Audris Kalnins
Dr. Comp. Sci.

Automation of testing, specification languages
and CASE tools

Habilitation Thesis

Collection of works

Part 2

-
%

Riga 1997

Also in this series

Punctional Programming, Glasgow 1993
Proceedings of the 1993 Glasgow Workshop on
Functional Programming, Ayr, Scotland,

5-7 July 1993

John T. O'Donnell and Kevin Hammond (Eds)

Z User Workshop, Cambridge 1994
Proceedings of the Eighth Z User Meeting,
Cambridge, 2930 June 1994

J.P. Bowen and }].A. Hall (Eds)

6th Refinement Workshop

Proceedings of the 6th Refinement Workshop,
organised by BCS-FACS, London,

5-7 January 1994

David Till (Ed.)

Incompleteness and Uncertainty in Information
Systems

Proceedings of the SOFTEKS Workshop on
Incompleteness and Uncertainty in Information
Systems, Concordia University, Montreal,
Canada, 8-9 October 1993

V.S. Alagar, S. Bergler and F.Q. Dong (Eds)

Rough Sets, Fuzzy Sets and

Knowledge Discovery

Proceedings of the International Workshop on
Rough Sets and Knowledge Discovery
(RSKD’93), Banff, Alberta, Canada,

12-15 October 1993

Wojciech P. Ziarko (Ed.)

Algebra of Communicating Processes
Proceeedings of ACP94, the First Workshop on
the Algebra of Communicating Processes,
Utrecht, The Netherlands,

16-17 May 1994

A. Ponse, C, Verhoef and

S.F.M. van Vlijmen (Eds)

Interfaces to Database Systems (ID§94)
Proceedings of the Second International
Workshop on Interfaces to Database Systems,
Lancaster University, 13-15 July 1994

Pete Sawyer (Ed.)

Persistent Object Systems

Proceedings of the Sixth International Workshop
on Persistent Object Systems,

Tarascon, Provence, France, 5-9 September 1994
Malcolm Atkinson, David Maier and

Véronique Benzaken (Eds)

Functional Programming, Glasgow 1994
Proceedings of the 1994 Glasgow Workshop on
Functional Programming, Ayr, Scotland,

12-14 September 1994

Kevin Hammond, David N. Turner and

Patrick M. Sansom (Eds)

East/West Database Workshop
Proceedings of the Second International
East/West Database Workshop,
Klagenfurt, Austria,

25-28 September 1994

J. Bder and L.A. Kalinichenko (Eds)

Asynchronous Digital Circuit Design
G. Birtwistle and A. Davis (Eds)

Neural Computation and Psychology
Proceedings of the 3rd Neural Computation and
Psychology Workshop (NCPW3),

Stirling, Scotland,

31 August - 2 September 1994

Leslie S. Smith and Peter]J.B. Hancock (Eds)

Image Processing for Broadcast and Video
Production

Proceedings of the European Workshop on
Combined Real and Synthetic Image Processing
for Broadcast and Video Production,

Hamburg, 23-24 November 1994

Yakup Paker and Sylvia Wilbur (Eds)

Recent Advances in Temporal Databases
Proceedings of the International Workshop on
Temporal Databases, Zurich, Switzerland,
17-18 September 1995

James Clifford and Alexander Tuzhilin (Eds)

Structures in Concurrency Theory
Proceedings of the International Workshop on
Structures in Concurrency Theory (STRICT),
Berlin, 11-13 May 1995

Jorg Desel (Ed.)

Active and Real-Time Database Systems
(ARTDB-95)

Proceedings of the First International Workshop
on Active and Real-Time Database Systems,
Skdvde, Sweden, 9-11 June 1995

Mikael Berndtsson and Jdrgen Hansson (Eds)

Recent Advances in Temporal Databases
Proceedings of the International Workshop
on Temporal Databases,

Zurich, Switzerland, 17-18 September 1995
James Clifford and Alexander Tuzhilin (Eds)

continued on back page...

Johann Eder and Leonid A. Kalinichenko (Eds)

Advances in Databases and
Information Systems

Proceedings of the Second International
Workshop on Advances in Databases
and Information Systems (ADBIS’95),
Moscow, 27-30 June 1995

Published in collaboration with the
British Computer Society

Springer

Towards Integrated Computer Aided
Systems and Software Engineering
Tool for Information Systems Design

*

Janis Barzdips, Ilona Etmane, Audris Kalnips, Karlis Podnieks
Institute of Mathematics and Computer Science
The University of Latvia
Riga, Latvia

Abstract

The paper starts with a brief overview of the current situation in the world
of CASE tools for information systems. Then there follows the outline
of the basic ideas and principles of integrated CASE tool GRADE. The
most outstanding characteristics of GRADE are that the tool is based
on a unified specification language GRAPES and that it supports all
information system development phases including analysis, requirements
specification, design and implementation.

1 Introduction

It is a generally accepted view that complicated software systems including
information systems can be built only using advanced CASE tools (see, e.g.
[5, 6, 13]). The aim of this paper is to describe the basic ideas of the integrated
CASE tool GRADE which is meant to support the building of complicated
information systems.

But before we start to outline the basic principles of GRADE we want to
characterize briefly the situation in the world of CASE tools for information
systems.

It is generally accepted that development of complicated systems contains
the following phases: analysis, requirements specification, design and imple-
mentation. The first important characteristic of a CASE tool is the set of
phases covered by the tool. A typical situation is that most of well known
CASE tools (Teamwork from Cadre Technologies, Oracle Case from Oracle
Corp., NEW from Software AG, System Architect from Popkin Software etc.)
cover only some of the development phases, most frequently, analysis only, or
design only, or implementation only. In the contrast, GRADE is oriented to-
wards more or less effective covering of all these phases and towards a seamless
transition from one phase to the next one (like IEF from Texas Instruments
and ADW from KnowledgeWare).

The second significant characteristic of a CASE tool is what aspects of
a system can be modeled by the tool. By modeling a system aspect we
understand more or less precise and formal description of this aspect. One

*This work was supported by Software House Riga and Infologistik GmbH, Munich

4

of the most popular approaches is to reduce the system modeling to its data
modeling.

By data modeling one understands usually the building of the so-called
conceptual data model in the form of entity-relationship diagram. In this case
the software design and implementation is completely based on this data model.
This approach is appropriate (and even has advantages) for small and medium
size systems. This is due to the fact that the data model alone covers nearly
all design needs for systems of this range and data modeling is a well-examined
area, in addition.

However, things are completely different in the area of large systems. It is
even impossible to understand a large system thoroughly without full-fledged
modeling of all system aspects including general statical structure of the system,
interfaces between components, data flows, control flows etc.

From this point of view, GRADE is a system which supports comprehensive
modeling of very wide set of system aspects. More precisely, GRADE has
facilities to model:

¢ the organization structure of a system,

o the so-called business processes performed by the system,
o the interfaces between system components,

o functions performed by separate components.

Data modeling (including ER models) is also supported by GRADE, but
typically it should be used later, in the design stage. The basic paradigm of
GRADE approach is that modeling starts not with data modeling, but with
interface modeling, that is, with precise description of what information enters
the system from outside and what information flows between separate compo-
nents of the system. Data model appears in GRADE only afterwards, as the
result of data flow modeling.

Further, CASE tools are also classified according to use of advanced spec-
ification languages with a fixed syntax and semantics or facilities for simple
capturing of information in the form of tables as well as informal or semifor-
mal diagrams. GRADE is completely based on a unified specification language
GRAPES. The GRAPES language is founded on a graphical Siemens specifica-
tion language GRAPES-86 [11]. In the framework of the GRADE project this
language has got significant development and is extended by:

¢ 4GL level implementation facilities (GRAPES/4GL),
¢ special business modeling facilities (GRAPES/BM).

GRAPES-86 contains advanced facilities for describing system structure and
interfaces of its components (communication diagrams, interface tables). Ac-
cording to GRAPES approach any modeled system is split into subsystems
which communicate only via messages. Therefore it can be regarded that
GRAPES execution semantics relies on the so called parallel communicating
finite state machines model. GRAPES facilitates also a precise description of
the logical structure of messages (data types being defined in data diagrams).

One more characteristic of CASE tools is how early in the system develop-
ment process we get an executable model which can be demonstrated to the

5

customer, i.e., to what degree the prototyping is supported. A special feature
of GRADE is that it supports executable prototypes in very early development
stages and, again it is due to the fact that system models are being built in
GRAPES which is an executable language. Another aspect of GRAPES is that
its modeling features can easily evolve into programming ones, thus supporting
seemless transition from system model to its target implementation.

Yet another aspect of a CASE tool is the gap between design and imple-
mentation. The world of tools is currently dominated by the approach where
software design and implementation stages are separated. The design stage
concludes (in the best case) only with a software specification, which is trans-
ferred further to manual implementation in the target environment (supported
at best by environment-specific lower CASE tools). This approach has two

serious drawbacks:

o the software implementation is only loosely linked to its specification,
therefore series of software modifications, never reflected in its specifica-

tion, occur during the maintenance,

» surplus costs are required for transforming the specifications into lan-
guages used by lower CASE tools.

In principle it is impossible to avoid completely the gap between modeling,
design and implementation. However, this gap can be significantly reduced
if the CASE tool is based on a unified specification language, as it is in the
case of GRADE. In this case a system specification is refined further with each
phase of the development process until finally it evolves into a formal system
description, which can be compiled to the appropriate target environment. As it
is well known, this is the approach used in telecommunication system area where
SDL language is used as both specification and implementation language (see
[12, 15]). GRADE with its GRAPES specification language is some attempt to
use the same approach in the area of information systems, though the situation
is much more complicated in this area. Yet another aspect where one benefits
from the consistent use of one language is that the system specification may
serve as a complete and correct documentation for the system implementation.

2 Basic components of GRADE toolset

GRADE toolset contains a vast number of different components which are
closely coupled together. These components can be grouped into three large
groups:

o Registrator,
o Business modeling components,
¢ Design and implementation components.

The Registrator component (designed by U.Sukovskis) is meant for ini-
tial capturing of information during system analysis phase. Registrator sup-
ports quick and easy information entry during interviews. All system objects
are classified into active objects (performers), passive objects (messages and

6

stored data) and activities (functions), with simple predefined relations be-
tween them. The raw data afterwards can be automatically transformed into
initial GRAPES models.

In a certain sense the Registrator ensures the functions of Repository in
GRADE. In this paper we will not concentrate on the Registrator, but the
main attention will be devoted to Business modeling and Design and imple-
mentation components, in the development of which the authors of this paper
have participated essentially.

Business modeling and Design components will be described in next sec-
tions. " ‘

3 Business modeling components
Business mbdeling components are aimed at two goals:
¢ to define the organisation structure of an enterprise,
¢ to define business functions to be performed.

The GRAPES sublanguage used in this component is called GRAPES-BM.
It is supported by modeling and simulation in GRADE toolset.

The organisation structure is defined using the following predefined en-
tity~ classes:

e organisation unit,
e position,
e resource (equipment).

Each of the entities may be either single or multiple (representing a group of
similar entity instances). A number of predefined relationships are introduced:

e consists of,
e has instance, -
® uses.

Natural attribute sets for all entity classes are also predefined.

The organisation structure facilities cover the possibilities of OMT [14] to a
certain degree, since the predefined classes and relationships encompass a large
part of a general enterprise model to be described in OMT (though arbitrary
classes and relationships are sometimes necessary).

The graphic editors in GRADE support an easy entry and modification of
the organisation structure, an easy-readable tree-like information (ORG dia-
gram) representation is used.

The business functions (called business processes) are defined using
a special graphical sublanguage. To a certain degree this language is bor-
rowed from [1], though it is significantly extended in the framework of GRADE
project. The basic element of this language is the so called Task Communica-
tion Diagram (TCD). This diagram describes how a business process is split

7

into separate tasks, the intended sequence of these tasks as well as information
and causuality links between these tasks. The links are represented via events.

Each task in TCD is associated with its triggering condition. The triggering
condition is a boolean expression on possible incoming events of the task. An
incoming event may be the reception from either of control from another task,
or of a| messagercarrying some data to be processed by the task. An incoming
event may also be a timer, e.g., “at 8.00 AM daily”. Event properties themselves
are described in a special Event Table (ET). As soon as triggering condition is
true, a \new instance of the task is started.

The details of a task are described by the following sections of task descrip-

tion:
e Type of the task,
e Performer,
o Resource,
o Informal description,
e Objectives,
e Constraints,
e Execution mode,

e Attributes.

Types section specifies the type of the task; it is provided that tasks may
have types posessing different sets of attributes. ’

The Performer and Resource section specify the necessary performers and
resources (and their quantity) for the task to be executed. They both are
boolean expressions on objects from the appropriate ORG diagram.

The Attributes section specifies the values of task attributes. These at-
tributes may be either predefined, like Duration and Cost, or user defined. The
attribute values may be defined as constants or expressions on other attributes,
or data from incoming events, thus vital data dependencies also may be defined.

The other sections are more or less informal.

When a task instance execution terminates, the specified output events
(messages) are generated. If necessary, the data cortents of these messages
may also be specified. Tasks may have also decisions, in order to define which
output events are to be generated, according to the action results of the task.
Decisions may be either informal (probability based), or formal, described by
boolean expressions on task data.

Tasks in a TCD diagram should represent not only activities to be performed
by information system under construction, but also all manually performed
tasks. Namely this feature is characterized by Execution mode section.

As it is common is such systems, TCD diagrams support also multilevel task
structuring. Top level tasks define the main business functions of an enterprise, -
and they are gradually refined into smaller tasks via subsequent TCD diagrams,
until we reach the elementary task level. In the current version of GRAPES-
BM the complete specification of an elementary task is informal (via sections

8

Informal description, Objectives, Constraints, Execution mode). In future ver-
sions of GRADE it is planned to introduce also formal specifications of such
tasks in rule-based form. This approach, though in a slightly more theoretical
manner, is outlined in [2]. Currently the formal task description elements (trig-
gering, performers, attributes, decisions) yield an abstraction level sufficient for
evaluating (via simulation) the overall system performance on time/cost basis
and the necessary resources.

Historically the GRAPES-BM language has been inspired by Message Se-
quence Charts used in SDL [4] to describe behavior scenarios. GRAPES-BM
sxgmﬁcant]y advances this idea branching structured scenarios. GRAPES-BM
bears also some similarity to event-process-chain model [3]. On the other hand,
GRAPES-BM facilities cover the traditional data flow modeling and dynamic
modeling present in OMT approach [14].

The tool support for business modeling is both modeling and simulation ori-
ented. The first direction is supported by very user-friendly editors for ORG,
TCD and the other auxiliary diagrams/tables, with repository based automatic
prompting and automated information transfer from diagram to diagram. Vari-
ous automatic layout styles for TCD are supported. Thus very fast information
entry and high degree of information integrity (with no model data ever entered
twice) is ensured. Explicit global model consistency check is also supported.

The dynamic simulation feature supports a wide range of numerical esti-
mates on the same model built for modeling purposes. Default statistical re-
sults include various time and cost.related performance statistics for the whole
model and its elements, including workloads for performers, queue length for
tasks etc. User defined statistics is based on user defined task attributes. Re-
sults may be displayed in both tabular and business chart manner. Thus a lot
of model performance tuning may be done at a business modeling stage. A sort
of TCD diagram animation is also supported to make model behaviour easily
observable.

A certain amount of information from business mode] can be transformed
into initial design model. A more complete information transfer will be sup-
ported in the next version of GRADE.

4 Design components

These have been historically the first components which were present already
in the first version of GRADE. The components are based on the language
GRAPES/4GL which can be used, on the one hand, as a design specification
language and, on the other hand, as an implementation language having all
typical 4GL level features.

As it was described above, business model describes a system in terms of
business tasks, where one business process is performed, as a rule, by several
performers. Now, when we pass to design phase, the main interest is what
activities are to be performed by one performer. Especially the interest is
focused on performers which are components of the information system under
development. The behavior of such a performer may be obtained as a sum of
all tasks where the performer participates.

According to GRADE methodology, the design phase starts with structural
design. During the structural design the main GRAPES language feature to

9

be used is Communication Diagram (CD). GRAPES CD diagrams bear some
similarity to block diagrams in SDL [4] and, in fact, are inherited from there.
CD diagrams, in contrast to TCD diagrams used in GRAPES-BM, represent
the splitting of a system into separate objects (which actually correspond to
perfomrl:ars in BM representation) and communications between these objects
by means of so-called communication paths. Each communication path is as-
sociated with its Interface Table (IT) which describes the data structure of
messages sent along this path.

Thus by means of CD diagrams hierarchical decomposition of a system into
its subsystems and then into lower levels is easily described until elementary
objects are reached. To facilitate the description of message passing between
several hierarchy levels, the so-called "channel concept” (which allows one to
define the actual message sender/receiver freely and thus to build several IT’s
simultaneously) is used.

For complicated systems, according to GRADE methodology, the design
is first performed at logical level. It means that only the data structure of a
message is defined, but not the means of physical transferring this message (in
most cases, the message will be transferred via screen forms). Thus the hierar-
chical decomposition, starting from top level objects of a system (departments,
management, warehouse, etc.) ends with the lowest level (elementary) objects
which are further refined by process diagrams. Thus, the next key element of
GRAPES/4GL language is Process Diagram (PD). Process diagram describes
in a graphic (and therefore, easy readable) form the behavior of a separate el-
ementary object. The main components of a process diagram at this stage are
message waiting/sending, which makes decisions upon message contents, and
elementary data processing.

In addition, access to data bases may also be described at this level. It
should be noted that in parallel with system decomposition GRADE supports
also data design, and the conceptual data model should also be designed in
the form of an extended entity-relationship model (ER diagram), the necessary
data types are defined in a graphical form in DD diagrams. Therefore logical
data manipulation aspects may also be designed at this level using advanced
4GL style data manipulation facilities referencing directly the components of
the ER model.

The tool support of design components again consists of advanced graphical
editors for all diagram types. The key feature of all these editors is high qual-
ity automatic layout of diagram elements, which may be easily combined with
manual layout for some diagram parts. The second feature, already mentioned
in BM support, is automatic prompting and consistency support. The prompt-
ing is crucial in efficient use of a PD editor where GRAPES language syntax
has more textual elements, which could be otherwise difficult to remember.

The other most important tool at this stage is prototyper which ensures
the model execution. When a logical design model (consisting of CD. IT, DD,
ER, PD diagrams) is built, it can be executed in order to make some dynamic
validation, to demonstrate it to the customer, and so on.

The logical design phase (which may be skipped for smaller systems) is
followed by physical design phase. The same above mentioned set of diagrams is
used in this phase. In addition to this, new types of diagrams - screen and report
forms are also used to define the real user interfaces of the system. Starting
from version 2.1, standard Windows GUI forms may be defined, containing all

10

traditional elements and facilities. In accordance with form design additional
types of statements - 4GL style screen Input/Output statements are also used
in PD diagrams, in order to manipulate these forms.

Now the prototyper may be used also to prototype the user interfaces of
the system, in order to evaluate (by customer) real input/output forms, their
outlook, ergonomics and so on, It should be noted that in principle screen
interfaces may be designed very early in the design process, even when there are
no real data. Thus various types of prototyping may be freely mixed up, since
the same, language and tool is used for all of them. Thus the methodology can
be a,dapted to any specific user demands, and, if it is required so, the design and
prototyping may be started from user mterfaces and even the form dynamics
may be prototyped in that case (with fixed data, as a rule).

When the system design model is validated thoroughly via prototyping, its
implementation starts. Again the same GRAPES/4GL language is used, but
now in its full scale as a programming language. Namely, all advanced ER-
based data manipulation facilities are used. All input/output dynamics details
are described in the same way, in order to define all exceptional situations, data
validations and so on. The prototyper again is used, but in a role of language
debugger, with advanced debugging facilities. Then the validated implementa-
tion model is passed to code generator which generates actual code for one of
the selected target environments. Currently, in version 2.0, Informix database
environment is supported either for MS DOS, or UNIX. In the next version
2.1 the Oracle environment will be supported, with the generated application
running as client in MS Windows. For all environments, the GRADE code
generator generates C code with embedded SQL statements, which is automat-
ically compiled into ready-to-use applications. No code maintenance at C level
is necessary. Sufficient efficiency of the generated code is guaranteed, some
manual optimization hints may be added to ER model definition before the
code generation.

5 Current state of GRADE tool

Since 1993 version 1.0 of GRADE is being distributed by Siemens-Nixdorf [7, 8]
This version does not support Business modeling. Since February 1995 version
2.0 is being distributed [9, 10], this version supports Business modeling and
multiuser development mode. Version 2.1 is in preparation (planned delivery
December 1995). This version will contain Graphical User Interface (GUI)
screen forms, advanced Business modeling facilities and extended data dic-
tionary facilities. The tool performance will also be significantly improved,
especially for multiuser network environment.

Acknowledgements

The GRADE toolset is the result of intensive labour of about 30 developers’
team during several years. The authors of this paper wish to use the opportu-
nity to thank all their collegues for mutual understanding and assistance during
the project development. They also wish to gratefully acknowledge Software
House Riga and Infologistik for the financial support of the project.

1

References

[1] A. Aue and M. Breu. Distributed information systems: an advanced
methodology. IEEE Transactions on software engineering, 20(8):594-605,
1994,

[2] J. Barzdigs, G. Barzdins, and A. Kalnips. Rule-based approach to business
modeling. In Proceedings of the SEKXE95, 1995.

[3] W. Brenner and G. Keller, editors. Bussiness Reengineering mit Standard-
software. Campus Verlag, 1995.

[4] CCIT. Message Sequence Charts., 1992. Recommendation Z.120.

[5] M. Chen and J.R. Normannn. A framework for integrated CASE. IEEE
Software, 9(2):18-22, 1992,

[6] A. Fugetta. A classification of CASE technology. IEEE Computer,
26(12):25-38, 1993.

[7] GRADE Version 1.0 Language Description, 1993.

[8] GRADE Version 1.0 User’s Guide, 1993.

[9] GRADE Version 2.0 Language Description, 1995.

[10] GRADE Version 2.0 User’s Guide, 1995.

[11] G. Held, editor. Sprachbeschreibung GRAPES: Syntaz, Semantik und
Grammatik von GRAPES-86. Verlag Siemens AG, 1990.

[12] V. Klick, J. Patti, and M. Todd. Experience in the use of SDL/GR in
the software development process. In SDL91: Proceedings of the 5-th SDL
forum, pages 449-457. North-Holland, 1991.

[13] P. Loucopoulos and B. Theodoulidis. CASE methods and support tools.
In P. Loucopoulos and R. Zicari, editors, Conceptual modeling, databases
and CASE: An integrated view of information systems development, pages
373-388. John Willey & Sons, New York.

[14] J. Rumbough et al. Object oriented modeling and design. Prentice Hall,
1991.
[15] A. Zaim and F. Calikoglu. Using SDL in a commercially available wide

area coverage trunking mobile radio system development. In $DL93: Pro-
ceedings of the 6-th SDL forum, pages 41-49. North-Holland, 1993.

: Second International Baltic Workshop on
\\"'?'-
- Databases and Information Systems

e
b

organised by

Institute of Cybernetics
Tallinn Technical University
CIDEC of the Estonian Universities

sponsored by

Estonian Informatics Fund

Baltic Fund of VLDB Endowment

Swedish Institute for Systems Development
The Baltic Institute of Finland

Hele-Mai Haav, Bernhard Thalheim (Eds.)

Databases
and
Information Systems

Proceedings of the
Second International Baltic Workshop
Tallinn, June 12-14, 1996

Volume 2: Technology Track

Business Modeling Language GRAPES-
BM and Related CASE Tools

i

A.Kalnins, J.Barzdins, A.Auzins,
L.Etmane, A.Kalis, K.Podnieks, J.Tenteris, E.Vilums, A.Zarins

University of Latvia
Institute of Mathematics and Computer Science
Rainis Blvd. 29, Riga LV-1459, Latvia
and RITI, Skanstes Str. 13, Riga LV-1013, Latvia

Abstract
Business modeling language GRAPES-BM is a semiformal graphic language for modeling
and simulation of complicated business systems (production processes, offices, information
systems). GRAPES-BM relies on such basic concepts as task, event, performer, triggering
condition, etc. and contains advanced facilities for describing system behaviour (“business
process™). GRAPES-BM contains also advanced facilities for modeling the static structure
of a system. CASE tools based on GRAPES-BM support graphic modeling and simulation.

1 Introduction

The term Business Modeling (BM) has become a buzzword during last few years. There is
no unique definition of BM. Different people understand different things under this term.
There is, however, something common to all these approaches. BM is closely related to
another buzzword, namely, Business Process Reengineering (BPR), and constitutes the
most well understood part of it. Any BM approach tries to present semiformal graphical
means for describing behaviour and structure of complex business systems. This descrip-
tion is in the form of interrelated diagrams of various kinds. The main use of such descrip-
tion is to comprehend thoroughly and unambiguously such business systems.

In order to understand the behaviour of a system, it is necessary to understand activi-
ties within this system, causal links between these activities, their stimulus and results. In
most cases the behaviour is being described by diagrams consisting of symbols (rectangles,
bubbles etc.) representing activities, various connecting lines representing the links and,’
possibly, some auxiliary symbols.

The first such formalism was Data Flow Diagrams [1], which were introduced for other
purposes and only sometimes are used for BM. A number of similar more or less specific
formalisms followed; among them function dependency diagrams [2], event schemas [3],
EPC diagrams [4. 5], Business process diagrams [6] etc. At the given moment none of the
formalisms is universally accepted.

GRAPES-BM, described in this paper, is also a semiformal approach for describing be-
haviour and structure, using similar graphic notation as it basis. The main difference from
all abovementioned languages is the level of formality. While in most of the existing ap-
proaches [2, 3, 4] the formality level is rather low, in GRAPES-BM it may be varying,

from very informal use up to a very formal, nearly program-like description of a business
system.

The other important criterion is the possible tool support in the analysis of the de-
scribed business system. Again the more formalized is the approach, the richer set of tools
is available. In most cases, e.g., [5], the tool support reduces to simple consistency
checking, reporting and some static evaluation, most frequently, finding the critical path in
a weighted flow graph. The other tools offer dynamic prototyping and simulation as the
main analysis method. Among the known BM systems Designer 2000 [6] should be men-

‘tioned.

GRAPES-BM with its support tool GRADE is mainly dynamic execution oriented.
‘Even very informal GRAPES-BM models may be executed in a sense thus giving much
deeper insight into system behaviour and its possible bottlenecks. On the other hand, for
highly formalized models precise simulation of quantitative aspects is possible in a way

" close to specific simulation languages.

Now some words on history of GRAPES-BM. Development of GRAPES-BM started
with A.Aue and M.Breu paper [7). Afterwards M.Breu, A Mraz, NRichter, at al
(European methodology and System Centre) have issued several preprints where the con-
cept was developed further. On the basis of these works G.Barzdins, J.Barzdins and
AXKalnins created GRAPES-BM, version 2.0, which was implemented in the tool
GRADE 2.0 [8, 9]. Usage of GRADE 2.0 revealed further development possibilities. As a
result, a substantially new version of the language, called GRAPES-BM, version 3.0, was
created. GRAPES-BM described in this paper corresponds to version 3.0. In the devel-
opment of this language version and corresponding tool set (GRADE 3.0), besides the
authors of this paper, the following people have made significant contribution (in alpha-
betic sequence);

D. Foerster (SNI - Germany), E. Knoener (SNI - Germany), C. Rositani (SNI - Italy),
U. Sukovskis (RITI), A. Teilans (RITI), M. Weiss (SNI - Germany), U.O. Ziemelis
(INFOLOGISTIK).

2 Goals of Business modeling in GRAPES-BM

First, let us be more specific towards what kind of universe of discourse GRAPES-BM is
oriented. Classical system specification languages e.g. SADT, IEF[11] are mostly aimed
to semiformal description of Information systems (IS) in their early development
stages. On the contrary, BM approach is intended to describe a significantly wider class
of systems. Typical examples are large organizations, complete enterprises, production
systems. Only part of such systems is IT related, the other part is completely human re-
lated, like it is, e.g., in airline ticket reservation system. We follow the latest traditions and
call such systems Business Systems (BS). Then IS can be considered as a part of such
BS. The main task of GRAPES-BM is to support convenient description of BS.
The requirements for the language are extremely contradictory:
e on the one hand, the language should be easy-to-read for anybody, including top
managers
o on the other hand, it must be formal enough to support unambiguous interpreting by
IT professionals and to permit dynamic execution and simulation for obtaining nu-
meric evaluations.

GRAPES-BM seems to have succeeded in combining these two requirements. The
formal and informal aspects of language are so naturally coupled, that even a very formal
description may be understood quite intuitively (certainly, after some language training).
The formal goals of developing Business models in GRAPES-BM are to facilitate
Business process reengineering by
o providing precise and readable at the same time business system description, as the
basis for main reenginering decision making

o investigating alternative ways of behavior of the BS, using various prototyping and
animatitn facilities

¢ simulation of the model to reveal possible bottlenecks and measures to avoid them.

It should be stressed that extension of a GRAPES-BM model to a simulatable one re-
quires only adding some numeric attributes in the model already built.

If BS includes also an IS which should be reengineered, than relevant parts of the de-
veloped BM serve as a formal high level requirements specification for the new IS devel-
opment. GRAPES-BM is well suited for this purpose. Certainly, GRAPES-BM should
not be considered as a design language for IS, another GRAPES family language
GRAPES/4GL [8] should be used there instead (see also [10]).

3 Main concepts of GRAPES-BM

Business modeling in GRAPES is based on two fundamental concepts: tasks and events.

3.1 Tasks

According to Websters dictionary Task is defined as “a piece of work”. Any activity
which is performed in a business system to be described is considered to be a task. Tasks
may be very large - defining one basic activity of an enterprise and very small - like signing
of a document. Large tasks are decomposed into chains of smaller ones using Task
Communication Diagrams (TCD). These diagrams are the basic ones in GRAPES-BM.
Each task has its name. But it may have other formal attributes like
e performer of a task
e triggering condition
e duration.

Graphically (in TCD diagrams) tasks are represented by rounded rectangles. This rec-
tangle shows the task name and its basic attributes, e.g., performer.

There are two types of tasks (examples are shown in Fig. 1):
¢ ordinary (transformation) tasks
o decision (branching) tasks.

Decision tasks have two or more named decision symbols attached to them. During
execution of them one of the alternative outputs are chosen.

Register Order Check_Order
Secretary Accountant
Comet) (s)

Fig. 1 Examples of tasks

It should be mentioned that concept of task is present in any business modeling ap-
proach, only the terminology is quite different. Tasks are called functions in function hier-
archy and dependency diagrams [2], process steps in ORACLE process diagrams [6], op-
erations in Martin’s OOA event schemas [3] etc.

3.2 Events

. The other fundamental concept of GRAPES-BM is event. Events represent anything that
:can happen in a business system. Events are also the other principal element of Task
Communication diagrams. They are represented by arrows leading from one task to an-
.other. : -
" There are several categories of events:
. & message events

Events with category “message” correspond to objects produced by one task and
transmitted to another. This concerns materials (e.g., paper, part of machine) and pure
information (invoice, bill, report).

Message events always have name which is depicted next to the arrow.

Message events can carry information with them. The information is represented as
datatype associated with the event. The association is described in Event Table (ET) - an
object global for the whole business model.

e control flows

They express the fact that one task is completed and the next task may start. Control
flows are represented as unnamed arrows.

e timer events ;

These are the only events not created by tasks. They appear in certain time moment
from an abstract timer which is represented as a small clock and go to the task pointed by
the arrow. Each timer event has a name. The exact definition of time moments for a timer
is given in the Event table.

Fig. 2 shows examples of events as they are depicted in TCD diagram.

One task can produce more than one event at the output. Similarly, one task can have
several input events arriving from different tasks.

(P@Em Order] [Prinl_Answer]

Check_Order Archive_Query

Fig. 2. Examples of events
3.3 Task details

The next fundamental concept of GRAPES-BM language is triggering condition. It is
associated with a task, as one of essential its properties. Triggering condition specifies
which combinations of input events are necessary to start the task. This condition is speci-
fied as a boolean formula containing ANDs and ORs on event names e.g., Order AND
Payment.

The general event semantics principle in GRAPES-BM is that incoming events form
FIFO queues in front of a task (separate queue for each event name). When triggering

condition becomes true, the task consumes the relevant set of events from its input queues
and starts execution. In the simplest case the triggering condition may be reduced to sim-
ple AND (or even “&” sign), which means ANDing all possible input events (i.e., one
from each queue). Control flows also are implicitly ANDed in this case (i.e., all of them
must be present). Similarly, simple OR (or “|” sign) means that any one of input events
(including control flows) is sufficient for triggering. If any of the required events is not
present, the task waits for its arrival.

The next important part of a task is its performer. Performer specification consists of
one or mare performer names connected by AND and OR connectors. Performers may be
organizational units, persons (positions) and equipment (resources). The available per-
formers and their number are specified in the ORG diagram of the business model. The
requested performers must be free before the task can really start, therefore the triggering
condition is\only the necessary condition for a task to start.

Duration'of the task specifies the required execution time, e.g., task Order_processing
in fig. 3 takes exactly 1 hour.

Fig. 3 shows an example of completely specified task in 2 TCD.

—_———— —

Fig. 3 Completely specified task Fig. 4. External task

Once task has started, it performs its main activity, its “piece of work”, which is not
formally specified in GRAPES-BM. When the task is completed, it possibly takes one of
its decisions and sends its output events.

More of task’s formal and informal details may be described in its Task Specification
Diagram (TSD). In particular, extended informal description of a task may be given
there,

In conclusion one more remark on tasks. In any behaviour description there are tasks
which are not part of the business system under consideration, e.g., customer preparing an
order. Such tasks are called external tasks in GRAPES-BM. They are represented using
dashed lines for task symbol. Fig. 4 shows an example of external task:

3.4 Data manipulation

Data manipulati in GRAPES-BM on is described only at informal level. There are two
special symbols for that purpose.

Data store stands for a persistent (independent from the current task) storage of data
or materials. Typical use of data store is for existing databases in the IS part of a business
system. In that case its contents can be described in detail by Entity-Relationship (ER)
diagram, which also may be a part of a business model in GRAPES-BM. On the other
hand, data store may also represent informally a stock of goods. Data stores have names
in GRAPES-BM, and they are connected to tasks by lines called Access Paths.

Data Object is supposed to represent just one object, and with a shorter life time - just
one business transaction. Data object again may represent a physical object or data object
(global variable) at IS level. In the latter case its data type may also be specified (with type
definition being given in a Data Definition (DD) diagram, which may also be a part of
business model).

Fig. 5 gives an example of data store and data object.

' Cust [Check_Order 1
/ ; | Teke’s | T ey

Fig. 5 Data store and data object

4 First Insight into Business Process

The main goal of business modeling is to describe both readably and concisely a business
\ system behaviour. As it was already pointed out, the main sort of diagrams for this pur-
‘pose is Task Communication Diagram (TCD), describing a behaviour of large task in
“sterms of
‘e smaller tasks
* events
' e data stores and data objects.

As a rule, from the informal point of view such a description represents a reasonable
business process in a system. Therefore the concept of business process is the informal
equivalent of the formal TCD concept.

Let us consider an example of a simple business system, namely, a small office provid-
ing consultations for customers. The office consists of a chief, a secretary and a PC. Fig. 6
presents a business process describing just one aspect of the office activities - processing
of incoming mail and providing written answers to queries of customers. The office re-
ceives letters (written queries), secretary registers them and afterwards the chief and sec-
retary together make the answer. The secretary uses PC to type and print the answer
which is sent to customer at the end. The actions performed by customer and Information
Source are external to the office and therefore are shown by dashed lines.

5 Precise Semantics of Business Process, Concept of Transaction

The example in the previous section could be understood and even analyzed quite intui-
tively.

However, GRAPES-BM has completely precise semantics defined. This semantics may
be used for unambiguous manual validation of business models and for their execution by
GRADE tools, i.e., simulation, prototyping, animation. It should be emphasized that fig. 6
constitutes a syntactically correct and executable TCD diagram (certainly, in the context
of some definition diagrams to be discussed in section 7).

Timers in a TCD diagram are spontaneously active elements, i.e., they send their events
to the appropriate tasks. These tasks are then triggered and afterwards they send their re-
sulting events to other tasks. Thus the whole business process gets into motion. There
may be as many concurrent instances of any task active as available performers permit it.

But there is one completely novel element added to this relatively straightfbnward se-
mantics. This is the concept of Transaction.

Intuitively a business transaction is a chain of activities initiated by some external
stimulus and ended at the moment when further events are beyond our scope of interest.
In the example of Fig. 6 the transaction starts with the arrival of a new query from the
customer. To be more formal, it starts from the moment when timer Regularly starts the
external task Send Query. The transaction is completed when Answer is sent to external
task Receive_Answer.

Fig. 6 Example of business process (TCD diagram)

The concept of transaction is fundamental in business modeling, since it helps to find
out and analyze essential groups of activities inside a business system.

The main problem here is to find a simple formal definition of transaction which would
coincide with the intuitive understanding in most cases.

In GRAPES-BM the following definition is used:

The transaction starts only when a task is started only by events coming from outside
the business systems.
Two types of events in GRAPES-BM are defined as such “outsiders™:
e timers, described already in the previous section
e spontaneous events. Any event may be made spontaneous in the TSD diagram by as-
signing generator definition to it. These generator definitions have the same syntax as
timer definitions. Spontaneous events are used to hide away a timer in TCD diagram
and to make the impression that the event comes right from an external task.
. Thus, in fig. 6, the timer Regularly starts a transaction since the task Send Query is
* triggered solely by it. But the timer 47 5 PM starts no transaction, since For-
ward to_Chief requires another (internal) event Query in order to be triggered.

The precise description of transaction behaviour is based on so called Transaction

Identifier (TID). At the beginning of each transaction the starting event is given a unique
" TID. This number will be used throughout the transaction, all events and tasks in the cor-
responding task chain will be tagged by it.

There is no explicit use of TID. However, it participates implicitly in each triggering
condition. AND condition will be true only if all incoming events have the same TID.
Thus only matching groups of events belonging to the same transaction can trigger a task.
In fig. 6 only those Investigation_results which correspond to the Query will trigger the
task Analyse_Answer.

Transaction is completed when there are no more events in the model with the given
TID. In some occasions default rules are insufficient. To cope with these situations the
following options of tasks may be used:

NOSTART for preventing an unwanted start of transaction
START for explicit start of transaction

END for explicit end

NOTID for explicit stripping off the TID from an event.

e o o o

6 Description of Organization Structure

So far the description of system behaviour in GRAPES-BM has been outlined. The other
important business system aspect is structure description.

In GRAPES-BM this is done via ORG diagram. Fig. 7 shows the ORG diagram for the
office example.

The example should be self-explanatory, since it strongly reminds traditional org-
charts,

[office_and_Environment |

(:j
|
Customer

Fig. 7 Example of ORG diagram

10

More formally, ORG diagram may contain
o organizational units (company, department, group etc.)
o positions (chief, accountant, secretary, programmer etc.)
o resources (any kind of equipment, like car, PC etc.)
Any of the elements may be single or multiple, for multiple elements the number of
available instances may be specified (otherwise unlimited number is available).
Organization structure is depicted as a tree (more precisely, as a set of trees) built from
the abovementioned nodes. The edges of the tree represent:
° contaiqs relationship between unit and its subunits, unit and its positions and resource
and its components
o owns relationship between unit and resource and between position and resource.
The same line type is used for both relationships since the proper relationship can al-
ways be deduiced from the context,
A leaf of a tree may be refined further by another tree.
Any of the organizational structure elements may have the following additional attrib-
utes:
type (internal or external)
competence list
availability (as time interval)
cost per hour
efficiency level
employee name (for single position only)
It should be remarked, that though GRAPES-BM is not an OO language, ORG dia-
gram facilities permit one to depict a great deal of information typically found in OO mod-
els (e.g., OMT [12]), for example, subtyping may be represented via competence.
All ORG diagram elements have also precise formal semantics, which is taken into ac-
count when TCD diagrams with performer specifications in tasks are being executed.

7 Business model of System

The previous sections have given some insight into two most significant diagrams of
GRAPES-BM - Business process (TCD diagram) and ORG diagram. Besides that, several
types of diagrams have been simply named: ET (event table), TSD (Task Specification
Diagram), ER and DD diagrams.

A complete Business model is a hierarchy of abovementioned (and some other) dia-
grams, The hierarchy itself is defined in 2 model tree. Fig. 8 shows the model tree for the
office example. Model tree may be considered as a table of contents for the model.

The top line contains the elements global for the whole business modet:

ORG diagram
¢ ETtable
¢ CMP table

ORG diagram has been discussed briefly in the previous section.

ET table has a row for definition of each event used in the business model. The most
cf)mplicated are the timer definitions. GRAPES-BM provides formal means for timer defi-
nitions, e.g.,

AT _5_PM could be defined as TIME(“*.** 17:00"),
Regularly as REPETITION(“1h:30m™).

11

Message events may have their data types specified (record or elementary types may be
used). Competence table (CMP)is a supplement to ORG diagram, listing possible com-
petences of ORG elements.

The main part of model tree is constituted by primary tasks (top-level TSD diagrams)
and their refinements. There is only one primary task Query_Processing in the example. In
general, primary tasks correspond to the main relatively independent functions of an en-
terprise. Each primary task normally is refined by its TCD diagram (business process)
shown to the right of the corresponding TSD diagram.

¥, The next level of refinement is defined by the set of subordinated TSD diagrams corre-
. sponding to all tasks mentioned in the TCD dlagram

(CwF] [(2]

I8 @ TASK Query Processing e[ATJo [FO]O
—fEED] @ TASK Analyse Answer oo [A]o [Fe]o
—fESD0] @ TASK Analyse Quary [feo] o [A]0 [F5] O
—{TE0] @ TASK Answer question ’ [fcojo[A]o [Fo]o

[fcol o [o [FE]o
—{EBH] @ TASK Assess Query oo A Jo [Fo] O
—{55E] @ TASK Coffes Break [Feolo A Jo [FR] O
—{F55] @ TASK Detect Information Source [calo A Jo [Pl o
S5 © TASK Forward Immediatety [feojo (AT Jo [FE] 0O
—EIE5] @ TASK Forward to Chief [feojo [A]0 [Fo] O
—fISH] @ TASK Prepare Draft Answar [feojo [AT_Jo [Fo] O
—{T8E] @ TASK Recaive Answer [fcojo Ao [Fe] O
—ESH @ TASK Register Query oo FEJo [FJo

© TASK Send Answer fecojo AT Jo [Fo] O
—{TSD] @ TASK Send Query Geojo AT]o [FE] O
—E55] @ TASK Send Question [cojo [AT]O [FPR] O
—{ESE] © TASK Send to Customer [fepjo [AT Jo [Fo] O
—{FE0] © TASK Type Answer [Feolo [AT]o [FB] O

Fig. 8 Model tree

In the simplest case a TSD diagram contains the same formal attributes of task as
those visible in the TCD plus extended informal description of the task. In addition, the
task’s interface to its environment is also visible in TSD via so called referenced tasks.
Fig. 9 shows the TSD diagram for the task 4nalyse_Query. In general case, however,
TSD diagram may contain significantly more information (briefly sketched in the next
section) which has special value for simulatable models.

The Models with one primary task and one TCD diagram refining it are called Mfat
models. However, in general case the situation is much more complicated. Each task in
the TCD diagram may be further refined by its own TCD diagram (placed in the tree in the
same line as the corresponding TSD diagram). The refinement is continued until we obtain
the lowest level tasks which are called elementary tasks. For elementary tasks their for-
mal and informal characteristics can only be specified in their TSDs. The choice of ele-
mentary tasks depends on the specific application of business modeling. The abovemen-
tioned language facilities show how traditional structural refinement is supported in
GRAPES-BM,

Urgent Reguiar
10 % EXCLUSIVE 80 % EXCLUSIVE

Quary Query

|1} Forward_to_Crief
——=mEEEEEJd |=======
Fig. 9 Example of TSD diagram

One more type of diagrams to be mentioned is attribute tables (ATR). They are
global for the whole model, and there may be several named ATR tables. Each ATR table
describes user-defined attributes for the given task type, which is equal to the ATR name.

Zero or more DD diagrams are also global for the whole model. They are placed in
model tree above TSD diagrams.

8 Advanced Features of GRAPES- BM

The items discussed so far have been more or less related to semiformal business descrip-
tion and analysis.

However, GRAPES-BM permits to describe precise behaviour of business systems
from the control point of view, including some data-related dependencies. This layer of
GRAPES-BM actually constitutes a sort of process simulation language. '

The basis of all these features is the assumption that events can carry data with them,
and the data may be “processed” by tasks, used in decisions and transferred further to
output events. '

The following features are available:
¢ advanced triggering conditions, like

- Letter AND ALL Answer WHERE Letter.ld= Answer.ld
- Letter AND <5> Comment
® detailed description of task decisions
- by their probabilities, in exclusive or nonexclusive manner
- by precise formulas which may depend on data carried by triggering input events
and on numeric attributes of the task
task duration dependent on its input data
formulas for setting values of user-defined task attributes (then the task must have
one of the types defined by ATR tables of the model). Formulas may reference data of
input events and other attributes .
¢ formulas for setting data (record fields, as a rule) in output events of the task, with
formulas referencing similar class of values. There is a special convention of data
passing , namely, if an output event has the same name as an input event, data are
passed without any formulas specified

® repetition factor for output events.

\

These described features may appear in TCD as well as in TSD diagrams. The
“computational aspects “ are taken into account only for elementary tasks.

The described features allow one to describe adequately various control structures pre-
sent in business systems, like:
¢ iterative looping depending on event data
e centralized control depending on some global data
e time-out control of incoming events

The “programming “ of such control structures is sufficiently simple. The methods

 rused remind slightly those used in “programming “ of Petri nets. Significant role here is

played also by transaction concept. In most cases the precise control aspects may be sim-

:ply added to models originally built for pure qualitative analysis.

"9 Short Overview of GRADE Modeller Tools

The full support of GRAPES-BM language is included in the new version 3.0 of GRADE

Modeller toolset.

The following components of GRADE are available:

tree and repository management

advanced graphical editors

syntax analyzer

GRAPES-BM language interpreter (BM-simulator)

animator

trace browser

A key element in GRAPES-BM support is the graphical editor set for all types of de-

scribed diagrams. Editors make model development simple and attractive due to the fol-

lowing features:

¢ highly optimal automatic layout for all kinds of diagrams. Several styles for such layout
may be defined. Automatic layout smoothly coexists with manual layout improvements
for presentation purposes

e the relevant name and syntax construct prompting

¢ automatic transfer of the relevant information from one diagram to another. Though

GRAPES-BM language requires some information duplication between TCD and TSD

diagrams (for better readability), no data must be entered twice - the editors automati-

cally transfer the data to the required direction
* automatic updating of tables (ET, CMP) during diagram construction
¢ automatic TCD templates when refining a task by a new TCD diagram level

For logically simple (but may be, large) business models the only diagram types to be
explicitly built are ORG and TCD diagrams.

Though a lot of inter-diagram consistency requirements are ensured by editors, exten-
sive analysis is still necessary. The diagnostic messages are shown via the same editors.
For semiformal use of GRAPES-BM the syntax analyzer plays the role of diagram con-
sistency checker. The other result of analyzer is the intermediate code of diagrams used
for execution.

GRAPES-BM is built as an executable language and therefore BM-simulator plays a
significant role in business model development. It has the following features:

o step mode with variable granularity for business model dynamic debugging and step-
by-step exploration

o run mode for business model prototyping and simulation. The run mode is combined
with pause and breakpoint features
o inspect facility for observing any elements of the current status of business model
(active tasks, event queues, data contained in them, etc.)
¢ user-controlled automatic statistics gathering (for predefined statistical features of
tasks, events and performers and for statistics of user-defined task attributes)
o interface to diagram animator
Animator is used for on-line animation of selected TCD diagrams. Active tasks
(including the number of instances), the events passing along their routes and length of
event queues are shown in these diagrams. The collected statistics can be viewed both in
tabular and chart (EXCEL-like) form, using the trace browser component.
Since even quite informal BM models are executable as a rule, BM simulator serves as
a powerful tool for model validation, step mode execution combined with animation al-
lows one to find any unexpected behaviour of the model. On the other hand, normal ani-
mated run of a model is very helpful in general evaluation of the model and in finding un-
expectedly long queues and other bottlenecks in the system.
Automatic statistics gathering supports easy simulation experiments with business
models.

.10 Conclusions

-The business modeling language GRAPES-BM seems to have taken its stable place
‘among other BM languages. The first pilot applications of GRAPES-BM (design process
management in car industry, some banking applications, public utility management et al)
have shown its feasibility for description of comparatively large business systems. The
main novel feature seems to be the wide spectrum of applicability of the same models,
from general informal evaluation of the current system to numeric experiments with it.

Future development directions of GRAPES-BM are now being discussed. One of such
directions could be Rule-based approach [13]. but the problem is that the language must
be kept simple enough in order to be undérstood by users not being IT professionals.

References

[1] DeMarco, T.: Structured Analysis and System specification, Prentice-Hall, 1979.

[2] Barker, R., Longman, C.: CASE*METHOD Function and Process Modeling, Addi-
son-Wisley, 1992. ’

[3] Martin, J.,.Odell, J.: Object-Oriented Analysis&Design, Prentice-Hall, 1992.

[4] Keller, G, Niittgens, M., Scheer, A.W.:. Semantische Prozessmodellierung auf der
Basis Ereignisgesteuerter Prozessketten (EPK), in Veroffentlichungen des Instituts
Jur Wirtschafisinformatik, v. 89, Saarbrucken, 1992.

[5] Brenner, W., Keller, G. (Eds): Business Reengineering mit Standartsoftware, Campus
Verlag, Frankfurt, 1995.

[6] Designer-2000. A Guide to Process Modeling. Oracle Corp., 1995.

15

[7]1 Aue, A, Brey, M.:. Distributed Information Systems: an Advanced methodology,
IEEE TSE, 20(8), pp. 596-605, 1994 -

[8] GRADE V.2.0 (MS-Windows) GRAPES V3 (GRAPES-86+ GRAPES/4GL,
GRAPES-BM). Sprachbeschreibung, Siemens Nixdorf, 1995.

[91 GRADE V.2.0 (MS-Windows). Modellierer. Benutzerhandbuch, Siemens Nixdorf,
1995.

[10] Barzdins, J., Kalnins, A., Podnieks, K. et al.: GRADE Windows: an Integrated
_r CASE Tool for Informanon System Development, Proceedings of SEKE 94, pp 54-
.- 61,1994,

[11] Martin, J., McClure,C.: Structured Techmques A Basis for CASE, Prentice-Hall,
- 1988,

. [12] Rumbaugh, J.: Object-Oriented modeling and Design, Prentice-Hall, 1991.

[13] Barzdins, J., Barzdins, G. and Kalnins, A.:. Rules-Based Approach to Business Mod-
eling, Proceedings of SEKE'95, pp. 164-165, 1995,

16

System and Business Process
Re-engineering with GRADE
[Jinis TENTERIS and Evalds VILUMS

Riga Information Technology Institute (RITT),
13, Skanstes St., Riga, Latvia,
Internet: jtenteris@swh.lv, evilums@swh.lv

Abstract

This paper describes the main work packages (WP) performed during system and business
process re-engineering with GRAPES (graphical specification) language and GRADE
(Graphical Re-engineering Analysis and Design Environment) tool. The work packages
are discussed mainly in their sequence within system life cycle. A short overview on dia-
gram types for system modeling is included and the main features of GRADE tool are
mentioned. The main concentration is on Business Process modeling and reengineering
work package, which includes static analysis of business processes, simulation alternatives
and principles of process and organization structure rearrangement. An example shows
gradual improvement of business process model and its conversion to a person’s job de-
scription and/ or Information System specification.

1 Sequence of Work Packages
System modeling and re-engineering with GRADE includes the following -main work

packages:

Registration and hierarchical arrangement of the main objects of the existing system;

2. Graphical representation of communication diagrams with main physical parts and
functional objects of the system and communication between them;

3. Modeling of Business Processes:

a) description of existing business processes, modification of existing processes and
creation of new business processes:

I. static analysis of business processes;
II. simulation of business processes;
III. evaluation and modification of processes according simulation results;
b) modification of organization structure;
4. Development of data model, including:
a) structured description of messages;
b) contents of the databases;

¢) access rights to data;

17

mailto:jtenteriS@swh.lv,
mailto:evilumS@swh.lv

GRADE-BM : Modeling and Simulation Facilities

A Kalnins, J.Barzdins, A.Kalis

University of Latvia
Institute of Mathematics and Computer Science
Rainis Blvd. 29, Riga LV-1459, Latvia

and

- RITI
Skanstes Str. 13, Riga LV-1013, Latvia
Abstract

The paper briefly outlines the business modeling language GRAPES-BM and the CASE tool GRADE-
BM based on it. The business modeling language GRAPES-BM is a semiformal graphic language for
modeling and simulation of complicated business systems (production processes, offices, information
systems). GRAPES-BM relies on such basic concepts -as task, event, performer, triggering condition
etc. and contains advanced facilities for describing system behaviour. The main emphasis in the paper
is on simulation facilities supported by GRADE-BM.

1. Introduction

In order to understand the behaviour of a system, it is necessary to understand
activities within this system, causal links between these activities, their stimulus and
results. In most cases the behaviour is described by diagrams consisting of symbols
(rectangles, bubbles etc.) representing activities, various connecting lines representing
the links and, possibly, some auxiliary symbols.

The first such formalism was Data Flow Diagrams [1], which were introduced for
other purposes and only sometimes are used for BM. A number of similar, more or
less specific formalisms followed; among them function dependency diagrams [2],
event schemas [3], EPC diagrams [4. 5], Business process diagrams [6] etc. At the
given moment none of the formalisms are universally accepted.

GRAPES-BM, described in this paper, is also a semiformal approach for describing
behaviour and structure, using similar graphic notation as its basis. The main
differences from all the abovementioned languages are in the following

e GRAPES-BM is oriented to semiformal description of arbitrary Business
Systems, e.g. production systems, offices, enterprises, etc., not only Information
Systems

e the level of formality: in GRAPES-BM it may vary from very informal use (as in
traditional approaches [2,3,4]) up to a very formal nearly program like description
of business systems.

The other important criterion is the possible tool support in the analysis of the
described business system. Again, the more formalized is the approach, the richer set
of tools is available. In most cases, e.g. [5], the tool support reduces to simple
consistency checking, reporting and some static evaluation, most frequently, finding
the critical path in a weighted flow graph. The other tools offer dynamic prototyping

71

and simulation as the main analysis method. Among the known BM systems Designer
2000 [6] should be mentioned.

GRAPES-BM with its support tool GRADE-BM is mainly dynamic execution
oriented. Even very informal GRAPES-BM models may be executed in a sense, thus
giving much deeper insight into system behaviour and its possible bottlenecks. On the
other hand, for highly formalized models precise simulation of quantitative aspects is
possible in a way close to specific simulation languages.

Development of GRAPES-BM started with A.Aue and M.Breu paper [7]. Afterwards
M.Breu, A.Mraz, N.Richter, at al (European methodology and System Centre) have
issued several preprints where the concept was developed further. The current version
of GRAPES-BM and corresponding CASE tool GRADE-BM, described in this paper,
is the result of collective work of many people. In the development of GRAPES-BM,
besides the authors of this paper, the following people have made significant
contribution (in alphabetic sequence): I.Etmane, D. Foerster, E. Knoener |,
K.Podnieks, C. Rositani, U. Sukovskis, A. Teilans, M. Weiss, A.Zarins, U.O.
“Ziemelis.

2. Main concepts of GRAPES-BM

Business modeling in GRAPES is based on two fundamental concepts: tasks and
events.

2.1 Tasks

Any activity which is performed in a business system to be described is considered to
be a task. Tasks may be very large - defining one basic activity of an enterprise and
very small - like signing of a document. Large tasks are decomposed into chains of
smaller ones using Task Communication Diagrams (TCD). These diagrams are the
basic ones in GRAPES-BM. Each task has its name. But it may have other formal
attributes like

o performer of a task

e triggering condition

e duration.

Graphically (in TCD diagrams) tasks are represented by rounded rectangles. This
rectangle shows the task name and its basic attributes, e.g. performer.

There are two types of tasks
e ordinary (transformation) tasks
e decision (branching) tasks.

Decision tasks have two or more named decision symbols attached to them. During
execution one of the alternative outputs are chosen.
Examples of tasks are shown in Fig. 1

72

Register_Order Check_Order
secremy ACCOURGAT
et) ()

Fig. 1 Examples of tasks

[t should be mentioned that the concept of task is present in any business modeling
approach, only the terminology is quite different. Tasks are called functions in
function hierarchy and dependency diagrams [2], process steps in ORACLE process
diagrams [6], operations in Martin’s OOA event schemas [3] etc.

2.2 Events

The other fundamental concept of GRAPES-BM is event. Events represent anything
that can happen in a business system. Events are also the other principal element of
Task Communication diagrams. They are represented by arrows leading from one task
to another.

There are several categories of events:

e message events

Events with the category “message” correspond to objects produced by one task and
transmitted to another. This concerns materials (e.g. paper, part of machine) and pure
information (invoice, bill, report).

Message events always have name which is depicted next to the arrow.

Message events can carry information with them. The information is represented as a
datatype associated with the event. The association is described in Event Table (ET)
- an object global for the whole business model.

e control flows

They express the fact that one task is completed and the next task may start. Control
flows are represented as unnamed arrows.

e timer events

These are the only events not created by tasks. They appear in certain time moments
from an abstract timer which is represented as a small clock. Tasks can only receive
timer events, in addition to message events from other tasks. Each timer event has a
name. The exact definition of time moments for a timer is given in the Event table.
Fig. 2 shows examples of events as they are depicted in TCD diagram.

Order every_morning

One task can produce more than one event at the output. Similarly, one task can have
several input events arriving from different tasks.

Fig. 2. Examples of events

73

2.3 Task details

The next fundamental concept of GRAPES-BM language is triggering condition. It
is associated with a task, as one of its essential properties. Triggering condition
specifies which combinations of input events are necessary to start the task. This
condition is specified as a boolean formula containing ANDs and ORs on event
names e.g. Order AND Payment.

The general event semantics principle in GRAPES-BM is that incoming events form
FIFO queues in front of a task (a separate queue for each event name). When
triggering condition becomes true, the task consumes the relevant set of events from
its input queues and starts execution. In the simplest case the triggering condition may
be reduced to simple AND (or even “&” sign), which means ANDing all possible
input events (i.e. one from each queue). Control flows also are implicitly ANDed in
this case (i.e. all of them must be present). Similarly, simple OR (or “|” sign) means
that anyone of input events (including control flows) is sufficient for triggering. If any
of the required events is not present, the task waits for its arrival.

The niext important part of a task is its performer. Performer specification consists of
one or more performer names connected by AND and OR connectors. Performers
may be organizational units, persons (positions) and equipment (resources). The
available performers and their number are specified in the ORG diagram of the
business model. The requested performers must be free before the task can really
start, therefore the triggering condition is only the necessary condition for a task to
start.

Duration of the task specifies the required execution time, e.g. task Order processing
in Fig. 3 takes exactly 1 hour.

Fig. 3 shows an example of completely specified task in a TCD.

Order_Processing
AND

CeK&PC
"{h"

Fig. 3 Completely specified task

Once the task has started, it performs its main activity, which is not formally specified
in GRAPES-BM. When the task is completed, it possibly takes one of its decisions
and sends its output events.

We can describe more formal and informal details of a task in its Task Specification
Diagram (TSD). In particular, extended informal description of a task may be given
there.

In conclusion one more remark on tasks. In any behaviour description there are tasks
which are not part of the business system under consideration, e.g. a customer
preparing an order. Such tasks are called external tasks in GRAPES-BM. They are
represented using dashed lines for the task symbol.

Data manipulation in GRAPES-BM is described only at informal level. There are two
special symbols for that purpose: data store for representing persistent data and data
object for common data with life time of one transaction. No formal semantics is
assigned to them.

74

3. Example of TCD diagram

The main goal of business modeling is to describe both readably and concisely a
business system behaviour. As it was already pointed out, the main sort of diagrams
for this purpose is Task Communication Diagram (TCD), describing a behaviour of
large task in terms of smaller tasks and events.

Let us consider an example of a simple business system, namely, a simplified
production line for producing printed boards. Fig. 4 presents this system as one TCD
diagram. When necessary, the supervisor orders a new board. The operator takes an
empty board and puts it into a robot, which has to assemble 10 parts on the board.
Any of the parts may be faulty. The robot positions the board, takes one part from the
appropriate parts store and assembles it on the board. All this is repeated 10 times.
After that the completed board is tested by the tester (i.e. whether all parts are
normal). If at least one part is found faulty, the operator tries to repair the board
manually.

However, as in any production system, faults may be present anywhere. The testing is
unreliable, the probabilities of correct test outcome are different for normal and faulty
boards. The mean testing times also differ. To describe this situation more accurately,
the testing task must be duplicated - one for a normal board and one for the faulty one.
Symbols shown via bold lines are the ones having real counterparts in the production
process. The other ones are so-called techmical tasks introduced to describe the
probabilistic nature of the production more accurately. These technical elements are
insignificant to the modeller, they are vital only for simulation.

The diagram contains also some “data processing” elements - SET options for
outgoing events, expressions on incoming event data in decisions, etc. From the
modeller’s point of view they may be read as comments. But they have precise
semantics from the simulators point of view. This semantics will be explained in
Section 5.

75

board

faulty_p
10 % EXCLUSIVE

ar

recognized_as_normal
a5

recognized_as_faulty >

(

SRS) (

recognized_as_faulty >

% EXCLUSIVE 5 % EXCLUSIVE 10 % EXCLUSIVE 90 % EXCLUSIVE
board ! board
Repair_normal_board Repair_faulty_board

operawor......
“Tm"

board_repaired board_not_repaired

75 % EXCLUSIVE 25 % EXCLUSIVE
board
SET normal=1 board
hwd
(
Fig.4 Example of TCD diagram

76

4. General structure of business model

The previous sections have described the most significant type of diagrams in
GRAPES-BM - TCD diagram. Some other types of diagrams have been mentioned
(ET, TSD). But there are more components in a business model.

4.1 Model tree

A complete business model is a hierarchy of the abovementioned (and some other)
diagrams. The hierarchy itself is defined in a model tree. Fig. 5 shows the model tree
for the production example. Model tree may be considered as a table of contents for
the model.

The top line contains the elements global for the whole business model (ORG
diagram, ET table, CMP table, SP table).

® Producton

@ DATATYPE Types

@ TASK Production 0] @ [AT_] O [PD]
IS} @ TASK Assemble_part [[CO] O [AT] O
—{lISI] @ TASK Continue_assembling [TTO] O [AT]C
—iSD] @ TASK Is_board_normal [ICD] & [AT] C
—{ISD}] @ TASK Order_board [[CO]O [A] O
—{liShj @ TASK Position_board [[Co]O [AT] O
—{liSD] @ TASK Prepare_board [[Co]OC [AT]C
—{iSE}] @ TASK Repair_faulty_board [[Co]O [AT]O
— IS0 ® TASK Repair_nommal_board [CO] O [AT] O
—{iSO} @ TASK Store_boards [Co]O [AT] O
—{SD) @ TASK Take_pait [Co] O [AT] O
—{liS]| @ TASK Test faulty_board [[CO] O [AT] O
—{ESH] @ TASK Test_normal_board [Co] O [AT]C

Fig. 5 Model tree

The main part of model tree is constituted by primary tasks (top-level TSD
diagrams) and their refinements. There is only one primary task Production in the
example. In general, primary tasks correspond to the main relatively independent
functions of an enterprise. Each primary task normally is refined by its TCD diagram
(business process), shown to the right of the corresponding TSD diagram.

The next level of refinement is defined by the set of subordinated TSD diagrams
corresponding to all tasks mentioned in the TCD diagram.

The models with one primary task and one TCD diagram refining it are called flat
models. However, in general case the situation is much more complicated. Each task
in the TCD diagram may be further refined by its own TCD diagram (placed in the
tree in the same line as the corresponding TSD diagram). The refinement is continued
until we obtain the lowest level tasks which are called elementary tasks. For
elementary tasks their formal and informal characteristics can only be specified in
their TSDs. The choice of ‘elementary tasks depends on the specific application of
business modeling. The abovementioned language facilities show how traditional
structural refinement is supported in GRAPES-BM.

77

4.2 TSD diagram, referenced tasks

There is a TSD diagram for each task appearing in a TCD diagram.

In the simplest case a TSD diagram contains the same formal attributes of the task as
those visible in the TCD plus extended informal description of the task. In addition,
the task’s interface to its environment is also visible in TSD via so called referenced
tasks. Fig. 6 shows the TSD diagram for the task 7ake part. However, in general
case, TSD diagram may contain significantly more information (briefly sketched in
the next section) which is of special value for simulatable models.

faulty _part
10 % EXCLUSIVE

N o — — —_— e — — — —

Fig. 6 Example of TSD diagram

Referenced tasks (with the relevant event arrows attached) in TSD correspond to
task’s neighbors in the corresponding TCD (whose part the task is). If the task is not
elementary itself, the same referenced task symbols (containing the same names)
reappear in the refining TCD diagram of this task (i.e. in the TCD one level below).
Event arrows lead from these referenced task symbols to tasks in the refinement (or
vice versa). The referenced task symbol is the key mechanism in GRAPES/BM for
ensuring unambiguous event routing between the adjacent TCD levels in refinement.
There are strict rules on refinement consistency (in most cases these rules are ensured
by GRADE editors automatically).

4.3. Des_cripﬁon of Organization Structure

The static structure of a business system is described by ORG diagram in GRAPES-
BM. Fig. 7 shows the ORG diagram for the board production..

1

supervisor e f teslter] [l robot] | Store |

Fig. 7 Example of ORG diagram
Formally, ORG diagram may contain

78

e organizational units (company, department, group etc.)
e positions (chief, accountant, secretary, programmer etc.)
¢ resources (any kind of equipment, like car, PC etc.)

Any of the elements may be single or multiple, for multiple elements the number of
available instances may be specified (otherwise unlimited number is available).

Organization structure is depicted as a tree (more precisely, as a set of trees) built
from the abovementioned nodes. The edges of the tree represent contains
relationship.

A leaf of a tree may be refined further by another tree.

Any of the organizational structure elements may have the following additional
attributes:

type (internal or external)

competence list

availability (as time interval)

cost per hour

efficiency level
~employee name (for a single position only)

All ORG diagram elements have also precise formal semantics, which is taken into
account when TCD diagrams with performer specifications in tasks are executed.

4.4 Other tables and diagrams

Now some words on other elements of business model.
Event table (ET) has a row for definition of each event used in the business model.
The most complicated are the timer definitions. GRAPES-BM provides formal means
for timer definitions, e.g.

AT 5 PM could be defined as TIME(“*.** 17:00”),

Regularly as REPETITION(“10m”).
Message events may have their data types specified (record or elementary types may
be used). Event types are necessary when data carried by events are taken into
account. For example, the event board used in Fig. 4 has a record type with two
integer fields parts and normal.
Competence table (CMP) is a supplement to ORG diagram, listing possible
competences of ORG elements. Simulation parameters (SP) table contains general
numeric parameters of the model.
One more type of diagrams to be mentioned is attribute tables (ATR). They are
global for the whole model, and there may be several named ATR tables. Each ATR
table describes user-defined attributes for the given task type, which is equal to the
ATR name.
Zero or more Data Definition (DD) diagrams are also global for the whole model.
They describe data types used for events and are placed in the model tree above TSD

diagrams.

79

5. Advanced Features of TCD and TSD diagrams

The items discussed so far have been more or less related to semiformal business
system description and analysis.
However, GRAPES-BM permlts to descrlbe precise behaviour of business systems
from the control point of view, including some data-related dependencies (as it
actually is done in the Production example). This layer of GRAPES-BM actually
constitutes a sort of process simulation language.
The basis of all these features is the assumption that events can carry data with them,
and the data may be “processed” by tasks, used in decisions and transferred further to
output events.
The following features are available:
e advanced triggering conditions, like
- Letter AND ALL Answer WHERE Letter.ld= Answer.ld
- Letter AND <5> Comment
e detailed description of task decisions
- by their probabilities, in exclusive or nonexclusive manner
- by precise formulas which may depend on data carried by the triggering input
events and on numeric attributes of the task. For example, board parts is the
reference to the record field parts (containing the number of parts already
assembled) in the event board. Built-in boolean function Is rr:ggered by
(event) may also be used in decisions.
task duration dependent on its input data
formulas for setting values of user-defined task attributes (then the task must have
one of the types defined by ATR tables of the model). Formulas may reference
data of input events and other attributes
SET-option with formulas for setting data (record fields, as a rule) in output
events of the task, with formulas referencing similar class of values. For example,
SET parts=board. parts+1 advances the event field parts (the “loop counter”) by
one. There is a special convention of data passing , namely, if an output event has
the same name as an input event, data are passed without any formulas specified
e repetition factor for output events
e priorities in seizing performers.
These described features may appear in TCD as well as in TSD diagrams. The
“computational aspects “ are taken into account only for elementary tasks.

'y

6. Semantics of Business Model, Concept of Transaction

6.1 Simple case with one TCD diagram

The example in Section 3 could be understood and even analyzed quite intuitively.
However, GRAPES-BM has a completely precise semantics defined. This semantics
may be used for unambiguous manual validation of business models and for their
execution by GRADE tools, i.e. simulation, prototyping, animation. It should be
emphasized that Fig. 4 constitutes a syntactically correct and executable TCD diagram
(certainly, in the context of the whole business model).

80

Timers in a TCD diagram are spontaneously active elements, i.e. they send their
events to the appropriate tasks. These tasks are then triggered and afterwards they
send their resulting events to other tasks. Thus the whole business process gets into
motion. There may be as many concurrent instances of any task active as available
performers permit it.

But there is one completely novel element added to this relatively straightforward
semantics. This is the concept of Transaction.

Intuitively, a business transaction is a chain of activities initiated by some external
stimulus and ended at the moment when further events are beyond our scope of
interest. In the example of Fig. 4 the transaction starts with the arrival of a new order
for a board. To be more formal, it starts from the moment when the timer Regularly
starts the task Order board. The transaction is completed when Board is sent to the
task Store_boards.

The concept of transaction is fundamental in business modeling, since it helps to find
out and analyze essential groups of activities inside a business system.

The main problem here is to find a simple formal definition of transaction which
would coincide with the intuitive understanding in most cases.

In GRAPES-BM the following definition is used:
The transaction starts solely when a task is started only by events coming from
outside the business system.
Two types of events in GRAPES-BM are defined as such “outsiders™:
e timers, described already in Section 4.4
e spontaneous events. Any event may be made spontaneous in the TSD diagram by
assigning generator definition to it. These generator definitions have the same
syntax as timer definitions. Spontaneous events are used to hide away a timer in a
TCD diagram and to make the impression that the event comes right from an
external task.
Thus, in Fig. 4, the timer Regularly starts a transaction since the task Order board is
triggered solely by it. But if there were another timer attached, e.g. to the task
Test_normal_board, it would start no transaction, since this task requires also
(internal) event board in order to be triggered.

The precise description of transaction behaviour is based on so called Transaction
Identifier (TID). At the beginning of each transaction the starting event is given a
unique TID. This number will be used throughout the transaction, all events and tasks
in the corresponding task chain will be tagged by it.

There is no explicit use of TID. However, it participates implicitly in each triggering
condition. AND condition will be true only if all incoming events have the same TID.
Thus only matching groups of events that belong to the same transaction can trigger a
task. In Fig. 4 only that part which corresponds to the board for whose assembling it
was taken, will trigger the task Assemble_part.

Transaction is completed when there are no more events in the model with the
given TID. In some occasions default rules are insufficient. To cope with these
situations the following options of tasks may be used:

e NOSTART for preventing an unwanted start of transaction
e START for explicit start of transaction

e END for explicit end

e NOTID for explicit stripping off the TID from an event.

81

6.2 Semantics in general case

When there are several levels of TCDs in the model, the key “players” are elementary

tasks. For formal semantics definition, it should be assumed that all non-elementary

tasks are expanded via their refinement TCDs. Thus a virtual flat TCD would be

obtained. The correct event routing in this TCD is defined according to strict rules

based on referenced task symbols. The general semantics of model behaviour is the
“simple” semantics for this flat TCD.

However, structuring adds a new dimension to transactions also. In general, there may
be a transaction level for each non-elementary TSD (or for each TCD level, which
means the same). There are precise default rules for simultaneous start of nested
transactions of all possible levels.

In addition, for the lowest level transaction the default start rules have become more
complicated:

e besides timers and spontaneous events, any event coming from a referenced task
“symbol is considered as an outsider

e when an event leaves the relevant TCD diagram (which corresponds to transaction
-under consideration) via an outgoing referenced task, it is stripped off its TID.

The default start rules for simultaneous start of several levels are defined so that strict
nesting of transactions is always preserved. In short, the default start of a level occurs,
when an event just passes through the level via referenced task symbol.

For each level of a transaction there is a separate TID, thus events actually are tagged
by lists of TIDs. All these TIDs are taken into account, level by level when an AND
condition on a set of events is checked. For TIDs of each level there are natural
boundaries where they are stripped off. The default end condition for a transaction is
the same as in one-level case.

For explicit transaction control, START and END options may contain lists of
transaction (task) names.

7. Expressibility of GRAPES-BM

7.1 Theoretical aspects

From the theoretical point of view, GRAPES-BM language is close to some well-
known extensions of Petri nets, for example to so-called coloured Petri nets (CPN)
(see, e.g. [10], [11]). Tasks correspond to transitions in CPN, event queues (invisible
in GRAPES diagrams) to places, triggering conditions to guards and arc expressions
etc. Many natural examples look quite similar in both formalisms. Structuring is also
similar in them. The main difference is that in GRAPES-BM there are implicit event
queues at each elementary task, while in CPN places are explicit pools (not queues)
common to several transitions. GRAPES-BM has a more advanced timing control.
Any formal comparison of these formalisms is extremely difficult due to complexity
of both of them. CPN formalism was designed with reachability and other kinds of
static analysis in mind (e.g. for finding deadlocks). The formal semantics of

82

GRAPES-BM was defined with the goal of easy behaviour simulation of complicated
business system.

The comparison shows that formal semantics of GRAPES-BM could be defined as
rigorously as it is done for Petri nets. Up to the moment the semantics of GRAPES-
BM is defined informally, but precisely enough to build a simulator (interpreter) for it
and to make it really usable language for building large executable models. Certainly,
the precise definition is beyond the scope of this paper.

7.2 Practical aspects

From the practical point of view GRAPES-BM allows as to describe adequately
various control structures present in business systems, like:

e iterative looping depending on event data

e centralized control depending on some global data

e _time-out control of incoming events

The “programming “ of such control structures is sufficiently simple. The methods
used remind slightly those used in “programming “ of Petri nets. Here is significant
role played also by transaction concept. In most cases the precise control aspects may
be simply added to models originally built for pure qualitative analysis. A simple case
of loop programming is demonstrated in the example of Fig. 4 with board. parts being
the loop counter. The “programming” of such control structures uses so-called
“technical” tasks and events - ones which have no counterparts in the real world
system to be described.

The “programming” of any centralized control affecting several tasks and/or their
instances is based on the following general construct (see Fig. 8).

y Lele | :

Manage_S
p&s OR qé&s
L |
p_case q_case
Is_triggered_by(p) Is_triggered_by(q)
s/NOTID ‘J, p1 l qt s /NOTID
SET f1=s.f1+3

Fig. 8 General control structure

There is an event s representing the current status of some control object. The object
is “managed” by the task Manage_S. The numeric components of the object, e.g. the
currently available amount of some resource rJ, are represented by fields (e.g. f1)
within the record datatype of the event s. Events p and g represent requests to the
control object from tasks, and p1, g/ are the corresponding responses. The selectivity
of a response is guaranteed by is triggered by built-in boolean function used in
decisions. If there is an additional control logic dependent on resource values
necessary, decisions may be extended by other formulas, e.g. is_triggered by (P)
AND s5.f1>10. Certainly, then there should be more than two decision branches at the
task Manage_S. The updated value of the status event s is returned to the same task
after all decisions. NOTID option guarantees that this centralized control can coexist
with requests from many transaction instances (but the relevant TID is retained in the
response). The presented general schema may be easily adapted to various types of

83

centralized controls. In practical GRAPES-BM “programming” the transaction
concept also plays a significant role, e.g. in building time-out control constructs.

8. BM-Simulator and other GRADE Modeller Tools

The full support of GRAPES-BM language is included in the new version of
GRADE-BM Modeller toolset.

The following components of GRADE are available:

tree and repository management

advanced graphical editors

syntax analyzer

GRAPES-BM language interpreter (BM-simulator)

animator

trace browser.

In this paper we concentrate on language execution aspects of GRADE.

___We -mention only that graphic editors play a key role in GRAPES-BM usage,
ensuring real “graphic programming” with the features of

e smart automatic layout generation

e relevant name and syntax prompting

e automatic transfer of information from diagram to diagram.

Note. All diagram examples in the paper, including Fig. 4, have been produced by
GRADE-BM editors.

Prior the execution, diagrams are processed by syntax analyzer, which besides syntax
checking generates the intermediate code (in parse-tree format) for all relevant

diagrams.

The heart of language execution is the BM-simulator.. It has the following features:

e step mode with variable granularity for business model dynamic debugging and
step-by-step exploration

o run mode for business model prototyping and simulation. The run mode is
combined with pause and breakpoint features

e inspect facility for observing any elements of the current status of business model
(active tasks, event queues, data contained in them, etc.)

e user-controlled automatic statistics gathering (for predefined statistical features of
tasks, events and performers and for statistics of user-defined task attributes)

¢ interface to diagram animator

Since even quite informal BM models are executable as a rule, the BM simulator
serves as a powerful tool for model validation, step mode execution allows to find any
unexpected behaviour of the model. On the other hand, a normal animated run of a
model is very helpful in general evaluation of the model and in finding unexpectedly
long queues and other bottlenecks in the system.

The BM simulator is based on the model activity calendar. The ground activities are

84

insert a new event in a queue

check the value of a triggering condition

start a new task instance

e end a task instance

The main non-trivial problem is to implement a fair and effective performer
allocation strategy, compliant with the described GRAPES-BM semantics. If the
requested performers are busy at the moment when triggering condition becomes true,
the potentially triggerable task is enqueued at these performers which would satisfy
the performer expression. When a performer is released, tasks enqueued at it are
checked whether they can really start. It should be noted that this strategy gives some
preference to tasks with smaller performers sets. Certainly, the explicit PRIORITY
clause in TSD permits the user to control the scheduling.

In general, the simulator solutions have guaranteed acceptable performance in both
speed and model size. In typical Windows environment, on a 486-based machine,
models with thousands of tasks may be processed, with several hundred thousands of
simultaneously active task instances.

9. Conclusions

The language GRAPES-BM version 2.0 and the corresponding tool GRADE-BM
version 2.0 were released in 1995 [8,9]. GRAPES-BM and GRADE-BM, described in
this paper, correspond to the version 3.0. The differences from the previous language
version are significant.

The version 3.0 of GRADE-BM in this moment is under development.

The first experimental applications of GRADE version 3.0 (design process
management in car industry, some banking applications, public utility management et
al) have shown the correctness of all principal decisions in tool set design. The size
of business models which may be processed in typical Windows environment seems
to be quite acceptable in practice.

The main novel feature of GRAPES-BM seems to be the wide spectrum of
applicability of the same models, from general informal evaluation of the current
system to numeric experiments with it

References

[1] T.DeMarco. Structured Analysis and System Specification, Prentice-Hall, 1979

[2] R.Barker, C.Longman. CASE*METHOD Function and Process Modeling,
Addison-Wesley, 1992

[3] J.Martin, J.Odell. Object-Oriented Analysis & Design, Prentice-Hall, 1992

[4] G.Keller, M.Niittgens, A.W.Scheer. Semantische Prozessmodellierung auf der
Basis Ereignisgesteuerter Prozessketten (EPK), in Veroffentlichungen des Instituts
fur Wirtschaftsinformatik, v. 89, Saarbrucken, 1992

[5] W.Brenner, G.Keller (Eds) Business Reengineering mit Standartsoftware, Campus
Verlag, Frankfurt, 1995

[6] Designer-2000. A Guide to Process Modeling. Oracle Corp., 1995

85

[7]1 A.Aue, M.Brey. Distributed Information Systems: an Advanced Methodology,
IEEE TSE, 20(8), pp. 596-605, 1994

[8] GRADE V.2.0 (MS-Windows) GRAPES V3 (GRAPES-86+ GRAPES/4GL,
GRAPES-BM). Sprachbeschreibung, Siemens Nixdorf, 1995

[9] GRADE V.2.0 (MS-Windows). Modellierer. Benutzerhandbuch, Siemens Nixdorf,
1995

[10] K.Jensen. Coloured Petri Nets, in Advances Iin Petri Nets, 1986, LNCS v.254,
Springer, 1987

[11] K.Jensen. Coloured Petri Nets: High Level Language for System Design and
Analysis, in Advances in Petri Nets, 1990, LNCS v.483, Springer, 1991

86

ABTOMATHU3UPOBAHHOE TECTUPOBAHHE
TEJIEKOMMYHUKALIMOHHBIX CUCTEM

M.S1. AIBEPTC, noxTop MaTeMaTH9ecKUX HayK, BeLyIHH HCCIEN0BATEb
A A KAJTHUHBIII, goxTop BEMHCIUTENbHBIX HAYK , BEXYIIHIA HCCIEAOBATEND
J.A.KAJTHBIHSI, roxrop MaTeMaTHIeCKHX HaYK, BEYIIHH HCCIENOBATEb

HMucruryT MaTeMaTHKH H HH)OPMATHKH JIaTBHHACKOro YHHBEPCHTETA
6ynbB.Pafina 29, LV-1459, r.Pura, Jlateusa

Paccl;iarphmaercn HOMBLITKA CHCTEMATHYECKOro TeCTHPOBAHMS MPOrpamMMHoro obecriederus
Aig cHcTeM MOGHILHOM pagmoTenedonnoii cagu, Henoib3ys RIGA-SDL n renepaTop TecToB.
Ipe/iaraeTca aBTOMATHYECKI] [eHEPATOP TECTOB, Gasnponémmn‘i Ha H3ydeHile MPOCTPaHCTBA
r00abHBIX cocTounmii. B cTaThe omicaHbl MeTOQLI YMeHbIIEHHE pa3mepa NPOCTPAHCTBA
rno0anbHLIX COCTOAHIGI, KOTOpPble NO3BOJISIOT penuiTh Npod/ieMy aBTOMATHYECKOIH reHepalui
TeCTOB NpH OrpPaHHYeHHbIX TeXHHYeckHX pecypcos. KpaTko omlcaua. ofmas cTpaTerus
TeCTHPOBAHHSH CHCTEMBI. |

KmogeBble ciioBa: [eHepaipia TECTOB, [NI06abHOE COCTOSHHE,

T0JIHOE TOKPBITHE BeTBEH, yraepxaerusg, SDL.

1. BBEJEHHE
TectupoBanme Bcera Obmaer Goimbimoi mpobieMoll MpH pa3paboTke IPOrPaMMHOIO
obecnieueHHs, 0COOEHHO JUIA MapalliebHbIX CHCTeM H CHCTeM pealbHoro BpeMeHH. CTaTbsi
OPEICTaBIeT IOMNBITKY PEIIEHHS 3TOH NMpobeMbl B 0THOM NPaKTHIECKOM CIIydae, 8 HMEHHO,
I CHCTeM MOGWILHOH pamuoTenedoHHON CBS3H. I'7IaBHBIM ACTIEKTOM IPH 3TOM ABIAETCA
CHCTEMAaTHICCKOE€ KOMIUIEKCHOE TeCTUpOBaHHE pa3lpabaTbiBaeMOoro mporpaMMHOIro
obecrieaeHHA. ITocKoIbKY paspaoraHel H B IPOCKTEC MCIIOIB3OBaHbl HEKOTOPBIE
CHEHAM3HPOBaHHbIE MPOTOKOIBI , TO TPeOYIOTCA TaKKE HEKOTOPOro pojia BalMjalusd H
BepHQHKALMd (HAaXOXIEHHEe BO3MOXHBIX TYIIMKOB H.T.JL.). B kauecrBe 6asucHoro
NporpaMMHOr0 obecriedeHHs HCoib3oBana cucTeMa moauepxka SDL. RIGA-SDL [1,2] na
TIEPCOHAIBHOM Kommrepé Turra IBM PC, Tak kak Molmbie pabodre CTaHIMHM He ObUIH
JOCTYIHBI.
3;3 OCHOBY B3ST 3KCIIEPHMEHTAIILHBIA aBTOMAaTHIeCKHH IeHepaTop TecToB B cHcTeMe RIGA-

SDL, BriepBble IIpecTaBieHHsOA B [2]. B Hacrosmeii craThe OMMCAaHbl 3HAYHTEIbLHBLIE

yIydIueHHd 3TOro reHepaTopa, CHENaBIHE ero NMpaKTHYeCKH NPHMEHHMbIM. B cHTyalmsx,
KOIrjla pa3Mep CHCTeMbl HE IO3BONACT NPHMCEHATH IOJHOCTBIO aBTOMATHICCKHE METOIRI,
Gom,moﬁ. HHTEpEC MPEACTABISET METOMONOIH KOHTPOIMPYEMOro BpYdHYIO Mpollecca Bbibopa
TecToB. B craTee packphiTa MeTOMIKa, KaK OrPaHMYHTh MOHCK B BbIfope TecTOB JO
PEaMCTHIECKHX Pa3MEPOB, COXPaHsAA MOJIHOTY TECTHPOBAHHSA Ha ITPHEMIIEMOM YPOBHE.

JTa METONONOTHA BKIHOYAET NPHHIMIILI NOCTPOCHHA COOTBETCTBYIOLIHX — TECTOBBIX
IpaiBepoB (B cTaThe HazbiBaeMbIX TecTepaMH). OmmiIcaHbI TaKXe HEKOTOPbIE IBPHCTHIECKHE
METOIBI YMEHBIICHHS NPOCTPaHCTBA rI06anbHEIX COCTOSHENT ITpH nepebope Bo BpeMs mpouecca
BeI6Opa TecToB. [ls 3TOro riasHoe - HauwmynmM obpa3oM BbIOpaTh rio6anbHOE COCTOSHHE
HCCITeyeMOH CHCTEMBL.

B roCHe/pMe TOB! NOCTHIHYT 3HAUHTE/LHBIH IIPOrPece B Pa3BHTHH KIACCHYECKHX METONOB
BaJMJIaLH, OCHOBAHHBIX Ha HCCICIOBAHHH NPOCTPAHCTBA ITI00aNbHBIX COCTOAHIH, 0CODEHHO
B npoToxonax [3,4,5,6]. Tak Kak HccAeHOBAHHE MPOCTPAHCTBA rNMOOANBLHBIX COCTOSHHH JEKHT
B OCHOBE M HalleH aBTOMATHYECKOH TIEHEPALMH TeCTOB, TO B CTAThE MOIYTHO OIHMCaHLI H
HEKOTODBIE 3JIEMEHTBl aBTOMATHYeCKOH BamHmaumH . OHH BKDOY2I0T aBTOMATHYECKOE
HaX0XJeHHe TYIHKOB (deadlocks) v HenpaBWILHON MapIIPYTH3alMH CUTHAJIOB, Pacllo3HaBaHHE
ommM60K JaHHbIX. FiMeeTcs crierpanb bl MEXaHH3M JUIS TIOJUIEPKKH JIOKaJbHBIX YTBEPKICHIH,
HAIMHCAHHBIX [POCKTHPOBIMKOM. MOoOXHO HCIONB30BAaTh TakkKe aHalor JHarpaMm
TOCIIeI0BATENLHOCTEH Co00menHi (Mcssage Sequence Charts, B mambHeiimem MSC) ms
aBTOMAaTHYCCKOr0 HAXOXKICHMA aHOMalMii NOCICAOBATEILHOCTEH CHIHANOB BO BpeMs
reHepauMu TecToB. IIpH BammalnMe IIaBHOE BHMMAHME YIEIEHO Ha cHATHE N00aBOYHOI
Harpy3ki CO CTONb KPHTHYECKOI0 HCCICOBAHHA NPOCTPAaHCTBA IT00AbLHBIX COCTOAHHH BO
BpeMsi Boibopa TecToB. [TlaBHOE OT/IMYME MEXITY KIaccH9ecKol Bamimaimu [3,4] ¥ HaumM
MOJIXOIOM B TOM, YTO MBI IOJb3YEMCA 3HAYUTENLHO MEHLINNM IPOCTPAHCTBOM IN0GambHbBIX
COCTOSIHMI.

Ilpencrapiserca Taxoke MPAaKTHICCKHH ONBIT ICHEPALMM TECTOB JUIS IPOrPaMMHOIO
obecriedeHns CHCTEMBI H HCTIOb30BAHHA T€HEPHP OBAHHBIX TECTOB B €€ TeCTHPOBAHUH.

CraTbs COOECPXHT MNATH rnanmm'pamcnon. B pasgene 2 ormchbiBacTCA NPOEKTHPYEMOE
nporpaMMHoe obecriedenue Konmyﬂmcau}mmmi‘i CHCTEMbI H IIPOLECC €r0 TECTHPOBAHHA.
Pasgen 3 maeT TeOpeTHUECKYI0 OCHOBY BbI6Opa TECTOB COTJIACHO [2] M HOBbIE pa3paboTaHHbIE

PY9IHBIC MPOUEAYPELI OIITHMH3AIMH HCCIEAOBaHHA NpocTpaHCTBA rnobanbHBIX COCTONHHIA npH

Bribope TecToB. Paszen 4 mocpsueH HGKO:I'OPLIM BO3MOXHOCTAM aBTOMATHYECKOH BaTHIaLlHH,
BKIDOYasd TeX, KoTophble cBg3anbl ¢ MSC. Pasjen 5 mnpeacTaBiseT KOPOTKOE OIMHCAaHHE

HCIIOJIb30BAHMS TECTOBOI'O F€HEPATOPa, 8 paljiell 6 - NepBbic NONYICHHbIE Pe3yIbTaThl.

2. HCCIIELYEMAS CHCTEMA H EE TECTHPOBAHHE
2.1.Pa3paboTka nmporpaMMHOro obecriedeH s I CHCTEMBbI MOOHILHOH TenedoHHOH CBA3H

B mocienpyie TpH roja rpymma cOTPYIHHKOB MHCTHTYTa MaTeMaTHKH M HHOOPMaTHKH
JlaTBUFiCCKOTO YHHBEpPCHTETa paspabaTeiBaeT MporpaMMHoe obecredeHHe CHCTEMbl MOOWIbHOH
parmmoTenedoHHO# cBs3H (digital trunked radio) no npoexty ¢ ¢upmoit DTR International Inc.,
USA (CLIA). PaspabatniBaeMas cHcTeMa SBIAeTcd THITHYHOMN cucTeMoil pamioTenedoHHOH
CBSI3U ¢ JUHAMMYECKUM BhIICTICHHEM paHoKaHanos [7].

ba3oBble CTaHLIMH NOJJEPKHBAIOT IBa PEXHMa paboTel
- AHAJIOTOBBLIH Pa3roBOPHLBIH PaMHMOTPAKT € MPOCTHIM IHM(POBLIM K2aHAIOM CHIHANH3a1lMH
- TIOJHOCTBIO LIMPOBast KOMMYTALINA CO CJI0KHBLIM ITPOTOKOIOM KaHalla CHIHAJIM3atuu.

BoaMmoxeH BBIXOJ Ha IyOmnaHyro TenedoHHyH ceThb. ba3oBad CTaHIMA COCTOMT M3
3JIEMEHTOB, KaXIpblii H3 KOTOPBIX CONEPXMT OIOK NMpHEMHHKa-NEpENaTIHKa M YCTPOHCTBO
ynpasjeHHs Ha 6a3e IBM coBMecTHMOro nepcoHanbHOro KoMmbioTepa. Bee anemenTs! 6a30B0iH
CTaHLMH COEAMHEHB! BHYTPEHHEH CEThIO MEPENayH JaHHBIX.

Bce mporpamMmHoe ofecriedeHrHe Ig 3TOro MpoekTa (32 MCKIOYCHHEM HEKOTOPBIX
armapaTypHbIX HHTep(elicoB HM3KOro YpoBHA) padpaboraHa B SDL, ucnombiys cHCTEMY
RIGA-SDL. MHcnomszoBaHa Bepcuss ssbika SDL-88 ¢ HEKOTOPBIMH PaCLIMPEHHAMH,
omucaHHbIMH B [1]. HekoToprle M3 3THX pacumpeHuii, HampHMep, MaccHBBI OIIOKOB A
NPEICTaB/ICHHs IPYIN HWACHTHYIHbIX YIIPABAMIOLIMX YCTPOHCTB 9acTO HCIONL3IYIOTCSA, M JaXe
THIbI OJI0KOB ¥ JK3eMIUIApbl B SDL-92 ObUmM 66l MeHEe MPHTOMHBI UIA ONHCAHHA TaKHX
CTPYKTYpP. B pamMkax HacTosimero nmpoexTa mpoBeJeHO HEKOTOpoe yaydinehue cucteMbl RIGA-
SDL, B ToMm wricie nepexox X Borland Pascal 7.0 B kadecrBe 6a30BOr0 S3bIKa H HCIIOIb30BaHHE
€r0 3aUlMINCHHOro pexuMa (protected mode). TecTMpoBaHHE M OTJIajgKa HpPOrPaMMHOTO
obecriedeHs MPOMCXONAT TOJNBKO Ha ypoBHe SDL. CymecTBeHHBIM YIydIIEHHEM B CHCTEME
RIGA-SDL. ABJIIIOTCA CPEICTBA TEHEpAlHMH KoJa [jIf LEeNeBOH cpelbl, COCTOAINME M3
MoyudHuMpoBaHHOro koMmwaropa ¢ SDL Ha Pascal u coBepmeHHo HOBOH OHOMHOTEKH

NOJICPXKH BbINOJIHEHHA I paboThi B pealbHOM BPEMEHH H B MHOTOIIPOLIECCOPHOI Cpee.

2.2. CrpaTerus TeCTHPOBaHHs JUIA [IPOEKTa
Kakx B mofoM npoekTe mporpaMMHOro obecricdeHHMs PpealbHOrO BpPEMEHH, TEeCTHPOBaHME
NPOrPaMMHOI0 OOECNEYEeHHs COCTOMT M3 IBYX YpoBHeH. HIDKHHH ypoBeHb, COCTOSIMH H3
TECTHPOBAHHA TEXHMYECKHX HHTepdelicoB M acneKTOB pealbHOr0 BpPEMEHH, B HACTOAINCH
CcTaThe HE€ paccMaTpbiBaercd. Miyden Bepxyyii ypoBEHb - JIOFHYECKO€ TECTHPOBaHHE
nporpaMMHoro obecnegeHHs npH OOMIMX OIPaHHYEHMAX H3-3a INapalUlefIbHOCTH M
TECTHPOBAHHE COOTBETCTBYIOLIMX MPOTOKONIOB. ClIeNaHo 3T0 HCKIIOIHTENLHO Ha yposHe SDL.
ITpu paspaborke nporpaMmHoro ofecrnedeHHs HCNONb3OBaHbl IBa YPOBHA ONMCaHHS
TecTHpyeMoii cHcTeMbl Ha SDL. Ilpocrefiumit u3 mByx ypoBHell SDL ormcaHHa CHCTEMBI,
Ha3bIBaeMbIi 3TAJIOHHOH MOJENEI0 (reference model), OIMHCEIBAET YNPABIAIOUIHE AJTOPHTMEI K
OPOTOKOJI, YnoTpebiiieMble B CHCTeME, BKIDOYas MX JaHHbIE, HO OIIycKag JIeTalH CBS3H C
peanbHOMN TeXHHKOH U JaHHbIE, HE0OX0Mble IS MOIIEPXKKH 3TOH CBA3H. DTaTOHHAA MOJEIb
MOXeT ObITh paccMOTpPeHa Kak creupHKaiis npoTokona. Bropoe bonee cloxHOe orHcaHHe
CHCTEMBbI Ha3bIBaeTcs MOMEIbI0 peaymsauuu (implementation model). 3ta Mofenb coﬁepxm‘
no/mbi TekeT SDL s revepainm xoma mig nenesoii cpemsl. Obe Momem coliepXaT TO Ke
CaMOoe¢ MHOXeCTBO MNPOLIECCOB, CHTHAJIOB H JIaXe T€ XK€ caMble cocTosHMsA B mponeccax. Ho
HekoTopas o6paboTKka NAHHBIX B JTANOHHOH MOJENH YNPOINEHa, H HEKOTOphIE BBI3OBBI

npouexyp omyuensl. O6e MOIEIIH HMEIOT OMMHAKOBYIO CTPYKTYpY 6110K0B (cM. Puc.1).

Internal [—— Control L5 somantc ———N Formal

network [———— kl;”itk[k] —— tester K——— ftester
=1..kmax

Puc.1. Ctpykrypa cucrembl

Ynpasnaromue ycrpokicTBa (control unir) B 6a30B0i CTaHIMHM NPEACTABIEHBI KAK MACCHB H3
kmax omuaxoBbix 6oxoB. Kaxpni us 61okoB coemuHeH ¢ BHyTpeHei cerbio (internal
network). OcranbHble iBa 3IeMeHTa B PHC.] NpeACTaBIsIOT TECTOBbIE OpaHBEphI (semantic Lester

H formal tester).

JIas aBTOMAaTHYECKON IEHEPALH TECTOB HMCMOJb3yeTes JTalNoHHas MoJelb. IloxyyeHHble
TecThl MOTYT OBITh IpPUMEHEHBI K 00eiM MOMENAM, TaK KaK TeCTOBbie NpaiBepbl ABILTIOTCA
obumMH s obenx Mozeneii.)

I'1aBHOM LIEBIO B TEHEPAIMH TECTOB ABIAETCA IOJTHOE NMOKPBITHE BeTBeR (complete branch
coverage) I HEKOTOPBIX CYIIECCTBEHHBIX MPOLICCCOB B 3TAJIOHHOM Mdnc.rm. 3T0 03HadYaEeT, 4TO
g moboit BerBy THIIA inpul, if WM case B BLIOPAHHBIX JMarpaMMax NpOLIECCOB CymecTByeT
IMOCHIEA0BATENIEHOCTE BHEIMHHMX CHIHANOB H3 MHOXECTBa TECTOB, BBIIOJIHEHHE KOTOpOﬁ BJICYCT
BBLITIOJTHEHHE 3TOI BETBH .

Korma Tect, aBTOMAaTHYeCKH TCHEPHPOBAHHLIH JAJId 3TAJOHHOH MOJEIH, BLLUIOIHACTCH
BPY4YHYIO, TIOJHAas TIOCIIENIOBATENLHOCT BXOMHBIX/BHIXOJHBIX CHIHAIIOB MOXET OBITh

PErUCcTpypoBaHa BMECTE C CaMbIM TECTOM. Ora nocleloBaTELbHOCTD MOXeT ObITh

HCIIOb30BaHa KaK 3TanoH Buaa MSC, MpHMEHAA TOT CaMBbIii TECT K MOJICIIH peam3aliim.

2.3. TecToBble npakHBepsI

B 06euX MOIENAX MMEIOTCA JBA TECTOBBIX NPaiBEpa - CEMaHTHIECKHH H (OPMabHBIA. .
CeMaHTHYECKMH TECTEP MOJEIMPYET TEXHHYECKYIO BHEINHIOIO CPENy UIA YIIPaBIAIOIIMX
YCTPOMNCTB B OYEHh NPOCTOM BHJIE, YIUTHIBAs TONBKO CYLIECTBEHHBIC JIOTHIECKHE MHTEP(EHchI.
ITockoibKy TJIaBHBIM AaKIEHTOM SBISETCS JIOTHHYECKOE TECTHPOBAHME INPOrPaMMHOI0
obecriedeHHs YNPaBISIONMX YCTPOHCTB, TO MOIYIH MOOHIbHBIX MEPEroBOPHBIX YCTPOHCTB (B
PeabHOH XH3HH CBA3aHbI Ha YPOBHE allapaTyphl) MPEACTABICHBl KaK MPOCTblE 3aTIYLIKH
(stubs) BHYTpH 6ITOKa ceMaHTHYECKOro TecTepa . B 3TOM 6II0KE OIMHMCaHO TOJBKO JIOTHYECKOE
TOBe/IcHHE MOGHIBLHBIX YeTPOFHCTB (B HalbHeimeM MoOUIeH), yIHTHIBaeMOE MPH TECTHPOBAHHH.
To xe caMoe B CHIIC OTHOCHTEIBHO COCMHMHEHHH ¢ ITyGmraHO#H TeneponHoi cerpio (PSTN).

DopMabHBIH TeCTEP 0OeCIeInBacT TONLKO JEOOOH BO3MOXHBIH JIOTHYCCKHH CTHMYT K
cucreme (BbI30B MOOHIIA U3 IPYToro MoOMIA pH cBo6OIHOM yNpaBIIOIIEM YCTPOHCTBE, BBI3OB
Moﬁmﬁ TPH 3aHATOM YNPaBIIOLIEM YCTpoiCTBE, BbI30B cBoGomHOTO MOoOMIA M3 TenedoHHOH
CeTH, OKOHYAaHHE coequHeHud H. T. A.). CurHame! ¢ ¢opManbHOro TecTepa HEe MMEIOT
apaMerpoB, CCMAaHTHYECKHH TeECTEP aBTOMATHYECKH OOeCredHBaeT HYXKHBIE 3HAaYEHHA
napaMeTpoB (HOMeEp YNpaBILIIOLIEro YCTpOicTBA, HOMEpP MOOMIA M.T.A.) B 3aBHCHMOCTH OT
TpebyeMoro KoHTeKcTa. 3T0 3HAYHTENLHO YNpOLNAeT aBTOMATHYECKYI0 T'ECHEPALIHIO

CHIHAJIbHBIX ITOCIIEA0OBATENBLHOCTEH ¢ (l]OpMa.TILHOI‘O TECTCpa.

HanoMHMM, 9T0 HOPMAaNbHO TONBKO 3aKpbiThie SDL cHCTeMb! MOIYT 6bITh BbITOIHEHbBI IIPH
noMorm RIGA-SDL. Ho Ha BpeMs reHepallMH TeCTOB B HCCIEIYEMOH CHCTeME OMH 610K KU
npoLece IOJDKeH ObITh ompeMIelicH B KagecTBe BHELIHEH cpempl. OH HcKmogaercs H3 CHCTEMb] H
€r0 CUTHAJIBI HCITONB3YIOTC JyId nepebopa BO BpeMms MOCTPOEHHS NPOCTPAHCTBA IJI06aMbHBIX
cocrosHmii. B paccmaTpeiBaemoii chcTeMe B KadecTBe BHELIHeH cpelpl ompeneneH 6mox
¢opmampHOro TECTEpa.

CeMaHTHYeCKHMH TecTep HMECT TaKXKe BO3MOXHOCTb KOHTPOJMPOBATHL MapalulelIbHOCTh
06paboTkH curHaoB B cucreMe. B mpocreiimmem pexyMe B XaxIbLi MOMeHT obpabaTrmaercs
TOJBKO ONHA Ipétmaxum, T.€., CIICAYIONIHI CTHMYII MPHMEHSAETCH K cHCTeMe TocTe TOJIy9EHHS
BCEX MOMEHTAJILHBIX peakilii cHcTeMbl. B JIEHCTBHTENIbHOCTH B CHCTEME €LIE €CThb HEKOTOpas
NapamieNbHOCTh, MOTOMY YTO MpPEAbIAYIIHE CTAMYIbLI MOIYT ObITh NMPHYHHOHN 3a€P’KaHHBIX
(T.., 3aBHCAIOMX OT BHYTPEHHHX TaiiMepoB) AeHcrBHil. BTopoil pextM obecrneydBaer MOIHYIO
napaIebHOCTh, KOIJa HECKOJBLKO CTHMYIOB 06pabaThiBaloTcs OIHOBpEMEHHO. BoiMoxxeH
nepexol OT ONHOIO pEXHMa K HpPYroMy, MEHAA 3Ha4eHHA HEKOTOpbIX TaiiMepoB B
CEMAaHTHIECKOM TECTEpE.

Eme oHo mpyMeHeHHe ceMaHTH9eCKOro TecTepa - BIUTIOYEHHE HEKOTOPOH aBTOMATHYECKOM
NPOBEPKH CHTHAJBHBIX NMOCIEA0BATENLHOCTEH 1M obecriedeHns BanMuaumd Ha 6aze MSC (cm.

4.2)).

3. ABTOMATHYECKHH BHIFOP TECTOB

3.1.06D01He ITPHHIHIIBE
TeoperAdeckHe OCHOBBI IjIT METOMA TCHEPALMH TECTOB, HCHOMb3OBAHHOIO B 3TOM IIPOEKTE,
ormcaHel B [2]. HamoMHuM kopoTko o HMX. Ilob6ambHoe MpPOCTPAHCTBO COCTOAHHH oyt
HekoTopoi cucrembl SDL (kax u B [3]) crpouTces B opme rpada moctrxuMocTH (reachability
graph), BepIMHAMM KOTOPOIO SBISHOTCS IJIO0ANbHBIE COCTOSHMA, a pedpaMu - onepaTophbl
JarpaMM, BBHOIOJHHMbIE B I'I06aTbHOM COCTOSHHHM, H3 KOoToporo pebpa BRIXOIAT. B xaxmoH
HOBOH BEPIIMHE 5TOro rpacga mpoBepsAeTcs, HOCTHIHYTA I LEIb TECTOBOIO IOKPLITHSA (festing
coverage goal). Llelb MOKPBLITHA - 3TO JOCTHXEHHE 000/ BETBH B JHarpaMMax yKa3aHHBIX
npoueccoB/pouenyp [2]. Beurta nmm pocrurHyra kakas HHOYOb HOBas BETBb, BBIIONHSSA
NOCJIEAOBATENLHOCTh BXOAHBIX CHIHANIOB, BERYINYX0 K AaKTHBHOH BepumHe rpada

AOCTHXXHMOCTH, TNPOBEPAETCS IPH INOBTOPEHHH IiobambHoro cocrosHma. Ecmm ga, To

COOTBETCTBYIOIIAsS MOCTCHOBATENLHOCTh PErHCIPHPYETCE KaK TecT . [locnemoBaTebHOCTh
CTAHOBHTCA TECTOM TAaKXKC IPH HaXOXICHHH HCKOTOPOﬁ aHOMaIHH.

®opMankHO riobamsHoe cocTosHHe cHeTembl SDL go/mDkHO cofepXkaTh COCTOAHMA BCEX
3K3eMIUIAPOB ITPOLIECCOB, 3HAYECHHSA MEPEMEHHBIX MPOLECCOB, 0YEPEAH BHYTPEHHHX CHIHAIOB H
MHOJKECTBO aKTHBHBIX TaiiMepoB. [aBHOH uembio B [2] ObUI0 yMEHBINEHHE IPOCTPAHCTBA
rnobaibHBIX COCTOSHMIL, B TO XK€ BpeMs FapaHTHpYs, YT0 NPH 3ToM mobad JoCTHXHMas BETBb
ocraercs HoCcTHXuMOiL. JIist 3Toro 6bUmM BBE/IEHbI MOHATHA cyinecTBeHHbIX ornepaTopos (CO) u
cyinecTBeHHbIX nepemeHHBIX (CII). I'py6o rosops, B moboM IpKIe B JHarpaMme BhibHpaercd
omaH CO . ITepemennas ssnserca CII pua pannoro CO, ecmm ee snagerie B CO HMeeT npsMoe
WIM KOCBEHHOE BIIMSHHE Ha HEKOTOpOe pelleHHe Tuma if wm case B muarpamme. B [2,8] man
JopMaibHBLT amropHTM muA Haxoxaenus mHoxecrsa CII mna pannoro CO mo ormMcaHuio
npouecca Ha SDL. B [2] noka3aHo, 4T0, ecny r106aibHbie COCTOSHHS PETHCTPUPYIOTCA TONBKO
B CO u rnobanbHoe COCTOSHHME CONEPXHMT TONBKO CYMIECTBEHHbIC INEPEMCHHBIE (BKIIOYas
BHYTPEHHHE OYEpENM CHIHAJIOB M MHOXECTBO aKTHBHBIX TaiiMEpoB), TO MOCTpoeHHEe rpada
JIOCTHDKHMOCTH OCTa€Tcs KOPPEKTHBIM - Jobas HOCTIDKMMas BETBb JOCTHTaercd B 3TOM
MpOLIECCE.

Janee omicaHel pa3paboTaHHbIe Ha JAHHOH TEOPETHYECKOH OCHOBE METOIbI ONTHMH3ALIMH

TFeHEPALHH TECTOB, MO3BOILTIOIOUE YCIIEUIHO TECTHPOBAThH BHIMEOMHMCAHHYIO CHCTEMY.
b cnny s Abfuch
3.2. PygHas ONTHMH3aIHs II0GATBHOIO COCTOMHUS
[

JU1s peasbHbIX CHCTEM, B TOM 9HCIIE H JUI1 PacCMaTphIBA€MOM CHCTEMBbl MOOIIILHO#M CBA3H, H
I NOCTYIHOH TeXHHYECKoH IuIaTgopMbl OTHONICHHE MHOXECTBA NMPAKTHYECKH JOCTHIAEMBIX
[I06ANBHBIX COCTOSHMI K pasMmepy Beero rpada JOCTHXUMOCTH 06bI9HO GbIBaeT CIHMIIKOM
MalbM. B Takux ciIydasx, B TepMHHax [3], yrpaBisemMoe 9aCTHIHOE HCCIIEIOBAHHE MHOXECTBA
[06abHBIX COCTOSHHI MOXKET ObITh 3HAYUTENLHO JTydIme HEKOHTPOIMPOBAHHOI0 9aCTHIHOIO
Hccenopanys (T.€., MOMYYEHHOro NPH HMEIOLIMXCA pecypeax). YupasleHHe HOCTHraeTcs MpH
IOMOLIM JanbHeHero sppHcTHIccKoro yMenpmenus cmackoB CIT u CO. 310 yMeHbIneHHE

NMpOBOJHTCA BDYIHYIO, HCIIOJIL3YA HGKOTopble CBEJICHMA O MOBEICHHH TECTHPYEM OH CHCTEMBI.

Bo3MoxHbI IBa CIIydas:

e TlepBH4HOH LIEIBIO SBIAETCH HEKOTOPAA aBTOMAaTHYECKasds BAMIALMA CHCTEMbI, MOMYTHO
noirydas AaBTOMATHYeCKH TeHepUpPOBaHHbIE TecThl. B 3ToM «Iyd9ae IpoBepka
JOMOJHHTEILHBIX YTBEPKICHHIT KOPPEKTHOCTH ABNIAETCA 0YEHb Ba)XHBIM 3/IEMEHTOM.

o JlepsuuHoii Hembi0 ABJAETCd aBTOMaTH4eckas IEHEpallis TeCTOB COrTIacHO
BBLIIECOIMHCAHHOMY KPHTEPHIO.

B nepBomM ciydae nocrpoe‘rmc rpada JOCTIDKHMOCTH HOJDKHO OCTaBaThCAd KOPPEKTHBIM LA
HeatexyeMoii SDL cucTeMBl, MO3TOMY PEKOMEHIYIOTCA CICAYIOIIME, 3aBHCALTHE OT ITOH
CHCTEMBI ONTHMH3ALHM [NI00aNLHOro cocTOsHIA H cricka CO:

* TIOCKOJLKY mpH 06paboTKe 0JHOrO BXOJHOIO CTHMYJa B KOppeKTHoi mporpamme SDL
0ECKOHEYIHBIX LMKIOB HE JIOJDKHO ObIThb, TO BO BCel cHCTeMe MOIYT ObITh BHIOpaHbI B
xagectse CO TONBKO HEKOTOpBIE cocTOsHMA NpoleccoB. Takue CO B AEHCTBHTENLHOCTH
CTAHOBATCA BbIOPAHHBIMH BPYIHYIO TOYKaMH ITPEPHIBAHHA (KaK IPH OTJIAJIKE CHCTEMbI);

* eclM B cucTeMe HekoTophle CII MMEIOT paBHble 3HadeHHMA HIH OHH (YHKIHMOHAIBHO
3apHCHMBI, TO B KadecTBe CII Bridupaercs To.mﬂ{p 0JIHa H3 HHX;

* €CJH COAEPXaHUs HEKOTOPBIX odepeieli BHYTPeHHHX CHTHANOB (hyHKIIMOHATBHO CBA3aHbI CO
3HAYCHMAMH HEKOTOPBIX IIEPEMEHHBIX, TO Jydile B IA00aNbHOM COCTOSHHH [EPXKaTh HE
OYepelH, a 3Ha9eHHA ITHX NEPEMEHHBIX;

* eCIM COCTOSHHE Ipoliecca OMHO3HAYHO ompelendeT 3HadeHHe HexkoTopoil CII B aTom
TIpoliecce, 1;0 B r7o6ajbHOE COCTOSIHMUE CIICAYET MOMECTHTS MO0 coCTosHHE Mpoliecca, MHbo
3HaY€HHE [TIEPEMEHHOH;

* B I7100aJbHOE COCTOSIHHE MOXHO HE NMOMECTHTh BHYTPEHHHE COCTOSHMS BCIIOMOIATEIbHBIX
IIPpOHCCCOB, HE HMCHOINMX BJIHAHKHE HA IIABHBIC ITPOLECCHI CHCTEMBI.

Bce 3TH 3aKOHBI TONBKO 3BpHCTHYecKHE. KX cTporoe cobmoneHne TpeGoBaio Obl CY)XIEHHS O
CHCTEME, IIOXO0XEro Ha J[0Ka3laTeNbCTBO KOPPEKTHOCTH, MO3TOMY OHH MOIYT OBITb
HCTIONb30BAHBI TOJILKO KaK CCMAHTHICCKHE YKA3aHHA. OreIT aBTOPOB MOKA3bIBAET, 9TO 3THMH
3aK0OHAMH MOXHO NIOIIL30BaThHCA, HMEd MHHHM aJIbHBIC 3HAHHA 0 NOBEJICHHH CHCTEMEI, H 9TO OHHM

HMCIOT OI'POMHOC BIIMAHHE Ha YMCHBIICHHE pa3Mepa IpOCTpaHCTBA moGaJ_ILHbe COCTOSHHMH 10

PCaNbHOrO I MONHOTe HCCTESTOBAHHA CHCTEMbI Ha OCTYIHOH TexHuke (hardware platform).

Bo BTOpOM cCiTydae, KOr/ila reHepald TEcTOB SBJIAETCH IIABHOH LENbIo, IiIobanbHoe
COCTOAHME HaIo BHIOPaTh II0 BO3MOXHOCTH MHHHMATbHBIM, JoOUb ©6bl HE Tepslach
HOCTHXHMOCTb BETBeH mpolecca. XOpOUINM HAaJaloM TYT MOXET ObITh BKIIOYCHHE B
rinobambHOE COCTOSHME TOMLKO COCTOAHMI CYINECTBCHHBIX [IPOLICCCOB H HCKIIIOYEHHE JaHHBLIX
mporiecca. Ec MOKpbITHE BETBEH NPH 3TOM OKaXeTcs HEJOCTATOYHBIM, TO K IJI06ambpHOMY
COCTOAHMIO HOOABIAIOTCA HEKOTOpble JaHHble. OObIMHO 3TO HEOOXOMHMO B ClIydae, Korna
aKTyaJbHbIe COCTONHHSA MPOTOKOIA KOMUPYIOTCH HE COOTBETCTBYIOLIMH COCTOAHISAMH MPOIIECCa;
a HEKOTOPHIMHM IEPEeMEHHbIMH. VIMEHHO 5TH MEpPEMEHHBIE H JODKHBI ObITh BKIHOYEHBI B
rnobambHoe cocrosHMe. OMBIT MOKA3BBAET, YTO ITOrO JOCTATOYHO JIA aBTOMATHYCCKOro
TIONTY9eHHA [MOJIHOrO NOKphITHA BerBeif. B kagecrse CO pexomeHmyercs BhIOpaTh TakKHe
“oneEpaTopbl COCTOSIHHA B CEMAaHTHYCCKOM TECTEpPE, I'IC NMPOHCXOOUT BBOA BHCIIHHX CHI'HAJIOB.
Torna pebpam B rpade HOCTHKHMOCTH COOTBETCTBYIOT BHEIIHME CHIHAIbLI H3 GOPMAILHOIO

TecTepa. Haio oTMETHTS, 4T MpoBepKa yTBEPXIEHHIH COXpaHAET CMBICI H B 3TOM CIIy4ac.

3.3. Opranuzaims nepebopa H BLIGOp TECTOB

Korna rmo6amsHoe cocTosHHE ONMpeeNieHo, TO IS CTPoeHHs rpada TOCTHXUMOCTH MOXHO
HCIONL30BaTh IJMOOOH KiTacCHYecKHit MeETOX HMCCHENOBAHHMA IPOCTPAHCTBA TII06albHBIX
cocTosHMH [3]. B Hamem wIydae HaWIydIMM MOXXOHOM ABISETCH TOHCK “‘criepBa B iIyOmHy”
(depth-first search) ¢ nomHBM (coﬁzp!e!e) COXpaHEHHEM CO3JIaHHOTO MPOCTPAHCTBA ITI00aIbHBIX
COCTOSHMH..

ITorck “criepa B riryOMHY” CTaBHT BONpPOC O BHIOOPE MaKCHMATLbHOH IITyOMHBI I KaXJ0H
HecneryeMoi cucreMel. TIpH 3TOM MOXHO MCIONMb30BaTh TOJNBKO IBPHCTHYECKHE YTBEPKACHUSA,
HanpuMep, s moaa@ TPYIMbl U3 N YIPaBIAIOUIMX YCTPOHCIB JOCTATOYHO TeCTOBBIX
MOCNIEAOBATEILHOCTEH JUTHMHBI n+1.

B mpouecce cTpoeHnd rpada JOCTHXHMOCTH ONPEACIMEOTCA TECThl OO BLIICOMHCAHHOMY
IIpaBHILy. JlocTHXeHHe HOBBIX BeTBell miarpaMMbl TIpoBepsAeTcd KaK HpPH COBMNAajJeHHH
r106aNbHBIX COCTOSHHIL, TAK M IPH MaKCMMyme [IyOHHBI Mowcka. 3TOT MNOMXOJ HAAeT

TIPHEMIIEMOE KOJIHYECTBO TECTOB NPHEMIIEMOH JUTHHEL.

4. BAIIHIALIHA BO BPEMA I'EHEPALIHH TECTOB

4.1. VUcnonb3oBaHHe YTBEPKICHHH

VTBepXAeHHS, OTHOCIUIHECS K HEKOTOPhIM TOUKaM B AMAarpaMMe, ONpENENsroTcsS MPOCTo.
Touka momxuHa 6brTH BHIOpaHa B kagectBe CO (TOUKH NpephIBaHHA) H KaXIplil pa3, Korja BO
BpeMsa HCCIICIOBAHHS MHOXeCTBA robanbHBIX COCTOSHHMIT 23Ta TOYKa JOCTHTaeTIcH,
aBTOMATHYECKH ITPOBEPACTCS YTBEPXJCHHE. YTBCPXACHHE NODKHO OBITh HAaNMCaHO Kak
nackaneBckas GyneBckas (yHKIMS C BO3BPAaTOM HCTHHBI B HOPMAILHOM CIydae. Kax i
cirydaii, Korjia YTBEpX)ACHHE 0Ka3aJIoch JIOXKHbBIM, ABTOMAaTHYECKH PErHCIPHPYETCA M BO BpeMs
HCCIIEIOBAHHA MHOXECTBa INI06aIbHBIX COCTORHHII COOTBETCTBYIOMAd MOCICHOBATEILHOCTD
BHEIIHHX CHTHAJIOB COXPaHACTCH. CymiecTBEHHbIM HCIIONb30BaHHEM mepme}ﬁ[ii ABIIACTCS
JTIONIOJHWTEbHAA IPOBEPKAa aHOManMii mnoBedeHHA. HanpiMep, dHacTHIHBIE TYTIHMKH,
Kacalomyecs TONMbKO HEKOTOPBIX IIPOLICCCOB, XAPAKTEPHIYIOTCH TEM, 9TO HX OYEPENM BXOIHBIX
CHI'HAJIOB ITYCTBIE H MPYTHE MPOLIECCH HAXOIATCA B COCTOSHHAX, B KOTOPBIX B JaHHOH cmami
HE MOryT ObITh MOCHAaHBI CHIHANbI B TYIRIKOBYIO YacTh. YTBEPXKUEHHA CO3HATEILHO Hazo
oTiemaTh 0T SDL-ommcanus caMoii cucTeMbl, 9To0bl HE MeINaTh IeHepalMH 3PHEKTHBHOL O

KOJia U1 UeIeBOH cpejipl.

4.2. MopemmpoBaHue Baympaiiu Ha 6aze MSC
RIGA-SDL He uMeer aBHO# noynepxku MSC kak cpencrBa cnemmduxamn. Jma MSC ner
PeIaKkTopa, HO TECTOBLIE PE3YIbTAThl MOLYT ObITh MoKa3aHs! B popme MSC. IToaTomy TombKo
HeslBHAasA MOJIEPXKa 1 BamuaaliH Ha 6aze MSC Moxer ObITh obecniedena.

Orpanudennas Bammgamus Ha 6aze MSC peaiusHpoBaHa Ha JBYX ypoBHAX. BO IEpBBIX,
HEKOTOpbIe. NEHCTBHA HaZo BKIDOYMTH B .CEMaHTHYCCKHH TecTep. B mpocreimmem _c.uyqae
CEMaHTHICCKUH TeCcTep B KaXIbli MOMEHT BPeMEHH TpebyeT BBIIOIHEHHA TONLKO ONHOH
TPaH3aKIMH (T.€., CTHMYII - TPYIIa MOMEHTAIbHBIX CHCTEMHBIX OTBETOB). Torma ¢parMeHT
MSC, onpeensroImmii, Kakue OTBETbl JOJUKHBI OBITH MMONYYeHbl Ha MAHHBII CTHMYJ, MOXET
OBITH MPOBEPEH CEMaHTHYECKHM TECTEpPOM (ICHCTBHTENHLHO MOJYyYEHBI M BCE MOMEHTAJIbHBIC
OTBETHI Ha MAaHHBII CTHMYn). B OITHCAHHOM NMPHMEHEHHH OTBETHBIE CHIHAJNBI JOJDKHBI

GrUTLTPHPOBATECA COINIACHO HX MapaMeTpaM (T.€. HOMEPOM YIPaBIIIONIEro YCTPOHCTBA), TaK

XaK OpBaroT 3anmo31aibI€ OTBETHI MPEXHHX CTHMYJIOB.

10

Bo-BTOpBIX, Pe3ymbTaThl NPOBEPKH JOIKHB! ObITh MOMEUICHBI B NEPEMEHHOH, KOTOpas
HCINIONBL3YeTCs B HEKOTOPOM yTBepxuaeHHH. Takum ofpa3oM, aBToMaTHeckuit ordeT o MSC
aHOMAJHMAX BMECTE C COOTBETCTBYIOMHMH ITOCIEXOBATENLHOCTAMH BXOJHbIX CHIHAJIOB
CO3JIa€TCA BO BPEMA TEHEPALHMH TECTOB. BpeMa NMOCTYIUIEHHS OTBETOB MOXET OBITh IPOBEPEHO

nonoGHEIM 06pa3zoM.

5. PEAJTH3AIINA CPEJCTB TECTHPOBAHHA

3akoHg9eHa repBas Bepcusi MPaKTHYECKH HCIIOL3YeMOro reHepaTopa TecToB Ha 6aze RIGA-
S_DL. 3a OCHOBY KOTOPOTO B3ST 3KCHEPHMEHTANbHLIN IeHEpaTop TeCTOB, OIMICAHHLIH B [2] H
HMEIOIIMH HECKONIbKO 3HAYHTENbHBIX ymaydimeHud. OmHuM M3 (axTopoB MpPaKTHYECKOH
HCIIONIb3YEeMOCTH ABIISiETCA HOBas ObICTpass onmepalms COXPAHEHHA/BO30GHOBIICHHS MOJHOIO
cocTosHMA cHcTreMbl SDL mpd BbITONHEHHH. B ompeleneHMH NpPOCTPaHCTBAa INI00albHBIX
COCTOSHMI MMeITcA 6obine Bo3MOXHOCTeH. ONTHMH3HPOBAHO XpaHEHHE aKTHBHBIX BEPINHH
rpada JOCTHXHMOCTH.

Jlanee ormcaHbl HEKOTOPLIE JeTanu paboThl ¢ TECTOBLIM reHepaTopoM. Bo mepBeIxX, CTpOHTCA
orucaHHe cHcTeMbl Ha SDL W NpoHCXODMT € pydHas oTJNajKa JUIi yCTpaHeHHs IpyObIX
OLTHG OK. Cremyronmii mar - oAroToBKa 3aKa3a IeHepalHK TeCTOB (lest generation request).
Yxa3bBaercs, KOTOPbIE MPOLIECCl JOJDKHBI OBITH BKIIIOYECHBI B KPHTEPHH NMOKPBLITHS BETBEH, a
TaKKe MPOoNEecchl, CoCTOSHHA KOTOPBIX ClIeXyeT BKIIOYHTh B riobanbHoe cocTosHHe. 3amaeTcs
TOYKM MpPEPHIBAHHA, MaKCHMallbHas [IyOHHAa NOHMCKa H HEKOTODbIC NDPYIHE MapaMeTphl.
VYkaspBaercs 010k, BbIObIpacMbIi B ﬁaqecmc BHEIDHEH cpempl (B HameM cloydae 3To
(dopMambHbI TecTep). PalpaGorwsik eme XOJDKEH HammcaTh CHEMHAIbHBIE IaCKATEBCKHE
6ynecxuie (ymxumm (user functions) I KaXAOH TOYKH MpPEPbIBAHMS, MNpENCTaBITOLIHE
YTBEPXKIEHHS B 3THX To4KaX. [IpH 5TOM MOXHO HCIIOIL30BaTh KaK NMEPEMEHHbIE IMPOLIECCOB, TaK
H CrieIMalbHLIE CPEICTBA JOCTYNA K COCTOSHHAM IpPOLIECCOB H OYepeliAM CHrHajoB. Kpome
3TOro, 3HAYECHHS TeX IEPEMEeHHBIX npoheccon, KoTopble pa3paboTdHK BbIOpal A1 BKIIOYEHHS
B I1106albHOE COCTOSHME, ClIEAYET MOMECTHTD B CrelHaNbHble (HKCHPOBaHHbBIE TIEPEMEHHbIE U1

HCIIONIL30BAHHA IIPH CTPOCHHH TEKYIIET O rnodanmsHOro COCTOSHHA.

11

Kax Bumso u3 Puc.2, cHavgana SDL-omucaHHe TeCTHPYEMOH CHCTeMbl 0ObIdHBIM 00pa3oM
obpabaTbiBaeTcs aHamM3aTOpOM H reHepaTopoM koaa B cucreMe RIGA-SDL. Kpome
NacKajleBCKOro KoAa HCClIEMyeMoii CHCTEMBI ﬁacxaﬂencmrii KOJI CO3JIaeTCH TAK)XKE B pe3ylnbTarTe
NpHMEHEHHA TIpoLieccopa 3axasa (request processor). Ilociie 3TOro Wi NONy4EHNUA BbITOHHMOH
3ala9y TecTHpoBaHusA (executable test generator) IPOMCXOMHT KoM H cbopka (linking)
BMeCTe ¢ noAnporpaMMaMu nojepxxku SDL 1 mporpaMMoii reHepaliM TecToB (Zest generation
kernel). Bemomsenue 3Toil 3agadu (run of test generator) JaeT KaK TecTbl (1ests), TaK M
coobmenus o6 aHoMmamusx (anomaly reports). Bo BpeMa IeHepaliM TeCTOB CO3JacTcs

HeoObA3aTENbHbII MPOTOKOJNI TEHEPALIHH, T03BOIOUN MOTOM AaHATH3HPOBATh TOBENCHME

User
functions

TECTHPYEMOH CHCTEMBI.

Test
generation
request

Synta
Renf.leggglce yn écozglyzer, Request Pascal Executable
. processor compiler, test
in SDL generator linker generator
| — 1 |
Pascal Test Ron of
code generation test \
kernel generator Tests
Anomaly
reports

Prc.2. CxeMa reHepalum TecToB

6.ITEPBBIF OITBIT TEHEPA Hun TECTOB

IlepBas ycnemHas MNONbITKA CeHEPAUHH TECTOB NpPOBENEHA VI YNPOIIECHHOH CHCTEMbI
MOGHILHOH pagHoTenedOHHOMH CBA3H. JTal0OHHAA MOJETL CHCTEMBI COAEPXHT 18 mpomeccos ¢
obmmM wmcioM coctosmit 37. Tpebyercs moMHOE MOKPHITHE BETBEH Ui OBYX MPOLIECCOB
CHCTEMBI ¢ OOImMM wicnoM BeTBed 96. HammcaH coOOTBETCTYIOWME ceMaHTHYECKHil TecTep,
BBIIONHAIONIHI CBOX 6a30BYI0 ()YHKINMIO - HAXOXICHHE NapaMeTpPoB BXOJHBIX CHIHAJOB,
nepeaBaeMbIX CHCTeMe MoOHIbHOM cBf3H. BriOpaHa omHa TouYka TIpephIBAHMA B
CEMaHTHYCCKOM TecTepe. PaccMaTphiBalOTCs TOMLKO COSTHHEHMA 0T MOGIS K MoOWmo (mobile-

to-mobile communications) W 3T0 OCYIECTBIEHO S5 Pa3NIHBIMH BXONHBIMHM CHTHAJAMM M3

12

dopMabHOro TecTepa. INMobanbHOE COCTOSHME OMPENENCHO 3 pasiHYHBIMH crocobaMu.
ITepBbiM BBIOpaHO CaMOE €CTECTBCHHOE OMpENEJICHHE - PEFHCTPHPYETCH, B KAKOM COCTOSHHH
HAXOMUTCA IIaBHBIA YIpaB/IHOLIMI MpoLiece BO BCEX YNMPABIIOMHX YCTpoiicTBaXx. Bo BTopoM
CIy9ae pPeruCTPHPYETCS TOIMBKO MacCHB MEPEMEHHBIX CEMaHTHYECKOI0 TeCTepa, ONpEIeIOIIHA
COCTOSHHSA BCEX YNMPaBISIOLIMX YCTPOHCTB, OITycKas COCTOSHHA IpolleccoB. B TperheM ciydae
PECHCTPHpYETCs CyMMapHas HHGopMalHs BbIIEYITOMAHYTOr0 MacCHBA - THCIIO YIIPaBIIAIOIIHX
YCTPOHCTB JaHHOI'O THIIA, HAXOAINMXCA B JAHHOM COCTOSHEH .

Jns Bcex Tpex ompejieseHHii r1obanbHOro cocTOSHHSA OBUIH JOCTUTHYTBI BCE BLINOJHHMbIC
BETBH B BhIGPAHHBIX CYmIECTBEHHBIX NPONECCaX, H MOMYYCHO OZHHAKOBOC HCIIO TecToB. Kax
BHJIHO K3 TaOJHIBI 1, TPEThe OMPEHENCHHE YMEHBLIAET MPOCTPAHCTBO IT106aNbHbIX COCTOAHHH.
BpeMs renepaumu Tectos Ha IBM PC ¢ mporteccopom Trma 486 cpemeii ckopocTH 6bU10 0T 2
J0 4 MHHYT .

B pesymbTaTe TecTHpoBamMsa ObuUmd HafimeHs! 2 ommbxH, KaxJaas M3 KOTOPBIX co3jalia
TYIHKOBYIO CHTYALIHIO B PEIKO HCIIOIb30BAHHOM CITydae.

Ha pTopoM 3Tame TecTHpoBaHHe IPOBEAEHO WA MOMHOH (complere) cHcTeMBI MOOHILHOH
CBSA3H B CIIyda€ aHAaJIOTOBOro PaJMOTPakTa. B 3TOM ciiydae 3TalloHHas MOJENb COAEPXHT 18
IpOLIECCOB ¢ 0OIHM THAIOM cocToaHk 65. ObLee YHCI0 BeTBeH s nokpbiTHA - 183, O6umiii
o6beM SDL xomma 1.5 pas 6ombine g9eM B nepBoM BapHaHTe. UHIO BXOTHBIX CHTHAN0B - 36. Ha
3TOT pa3 CeMaHTHYeCKHH TeCTEp Tropa3fio CIOXHee, H He TOIBKO H3-3a YBEIHYEHHA JHCIIA
BXOJIHbIX CHTHAJIOB, HO TaK)XE H3-3a TOrO, 4T0 B HEM OBbUIM BKIFOYEHBI TPOBEPKH, NOCTYNAOT JIH
BCE 3aIUIAHMPOBAHHBLIE MOMEHTANbHBIC OTBETHBIE CHIHANbl CHCTEMB! Ha NaHHBIA BXOJHOM
CHIHall ¢ QopMalbHOro TecTepa (CoriacHo cmocoby, omicanHoMy B 4.2). Bemm HammicaHbI
TAKXKC YTBEPXKICHHA, KOHTPOJMpPYIOUIHE YHCIO ITOJYYCHHBIX OTBETOB. B rimobammHOM
COCTOSHMH PErHCTPHPYIOTCA COCTOAHHMA BhIOpAaHHBIX [MIPOLIECCOB, a TAaIOKe 3HAYCHHA
NEPEMEHHBIX chaquccxofo TecTepa, CYINECTBEHHO XapaKTEPH3YIOIUHMX COCTOAHHE CHCTEMBI.
Onpenenenue r106adbHOrO COCTOAHMA YTOYHSAIOCH BO BpeMs TECTHPOBAHHMA, B KOHIIE
3KCIICPHMEHTA MOJIyIeHO 46 TecTOB IpHU obmmeM wicie rmobdaJbHbIX COCTOSHHH - 6754. Takoke
KaK H B NepPBOM ClIydae ObUIM JOCTHIHYTHI BCE BHIIOJHHMBIE BETBH B BLIOpAHHBLIX Ipolleccax.
Bpems reHepalpm TecToB 651.&0 okoio 50 muHyT Ha IBM PC ¢ mpoueccopoM Tina Pentium. Ha
9TOT pa3 cucTreMa OblIa ropa3fio JIydine NpoTeCTHPOBAaHA PYIHbIM crniocoboM. TeM He MeHee npH

aBTOMAaTHIECKOH ICHEPAaLMH TCCTOB YAAJIOCh HalTH CYIHECTBEHHYI0 CEMAaHTHYECKYIO 01]1}[6}(}‘ B

13

cucreMe, I H3-32 HeNpaBHIbHOrO omneparopa Nextstate B JHarpaMme NpPOH3IOLITIO
HEnpaBHIIbLHOE pa3beHHEHHE BbI30Ba K3 MyOmm4HoH TenedoHHoH cetH. OCHOBHYIO polb TYT
- CHITPAJI0O MMEHHO MPOBEPKA YTBEPXKIEHHI 0 KOPPEKTHOCTH OTBETHbIX peakiii. Bsumi HalIeHbI
H 6onee Menxue onmbKH B IackaleBCKMX MpOLIEAYpax, HanmpHMEp, Bbldada HENpaBHIbHOIO
HOMEpa YCTPOHCTBA P HEKOTOPHIX PEAKO YNOTpediseMbIX KoMOHHAIHIX MapaMeTpoB.

PeaympTaThl 060HX BapuaHTOB IaHbl B Tabmuue 1.

Tabnuna 1.

Tests Global states
mobile-to-mobile 1 -1 51
mobile-to-mobile 2 7 51
mobile-to-mobile 3 7 31
| complete system 46 6754

OKCIIEPUMEHT MONHOCTBIO MOATBEP/FUI NMPHMCHACMOCTD OIHCAHHOIO METONA IEHEPALHH
TECTOB JUIS TEIEKOMMYHHKAITHOHHBIX CHCTEM JaHHOTO pasMepa. [IpaKTHYecKMM
TIPEHMYINECTBOM OIMHMCAHHOI'O METO/A TECTHPOBAHHMA IO CPABHEHMIO C KIaCCHYECKUMH PYYHBIM
ciocoboM ynpaBisSeMbIMM TECTOBLIMH JpaiiBeEpaMH 0Ka3ajlloCh OFPOMHOE KOJIHYECTBO
KoMOHHAIMH BXOXHBIX CHTHAJIOB BO BpeMs IEHEPALH, B TOM THCIIE PEIKO BCTPEYaIOLIMXCS Ha
NpakTHKe. IMEHHO 3TO MO3BOJISET MPOTECTHPOBATh MPAKTHUECKH BCE BO3MOXKHBIE CHTYALMH B

CHCTEMCE.

3AKITHOYEHHE

B cTraThe ormMcaH METOX aBTOMATHYECKOH EHEPAlMM TECTOB M IEPBBIC €r0 YCIEUIHbIC
TNIDHMEHEHHA B TECTHPOBAHMH IMpOrpaMMHOro ofecnedeHHs U1 CHCTEM MOOHILHOH
pamHoTENedOHHOM CBI3M. IIpHo6pereHHBIH OINBIT IO3BONAET YTBEPXKAATh, YTO ONHCAHHBI
METOJ TNPHMEHHM H B TECTHPOBAHUH IMPOIPaMMHOro obecredeHHsA APYTHX NPOEKTOB, JaXe
TaKHX, pa3Mep KOTOPEHIX ropasfo 60mIne onmHcaHHOIO.

ABTOpEI BRIpaxaer OnaromapHocts A. Kamic 3a NoCTOSHHYR MOMOINL B peajH3aliH

reHEpaTopa TECTOB.

14

CITMCOK JIMTEPATYPbBI

J.Barzdip$, A.Kalnip, M.Augustons. SDL Tools for Rapid Prototyping and Testing. - In:

SDL'89: The Language at Work, North- Holland, 1989, pp.127-134.

A Kalnipd. Global State Based Automatic Test Generation for SDL. - In: SDL'91: Evolving

Methods, North-Holland, 1991, pp. 309-312
G.J Holzmann. Design and Validator of Computer Protocols. Prentice-Hall, 1991, 493p.

A EK, J.Ellsberger. A Dynamic Analysis Tool for SDL. - In: SDL'91: Evolving Methods, North-

Holland, 1991, pp. 119-134.

_ AEk. Verifying Message Sequence Charts with the SDT Validator. - In: SDL'93: Using Objects,

North-Holland, 1993, pp. 237-249.

B.Algayres, Y.Lejeune, F Hugonnet, FHantz. The AVALON Project: A VALidatiON
Environment For SDL/MSC Descriptions. - In: SDL'93: Using Objects, North-Holland, 1993, pp.

221-235.

A.Zaim, F.Calikoglu. Using SDL in a Commercially Available Wide Area Coverage Trunking

Mobile Radio System development. - In: SDL'93: Using Objects, North-Holland, 1993, pp. 41-49.

A Auzing, J.Barzdips, JBicevskis, K.Cerans, A Kalnip3. Automatic Construction of Test Sets :

Theoretical Approach.- In : LNCS, Vol 502, Springer-Verlag, 1991, pp.287-360.

15

GRADE Version 3.0

Business Modeling
- Language Reference Manual

Infologistik GmbH
Munich, September 1996

GRADE BM LANGUAGE REFERENCE MANUAL

GRADE BM LANGUAGE REFERENCE MANUAL

Table of Contents
1 INTRODUCTION 7
1.1 Notational conventions 8
1.2 GRAPES-BM model tree _ o 9
1.3 Task visibility 11
2 ORGANIZATIONAL STRUCTURE DESCRIPTION 12
2.1 Introduction 12
2.2 ORG diagram) o 1
2.2.1 Elements of the ORG diagram 12
-2.2.2 Attributes of ORG elements 13
2.2.3 General structure of ORG diagram 16
2.2.4 The formal semantics of ORG diagrams . 17
2.3 Competence table 18
3 USER DEFINED TASK TYPES AND USER DEFINED ATTRIBUTES FOR
TASKS | 19
4 EVENT TABLE ' B ' 21
4.1 General structure 21
4.2 Timer definitions 22
4.3 Complex events 24
4.4 The semantic aspects of event behavior 25
8 TASK SPECIFICATION DIAGRAM - T T - ' 26
5.1 General form and role of TSD 26
5.2 Referenced task symbols 28
5.3 General contents of the task body 30
5.4 Triggering condition - | 31
5.4.1 Simple cases 31
5.4.2 Syntax in general 32
5.4.3 Semantics of triggering condition 335
5.4.4 Control flows in triggering and semantics for occurrences 35

GRADE BM LANGUAGE REFERENCE MANUAL

5.5 PERFORMER expression
5.5.1 Syntax of the performer expression
5.5.2 Semantics of the performer expression

5.6 Other elements of task body
5.7 Decisions

5.8 Output events

5.9 Input events

5.10 External tasks

5.11 Data stores and data objects

6 TASK COMMUNICATION DIAGRAM
- 6.1 Role of TCD diagrams

6.2 Elements of TCD diagrams
6.2.1 Internal task symbol
~ 6.2.2 External task symbol
6.2.3 Timer symbol
6.2.4 Referenced internal task symbol
6.2.5 Referenced external task symbol
6.2.6 Referenced timer symbol
6.2.7 Decision symbol
6.2.8 Data symbols
6.2.9 Event arrow
6.2.10 Access path
6.2.11 Auxiliary symbols
6.2.12 Refinement of complex events

6.3 General rules of TCD structure

6.4 Graphic layouts of the TCD diagram

6.5 Links between TCD levels -

6.6 GRAPES-BM model development strategies and too) support for them
6.7 The alternative way: from TSDs to TCD

6.8 Formal consistency rules between TCD and TSD

6.9 The syntax for non-simulatable models

7 TRANSACTION SEMANTICS OF TCDS

7.1 The concept of the transaction

38
40
4
43
44

45

46
46

47
47
48
48
48
49

.49,

50
50
51
5]
52
52
53
53

56
59
61
62

63

64

64

GRADE BM LANGUAGE REFERENCE MANUAL

7.2 Default behavior of transactions
7.3 Transaction control facilities

7.4 Attributes of transactions

8 ADDITIONAL STRUCTURING FEATURES OF BUSINESS MODELS

8.1 Interaction of primary tasks

8.2 Independent tasks and the multiple use of tasks

9 SIMULATION PARAMETERS AND THEIR USAGE

10 DATA IN GRAPES-BM
10.1 Constants

10.2 Data Expressions

11 GRAPES-BM SEMANTICS FOR SIMULATION

11.1 Preparation for execution - tree expansion

11.2 Event routing

11.3 Starting the execution, timers
11.4 Starting a task
11.5 Ending a task

11.6 Sending an event

12 SIMULATION STATISTICS
e ... 12.1 General principles of automatic statistics gathering
12.2 Statistics and warm-up period

12.3 Statistics for tasks
Definitions of variables

12.4 Statistics on performers
12.5 Statistics on events

12.6 Use of transactions for user defined statistics

64
66

69

71
7

72

74

79
79

80

81

81
82

83

84

84

85

85
87

%1

94

96

GRADE BM LANGUAGE REFERENCE MANUAL

13 INDEX

98

1 Introduction

GRAPES-BM is a semi-formal language for modeling and simulation of business processes. It is oriented
toward a detailed description of various kinds of complicated business systems: offices, information

systems, production processes, enterprises etc. GRAPES-BM supports the modeling of both the dynamic
behavior and organizational structure of business systems.

The application areas for GRAPES-BM are:
« Business Process Reengineering
e Analysis of workflows in business systems

e Systems analysis and requirements specification in Information System design.

GRAPES-BM supports two modes of usage:

e. a semi-formal mode for modelers describing large business systems in a concise and easily readable

¢ a formal executable mode for simulation of business systems in order to gather quantitative mfonnatlon
~ on their behavior.

The Language Reference Manual describes the precise syntax and semantics of GRAPES-BM in its .
entirety, both for semiformal and formal usage.

The description of system behavior in GRAPES-BM is based on two fundamental concepts: tasks and
events.

Tasks correspond to any activity performed in a business system. Large tasks are decomposed into chains

of smaller ones using Task Communication Diagrams (TCD). This diagram displays the business process
in an easily readable flowchart type form.

Tasks have a number of formal and informal properties:
e triggering condition

e performer specification

e duration .. _ -

o user defined attributes

¢ informal description

. objectiveé

and others.

All properties of a task are defined in a Task Specification Diagram (TSD). The main properties of a task
are visible also inside its symbol in the TCD diagram. There are two kinds of tasks: transformation tasks
and decision tasks. Decision tasks describe activities with possible alternative outcomes and have decision
symbols attached to them. Decisions may be informal or formal.

The other fundamental concept is event. Events represent everything (signals, information, documents,
etc.)that move from task to task or influence a task in a business system. Events are represented in TCD
and TSD diagrams by arrows linking task symbols with the event name adjacent to it.

=

GRADE BM LANGUAGE REFERENCE MANUAL

There are message events, control flows and timer events in GRAPES-BM. Message events may carry data
with them and this data may influence the behavior of tasks.

TCD and TSD diagrams may also contain data store and data object symbols which have informal
meaning in GRAPES-BM.

The organizational structure of a business system is described in GRAPES-BM via the ORG diagram. This
kind of diagram strongly related to the traditional ORG-chart. Though, it is more formalized in the sense
that all of its elements may have formal attributes which influence the behavior of a system

GRAPES BM contains also some additional tables:
e ATR for describing user defined task attributes, associated with a task type

e ET for defining events (data types for message events, time moments for timer events, etc.)
s CMP for describing performer competencies
e AT for describing access to data stores

e SP for defining simulation parameters. o~

GRAPES BM also uses two subtypes of DD diagram type borrowed from GRAPES/4GL.
e DD DATATYPE for describing data types of message events
»_ DD ER for defining entity-relationship models associated with data stores.

- PD diagrams may also be used as pure comments for tasks. Other GRAPES/4GL diagram types are not
used in business modeling.

" The diagrams and tables descn'bmg one busmess model are kept together by a spec:lal “hcader dlagram)
BM, which has no content in and of itself in version 3.0. There may be as many task refinement levels via

TSD and TCD diagrams as necessary in the given model. Tasks may be refined to whatever level of detail
required by the user via TSD and TCD diagrams.

A GRAPES-BM business model may be a standalone model or alternatively one or more business models
can be subordinated into a system, model by placing them under a CD diagram in a system model.

This document describes GRAPES-BM V. 3.0. . Though the main principles of GRAPES-BM V. 2.0 have
been retained, the language has undergone significant changes. ORG diagrams, CMP and ATR tables have
been added. TSD and TCD diagrams have retained their meaning, although a number of elements have
been added to facilitate behavior description. Remote tasks have become referenced tasks, with some
_modifications to syntax and semantics. Referenced tasks are used now also in TSD diagrams, Existing

business models in GRAPES-BM V. 2.0 may be converted to V. 3.0, with some manual adjustments due to
changed semantics.

The Language Reference Manual has the following structure. First, the model tree and associated concepts
are described. Then, the formal description of each diagram or table type follows. After that, some special

features involving several types of diagrams are discussed. The document concludes with the summary on
some auxiliary topics, such as the use of expressions.

1.1 Notational conventions

The separators shown below are used in the syntactic notation in this document. (To distinguish them from
terminal symbols, they are printed in boldface.)

CHAPTER 1 INTRODUCTION

[l

{}

l

e
-

Optional element

Group of elements that can be used alternatively
Separator for alternative language elements
Repetition - null or muitiple '

Repetition - one or multiple

In the simplest cases X1, ..., xn is written instead of x {,x}* .

In some places, the standard notation traditionally present in BNF style language grammars is used also in

this document:

nonterminal ::= syntax_definition -

means that this nonterminal (which is a part of a larger syntax construct) is to be replaced by the given

syntax definition.

Yet another convention is on lexics in GRAPES-BM.

Identifiers are strings starting with letter and containing letters, digits and underscore characters. Their
_ length-may not exceed 32 characters. GRADE editors permit the use of blanks in identifiers during input,
but nevertheless they are later internally replaced by underscore characters. By default, GRADE editors
also show and print these names with blanks inside. GRADE can also be configured to show names as they
are stored in the repository, with underscores, using the option Options/Settings/Underscores visible. But
__all simulation oriented components show the formal names with underscores. Uppercase and lowercase
lerters in identifiers are treated as identical in language syntax (but they are distinguished by editors).

1.2 GRAPES-BM model tree

Just as in other GRAPES-family languages, a business model is represented as a hierarchy of diagrams and
tables. This hierarchy is described via the model tree.

The model tree for a standalone business model has the following structure:

the business mode] is headed by a special “header diagram™ BM, which serves as a placeholder for the

business model name;

to the right of the BM diagram the auxiliary diagrams ORG, CMP, ET, SP can be found for that
model. The ORG and CMP diagrams are described in section 2, the ET diagram - in Section 4, and SP
is a special table used for simulafion which is described in section 9;

just under the BM diagram there may optionally appear ATR tables - one for each task type defined in

the model. If no task types are defined, there are no ATR tables in the model tree. ATR tables are
described in section 3;

one or more DD and/or ER diagrams may be placed just under BM, for use in the Business model;

each task has a row in the model tree. This row is started by a CM diagram, and then the TSD diagram.

If the task has a refinement TCD diagram, this diagram (having the same name) is placed to the right
of TSD. A task which is a part of (a refinement of) another task is placed just beneath it; and

atask may have an AT table and PD diagram. These diagﬁms are placed in the far right of the row.
PD diagrams are purely illustrative in BM.

GRADE BM LANGUAGE REFERENCE MANUAL

Fig. 1.1 shows an example of the model tree for a standalone business model.

(B9 ¢ CarRental [ORG ¢ [CHIP [T (5P
—ATR © TASKTYPE commf

AR © TASKTYPE tp1

—BTR © TASKTYPE tp2

D] ¢ DATATYPE DD1

© TASK Task1 EEO e [AT]c [PD]C
DU © TASK Task11 OCO o [AT]c [PO]C
@ TASK Task12 OCTOo (Ao [PO]C
@ TASK Task2 i@ e [AT]o [PO]C
® TASK Task21 Bl e (AT]c [PD]O
@ BUSINESS_PROCESS Task21_A
@ TASK Task222 COo [AJo [FO]C
@ TASK Task223 OCho [A]o POJC

Fig. 1.1 Model tree (standalone business model)

Business modeling may also be mixed with system modeling in GRAPES/4GL . In that case:
e the business model may be placed under any CD diagram (in most cases it will be under top CD).

e the only “outer” diagrams visible inside the business model are DD and ER diagrams (they must be
placed beside or above BM).

e there may be several disjointed business models in a tree. These models are independent of each other..

" Fig. 172 shows a model trée with the business model as part of a system model. =

[CMT'@@e OBJECT Environment [PTT] [PTo)
[CM] —l e DATATYPE CommTypes
[CM] |—#Eill e CarRental o R RN [SP |

[T —JN @ TASKTYPE comm1
T —{El ® TASKTYPE tp1
cw — e TASKTYPE tp2
cwM g ® DATATYPE DD1

[CM_ | = ® TASK Task1 - H@8e [AT]o [PO]C |
[CM] @ TASK Task11 [TCOc [AT]c [PDO]c
[CM] e TASK Task12 [(TCD o [AT]c [PDO]c
[Cw] S8 @ TASK Task2 e [AT]o [PD]c
[CWM] [l ® TASK Task21 e [AT]c [PD]C

H @ BUSINESS_PROCESS Task21_A
[CM] B € TASK Task222 [TCO < AT]z PO
[CM] BoE) € TASK Task223 [MCOc AT | c [PD)
[C™M] “—TO): OBJECT Obj1 [PTT][FT9]

Fig. 1.2. Model tree (business model as a part of system model)

The structure of the BM model tree is as follows: -

|0 A 3

CHAPTER 1 INTRODUCTION

e top-level tasks which have reﬁhing TCD diagrams (referred to as primary tasks) are of special
significance- they represent the main business functions of a system

o alternative refinements of a task via several TCD diagrams are permitted. The “main” (or the sole) TCD
diagram has the same name as the task itself and is shown in the same row. Other alternative TCDs
have their individual names and are placed in subsequent rows just beneath the TSD diagram.

1.3 Task visibility o

An important concept in GRAPES-BM is the visibility of tasks.

The visibility rule used is the traditional one for GRAPES (as in V 2.0). Only these tasks are visible in a
TCD diagram whose TSDs are :

- directly under the TSD whose reﬁnement is being deﬁned by the TCD (i.e., at the same level as the TCD
) - the direct refinement case; -
- somewhere above the given TCD (i.e.,at the same level as one of the grandparents) - refinement via a ‘
common task ;

- directly as one of the grandparents - recursive refinement, though not permitted for simulatable models.

Thus a TSD diagram is invisible if it placed in another refinement branch. If two tasks with the same name
are in the same branch, only the lower one is visible. TSD names may reappear in different refinement
branches-<thiese tasks have nothing in common. Any task may have an unlimited number of occurrences in
TCDs wherever it is visible, all these occurrences mean a reference to the appropnate defining TSD
diagram

Normally, a task which is part of another task is placed just under it. If there is a need for common use of

this task-in several FCD diagrams, the task must be moved higher up in'the model tree: ‘See more.on this
_topic in section 8.2.

All other elements of a business model - events, organizational umts, task types/attributes, competencnes -
may only be global for the whole business model.

2 Organizational structure description

2.1 Introduction
These are completely new features not found in V2.0. They describe the organizational structure, in a broad
sense, of the enterprise being modeled.

Organizational structure is described by means of two new diagrams, or more precisely, one diagram and
one table:

e ORG diagram
e Competence table (CMP) o

Both the ORG diagram and the CMP table are optional. ORG must be present if performers are specified in
tasks. Only the elements of the ORG diagram may be used as performers in tasks for simulation purposes.

2.2 ORG diagram

The ORG diagram is the basic facility for organizational structure description. The organizational structure
is described in a tree-like manner typical to traditional ORG-charts. The main difference is in more
formalized syntax and semantics. The elements of the ORG diagram may have formalized attributes. An

interesting feature of the ORG diagram is the possibility to create separate subtrees within znﬂRG -chart as
separate subordinate trees within the same ORG diagram. -

An example of the ORG diagram is given in Fig. 2.1.

2.2.1 Elements of the ORG diagram

The following element types are present in ORG diagrams

1. single organizational unit:

2. multiple organizational unit:

3
name

3. single position:

4. multiple position:

CHAPTER 2 ORGANIZATIONAL STRUCTURE DESCRIPTION

5. single resource:

6. multiple resource:

[Lrame]

The informal semantics of element types is the following:
¢ organizational unit represents enterprise, branch, department, laboratory, etc.
e position represents any position type, like CEO, manager, programmer, secretary etc.

s resource represents any equipment or other reusable resource such as a car, computer, printer, machine,
or tool.

s

The following relationships between elements are present in ORG diagram.
* consists of

* owns

Elements may follow each other according to the following rules:
1,2 may be followed by 1,2, 3,4 via consists of

1,2,3, 4 niz;y t;_;?ollow_éd by 5.6 via owns)
5,6 may be followed by 5, 6 via consists of

1t means, that both single and multiple element of the same kind may have the same relationships.

The same graphical notation - a line from an element to its follower is used to represent all types of

relationships. This is due to the fact that the relationship type is determined uniquely by the types of the
source and sink elements of the line.

The requirement that elements of ORG have a certain hierarchy is based on specified rules, which are
essential for the informal semantics of the diagram and its readability. The violation of these rules does not
affect simulation. Therefore no syntax checks are performed to ensure that-elements follow-each other
correctly in the current version.

ORG diagrams may contain the standard free comment symbol which does not affect semantics.

2.2.2 Attributes of ORG elements

Name is the identifier of each element in an ORG diagram. Aside from that, anv element of ORG diagram
may have the following optional attributes:

e type - internal or external, internal is by default, external specifies that the organizational units
belongs to an external parmer of the enterprise;

¢ number of instances (for multiple ones),

GRADE BM LANGUAGE REFERENCE MANUAL

e availability;
e cost per hour;
e competence (identifier, one or several, comma separated, i.e., actually a competence list can be used);

e efficiency level. It can be any real number, e.g., 0.5, greater than 0. In this case it means that given
performer can do his work with efficiency 50%. Duration time for the task corresponds to the
efficiency level 1. The real duration can be obtained via the formula

Jformal_duration / efficiency_level.

If a task has several ANDed performers/resources in its performer expression in a TSD, the minimal
efficiency_level (from the referenced ones) is used in the formula.

¢ employee name- only for position type elements.

The default setting for the Type Attribute is that for internal actors. The External type attribute is shown by
the dashed line used for the element contour, e.g.,

— e ——— —

~ Normally the usage of external organizational units (and their "components™) as performers should make
the task an external one, but formally, task extemality is independent of performer externality.

Number of instances may be used only for multiple elements. If it is not specified, an unlimited number of
instances is assumed. The number of instances must be a non-negative mtcger constant. Zero mears the
~ performér is indvailable, one is the samé as a single performer. : -

Avnilability specifies the time intervals when the ORG element is avaiihble as a performer. Availability is
defined as a sequence of time unit specifications in a descending order. It includes years, months, days,
hours and minutes. Two abbreviated formats may also be used:

- from years to days (date part only)
- only hours and minutes (hour part only)
Day specification (a day constant) may be in one of two forms
- date of month (from 01 to0 31)
- weekday (from MON to SU'N]

Year spec1ﬁcat10n (year constants) are four-dlglt numbers in the form 19xx or 20xx month spec:ﬁcanons
are from 01 1o 12.

Each year, month and day speciﬁcaﬂons may be
- an asteris;k character (not in parenthesis!)
- a single constant value (in parenthesis or not)
- a single interval i.e. constant-constant (in parenthesis)
- a comma-separated list of constants and/or intervals (in parenthesis)

The separator between the date units is a period. The date and hour parts are separated by just one blank
space (if both parts are present).

—a Y

CHAPTER 2 ORGANIZATIONAL STRUCTURE DESCRIPTION

The hour part (if present) is always placed in parenthesis. Any hour constant contains combined hour and
minute notations, separated by a colon, i.e. hh:mm, where hh is from 00 to 23 and mm from 00 to 59.

The hour part may be:
- a single constant
- an interval , i.e. constant-constant
- a comma separated list of constants and/or intervals

The whole availability specification may contain no additional blank spaces (except just one blank space
between date and hour parts). The whole specification is contained in double-quotes. All numbers always
contain two or four digits respectively.

The ends of an interval must be in increasing order. It is not permitted to mix the date of month and
weekday specifications in one availability definition. If an interval including the end of the month is to be

specified, it must be split into two intervals, e.g. (01-03,25-31). Invalid dates such as 02.30 never make the
ORG element available, although no error is reported.

P

Examples of availability specifications:
”(08:00-17:30)"

Yk + (05-20) (09:00-18:00)"
"% % (MON-FRI) (08:30-16:15)"

"% % (MON-FRI) (09:00-13:00,4:00-18:00)"
"'”*._{Gél_bs):;.-(MON—FRI)"

Y% *_ (MON,WED) (10:00-14:00)"
”(1995-1997) . (05,09) .01 (09:00-16:00)"

w 01 (00:00-23:59)" - .a.\fail@ble on the first ofevery_month,O{]-Zti (5415 neve‘r_uségl!} o
"% % _01" - the same as previous

The semantics for availability are the natural ones. * means no restrictions on the unit. All intervals and
value lists with different units are always combined together (e.g., working hours are applied to all
specified working days). If the lowest unit has a single constant value, the availability is valid while this
unit has the specified value. Omitting the date part means availability every day. For example, “(17:30)”

means availability for one minute every day at 17:30 (a very strange performer, certainly. a more realistic
case is availability for just one day every month).

Cost per hour is an integer or float constant. It is used to calculate automatically the cost of a task, by
‘multiplying it with'a task’s duration.’ T T T T e ’
The Competence list of an ORG element specifies its competencies (from the CMP table, see 2.3).

Competence is a performer characteristic in a broad sense, which may be used in task specifications to
select a perfarmer with the given characteristics. It is mostly used with positions.

Employee name may be used only for single positions. If there are several similar positions distinguished
only by employee names, the position symbol has to be repeated the required number of times. Employee
name must be used as an identifier in GRAPES-BM, since it is the only way (aside from competencies) to

select one specific performer (in a task’s performer selection expression) from many with the same position
name.

There are two display modes for the ORG diagram: the short and the long display forms. In the short form
no attributes of elements are visible in the diagram, except number of instances and externality (which are
always visible). In the long form:all attributes (which have been defined by the user) are visible inside all
elements of ORG. The same two modes exist for hardcopy printing.

15

GRADE BM LANGUAGE REFERENCE MANUAL

Mil

Administration

‘ informatics_departiment ‘

Artif_intel_laboratory \

SE_laboratory

—l Informatics_department ‘

| SE_laboratory |
| 3”

Independent_labs

Head

| Building 41
- [| SE_programmer
LlMathematics_depanment |
. . 3]
SE_computer

{[Fer)

Fig. 2.1 Example of ORG Diagram (in the short mode)

2.2.3 General structure of ORG diagram

In general, the ORG diagram appears as a forest containing several trees. The nodes of the trees are the
- above mentioned elements, and-branches represent the above mentioned relations-between the element
instances (in a normal way, from top to down).

A typical situation in ORG diagrams, is such that the leaves of a tree are refined further by other separate
trees in the diagram. The reference is made by virtue of the fact that the leaf has the same name (and
element type) as the root of the refining tree.

The names of separate objects (i.e., the names of tree roots) must be unique diagram-wide. Names of non-
root objects may repeat. A tree may be referenced several times, each reference denotes a separate object
(with the same characteristics). Any of the elements may serve as a tree root. There may be several
unreferenced roots.

Another requirement is that units and resources directly under a common parent must have unique names.

There is an exception for positions. Position is the only performer type, where several equally named
objects may be placed at the same non=top level (with different competencies or emplovee names, as a

16

CHAPTER 2 ORGANIZATIONAL STRUCTURE DESCRIPTION

rule). If such a feature is used, then none of these equally named position elements may have a resource
symbol under it.

By default, the ORG diagram editor is in the “vertical refinement” mode, as shown in Fig. 2.1 However, it
is possible at every node (independent of other nodes) to switch to the horizontal layout for successor
nodes, then switch back to the vertical layout at some lower point and so on. In this way the example from

Fig. 2.1 may be displayed as depicted in Fig. 2.2 Thus one can obtain also the traditional ORG-Chart form
for an ORG diagram.

Ml

_
I
Administrabon Informatics_de ent 3 Building Mathematics_department
o] T s | (2|

(_Director [Accounting | informatics_gepanment
1
l Accountant u UM [Hslad] |w_intsl_||abmtoq | | SE_laboratory

Fig. 2.2 Example of Horizontal ORG diagrams

'2.2.4 The formal semantics of ORG diagmlns

Since the ORG diagram is a set of pure trees, every occurrence of an element (unit, position, resource) with
a given name defines a real separate element, which can be used as a performer. Two equally named
elements in a tree represent two performers, which can be distinguished by using qualifiers in performer
selection expressions.

Any independent tree, whose root is referenced nowhere, represents an independent performer (of the
appropriate type). However, as soon as a reference to it (i.e., an equally named leaf in another tree)

appears, the performer is placed in the referencing tree and there is no more independent copy of it. Thus in
the ORG example (Fig. 2.1 or Fig. 2.2) there is only one instance of Building or SE-laboratory available
during execution.’If the root name occursin atree in-a non-leaf position (i.e., with a subtree bepeath it), -

then this occurrence is marked as an error. In other words, it is forbidden to make a local redefinition of an
independent tree.

The same consists of (or owns) semantics is assumed for descendants of multiple elements. It means that
there are sevéral elements with the same internal structure or ownership, e.g., 3 (unnamed) laboratories

containing the same set of positions, 4 programmers each owning a personal computer (with equal
characteristics) etc.

In addition, inheritance is applicable to availability and efficiency. If at any level (starting from the top
one) one of these attributes is specified, and is not specified in a subsequent level (or levels), then the value
1s copied to this subsequent level (or levels). All element types are equal from the inheritance point of
view, only the tree structure is significant. When at a lower level the attribute is again defined, it redefines
the inherited value. Both for availability and efficiency it means-complete redefinition.

GRADE EM LANGUAGE REFERENCE MANUAL

Cost and competence are not inherited, since they may have different meanings at different levels.

The general default for attributes (when nothing is inheritecl) is always for availability, 1 for efficiency,
none for competence and 0 for cost.

If an ORG-unit cost per hour is required, then either the explicitly specified value is taken, or the sum of
components (just one level below) cost per hour is taken (if the explicit value is absent).

2.3 Competence table

Competence table (CMP) defines the list of competencies which can be used in the business model. Each
competence definition entry contains its sole attribute - the competence identifier.

All table entries may contain a comment.

The competence identifier can be an arbitrary identifier with no additional semantic meaning. All
competence identifiers should be unique. Its sole purpose is in enabling a task’s performer expression to
select one from a group of similar performers based on a specifically defined competence. Competence is
mainly used for positions, where it can help to select one from several equally named positions at the same
level. Nevertheless, competencies may be used to give a certain object-oriented style to the ORG diagram.
They may be used to model subtype/supertype relations between ORG objects as well as “deputy”
performer type relationship. Competencies also permit the user to select performers for tasks based on
qualities independent of their placement within the organizational structure.

-~

3 User defined Task Types and User

Defined Attributes for Tasks

These are completely new features in GRAPES-BM, not found in V2.0. Any Business Model may contain
tasks of different types. Each task type has its own list of attributes.

A task type is defined by the corresponding attribute table (ATR), which contains the type name. Untyped
(tasks without assignment of a task type) tasks have no attributes.

Additionally, task types can be defined without defining attributes by leaving the ATR table blank.

Example of Attribute Table is given in Fig. 3-1.

Name Type Default Unit Formula
cost_s Integer 10 DM
= people integer 1
man_hour duration duration*people
name string
redo float 0 %
days list 1,3,5
total_costs integer

cost_s*people

Fig. 3-1. Example of Attribute Table ATR

The Attribute Table contains the following columns: .~ . .

Name defines the name of an attribute. It is an identifier. All names within a table must be unique.

Type defines the data type of the attribute. Only the following elementary types can be used:

integer, float; string, time, duration.

An additional special type LIST is permitted, in this case the value of the attribute may be any list of
elementary data elements. String and LIST may not be used for derived attributes. nor may they be
referenced in formulas. The default maximum length for strings is 255. Neither the additional type
attributes (as found in GRAPES/4GL) nor user defined “elementary types” may be used here.

The sole use of string attributes in this version is to allow the user to define informal characteristics for a

task for later export to other tools (e.g. “workflow” systems).

GRADE BM LANGUAGE REFERENCE MANUAL

Default defines the default value of the attribute. A proper constant (i.e., literal) of the appropriate type or

anamed constant from SP may be used here. The default value is used if the attribute is not re-defined in
the TSD where it is used.

Unit defines a text string which defines the units of measurement for the attribute (typically: DM, USD. %
). The unit has no effect on attribute value, e.g., 70% is treated as integer 70 in formulas. The unit is a pure
comment and does not appear outside the ATR table.

Formula defines the value of derived attributes. It is an arithmetic expression composed of other attributes
and constants. The formula may be redefined in a TSD for an individual task, and input event fields may
also be referenced there. If the type is meant for elementary tasks, the formula may contain only standard
arithmetic operations. If the task type is meant for transaction (non-elementary) tasks (see more in section
7.4), the formula may contain also so called vertical operations (SUM, MAX, MIN, AVG). The operand in
such operations may be any numeric or DURATION type attribute in any ATR table. The semantics of
such operations are explained in section 7.4. Random generator functions of the appropriate type may also
be used. Named constants from SP may also be used. See more on formula syntax in section 10.2.

Formulas may also contain the two predefined attributes of the task: duration and cost (the duration .
reference in formula of Fig. 3-1 means the task duration, which is of type duration). .

A derived attribute may reference another derived attribute in its formula, but no circular references are
permitted. The actual reference validation is performed in the TSD during simulation where redefined
aftributes are also taken into account. The order of the entries in the ATR table has no semantic meaning.

Numeric constants are defined in the standard syntax.

~Time constants have either the full date_time form or date only; standard separators are used, e.g.,
“1995.05.19 18:38:00”(seconds must be present in the time part). Duration constants may contain any
consecutive units from days to seconds in descending order (separated by colon), e.g., “100d:5h”,
“1h:30m:53s”, “95m”. The numeric elements in duration constants may be integers or floats, e.g., “0.5h™ is
- also permitted. See more on constant syntax in section 10.1._

‘A task of a particular task type may possess all the attributes which are defined in the corresponding ATR
table for this task type. For each task of a given type, some attributes may be redefined in the TSD of a
particular task. The definitions of the remaining attributes are taken from the ATR table. If both a default
value and formula are defined, the formula takes precedence. If both columns default and the formula in
the ATR are empty for an attribute and it is not redefined in the TSD, the attribute has undefined (NULL)
value (and consequently, is ignored in any statistics computation).

Several ATR tables may contain equally named attributes. No restrictions applv unless such an attribute is
used in vertical operations. In the latter case the attribute must have the same type in all ATR tables where
it appears.

4 Event table

4.1 General structure

The event table (ET) describes all events appearing in a business model. There is only one event table per
business model. In the model tree, ET is located in the “header” row of a business model, i.e. to the right of
BM. Fig. 4.1 shows an example of the event table. The event table has the following columns:

e pame

e category

* type

e Persistence interval

e Transfer time

e Description
Persistence | iransfer [, . . .
N Cate: T . escription
== e glegory ype mterval tme
Application | message AppIDT “5h”
Car material “30m”
Moming timer time
(“t_t‘*
ol _ §6:007) . . =
Earthquake | message “Sm” exponential
({53m’!)
Registration | complex (Application,
Car)
From5to6pm | timer time “1h”
(“*_1!_15
17:00”)
Every2m timer REPETITION
(exponential
(“2m™))

o Fig. 4.1 Example of Event Table

'fhe name of an event is an identifier. Any event is visible in the whole business model.
Category has one of the predefined values:

e message - any event carrying some information

e material - an event carrying some physical objects

e timer - timer event

* complex - complex event containing several elementary events

GRADE BM LANGUAGE REFERENCE MANUAL

or a user defined category name, which can be any identifier. There is no formal difference between
message, material and any user defined category since they are treated informally in simulation and are
meant only to enhance the understandability of a business system. Events of any of these categories may
have a data type specified and, consequently, carry data of the specified type. If the type is not specified,

then the event carries no data (it is like a Signal). All these categories are sometimes informally referred to
as message events.

Timer and complex events are of a completely different nature, and they are described in 4.2 and 4.3
respectively.

Pure control flows have no name and, therefore, don’t appear in ET at all.

Type is a predefined or user defined type name. It specifies the data carried by the event. Type must be
either elementary (from the predefined list: integer, float, duration, time,string) or a user defined record.
This record may contain other records in turn (in arbitrary depth). In general, the types of record fields may
be arbitrary. But the subset of record fields really used in the data context of business modeling (i.e.
referenced as input or output event fields in attribute sections, SET-options, REPEAT-options, triggering
conditions or decisions) must satisfy a stronger requirement. These fields must be:

¢ elementary

o have one of the types integer, float, duration, time, without any additional type attributes.

Events of the type string are also not permitted to be referenced in the above-mentioned data context. The

type validity of each event or event field to be used in the context of data is checked at the point of its use
in the TSD..

For timers the same type column is used for time moment definition, and for complex events it is used for
component definition.

Persistence interval column is either empty or contains a duration constant

‘The duration constant may be a proper constant or a so called constant duration expression. This is a
duration expression which may contain random duration functions and permitted operations, but with
proper constants as the only ultimate arguments. See more on precise syntax in section 10. Named constant
from SP may also be used for persistence interval.

The persistence interval characterizes the time period for which the event persists in an input event queue.
If the interval is not specified, the default persistence is

e Os for timers
e unlimited time interval for any other event

See more on actual event semantics in 4.4,

" Transfertime: this is2 duration constant-or-a-constant duration expression (the-same as for persistence)-
which defines the time necessary to transfer the given event between the sending and receiving task. The
transfer time can be redefined in the TCD diagram (separately for each occurrence of this event). Named

constants from SP also may be referenced, either directly or in random expressions. See more on syntax in
section 10.

Transfer time is ignored for timer events. For an event route consisting of several arrows (see 6.5) transfer
time is counted once.

4.2 Timer definitions

Timers are specified by entering their definition in the fype column.

Timer definition syntax is in one of the two forms:

22

CHAPTER 4 EVENT TABLE

e time form
s repetition form
The time form has the syntax:
TIME (time_specification)
where time_specification has a similar syntax to the availability definition in ORG diagrams.

More precisely, time specification is a sequence of time unit specifications in descending order. It includes
yéars, months, days, hours and minutes. The sequence always starts from years and may end at any of the
units. The only exception is that hours and minutes are always combined - if hours are present, then
minutes also must be.

Day specification (day constant) may be in one of two alternative forms:
- day of month (from 01 to 31)
- weekday (from MON to SUN)

Year specifications (year constants) are four digit numbers in form 19xx or 20xx, month specifications are

two digit numbers from 01 to 12, hour specifications - from 00 to 23 respectively, minute specifications -
from 00 to 59.

The separator between years and months and between months and days is a period, between days and hours
- exactly one blank space, between hours and minutes - a colon. .

_Each of the year, month and day specifications may be
- a single coﬁstant value (in parenthesis or not)
- an asterisk character (not in parenthesis)
-~a single interval, i.e.-constant-constant, in parenthesis — . -
- a comma-separated list of constants and/or intervals, in parenthesis
Hour and minute constants always appear combined. Thus, hour-minute specification may be
- asingle constant in the form hh:mm (with or without parenthesis)

- asterisk either in the hour position, or in the minute position, or in both (*:mm, hh:*, *:*), with or
without parenthesis

- a single interval, i.e. constant-constant, in parenthesis

- a comma separated list of constants and/or intervals, in parenthesis
The whole time specification expression may contain no additional blank spaces (except the one between
days and hours). The whole specification is embraced by double quotes. Numeric values for month, day,
hour, minute must always contain exactly two digits.

Four asterisks may be-used instead of one in year position, and two asterisks may be used in month, day,
hour and minute positions. The semantics is the same, e.g., “**** ** **" s the same as “*.*.*”. Mixing
asterisks with digits is prohibited.

The ends of an interval must be in increasing order. All values in one list, i.e., both interval ends and single

constants must be in strictly increasing order. If an interval includes e.g., the end of the month, it must be
split into two, for example

“x * (01-05,15-16,28-31) 09:00™
The remark refers also to weekdays, e.g.,

(MON-TUE,FRI-SUN)

GRADE BM LANGUAGE REFERENCE MANUAL

for service closed on Wednesday and Thursday. Invalid dates such as 02.30 or 11.31 simply never occur.

Valid time specification examples:

“x * *09:00”
“* * (MON-FRI) 17:00” /* once per workday at SPM*/
“* * (MON-FRI) (09:00-17:00) /* once p}er minute during the business day */

“* (04-09).(TUE-SUN) (09:00,10:00,11 :00,12:{)0,_13:00,14:00,15:00,16:00)" /* once per hour, in
summer daytime, except Mondays */

“1996.*.04” /* on the fourth of every month in 1996 at 00:00 */
“* (03-08)" /* on the first of the specified months */

“rERR]SE /* quarter past every hour */

The special built-in function Start_time may also be used as a time_specification. Such a timer is activated™ ™
only once at the start of the simulation session. The syntax is:

TIME (Start_time).

A time-based timer is triggered every instant the smallest time unit explicitly specified in the time
specification becomes valid (but the periodicity of it determined by the lowest interval or * element).

The repetition form has the syntax
REPETITION (duration expression). - _
The duration expression may contain only. duration constants and functions.of constants, i.e.-the same style

- constant expression with random functions as those used in the fransfer time column. See more on the
syntax of such expressions in section 10.

Examples.
REPETITION(*10m:30s™)
REPETITION(UNIFORM(“1d”,”3d”))

Repetition-based timers are triggered periodically after the specified interval (constant or random) has
elapsed. The first triggering occurs after the specified interval has elapsed from the session start-up time.

-} more-complicated behavior in terms of time is required(e.g., for-a realistic simulation load generator),
timers must be combined with availability.

4.3 Complex events

Complex events have their own category. Their definition contains a comma separated list of elementary
events in Type column. Complex events in this version may not be directly sent or received by elementary
tasks. They may be only used for bundling together several related events having the same route in some
high level TCD diagrams. They must be finally refined into elementary events at some TCD level (using
syntax defined in 6.2.12). No nesting of complex events is permitted.

Transfer time and persistence is ignored for complex events. Timers may not be used as elements of
complex events.

CHAPTER 4 EVENT TABLE

4.4 The semantic aspects of event behavior

All events are created by tasks or timers and sent to their destination queues at other tasks. Then they are
taken from these queues and used for triggering those destination tasks (they are “‘consumed™).

If considered in detail, there are two types of event behavior in queues:
e lasting semantics

s enabling semantics.

For any category except timer, the “lasting” semantics is assumed. If the persistence column is empty, it
means “lasting forever”, namely the event enters the target queue and remains there until it is consumed by
the task; there is no difference whether the event alone triggers the task or several ANDed events trigger
the task. Lasting semantics is used also for control flows not definable in ET. “Enabling semantics” is
never used for non-timer events,

If the persistence column contains a duration constant, it means “lasting for this duration”, i.e., after the _
expiration of this period the event vanishes from the queue. i

On the contrary, for timers the “enabling semantics” always is assumed. An empty persistence column for

timers means enabling (“0s”) semantics. Explicit duration value d in this column means enabling (d) for

timers. The “enabling” semantics is the following. First, such an event persists in the queue only for the

specified time interval, after that it simply vanishes from the queue. In particular, enabling (“0s”) (which is

default for timers) means that event must be used at the same system time moment when it appears in the

~queue (a lot of actions may dccur at one system time moment, e.g., several task instances may start). Such
an event vanishes from queue when the system time is advanced. '

Second, enabling semantics is different from a consumption point of view. There is no difference when the
event alone triggers a task - it is immediately consumed from the queue after the triggering. However,
when an enabling-event triggers a task in an ANDed combination;-with one or more lasting events, the
enabling event remains in the queue (the lasting ones are consumed). Thus an enabling event can “pair”
with several sets of lasting events while it persists in queue. For example, if a task is triggered by e AND ¢,
where e is a lasting event and ¢ a timer with default persistence, then one instance of 1 pairs with all
instances of e which are present in the queue when ¢ arrives, and the corresponding number of task
instances are started (provided that there is sufficient number of performers available). Only the expiration
of the time interval deletes the enabling event from queue in such a situation.. Sometimes in rare instances,
several enabling events are ANDed (i.e. two timer events, one an interval the second a frequency are used
together), but note that the enabling events are all consumed at triggering in this case.

The consumption of timers depends on the exact set of events used for this particular triggering. When

there are ORs in the triggering condition involving timers, such as the expression (tim] AND el} OR tim2
_where tim] and tim2 both are timers, this should be taken into account (#im2 is consumed when it triggers

but tim1 is not).

Normally there is either zero or one timer in an input queue. However, if a persistence interval exceeds
repetition period (this may happen for random intervals) there may be more than one timer in the
corresponding queue. From the enabling point of view it makes no difference how many timers are in the
queue (if there is at least one), their consuming is as for other events.

v

5 Task Specification Diagram

5.1 General form and role of TSD

Any task used somewhere in a business model has a Task Specification diagram (TSD).TSD diagram
describes all properties of a task and its possible links to other tasks (its neighborhood).

Formally, the TSD diagram is the definition of the task. All properties defined there apply to all
occurrences of this task in any of the task communication diagrams. The ne1ghborhood description of a
task in its TSD is made up from all of its occurrences in TCD diagrams.

A task is called elementary if it has no further refinement via TCD diagram, and a task is called complex”
if it has at least one refinement via TCD. For an elementary task all of its properties are defined in its TSD.

Properties of a complex task are to a great deal redefined by its refinement. Complex tasks actually
correspond to transactions (see section 7).

From the functionality point of view there are transformation tasks and decision tasks. Transformation
tasks have only one possible continuation, while decision tasks have several possible continuations from
—which one or more is selected. Decision tasks are distinguished by the presence of decision symbols.
Transformation and decision tasks are not subtypes of TSD, these are just subclasses of the same diagram
The properties of a task (its triggering condition, performer expression, attributes, etc.) are described in the

- central-symbol of a TSD diagram - in the task body For decision tasks the body is follcwed by-deeision -
symbols. . .

The neighborhood description consists of input events and output events, represented by arrows. Input
events go from referenced task symbols (or referenced timer symbols) to the task body. Output events go

from the body (for transformation tasks) or from the decision symbols (for decision tasks) to referenced
task symbols.

Referenced task symbols correspond to the neighbors of the task as they appear in a TCD. Therefore each
referenced task symbol contains the name of the corresponding neighbor. On the other hand, referenced
task symbols appear the same way once more in the refinement TCD of this task. Thus these symbols
provide additional linkage between two adjacent levels of TCD diagrams (i.e., they improve linkage
readability and resolve ambiguities of linkage based solely on event names) Referenced task symbols are
--used-in representing both-ineoming-and-outgoing: links-of a task. oo -

Formally the TSD diagram consists of:

e body (always one);

e decisions symbols (if the task is a decision task);

e arrows for input/output events with event names assigned to them;

e referenced task (timer) symbols associated with input/output arrows, containing task names (or name
lists);

e textual detailing which may be placed on input/output event arrows beside their names to provide
additional details on event receiving/sending;

26

CHAPTER 5 TASK SPECIFICATION DIAGRAM

e data store symbols representing both informal or formal data stores or material stores. Symbols are
linked to body via possibly named access paths which represent data flows. The characteristics of these
flows are specified in AT tables.

e data object symbols linked to body via the same access paths

Fig 5.1 shows an example of simple TSD (a decision task case)

|(Remt) ,(aem J. (Rem3)|

[S — — B! | Sp— =

ev2

Ta'sk 2 C'ar_Renta_I) L D_store_1 .
Triggering condition : o
AND
Performer :

Perf1 AND Res1 D_object

Fig. 5.1 Example of simple TSD
There are some formal rules for TSD diagram structure:

e for decision tasks, output events may start only from decision symbols, but not from the body

e each referenced task (or referenced timer) symbol is associated with only one (input or output) event
arrow

e the referenced timer symbol may be associated only with input event arrow.

Though the TSD is the formal definition of a task, often only TCD diagrams are manuaily built by the user
and TSD diagrams are generated automatically by GRADE editors (see sec. 6.6 and GRADE on-line help).
If only those task properties are used which are visible in the TCD diagram, then TSD diagrams need no

manual modification and there is complete consistence between TSD and TCD. However, if a TSD

diagram (its body or decisions) are in fact manually updated, then it becomes the primary definition of task
properties, and not the TCD diagram.

In comparison with version 2.0, the TSD features have been significantly extended. Referenced task
symbols have been added and therefore referenced task symbols contain no names after conversion from
V.2.0. Some other manual updates may also be necessary.

In the next sections all elements of the TSD will be explained in detail.

27

GRADE BM LANGUAGE REFERENCE MANUAL

5.2 Referenced task symbols

The referenced task symbol in a TSD diagram represents a neighbor of the given task when one or more
occurrences of this task appear in some TCD. There are three kinds of referenced symbols:

;[—cag‘rrrm@—]-: referenced internal task
- i
1 !

ro===s aask_names -~~~ referenced external task
:_l-_-_-_-_:-_:-_-_::-_-_-_:-_-_-_:_:
U A A
e E N\ referenced timer .
: u u : i
P O0gQ :

The three kinds of referenced symbols represent neighbors, either internal or external tasks respectively, or

incoming timers. Referenced internal and external tasks may represent both incoming or outgoing links of
_a task, referenced timer may be only incoming. The referenced internal and external task symbols are

distinguished only for better readability. from the formal semantics point of view they are equal.

In general, both for internal and exr.emal referenced tasks, a name list (comma separaled) may be used
instead of single name:

For referenced external task the name list may also be empty (but not for an internal one). Such an empty
list corresponds to a neighbor which is an unnamed external task.

The main association between a task’s definition in its TSD and its occurrence in a TCD (and between TSD
and refinement TCD) is still via event names. Referenced task symbols with their names only help to detail
this assoc_iation-

Referenced tasks associated with inconming events are also called incoming referenced tasks; and the same
applies to outgoing ones.

Normally there are as many incoming referenced tasks (of the appropriate kind) and respective incoming
event arrows in a TSD as there are different events entering this task in a TCD. If in a TCD, several equally
named events enter the task from different tasks, then the names of all of these neighbor tasks are grouped

together in one referenced task symbol, associated with the given incoming event. All incoming control

flows normally also are represented by one referenced task symbol with an appropriate name list,
associated with the unnamed input.’

The situation is similar for outgoing events. Different events leaving the task (or one of the decisions in
case of a decision task) correspond to an equal number of outgoing referenced tasks. If several equally
named events leave the same source, their destination names are placed in one referenced task symbol.

This, in general, is the default appearance of 2 TSD when automatically created by GRADE editors.
However, it makes no-difference whether referenced task names are grouped in one list or they are placed

28

CHAPTER 5 TASK SPECIFICATION DIAGRAM

separately in several referenced task symbols. Formally, when a name list is used in a referenced task, it is
completely equivalent to several referenced tasks connected to the same partner.

Namely,

__-__j

(]

— — — N

[N

iy —y—y T oy i

It is permitted to combine in one referenced task’s name list, names of both internal and external tasks.

But the defaulteditor principle in the case of many equally named events is to place internal neighbor task
names in one internal referenced task and external neighbor task names in another external referenced task.
From the formal syntax point of view, grouping in name lists is completely irrelevant.

There is a mandatory requirement, that if there are several events with the same name (in particular, control
flows) then the name lists within the corresponding referenced tasks must have no common elements.
External referenced tasks may also have an empty name list if the relevant neighbor is an unnamed external -
task (but this “empty name” may be simply ignored, if the event comes/goes also from another named
task). If a neighbor of a task in a TCD already is a referenced task, it is represented in the TSD by the same
referenced symbol (the name (or name list) is also retained).

Each incoming timer is represented by a separate referenced timer symbol.

If a task has several occurrences (in one or several TCD diagrams), the referenced task name lists are
summed up from all occurrences.

Referenced task names in TSDs are semantically insignificant for incoming named events when a task is
elementary. In any case there is one queue for a named event (but there may be also no queue at all for this
event at a given task occurrence when there are no connections, see more in 6.5). For control flows

referenced names-have seme significance since there is potentially one queue for each-different referenced-
task name.

But for outgoing events, the referenced names are aiways the basis for event routing (see 6.5).

In any case, there should be no superfluous referenced task names in any TSD, except the natural name
lists appearing in case of several occurrences of the task. Superfluous referenced task names may cause
problems for simulation, see sec. 6.6. There are special GRADE editor facilities for removing superfluous
referenced task names (i.e., those not used in any TCDs).

On the other hand, all neighbor names from any of the task’s occurrences must appear in a relevant
referenced task symbol.

The special case is the TSD for primary (i.e. top level) tasks. Though there is no TCD above, such a TSD
may contain a referenced task symbol naming another primary-task. This option is used to ensure the
exchange of events between primary tasks (see more in 8.1).

GRADE BM LANGUAGE REFERENCE MANUAL

5.3 General contents of the task body

The task body is the main element of the TSD, where all task properties are described, in separate sections.
The following sections are available
e Task type

e Triggering condition

e Performer ekprcssion

¢ Informal description

¢ Objectives

¢ Constraints

¢ Execution mode

e Priority

e Duration

s Max instances

e Attributes

e Alternatives

Fig. 5.2 shows an example of a task body where all sections are present. All sections are optional, and there
may be a task , where only its name is present in its body. This name is always the task name itself.

The most significant (and most used) sections ﬁ‘om the behavior desmptlon pomt of view are triggering
—conditions, duration and performer.expression. . B = =

" These sections are described as the first ones.

(‘Task : task_name Type : Type_name h
Triggering condition :

ev1 AND ev2

Performer :

(Perf1 AND Res1) OR

(Perf2 AND Perf3 AND Res2)
Informal description :

Any text

_Objectives :.. S : =T o -
For something

Constraints :

This must be

Execution mode : Manual
Duration : "3h"

Max instances : 7

Priority : 0

Attributes :

Redo_probability: 30;
Personnel_costs: 23.5%ev2.costs;
Process_costs: COST*ev1.length
Alternatives :

A1: PROBABILITY=70 %

A2: PROBABILITY=30 %

CHAPTER 5 TASK SPECIFICATION DIAGRAM

Fig. 5-2 Task body in TSD

When a task appears in 2 TCD as an occurrence, the following sections of the body may also be present
there:

e task name

e triggering condition

¢ performer expression o
e task duration specification.

In a correct model, any task information included in a TCD must contain the same information as the
corresponding section in this task’s TSD, or be empty. GRADE editors provide support in maintaining this
data consistency since sections from the TCD are automatically transferred to TSD when a TCD is
modified. If the information in the TSD contradicts the corresponding section in the TCD (usually the
result of a manual modification to the TSD by the user), then in simulation the TSD information is used.
In addition, tasks in a TCD may contain sections which never appear in a TSD

e Qccurence comment

¢ transaction control options (START, NOSTART, END) (see more in sec. 7)

In a TSD, the informal descripﬁon already plays' the role of a comment, therefore there is no special
comment-section.

The fo!lowing_sections of the TSD are informal in character:
~» informal description
.o objectives . .. ___ -
e constraints -

e execution mode

5.4 Triggering condition

Triggering condition describes which events or event combinations must have arrived via incoming event
arrows from other tasks and, consequently, must be in the event queues of a task in order for this task to
start. When the task actually starts, the events which have triggered the task are removed from the queues.

This is known as the corsuming of an event combination.)

Triggering condition is significant only for elementary tasks.

5.4.1 Simple cases

The simplest form of triggering condition is that consisting of just one keyword
AND or
OR

AND means ANDing together all possible input events (which are present in the TSD). namely, one
instance of each distinct input event is required. If several equally named event arrows (i.e., from different
neighbors) enter a task, only one instance of such event is required. OR requires any one of the input events
to be present. Only this one event is consumed when the task starts.

GRADE BM LANGUAGE REFERENCE MANUAL

The Triggering condition may be completely absent as well. In this case the default simple AND is
assumed. ’

If only one input event enters the task, that event name also may be used as the triggering condition. This
again means the same thing - one instance of the event must be present.

5.4.2 Syntax in general

The general form for the triggering condition is a special Boolean expression using incoming event names.
This expression may be:

e astandard Boolean expression, using AND (high priority), OR (low priority) and parentheses from
incoming event names;

e special AND_expression;
e OR_expression built from special AND_expressions and standard Boolean expressions.

A special AND_expression is an and_list associated with one or more additional statements such as
WHERE, AND ALL, <integer> event_name, etc. Formally, the special AND expression is one of:
¢ (and_list WHERE condition)

e (and_list AND ALL event_name)
o (and*llist AND ALL event name WHERE condition)
* (<integer>event_name)
e (and_list AND <integer> event_name)
The and_list may be: -
o asingleeventname
e two or more ANDed Single event names.
The “&” character may be used instead of keyword AND, and the “|” character instead of OR.

A special AND expression must be enclosed in parenthesis, if it is ORed with another such expression. If it
is used alone, parenthesis may be omitted.

In other words, any “special element” (WHERE, ALL, grouping integer, optional event) may appear onlv
inside an ANDed (and bracketed) subexpression, which may only be ORed to the other parts of the
triggering condition expression. Thus the special elements may appear only inside one level of brackets
(which are mandatory when there are other OR parts), and there may be no ORs inside these brackets.

= 7" NOT operator is not'used it GRAPES-BM. - T

If and_list in a special_ AND_expression is followed by yet another event (connected via AND ALL or
AND<integer> options), then the name of this additional event may not appear in the and_list. For
example, el AND <2>el is invalid, use <3>el instead.

The general form for triggering conditions can be summed up as follows:

triggering_condition::= and_term {OR and_term}*
and_term::= stand_and_term | (special_and_term)
stand_and_term::= stand_factor {AND stand_factor}*
stand_factor::=

event_name| (stand_expr)--

32

CHAPTER 5 TASK SPECIFICATION DIAGRAM

stand_expr::= stand_and_term {OR stand and_term}*
special_and_term::= and_list WHERE bool_expr |
and_list AND ALL event_name |
and_list AND ALL event_name WHERE bool_expr |
and_list AND <integer const> event_name |

<integer_const>event_name |

and_list {{ AND event_name]}* [AND and_list}

and_list::= event_name {AND event name}*

Examples of valid triggering conditions
el AND e2
“el & e2
el OR e2
etfe2 o
el AND (e2 OR €3 OR e4) AND e5
el AND e2 OR el AND e3 a
€1'AND ALL€2" — - — AR .
<3>el ' -
el AND <3>e3
el AND e2 WHERE el.fl=¢2 fl
(el AND ALL €2) OR (el AND <3>¢3) OR €5
(el AND e2 WHERE el.f1=e2.f1) OR (el AND ALL e3) OR (el AND (e4 OR e5))
(el AND ALL e2)
el AND e2 [AND e3]

5.4.3 Semantics of triggering condition

If standard Boolean expressions are used, they have their intuitive meaning. Any minimal group of events,
which satisfy this Boolean expression is used for triggering. Subexpression e AND e also requires only one
instance of e to be present, which may have arrived from any of the sources (and only one instance is
consumed). Similarly, e OR e is the same as e. If two instances of an event are necessary for a task to
rigger, notation <2>e must be used.

The special AND expressions are used for group or selective triggering. Thus
eventl] AND ALL event2

is triggered, when there is one eventl and one or more event2 present in queues of the task. Then all
instances of event2 present in the queue are consumed together with one instance of eventl.

GRADE BM LANGUAGE REFERENCE MANUAL

Integer qualifier (which must be a constant) is used to define fixed size “packaging” of events. e.g.,
el AND <5>e2
requires one el and five e2’s to be present in queue, and they are all consumed at triggering.

If the and_list contains more than one element, just one instance of each is taken together with the required
number of instances of the last specified event. ALL and integer grouping may be applied also to timers (in
the role of the last event), but this is not a frequently used construction.

The expression <5>¢2 alone is also considered to be a special AND expression. I is used to specify just a
package of events e2 as the triggering condition. <1>el is considered to be identical to simply el, and,
consequently not a group triggering expression.

The WHERE condition is a Boolean expression operating on incoming event fields and task attributes.
Only the event (or events) from the and_list (beside which the WHERE condition appears) may be
referenced. The condition itself is a normal Boolean expression containing relational operators on
arguments, ANDs and ORs. The semantics is that only the event (or event groups) satisfying the condition
is used in triggering. Non-matching event instances remain in queue. For example,

evl AND ev2 WHERE ev].x1=ev2.x2

says that only those event pairs of ev1 and ev2, where the corresponding fields match, are taken from

queues and consumed for triggering. Elementary fields from any level (using the appropriate qualification)
may be referenced in WHERE condition.

Any task attributes may be referenced in the condition, and their values are specially computed at that

moment. If the value happens to be undefined (NULL). any comparison of it to any event field returns the
answer false.

Warning. If one of the attributes used in WHERE is based upon a random function, the attributes value
used by WHERE may | dlﬂ'er from the actual” value (used in task stat:sﬂcs)

- When ALL is combined with WHERE, only those instances of ALL-event. whtch sansfy Ihe WHERE

condition, together with appropriate singular event instances for and_list make a “package” of events,
which triggers a task instance and is consumed from the queues. Example:

el AND e3 AND ALL ev2 WHERE el.x=e3.x AND el .x=ev2.x

Here at least one matching ev2 must be in the package. All non-matching ev2 remain in the queue.

A special notation like
el [AND e2]

- where the AND-symbol together the event name. following it-is enclosed in square brackets, may be used as

the and_list forming the special AND expression. This notation means that the bracketed event is not
mandatory for triggering, but when an instance of this event is present, it does take part in the triggering
(and therefore is removed from the queue). Remember that if an event arrow enters a task symbol but the
event is not present in the triggering condition, then instances of this event simply remain laying in the
queue (except in the case where the triggering condition is completely absent). Square brackets may not be

combined with the other special expression facilities (WHERE etc.). There may be more than one
bracketed event, e.g.

el[AND e2][AND e3]

If several of the ORed AND expressions are true simultaneously, the first of them (from left to right) is
actually used for triggering. More precisely, any standard Boolean expression which is a top-level OR-part
of the triggering condition, is internally converted to its disjunctive normal form. As far as possible, the

34

CHAPTER 5 TASK SPECIFICATION DIAGRAM

order of events in the original source expression is retained. Thus after this transformation any complicated
triggering condition is an OR-expression, where each AND-term is either a simple ANDed list of events, or
a special AND-expression (i.e., one containing ALL, WHERE, etc.). If a triggering condition is already in
the disjunctive normal form, it is not transformed. During execution, each AND-term (from left to right) is
checked, to test whether all events in this term are present (at least one instance). For special AND-

expressions the additional requirements also are checked. The first term thus found to be true, is used as the
actual triggering set.

5.4.49 contrdl flows in triggering and semantics for occurrences

Nameless events represent pure control flow. They never appear explicitly in the triggering condition. They
either all are ANDed to the explicit triggering condition (if the triggering condition is a simple AND or any
more complex one), or all are ORed (if the triggering condition is a simple OR).

If more than one control flow enters a task, a separate queue is assigned to each of them. More precisely, a
potential input queue is assigned to each referenced task name associated to an incoming control flow in a
TSD (regardless whether they appear in one referenced task symbol as a name list or in several). <

But there is a general convention, that in every occurrence of a task only those input queues are built which
potentially may receive an event (or control flow) in this occurrence according to connection rules (see

6-5). The simple AND requires that an instance of event from each existing queue must be present (and is
consumed). '

To sum up, this-rule implies the most natural semantics, that in each occurrence of several ANDed (by
" default) control flows only all those really entering this occurrence are required for the task to start.

In OR cases, the presence of one of the contro! flows is sufficient for triggering.

The other consequence of this convention on queues and simple AND triggering, is that one occurrence of
such-a task-may have, eg., el, €2,-e3 as incoming events and-the otheronly el, e2 and beth-will-be--

normally triggered (TSD will have el, e2, e3 as-incoming events-and up to five referenced task symbols in
this case).

Complex events may not be used for direct triggering of tasks, they must be refined first. They also may

not be used for implicit triggering of elementary tasks (i.e. they are not allowed to enter an elementary
task).

5.5 PERFORMER expression

The PERFORMER expression (see PERFORMER section in Fig. 5-2) sets the criteria by which a
- performer orgroup of performers is'to be selected from the ORG diagram to execute the given task: These

performers must be available before the task can start. Performers are taken from the ORG diagram of the
business model.

5.5.1 Syntax of the performer expression

Any element of the ORG diagram (unit, position, resource) may be referenced as a performer in the
performer expression. In the simplest case, the performer expression is simply one of the available
performer names, e.g. secretary.

The general form of the performer expression is 2 Boolean expression built from performer_elements using
AND, OR operators and parenthesis. The “&” and “|” characters may be used instead of keywords as well.

GRADE BM LANGUAGE REFERENCE MANUAL

In the simplest case the performer_element is a organizational unit name, position name or resource name
from ORG diagram. If a name is not unique diagram-wide, then it should be qualified by including
corresponding higher level names from the ORG tree, e.g.,

SE_laboratory.Programmer
SE_laboratory.Computer.

If the performer is a multiple object (multiple unit, multiple position, multiple resource), the number of
performers (resources)actually necessary may be specified (before the qualified name), e.g.,

<3> SE_laboratory.Programmer
<3> SE_laboratory.Computer

If no number is specified, one instance from the multiple performers is assumed.

The number of performers may be used also if there are several equally named position elements at the

same level (from this point of view it is the same as if there were one multiple position with the appropriate
number).

" The performer expression will often also contain the specification of a necessary competence list (after the
keyword WITH), e.g.,

. <3> SE_laboratory.Programmer WITH COMPETENCE = Pascal, Cplus -

AND-semantics are assimed for the competence list, i.e. both competencies are required here
simultaneously.

If a performer or a resource is occupied by the given task only partly, e.g., only at 70% level, then it is
specified as follows

<3>SE_laboratory.Programmer WITH COMPETENCE=Pascal FOR 70%
The keyword ANY may also be used instead of position in a performer expression, e.g.,

SE_laboratory. ANY WITH COMPETENCE=Pascal

Some more examples of performer expressions follow:

(<2>8E_programmer AND SE computer) OR(<2>Artif_int_lab.Programmer
WITH COMPETENCE=0PS5)

(perfl AND res1) OR (perf2 AND res2). o

36

CHAPTER 5 TASK SPECIFICATION DIAGRAM

The syntax of the performer expression is the following:

performer_expression::=perf_and_term {OR perf_and_term}*
perf and_term::=perf factor {AND perf_factor}*

perf_factor::=performer_element | (performer_expression)
The general syntax of performer_element then is the following:

performer_element::=unit_perf | posit_perf | res_perf
unit_perf::= [num] {unit _name.}" unit_name[comp]
posit _perf::=[num] {unit_name.}‘ posit[.employee_name] [comp] [pu-cent] i

res_perf:=[num| { unit_name.}" [posit_name.] {resource_name.}" resource_name[comp] [percent]

~ comp::=WITH COMPETENCE = competence_list

posit::= position_name | ANY

percent::= FOR i:nteger_cdnstant %o -

num::= <integer_constant>

compctence_list::=c0mpetence_name{,competence_name}"'

In general, the referenced names should be in accordance with the ORG diagram. Unique names at any
level may be unqualified. Non-unique names must have necessary qualifications (unit_names, composite
resource names) which make them unique.

However, it is permitted also to use “incomplete” specifications, i.e., when there are equally named
performers in several places of ORG diagram, then by omitting some of the highest level qualifications, we
can have access to all these places, e.g., to programmers from several departments. It is not permitted to
omit “middle™ qualifiers, each element must match to a tree fragment.

If the position is qualified by employee name, only the specified one is seized. This facility makes sense, if
there are several similar positions distinguished only by employee names.

ANY position may be the lowest item in a performer element or may be followed only by WITH
COMPETENCE specified. No resource or employee name may follow ANY. On the other hand, ANY may
be preceded by unit specification, or used alone. When used with a unit specification, it means any position

directly under this unit, while when used as a single keyword it means any position in the entire ORG
diagram.

5.5.2 Semantics of the performer expression

When a compound organizational unit is specified as a performer, this includes all positions and resources
from the specified unit in the performer expression. When the unit is seized none of the components of the
unit are available for another task. Similarly, a composite resource means all its components. Position and
elementary resources mean just the specified objects. o

— T

GRADE BM LANGUAGE REFERENCE MANUAL

x AND x is the same as <2>X. Therefore depr] AND dept!.secretary makes no sense (the first element

already requires the whole dept/). The number of required performers should not exceed the number of
available ones. 1f no required number is specified, 1 is implied.

The FOR option does not affect the seizure of a performer or a resource - it is always seized for 100%. The

cost is also not affected. The only effect of the FOR option is within performer statistics, where productive
utilization is computed accordingly.

Performer availability periods are taken into account only when starting a task. If the task execution period
runs over into an unavailability period for a performer, the performer completes the task in accordance
with its duration.

In fact, the availability of specified performers acts as part of the triggering condition. If the riggering
condition is true for some event group in a task’s queues but none of the specified performer combinations
is available, no triggering occurs, and the events remain in queue. Certainly, events with limited

persistence, like timers, (see sec. 4) may vanish from queue while waiting for performers, so these event
instances may trigger no task at all.

5.6 Other elements of task body

Now let us describe thé other elements of task body. Fig. 5.2 shows an example of a complete body.
_Triggering conditions and performer sections were already described above.

Section TYPE specifies the type name of the task. If no user defined type is used, the section is empty. The
type specifies which attribute table is used for task attributes. Unty'ped tasks have no attributes, except the
predefined ones.

INFORMAL DESCRIPTION, OBJECTIVES and CONSTRAINTS sections contain any informal text.

EXECUTION MODE section may contain one of the keywords: MANUAL, AUTOMATED ,
INTERACTIVE.

PRIORITY section has the syntax
PRIORITY : integer const

with zero as the default value (the highest priority = 0, so the greater the constant, the lower is the priority).
Priority governs the competitions of tasks for performers. Explicit priority greater than zero must be
“'defined for “background™ tasks, thus allowing normal tasks to seize performers as Tirst. ="
The precise semantics of priority.

Let us assume that several tasks are ready to trigger (i.e., there is at least one triggering event set in each
task’s queues) but they are not triggered because no performer (common to all of them) is available. When
a required performer becomes available, then among tasks which could now be started, the one with
highest priority is selected to start.

1f tasks compete for different performers, their relative priority has no effect on their starting order (i.e., all
tasks are started as soon as possible). If there are ORed performers, for each performer set becoming
available there is an independent competition.

A task being executed is never interrupted by a higher priority task (non-preemptive scheduling).
There are two predefined attributes, DURATION (of type duratlon), COST (of type float) for each task.

CHAPTER 5 TASK SPECIFICATION DIAGRAM

The DURATION attribute is described in the DURATION section of the task description. COST has no
explicit description in TSD. Instead, the value of this attribute is computed dynamically, using
DURATION from tasks being performed and the COST PER HOUR attributes of the performer(s) selected
to perform this task from the ORG chart (namely, the actual duration is transformed to hour units and the

obtained float value is multiplied by the appropriate cost per hour value). The COST attribute may be
referenced in other formulas, however.

Cost per hour is summed for all performers used. Efficiency (which affects the duration) is also implicitly
taken into account,

If a compound unit is defined as a performer (but not the elements of it), then the COST PER HOUR for
the whole unit is used (if it is present), otherwise the sum of the costs of a unit’s direct constituents is used.

The DURATION section may contain a proper duration constant, a named constant from SP, a random

duration function, or a duration type expression, containing as arguments the above mentioned values, and
in addition, attributes-of incoming events and task attributes.

Restriction : only attributes of events which are always present may be referenced, an execution error
message appears when missing event is referenced.

If a group triggered event is referenced, then the first instance of it is taken. Any task attribute may be used

in a duration expression, and the derived values are specially computed at that moment. If the expression
results in NULL value, zero duration is assumed.

Warning. If an attribute with a random value is involved, the value may be different from the final value of
the attribute.

Examples:
g e e e e .
“Qd10 | '
EXPONENTIAL(“2h"™)*order.quantity

line.duration*letter.length

ATI'RIBUTES section may contain some of the attributes for the given task type. The attributes present in
the corresponding ATR but not included in ATTRIBUTES section retain their definitions (default value or
formula, with formula having priority), if such are provided in ATR’s. Those without definition have

undefined (NULL) value. No assagnments are permm.ed to string attributes in this section, if the model is to
be used for-simulation..- s - P — T _ N

The presence of attributes in the ATTRIBUTES section completely redefines their value by the provided
expression (which may be a constant or a proper formula). If a new formula is defined here, there are wider
possibilities for its arguments. In that case input event fields may also be used as arguments. They are
referenced as event.field (or event.fieldl.field?2 field3, if the record is nested, the actually referenced value
must always be elementary). It must be ensured that the event type has such a record field, and that the task
is actually triggered by such an event (otherwise NULL value appears together with a warning at runtime).
When an event has an elementary type, just the event name is used for referencing its value. Predefined
task attributes may also be used in formulas. Each attribute setting is terminated by “;” character. After the

last attribute, the “;” character may be optionally inserted. Thus attribute setting is a sort of assignment
statement.

If an event e2 appears in a “group triggering form”, i.e., el AND_ALL €2 or el AND <10> e2, then SUM,
MAX, MIN, AVG operations may be applied to fields of €2, e.g., attrS: SUM(e2.x1). If an ordinary
arithmetic operator is applied to such a group-event, the first instance is taken.

39

GRADE BM LANGUAGE REFERENCE MANUAL

Random values may be used freely in attribute formulas. See more on expressions in section 11.

Each possible attribute from the corresponding ATR table may be redefined only once in the
ATTRIBUTES section. The order in which the attributes are redefined in the section has no semantic
meaning.

The retained attribute definitions from the ATR table and the redefined ones from the attributes section in
tasks together are sorted in an order where an attribute referencing another attributes in its final formula is
evaluated after the referenced ones. If a circular reference is found, an error message is generated (i.e., such

an ordering is forbidden). The attributes in a TSD are evaluated during simulation in the order defined-by
this sorting.

A special case is attributes of transactions (non-elementary) tasks, which are evaluated at the corresponding
transaction end (see sec. 7). Besides other attributes of the task, formulas in transactions may contain also
attributes of other (elementary) tasks inside vertical operations (SUM, MAX, MIN, AVG). Here “vertically
processed” attributes are referenced purely by their names. Any arithmetic or duration type attribute from
any ATR table formally may be referenced in a vertical operation. If several ATR tables contain equally
named attributes, their types must also be equal, if these attributes are being “vertically processed” in
transaction attribute formulas. Formulas of transactions may not contain event fields. Any task instance

having the referenced attribute and which belongs to the transaction instance is taken into account. See
more on it in sec. 7.4.

MAX INSTANCES section defines the maximal allowed number of simultaneous instances of the task.

~This i an additional absolute limit on the number of instances, besides the performer selection expression

together with the ORG diagram which also define a limit on the instance number.

ALTERNATIVES section appears only when there are several alternative refinement TCDs under a
complex task. It contains their names and probabllmes The GRADE tool supports automatic extension of

" the alternative section when new alternatives are inserted directly in the model tree. For top-level tasks, the

Alternatives section is valid, when this top level task is “called” in some TCD (see 8.2).

In general, the Alternatives section effects only the routing into the given task (see 6.5). If alternative TCDs
(including those at the top level) have autonomous activities inside (e.g. timer), they all function in parallel,
irrespective of probabilities.

Percents may be absent from one or all alternatives in the section, and then 100/n is assumed for each. It is
not permissible to specify percentages for some and not for others.

_ Type, Attributes and Alternatives are the only sections of the task body which are operative on complex

tasks. All other sections are actually redefined by their refinements.

5.7 Decisions

Decisions can have detailing which are statements placed inside the decision symbol. The complete syntax
of decisions is as follows:

decision_name
[formula)
[probability]

40

CHAPTER 5 TASK SPECIFICATION DIAGRAM

where _
formula is Boolean expression | ELSE | ALWAYS
and probability is [number%| [EXCLUSIVE]

Formula and probability are optional. The formula may contain attributes (including derived ones) and
input fields (such as attribute formulas). Typically either a formula or probability is defined forall of a
task’s decisions , but the options may also be mixed. Decision names must be unique within one task, and
names must always be present.

The formula is any Boolean expression (see section 10) containing attributes and input event fields. It
should be reminded, that for “group-triggering” events the decision is taken once for the whole group.
Therefore only vertical operations on such event fields should be used. If a group event is referenced
without a vertical operation, the first instance is taken.

An example of decision:
Component_OK
comp.quality>0.95

The decision formula may contain also special built-in function Is_triggered_by (event_name). The

function is true; if at least one event with the specified name was actually consumed during the triggering

__of the current task instance. The function makes sense, only if there is a.usage of OR in the triggering
condition (otherwise the function has a constant value).

In V.3.0, non-exclusive decision semantics are assumed, where several branches may be activated
simultaneously. This assumption is more general than the previous “exclusive” one used in version2.0..

First, let us explain the new semantics for formulas. Each decision formula may be true or false
independently of others, and if the formula is true, the branch becomes active (i.e., the associated outputs
are sent). Two specific “formulas” defined by keywords ALWAYS and ELSE also may be used.
ALWAYS is just a syntactic equivalent for constantly true formulas, ELSE becomes true, if no other
decision branch is used. The standard exclusive style may be obtained, if formulas are mutually exclusive.

Now, let us consider the probability based decisions. There will be two syntactic possibilities for the
probability specification

n%

or
n% EXCLUSIVE
where n is a non-negative integer or real constant, not exceeding 100.

If there is no EXCLUSIVE option for any of the decisions, then each of the decisions becomes active
irrespective of others, with its specified probability, e.g., a decision with 30% value becomes active with
probability 0.3. Decision with 100% value becomes active always.

If on the contrary, all decisions have EXCLUSIVE option specified, then the sum of percents should be
equal to 100 (if all EXCLUSIVE branches have the percent specified). If the sum exceeds 100%, a warning
is issued during analysis (and a branch may become unreachable-during simulation). Only one of the
decisions may become active in an EXCLUSIVE case, according to the percentage specified. If the sum is

41

GRADE BM LANGUAGE REFERENCE MANUAL

just 100%, just one decision always becomes active. If the sum is less than 100%, then no decision
becomes active with the probability (100 - sum)/100 (no analysis warning appears in this case).

These two cases are the normal ones for probability based decisions. However, EXCLUSIVE and non-
exclusive decisions may be freely mixed. In that case EXCLUSIVE decisions (which again must have a
sum not exceeding 100) form a group, which behaves independently of the other (non-exclusive) decisions
and activates zero or one decision. On the other hand, non-exclusive decisions also function independently
of exclusive ones, i.e., each decision is independently activated with the specified probability.

ELSE-decision may also be combined with probability decisions, with natural semantics (it is used if none
of the probability decisions is selected).

Only one ELSE decision is permitted per task - both in the formula and probability case.

Yet another type of probability is possible by specifying simply the keyword
EXCLUSIVE,

without any percent specification. This option is used simply to specify the exclusive OR relation between
decisions (only one is possible). From the formal execution point of view, 100% (or less, if there are some
EXCLUSIVE decisions with percentage specified) is divided equally among them.

“The EXCLUSIVE keyword is provided for better comprehension, since probability without a percent and
without EXCLUSIVE is the same as if nothing would be specified at all (and EXCLUSIVE with equal
chances is assumed in that case). For really non-exclusive decisions use n% case.

If nothing is specified for any of task’s decisions (i.e. neither formula nor probability is selected), 2
probability of (100/n)% (exclusive) is assumed for each. But then nothing must be specified in any of a
task’s decisions. It is not allowed to mix specified and unspecified decisions for one task. All diagnostic
_messages o decision incousistency iside 8 fask are at warning level.

5.8 Output events

QOutput events can also have details, which are used if the data values carried by message events are
significant in the model.

The details may contain the SET option for setting values of output message fields and REPEAT for
increasing the quantity of outgoing events. The syntax for SET is

_SET __ fieldl=expression;

field2=expression;...

Expression may contain task attributes and input event fields (as in the ATTRIBUTES section). The same
syntax for field referencing is used. The expression type must match the field type. See more on

expressions in sec. 10. Each field setting is terminated by a semicolon. After the last (or sole) field setting
the semicolon is optional.

The REPEAT option has the following syntax:
REPEAT integer_expression

This option may be used to send several messages (with equal data) upon task completion, e.g.

42

CHAPTER 5 TASK SPECIFICATION DIAGRAM

SET field1=x+1:field2=eventl.a; REPEAT eventl.b.

In the case of events with elementary types, the form
SET VALUE=expr
is used. If the event has a nested record type, qualified field names are used:

field1.field11.field11 I1=expression;

Only elementary fields may be on the left-hand-side of such an “assignment”, i.e. no record assignment is
permitted in this version.

The repeat option may also be used alone,
REPEAT integer_expression.
SET and REPEAT options appear as text below the event name.

Remark. REPEAT may not be used as a record field name when the event has this record data type. -

There is special convention on message passing through the task. If there is an incoming event and
outgoing event of the same name, the field values of the incoming event are passed without changes to
those of the outgoing event, without any explicit SET option for it. If there is a SET option fot such an
event, only the event fields set explicitly in the option have the new values, the other go unchanged.

For more complicated cases one more convention is assumed. If names of input and output events are
different, but they have the same data type (i.e., they reference the same type name in ET), then a similar

- field value passing from-input to output occurs.In-the-case that several input events with the-same record -
type together have triggered the task instance and the output event also has the-same type, one of these
input events is taken for value passing.

Another special feature is multiple event passing, when the corresponding incoming event is “group-
triggered” i.e., in AND ALL or AND <n> connection, and there is an outgoing event with the same name.
In this case all instances of the incoming event are passed through the task. SET option (if any) should
reference only task attributes (or attributes of “single” events) in that case (i.e., the updated fields are
computed only once and are always the same for all instances). Other outgoing events, as always, are
generated in only one instance. Their field values should depend on a group-triggered event only via

vertical operations. If a group triggered event is referenced without vertical operation, the first instance of
it is taken.

- If REPEAT is specified for multiple events; each imstance is copied the specified number-of times. -

SET and REPEAT may be used only for named events. Outgoing contro! flow always have only one
instance. Complex event may never be sent by elementary tasks.

If there is no SET option for an event and none of the default value transfer rules apply, the field values of
the output even are undefined (NULL).

5.9 Input events

There is also one possibility provided for detailing input event, and is really used only for simulation.
Namely, for input events a spontaneous generation option is provided in the form

43

GRADE BM LANGUAGE REFERENCE MANUAL

TIME (time_specification)
or
REPETITION(duration_expression)

may be used. Time_specification has the same syntax as for timer definition in ET (see sec. 4.2). The same
restrictions as in ET apply for the duration expression (except that arithmetic expressions may not be used

here). The time moments for spontaneous insertion of events in a task’s input queue (in a TCD) is defined

as for timers.

This option is used to define system load generators “on the fly”, i.e. when timer-like behavior is

necessary, but an explicit timer for some reasons is undesirable. The feature may be used only for named
events (not control flows).

There are two preconditions for the spontaneous event generation to function. First, it functions only, if the
task is elementary. The typical usage of the feature is when we want an external task to generate events to

be processed by the system, without using an explicit timer symbol. For complex tasks it is simply ignored.
Second, there must be an incoming arrow with the given event name in the TCD (more precisely, there -~
must be an incoming route for this event from some task, see 6.5). Certainly, for the generator to function
properly, the other end of this arrow should start from a “dead” task - an external task without any stimulus
(or external without name) as a rule. However, it is not an error, if the other end starts from a “live” task,
then the two.event flows will mix together.

De’tal}s of input event are also shown in TSD asa text below the event name.

5.10 External tasks

External tasks also have TSD-diagrams in version 3.0, which look the same way as those.for internal tasks.. —

. This means that external tasks also appear in the model tree, and they can also be refined via TCD. They
may also have a type.

This means that there is no more formal syntactic or semantic difference between internal and external
tasks. Externality has no impact on simulation semantics definition or statistics. Internal and external tasks
are distinguished at the informal level, to improve model readability.

The sole special feature of external tasks, is that it is allowed to have unnamed external tasks in TCDs.
Such external tasks do not appear in the model tree and have no TSD. The use of such tasks is for modeling
—only-From the simulation point-ef view they-are considered-as “dead” tasks. Events which would be-sentto -
. them are simply discarded since they have no input queues. They never generate any events. However,
these tasks are considered as existing from the routing point of view (see 6.5). Thus, if a route comes from
such an external unnamed task, the queue is built at the other end of such route (to allow an appropriate
spontaneous generator to make this route “live”). Unnamed external tasks in TCD may induce also external

referenced tasks without names in the refinements of their neighbors (in the TSD and the refinement TCD),
which are used only for routing.

Remember that some external tasks normally are workload generators of a system. These tasks should be

triggered spontaneously. This is described usually with a timer (using also random values, as a rule) being
the only triggering event of such a task.

It is recommended to specify external performers for external tasks, but formally there is no links between
these two kinds of externality.

CHAPTER 5 TASK SPECIFICATION DIAGRAM

5.11 Data stores and data objects

Data stores and data objects have only informal semantics in GRAPES-BM version 3.0.

Each data store has a name, and potentially, ER description:

<store_name>
[ER model <ER name>]

ER_name must be the name of a visible ER model. If the ER_name is omitted, name equal to data store
name is assumed. But there may be no ER-specification at all since data store may be completely informal
(or contain even physical objects). The only reference to entity names is in AT for this task, there entities
from the ER model corresponding to the specified data store must be used. The database name in AT
should coincide with one of the data store names present in the TSD. For informal data stores, AT isnot = -
used and AT remains blank if only informal data stores are present in a TSD. Access paths are of three
types (read, write, both) and may have optional names. These names are completely informal. No

consistency between access paths and the AT of a TSD is checked. The graphical form for access paths is
the following:

data bases, but also all kinds of archives belong to this category. Persistent stores of physical objects (stores
in warehouses etc.) should also be represented this way.

Data object symbol is the following

<data_object_name>
[Type<data type>]

" Data object name may be any, type, if specified, must be defined in a visible DD. Any type may be
referenced. Optionally named access paths to data object have the same form as for data stores. No links to
AT at all are used for data objects. .

The informal use of data objects is a temporal data object created by one task and used by others, it
normally persists during one transaction. Sometimes this feature is used as a substitute for event sending
between two tasks, when a common data object is more natural. From the programmer’s point of view data
objects should be understood as global variables.

Both data stores and data objects are ignored in simulation.

6 Task Communication Diagram

6.1. Role of TCD diagrams

Task Communication Diagrams (TCD) are the main facility of GRAPES-BM for describing business
system behavior. They are used to refine large tasks as chains of smaller tasks linked via events. TCD
diagrams show how events generated by one task are passed to another one to trigger it in turn. Timers are
also represented in TCD diagrams.

Business system refinement is started from primary tasks for which the highest level TCD diagrams are
built. Tasks appearing in such a TCD diagram (i.e. their TCD diagrams) normally are placed in the mode] ...
tree directly subordinated to the corresponding top TSD diagram. Some of these next level tasks may have
their refinement TCD diagrams in turn, until the desired detailing of business system behavior is described.
In lower level TCD diagrams the event linkage between adjacent TCD levels is also shown. This is done by
referenced task symbols (and referenced timers) which appeared already in TSD diagrams. Referenced
task symbols are the successors to the remote task symbols used in GRAPES-BM version 2.0, however, the
precise syntax and semantics is not always identical. Fig. 6.1 shows an example of TCD diagram.

s T e
RegisterQ egister
Secretary | Paper based

A}

Urgent
_<@%E%$%E>“ _ _U<W%§@W$W>.

(L Query

{ Forward_lmmediately
Urgent are queries on

Becretary
H1 ml!
Query Query
R N
[————————| I
(Prepere_Avswer), | (Frepae newer)

ey J

Fig. 6.1 Example of TCD diagram

46

CHAPTER 6 TASK COMMUNICATION DIAGRAM

6.2 Elements of TCD diagrams

Task and decision symbols and event arrows in TCD diagrams, besides their names, may have several
textual sections, identical to those present in the corresponding TSD diagrams. In general, these sections
must either coincide with the corresponding sections of TSD diagrams or be empty. In case of
discrepancies, the formal information for simulation is taken from the corresponding TSD section. There
are also new textual elements both for tasks and arrows, which can appear only in TCD diagrams. For each
of the elements the role of each text section will be explained separately.

Any task symbol in TCD may contain also a WMF format picture.

6.2.1 Internal task symbol

<task_name>
<comment>
<triggering_condition>
<performer_expression>
<duration>

[Start] [NoStart]

[End]

Jtag <tag>]

The internal task symbol is the main element of task refinement in TCD diagram. The only mandamz:y
-textual element is-its-name. The name links the task symbol in a TCD to the formal definition of the task in
its TSD. This definition is found according to visibility rules (see 1.2). The appearance of a task symbol in

a TCD diagram is called a task occurrence. There may be more than one occurrence of the same task in
one TCD (and in several TCDs also).

Triggering condition, performer expression and duration are copies of the corresponding sections of
task definition TSD. Alternatively, they may remain empty even when these sections are present in the
TSD. No extraneous information should be added. Special care should be taken in case of several
occurrences of the same task. It makes no sense, e.g. to specify performer pl in one occurrence and
performer p2 in the other, since both must be equal to the performer specified in the performer selection
expression in the TSD diagram. In the event that there is a discrepancy between TCD and TSD, it should
be reminded; that-formal-information for simulation is taken-from TSD.-As far as-possible,-GRADE editors
try to ensure consistency, by automatically transferring nonempty textual sections from TCD to TSD.

The formal syntax of triggering conditions, performer expressions and durations in TCDs is literally the
same as in TSDs and is'to be found in sections 5.4, 5.5, 5.6 respectively.

Comment is an arbitrary comment for a task occurrence (and may be different for several occurrences). It
is not copied to a task’s TSD. There a comment may be part of a task’s informal description.

Occurrence tag is a formal identifier used to distinguish several occurrences of the same task in one TCD.
Its sole use is identification when viewing simulation results (directly in the simulator or via the Trace
Browser) and for defining show-boxes (sec. 6.2.11).

Start, Nostart and End options are used for explicit transaction control related to the task occurrence (see
more in sec. 7.3). They also never appear in a TSD. -

GRADE BM LANGUAGE REFERENCE MANUAL

Any task in a TCD is either a transformation or a decision task. If it is a decision task, the task symbol is
connected to its decision symbols via simple lines.

6.2.2 Extemnal task symbol

f [<task_name>] !
| <comment> |
| <triggering_condition> i
Tmer_t 1

<duration> :
| [Start] [NoStart] |
|

]

External task symbol has the same formal properties as the internal task symbol and is refined in the same~""
way with a TSD in the model. The difference between external and internal task is completely informal,

just to emphasize that some activity is performed outside the framework of the business system under
consideration.

There is only one additional feature for external tasks. External task may be uinnamed. Then it has no
defining TSD. From the formal execution point of view, it is called a “dead task”. It sends no events,
events to be sent to such task are simply discarded (i.e. not sent at all).

6.2.3 Timer symbol

Timer symbol defines an independent timer occurrence (determined by the timer event name leaving it).
This timer occurrence, determined by its definition in the ET, sends the corresponding timer events.

Caution. Do not confuse this symbol with a referenced timer, which has no autonomous activity.

'6.2.4 Referenced intemal task symbol

I
________ where <task name_list> ::= task_name {,task_name} *

A referenced task symbol in a TCD diagram represents one or more neighbor tasks in a TCD one level
above the current one, to or from which the given event has been sent or received respectively, by the task
whose refinement is the given TCD. The name or name list in the referenced tasks are equal to the
mentioned neighbor name (or names).

T e e S

CHAPTER 6 TASK COMMUNICATION DIAGRAM

More formally, referenced task symbols in a TCD must coincide with (or be subset of) referenced task
symbols present in the TSD diagram whose refinement is the given TCD diagram. Events coming from
these referenced tasks (or going to them) must be the same in TCD as in the TSD diagram.

According to their role, there are incoming and outgoing referenced task symbols in TCD diagram.

Incoming referenced tasks in TCD correspond to incoming referenced tasks in TSD diagram, and the same
applies to outgoing ones. From incoming referenced tasks in a TCD, events go to internal (or external)
tasks of this TCD, thus representing incoming links from the next upper level. And, respectively, events go
from intemal tasks to outgoing referenced tasks, thus representing outgoing links.

Actually, not the referenced task symbols themselves, but the pairs <referenced_name, event_name> must
be the same in the TSD and its refinement TCD. It is permitted to redistribute name lists over several
referenced task symbols associated with the same event name. Referenced task symbol (together with its
associated event) may be duplicated in a TCD. Several event arrows may leave a referenced task symbol.
See more on formal consistency rules in sec. 6.8.

It is forbidden to jump over levels. That means: it is forbidden to reference tasks other than
internal/external or already referenced tasks from the next upper level TCD in referenced task symbols.

The special case is top level refinement of primary tasks. In the same way as in TSDs for primary tasks, it
- is permitted in such TCDs to reference another primary task in a referenced task symbol (if such a
reference is already present in the TSD). See more on linking primary tasks in 8.1

6.2.5 Referenced external task symbol

Formally, this symbol has the same properties as the referenced internal task symbol. It is intended for use
when the upper level neighbor (or neighbors) of a task are external tasks. Then, naturally, the
corresponding referenced task symbol in TSD is also an external one. It is not formally considered an error,
if externality one level above is ignored in referenced tasks of this TCD, or internal and external neighbor
names are mixed in one symbol. By default, the editor distinguishes between internal and external tasks
when building automatically the referenced task symbols (in TSDs and TCDs). The only syntactic feature
is, that there may be a external referenced task symbol without any name. It corresponds to an unnamed

- external upper level neighbor. - SR e

6.2.6 Referenced timer symbol

This symbol represents a timer one or more levels above the reference. It may be used if the TSD diagram

whose refinement is the given TCD already has such a symbol. It must be associated with the same timer
name as in the TSD.

GRADE BM LANGUAGE REFERENCE MANUAL

It must be remembered that the referenced timer symbol has no spontaneous activity, unless the
corresponding actual timer some level above it generates a timer event. The referenced timer then only
helps to redirect the timer event to the required task in a lower TCD.

6.2.7 Decision symbol

name

[formuta]
[probability]

The decision symbol is always connected to a decision task in a TCD. The only mandatory element in 2
decision symbol is the decision name, which must consistent in both the TCD and the task’s TSD..

Formula and probability have the same syntax as in TSD (see 5.7):
formula is a Boolean expression,

probability is [number%] [EXCLUSIVE]

Only one of them may be present. If formula or probability is present, then it must have the same definition
as in the corresponding TSD (the same as for task symbol sections). In the case of a discrepancy the formal
value is always taken from the TSD. GRADE editors help to maintain the decision consistency between
TCD and TSD, by transferring modified decision elements from TCD back to TSD. It is permitted to omit
decision details in the TCD if they are in the TSD.

It is also permitted to have less décisions for a task in a TCD than in TSD (but not vice versa).

" 6.2.8 Data symbols

There are two of them:

Data store symbol

name
[ER model ER_name]

and data object symbol

name
[ype data_type]

Both symbols have informal semantics only and are not used in simulation. The syntax and intended
semantics is the same as for these symbols in TSD (see 5.11).

It is recommended to maintain consistency between TSD and TCD for data symbols. GRADE editors try to

help in this by automatically transferring data symbols from TCD to TSD. But there are no other
consistency checks.

50

CHAPTER 6 TASK COMMUNICATION DIAGRAM

6.2.9 Event arrow

The event arrow is an arrow linking two task symbols in TCD diagram. It has the form:

[<event_name>| [!<tran5fer_rime>] [NoTID]

[set_option] [repeat_option]

If the event arrow represents a named event or timer from the ET, the event name is mandatory. An
unnamed event arrow represents a control flow. For control flows no other syntactic elements may be
specified, i.e. the other elements are valid only if there is an event name.

If the transfer time is specified, it overrides the transfer time specified in ET. The same syntax is used for

transfer time definition as in the ET except that arithmetic expressions may not be used here. Transfer timé -

may be specified only for internal arrows, i.e., arrows connecting internal/external tasks (but not referenced
ones). If, however, transfer time is added to an incoming or outgoing arrow it is simply ignored. If transfer

time isnot specified either in the E.T or in the TCD, zero time is assumed. It is forbidden to specify a
transfer time for timers:

NOTID option is used to prevent transaction TID transfer along with the event (see more on lt in section
3%

Set_option and repeat_option are identical to those options in a TSD diagram at an output event (see 5.8).

If there are additional details associated with some outgoing event in a TSD, the same information may be - -

placed at the corresponding event arrow in a TCD. It is not allowed to place different data in the TCD, in
~formal processing only the data from TSDs'is used. GRADE edltors u'yto support the- consrstency by
transferring output detailing from the TCD to TSDs.

It is permitted to enclose the event name on a path in square brackets, e.g.,

[ev]]

This means that the event may also not be sent by the issuing task. This notation is just an informal
comment for modeling purposes. From the formal simulation semantics point of view the event is always
sent. A real optional event sending, e.g., with a given probability must be specified explicitly by the
decision for the issuing task.

Square brackets are not copied back from TCD to TSD (i.e., they only appear in the TCD). This notation
may be combined also with additional texts on the arrow.

6.2.10 Access path

[<access_path_name>|

O

GRADE BM LANGUAGE REFERENCE MANUAL

Access paths connects task symbols (internal or external) to data store or data object symbols. The path
may have three forms depending on access type, in the same way as in TSDs. The name is optional. The
element is completely informal in GRAPES-BM, and the semantics are the same as in TSDs (see 5.11).
Data connections in TCDs should be consistent with those in TSD, but no formal checks are performed.

6.2.11 Auxiliary symbols

There are two such possible symbols in TCD diagram

1. Free comment

[A free comment]

This symbol has no syntactic meaning and actually may be placed in other diagrams (TSD, ORG) too. Any
text or WMF format picture may be placed there.

2. Show box

<Titie>
{<TSD_name>}*<TCD_name>
<task_name>[.<tag>]
<gttribute_name>

This symbol is not syntactically related to the TCD diagram in which it is placed. Its elements, however,
must be valid :

- qualified TCD name (i.e. TCD name with prefixed TSD names, starting from a primary task).
Qualification may be dropped if TCD name is unique in the tree.

- task_name, followed by optional occurrence tag (tag is used if there is more than one occurrence)
- attribute name of this task.

The only use of such object is during animation of a business model, otherwise it has no effect.

6.2.12 Refinement of complex events

Another issue in TCDs is that of complex events. These events must have COMPLEX type already defined
in ET (in the category column). Their component events must be defined in the corresponding column.
When the actual event refinement is done in this refinement TCD, the following syntax is used on the
arrow coming from (going to) a referenced task:

complex_event_name.event_name

The event_name is the name of one of the components, the complex_event_name is the name on the
corresponding arrow in the TSD (and, consequently, on the arrow in the TCD one level up). The notation
means that inside the current TCD only the evens_name appears further (e.g. is used for triggering). The
“complex qualification” appears only on input/output arrows in"FCD, and it is not duplicated in TSDs
(upper or lower). Any complex event must be refined before it is used in triggering. On the other hand,

By T e e —

CHAPTER 6 TASK COMMUNICATION DIAGRAM

elementary component events sent by a task at an appropriate level boundary must be “packed” into
complex event. Refinement may not be used on horizontal arrows.

Linked primary tasks may also send each other complex events, then refinement may be done in both top
level TCDs, or somewhere lower.

6.3 General rules of TCD structure

The TCD diagram is built from the elements in the previous section in a very natural way. However, some
general rules on internal structure of TCD must be mentioned:

e event arTow may go

- from any internal or external task to any like one (including itself). These arrows are called horizontal
ones in the sequel. The number of arrows between two tasks is generally speaking unlimited.

- from an incoming referenced task to any internal or external task. These arrows are called incoming
events. One or more arrows may leave a referenced task

- from internal or external task (or its decisions if it is a decision task) to outgoing referenced task (such
_arrows are called outgoing events). One or more arrows may enter a referenced task.

e it is permitted to use one referenced task symbol in the role of both incoming and outgoing referenced

‘e if there are several arrows between two tasks, all of them must have different event names. In
particular, there may be only one control flow between two tasks.

e if'the taskis a decision task (i.e. it has at least one decision-attached), all events may leave only

6.4 Graphic layouts of the TCD diagram
From the language point of view the TCD diagram’s contents is always the same irrespective of how it is
displayed or printed. However, its visual appearance may be significantly altered by the user.

First, there are long and short forms. All examples shown so far were in the long form, when all textual
items present in any of the diagram elements are also visible.

In the short form:
* intask symbols (internal and external) only name and comment remain visible
e in decisions only name remains visible

Texts on arrows is not affected.

All long form elements remain internally in place and regain visibility when switched back to long form.

Second, there are several graphic layouts available:
- vertical
- horizontal
- automatic

- manual

GRADE BM LANGUAGE REFERENCE MANUAL

- tabular vertical
- tabular horizontal

In the first two layouts, all elements are automatically placed in fixed grid positions, so that the general
event flow goes from

- from top to down, or
- from left to right respectively.

Certainly, any diagram may be transformed to this layout, with some arrows going in the opposite direction
from the general event flow of the diagram. For simple “streamlined” diagrams, these layouts are the best,
since the obtained ordering then corresponds to the real ordering of tasks in time.

In automatic layout, a compact allocation of elements is used, with the user having the possibility to select

the place for a new element and the editor moving the existing elements in a minimal way to allocate space
for the new one.

Automatic layout is suited for all kinds of diagrams.

Manual layout gives the user maximum control over the allocation of elements. Even the texts may be
moved separately. But the user is responsible for the manual moving of existing elements when a new

element is inserted. Manual layout should be used for presentation versions of diagrams and very compact
allocations of large diagrams.

The two tabular layout modes with lanes (sometimes called tabular layout modes) are similar to the
vertical or horizental modes, respectively. The main difference is that separate lanes are allocated for each
performer selection expression appearing in the diagram. The tasks containing the given performer
expression automatically appear in the lane corresponding to the performer expression. The performer
expressions themselves appear as the lane headings. For two tasks to appear in the same lane, the performer
expression must be exactly the same. The layouts with lanes are well suited for diagrams with low variety

—of simple performer expressions-Then.they show a nice table-like display of the tasks to-be done by each
performer. . - ; :

There is the possibility of freely switching between all layout styles. The syntactic aspects of diagrams are
remain unaffected.

Fig. 6.2 and 6.3 show the same example of Fig. 6.1 in vertical and horizontal layouts, respectively. Fig 6.3a
shows an example of the vertical tabular layout, using an example with a number of performers.

CHAPTER 6 TASK COMMUNICATION DIAGRAM

_— e T -

Register_Query
Secretary
Y m"

Register
Paper based

'd

Urgent
10 % EXCLUSIVE

Query

Forward_immediately \

Urgent are queries on
Secretary
h1 mll -

. Quey

Reguiar
90 % EXCLUSIVE

Forward_to_Chief
&

Secretary

"2.5m"

:_[Prepare_Answer]:

4

Fig. 6.3 Horizontal layout

55

GRADE BM LANGUAGE REFERENCE MANUAL

Fig. 6.3a Vertical layout with lanes

6.5 Links between TCD levels

Large systems can never be described by only one TCD level, a number of TCD refinement levels are used
as a rule. Though in general, inter-level links are described by referenced tasks (which correspond to
remote tasks in GRAPES-BM version 2.0), extended syntactic and semantic features are offered for
describing those links. The main new feature is a new use of referenced task names.

In most simple cases, the inter-level links are defined in the most natural way where nearly all linkage
elements are supplied by editors automatically. However, more sophisticated leve! structuring is also
possible now, e.g., representing fragments of TCD diagrams like macros with many entries and exits.

When a task has one occurrence, the refinement is very straightforward. Fig. 6.4 shows an example of
simple refinement.

=

CHAPTER 6 TASK COMMUNICATION DIAGRAM

Task :A
Triggering condition :
AND
Performer :
p1
e3 e4

Fig. 6.4 Simple refinement

TSD for task A represents also its neighbors as referenced tasks, and they reappear in A refinement via

.. TCD, showing clearly, e.g., that event el is routed from B to Al.

Often this event routing at level boundaries may be more complicated. A formal description of this routing
follows.

Each event is sent by an occurrence of an elementary task. The event’s destination is also one or more
occurrences of elementary tasks, where the event is placed in the corresponding queues. In any event’s
route from its sending task to its destination queue there is just one event arrow linking the two tasks. If the

sender and the receiver are in one TCD, and are linked directly by an arrow, the whole route consists of
this arrow.

But often the event at first is routed via several outgoing referenced tasks, then it travels along the sole
“internal” event arrow and then is routed via several incoming referenced tasks (see fig. 6.5). The internal
arrow (the arrow from task A to task B in fig. 6.5) is called the horizontal link in what follows, the routing

via outgoing referenced tasks - the upgoing link, and the routing via incoming referenced tasks - the
downgoing link.

- b S— =

GRADE BM LANGUAGE REFERENCE MANUAL

There is one special case when the explicit horizontal link is absent, namely the connection between two

top level tasks (see more in sec. 8.1). Then the link is replaced by appropriate referenced tasks in two top
level TSDs.

The precise event routing rule is the following. The outgoing arrow for the given event is analyzed. If it
leads to an internal (external) task, the horizontal link is already reached. Otherwise, the referenced task
name list is taken, and the following is repeated for each name in it (the name is called start name here). In
the TCD one level up, an outgoing arrow is sought from the corresponding task, which

Fig. 6.5 Event routing (shown via several nested TCDs)

¢ has the same event name (including empty)
e the other end of which is
- an internal (external) task with its name equal to the start name or

- a referenced task whose name list contains the start name

CHAPTER 6 TASK COMMUNICATION DIAGRAM

The decisions for non-elementary tasks are ignored in “upgoing”, only event names and referenced task
names are taken into account.

Thus upgoing is repeated until the horizontal link is reached, along which the event is routed. In fig. 6.5,
starting from A1l and event el and using B as start name, first the task A1 with equally named outgoing
referenced task is found, then the horizontal link to B.

The downgoing part of routing is started, using the source task of the horizontal link as the start name (A in
fig. 6.5). All referenced tasks in the refinement are found,

e which are associated with the same event and
e whose name list contains the start name,

and a copy of the event is sent via each. If the other end is not elementary, the search is repeated a level
down, with the same start name. If other end is elementary, the destination queue for the route is found. In
fig. 6.5, using A as the start name, two level downgoing is performed, until B11 is reached.

The described rules are such that using the default naming of referenced tasks proposed by the editors (see '
6.4) just the natural link is established (including the case in fig. 6.5).

At any level (except intermediate upgoing ones) the event may be multiplied, with a copy sent along each
branch. If no continuation for the event is found, the event is discarded. During syntactic analysis,
situations with the abnormal refinement are found and warning messages are issued. Actually, the analysis

finds only part of these refinement errors (those described in 6.8), others are found during the preparation
for simulation (see 11.2).

_ 6.6 GRAPES-BM model development strategles and tool
- support for them . -

The main model development strategy in GRAPES-BM is assumed to be top-down, with the TCD being
the main diagram built manually. TSD diagrams are generated automatically most of the time. More
precisely, according to this strategy, at first the primary tasks, i.e. their TSDs, are entered. Then for each of

these tasks its first level refinement TCD is built. The constituent tasks in this TCD are entered one by one
and so are the linking events.

GRADE editors during this process automatically build the corresponding refining TSD diagrams and
place them in the model tree, just under the parent task.

When a new TSD is automatically inserted, all relevant information (input events, output events,

" referenced task symbols with neighbor task names, referenced timers, decisions, connected data stores) is
automatically transferred to this TSD. The textual sections of task symbol (triggering, performers, duration)

are also copied to the corresponding sections of the task body in TSD. Decision contents is also transferred.

automatically. Unnamed events are transferred in the same way as their named counterparts

The transfer of this information actually only occurs upon saving the TCD diagram. The automatic
ransfer may be switched off using editor options, in that case the entire transfer must be performed using a
manual transfer command (menu item Edit/This TCD->TSDs).

If several occurrences of the same task are present in a TCD, the information in the TSD is summed from
all occurrences. In particular, for each event and neighbor, where there is no corresponding referenced task
already present, new referenced tasks with appropriate task/event names are inserted (or the referenced task

name list is extended). Externality information is also retalned in the referenced task (and incoming timers
likewise).

59

GRADE BM LANGUAGE REFERENCE MANUAL

In case of several task occurrences care must be taken, that textual sections (those appearing also in the
TSD) in all occurrences are identical, since only one (actually the last one) will be copied to the TSD.

When a TCD is being modified (new event arrows inserted, events renamed on existing ones, etc.), the
corresponding TSDs are updated automatically. But there may be situations where modifications are not
transferred automatically, and then the appropriate manual transfer command (menu item Edit/TCD->
TSDs) must be executed. A "global” version of this command (BM Functions/ TCD->TSDs) is also
available in the model tree window. All these automatic updates include only the augmenting of TSDs with
new events, referenced tasks etc. Removing unused events from TSDs (i.e., referenced task - event pairs -
which have no counterpart in any of the task’s occurrences in TCDs) is performed as a manually invoked
operation (BM Functions/Delete events unused in TCDs) from the model tree window. This operation may
be performed either at one TSD level (for the subtree under it) via the subitem From Subtree TSDs or for
the whole model via subitem From all TSDs. In both cases the ET is also cleared of unused events.

The above-mentioned automatic GRADE support ensures automatic correct TSD building when the TCD

contains elementary tasks. The only necessary manual operation is extending TSD by task data not
available in TCD, like attributes.

e

Most GRAPES-BM models contain several levels of TCD refinement. The intended strategy is, as soon as

one TCD is completed, to refine some of its subordinated tasks by their own TCDs. GRADE editors also
provide support here.

The principal idea here is TCD template generation from TSD. When a new refinement TCD for a task is
started (the first one or an alternative), the TCD diagram containing all referenced task symbols (along with
_their names orname lists) and their associated events, data stores and data objects (with access paths) from
TSD and one dummy unnamed internal task in the center is generated automatically. Fig. 6.6 shows this
template TCD for task T3. Four referenced tasks with the associated events (el, €2, {1, £2) and the data
store are copied (but not the decisions, since they may be quite different in the refinement).

_The_user then modifies the TCD, inserting more internal/external tasks in it and reconnecting the. -
incoming/outgoing event arrows. Care must be taken not to leave the dummy unnamed task as it was
generated, since an unnamed internal task is an error. Referenced task symbols may be replicated if
necessary It is also allowed to reshuffle referenced task lists for one fixed incoming or outgoing event into
several referenced task symbols in a TCD. New referenced task_names in TCD may be added only in case
they are also added in the parent TSD and the corresponding upper TCD is also updated.

Both of the automatic generation features described above in totality support automatic interfaces between
TCD levels (according to 6.5) in all normal cases. Namely, no additional referenced task editing is usualiv
necessary, neither in TCDs nor in TSDs, independently of how many TCD refinement levels are used.

el e2
Task T3
Triggering condition : Ds
AND

60

CHAPTER 6 TASK COMMUNICATION DIAGRAM

Fig. 6.6. Example of TSD and corresponding TCD template

The next section describes an alternative strategy

6.7 The alternative way: from TSDs to TCD

In addition to the standard refinement method, where every non-elementary TSD is manually refined via its

TCD and corresponding subordinate TSDs are generated automatically, another methodology is also
available.

There only TSDs are explicitly built and manually placed in the required hierarchy. This hierarchy
corresponds to a function decomposition tree in software engineering terminology. When all direct
subordinate TSDs for a TSD have been built, a special “Build TCD from TSD” operation may be applied
to the parent TSD level. Then the appropriate TCD is generated automatically from all subordinated TSDs,
basing on

e incoming/outgoing event names o
e names of referenced tasks.
e decisions/outgoing events

Namely, each TSD is converted into an internal task and placed in the generated TCD. Two tasks are

linked by an event arrow, if one TSD contains the outgoing part of it and the other the incoming part (as
defined by event names/referenced task nniames).

The non-matching referenced tasks are retained as referenced in TCD (they correspond to links to the next
level). : -

_ When all incoming/outgoing events and decisions are inserted in the appropriate TSDs of one level, the
appropriate TCD can be automatically obtained.

The generation principle does not work when two or more occurrences of a task are supposed to be in a
TCD.

A TCD can even be generated when referenced task names are omitted and generation is done based only
on matching incoming/outgoing event names. This approach does not guaranty the desired ordering of the
TCD.. The names of referenced tasks in TSDs are inserted automatically (according to the generated TCD).
Some manual improvement to the generated TCD is sometimes required.

In any case the generated TCD may be further modified manually. Fig. 6.7 presents.a set of three TSDs and
the generated TCD.

..

61

GRADE BM LANGUAGE REFERENCE MANUAL

Fig 6.7. TSDs and the generated TCD

6.8 Formal consistency rules between TCD and TSD

The built-in automatic consistency features in the editors normally will guarantee consistent refinements
berween all TSD and TCD levels, especially if strict top-down design is used. The user is only required to
connect all incoming/outgoing referenced tasks presented in TCD templates to some existing tasks in these
TCDs. However. complicated diagram updates. especially manual editing of TSDs, may violate this
consistency between levels. The syntax analyzer provides two facilities for ensuring this consistency :

¢ consistency between TSDs and TCDs is checked during the syntactic analysis of TCDs
e consistency between adjacent TCD levels is checked during a special consistency check operation

The following consistency rules between TSDs and TCDs are checked by the syntax analyzerduring the
analysis of a TCD:

e rule governing the relationship between a task’s TSD and its refinement in a TCD

all incoming/outgoing events (and control flows) and referenced tasks (and referenced timers) in a TCD
must be represented in the TSD. It means that for each pair of incoming events with referenced task
names in a TCD, there must an equivalent pair in the TSD. The partitioning of the task name lists into
several referenced task symbols is permitted. The same must be true for outgoing events. For decision
task TSDs, it is not significant from which of the decisions the relevant pair actually go out. This
feature is in line with the assumption that the decision in a non-elementary task is just provided to
improve TCD readability. If there are unnamed referenced task symbols in the TCD, then the
corresponding unnamed referenced task symbols must also be in the TSD. Violation of any of these

rules causes an error during analysis.
e rule between a task’s TSD and its occurrences in other TCDs (one or several):

all incoming/outgoing events/control flows (and incoming timers) and decisions in an occurrence must
be present in its TSD. Events must be attached to referenced tasks, whose names (or one of the names
in the name list) must coincide with the corresponding neighbor name (i.e., either task name or
referenced task name, If the neighbor already is a reference). Certainly, there may be more

events/referenced tasks in TSD (corresponding to other occurrences). Violation of the rule leads to an
error during analysis.

The other facility - the global consistence checker may be invoked from the model tree-window as a
separate function, via BM functions/Consistence checker. It may be applied either to the Current TCD or to

-All TCDs. 1t checks the follewing consistency rules between two adjacent TCD levels (where a child TCD

means a refinement TCD for a task occurrence in the given TCD; and a parent TCD means the reverse
relation; the task occurrence which defines the parent/child relationship is called the linking occurrence)

¢ rule between a TCD and its parent TCD:
an incoming/outgoing link in a TCD (i.e., a pair <incoming/outgoing event, referenced task name>)
must have its counterpart in the parent TCD, i.e. an appropriately named incoming/outgoing arrow
from the linking task occurrence leading to an appropriately named task or reference. The similar rule

must be true for control flows and timer events Violation of the rule leads to a warning since there may
be no violation of the rule for another occurrence of the same linking task

s rule between a TCD and its child TCDs:

each incoming/outgoing event arrow of the linking task occurrence must have a corresponding
incoming/outgoing link in the child TCD (i.e., the event path must be continued inside the child TCD).

CHAPTER 6 TASK COMMUNICATION DIAGRAM

The similar rule must be true for control flows and timer events. Violation of the rule leads to an error
message.

The consistency of parent/child relationship is checked independently for each task occurrence (having a
refinement TCD) in the role of the linking occurrence.

The consistency between TCD levels is of great importance also for non-simulatable models since any
inconsistent event link is a logical flaw in the model. Therefore consistency checking is recommended also
for informal models built for system modeling. The consisténcy checking can only be applied to a model
after syntactic analysis. To facilitate analyzing of non-simulatable models, a special “enlightened”™ syntactic
analysis is available (see 6.9)No consistency requirements are placed on decisions in TSDs and their
respective equivalents in refinement TCDs. The same is true for data stores.

Not all event routing irregularities significant for simulation may be found during syntactic analysis or
consistency check. Therefore additional routing checks are done and additional warning messages appear
during preparation for simulation.

6.9 The syntax for non-simulatable models

The syntactic analysis is of great importance also for non-simulatable models since it helps to reveal essential
logical errors in medels. The consistency checking between TCD levels which often reveals inconsistent
modifications in models is especially valuable. The consistency checking can only be performed after the
conventional syntactic analysis of the model. To facilitate the analysis of informal models, the non-simulatable
syntax option is available. To switch this option on, uncheck the Simulatable syntax checkbox in the
Options/Settings dialog box.

The non-simulatable s syntax option allows one to place an a.rbltrary text (w:thout having any error message > during
analysis) in the following syntactical elements:

e transfer time specifications (in a TCD)
e SETand REPEAT options of output events (both in a TCD and TSD)

These two features together permit one to “decorate” event arrows in a TCD with rich informal comments while
keeping the model syntactically correct.

Remark. Do not use non-simulatable syntax option for simulatable models, the simulator will ignore any SET and
REPEAT options if you try to do so.

7 Transaction semantics of TCDs

7.1 The concept of the transaction -

Very frequently each TCD level of a business model corresponds to a real business function or subfunction
performed by the enterprise to be modeled. This is especially true when the structuring is not very deep.

Therefore it seems natural that each complex task corresponds to a transaction - a certain sequence of
actions with precisely defined start and end moments. The start/end moments of a transaction are implied
by starts/ends of elementary tasks contained in the transaction.

Thus, in GRAPES-BM V3.0 we assume, that each complex TSD by default defines a transaction having ~
the same name as the task itself. Even when a TSD has several refinement alternatives, all these
alternatives just determine different behaviors of the same transaction.

Transactions are important for modeling purposes: for better understanding of model behavior and for
defining a reasonable semantics of merging several subactivities of the same activity.

On the other-hand; they are very significant for simulation, since some of the default statistics for a

transaction are the same as for elementary tasks, and they are the basis for efficient use of user defined
attributes.

The main syntactic and semantic problem in using transactions is to define how and when elementary tasks '
start and end the transaction. There are both default and explicitly controlled transaction management .

~ facilities. Transactions, like elementary tasks, have instances during execution. Each instance is
characterized by its name and a unique system defined Transaction Identifier (TID). TIDs have similar
meaning for BM semantics definition like process identifiers (PIDs) have in the SDL language.

7.2 Default behavior of transactions

When a transaction (task) has one level of refinement (i.e., all tasks in the refining TCD are elementary), all
tasks (both internal and external) in this TCD constitute the static area for this transaction.

The default start of this transaction is the start of any task (internal or extemal) in this area, which is
- friggered only by the.following classes of events:- . . PP

* timers
¢ events coming from referenced tasks

* spontaneously generated events

If the task triggering condition contains no OR, it can be determined statically whether the task starts a
ransaction. Otherwise it can be determined only dynamically, for each instance separately.

As soon as a transaction instance is started, a new unique TID value is generated for it. From now on, all
event instances circulating within the transaction are tagged by this TID. So are also all task instances
belonging to the transaction instance. More precisely, the tag consists of

e transaction (task) name

CHAPTER 7 TRANSACTION SEMANTICS OF TCDS

e TID value

There is no explicit use of TID values in GRAPES-BM, these values are used only in implicit comparisons.
Actually these values are integers.

The start task tags all its outgoing event instances (including control flows) with the same tag value.

Tags are not placed on events which leave the area of the transaction (i.e., are directed to outgoing
referenced task symbols).

If a (non-start) task within the area is triggered by a simple tagged event, the same tag value is reproduced
on all its appropriate outgoing events. If a tagged event is mixed in a triggering condition with non-tagged
events (timers, events coming from remote tasks etc.), the output tag value is again this one. The most
complicated case is when the triggering condition ANDs several tagged events. Then an implicit merging
condition is added to (or forms) the WHERE condition:

e if the transaction names are the same, TIDs for all events must coincide
e if transaction names are different, no additional condition is required.

Only if the merging condition is true, the elementary task is actually triggered. The outgoing tag is defined” -
in the natural way (the common value). Merging condition refers also to implicitly ANDed control flow
instances (if they have tags).

The merging condition operates on the principle, that only concurrently executed subactivities of the same
activity instance should merge together

—The-uniqueé tag value obtained from the triggering events determines the transaction instance to whom the
task instance belongs and also the tags of all the outgoing events.

If there are several levels of TCDs, then each level defines a transaction. When tagged events from a higher
level enter the next lower level (via referenced task symbols), the higher level tags are retained by them. If
. e.g., an entry from a referenced task starts a new_transaction of the current level, then events of this
transaction carry tag list, corresponding to two adjacent task levels. When task nesting is deep, the tag list
can be arbitrarily long. The merge condition requires TID equality for all appropriate levels. Namely, in
order for this condition to be true for a set of events, for all events of this set having tags in their lists with
one common transaction name, the TIDs in these tags must also be equal.

For a higher level transaction its static area consists of tasks in its TCD, as well as in all subordinated TCDs

(of al] levels). In the entire transaction area, tags of this level are propagated according to the above-
mentioned rules.

Higher level transactions are also started automatically in nearly all desirable cases. The default starting
rule is the following. When a lowest level transaction is started (along with an elementary task in it), each
event in the triggering set of this task is independently examined:

o for atimer event it'is checked whethet it tomes from 4 timer symbol in the given TCD. Nothing more is
triggered in this case. If, on the contrary, the timer event comes from a referenced timer symbol, the

next level transaction is started also. This action is repeated until the TCD level with the actual timer
symbol is reached. That level is the highest activated.

e for an event coming from a referenced task the source of this event in the next higher level TCD is
checked. If it is a task (internal or external), nothing more is triggered. If, on the contrary, the source is

a referenced task, the next level transaction is also started. The action is repeated up to the level, but not
including it, where the source of the event is another task.

+ for spontaneous events no addition triggering may occur, since they are active only at the elementary
level.

GRADE BM LANGUAGE REFERENCE MANUAL

Starting the transaction of the corresponding level means generating the appropriate TID. For a while this
TID is “resident” only in the lowest level task, but it can return to its home level via events returning to this
level. Only one instance of each level transaction is started as a response to triggering the lowest level task
(even when there are several events in the triggering set which descend along the same path).

However, if one event in an upper level is multiplied to several copies in the lowest level and each of these
copies triggers an instance in the lowest level transaction, then as many instances of the upper level will
also be started. Normally such situations should be avoided since these independent transaction instances in
the lowest level can never merge (which normally should occur for subactivities of one activity). The best
way to avoid starting unnecessary transactions in the lowest (and subsequent) levels is to use NOSTART
option (see later) at all lowest level entries, except one.

NOSTART for transaction control prevents the starting of current level transaction and all simultaneous
upper ones.

There is also a default dynamic transaction end condition. Namely, when there are no more event
instances with the given TID value in any of the queues within the area, the transaction with the given
name and TID is ended (more precisely, it is ended, when the elementary task consuming the last such
event stops or the event is discarded). Any level of a transaction may be ended by default this way.

A special case is triggering conditions containing AND ALL and AND <n> options. Tagged events which
are consumed in groups by these options lose their identity and tags after such task (except the case when
equally named outputs leave the task, then each tag instance is retained in the corresponding output
‘instance). In addition, events in the group (fixed-size or ALL-group) never participate in the merge

condition,i.e. tag comparison is ignored for them. Merge condition refers only to other events in the AND-
list. . :

All “new” output events from a group-triggered task have no tags at all (except the case, when a tagged
event participated in the “individual part” of AND ALL,then such a tag is merged and propagated, as for
. Yhe novmsal AND),

Spontaneously genérated events also have no tags (but they are used as new transaction starters, see above).
If untagged “normal” events (i.e., except timers, spontaneous events and events from referenced tasks)

trigger a task, no default transaction start occurs. If starting is desirable, an explicit START option must be
used.

It should be noted that default transactions of any level always are structurally nested. Namely, if a lower
level transaction starts within a higher level one, then it always ends before (or simultaneously with) the
higher level transaction. This is ensured by the nature of the default rules.

7.3 Transaction control facilities

In addition to default behavior, there are four explicit transaction control facilities:
e« START option

o END option

e NOSTART option

e NOTID option

Transaction control options are present only in TCD diagrams (not in TSDs).

START option is placed in task body in TCD diagram (but not in TSD)

CHAPTER 7 TRANSACTION SEMANTICS OF TCDS

The START option may be placed in tasks which otherwise could be default start points of a transaction or
in any other task as well. The START option syntax is the following:

START [task_name] { task_name}*

ey

where task_name is an appropriate task from the model tree (which is an ancestor of the current task).

Omitted task_name means the task in whose refinement we are.
The meaning of the START option is to start a transaction (or transactions) with the specified name(s).

- To be more precise, all transaction levels from the lowest one to the highest one specified in the task name
list are started. The-levels are uniquely found from the model tree. Formally, it would suffice always to
mention only the necessary highest level task name, but it is recommend to include all intermediate levels
for the sake of readability. This convention is introduced in order to preserve the strict hierarchy of
transactions defined by the default rules.

Example of the START optmn.

START order -_entry, order _processmg, chent U'ansactlon

The explicit START is necessary for three purposes:
e there are several default start points for a transaction from which the proper ones are to be singled out

¢ transactions of several levels are to be started simultaneously and default rules are insufficient

e transaction covers only part of the TCD.

If there are several p0551ble start pomts of Iransacnon ina TCD then two muatlons may be true:

] all starts are real altematwes how the current transaction could start In thls case no START opuon is
* necessary (or all of them could be marked by simply START, just to reveal this fact to the reader). In
this case each of the start points starts an independent transaction, which should never merge

e One of the start points starts the transaction (e.g., order entry), while others represent some auxiliary
actions (e.g., updating the price list). Then the proper start point should be marked by the START. The
auxiliary ones then must contain NOSTART (see later). Then auxiliary actions represent no
transactions, events participating there are untagged.

With several levels of refinement in business mode!, there may be a need to start several transaction levels
simultaneously. If default rules are insufficient, the START option with task name list is used.

In general, the START option may be placed in any task , which receives no tagged event of the current (or
of that specified in the START option) level. Then the transaction is started with this task, but not with the
default start point. Certainly, the default start points of TCDs leading to this marked task then should be

67

_ . _ END [task name] {task_name} _

GRADE BM LANGUAGE REFERENCE MANUAL

marked by the NOSTART option (see below). This feature allows one to define transactions covering only
part of a TCD (an explicit END option then is used to end such transaction, as a rule).

If a task marked by the START option is triggered by an event which already contains a tag of a level
specified in the START option, it is reported as an execution error during simulation (in order to avoid a
recursion of sorts).

A special option
NOSTART

is also available in task symbols. This means that the default start point must not start a new transaction (of
the current level and possible higher levels). A typical use of this option could be when a TCD level is
defined just because of diagram size, without any functional meaning. Then all potential start points of
such a diagram should be marked by NOSTART, in order not to affect the transaction behavior defined by
a higher level TCD. Existing higher level TIDs pass through task marked by NOSTART without problems.

The implicit transaction end works well when there are no “junk-events” remaining in queues forever.
However, in some cases a normal way of describing a model just requires to leave some events in queues
unconsumed. A typical situation is when time-out activities are to be described: then either the unused
reminder event remains in a queue, or the too-late message remains unused. To cope with such situations,
the explicit END option is used.

The option is placed either at the bottom of the body of a task in a TCD

A

_ or at the bottom of a decision

d1
\ End

(in order to have effect only if this branch is taken).
The textual syntax of END is much the same as that of START;

The syntax details and defaults are the same as for START, including the set of affected transaction levels.

This option forcibly ends a transaction (or transactions), by emptying all queues in the area from events
having tags with the specified name and the current TID value (i.e., the TID value as it would be passed

further). The area for emptying is determined from transaction name. The current task sends its events
untagged.

In addition, active task instances holding the specified tags are terminated forcibly, without taking any
decisions or sending any output events.

Thus the END-option empties all queues in the area from the specified events and the transaction is ended

according to the previous definition. If several levels are to be ended simultaneously, the lowest one is
ended the first.

If there is no tag available with t_he name required lzy the END-option, it is a semantic error.

- e — T —— — e ———

CHAPTER 7 TRANSACTION SEMANTICS OF TCDS

A typical position for END is an exit-task (a task passing events only to referenced tasks) of a TCD, but it
can be placed in any task.

Yet another special option is
NOTID

This option may be placed on event arrows in TCD diagram, beside the event name (or after transfer time,
if it is present). It may be placed only on horizontal arrows (i.e., arrows not coming/going to referenced
tasks). NOTID doesn’t appear in a TSD.

The semantics of NOTID is that no TID of any level is passed along the arrow ,i.e. the event sent along the
arrow has no more TIDs at all.

The main use of this option is to prevent merge problems in tasks emulating global variables (i.e. variables
common to all transaction instances). Namely the events representing global data and looping back to the
same task should be marked by NOTID (see the event Account in Fig 7.1, otherwise the global counter task
Summing wouldn’t trigger upon arrival of the event payment from the next transaction instance).

NOTID option may cause an implicit end of a transaction if the TID is being canceled in the last event <™
instance of this transaction.

Summing]
t

< Account AND paymen
‘ Next_action | L[|)

Account /NOTID
SET sum=Account.sum+payment

Fig. 7.1. Example of NOTID use

7.4 Attributes of transactions

Since transactions always correspond to normal complex tasks having TSDs, they also have attributes -
namely, those defined by the corresponding Type and Attributes sections in the TSD.

Any transaction has the same predefined attributes as any other task - duration and cost.. Duration
specification in TSD for transaction tasks is ignored.

The other numeric attributes of a transaction must be defined explicitly, by supplying their formulas in the
Attributes section of the corresponding TSD (or in the ATR table corresponding to the task type). It is

GRADE BM LANGUAGE REFERENCE MANUAL

typical, that attributes are only derived here, and they use vertical operations (SUM, AVG, MAX, MIN) on
predefined or user-defined attributes of elementary tasks (or lower level transactions). The span of such an
operation is the lifetime of the TRANSACTION task instance. Any numeric or duration attributes
appearing in any ATR table may be referenced in vertical operations (but not directly!). If an attribute
appears in several ATR tables all definitions must have the same type. Partial sums are updated each time
an elementary task instance having the specified attribute is ended (within the static area of the given
transaction and having the appropriate TID). Thus, if the transaction has attribute ror_al defined by the
formula SUM(al), then for all elementary task (and nested transaction) instances within the given
transaction instance the value of al is taken (where it is defined) and summed up. When the transaction
task is to be completed, the final values of its (totaling) attributes are passed for processing at a higher
transaction level (if there is such). At that moment also the default statistics for the transaction is updated.

Rules of using other attributes from their own ATRs in arithmetic formulas for transactions are the same as
for other tasks.

If only attributes of a specific task should be “averaged” at a higher level, it is reasonable to have unique

names for them (there is no way to distinguish, e.g., transaction task cost from elementary task cost, no
- attribute qualification is supported in V.3.0). Y

The sole use of transaction attributes is for obtaining statistics on them (and/or computing attributes of
higher level transactions). There is no way to use transaction attributes to influence system behavior.

8 Additional structuring features of
business models |

8.1 Interaction of primary tasks

A business model consists of business functions which are represented by top-level tasks (i.e., top-level
TSDs). Any top-level task which is refined by a TCD defines its activity which proceeds concurrently with
other such ones. Certainly, only these tasks which contain a timer (or spontaneous event) at any of the
refinement levels actually become active. By default, top-level tasks function independently of each other. ..

Sometimes some interaction is necessary also between these top level tasks. GRAPES-BM version 3.0
proposes some facility for describing this interaction. Namely, the TSD of a top level task may contain also
internal referenced task symbols containing names of other top level tasks.

Certainly, there may also be other referenced task symbols in top level TSD, but these symbols are
necessary for the case when this top level task is “called” somewhere lower, i.e., it has an occurrence there
— (se€ Tiéxt section). : :

The semantics of the facility are explained on an example.

Let us assume that there are two top level tasks A and B in the model

QO model . - o ’ -
@ TASK A
@ TASK B

Let us assume that the task A sends a message e to task B. Then the TSD diagram for the task A must
contain elements shown in Fig. 8.1

Fig 8.1

TSD for B, in turn, must contain elements shown in Fig. 8.2

GRADE BM LANGUAGE REFERENCE MANUAL

Fig 8.2

In further refinements of both A and B by TCDs top level task names are propagated deeper, i.e., used in
referenced task symbols at lower levels, until the real communicating partners in both tasks are reached.

It is forbidden in one top level TSD to communicate directly to components of another top level task, i.e.

only top level communication can be defined this way. Lower referenced tasks may appear only for “call ...
situations” (see 8.2).

Such a mechanism is required only to describe top-level interactions. Ordinary TCDs serve to describe
interactions in one top level task.

The semantics is such, as if there were one more TCD diagram, containing top-level tasks as elements.
Then TSDs for top level tasks would look just this way. However, normally it is unnatural to include such a
TCD in a model, since top level TSD represent independent ﬁmcuons

From the simulation point of view, it should be remembered that in contrast to “calling” top level t:asks ata
lower level (see section 8.2) no internal copy (in the sense of 11.1) of it is generated, when top level task
communication is described via their TSDs. Each top level task (together with its refinement) defines its

smglem occurrence wh;ch ‘behaves independently- (or communicates with others using facilities just
. described).- = . .

8.2 Independent tasks and the multiple use of tasks

The standard way of defining a task is to define it as a part of direct refinement of another task. Such tasks
are called refinement tasks in what follows. However, it is also possible to push the task definition point
(i.e., its TSD diagram) up in the business model tree, thus making it usable repeatedly in several

independent TCD diagrams. Such tasks are called independent tasks. Top level tasks are always
independent tasks by definition.

- =~ Thereis nodifference in TSD syntax-whether the task is a refinement task -or independent task. In any case
the task may be elementary or complex, it may be a transformation or decision task. It should be
remembered, that an independent task must have all its input and output events and referenced tasks
specified, in order to use it properly in a TCD diagram. For this reason top level TSDs also must have

input/output events and referenced tasks specified, when they are used in other TCD diagrams (this reason
is different from the one described in 8.1).

Thus the distinction between refinement and independent task is made only by its TSD position in the
business model tree.

Any task - refinement or independent may be used in any TCD diagram where it is visible.
The visibility area is defined in 2 manner typical to GRAPES (see also 1.2) :
e top level task is visible in any TCD within the business model;

72

CHAPTER 8 ADDITIONAL STRUCTURING FEATURES OF BUSINESS
MODELS

e task placed just under a certain task T is visible in any of TCDs placed somewhere under the task T,
i.e., either in a direct refinement of T or in a TCD lower in the hierarchy.

It is not allowed to redefine a task defined higher once more at a lower level. At the same time, it is

possible to have different definitions of a task with the same name in different branches of the business
model tree.

Any task - whether refinement or independent is used (“called”) in a TCD diagram, using the same internal
task symbol. The task name in this symbol must correspond to a visible task (TSD) name. The input/output
connections and decisions (if any) of the symbol must match those specified in its TSD. The event
matching is done by their names and referenced task names, control flow being the only event without a
name. There may be less connected inputs/outputs and decisions to the symbol than in the corresponding
TSD. There is no restriction on how many times a task is used in several TCDs. It is forbidden to reference
tasks recursively (e.g., TCD of the task A uses task B and vice versa).

In a strongly top-down design mode, TSDs for independent tasks are defined at the proper position in the
model tree using the TSD editor. The referenced task symbols may be left unnamed at first, their names---
will be supplied later when occurrences appear. However, automatic insertion in TSD when referencing
this task in 2 TCD diagram with more input/output events works also in this case.

When a TSD is generated automatically upon mentioning a new (invisible) internal task in TCD, this TSD
is placed in the position of a refinement task. It is possible to push manually this TSD up in the tree, to
‘make it usable in several TCDs. From this moment, all automatic updates in this TSD invoked by the usage

of the task-in séveral TCDs are summed up irespective of the position of TSD (according to visibility
rules!).

The intended formal semantics for multiply used (“called”) tasks is that of macro-expansion: if the
referenced task has a refinement, the internal task symbol is virtually substituted by its refinement TCD,
with input/output events connected accordingly.

9 Simulation parameters and their
usage

In order to make simulation experiments with a BM model more convenient, a special simulation

parameter table has been introduced (SP). This table contains name, type and value columns, thus defining
named constants like those in fig. 9.1

Name: Type: Value: Description:
Task_1_duration DURATION "5m"

Fixed_costs FLOAT 5.0

Line_count INTEGER 20

P

Fig. 9.1 Example of SP table

Only the following _gleméntary types
- integer
- float
-duration - . : : By ==

.. _=time _ = : -

may be used in the type column. The additional description column contains any informal information. The
value column must contain a valid constant of the given type.

The main use of constants from SP are in TSD diagrams.

These constants may be referenced in nearly all the textual elements of any TSD diagram of the model
where a constant of the appropriate type is valid, i.e. they may be used in attribute values or expressions, as
duration values, in decision formulas, output event data setting, REPEAT values for output event sending,

input event REPETITION specifications and WHERE conditions (but not in PRIORITY, MAX
INSTANCES and ALTERNATIVES sections).

The most typical use of simulation parameters is just to set task attribute (predefined or user defined)
_.values, since these are the values.which need to be easily changeable.during simulation experiments.

The other diagram where these constants may be referenced is in the ORG diagram (performer efficiency),
ET table (in timer repetition, transfer time specifications and persistence), ATR table (in default and
formula) and TCD diagram (event transfer time and copies of text items in TSD).

During a simulation session the parameters may be both viewed and modified (in a special tabular form).
The new values immediately have effect in the session continuation, without any model reanalyzing.
During the session these constants may be saved in the repository. Named saving is possible, thus several

sets of values can coexist in the repository for simulation experiments. However, there is only one set of
values visible via the editor (namely, those set by editor).

10 Data in GRAPES-BM

Though GRAPES-BM is a pure modeling language, some data processing is present in it. In general it is a
small subset of GRAPES/4GL facilities, though some specific features are also present. This section
describes constants and data expressions as they can appear in various GRAPES-BM constructs.

10.1 Constants

For full use the following type of constants are available in GRAPES-BM:
e integer constants

e float constants

o duration constants

e time constants

Integer constants-are unsigned strings of digits (not exceeding Maxint for 4 bytes, i.e. 2147483647).
_ Where allowed signed constants are obtained as constant expressions with unary minus prefixed to an
integer constant.

Float constants are in the form

— —. ... int constimt const - e e R

also unsigned. Signed float constants again are obtained as expressions. The form .01 is not permitted, use
0.01 :
Duration constants are strings in double-quotes, containing any descending unit sub-sequence from the
following units:

days @

hours ()

minutes (m)

seconds (s)

~ Characters in “parenthesis show' the unit -qualifier.-Units "are separated by a colon. The unit amount is'a * -
- integer or float constant. For seconds the amount is rounded to an integer.

Years and months are not used in GRAPES-BM constants.
Examples:

“1d”

“Im” _

“1d:1h:1m:1s”

“2h:10.25m”

“100.02d”

“im:10s”

GRADE BM LANGUAGE REFERENCE MANUAL

Time constants also are strings in double-quotes. They may be in date or date-time format. Date format
contains vear. month and day. Date-time format, in addition, contains hour, minute, second. The separator
in the date part is period, in the time part - a colon, between parts - just one blank space.

Each unit element is a fixed-format integer, without unit qualifiers:

year: 1900 .. 2099
month: 01..12
day: 01..31 i
hour: 00..25
minute: 00 ..59
second: 00..59
Examples

“1996.03.28”
“1996.04.30 12:00:00”
Invalid dates such as 02.30 are converted to valid values, 03.01 or 03.02 in this case.

The.follewmg constants may only be used in an ATR table and in the Attributes section of TSD diagrams,
for setting constant values of attributes (but not in expressions).

String constant - a string in double-quotes.

List constant - a comma separated list of constant values.

10.2 Data Expressions

There are two kinds of expressions in GRAPES-BM V3.0: the special ones such as event expressions in
riggering conditions and performer expressions, and general data expressions.

This section describes general data expressions. They are used in the ATR table, the Attributes section of
the TSD body and output detailings.

The following types of data expressions are present in GRAPES-BM V.3.0 :
*__integer expressions

e float expressions

e duration expressions

e time expressions

A special type of expression with a different use are Boolean expressions, and they will be defined at the
end of this section.

Arguments of an expression may be the following :

e direct constant,

¢ named constant from SP,

¢ user-defined attribute_name (from the ATR table which corresponds to the given task type),

* predefined attributes of a task (duratiom, cost),

CHAPTER 10 DATA IN GRAPES-BM

e input event_name (if the event has an elementary data type), may be used in expressions within textual
elements of a task (in a TSD or TCD),

e input event_name.field_name (if the event has a record data type), may be used in expressions within
textual elements of a task (in TSD or TCD)(for nested records qualifications of type
fieldl.field11.field111 are used),

e built-in function.

Expressions are built from arguments using operators, parentheses and vertical operations. Vertical
operations : SUM, AVG, MAX, MIN have the form : op(var_name), where var_name is an attribute_name
(user defined or predefined, may be used in formulas for transaction task attributes) or an event_name or
event_name.field_name(used in formulas inside task triggered by event groups). The span of a vertical
operation depends on contexts of the two formula (either all elementary task activations within the
transaction instance or all events within the actual activating group). Formally vertical operations may be
applied also to a single object (then just the argument value is returned).

The operator priorities and use of parenthesis are the standard ones.

Now some details regarding expressions according to their types. In what follows, by variable we
understand an attribute name, event name or event field name, respectively.

Integer expressions may contain

. _intege;-valued constants or variables
= operators +, -, ¥, DIV, MOD

e vertical operations SUM, MAX, MIN

“e integer random functions — =~ 7 oo e T e LT

. INTEGER function from real expression tretuming the nearest integer, eg., TNTEGER(O.?)?I,
INTEGER(0.2)=0, INTEGER(1.2)=1)

e duration_expression DIV duration_expression.

Float expressions may contain
¢ integer or float-valued constants or variables
e operators +, -, ¥,/
- & vertical operations-SUM, MAX, MIN, AVG- --. -
e integer or float random functions

¢ duration_expression / duration_expression.

Duration expressions may contain

¢ duration-valued constants or variables

e operators +, -

¢ subexpressions duration*integer, duration*float
e vertical operations SUM, MAX, MIN, AVG

e duration random functions

GRADE BM LANGUAGE REFERENCE MANUAL

Duration expressions must have non-negative values

Time expressions may contain

¢ time-valued constants or variables

e subexpressions time + duration, time - duration

e vertical operations MIN, MAX, AVG - -
e time built-in functions NOW and START_TIME

Some restrictions on the time value set will be present (e.g., > 01.01.1900). There are no random time
functions (these should be modeled using duration). NOW returns the current model time, START_TIME -

the starting point of the simulation session. Both these functions are prohibited in the WHERE part of a
triggering condition

Random functions are:

e UNIFORM (min, max)

e NORMAL (mean, deviation)
e EXPONENTIAL tmean)

These functions may be used in conjunction with the integer, float and duration arguments, returning the
corresponding type.. '

And lastly, a description of the Boolean expressions (used in decisions and WHERE conditions).
T'heyare,buﬂtﬁ-om:_ : e s s edaia i S S g S e e e ==

o relational expressions ’ . -
* Boolean operators AND, OR (and their alternative notations “&, “[™)
e parentheses

e special predicate Is_triggered_by (event), may be used in decisions

Relational expressions are built from integer, float, duration, time expressions and comparison operators :

e = A S

-All operators may be-applied-to all types, both arguments must have equal-types-(except-that-integers and
floats may be mixed).

Arithmetical operators have higher priority than comparison operators, comparison operators have higher
priority than Boolean operators.

All arguments may be used in decisions, though WHERE has restrictions (see section 5).

String expressions are only of the simplest form: just the direct or a named string constant. They may be

only used to set the value of a string attribute (in an ATR table or the Attributes section of a TSD). Strings
may not be used in comparisons.

11 GRAPES-BM semantics for
simulation

Though the preceding sections already defined the semantics for GRAPES BM V3.0 in more or less, here
we present the summary of this semantics, in a more practice oriented way, i.e. in the way this semantics is
used in simulation. The informal elements of the language are ignored here.

This section has two purposes. On one hand, it can be treated as an abstract GRAPES-BM execution
semantics definition in an operational style. On the other hand, the description is close to the real actions
performed by GRADE during preparation for simulation and during simulation itself, including some hints
on diagnostics.

o

-11.1 Preparation for execution - tree expansion

After a model has been analyzed and simulation has been selected, first the business model is automatically '
—transformed slightly. The model tree is expanded, under each occurrence of a complex task its complete
subtree is attached (where it is not already present). In this expanded tree all occurrences of elementary

tasks are found. For each such occurrence an empty queue frame is built. If alternatives are used, they are
placed in parallel at the same level. - -

_ For each of the named events one queue is built for the occurrence irrespective of how many incoming
referenced tasks associated to this event are in the TSD. For each incoming control flow (i.e., for each.
associated referenced task name) in the TSD, a separate queue is built. These queues are only the potential

ones. In the routing phase only those queues will be retained in each occurrence, which have at least one
potential source of events (see 11.2), the others are removed.

Queues are built for occurrences of both internal and external tasks. Only for external tasks without names
(and without TSD, as a consequence) there are no queues, these tasks are marked as “dead” ones (no events
reach them, they send no events, they don’t appear in statistics).

Since new internal copies of TCD diagrams are built in this way, which in principle should be observable

by the user (in traces, statistics, animation, execution-time inspection), unique qualified names are assigned
to them.

When no task occurs more than once in a TCD, and no alternative aré used, the simplest qualified nameis:
TSD_namel.TSD_name2.TSD_name3.TCD_name

When alternatives a;e used, alternative names in parenthesis are appended to corresponding TSD names:
TSD_namel(TCD_alternative_1).TSD_name2.TCD name

When there are several occurrences of a task within a TCD, these occurrences are distinguished by

appending the occurrence tags (insertable via TCD editor) or artificial numbers if there are no tags
specified for task names:

task1 tag1, task1.tag2

Specific tasks in a TCD are named the same way, inserting the task name (normal or extended) instead of
the last TCD name e.g.

TSD_namel.TSD_name2.TSD_name3 .

GRADE BM LANGUAGE REFERENCE MANUAL

11.2 Event routing

The next step in the preparation for model execution is finding all possible routes for each event emerging
in the model.

For each occurrence of an elementary task in the 'expanded model tree and for each of its outgoing events
(control flow) all possible event routes to other elementary tasks in the expanded tree are found.

This is done according to routing rules in section 6.5. Direct “channels” (which correspond to the found
routes) are established for each outgoing event (more precisely, for each pair: event and associated
referenced task name), thus preparing a copy of the event (or control flow) to be sent along each of the
routes. As explained in 6.5, each route definitely contains just one horizontal link (event arrow connecting
two non-remote tasks-in a TCD) and possibly the upgoing and/or downgoing link defined via referenced
tasks. There is one case without an explicit horizontal link, namely, the connection of two top level tasks
defined by appropriate incoming/outgoing referenced tasks in two top level TSDs.

Each route ends in a specific input queue of a task occurrence (but there can also exist routes which e
terminate in the middle, see later). For named events this queue is determined by event name. For control
flows the queue is selected on the basis of the coincidence between the start name (see 6.5) and a name in a
referenced task name list. The queue is marked as active as soon as at least one route reaches it.

After the routing process is completed, all potential queues in all task occurrences, which have remained

inactive, are discarded. Thus they don’t participate in snnple AND (and default AND for control flows)
mmg condmans -

Durmg the routxng process some global routing diagnostics are performed. If there is more than one
occurrence of a task, it is completely normal, that in a specific occurrence of this task (or its components)
some outgoing routes (determined by pair: event name, referenced task name) are disrupted during routing
(ﬂ:ﬂ!"ﬂtc.used‘m other occurrences; in turn)."A symmetric situation is for incoming routes. But if an event
remains unconnected altogether, this is considered to be an anomaly. Messages created by routing
diagnostics are formulated as warnings. A waming is generated, if

o for the given outgoing event name no route from the task occurrence reaches a destination queue
e no outgoing control flow (if there is such in the TSD) from the occurrence reaches a destination queue
e apotential queue for named event is discarded as unconnected

o the last queue for incoming control flow is discarded

Simulator warnings are displayed in the same way as analyzer warnings. After preparation for simulation

these wamnings will be attached to the most appropriate symbols in the appropriate TCD diagrams and the

diagram’s status circle changed to yellow in the model tree (if one or more warmngs and no errors are
“~present).. The display of warnings may be switched off (in the model-options). - -

Such warnings would never occur if default referenced task names proposed by editor are retained in TSDs
and are really used in refinements of these TSDs by TCDs. However, hand-edited TSDs and incomplete
refinements may caiise these warnings to appear. Since such a construct may be semantically valid in a
model, no errors, but only warnings are generated. It should be noted that this kind of diagnostics is by
nature incomplete during local analysis of separate TCDs or TSDs (according to 6.12) and therefore has a
global character. The local analysis can reveal routing deficiencies only when the TSDs in the model have
no superfluous incoming/outgoing events, i.e. they have not been modified manually too much. The
routing checks during preparation are even more powerful than the global consistency checks.

During execution, output events having no valid route are simply discarded without any message.

Now some more notes concerning routing in special cases: timers, unnamed externals, TCD alternatives
and complex events.”

80

CHAPTER 11 GRAPES-BM SEMANTICS FOR SIMULATION

Timers generate only inputs for tasks. They are either directly linked (by a horizontal link) to one
elementary task, or have also the downgoing part of the route (defined by referenced timers) and finally
reach one or more elementary tasks. Routing is done based only on timer names. The difference between
several equally named timers attached to an elementary task each, and one timer “cascaded” down to
several tasks, appears only in one subtle cases with random timers. Each timer symbol occurrence in the
expanded tree acts as an independent timer, sending its events according to routes.

Unnamed external tasks (without TSDs!) participate in the routing process (via unnamed external
_ referenced tasks). But they are specially marked as “dead” tasks and events being sent to them are not sent
at all.

All TCD alternatives are taken into account during the building of the expanded tree. Alternative
expansions are included in the same tree. During routing, alternative routes are also found (more precisely,
packages of them). During execution, one route from the package is selected, based an alternative
probabilities (default is equal chance, if probabilities are absent).

Complex events may neither be generated nor received by elementary tasks. They are only used to reduce
the number of routes in high level TCDs and TSDs. During the routing process (its upgoing part), at some
TCD level, an elementary event may be “hidden” into a complex event (using syntax defined in 6.2.12).
The routing is continued with the complex event keeping the elementary event name in mind. In the
downgoing part of the route the level is found where the original event is singled out again from the

complex one and ﬁnally reaches its destman:an When no event refinement is found the original route is
discarded.

113 Sta'rting- the execution, timers

Now the execution of a model may start. The simulation time is set to the selectéd start value. In general,

~the simulation time movesforward, when there are no more smlm:mrstcpm beperformed ‘in the current——

- time moment: —— - -

At the b'eginning, the only active elements in the model may be timers (and spontaneous events described
by similar syntax). Each occurrence of a timer symbol in a TCD is treated as an independent timer. Timers
with a time point specification become active according to their description. Interval (i.e., REPETITION)
timers become active for the first time, when the specified interval has elapsed from system start. Each
timer activity generates a new event instance, which travels and is enqueued according to general rules. By
default, timers are instantaneously enabling (“0s™ persistence), i.e., if they cannot be used for triggering in
the same simulation time moment, they are discarded (when the model time is advanced, thus all
simultaneous events actually “meet” the timer). Timer events always are untagged.

If several alternatives of a task (at any level including the top one) contam t:mers they all funcnon
"mdependenﬂy, so no probabifities affect this behavior.” - e

11.4 Starting a task

As soon as a new event is enqueued in queue (for an elementary task), it is ascertained whether the task can
be triggered. If it cannot be, nothing is done in the task. If the task can be triggered according to the
triggering condition, the task is marked as potentially triggerable and looks for performers. The merge
condition is always an integral part of the triggering condition if incoming events have TIDs. If one of the
appropriate performer sets is found to be free and available, the task is triggered. Otherwise the task is put
on the waiting list for performers (the relevant ones). As soon as some of the relevant performers are
released (or become available) a new test for triggering is done_Priorities are taken into account in this test,
but within one priority level all waiting tasks have the same chance to be triggered (the precise scheduling
is implementation dependent). If any of the involved events has a limited persistence (e.g., 2 timer), it is

81

GRADE BM LANGUAGE REFERENCE MANUAL

removed from the queue at an appropriate model time moment. This can make the task untriggerable and
thus removed from the waiting list.

The actual triggering set of events is consumed (transferred from queues to the task instance data). Timers
are processed according to rules in section 4. The selected performer set is assigned to the instance.
Performer availability may expire before the task is completed, but this fact is ignored in version 3.0.

Just before starting, the following actions are performed:

¢ the current value of duration is computed (possibly using consumed events as inputs and taking into
account the minimum efficiency of selected performers)

e if the task is a transaction start (default or with explicit START option), a transaction(s) is started - a
new TID for the required level is generated and the tag element created (or appended to inherited tags)

e Only then the task is started. From the technical simulation point of view, an active task does nothing. It
only waits for its duration to expire. -

Each task instance has its unique Id, which is used only to identify instance-related actions in the trace. It
may also be part of one or several transactions at different levels, and then the task instance carries the
corresponding TID values.

11.5 Ending a task
When the time point where a task ends is reached, the following is done
e _its costis compuwd, according to the formula smoals

e R

duranon *SUM{(Cost_per _ how) __ £l === =
for all performers used (duration converted to hour umts), taking into account efﬁc:ency as well if used

e user defined attributes are computed according to their formulas. If a random value is used somewhere,
each occurrence is a separate random generator '

o ifthe task is a transformation task, all outgoing event (according to TSD) instances are created with
their data set by SET options and sent (see next section). Each created event instance has its unique ID
(used in trace). The data are passed or set according to section 5.8. Tags are added according to section

7. Group sending (for multiple triggering) and REPEAT option generates a group of independent
events,

e if the task is a decision task, the decisions are evaluated one by one, and these found valid are executed..
(the corresponding events sent)

¢ if the task is in a transaction, whose attribute formulas reference attributes of the given task, the
appropriate partial sums are updated

if the tasks ends a transaction (by default or forcibly), the transaction instance attributes are evaluated
and passed up (to a higher transaction)

¢ the task statistics for the task occurrence(and terminated transactions) are updated.

All task ending activities are performed as a group, without advancing time. Only then the task is really
ended.

CHAPTER 11 GRAPES-BM SEMANTICS FOR SIMULATION

11.6 Sending an event

A generated event (with or without data) is sent according to the following rules:

e all valid (i.e., connected to a queue) routes for the event in the given occurrence are found and a copy
of the event is sent along each. If there are TCD alternatives involved, one route from the package (see
11.2) is selected randomly according to the probabilities. If the route leads to a “dead” task, the event is
sent nowhere and ignored in statistics. If statistics are required, a named external task must be used.

e the transfer time for each route is found. Either the transfer time of the single “horizontal” link in the
route is taken (if it is specified in the TCD) or the transfer time from the ET is taken. If nothing is
specified, the default is zero. Links to incoming/outgoing referenced tasks never affect transfer time (it
is forbidden to specify transfer time for them in a TCD).

e When the transfer time has elapsed the event is enqueued in the destination queue.
The whole sequence of simulation steps is repeated until the end of the simulation session..

GRADE BM LANGUAGE REFERENCE MANUAL

12 Simulation statistics

12.1 General principles of automatic statistics gathering

The GRADE simulator, during execution of GRAPES-BM models, supports automatic gathering of
statistics about the model execution. There is a list of predefined statistics, which can be gathered by

switching them on in the simulator control window. Additional statistical items may be included on the
basis of user defined task attributes.

Though the: gath-ering of any ._statistics item inay be switched on or off, the formulas and gathering rules for ‘
each of the items are predefined and may not be modified by the user.

The following groups of statistics items are available:
) statistiés on tasks
e statistics on performers

e statistics on events

_Statlstlcs on tasks are gathered on every occurrence of an clementary task, and, in addition, on every
occurrence of 2 complex task which defines a transaction. Complex tasks which define no transactions are

ignored in statistics. For elementary tasks all possible items are avallable fortansactlons only some of
them.

Both for elementary tasks and transactions, any user defined attribute having numeric or duration type may
be used to define additional statistics items. The processing is similar to that for the predefined attribute
cost.

The gathered statistics are visible in the simulator, and in a special GRADE component named the Trace
Browser, in the form of tables and EXCEL-like charts. Each table contains a group of closely related
statistics items as its columns. It is typical that there are Total, MAX, MIN and Average columns for the

same table. Each row of the table corresponds to a task occurrence in the expanded model tree (see 11.1).
_Each task occurrence is identified by its

- task name

- TCD name

- full qualified task name in the form TSD_namel.TSD_name2.TSD_name3. In the case of several

occurrences tags (user defined or generated) are also used (see more in 11.1). Qualified names are
necessary if task names are not unique.

Statistics on performers are based on the performer elementsin the ORG diagram of the model. Actually
statistics are only gathered for those ORG elements which are referenced in at least one performer
expression of an elementary task.

Statistics on events are based on input event queues of elementary tasks. There is a table entry for each

elementary task occurrence in the expanded tree, and each eventwhich has an input queue for this
occurrence.

GRADE BM LANGUAGE REFERENCE MANUAL

Activation, time without any instance, processing time, costs and user defined attributes are defined both
for elementary tasks and transactions. The other tables are defined only for elementary tasks.

Maximum time without any active instance of the

Table caption | Columns Variable | Mode

Activation of the |Task name

e * *|TCD Name
Total count of activation TOTCA 2
Total count of completion TOTCC 3
Maximum count of concurrently active instances MAXCA 1
Average count of concurrently active instances AVGCA 1
Minimum count of concurrently active instances MINCA 1 T
Tasks remaining active TRA 1

Task waiting time | Task name

for start - TCD name
Total waiting time for task start TOTWTC | 2
Maximum waiting time for task start MAXWTC 2
Average waiting time for task start AVGWTC | 2

© T [Minimum waiting time for task smrt MINWTC |~ 2

Task waiting for |Task name

riggering TCD name

condition

completion Total time for triggering condition completion TOTTCC 2
Maximum time for triggering condition completion |[MAXTCC p
Average time for triggering condition completion AVGTCC 2
Minimum time for triggering condition completion IV[INTCC 2

-{Task-waiting for .- Task name... P _

any performer TCD nameé
Total waiting for any performer TOTWP 2
Maximum waiting for any performer MAXWP 2
Average waiting for any performer AVGWP 2
Minimum waiting for any performer MINWP 2

Time without any |Task name

?h":‘t:s;“sm“ °f |TCD name B
Total time without any active instance of the task TOTIA 1

86

CHAPTER 12 SIMULATION STATISTICS

task MAXIA 1
Average time without any active instance of the task
Minimum time without any active instance of the task | AVGIA 1
MINIA 1
Task processing | Task _na;n_e
a TCD name
Total processing time TOTPT 2/3
Maximum processing time MAXPT 2/3
Average processing time AVGPT 2/3 o
Minimum processing time MINPT 2/3
Task costs Task name
' ' -|TCD name
Total cost TOTCOST 3
Maximum cost MAXCOST | 3
Average cost AVGCOST -3
w.. . .. |Minimumcost _ |MINCOST | 3
User defined task |Task name - - ’
ifributes TCD name
Attribute Name
Total TOTATTR 3
Maximum MAXATTR 3
Average AVGATTR 3
Minimum MINATTR 3

Definitions of variables

TOTCA - Total count of task starts since end of warm-up period. The current value is updated when
each instance of this task is started.

TNOW - The current value of simulation time.
TWARMUP - The end of the warm-up period.

NCA - The current number of concurrently active instances of the task. It is set to its actual value at the
end of warm-up and maintained after that.

TSLCA - Time since last task start/end (or since TWARMUP Tor the first start/end).

GRADE BM LANGUAGE REFERENCE MANUAL

CCAT - Cumulative concurrent activations_time. It is calculated after tasks start or end as NCA
multiplied by the value of TSLCA and the result is then added to the current value of CCAT. At session
end, the last NCA multiplied by the last time interval is added.

MAXCA - Maximum value of NCA.

AVGCA - Average count of concurrent active instances. It is calculated by dividing CCAT by the
current value of TNOW-TWARMUP).

MINCA - Minimum value of NCA. _
TOTCC - Total count of task instance compleuons in the accounting period.
TRA - Number of instances remaining active (at the moment when statistics are taken).

WTC - Time interval between the occurrence of the previous and current task instance starts (or between
TWARMUP and start for the first start after warm-up). If several instances of a task start simultaneously,
they are accounted in NTC, and WTC with a zero value added for each.

NTC - Number of task starts, actually the same as TOTCA. e

TOTWTC - Total waiting time of a task for start. Thls accumulates from the end of the warm-up period
until the end of the accounting penod, ie.

TOTWTC?ZW‘TC,
_ =g
MAXWTC—Maxnnum of WTC.

AVGWTC - -——-—--———— Th]s fomula is Vahd w‘lt_h NTC > 0 - ‘ - e . ._.“_. ——— =

NTC-
MINWTC- Minimum of WTC;

TCC - Time interval between the moment when the first event which satisfies the triggering condition
arrives and the moment when the triggering condition is fulfilled. More formally, it is the interval between
the youngest and oldest event enqueueing in the event set, which actually triggers the task instance and is
consumed by it. It is taken into account for gathering statistics, when the instance starts. Remember that it

is the interval between enqueueings, and not between enqueueing and start. TCC is zero when only one
__eventtriggersatask.

NTCC - Number of task starts, actually the same as TOTCA.

TOTTCC - Total waiting time of task for triggering condition completion This accumulates from the
end of the warm-up period until the end of the accounting period, i.e.

NTCC

TOTTCC= z TCC,
=1

MAXTCC - Maximum of TCC.

CHAPTER 12 SIMULATION STATISTICS

NTCC
>.TCC,

AVGTCC = ';]TT This formula is valid with NTCC > 0.

MINTCC - Minimum of TCC.

WP - Time interval between the youngest triggering event enqueued and the moment the task started. It
expresses the time waiting for available performers after the triggering condition is true, and MAX
INSTANCES may influence the result as well. For a task starting soon after warm-up, it should be noted
that the whole interval between enqueueing and start is taken, not only the portion within the accounting
period.

NTP - Number of task starts, actually the same as TOTCA.

TOTWP - Total task waiting time for performers availability. This accumulates from the end of the ="~
warm-up period until the end of the accounting period, i.e..

' NTP
TOTWP=> WP,
[
_MAXWP - Maximum of WP.
NTP
AVGWP= =" This formula is valid with NTP > 0.
 NTP.. oo s i

MINWP - Minimum of WP.

The task status is set to “Inactive” when the number of active instances of a task is 0, otherwise - it is
“Active” .

TI - Time r-ucamem1 when task status changes from “Active” to “Inactive”.
TA - Time moment, when task status changes from “Inactive” to “Active”.

TIA - Current inactivity interval of the task. TIA = TA - TI. For the first and last intervals in the
- accounting period,only the part overlapping the accounting period is taken. .

NTIA - Number of intervals of task inactivity (i.e. the number of inactivity intervals in the accounting
period).

TOTIA - Total task inactivity time. This accumulates from the end of the warm-up period until the end
of the accounting period, i.e..

NTIA
TOTIA = z TIA,
=1

MAXIA - Maximum of TIA.

GRADE BM LANGUAGE REFERENCE MANUAL

NTIA
S TIA,
AVGIA = h This formula is valid with NTIA > 0.

MINIA - Minimum of TIA.

Processing time is computed in a different manner for elementary tasks and transactions.

For elementary tasks

- the counting mode is 2, i.e. all task instances starting in the accounting period are counted, namely, at
the moment when they start;

- the processing time is simply the duration attribute value for the instance (if it is defined by a formula,
it is always evaluated the start). Even if the task end is after the session end, the complete duration is
taken.

For transactions

- the counting mode is 3, i.e. all transaction instances ending in the accounting period are counted, at the
moment, when they end

- the processing tlmc is the interval between the instance end and start (even if the instance ha.s started
before warm-up), this value is also the duration value for transactions. =

It should be noted, that such a definition yields the expected average values of instance time.

- PT - Current- probessmg time ofthemstm:lce (see above); : -
TOTPT - Total processmg time of task.
TOTCA
TOTPT = Z PT, (more precisely, the upper index in TOTCA for elementary tasks and TOTCC
for transactionsl)-1

M.AXPT - Maximum of PT.
TOTCA
Z PT,

AVGPT =?b"l_fc—:x_ (for elementary tasks). For transactions, TOTCC is-used.instead. This formula is

valid with TOTCA > 0 (TOTCC>0, respectively)..

MINPT - Minimum of PT.

COST - Cost of current task instance (taken as defined by the Janguage semantics for elementary tasks
and transactions, respectively).

TOTCOST - Total costs of a task. This accumulates from the end of the warm-up period for tasks
ending in the accounting period.

CHAPTER 12 SIMULATION STATISTICS

TOTCOST = (ECOST,-

i=1
MAXCOST - Maximum of COST.
TQTCC
ZcosTi

AVGCOST = W _ This formula is valid with TOTCC > 0.

MINCOST - Minimum of COST.

ATTR - The value of attribute attr of the current task instance (elementary or transaction), the actual
attribute name is visible in the corresponding table column. It is any of the user defined task attributes
having a numeric or Duration type. Attributes of tasks or transactions to be processed in this way are
defined within session parameters. All attributes selected in session parameters for default processing P,
appear in the same table, the attribute name is just one of the columns. A display of the value of one
attribute for all tasks may be obtained via appropriate ordering.

The attribute values are computed at the instance end, both for elementary tasks and transactions. For
" transaction attributes involving vertical operations (see 7.4), their internal accumulation is completed at that
moment and the obtained value is passed for statistics processing.

TOTATTR - Total of ATTR of task. This accumulates from the end of the warm-up, for all instances
ending in the accounting period.

TOTATTR = E‘:ATT_R ; . C_)nly the d;:ﬁnea_(i.e-., non-NULL) values are accumulated.
P

MAXATTR - Maximum of ATTR
TQICC

ZATTR :

AVGATTR = W This formula is valid with TOTCC > 0.

MINATTR - Minimum of ATTR.

' 12.4 Statistics on performers -

This kind of statistic is computed for each separate element of the ORG diagram. In the case of a subtree in
ORG referenced more than once, the ORG diagram is considered to be expanded in the standard way.
Qualified names are available to distinguish all element occurrences.

Actually only these ORG elements define a row in the statistics table, which are referenced at least once in a
performer expression of an elementary task. It is so because only these performers have had a chance to be
used for a task. In particular, it means that organizational units, which at best, appear as performers for high
level complex tasks, as a rule will not appear in statistics table.

Statistics items are defined in a style similar to that for task statistics, using formal variables.

The previously mentioned modes have a similar meaning for performers as for tasks. Formally for
performers the dynamics, idle/usage time and performer seizing/releasing, play the role of task start/end.

GRADE BM LANGUAGE REFERENCE MANUAL

But these two kinds of activities are always uniquely coupled, so one can think also in terms of task
start/end for performer statistics modes.

When speaking of performers utilization, average and minimum seized instances and idle time, only the
availability periods of the given performer, which lie inside the accounting period, are taken into account.

The periods where the performer is unavailable are simply excluded from statistics. Performers are counted

only for elementary tasks.
_ : Variable | Mode
Dynamicof | Performer B
Recformers Available number of instances AVLNP 1
Total number of times seized TOTSE 1
Maximum of simultaneously seized instances MAXPI 1
Average of simultaneously seized instances AVGPI 1
) Minimum of simultaneously seized instances MINPI 1
Performers utilization (%) | 105y 15 S B
. Productive performers utilization (%) UTILPP 1
Waiting time = | Performer
?;'rt}:;:sks Total waiting time of tasks for the performer TOTTW. | 2)
performer Maximum waiting time of tasks for the performer MAXTW |2
Average waiting time of tasks for the performer AVGTW 2
Minimum waiting time of tasks for the performer MINTW 2
Performers Performer
;i:’: usage Total idle time TOTITP |1
Maximum idle time MAXITP 1
Average idle time AVGITP 1
-~ | Minimum idle time " B ' MINITP T
Total usage time TOTUS 1
Maximum usage time MAXUS]
Average usage time AVGUS 1
Minimum usage time MINUS 1
Table 1

AVLNP - This value is defined in the GRAPES-BM ORG-Diagram. “Infinite” value is implied for
multiple performers without a number specification. For single performer the value is one.

TAV - total availability time for the performer inside the accounting interval.

. NCUI - The current number of performers used. It is set to the a_ctual.value at TWARMUFP.

TSR - The time expired since the last performer seizing or releasing.

92

CHAPTER 12 SIMULATION STATISTICS

CPI - Cumulative performer_time. It is calculated after each performer seizure or release via multiplying
NCUI by the value of TSR and adding the result to the current value of CPI. In the same way as for task
activations, for the first seize/release after TWARMUP the shortened TSR value is used, and at end of
session the last special interval is used.

AVGPI - It is calculated by dividing CPI by the current value of TAV. Namely this way the averaging
occurs only over availability periods.

MINPI - It is the minimal value of NCUI since the end of warm-up period. Only values of NCUI during
availability periods are taken into account.

MAXPI - It is the maximal value of NCUI since the end of warm-up period.

TW - The current time interval between the moment a task's triggering condition becomes TRUE and when
the task's performer expression becomes TRUE. More formally, it is the interval between the actual task
start moment and the “youngest” event enqueueing time in the event set triggering the given task instance.
The value of TW is the same as WP in task statistics - waiting for performers. Only the derivation of TW is
quite different. It is gathered for performers actually seized for the task instance, i.e., in case of OR in the ~ -
performer expression, the other possible performers don’t participate in the statistics, But the accumulation
moments are the same as for tasks - each start of the task in the accounting period.

TOTCTP - number of seizures of the performer, i.e. the number of times within the accounting period, when
the performer participated in a task start. '

TOTTW - Total task waiting time for performers to become available This accumulates from the end of the
warm-up period until the end of the accounting period, i.e.

T P
TOTTW = fTWi
=]
MAXTW Maxmum of TW.
TOTCA
Sw,

AVGTW= TISW This formula is valid with TOTCP > 0.

MINTW - Minimum of TW.

A performer which corresponds to a multiple element in the ORG diagram, actually represents a group of
non-distinguishable performer instances which may be allocated to one or more tasks. When a performer
instance is allocated to a task, its status is changed from “Idle” to “Busy”. The number of available

T8 - Time moment, when the last “Busy” performer instance status is set to “Idle”, i.e. all instances of this
performer element become free.

T9 - Time moment, when the first “Idle” performer instance status is set to “Busy”.

D10 - the length of the unavailability period for the given performer between T8 and T9. If the performer is
available from T8 to T9, then zero.

TPI - Current idle time of performer. TP1=T9 - T8 - D10 (i.e., the period when none of instances is busy, -
but the performer is available).

NPI - Number of intervals of performers inactivity.

TOTITP - This accumulates from the end of the warm-up period-until the end of the session.

83

GRADE BM LANGUAGE REFERENCE MANUAL

NPI

TOTITP =) TP|,
i=1

MAXITP - Maximum of TPL

NP! - --

Z TP,

AVGITP = %ﬂ? This formula is valid with NPI > 0.

MINITP - Minimum of TPL

T3 - Time moment, when a task instance starts.

T4 - Time moment, when a task instance ends

TT - Processing time for a task to which the current performer is allocated, TT = T4 - T3 (the same as PT)
NTA - Number of intervals of performers usage.

TOTUS - Total p'e'rfdrmer usage time. This accumulates from the end of the warm-up period until the end
of the session. The given TT is accumulated for any performer which is actually used for the given task
instance.

NTA
TOTUS =3 TT,

MAXUS - Maximum of TT.

NTA
2,
AVGUS == This formula is valid with NTA > 0.
_ . NTA

MINUS - Minimum of TT.

S — S
UTIP =Tavsavne

This formula is valid for performers whose number of available instances is specified in the ORG
diagram(including single performers), otherwise UTILP has NULL value.

UTILPP js similar but takes into account also FOR percentages. i.e., each TT is multiplied by the
corresponding FOR-percentage during the gathering of UTILPP.

12.5 Statistics on events

All automatic statistics on events in GRAPES-BM is related to input queues. There are statistics on
-- Jength of queues
-'gvent location-time in queues - - RS e & ol B e

- intervals between event arrivals.

CHAPTER 12 SIMULATION STATISTICS

No special statistics are available on event sending, since for each task sending an event there is a task

receiving this event.

There is a table row in the statistical reports for each existing event queue in the expanded model tree (sec.
11.1 and 11.2), i.e. the table row is uniquely determined by

- TCD name

- task name

- qualified task name (like as far task statistics)

- event name

The qualified task name is necessary in case of several occurrences.

The modes for event statistics have different meaning - event arrival in the queue plays the role of task
start, and event departure - that of the task end.

Téile caption "~ 2% |Colmmibsi - RomER o - o [Varkble: (Nibde
Lengths of queues of Task name — - -
e TCD name
Event name -
Maximum queue length MAXQL 1
Average queue length _AVGQL 1
_ |Minimum queue length MINQL |1
Events location time in [Task name
the queue TCD name
Event name
Total events arrived TEA 2
Total events left TEL 3
Maximum event location time in the queue MAXELT |I
—- ~ — .. |Average events location time in.the queue AVGELT.. 1.
Minimum events location time in the queue MINELT]
Time intervals between. |Task name
event arrivals in queue TCD name
Event name
Events count EC 2
Maximum of time intervals between events MAXINT |2
Average of time intervals between events AVGINT |2
Minimum of time intervals between events MININT 2

g5

GRADE BM LANGUAGE REFERENCE MANUAL

NEIQ - The current number of events in the queue. It is set to its actual value at TWARMUP.

TSLQE - The time since last queue activity. It is the time expired since the last event arrival or departure
in/from queue (or since TWARMUP for the first queue activity).

CETIQ - Cumulative Event-time in queue. It is calculated after event arrival or departure as NEIQ
multiplied by value of TSLQE and the result is added to the current value of CETIQ.

At session end the last NEIQ multiplied by the last time interval is added.

AVGQL - Average queue length. It is calculated by dividing CETIQ by the current value of
(TNOW-TWARMUP).

MINQL - Minimum queue length. The minimal value of NEIQ since the end of warm-up period.
MAXQL - Maximum queue length. The maximal value of NEIQ since the end of warm-up period.
TEA - Total number of events arrived since end of warm-up period.

TEL - Total number of events that have left the queue since end of warm-up period.

EAT - Event arrival time in queue.

EDT - Event departure time in queue.

ELT - Event Location time in queue. ELT = EDT - EAT.

AVGELT - Average event location time in the queue. It is calculated by dividing CETIQ by the current
value of TEA. This formula is valid with TEA > 0. The computed average value completely corresponds to
the expected average event location in queue, when there are few events in the queue at TWARMUP
moment and few at session end. The value is reasonable also in cases where there are many events
remaining in queue at session end. But the value of AVGELT may be higher than the intuitive value when
-a significant amount of events are in queue at TWARMUP: (There is no ideal formula for all cases). -

MINELT - Minimum events locatior time in the queue. The minimal value of ELT since the end of warm-
up period.

MAXELT - Maximum event location time in the queue. The maximal value of ELT since the end of
warm-up period.

LET - Last event time;
CET - Current event time;
INT = CET - LET; (for the first event after TWARMUP INT = CET - TWARMUP)
MAXINT - Maximal of INT;
- i S
SINT
AVGINT == This formula is valid with EC > 1.

EC-1’
MININT - Minimal of INT.

EC - total events arrived in the accounting period

12.6 Use of transactions for user defined statistics

Currently these statistics are predefined. Only the statistics items corresponding to the predefined formulas
may be obtained. For example, there is no way to obtain an empirical distribution of some task attribute
value, or the graph of some variable over time. The only way to define some non-standard processing is via

96

CHAPTER 12 SIMULATION STATISTICS

transaction attributes (see 7.4). Their formulas may reference via vertical operations the selected attributes

of elementary tasks in an arbitrary way. Certainly, all other values must be transformed to task attributes
beforehand.

But the only way to use the obtained transaction attributes again is to apply default task attribute statistics
to them (total, max, min, avg, see 12.3).

97

GRADE BM LANGUAGE REFERENCE MANUAL

13 INDEX

A

Access paths « 44

in TCD diagrams = 51 - —
Access Table » 44
ALL operator » 32
Alternatives (for Tasks) = 39
AT » See Access Table
ATR = See Attribute table
Attribute table - 18
Automatic generation

of TCD from TSDs * 61

of TSDs from TCD « 59
Auxiliary Diagrams « 8
Availability

of ORG element » 13

BM diagram - 8

C

Category
ofevemt+20 ~ T T T ’ ST
CMP - 17
Comment Svmbol
in TCD diagrams « 52
Competence
of ORG element = 14. See also Competence Table
Competence table « 17
Complex events » 23, 52
Complex tasks = 25
Compound Performers » See PERFORM Expression, Semantics of
Consistency * 62
Consistency checker » 62
Control flow events » 34
COSt- === = + = "o T e e - . D
as an attribute of a Task = 38
as an attribute of a Task in Simulation = 90
of ORG element » 14

Data expressions * 75
Data objects « 44, 50
Data stores = 44, 50
Decision semantics = 40
Decision symbols * 40, 50
Decision tasks * 25
Default
value of the attribute « 19
Deleting unused events * See-Unused Events
Display Mode

CHAPTER 12 SIMULATION STATISTICS

of ORG Diagram - 14
Duration constants (data expression) * 75
Duration of Tasks « See Task Duration
Dynamic Performer Selection » See PERFORMER expression

E

Efficiency level
of ORG element * 13
Elementary tasks * 25
Employee name
as attribute of ORG element « 14
END option for transaction control » 68
ET = See Event Table
Event attributes = 20
Event Consumption « 31
Event longevity « 24

Event Routing * 57, 80, 83. See also Task Communication Diagrams, links between levels

diagnostics = 80
Event semantics » 24
Event statistics from Simulation » 94
Event symbol in TCD diagrams * 50
Event Table « 20
Event types =21
EXCLUSIVE option in decisions « 41
External task symbol « 48
External tasks « 43

Float constants « 75

Formulas * See also Data Expressions
in decisions = 40
in User defined attributes = 19

Hierarchy * See Model ree

Jdentifiers * See Naming-conventions-
Inheritance

of Attributes by ORG elements » 16
Input events

spontaneous generation * 43
Integer constants * 75
Is_triggered_by function for decisions » 40

Layouts

of TCD diagram - 53
Limiting the number of Task Instances - 39
List constant = 76

GRADE BM LANGUAGE REFERENCE MANUAL

MAX INSTANCES - 35
Merging condition * 65

Model development * 59

Model Structure » See Model tree
Model tree « 8

N -

Named constant « 74
Naming conventions * 8
NOSTART option for transaction control = 66, 68
Notational Conventions = 7
NOTID option for transaction control = 69
Number of instances

of ORG element » 13

Occurence tag of task in TCD » 47
Operations with Data * 76
Order of Diagram creation * 59
ORG diagram = 11
— Structure of » 15, 16
ORG elements
Attributes of = 12
Organizational structure = See ORG diagram
Organizational unit* 11
" Qutput éventsof task =41 ~ T

PERFORMER expression * 35, 47
Semantics of » 37
statistics on performers in Simulation - 91
Performer Selection * See PERFORMER expression
Svntax of « 35
Persistence of Events « 21
Position = 11
Primary tasks * 46
Priority * See Task Priority
“Priority of Tasks « See Task Priority ~ - ST
Probablistic Decisions - 41

Referenced external task « 49

Referenced task » 25, 27, 46. 48

Referenced timer symbol = 27, 49

REPEAT option in output Events in TSD Diagrams » 42
Repetition Function for Timer Events « 23

Resource « 12

Seizure of Performer « 37
SET option in cutput statements in TSD Diagrams = 41

100

CHAPTER 12 SIMULATION STATISTICS

Show box * 52. See also Animation
Simulation

accounting period « 85

background preparation for = 79

Semantics of « 79

warm-up period = 85
Simulation Parameters + 74
Simulation Statistics * 84
SP Table » See Simulation Parameters
Spontaneous generation of events in TSD » 43
START option for transactions * 67
Start time function for Events « 23
Statistics * See Simulation Statistics
String constant « 76

T

Tabular view of TCD Diagrams « 53 T

Task body = 29
Task Communication Diagrams « 46
display options = 53
iinks between levels * 56
structure of * 53
Task contents « 29
_Task Duration =38, 47 .
Task outputs in TSD diagrams « 41
Task Priority = 37
Task Specification diagram * 25 _
Task visibiliry « 10
Tasks = _ o
external « 43
interaction of primary tasks « 71
referenced « See Referenced Tasks
reuse of « 73
simulation statistics on * 86
TCD = See Task Communication Diagrams
TID + See Transaction Identifier
Time constants = 76
Time specificationin timer definition « 22
Timer Events -
definition of - 21
semantics in simulatable models * 81
substituted by input events of Tasks « 43
synax of 22~ T
Timer Symbol + 48
Transactions * 64
and user defined statistics in Simulation + 97
attributes of + 69
controling the behavior of « 66
description of default behavior « 64
Transfer ime of Events « 21, 51
Transformation tasks * 25
Triggenng condition « 31, 47
semantcs in simulation « 81
Semantics of * 33
Svniax of « 31
TSD = See Task Specification Diagram

101

GRADE BM LANGUAGE REFERENCE MANUAL

Unused Events « 60
User defined atributes for tasks « 18. 38
User defined auributes of Tasks
calculation of in Simulation * 91
User defined statistics = 97
User defined task types * See User defined tasks
User defined tasks « 18-

\Y

Visibility rules + See Task visibility

Warm-up period * 85
WHERE operator « 32

