
Audris Kalnins
Dr. Compo Sci.

Automation of testing, specification languages
and CASE tools

Habilitation Thesis

Collection of works

Part 2

)

Riga 1997

Also in this series

Functional Programming, Glasgow 1993
Proceedings of the 1993 Glasgow Workshop on
Functional Programming, Ayr, Scotland,
5-7 luly 1993
John T. O'Donnell and Kevin Hammond (Eds)

Z User Workshop, Cambridge 1994
Proceedings of the Eighth Z User Meeting,
Cambridge, 29,30 June 1994
J.P. Bowen and I.A. Hall (Eds)

6th Refinement Workshop
Proceedings of the 6th Refinement Workshop,
organised by BCS-FACS, London,
5-7 January 1994
David Till (Ed.)

Incompleteness and Uncertainty in Information
Systems
Proceedings of the SOFTEKS Workshop on
Incompleteness and Uncertainty in Information
Systems, Concordia University, Montreal,
Canada, 8-9 October 1993
V.S. Alagar, S. Bergler and F.Q. Dong (Eds)

Rough Sets, Fuzzy Sets and
Knowledge Discovery
Proceedings of the International Workshop on
Rough Sets and Knowledge Discovery
(RSKD'93), Banff, Alberta, Canada,
12-15 October 1993
Wojciech P. Ziarko (Ed.)

Algebra of Communicating Processes
Proceeedings of ACP94, the First Workshop on
the Algebra of Communicating Processes,
Utrecht, The Netherlands,
16-17 May 1994
A. Pense, C. Verhoef and
S.F.M. van Vlijmen (Eds)

Interfaces to Database Systems (IOS94)
Proceedings of the Second International
Workshop on Interfaces to Database Systems,
Lancaster University, 13-15 July 1994
Pete Sawyer (Ed.)

Persistent Object Systems
Proceedings of the Sixth International Workshop
on Persistent Object Systems,
Tarascon, Provence, France, 5-9 September 1994
Malcolm Atkinson, David Maier and
Veronique Benzaken (Eds)

Functional Programming, Glasgow 1994
Proceedings of the 1994 Glasgow Workshop on
Functional Programming, Ayr, Scotland,
12-14 September 1994
Kevin Hammond, David N. Turner and
Patrick M. Sansom (Eds)

EastlWest Database Workshop
Proceedings of the Second International
East/West Database Workshop,
KIagenfurt, Austria,
25-28 September 1994
J. Eder and L.A. Kalinichenko (Eds)

Asynchronous Digital Circuit Design
G. Birtwistle and A. Davis (Eds)

Neural Computation and Psychology
Proceedings of the 3rd Neural Computation and
Psychology Workshop (NCPW3).
Stirling, Scotland,
31 August - 2 September 1994
Leslie S. Smith and Peter I.B. Hancock (Eds)

Image Processing for Broadcast and Video
Production
Proceedings of the European Workshop on
Combined Real and Synthetic Image Processing
for Broadcast and Video Production,
Hamburg, 23-24 November 1994
Yakup Paker and Sylvia Wilbur (Eds)

Recent Advances in Temporal Databases
Proceedings of the International Workshop on
Temporal Databases, Zurich, Switzerland,
17-18 September 1995
lames Clifford and Alexander Tuzhilin (Eds)

Structures in Concurrency Theory
Proceedings of the International Workshop on
Structures in Concurrency Theory (STRICT).
Berlin, 11-13 May 1995
Jorg Desel (Ed.)

Active and Real- Time Database Systems
(ARTDB-95)
Proceedings of the First International Workshop
on Active and Real- Time Database Systems,
Skovde,Sweden,9-lllunel995
Mikael Berndtsson and Jorgen Hansson (Eds)

Recent Advances in Temporal Databases
Proceedings of the International Workshop
on Temporal Databases.
Zurich, Switzerland, 17-18 September 1995
James Clifford and Alexander Tuzhilin (Eds)

continued on back page ...

Johann Eder and Leonid A. Kalinichenko (Eds)

Advances in Databases and
Information Systems

Proceedings of the Second International
Workshop on Advances in Databases
and Information Systems (ADBIS)95))
Moscow)27-30 June 1995

Published in collaboration with the
British Computer Society

t Springer

Towards Integrated Computer Aided
Systems and Software Engineering

Tool for Information Systems Design*
I I.

Jariis Barzdins, Ilona Etmane, Audris Kalnins, Karlis Podnieks
\ Institute of Mathematics and Computer Science

The University of Latvia
RIga, Latvia

Abstract

The paper starts with a brief overviewof the current situation in the world
of CASE tools for information systems. Then there follows the outline
of the basic ideas and principles of integrated CASE tool GRADE. The
most outstanding characteristics of GRADE are that the tool is based
on a unified specification language GRAPES and that it supports all
information system development phases including analysis, requirements
specification, design and implementation.

1 Introduction
It is a generally accepted view that complicated software systems including
information systems can be built only using advanced CASE tools (see, e.g.
[5,6, 13]). The aim of this paper is to describe the basic ideas of the integrated
CASE tool GRADE which is meant to support the building of complicated
information systems.

But before we start to outline the basic principles of GRADE we want to
characterize briefly the situation in the world of CASE tools for information
systems.

It is generally accepted that development of complicated systems contains
the following phases: analysis, requirements specification, design and imple-
mentation. The first important characteristic of a CASE tool is the set of
phases covered by the tool. A typical situation is that most of well known
CASE tools (Teamwork from Cadre Technologies, Oracle Case from Oracle
Corp., NEW from Software AG, System Architect from Popkin Software etc.)
cover only some of the development phases, most frequently, analysis only, or
design only, or implementation only. In the contrast, GRADE is oriented to-
wards more or less effective covering of all these phases and towards a seamless
transition from one phase to the next one (like IEF from Texas Instruments
and ADW from KnowledgeWare).

The second significant characteristic of a CASE tool is what aspects of
a system can be modeled by the tool. By modeling a system aspect we
understand more or less' precise and formal description of this aspect. One

"This work was supported by Software House Riga and Infologistik GmbH. Munich

4

of the most popular approaches is to reduce the system modeling to its data
modeling.

By data modeling one understands usually the building of the so-called
conceptual data model in the form of entity-relationship diagram. In this case
the software design and implementation is completely based on this data model.
This approach is appropriate (and even has advantages) for small and medium
size systems. This is due to the fact that the data model alone covers nearly
all design needs for systems of this range and data modeling is a well-examined
area, in addition.

However, things are completely different in the area of large systems. It is
even impossible to understand a large system thoroughly without full-fledged
modeling of-all system aspects including general statical structure of the system,
interfaces between components, data flows, control flows etc.

From this point of view, GRADE is a system which supports comprehensive
modeling of very wide set of system aspects. More precisely, GRADE has
facilities to model:

• the organization structure of a system,

• the so-called business processes performed by the system,

• the interfaces between system components,

• functions performed by separate components.

Data modeling (including ER models) is also supported by GRADE, but
typically it should be used later, in the design stage. The basic paradigm of
GRADE approach is that modeling starts not with data modeling, but with
interface modeling, that is, with precise description of what information enters
the system from outside and what information flows between separate compo-
nents of the system. Data model appears in GRADE only afterwards, as the
result of data flow modeling.

Further, CASE tools are also classified according to use of advanced spec-
ification languages with a fixed syntax and semantics or facilities for simple
capturing of information in the form of tables as well as informal or semifor-
mal diagrams. GRADE is completely based on a unified specification language
GRAPES. The GRAPES language is founded on a graphical Siemens specifica-
tion language GRAPES-8-B [11]. In the framework of the GRADE project this
language has got significant development and is extended by:

• 4GL level implementation facilities (GRAPES/4GL),

• special business modeling facilities (GRAPES/BM).

G RAPES-86 contains advanced facilities for describing system structure and
interfaces of its components (communication diagrams, interface tables). Ac-
cording to GRAPES approach any modeled system is split into subsystems
which communicate only via messages. Therefore it can be regarded that
GRAPES execution semantics relies on the so called parallel communicating
finite state machines model. GRAPES facilitates also a precise description of
the logical structure of messages (data types being defined in data diagrams).

One more characteristic of CASE tools is how early in the system develop-
ment process we get an executable model which can be demonstrated to the

5

customer, i.e., to what degree the prototyping is supported. A special feature
of GRADE is that it supports executable prototypes in very early development
stages and, again it is due to the fact that system models are being built in
GRAPES which is an executable language. Another aspect of GRAPES is that
its modeling features can easily evolve into programming ones, thus supporting
seemlErs transition from system model to its target implementation.

Ye~ another aspect of a CASE tool is the gap between design and imple-
mentation. The world of tools is currently dominated by the approach where
softwa~e design and implementation stages are separated. The design stage
conclud.es(in the best case) only with a software specification, which is trans-
ferred further to manual implementation in the target environment (supported
at best by environment-specific lower CASE tools). This approach has two
serious drawbacks:

• the software implementation is only loosely linked to its specification,
therefore series of software modifications, never reflected in its specifica-
tion, occur during the maintenance,

• surplus costs are required for transforming the specifications into lan-
guages used by lower CASE tools.

In principle it is impossible to avoid completely the gap between modeling,
design and implementation. However, this gap can be significantly reduced
if the CASE tool is based on a unified specification language, as it is in the
case of GRADE. In this case a system specification is refined further with each
phase of the development process until finally it evolves into a formal system
description, which can be compiled to the appropriate target environment. As it
is well known, this is the approach used in telecommunication system area where
SDL language is used as both specification and implementation language (see
[12, 15]). GRADE with its GRAPES specification language is some attempt to
use the same approach in the area of information systems, though the situation
is much more complicated in this area. Yet another aspect where one benefits
from the consistent use of one language is that the system specification may
serve as a complete and correct documentation for the system implementation.

2 Basic components of GRADE toolset
GRADE toolset contains a vast number of different components which are
closely coupled together. These components can be grouped into three large
groups:

• Registrator,

• Business modeling components,

• Design and implementation components.

The Registrator component (designed by U.Sukovskis) is meant for ini-
tial capturing of information during system analysis phase. Registrator sup-
ports quick and easy information entry during interviews. All system objects
are classified into active objects (performers), passive objects (messages and

6

stored data) and activities (functions), with simple predefined relations be-
tween them. The raw data afterwards can be automatically transformed into
initial GRAPES models.

In a certain sense the Registrator ensures the functions of Repository in
GRADE. In this paper we will not concentrate on the Registrator, but the
main attention will be devoted to Business modeling and Design and imple-
mentation components, in the development of which the authors of this paper
have participated essentially.

Business modeling and Design components will be described in next sec-
tions.' ,.

3 Business modeling components
Business modeling components are aimed at two goals:

• to define the organisation structure of an enterprise,

• to define business functions to be performed.

The GRAPES sublanguage used in this component is called GRAPES-BM.
It is supported by modeling and simulation in GRADE toolset.

The organisation structure is defined using the following predefined en-
tity classes:

• organisation unit,

• position,

• resource (equipment).

Each of the entities may be either single or multiple (representing a group of
similar entity instances). A number of predefined relationships are introduced:

• consists of,

• has instance,

• uses.

Natural attribute sets for all entity classes are also predefined.
The organisation structure facilities cover the possibilities of OMT [14] to a

certain degree, since the predefined classes and relationships encompass a large
part of a general enterprise model to be described in OMT (though arbitrary
classes and relationships are sometimes necessary).

The graphic editors in GRADE support an easy entry and modification of
the organisation structure, an easy-readable tree-like information (ORG dia-
gram) representation is used.

The business functions (called business processes) are defined using
a special graphical sublanguage. To a certain degree this language is bor-
rowed from [1], though it is significantly extended in the framework of GRADE
project. The basic element of this language is the so called Task Communica-
tion Diagram (TCD). This diagram describes how a business process is split

7

into separate tasks, the intended sequence of these tasks as well as information
and causuality links between these tasks. The links are represented via events.

Each task in TCD is associated with its triggering condition. The triggering
condition is a boolean expression on possible incoming events of the task. An
incoming event may be the reception from either of control from another task,
or of - message.carrying some data to be processed by the task. An incoming
event may also be a timer, e.g., "at 8.00 AM daily". Event properties themselves
are deslFribed in a special Event Table (ET). As soon as triggering condition is
true, a \new instance of the task is started.

The\details of a task are described by the following sections of task descrip-
tion: "

• Type of the task,

• Performer,

• Resource,

• Informal description,

• Objectives,

• Constraints,

• Execution mode,

• Attributes.

Types section specifies the type of the task; it is provided that tasks may
have types posessing different sets of attributes. .

The Performer and Resource section specify the necessary performers and
resources (and their quantity) for the task to be executed. They both are
boolean expressions on objects from the appropriate ORG diagram.

The Attributes section specifies the values of task attributes. These at-
tributes may be either predefined, like Duration and Cost, or user defined. The
attribute values may be defined as constants or expressions on other attributes,
or data from incoming events, thus vital data dependencies also may be defined.

The other sections are more or less informal.
When a task instance execution terminates, the specified output events

(messages) are generated. If necessary, the data coritents of these messages
may also be specified. Tasks may have also decisions, in order to define which
output events are to be generated, according to the action results of the task.
Decisions may be either informal (probability based), or formal, described by
boolean expressions on task data.

Tasks in a TCD diagram should represent not only activities to be performed
by information system under construction, but also all manually performed
tasks. Namely this feature is characterized by Execution mode section.

As it is common is such systems, TCD diagrams support also multilevel task
structuring. Top level tasks define the main business functions of an enterprise,
and they are gradually refined into smaller tasks via subsequent TCD diagrams,
until we reach the elementary task level. In the current version of G RAPES-
BM the complete specification of an elementary task is informal (via sections

8

Informal description, Objectives, Constraints, Execution mode). In future ver-
sions of GRADE it is planned to introduce also formal specifications of such
tasks in rule-based form. This approach, though in a slightly more theoretical
manner, is outlined in [2]. Currently the formal task description elements (trig-
gering, performers, attributes, decisions) yield an abstraction level sufficient for
evaluating (via simulation) the overall system performance on time/cost basis
and the necessary resources.

Historically the GRAPES-BM language has been inspired by Message Se-
quence Charts used in SDL [4} to describe behavior scenarios. GRAPES-BM
significantly.advances this idea branching structured scenarios. GRAPES-BM
bears also some similarity to event-process-chain model [3]. On the other hand,
GRAPES-BM facilities cover the traditional data flow modeling and dynamic
modeling present in OMT approach [14].

The tool support for business modeling is both modeling and simulation ori-
ented. The first direction is supported by' very user-friendly editors for ORG,
TCD and the other auxiliary diagrams/tables, with repository based automatic
prompting and automated information transfer from diagram to diagram. Vari-
ous automatic layout styles for TCD are supported. Thus very fast information
entry and high degree of information integrity (with no model data ever entered
twice) is ensured. Explicit global model consistency check is also supported.

The dynamic simulation feature supports a wide range of numerical esti-
mates on the same model built for modeling purposes. Default statistical re-
sults include various time and cost. related performance statistics for the whole
model and its elements, including workloads for performers, queue length for
tasks etc. User defined statistics is based on user defined task attributes. Re-
sults may be displayed in both tabular and business chart manner. Thus a lot
of model performance tuning may be done at a business modeling stage. A sort
of TCD diagram animation is also supported to make model behaviour easily
observable.

A certain amount of information from business model can be transformed
into initial design model. A more complete information transfer will be sup-
ported in the next version of GRADE.

4 Design components
These have been historically the first components which were present already
in the first version of GRADE. The components are based on the language
GRAPES/4GL which can be used, on the one hand, as a design specification
language and, on the other hand, as an implementation language having all
typical 4GL level features.

As it was described above, business model describes a system in terms of
business tasks, where one business process is performed, as a rule, by several
performers. Now, when we pass to design phase, the main interest is what
activities are to be performed by one performer. Especially the interest is
focused on performers which are components of the information system under
development. The behavior of such a performer may be obtained as a sum of
all tasks where the performer participates.

According to GRADE methodology, the design phase starts with structural
design. During the structural design the main GRAPES language feature to

9

be used is Communication Diagram (CD). GRAPES CD diagrams bear some
similarity to block diagrams in SDL [4] and, in fact, are inherited from there.
CD diagrams, in contrast to TCD diagrams used in GRAPES-BM, represent
the splitting of a system into separate objects (which actually correspond to
performers in BM representation) and communications between these objects
by means of so-called communication paths. Each communication path is as-
sociated with its Interface Table (IT) which describes the data structure of
messages sent along this path.

Thus by means of CD diagrams hierarchical decomposition of a system into
its subsystems and then into lower levels is easily described until elementary
objects are reached. To facilitate the description of message passing between
several hierarchy levels, the so-called "channel concept" (which allows one to
define the actual message sender/receiver freely and thus to build several IT's
simultaneously) is used.

For complicated systems, according to GRADE methodology, the design
is first performed at logical level. It means that only the data structure of a
message is defined, but not the means of physical transferring this message (in
most cases, the message will be transferred via screen forms). Thus the hierar-
chical decomposition, starting from top level objects of a system (departments,
management, warehouse, etc.) ends with the lowest level (elementary) objects
which are further refined by process diagrams. Thus, the next key element of
GRAPES/4GL language is Process Diagram (PO). Process diagram describes
in a graphic (and therefore, easy readable) form the behavior of a separate el-
ementary object. The main components of a process diagram at this stage are
message waiting/sending, which makes decisions upon message contents, and
elementary data processing.

In addition, access to data bases may also be described at this level. It
should be noted that in parallel with system decomposition GRADE supports
also data design, and the conceptual data model should also be designed in
the form of an extended entity-relationship model (ER diagram), the necessary
data types are defined in a graphical form in DO diagrams. Therefore logical
data manipulation aspects may also be designed at this level using advanced
4GL style data manipulation facilities referencing directly the components of
the ER model.

The tool support of design components again consists of advanced graphical
editors for all diagram types. The key feature of all these editors is high qual-
ity automatic layout of diagram elements, which may be easily combined with
manual layout for some diagram parts. The second feature, already mentioned
in BM support, is automatic prompting and consistency support. The prompt-
ing is crucial in efficient use of a PO editor where GRAPES language syntax
has more textual elements, which could be otherwise difficult to remember.

The other most important tool at this stage is prototyper which ensures
the model execution. When a logical design model (consisting of CD. IT, DO,
ER, PD diagrams) is built, it can be executed in order to make some dynamic
validation, to demonstrate it to the customer, and so on.

The logical design phase (which may be skipped for smaller systems) is
followed by physical design phase. The same above mentioned set of diagrams is
used in this phase. In addition to this, new types of diagrams - screen and report
forms are also used to define the real user interfaces of the system. Starting
from version 2.1, standard Windows GUI forms may be defined, containing all

10

traditional elements and facilities. In accordance with form design additional
types of statements - 4GL style screen Input/Output statements are also used
in PD diagrams, in order to manipulate these forms.

Now the prototyper may be used also to prototype the user interfaces of
the system, in order to evaluate (by customer) real input/output forms, their
outlook, ergonomics and so on. It should be noted that in principle screen
interfaces may be designed very early in the design process, even when there are
no real data. Thus various types of prototyping may be freely mixed up, since
the same, language and tool is used for all of them. Thus the methodology can
be adapted to any specific user demands, and, ifit is required so, the design and
prototyping may be started from user interfaces and even the form dynamics
may be prototyped in that case (with fixed data, as a rule).

When the system design model is validated thoroughly via prototyping, its
implementation starts. Again the same GRAPES/4GL language is used, but
now in its full scale as a programming language. Namely, all advanced ER-
based data manipulation facilities are used. All input/output dynamics details
are described in the same way, in order to define all exceptional situations, data
validations and so on. The prototyper again is used, but in a role of language
debugger, with advanced debugging facilities. Then the validated implementa-
tion model is passed to code generator which generates actual code for one of
the selected target environments. Currently, in version 2.0, Informix database
environment is supported either for MS DOS, or UNIX. In the next version
2.1 the Oracle environment will be supported, with the generated application
running as client in MS Windows. For all environments, the GRADE code
generator generates C code with embedded SQL statements, which is automat-
ically compiled into ready-to-use applications. No code maintenance at C level
is necessary. Sufficient efficiency of the generated code is guaranteed, some
manual optimization hints may be added to ER model definition before the
code generation.

5 Current state of GRADE tool
Since 1993 version 1.0 of GRADE is being distributed by Siemens-Nixdorf [7,8]
This version does not support Business modeling. Since February 1995 version
2.0 is being distributed [9, 10], this version supports Business modeling and
multiuser development mode. Version 2.1 is in preparation (planned delivery
December 1995). This version will contain Graphical User Interface (GUI)
screen forms, advanced Business modeling facilities and extended data dic-
tionary facilities. The tool performance will also be significantly improved,
especially for multiuser network environment.

Acknowledgements
The GRADE toolset is the result of intensive labour of about 30 developers'
team during several years. The authors of this paper wish to use the opportu-
nity to thank all their collegues for mutual understanding and assistance during
the project development. They also wish to gratefully acknowledge Software
House Riga and Infologistik for the financial support of the project.

11

References
[1] A. Aue and M. Breu. Distributed information systems: an advanced

methodology, IEEE Transactions on software engineering, 20(8):594-605,
~994. I

[2] J. Barzdit}s, G. Barzdil}s, and A. Kalnins. Rule-based approach to business
~odeling. In Proceedings of the SEKE95, 1995.

\
[3] W. Brenner and G. Keller, editors. Bussiness Reengineering mit Standard-

software. Campus Verlag, 1995.

[4] ccrr. Message Sequence Charts., 1992. Recommendation Z.120.

[5] M. Chen and J.R. Normannn. A framework for integrated CASE. IEEE
Software, 9(2):18-22, 1992.

[6] A. Fugetta. A classification of CASE technology. IEEE Computer,
26(12):25-38, 1993.

[7] GRADE Version 1.0 Language Description, 1993.

[8] GRADE Version 1.0 User's Guide, 1993.

[9] GRADE Version 2.0 Language Description, 1995.

[10] GRADE Version 2.0 User's Guide, 1995.

[11] G. Held, editor. Sprachbeschreibung GRAPES: Syntax, Semantik und
Grammatik von GRAPES-86. Verlag Siemens AG, 1990.

[12] V. Klick, J. Patti, and M. Todd. Experience in the use of SDL/GR in
the software development process. In SDL91: Proceedings of the 5-th SDL
forum, pages 449-457. North-Holland, 1991.

[13] P. Loucopoulos and B. Theodoulidis. CASE methods and support tools.
In P. Loucopoulos and R. Zicari, editors, Conceptual modeling, databases
and CASE: An integmted view of information systems development, pages
373-388. John Willey & Sons, New York.

[14] J. Rumbough et al. Object oriented modeling and design. Prentice Hall,
1991.

[15] A. Zaim and F. Calikoglu. Using SDL in a commercially available wide
area coverage trunking mobile radio system development. In SDL9j: Pro-
ceedings of the 6-th SDL forum, pages 41-49. North-Holland, 1993.

,'v:
s. Databases and Information Systems
(/

Second International Baltic Workshop on

organised by

Institute of Cybernetics
TaUinn Technical University
CIDEC of the Estonian Universities

sponsored by

Estonian Informatics Fund
Baltic Fund of VLDB Endowment
Swedish Institute for Systems Development
The Baltic Institute of Finland

Hele-1Mai Haav, Bernhard Thalheim (Eds.)
\

Databases
and

Information Systems

Proceedings of the
Second International Baltic Workshop
TalliQIl, June 12-14, 1996

Volume 2: Technology Track

Business Modeling Language GRAPES-
BM and Related CASE Tools

I A.Kalnins, J.Barzdins, A.Auzins,
I.Etmane, A.Kalis, K.Podnieks, J.Tenteris, E.VIlums, A.Zarins

\
University of Latvia

Institute of Mathematics and Computer Science
Rainis Blvd. 29, Riga LV-1459, Latvia

and RITI, Skanstes Str. 13, Riga LV-lOB, Latvia

Abstract
Business modeling language GRAPES-BM is a semifonnal graphic language for modeling
and simulation of complicated business systems (production processes, offices, information
systems). GRAPES-8M relies on such basic concepts as task, event, performer, triggering
condition, etc. and contains advanced facilities for describing system behaviour ("business
process"). GRAPES-BM contains also advanced facilities for modeling the static structure
of a system. CASE tools based on GRAPES-8M support graphic modeling and simulation.

1 Introduction

The term Business Modeling (BM) has become a buzzword during last few years. There is
no unique definition of BM. Different people understand different things under this term.
There is, however, something common to all these approaches. BM is closely related to
another buzzword, namely, Business Process Reengineering (BPR), and constitutes the
most well understood part of it. Any BM approach tries to present semiformal graphical
means for describing behaviour and structure of complex business systems. This descrip-
tion is in the form of interrelated diagrams of various kinds. The main use of such descrip-
tion is to comprehend thoroughly and unambiguously such business systems.

In order to understand the behaviour of a system, it is necessary to understand activi-
ties within this system, causal links between these activities, their stimulus and results. In
most cases the behaviour is being described by diagrams consisting of symbols (rectangles,
bubbles etc.) representing activities, various connecting lines representing the links and:
possibly, some auxiliary symbols.

The first such formalism was Data Flow Diagrams [I], which were introduced for other
purposes and only sometimes are used for BM. A number of similar more or less specific
formalisms followed; among them function dependency diagrams [2], event schemas [3],
EPC diagrams [4.5], Business process diagrams [6] etc. At the given moment none of the
formalisms is universally accepted.

GRAPES-BM, described in this paper, is also a semiformal approach for describing be-
haviour and structure, using similar graphic notation as it basis. The main difference from
all abovementioned languages is the level of formality. While in most of the existing ap-
proaches [2, 3, 4] the formality level is rather low, in GRAPES-BM it may be varying,

3

from very informal use up to a very formal, nearly program-like description of a business
system.

The other important criterion is the possible tool support in the analysis of the de-
scribed business system. Again the more formalized is the approach, the richer set of tools
is available. In most cases, e.g., [5], the tool support reduces to simple consistency
checking, reporting and some static evaluation, most frequently, finding the critical path in
a weighted flow graph. The other tools offer dynamic prototyping and simulation as the

\}~lain analysis method. Among the known BM systems Designer 2000 [6] should be men-
. boned.

GRAPES-BM with its support tool GRADE is mainly dynamic execution oriented.
:Even very informal GRAPES-BM models may be executed in a sense thus giving much
deeper insight into system behaviour and its possible bottlenecks. On the other hand, for
highly formalized models precise simulation of quantitative aspects is possible in a way

. close to specific simulation languages.
Now some words on history of GRAPES-BM. Development of GRAPES-BM started

with A.Aue and M.Breu paper [7]. Afterwards M.Breu, A.Mraz, N.Richter, at aJ
(European methodology and System Centre) have issued several preprints where the con-
cept was developed further. On the basis of these works G.Barzdins, J.Barzdins and
A.Kalnins created GRAPES-BM, version 2.0, which was implemented in the tool
GRADE 2.0 [8, 9]. Usage of GRADE 2.0 revealed further development possibilities. As a
result, a substantially new version of the language, called GRAPES-BM, version 3.0, was
created. GRAPES-BM described in this paper corresponds to version 3.0. In the devel-
opment of this language version and corresponding tool set (GRADE 3.0), besides the
authors of this paper, the following people have made significant contribution (in alpha-
betic sequence):

D. Foerster (SNI - Germany), E. Knoener (SNI - Germany), C. Rositani (SNI - Italy),
U. Sukovskis (RITI), A. Teilans (RITI), M. Weiss (SNI - Germany), U.O. Ziemelis
(INFOLOGISTIK).

2 Goals of Business modeling in GRAPES-BM

First, let us be more specific towards what kind of universe of discourse GRAPES-BM is
oriented. Classical system specification languages e.g. SADT, IEF[ll] are mostly aimed
to semiformal description of Information systems (IS) in their early development
stages. On the contrary, BM approach is intended to describe a significantly wider class
of systems. Typical examples are large organizations, complete enterprises, production
systems. Only part of such systems is IT related, the other part is completely human re-
lated, like it is, e.g., in airline ticket reservation system. We follow the latest traditions and
call such systems Business Systems (BS). Then IS can be considered as a part of such
BS. The main task ofGRAPES-BM is to support convenient description ofBS.

The requirements for the language are extremely contradictory:
• on the one hand, the language should be easy-to-read for anybody, including top

managers
• on the other hand, it must be formal enough to support unambiguous interpreting by

IT professionals and to permit dynamic execution and simulation for obtaining nu-
meric evaluations.

4

GRAPES-BM seems to have succeeded in combining these two requirements. The
formal and informal aspects of language are so naturally coupled, that even a very formal
description may be understood quite intuitively (certainly, after some language training).

The formal goals of developing Business models in GRAPES-BM are to facilitate
Business process reengineering by
• provi~g precise and readable at the same time business system description, as the

basis for main reenginering decision making
• investigating alternative ways of behavior of the BS, using various prototyping and

animati~n facilities
• simulati~n of the model to reveal possible bottlenecks and measures to avoid them.

It should be stressed that extension of a GRAPES-BM model to a simulatable one re-
quires only adding some numeric attributes in the model already built.
· If BS includes also an IS which should be reengineered, than relevant parts of the de-
veloped BM serve as a formal high level requirements specification for the new IS devel-
opment. GRAPES-BM is well suited for this purpose, Certainly, GRAPES-BM should
not be considered as a design language for IS, another GRAPES family language
GRAPES/4GL [8] should be used there instead (see also [10]).

3 Main concepts of GRAPES-BM

Business modeling in GRAPES is based on two fundamental concepts: tasks and events.

3.1 Tasks

According to Websters dictionary Task is defined as "a piece of work". Any activity
which is performed in a business system to be described is considered to be a task. Tasks
may be very large - defining one basic activity of an enterprise and very small - like signing
of a document. Large tasks are decomposed into chains of smaller ones using Task
Communication Diagrams (TCD). These diagrams are the basic ones in GRAPES-BM.
Each task has its name. But it may have other formal attributes like
• performer of a task
• triggering condition
• duration.

Graphically (in TCD diagrams) tasks are represented by rounded rectangles. This rec-
tangle shows the task name and its basic attributes, e.g., performer.

There are two types of tasks (examples are shown in Fig. I):
• ordinary (transformation) tasks
• decision (branching) tasks.

Decision tasks have two or more named decision symbols attached to them. During
execution of them one of the alternative outputs are chosen.

Fig. 1 Examples of tasks

5

It should be mentioned that concept of task is present in any business modeling ap-
proach, only the terminology is quite different. Tasks are called functions in function hier-
archyand dependency diagrams [2], process steps in ORACLE process diagrams [6], op-
erations in Martin's OOA event schemas [3] etc.

3.2 Events
)

, The other fundamental concept of GRAPES-BM is event. Events represent anything that
\ -can happen in a business system. Events are also the other principal element of Task

~ Communication diagrams. They are represented by arrows leading from one task to an-
.other.
,..' There are several categories of events:
• message events

Events with category "message" correspond to objects produced by one task and
transmitted to another. This concerns materials (e.g., paper, part of machine) and pure
information (invoice, bill, report).

Message events always have name which is depicted next to the arrow.
Message events can carry information with them. The information is represented as

datatype associated with the event. The association is described in Event Table (ET) - an
object global for the whole business model.
• control flows

They express the fact that one task is completed and the next task may start. Control
flows are represented as unnamed arrows.
• timer events

These are the only events not created by tasks. They appear in certain time moment
from an abstract timer which is represented as a small clock and go to the task pointed by
the arrow. Each timer event has a name. The exact definition oftime moments for a timer
is given in the Event table.

Fig. 2 shows examples of events as they are depicted in TCD diagram.
One task can produce more than one event at the output. Similarly,one task can have

several input events arriving from different tasks.

Fig. 2. Examples of events

3.3 Task details

The next fundamental concept of GRAPES-BM language is triggering condition. It is
associated with a task, as one of essential its properties. Triggering condition specifies
which combinations of input events are necessary to start the task. This condition is speci-
fied as a boolean formula containing ANDs and ORs on event names e.g., Order AND
Payment.

The general event semantics principle in GRAPES-BM is that incoming events form
FIFO queues in front of a task (separate queue for each event name). When triggering

6

condition becomes true,the task consumes the relevant set of events from its input queues
and starts execution. In the simplest case the triggering condition may be reduced to sim-
ple AND (or even "&" sign), which means ANDing all possible input events (i.e., one
from each queue). Control flows also are implicitly ANDed in this case (i.e., all of them
must be present). Similarly, simple OR (or "I" sign) means that anyone of input events
(mcluding control flows) is sufficient for triggering. If any of the required events is not
present, the task waits for its arrival.

The next important part of a task is its performer. Performer specification consists of
one or mdre performer names connected by AND and OR connectors. Performers may be
organizational units, persons (positions) and equipment (resources). The available per-
formers art.d their number are specified in the ORG diagram of the business model. The
requested performers must be free before the task can really start, therefore the triggering
condition is\only the necessary condition for a task to start.

Duration\ofthe task specifies the required execution time, e.g., task Order "'processing
in fig. 3 takes exactly I hour.

Fig. 3 shows an example of completely specified task in a TCD.

Order]rocesslng
AND
ci8ik & PC I-P;;re -o;d;" I
"lh" l~us...:~__ ~I

Fig. 3 Completelyspecifiedtask Fig. 4. External task

Once task has started, it performs its main activity, its "piece of work", which is not
formally specified in GRAPES-BM When the task is completed, it possibly takes one of
its decisions and sends its output events.

More of task's formal and informal details may be described in its Task Specification
Diagram (TSD). In particular, extended informal description of a task may be given
there.

In conclusion one more remark on tasks. In any behaviour description there are tasks
which are not part of the business system under consideration, e.g., customer preparing an
order. Such tasks are called external tasks in GRAPES-BM. They are represented using
dashed lines for task symbol. Fig. 4 shows an example of external task:

3.4 Data manipulation

Data manipulati in GRAPES-EM on is described only at informal level. There are two
special symbols for that purpose.

Data store stands for a persistent (independent from the current task) storage of data
or materials. Typical use of data store is for existing databases in the IS part of a business
system. In that case its contents can be described in detail by Entity-Relationship (ER)
diagram, which also may be a part of a business model in GRAPES-BM. On the other
hand, data store may also represent informally a stock of goods. Data stores have names
in GRAPES-BM, and they are connected to tasks by lines called Access Paths.

Data Object is supposed to represent just one object, and with a shorter life time - just
one business transaction. Data object again may represent a physical object or data object
(global variable) at IS level. In the latter case its data type may also be specified (with type
definition being given in a Data Definition (DD) diagram, which may also be a part of
business model).

Fig. 5 gives an example of data store and data object.

7

Customers " [Check Order J~--ITemp_Order I
. Clerk & I~

Fig. 5 Data store and data object

4 First Insight into Business Process

\ The main goal of business modeling is to describe both readably and concisely a business
.. of. system behaviour. As it was already pointed out, the main sort of diagrams for this pur-

'pose is Task Communication Diagram (TCD), describing a behaviour of large task in
~terms of
• smaller tasks
• events
• data stores and data objects.

As a rule, from the informal point of view such a description represents a reasonable
business process in a system. Therefore the concept of business process is the informal
equivalent of the formal TCD concept.

Let us consider an example of a simple business system, namely, a smaIloffice provid-
ing consultations for customers. The office consists of a chief, a secretary and a PC. Fig. 6
presents a business process describing just one aspect of the office activities - processing
of incoming mail and providing written answers to queries of customers. The office re-
ceives letters (written queries), secretary registers them and afterwards the chief and sec-
retary together make the answer. The secretary uses PC to type and print the answer
which is sent to customer at the end. The actions performed by customer and Information
Source are external to the office and therefore are shown by dashed lines.

5 Precise Semantics of Business Process. Concept of Transaction

The example in the previous section could be understood and even analyzed quite intui-
tively.

However, GRAPES-BM has completely precise semantics defined. This semantics may
be used for unambiguous manual validation of business models and for their execution by
GRADE tools, i.e., simulation, prototyping, animation. It should be emphasized that fig. 6
constitutes a syntactically correct and executable TeD diagram (certainly, in the context
of some definition diagrams to be discussed in section 7).

Timers in a TCD diagram are spontaneously active elements, i.e., they send their events
to the appropriate tasks. These tasks are then triggered and afterwards they send their re-.
suIting events to other tasks. Thus the whole business process gets into motion. There
may be as many concurrent instances of any task active as availableperformers permit it.

But there is one completely novel element added to this relatively straightforward se-
mantics. This is the concept of Transaction.

Intuitively a business transaction is a chain of activities initiated by some external
stimulus and ended at the moment when further events are beyond our scope of interest.
In the example of Fig. 6 the transaction starts with the arrival of a new query from the
customer. To be more formal, it starts from the moment when timer Regularly starts the
external task Send _Query. The transaction is completed when Answer is sent to external
task Receive_Answer.

8

(!) Regularly

AlHM \

Fig. 6 Example of business process (TCD diagram)

The concept of transaction is fundamental in business modeling, since it helps to find
out and analyze essential groups of activities inside a business system.

The main problem here is to find a simple formal definition of transaction which would
coincide with the intuitive understanding in most cases.

In GRAPES-BM the following definition is used:

9

The transaction starts only when a task is started only by events coming from outside
the business systems.

Two types of events in GRAPES-BM are defined as such "outsiders":
• timers, described already in the previous section
• spontaneous events. Any event may be made spontaneous in the TSD diagram by as-

signing generator definition to it. These generator definitions have the same syntax as
timer definitions. Spontaneous events are used to hide away a timer in TeD diagram
and to make the impression that the event comes right from an external task.

\ , Thus, in fig. 6, the timer Regularly starts a transaction since the task Send JJuery is
-; triggered solely by it. But the timer At 5 PM starts no transaction, since For-
;ward _to_Chief requires another (internal) eve~tQuery in order to be triggered.

, . The precise description of transaction behaviour is based on so called Transaction
Identifier (TID). At the beginning of each transaction the starting event is given a unique

, TID. This number will be used throughout the transaction, all events and tasks in the cor-
responding task chain will be tagged by it.

There is no explicit use of TID. However, it participates implicitly in each triggering
condition. AND condition will be true only if all incoming events have the same TID.
Thus only matching groups of events belonging to the same transaction can trigger a task.
In fig. 6 only those Investigation results which correspond to the Query will trigger the
task Analyse Answer,

Transaction is completed when there are no more events in the model with the given
TID. In some occasions default rules are insufficient. To cope with these situations the
following options of tasks may be used:
• NOSTART for preventing an unwanted start of transaction
• START for explicit start of transaction
• END for explicit end
• NOTID for explicit stripping off the TID from an event.

6 Description of Organization Structure

So far the description of system behaviour in GRAPES-BM has been outlined. The other
important business system aspect is structure description.

In GRAPES-BM this is done via ORG diagram. Fig. 7 shows the ORG diagram for the
office example.

The example should be self-explanatory, since it strongly reminds traditional org-
charts. --

Fig. 7 Example of ORG diagram

10

More formally, ORG diagram may contain
• organizational units (company, department, group etc.)
• positions (chief, accountant, secretary, programmer etc.)
• resources (any kind of equipment, like car, PC etc.)

Any of the elements may be single or multiple, for multiple elements the number of
available instances may be specified (otherwise unlimited number is available).

Organization structure is depicted as a tree (more precisely, as a set of trees) built from
the above~entioned nodes. The edges of the tree represent:
• contai~s relationship between unit and its subunits, unit and its positions and resource

and its components
• owns relationship between unit and resource and between position and resource.

The same line type is used for both relationships since the proper relationship can al-
ways be deduced from the context.

A leaf of a tree may be refined further by another tree.
Any of the organizational structure elements may have the following additional attrib-

utes:
• type (internal or external)
• competence list
• availability (as time interval)
• cost per hour
• efficiency level
• employee name (for single position only)

It should be remarked, that though GRAPES-BM is not an 00 language, ORG dia-
gram facilities permit one to depict a great deal of information typically found in 00 mod-
els (e.g., OMI [12]), for example, subtyping may be represented via competence ..

All ORG diagram elements have also precise formal semantics, which is taken into ac-
count when TeD diagrams with performer specifications in tasks are being executed.

7 Business model of System

The previous sections have given some insight into two most significant diagrams of
GRAPES-BM - Business process (TCD diagram) and ORG diagram. Besides that, several
types of diagrams have been simply named: ET (event table), TSD (Task Specification
Diagram), ER and DD diagrams.

A complete Business model is a hierarchy of abovementioned (and some other) dia-
grams. The hierarchy itself is defined in a model tree. Fig. 8 shows the model tree for the
office example. Model tree may be considered as a table of contents for the model.

The top line contains the elements global for the whole business model:
• ORG diagram
• ET table
• CMF table

ORG diagram has been discussed briefly in the previous section.
ET table has a row for definition of each event used in the business model. The most

complicated are the timer definitions.GRAPES-BM provides formal means for timer defi-
nitions, e.g.,
AT_5]M could be defined as l1ME(.••.•.• 17.'00"),
Regularly as REPEl1110N("Jh:30m ").

11

Message events may have their data types specified (record or elementary types may be
used). Competence table (CMP)is a supplement to ORG diagram, listing possible com-
petences of ORG elements.

The main part of model tree is constituted by primary tasks (top-level TSD diagrams)
and their refinements. There is only one primary task QueryProcessing in the example. In

. general, primary tasks correspond to the main relatively independent functions of an en-
\...terprise. Each primary task normally is refined by its TeD diagram (business process).
\ "shown to the right of the corresponding TSD diagram. .

C The next level of refinement is defined by the set of subordinated TSD diagrams corre-
'sponding to all tasks mentioned in the TeD diagram.

1.9i!iI. ~ _ [§fJ
Ilmil • 0J 0 [fQJ0

[@jo0:Jo[fQJO
[@jo0:JO[fQJo
[f£E]o[K]o[![]o
[f£Q]o[KJo[fQJo
!TcO!O[KJO [fQJo
[@jOrnJo[fQJo
[f£Q]o0JolEQJo
[j]Q]ornJo[f[]O
[j]Q]ornJO[fQJO
ITeolo [K]0 [![] 0

[@]o[K]o[&]O
.[f£Q]0 [KJ 0 [fQJ0
[f£Q]0 [KJ 0 [fQJ0
[@jo[KJo[fQJo
[@jO[K]O[1[]O
[f£E]o[K]o~o
ITeolO 0J 0 [f[J 0

, • TASK Query Processing

• TASK Analyse flnswer

• TASK Analyse Query

• TASK _., question

· • TASK Archive Answer

'. • TASK Assess Query

• TASK ColI •• Break

• TASK Detect Irtormation SoLrCe

• TASK Forward Inmedlately

• TASK FOlWllrd to Chief

· • TASK Prepare Draftflnswer

• TASK Receive Answer

• TASK Register Query

..: .TASK Send_er

· • TASK Send Query

• TASK Send Quesllon

• TASK Send 10 eustolT8r

· • TASK Type Answer

Fig. 8 Model tree

In the simplest case a TSD diagram contains the same formal attributes of task as
those visible in the TeD plus extended informal description of the task. In addition, the
task's interface to its environment is also visible in TSD via so called referenced tasks.
Fig. 9 shows the TSD diagram for the task Analyse -.f]uery. In general case, however,
TSD diagram may contain significantly more information (briefly sketched in the next
section) which has special value for simulatable models.

The Models with one primary task and one TeD diagram refining it are called flat
models. However. in general case the situation is much more complicated. Each task in
the TeD diagram may be further refined by its own TeD diagram (placed in the tree in the
same line as the corresponding TSD diagram). The refinement is continued until we obtain
the lowest level tasks which are called elementary tasks. For elementary tasks their for-
mal and informal characteristics can only be specified in their TSDs. The choice of ele-
mentary tasks depends on the specific application of business modeling. The abovemen-
tioned language facilities show how traditional structural refinement is supported in
GRAPES-BM.

13

\

\
Query-------- --=---,1

~ ~~~~~Ia~Iy=.J :1~:/~rw~~~~I'ie~~

Fig. 9 Example of TSD diagram

One more type of diagrams to be mentioned is attribute tables (ATR). They are
global for the whole model, and there may be several named ATR tables. Each ATR table
describes user-defined attributes for the given task type, which is equal to the AIR name.

Zero or more DD diagrams are also global for the whole model. They are placed in
model tree above TSD diagrams.

8 Advanced Features of GRAPES- BM

The items discussed so far have been more or less related to semiformal business descrip-
tion and analysis.

However, GRAPES-BM permits to describe precise behaviour of business systems
from the control point of view, including some data-related dependencies. This layer of
GRAPES-BM actually constitutes a sort of process simulation language.

The basis of aU these features is the assumption that events can carry data with them,
and the data may be "processed" by tasks, used in decisions and transferred further to
output events.

The following features are available:
• advanced triggering conditions, like

- Letter AND AU Answer WHERE Letter.Id= Answer.Id
- Letter AND <5> Comment

• detailed description of task decisions
- by their probabilities, in exclusive or nonexclusive manner
- by precise formulas which may depend on data carried by triggering input events
and on numeric attributes of the task

.• task duration dependent on its input data
• formulas for setting values of user-defined task attributes (then the task must have

one of the types defined by ATR tables of the model). Formulas may reference data of
input events and other attributes

• formulas for setting data (record fields, as a rule) in output events of the task, with
formulas referencing similar class of values. There is a special convention of data
passing , namely, if an output event has the same name as an input event, data are
passed without any formulas specified

• repetition factor for output events.

'1

These described features may appear in TCD as well as in TSD diagrams. The
"computational aspects" are taken into account only for elementary tasks.

The described features allow one to describe adequately various control structures pre-
sent in business systems, like:
• iterative looping depending on event data
• centralized control depending on some global data
• time-out control of incoming events

\
The "programming" of such control structures is sufficiently simple. The methods

fUsed remind slightly those used in "programming" of Petri nets. Significant role here is
played also by transaction concept. In most cases the precise control aspects may be sim-
iPly added to models originally built for pure qualitative analysis.

.9 Short Overview of GRADE Modeller Tools

The full support ofGRAPES-BM language is included in the new version 3.0 of GRADE
Modeller toolset.

The following components of GRADE are available:
• tree and repository management
• advanced graphical editors
• syntax analyzer
• GRAPES-BM language interpreter (BM-simulator)
• animator
• trace browser

A key element in GRAPES-BM support is the graphical editor set for all types of de-
scribed diagrams. Editors make model development simple and attractive due to the fol-
lowing features:
• highly optimal automatic layout for all kinds of diagrams. Several styles for such layout

may be defined. Automatic layout smoothly coexists with manual layout improvements
for presentation purposes

• the relevant name and syntax construct prompting
• automatic transfer of the relevant information from one diagram to another. Though

GRAPES-BM language requires some information duplication between TCD and TSD
diagrams (for better readability), no data must be entered twice - the editors automati-
cally transfer the data to the required direction

• automatic updating of tables (ET, CMP) during diagram construction
• automatic TCD templates when refining a task by a new TCD diagram level

For logically simple (but may be, large) business models the only diagram types to be
explicitly built are ORG and TCD diagrams.

Though a lot of inter-diagram consistency requirements are ensured by editors, exten-
sive analysis is still necessary. The diagnostic messages are shown via the same editors.
For semiformal use of GRAPES-BM the syntax analyzer plays the role of diagram con-
sistency checker. The other result of analyzer is the intermediate code of diagrams used
for execution.

GRAPES-BM is built as an executable language and therefore BM-simulator plays a
significant role in business model development. It has the following features:
• step mode with variable granularity for business model dynamic debugging and step-

by-step exploration

14

• run mode for business model prototyping and simulation. The run mode is combined
with pause and breakpoint features

• inspect facility for observing any elements of the current status of business model
(active tasks, event queues, data contained in them, etc.)

• user-cqntrolled automatic statistics gathering (for predefined statistical features of
tasks, events and performers and for statistics of user -defined task attributes)

• interface to diagram animator
Animatfr is used for on-line animation of selected TCD diagrams. Active tasks

(including lite number of instances), the events passing along their routes and length of
event queues are shown in these diagrams. The collected statistics can be viewed both in
tabular and ~hart (EXCEL-like) form, using the trace browser component.

Since even quite informal BM models are .executable as a rule, BM simulator serves as
a powerful tool for model validation, step mode execution combined with animation al-
lows one to find any unexpected behaviour of the model. On the other hand, normal ani-
mated run of a model is very helpful in general evaluation of the model and in finding un-
expectedly long queues and other bottlenecks in the system.

Automatic statistics gathering supports easy simulation experiments with business
models.

10 Conclusions

. The business modeling language GRAPES-BM seems to have taken its stable place
among other BM languages. The first pilot applications ofGRAPES-BM (design process
management in car industry, some banking applications, public utility management et al)
have shown its feasibility for description of comparatively large business systems. The
main novel feature seems to be the wide spectrum of applicability of the same models,
from general informal evaluation of the current system to numeric experiments with it.

Future development directions of GRAPES-BM are now being discussed. One of such
directions could be Rule-based approach [13]. but the problem is that the language must
be kept simple enough in order to be understood by users not being IT professionals.

References

[1] DeMarco, T.: Structured Analysis and System specification, Prentice-Hall, 1979.

[2] Barker, R., Longman, C.: CASE*METHOD Function and Process Modeling, Addi-
son-Wisley, 1992.

[3] Martin, I.,.Odell, 1.: Object-Oriented Analysis&Design, Prentice-Hall, 1992.

[4] Keller, G., Nuttgens, M., Scheer, A.W.:. Semantische Prozessmodellierung auf der
Basis Ereignisgesteuerter Prozessketten (EPK), in Veroffentlichungen des Instituts
fur Wittschoftsinformatik; v. 89, Saarbrucken, 1992.

[5] Brenner, W., Keller, G. (Eds): Business Reengineering mit Standartsoftware, Campus
Verlag, Frankfurt, 1995.

[6] Designer-2000. A Guide to Process Modeling. Oracle Corp., 1995.

15

[7] Aue, A., Brey, M.:. Distnbuted Information Systems: an Advanced methodology,
IEEE TSE, 20(8), pp. 596-605, 1994.

[8] GRADE V.2.0 (MS-Windows) GRAPES V3 (GRAPES-86+ GRAPES/4GL,
GRAPES-BM). Sprachbeschreibung, SiemensNIXdorf,1995.

[9] GRADE V.2.0 (MS-Wmdows). Modellierer. Benutzerhandbuch, Siemens Nixdorf,
1995.

'\ [10] Barzdins, 1., Kalnins, A., Podnieks, K. et a1.: GRADE Windows: an Integrated
); CASE Tool for Information System Development, Proceedings of SEKE'94, pp. 54-

, . 61, 1994.

.itl 1] Martin, 1.,McClure,C.: Structured Techniques: A Basis for CASE, Prentice-Hall,
1988.

, [12] Rumbaugh, 1.: Object-Oriented modeling and Design, Prentice-Hall, 1991.

[13] Barzdins, 1., Barzdins, G. and Kalnins, A:. Rules-Based Approach to Business Mod-
eling. ProceedingsofSEKE'95, pp. 164-165, 1995.

16

System and Business Process
Re-engineering with GRADE

\

\
Janis TENTERIS and Evalds VI:(.UMS

Riga Information Technology Institute (RITI),
13, Skanstes St., Riga, Latvia,

Internet: jtenteriS@swh.lv, evilumS@swh.lv

Abstract

This paper describes the main work packages (WP) performed during system and business
process re-engineering with GRAPES (graphical specification) language and GRADE
(Graphical Re-engineering Analysis and Design Environment) tool. The work packages
are discussed mainly in their sequence within system life cycle. A short overview 00 dia-
gram types for system modeling is Included and the main features of GRADE tool are
mentioned. The main concentration is on Business Process modeling and reengineering
work package, which includes static analysis of business processes, simulation alternatives
and principles of process and organization structure rearrangement, An example shows
gradual improvement of business process model and its conversion to a person's job de-
scription and! or Information System specification.

1 Sequence of Work Packages
System modeling and re-engineering with GRADE includes the following main work

packages:

1. Registration and hierarchical arrangement of the main objects of the existing system;

2. Graphical representation of communication diagrams with main physical parts and
functional objects of the system and communication between them;

3. Modeling of Business Processes:

a) description of existing business processes, modification of existing processes and
creation of new business processes:

I. static analysis of business processes;

n. simulation of business processes;

III. evaluation and modification of processes according simulation results;

b) modification of organization structure;

4. Development of data model, including:

a) structured description of messages;

b) contents of the databases;

c) access rights to data;

17

mailto:jtenteriS@swh.lv,
mailto:evilumS@swh.lv

GRADE-8M· Modeling and Simulation Facilities

A.Kalnins, J.Barzdins, A.Kalis
University of Latvia

Institute of Mathematics and Computer Science
Rainis Blvd. 29, Riga LV-1459, Latvia

and

RIll
SkanstesStr. 13, Riga LV-1013, Latvia

Abstract
The paper briefly outlines the business modeling language GRAPES-BM and the CASE tool GRADE-
BM based on it. The business modeling language GRAPES-BM is a semiformal graphic language for
modeling and simulation of complicated business systems (production processes, offices, information
systems). GRAPES-BM relies on such basic concepts as task, event, performer, triggering condition
etc. and contains advanced facilities for describing system behaviour. The main emphasis in the paper
j!.LQasimulatioIff~ilities supported by GRADE-BM.

1. Introduction

In order to understand the behaviour of a system, it is necessary to understand
activities within this system, causal links between these activities, their stimulus and
results. In most cases the behaviour is described by diagrams consisting of symbols
(rectangles, bubbles etc.) representing activities, various connecting lines representing
the links and, possibly, some auxiliary symbols.

The frrstsuch formalism was Data Flow Diagrams [1], which were introduced for
other purposes and only sometimes are used for BM. A number of similar, more or
less specific formalisms followed; among them function dependency diagrams [2],
event schemas [3], EPC diagrams [4. 5], Business process diagrams [6] etc. At the
given moment none of the formalisms are universally accepted.

GRAPES-BM, described in this paper, is also a semiformal approach for describing
behaviour and structure, using similar graphic notation as its basis. The main
differences' from all the abovementioned languages are in the following

• GRAPES-BM is oriented to semiformal description of arbitrary Business
Systems, e.g. production systems, offices, enterprises, etc., not only Information
Systems

• the level of formality: in GRAPES-BM itmay vary from very informal use (as in
traditional approaches [2,3,4]) up to a very formal nearly program like description
of business systems.

The other important criterion is the possible tool support in the analysis of the
described business system. Again, the more formalized is the approach, the richer set
of tools is available. In most cases, e.g. [5], the tool support reduces to simple
consistency checking, reporting and some static evaluation, most frequently, finding
the critical path in a weighted flow graph. The other tools offer dynamic prototyping

71

and simulation as the main analysis method. Among the known BM systems Designer
2000 [6] should be mentioned.

GRAPES-BM with its support tool GRADE-BM is mainly dynamic execution
oriented. Even very informal GRAPES-BM models may be executed in a sense, thus
giving much deeper insight into system behaviour and its possible bottlenecks. On the
other hand, for highly formalized models precise simulation of quantitative aspects is
possible in a way close to specific simulation languages.

Development of GRAPES-BM started with A.Aue and M.Breu paper [7]. Afterwards
M.Breu, A.Mraz, N.Richter, at al (European methodology and System Centre) have
issued several preprints where the concept was developed further. The current version
of GRAPES-BM and corresponding CASE tool GRADE-BM, described in this paper,
is the result of collective work of many people. In the development of GRAPES-BM,
besides the authors of this paper, the following people have made significant
contribution (in alphabetic sequence): I.Etmane, D. Foerster, E. Knoener ,
K.Podnieks, C. Rositani, U. Sukovskis, A. Teilans, M. Weiss, A.Zarins, D.O.

"Ziernelis.

2. Main concepts of GRAPES-8M

Business modeling in GRAPES is based on two fundamental concepts: tasks and
events.

2.1 Tasks

Any activity which is performed in a business system to be described is considered to
be a task. Tasks may be very large - defining one basic activity of an enterprise and
very small - like signing of a document. Large tasks are decomposed into chains of
smaller ones using Task Communication Diagrams (TCD). These diagrams are the
basic ones in GRAPES-BM. Each task has its name. But it may have other formal
attributes like
• performer of a task
• triggering condition
• duration.
Graphically (in TCD diagrams) tasks are represented by rounded rectangles. This
rectangle shows the task name and its basic attributes, e.g. performer.

There are two types of tasks
• ordinary (transformation) tasks
• decision (branching) tasks.

Decision tasks have two or more named decision symbols attached to them. During
execution one of the alternative outputs are chosen.
Examples of tasks are shown in Fig. 1

72

(Register_Order J
Secretary

Fig. I Examples of tasks

It should be mentioned that the concept of task is present in any business modeling
approach, only the terminology is quite different. Tasks are called functions in
function hierarchy and dependency diagrams [2], process steps in ORACLE process
diagrams [6], operations in Martin's OOA event schemas [3] etc.

2.2 Events

The other fundamental concept of GRAPES-BM is event. Events represent anything
.that can happen in a business system. Events are also the other principal element of
Task Communication diagrams. They are represented by arrows leading from one task
to another.

There are several categories of events:

• message events

Events with the category "message" correspond to objects produced by one task and
transmitted to another. This concerns materials (e.g. paper, part of machine) and pure
information (invoice, bill, report).
Message events always have name which is depicted next to the arrow.
Message events can carry information with them. The information is represented as a
datatype associated with the event. The association is described in Event Table (ET)
- an object global for the whole business model.

• control flows

They express the fact that one task is completed and the next task may start. Control
flows are represented as unnamed arrows.

• timer events

These are.the only events not created by tasks. They appear in certain time moments
from an abstract timer which is represented as a small clock. Tasks can only receive
timer events, in addition to message events from other tasks. Each timer event has a
name. The exact definition of time moments for a timer is given in the Event table.
Fig. 2 shows examples of events as they are depicted in TCD diagram.

Fig. 2. Examples of events

One task can produce more than one event at the output. Similarly, one task can have
several input events arriving from different tasks.

73

2.3 Task details

The next fundamental concept of GRAPES-BM language is triggering condition. It
is associated with a task, as one of its essential properties. Triggering condition
specifies which combinations of input events are necessary to start the task. This
condition is specified as a boolean formula containing ANDs and ORs on event
names e.g. Order AND Payment.

The general event semantics principle in GRAPES-BM is that incoming events form
FIFO queues in front of a task (a separate queue for each event name). When
triggering condition becomes true, the task consumes the relevant set of events from
its input queues and starts execution. In the simplest case the triggering condition may
be reduced to simple AND (or even "&" sign), which means ANDing all possible
input events (i.e. one from each queue). Control flows also are implicitly ANDed in
this case (i.e. all of them must be present). Similarly, simple OR (or "I" sign) means
that anyone of input events (including control flows) is sufficient for triggering. If any
of the required events is not present, the task waits for its arrival.

The next important part of a task is its performer. Performer specification consists of
one or more performer names connected by AND and OR connectors. Performers
may be--!!rgmllzational units, persons (positions) and equipment (resources). The
available performers and their number are specified in the ORG diagram of the
business model. The requested performers must be free before the task can really
start, therefore the triggering condition is only the necessary condition for a task to
start.

Duration of the task specifies the required execution time, e.g. task Order yrocessing
in Fig. 3 takes exactly 1 hour.

Fig. 3 shows an example of completely specified task in a TCD.

Order_Processing
AND
Cletk& PC
"1h"

Fig. 3 Completely specified task

Once the task has started, it performs its main activity, which is not formally specified
in GRAPES-BM. When the task is completed, it possibly takes one of its decisions
and sends its output events.

We can describe more formal and informal details of a task in its Task Specification
Diagram (TSD). In particular, extended informal description of a task may be given
there.

In conclusion one more remark on tasks. In any behaviour description there are tasks
which are not part of the business system under consideration, e.g. a customer
preparing an order. Such tasks are called external tasks in GRAPES-BM. They are
represented using dashed lines for the task symbol.

Data manipulation in GRAPES-BM is described only at informal level. There are two
special symbols for that purpose: data store for representing persistent data and data
object for common data with life time of one transaction. No formal semantics is
assigned to them.

74

3. Example of TeD diagram

The main goal of business modeling is to. describe both readably and concisely a
business system behaviour. As it was already pointed out, the main sort of diagrams
for this purpose is Task Communication Diagram (TCD), describing a behaviour of
large task in terms of smaller tasks and events.
Let us consider an example of a simple business system, namely, a simplified
production line for producing printed boards. Fig. 4 presents this system as one TCD
diagram. When necessary, the supervisor orders a new board. The operator takes an
empty board and puts it into a robot, which has to assemble 10 parts on the board.
Any of the parts may be faulty. The robot positions the board, takes one part from the
appropriate parts store and assembles it on the board. All this is repeated 10 times.
After that the completed board is tested by the tester (i.e. whether all parts are
normal). If at least one part is found faulty, the operator tries to repair the board
manually.
However, as in any production system, faults may be present anywhere. The testing is
unreliable, the probabilities of correct test outcome are different for normal and faulty
boards, The mean testing times also differ. To describe this situation more accurately,
the testing task must be duplicated - one for a normal board and one for the faulty one.
Symbols shown via bold lines are the ones having real counterparts in the production
process. The other ones are so-called technical tasks introduced to describe the
probabilistic nature of the production more accurately. These technical elements are
insignificant to the modeller, they are vital only for simulation.
The diagram contains also some "data processing" elements - SET options for
outgoing events, expressions on incoming event data in decisions, etc. From the
modeller's point of view they may be read as comments. But they have precise
semantics from the simulators point of view. This semantics will be explained in
Section 5.

75

faulty yart
10 % EXCLUSIVE

part
SET normal=1

part
SET normaI=O

Assembleyart
AND
tbb&
·1 Os·

board

board

SIDra

Fig.4 Example ofTCD diagram

board

board Jepaired
75 % EXCLUSIVE

board
SET normal=1

board

76

4. General structure of business model

The previous sections have described the most significant type of diagrams in
GRAPES-BM - TCD diagram. Some other types of diagrams have been mentioned
(ET, TSD). But there are more components in a business model.

4.1 Model tree

A complete business model is a hierarchy of the abovementioned (and some other)
diagrams. The hierarchy itself is defmed in a model tree. Fig. 5 shows the model tree
for the production example. Model tree may be considered as a table of contents for
the model.
The top line contains the elements global for the whole business model (ORG
diagram, ET table, CMP table, SP table).

• DATATYPE Types

• TASK Production

• TASK AssembleJl8rt

• TASK Continue_assembling

• TASK ls_boaflUlOrmal

• TASK Order board

• TASK Position_board

• TASK Prepare_board

• TASK Repair_faulty_board

• TASK Repair_normal_board

• TASK Store_boards

• TASK Take-Part

• TASK TesCfaUJtLboard

• TASK TesCnormal_board

EE1.~~~

~.~O~
~O~O
~O~O
~O~O
~O~O
~O~O
~O~O
~O~O
~O~O
~O~O
~O~O
~O~O
~O~O

Fig. 5 Model tree

The main part of model tree is constituted by primary tasks (top-level TSD
diagrams) and their refinements. There is only one primary task Production in the
example. In general, primary tasks correspond to the main relatively independent
functions of an enterprise. Each primary task normally is refined by its TCD diagram
(business process), shown to the right of the corresponding TSD diagram.
The next level of refinement is defmed by the set of subordinated TSD diagrams
corresponding to all tasks mentioned in the TCD diagram.
The models with one primary task and one TCD diagram refining it are called flat
models. However, in general case the situation is much more complicated. Each task
in the TCD diagram may be further refmed by its own TCD diagram (placed in the
tree in the same line as the corresponding TSD diagram). The refinement is continued
until we obtain the lowest level tasks which are called elementary tasks. For
elementary tasks their formal and informal characteristics can only be specified in
their TSDs. The choice of ,elementary tasks depends on the specific application of
business modeling. The abovementioned language facilities show how traditional
structural refinement is supported in GRAPES-BM.

77

4.2 TSD diagram, referenced tasks

There is a TSD diagram for each task appearing in a TCD diagram.
In the simplest case a TSD diagram contains the same formal attributes of the task as
those visible in the TCD plus extended informal description of the task. In addition,
the task's interface to its environment is also visible in TSD via so called referenced
tasks. Fig. 6 shows the TSD diagram for the task Takeyart. However, in general
case, TSD diagram may contain significantly more information (briefly sketched in
the next section) which is of special value for simulatable models.

-~ ---- -- -- -- ~ I
II Position_board I
I~-----)--- ---

Task: Take.Jlart
Performer :
robot
Duration: "55·

part
SET normal=O

--- ---I
II~ A;"s;;;;'b1e '=part '1 I
I::::=====~

part
SET normal=l

-~---------~I
II Assemble.Jlart I
I~-----)-------

Fig. 6 Example of TSD diagram

Referenced tasks (with the relevant event arrows attached) in TSD correspond to
task's neighbors in the corresponding TeD (whose part the task is). If the task is not
elementary itself, the same referenced task symbols (containing the same names)
reappear in the refining TCD diagram of this task (i.e. in the TCD one level below).
Event arrows lead from these referenced task symbols to tasks in the refinement (or
vice versa). The referenced task symbol is the key mechanism in GRAPESIBM for
ensuring unambiguous event routing between the adjacent TCD levels in refinement.
There are strict rules on refinement consistency (in most cases these rules are ensured
by GRADE editors automatically).

4.3. Description of Organization Structure

The static structure of a business system is described by ORG diagram in GRAPES-
BM. Fig. 7 shows the ORG diagram for the board production ..

ProductionJine

Fig. 7 Example ofORG diagram

Formally, ORG diagram may contain

78

• organizational units (company, department, group etc.)
• positions (chief, accountant, secretary, programmer etc.)
• resources (any kind of equipment, like car, PC etc.)

Any of the elements may be single or multiple, for multiple elements the number of
available instances may be specified (otherwise unlimited number is available).

Organization structure is depicted as a tree (more precisely, as a set of trees) built
from the abovementioned nodes. The edges of the tree represent contains
relationship.

A leaf of a tree may be refmed further by another tree.

Any of the organizational structure elements may have the following additional
attributes:
• type (internal or external)
• competence list
• availability (as time interval)
• cost per hour
• efficiency level
• employee name (for a single position only)

All ORG diagram elements have also precise formal semantics, which is taken into
account when TCD diagrams with performer specifications in tasks are executed.

4.4 Other tables and diagrams
Now some words on other elements of business model.
Event table (ET) has a row for defmition of each event used in the business model.
The most complicated are the timer defmitions. GRAPES-BM provides formal means
for timer definitions, e.g.
AT_5:..fM could be defined as TIME("*. *. * 17:00"),
Regularly as REPETITION("10m").
Message events may have their data types specified (record or elementary types may
be used). Event types are necessary when data carried by events are taken into
account. For example, the event board used in Fig. 4 has a record type with two
integer fields parts and normal.
Competence table (CMP) is a supplement to ORG diagram, listing possible
competences of ORG elements. Simulation parameters (SP) table contains general
numeric parameters of the model.
One more type of diagrams to be mentioned is attribute tables (ATR). They are
global for the whole model, and there may be several named ATR tables. Each ATR
table describes user-defined attributes for the given task type, which is equal to the
ATRname.
Zero or more Data Definition (DD) diagrams are also global for the whole model.
They describe data types used for events and are placed in the model tree above TSD
diagrams.

l

H , L(

79

5. Advanced Features of TCD and TSD diagrams

The items discussed so far have been more or less related to semiformal business
system description and analysis.
However, GRAPES-BM permits to describe precise behaviour of business systems
from the control point of view, including some data-related dependencies (as it
actually is done in the Production example). This layer of GRAPES-BM actually
constitutes a sort of process simulation language.
The basis of all these features is the assumption that events can carry data with them,
and the data may be "processed" by tasks, used in decisions and transferred further to
output events.
The following features are available:
• advanced triggering conditions, like

- Letter AND ALL Answer WHERE Letter.Id= Answer.Id
- Letter AND <5> Comment

• detailed description of task decisions
- by their probabilities, in exclusive or nonexclusive manner
- by precise formulas which may depend on data carried by the triggering input

_ -~ents and on numeric attributes of the task. For example, board.parts is the
reference to the record field parts (containing the number of parts already
assembled) in the event board. Built -in boolean function Is_triggered _by
(event) may also be used in decisions.

• task duration dependent on its input data
• formulas for setting values of user-defined task attributes (then the task must have

one of the types defined by ATR tables of the model). Formulas may reference
data of input events and other attributes

'4 SET-option with formulas for setting data (record fields, as a rule) in output
events of the task, with formulas referencing similar class of values. For example,
SET parts =board.parts +1 advances the event field parts (the "loop counter") by
one. There is a special convention of data passing, namely, if an output event has
the same name as an input event, data are passed without any formulas specified

• repetition factor for output events
• priorities in seizing performers.
These described features may appear in TCD as well as in TSD diagrams. The
"computational aspects" are taken into account only for elementary tasks.

6. Semantics of Business Model, Concept of Transaction

6.1 Simple case with one TeD diagram

The example in Section 3 could be understood and even analyzed quite intuitively.
However, GRAPES-BM has a completely precise semantics defined. This semantics
may be used for unambiguous manual validation of business models and for their
execution by GRADE tools, i.e. simulation, prototyping, animation. It should be
emphasized that Fig. 4 constitutes a syntactically correct and executable TCD diagram
(certainly, in the context of the whole business model).

80

Timers in a TCD diagram are spontaneously active elements, i.e. they send their
events to the appropriate tasks. These tasks are then triggered and afterwards they
send their resulting events to other tasks. Thus the whole business process gets into
motion. There may be as many concurrent instances of any task active as available
performers permit it.
But there is one completely novel element added to this relatively straightforward
semantics. This is the concept of Transaction.
Intuitively, a business transaction is a chain of activities initiated by some external
stimulus and ended at the moment when further events are beyond our scope of
interest. In the example of Fig. 4 the transaction starts with the arrival of a new order
for a board. To be more formal, it starts from the moment when the timer Regularly
starts the task Order _board. The transaction is completed when Board is sent to the
task Store boards.
The concept of transaction is fundamental in business modeling, since it helps to find
out and analyze essential groups of activities inside a business system.
The main problem here is to find a simple formal definition of transaction which
would coincide with the intuitive understanding in most cases.

In G~ES".BM the following definition is used:
The transaction starts solely when a task is started only by events coming from
outside the business system.

Two types of events in GRAPES-BM are defined as such "outsiders":
• timers, described already in Section 4.4
• spontaneous events. Any event may be made spontaneous in the TSD diagram by

assigning generator definition to it. These generator definitions have the same
syntax as timer definitions. Spontaneous events are used to hide away a timer in a
TCD diagram and to make the impression that the event comes right from an
external task.

Thus, in Fig. 4, the timer Regularly starts a transaction since the task Order _board is
triggered solely by it. But if there were another timer attached, e.g. to the task
Test_normal_board, it would start no transaction, since this task requires also
(internal) event board in order to be triggered.

The precise description of transaction behaviour is based on so called Transaction
Identifier (TID). At the beginning of each transaction the starting event is given a
unique TID. This number will be used throughout the transaction, all events and tasks
in the corresponding task chain will be tagged by it.
There is no explicit use of TID. However, it participates implicitly in each triggering
condition. AND condition will be true only if all incoming events have the same TID.
Thus only matching groups of events that belong to the same transaction can trigger a
task. In Fig. 4 only that part which corresponds to the board for whose assembling it
was taken, will trigger the task Assemble yart.
Transaction is completed when there are no more events in the model with the

given TID. In some occasions default rules are insufficient. To cope with these
situations the following options of tasks may be used:
• NOSTART for preventing an unwanted start of transaction
• START for explicit start of transaction
• END for explicit end
• NOTID for explicit stripping off the TID from an event.

81

6.2 Semantics in general case

When there are several levels of TCDs in the model, the key "players" are elementary
tasks. For formal semantics definition, it should be assumed that all non-elementary
tasks are expanded via their refinement TCDs. Thus a virtual flat TCD would be
obtained. The correct event routing in this TCD is defined according to strict rules
based on referenced task symbols. The general semantics of model behaviour is the
"simple" semantics for this flat TCD.

However, structuring adds a new dimension to transactions also. In general, there may
be a transaction level for each non-elementary TSD (or for each TCD level, which
means the same). There are precise default rules for simultaneous start of nested
transactions of all possible levels.

In addition, for the lowest level transaction the default start rules have become more
complicated:

• besides timers and spontaneous events, any event coming from a referenced task
- symbol is considered as an outsider

• when an event leaves the relevant TCD diagram (which corresponds to transaction
-- 'tmderconsideration) via an outgoing referenced task, it is stripped off its TID.

The default start rules for simultaneous start of several levels are defined so that strict
nesting of transactions is always preserved. In short, the default start of a level occurs,
when an event just passes through the level via referenced task symbol. .

For each level of a transaction there is a separate TID, thus events actually are tagged
.by lists of TIDs. All these Tills are taken into account, level by level when an AND
condition on a set of events is checked. For Tills of each level there are natural

JJoundaries where they are stripped off. The default end condition for a transaction is
the same as in one-level case.

For explicit transaction control, START and END options may contain lists of
transaction (task) names.

7. Expressibility of GRAPES-8M

7.1 Theoretical aspects

From the theoretical point of view, GRAPES-BM language is close to some well-
known extensions of Petri nets, for example to so-called coloured Petri nets (CPN)
(see, e.g. [10], [11]). Tasks correspond to transitions in CPN, event queues (invisible
in GRAPES diagrams) to places, triggering conditions to guards and arc expressions
etc. Many natural examples look quite similar in both formalisms. Structuring is also
similar in them. The main difference is that in GRAPES-BM there are implicit event
queues at each elementary task, while in CPN places are explicit pools (not queues)
common to several transitions. GRAPES-BM has a more advanced timing control.
Any formal comparison of these formalisms is extremely difficult due to complexity
of both of them. CPN formalism was designed with reachability and other kinds of
static analysis in mind (e.g. for finding deadlocks). The formal semantics of

82

GRAPES-8M was defmed with the goal of easy behaviour simulation of complicated
business system.

The comparison shows that formal semantics of GRAPES-8M could be defined as
rigorously as it is done for Petri nets. Up to the moment the semantics of GRAPES-
8M is defined informally, but precisely enough to build a simulator (interpreter) for it
and to make it really usable language for building large executable models. Certainly,
the precise definition is beyond the scope of this paper.

7.2 Practical aspects

From the practical point of view GRAPES-8M allows as to describe adequately
various control structures present in business systems, like:
• iterative looping depending on event data
• centralized control depending on some global data
• _ time-out control of incoming events

The "programming" of such control structures is sufficiently simple. The methods
used remind slightly those used in "programming" of Petri nets. Here is significant
role played also by transaction concept. In most cases the precise control aspects may
be simply added to models originally built for pure qualitative analysis. A simple case
of loop programming is demonstrated in the example of Fig. 4 with boardparts being
the loop counter. The "programming" of such control structures uses so-calied
"technical" tasks and events - ones which have no counterparts in the real world
system to be described.

The "programming" of any centralized control affecting several tasks and/or their
instances is based on the following general construct (see Fig. 8).

Fig. 8 General control structure

There is an event s representing the current status of some control object. The object
is "managed" by the task Manage_S. The numeric components of the object, e.g. the
currently available amount of some resource r I, are represented by fields (e.g. fJ)
within the record datatype of the event s. Events p and q represent requests to the
control object from tasks, and pl , ql are the corresponding responses. The selectivity
of a response is guaranteed by is_triggered_by built-in boolean function used in
decisions. If there is an additional control logic dependent on resource values
necessary, decisions may by extended by other formulas, e.g. is_triggered_by (P)
AND s.f1> 10. Certainly, then there should be more than two decision branches at the
task Manage _S. The updated value of the status event s is returned to the same task
after all decisions. NOTID option guarantees that this centralized control can coexist
with requests from many transaction instances (but the relevant TID is retained in the
response). The presented general schema may be easily adapted to various types of

83

centralized controls. In practical GRAPES-BM "programming" the transaction
concept also plays a significant role, e.g. in building time-out control constructs.

8. 8M-Simulator and other GRADE Model/er Tools

The full support of GRAPES-BM language is included ill the new version of
GRADE-BM Modeller toolset.

The following components of GRADE are available:
• tree and repository management
• advanced graphical editors
• syntax analyzer
• GRAPES-BM language interpreter (BM-simulator)
• animator
• trace browser.

In this paper we concentrate on language execution aspects of GRADE.
__ We-mention only that graphic editors play a key role in GRAPES-BM usage,

ensuring real "graphic programming" with the features of
• smart automatic layout generation
• relevant name and syntax prompting
• automatic transfer of information from diagram to diagram.

Note. All diagram examples in the paper, including Fig. 4, have been produced by
GRADE-BM editors.

Prior the execution, diagrams are processed by syntax analyzer, which besides syntax
checking generates the intermediate code (in parse-tree format) for all relevant
diagrams.

The heart oflanguage execution is the BM-simulator.. It has the following features:

• step mode with variable granularity for business model dynamic debugging and
step-by-step exploration

• run mode for business model prototyping and simulation. The run mode is
combined with pause and breakpoint features

• inspect facility for observing any elements of the current status of business model
(active tasks, event queues, data contained in them, etc.)

• user-controlled automatic statistics gathering (for predefined statistical features of
tasks, events and performers and for statistics of user-defmed task attributes)

• interface to diagram animator

Since even quite informal BM models are executable as a rule, the BM simulator
serves as a powerful tool for model validation, step mode execution allows to find any
unexpected behaviour of the model. On the other hand, a normal animated run of a
model is very helpful in general evaluation of the model and in fmding unexpectedly
long queues and other bottlenecks in the system.

The BM simulator is based on the model activity calendar. The ground activities are

84

• insert a new event in a queue
• check the value of a triggering condition
• start a new task instance
• end a task instance
The main non-trivial problem is to implement a fair and effective performer
allocation strategy, compliant with the described GRAPES-BM semantics. If the
requested performers are busy at the moment when triggering condition becomes true,
the potentially triggerable task is enqueued at these performers which would satisfy
the performer expression. When a performer is released, tasks enqueued at it are
checked whether they can really start. It should be noted that this strategy gives some
preference to tasks with smaller performers sets. Certainly, the explicit PRIORITY
clause in TSD permits the user to control the scheduling.
In general, the simulator solutions have guaranteed acceptable performance in both
speed and model size. In typical Windows environment, on a 486-based machine,
models with thousands of tasks may be processed, with several hundred thousands of
simultaneously active task instances.

9. Conclusions
Th~l~guage GRAPES-BM version 2.0 and the corresponding tool GRADE-BM
version 2.0 were released in 1995 [8,9]. GRAPES-BM and GRADE-BM, described in
this paper, correspond to the version 3.0. The differences from the previous language
version are significant.

The version 3.0 ofGRADE-BM in this moment is under development.
The first experimental applications of GRADE version 3.0 (design process
management in car industry, some banking applications, public utility management et
al) have shown the correctness of all principal decisions in tool set design. The size
of business models which may be processed in typical Windows environment seems
to be quite acceptable in practice.
The main novel feature of GRAPES-BM seems to be the wide spectrum of
applicability of the same models, from general informal evaluation of the current
system to numeric experiments with it

References

[1] T.DeMarco. Structured Analysis and System Specification, Prentice-Hall, 1979

[2] R.Barker, C.Longman. CASE*METHOD Function and Process Modeling,
Addison-Wesley, 1992

[3] J.Martin, J.Odell. Object-Oriented Analysis & Design, Prentice-Hall, 1992

[4] G.Keller, M.Nlittgens, A.W.Scheer. Semantische Prozessmodellierung auf der
Basis Ereignisgesteuerter Prozessketten (EPK), in Veroffentlichungen des Instituts
fur Wirtschaftsinformatik, v. 89, Saarbrucken, 1992

[5] W.Brenner, G.Keller (Eds) Business Reengineering mit Standartsoftware, Campus
Verlag, Frankfurt, 1995

[6] Designer-2000. A Guide to Process Modeling. Oracle Corp., 1995

85

[7] A.Aue, M.Brey. Distributed Information Systems: an Advanced Methodology,
IEEE TSE, 20(8), pp. 596-605, 1994

[8] GRADE V.2.0 (MS-Windows) GRAPES V3 (GRAPES-86+ GRAPESI4GL,
GRAPES-BM). Sprachbeschreibung, Siemens Nixdorf, 1995

[9] GRADE V.2.0 (MS-Windows). Modellierer. Benutzerhandbuch, Siemens Nixdorf,
1995

[10] K.Jensen. Coloured Petri Nets, in Advances in Petri Nets, 1986, LNCS v.254,
Springer, 1987

[11] K.Jensen. Coloured Petri Nets: High Level Language for System Design and
Analysis, in Advances in Petri Nets, 1990, LNCS vA83, Springer, 1991

86

ABTOMATH3HPOBAHHOETECTHPOBAHHE

TEJIEKOMMYHHKAll;I10HHhIX CHCTEM

MJI. AJIIiEPTC, .nOlITOPMaTeMaTIflIecKHXnayx, BeJl)'II(HHHCCJIe.nOBaTeJTh

A.A.KAJIHI1HbI11, .nOlCTOPBbPlliCJIHTeJIbHhIXaayx ,BeJlYIIUIHHCCJIe.nOBaTeJIb

.n.A.KAJIHbIlUI, ,UOICTOPMaTeMaTIflIecKHXuayx, Be.nymilli HCCJIe.nOBaTeJIb

I1Hcnrryr MaTeMaTHKHH Im$OpMaTHKH JIaTBHHCKOrOymraepcarera

6yJIbB.PaHml29, LV-1459, r.Para, JIaTBJUI

PaCCMaTIUdBaeTCHnOIlbITKa cucresraranecxoru TecTllpOBaHlm nporpasemoro ooecne'leHWI

WIH mCUM MOOWILHOHp3JlnOTe.lletjloUUOHCBH311,UCUOJlb3YJlRIGA-SDL U reueparop TeCTOB.

Ifpeanaraerca asToMaTH'lccKJul reneparop TeCTOB,OaJIIJIOBaHHLmaa Il3yqemle npocrpancraa

rJlOOaJlbllL1X cOCTolIHDii. B erart,e OlDlcaHbl MeTOJlLlYMeHbmeHUHpaastepa npocrpaacrna

fJlOOaJlbHLIX COCToHHllii,xoropsre n03BOJlJlIOTpeUUITb npOOJIeMy aBTOMaTU'IecKoH reuepaunn

TecTOB npn orpamrseunsrx TeXllll'lecKJIX pecYPCOB. KpaTKO onaeaaa OOmaH erparerna

TCCTIIJIOBaHWICIlCTeMbI.

Kmo'ieBble CJIOBa: [eHepaUIDI TecTOB, rnofiansnoe COCTOIDllie,

nonaoe nOKpbITUeBeTBeH,yraepxneaas, SOL.

1.BBEjI,EHHE

TeCTHpOBaHHe ncerna 6bmaeT 60JIbmOH np06JIeMOH rrpn paapafio'nce rrporpaseaaoro

otiecneserras, ocofienao ,WIll rrapaJIJIeJIbHbIX CHCTeMH CHCTeMpe8JIbHOrO BpeMeHH. CTaTMI

npeztcraanser norrsrrxy pemeaaa :HOH rrpofinesru B O.nuOMnpaxrasecxosr cnysae, a HMeHHO,

rom CHCTtfMM06HJIbHOH pa.nuOTeJIe$OHHOH CBlI3H.[rrasHbIM aCrreKTOMnpa 3TOM HBIDIeTCR

CHCTeMaTJIlIecKoe KOMlIJIeKCHOe TecTHPoBaHHe paapafiarsraaeaoro nporpasoraoro

ofiecnesenas. IloCKOJIbKy paapafioraasr H B npoexre HCnOJIb30BaHbI nexoropsre

cnenaanaaapoaaam.re npOTOKOJIbI , TO rpeoyrorcs TaK)I(e nexoroporo pona sananauaa H

BepH$HKal..UUl (HaXO)f(J(eHHe B03MO)I(HbIX TYJIHKOB H.T.n.). B KaQeCTBe 6a3HCHoro

rrporpaseraoro ofiecneseaas HCrrOJIb30BaHa CHCTeManormepsoca SOL RIGA-SOL [1,2] aa

rrepconansnou KOMlIbIOTepe THlIa IBM PC, TaK KaK MOlUHbIepatio-rae CTaHIUIH He 6bIJIH

.noCT)'IIHbI.

3a OCHOByB3jIT3KcrrepHMeHTaJIbHbrn aBTOManrqeCKHii reneparop TecTOB B CHCTeMe RIGA-

SDL, arrepssre npencraanemrsnt B [2]. B HaCTOJIIUeH crarse orracam.i 3HaqJITeJIbHbIe

yrryqmeHIDI sroro reneparopa, cztenaamae ero rrpaxrnsecxa npmfemlMhlM. B cirryaunax,

xorna paasrep CUCTeMhIHe n03BOIDIeT rrpnxeaxrs nOJDIOCTbIOaBTOMaTIPIecKHe MeTOJlbI,

60JIbmOH mrrepec npencraanser MeTo.norrOfiUlKOlITpOJIHPyeMoro BpY'ffiYIOnpouecca BbI60pa

TecTOB. B cra'rse pacxpsrra MeTOJIJIKa, KaK orpammrrs noacx B Bw60pe TeCTOB no

peaJIHCTIl'IecKHXpaaerepoa, coxpaass nonaory TecTHpOBamUi na npue~meMOM yponae.

3Ta MeTo.norronUI BKJIIOqaeT npIIHUHIIbI nocrpoeaas COOTBeTCTByromUX TeCTOBbIX

.npaliBepOB (B crarse aaasmaexsrx TeCTepaMU). Onncansr TaIOKe HeKOTOpbIe3BpHCTHQecKHe

MeTOJlbI YMeHbmelllUl npocrpancraa m06aJIbHbIX cocrosnati rrpn nepefiope BOBpeMHrrpouecca

Bw60pa TeCTOB. ,L{mI: sroro rnaanoe - HaHJI)"IIill1M06pa30M BbI6paTb m06aJIhHOe cocrosnne

HCCJIe.nyeMoHCHCTeMhI.

B nocnennae ronsr ztocrarayr 3Ha~eJIbHbrn nporpecc B paaasrrua KJIaCCll'IecKHxMeTO.nOB

~amm~, OCHOBaHHbIXna Hccrre.nOBaHHHnpocrpancrsa rrr06aJIbHbIX COCTOHHlrn,ocofieaao

B rrporoxonax [3,4,5,6]. Tax KaK Hccrre.nOBaHHenpocrpaacrna m06aJIbHhIX COCTOHHlrnrresorr

B OCHOBeH narneti aBTOMaTIPIecKoH reaepamra TeCTOB,TO B crarse norryrao ormcarrsr H

HeKOTOpbIe 3rreMeHTbI aBTOMaTll'IecKOH BaJIHJlaUHH. OHH BKJIIOQaIOT aaroxartrrecxoe

HaXOJKJJ:eHHerynuKOB (deadlocks) U HenpaBHJlhHOHMapJDPYTH3aUHHCHrHaJIOB,pacnoaaaaaaae

ourafiox .naHHbIX.HMeeTCHcnetraam.mra MeXaHH3MJJ:IDInOMepJKKU JIOKaJIhHbIXYTBepJKJJ:eHHli,

aamrcaaasrx npoeKTHpoBIJUIKoM. MOJKHO UCnOJIh30BaTb TaIOKe aHaJIOr JJ:HarpaMM

nocnenoaarensaocrea coofintenaii (Message Sequence Charts, B .naJIbHelimeM MSC) JJ:JIjI

aBTOMaTll'IecKOrO HaX0JKJJ:elllUl aHOMaJIHH nocnenoaarensuocrea CHrHaJIOB BO BpeMH

reaepauaa TeCTOB. IIpH BaJIHJJ:aUHHrnanaoe BHHMaHHe yneneno na caarae .no6aB01Il-lOH

HarpY3KH co CTOJIhxprrrasecxoro accneztoaaaas rrpocrpancrsa rrr06aJIbHbIX COCTOmmH BO

BpeMR BbI60pa TeCTOB. Trranaoe OTJIHqHeMe:lKJJ:Yxnaccasecxoa BaJIHJJ:aUHH[3,4] U HamHM

nOJJ:Xo.nOMB TOM, qrO MbI nOJIh3yeMcH 3HaqureJIbHO MeHblIlHMrrpocrpaacrnox rJI06aJIhHbIX

COCTOmmH.

IIpe.nCTaBIDIeTCHTaKJKe npaxraxecxaa OIThITreaepauaa TeCTOB JJ:IDI rrporpaaanoro

ofiecneseaaa CHCTeMbIH HCnOJIh30BalllUlreaepaponaaasrx TeCTOBB ee TecTHpOBaHHH.

CTaTbH coztepsorr IDITb maBHbIX pa3.neJIOB. B pasnene 2 OrmCbIBaeTCHrrpoexrapyenoe

rrporpaxxaoe ofiecrreserrae KOMMYHHKaWIOHHoHCUCTeMhIH rrpouecc ero TecTHpoBaHIDl.

Pa3.neJI 3 ztaer TeOpeTHqecKYJOOCHOBynstfiopa TeCTOBcorrracno [2] H HOBbie paapafioramrsre

pysnsre nponenypsr OnTHMH3aUHHnccnenoaanas rrpocrpancrna rrr06aJIhHbIX COCTOHHlrnnpn

2

BhI60pe TecTOB. Pa3)J;eJI4 nOCBlU.QeHHeKOTOpblMB03MO)I(}JOCTXMaaroaa'nraecxoit BamI,UaUIDI,

BKJDOqax Tex, xoropsie CBX3aHbI C MSC. Pa3JleJI 5 npencraanser KOpOTKOe OIDfcaIDIe

HCnOJIb30BaHIDITeCTOBoro reaeparopa, a paanen 6 - nepnsre norryseaasre pe3YJIbTaThI.

2. ifCCJlEJ!.YEMAfl CifCTEMA if EE TECTHPOBAHifE

2.1.Pa3pa6oTKa rrporpasoaaoro ofiecneseaaa JJ)llICHCTeMbIMo6HJIbHOHTeJIet:P0lllIOHCBX3H

B nocnezmae .rpa rona rpyrma COrpYJJ:HHKOBHncraryra MaTeMaTHKHH 1UI<P0PMaTHKH

JlaTBHHCCKOrOYIDIBepcHTeTa paspatiarsmaer nporpaseanoe ofiecneseaae CHCTeMbIMo6HJIhHOH

PamIOTeJIet:P0lllIOH CBX3H(digital trunked radio) no np0eKTY C <PHPMOHDTR International Inc.,

USA (CIlIA). Paspafiarsraaeaaa CHCTeMasansercs THIlH'IHOHcHCTeMoHpaJJ:lIOTerret:P0HHoH

CBX3HC JJ:lUIaMlfqecKHMBbI,UeJIelllIeMpamroxananon [7].

Basonsre CTaHUIDInOMep:>KHBaIOT}l.BapeJIGIMapa60ThI

- ananoronsra paaroaopasra pazmorpaxr CnpOCThIMUH<PPOBbIMxaaanosr CHrHaIDI3awm

- nOJIHOCThIOUH<ppoBaxKOMMyraUllil co crrO:lKHbIMrrpcroxonou xaaana CHrHaJIH3amrn.

B03Mo)l(eH BbIXO}l.na ny6~ TeJIet:POIDIYIDcers. Baaonas craauas COCTOHTH3

:meMeHTOB, Ka)l(}l.bIHH3 KOTOpbIX CO}l.ep)I(HT6rroK rrpaeanaxa-nepenar-nnca H YCTpOHCTBO

yrrpanneaaa na fiaae IBM COBMeCTHMOrOnepcoaansnoro KOMIIbIOTepa.Bee anexearsr 6a30BoH

CTaHUIDICOeJJ:lIHeHbIBHyrpeHHeH CeThIOrrepenasn JlaHHbIX.

Bee rrporpaseraoe ofecneseaae }J;JllIaroro npoexra (aa HCKJDOQelllIeMHeKOTophIX

armaparypnsrx HHTepepeHcoB lllI3Koro ypOBHX) paapafiorana B SDL, HCnOJIb3yx CHCTeMY

RIGA-SDL. I1cnoJIb30BaHa sepcaa X3bIKa SDL-88 C HeKOTOphIMH pacunrpenasxra,

OnHCaHHhIMH B [I]. Hexoropsre H3 3THX pacumpeHHH, aanpnxep, MaCCHBbI finoxoa nns

TIfIIhI finoxoa H 3K3eMnJIXphI B SDL-92 6bIJIH 6bI MeHee nparomrsr .JlIDIonacaaas TaKHX

CTpYKTYP.B pasocax nacroxmero npoexra rrponezteao nexoropoe yrrysmeaae CHCTeMhIRIGA-

SDL, B TOMqncrre nepexon K Borland Pascal 7.0 B xasecrae fiaaoaoro X3hIKaH HCIIOJIb30B3lllIe

ero aamameanoro peJIGIMa (protected mode). Tecrapoaaaue H ornazrxa npoIJlaMMHOrO

ofecrreseaas npOHCXO}l.XTTOJIbKOH3 yposne SDL. Cyrnecraeaasra ynysrrrenaea B CHCTeMe.
RIGA-SDL XBJIXIOTCXcpeneraa reaepauan KOJla nns ueneaoa cpensi, COCTOmIUIe H3

MOJJ:H<puwqlOBaHHoro KOMnHITXTopaC SDL na Pascal H conepmeano HOBOH 6H6JIHOTeKH

nonnepsoca BbmOJIHeHIDI)J;JlXpa60ThI B peaJIbHOMnpeaean H B MHoronpoueccopHOH cpeae,

3

2.2. Crparerus TOCI11pOBamUl)J.JUIrrpoexra

KaK B mo60M npoexre rrporpaseaaoro otiecnesenna peansnoro BpeMeIDI, TOCI11poBaIDIe

nporpasouroro 06ecneQeIDUI COCTOHTH3 zmyx ypoaneii, HH)I(H}fiiypoaem., cocrosnnni H3

TeCTHpOBaIDUI TeXJIHqecKHX arrreprpeacos H aCneKTOB peansnoro BpeMeHH, B HaCTo~eH

crarse He paccaarpsmaerca. 113yqeH sepxaaa yposem, - norirsecxoe TecTIipOBaIDIe

nporpasernoro 06ecneQeIDUI npa 06lI.J,HX orpamrseaaax H3-3a rrapannensnocra H

TOCI11pOBaIDIeCOOTBeTCTByromuxnpOTOKonOB. Cnenano 3TO HCKlllO'IHTeJThHOaa yposne SDL.

TIPH paapafiorxe rrporpaseanoro 06ecneQeIDUI HCnOJTh30BaHhInaa ypOBHH OmICaIDUI

TOCI11pyeMoH CHCTeM1>Ina SDL. Ilpocreitunra as nnyx yponaeii SDL OmIcaIDUI CHCTeMhI,

Ha3hmaeMhrn 3TanoHHoH MO.n:eJThIO(reference mode!), ornrcsraaer ynpaansromae anroparsrsr H

npOTOKOJI, ynorpefinaeasre B CHCTeMe,BKJIIOQaHHX ztamrsre, HO orrycxas zrerana CBH3HC

peansnoii TeXIDlKOHH namn,re, neofixomcme)J.JUInOMepJKKH 3TOHCBH3H.3TanoHHaJl MO;xeJTh

MO)l\er 6hITh paCCMOTpeHa KaK cneUHepHKawUl rrporoxona. Bropoe 60nee cnoxaoe OmICaIDIe

CHCTeMhIaassraaerca Mo.n:eJThIOpeaIDl3aUHH (implementatton mode!). 3Ta MO;XeJThCO;Xep)KHT

canoe MHO)l\ecTBOnpoueccoa, CHrHanOB H .n:a)l\e re)ICecaMsre COCTOjIHJUIB nponeccax. Ho

HeKOTOpaH 06pa60TKa ;xaHHhIX B 3TanOHHOH Mo;xemi yrrpomena, H nexoropsre Bh130Bhl

npouenyp orrymeasr, 06e xonena HMelOTO.n:HHaKOByroCTpYKTYPY6nOKOB(CM.PuC. I).

Internal Control Semantic Formal~
network unit [k] tester tester

k=1 ..kmax

Pac.l , CTpYKTYPa CHCTeMhI

Ynpaansromae YCTpOHCTBa(control unitv B 6a30BoH cramnra npencraanemr KaK MaCClffiH3

kmax oztanaxoasrx 6JIOKOB. Ka)l(.IJ:hrnH3 6noKoB COe.D:HHeHC BHYTPeHHeHcersro (internol

networks. Ocram.nsre JI:Ba3neMeHTa B Pac.l npe.n:CTaBnHIOTTeCTOBbIezrpaltaepu isemantic tester

u formal testen.

4

,LJ;JIlIaBTOMaTWiecKOHrenepauna TeeTOB Hlo:nOJlh3YeTCR3TaJIOHHaR MO.ueJIh. Ilonyxeansre

TecT1>Ixoryr 6hITb rrpaaeaeasr K 06eHM MO.ueJIRM,TaK KaK .recroaue .upafmephl RBmnoTCR

06l.llHMH.lJ)UIofienx Mo.ueneH.

rJIaBHOH UeJIhlO B reaepanaa TeeTOBRBJIlIeTCRnOJIHoe noxpsrrue BeTBeH (complete branch

coverage) .lJ)UIHeKOTOphIXcymecrseamrx rrpoueccos B 3TaJIOllliOH Mo.ueJIH.31'0 oanasaer, 'ITO

.lJ)UIJII060H BeTBII TUna input. if HJIHcase B Bhl6paHHhIXJ(HarpaMMax npoueccoa CymeeTBye:

nOCJIe.uoBaTeJIhHOCThaaeunmx CHrHaJIOBH3 MHO)f(eCTBaTeeTOB, BhillOJIHeHHeKOTOpOHBJIe'leT

BhIDOJIHelille3TOHBeTBU.

Korna TeeT, aBTOMaTIl'lecKH reaepaponamrsnt JJ.illI 3TaJIOllliOH xonernr, BhInOJIHjJeTCR

npysnyro, nOJIHaR nOCJIe.uOBaTeJIhHOCTh BXO,UHhlxlBhIXO,UHhIXCHrHaJIOB MO)l(eT 6hITb

peracrpaposaaa BMeeTe C caMhlM TeeTOM. 31'a nOCJIe.uOBaTeJIhHOCTh MO)l(eT 6hlTh

HCnOJIh30BaHa KaK 3TaJIOHBH,UaMSC, npHMeHRRTOTcaMhlli TeeT K Mo.ueJIHpeaJIH3aUHH.

2.3. Tecroasie .upail:Bephl

B 06eHX Mo.ueJIRXHMelOTCR,UBa TeeTOBhlXnpaaaepa - CeMaHTIl'lecKHHH <lJOPMaJIhHhrH..

CeMaHTWiecKHH TecTep Mo.ueJIHpyeT TeXlill'lecKYIO eaeunnoro cpezry nns ynpaansrounrx

ycrpOHCTB B O'IeHh npOCTOMBH,Ue,ysarsrsaa TOJIhKO cymecraemrsre JIOrHIJecKHeHHTep<lJeHChI.

TIocKOJIhKY rJIaBHhIM ameHTOM RBJIlIeTCR JIOrHIJecKoe .recrapoaaaae rrporpasoanoro

06ecne'IeHIDI yrrpaarrarorrrax ycrpOHCTB, TO MO,UyJIHM06HJlhHhIXneperoaopnstx ycrpOHCTB (B

peaJIhHOH)f(H3HHCBR3aHhI aa yposne annaparypsr) rrpencraanemr KaK npocrue 3arJI)'llDCH

(stubs) BHYTPH6JIOKa ceaaarnsecxoro TeeTepa . B 3TOM6JIOKe OnHCaHOTOJIhKOJIOrHIJecKoe

noseneaae M06HJIhHhIXycrpOHCTB (B .uaJIhHefIllleMMo6HI1eH),ysarsmaeaoe rrpn TeCTHpoBalDUI.

To)f(e canoe B cane OTHOCHTeJIhHOcoeJ(HHeHHiiCny6JIH'lHOHTeJIe<lJolllioHcersro (PSTN).

<1>OPMaJIhHhIH'recrep otiecrresanaer TOJIhKOJII060H B03MO)f(HhIHJIOrHIJecKHii CTHMyJIK

CHCTeMe(BhIJOBM06HITl1H3 npyroro M06HJIRnpa CB060,UHOMynpaBJIRIOmeM ycrpoticrne, BhIJOB

M06H]IJ1npa 3aHRTOMynpaBJIRIOmeM ycrpottcrse, BhIJOBcB060,UHoro Mo6HJIR H3 Tene<l>olllioH

ceTII, oxotraamre CoeJ(HHeHHR H. T. n.). CHrHaJIhI C <lJopMaJIhHOrO .recrepa He HMelOT

napaxerpoe, ceMaHTWiecKHH TecTep aBTOMaTWieCKH otiecnexaaaer HY)f(Hhle 3Ha'lelDIJl

napaxerpoa (HOMep yrrpannsromero ycrpoacraa, HOMep M06HJIlI H.T.zt.) B 3aBHCHMOCTHOT

rpe6yeMoro KOHTeKCTa. 31'0 3HaIJHTeJIhHO ynpoinaer anroxarnaecxyro reaepauaro

CHrHaJThHhIXnOCJIe.uOBaTeJIhHOCTeHC<lJopMaJIhHOrO.recrepa.

5

Harrosaner, 'ITO HOpMaJIhHOTOJIbKOaaxpsrrue SDL CHCTeMhlxoryr 6hlTh BhIDOJllieHhIrrpn

nOMOlIlH RIGA-SDL. Ho aa npeas reaepauan TeCTOBB HCCJIe.uyeMoHCHCTeMeoznur firrox Will

rrpouecc .nOJDKeH6hlTh onpenenea B xasecrse aneumeti cpema. OH HCKillOqaeTC1IH3 CHCTeMhIH

ero CHIlIaJThlHCnOJIb3yroTClI.,WIll.nepefiopa BO spexs nocrpoeans rrpocrpaucrna rn06aJIbHhIX

COCTOll.IDrii. B paccaarpsraaeaok CHCTeMeB xasecrne aneumeti cperrsr onpenenea firrox

cl>opMaJIhHOrOTeCTepa.

CeMaHnJ<lecKJIH .recrep HMeeT TaJOKe B03MO)I(JIOCThxorrrpomrpoaars napaJIJIeJIbHOCTh

06pa60TKH CHrHanOB B CHCTeMe.B rrpocrenmea pexaxe B Ka)l(,UhIHMOMeHTofipafiarsmaercs

TOJIbKO O,UHaTpaH3aKUlUl, T.e., crre.IJ:YlOl.l:IJriiCTHMYnnpaxenxerca K CHCTeMenocrre rrorrysenaa

scex MOMeHTaJIhHhIXpeaKWlli CHCTeMbI.B .neHCTBJITeJIbHOCTIIB CHCTeMeeme ecrs nexoropax

napannensnocrs, norosry 'ITO npe.llhI.uymHe CTUMYJIbIMOryr 6hITh npU'lJIHOH aanepzcamn.rx

(r.e., 3aBHClI.lp;H:XOT BHYTpeHHHXTafIMepOB) .neHCTBHH.BTOpOHpe)I(}]Mofiecnexaaaer nomryio

napannensnocrs, xorna HecKOJIbKOCTIIMynoB otipafiarsrnarorca O,UHOBpeMeHHO.B03MO)l(eH

nepexon OT oznroro pe)I(HMa K npyroay, MeHll.ll.3HaqeIDUI HeKOTophIX TalIMepOB B

cexarmrsecxoa TeCTepe.

Erne O,UHOnpaaeneane cexatrnrsecxoro Tecrepa - BKnIOqeHHeHeKOTopOHaBTOMaTnqeCKOH

nponepxa CHIlIaJIbHhlX nOCJIe.nOBaTeJIbHOCTeH)I)llI.ofiecnesenaa Bann.naIJ;HHna fiaae MSC (CM.

4.2.).

3. ABTOMATy[IIECKHH BbIEOP TECTOB

3.1.06IIUIe rrpamnmsr

Teoperasecxae OCHOBhIzms xerozia renepauaa TeCTOB,HCnOJIb30BaHHOro B 3TOM rrpoexre,

onncaH!'I B [2]. Hanoumoa KOpOTKO 0 _HHX. fno63JIbHOe rrpocrpaacrno cocromurii JI.IDi

aexoropoti CHCTeMhISDL (KaK H B [3]) CTp0HTClI.B cl>opMerparpa .nOCTH)l(HMOCTH(reachability

graph), aepnnnraaa xoroporo lI.BnlI.lOTClI.rrr063JIbHhIe COCTOll.IDUl,a pe6paMH - oneparopsr

.nuarp aMM, BhmOJIHHMl,IeB rrr06aJIhHOM COCTOll.llHH,H3 xoroporo pe6pa BhIXO,UllT.B Ka)I(,UoH

HOBOHBepIIDIHe sroro rpadia rrponepserca, .noC1JITHYTaJlli UeJIb TeCToBoro noxpsrras (testing

coverage goal). I..:{eJIbnoxpsrras - 3TO .nOCTJI)l(eHHemo60H BeTBHB ztaarpaseaax YKa3aHHhIX

npoueccon/rrponezryp [2]: Bsma rnr noeranryra xaxas HH6y.llh nonaa BeTBh, asmorrasa

nOCJIe.nOBaTeJIbHOCTh BXO,UHhIX cnraanoa, Be.IJ:YIllYlOK aKTHBHOH BepIIDIHe rparpa

.nOCTIDKHMOCTH,rrponepserca TIpH noaropeaaa fJI063JIbHOrO COCTOll.HHll.. Ecnn zta, TO

6

COOTBeTCTByromaSl nOCJIenOBaTeJIbHOCTb perncrpapyercs KaK TeeT . nOCJIenOBaTeJIbHOC1b

CTaHOBHTCSI TeCTOM T3lOKe npa HaXOlK,UemIH HeKOTopOH anoxamra.

<I>OPMaJlbHO rrr063JThHOe COCTOSIHJleCHCTeMbI SDL ,nOJDKHOconepxa n, COCTOSlHID!scex

3K3eMIIIDlpOB npOUecCOB, aaaseana rrepesreamax rrpoueccoa, osepemt anyrpemrax CHrHaJIOB H

MHO)l(eCTBO aKTHBHbIX TafIMepOB. Fnaanoit UeJIbIO B [2] 6h1JIo YMeHbmeHHe npoCI]>aHCTBa

rrr06aJ1bHbIX COCTOSIHHH,B TO)I(e Bpe~1SIraparrnrpys, 'ITO npa 3TOM JII06aSl nOCTH)l(HMaSl BeTBh

OCTaeTCSInOCTIDKHMOH. .D:JISInora 6hIJIH asezreau DOHSITHSIcymecrseansrx onepa ropoa (CO) H

cymeCTBeHHbIX nepeaemrsrx (Cfl), Tpyfio rOBOpSl, B JII060M UHKJIe B .n;HarpaMMe Bhl6HpaeTCSI

OJJ:RHCO . Ilepeaeanax SlBJISleTCSIcn ,llJIlI nanrroro CO, ecIIH ee auasemre B CO HMeeT rrpxuoe

HJDI KOCBeHHoe BrrIDIHHe aa nexo'ropoe pemenae THU8 if HJIH case B .n;HarpaMMe. B [2,8] ztan

cPopM3JThHbm anroprrra .IJ;JllInaxoxneuas MHO)l(ecTB8 cn nns zraanoro CO no ormcaamo

npouecca aa SDL. B [2] noxaaano, 'ITO, ecnn rnofiansnsre COCTOSIHIDIperacrpapyrorcs TOJIhKO

B CO H rnofiam.noe COCTOSlIllIe conepsorr TOJIhKO cymecrsemrsre rrepeaemn.re (BKJIIO'IaSl

BHYTPemme oaepenn CHrHaJIOB H MHOlKeCTBO axranaux TaiiMepOB), TO nOCI]>oeHHe rparpa

nOCTIDKHMOCTII OCTaeTCSI KOppeKTHbIM - JII06aSl ,noCTIDlrnMaSl BeTBh nocraraercs B :nOM

npouecce .

.D:aJ!:ee OTIHCaHbI pa3pa60T8HHhIe na .naHHoH TeOperH'IecKOH OCHOBe MeTOJJ:h1OmHMH3aUHH

reaepauaa TeCTOB, n03BOJISlIOIUHe ycneumo TecTHpOBaTh BhIIIIeODHcaHHyro CHCTeMY.

I~~/:-/u-~
3.2. Py'IHaSl OmHMH3aUIDI rrr068JIhHOrO COCTOSIHJISI

(.I~

,[(.rnI peansnsrx CHCTeM, B TOM 'IHcrre H ,llJIlI paccaarpsreaeaoit CHCTeMhl M06HJIhHOH CBSl3H, H

.IJ;JllInOcrynHOH TeXHH'IecKOH nnartpopau OTHOmeHHe MHO)l(ecTBa npaKTH'IecKH .nOCTHraeMhIX

rnofiansmtx COCTOSIIDIHK pasxepy scero rparpa ,nOCTIDlrnMOCTH 06hl'IH0 6hmaer CJlllliIKOM

MaJlbIM. B TaKHX CJIY1IaSlX,B TepMHHaX [3], yrrpannsexoe 'IaCTH'IHOe HCCJIenOBaHHe MHO)l(eCTBa

rrr06aJ1bHbIX COCT05IHHH:MO)l(eT 6hlTh 3Ha1IHTeJIhHO nysme HeKOHTpOJIHpOBaHHoro 'IaCTH'IHoro

HCCJIenOBaHIDI (r.e., nOJIY1IeHHoro upH HMeIOIUHXCSIpecypcax). Ynpaanenae nOCTHr8eTCSI rrpa

DOMOmH naJlbHefImero 3BpHCTH1IecKoro YMeHhmemrn CDHCKOB en H eo. 31"0 YMeHbmeHHe

npOBOJlHTCSI BpY'ffiYIO, HCnOJIh3YSl uexoropsie caezteuas 0 nOBeneHHH .recrapyeaoii CHCTeMhI.

7

B03MOJlCHhIzma crryxas:

• TIepBH'IHOH UeJIhIO HBIDIeTCli nexoropas aaroaarusecxas BaIDmaUHlI CHCTeMhl, nonyrno

nonysas aBTOMaTIl'lecKH reaepaponamn.re TeeThl. B :nOM crrynae rrpoaepxa

p;OnOJIHHTeJIhHhIX yrnep)I(,UeIDIii KOPPeKTIIOCTIlllBJIJleTCli OqeHh BaJKHhIM:meMeHTOM.

• TIepBH'IHOH UeJlhIO aarona'nrsecxas reaepauas TecTOB corrraCHO

nsnneonacaanoay xpnreparo.

B nepaosr cnysae nocrpoeaae rpadia LJ:OCTIDKHMOCTIILJ:OJDKHOOCTaBaThCli KOppeKTIlbIM LJ:IDI

HCCJIep;yeMOH SDL CHCTeMbI, n03TOMY peKOMeH,lJ;yIOTCli crre,lJ;YIOIUHe,3aBHClIIIIIIe OT :HOH

CHCTeMbI OIITHMH3aUHH rn06aJIbHOrO COCTOllHIIlIH CnHCKa CO:

* nOCKOJIbKY npa ofipafiorxe oznroro BXOLJ:HOrOcneayna B KOppeKTIlOH rrporpaseae SDL

6~~!I~lffiI5IX UHKJIOB He LJ:OJDKHO6bITh, TO BO BeeM CHCTeMe MOryr 6bITh BbI6paHbI B

xaxecme CO TOJIbKO nexoropsre COCTOIDIHllnpOUecCOB. TaKHe CO B LJ:eHCTBHTeJIbHOCTII

CTaHOBlITCli BbI6paHHbIMH spymryro TO~aMH rrpepsmaaaa (KaK npa ornazuce CHCTeMbI);

* ecJIH B CHCTeMe uexoropsre en HMeIOT pasasre 3HaqeHHll HJIH onn cP)'HKUHOHaJIbHO

3aBHCHMbI, TO B xasecrne eTI Bbl6I1paeTClI TOJIbKOOLJ:HaH3 mIX;

* ecJIH coztepxanaa nexo'ropsrx oxepezrel! anyrpemrax CHrHaJIOB cPYHKUHOHaJIbHOCB1I3aHbI co

3HaqeHIDIMH nexoropsrx nepeaemnrx, TO nysme B rrr06aJIbHOM COCTOllIDDl nepxars He

oxepena, a 3HaqeIDlll 3THX nepexennsrx;

* ecJIH COCTOllHIle rrpouecca OLJ:H03HaqJIO orrpeztenser anaseane HeKOTopOH en B 3TOM

rrpouecce, TO B rnofiansaoe cocrosmre cnenyer nOMecTHTb JlH60 COCTOllHIlenpouecca, JlH60

anaxenae nepesreaaoti;

* B rn06aJIbHOe COCTOllHIle MO)I(HOHe nOMecTHTb nrryrpemrae COCTOIDIHllBcnOMOraTeJIhHbIX

npoueccoa, He HMelOIIIHXBJIIIlIHlle aa rrraansre rrpoueccsr CHCTeMbI.

Bee 3TH 3aKOHbI TOJIbKO 3BpH~ecKHe. I1x crporoe c06JIIOLJ:eHIleTpe60BaJIO 6bI cy)I(,UeIDlll 0

CHCTeMe, noxoxero na LJ:OKa3aTeJlhCTB0 KOppeKTIlOCTIl, n03TOMY OHII MOryr 6bITb

HCnOJIb30BaHbI TOJIbKO KaK cesrasrrasecxae YKa3aHHll. OmIT aBTopOB noxaasraaer, 'ITO 3THMH

3aKOHaMH MO)I(HOnOJIb30BaThClI, I1MeliMHlIHMaJIbHble 3HaHHll 0 noseneaan CHCTeMbl,H 'ITO OHM

HMelOT orpoxnoe BJIHlIHIIe aa YMeHbmeHHe pasaepa npOCTpaHCTBa rnofiam.m.rx COCTOmmH LJ:O

peansaoro)J)Ul nonaoro accnenosaaas CIICTeMhlna LJ:OcrynHOHTeXHIlKe (hardware platform).

8

Bo BTOpOM cnysae, xorna reaepaima TecTOB lIBJllIeTClIrmUlHOH UeJIhlO. rJI06aJIhHOe

COCTOllHHe nazto Bbl6paTb no B03MOJKHOCTIIM}llllThHUThHbIM,mnm, 6bl He 'repanacs

.uOCTIDKHMOCTbBeIDeH rrpouecca. Xoponnra Ha'laJIOM .ryr MO)l(eT 6bITb BKmO'leHHe B

rJI06aJIbHOe COCTOllHHeTOJIhKOCOCTOllHIDlcymecraemrsrx npOUecCOBH HCKmO'leIDle .uaHHbIX

nponecca, Ecnn noxpsrrae BeIDeH npa 3TOM OKa)l(eTClIHe.uOCTaTO'lHblM,TO K rnofiansnosry

COCTOllHHlO.u06aBJIlllOTClIaexoropsre namnre. 06bI'lH0 3TO neofixozneao B crrynae, xorzta

aKTYaJIhHbIeCOCTOllHHllnporoxona KOJlHPyroTClIHe COOTBeTCTByrol.I{MHCOCTOllHIDlMHnpouecca,

a HeKOTOpbIMll nepexemrseor. l1MeHHo 3TH nepesreausre H .uOJlJKHbI6hlTh BKmOqeHhI B

rJI06aJIhHOe COCTOllHHe.Onsrr noxaasmaer, 'ITO aroro .uOCTaTOtIHOJI)IlI anroaarasecxoro

nOJIy'leHIDl norraoro noxpsrras BeIDeH. B xasecrae CO pexoaennyercs Bbl6paTh TaKHe

-onepaTopbI COCTOllHHllB ceaarrrasecxoa recrepe, rne npOHCXO,IDITBBO.usaeunrax CHrHaJIOB.

Torna pe6paM B rpaoe .uOCTIDKHMOCTHCOOTBeTCTByroTsneunnre CHrHaJIhl H3 <PopMaJIhHOrO---
Tecrepa. Hazro OTMeTlITh,'ITO rrposepxa YTBep)l(JJ:eHHiIcoxpaaser CMblcrrH B 3TOMcnysae.

3.3. OpraIDI3aUIDl nepefiopa H Bbl60p TecTOB

Korna rJI06aJIhHOe COCTOllHHeorrpenerreao, TO JJ:JIlIcrpoenns rparpa .uOCTHJKHMOCTHMOJKHO

HCnOJIh30BaTb mo60H KJIaCCH'lecKHH MeTO.u accnenoaanas npocrpancrna rrr06aJIhHbIX

COCTOllIDlH[3]. B namesr cnysae HaHJIy'llilllM nO'uxo.uOMlIBJIlIeTClInOHCK"cnepsa B rnytimry"

(depth-first search) CnOJllIhIM (complete) coxpaaennea coanamroro npocrpancrna rJI06aJIhHbIX

COCTOllIDlH..

nOHCK "cnepsa B rrry6nuy" CTaBHTBOnpOC0 Bbl60pe MaKCHM8JIhHOHrrry6HHbI)l.IDIKa)l(JJ:oH

accnenyeaoa CHCTeMbl.Ilpa 3TOMMOJKHOHCnOJIh30BaTbTOJIhKO3BpHCTH'lecKHeYTBep)l(JJ:eHIDl,

aarrpaxep, JJ:JIlITecTHpoBaHIDl rpyrmsr H3 n ynpannarourax ycrpOHCTB .uOCTaTO'lHOTecTOBblX

nocnenoaarem.nocrea JJ:JI}IHbIn +1.

B npouecce crpoeana rparpa .uOCTH)l(}IMOCTHonpenensrorca TeeThl no asnneorracaanoay

npaanny, ,l{OCTH)l(eHHeHOBblX neraea .nnarpaMMbI npOBepHeTCH KaK npa COBna.ueHHH

rJI06aJIhHbIX cocrosaaa, TaK H rrpa MaKcHM)'Merrry6HHbI nOHCKa. 3TOT norrxozr .uaeT

npHeMJIeMOeKOJIH<IecTBOTecTOBnpHeMJIeMOHJJ:m1Hb1.

9

4.BAJIHp,AUHfl BO BPEMfl rEHEPAUHH TECTOB

4.1. MCnOJIb30Barme yraep)l(Jl;emrn

YTBep)l(Jl;eHIDl,OTIIOCHIIUlecSlK HeKOTOphlMTO'IKaM B naarpaxae, onpenensrorcs npOCTO.

TO'IKa ,nOJDKHa6bITh BbI6paHa B xasecrne CO (TO'IKHnpepsraamts) H Ka:ll\.lU>rHpaa, xorna BO

BpeMSl HCCJIenOBaHHSl MHO)l(ecTBa rJI06aJIbHbIX cocrosmni 3Ta TO'IKa ,nOCTHraeTCSl,

aBTOMa~ecKH nponepxercs yraepxnenae. Yrsepxzreaae ,nOJDKHO6hITh HanHCaHO KaK

naCKaJIeBCKaSl6yJIeBCKaSl<pym<UlUl C B03BpaToM HCTHHhIB HOpMaJIhHOMcnysae, Ka:ll\.lU>rH

eJIy'laH, xorna yraepxneaae OKa3aJIOCbJIO)l(HbIM,aeroxaraaecxn peracrpapyercs H BO BpeMSl

HCCJIe,nOBaHIDlMHO)l(ecTBa rJI06aJIbHbIX cocrosnaii COOTBeTCTBYJOmaSlnOCJIe,nOBaTeJIbHOCTb

BHeIIIHHXCHrHaJIOB COXpaHSleTCSl. CymecTBeHHbIM HCnOJIb30BaHHeMyraep)l(,nemrn SlBJISleTCSl

j(onOJIHHTeJIbHali rrponepxa aHOMaJIHH noaeneaas. Hanpaaep, qaCTIJqHble TYJIHKH,

KaCalOmHecSl_TOJIbKOHeKOTOpbIXnpOUecCOB,xapaKTepH3YJOTCSlTeM, qTO HX osepena BXO.u;HhIX

CHrHaJIOBnycrsre H npyrae npoueccu HaXO,ngTCSlB COCTOSlHHSlX,B KOTOpbIXB ,naHHoH cHTYaUHH

He MOryr 6bITh nOCJIaHbI CUrHaJIbI B TynHKOBYJOqaCTb. YTBep)l(,neHHSlC03HaTeJIbHO nazro

OT,neJIHThOT SDL-onHCaHHSl caMOH CHCTeMhl,qro6h1 He MemaTh renepauaa 3<p<peKTHBHOrO

xozta rom uerrenott cpensr,

4.2. Monenapoaaaae sanaztauaa na fiaae MSC

RIGA-SDL He HMeeTSlBHOHnOJJ.D.ep)l<ImMSC KaK cpencraa cneunepHKawm.,l(m MSC HeT

peztaxropa, HO TecroBhle peaym.rarsr MOryr 6hITh nOKa3aHbI B epopMe MSC. II03TOMY TOJIbKO

HeSlBHaSlnOJJ.D.ep)I(Ka}I.illIBaJIH,naUHHna fiaae MSC MO)l(eT6bITh ofiecneseaa.

Orpamrseanas BaJIH,naIUUIna fiase MSC peaJIH3UpOBaHa aa zmyx ypOBHSlX.Bo nepnsrx,

HeKOTOpbIe_neHCTBHSlnazto BKJIIOqun B ,ceMa~ecKHH Tecrep. B npocrekmea cnysae

ceM~ecKHH Tecrep B Ka:ll\.lU>rHMOMeHTspeaeaa rpe6yeT BbillOJIHeHHSlTOJIbKO O,nHOH

TpaBJaKUHH (r.e., CTHMYJI- rpyrma MOMeHTaJIbHbIXCHCTeMHbIXOTBeTOB).Torna <pparneHT

MSC, onpenensromatt, KaKHe OTBeTbl ,nOJI)l(HbI6hlTh rronyaensr aa ,naHHbrn CTHMYJI,MO)l(eT

6bITh npoaepea ceMa~ecKHM .recrepoa (.neHCTBHTeJIbHOnonyseau JIH Bee MOMeHTaJIhHble

OTBeTbI aa ,naHHbrn eTHMyJI). B OnHCaHHOMnpHMeHelllm OTBeTHble CHrHaJIbI ,nOJDKHbI

¢HJIbrpHPOBaThCjI cornacno HX napasrerpaa (r.e, HOMepOMynpaansromero ycrpoiicrna), TaK

KaK 6bmaroT aanoaztansre OTBeTblnpexnax CTHMYJIOB.

10

BO-BTOPhIX, peaym.rarsr nposepxa .nOJDKHhI6hITh noaemeasr B nepesreanoii, KOTOpa51

HCnOJlh3YeTC5IB HeKOTOpOMyrnepxnemor. TaKHM 06pa30M, aBTOMaTH'leCKHHOT'ieT 0 MSC

aaouanasx BMecTe C COOTBeTCTBYWIIUIMHnOCJIe.uOBaTeJlhHOCTIIMHBXO):(HhIXCHrHaJIOB

C03.naeTCXBO BpeMXreaepauna TecTOB. BpeMX nocrynnenns OTBeTOBMOJKeT6hlTh rrponepeuo

no.no6HhIM 06pa30M.

5. PEAJIH3AUHJl CPE/l.CTB TECTHPOBAHHJl

3aKOHtleHa nepnas BepCHXnpaxnrsecxn ncnom.ayeaoro reaeparopa TecTOB na 6a3e RIGA-

SDL, aa OCHOByxoroporo B3XTaxcnepioseirransnsrii reaeparop TecTOB, OnHCaHHhIHB [2] H

HMelOIIJ;HH_HecKOJlhKO 3Ha'lHTeJlhHhIX YJl)"illIemrn. OJ];ffiIM H3 lPaKTOpOB npaKTH'IeCKOH

ncnomoyeaocra 5IBJI5leTCXHOBa516hlcrpax onepauns coxpaHeHIDl!Bo306HOBJIeHrul nonnoro

COCTOXllllXCHCTeMhISOL npa BhmOJIHeIllIH. B orrpeneneaaa rrpocrpancrsa m06aJlhHhIX

COCTOmrnHHMeIOTCXfionsme B03MOJKHOCTeH.OnTHMH311p0BaHoxpaaeane aKTHBHhIXseptmra

rpadia .uOCTHJKHMOCTH.

,l{arree OnHCaHhI aexoropsre .ueTaJIHpa60ThI CTecTOBhlMreaeparopox. Bo nepsux, crpOHTCSI

onacamre CHCTeMhIna SOL H rrponcxoznrr ee pysnas OTJIa):(Ka):(JI5Iycrpaneaas rpyfisrx

OmH60K. CJIe.nywIIJ;HHmar - nozrroroaxa aaxasa reaepamra TecTOB (test generation request).

YKa3hmaeTC5I, xoropsre rrpoueccsr .nOJDKHhI6hITh BKJlIOqeHhIB KpHTepHH nOKphITH5Iaerneii, a

TaKJKe rrpoueccsr, COCTOXllllXKOTOphIXcnenyer BKJlIOqHThB rJI06aJ1hHOe COCTOSIlllle.3a.uaeTCSI

TOq](H npepsraanaa, MaKCHMaJlhHa51rnytiana nOHCKa H nexcropste zrpyrne napaxerpsr,

YKa3hmaeTCSI 6JIOK, Bhl6hIpaeMhIH B xasecrne BHeIDHeH cpensr (B uarnesr cnysae 3TO

4l0PMaJlhHhIH recrep). Pa3pa6o~1K eme .nOJIJKeHnarmcars cneuaam.nsre nacxaneacxne

6yJIeBCKHe 4lym<u:HH (user junctions)):(JI5IKa)l(J];OHTOq](H rrpepsraaaas, npe.uCTaBJI5IIOI.IJ;He

YTBepJKJJ;eHIDIB 3TIIXTOq](ax. IIpH 3TOMMOJKHOHCnOJlh30BaThKaK nepexeaasre npoueccoa, TaK

H cneuaansusre cpencraa ztocryna K COCTOXHruIMrrpoueccoa H oqepeJJ;5IMCHrHarrOB. Kpoxe

aroro, 3HaqeHIDI Tex nepesremnrx nponeccon, xoropue paspafiorsax Bhl6paJI nns axmoseana

B rn06aJ1hHOe cocrosnae, cnenyer nOMecTHThB cneuaam.nsre 4lHKcIIpoBalllIhie nepeaenm-re .wrn

HCnOJlh30BaHHSInpu crpoeaaa TeKYIUero rJI06aJ1hHOrO COCTOXRHX.

11

Kax BH,lJJIOID PHc.2, caasana SDL-oImCamIe TecTHpyeMOUCHCTeMhI06b[qffi,IM 06pa30M

otipafiarsraaercx aHaJIIDaTOpOM H reaeparopox KOJla B CHCTeMe RIGA-SDL. KpOMe

naCKaJIeBCKOro KOJla HCCJleJlYeMOHCHCTeMbInaCXaJIeBCKHHXOJlC03JlaeTCHTalOKe B peaym.rare

npHMeHeHIDIrrpoueccopa saxaaa (request processor). nOCJIe aroro .LJ)llInonysenas BbmOJIHHMOH

aaztasa TecTHpOBaHIDI(executable test generator) npOHCXO,lOITKOM.IlHIDll.{HllH cfiopxa (linking)

BMecTe Cnozmporpaseaaaa nOJlllep)l(l(ll SDL H nporpasoaoii reuepauaa TeCTOB(rest generation

kernel). Bsmonneaae 3TOM 3aJla[1H (run of test generator) naer xax TeeThI (tests), Tax H

co06meHIDI 06 aHOMaJIlliIX (anomaly reports). Bo npeaa reaepamnr TeCTOB C03JlaeTCH

Heo61>H3aTeJlbHbIH:nporoxon renepauna, n03BOJlffiOlUHHnOTOM aHaJIH3Hp0BaTb nosezteaae

TecTH:PyeMoMCHCTeMbI.

Reference
model
in SOL

Syntax anlyzer,
code

generator

Request
processor

Pascal
compiler,

linker

Executable
test

generator

Test
generation

kernel

V
Run of

test
generator

Pnc.2. Cxeaa rerrepamnr TeCTOB

6.JIEPBbIH OJIbIT rEHEPAl)HH TECTOB

Ilepaas ycrrennraa nODbITKa reaepaumr TeCTOBnpoaenena .LJ)llIynpomeaaoti CHCTeMbI

M06HJThHOHpanaorenepomroa CBH3H.3TarrOHHaH MOJleJlbCHCTeMbIconepsorr 18 rrpoueccos C

06IUHM 'illCJIOM COCTOHHHH37. Tpe6yeTCH nOJIHoe nOKpbITHe seraeti rom JlBYx npoueccon

CHCTeMbIC 06IUHM 'illCJIOM aerneii 96. Harmcan COOTBeTCT)'IOI.UHHceMaHT~ecKHH TeCTep,

BbmOJlIDlIOnnrn CBOIOfiasoayto <pym<IU1IO- HaXO)f(JleHJIenapaaerpos BXOJlHbIXCHrHarrOB,

nepenaaaesrsrx CHCTeMe M06HJlbHOH CBH3H. Bsifipana OJlHa Toqxa rrpepsmanas B

ceMaHTIRecKOMTeCTepe. Paccsrarpsmaiorcs TOJlbXOCOeJll-IHeHJIHOTMo6HJ1Hx M06HJIIO(mobile-

to-mobile communications) H 3TO ocymeCTBJIeHO 5 pa3JIHqHbIMH BXOJlHbIMIICHrHaJIaMH H3

12

«PopMllJIbHOrO Tecrepa. I'nofiansaoe COCTOmrne orrpeneneno 3 pa3JIH1llibIMH cnocofiasrn,

Ilepnsm ssrfipaao casroe eCTeCTBeHHoeorrpenenemre - penICTpHpYeTCH, B KaKOMCOCTOIDIHH

HaXOJnITCHrrraBHbIH ynpaBIDllOIIlHH nponecc BO acex ynpaBIDUOmHXYCTpOnCTBax.Bo BTOpOM

eJIY'Iae peracrpapyercs TOJIhKOMaCCHBnepesremrsrx cexarrnrsecxoro Tecrepa, orrpenenaroutati

COCTOHHHHscex ynpaanaromax YCTponCTB,orrycxas COCTOllHIDlnpoueccon. B TpeTbeM CJIY'Iae

peracrpapyercs CYMMapHaRHH«popMaUHRasnneynosasayroro MaCCHBa- 'lHCJIOynpaanssourax

YCTpOHCTBnanaoro nma, uaxozonnaxcs B .n:annOMCOCTOllHHH.

,l\IDI scex Tpex onpezrenenati rrr068JThHOrO cocroamts 6bIJDI .n:O<:TUrJIYTbIBee BbmOJIHHMhIe

BerBH B BbI6paHHbIX cyrnecraemrsrx npoueccax, H nonyseao O,!UIHaKOBOe'lHCJIO.recroa. KaK

BHJJ:HOH3 Ta6JIHUbI I, rpen,e onpezteneaae ysreasmaer npOCTpaHCTBOrnofiam.usrx COCTOmrn:H.

BPeMR renepamra .recron aa IBM PC Cnpoueccopox rarra 486 cpenneii CKOpOCTII6billO OT 2

,no 4 MHJ!YT. -

B peJYJIhTaTe TeCTHpoBamJjl 6bIJDI Han.n:eHbI 2 oIllH6KH, Ka)I(JJ:aHH3 KOTOpbIX coanana

TYJIHKOBYJOcrrryamno B penxo HCnOJIh30BaHHOMcrrysae.

Ha BTOpOMarane recrapoaaaae npoaezreno JJ:JIllnOJIHon {complete} CHCTeMbIM06HJIbHOH

CBR3HB CJIY'Iae aHaJIOrOBOro pa,!UIOTpaKTa. B 3TOMcnysae 3TaJIOHHaHMO,neJThconepsorr 18

npoueccoa C 06lIlHM 'lHCJIOMCOCTOjlIDIH65. Ofimee tllICJIOneraea JI.JUInOKpbITIJjI - 183. 06I..UHii

06'beM SDL xozta 1.5 paa 60JIhme qeM B nepaosr aapnaare. l.J:HCJIOBXOJJ:HbIXCHrHaJIOB- 36. Ha

3TOT paa ceMaHTII'IecKHH Tecrep ropaano CJIO)I(Hee,H He TOJIhKOJI3-3a YBeJIHqeHHH'lHCJIa

BXOJJ:HbIXCuruaJIOB, HOTaK)I(eH3-3a Toro, -rro B HeM6bIJIHBKmOqeHbIrrposepxa, nocrynaror JIB

Bee aannanaposamn.re MOMeHTllJIbHbIeOTBeTHble CHI1I8JThIcncreasr aa ,naHHbIH BXOJJ:HOH

caraan C «PopMllJIbHOrO TecTepa (cornacao-cnocotiy, OnHCaHHOMYB 4.2). EbInH HanHCaHbI

TaIOKe yrsepsoreaaa, KOHTpOrrupYJOmHe 'lHCJIO nonysemrux OTBeTOB. B rrr06llJ1bHOM

COCTOIDIHH pernCTpHpYJOTcR COCTOllHIDl BbI6paHHbIX npOUecCOB, a TaK)I(e 3HaqeHJljl

nepexemrsrx eeMaHTJlqecKoro Tecrepa, cyutecraemro xapaKTepH3YJOlIllIXcocrosmre cacreasr.

Onpeneneaae rnotiarrsnoro COCTOllHIDlyrOqHjIJIOCb BO BpeMH .recrapoaanna, B xoaue

axcnepaxeara rronyseao 46 TecrOB npa 06meM 'lHCJIe rnofiansasrx COCTORHHH- 6754. TaIOKe

KaK H B nepaosr cnysae 6bIJIH zrocraruyrsr Bee BbmOJIHHMbIeBeTBDB BbI6paHHbIX npoueccax.

BpeMR renepamm TecTOB6billO oxono 50 MHHYTua IBM PC Crrponeccoposs nma Pentium. Ha

3TOTpaa cncresra 6billa ropasno nysme rrporecrapoaana pyqHbIM cnocofiosr. TeM He MeHee rrpn

aBTOMaTH'IecKoH renepamm TecrOB ynanocs HaHnI cymecraemryto CeMaHTJlqecKYJOOlIDI6Ky B

13

CHCTeMe, rne H3-3a nerrpaaansaoro oneparopa Nextstate B JlHaI]JaMMe np0H30lllJIO

aenpaaam.noe parsenmrenae BhI30Ba H3 ny6ml'lHOH TeJIe<j>OllliOHCeTH. OCHOBH)'lOPOJIh 'ryr

ChITpaJIOHMemm nponepxa yrBep)KJleHHii 0 KOppeKTHOCTHOTBeTHhIXpeaxuail. DbIJIHHaiiJleHhI

H fionee MeJIIGle OIIDl6KH B naCXarreBCKHXnpouenypax, aarrpnaep, BhIJlaqa HenpaBHJIhHOrO

noxepa ycrpoiicrna npn HeKOTOphIXpeznco ynOTPe6ID1eMhIXKOM6HHaUlIHXnapasrerpon.

PeJYJIhTaThI 060HX BapHaHTOB naasr B Ta6JIIIUe I.

Ta ti n a n a l.

Tests Global states

mobile-to-mobile I 7 51
mobile-to-mobiJe 2 7 51
mobiJe-to-mobiJe 3 7 31
complete System 46 6754~-

3KcnepHMeHT nOJIHOCThIOnOJlTBepJlHJI npHMeIDIeMoCThonacannoro MeTOJla renepamm

TeCTOB JlJIll TeJIeXoMMYHHKaUHoHHhIX CHCTeM ztaaaoro paasrepa. Ilpaxnrsecxaa

rrpeaayutecmoxr OnHCaHHOrOMeTOJlaTecTIlp0BaHIDI no cpasnemno C KJIacc~eCKHMH pyqHhIM

cnocofiou ynpaBIDIeMhIMH TeCTOBhIMH zrpaitaepaaa OKa3aJIOCh orpoaaoe xonnsecrso

KOM6HHauIDi BXOJlHhIXCHrHarrOBBOBpeMJIrenepauaa, B TOMIllICITepenxo BcrpeqalOI.UHXCHna

npaxraxe. l1MeHHo 3TO n03BOIDIeTnpOTeCTHpOBaThnpaxrmecxa ace B03MO)l(HhiecHryaUIDI B

CHCTeMe.

3AKJIlOl.JEHlfE

B. crarse OnHCaH MeTOJl aaroaarnsecxoit renepamnr TeCTOBH nepssre ero ycnennrsie

npHMeHeHIDI B TecTHpOBaHHlI rrporpasoanoro ofiecnesenns nns CHCTeM M06l1JIbHOH

paJlHOTeJIe$OHHOH: CBH3H. npH06peTeHHhIH: OllhIT n03BOIDIeT yreepzsnars, qTO OnHCaHHhrH

MeTOJl npHMeHHM H B TecTHpOBaHHH rrporpaaxnoro otiecneseaaa JlPyrHX rrpoeicros, naxe

TaKHX, pasaep XOTOphIXropasno 60JIhme ornrcannoro.

ABTOPhI nsrpaxaer 6rrarOJlapHOCTh A. Kanne sa nocrosmryro nOMOIIJ;bB peaJIH3aUHH

reneparopa TeCTOB.

14

Cfll1COK JII1TEPATYPbI

1. J.Barzd4tS, AKal~, M.Augustons. SDL Tools for Rapid Prototyping and Testing. - In:

SDL'89: The Language at Work, North- Holland, 1989, pp.127-134.

2. A~. Global State Based Automatic Test Generation for SDL. - In: SDL'91: Evolving

Methods, North-Holland, 1991, pp. 309-312

7. AZaim, F.Calikoglu. Using SDL in a Commercially Available Wide Area Coverage Trunking

Mobile Radio System development. - In: SDL'93: Using Objects,North-Holland, 1993, pp. 41-49.

8. AAuzius, J.Barz<l.4tS,J.Bieevskis, K'Cerans, AKaln4tS. Automatic Construction of Test Sets :

Theoretical Approach.- In: LNCS, Vol 502, Springer-Verlag, 1991,pp.287-360.

15

GRADE Version 3.0

Business Modeling
Language Reference Manual

. - - . -_.

Infologistik GmbH

Munich, September 1996

GRADE BM LANGUAGE REFERENCE MANUAL

2

GRADE BM LANGUAGE REFERENCE MANUAL

Table of Contents

1 INTRODUCTION 7

1.1 Notational conventions 8

1.2 GRAPES-BM model tree 9

1.3 Task visibility 11

2 ORGANIZATIONAL STRUCTURE DESCRIPTION 12

2.1 Introduction 12

2.2 ORG diagram
2.2.1 Elements of the ORG diagram

_2.2.2 Attributes ofORG elements
2.2.3 General structure ofORG diagram
2.2.4 The fo~~ semantics of ORG diagrams

no::
12
13
16
17

2.3 Competence table 18
-"": c, '=. -":. '"""=~... f' -

3 USER DEFINED TASK TYPES AND USER DEFINED ATTRIBUTES FOR
TASKS 19

- --... _~. - -- --=-- .-----..........---.....- - -----'-- .~ -

-4 EVENT TABLE - 21

4.1 General structure 21

4.2 Timer defmitioDS 22

4.3 Complex events 24

4.4 The semantic aspects of event behavior 25

-5 TASK--gPECfFICATIONDIA13RAM . 26

5.1 General form and role of TSD 26

5.2 Referenced task symbols 28

5.3 General contents of the task body 30

5.4 Triggering condition
5.4.1 Simple cases
5.4.2 Syntax in general
5.4.3 Semantics of triggering condition
5.4.4 Control flows in triggering and semantics for occurrences

31
31
32
33
35

3

GRADE 8M LANGUAGE REFERENCE MANUAL

5.5 PERFORMER expression
5.5.1 Syntax of the performer expression
5.5.2 Semantics of the performer expression

35
35
37

5.6 Other elements of task body 38

5.7 Decisions 40

5.8 Output events 42

5.9 Input events 43

5.10 External tasks 44

5.11 Data stores and data objects 45

6 TASK COMMUNICATION DIAGRAM 46

_ 6.1 Role of TCD diagrams 46

6.2 Elements of TCD diagrams
_6.2.1 Internal task symbol

62.2 External task symbol
6.2.3 Timer symbol
6.2.4 Referenced internal task symbol
6.2.5 Referenced external task symbol
6.2.6 Referenced tiJn~ symbol _.
6.2.7 Decision symbol
6-.2.8 Data symbols -
6.2.9 Event arrow
6.2.10 Access path
6.2.11 Auxiliary symbols
6.2.12 Refinement of complex events

47
47
48
48
48
49
49
50
50
51
51
52
52

6.3 General rules of TCD structure 53

6.4 Graphic layouts of the TeD diagram 53

6.5 Links yetween TCD levels 56

6.6 GRAPES-BM model development strategies and tool support for them 59

6.7 The alternative way: from TSDs to TCD 61

6.8 Formal consistency rules between TCD and TSD 62

6.9 The syntax for non-simulatable models 63

7 TRANSACTION SEMANTICS OF TCDS 64

7.1 The concept of the transaction 64

4

GRADE BM LANGUAGE REFERENCE MANUAt.

7.2 Default behavior of transactions 64

7.3 Transaction control facilities 66

7.4 Attributes of transactions 69

8 ADDITIONALSTRUCTURINGFEATURESOF BUSINESS MODELS 71

8.1 Interaction of primary tasks 71

8.2 Independent tasks and the multiple use of tasks 72

9 SIMULATIONPARAMETERSAND THEIR USAGE 74

10 DATA IN GRAPES-BM 75

10.1 Constants 75

10.2 Data Expressions 76

11GRAP--ES~MSEMANTICS FORSIMULATION 79

ILl Preparation for execution - tree expansion 79

11.2 Event routing 80

11.3 Starting the execution, timers 81

11.4 Starting a task 81

11.5 Ending a task 82

11.6 Sending an event 83

12 SIMULATIONSTATISTICS 84

. 12.1 Generalprinciples ofautomatie statlstics gathering 84

12.2 Statistics and warm-up period 85

12.3 Statistics for tasks
Definitions of variables

85
87

12.4 Statistics on performers 91

12.5 Statistics on events 94

12.6 Use of transactions for user defined statistics 96

-5--

GRADE BM LANGUAGE REFERENCE MANUAL

13 INDEX 98

6

1 Introduction
GRAPES-BM is a semi-formal language for modeling and simulation of business processes. It is oriented
toward a detailed description of various kinds of complicated business systems: offices, information
systems, production processes, enterprises etc. GRAPES-BM supports the modeling of both the dynamic
behavior and organizational structure of business systems.

The application areas for GRAPES-BM are:

• Business Process Reengineering

• Analysis of workflows in business systems

• Systems analysis and requirements specification in Information System design.
.» •..":

GRAPES-BM supports two modes of usage:

It.- a semi-formal mode for modelers describing large business systems in a concise and easily readable
way

• a formalexecutable mode for simulation of business systems in order to gather quantitative information
on tlleif behavior.

The Language Reference Manual describes the precise syntax and semantics of GRAPES-BM in its .
entirety. both.for semiformal and formal usage.

The description of system behavior in GRAPES-BM is based on two fundamental concepts: tasks and
events.

Tasks correspond to any activity performed in a business system. Large tasks are decomposed into chains
of smaller ones using Task Communication Diagrams (TeD). This diagram displays the business process
in an easily readable flowchart type form.

Tasks have a number of formal and informal properties:

• triggering condition

• performer specification

~ duration ,

• user defined attributes

• informal description

• objectives

and others.

All properties of a task are defmed in a Task Specification Diagram (TSD). The main properties of a task
are visible also inside its symbol in the TeD diagram. There are two kinds of tasks: transformation tasks
and decision tasks. Decision tasks describe activities with possible alternative outcomes and have decision
symbols attached to them. Decisions may be informal or formal.

The other fundamental concept is event. Events represent everything (signals, information, documents,
etc.)that move from task to task or influence a task in a business system. Events are represented in TeD
and TSD diagrams by arrows linking task symbols with the event name adjacent to it.

7

GRADE 8M LANGUAGE REFERENCE MANUAL

There are messaze events, control flows and timer events in GRAPES-BM. Message events may carry data
with them and this data may influence the behavior of tasks.

TeD and TSD diagrams may also contain data store and data object symbols which have informal
meaning in GRAPES-BM.

The organizational structure ofa business system is described in GRAPES-BM via the ORG diagram. This
kind of diagram strongly related to the traditional ORG-chart. Though, it is more formalized in the sense
that all of its elements may have formal attributes which influence the behavior of a system.

GRAPES-BM contains also some additional tables:

• ATR for descnbing user defined task attributes, associated with a task type

• ET for defining events (data types for message events, time moments for timer events, etc.)

• CMP for describing performer competencies

• AT for descnbing access to data stores

• SP for defining simulation parameters.
,.... •..-:.

G~ES-BM also uses two subtypes ofDD diagram type borrowed from GRAPES/4GL.

• DO OAT AlYPE for descnbing data types of message events

.•_ 00 ER for defirifug entity-relationship models associated with data stores.-- --------

PO -diagrams may also be used as pure comments for tasks. Other GRAPES/4GL diagram types are not
used in business modeling .

._- - -----
The diagrams and tables describing one business model are kept together by a special "header diagram"
BM, whichbas no content in and of itself in version 3.0. There may be as many task refinement levels via
TSO and TCD diagrams as necessary in the given model. Tasks may be refined to whatever level of detail
required by the user via TSO and TCO diagrams.

A GRAPES-BM business model may be a standalone model or alternatively one or more business models
can be subordinated into a system, model by placing them under a CO diagram in a system model.

This document descnbes GRAPES-BM V. 3.0 .. Though the main principles of GRAPES-BM V. 2.0 have
been retained, the language has undergone significant changes. ORG diagrams, CMP and ATR tables have
been added. TSD and TCD diagrams have retained their meaning, although a number of elements have
been added to facilitate behavior description. Remote tasks have become referenced tasks, with some

.modifications ro. syntax andsemantics, Referenced tasks are. used now also in.TSD diagrams. Existing.
business models in GRAPES-BM V. 2.0 may be converted to V. 3.0, with some manual adjustments due to
changed semantics.

The Language Reference Manual has the following structure. First, the model tree and associated concepts
are described. Then, the formal description of each diagram or table type follows. After that, some special
features involving several types of diagrams are discussed. The document concludes with the summary on
some auxiliary topics, such as the use of expressions.

1.1 Notational conventions

The separators shown below are used in the syntactic notation in this document. (To distinguish them from
terminal symbols, they are printed in boldface.)

----- ._- ------

8

CHAPTER 1 INTRODUCTION

II
{}

I
{}'"

- {}+

Optional element

Group of elements that can be used alternatively

Separator for alternative language elements

Repetition - null or multiple

Repetition - one or multiple

In the simplest cases xl, ... , xn is written instead ofx {,x}* .

In some places, the standard notation traditionally present in BNF style language grammars is used also in
this document:

nonterminal ::= syntax_definition

means that this nonterminal (which is a part of a larger syntax construct) is to be replaced by the given
syntax definition.

". ...-:.

Yet another convention is on lexics in GRAPES-BM.

Identifiers are strings starting with letter and containing letters, digits and underscore characters. Their
--length--maJ no!;xCeed 32 characters. GRADE editors permit the use of blanks in identifiers during input,

but nevertheless they are later internally replaced by underscore characters. By default, GRADE editors
also show and print these names with blanks inside. GRADE can also be configured to show names as they
are stored in the repository, with underscores, using the option Options/Settings/Underscores visible. But

_all.s~ullltioP.Qrt~ted components show the formal names with underscores, Uppercase and lowercase _
_letters in_identifiers are treated as identical in language syntax (but they are distinguished by editors).

1.2 GRAPES-BM model tree

Just as in other GRAPES-family languages, a business model is represented as a hierarchy of diagrams and
tables. This hierarchy is described via the model tree.

The model tree for a standalone business model has the following structure:

• the business model is headed by a special "header diagram" BM, which serves as a placeholder for the
business model name;

• to the right of the BM diagram the auxiliary diagrams ORG, CMP, ET, SP can be found for that
model. The ORG and CMP diagrams are described in section 2, the ET diagram - in Section 4, and SP
is a special table used for simulation which is described in section 9;

• just under the BM diagram there may optionally appear ATR tables - one for each task type defined in
the model. If no task types are defined, there are no ATR tables in the model tree. ATR tables are
described in section 3;

• one or more DD and/or ER diagrams may be placed just under BM, for use in the Business model;

• each task has a row in the model tree. This row is started by a CM diagram, and then the TSD diagram.
If the task has a refinement TCD diagram, this diagram (having the same name) is placed to the right
ofTSD. A task which is a part of (a refmement of) another task is placed just beneath it; and

• a task may have an AT table and PD diagram. These diagrams are placed in the far right of the row.
PD diagrams are purely illustrative in BM.

9

GRADE ISM LANGUAGE REFERENCE MANUAL

Fig. 1.1 shows an example of the model tree for a standalone business model.

e CarRental
e TASKTYPE comm1
e TASKTYPE tp1
o TASKTYPE tp2
c DATATYPE 001
Q TASK Task1

e TASK Task11
, • TASK Task12

~TASK Task2
• TASK Task21

• BUSINESS_PROCESS Task21_A
• TASK Task222
• TASK Task223

m!1@~o~c;
~o~o~c
~o~o~c_.~o~c_.~o~o

/."."-:

Fig. 1.1 Model tree (standalone business model)

Business modeling may also be mixed with system modeling in GRAPES/4GL . In that case:

• the business medel may be placed under any CD diagram (in most cases it will be under top CD).----- --
• the only "outer" diagrams visible inside the business model are DD and ER diagrams (they must be

placed beside or above BM). -

• there may be several disjointed business models in a tree. These models are independent of each other ..

Fig.- 12 shows a model tree with the buSin-eSSmodil as part of'a system model.
- - -

• OBJECT Environment
.DATATYPE CommTypes
• CarRental

• TASKTYPE comm1
• TASKTYPE tp1
• TASKTYPE tp2
.DATATYPE 001
• TASK Task1

• TASK Task11
e TASK Task12

1& TASK Task2
• TASK Task21

• BUSINESS_PROCESS Task21_A
e TASK Task222
ti TASK Task223

~ OBJECT Obj1

. .•~

___ ._~o.~c

~ 0 ~c c::!:Q] c
~:; ~ c c::!:Q] :::

~ e [ED 0 c::!:Q] c
e [ED o c::!:Q] c

~c~:::~:::
~o~c~=

Fig. 1.2. Model tree (business model as a part of system model)

The structure of the BM model tree is as follows:

10

CHAPTER 1 INTRODUCTION

• top-level tasks which have refining TCD diagrams (referred to as primary tasks) are of special
significance- they represent the main business functions of a system

• alternative refmements of a task via several TCD diagrams are permitted. The "main" (or the sole) TCD
diagram has the same name as the task itself and is shown in the same row. Other alternative TCDs
have their individual names and are placed in subsequent rows just beneath the TSD diagram.

1.3 Task visibility

An important concept in GRAPES-BM is the visibility of tasks.

The visibility rule used is the traditional one for GRAPES (as in V.2.0). Only these tasks are visible in a
TCD diagram whose TSDs are :

- directly under the TSD whose refinement is being defined by the TCD (i.e., at the same level as the TCD
) - the direct refinement case;

- somewhere above the given TCD (i.e.,at the same level as one of the grandparents) - refinement via a
common task ;

• directly as one of the grandparents - recursive refinement, though not permitted for simulatable models.

Thus a TSO diagram is invisible if it placed in another refinement branch. If two tasks with the Same name
are in the same ~anch, only the lower one is visible. TSO names may reappear in different- refinement
branehesvthese tasks have nothing in common. Any task may have an unlimited number of occurrences in
TCnS wherever it is visible, all these occurrences mean a reference to the appropriate defining TSO
diagram

Normally, a task which is part of another task is placed just under it If there is a need for common use of
~-this t8Sk-in -several TCD di8gramS, 1hetask-must be movedhigher up irrthe mOdel tree: 'See nnYre-Oll this
. topic in section 8.2. .- __ _ __

All other elements of a business model - events, organizational units, task types/attnbutes, competencies -
may only be global for the whole business modeL

11

2 Organizationalstructure description

2.1 Introduction

These are completely new features not found in V2.0. They describe the organizational structure, in a broad
sense, of the enterprise being modeled.

Organizational structure is described by means of two new diagrams, or more precisely, one diagram and
one table:

• ORG diagram

• Competence table (CMP) ,.-

Both the ORG diagram and the CMP table are optional. ORG must be present if performers are specified in
tasks. Only the elements of the ORG diagram may be used as performers in tasks for simulation purposes.

2.2 ORG ~lagram
The ORG diagram is the basic facility for organizational structure description. The organizational structure
is described in a tree-like manner typical to traditional ORG-eharts. The main difference is in more
formalized syntax and semantics. The elements of the ORG diagram may have formalized attributes. An
interesting feature of the eRG diagram is the possibility to create separate subtrees within an-QRG"chart as
.separate subordinate trees within the same ORG diagram.

An example of the ORG diagram is given in Fig. 2.1.

2.2.1 Elements of the ORG diagram

The following element types are present in ORG diagrams

1. single organizational unit:

name

2. multiple organizational unit:

3. single position:

(name)

4. multiple position:

12- ---- --- __0"

CHAPTER 2 ORGANIZATIONAL STRUCTURE DESCRIPTION

5. single resource:

a name)

6. multiple resource:

The informal semantics of element types is the following:

• organizational unit represents enterprise, branch, department, laboratory, etc.

• position represents any position type, like CEO, manager, programmer, secretary etc.

• resource represents any equipment or other reusable resource such as a car, computer, printer, machine,
or too!.

The following relationships between elements are present in ORG diagram.

• consists of

• owns

Elements may follow each other according to the following rules:

1,2 may be followed by 1,2,3,4 via consists of

1,2, 3, ~ m~y be followed by 5,6 via owns

5,6 may be followed by 5, 6 via consists of

It means, that both single and multiple element of the same kind may have the same relationships.

The same graphical notation - a line from an element to its follower is used to represent all types of
relationships. This is due to the fact that the relationship type is determined uniquely by the types of the
source and sink elements of the line.

The requirement that elements of ORG have a certain hierarchy is based on specified rules, which are
essential for the informal semantics of the diagram and its readability. The violation of these rules does not
affect simulation. Therefore no syntax checks are performed to ensure that elements follow each other
correctly in the current version.

ORG diagrams may contain the standard free comment symbol which does not affect semantics.

2.2.2 Atbibutes of ORGelements

Name is the identifier of each element in an ORG diagram. Aside from that, any element of ORG diagram
may have the following optional attributes:

• type - internal or external, internal is by default, external specifies that the organizational units
belongs to an external partner of the enterprise;

• number of instances (for multiple ones),

GRADE BM LANGUAGE REFERENCE MANUAL

• availability;

• cost per hour;

• competence (identifier, one or several, comma separated, i.e., actually a competence list can be used);

• efficiency level. It can be any real number, e.g., 0.5, greater than O. in this case it means that given
performer can do his work with efficiency 50%. Duration time for the task corresponds to the
efficiency level 1. The real duration can be obtained via the formula

formal jduration / efficiency Level.

If a task has several ANDed performers/resources in its performer expression in a TSD, the minimal
efficiency_level (from the referenced ones) is used in the formula.

• employee name- only for position type elements.

The default setting for the Type Attribute is that for internal actors. The External type attribute is shown by
the dashed line used for the element contour, e.g.,

~ - -n~m~ - -3~
L. ~

~ Normany-the usage of external organizational units (and their "components") as performers should make
the task an external one, but formally, task externality is independent of performer externality.

Number of instances may be used only for multiple elements. If it is not specified, an unlimited number of
instances is assumed. The number of instances must be a non-negative integer constant. Zero mearis the

---- performeris unavailable, one is the sameas a single performer.

Availability specifies the time intervals when the ORG element is available as a performer. Availability is
defmed as a sequence of time unit specifications in a descending order. It includes years, months, days,
hours and minutes. Two abbreviated formats may also be used:

- from years to days (date part only)

- only hours and minutes (hour part only)

Day specification (a day constant) may be in one of two forms

- date of month (from 01 to 31)

- weekday (from MON to SUN)

Year specification (year constants) are four-digit numbers in the form 19xx or 20xx, month specifications
are from 0 I to 12.

Each year, month and day specifications may be

- an asterisk character (not in parenthesis!)

- a single constant value (in parenthesis or not)

- a single interval i.e. constant-constant (in parenthesis)

- a comma-separated list of constants and/or intervals (in parenthesis)

The separator between the date units is a period. The date and hour parts are separated by just one blank
space (if both parts are present).

14

CHAPTER 2 ORGANIZATIONAL STRUCTURE DESCRIPTION

The hour part (if present) is always placed in parenthesis. Any hour constant contains combined hour and
minute notations, separated by a colon, i.e. hh.rnrn, where hh is from 00 to 23 and mm from 00 to 59.

The hour part may be:

- a single constant

- an interval, i.e. constant-constant

- a comma separated list of constants and/or intervals

The whole availability specification may contain no additional blank spaces (except just one blank space
between date and hour parts). The whole specification is contained in double-quotes. All numbers always
contain two or four digits respectively.

The ends of an interval must be in increasing order. It is not permitted to mix the date of month and
weekday specifications in one availability defmition. If an interval including the end of the month is to be
specified, it must be split into two intervals, e.g. (01-03,25-31). Invalid dates such as 02.30 never make the
ORG element available, although no error is reported.

/." ...

Examples of availability specifications:
"(08:00-1.7:30)"
"*.*. (05-20) (09:00-1.8:00)"
"'*. *. (MON-FRI) (08: 30-1.6: 15)"

"*. *. (MON-FR~) (09: 00-13: 00,4: 00-18: 00)"

~""'--=--n>4':'-(9)-. (MON-FRI)"

"*. *. (MON,WED) (10: 00-14: 00)"

"(1995-1997). (05,09) .01 (09:00-16:00)"

"*. *.01. (00: 00-23: 59)" - available on the first of every month, 00-24 (24 is neverused!)
"* . * . 01" - the same as previous

The semantics for availability are the natural ones. * means no restrictions on the unit. All intervals and
value lists with different units are always combined together (e.g., working hours are applied to all
specified working days). If the lowest unit has a single constant value, the availability is valid while this
unit has the specified value. Omitting the date part means availability every day. For example, "(17:30)"
means availability for one minute every day at 17:30 (a very strange performer, certainly, a more realistic
case is availability for just one day every month).

Cost per bour is an integer or float constant. It is used to calculate automatically the cost of a task, by
'multiplying It with a task's duration. . - -_. ~----

The Competence list of an ORG element specifies its competencies (from the CMP table, see 2.3).
Competence is a performer characteristic in a broad sense, which may be used in task specifications to
select a performer with the given characteristics. It is mostly used with positions.

Employee name may be used only for single positions. If there are several similar positions distinguished
only by employee names, the position symbol has to be repeated the required number of times. Employee
name must be used as an identifier in GRAPES-BM, since it is the only way (aside from competencies) to
select one specific performer (in a task's performer selection expression) from many with the same position
name.

There are two display modes for the ORG diagram: the short and the long display forms. In the short form
no attributes of elements are visible in the diagram, except number of instances and externality (which are
always visible). In the long form, all attributes (which have been defined by the user) are visible inside all
elements ofORG. The same two modes exist for hardcopy printing.

15

GRADE BM LANGUAGE REFERENCE MANUAL

Administration

Informatics_department

--

Informatics _departm ent

SEJaboratory

Fig. 2.1 Example ofORG Diagram (in the short mode)

2.2.3 General structure of ORG diagram

In general, the ORG diagram appears as a forest containing several trees. The nodes of the trees are the
above mentioned elements, and-branchesrepresent the above-mentioned-relations-between the element
instances (in a normal way, from top to down).

A typical situation in ORG diagrams, is such that the leaves of a tree are refmed further by other separate
trees in the diagram. The reference is made by virtue of the fact that the leafhas the same name (and
element type) as the root of the refining tree.

The names of separate objects (i.e., the names of tree roots) must be unique diagram-wide. Names of non-
root objects may repeat. A tree may be referenced several times, each reference denotes a separate object
(with the same characteristics). Any of the elements may serve as a tree root. There may be several
unreferenced roots.

Another requirement is that units and resources directly under a common parent must have unique names.

There is an exception for positions. Position is the only performer type, where several equally named
objects may be placed at the same non-top level (with different competencies or employee names, as a

16

CHAPTER 2 ORGANIZATIONAL STRUCTURE DESCRIPTION

rule). Ifsuch a feature is used, then none of these equally named position elements may have a resource
symbol under it.

By default, the ORG diagram editor is in the "vertical refinement" mode, as shown in Fig. 2. I However, it
is possible at every node (independent of other nodes) to switch to the horizontal layout for successor
nodes, then switch back to the vertical layout at some lower point and so on. In this way the example from
Fig. 2.1 may be displayed as depicted in Fig. 2.2 Thus one can obtain also the traditional ORG-Chart form
for an ORG diagram.

MatIlem atics _ departm ent

Fig. 2.2 Example of Horizontal ORG diagrams

-
2.2A The fonnal semantics of ORG diagrams

Since the ORG diagram is a set of pure trees, every occurrence of an element (unit, position, resource) with
a given name defines a real separate element, which can be used as a performer. Two equally named
elements in a tree represent two performers, which can be distinguished by using qualifiers in performer
selection expressions.

Any independent tree, whose root is referenced nowhere, represents an independent performer (of the
appropriate type). However, as soon as a reference to it (i.e., an equally named leaf in another tree)
appears, the performer is placed in the referencing tree and there is no more independent copy of it. Thus in
the ORG example (Fig. 2.1 or Fig. 2.2) there is only one instance of Building or SE-Iaboratory available
during execution.~lfthe toot name occurs in atreeirra non-leaf position (i.e., with a subtree beneath it),
then this occurrence is marked as an error. In other words, it is forbidden to make a local redefinition of an
independent tree.

The same consists of (or owns) semantics is assumed for descendants of multiple elements. It means that
there are several elements with the same internal structure or ownership, e.g., 3 (unnamed) laboratories
containing the same set of positions, 4 programmers each owning a personal computer (with equal
characteristics) etc.

In addition, inheritance is applicable to availability and efficiency. If at any level (starting from the top
one) one of these attributes is specified, and is not specified in a subsequent level (or levels), then the value
is copied to this subsequent level (or levels). All element types are equal from the inheritance point of
view, only the tree structure is significant. When at a lower level the attribute is again defined, it redefines
the inherited value. Both for availability and efficiency it means complete redefmition.

GRADE 8M LANGUAGE REFERENCE MANUAL

Cost and competence are not inherited, since they may have different meanings at different levels.

The general default for attributes (when nothing is inherited) is always for availability, 1 for efficiency,
none for competence and 0 for cost.

If an ORG-unit cost per hour is required, then either the explicitly specified value is taken, or the sum of
components (just one level below) cost per hour is taken (if the explicit value is absent).

2.3 Competence table

Competence table (CMP) defines the list of competencies which can be used in the business model. Each
competence definition entry contains its sole attribute - the competence identifier.

All table entries may contain a comment.

The competence identifier can be an arbitrary identifier with no additional semantic meaning. All
competence identifiers should be unique. Its sole purpose is in enabling a task's performer expression to »>:

select one from a group of similar performers based on a specifically defined competence. Competence is
mainly used for positions, where it can help to select one from several equally named positions at the same
level. Nevertheless, competencies may be used to give a certain object-oriented style to the ORG diagram.
They may be used to model subtypelsupertype relations between ORG objects as well as "deputy"
performer type relationship. Competencies also permit the user to select performers for tasks based on
qualities independent of their placement within the organizational structure.

18

3 User defined Task Types and User
Defined Attributes for Tasks
These are completely new features in GRAPES-EM, not found in V2.0. Any Business Model may contain
tasks of different types. Each task type has its own list of attributes.

A task type is defined by the corresponding attribute table (ATR), which contains the type name. Untyped
(tasks without assignment of a task type) tasks have no attributes.

Additionally, task types can be defined without defining attributes by leaving the ATR table blank.

Example of Attribute Table is given in Fig. 3-1.

" .

Name Type Default Unit Formula

cost_s integer lU UM

people integer 1
man hour duration duration *people
name string
redo float 0 %
days list 1,3,5
total costs integer cost_ s*people-

- . - .- - - -_ .. - - _ .. - ~ _ ..
_. -

-

Fig. 3-1. Example of Attribute Table ATR

The .Attribute Table contains the.followingcolurnns.L: __

Name defines the name of an attribute. It is an identifier. All names within a table must be unique.

Type defines the data type of the attribute. Only the following elementary types can be used:

integer, float; string, time, duration.

An additional special type LIST is permitted, in this case the value of the attribute may be any list of
elementary data elements. String and LIST may not be used for derived attributes, nor may they be
referenced in formulas. The default maximum length for strings is 255. Neither the additional type
attributes (as found in GRAPES/4GL) nor user defined "elementary types" may be used here.

The sole use of string attributes in this version is to allow the user to define informal characteristics for a
task for later export to other tools (e.g. "workflow" systems).

GRADE BM LANGUAGE REFERENCE MANUAL

Default defmes the default value of the attribute. A proper constant (i.e., literal) of the appropriate type or
a named constant from SP may be used here. The default value is used if the attribute is not re-defined in
the TSD where it is used.

Unit defmes a text string which defmes the units of measurement for the attribute (typically: DM, USD. %
). The unit has no effect on attribute value, e.g., 70% is treated as integer 70 in formulas. The unit is a pure
comment and does not appear outside the ATR table.

Formula defines the value of derived attributes. It is an arithmetic expression composed of other attributes
and constants. The formula may be redefined in a TSD for an individual task, and input event fields may
also be referenced there. If the type is meant for elementary tasks, the formula may contain only standard
arithmetic operations. If the task type is meant for transaction (non-elementary) tasks (see more in section
7.4), the formula may contain also so called vertical operations (SUM, MAX, MIN, AVG). The operand in
such operations may be any numeric or DURA nON type attribute in any ATR table. The semantics of
such operations are explained in section 7.4. Random generator functions of the appropriate type may also
be used. Named constants from SP may also be used. See more on formula syntax in section 10.2.

Formulas may also contain the two predefined attributes of the task: duration and cost (the duration
reference in formula of Fig. 3-1 means the task duration, which is of type duration).

A derived attribute may reference another derived attribute in its formula, but no circular references are
permitted. The actual reference validation is performed in the TSD during simulation where redefmed
aftributes are also taken into account. The order of the entries in the ATR table has no semantic meaning.

Numeric constants are defined in the standard syntax.

-rlfiieconStmts have either the full date_time form or date only; standard separators are used, e.g.,
"1995.05.19 18:38:00"(seconds must be present in the time part). Duration constants may contain any
consecutive units from days to seconds in descending order (separated by colon), e.g., "I 00d:5h",
"lh:3Om:53s", "95m". The numeric elements in duration constants may be integers or floats, e.g., "O.5h" is

~ also permitted. See more onconstant syntaxinsection IQ.J._ . , ,

.A task of a Particular task type may possess all the attributes which are defined in the corresponding ATR
table for this task type. For each task of a given type, some attributes may be redefined in the TSD of a
particular task. The definitions of the remaining attributes are taken from the ATR table. If both a default
value and formula are defmed, the formula takes precedence. If both columns default and the formula in
the ATR are empty for an attribute and it is not redefined in the TSD, the attribute has undefined (NULL)
value (and consequently, is ignored in any statistics computation).

Several ATR tables may contain equally named attributes. No restrictions apply unless such an attribute is
used in vertical operations. In the latter case the attribute must have the same type in all ATR tables where
it appears.

20

4 Eventtable

4.1 General structure

The event table (ET) describes all events appearing in a business model. There is only one event table per
business model. In the model tree, ET is located in the "header" row of a business model, i.e. to the right of
BM. Fig. 4.1 shows an example of the event table. The event table has the following columns:

• name

• category

• type

• Persistence interval

• Transfer time

• .Description

Name Category Type Persistence Transfer Description
interval time

....

Application message ApplDT "Sh"
Car material "30In"
Morning timer time -

- -
("'.....

.- - -09:00")
-

Earthquake message "Sm" exponential
("3m")

Registration complex (Application,
Car)

From5to6pm timer time "Ih"
("·0* ,*
17:00")

Every2m timer REPETITION
(exponential
(''2m''))

. Fig. 4. I Example of Event Table·

The name of an event is an identifier. Any event is visible in the whole business model.

Category has one of the predefined values:

• message - any event carrying some information

• material - an event carrying some physical objects

• timer - timer event

• complex - complex event containing several elementary events

21

GRADE 11M LANGUAGE REFERENCE MANUAL

or a user defined category name, which can be any identifier. There is no formal difference between
message, material and any user defined category since they are treated informally in simulation and are
meant only to enhance the understandability of a business system. Events of any of these categories may
have a data type specified and, consequently, carry data of the specified type. lfthe type is not specified,
then the event carries no data (it is like a Signal). All these categories are sometimes informally referred to
as message events.

Timer and complex events are of a completely different nature, and they are described in 4.2 and 4.3
respectively.

Pure control flows have no name and, therefore, don't appear in ET at all.

Type is a predefined or user defined type name. It specifies the data carried by the event. Type must be
either elementary (from the predefined list: integer, float, duration, time,string) or a user defined record.
This record may contain other records in tum (in arbitrary depth). In general, the types of record fields may
be arbitrary. But the subset of record fields really used in the data context of business modeling (i.e.
referenced as input or output event fields in attribute sections, SET-options, REPEAT-options, triggering
conditions or decisions) must satisfy a stronger requirement These fields must be: /'--.-

• elementary

• have one of the types integer, float, duration, time, without any additional type attributes.

Events of the type string are also not permitted to be referenced in the above-mentioned data context. The
type validity of each event or event field to be used in the context of data is checked at the point of its use
in the TSD~

-
For timers the same type column is used for time moment definition, and for complex events it is used for
compo_n~nt definition.

Persistence interval column is either empty or contains a duration constant
--_."- -- - ~_.

The: duration constant may be a proper constant or a so called constant duration expression. This is a
duration expression which may contain random duration functions and permitted operations, but with
proper constants as the only ultimate arguments. See more on precise syntax in section 1O.Named constant
from SP may also be used for persistence interval.

The persistence interval characterizes the time period for which the event persists in an input event queue.
If the interval is not specified, the default persistence is

• Os for timers

• unlimited time interval for any other event

See more on actual event semantics in 4.4.

"Transfer ttme: 1.his-is-a duration constant-ora-constant duration expression (the-same as for persistence)-
which defines the time necessary to transfer the given event between the sending and receiving task. The
transfer time can be redefmed in the TeD diagram (separately for each occurrence of this event). Named
constants from SP also-may be referenced, either directly or in random expressions. See more on syntax in
section 10.

Transfer time is ignored for timer events. For an event route consisting of several arrows (see 6.5) transfer
time is counted once.

4.2 Timer definitions

Timers are specified by entering their definition in the type column.

Timer definition syntax is in one of the two forms:

22

CHAPTER 4 EVENT TABLE

• time form

• repetition form

The time form has the syntax:

TIME (time_specification)

where time_specification has a similar syntax to the availability defmition in ORG diagrams.

More precisely, time specification is a sequence oftime unit specifications in descending order. It includes
years, months, days, hours and minutes. The sequence always starts from years and may end at any of the
units. The only exception is that hours and minutes are always combined - if hours are present, then
minutes also must be.

Day specification (day constant) may be in one of two alternative forms:

- day of month (from 01 to 31)

- weekday (from MON to SUN)
'"

Year specifications (year constants) are four digit numbers in form 19xx or 2Oxx, month specifications are
two digit numbers from 0 I to 12, hour specifications - from 00 to 23 respectively, minute specifications -
from 00 to 59.

The separator between years and months and between months and days is a period, between days and hours
- exactly one blank space, between hours and minutes - a colon.

~EaelH>f-t:heyear, month and day specifications may be

- a single constant value (in parenthesis or not)

- an asterisk character (not in parenthesis)

.o4l single interval, i.e.constant-constant.Jn parenthesis.c...

- a comma-separated list of constants and/or intervals, in parenthesis

Hour and minute constants always appear combined. Thus, hour-minute specification may be

- a single constant in the form bh:mm (with or without parenthesis)

- asterisk either in the hour position, or in the minute position, or in both (*:mm, hh:*, *:*), with or
without parenthesis

- a single interval, i.e. constant-constant, in parenthesis

- a comma separated list of constants and/or intervals, in parenthesis

The whole time specification expression may contain no additional blank spaces (except the one between
--days ana hours). The -whole specificationis embraced by double quotes. Numeric values for month, day,

hour, minute must always contain exactly two digits.

Four asterisks may be-used instead of one in year position, and two asterisks may be used in month, day,
hour and minute positions. The semantics is the same, e.g., " ••••. ** .•• " is the same as "". * .*". Mixing
asterisks with digits is prohibited.

The ends of an interval must be in increasing order. All values in one list, i.e., both interval ends and single
constants must be in strictly increasing order. If an interval includes e.g., the end of the month, it must be
split into two, for example

"*.* .(01-05,15-16,28-31) 09:00"

The remark refers also to weekdays, e.g.,

(MON- TUE,FRI-SUN)

23

GRADE BM LANGUAGE REFERENCE MANUAL

for service closed on Wednesday and Thursday. Invalid dates such as 02.30 or I 1.3 I simply never occur.

Valid time specification examples:

"·.·.·09:00"

•••.•. (MON-FRl) 17:00" /* once per workday at 5PM·/

•••.•. (MON-FRl) (09:00-17:00)" /* once per minute during the business day */

•••.(04-09).(TUE-SUN) (09:00,10:00,11:00,12:00,13:00,14:00,15:00,16:00)" /. once per hour, in
summer daytime, except Mondays */

•••.•.• ·:15"

/. on the fourth of every month in 1996 at 00:00 • /

/* on the first of the specified months • /

/* quarter past every hour • /

"1996.· .04"

•••. (03-08)"

The special built-in function Start_time may also be used as a time_specification. Such a timer is activated:"
only once at the start of the simulation session. The syntax is:

TIME (Start_time).
-
A time-based timer is triggered every instant the smallest time unit explicitly specified in the time
specification becomes valid (but the periodicity of it determined by the lowest interval or • element).

The repetition form has the syntax

REPETITION (duration expression).

The duration expression may contain only duration constants .andfunctions-of constants, i.e-the -same style
- constant expression with random functions as those used in the transfer time column. See more on the

syntax of such expressions in section 10.

Examples.

REPETITION("IOm:30s")

REPETITION (UNIFORM("1 d" ,"3d"))

Repetition-based timers are triggered periodically after the specified interval (constant or random) has
elapsed. The first triggering occurs after the specified interval has elapsed from the session start-up time.

-If more-complicated -behavior in terms- of time is-required-{ e.-g" -for-a realistic simulation load generator),
timers must be combined with availability.

4.3 Complex events

Complex events have their own category. Their definition contains a comma separated list of elementary
events in Type column. Complex events in this version may not be directly sent or received by elementary
tasks. They may be only used for bundling together several related events having the same route in some
high level TCD diagrams. They must be finally refmed into elementary events at some TCD level (using
syntax defined in 6.2.12). No nesting of complex events is permitted.

Transfer time and persistence is ignored for complex events. Timers may not be used as elements of
complex events.

24

CHAPTER 4 EVENT TABLE

4.4 The semantic aspects of event behavior

All events are created by tasks or timers and sent to their destination queues at other tasks. Then they are
taken from these queues and used for triggering those destination tasks (they are "consumed").

If considered in detail, there are two types of event behavior in queues:

• lasting semantics

• enabling semantics.

For any category except timer, the "lasting" semantics is assumed. If the persistence column is empty, it
means "lasting forever", namely the event enters the target queue and remains there until it is consumed by
the task; there is no difference whether the event alone triggers the task or several ANDed events trigger
the task. Lasting semantics is used also for control flows not definable in ET. "Enabling semantics" is
never used for non-timer events.

If the persistence column contains a duration constant, it means "lasting for this duration", i.e., after the
expiration of this period the event vanishes from the queue.

On the contrary, for timers the "enabling semantics" always is assumed. An empty persistence column for
timers means enabling ("Os") semantics. Explicit duration value d in this column means enabling (d) for
timers. The "enabling" semantics is the following. First, such an event persists in the queue only for the
specified time interval, after that it simply vanishes from the queue. In particular, enabling ("Os") (which is
default for tinlJm;)means that event must be used at the same system time moment when it appears in the

-queue (alOt of actions may-occur at one system time moment, e.g., several task instances may start). Such
an event vanishes from queue when the system time is advanced.

Second, enabling semantics is different from a consumption point of view. There is no difference when the
event alone triggers a task - it is immediately consumed from the queue after the triggering. However,
when an enabling-event triggers a task in an-ANDedcombination;'with one or more-lasting events, the
enabling event remains in the queue (the lasting ones are consumed). Thus an enabling event can "pair"
with several sets oflasting events while it persists in queue. For example, if a task is triggered by e AND t,
where e is a lasting event and t a timer with default persistence, then one instance of t pairs with all
instances of e which are present in the queue when t arrives, and the corresponding number of task
instances are started (provided that there is sufficient number of performers available). Only the expiration
of the time interval deletes the enabling event from queue in such a situation .. Sometimes in rare instances,
several enabling events are ANDed (i.e. two timer events, one an interval the second a frequency are used
together), but note that the enabling events are all consumed at triggering in this case.

The consumption of timers depends on the exact set of events used for this particular triggering. When
there are ORs in the triggering condition involving timers, such as the expression (timl AND el) OR tim2

· where timl __and ~im2_both.!!!e timers' thisshould be taken_intoaccount (tim2is consumedwhen it triggers.
but timl is not).

Normally there is either zero or one timer in an input queue. However, if a persistence interval exceeds
repetition period (this may happen for random intervals) there may be more than one timer in the
corresponding queue. From the enabling point of view it makes no difference how many timers are in the
queue (if there is at least one), their consuming is as for other events.

25

5 Task SpecificationDiagram

5.1 General form and role of TSD

Any task used somewhere in a business model has a Task Specification diagram (TSD).TSD diagram
describes all properties of a task and its possible links to other tasks (its neighborhood).

Formally, the TSD diagram is the definition of the task. All properties defined there apply to all
occurrences of this task in any of the task communication diagrams. The neighborhood description of a
task in its TSD is made up from all of its occurrences in TeD diagrams.

A task is called elementary if it has no further refinement via TCD diagram. and a task is called complex""'-
if it has at least one refinement via TCD. For an elementary task all ofits properties are defined in its TSD.
Properties ofa complex task are to a great deal redefined by its refinement. Complex tasks actually
correspond to transactions (see section 7).

From the functionality point of view there- are transformation tasks and decision tasks. Transformation
tasks have only_one possible continuation, while decision tasks have several possible continuations from

-wb:icb--oneoi more is selected. Decision tasks are distinguished by the presence of decision symbols.
Transformation and deeision taskS are not subtypes of TSD, these are just subclasses of the -sanie diagram
type.

The properties of a task (its triggering condition, performer expression, attributes, etc.) are described in the
- eeatral-symbol of a TSD diagram - in the task body. For decision tasks the body is followed by-deeision

symbols.

The neighborhood description consists of input events and output events, represented by arrows. Input
events go from referenced task symbols (or referenced timer symbols) to the task body. Output events go
from the body (for transformation tasks) or from the decision symbols (for decision tasks) to referenced
task symbols.

Referenced task symbols correspond to the neighbors of the task as they appear in a TeD. Therefore each
referenced task symbol contains the name of the corresponding neighbor. On the other hand, referenced
task symbols appear the same way once more in the refinement TCD of this task. Thus these symbols
provide additional linkage between two adjacent levels ofTCD diagrams (i.e., they improve linkage
readability and resolve ambiguities oflinkage based solely on event names). Referenced task symbols are

..-used-in -representing both-ineoming-and-outgoinglinks -of a task.

Formally the TSD diagram consists of:

• body (always one);

• decisions symbols (if the task is a decision task);

• arrows for input/output events with event names assigned to them;

• referenced task (timer) symbols associated with input/output arrows, containing task names (or name
lists);

• textual detailing which may be placed on input/output event arrows beside their names to provide
additional details on event receiving/sending;

26

CHAPTER 5 TASK SPECIFICATION DIAGRAM

• data store symbols representing both informal or formal data stores or material stores. Symbols are
linked to body via possibly named access paths which represent data flows. The characteristics of these
flows are specified in AT tables.

• data object symbols linked to body via the same access paths

Fig 5.1 shows an example of simple TSD (a decision task case)

:f ~e~;5:
•... - -

:C-~e:;5:
L.. __

ev2
ev1

Task: Car_Rental
Triggering condition:
AND
Performer:
Perf1 AN D Res 1

:r;;eni~5: :f ~em;5:
L.. L.. _

Fig. 5.1 Example of simple TSD

There are some formal rules for TSD diagram structure:

• for decision tasks, output events may start only from decision symbols, but not from the body

• each referenced task (or referenced timer) symbol is associated with only one (input or output) event
arrow

• the referenced timer symbol may be associated only with input event arrow.

Thou~ the TSD is-the foiniiil definiti()o"of atask, often only TCD diagrams are manually built by the user"
and TSD diagrams are generated automatically by GRADE editors (see sec. 6.6 and GRADE on-line help).
If only those task properties are used which are visible in the TCD diagram, then TSD diagrams need no
manual modification and there is complete consistence between TSD and TCD. However, if a TSD
diagram (its body or decisions) are in fact manually updated, then it becomes the primary definition of task
properties, and not the TCD diagram.

In comparison with version 2.0, the TSD features have been significantly extended. Referenced task
symbols have been added and therefore referenced task symbols contain no names after conversion from
V.2.0. Some other manual updates may also be necessary.

In the next sections al.lelements of the TSD will be explained in detail.

27

GRADE 11M LANGUAGE REFERENCE MANUAL

5.2 Referenced task symbols

The referenced task symbol in a TSD diagram represents a neighbor of the given task when one or more
occurrences of this task appear in some TeD. There are three kinds of referenced symbols:

--------------------.
: (<taSk_name>) :
L "

referenced internal task

:,~----~10iame:>----~:
II }I
'_.:::::.:::.:.:.:.:. :.:.:.:. :.:.:.:.:. J

referenced external task

referenced timer
»:':

Thetbree kinds of referenced symbols represent neighbors, either internal or external tasks respectively, or
iricoming timers. Referenced internal and external tasks may represent both incoming or outgoing links of

_Jl task.referencedtimer may be only incoming. The referenced internal and external task symbols are
distinguished only for better readability, from the formal semantics point of view they are equal.

In general, both for internal and external referenced tasks, a name list (comma separated) may be used
instead of single name:

,--------------------, ,
'(~-~J::: < name_list> .
'- ----- ------------_'

For referenced external task the name list may also be empty (but not for an internal one). Such an empty
list corresponds to a neighbor which is an unnamed external task.

The main association between a task's definition in its TSD and its occurrence in a TeD (and between TSD
and refinement TeD) is still via event names. Referenced task symbols with their names only help to detail
this association.

Refereiiced tasksassociated with'incoming eventsarealso -caned incoming referenced 'tasks, andthe same
applies to outgoing ones.

Normally there are as many incoming referenced tasks (of the appropriate kind) and respective incoming
event arrows in a TSD as there are different events entering this task in a TCD. If in a TCD, several equally
named events enter the task from different tasks, then the names of all of these neighbor tasks are grouped
together in one referenced task symbol, associated with the given incoming event. All incoming control
flows normally also are represented by one referenced task symbol with an appropriate name list,
associated with the unnamed input.

The situation is similar for outgoing events. Different events leaving the task (or one of the decisions in
case of a decision task) correspond to an equal number of outgoing referenced tasks. If several equally
named events leave the same source, their destination names are placed in one referenced task symbol.

This, in general, is the default appearance of a TSD when automatically created by GRADE editors.
However, it makes no-difference whether referenced task names are grouped in one list or they are placed

28

CHAPTER 5 TASK SPECIFICATION DIAGRAM

separately in several referenced task symbols. Formally, when a name list is used in a referenced task, it is
completely equivalent to several referenced tasks connected to the same partner.

Namely,

r;---""
I (A J I
_ _ _ J

is equivalent toe

is equivalent to ...•.. ':

It is permitted to combine in one referenced task's name list, names of both internal and external tasks.

But th~~fauIteditor principle in the case of many equally named events is to place internal neighbor task
- Ii3.iTieS in one internal referenced task and external neighbor task names in another external referenced task.

From the formal syntax point of view, grouping in name lists is completely irrelevant.

There is a mandatory requirement, that if there are several events with the same name (in particular, control
flows) then the Dame lists within the corresponding referenced tasks must have no common elements.
External referencedtasks may also have an empty name list if the relevant neighbor is an Unnamed external .
task (but this "empty name" may be simply ignored: if the event comes/goes also from another mimed
task). If a neighbor of a task in a TCD already is a referenced task, it is represented in the TSD by the same
referenced symbol (the name (or name list) is also retained).

Each incoming timer is represented by a separate referenced timer symbol.

If a task has several occurrences (in one or several TCD diagrams), the referenced task name lists are
summed up from all occurrences.

Referenced task names in TSDs are semantically insignificant for incoming named events when a task is
elementary. In any case there is one queue for a named event (but there may be also no queue at all for this
event at a given task occurrence when there are no connections, see more in 6.5). For control flows
referenced-nemes-have-seme significance since there-is-potentially-one queue-for-eaoh-differentrefererrced-
task name.

But for outgoing events, the referenced names are always the basis for event routing (see 6.5).

In any case, there should be no superfluous referenced task names in any TSD, except the natural name
lists appearing in case of several occurrences of the task. Superfluous referenced task names may cause
problems for simulation, see sec. 6.6. There are special GRADE editor facilities for removing superfluous
referenced task names (i.e., those not used in any TCDs).

On the other hand, all neighbor names from any of the task's occurrences must appear in a relevant
referenced task symbol.

The special case is the TSD for primary (i.e. top level) tasks. Though there is no TCD above, such a TSD
may contain a referenced task symbol naming another primary-task. This option is used to ensure the
exchange of events between primary tasks (see more in 8. I).

29

GRADE ISM LANGUAGE REFERENCE MANUAL

5.3 General contents of the task body

The task body is the main element of the TSD, where all task properties are described, in separate sections.

The following sections are available

• Task type

• Triggering condition

• Performer expression

• lnfonnaldescription

• Objectives

• Constraints

• Execution mode

• Priority

• Duration

/._~.-

• Max instances

• Attributes

• Alternatives

Fig. 5.2 shows' an example of a task body where all sections are present. All sections are optional, and there
may be a task, where only its name is present in its body. This name is always the task name itself.
- ~ - --

The most significant (and most used) sections from the behavior description point of view are triggering
--conditions, duration and performer --expression.

. These sections are described as the first ones.

Task: task_name Type: Type_name
Triggering condition:
ev1 ANDev2
Performer:
(perf1 AND Res1) OR
(Perf2 AND Per13AND Res2)
Informal description:
Any text
_Objectives. :'..
For something
Constraints :
.This must be
Execution mode: Manual
Duration: "3h"
Max instances: 7
Priority :0
Attributes :
RedoJ)robability: 30;
Personnet costs: 23.5"ev2.costs;
Process_costs: COST"ev1.1ength
Alternatives :
A 1: PROBABILlTY=70 %
P\2.:PROBABILITY=30 %

30

CHAPTER 5 TASK SPECIFICATION DIAGRAM

Fig. 5-2 Task body in TSD

When a task appears in a TeD as an occurrence, the following sections of the body may also be present
there:

• task name

• triggering condition

• performer expression

• task duration specification.

In a correct modeL, any task information included in a TCD must contain the same information as the
corresponding section in this task's TSD, or be empty. GRADE editors provide support in maintaining this
data consistency since sections from the TCD are automatically transferred to TSD when a TCD is
modified. If the information in the TSD contradicts the corresponding section in the TCD (usually the
result of a manual modification to the TSD by the user), then in simulation the TSD information is used. »>:

In addition, tasks in a TCD may contain sections which never appear in a TSD

• occurrence comment

i transaction control options (START, NOSTART, END) (see more in sec. 7)

In a TSD, the informal description already plays the role of a comment, therefore there is no special
cemment-section.

The following sections of the TSD are informal in character:

• informal description

• objectives

• constraints-

• execution mode

5.4 Triggering condition

Triggering condition describes which events or event combinations must have arrived via incoming event
arrows from other tasks and, consequently, must be in the event queues of a task in order for this task to
start. When the task actually starts, the events which have triggered the task are removed from the queues.
This is Ja:1ownas the consuming of an event combina.tio~_._

Triggering condition is significant only for elementary tasks.

5.4.1 Simple caseS

The simplest form of triggering condition is that consisting of just one keyword

A1\TJ) or

OR

AND means ANDing together all possible input events (which are present in the TSD). namely, one
instance of each distinct input event is required. If several equally named event arrows (i.e., from different
neighbors) enter a task, only one instance of such event is required. OR requires anyone of the input events
to be present. Only this one event is consumed when the task starts.

31

GRADE 8M LANGUAGE REFERENCE MANUAL

The Triggering condition may be completely absent as well. In this case the default simple AND is
assumed.

If only one input event enters the task, that event name also may be used as the triggering condition. This
again means the same thing - one instance of the event must be present.

5.4.2 Syntax in general

The general form for the triggering condition is a special Boolean expression using incoming event names.
This expression may be:

• a standard Boolean expression, using AND (high priority), OR (low priority) and parentheses from
incoming event names;

• special_AND _expression;

• OR_expression built from special_AND_expressions and standard Boolean expressions.

A special_AND _expression is an and_list associated with one or more additional statements such as
WHERE, AND ALL, <integer> event_name, etc. Formally, the special AND expression is one of:

• (and_list WHERE condition)

• (and_list AND ALL event_name)

• (and_list AND ALL event_name WHERE condition)

• (<integer>event_ name)

• (and_list AND <integer> event_name)

The and_list may be:

• a single event name

• two or more ANDed single event names.

The "&" character may be used instead of keyword AND, and the "'" character instead of OR.

A special AND expression must be enclosed in parenthesis, if it is ORed with another such expression. If it
is used alone, parenthesis may be omitted.

In other words, any "special element" (WHERE, ALL, grouping integer, optional event) may appear only
inside an ANDed (and bracketed) subexpression, which may only be ORed to the other parts of the
triggering condition expression. Thus the special elements may appear only inside one level of brackets
(which are mandatory when there are other OR parts), and there may be no ORs inside these brackets .

... NOT operator is notused in GRAPES~BM.

If and_list in a special_AND_expression is followed by yet another event (connected via AND ALL or
AND<integer> options), then the name of this additional event may not appear in the and_list. For
example, el AND <2>el is invalid, use <3>el instead.

The general form for triggering conditions can be summed up as follows:

triggering_condition: :=

stand and term::=

and_term {OR and_term} *
stand_and_term I (special_and_term)

stand factor {AND standfactor}"

event_name I (stand_expr)--

and term::=

stand factor::=

32

CHAPTER 5 TASK SPECIFICATION DIAGRAM

stand_and_term {OR stand_and_term} *
and Jist WHERE bool_ expr I
and Jist AND ALL event_name I
and_list AND ALL event_name WHERE bool_expr I
and_list AND <integer_const> event_name I
<integer _const>event_ name I

and list::=

/,- ..

Examples of valid triggering conditions

el AND e2

-el & e2

el OR e2

- eTte2-

el AND (e2 OR e3 OR e4) AND e5

el AND e2 OR el AND e3

elAND KtL e2--- .

<3>el

el AND <3>e3

el AND e2 WHERE el.fl=e2.fl

(el AND ALL e2) OR (el AND <3>e3) OR e5

(el AND e2 WHERE el.fl=e2.fl) OR (el AND ALL e3) OR (el AND (e4 OR e5))

(el AND ALL e2)

el AND e2 [AND e3]

5.4.3 Semantics of triggering condition

If standard Boolean expressions are used, they have their intuitive meaning. Any minimal group of events,
which satisfy this Boolean expression is used for triggering. Subexpression e AND e also requires only one
instance of e to be present, which may have arrived from any of the sources (and only one instance is
consumed). Similarly, e OR e is the same as e. If two instances of an event are necessary for a task to
trigger, notation <2>e must be used.

The special AND expressions are used for group or selective triggering. Thus

event I AND ALL event2

is triggered, when there is one eventl and one or more event2 present in queues of the task. Then all
instances of event2 present in the queue are consumed together with one instance of event I.

33

GRADE BM LANGUAGE REFERENCE MANUAL

Integer qualifier (which must be a constant) is used to define fixed size "packaging" of events, e.g.,

el AND <5> e2

requires one e I and five e2' s to be present in queue, and they are all consumed at triggering.

If the and_list contains more than one element, just one instance of each is taken together with the required
number of instances of the last specified event. ALL and integer grouping may be applied also to timers (in
the role of the last event), but this is not a frequently used construction.

The expression <5>e2 alone is also considered to be a special AND expression. It is used to specify just a
package of events e2 as the triggering condition. <1>e I is considered to be identical to simply e 1, and,
consequently not a group triggering expression.

The WHERE condition is a Boolean expression operating on incoming event fields and task attributes.
Only the event (or events) from the and_list (beside which the WHERE condition appears) may be
referenced. The condition itself is a normal Boolean expression containing relational operators on
arguments, ANDs and ORs. The semantics is that only the event (or event groups) satisfying the condition
is used in triggering. Non-matching event instances remain in queue. For example, / ...

ev1 AND ev2 WHERE evl.x1=ev2.x2

says that only those event pairs of ev 1 and ev2, where the corresponding fields match, are taken from
- queues and consumed for triggering. Elementary fields from any level (using the appropriate qualification)

may be referenced in WHERE condition.

Any tasluittributesmay be referenced in the condition, and their values are specially computed at that
--moment. If the value happens to be undefined (NULL), any comparison of it to any event field returns the

answer false.

Warning. If one of the attributes used in WHERE is based upon a random function, the attributes value
used by WHERE may differ from the "actual" value (used in task statistics).

When ALLjs combined with WHERE, only those instances of ALL-event-which satisfy the WHERE
condition, together with appropriate singular event instances for and_list make a "package" of events,
which triggers a task instance and is consumed from the queues. Example:

elAND e3 AND ALL ev2 WHERE e 1.x=e3.x AND e 1.x=ev2.x

Here at least one matching ev2 must be in the package. All non-matching ev2 remain in the queue.

A special notation like

e1 [AND e2]

where the AND-symbol-together theevent namefoUowing it-is enclosed in square brackets, may be used as
the andJist forming the special AND expression. This notation means that the bracketed event is not
mandatory for triggering, but when an instance of this event is present, it does take part in the triggering
(and therefore is removed from the queue). Remember that if an event arrow enters a task symbol but the
event is not present in the triggering condition, then instances of this event simply remain laying in the
queue (except in the case where the triggering condition is completely absent). Square brackets may not be
combined with the other special expression facilities (WHERE etc.). There may be more than one
bracketed event, e.g.

e1[AND e2][AND e3]

If several of the ORed AND expressions are true simultaneously, the first of them (from left to right) is
actually used for triggering. More precisely, any standard Boolean expression which is a top-level OR-part
of the triggering condition, is internally converted to_its disjunctive normal form. As far as possible, the

34

CHAPTER 5 TASK SPECIFICATION DIAGRAM

order of events in the original source expression is retained. Thus after this transformation any complicated
triggering condition is an OR-expression, where each AND-term is either a simple ANDed list of events, or
a special AND-expression (i.e., one containing ALL, WHERE, etc.). If a triggering condition is already in
the disjunctive normal form, it is not transformed. During execution, each AND-term (from left to right) is
checked, to test whether all events in this term are present (at least one instance). For special AND-
expressions the additional requirements also are checked. The first term thus found to be true, is used as the
actual triggering set.

5.4.4 Control flows in triggering and semantics for occurrences

Nameless events represent pure control flow. They never appear explicitly in the triggering condition. They
either all are ANDed to the explicit triggering condition (if the triggering condition is a simple AND or any
more complex one), or all are ORed (if the triggering condition is a simple OR).

If more than one control flow enters a task, a separate queue is assigned to each of them. More precisely, a
potential input queue is assigned to each referenced task name associated to an incoming control flow in a
TSD (regardless whether they appear in one referenced task symbol as a name list or in several). /",

But there is a general convention, that in every occurrence of a task only those input queues are built which
potentially may receive an event (or control flow) in this occurrence according to connection rules (see
6.5). The simple AND requires that an instance of event from each existing queue must be present (and is
consumed).

To sum l!Jl,tbis-ruIe implies the most natural semantics, that in each occurrence of several ANDed (by
~default) control flows on1yall those really entering this occurrence are required for the task to start.

In OR cases, the presence of one of the control flows is sufficient for triggering.

The other consequence of this convention on queues and simple AND triggering, is that one occurrence of
such-a task-may have, e.g., e I, e2,-e3 as incomingeveatsand-the other-only e I, e2 and batb--will-ee--
normally triggered (TSD will have e l , e2, e3 as-incoming events-and up to five referenced task symbols in
this case).

Complex events may not be used for direct triggering of tasks, they must be refined first. They also may
not be used for implicit triggering of elementary tasks (i.e. they are not allowed to enter an elementary
task).

5.5 PERFORMER expression

The PERFORMER expression (see PERFORMER section in Fig. 5-2) sets the criteria by which a
"performer-orgroup-ofperformersis-to be selectedfrom1he-ORG diagram to execute the given task.These

performers must be available before the task can start. Performers are taken from the ORG diagram of the
business model.

5.5.1 Syntax of the perfonner expression

Any element of the ORG diagram (unit, position, resource) may be referenced as a performer in the
performer expression. In the simplest case, the performer expression is simply one of the available
performer names, e.g. secretary.

The general form of the performer expression is a Boolean expression built from performer elements using
AND, OR operators and parenthesis. The "&" and "I" characters may be used instead of keywords as well.

35

GRADE ISM LANGUAGE REFERENCE MANUAL

In the simplest case the performer_element is a organizational unit name, position name or resource name
from ORG diagram. If a name is not unique diagram-wide, then it should be qualified by including
corresponding higher level names from the ORG tree, e.g.,

SE_laboratory .Programmer

SE_laboratory .Computer.

If the performer is a multiple object (multiple unit, multiple position, multiple resource), the number of
performers (resources)actually necessary may be specified (before the qualified name), e.g.,

<3> SE_laboratory .Programmer

<3> SE_laboratory .Computer
r·· ...:·

Ifno number is specified, one instance from the multiple performers is assumed.

The number of performers may be used also if there are several equally named position elements at the
same level (from this point of view it is the same as if there were one multiple position with the appropriate
number).

TIiepeIfurmer expression will often also contain the specification of a necessary competence list (after the
keyword WIlli), e.g.,

<3> SEJaboratory.Programrner WITH COMPETENCL= Pascal, Cplus _

AND-semantics are assumed for the competence list, i.e. both competencies are required here
simultaneously.

If a performer or a resource is occupied by the given task only partly, e.g., only at 70010 level, then it is
specified as follows

<3>SEJaboratory.Programrner WITH COMPETENCE=Pascal FOR 70%

The keyword ANY may also be used instead of position in a performer expression, e.g.,

SE_laboratory.ANY WITH COMPETENCE=Pascal

Some more examples of performer expressions follow:

(<2>SEyrograrnmer AND SE_computer) OR(<2>ArtiCintJab.Prograrnrner

WITH COMPETENCE=OPS5)

(perf! AND resl) OR (perf2 AND res2).

36

CHAPTER 5 TASK SPECIFICATION DIAGRAM

The syntax of the performer expression is the following:

performer_expression ::=perf _and_term {OR perf_and _term} *
perf_and_term::=perf_factor {AND perf_factor} *
perf_factor: :=performer _element I (performer_expression)

The general syntax of performer_element then is the following:

performer element..eunitperf Ipositperf I resperf

unityerf::= [num] {unit_name.}" unit_name[comp]

posit yerf::= [num] { unit_name.}" posit [.employee _name] [comp][percent]

resyerf::=[num] {unit_name.}" [posit_name.]{resource_name.}" resource_name[comp] [percent]

-comp::=WITH COMPETENCE = competence_list

posit:= position_name I ANY

percent::= FOR integer_constant %

num::= <integer constant>

competence_list: :=competence _name {,competence _name}·
---- _.

In general, the referenced names should be in accordance with the ORG diagram. Unique names at any
level may be unqualified. Non-unique names must have necessary qualifications (unit_names, composite
resource names) which make them unique.

However, it is permitted also to use "incomplete" specifications, i.e., when there are equally named
performers in several places ofORG diagram, then by omitting some of the highest level qualifications, we
can have access to all these places, e.g., to programmers from several departments. It is not permitted to
omit "middle" qualifiers, each element must match to a tree fragment

If the position is qualified by employee name, only the specified one is seized. This facility makes sense, if
there _are,several simi!ary~s~~~!1s,dis!ffiguish~d on!>,byemploy~ ~ames.

ANY position may be the lowest item in a performer element or may be followed only by WITH
COMPETENCE specified. No resource or employee name may follow ANY. On the other hand, ANY may
be preceded by unit specification, or used alone. When used with a unit specification, it means any position
directly under this unit, while when used as a single keyword it means any position in the entire ORG
diagram.

5.5.2 Semantics of the perfonner expression

When a compound organizational unit is specified as a performer, this includes all positions and resources
from the specified unit in the performer expression. When the unit is seized none of the components of the
unit are available for another task. Similarly, a composite resource means all its components. Position and
elementary resources mean just the specified objects. - -

----37

GRADE BM LANGUAGE REFERENCE MANUAL

x AND x is the same as <2>x. Therefore dept] AND deptl.secretary makes no sense (the first element
already requires the whole deptl). The number of required performers should not exceed the number of
available ones. Ifno required number is specified, I is implied.

The FOR option does not affect the seizure of a performer or a resource - it is always seized for 100%. The
cost is also not affected. The only effect of the FOR option is within performer statistics, where productive
utilization is computed accordingly.

Performer availability periods are taken into account only when starting a task. If the task execution period
runs over into an unavailability period for a performer, the performer completes the task in accordance
with its duration.

In fact, the availability of specified performers acts as part of the triggering condition. If the triggering
condition is true for some event group in a task's queues but none of the specified performer combinations
is available, no triggering occurs, and the events remain in queue. Certainly, events with limited
persistence, like timers, (see sec. 4) may vanish from queue while waiting for performers, so these event
instances may trigger no task at all.

/ •..,-:

5.6 Other elements of task body

Now let us descnbe the other elements of task body. Fig. 52 shows an example of a complete body.

_:rriggerulg conditions and performer sections were already described above.

Section TYPE specifies the type name of the task. Ifno user defined type is used, the section is empty. The
type specifies which attribute table is used for task attributes. Untyped tasks have no attributes, except the
predefmed ones. '

INFORMAL DESCRIPTION, OBJECflVES and CONSTRAINTS sections contain any informal text.

EXECUTION MODE section may contain one of the keywords: MANUAL, AUTOMATED,
INTERACTIVE.

PRIORITY section has the syntax

PRIORITY: integer_const

with zero as the default value (the highest priority = 0, so the greater the constant, the lower is the priority).
Priority governs the competitions of tasks for performers. Explicit priority greater than zero must be

~'defined for "background" taslcs~1huS allowing normal tasks to seize performers as 'flrst,

The precise semantics of priority.

Let us assume that several tasks are ready to trigger (i.e., there is at least one triggering event set in each
task's queues) but they are not triggered because no performer (common to all of them) is available. When
a required performer becomes available, then among tasks which could now be started, the one with
highest priority is selected to start.

If tasks compete for different performers, their relative priority has no effect on their starting order (i.e., all
tasks are started as soon as possible). If there are ORed performers, for each performer set becoming
available there is an independent competition.

A task being executed is never interrupted by a higher priority task (non-preemptive scheduling).

There are two predefined attributes, DURA nON (of type duration), COST (of type float) for each task.

38

CHAPTER 5 TASK SPECIFICATION DIAGRAM

The DURA nON attribute is described in the DURA nON section of the task description. COST has no
explicit description in TSD. Instead, the value of this attribute is computed dynamically, using
DURA nON from tasks being performed and the COST PER HOUR attributes of the performer(s) selected
to perform this task from the ORG chart (namely, the actual duration is transformed to hour units and the
obtained float value is multiplied by the appropriate cost per hour value). The COST attribute may be
referenced in other formulas, however.

Cost per hour is summed for all performers used. Efficiency (which affects the duration) is also implicitly
taken into account. - ---

If a compound unit is defined as a performer (but not the elements of it), then the COST PER HOUR for
the whole unit is used (if it is present), otherwise the sum of the costs of a unit's direct constituents is used.

The DURATION section may contain a proper duration constant, a named constant from SP, a random
duration function, or a duration type expression, containing as arguments the above mentioned values, and
in addition, attributes-of incoming events and task attributes.

Restriction: only attributes of events which are always present may be referenced, an execution error
message appears when missing event is referenced.

If a group triggered event is referenced, then the first instance of it is taken. Any task attribute may be used
in a duration expression, and the derived values are specially computed at that moment. If the expression
results in Nl.!LL-value, zero duration is assumed.-----
Warning. If an-attribute with a random value is involved, the value may be different from the final value of
the attribute.

Examples:

"2d:l0h'"

EXPONENTIAL{"2h"')*order.quantity

line.duration * letter .length

ATIRIBUTES section may contain some of the attributes for the given task type. The attributes present in
the corresponding ATR but not included in AITRlBUTES section .retain their definitions (default value or
formula, with formula having priority), if such are provided in ATR's. Those without definition have
undefined (NULL) value. No assignments are permitted to string attributes in this section, if the model is to
be-.usedfor-simulation ..--------- - -- -- ------

The presence of attributes in the AmUTES section completely redefines their value by the provided
expression (which may be a constant or a proper formula). If a new formula is defmed here, there are wider
possibilities for its arguments. In that case input event fields may also be used as arguments. They are
referenced as event..field(or event.fieldl.field2.field3, if the record is nested, the actually referenced value
must always be elementary). It must be ensured that the event type has such a record field, and that the task
is actually triggered by such an event (otherwise NULL value appears together with a warning at runtime).
When an event bas an elementary type, just the event name is used for referencing its value. Predefmed
task attributes may also be used in formulas. Each attribute setting is terminated by";" character. After the
last attribute, the ";" character may be optionally inserted. Thus attribute setting is a sort of assignment
statement.

If an event e2 appears in a "group triggering form", i.e., el AND.ALL e2 or el AND <10> e2, then SUM,
MAX, MIN, AVG operations may be applied to fields of e2, e.g., attr5: SUM(e2.xl). If an ordinary
arithmetic-operator is applied to such a group-event, the first instance is taken.

39

GRADE 8M LANGUAGE REFERENCE MANUAL

Random values may be used freely in attribute formulas. See more on expressions in section II.

Each possible attribute from the corresponding ATR table may be redefmed only once in the
ATTRlBUTES section. The order in which the attributes are redefined in the section has no semantic
meaning.

The retained attribute defmitions from the ATR table and the redefined ones from the attributes section in
tasks together are sorted in an order where an attribute referencing another attributes in its fmal formula is
evaluated after the referenced ones. If a circular reference is found, an error message is generated (i.e., such
an ordering is forbidden). The attributes in a TSD are evaluated during simulation in the order defmed-by
this sorting.

A special case is attributes oftransaetions (non-elementary) tasks, which are evaluated at the corresponding
transaction end (see sec. 7). Besides other attributes of the task, formulas in transactions may contain also
attributes of other (elementary) tasks inside vertical operations (SUM, MAX, MIN, AVG). Here "vertically
processed" attributes are referenced purely by their names. Any arithmetic or duration type attribute from
any ATR table formally may be referenced in a vertical operation. If several ATR tables contain equally
named attributes, their types must also be equal, if these attributes are being "vertically processed" in
transaction attribute formulas. Formulas of transactions may not contain event fields. Any task instance
having the referenced attribute and which belongs to the transaction instance is taken into account. See
more on it in sec. 7.4.

MAX INS~CES section defines the maximal allowed number of simultaneous instances of the task.
-TIrisls--an additional absolute limit on the number of instances, besides the performer selection expression
together with the ORG diagram which also define a limit on the instance number.

~TERNATIVES section ~ only when there are several alternative refmement TCDs under a
complex task. It contains "their names andprobabilities. llieGAADE tool supports automatic "extensTon-of "

"the alternative section when new "alternatives are inserted directly in the model tree. For top-level tasks, the
Alternatives section is valid, when this top level task is "called" in some TCD (see 8.2).

In general, the Alternatives section effects only the routing into the given task (see 6.5). If alternative TCDs
(including those at the top level) have autonomous activities inside (e.g. timer), they all function in parallel,
irrespective of probabilities.

Percents may be absent from one or all alternatives in the section, and then 100/n is assumed for each. It is
not permissible to specify percentages for some and not for others.

~Type, Attributes andAlternativesare the only sections of the task body which are operative on complex
tasks. All other sections are aetuciIly redefined by their"refmemenis~" ..-. " " . ." -" "" - _ ..

5.7 Decisions

Decisions can have detailing which are statements placed inside the decision symbol. The complete syntax
of decisions is as follows:

decision name

[formula]

[probability]

40

CHAPTER 5 TASK SPECIFICATION DIAGRAM

where

formula is Boolean expression I ELSE I AL WAYS

and probability is [number%] [EXCLUSIVE]

Formula and probability are optional. The formula may contain attributes (including derived ones) and
input fields (such as attribute formulas). Typically either a formula or probability is defined forall of a
task's decisions, but the options may also be mixed. Decision names must be unique within one task, and
names must always be present

The formula is any Boolean expression (see section 10) containing attributes and input event fields. It
should be reminded., that for "group-triggering" events the decision is taken once for the whole group.
Therefore only vertical operations on such event fields should be used. If a group event is referenced
without a vertical operation, the first instance is taken.

An example of decision:

Component_OK

co~.quality>O.95

»:>:

The decision formula may contairi also special built-in function Is_triggered_by (event_name). The
function is true; if at least one event with the specified name was actually consumed during the triggering

__of1he-currenrlask instance. The function makes sense, only if there is a usage of OR in the triggering
condition (otherwise the function has a constant value).

In V.3.0, non-exclusive decision semantics are assumed, where several branches may be activated
--~imultaneously. This assumption isnrore general1han the-previous "exclusive" one used in version""2.0..

First, let us explain the new semantics for formulas. Each decision formula may be true or false
independently of others, and if the formula is true, the branch becomes active (i.e., the associated outputs
are sent). Two specific "formulas" defined by keywords ALWAYS and ELSE also may be used.
AL WAYS is just a syntactic equivalent for constantly true formulas, ELSE becomes true, if no other
decision branch is used. The standard exclusive style may be obtained, if formulas are mutually exclusive.

Now, let us consider the probability based decisions. There will be two syntactic possibilities for the
probability specification

n%

or

n%EXCLUSNE

where n is a non-negative integer or real constant, not exceeding 100 .

.If there is no EXCLUSNE option for any of the decisions, then each of the decisions becomes active
irrespective of others, with its specified probability, e.g., a decision with 30% value becomes active with
probability 0.3. Decision with 100% value becomes active always.

If on the contrary, all decisions have EXCLUSIVE option specified, then the sum of percents should be
equal to 100 (if all EXCLUSIVE branches have the percent specified). If the sum exceeds 100%, a warning
is issued during analysis (and a branch may become unreachable-during simulation). Only one of the
decisions may become active in an EXCLUSIVE case, according to the percentage specified. If the sum is

41

GRADE ISM LANGUAGE REFERENCE MANUAL

just 100%, just one decision always becomes active. If the sum is less than 100%, then no decision
becomes active with the probability (100 - sum)/lOO (no analysis warning appears in this case).

These two cases are the normal ones for probability based decisions. However, EXCLUSIVE and non-
exclusive decisions may be freely mixed. In that case EXCLUSIVE decisions (which again must have a
sum not exceeding 100) form a group, which behaves independently of the other (non-exclusive) decisions
and activates zero or one decision. On the other hand, non-exclusive decisions also function independently
of exclusive ones, i.e., each decision is independently activated with the specified probability.

ELSE -decision may also be combined with probability decisions, with natural semantics (it is used if none
of the probability decisions is selected).

Only one ELSE decision is permitted per task - both in the formula and probability case.

Yet another type of probability is possible by specifying simply the keyword

EXCLUSIVE,
...•...-:.

without any percent specification. This option is used simply to specify the exclusive OR relation between
decisions (only one is possible). From the formal execution point of view, 100% (or less, if there are some
EXCLUSIVE decisions with percentage specified) is divided equally among them.

"The EXCLUSIVE keyword is provided for better comprehension, since probability without a percent and
without EXCLUSIVE is the same as if nothing would be specified at all (and EXCLUSIVE with equal
chances is assumed in that case). For really non-exclusive decisions use n% case.
~------------~

Ifnothing is specified for any of task's decisions (i.e. neither formula nor probability is selected), a
probability of (lOO/n)% (exclusive) is assumed for each. But then nothing must be specified in any of a
task's decisions. It is not allowed to mix specified and unspecified decisions for one task. All diagnostic
._"!..~~ on_decis!~}nco_ns.istency insid~~~l'_~e at warning l~vel.

5.8 Output events

Output events can also have details, which are used if the data values carried by message events are
significant in the model.

The details may contain the SET option for setting values of output message fields and REPEAT for
increasing the quantity of outgoing events. The syntax for SET is

_ SET fi~l~l~){Pfession;

field2=expression; ...

Expression may contain task attributes and input event fields (as in the ATTRIBUTES section). The same
syntax for field referencing is used. The expression type must match the field type. See more on
expressions in sec. 10. Each field setting is terminated by a semicolon. After the last (or sole) field setting
the semicolon is optional.

The REPEAT option has the following syntax:

REPEA T integer_expression

This option may be used to send several messages (with equal data) upon task completion, e.g.

42

CHAPTER 5 TASK SPECIFICATION DIAGRAM

SET fieldl =x+ I ;field2=eventl.a; REPEAT eventl.b.

In the case of events with elementary types, the form

SET VALUE=expr

is used. If the event has a nested record type, qualified field names are used:

field I.field II.field III =expression;

Only elementary fields may be on the left-hand-side of such an "assignment", i.e. no record assignment is
permitted in this version.

The repeat option may also be used alone,

REPEA T integer_expression.

SET and REPEAT options appear as text below the event name.

Remark. REPEAT may not be used as a record field name when the event has this record data type.

There is special convention on message passing through the task. If there is an incoming event and
outgoing event of the same name, the field values of the incoming event are passed without changes to
those of the outgoing event, without any explicit SET option for it. If there is a SET option fot such an
t:y~Jll,ooJ}'lhe eve iii" fields set explicitly in the option have the new values, the other go unchanged.

For more complicated cases one more convention is assumed. If names of input and output events are
different, but they have the same data type (i.e., they reference the same type name in ET), then a similar

. fieldvalue-passing fronrinput to output occurs-In-the-case that several input-events-with the-same record -
type together have triggered the task instance and the output event also has the-same type, one of these
input events is taken for value passing.

Another special feature is multiple event passing, when the corresponding incoming event is "group-
triggered" i.e., in AND ALL or AND <n> connection, and there is an outgoing event with the same name.
In this case all instances of the incoming event are passed through the task. SET option (if any) should
reference only task attributes (or attributes of "single" events) in that case (i.e., the updated fields are
computed only once and are always the same for all instances). Other outgoing events, as always, are
generated in only one instance. Their field values should depend on a group-triggered event only via
vertical operations. If a group triggered event is referenced without vertical operation, the first instance of
it is taken.

- IfREPEA T is specified for multiple eventsr eachinstance is copied-the specified numberoftimes.

SET and REPEAT may be used only for named events. Outgoing control flow always have only one
instance. Complex event may never be sent by elementary tasks.

If there is no SET option for an event and none of the default value transfer rules apply, the field values of
the output even are undefmed (NULL).

5.9 Input events

There is also one possibility provided for detailing input event; and is really used only for simulation.
Namely, for input events a spontaneous generation option is provided in the form

43

GRADE 8M LANGUAGE REFERENCE MANUAL

TIME (time_specification)

or

REPETITION(duration_expression)

may be used. Time_specification has the same syntax as for timer definition in ET (see sec. 4.2). The same
restrictions as in ET apply for the duration expression (except that arithmetic expressions may not be used
here). The time moments for spontaneous insertion of events in a task's input queue (in a TCD) is defined
as for timers.

This option is used to define system load generators "on the fly", i.e. when timer-like behavior is
necessary, but an explicit timer for some reasons is undesirable. The feature may be used only for named
events (not control flows).

There are two preconditions for the spontaneous event generation to function. First, it functions only, if the
task is elementary. The typical usage of the feature is when we want an external task to generate events to
be processed by the system, without using an explicit timer symbol. For complex tasks it is simply ignored.
Second, there must be an incoming arrow with the given event name in the TCD (more precisely, there »::

must be an incoming route for this event from some task, see 6.5). Certainly, for the generator to function
properly, the other end of this arrow should start from a "dead" task - an external task without any stimulus
(or external without name) as a rule. However, it is not an error, if the other end starts from a "live" task,
then the two event flows will mix together.

Details of input event are also shown in TSD as a text below the event name.

5.10 _External tasks

-External tasks also have :rsD-diagramsm- version 3.0, which look the same way as those.for internal tasks.· _.
_ This means that external tasks also appear in the model tree, and they can also be refmed via TeD. They

may also have a type.

This means that there is no more formal syntactic or semantic difference between internal and external
tasks. Externality has no impact on simulation semantics definition or statistics. Internal and external tasks
are distinguished at the informal level, to improve model readability.

The sole special feature of external tasks, is that it is allowed to have unnamed external tasks in TCDs.
Such external tasks do not appear in the model tree and have no TSD. The use of such tasks is for modeling

-only;-From thesimulatienpoint-ef view they-are considered-as "dead" tasks. Events-which would be-sent- to
them are simply discarded since they have no input queues. They never generate any events. However,
these tasks are considered as existing from the routing point of view (see 6.5). Thus, if a route comes from
such an external unnamed task, the queue is built at the other end of such route (to allow an appropriate
spontaneous generator to make this route "live"). Unnamed external tasks in TCD may induce also external
referenced tasks without names in the refinements of their neighbors (in the TSD and the refinement TCD),
which are used only for routing.

Remember that some external tasks normally are workload generators of a system. These tasks should be
triggered spontaneously. This is described usually with a timer (using also random values, as a rule) being
the only triggering event of such a task.

It is recommended to specify external performers for external tasks, but formally there is no links between
these two kinds of externality.

44

CHAPTER 5 TASK SPECIFICATION DIAGRAM

5.11 Data stores and data objects

Data stores and data objects have only informal semantics in GRAPES-BM version 3.0.

Each data store has a name, and potentially, ER description:

<store name>
[ER model <ER name»

ER_name must be the name ofa visible ER model. If the ER_name is omitted, name equal to data store
name is assumed. But there may be no ER-specification at all since data store may be completely informal
(or contain even physical objects). The only reference to entity names is in AT for this task, there entities
from the ER model corresponding to the specified data store must be used. The database name in AT
should coincide with one oftbe data store names present in the TSD. For informal data stores, AT is not /0.

used and AT remains blank if only informal data stores are present in a TSD. Access paths are of three
types (read, write, both) and may have optional names. These names are completely informal. No
consistency between access paths and the AT of a TSD is checked. The graphical form for access paths is
the following:

o
0--------

Data stores are meant to represent persIStent data existing in a bus mess 'system, Typically such objects are
data bases, but also all kinds of archives belong to this category. Persistent stores of physical objects (stores
in warehouses etc.) should also be represented this way.

Data object symbol is the following

<data_objecU'lame>
[Type<data type>]

----Data-object name may be any, type, if specified.must be definedin a: visible Dl), Any type may be
referenced. Optionally named access paths to data object have the same form as for data stores. No links to
AT at all are used for data objects ..

The informal use of data objects is a temporal data object created by one task and used by others, it
normally persists during one transaction. Sometimes this feature is used as a substitute for event sending
between two tasks, when a common data object is more natural. From the programmer's point of view data
objects should be understood as global variables.

Both data stores and data objects are ignored in simulation.

~-·45--

6 Task CommunicationDiagram

6.1- Role of TeD diagrams

Task Communication Diagrams (TCD) are the main facility ofGRAPES-BM for describing business
system behavior. They are used to refine large tasks as chains of smaller tasks linked via events. TCD
diagrams show how events generated by one task are passed to another one to trigger it in tum. Timers are
also represented in TCD diagrams.

Business system refinement is started from primary tasks for which the highest level TCD diagrams are
built, Tasks appearing in such a TCD diagram (i.e. their TCD diagrams) normally are placed in the model /._ ..
tree directly subordinated to the corresponding top TSD diagram. Some of these next level tasks may have
their refinement TCD diagrams in tum, until the desired detailing of business system behavior is described.
In lower level TCD diagrams the event linkage between adjacent TeD levels is also shown. This is done by
referenced task symbols (and referenced timers) which appeared already in TSD diagrams. Referenced
task symbols are the successors to the remote task symbols used in GRAPES-BM version 2.0, however, the
precise syntax and semantics is not always identical. Fig. 6.1 shows an example ofTCD diagram.

-,...-- -------- ----, I
II Send_query I
I::::====-==~

Query

Register Query
Secretary
"1m"

Register
Paper based

Query

Analyse Query
secretary
"3m"

Forward to Chief& -.-
Secretary

AC5_PM "2.5m"

. Forward_Immediately
Urgent are queries on
Secretary
"1m"

Query Query

r;-- ----I
I (prepare_Answer) I
L J

r-- ----

I (Prepare_Answer) II
L _

Fig. 6.1 Example ofTCD diagram

46

CHAPTER 6 TASK COMMUNICATION DIAGRAM

6.2 Elements of TeD diagralTl;S

Task and decision symbols and event arrows in TCD diagrams, besides their names, may have several
textual sections, identical to those present in the corresponding TSD diagrams. In general, these sections
must either coincide with the corresponding sections ofTSD diagrams or be empty. In case of
discrepancies, the formal information for simulation is taken from the corresponding TSD section. There
are also new textual elements both for tasks and arrows, which can appear only in TCD diagrams. For each
of the elements the role of each text section will be explained separately.

Any task symbol in TCD may contain also a WMF format picture.

6.2.1 Intemal task symbol

<task_name>
<comment>
<triggeril19.- cond ition>
<pertormer _expression>
<duration>
[Start] [NoStart]
[End]
Jtag ~ag>]

The internal task symbol is the main element of task refinement in TCD diagram. The only mandatory
-textual element is-its-name. The name links the task symbol in aTCD to the formal.definirion of-the task in

itsTSD. This definition is found according to visibility rules (see 1.2). The appearance of a task symbol in
a TCD diagram is called a task occurrence. There may be more than one occurrence of the same task in
one TCD (and in several TCDs also).

Triggering condition, performer expression and duration are copies of the corresponding sections of
task defmition TSD. Alternatively, they may remain empty even when these sections are present in the
TSD. No extraneous information should be added. Special care should be taken in case of several
occurrences of the same task. It makes no sense, e.g. to specify performer pI in one occurrence and
performer p2 in the other, since both must be equal to the performer specified in the performer selection
expression in the TSD diagram. In the event that there is a discrepancy between TCD and TSD, it should
be reminded; that-formal information for simulation is taken-from TSD.As far as-poss-ible,-GRADE editors
try to ensure consistency, by automatically transferring nonempty textual sections from TCD to TSD.

The formal syntax of triggering conditions, performer expressions and durations in TCDs is literally the
same as in TSDs and isto be found in sections 5.4, 5.5, 5.6 respectively.

Comment is an arbitrary comment for a task occurrence (and may be different for several occurrences). It
is not copied to a task's TSD. There a comment may be part ofa task's informal description.

Occurrence tag is a formal identifier used to distinguish several occurrences of the same task in one TCD.
Its sole use is identification when viewing simulation results (directly in the simulator or via the Trace
Browser) and for defining show-boxes (sec. 6.2. I I).

Start, Nostart and End options are used for explicit transaction control related to the task occurrence (see
more in sec. 7.3). They also never appear in a TSD.

GRADE BM LANGUAGE REFERENCE MANUAL

Any task in a TCD is either a transformation or a decision task. If it is a decision task, the task symbol is
connected to its decision symbols via simple lines.

6.2.2 External task symbol

---------([<task_nanne>] 1
I <comment> I
1 <triggeriTl9-.condition> I
I <pertornner_expresslon> I
I <duration> I
I [~~ ~&a~ I
I [End] I

l ~a~ ~g~ J

External task symbol has the same formal properties as the internal task symbol and is refined in the same-?":
way with a TSD in the model. The difference between external and internal task is completely informal,
just to emphasize that some activity is performed outside the framework of the business system under
consideration,

There is only one additional feature for external tasks. External task may be unnamed, Then it has no
defining TSD. From-the formal execution point of view, it is called a "dead task". It sends no events,
events'nrbe'i sent to such task are simply discarded (i.e. not sent at all).

6.2.3 Tuner symbol

Timer symbol defmes an independent timer occurrence (determined by the timer event name leaving it).
This timer occurrence, determined by its definition in the ET, sends the corresponding timer events.

Caution. Do not confuse this symbol with a referenced timer, which has no autonomous activity.

--------1
: (<task_nameJist>]:_

1- - - - - - - - where <task_name_list> ::=task_name{,task_name}*

A referenced task symbol in a TCD diagram represents one or more neighbor tasks in a TCD one level
above the current one, to or from which the given event has been sent or received respectively, by the task
whose refinement is the given TCD. The name or name list in the referenced tasks are equal to the
mentioned neighbor name (or names).

CHAPTER 6 TASK COMMUNICATION DIAGRAM

More formally, referenced task symbols in a TCD must coincide with (or be subset of) referenced task
symbols present in the TSD diagram whose refinement is the given TCD diagram. Events coming from
these referenced tasks (or going to them) must be the same in TCD as in the TSD diagram.

According to their role, there are incoming and outgoing referenced task symbols in TCD diagram.

Incoming referenced tasks in TCD correspond to incoming referenced tasks in TSD diagram, and the same
applies to outgoing ones. From incoming referenced tasks in a TCD, events go to internal (or external)
tasks of this TCD, thus representing incoming links from the next upper level. And, respectively, events go
from internal tasks to outgoing referenced tasks, thus representing outgoing links.

Actually, not the referenced task symbols themselves, but the pairs <referenced_name, event_name> must
be the same in the TSD and its refinement TCD. It is permitted to redistribute name lists over several
referenced task symbols associated with the same event name. Referenced task symbol (together with its
associated event) may be duplicated in a TCD. Several event arrows may leave a referenced task symboL
See more on formal consistency rules in sec. 6.8.

It is forbidden to jump over levels. That means: it is forbidden to reference tasks other than
internal/external or already referenced tasks from the next upper level TCD in referenced task symbols.

The- special case is top level refinement of primary tasks. In the same way as in TSDs for primary tasks, it
is permitted in such TCDs to reference another primary task in a referenced task symbol (if such a
reference is already .present in the TSD). See more on linking primary tasks in 8.1----

Formally, this symbol has the same properties as the referenced internal task symbol. It is intended for use
when the upper level neighbor (or neighbors) of a task are external tasks. Then, naturally, the
corresponding referenced task symbol in TSD is also an external one. It is not formally considered an error,
if externality one level above is ignored in referenced tasks of this TCD, or internal and external neighbor
names are mixed in one symbol. By default, the editor distinguishes between internal and external tasks
when building automatically the referenced task symbols (in TSDs and TCDs). The only syntactic feature
is, that there may be a external referenced task symbol without any name. It corresponds to an unnamed

. external upper level neighbor;-- - - .

6.2.6 Referenced timer symbol

This symbol represents a timer one or more levels above the reference. It may be used if the TSD diagram
whose refinement is the given TeO already has such a symbol. It must be associated with the same timer
name as in the TSD.

49

GRADE ISM LANGUAGE REFERENCE MANUAL

It must be remembered that the referenced timer symbol has no spontaneous activity, unless the
corresponding actual timer some level above it generates a timer event. The referenced timer then only
helps to redirect the timer event to the required task in a lower TCD.

6.2.7 Decision symbol

name

[formula]

[probability

The decision symbol is always connected to a decision task in a TCD. The only mandatory element in a
decision symbol is the decision name, which must consistent in both the TCD and the task's TSD ..

Formula and probability have the same syntax as in TSD (see 5.7):

formula is a Boolean expression,

probability is [numbet'lo] [EXCLUSNE]

Only one of them maybe present, If formula orprobability is present, then it must have the same definition
as in the corresponding TSD (the same as for task symbol sections). In the case of a discrepancy the formal
vlllue-is-al-waystaken from theTSD. GRADE editors help to maintain the decision consistency between
TCD and TSD; by transferring modified decision elements from TCD back to TSD. It is permitted to omit
decision details in the TCD if they are in the TSD.

It is also permitted to have less decisions for a task in a TeD than in TSD (but not vice versa).

6.2.8 Data symbols -

There are two of them:

Data store symbol

/
name /

[ER model ER_name]

and data object symbol

Both symbols have informal semantics only and are not used in simulation. The syntax and intended
semantics is the same as for these symbols in TSD (see 5.11).

It is recommended to maintain consistency between TSD and TCD for data symbols. GRADE editors try to
help in this by automatically transferring data symbols from TCD to TSD. But there are no other
consistency checks.

50

CHAPTER 6 TASK COMMUNICATION DIAGRAM

6.2.9 Event arrow

The event arrow is an arrow linking two task symbols in TCD diagram. It has the form:

[<event_name>] [/<transfer _ time>] [INOTID]

[set_option] [repeat_option]

-------~~

If the event arrow represents a named event or timer from the ET, the event name is mandatory. An
unnamed event arrow represents a control flow. For control flows no other syntactic elements may be
specified, i.e. the other elements are valid only if there is an event name.

If the transfer time is specified, it overrides the transfer time specified in ET. The same syntax is used for
transfer time definition as in the ET except that arithmetic expressions may not be used here. Transfer time--"-
may be specified only for internal arrows, i.e., arrows connecting internal/external tasks (but not referenced
ones). it', however, transfer time is added to an incoming or outgoing arrow it is simply ignored. If transfer
time isnot specified either in the ET or in the TCD, zero time is assumed. It is forbidden to specify a
transfer time for timers;

NOTID optio~-used to- prevent transaction TID transfer along with the event (see more on it in section
7.3): -

Set_option and repeat_option are identical to those options in a TSD diagram at an output event (see 5.8).
If there are additional details associated with some outgoing event in a TSD, the same information may be .- -
placed at the corresponding event arrow in a TCD. It is not allowed to place different data in the TCD, in

"formal processing onlythe data from TSDs" is used. GRADE editorstrym-supporttbe-consistencyby
transferring output detailing from the TCD to TSDs.

It is permitted to enclose the event name on a path in square brackets, e.g.,

[ev l]

--------~

This means that the event may also not be sent by the issuing task. This notation is just an informal
comment for modeling purposes. From the formal simulation semantics point of view the event is always
sent"A realoptional event sendiilg;-e:g:;-with a given probability must be-specified explicitly by the
decision for the issuing task.

Square brackets are not copied back from TCD to TSD (i.e., they only appear in the TCD). This notation
may be combined also with additional texts on the arrow.

6.2.10 Access path

[<access yath _name>]

------------0

51

GRADE BM LANGUAGE REFERENCE MANUAL

Access paths connects task symbols (internal or external) to data store or data object symbols. The path
may have three forms depending on access type, in the same way as in TSDs. The name is optional. The
element is completely informal in GRAPES-8M, and the semantics are the same as in TSDs (see 5.11).
Data connections in TCDs should be consistent with those in TSD, but no formal checks are performed.

6.2.11 Auxiliary symbols

There are two such possible symbols in TCD diagram

1. Free comment

(Afree comment J
/ ...":

This symbol has no syntactic meaning and actually may be placed in other diagrams (TSD, ORG) too. Any
text or WMF format picture may be placed there.

2. Sbowbox

<TItie>
{<TSD_ncme>.}*<TCD_name>
<tas1Lname>[. <tag>]
<attribute_name>

This symbol is not syntactically related to the TCD diagram in which it is placed. Its elements, however,
must be valid

- qualified TCD name (i.e. TCD name with prefixed TSD names, starting from a primary task).
Qualification may be dropped if TCD name is unique in the tree.

- task_name, followed by optional occurrence tag (tag is used if there is more than one occurrence)

- attribute name of this task.

The only use of such object is during animation of a business model, otherwise it has no effect.

6.2.12 Refinement of complex events

Another issue in TCDs is that of complex events. These events must have COMPLEX type already defmed
in ET (in the category column). Their component events must be defined in the corresponding column.
When the actual event refinement is done in this refinement TCD, the following syntax is used on the
arrow coming from (going to) a referenced task:

cOlnplex_event_nGUne.event_nalne

The event name is the name of one of the components, the complex event name is the name on the
corresponding arrow in the TSD (and, consequently, on the arrow in the TCD one level up). The notation
means that inside the current TCD only the eventname appears further (e.g. is used for triggering). The
"complex qualification" appears only on input/output arrows in-TCD, and it is not duplicated in TSDs
(upper or lower). Any complex event must be refined before it is used in triggering. On the other hand,

.52··_c --- ~~ ... -

CHAPTER 6 TASK COMMUNICATION DIAGRAM

elementary component events sent by a task at an appropriate level boundary must be "packed" into
complex event. Refmement may not be used on horizontal arrows.

Linked primary tasks may also send each other complex events, then refinement may be done in both top
level TCDs, or somewhere lower.

6.3 General rules of TeD structure

The TCD diagram is built from the elements in the previous section in a very natural way. However, some
general rules on internal structure of TCD must be mentioned:

• event arrow may go

- from any internal or external task to any like one (including itself). These arrows are called horizontal
ones in the sequel. The number of arrows between two tasks is generally speaking unlimited.

- from an incoming referenced task to any internal or external task. These arrows are called incoming »:_"

events. One or more arrows may leave a referenced task .

- from internal or external task (or its decisions if it is a decision task) to outgoing referenced task (such
_arrows are called outgoing events). One or more arrows may enter a referenced task.

• it is permitted to use one referenced task symbol in the role of both incoming and outgoing referenced
task.

......•if there are.several arrows between two tasks, all of them must have different event names. In
particular, there may be only one control flow between two tasks.

• if the task is. a decision task (i.e. it has at least one decision anached), all events may leave only
decisions of the task, and not its body symbol.

6A Graphic layouts of the TeD diagram

From the language point of view the TCD diagram's contents is always the same irrespective of how it is
displayed or printed. However, its visual appearance may be significantly altered by the user.

First, there are long and short forms. All examples shown so far were in the long form, when all textual
items present in any of the diagram elements are also visible.

In the short form:

• in task symbols (internal and external) only name and comment remain visible
- - .. ~- -

• in decisions only name remains visible

Texts on arrows is not affected.

All long form elements remain internally in place and regain visibility when switched back to long form.

Second, there are several graphic layouts available:

- vertical

- horizontal

- automatic

- manual

-- -53 ._--

GRADE BM LANGUAGE REFERENCE MANUAL

- tabular vertical

- tabular horizontal

In the first two layouts, all elements are automatically placed in fixed grid positions, so that the general
event flow goes from

- from top to down, or

- from left to right respectively.

Certainly, any diagram may be transformed to this layout, with some arrows going in the opposite direction
from the general event flow of the diagram. For simple "streamlined" diagrams, these layouts are the best,
since the obtained ordering then corresponds to the real ordering of tasks in time.

In automatic layout, a compact allocation of elements is used, with the user having the possibility to select
the place for a new element and the editor moving the existing elements in a minimal way to allocate space
for the new one.

Automatic layout is suited for all kinds of diagrams.

Manual layout gives the user maximum control over the allocation of elements. Even the texts may be
moved separately. But the user is responsible for the manual moving of existing elements when a new
element is inserted. Manual layout should be used for presentation versions of diagrams and very compact
allocations of large diagrams.

The two tabular layout modes with lanes (sometimes called tabular layout modes) are similar to the
ver:rt~ or horizental modes, respectively. The main difference is that separate lanes are allocated for each
performer selection expression appearing in the diagram. The tasks containing the given performer
expression automatically appear in the lane corresponding to the performer expression. The performer
expressions themselves appear as the lane headings. For two tasks to-appear in the same lane, the performer
expression must be exactly the same. The layouts with lanes are well suited for diagrams with low variety

-ofsimpte-performer expressions: Then.they show a nice table-like display of the tasks to-be done by each -
performer.

There is the possibility of freely switching between all layout styles. The syntactic aspects of diagrams are
remain unaffected.

Fig. 6.2 and 6.3 show the same example of Fig. 6.1 in vertical and horizontal layouts, respectively. Fig 6.3a
shows an example of the vertical tabular layout, using an example with a number of performers.

-~ -- --

CHAPTER 6 TASK COMMUNICATION DIAGRAM

-~ -- -- -- -- -- --'- -- ~ I

:1::::= ~e~_.2lu~ry= = ~

Query

Register Query
Secretary
"1mil

ForwarcUmmediately I
-Urgent are queries on
Secretary
"1m"

Query

Analyse Query
Secretary
113m"

&
Secretary
"2.5m"

Query Query
~--- ---I
1(prepare_Answer}
L. J

r-- ----

I (Prepare~nswer)'1L _

Fig. 6.2 Vertical layout

Fig. 6.3 Horizontal layout

55

GRADE BM LANGUAGE REFERENCE MANUAL

Fig. 6.3a Vertical layout with lanes

6.5 Links between TeD levels

Large systems can neverbe described by only one TCD level, a number of TCD refinement levels are used
as a rule. Though in general, inter-level links are descnbed by referenced tasks (which correspond to
remote tasks in GRAPES-BM version 2.0), extended syntactic and semantic features are offered for
describing those links. The main new feature is a new use of referenced task names.

In most simple cases, the inter-level links are defmed in the most natural way where nearly all linkage
elements are supplied by editors automatically. However, more sophisticated level structuring is also
possible now, e.g., representing fragments ofTCD diagrams like macros with many entries and exits.
When a task has one occurrence, the refinement is very straightforward. Fig. 6.4 shows an example of
simple refinement.

56

CHAPTER 6 TASK COMMUNICATION DIAGRAM

TeD e TSD A

B E
-----1:l_ B _1

e1 .

-----1
1 [E)11- _

e2e1 e2

A
AND
pl

Task :A
Triggering condition:
AND
Performer:
p1

e3 e4

--- -I
1(0)1,-----

- ---I
1(F)1,-----

/" ..":

TCD A
-----1
I(8),1_- __

-r--r: e1

-----,
I (E)1
1_- __

e2

Fig. 6.4 Simple refinement

TSD for task A represents also its neighbors as referenced tasks, and they reappear in A refinement via
. TCD,sh.owing c\eiifJY, e.g., that eventelis routed from B to .AI. _

Often this event muting at levelboundaries may be more complicated. A formal description of this routing
follows.

Each event is sent by an occurrence of an elementary task. The event's destination is also one or more
occurrences of elementary tasks, where the event is placed in the corresponding queues. In any event's
route from its sending task to its destination queue there is just one event arrow linking the two tasks. If the
sender and the receiver are in one TCD, and are linked directly by an arrow, the whole route consists of
this arrow.

But often the event at first is routed via several outgoing referenced tasks, then it travels along the sole
"internal" event arrow and then is routed via several incoming referenced tasks (see fig. 6.5). The internal
arrow (the arrow from task A to task B in fig. 6.5) is called the horizontal link in what follows, the routing
via outgoing referenced tasks - the upgoing link, and the routing via incoming referenced tasks - the
downgoing link.

57

GRADE BM LANGUAGE REFERENCE MANUAL

There is one special case when the explicit horizontal link is absent, namely the connection between two
top level tasks (see more in sec. 8.1). Then the link is replaced by appropriate referenced tasks in two top
level TSDs.

The precise event TOUtingrule is the following. The outgoing arrow for the given event is analyzed. If it
leads to an internal (external) task, the horizontal link is already reached. Otherwise, the referenced task
name list is taken, and the following is repeated for each name in it (the name is called start name here). In
the TeD one level up, an outgoing arrow is sought from the corresponding task, which

A

~
: (B) ':
" .

»:>.

e1

B

..................
: (A):
,.. •.•

e1

B1

Fig. 6.5 Event routing (shown via several nested TeDs)

• has the same event Dame (including empty)

• the other end of which is

- an internal (external) task with its name equal to the start name or

- a referenced task whose name list contains the start name

. --- ------

58

CHAPTER 6 TASK COMMUNICATION DIAGRAM

The decisions for non-elementary tasks are ignored in "upgoing", only event names and referenced task
names are taken into account.

Thus upgoing is repeated until the horizontal link is reached, along which the event is routed. In fig. 6.5,
staning from A 11 and event e 1 and using B as start name, first the task A 1 with equally named outgoing
referenced task is found, then the horizontal link to B.

The downgoing part of routing is started, using the source task ofth~ horizontal link as the start name (A in
fig. 6.5). All referenced tasks in the refmement are found,

• which are associated with the same event and

• whose name list contains the start name,

and a copy of the event is sent via each. If the other end is not elementary, the search is repeated a level
down, with the same start name. If other end is elementary, the destination queue for the route is found. In
fig. 6.5, using A as the start name, two level downgoing is performed, until B 11 is reached.

J" ••...•_.

The described rules are such that using the default naming of referenced tasks proposed by the editors (see
6.4) just the natural link is established (including the case in fig. 6.5).

At an~ level (except intermediate upgoing ones) the event may be multiplied, with a copy sent along each
branch. If no continuation for the everit is found, the event is discarded. During syntactic analysis,
situations with the abnormal refinement are found and warning messages are issued. Actually, the analysis
finds ~f~refinement errors (those described in 6.8), others are found during the preparation
forSUnulation {see 11.2).

_ &.6J;;RAP~IJM_",octt!1d~,,~lopm_f!J1t_~~t~l~!L~ •..•d t()()l. ._.__
-support-for them

The main model development strategy in GRAPES-BM is assumed to be top-down, with the TCD being
the main diagram built manually. TSD diagrams are generated automatically most of the time. More
precisely, according to this strategy, at first the primary tasks, i.e. their TSDs, are entered. Then for each of
these tasks its first level refinement TCD is built. The constituent tasks in this TCD are entered one by one
and so are the linking events.

GRADE editors during this process automatically build the corresponding refining TSD diagrams and
place them in the model tree, just under the parent task.

When a new TSD is automatically inserted, all relevant information (input events, output events,
.~refereriCedtaSk syinbofswiili neighbor task names, 'referencedtirriers.Hecisions, connected data stores)" is -

automatically transferred to this TSD. The textual sections of task symbol (triggering, performers, duration)
are also copied to the corresponding sections of the task body in TSD. Decision contents is also transferred
automatically. Unnamed events are transferred in the same way as their named counterparts

The transfer of this information actually only occurs upon saving the TeD diagram. The automatic
transfer may be switched off using editor options, in that case the entire transfer must be performed using a
manual transfer command (menu item Edit/This TCD->TSDs).

If several occurrences of the same task are present in a TCD, the information in the TSD is summed from
all occurrences. In particular, for each event and neighbor, where there is no corresponding referenced task
already present, new referenced tasks with appropriate task/event names are inserted (or the referenced task
name list is extended). Externality information is also retained in the referenced task (and incoming timers
likewise).

59

GRADE 8M LANGUAGE REFERENCE MANUAL

In case of several task occurrences care must be taken, that textual sections (those appearing also in the
TSD) in all occurrences are identical, since only one (actually the last one) will be copied to the TSD.

When a TCD is being modified (new event arrows inserted, events renamed on existing ones, etc.), the
corresponding TSDs are updated automatically. But there may be situations where modifications are not
transferred automatically, and then the appropriate manual transfer command (menu item Edit!TCD->
TSDs) must be executed. A "global" version of this command (BM Functions! TCD->TSDs) is also
available in the model tree window. All these automatic updates include only the augmenting of TSDs with
new events, referenced tasks etc. Removing unused events from TSDs (i.e., referenced task - event pairs '-
which have no counterpart in any of the task's occurrences in TCDs) is performed as a manually invoked
operation (BM Functions!Delete events unused in TCDs) from the model tree window. This operation may
be performed either at one TSD level (for the subtree under it) via the subitem From Subtree TSDs or for
the whole model via subitem From all TSDs. In both cases the ET is also cleared of unused events.

The above-mentioned automatic GRADE support ensures automatic correct TSD building when the TCD
contains elementary tasks. The only necessary manual operation is extending TSD by task data not
available in TCD, like attributes. »:

Most GRAPES-BM models contain several levels of TCD refmement. The intended strategy is, as soon as
one TCD is completed, to refine some of its subordinated tasks by their own TCDs. GRADE editors also
provide support here.

The principal idea here is TCD template generation from TSD. When a new refinement TCD for a task is
started (the first one.or an alternative), the TCD diagram containing all referenced task symbols (along with

_their-names'oniame lists) and their associated events, data stores and data objects (with access paths) from
TSD and one dummy unnamed internal task in the center is generated automatically. Fig. 6.6 shows this
template TCD for task 1'3. Four referenced tasks with the associated events (el, e2, fl, £2) and the data
store are copied (but not the decisions, since they may be quite different in the refmement).

.The, user then modifies the. TCD, inserting more. intemal/extemal.tasks in it.and reconnecting the .. -
-incoming/outgoing event arrows. Care must be taken not to leave the dummy unnamed task as it was
generated, since an unnamed internal task is an error. Referenced task symbols may be replicated if
necessary It is also allowed to reshuffle referenced task lists for one fixed incoming or outgoing event into
several referenced task symbols in a TCD. New referenced task_names in TCD may be added only in case
they are also added in the parent TSD and the corresponding upper TCD is also updated.

Both of the automatic generation features described above in totality support automatic interfaces between
TCD levels (according to 6.5) in all normal cases. Namely, no additional referenced task editing is usually
necessary, neither in TCDs nor in TSDs, independently of how many TCD refmement levels are used.

-----1
I(Rem1)1,-- --._- - ,.

-----1
I(Rem2)11 _

e2e1

Task :T3
Triggering condition:
AND

f1 f2

---- I
1 (Rem4)1
1 -

-- --I -- --I
I(Rem4), l(Rem3)1
1 - 1 _

60

CHAPTER 6 TASK COMMUNICATION DIAGRAM

Fig. 6.6. Example ofTSD and corresponding TCD template

The next section describes an alternative strategy

6.7 The alternative way: from TSDs to TeD

In addition to the standard refinement method, where every non-elementary TSD is manually refmed via its
TCD and corresponding subordinate TSDs are generated automatically, another methodology is also
available.

There only TSDs are explicitly built and manually placed in the required hierarchy. This hierarchy
corresponds to a function decomposition tree in software engineering terminology. When all direct
subordinate TSDs for a TSD have been built, a special "Build TCD from TSD" operation may be applied
to the parent TSD level. Then the appropriate TCD is generated automatically from all subordinated TSDs,
basing on

• incoming/outgoing event names

• names of referenced tasks.

• decisions/outgoing events

Namely, each TSD is converted into an internal task and placed in the generated TCD. Two tasks are
linked by an event arrow, if one TSD contains the outgoing part of it and the other the incoming part (as
defined-by-event names/referenced tasknames),

The non-matching referenced tasks are retained as referenced in TeD (they correspond to links to the next
level).

_\l{h~!Lall incoming/outgoing events and decisions are inserted i!1 th~ appropriate TSDs of onelevel, the
appropriate TCD can be automatically obtained.

The generation principle does not work when two or more occurrences of a task are supposed to be in a
TCD.

A TCD can even be generated when referenced task names are omitted and generation is done based only
on matching incoming/outgoing event names. This approach does not guaranty the desired ordering of the
TCD .. The names of referenced tasks in TSDs are inserted automatically (according to the generated TCD).
Some manual improvement to the generated TCD is sometimes required.

In any case the generated TCD may be further modified manually. Fig. 6.7 presents.a set of three TSDs and
the generated TCD.

:G:

~
: (s2):
...................

. .
52

61

GRADE BM LANGUAGE REFERENCE MANUAL

Fig 6.7. TSDs and the generated TCD

6.8 Formal consistency rules between TeD and TSD

The built-in automatic consistency features in the editors normally will guarantee consistent refinements
between all TSD and TCD levels, especially if strict top-down design is used. The user is only required to
connect all incoming/outgoing referenced tasks presented in TCD templates to some existing tasks in these
TCDs. However. complicated diagram updates. especially manual editing of TSDs, may violate this
consistency between levels. The syntax analyzer provides two facilities for ensuring this consistency:

• consistency between TSDs and TCDs is checked during the syntactic analysis ofTCDs

• consistency between adjacent TCD levels is checked during a special consistency check operation

The following consistency rules between TSDs and TCDs are checked by the syntax analyzerduring the
analysis of a TCD:

," ...

• rule governing the relationship between a task's TSD and its refmement in a TCD

all inc-oming/outgoing events (and control flows) and referenced tasks (and referenced timers) in a TCD
must be represented in the TSD. It means that for each pair of incoming events with referenced task
names ina TCD, there.must an equivalent pair in the TSD. The partitioning of the task name lists into
several-referenced task symbols is permitted. The same must be true for outgoing events. For decision
task TSDs, it is not significant from which of the decisions the relevant pair actually go out. This
feature is in line with the assumption that the decision in a non-elementary task is just provided to
improve TCD readability. If there are unnamed referenced task symbols in the TCD, then the
corresponding unnamed referenced task symbols must also be in the TSD. Violation of any of these

....niles causes an errordUiiilg-an·aJ:ysis. ". _. . - -

• rule between a task's TSD and its occurrences in other TCDs (one or several):

all incoming/outgoing events/control flows (and incoming timers) and decisions in an occurrence must
be present in its TSD. Events must be attached to referenced tasks, whose names (or one of the names
in the name list) must coincide with the corresponding neighbor name (i.e., either task name or
referenced task name, tfthe neighbor already is a reference). Certainly, there may be more
events/referenced tasks in TSD (corresponding to other occurrences). Violation of the rule leads to an
error during analysis.

The other facility - the global consistence checker may be invoked from the model tree' window as a
separate function, via BMjunctionslConsistence checker. It may be applied either to the Current TCD or to
All rCDs.It checks the following consistency rules between two adjacent TCD levels (where a child TCD
means a refmement TCD for a task occurrence in the given TCD; and a parent TCD means the reverse
relation; the task occurrence which defmes the parent/child relationship is called the linking occurrence) :

• rule between a TCD and its parent TCD:

an incoming/outgoing link in a TCD (i.e., a pair <incoming/outgoing event, referenced task name»
must have its counterpart in the parent TCD, i.e. an appropriately named incoming/outgoing arrow
from the linking task occurrence leading to an appropriately named task or reference. The similar rule
must be true for control flows and timer events Violation of the rule leads to a warning since there may
be no violation of the rule for another occurrence of the same linking task

• rule between a TCD and its child TCDs:

each incomingJoutgoin,g event arrow of the linking task occurrence must have a corresponding
incoming/outgoing link in the child TCD (i.e., the event path must be continued inside the child TCD).

62

CHAPTER 6 TASK COMMUNICATION DIAGRAM

The similar rule must be true for control flows and timer events. Violation of the rule leads to an error
message.

The consistency of parent/child relationship is checked independently for each task occurrence (having a
refinement TeD) in the role of the linking occurrence.

The consistency between TeD levels is of great importance also for non-simulatable models since any
inconsistent event link is a logical flaw in the model. Therefore consistency checking is recommended also
for informal models built for system modeling. The consistency "checking can only be applied to a model
after syntactic analysis. To facilitate analyzing ofnon-simulatable models, a special "enlightened" syntactic
analysis is available (see 6.9)No consistency requirements are placed on decisions in TSDs and their
respective equivalents in refinement TeDs. The same is true for data stores.

Not all event routing irregularities significant for simulation may be found during syntactic analysis or
consistency check. Therefore additional routing checks are done and additional warning messages appear
during preparation for simulation.

6.~The syntax for non-simulatable models

The syntactic analysis is of great importance also for non-sirnulatable models since it helps to reveal essential
logical erro~ models, The consistency checking between TCD levels which often reveals inconsistent
modifications in models is especially valuable. The consistency cbecking can only be performed after the
conventional syntactic analysis of the model. To facilitate the analysis of informal models, the non-simulatable
syntax option is available. To switch this option on, uncheck the Simulatable syntax checkbox in the
OptionslSettings dialog box.

nie non-simulatable 5YntiX optionallows one toplace an arbitrary teXt (withotifbavrn-g any error message-dwmg' -
analysis) in the following syntactical elements: - . -
• transfer time specifications (in a TeD)
• SET and REPEAT options of output events (both in a TeD and TSD)
These two features together permit one to "decorate" event arrows in a TeD with rich informal comments while
k~ingthemodelsynta~~ycomoct

Remark. Do not use non-simulatable syntax option for simulatable models, the simulator will ignore any SET and
REPEAT options if you try to do so.

------._....,.-----.,...--.,...._~-------------------.---_._---. --..-----------
63

7 Transaction semanticsof TCDs

7.1 The concept of the transaction

Very frequently each TeD level of a business model corresponds to a real business function or sub function
performed by the enterprise to be modeled. This is especially true when the structuring is not very deep.

Therefore it seems natural that each complex task corresponds to a transaction - a certain sequence of
actions with precisely defined start and end moments. The start/end moments of a transaction are implied
by starts/ends of elementary tasks contained in the transaction.

Thus, in GRAPES-BM V3.0 we assume, that each complex TSD by default defines a transaction having
the same name as the task itself. Even when a TSD has several refinement alternatives, all these
alternatives just determine different behaviors of the same transaction.

;0"- ..

Transactions are important for modeling purposes: for better understanding of model behavior and for
defining a reasonable semantics of merging several subactivities of the same activity.

On the-other-hand; They are very significant for simulation, since some of the default statistics for a
transaction are the same as for elementary tasks, and they are the basis for efficient use of user defined
attributes.

The main syntactic and semantic problem in using transactions is to define how and when elementary tasks
start and end the transaction, There areboth default and explicitly controlled transaction.management.

. facilities. Transactions, like elementary tasks, have instances during execution. Each instance is
characterized by its name and a unique system defined Transaction Identifier (TID). Tills have similar
meaning for BM semantics defmition like process identifiers (Pills) have in the SDL language.

7.2 Default behavior of transactions

When a transaction (task) has one level of refinement (i.e., all tasks in the refining TeD are elementary), all
tasks (both internal and external) in this TeD constitute the static area for this transaction.

The default start of this transaction is the start of any task (internal or external) in this area, which is
-triggered only by the following classes of events..

• timers

• events coming from referenced tasks

• spontaneously generated events

If the task triggering condition contains no OR, it can be determined statically whether the task starts a
transaction. Otherwise it can be determined only dynamically, for each instance separately.

As soon as a transaction instance is started, a new unique TID value is generated for it. From now on, all
event instances circulating within the transaction are tagged by this TID. So are also all task instances
belonging to the transaction instance. More precisely, the tag consists of

• transaction (task) name

64

CHAPTER 7 TRANSACTION SEMANTICS OF TCDS

• TID value

There is no explicit use of TID values in GRAPES-BM, these values are used only in implicit comparisons.
Actually these values are integers.

The start task tags all its outgoing event instances (including control flows) with the same tag value.

Tags are not placed on events which leave the area of the transaction (i.e., are directed to outgoing
referenced task symbols).

If a (non-start) task within the.area is triggered by a simple tagged event, the same tag value is reproduced
on all its appropriate outgoing events. If a tagged event is mixed in a triggering condition with non-tagged
events (timers, events coming from remote tasks etc.), the output tag value is again this one. The most
complicated case is when the triggering condition ANDs several tagged events. Then an implicit merging
condition is added to (or forms) the WHERE condition:

• if the transaction names are the same, TIDs for all events must coincide

• if transaction names are different, no additional condition is required.

Only if the merging condition is true, the elementary task is actually triggered. The outgoing tag is defined/·-:
in the natural way (the common value). Merging condition refers also to implicitly ANDed control flow
instances (if they have tags).

The merging condition operates on the principle, that only concurrently executed subactivities of the same
activity instance should merge together

. -The--un:ique=-tag value obtained from the triggering events. determines the transaction instance to whom the
task instance belongs and also the tags of all the outgoing events.

If there are several levels of TCDs, then each level defines a transactlon. When tagged events from a higher
level enter the next lower level (via referenced task symbols), the higher level tags are retained by them. If
e.g., an entry fro-!QJ!.J~erenced task starts a new transaction of the currentlevel.then events of this
transaction carry tag list, corresponding to two adjacent task levels. When task nesting is deep, the. tag list
can be arbitranly long. The merge condition requires TID equality for all appropriate levels. Namely, in
order for this condition to be true for a set of events, for all events of this set having tags in their lists with
one common transaction name, the TIDs in these tags must also be equal.

For a higher level transaction its static area consists of tasks in its TCD, as well as in all subordinated TCDs
(of all levels). In the entire transaction area, tags of this level are propagated according to the above-
mentioned rules.

Higher level transactions are also started automatically in nearly all desirable cases. The default starting
rule is the following. When a lowest level transaction is started (along with an elementary task in it), each
event in the triggering set of this task is independently examined:

• for a timereventitischecked whetherit comesfrom a timer symbol in the given TCD.Nothifigmore is
triggered in this case. If, on the contrary, the timer event comes from a referenced timer symbol, the
next level transaction is started also. This action is repeated until the TCD level with the actual timer
symbol is reached. That level is the highest activated.

• for an event coming from a referenced task the source of this event in the next higher level TCD is
checked. Ifit is a task (internal or external), nothing more is triggered. If, on the contrary, the source is
a referenced task, the next level transaction is also started. The action is repeated up to the level, but not
including it, where the source of the event is another task.

• for spontaneous events no addition triggering may occur, since they are active only at the elementary
level.

65

GRADE ISM LANGUAGE REFERENCE MANUAL

Starting the transaction of the corresponding level means generating the appropriate TID. For a while this
TID is "resident" only in the lowest level task, but it can return to its home level via events returning to this
level. Only one instance of each level transaction is started as a response to triggering the lowest level task
(even when there are several events in the triggering set which descend along the same path).

However, if one event in an upper level is multiplied to several copies in the lowest level and each of these
copies triggers an instance in the lowest level transaction, then as many instances of the upper level will
also be started. Normally such situations should be avoided since these independent transaction instances in
the lowest level can never merge (which normally should occur for subactivities of one activity). The best
way to avoid starting unnecessary transactions in the lowest (and subsequent) "levels is to use NOSTART
option (see later) at all lowest level entries, except one.

NOSTART for transaction control prevents the starting of current level transaction and all simultaneous
upper ones.

There is also a default dynamic transaction end condition. Namely, when there are no more event
instances with the given TID value in any of the queues within the area, the transaction with the given
name and TID is ended (more precisely, it is ended, when the elementary task consuming the last such
event stops or the event is discarded). Any level of a transaction may be ended by default this way.

.-r ••.. "":..

A special case is triggering conditions containing AND ALL and AND <n> options. Tagged events which
are consumed in groups by these options lose their identity and tags after such task (except the case when
equally named outputs leave the task, then each tag instance is retained in the corresponding output
instance). In addition, events in the group (fixed-size or ALL-group) never participate in the merge
c<oodition,-i-;«:;·ta"geompariso!lis ignored for them. Merge condition refers only to other events in the AND-
list.

All "new" output events from a group-triggered task have no tags at all (except the case, when a tagged
event participated in the "individual part" of AND ALL, "then such a tag is merged and propagated, as for
the normal AND).

Spontaneously generated events also have no tags (but they are used as new transaction starters, see above).
If untagged "normal" events (i.e., except timers, spontaneous events and events from referenced tasks)
trigger a task, no default transaction start occurs. If starting is desirable, an explicit START option must be
used.

It should be noted that default transactions of any level always are structurally nested. Namely, if a lower
level transaction starts within a higher level one, then it always ends before (or simultaneously with) the
higher level transaction. This is ensured by the nature of the default rules.

7.3 Transaction control facilities

In addition to default behavior, there are four explicit transaction control facilities:

• START option

• END option

• NOSTART option

• NOnD option

Transaction control options are present only in TeD diagrams (not in TSDs).

START option is placed in task body in TeD diagram (but not in TSD)

66

CHAPTER 7 TRANSACTION SEMANTICS OF TCDS

............... -_ _-- .

~(1: : (1:'1·~········r····
T1

eANDf

perf1

·O.Sh"

Start

The START option may be placed in tasks which otherwise could be default start points of a transaction or
in any other task as well. The START option syntax is the following:

STAR! [task_name] {,task_name}*

where task_name is an appropriate task from the model tree (which is an ancestor of the current task).

Omitted task_name means the task in whose refinement we are.

The meaning of the START option is to start a transaction (or transactions) with the specified name(s).

To be more precise, all transaction levels from the lowest one to the highest one specified in the task name
list are~The-levels-are uniquely found from the model tree. Formally, it would suffice alwaysto
mention onlYJb~ necessary highest level task name, but it is recommend to include all intermediate levels
for the sake of readability. This convention is introduced in order to preserve the strict hierarchy of
transactions defined by the default rules.

Example of the START option:

&TART order_entry,order-.Pr~ssing, client transaction

The explicit START is necessary for three purposes:

• there are several default start points for a transaction from which the proper ones are to be singled out

• transactions of several levels are to be started simultaneously and default rules are insufficient

• transaction covers only part of the TCD.

If there are several possible start points of transaction in a TCD, then two situations may be true:
-- . ..:-~-_.-- - -

• all starts are real alternatives how the current transaction could start. In this case no START option is
necessary (or all of them could be marked by simply START, just to reveal this fact to the reader). In
this case each of the start_points starts an independent transaction, which should never merge

• One of the start points starts the transaction (e.g., order entry), while others represent some auxiliary
actions (e.g., updating the price list). Then the proper start point should be marked by the START. The
auxiliary ones then must contain NOSTART (see later). Then auxiliary actions represent no
transactions, events participating there are untagged.

With several levels of refinement in business model, there may be a need to start several transaction levels
simultaneously. If default rules are insufficient, the START option with task name list is used.

In general, the START option may be placed in any task, which receives no tagged event of the current (or
of that specified in the START option) level. Then the transaction is started with this task, but not with the
default start point. Certainly, t!t~ defa~lt start points of TCDs .leading to this marked task then should be

. -~ .0

67

GRADE BM LANGUAGE REFERENCE MANUAL

marked by the NOSTART option (see below). This feature allows one to define transactions covering only
part ofa TCD (an explicit END option then is used to end such transaction, as a rule).

Ifa task marked by the START option is triggered by an event which already contains a tag ofa level
specified in the START option, it is reported as an execution error during simulation (in order to avoid a
recursion of sorts).

A special option

NOSTART

is also available in task symbols. This means that the default start point must not start a new transaction (of
the current level and possible higher levels). A typical use of this option could be when a TCD level is
defined just because of diagram size, without any functional meaning. Then all potential start points of
such a diagram should be marked by NOST ART, in order not to affect the transaction behavior defined by
a higher level TCD. Existing higher level TIDs pass through task marked by NOSTART without problems.

The implicit transaction end works well when there are no "junk-events" remaining in queues forever.
However. in some cases a normal way of describing a model just requires to leave some events in queues .,.~~"
unconsumed. A typical situation is when time-out activities are to be described: then either the unused -,
reminder event remains in a queue. or the too-Iate message remains unused.. To cope with such situations,
the explicit END option is used.

The option is placed either at the bottom of the body of a task in a TCD

or at the bottom of a decision

fd1\
~

(in order to have effect only if this branch is taken).

The textual syntax of END is much the same as that of START;

The syntax details and defaults are the same as for START, including the set of affected transaction [eve Is.

This option forcibly ends a transaction (or transactions), by emptying all queues in the area from events
having tags with the specified name and the current TID value (i.e., the TID value as it would be passed
further). The area for emptying is determined from transaction name. The current task sends its events
untagged.

In addition, active task instances holding the specified tags are terminated forcibly, without taking any
decisions or sending any output events.

Thus the END-option empties all queues in the area from the specified events and the transaction is ended
according to the previous definition. If several levels are to be ended simultaneously, the lowest one is
ended the first.

If there is no tag available with the name required l:Y the END-option, it is ~ semantic error.

______~-t:~---------~~-~~-----------------------
68

CHAPTER 7 TRANSACTION SEMANTICS OF TCDS

A typical position for END is an exit-task (a task passing events only to referenced tasks) of a TeO, but it
can be placed in any task.

Yet another special option is

NOTID

This option may be placed on event arrows in TeO diagram, beside the event name (or after transfer time,
ifit is present). It may be placed only on horizontal arrows (i.e., arrows not coming/going to referenced
tasks). NOnD doesn't appear in a TSD.

The semantics of NO TID is that no TID of any level is passed along the arrow ,i.e. the event sent along the
arrow has no more TIDs at all.

The main use of this option is to prevent merge problems in tasks emulating global variables (i.e. variables
common to all transaction instances). Namely the events representing global data and looping back to the
same task should be marked by NOTID (see the event Account in Fig 7.1, otherwise the global counter task
Summing wouldn't trigger upon arrival of the event payment from the next transaction instance).

NOnD option may cause an implicit end of a transaction if the TID is being canceled in the last event "'--.'
instance of this transaction.

Account
SETsum=O-- -"--_ ..

Account /NOnD
SET sum=Account.sum+payment

Fig. 7.1. Example of NO TID use

7.4 Attributes of transactions

Since transactions always correspond to normal complex tasks having TSDs, they also have attributes -
namely, those defined by the corresponding Type and Attributes sections in the TSD.

Any transaction has the same predefined attributes as any other task - duration and cost .. Duration
specification in TSD for transaction tasks is ignored.

The other numeric attributes of a transaction must be defined explicitly, by supplying their formulas in the
Attributes section of the corresponding TSD (or in the ATR table corresponding to the task type). It is

69

GRADE 8M LANGUAGE REFERENCE MANUAL

typical, that attributes are only derived here, and they u~e vertical operations (SUM, AVG, MAX, MIN) on
predefined or user-defined attributes of elementary tasks (or lower level transactions). The span of such an
operation is the lifetime of the TRANSACTION task instance. Any numeric or duration attributes
appearing in any ATR table may be referenced in vertical operations (but not directly!). If an attribute
appears in several ATR tables all definitions must have the same type. Partial sums are updated each time
an elementary task instance having the specified attribute is ended (within the static area of the given
transaction and having the appropriate TID). Thus, if the transaction has attribute tot_aJ defined by the
formula SUM(aJ), then for all elementary task (and nested transaction) instances within the given
transaction instance the value of al is taken (where it is defined) and summed up. When the transaction
task is to be completed, the final values of its (totaling) attributes are passed for processing at a higher
transaction level (if there is such). At that moment also the default statistics for the transaction is updated.

Rules of using other attributes from their own ATRs in arithmetic formulas for transactions are the same as
for other tasks.

If only attributes of a specific task should be "averaged" at a higher level, it is reasonable to have unique
names for them (there is no way to distinguish, e.g., transaction task cost from elementary task cost, no
attnbute qualification is supported in V.3.0).-:

The sole use of transaction attributes is for obtaining statistics on them (and/or computing attributes of
higher level transactions). There is no way to use transaction attributes to influence system behavior.

70

8 Additional s'tructuring features of
business models

8.1 Interaction of primary tasks

A business model consists of business functions which are represented by top-level tasks (i.e., top-level
TSDs). Any top-level task which is refmed by a TCD defines its activity which proceeds concurrently with
other such ones. Certainly, only these tasks which contain a timer (or spontaneous event) at any of the
refinement levels actually become active. By default, top-level tasks function independently of each other.",

Sometimes some interaction is necessary also between these top level tasks. GRAPES-BM version 3.0
proposes some facility for describing this interaction. Namely, the TSD of a top level task may contain also
internal referenced task symbols containing names of other top level tasks.

Certainly, there may also be other referenced task symbols in top level TSD, but these symbols are
necessary forjhe ease When this top level task is "called" somewhere lower, i.e., it has an occurrence there

-(see neXiSCCrlon).

The semantics of the facility are explained on an example.

Let us assume that there are two top level tasks A and B in the model

-limodel

• TASK A
• TASK B

Let us assume that the task A sends a message e to task B. Then the TSD diagram for the task A must
contain elements shown in Fig. 8.1

Task :A

e

Fig 8.1

TSD for B, in turn, must contain elements shown in Fig. 8.2

71

GRADE 11M LANGUAGE REFERENCE MANUAL

~-;-~
_ _ _ J

e

Task: B

Fig 8.2

In further refinements of both A and B by TCDs top level task names are propagated deeper, i.e., used in
referenced task symbols at lower levels, until the real communicating partners in both tasks are reached.

It is forbidden in one top level TSD to communicate directly to components of another top level task, i.e.
only top level communication can be defined this way. Lower referenced tasks may appear only for "call
situations" (see 8.2).

Such a mechanism is required only to describe top-level interactions. Ordinary TCDs serve to describe
interactions in one top level task.

The semantics is such, as if there were one more TCD diagram. containing top-level tasks as elements.
Then TSDsJortoplevel tasks would look just this way. However, normally it is unnatural to include such a

- Tcn-iiill model, since_top level !S.~ represent indepe~dent ~ctions.
-

From the simulation point of view, it should be remembered that in contrast to "calling" top level tasks at a
lower level (see section 82) no internal copy (in the sense of 11.1) of it is generated, when top level task
communication is described via their TSDs. Each top level task (together with its refinement) defines its
singIi-statie- occurrence whiCh-beha~esiDdependeBtly(or-communicateswith others using facilities-just

. described).-·

8.2 Independent tasks and the multiple use of tasks

The standard way of defining a task is to define it as a part of direct refinement of another task. Such tasks
are called refinement tasks in what follows. However, it is also possible to push the task definition point
(i.e., its TSD diagram) up in the business model tree, thus making it usable repeatedly in several
independent TCD diagrams. Such tasks are called independent tasks. Top level tasks are always
independent tasks by definition.

~-Th-ere-is nifdifference--m'fSD syntaxwhether the task 1S a refinement task -or independent task. In any case
the task may be elementary or complex, it may be a transformation or decision task. It should be
remembered, that an independent task must have all its input and output events and referenced tasks
specified, in order to use it properly in a TCD diagram. For this reason top level TSDs also must have
input/output events and referenced tasks specified, when they are used in other TCD diagrams (this reason
is different from the one described in 8.1).

Thus the distinction between refinement and independent task is made only by its TSD position in the
business model tree.

Any task - refinement or independent may be used in any TCD diagram where it is visible.

The visibility area is defined in a manner typical to GRAPES (see also 1.2) :

• top level task is visible in any TCD within the business model;

72

CHAPTER 8 ADDITIONAL STRUCTURING FEATURES OF BUSINESS
MODELS

• task placed just under a certain task T is visible in any of TCDs placed somewhere under the task T,
i.e., either in a direct refmement ofT or in a TCD lower in the hierarchy.

It is not allowed to redefme a task defmed higher once more at a lower level. At the same time, it is
possible to have different defmitions of a task with the same name in different branches of the business
model tree.

Any task - whether refmement or independent is used ("called") in a TCD diagram, using the same internal
task symboL The task name in this symbol must correspond to a visible task (TSD) name. The input/output
connections and decisions (if any) of the symbol must match those specified in its TSD. The event
matching is done by their names and referenced task names, control flow being the only event without a
name. There may be less connected inputs/outputs and decisions to the symbol than in the corresponding
TSD. There is no restriction on how many times a task is used in several TCDs. It is forbidden to reference
tasks recursively (e.g.• TeD of the task A uses task B and vice versa).

In a strongly top-down design mode. TSDs for independent tasks are defined at the proper position in the
model tree using the TSD editor. The referenced task symbols may be left unnamed at first. their names-r-
will be supplied later when occurrences appear. However, automatic insertion in TSD when referencing
this task in a TeD diagram with more input/output events works also in this case.

When a TSD is generated automatically upon mentioning a new (invisible) internal task in TCD, this TSD
is placed in the position of a refinement task. It is possible to push manually this TSD up in the tree, to
make it usable in several TtDS. From this moment, all automatic updates in this TSD invoked by the usage
of.the-task-hrseveral TeDs are summed.up irrespective of the position of TSD (according to visibility
rules!).

The intended formal semantics for multiply used ("called") tasks is that of macro-expansion: if the
referencedtask has a refinement, the-internal task symbolis virtually substituted by its refmement TeD,
withinput/ouJpll!_eventseo~ accordingly, .._. __

73

9 Simulation parameters and their
usage
In order to make simulation experiments with a BM model more convenient, a special simulation
parameter table has been introduced (SP). This table contains name, type and value columns, thus defming
named constants like those in fig. 9.1

Name: Type: Value: Description:

Task_1_duration DURATION "Sm"

Fixed_costs FLOAT 5.01
Une_count INTEGER 20

Fig. 9.1 Example of SP table

Only the following elementary types
. - .~~

.- ;;;-integer-

- float

- duration

._~e _

may be used in the type column. The additional description column contains any informal information. The
value column must contain a valid constant of the given type.

The main use of constants from SP are in TSD diagrams.

These constants may be referenced in nearly all the textual elements of any TSD diagram of the model
where a constant of the appropriate type is valid, i.e. they may be used in attribute values or expressions, as
duration values, in decision formulas, output event data setting, REPEA T values for output event sending,
input event REPETITION specifications and WHERE conditions (but not in PRIORITY, MAX
INSTANCES and ALTERNATIVES sections).

The most typical use of simulation parameters is just to set task attribute (predefined or user defmed)
__values, since these are the values which.need to be easily changeable.during simulation experiments,

The other diagram where these constants may be referenced is in the ORG diagram (performer efficiency),
ET table (in timer repetition.jransfer time specifications and persistence), ATR table (in default and
formula) and TCD diagram (event transfer time and copies of text items in TSD).

During a simulation session the parameters may be both viewed and modified (in a special tabular form).
The new values immediately have effect in the session continuation, without any model reanalyzing.
During the session these constants may be saved in the repository. Named saving is possible, thus several
sets of values can coexist in the repository for simulation experiments. However, there is only one set of
values visible via the editor (namely, those set by editor).

---._---

74

10 Data inGRAPES-8M
Though GRAPES-BM is a pure modeling language, some data processing is present in it. In general it is a
small subset of GRAPES/4GL facilities, though ~OIl1~ specific features are also present. This section
describes constants and data expressions as they can appear in various GRAPES-BM constructs.

10.1 Constants

For full use the following type of constants are available in GRAPES-BM:

• integer constants

• float constants

• duration constants

• time constants .

lnteger <:!>nstants-are unsigned strings of digits (not exceeding Maxint for 4 bytes, i.e. 2147483647).
. .. Where allowed signed constants are obtained as constant expressions with unary minus prefixed to an

integer constant.

Float constants are in the form

~ .: _ ~ int-,~c;mst.jnt..:..e<mst=.

also unsigned. Signed float constants again are obtained as expressions. The form .01 is not permitted, use
0.01

Duration constants are strings in double-quotes, containing any descending unit sub-sequence from the
following units:

days (d)

hours (h)

minutes (m)

seconds (s)

- .. --cnaractersin-parenthesis show·the'-lfnit-qualifier.-Units-anneparated by a colon. The unit 'amountisa .
integer or float constant. For seconds the amount is rounded to an integer.

Years and months are not used in GRAPES-BM constants.

Examples:

"ld"

"3m"

"ld: 1b:lm: Is"

"2h:1025m"

"100.02d"

"Im: lOs"

75

GRADE 8M LANGUAGE REFERENCE MANUAL

Time constants also are strings in double-quotes. The:' may be in date or date-time format. Date format
contains vear, month and day. Date-time format, in addition, contains hour. minute, second. The separator
in the date part is period, in the time part - a colon, between parts - just one blank space.

Each unit element is a fixed-format integer, without unit qualifiers:

year: 1900 .. 2099

month: 01 .. 12

day: 01 .. 31

hour: 00 .. 23

minute: 00 .. 59

second: 00 .. 59

Examples

"1996.03.28"

"1996.04.30 12:00:00"

Invalid dates such as 02.30 are converted to valid values, 03.01 or 03.02 in this case.

The.Jol-lewing-co~ts may only be used in an ATR table and in the Attributes section ofTSD diagrams,
for setting constant values of attributes (but not in expressions).

String constant - a string in double-quotes.

List constant - a comma separated list of constant values.

10.2 Data Expressions

There are two kinds of expressions in GRAPES-BM V3.0: the special ones such as event expressions in
triggering conditions and performer expressions, and general data expressions.

This section describes general data expressions. They are used in the ATR table, the Attributes section of
the TSD body and output detailings.

The following types of data expressions are present in GRAPES-BM V.3.0 :

• _integer.exp~es~ions

• float expressions

• duration expressions

• time expressions

A special type of expression with a different use are Boolean expressions, and they will be defined at the
end of this section.

Arguments of an expression may be the following:

• direct constant,

• named constant from SP,

• user-defined attribute_name (from the ATR table which corresponds to the given task type),

• predefined attributes of a task (duration; cost),

76

CHAPTER 10 DATA IN GRAPES·8M

• input event_name (if the event has an elementary data type), may be used in expressions within textual
elements of a task (in a TSD or TeD),

• input event_name.field_name (if the event has a record data type), may be used in expressions within
textual elements of a task (in TSD or TCD)(for nested records qualifications oftype
fieldl.fieldll.fieldlll are used),

• built-in function.

Expressions are built from arguments using operators, parentheses and vertical operations. Vertical
operations: SUM, AVG, MAX, MIN have the form: op(var_name), where var_name is an attribute_name
(user defined or predefined, may be used in formulas for transaction task attributes) or an event_name or
event_name.field _name(used in formulas inside task triggered by event groups). The span of a vertical
operation depends on contexts of the two formula (either all elementary task activations within the
transaction instance or all events within the actual activating group). Formally vertical operations may be
applied also to a single object (then just the argument value is returned). /-.

The operator priorities and use of parenthesis are the standard ones.

Now some details regarding expressions according to their types. In what follows, by variable we
understand an attribute name, event name or event field name, respectively.

Integer expressions-may contain- ---~
• integer-valued constants or variables

• operators +, -, *, DIY, MOD

• vertical operations SUM, MAX, MIN

-. -integer random functions - -- -

• INTEGER function from real expression (returning the nearest integer, e.g., INTEGER(O.7)=1,
INTEGER(O.2)=O, INTEGER(1.2)= I)

• duration_expression DIY duration_expression.

Float expressions may contain

• integer or float-valued constants or variables

• operators +, -, *, /
.•.. -vertical operations-SUM,MAX,.MIN, AVG._-.

• integer or float random functions

• duration_expression ~duration_expression.

Duration expressions may contain

• duration-valued constants or variables

• operators +, -

• subexpressions duration*integer, duration*float

• vertical operations SUM, MAX, MIN, AVG

• duration random functions

•~..subexpressions.time - time, __

77

GRADE BM LANGUAGE REFERENCE MANUAL

Duration expressions must have non-negative values

Time expressions may contain

• time-valued constants or variables

• subexpressions time + duration, time - duration

• vertical operations MIN, MAX, AVG

• time built-in functions NOW and START_TIME

Some restrictions on the time value set will be present (e.g., > 01.01.1900). There are no random time
functions (these should be modeled using duration). NOW returns the current model time, START_TIME -
the starting point of the simulation session. Both these functions are prohibited in the WHERE part of a
triggering condition "

Random functions are:

• UNIFORM (min, max)

• NORMAL (mean, deviation)

• EXPONQITIAL (mean)-.--------
These functions may be used in conjunction with the integer, float and duration arguments, returning the
corresponding type ..

And lastly, a description of the Boolean expressions (used in decisions and WHERE conditions).

They are-builtfrom-

• relational expressions

• Boolean operators AND, OR (and their alternative notations "&", "I")

• parentheses

• special predicate ls_trlggered_by (event), may be used in decisions

Relational expressions are built from integer, float, duration, time expressions and comparison operators :

= <> > < >= <=, ", ,

All operators may reapplied-to all-types, both arguments must have-equal-types(except-thatintegers and
floats may be mixed).

Arithmetical operators have higher priority than comparison operators, comparison operators have higher
priority than Boolean operators.

All arguments may be used in decisions, though WHERE has restrictions (see section 5).

String expressions are only of the simplest form: just the direct or a named string constant. They may be
only used to set the value of a string attribute (in an ATR table or the Attributes section of a TSD). Strings
may not be used in comparisons.

78

11 GRAPES-8M semantics for
simulation
Though the preceding sections already defmed the semantics for GRAPES BM V3.0 in more or less, here
we present the summary of this semantics, in a more practice oriented way, i.e. in the way this semantics is
used in simulation. The informal elements of the language are ignored here.

This section has two purposes. On one hand, it can be treated as an abstract GRAPES-BM execution
semantics definition in an operational style. On the other hand, the description is close to the real actions
performed by GRADE during preparation for simulation and during simulation itself, including some hints
on diagnostics. »>:

-11.1 Preparation for execution - tree expansion

After a modelhas been analyzed and simulation has been selected, first the business model is automatically
---~

-----transfOriiledslightly. The model tree is expanded, under each occurrence of a complex task its complete
subtree is attached (where it is not already present). In this expanded tree all occurrences of elementary
tasks are found. For each such occurrence an empty queue frame is built. If alternatives are used, they are
placed in parallel at the same level. -

_ .For each ofthe~ed_e'y~ts one queue is built for the occurrence irrespective .of how many incoming
referenced tasks associated to this event are in the TSD. For each incoming control flow (i.e., for each
associated referenced task name) in the TSD, a separate queue is built. These queues are only the potential
ones. In the routing phase only those queues will be retained in each occurrence, which have at least one
potential source of events (see 11.2), the others are removed.

Queues are built for occurrences of both internal and external tasks. Only for external tasks without names
(and without TSD, as a consequence) there are no queues, these tasks are marked as "dead" ones (no events
reach them, they send no events, they don't appear in statistics).

Since new internal copies ofTCD diagrams are built in this way, which in principle should be observable
by the user (in traces, statistics, animation, execution-time inspection), unique qualified names are assigned
to them.

When no task occurs morethan once in a TeD, ana noalternative are usedthe simplest qualifiedname is:

TSD namel.TSb name2.TSD name3.TCD name- - - -

When alternatives are used, alternative names in parenthesis are appended to corresponding TSD names:

TSD_name 1(TCD_alternative _1). TSD _ name2. TCD _name

When there are several occurrences of a task within a TCD, these occurrences are distinguished by
appending the occurrence tags (insertable via TCD editor) or artificial numbers if there are no tags
specified for task names:

task l.tag 1, task l.tag2

Specific tasks in a TCD are named the same way, inserting the task name (normal or extended) instead of
the last TCD name e.g.

ISD _name 1.TSD_name2. TSD _name3 .

79

GRADE ISM LANGUAGE REFERENCE MANUAL

11.2 Event routing

The next step in the preparation for model execution is finding all possible routes for each event emerging
in the model.

For each occurrence of an elementary task in the expanded model tree and for each of its outgoing events
(control flow) all possible event routes to other elementary tasks in the expanded tree are found.

This is done according to routing rules in section 6.5. Direct "channels" (which correspond to the found
routes) are established for each outgoing event (more precisely, for each pair: event and associated
referenced task name), thus preparing a copy of the event (or control flow) to be sent along each of the
routes. As explained in 6.5, each route definitely contains just one horizontal link (event arrow connecting
two non-remote tasks-in a TeD) and possibly the upgoing and/or downgoing link defined via referenced
tasks. There is one case without an explicit horizontal link, namely, the connection of two top level tasks
defined by appropriate incoming/outgoing referenced tasks in two top level TSDs.

Each route ends in a specific input queue of a task occurrence (but there; can also exist .routes _which .,. :
terminate in the middle, see later). For named events this queue is determined by event "name. For control
flows the queue is selected on the basis of the coincidence between the start name (see 6.5) and a name in a
ref~c~.task n~~ ~ '~e queue is marked as active as soon as at least one ~~ reaches it.

After the routing process is. completed, all potential queues in all task occurrences, which have remained
iIiactiVe.Me 9iScaided.-th'Us they don't participate in simple AND (and default AND for control flows)

---b'igg~g eOpditions. - - -= - _ __:--:~-_ .
~ _::E.:;----~ ~-<' ~--- - --=-- - -~~- -_--
During the routing process some global routing diagnostics are performed. If there is more than one
ocewrence-ofil task. it iscompletely normal. that in _aspecific occurrence ~fthis task (or its components)
some outgoing routes (determined by pair: event name, referenced task name) are disrupted during routing

__"(~arc.-uSedinotbft'~ial_!m~in tmn);-A ~etticsitmltio~js fQr:.incOJ;ning-route_s.J~_1!tjfan event; __
rerilains UncOnn~~er. thiSlS considered to be an anomaly.Messages created byrouting ,
diagnostics are fonnuhned as warnings. A warning is generated. if -

• for the given outgoing event name no route from the task occurrence reaches a destination queue

• no outgoing control flow (if there is such in the TSD) from the occurrence reaches a destination queue

• a potential queue for named event is discarded as unconnected

• the last queue for incoming control flow is discarded

Simulator warnings are displayed in the same way as analyzer warnings. After preparation for simulation
these warnings will be attached to the most appropriate symbols in the appropriate TCD diagrams and the
diagram's status circle changed to yellow in the model tree (if one or more warnings and no errors are

--present) .. The display-of warnings may beswitchedoff'(in the model-options): - .

Such warnings would never occur if default referenced task names proposed by editor are retained in TSDs
and are really used in refInements of these TSDs by TCDs. However, hand-edited TSDs and incomplete
refinements may cause these warnings to appear. Since such a construct may be semantically valid in a
model. no errors, but only warnings are generated. It should be noted that this kind of diagnostics is by
nature incomplete during local analysis of separate TCDs or TSDs (according to 6.12) and therefore has a
global character. The local analysis can reveal routing deficiencies only when the TSDs in the model have
no superfluous incoming/outgoing events, i.e. they have not been modified manually too much. The
routing checks during preparation are even more powerful than the global consistency checks.

During execution, output events having no valid route are simply discarded without any message.

Now some more notes concerning routing in special cases: timers, unnamed externals, TCD alternatives
and complex events: -

80

CHAPTER 11 GRAPES-BM SEMANTICS FOR SIMULATION

Timers generate only inputs for tasks. They are either directly linked (by a horizontal link) to one
elementary task, or have also the downgoing part of the route (defined by referenced timers) and fmally
reach one or more elementary tasks. Routing is done based only on timer names. The difference between
several equally named timers attached to an elementary task each, and one timer "cascaded" down to
several tasks, appears only in one subtle cases with random timers. Each timer symbol occurrence in the
expanded tree acts as an independent timer, sending its events according to routes.

Unnamed external tasks (without TSDs!) participate in the routing process (via unnamed external
referenced tasks). But they are specially marked as "dead" tasks Cl?d5~ents being sent to them are not sent
at all.

All TCD alternatives are taken into account during the building of the expanded tree. Alternative
expansions are included in the same tree. During routing, alternative routes are also found (more precisely,
packages of them). During execution, one route from the package is selected, based an alternative
probabilities (default is equal chance, if probabilities are absent).

Complex events- may neither be generated nor received by elementary tasks. They are only used to reduce
the number of routes in high level TCDs and TSDs. During the routing process (its upgoing part), at some /.-,
TCD level, an elementary event may be "hidden" into a complex event (using syntax defined in 62.12). .
The routing is continued with the complex event keeping the elementary event name in mind. In the
downgoing part of the route the level is found where the original event is singled out again from the
complex _~ne_and finally reaches its destination. When no event refinement is found the original route is
discarded, - - - - -' -""

11.3 Starting ~ execution, timers

Now the ~xecution of a model may start. The simulation time is set to the selected startvalue, In general,
-lti~sinlu:WiOiltim~moverl6rWard, when there are no more si.mulatimtsteps-tobe-perfurmed -in the currenL-
:- time-moment-------: --~- --

At the beginning, the only active elements in the model may be timers (and spontaneous events described
by similar syntax). Each occurrence of a timer symbol in a TCD is treated as an independent timer. Timers
with a time point specification become active according to their description. Interval (i.e., REPETITION)
timers become active for the first time, when the specified interval has elapsed from system start. Each
timer activity generates a new event instance, which travels and is enqueued according to general rules. By
default, timers are instantaneously enabling ("Os" persistence), i.e., if they cannot be used for triggering in
the same simulation time moment, they are discarded (when the model time is advanced, thus all
simultaneous events actually "meet" the timer). Timer events always are untagged. :

lfseveral alternatives ofa task (at any level including the top one) contain timers, they all function
c-mdependen~ly;-so no probabttitiesaffecrthis behavior." ".- "- - ----~ ----- .-_.. -~-."

11.4 Starting a task·

As soon as a new event is enqueued in queue (for an elementary task), it is ascertained whether the task can
be triggered. If it cannot be, nothing is done in the task. If the task can be triggered according to the
triggering condition, the task is marked as potentially triggerable and looks for performers. The merge
condition is always an integral part of the triggering condition if incoming events have TIDs. If one of the
appropriate performer sets is found to be free and available, the task is triggered. Otherwise the task is put
on the waiting list for performers (the relevant ones). As soon as some of the relevant performers are
released (or become available) a new test for triggering is done.Priorities are taken into account in this test,
but within one priority level all waiting tasks have the same chance to be triggered (the precise scheduling
is implementation dependent). If any of the involved events has a limited persistence (e.g., a timer), it is

81

GRADE 11M LANGUAGE REFERENCE MANUAL

removed from the queue at an appropriate model time moment. This can make the task untriggerable and
thus removed from the waiting list.

The actual triggering set of events is consumed (transferred from queues to the task instance data). Timers
are processed according to rules in section 4. The selected performer set is assigned to the instance.
Performer availability may expire before the task is completed, but this fact is ignored in version 3.0.

Just before starting, the following actions are performed:

• the current value of duration is computed (possibly using consumed events as inputs and taking into
account the minimum efficiency of selected performers)

• if the task is a transaction start (default or with explicit START option), a transaetion(s) is started - a
new TID for the required level is generated and the tag element created (or appended to inherited tags)

• Only then the task is started. From the technical simulation point of view, an active task does nothing. It
only waits for its duration to expire.

Each task instance has its unique lei, which is used only to identify instance-related actions in the trace. It
may also be part of one or several transactions at different levels, and then the task instance carries the
corresponding TID values.

When the time point where a task ends is reached, the following is done

_!__j~ ~~jsCQ.II!P~ accordin.&J9the form...!11a__ ~_.~. __ ~ 0 • ~_

..•. ~':-_=-,----=......-". __ , _~C.---~_~~~~.:::::" ::'='._7"- -=- ~ . __ ~~T~-:- _.::--=---~_-__ ~_-.~-~-----~-
. -t : duration.SU¥fC;ostfi::'htiUr) - - 0--- ~ - - - --- -' --------

~ -

for all performers used (duration converted to hour units), taking into account efficiency as well ifused

• user defined attributes are. computed according to their formulas. If a random value is used somewhere,
each occurrence is a separate random generator_.

• if1he task is a transformation task, all outgoing event (according to TSD) instances are created with
their data set by SET options and sent (see next section). Each created event instance bas its unique ill
(used in trace). The data are passed or set according to section 5.8. Tags are added according to section
7. Group sending (for multiple triggering) and REPEAT option generates a group of independent
events.

• if the task is a decisionjask, ~~ decisions ar~ evaluated one.by one, and these found valid are executed.
(the corresponding events sent)

• if the task is in a transaction, whose attribute formulas reference attributes of the given task, the
appropriate partial sums are updated

• if the tasks ends a transaction (by default or forcibly), the transaction instance attributes are evaluated
and passed up (to a higher transaction)

• the task statistics for the task occurrence(and terminated transactions) are updated.

All task ending activities are performed as a group, without advancing time. Only then the task is really
ended.

82

CHAPTER 11 GRAPES-ISM SEMANTICS FOR SIMULATION

11.6 Sending an event

A generated event (with or without data) is sent according to the following rules:

• all valid (i.e., connected to a queue) routes for the event in the given occurrence are found and a copy
of the event is sent along each. If there are TCD alternatives involved, one route from the package (see
11.2) is selected randomly according to the probabilities. If the route leads to a "dead" task, the event is
sent nowhere and ignored in statistics. If statistics are required, a named external task must be used.

• the transfer time for each route is found. Either the transfer time of the single "horizontal" link in the
route is taken (if it is specified in the TCD) or the transfer time from the ET is taken. If nothing is
specified, the defauh is zero. Links to incoming/outgoing referenced tasks never affect transfer time (it
is forbidden to specify transfer time for them in a TCD).

• When the transfer time has elapsed the event is enqueued in the destination queue.

The whole sequence of simulation steps is repeated until the end of the simulation session ..
.:~:::;--::;::;- J... '-~ ~;~ ~~. :-r-!~ _- - -__, :_ ._ "e .• ~.: ~:w •.•..

83

GRADE 8M LANGUAGE REFERENCE MANUAL

12 Simulation statistics

12.1 General principles of automatic statistics gathering

The GRADE simulator, during execution of GRAPES-BM models, supports automatic gathering of
statistics about the model execution. There is a list of predefined statistics, which can be gathered by
switching them on in the simulator control window. Additional statistical items may be included on the
basis of user defined task attributes.

--•. _~-.• ./"~---:~
Though the gathering of any statistics item may be switched on or off, the formulas and gathering rules for
each of the items are predefined and may not be modified by the user.

The-following groups of statistics items are available:

-. statistics on tasks
.;.."'-:: -

____statisties-on performers

• statistics on events- _ .. ---.--"..--.

S~~~c~_~!!.....~~ are_~ered_~!!~ve1'Y.occurren~_9L~ elementary task, attd.inJ¢dttiQIl. on every ~
-occurrence of a complex task which defines a transaction. Complex tasks which define no transactions are
ignoredm siatiSties:-FOf" elementary tasks -aU Possible items are available, fortrimsaCtions oD1Ysome of
th~ -

Both for elementary tasks and transactions, any user defined attribute having numeric or duration type may
be used to define additional statistics items. The processing is similar to that for the predefined attribute
cost.

The gathered statistics are visible in the simulator, and in a special GRADE component named the Trace
Browser, in the form of tables and EXCEL-like charts. Each table contains a group of closely related
statistics items as its columns. It is typical that there are Total, MAX, MIN and Average columns for the
same table. Each row of the table corresponds to a task occurrence in the expanded model tree (see 11.1).

"~l!~_occurrel!~~jdentified by its __ _ _ _

- task name

- TeD name

- full qualified task name in the form TSD _name 1.TSD_name2. TSD _name3. In the case of several
occurrences tags (user defined or generated) are also used (see more in 11.1). Qualified names are
necessary if task names are not unique.

Statistics on performers are based on the performer elementsin the ORG diagram of the model. Actually
statistics are only gathered for those ORG elements which are referenced in at least one performer
expression of an elementary task.

Statistics on events are based on input event queues of elementary tasks. There is a table entry for each
elementary task occurrence in the expanded tree, and each eventwhich has an input queue for this
occurrence.

84

GRADE BM LANGUAGE REFERENCE MANUAL

Activation, time without any instance, processing time, costs and user defmed attributes are defmed both
for elementary tasks and transactions. The other tables are defmed only for elementary tasks,

Table caption

Activation of the
tasks -

Columns

Task name

--TCDName

Total count of activation

Total count of completion

Maximum count of concurrently active instances

Average count of concurrently active instances

Minimum count of concurrently active instances

Tasks remaining active

TaSK waiting time Task name
for start TCDname

Total waiting- time for task start

Maximum waiting time for task start

Average waiting time for task start~ ~--

- -- - '_ '--:- -._-~1InuID waItlngtime for task start---
Task waiting for
triggering
condition
completion

Task name

TCDname

Total time for triggering condition completion

Maximum time for triggering condition completion

Average time for triggering condition completion

Minimum time for triggering condition completion

Task-waiting for -- Task.name...
any performer TCD name

Total waiting for any performer

Maximum waiting for any performer

Average waiting for any performer

Minimum waiting for any performer

Time without any Task name
active instance of TCDname
the task

Total time without any active instance of the task

Maximum time without any active instance of the

Variable Mode

TOTCA 2

TOTCC 3

MAXCA 1

AVGCA 1

MINCA 1
~ .•..::

TRA 1

TOTWTC 2

MAXWTC 2
. --

AVGWTC 2
-_.-

MlNWTc
"-_.

2

TOTTCC

MAXTCC

AVGTCC

MINTCC

2

2

2

2

TOTWP

MAXWP

AVGWP

MINWP

2

2

2

2

TOTIA

86

CHAPTER 12 SIMULATION STATISTICS

task MAXlA I

Average time without any active instance of the task

Minimum time without any active instance of the task AVGIA I

MINIA I

Task processing Task name
time

TCDname

Total processing time TOTPT 2/3
Maximum processing time MAXPT 2/3
Average processing time AVGPT 2/3

-" -,

Minimum processing time MINPT 2/3
Task costs Task name-

- TCDname

----- Total cost TOTCOST 3- - -

Maximum cost MAXCOST 3
Average cost --- AVGCOST -3

- -- - -
Minimum cost MINCOST 3-- --- - -- • ___ - ___ ."... ____ 4 ____ ~~_" __ ~_. -.- 7" __ .__ ~ __ --- --

User defined task Task name - - -

attributes
TCDname

Attribute Name

Total TOTATTR 3
Maximum MAXATTR 3
Average AVGATTR 3
Minimum MINATTR 3

- - - --- '---. -_.

Definitions of variables

TOTCA - Total count of task starts since end of warm-up period. The current value is updated when
each instance of this task is started.

TNOW - The current value of simulation time.

TW ARMUP - The end of the warm-up period.

NCA - The current number of concurrently active instances of the task. It is set to its actual value at the
end of warm-up and maintained after that.

TSLCA - Time since last task start/end (or since TW ARMUPTor the first start/end).

87

GRADE 8M LANGUAGE REFERENCE MANUAL

CCA T - Cumulative concurrent activations_time. It is calculated after tasks start or end as NCA
multiplied by the value of TSLCA and the result is then added to the current value of CCA T. At session
end, the last NCA multiplied by the last time interval is added.

MAXCA - Maximum value of NCA.

AVGCA - Average count of concurrent active instances. It is calculated by dividing CCAT by the
current value of (TNOW- TW ARMUP).

MINCA - Minimum value of NCA.

TOTCC - Total count of task instance completions in the accounting period.

TRA -Number of instances remaining active (at the moment when statistics are taken).

wrc -Time interval between the occurrence of the previous and current task instance starts (or between
TW ARMUP and start for the first start after warm-up). If several instances of a task start simultaneously,
they are accounted in NTC. and wrc with a zero value added for each.

NTC - Number of task starts, actually the same as TOTCA:

TOTWfC - Total waiting time of a task for start. This accumulates from the end of the warm-up period
untiLthe end of the accounting period, i.e.

MAXWTC - Maximum ofW!C.

NTC .
..= -~T __ ~_ ~.L~C;I._= c-_"O-",,_~~c..;..c __ ~

AVGWTC = J-1 • This formula is valid with NTC > O.. - ""NTC -,. .

MINWTC - Minimum ofWTC;

TCC - Time.interval between the moment when the first event which satisfies the triggering condition
arrives and the moment when the triggering condition is fulfilled. More formally, it is the interval between
the youngest and oldest event enqueueing in the event set, which actually triggers the task instance and is
consumed by it. It is taken into account for gathering statistics, when the instance starts. Remember that it
is the interval between enqueueings, and not between enqueueing and start. TCC is zero when only one

_e.Y~t!!igg~!Sa.task __" _ . _ ___ _".. . ~___ .. ~_

NTCC - Number of task starts, actually the same as TOTCA.

TOTTCC - Total waiting time of task for triggering condition completion This accumulates from the
end of the warm-up period Until the end of the accounting period, i.e.

NTCC
TOTTCC = LTCC1

1=1

MAXTCC - Maximum ofTCC.

.88 ._~~_~~

CHAPTER 12 SIMULATION STATISTICS

NTCC2:TCC,
AVGTCC = i=1 This formula is valid with NTCC > O.

NTCC

MINTCC - Minimum of Tee.

WP - Time interval between the youngest triggering event enqueued and the moment the task started. It
expresses the time waiting for available performers after the triggering condition is true, and MAX
INSTANCES may influence the result as well. For a task starting soon after warm-up, it should be noted
that the whole interval between enqueueing and start is taken, not only the portion within the accounting
period.

NTP - Number of task starts, actually the same as TOTCA.

TOTWP - Total task waiting time for performers availability. This accumulates from the end of the
warm-up period until the end of the accounting period, i.e ..

NTP

TOTWP=L~
l-1

/.----:..

-MAXWP-: MaximumofWP •.

NTP

LWP,
AVGWP = 1=1 This formula is valid with NTP > O.

, NTP.-

MINWP - Mininium ofWP.

The task status is set to "Inactive" when the number of active instances of a task is 0, otherwise - it is
"Active" .

TI - Time moment, when task status changes from "Active" to "Inactive".

TA - Time moment, when task status changes from "Inactive" to "Active".

TIA - Current inactivity interval of the task. TlA = TA - TI. For the first and last intervals in the
.accounting.period.only.the part overlapping.the accounting.period.is taken. ~. c_ •. _

NTlA - Number of intervals of task inactivity (i.e. the number of inactivity intervals in the accounting
period).

TOTIA - Total task inactivity time. This accumulates from the end of the warm-up period until the end
of the accounting period, i.e ..

NTIA

TOTIA = ITIA,
1=1

MAXIA - Maximum of TIA.

89

GRADE 11M LANGUAGE REFERENCE MANUAL

NTIA
L:TIA1

AVGIA = 1=1 This formula is valid with NTlA > o.
NTIA

MINIA - Minimum ofTIA.

Processing time is computed in a different manner for elementary tasks and transactions.

For elementary tasks

- the counting mode is 2, i.e. all task instances starting in the accounting period are counted, namely, at
the moment when they start;

- the processing time is simply the duration attribute value for the instance (if it is defined by a formula,
it is always evaluated the start). Even if the task end is after the session end, the complete duration is
taken.

For transactions

- the counting mode is 3, i.e, alI transaction instances ending in the accounting period are counted, at the
moment, when they end

- the processing time is the interval between the instance end and start (even if the instance has started
- -befere waim-up), this value is also the duration value for transactions.

It should be noted, that such a definition yields the expected average values of instance time.

- - PT'" CUrrent-processingtime-oftheinstance (see-above).- ----

TOTPT - Total processing time of task.

TOTCA
TOTPT = 2:PT; (more precisely, the upper index in TOTCA for elementary tasks and TOTCC

1-1
for transactions)

MAXPT - Maximum of PT.

TOTCA

L:PTi

- --- .AVGPT= 1=1 _ (for.elernentarytasks). For transactions.TO'I'Cf; is.used.instead, This.formula.is
TOTCA

valid with TOTCA > 0 (TOTCC>O, respectively) ..

MINPT - Minimum of PT.

COST - Cost of current task instance (taken as defined by the language semantics for elementary tasks
and transactions, respectively).

TOTCOST - Total costs of a task. This accumulates from the end of the warm-up period for tasks
ending in the accounting period.

90

CHAPTER 12 SIMULATION STATISTICS

TOTCC

TOTCOST = LCOST;
i=l

MAXCOST - Maximum of COST.

TOTCC

LCOSIj

i=lAVGCOST = TOICC _ This formula is valid with TOTCC > O.

MINCOST - Minimum of COST.

ATTR - The value of attnbute attr of the current task instance (elementary or transaction), the actual
attribute name is visible in the corresponding table column. It is any of the user defined task attributes
having a numeric or Duration type. Attributes of tasks or transactions to be processed in this way are
defined within session parameters. All attributes selected in session parameters for default processing
appear in the same table, the attribute name is just one of the columns. A display of the value of one
attribute for all tasks may be obtained via appropriate ordering.

The attnbute values are computed at the instance end, both for elementary tasks and transactions. For
transaction attributes involving vertical operations (see 7.4), their internal accumulation is completed at that
mo~~<!!l!e-obtained value is passed for statistics processing.

/ •.. ~:

TOTATIR - Total of ATTR of task. This accumulates from the end of the warm-up, for all instances
ending in the accounting period.

____ JOTCC 0__ .___ _ _ _ _ 0

TOTATTR= LAITRj
i-I

Only the defined (i.e., non-NULL) values are accumulated.

MAXA TIR - Maximum of ATIR

AVGATTR=

TOTCC

LATTRj

i=1

IOICC
This formula is valid with TOTCC > o.

MINA TTR - Minimum of ATIR .

.--~---- - ---- -_ .._----- ,----_._~.

12.4 Statistics on performers

This kind of statistic is computed for each separate element of the ORG diagram. In the case of a subtree in
ORG referenced more than once, the ORG diagram is considered to be expanded in the standard way.
Qualified names are available to distinguish all element occurrences.

Actually only these ORG elements define a row in the statistics table, which are referenced at least once in a
performer expression of an elementary task. It is so because only these performers have had a chance to be
used for a task. In particular, it means that organizational units, which at best, appear as performers for high
level complex tasks, as a rule will not appear in statistics table.

Statistics items are defined in a style similar to that for task statistics, using formal variables.

The previously mentioned modes have a similar meaning for performers as for tasks. Formally for
_p~rfo~ers the dynamics, idle/~age time and performer seizing/releasing, play the role of task start/end.

91

GRADE 11M LANGUAGE REFERENCE MANUAL

But these two kinds of activities are always uniquely coupled, so one can think also in terms of task
start/end for performer statistics modes.

When speaking of performers utilization, average and mi.Iiimum seized instances and idle time, only the
availability periods of the given performer, which lie inside the accounting period, are taken into account.
The periods where the performer is unavailable are simply excluded from statistics. Performers are counted
only for elementary tasks.

Available number of instances

Total number oftimes seized

Maximum of simultaneously seized instances

Average of simultaneously seized instances

Minimum of simultaneously seized instances

Performers utilization (%)

Productive performers utilization (%)

Performer

Total waitin~?me_o~~ks for the performer

Maximum waiting time of tasks for the performer

Average waiting time of tasks for the performer

Minimum waiting time of tasks for the performer

Performer

Total idle time

Maximum idle time

Average idle time
----~- - Minimum tale time

Waiting time.
of the tasks
for the-
performer

Performers
idle/usage
time

Table 1

Total usage time

Maximum usage time

Average usage time

Minimum usage time

AVLNP

TOTSE

MAXPI 1

AVGPI 1

MINPI 1

UTILP

UTILPP

TOTTW_

MAXTW

AVGTW

MINTW

2

2

2

2

TOTITP

MAXITP

AVGITP I

·MINITP ' .~- -1-

TOruS

MAXUS

AVGUS

MINUS

AVLNP - This value is defined in the GRAPES-BM ORG-Diagram. "Infinite" value is implied for
multiple performers without a number specification. For single performer the value is one.

TAV - total availability time for the performer inside the accounting interval.

.N:.~U!-1b~~urrent number of performers used. It is set to the actual value at TW ARMUP.
- . -. - ---- - - --_.:. -. _. . _=.~_ .. ,,-...o.- ._*_.__ . : __ -.......:...,.;

TSR - The time expired since the last performer seizing or releasing.

92

CHAPTER 12 SIMULATION STATISTICS

CPI - Cumulative performertime. It is calculated after each performer seizure or release via multiplying
NCVI by the value ofTSR and adding the result to the current value ofCP!. In the same way as for task
activations, for the first seize/release after TW ARMUP the shortened TSR value is used, and at end of
session the last special interval is used.

AVGPI - It is calculated by dividing CPI by the current value ofTAV. Namely this way the averaging
occurs only over availability periods.

MINPI - It is the minimal value ofNCUI since the end of warm-up period. Only values of NCVI during
availability periods are taken into account.

MAXPI - It is the maximal value of NCVI since the end of warm-up period.

TW - The current time interval between the moment a task's triggering condition becomes TRUE and when
the task's performer expression becomes TRUE. More formally, it is the interval between the actual task
start moment and the "youngest" event enqueueing time in the event set triggering the given task instance.
The value ofTW is the same as WP in task statistics - waiting for performers. Only the derivation of TW is
quite different. It is gathered for performers actually seized for the task instance, i.e., in case of OR in the -r::

performer expression, the other possible performers don't participate in the statistics. But the accumulation
moments are the same as for tasks - each start of the task in the accounting period.

TOTCP - number of seizures of the performer, i.e. the number of times within the accounting period, when
the performer participated in a task start.

TQ'ITW_·~_.T..otaltaSkwaiting time for performers to become available This accumulates from the end of the
warm-up period until the end of the accounting period, i.e.

T~P
TOTIW= LTWj

i-]

MAXTW -Maximum ofTW.

T~A

LTWj

AVGTW = i=l This formula is valid with TOTC? > o.
TOTCP

MINTW - Minimum ofTW.

A performer which corresponds to a multiple element in the ORG diagram, actually represents a group of
non-distinguishable performer instances which may be allocated to one or more tasks. When a performer
instance is allocated to a task, its status is changed from "Idle" to "Busy". The number of available

'performerinstancesis specified in-the ORG-Diagram. 'For asingle performer thereis onlyoneinstance. --

T8 - Time moment, when the last "Busy" performer instance status is set to "Idle", i.e. all instances of this
performer element become free.

T9 - Time moment, when the first "Idle" performer instance status is set to "Busy".

DIO - the length of the unavailability period for the given performer between T8 and T9. If the performer is
available from T8 to T9, then zero.

TPI - Current idle time of performer. TPI = T9 - T8 - DIO (i.e., the period when none of instances is busy,
but the performer is available).

NPI - Number of intervals of performers inactivity.

TOTITP - This accumulates from the end of the WaInI-Up period-until the end of the session.

93

GRADE ISM LANGUAGE REFERENCE MANUAL

NPI

ToTITP =I TPII
i=1

MAXITP - Maximum ofTPL

NPI

ITPlj

AVGITP = 1=1 This formula is valid with NPI > o.
NPI

MINITP - Minimum of TPI.

T3 - Time moment, when a task instance starts.

T4 - Time moment, when a task instance ends

TT .r Processing time for a task to which the current performer is allocated, IT = T4 - T3 (the same as PT)

NT A •.Number of intervals of performers usage.

'LQTl1S-Jotal performer usage time. This accumulates from the end oftbe warm-up period until the end
oftbe session. The given IT is accumulated for any performer which is actually used for the given task
instance.

NTA
ToTUS = ITT,

-- --- - --'''1- -- --

MAXUS - Maximum ofTT.

NTA
ITTj

AVGUS = _10:1__

NTA
This formula is valid with NT A > O.

MINUS - Minimum of IT.

--------- ToTUS--
UTI P = TAV*AV NP *1
This formula is valid for performers whose number of available instances is specified in the ORG
diagram(including single performers), otherwise UTILP has NULL value.

UTILPP is similar but takes into account also FOR percenta2es. i.e., each TT is multiplied by the
corresponding FOR-percentage during the gathering ofUTILPP.

12.5 Statistics on events

All automatic statistics on events in GRAPES-BM is related to input queues. There are statistics on

-- length of queues

-revent location-time-in queues - -

- intervals between event arrivals.

94

CHAPTER 12 SIMULATION STATISTICS

No special statistics are available on event sending, since for each task sending an event there is a task
receiving this event.

There is a table row in the statistical reports for each existing event queue in the expanded model tree (sec.
II.) and) 1.2), i.e. the table row is uniquely determined by

- TeD name

- task name

- qualified task name (like as far task statistics)

- event name

The qualified task name is necessary in case of several occurrences.

The modes for event statistics have different meaning - event arrival in the queue plays the role of task
start, and event departure - that of the task end.

TABle-Caption -, ~'¥.'.~ Cohiiiiiis~-~- --~"-~7;;~ ~ -,-~:•.•'"~ -~~,....--------..,....__...---=-~_ ~~~4:';"'""'~'~''':'';'''-7·!o:c' -...:;::~9~_ ~
. cc - - - - -"p- ",-~ . = ._- "•••••. -"'=-- " -~ ---

Lengths of queues of Task name
events TCDname

Eventname

Maximum queue length
- -

Average queue length
- - -. - -- --.--~- - - -- - ---- -_. - - .. --- ------

Minimum queue length

Events location time in
the queue

Task name

TCDname

Event name

Total events arrived

Total events left

Maximum event location time in the queue

- - -~- Average eventslocation.time.in.the.queue

Minimum events location time in the queue

Time intervals between.
event arrivals in queue

Task name

TCDname

Event name

Events count

Maximum of time intervals between events

Average oftime intervals between events

Minimum of time intervals between events

". •...-..:

.: Variable :
W' •...••

--

MAXQL 1
-

AVGQL 1

MINQL i

TEA 2

TEL 3

MAXELT 1
AYGELT- .1-

MINELT 1

EC
MAXINT
AVGINT
MININT

2

2

2

2

95

GRADE 8M LANGUAGE REFERENCE MANUAL

NEIQ - The current number of events in the queue. It is set to its actual value at TWARMUP.

TSLQE - The time since last queue activity. It is the time expired since the last event arrival or departure
in/from queue (or since TWARMUP for the first queue activity).

CETIQ - Cumulative Event-time in queue. It is calculated after event arrival or departure as NEIQ
multiplied by value of TSLQE and the result is added to the current value of CETIQ.

At session end the last NJ;:IQ multiplied by the last time interval is added.

AVGQL - Average queue length. It is calculated by dividing CETIQ by the current value of
(TNOW-TWARMUP).

M1NQL - Minimum queue length. The minimal value of NEIQ since the end of warm-up period.

MAXQL - Maximum queue length. The maximal value ofNEIQ since the end of warm-up period.

TEA - Total number of events arrived since end of warm-up period.

TEL - Total number of events that have left the queue since end of warm-up period.

EAT - Event arrival time in queue.

EQT - Event departure time in queue.

ELT - Event Location time in queue. ELT = EDT - EAT.

AYGEL'L,,-Avernge event location time in the queue. It is calculated by dividing CETIQ by the current
value of TEA. This formula is valid with TEA > O. The computed average value completely corresponds to
the expected average event location in queue, when there are few events in the queue at TW ARMUP
moment and few at session end. The value is reasonable also in cases where there are many events
remaining in queue at session end. But the value of AVGELT may be higher than the intuitive value when
-a significant amount of events are in queue at TWARMUP~ (There is no ideal formula for all cases). ~

MlNELT - Minimum events locatiori time in the queue. The minimal value ofELT since the end of warm-
up period.

MAXEL T - Maximum event location time in the queue. The maximal value of EL T since the end of
warm-up period.

LET - Last event time;

CET - Current event time;

INT = CET - LET; (for the first event after TWARMUP INT = CET - TWARMUP)

MAXINT - Maximal ofINT;

EC-1

IINT;
AVGlNT = i=1 • This formula is valid with EC > 1.

EC-1 '
MININT - Minimal of INT.

EC - total events arrived in the accounting period

12.6 Use of transactions for user defined statistics

Currently these statistics are predefmed. Only the statistics items corresponding to the predefmed formulas
may be obtained. For example, there is no way to obtain an empirical distribution of some task attribute
value, or the graph of some variable over time. The only way to defme some non-standard processing is via

96

CHAPTER 12 SIMULATION STATISTICS

transaction attributes (see 7.4). Their formulas may reference via vertical operations the selected attributes
of elementary tasks in an arbitrary way. Certainly, all other values must be transformed to task attributes
beforehand.

But the only way to use the obtained transaction attributes again is to apply default task attribute statistics
to them (total, max, min, avg, see 12.3).

97

[;RADE BM LANGUAGE REFERENCE MANUAL

13 INDEX

A
Access paths· 44

in TCD diagrams· 51
Access Table· 44
ALL operator· 32
Alternatives (for Tasks) • 39
AT • See Access Table
ATR • See Attribute table
Attribute table· 18
Automatic generation

of TCD from TSDs • 61
ofTSDs from TCD • 59

Auxiliary Diagrams· 8
Availability

of ORG element- 13

Btvttl1agiarn • 8

c
Category

of event • 2U
CMP·17
Comment Symbol

in TCD diagrams· 52
Competence

of ORG element· 14. See also Competence Table
Competence table· 17
Complex events> 23, 52
Complex tasks • 25
Compound Performers· See PERFORM Expression, Semantics of
Consistency- 62
Consistency checker· 62
Control flow events- 34
Cost- ~--- - ,- '- -- - ------ -

as an attribute of a Task· 38
as an attribute of a Task in Simulation· 90
of ORG element - 14

Data expressions - 75
Data objects- 44, 50
Data stores· 44, 50
Decision semantics· 40
Decision symbols- 40, 50
Decision tasks • 25
Default

value of the attribute> 19
Deleting unused events - See-UnusedEvents
Display Mode

98

CHAPTER 12 SIMULATION STATISTICS

ofORG Diagram· 14
Duration constants (data expression) • 75
Duration of Tasks • See Task Duration
Dynamic Performer Selection- See PERFORMER expression

E
Efficiency level

ofORG element· 13
Elemental)' tasks • ~5
Employee name

as attribute of ORG element- 14
END option for transaction control· 68
ET· See Event Table
Event attributes· 20
Event Consumption· 3 1
Event longevity> 24
Event Routing> 57, 80, 83. See also Task Communication Diagrams, links between levels

diagnostics· 80
Event semantics· 24
Event statistics from Simulation· 94
Event symbol in TCD diagrams· 50
Event Table· 20
EyenHY]lCSc. 2l

-EXCLUSIVE option in decisions· 41
External task symbol· 48
External tasks • 43

,....-.

Float constants- 75
Formulas> See also Data Expressions

in decisions· 40
in User defmed attributes· 19

Hierarchy- See Model tree

-Identifiers· See Naming.conventions-
Inheritance

of Attributes by ORG elements- 16
Input events

spontaneous generation· 43
Integer constants> 75
Is_triggered_by function for decisions· 40

Layouts
ofTCD diagram· 53

Limiting the number of Task Instances- 39
List constant- 76

99

GRADE 811 LANGUAGE REFERENCE MANUAL

MAX INSTANCES· 39
Merging condition· 65
Model development> 59
Model Structure> See Model tree
Model tree· 8

N
Named constant- 74
Naming conventions· 8
NOST ART option for transaction control· 66, 68
Notational Conventions • 7
NOTID option for transaction control· 69
Number of instances

of ORG element- 13

Occurence tag of task in TCD· 47
Operations with Data- 76
Order of Diagram creation· 59
ORG diagram· 1J
~ SIructUreOf· .15, 16
ORG elements

Attributes of'- 12
Organizational structure· See ORG diagram
Organizational unit- II

- Outputeventsof taskF 41-- - - - ~- -

PERFORMER expression· 35. 47
Semantics of> 37
statistics on performers in Simulation· 91

Performer Selection· See PERFORMER expression
Syntax of· 35

Persistence of Events- 21
Position· II
Primary tasks· 46
Priority> See Task Priority

'Priority 'of Tasks • See Task Priority .
Probablistic Decisions· 41

Referenced external task • 49
Referenced task - 25, 27, 46.48
Referenced timer symbol· 27, 49
REPEAT option in output Events in TSD Diagrams· 42
Repetition Function for Timer Events- 23
Resource· 12

Seizure ofPerfonner· 37
SET option in output statements in TSD Diagrams- 41

100

CHAPTER 12 SIMULATION STATISTICS

Show box· 52. See also Animation
Simulation

accounting period· 85
background preparation for· 79
Semantics of· 79
warm-up period> 85

Simulation Parameters· 74
Simulation Statistics· 84
SP Table· See Simulation Parameters
Spontaneous generation of events in TSD • 43
START option for transactions· 67
Stan time function for Events- 23
Statistics· See Simulation Statistics
String constant- 76

T
Tabular view ofTCD Diagrams • 53
Task body • 29
Task Communication Diagrams· 46

display options· 53
iinks between levels- 56
structure of· 53

Task contents- 29
j"ask-DumionoJ8, 47
Task outputs in TSD diagrams· 41
Task Priority> 37
T~1c Specification diagram> 25 _
Task"visibiluy» 10
Tasks

external- 43
interaction of primary tasks • 71
referenced> See Referenced Tasks
reuse of'- 73
simulation statistics on • 86

TCD • See Task Communication Diagrams
TID • See Transaction Identifier
Time constants- 76
Time specificationin timer definition· 22
Timer Events

defmition of· 21
semantics in simulatable models· 81
substituted by input events of Tasks • 43
syntax of'- 2Z -

Timer Symbol- 48
Transactions· 64

and User defined statistics in Simulation· 97
attributes of'- 69
controling the behavior of· 66
description of default behavior· 64

Transfer time of Events • 21, 51
Transformation tasks- 25
Triggering condition· 31,47

semantics in simulation· 8 J
Semantics of - 33
Syntax of· 31

TSD • See Task Specification Diagram

101

GRADE 8 •• LANGUAGE REFERENCE MANUAL

Unused Events- 60
Usa defined attributes for tasks' 18. 38
Usa defined attributes of Tasks

calculation of in Simulation' 91
User defined statistics • 97
Usa defined task types' See User defined tasks
Usa defined tasks' 18·

v
Visibility rules' See Task visibility

Warm-up period' 85
WHERE operator' 32

102

