (request-wait-response)
and in an asynchronous regime (request-processing over a specific period of time-
report to the user about the availability of a result-response), because this ensures
more efficient work for the user and the communications server alike, especially when
it comes to processing large and complex requests.
In work with the user thought must also be given to such aspects as the various levels
of preparedness among users, the language of communication, the respective text
coding formats, the abilities of the user's computer equipment, operating systems and
applications, and limitations in all of these things.

In other words, the main mission and, at the same time, the main problem that a
communications server must handle is the way in which many different kinds of
requests can be handled, submitting processed information from various information
sources that sometimes are not compatible, and submitting a result to the user in the
desired type and form.

14



Information about information

As the number of information sources available through the communications server
increases, an overabundance of information can quickly occur - one in which even the
administrators of the communications server can get lost. It is necessary to classify
all of the information sources and the information that is contained therein, keeping
firmly in mind that information sources can change.

Communications servers must have data source repositories that contain formal
descriptions of the sources, their properties, the data that are contained within them
and the properties of the data. These repositories must be very flexible, it must be
able to change them easily and quickly so that changes in the surrounding
environment can be monitored. If there is to be a proper reaction to user requests,
other parts of the communications system must be able to adapt to changes in the
repository in a dynamic way.

The repository is not, however, meant only for internal use in the communications
server. The user, too, must know where and what he can receive (of course, within
the limitations of the user's authorization). This means that the communications
server must also, so to speak, provide information about information. Using forms
and terms that the user can understand, the server must describe the information that
can be obtained and the ways in which it can be requested. There must also be efforts
to link the various request formulation mechanisms as closely as possible to the
repository, thus making easier the work of a user who takes advantage of the
communications server's services only seldom.

Users often don't care where and how the desired information is stored. This means
that the communications server must satisfy requests that concern information from
many different sources. The repository, therefore, must also describe the links
between the sources, as well as the ways in which various contradictions among the
sources can be resolved, data be converted, etc. The repository must be an entity that
makes it possible to consider all of the sources in a communications server to be one,
big data base.

The abilities of the communications server

A communications server is a dynamic system which must work in a highly
changeable external environment. A communications server must be much more
flexible and dynamic than a day-to-day system, because it must work with highly
heterogeneous external information systems that keep up with rapid technological
changes. When it comes to technologies, communications servers must be a step
ahead of other systems, because otherwise it may turn out that the communications
server ends up unable to perform its functions.

The goal of this paper is not to describe the internal architecture and ideology of
communications servers precisely. The establishment of such systems is a very
serious process throughout the world these days, and various solutions are being
sought out that are linked to the following technologies:

• Distributed Dynamic Systems

• Distributed and Dynamic Objects

• Dynamic Object-Oriented Programming

15



• Reflection

• Domain Specific Programming Languages

• Artificial Intelligence

Many of these technologies are still quite new, and they are still being developed.
This means that not all of them have ready-made tools that support various properties
or functions of the technologies. Some tools exist, some are at the prototype stage,
while some have already become popular among professionals (this is particularly
true of prototype tools that are designed at universities and research laboratories in
order to test the latest technologies). In the design of a communications server it is
worthwhile to such modem technologies and research results as the Multilanguage
Interpreter and the Database Browser Generator.

Evaluation of requests for billing purposes

A billing system is part and parcel of the mechanism whereby a communications
server fulfills requests. When a specific request is fulfilled, the system not only does
what has been requested, but it also automatically calculates the resources that are
used in the process. Within the communications server, a price has been attached to
every resource, and it can change on the basis of the volume of information that has
been requested, the time of day when the request is filed, etc. The price of each
request is calculated automatically and stored in a journal that then is used for billing
purposes.

A resource is an information request to a register. The price of resources changes on
the basis of the type of the request, the complexity of the request, the register that is
involved, etc.

Uses of a communications server

There are three major ways to use a communications server:

• As an international resource facility that can be used to access information
from Latvian registers;

• As an internal resource facility that can be used to search for information in
registers;

• As a way of setting up cooperation among various registers.

The need to access information from Latvian registers via a single contact facility is
the main reason for elaborating the communications server. Of course, this is more
than just a trivial solution in which a single Internet application is designed for
connection to other registers via their Internet addresses. This simplified design does
not deal with the main issue - the ability to collect information from various sources
(i.e., various registers) without the user having to hook up to each register separately.
The information that a user needs is collected from the various registers by the
communications server, and the user himself may be completely unaware of the
technical details of this process. Thus the communications server is needed by
employees of foreign institutions in order to obtain information that is stored in
Latvia's registered.

16



A second use for the communications server is the fulfillment of domestic information
requests in Latvia. The previously described situation in which users do not want to
or are unable to understand the technical details of information storage is typical
among the personnel of Latvia's administrative structures. Of course, given the fact
that access rights to authorization may vary for foreign users and Latvian users, the
communications server sets out a unified set of requirements in this area, and
solutions are the same for both groups of users.

The third way of using a communications server is to use it in order to exchange
information among various registers. It is obviously irrational to maintain
communications channels and to conduct information exchange individually with
each of many registers that are mutually linked. It is much more rational to set up a
centralized contact facility - the communications server - which is linked to all of the
registers and through which information is exchanged among them.

Register can be connected to a communications server via different ways. Every
register that participates in the data exchange procedure can have its own data base in
which those data that are intended for transfer to other registers and for publication
can be separated out. The data base can be maintained by a separate computer or
server so that approaches to the public data base do not hamper work with the basic
data base of the register. Data from the basic data base are regularly copied to the
public data base (an automatic replication mechanism). This solution is rational not
only from the perspective of using communications channels; it also ensures:

• That the fulfillment of external requests does not hamper the work of the
register;

• That there is higher security, i.e., that in the case of unauthorized access, the
basic data base is not damaged.

The link between the communications server and the public data base can be
implemented on the basis of various technologies, such as DCOM object calls, MS
Transaction servers and Oracle SQL*NET. User authorization is provided via a
certificate server, a directory server and the Lightweight Directory Access Protocol
(LDAP).

17



Domenspecifisko valodu izmantosanas
iespejas

Domenspecifisko valodu
izmantoSanas iespejas

Guntis Arnicans
Latvijas Universitate

Fizikas un rnaternattkas fakultate

.~ Valodu attisti~.as dlnamlka
• Jean E. Sammet 1993.gada fikseja

stavokli programmeSanas valodu
iietosanas jorna leprieksejos 15 gados

• 1978.gada ASV tika izmantotas aptuveni
170 valodas:
• 80 viSparejas lietoSanas valodas
• 90 valodas speclallzetas apllkaojas

Attistibas dinamika Iidz
~1995.9.

• Kinnersley apkopotaja valodu saraksta jau
figureja vairak ka 2000 vienIbas

• 360 tika klasificetas atnecmatas uz specifisko
aplikaciju dornenu

• Bija daudz vispareja pielietojama valodu
dialekti ar biltiskiem uzlabojumiem
specifiskam vajadzrbsrn, tatad faktisld art ir
attlednarnas uz dornenspedfisko valodu sairni,

-4Valodu sadalij~n1_s
. • Vispareja pielietojuma valodas

• daudziem aplikaciju dorneniern (PL/l, A1goI68)
• Problemorientetas valodas

• noteiktam Iieiam aplikadju oomenarn, var
izmantot an citiem dorneruern (Smalftlak, C,
Prolog, ML, Visual Basic, tel, Pascal, Postscript,
laTex)

• Domenspecifiskiis valodas
• konkretarn saurakarn apiikaciju dornenarn, ir

dornenarn raksturiqas abstrakcijas un operaojas
(HTML, XML, LEX, YACC, SQL)

Attistibas dinarnika lidz-;1:. 1993.g .
• 1000 valodas, kurarn bija nopietnas

implementacijas un kuras tika lietotas
• kadas 500 valodas bija projektesanas

vai izstrades stadija
• milzrgs daudzums aprakstrtu, bet reali

nereallzetu valodu
• kadas 300 valodas tika izmantotas reala

prakse

'ik Pasreizejais stavo~lis
• Gn1ti novertet realo valodu skaitu, bet tas

noteikti merarns vairakos tnkstosos
• Literatara jauno valodu aprakstus var sastapt

arvien bietik
• Uelaka data no tam ir attlecinama uz

dornenspecfiskarn valodam
• IT strauja lelesana visas sferas ir sekrnqusi

jaunu domenspecifisku valodu tapsanu

1



Domenspecifisko valodu izmantosanas
iespejas

4Valodu implementa~ija
• Valodas eksistence vlsblezak nay iedomiijama

bez rea/as implementacijas, t.l, bez
kompilatora val interpretatora.

• Iznemurnt parasti ir specifiskas metavalodas,
plernerarn, BNF

• Kii nodroslnat tik daudzas valodas ar
kompilatoru vai interpretatoru, ka nodroslnat
vel papildu servisu so valodu izmantosana>

~ Valodu veidoSan~_~iemesli
• EksistejoSo valodu uzlaboSana un

parstrade, lai izlabotu kll1d~s. un.
pallelinatu valodasvproduktivltati - .ga~ _
programmu rakstrsans, gan arr to Izpllde
• SevisJ,caloma ir produktivitates uzlabosana,

jo domenspecltiskas valodas, piemeram,
SQL, Excel izkliijlapa, LISP V~I k.ada .
objektorienteta valoda, kardlniill paaugstina
produktivitati

.~ Valod~ vei~o~nas iemesli
• Jaunu ldeju reallzadja

• Jauni jedzieni, ptemerarn, binding time -
mainrqo piesaiste kornpilesanas laika vai
tiek atlikta ltdz pedejam brtdtrn izpildes
laika, nodroSinot loti lielu dinamiskumu

• jaunu algoritmu vai tehnologiju
paradISanas, plernerarn, paralela
skaitjoSana, sadalrta skaitjoSana vai kvantu
skaitjoSana

KapeC rodas jaunas valodas?
• Jaunu valodu veidoSanas iemesli ir

valrakl, un svarrqakos no tiem ir fiksejis
daudzu nozrrnrqu un popularu valodu
autors un izstradatajs Frederick Brooks

• Iemeslus velarns visvalrak pernt vera
akaderniski orlentetiern valodu
izstradi3tajiem

Valodu veldosanas iemesli

~ NepiedeSamiba paliel';;£-
programmaturas uzticam1bu
• "ja JUS to nevarat pateikt vispar, tad JUS to

neva rat pateikt kludalnl"
• Uzlaboti valodas sintakses un piejaujamie

izteiksmes IIdzelqi, lai ISi un skaidri
deflnetu, kas programmai jadara

• nodroSina Iie/u operaciju korektu veikSanu
(plerneram, SQL pieprasUum! d~tu bazern
vai valodas sintaktiska koka iequsana ar
LEX / YACC patrdzbu).

-it:Valodu veidoSanas iemesli
• Publlcesanas iespeja

• Valodas tiek ieviestas ar me~, lai outu
iemesls veidot publikacijas.

• Nereti Siida darbIba ir traucejoSa, kas
maldina potendalos izmantotiijus.

2



Domenspecifisko valodu izmantosanas
iespejas

4Valodu vejdoSana~ iemesli
• IzklaideSanas

• Ir dlveki, kuriem ir hobijs veidot valodas,
petit tas, bet ar to biezi vien vtss arr
beidzas

• IzglItoSanas
• Nav tiesals praktiskais pielietojums
• Atvieglotu kadu specifisku zinasanu apguvi
• studentiem ir dots uzdevums izveidot

valodu ar konkretu spedaltzaciju

~ Valodu veidosanas iemesli

• Specifiska rlka lzstrade
• Domenspecifiskas valodas netiek formal:

flksetas uz paprra
• Ri1<sbalstas uz ksda iZ5tradatlija galvii

izveidotu valodas modeli

• Protams, ka valoda var bat nepllnrqa,
nekonsekventa, pat vietam pretrumga un
nks pilnroa tai neatbilst, tacu praktisks rtks
lr radits un tiek izmantots

Uz dornenu orienten
~ risinajumi

• Ka nos!,<irt dornenspecifiskas valodas no
dtam valadam vai datora "vadiSanas
lldzekliern"?

• Uz dornenu ortenteti risinsjurnl.
• Funkciju vai rnetozu blbllotekas

• Objektorientets karkass (sistema) vai
komponentes karkass

• Dornenspecltlskas valodas

-4Valodu veidosan~? iemesli
• Lietotaju loka paplasinaSana

• jauj ar datoru "sarunanes" un dot
komandas ne tikai programmetajiem, bet
art citiem speciiilistiem, pternerarn,

• HTML WW'N lapu lzveidei (dizaineri),

• specifisku ekonomisko vai statistisko aprekinu
valodas (finansistiem).

w. Valodu veidos~_~~~emesli
• Specifikacijas lldzeklis, zinasanu vai

datu pierakstlsanas lldzeklis
• Tiek pateikts, kas jaizstrada, bet

lrnplementaclja tlek reallzeta atbllstosi
apstakjiem

• Tiek pateikts, ka zinaSanas vai dati tiek
glabati

Domenspecifiskas valodas
.~jedZiens

• Domenspecifiska va/oda ir
proqrarnrnesanas valoda vai lzpildarna
specifikaciju valoda, kas, izmantojot
atbtistosus apzrmejumus un abstrakciju,
piedava tztetksrnrqu spsko (jaudu)
konkreta apgabala problernu risinaSana,
fokusejoties un parasti pat
ierobezojoties tikai uz So problemu
apgabalu.

3



Domenspecifisko valodu izmantosanas
iespejas

Domenspeciflsko valodu
.,abumi _

• DSL atjauj risinajumu izteikt ar problemas
apgabala jec!zieniem un abstrakcijas Iimeni.
Udz ar to problemas apgabala special lsti, kas
var nebDt an datorspeclalistl, var saprast,
parbaudlt, modificet un pat izstradat
program mas Saja valoda,

• DSL programmas ir kodolTgas, isas,
pasdokumentejosas piasa apjorna un var tikt
izmantotas loti dazadiem mertdem.

Domenspecifisko valodu
~trOkumi

.. ~ DSL projekteSanas, imple~~te5ilnas un
uzturesanas izmaksas.

• DSL Iietotaju aprnaclbas izmaksas.
• DSL ierobefoto pielietojamibu.
• GrOtJoas nospraust predzas DSL pielietoSanas

apgabala robeZas.
• GrOtibas balansejot starp DSL un visparejas

nozlrnes programmE!Sanas valodas
konstrukojarn,

• Potenclalals efektivitates zaudejurns, ja
salidzina ar "ar roku rakstltu" programmatOru.

~DSL attTstTbas met~~OIOgija

• Implementacija.
5. Izveidot blbliotE!lcu, kas implemente semantiskos

jedzienus.
e, Uzprojektet kompilatoru (interpretatoru), kas

domenspedfiskas valodas programmas transle uz
(izpilda ar) sedglem izstrada1:as blbliotekas
lzsaukumlern,

• LietoSana.
7. Uzrakstit program mas dom!nspeclfiskaj! valeda

vlsarn neplecl~maj!m aplikadjam un
vajadzibas gacfrjum! nokompllet tas.

Domenspecifisko valodu
labumi
• DSL uzlabo produktivitati, uzticamibu,

uzturamibu un portabilitati.
• DSL sevi ietver apgabala zinaSanas un

tadejadi nodroSina to konservaciju un So
zinaSanu lietoSanu.

• DSL nodrosina validaciju un optimizaciju
apgabala Iimeni.

• DSL nocroslna labaku sistemas testejarnlbu

, DSL attIstTbas rnetodoloqlja

• Analize un projekteSana
1 Identificet problemas apgabalu.
z, Savakt visas atbilstosas zinaSanas par

izveleto problemas apgabalu.
3 Apkopot savaktas zinaSanas parodqos

semantiskos jedzienos, apzlrnejurnos un
operaojas,

• Uzprojektet domenspecifisko valodu, kas
predzl apraksta aplikacijas problernu
apgabala.

!~ DSL implemen~~J§l
• Jaunai valodai interpretators vai

kompilators (reallzaoja briva, liela
lespeja izteiksmes ITdzekju jorna)
• Katrai pieejai ir savi plusu un minusi
• Svariga lorna valodas dinamiskumam,

atrdarbibai, kjOdu atklaSanai, statiskai
analizei, optimlzesanas iespejai

• Atkan1>a no implementadjas realizetaja
kvalifikacijas

4



Domenspecifisko valodu izmantosanas
iespejas

'" DSL implementiicija

. • Bazes valodas papildinasana ar jaunarn
iespejam (ieguvums, ka kompilators vai
interpretators nay jabOve)
• IebQvetas valodas vai dornenspeclflskas

bibliotekas (iespeja definet savas funkcijas)
• Preprocesana val makro procesesana

(konstrukciju apzirnesena ar
nepiecie5amajiem apzimejumiem)

• Paplasinats kompilators vai interpretators
(iespeja ~ert kJQdasari dornena ITmeni)

•• DSL valodu plerner!
• Specifiski rnodelesanas valodu veidi

• programmu interfeiss
• ADL (Assertion Definition Language)

• Multimediju apllkacijas
• MHEG- 5

• ZiQojumu speciflkadja
• MSL (Message Specification Language)

~ DSL valodu piernerl
• ZinaSanu pieraksta valodas

• SKDL (Structured Knowledge Description
Language)

• XML (eXtensibie Markup Language)
• KARL (Knowledge Acquisition and

Representation Language)

~ Izmanto~avna.s~.omupiemeri
• Programmmzenlerila (finansu produkti, uzvedibas

kontrole un 1<ootdiniklJa, progl7lmmatiiras arhitektiil7l,
datubazes)

• Sistemu programmatiira (Abstralcto slntaktisko
koku apralcsts un anarlZe, video iek3rtu draiveru spedfikadja,
datu struktiiras, operndJu sistemas spedaiiladja)

• Multimedija (WEB, manipul3cijas ar lmidfiem, 3D
anlmadja, zimesana)

• Telekomunikacijas (koku valodas rnodelu piirbaudei,
komunilc3dju proteko;;, telekomunikadju ielc3rtu spedfikadjas)

• Dazadi (SlmuI3dja, mobili agenti, robotu kontrole,
dlferenc3lvienactojumu risinaSilna, aparatiiras projeJrteSana)

~ DSL valodu Pi~~eri
• Telefonu interfei55

• PML (Phone Markup Language)

• Kodoidalir;lU rnocelesana
• NAB (Nudeic Add Builder)

• Datorvalodus apraksta valodas
• BNF, EBNF,slnatktlskas diagl7lmmas

• Biznesa darijumu ar procentu llkrnern apraksts
• Risla

• Melodljas pieraksta valoda
• AMF

.-iDSL valodu pierneri

• SpeJU proqrarnrnesana
• ADL (Adventure Definition Language)
• DDL (Dungeon Definition Language)
• ADVSYS (ADVenture SYStem)

• Datorsirnulsdju veikSana
• GPSS (General Purpose System Simulation)

- ar grafisku interfeisu
• SIMSCRlPT II- ar teksta interfeisu

5



Domenspecifisko valodu izmantosanas
iespejas

.• DSL valodu plerner'
• Statistiskas sistemas ar iebOvetam

specialam valodarn
• SAS
• SPSS

• S
• NAG
• SyStat

~ DSL valodu piem~~~
• Datubazu dornens

• SQL (Structured Query Language)
• CQL (flat-file datubazei)

• DatormOzikas proqrarnrnesana
• Score
• Orchestra

~DSL valodu piemeri
• lnteraktivo jautajumu - atbtlfu aplikacijas

• Super
• WWW interaktivu servisu programmesana

• Mawl (the Mother of All Web Languages)

• Specifisko aplijkaciju protokolu
programmesana
• PlAN - P (Packet Language for Active Networks -

Protocols)

• DSL valodu Pieme~i

. • Dalito sisternu apgabals
• Procesororienteta HERMES
• Objektorienteta Oblig
• Legion
• Sheme - 48
• DP
• SSP
• Erlang
.0- PLAN

-:;k. DSL valodu pier1'!eri__
• Paralela izpilde

• Zif;1ojumu nodoSana (CSP, PUTS, Gypsy,
Actors)

• Attalinato procediJru izsaukSana (DP,
*Mod)

• SatikSanas (SL)
• Citas (Concurent Clean, Concurent ML,

Parallasis, ALLOY, SR (Synchronizing
resources))

,~ DSL valodu piemeri
• Grafisku objektu un animadju

veidoSana
• Fpic (divdtmenslonaltern objektiem)
• Fran (trisdimensionaliem objektiem)
• G, OpenGL (vizualajiem efektiem - grafika,

teksts, animadja, skana)

6



Domenspecifisko valodu izmantosanas
iespejas

4DSL valodu plernert
• Iekartu programmeSana

• IRL (Industrial Robot Language)

• AMl
• MVCl (Micrion's Vacuum Command

Language) - motoru varstu vadiba
• Devil - elektronisko iekartu vadiba
• GAL (Graphical Adaptor Language) -

videoiekartam

~ DSL valodu pie~eri
• SkripteSanas valodas

• Awk
• 5csh
• Python
• Tcl/tk
• Regex
• ActiveHaskel

~ DSL valodu piernen
• Kosmosa apre!,dni

• Special Forth
• Manipulacijas ar metarnodejlern

• RDl
• Programmu testesana

• DETOL (Directly Executable Test Oriented
Languge)

• RATEL

~ DSL valodu piemeri
• Gramatikas analizatori un generatori

• Lex/Yacc
• Flex&Bison
• Afl ex - ayacc

• Ox
• Gray
• Ligen
• T-gen
• rl

~ DSL valodu piemeri
• Operacijas sisternu atrninas vadiba

• HiPEC
• DaITtu sisternu atrninas vadiba

• Teapot
• MedicTnas jomas intormaojas aprnaina

• Hl7, HEAL
• WWW interaktivu aplikaciju veidoSana

• WOM (Web - 0 - Matie)

7



Information Processing Tools and Environments

Guntis Arnicans

Facu1tyof Physics and Mathematics
University of Latvia

Raina Blvd. 19, Riga LV-1586, Latvia
garnican@lanet.lv

Abstract

The various ways exist how we can build an information system. We offer to look
at a information system like a suit of tools that are integrated into a collaborative
environment. The other tools are used to design, implement and test such
environment. They increase a convenience, productivity and quality of
development process providing the implementation of target tools, its integration
and satisfying the development methodology and requirements. These supportive
tools make a specific software environment. In the paper we present basic things
what the developers have to know following to this principle to build an
information system: 1) the concept of a tool, 2) the classical approaches for tools'
integration, 3) the principles of tools development, management and control, 4)
the questions before tool designing, and 5) the possible conceptual architecture of
a tool. The mentioned things are equally referred to both the information
processing tools and the development supporting tools.

1 Introduction

Data is a formal representation of facts or ideas with possibility to be communicated

or manipulated by some automated process. Information is a meaning that humans

assign to data during automated data processing using the definite habits to present it

(meaning of data). Disinformation is information with delusive meaning and/or off-

grade data was being used to produce information.

It is increasingly difficult to draw a line around an application system and say

that you own and control it. Data is distributed over a multitude of heterogeneous,

often autonomous information systems, and an exchange of data among them is not

easy. Let us look at a relatively simple situation - the data source and services are

located in one organization but the information consumer (user) is located into

another organization (Figure 1).

Process how the data is transformed to information and presented is long and

difficu1t (going through many applications, operating systems, defense systems, data

transmission protocols, etc.). If the system builders make mistakes in some part of this

process, then we receive a disinformation but not the desirable information. The

1

mailto:garnican@lanet.lv


problem become more serious when we produce information from many data sources,

and when the services must work without interruptions.

Figure 1 The information processing in heterogeneous environment

These problems emphasize the need for tools to mediate between databases,

servers and front-end application. And we need tools to create these mediator tools

also. We need to maintain descriptions of data structures, content, data properties,

available services (metadata of data sources and services). It increases the need for

dynamic manipulating of both data and metadata. Besides we have to worry about

system quality that leads to need for testing, simulating and monitoring tools.

Over time, the number and variety of tools has grown tremendously. They range

from traditional tools like editors, compilers and debuggers, to tools that aid in

requirements gathering, design, building Gills, generating queries, defining messages,

architecting systems and connecting components, testing, version control and

configuration management, administering databases, reengmeenng, reverse

engineering, analysis, program visualization, and metrics gathering, to full-scale,

process-centered software engineering environments that cover the entire lifecycle, or

at least significant portions of it [HOTOO].

2



2 The Concepts of Information Processing Tools and Environments

Any system that assists the programmer with some aspect of programming can be

considered aprogramming tool. Similarly, a system that assists in some phase of the

software development process can be considered a software tool. A programming

environment is a suite of programming tools designed to simplify programming and

thereby enhance programmer productivity. A software engineering environment

extends this to software tools and the whole software development process [Rei96].

The definitions above we can refer to any software. Let us look to the narrower

class of software - a software for information processing. Similarly to previous

definitions we introduce the concepts of information processing tool and information

processing environment.

An information processing tool is any system that provides performing some

task while information processing. An information processing environment is a suit of

information processing tools that together makes intended information processing. On

the other hand, from the perspective of end-user the information processing

environment is simply an information system.

An information system software tool (simply a tool below in the text) is a

system that assists in some phase of the information system development process.

And finally, an information system software environment (simply an environment

below in the text) is the extension of the information processing environment with the

information system software tools.

3 Classification of Information Processing Tools

Tools can be categorized by the phase of information system development and the

particular problem that they solve. It is possible categorize them also by development

principles, integration principles, runtime behavior, etc.

3.1 Classification by the Functionality
One of the most natural ways to classify the tools is grouping them by its

functionality. Many grouping principles exist. We offer to classify them in the

following way (only an example how it can be done):

1. Data extracting tools from data sources

3



1.1. Relation databases
1.1.1. Tool for the specific database
1.1.2. Universal tool for various databases

1.2. Object-oriented databases
1.3. Structured files
1.4. Other data source

2. Communication tools to work with data sources
2.1. Specific client software for particular data source
2.2. Internet Browser
2.3. Email
2.4. Other communication tool

3. Tools for describing of data sources
3.1. Repository for data sources descriptions
3.2. Data source describer
3.3. Data source services describer
3.4. Other

4. Inquiry processing tools
4.1. Inquiry definition tools
4.2. Inquiry executing tools
4.3. Other

5. User interface generating tools
5.1. Static, predefined interface application generator
5.2. Dynamic, varying interface application generator
5.3. Other

6. User management tools
6.1. User registration and general management tools
6.2. User rights management tools
6.3. Finances accounting tools for services
6.4. User profiles management tools
6.5. Other

7. System auditing tools
7.1. Auditjoumals management tools
7.2. Statistics accounting tools
7.3. Security control tools
7.4. Other

8. System quality tools
8.1. System testing tools
8.2. Documentation tools
8.3. Other

9. User temporal data management tools (temporal databases)
10. Other

3.2 Classification by the Runtime Behaviour

The other principle to classify the tools is grouping them by its runtime behavior.

Many grouping principles exist. We most of tools divide into two basic groups:

1. Static tool. The tool performs the specific predefined and fixed functionality, and

this functionality can be changed only by redesigning and implementing of the

4



tool. It is possible that functionality can be altered by some simple predefined

configuration functions or by configuring these tools before running them.

Usually input data is in relative strong predefined format. Basically the source

code compilation is used to obtain executable software (tool).

2. Dynamic tool. The tool can vary its own functionality or in the other words -

change executing semantics before or during the tool operating time. It is possible

to vary functionality in large range. Input data format and meaning can be

different. The interpreter is more preferable to implement such tools. The tool

works interpreting commands received as a program before or during the

operating.

4 Tools Integration

We mentioned above that from the user perspective information processmg

environment is an information system. If we build the information system as a set of

tools, then we need to integrate all tools into a collaborative work. These tools can be

combined together in a variety of ways using various integration techniques.

System developers choose integration techniques being guided by practical

needs, system complexity, knowledge and skills of developers, etc. It is distinguished

three the most popular approaches for an integration that involve ways for the tools to

share information and interfaces [Rei]:

1. Data integration. It assumes that tools share information. Usually a database or

repository is created. Most of the tools stores and consumes shared

information. Via this repository all tools work with the same data and data

exchanging also is organized through the repository.

2. Common front end. The user sees and uses all system together. He does not

exploit any tool separately and often does not know that the system consists

from a set of tools. The user operates with data objects and operations allowed

at the specified moment. Usually the common interface is used to integrate

tools, and tools do not share information.

3. Control integration. This approach involves message passing between the

tools. Tools send messages to other tools whenever they need to share

information or whenever a command from one tool is invocated from another.

5



The message exchanging mostly is organized through a central message

server. The tool send a message to the server, and the server send this message

to all other tools that are interested in to this message type. The tools can

exchange with messages directly, but this approach can arise problems if the

amount of tools is large.

A combination of the all integration types is used to develop serious and large

environment of integrated tools.

5 The Principles for the Tools' Development, Management and
Controlling ,

Real world changes all the time, and requirements to systems also changes. We have

to take into account these changes and to implement them into our information

system. In the distributed and heterogeneous computing environment it is a serious

problem. Besides the nowadays' services must run without interruptions, and system

changes must be done by changing behavior of the tools sending them a new

configuration or replacing them dynamically with new tools. The tools have to satisfy

the following requirements - convenient configuration and control facilities, a

possibility to change behavior semantics, an acceptance of various input and output

formats, etc.

To deal with these problems and to provide convenient means for tools

integration and running system maintenance we advice exploit common principles of

the tools' development, management and controlling. The most important principles

are:

1. Common architecture. Most of the tools have a similar architecture. This

allows a designing of the tools with common components. The tool

development and maintenance becomes less resources consuming, and quality

of resulting tool is higher.

2. Common software (modules). If the ideology and architecture of the tools is

similar, then an implementation can contain common modules, subsystems,

runtime libraries, etc.

3. Common configuration mechanism. It assumes that we can change the

behavior of tool (predefined changes without software changes) dynamically

6



in similar way according to the specific task. These leads to common modules

and easier exploiting, integration and maintenance oftools.

4. Common control mechanism. The tools have to have standardized means

(interfaces) to control and manage them. Via this interface user or other tools

gives commands to the specific tool, and it is a main mechanism for the tools

integration.

5. Common monitoring mechanism. Information systems usually have to work in

an uninterrupted regime. We need to monitor system operating, fmd the

weakest points and perform some actions to correct the system performance.

6. Common testing principles and means. The system quality is crucial topic for

systems. We have to test tools before deployment, and common principles and

testing tools can reduce most expensive resource costs (time, money, people).

Moreover, we have to continue testing while real system exploiting and check

every operation if we use dynamic code generation and immediate just-in-time

compilation or interpretation.

6 The Conceptual Architecture of a Tool

There are many various opinions what the conceptual architecture of a tool looks like.

Before we present our model let us state the most important questions to understand

the essence of a tool:

• What is the main task for desired tool? Why does it necessary us?

• How can we build this tool? What are the possible technologies, data

structures and algorithms? Can we use or adapt existing tools or modules?

• What is an input for our tool? Does a tool receive all input data before starting

computations or get it by portions?

• What is an output for our tool? Does a tool produce all output data after

computations or supply it by portions?

• Is a tool stateless or not? Does a tool remember the history about previous

computations?

7



• What is a way to manage and control the tool? What is a desirable interface

for such tool?

• Do we need to change the behavior of a tool dynamically without interrupting

all running environment or moreover while operating time? What are the

things we need to change (configuration, executing semantics, input/output

formats, etc.)?

• Have we got necessity to monitor the state and behavior of a tool before,

during or after operating time?

• Does a tool cooperate with other applications or tools excluding desired

"official input and output"? Is this cooperation synchronous or asynchronous?

• Can our tool change the state/configuration of other application or tool? Can

the other tool change our tool state/configuration? At what time (before or

during operating)?

We have created a conceptual model of tool architecture taking into account questions

above. The model is shown in Figure 2.

Another applicationttool
(using of services)

r Another applicationltool
(status changing)

Monitoring and testing

Figure 2 A conceptual architecture of a tool

8



7 Conclusions

The creating of tools' collections - environments is actual for many years [Row82],

and the importance of this topic only grows day by day [ROTOO]. In this paper we

briefly review some more important concepts and principles to organize (integrate)

tools into one collaborating environment.

The main attention is paid to a subset of all possible environments - an

information processing environment (information system) and an information system

software environment that supports building of information system. There is a

challenge for developers to create information system as a suit if tools.

The most important issues in this field are separation of concerns, integration

and coordination, "plug and play", and support for multiple views. Traditional

software development lifecyc1e is not acceptable for new emerging technologies, and

researchers look for new methodologies. We consider that most of the tools in one

environment have to built based on common principles, and that tool has to base on

domain specific language (DSL) that describes tool behavior. In that approach the

environment is a set of interpreters that interprets the tool specification (program in

DSL) and each interpreter acts like desired tool.

8 References

[HOTOO]W. Harrison, H. Ossher, and P. Tarr, Software Engineering Tools and Environments: A Roadmap.
Proceedings of the conference on The future of Software engineering (lCSE '00), pp.261-277, 2000.

[How82] W. E. Howden. Contemporary Software Development Environments. Communications of the ACM,
25(5):318-329, May 1982.

[Rei96] S. P. Reiss. Software Tools and Environments. ACM Computing Surveys, Vol. 28, NO.1, March 1996.

9



Description of Semantics and Code Generation
Possibilities for a Multi-language Interpreter

Guntis Arnicans

Faculty of Physics and Mathematics
University of Latvia

Raina Blvd. 19,Riga LV-1586, Latvia
garnican@lanet.lv

Abstract

In this paper we describe the definition of semantics for a Multi-language
interpreter (MLI), which provides the execution of the given program, receiving
and exploiting corresponding language syntax and the desired semantics. We
analyze the simplest solution - the MLI receives the language syntax and the
semantics descriptions, which have already been compiled to executable objects.
Semantics are defined as a composition from several semantic aspects,
considering the pragmatics of a language. Semantic aspects are translated to
semantic functions by composing descriptions of the aspects. A traversing
program's intermediate representation and the calling out of semantic functions
similarly to the principle of the Visitor pattern perform the desired semantics. To
simplify the semantic descriptions, we use abstract components that are joined by
connectors at the meta-level. The implementation of these components and
connectors can be very different. Examples of conventional and specific
semantics are given for the simple imperative language in this paper.

1 Introduction

The number of new languages that are related to the IT sector has increased rapidly

over the last several years (programming languages and data description languages,

for example). Problems associated with the implementation and use of these

languages have also expanded, of course. Kinnersley [Kin95] has reported that there

were 2,000 languages in 1995, which were being put to serious use. Even back then

specialists found that the new languages were mostly to be classified as domain-

specific languages. Most of them are not easy to implement and maintain [lTSE99,

DKVOO(DSL analysis, problems and an annotated bibliography)]. It is also true that

we need not just a compiler or an interpreter, but also a number of supportive tools.

Questions of programming quality are very important today, and these questions often

cannot be answered without specialized and automated ancillary resources.

Computers are being used with increasing dynamism today: systems have been

divided up in terms of time and space, the operational environment is heterogeneous,

1

mailto:garnican@lanet.lv


and we have to ensure that implementation of parallel processes while organizing

cooperation among components and systems, adapting to changing circumstances

without interrupting our work, etc. Weare making increasing use of interpreters or of

code generation and compilation just in time. The formal resources that are used to

describe the semantics of a language, however, cannot fully satisfy our needs in the

modern age, and they are starting to lose their positions [Sch97, Lou97, Paa95].

The basic problem that is associated with the formal specifications of

programming languages is that these specifications are far too complex. It is not clear

how they are administered, we cannot use them to explain all of our practical needs,

and in the end we are still faced with a problem - who can prove that these complex

specifications are really correct? The literature claims that the best commercial

compilers (interpreters or other language-based tools) are written without formalism

or are used only in the first phases - scanning and parsing [e.g. Lou97]. Formalisms

are mostly elaborated and used for research purposes in educational and scientific

institutions at this time.

The development of semantics is gradually moving away from the development

of languages and tools. One way to overcome this gap is to take a tool-oriented

approach to semantics, making the definitions of semantics far more useful and

productive in practice and generating as many language-based tools as possible from

them [HKOO]. We support this approach in principle, but our aim is to propose a

different approach toward the definition of semantics, making room for far less formal

records.

Those who prepared descriptions of semantics in the past have long since been

looking for ways in which semantics can be divided up into reusable components, and

it is not yet clear whether the formal or the partly formal methodology is best in this

case. We chose a less formal and more free form of description keeping from the

theoretical perspective, and our empirical research shows that rank-and-file

developers of tools far more easily understand this method.

2 The concept of a Multi-language Interpreter

The concept of a multi-language interpreter was introduced in [AAB96]. A Multi-

Language Interpreter (MLD is a program which receives source language syntax,

2



source language semantics and a program written in the source language, then

performing the operations on the basis of the program and the relevant semantics.

Conceptually, we parse an input token stream, build a parse tree and then traverse the

tree as needed so as to evaluate the semantic functions that are associated with the

parse tree nodes. Once an explicit parse tree is available, we visit the nodes in some

order and callout an appropriate function. This approach is similar to the principle

build a tree, save a parse and traverse it [Cla99] and to a Visitor pattern [GHN95],

except in terms of the methodology which we apply in obtaining semantic functions

and organizing physical implementation. The idea ofMLI is expressed in Figure 1.

I Syntax L _
~i~ I
l-s-em-a-nti-.cs-~IErUlti-ianguage Results

~ Interpreter
~-- I

~l -pro-g-ra-m-r

Figure 1 The concept of a Multi-language interpreter

The concept of a ML! presupposes that we can prepare several semantics for

one syntax, and we can exploit one semantic for various syntaxes. The descriptions of

syntaxes and semantics must be translated to the executable form (before or during

the running of the MLI). MLI implementation architectures may vary. The one we use

receives and exploits syntax and semantic descriptions that have already been

compiled as executable objects (Figure 2). Syntax is represented by the SyntaxObject,

and semantics by the TraverserObject, the SemanticObject, the SymbolTable, and the

necessary volume of the Component (the components A, B, C in our figure). The MLl

Kernel, which provides the initial bonding of all syntax and semantics objects,

initializes the execution of the program.

Program

Figure 2 MLI runtime architecture

3



Each of the components can be implemented in various ways - with a different

semantic assignment and physical implementation. Here we have a chance to combine

syntaxes and semantics in both ways - in terms of architecture and in terms of

implementation. Then, however, we immediately face the question of the

compatibility of the syntax and semantics so as to avoid senseless interpretation.

The obtaining of an executable syntax and semantic objects from their

descriptions can be done before or during the actual program execution (analogue to a

classical compiler and interpreter). Dynamic code generation is more difficult because

all generation phases must be done automatically.

3 Language Specifications for MLI

Programming language is an artificial means to communicate with a computer and to

fix the algorithms for problem solving. Like a natural language, a programming

language's definition consists of three components or aspects: syntax, semantics and

pragmatics [Pag81, SK95]. All of these aspects are significant in dealing with our

problems. Usually exploited rarely, pragmatics deals with the practical use of a

language, and this is an important element in defining semantics.

We can look at syntax and semantics from two perspectives - the definition or

description phase and the runtime phase. Our goal is to achieve runtime components,

which can freely be exchanged or mixed together in pursuit of the desired

collaboration. First we must look at the principles of syntax and semantics

descriptions, and then we can view the target code generation steps.

Our basic principle is to divide syntax and semantics into small parts and later,

with a simple method, to stick these parts together, thus providing a mechanism to tie

together the semantic parts and the syntax elements. Our method is close to some of

the structuring paradigms of attribute grammars [paa95]: The definition phase is

similar to the relationship Semantic aspect = Module, but the runtime phase is similar

to Nonterminal = Procedure. That means that we basically use the language

pragmatics and divide the semantics into semantic aspects.

3.1 Syntax
The formalisms for dealing with the syntax aspect of a programming language are

well developed. The theory of scanning, parsing and attribute analysis provides not

4



only the means to perform syntactical analysis, but also a way to generate a whole

compiler, as well. Such terms, concepts or tools as finite automata, regular expression,

context-free grammar, attribute grammar (AG), Backus-Naur form (BNF), extended

BNF (EBNF), Lex (also Flex), Yacc (also Bison), and PCCTS are well known and

accepted by the computer science community.

We do not need to reinvent the bicycle, and it is reasonable to choose existing

formalisms and generators (lexers and parsers). The main task when dealing with

syntax description for a given language is code generating which can transform the

written program, which uses the syntax, into intermediate representation (IR).

Additionally, we need to attach a library with functions, which provide the means to

manipulate with the IR and to compile the whole code. The result is the SyntaxObject

(Figure 2).

In this paper we concentrate mostly on the class of imperative programming

languages, but our method is adaptable for other languages too, such as diagrammatic

languages (e.g., Petri nets, E-R diagrams, Statecharts, VPL - visual programming

languages, etc.), which exploit other formalisms (e.g., SR Grammars, Reserved Graph

Grammar) and processing styles [FNT +97, ZZ97].

3.2 Semantics

The chosen principle for the runtime semantics parse and traverse states that the most

important things are a traversing strategy and the semantic functions which must be

executed when visiting a node (Figure 3). Therefore, the central components of the

semantics are TraversalObject and SemanticObject (Figure 2).

The TraversalObject manages the node visiting order, provides semantic

functions with information from the IR, and is the main engine of the MLI. The

SemanticObject, for its part, contains all of the necessary semantic functions and

provides for the execution environment. At the same time, we can also put into the

semantic functions certain commands which force the Traverser to search for the

needed node and to change the current execution point in the IR (traversing strategy

changes and a transition to another node are problems in the Visitor pattern [e.g.

VisOl]).

5



Figure 3 Runtime correspondence between syntax and semantics

Semantic functions have to be as simple and as small as possible. This can be

achieved by using a meta-language and by employing high-level expression means,

which allow for easy understanding and verification of the description. Following

this principle becomes more natural if we use abstract components so that the

underlying semantic can be clear without additional explanations (in Figure 3, the

abstract components already have a concrete implementation component - A, B and

C). This statement may lead to objections from the advocates of formal semantics,

because the components are not described with mathematic precision. At the same

time, however, formal semantics sometimes use such concepts as Stack or Symbol

table.

Let us introduce a conceptual syntax element, which is a grammar symbol with

a name (e.g., a named nonterminal symbol or a named terminal symbol). Considering

the various types of syntax elements and the traversing strategy, we separate various

visitations and introduce the concept of the traversing aspect. For instance, we can

distinguish the arriving into node from the parent node (Pre Visit) from the arriving

into node from the child node (Post Visit). Thus we create the semantic functions and

name them not only on the basis of the name of the syntax element but also on the

basis of the arriving aspect (traversing aspect) into this element (Figure 3).

Runtime semantics or simply semantics for multi-language interpreters are a set

of semantic functions. We represent the runtime semantic in Table 1. There is an

executable code (D) or nothing (A) for the syntax element, according to the traversing

6



aspect. n depends on the size of syntax (e.g., the count of all nonterminal and terminal

symbols), and m depends on the complexity of the traversing strategy (usually 1..3).

We notice that the matrix mainly consists of empty functions (A).

Table 1 The matrix of syntax elements and semantic function correspondence

Syntax Traversing Aspect (TA)

Element (SE) TAl TA2 TA3 ... TAm

SEI D D A ... A

S~ A A D ... A

SE3 A A A ... D

'" ... ... ... ... A

S£" D A A ... A

The identification of semantic functions is realized both by the syntax name and

by the traversing aspect name. Technical implementation may differ, but it is very

advisable that functions identification and calling be performed with constant

complexity 0(1).

Now we arrive at the most difficult and important problem - how can we obtain

semantic functions and ensure correct collaboration between them, and how is it

possible to create reusable semantic descriptions? Let us explain our ideas about how

to define semantics and how to gain the matrix observed above, i.e., how to generate

executable semantics from the semantic description.

4 Semantic Aspects and Abstract Components

4.1 Semantic aspects

In practice, programming languages are frequently presented through the pragmatics

of the programming language, i.e., examples are used to show how language

constructs are exploited and what their underlying meaning is. Let us call these

language constructs and their meaning semantic aspects.

We have chosen to define the semantic as a set of mutually connected semantic

aspects. Here are some examples for typical groups of semantic aspects for imperative

programming languages: execution of commands or statements (e.g., basic operations,

7



variable declaring, assigning of a value to the variable, execution of arithmetic

expressions), program control flow management (e.g., loop with a counter,

conditional loop, conditional branching), dealing with symbols (e.g., variables,

constants), environment management (e.g., the scopes of visibility). Here, too, are

examples of nontraditional semantic aspects: pretty printing of the program, dynamic

accounting of statistics, symbolic execution, specific program instrumentation, etc.

To describe the semantic aspect, we have chosen an operational approach - we

define the computations, which a computer has to do to perform the semantic action.

4.2 Abstract data types and abstract components
The next significant principle to define the semantic aspect is using abstract data

types (ADT) as much as possible. ADT is a collection of data type and value

definitions and operations on those definitions, which behave as a primitive data type.

This software design approach decomposes the problem into components by

identifying the public interface and the private implementation.

In our case, typical examples of ADT are Stack, Queue, Dictionary, and Symbol

table (in compiler construction theory [ASU86, FL88], in formal semantics [SK95]).

In this way we hide most of the implementation details and concentrate mainly on the

logic of the semantic aspect. Later we can choose the best implementation of ADT

for the given task. Seeing that some exploited components can be complicated (E-

mail, Graph visualization, Distributed communication, Transaction manager, etc.)

and have no standards, we use another term - abstract component. Sometimes we

want to utilize an already existing component, and the term abstract component seems

more appropriate to us.

It is advisable to describe the semantic aspect through meta-language, even if

you do not have a translator for this. Then you can translate or simply rewrite it by

hand to the target programming language, select appropriate implementation for the

abstract components, and use the needed interface, collaborating protocol and

execution environment. For instance, Stack can be implemented in a contiguous

memory or in a linked memory, Symbol table - as a list or as a dictionary with the

hashing technique. Furthermore, instances of abstract components can be viewed as

distributed objects in a heterogeneous computing network.

8



4.3 Examples of abstract components
Some abstract components and their operations are very popular, e.g., Stack

(createStack, push, pop, top, etc.), Queue (createQueue, enqueue, dequeue, first, etc.),

while some are guessed, e.g., E-mail (prepare, send, receive, open). Among the many

specific components we would like to emphasize one that is useful for most of

semantics - Symbol table (SymbolTable in Figure 2) or its analogue to provide the

execution environment.

While building prototypes of the MLI, we have created an implementation of

Symbol table - MOMS (Memory Object Management System) - that is appropriate

for implementing the imperative programming languages. It is possible to define basic

and user defined data types, to define base operations and functions, to operate with

variables and their values, to manage the scope of visibility of all objects, etc. The

most important data types, concepts, and operations of MOMS are listed in the

appendix: to this paper so as to give the reader a better idea about MOMS.

A second important component is Traverser (TraverserObject in Figure 2). Its

main task is realizing the traversing strategy, to change the current execution point

and to organize cooperation with the syntax object.

There is a depth-first left-to-right traversing strategy, which is used in the

following examples (Table 2). This strategy has three visiting aspects: Visit (for tree

leaves - terminals), and Pre Visit and Post'Visit (for the other tree nodes -

nonterminals). To define semantic functions for examples, we have used the

following operations: Node Value 0 returns a value for the current terminal or

nonterminal symbol (value from the current IR node), and both goSibIForw(aName)

and goSibIBackw(aName) provide for a changing of the current node, searching the

node with the name aName between siblings going forward or backward.

Table 2 A depth-first left-to-right traversing strategy

Traverse (node P)
if IsLeaf (P)

Visit(P)
PreVisit (P)

for each child Q of P,
in order, do

Traverse(Q)
PostVisit (P)

9



It is possible to describe interfaces for SyntaxObject, TraverserObject and

SemanticObject with domain-specific language. Then interfaces for obtaining the IR,

manipulating with it and working with the symbol table can be compiled together, and

it is possible to engage in high-level optimization and verification [Eng99].

The Traversing strategy can also be described with domain-specific language.

This is important if the strategy is not trivial and depends on syntax elements and the

program state [OW99 (traversing problems and solutions for Visitor pattern)]. The

traversal strategy should be independent from syntax as much as possible and

organized (combined) by patterns [VisOI]. In addition to common traversing

strategies there are also less traditional ones, e.g., the strategy for reverse execution of

the program [BM99]

4.4 Defining the semantic aspect

It is more convenient to define the semantic aspect by using diagrams (as in Figure 7).

We can write a meta-program or a program in the target language in textual form, too.

Diagrams contain syntax elements that are important for the semantic aspect and are

visualized with graphic symbols. We can use different graphic notations. If the

visiting order of syntax elements is important, then we mark the order with arrows.

Let us call the operations that are performed during the aspect node visiting

semantic action. Semantic action is similar to semantic function, but it is written at the

meta-level and relate only to a given semantic aspect. Semantic action is shown as a

box with the meta-code connected to the syntax element and takes into account the

traversing aspect.

There are all kinds of abstract data types that are needed for the semantic aspect

into the box with the key words IMPORT GLOBAL. For better perceptibility of the

semantic aspect, it is permissible to use additional graphic symbols that are not

needed in real execution. For instance, we use Other aspects to signal that we expect

there to be a composition with the other semantic aspects.

4.5 Examples of semantic aspects
Let us look at some examples of semantic aspects (Figure 4 - Figure 8) that are

applicable for the simple imperative programming language Pam [Pag81]. Terminal

symbols are denoted by a rectangle, while nonterminal symbols are indicated by

10



rounded rectangles. The left circle in the nonterminals corresponds to the Pre Visit

semantic action, the right one - to the PostVisit semantic action, while for the

terminals, the Visit semantic action is assigned.

IMPORT GLOBAL Env of
ADT Symbol Table

ENV.releaseProgEnv()I ENV .prepareProgEnv ()

Figure 4 The semantic aspect PROGRAM. It prepares the program environment to manage
variables, constants, etc. and operations involving them. The environment is destroyed at the end

I IMPORT GLOBAL
I CanCreateVar of ADT Stack

CanCreateVar.push(TRUE) - ,
~- Other aspects:'-, ;--... _-_ ... _--

CanCreateVar.pop()

Figure 5 The semantic aspect VARlABLE DEFINITION. It allows for variable creation

IMPORT GLOBAL Trav of ADT_TreeTraverser, Ref Stack of
ADT_Stack, Env of ADT_SymbolTable, CanCreateVar of ADT_Stack

CanCreateVar.pop()

... \)
'3

LOCAL VarText = Trav.nodeValue()
if CanCreateVar.top() = TRUE and

Env. findVar (VarText) = FALSE
. Env. createVar (VarText, INT)

/ endif! LOCAL Ref = Env.getRef(VarText)
I RefStack..push(Ref)

I CanCreateVar. push (FALSE)
II
j

I INTEGER

I
LOCAL IntText = Trav.nodeValue()
LOCAL Ref = Env.getRef(" INT_"+IntText)

I
if Ref = EMPTY

LOCAL Integer = TextTolnteger (IntText)
~ Ref = Env.createLit (" INT_"+IntText, INT)

I

Env.putValue(Ref, Integer)
endif

,RefStack.pushIRef)

Figure 6 The semantic aspect ELEMENT. It provides for the pushing into the stack all references to
each variable encountered while traversing. Variable creation is forbidden by default. The Trav

provides for getting the values of the current terminal node in IR.

11



IMPORT GWBAL
RefStack of ADT_Stack,
Env of ADT Symbol Table

WCAL Res = RefStack.pop()
LOCAL Var = RefStack.pop()
LOCAL Val = Env.getValue(Res)

~ Env.putValue(Var, Val)

(0 right_hand_s ide
, ~

,_t_,_~ __
(Other aspectS:,-, ..,-----,---

Figure 7 The semantic aspect ASSIGNMENT. It takes reference to the variable and reference to the
value from the stack and assigns a value to the variable. Pushing of references is simulated

I IMPORT GLOBAL RefStack, Sort, Flag of ADT_Stack,
I Trav of ADT TreeTraverser, Env of ADT SymbolTable

;..

I Sort. push (INDEF)
Flag. push (TRUE)

Sort.pop ()
Flag. pop ()

T ,
,--- ... --- ...

(Other aspectS:'
-, J-... _------

series 0
, ~,_I' .:.__

':OOer aspectS:,-, ..,----_ .... _--
I
I if Sort. top () = INDEF then

LOCAL Ref = RefStack.pop()
if Env.getValue(Ref) = FALSE

Flag. replace Top (FALSE)
Trav.goSibIForw(@END)

endif
endif

RefStack.push(NULL)

if Sort.top() = INDEF and
Flag. top () = TRUE

Trav.goSiblBackw(@WHILE)
endif

Figure 8 The semantic aspect INDEFINITE LOOP. It "goes through" the series and back to WHILE
until the comparison sets a NULL reference or a reference with the value FALSE

5 Meta-semantics

Meta-semantics is a term, which relates to a meta-program that describes the

counterparts of which semantics consist and the way in which these counterparts are

connected together. The conceptual scheme of meta-semantics is shown in Figure 9.

If we look at semantics from the definition side (the logical view) then

semantics are formed by traversing strategy and by a set of semantic aspects that

consist of semantic actions realized while visiting the appropriate node of the

intermediate representation. If we look at semantics from the runtime side (the

12



physical view) then while visiting one node it is possible that several semantic actions

have to be realized, and we have to ensure correct collaboration between all involved

instances of abstract components into the desired environment. How can we put all of

this together correctly?

Figure 9 The conceptual scheme of meta-semantics. For instance, SAl involves nonterminal NTr and
terminal T ls and SCt is performed while previsiting. SCI is a composition afISAj and IS~

To solve this problem we introduce the concept of the semantic connector. This

concept has been adopted from the concept Grey-box connector, which solves a

similar problem: how to connect the pre-built components in a distributed and

heterogeneous environment for collaborating work [AGBOO]. The Grey-box

connector is a meta-program that introduces a concrete communications connection

into a set of components, i.e., it generates the adaptation and communications glue

code for a specific connection.

6 From semantic aspects to meta-semantics and executable
semantics

The obtaining of semantics for the fixed syntax is achieved in several steps: I) select

predefined semantic aspects or define new ones for desired semantics, 2) rename

13



syntax elements and traversing aspect in the selected semantic aspects with names

from fixed syntax and traversing strategy, 3) rename instances of abstract components

to organize collaboration between semantic aspects, 4) make composition from

semantic aspects, 5) specify the runtime environment and translate the meta-code to

the code of the target programming language, and 6) compile the semantics.

• Selection of semantic aspects (step 1)

If we have a library with previously created semantic aspects, then we can

search for appropriate ones, i.e. reuse some parts of the semantics. The traversing

strategy also has to be considered.

• Syntax element and traversing aspect renaming in semantic aspects (step 2)

Actually it is semantic action mapping. Matching to the fixed syntax elements is

achieved by mapping syntax elements of semantic aspects to fixed syntax elements

(rename with - simple mapping and duplicate to - mapping of a semantic aspect

syntax element to several fixed syntax elements):

rename <name> <traversing aspect> with <target name> <target traversing aspect>
duplicate <name> <traversing aspect> to

<target name> <target visiting aspect> [,<target name> <target visiting aspect> ... ]

For instance, rename left -.hand_side PostVisit with VARIABLE Visit;

duplicate COUNTABLENODE Visit to VARIABLE Visit, assignment statement PostVisit

• Renaming of instances of abstract components (step 3)

Matching of components is necessary because there is no direct data exchange

between semantic functions, and we need collaborative work. The program state is

fixed by using the runtime states of components. At first we decide what instances

they have in common and what names they have to get, and then we rename instances

in the semantic aspects:

replace <name> with <target name>

For instance, replace RefStack with DataStack ; replace Sort with LoopSortStack

• Composition of semantic aspects (step 4)

The goal of a semantic aspect composition is to bring together several semantic

aspects into one more complicated aspect that nearly describes entire semantics.

While composing, we stick together the meta-code of semantic actions that have the

same name. The sticking principles can vary, for instance, sequential (one code is

14



appended to the other one), parallel (codes can be executed simultaneously or

sequentially in any order),free (user can modify the code union as he likes). To

achieve better results, we ignore some semantic actions or apply the sticking principle

to the semantic aspects in the reverse order. At this time we have to be aware of

conflicts between local variable names.

compose aspect < <new SA» «refined SA» [[append [parallel,free ] «refined SA» ... ] , where
<refined SA> = < <old SA» [ignore <name> <tray aspect> [,<name> <tray aspect>]] I [reverse]

The result is meta-semantics. An example of a meta-code fragment for meta-

semantics is given in Table 3.

Table 3 An example of meta-semantics

compatible with
ir_type ParseTree
traverser_type ParseTreeTraverser

syntax elements (program, expression, VARIABLE, ... )
semantic actions «PROGRAM> program PreVisi t {ENV. prepareProgEnv()} ,

<PROGRAM> program Postvisit { ...J, ... )

global Trav of ADT TreeTraverser
global Env of ADT_SymbolTable
create DataStack, OperatorStack, CanCreateVar, LoopSortStack,

LoopCounterStack, LoopFlagStack, IfFlagStack of ADT Stack
create InputFile, OutputFile of ADT_FILE -

compose aspect <AI>
« PROGRAM> )

append «ELEMENT>
replace Re fStack with Da taStack IIreplaces stack for collaborating work
rename INTEGER Visit with CONSTANT Visit) IIrenames nonterminal according to PAM syntax

append «ASSIGNMENT>
replace Ref Stack with DataStack
rename left_hand_side PostVisit with VARIABLE Visit,

right_hand_side PostVisit with expression PostVisit
ignore left hand side PostVisi t) IIignore pushing of NULL reference

append «INDEFINITE LOOP>
replace RefStack with DataStack,

Sort with LoopSortStack, Flag with LoopFlagStack)
append «VARIABLE DEFINITION>

rename variable def PreVisit with assign statement PreVisit,
variable def PostVisit with ASSIGN Visit)

end compose aspect

I I composes semantic aspects from aspects given above
II semantic aspects PROGRAM remains the same

compose aspect <A2>
«AI>

ignore expression PostVisit, cornparision PostVisit)
append ( ...
/* Others aspect are appended such as <TYPE AND OPERATOR>, <INPUT>,

<OUTPUT>, <BASE BYNARY OPERATION>, <DEFINITE LOOP>, <CONDITIONAL STATEMENT> */
... )

end compose aspect

• Meta-code translating (step 5)

Meta-code is translated to the target programming language, taking into account

the target language (e.g. e++), the implementation of abstract components (e.g. Stack

15



in linked memory), the operating system (e.g. Unix), the communications between

components (e.g. CORBA), MLI components type (e.g. DLL), etc. The translation

may be done by hand or automatically (desirable in common cases).

• Obtaining semantic objects (step 6)

By compiling the code we get executable objects that provide semantic

performance, i.e. they contain the semantic functions that are called while traversing

the program intermediate representation. The instances of the concrete

implementation of abstract components are created, or the existing ones are

dynamically linked via selected communications protocols.

7 Examples of alternative semantic aspects

In this section we provide a short insight on how we can build nontraditional

semantics. By adding new features to existing semantics we can create a specific tool

that works with a given programming language. We would like briefly to survey two

examples: 1) statistics accounting of program point visiting, and 2) storing of

symbolic values for variables. Both aspects are added to the conventional semantics,

and this is program instrumentation if we speak in terms of software testing.

7.1 Accounting of program point visiting
Our goal is to account for any visiting of a desirable program point. That means that

we need to set counters at these points. At first we write the semantic aspect NODE

COUNTER (Figure 10). We use the abstract component Dictionary where we can

store, read and update records in form < key, value>.

IMPORT GLOBAL Trav of ADT_TreeTraverser,
Diet of ADT_Dictionary

II LOCAL key = Trav.getNodeID()
'LOCAL record = Dict.getRecNum(key)

if record = 0
Dict.createRec(key, 1)

else
Dict.update(record, Dict.get(record) + 1) I

endif

I COUNTABLENODE I
I

Figure 10 The semantic aspect NODE COUNTER

16



Defining meta-semantics, we add this semantic aspect to the others. For

instance, we define accounting for the use of any variable and assignment operation:

dublicate countable_node Visit to VARIABLE Visit, assignment_statement PostVisit

Another semantic aspect can be built which accounts for every concrete variable

using statistics into an additional dictionary (the variable name serves as the key). We

can improve this aspect further by accounting for an aspect of variable use - defined,

modified, referenced, released, etc. In the program analysis and instrumentation area,

our approach is similar to the Wyong system (based on the Eli compiler generation

system and the ATOM program instrumentation system), because specific operations

are attached to syntax elements, and in this way we obtain a specific tool with

additional semantics [Sl097].

7.2 Storing of symbolic values for variables

The second example provides for the fixing of symbolic values for variables (Figure

11). To do this task in an effective way, we have additional operations in our MOMS

(symbol table). The operation createSyrnb Value creates an entry for symbolic value,

and with the operations addTextToSyrnbValue and addVarToSyrnbValue, we form the

value while traversing all nodes in the desired subtree (we store all needed program

symbols and symbolic values of variables). At the end we store accumulated value

I IMPORT GLOBAL Trav of AnT_TreeTraverser, S,mbRefS~ack of
AnT_Stack, Env of AnT_S>mbolTable, CanCreateS>mbVar of AnT_Stack )

t\cancrea~esymnvar. pc:sh(FALSE) I
\

\ 'CanCrea::eSymnVar. pop (I I

'\
I LOCAL S>mbVar = SymbRefStack.pop()

, A I Env.storeS>mbValue(S>mbVar, SymbVal)

(0 assiQnrent_sttement ~

-t
o left_hand_side Q 0 Mght_hand_side 0

A

Y.,.------- .•.
~- Other aspeets ....•'-, ... -

,---,--- : Ref Stack. push (NULLII

y..------- .•.
(Other aspectS',
- _----_ .. "_ ..

LOCAL VarText. = 'I'=av. nocie Va Lu e t )
LOCAL SymbVarNarne ~ • S~_' ~ VarTex~
if CanCreateSymbVar.top:1 - TRu~

if Env.fin~!ar(SymbVa=Text) = ?ALSE
Env.crea~eVar(SymbVarText, SYMBI

endif
LOCAL SymbRef = Env.getRef(SymbVarText)
Env.createS>mbValue(S>mbRef)
S>mbRefStack.push(SymbRef)

else
LOCAL SymbRef = Env.getRef(SymbVarText)
Env.addVarToS>mbValueISymbRef)

endif

I SYMBOL I
\

LOCAL SymbText = Trav.nodeValue()
LOCAL SymbRef = SymbRefStack.top()
Env.addTextToS>mbValue(S>mbRef, S>mbTextl

with the operation storeSymb Value.

Figure 11 The semantic aspect SYMBOLIC VALVES

17



8 Conclusions

Ibis method was developed with the goal of reducing the gap between practitioners

(tool developers) and theoreticians (developers of formal specifications for

semantics). Our experience shows that the remarkable acquisition is achieved if

abstract components or abstract data types realize the greater part of semantics,

because that way it is easier to perceive the full implementation of semantics.

The second acquisition of our method involves significant disjoining of syntax

and semantics from each other. It allows us to combine various syntaxes and

semantics and to find out the most desirable semantics for the given syntax. So, if we

have written syntax for a new language, we can match several semantics to it in a

comparatively short time. As a result, we can develop a wide spectrum of tools in

support of our new language.

Our approach allows us to change semantics dynamically while the interpreter is

running, i.e. replace semantics or execute various ones simultaneously. It is possible

to reduce a derived parse tree (by deleting nodes with empty connectors) or to

optimize it (tree restructuring statically and dynamically, considering performance

statistics).

At this moment the environment for tool construction or semantics generation is

not completely developed. Our experience shows that tools can be developed without

significant investments, for example, by using LexIYACC as a generator to create a

syntactic object, which produces program intermediate representation. It is not too

hard to develop a Traverser and a simple SymbolTable. And as the last job, we have

to work up semantic aspects on the basis of our method and compose them, thus

obtaining connectors, which can be written in some common programming language

(skipping meta-language use and its translation). The use of abstract components

depends on target semantics.

We believe that the development of the serious tools demands a more universal

implementation of the Symbol table. Our Symbol table implementation - MOMS - is

not applicable only for imperative language implementations. It was also the basic

object-oriented database for the commercial application Mosaik (Sietec consulting

GmbH Co. OHG, graphical CASE tool for business modeling).

18



The weakness of our method lies in the semantic aspects composition stage. At

this moment we have not analyzed all risks in terms of obtaining senseless or

erroneous semantics. The problems are not trivial, and they are similar to problems in

the proper collaboration of objects or components in object-oriented programming,

too. [e.g. ML98]. Most name conflicts can be precluded automatically, but it is

considerably harder to organize collaboration among the common components ill

semantic aspects (it is easier if the semantic aspects are mutually independent).

Another problem is that the language grammar is frequently not context free

(this is true of our example above, too). In this case we have to introduce additional

flags to memorize the context of syntax elements. It is advisable to rewrite the syntax

and to use context-free grammars.

9 References

[AAB96] V. Arnicane, G. Arnicans, and J. Bicevskis. Multilanguage interpreter. In H.-M. Haav and B. Thalheim,
editors, Proceedings of the Second International Baltic Workshop on Databases and Information
Systems (DB&IS '96), Volume 2: Technology Track, pages 173-174. Tampere University of Technology
Press, 1996.

[AGBOO] U. AJ3mann, T. GenBler, and H. Bar. Meta-programming Grey-box Connectors. Proceedings of the
Technology of Object-Oriented Languages and Systems (TOOLS 33), pp.300-3ll, 2000.

(ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Technigues, and Tools.
Addison-Wesley, 1986.

[BM99] B. Biswas and R Mall. Reverse Execution of Programs. ACM SIGPLA1v Notices, 34(4):61-69, April
2000.

[Cla99] C. Clark. Build a Tree- Save aParse.ACM SIGPLAN Notices, 34(4):19-24, April 2000.

[DKVOO] A Deursen, P. Klint, and 1. Visser. Domain-Specific Languages: An Annotated Bibliography. ACM
SIGPLAN Notices, 35(6):26-36, June 2000.

[Eng99] Dawson R Engler. Interface Compilation: Steps toward Compiling Program Interfaces as Languages. In
DSL-99 (ITSE99], pp.387-400.

[FL88] Charles N. Fisher, and Richard J. LeBlanc, Jr. Crafting A Compiler. Benjamin-Cummings, 1988.

(FNT+97]F. Ferrucci, F. Napolitano, G. Tortora, M. Tucci, and G. Vitiello. An Interpreter for Diagrammatic
Languages Based on SR Grammars. Proceedings of the 1997 IEEE Symposium on Visual Languages (VL
'97), pages 292-299, 1997.

[GlUV95]E. Gamma, R Helm, R Johnson, and J. Vlisides. Design Patterns: Elements of Reusable Software,
pages 331-334. Addison-Wesley, 1995.

[HKOO] J. Heering and P. Klint Semantics of Programming Languages: A Tool-Oriented Approach. ACM
SIGPLAN Notices, 35(3):39-48, March 2000.

(ITSE99] Special issue on domain-specific languages. IEEE Transactions on Software Engineering, 25(3),
May/June1999.

[Kin95] W.Kinnersley, ed., The Language List. 1995. http://wuarchive.wustl.eduldoc/rnisc/lang-list.txt

[Lou97] Kenneth C. Louden. Compilers and Interpreters. In Tucker [Tuc97], pp.2120-2l47.

[ML98] M. Mezini and K. Lieberherr. Adaptive Plug-and-Play Components for Evolutionary Software
Development SIGPLAN Notices, 33(10):97-116, 1998. Proceedings of the 1998 ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages & Applications (OOPSLA '98).

19

http://wuarchive.wustl.eduldoc/rnisc/lang-list.txt


[OW99] 1. Ovlinger and M Wand. A Language for Specifying Recursive Traversals of Object Structures.
SIGPLAN Notices, 34(10):70-81, 1999. Proceedings of the 1999 ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages & Applications (OOPSLA '99).

[paa9S] 1. Paakki. Attribute Grammar Paradigms - A High-Level Methodology in Language Implementation.
ACMComputingSurveys, 27(2):196-255, June 1995.

[Pag81] Frank G. Pagan. Formal Specification of Programming Languages: A Panoramic Primer. Prentice-Hall,
1981.

[Sch97] David A. Schmidt Programming Language Semantics. In Tucker [Tuc97], pp.2237-2254.

[SK9S] K. Slonneger and B. L. Kurtz. Formal Syntax and semantics of Programming Languages: A Laboratory
Based Approach. Addison- Wesly, 1995.

[SI097] A. M. Sloane. Generating Dynamic Program Analysis Tools. Proceedings of the Autralian Software
Endineering Conference (ASWEC'97), pp.166-173, 1997.

[Tuc97] Allen B. Tucker, editor. The computer science and engineering handbook. CRe Press, 1997.

[Vis01] J. Visser. Visitor Combination and Traversal Control. SlGPLAN Notices, 36(11):270-282, 2001.
Proceedings of the 1998 ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages & Applications (OOPS LA '01).

[ZZ97] D.-Q.Zhang and K.Zhang. Reserved Graph Grammar: A Specification Tool For Diagrammatic VPLs.
Proceedings of the 1997 IEEE Symposium on Visual Languages (VL '97), pages 292-299, 1997.

10 Appendix

Table 4 MOMS types

T e
Constructor
Value
Reference
Memo Ma
IdentifDict
T esDict
FunetDict
NamesTable
ConstrTable
ValuesTable
Memo Block
... Others

20



Table 5 System initialization and global operations

Defines base types. This interface is in C and depends on previously
defined types. Some examples:
defineBaseType("long_", LONG-, sizeof(long~);
defineBaseType("boolean _", BOOLEAN _, sizeoflboolean ~);
defineBaseT e "date ", DATE, sizeo date
Defines the base operations and functions. This interface is in C and
depends on previously defined types. Some examples:
defineBaseFunction("+", "PLUS", LONG_, 2, LONG-, LONG~;
defineBaseFunction "da ", "da ", LONG I, DATE
Prepares a new MemoryBlock, defines the scope (visibility) of

reviouslv defined variables, es, functions
Releases a current MemoryBlock and all related memory in other
objects (dictionaries, tables) and restores a previously defined
Memo Block
Provides for automatic switching in various functions. For instance,
we look up the variable in a local memory and then in a global
memo (if the variable is not founded vet .

defineBaseFunction( char*
langFunetName, char* internalName, Dint
retum'Iype, int paramCount, ...)

prepareProgramEnv(Uchar scope)

reJeaseProgramEnv( void)

defineA utomaticMemSwitching(Uint
firstMemNum, Dint lastMemNum)

... Others

Table 6 Defining of user defined data types

o eration
ConstrPtr createConstrArray(Uint minIndex, Dint
maxlndex, ConstrPtr ptrToElemConstr)

ConstrPtr createC onstr Funct( ConstrPtr
trToReturnConstr, ConstrPtr trToPararnConstr

ConstrPtr createConstrName(char* aName, ConstrPtr
trToSubConstr
ConstrPtr createConstrPointer( ConstrPtr
trToSubConstr

ConstrPtr createConstrProduet(ConstrPtr
ptrToSubConstrl, ConstrPtr ptrToSubConstr2)

Defines a pointer type to the given type.

ConstrPtr createConstrRecord(ConstrPtr
trToSubConstr

. .. Other constructors
coostrArraySetMinIndex(ConstrPtr ptrToConstr, Dint
minIndex
Dint constr ArrayGetMinIndex( ConstrPtr
trToConstr

... Others

Creates a production of two types (establishes some
relation between them). It is useful to construct a
serious data structure.
Defines a record data type (a set of pairs {name, type}).

For instance, base data e constructors
Modifies the type description (attributes).

Provides details about data type attributes.

21



Table 7 Operations with variables and similar objects

Table 8 Operations with value

gotoProductionLeftConstr(Ref& aRef)

Descri tion
Sets a new value for the obi ect.
Returns a value for the obi ect.
Provides dynamic memory allocation for the object given by

e.
Releases d icallv allocated memo .
Protects a value of the given object against modification, for
instance, teets constants.
Takes off a value rotection.
Sets a virtual mark to element constructor and to a given array
element value. aRef is modified, it refers to the arra element.
Moves the virtual mark to the name constructor.
Moves the virtual mark to the pointer sub constructor and to the
start of value.
Moves the virtual mark to the left subconstructor and to the start
of the corres ondin value.
Moves the virtual mark to the right subconstructor and to the
start of the corres ondin value.
Moves the virtual mark to the start of record.
Moves to the appropriate type and value (list of named types
linked by productions) E.g., search a field in the user-defined
structure .

gotoProductionRigbtConstr(Ref& aRef)

otoRecordConstr(Ref& aRef)
gotoNameInList(Ref& aRef, char* aName)

... Other

22


