Audris Kalnins
Dr. Comp. Sci.

Automation of testing, specification languages
and CASE tools

Habilitation Thesis

Collection of works

Part 1

~

(

Gt

Riga 1997

P ——— LSS =

£
i
|

INFORMATION PROCESSING 77, B. GILCHRIST, EDITOR
© IFIP, NORTH-HOLLAND PUBLISHING COMPANY (1977)

AUTOMATIC CONSTRUCTION OF COMPLETE SAMPLE SYSTEM FOR =~

PROGRAM TESTING

J. M. BARZDIN, J. J. BICEVSKIS and A. A. KALNINSH

Computing Centre of Latvian State University
Riga, USSR

i

A sample system is said to be complete for the given program if all executable branches (linear paths) of
the program are executed on some sample of this system. The algorithmic solvability of the construction
of a finite complete sample system is proven for a sufficiently wide class of programs. In conclusion the

first results of the implementation of such a system are presented.

-

1. INTRODUCTION

Considerable success in precise methods of program
correctness testing has been achieved in recent
years (J.McCarthy, D.Scott, R.Floyd, C.R.Hoare,
S.Igarashi et al.). In spite of this in practice the
most widely used testing method is the old one in
which some sample system is constructed and then
the program is run on this sample. The sample sys-
tem choice is the most sophisticated part of such a
testing process. Usually the programmer tends to
find a sample system such that every branch of the
program is executed when running the program on an
appropriate sample of the system. Such a sample
system we shall call complete. If the program runs
correctly on such a system the programmer (and the
customer too) usually considers the program to be
correct. This heuristic principle is widely and suc-
cessfully used in practice. It is considered also in[l].
We shall not investigate the theoretical foundations of
this principle but assume it as basic. Thus the main
problem in the automation of program testing is the
automatic construction of a complete sample system
for a given program. It is clear that the problem of
the construction of a complete sample system is
algorithmically unsolvable in general (see also The-
orems 2,3 below). The authors have shown [2 - 4]
that for a sufficiently wide class of data processing
programs this problem is solvable. The aim of this
. paper is to present these together with some further
results and also give the first experience of the ex-
perimental implementation of the above mentioned
system. Let us note that some papers related to
these topics [6 ,7,8 et al.] have appeared recently.
However, the authors of these papers confine them—
selves mainly to the analysis of paths specified by
the user.

2. A SOLVABLE CASE

In order to expose the principal ideas we introduce a
very simple programming language for the process-
ing of sequentional files. Nevertheless, a large part
of business data processing problems can be formal-
ized in this language (adequately enough to investig-
ate the construction of a complete sample system).

This language can be characterized by the fact that

the values taking part in the comparison instruct-
ions are undeformed (i.e., such as read from in-
put). This restriction is acceptable in practice be-
cause it is typical for data processing problems,

t hat program logic is controlled only by input data
(e.g. , record type) and that these data are used in

.comparison instructions undeformed.

Now let us describe this language. Let file be a vari-
able whose values are finite sequences of integers
(xX,, Xz, eeey X), where Xi is i-th record of file.
Eac1h program hag a finite set of input files and a
finite set of output files. The program processes the
values of input files into values of output files. The
program has also inner variables with integer values
(the initial values are set to 0). Let X be an input
file, ¥ - an output file, t,u - inner variables and

c - a constant (a fixed integer). The following in-
structions are available.

1. X =>t. The current record of file X is assign-
ed to variable t. Thus if X=(X_,X_, ..., X), the
first occurence of instructiong(=§- i assigng the
value X to t, the second - X_ and so on. The in-
struction has two exits: "+" if the current record
exists and exit "-" if the file is exhausted. In the
1 ast case the value of t is not changed (Input in-
struction) . -

2. t =Y. The value of variable t is assigned to
the current record of file Y (Print instruction).

3. u =t (respectively, c =>t). The value of
variable u (constant ¢) is assigned to variable t
(Assignment instruction).

4. u < t (respectively, ¢ < t, u <c). The in-
struction has two exits: if the value of u (respectiv-
ely c) is less than the value of t (respectively c)
then the exit "+" is used, otherwise.- the exit "-"
(Comparison instruction). :

5. NOP. Dummy instruction (nothing is done)
It is used instead of instructions not essential for the
construction of a complete sample system when more
general programming languages are reduced to this
one. (Informally, these are nonconditional instruct-
ions not affecting the range of variable values used
in comparisons).

6. STOP

58 1977 1FIP Congress Proceedings

Let L be the language generated by‘ the instructions
1 - 6, where the programs are given as flowcharts
over this instruction set. We shall call L the base
language. Fig. 1 gives an example of a program,
which creates a new sorted file Y by merging sorted
files A and B. The program hasd a bug: control from
instruction 7 is passed to instruction 12 (instead of
10).

8: a=>Y |

[7ioor] [wioms

9:.A=b-a R
Ly |
Y

| 12: STOP

Fig.1’

By a branch of the program we understand a linear
path between two adjacent conditional instructions
(i.e., instructions with two exits). For example,the
program in Fig. 1 has branches (1:A =>a+),(10:B=>
b+, 11:b=Y), (1:A = a-) etc.

Let the program have input files A,B, By a
sample weoshall gnderstand fixed values of all these
files: A=A, B=B, Let us say that sample P
realizes the branch h of program T if this branch is
executed while running program T on sample P. E.g.,
when the program in Fig. 1 is run on the sample
A=(0), B=(1), the path (1:A =>a+, 2:B b+, 3:a <L
b+, 4:a =Y, 6:A =>a-, 7:b =Y, 12:STOP) contain-
ing branches (1:A =>a+), (2:B=>b+), ... is execut-
ed. The sample system is said to be a complete
sample system (CSS) for the given program, if every
branch realizable by some arbitrary sample is realiz-
ed by some sample in this system. For the program
in Fig.1, for example, the following sample system
is complete P_= {A=(0,1), B=(2)}, P_={A=(0), B=
(1,2,3)}, P,= {a=(2), B=(0,2)}, P, = {A=(1,2,3),
B=(0)}, P‘5 ={a=(), B=(0,1,2)}. ‘h is easy to see
that the bug in the program is found in this system.
Evidently, for every program there exists a finite
CSS. The main problerg;j.s'td“ﬁnd this system.

THEOREM 1. There is an algorithm for constructing

a finite complete sample system for every program
in]..0.

The proof will consist of several auxiliary assertions.
Let T be a program in Lg and A =(K1,K2,.0., Kr) '

a path in T, K., - an instruction with fixed exit (+ or
-). The exit of instruction K, must enter K, _. The
program in Fig.1 contains, for example, the path
cr=(1:A = a+, 2:B=Db+, 3:a<b+, 4:a=>Y, 6:A =
a+) (or simply o =(1+,2+,3+,4,6+), if only labels
of instructions are used). If it is not stated other-
wise, we shall assume that the path always begins
with the first instruction of the program. The follow-
ing system of inequalities N(¢() is related to pathe):
N(e)={M _,M_,..., M}, where M_={t =0, u_=0..}
t,u - innér ve}riables, and M., .i=l? ...c: b 9 i€ the
subsystem corresponding to instruction K. in the
following way. Let X be an input file and t, u inner
variables in the program. Let t , u, be variables
denoting the values of variablest, u after the execut-
ion of path &, ™ (K.y «esy K,) and X _the last
record of file X Tead during it (a‘t_ehe begi.n%ing
corresponding variables aret ,u , X). Letcbe a
constant. System M;is defined’in the l'c?llowing man-
ner:

(1) H K. = (X =u-), then M_ ={X<0}. By in-
equality X< b we code the exhaustion of file X.

(2) IfK, = (X =u+) and ifM_,M_, ..., M. _do
not contain inequality X <0 (i.e. no instruction 15
type X=> ...~ has been performed) then M, =
u = }- In this case new variables and
X‘ 1 are introduced which have the same sense for
inss.tll“uction K, .'asu and X have for K.. If inequal-
ity X<0 has J'ct(:le:;l.u"ecll' alreacﬁr, then M, = (x<o0,x>0,
i.e., a contradictory system is chosell'l.

(3) 1f K, = (t=u) (or K, = (c =>u)), then
i e Lot B Voo

{thllf K.=(t =u+) (orK, = (c << u+) orK, =
(t <c#)) then M, ={t +1 <} (or M, ={c+1<
w}, or Mi=[tk-}-ll.$c). '

(5) If K, = (t<u-) (or K, = (c<u-), or K, =
(t<c=))then M, ={t >u} (or M. ={c; ul, of M, =

i k 1 i 1 i

{_tka .

’

Let us give an example. For of = (1+,2+,3+) we have
N() = {ao= 0,b0=0, al-:A ,b. =B ,al+1%bl}. From -
t he construction of N{&) fhere follows:

{

LEMMA 1. The path & is realizable iff the system
N(%) has an integer solution. Any solution of N(&)
with respect to variables-records of input files
yields a sample realizing path o .

Qur aim is to reduce N(&) while preserving the
existence (or the nonexistence) of the solution in
such a way that there will be only a finite number of
possible reduced systems for the given program.
Let the program have input files A,B, ... and inner
variables t,u, Then the system N(&) contains,
in general, variables A,B, CEE Al' § i p— Ad‘
Bl, BZ’ caey Be, ase seey tl, tz, -..,2l{, u_,

Upy seey Uy cee sae s Let us remember tha]i inner
variables With maximal subscripts — t_, U 4 «aas
denote values of inner variables t,u, ... atter the
execution of path o/ . These variablest_,u , ..., as
well as variables A,B, ... denoting input “files -
we shall call active variables of system N(&). For
example, the system N(&') from the previous
example has active variablesa _,b_. Out of all the
variables of N(&X), only the active ones can enter
inequalities added to N(&/) during the construction
of N(®X+8). Now let us define the exclusion of vari-
able Y from the system of inequalities N, taking into
account all the inequalities induced by transitivity.

Automatic Construction of Complete Sample System for Program Testing 59

Formally, we consider all the pairs x, z of variables
and/or constants different from y, for which there
exist inequalities x + p,<y and y+p <z (p. >0,
p,=> 03 equality x'=y' is substituted here by inéqual-
ifies x'<y' and y'< x'). For each of these pairs we
add inequality x + {p_+ p,)< =z to the system N. It
turns out that it is possible to restrict the range of
the constant appearing in the added inequalities pres-
erving again the existence of a solution: if p_+ p_ >
C =C,_-C_, where C_ is the maximum and C_ ‘the
minimum constants of%_hg' program, then p_ +p, is
changed to C + 1 in the added inequality. Then ~we
delete all inequalities and consequently, equalities,
containing y from N. If N contains inequalities of
type y + p& y with p>0 then these inequalities are
substituted by some standard contradicting inequality,
e.g., 1<0 (because the new system must have no
solutions) . Now ‘let us exclude, one after another, all
inactive variables from N(&). Thus, we get a new
system of inequalities? Then we drop all the sub-
scripts of the variables in {I. The resulting system is
denoted by S(e) and called a stateInformally the
state describes relations between current values of
inner variables.In the previous example state S(a/)=
{a+1< b} corresponds to the path A= (1+,2+,3+).

LEMMA 2. Path & is realizable (i.e., system N(o¢)
has an integer solution) iff the state S(o) is consist~
ent (i.e., S(of) has an integer solution as a system
of inequalities) .

It follows from the definition of state that if two paths
o0 and B end with the same instruction and #’ is a
continuation of both paths then S(o¢) = S(8) implies
S{ot +7‘) = S(/G +4"). Hence from Lemma 2 there
follows:

LEMMA 3. Let paths & and /4 end with one and the
same instruction and S{cf) = S(/8). Let /" be a
continuation of these paths. Then path & + /‘ is re-
alizable iff path 4 + 7 is realizable.

Let us note that state S(0¢) can be effectively const-
ructed from path ot and the number of different
states is finite for a given program. Lemma 3 gives
us the possibility (using a technique popular in auto-
mata theory) to construct effectively from the prog-
ram a {inite system of realizable paths

a' a? ..., af
such that every realizable branch is contained by
some of these paths. Now the solutions of correspond-—
ing systeéms of inequalities N(ot!) LN(F) y ous ,N(OLP)
yields us a sample system P_,P_, ...,P whichisa
complete sample system, This concludeg the proof of
Theorem 1.,

3. UNSOLVABLE CASES

Let us consider a language L where the same file X
can be opened (i.e., read from the first record) re-
peatedly. Formally, L_ is obtained from the base
language Lo by adding Instructions of the type REOPEN
X.

THEOREM 2. There exists no algorithm for construct-
ing a finite complete sample system for every prog-
ram in L, (a subclass of programs in L, with two in-
put files with one usage of REOPEN for each of them
is sufficient for non-existence).

We consider two-tape automata by Rabin and Scott f‘)]
These automata may be represented by programs in
base language L with two input files. According to
[9], the following problem is undecidable : determ~
ine for two-tape automata A and B the emptiness of
the intersection of languages L, and L_ represented
by these automata. We identify tapes ol automata with
two input files. It is easy to construct a program

P using the REOPEN instruction only once for each
oé&e files where the STOP instruction is accessible
iff LNL_ #@ . Hence it follows that the emptiness
of L L~ can be decided by means of a complete
sample system.

Now let us consider a language L_ which is obtained

. from the base language by adding variables of a new

type - counters and the following instructions for
them:

C>7, Z+1=2, Z<t

" where Z is a counter and t - an inner variable. In-

struction Z<t allows us to compare counters with
records of input files in L2.

THEOREM 3. There exists no algorithm for construct-

ing a complete sample system for every program in
L.

2
The proof of Theorem 3 relies on testing, by means
of constructions of language L_, whether or not the
input file is a sequence of integers which is the
configuration sequence of some Minsky machine.
[10] It is easy to see that this test can be reduced to
t he tests of type "is it t=u+1?". Such a test (for u>
0) can be performed by means of one counter Z:

—-—[o:vz] Z<u B z<t Jiﬂn::»ﬂ
+

At the same time, if counters can be compared only
with constants, the problem of construction of CSS
is solvable. This follows from the same ideas as the
proof of Theorem 1. Only the values of counters if
they lie between the minimum and maximum cons-
tants of the program are included in the state.

4. SOLVABLE EXTENSIONS

Theorem 3 shows that the unlimited usage of counters
in a program causes the unsolvability of the problem
of CSS construction, However, in practice counters
are mainly used for loop organization. This is done
by means of the DO statement:

DO Z=1 TO r WHILE V; W; END;

where W - the body of the loop is a program block
(by program block we understand part of the prog-
ram consisting of base instructions and, possibly,
DO statements and having a single entry and a single
exit) , V is a boolean expression constructed from
comparisons of L, (e.g., (t<u) & (5<t)), and r -

t he bound of the loop is an inner variable. A DO
statement (called also a DO-loop) will be interpreted
as an abreviation of the following program block:

60 1977 IFIP Congress Proceedings

It is assumed that counter Z.is used in no instruct-
ions other than the above mentioned ones Z £ r and
Z+1 => Z used for loop organization.’

Let us consider the programming language generated
by the base instruction set and the DO statement.
There is no algorithm for constructing a CSS for
every program in this language (a stronger version
of Theorem 3). The proof is close to the one used
for Theorem 3 except that a slightly different coding
of the Minsky machine configurations is used. This
proof of unsolvability strongly relies on comparing
the loop bound r with other inner variables. Now let
us exclude this possibility.

We shall not allow the use of the loop bound r in com-
parisons with other inner variables and in assign-
ments. This means that the loop bound r along with
the loop organization instruction Z<r can be used
only in input instructions (X =>r), comparisons with
constants (r<c, ¢c<r) and print instructions (r=-Y).
In practice these restrictions are not essential but
they usually hold for real programs. Let us note

that several DO-loops can have a common bound r.
The programming language 'generated by the base in-
struction set and the DO statement with above ment-
ioned restrictions is called L'3'

THEOREM 4, There exists an algorithm for construct-
ing a finite complete sample system for every prog-
ram in L. ' '

A detailed proof of Theorem 4 is rather lengthy, so
we shall outline only the main ideas used. By a simp-
le state we shall understand a state in the sense of

" Theorem 1, i.e., one obtained by ignoring the in-
structions containing counters and loop bound. Let
us consider a DO-loop having no nested DO=loops in
it. By entering the DO-loop in a simple state S (at
entry point A) and going.through all the possible
values of bound r-we can obtain, at the exit of the
loop (point B) , generally speaking, distinct simple
states S) S, «-»y S3. Further, for every state §5;
there exists the set R; of the values of bound r, for
which the state S; is reached at the exit. More pre-
cisely,T € R; iff for r = T and state S at point A there
exists a realizable path through the DO-loop beginn~

ing in the point A and reaching point B in the state 5;.
The set R is said to be regular if there exists a reg-
ular expression R in the binary alphabet {1,0} such
that forr > 0

r€Riff 11 ... 1 €R
r

and for r < 0

r €R iff 00“.-;. 0 eR. .

The expression R is said to be regular representat—
ion of the set R. Regular expressions are preferable
due to the decidability of the emptiness problem.

LEMMA 1. Set R; is regular for every i. States

S.3 +-+4 S5 and the corresponding regular represent-
ations of sets Ry, ..., R can be constructed effectiv-
ely from the DO-loop and state S.

Theorem 4 can be proved by Lemma 1 in the simplest
case when the program contains only non-nested DO-
loops, none of which includes instructions involving
bounds of other DO-loops. In the general case some
generalization of Lemma 1 is necessary.

Let us order the variables used as loop bounds in the
program:

r(ﬂ, £2) LK)

gy ssegy -

Let us consider a set of strings of the type

(1) (1) (2) (2) k) (k)
<rl‘rII’rI’rII"“’II’rH>’
(i (i) ; ;
wherer '€ M, r ;"€ MU{»}, M is the set of in-
tegers and * a special symbol.

The set of strings is said to be regular if it can be
expressed as a finite union of cartesian products of
regular sets ({+} is considered to be a regular set) :

(1) (1) (k) (k) (1)
Rl,l XRII,] % v % Rl,l X RII,IU & s URI,b x
(1) (k) (k)

Bop b Xmen BBy o X Ry

2D (D) () (1)

R R

1,1° " I,1° 77 NI, CI,b - reqgular sets.

The expression

(D) =) —() _ =(k) (1)
Rl,i x Rll,l X sae X RI,IXRII,IU .o U Rl,b x
=(1) =(k) _ =(k)

Rgp X =os X Ry X Ry p o

where

(1) =(1) (), =(K)

1,17 "II,17 77 T I,b* T 1,b
are regular representations of the sets
(1) _(1) (k) (k)
Ry, Ru,x’ "",-Rl,b ’ Ru,b ’

is said to be a regular representation of the corresp-~
onding set of strings.

Let a program block, with entry C and exit D, be
given. Let S be a simple state at point C and S;be

a simple state accesible at exit D. Let us denote by
Uj the following set of strings.

Automatic Construction of Complete Sample System for Program Testing 61

(1 (1 (k) (k
Lr I’) r(n), ceey I I’) rn))GUi
iff for r(1)= r(_Il), ey i'(k)= r(I;)

and state S at point C there exists a realizable path
through the block, beginning at point C, reaching
point D in state S;, and satisfying the condition:

ifr (I‘I,)= * , then the path contains no input instruct-

ion of the type (ﬁle)#r(J);

if r(I]I) is a number, then the path contains one or

several input instructions (file)-‘.»r(J) and r(J)is a
possible value of variable (i) at point D on H)e given

path (j=1, ..., k). . ’

LEMMA 2. The set of strings ;" is regular for eve-
ry i. The possible states Sq, V.., 53 at the exit of
the block and the ¢orresponding regular representat—
ions of the sets Ul’ . <y Uq can be constructed
effectively from the program block and state S.

The lemma is proved by induction over the depth of
nesting of loops in the block. For depth 1 Lemma 2
is a slight strengthening of Lemma 1.

Now let us consider a block path %=(K_,K_,... ,Km) .
It differs from the usual path in that the K can be
either a base instruction or a DO-loop. If K; is a
DO-loop we fix one of the possible simple states S;

at its exit. An instance of a block path is ¥=(X = a+,
a<e-, (D,S;), a=Y), where D is some DO-loop.
Now let us define the total state Z(%) as a pair

(S(o¢), W(o)), where S(&¢) is a simple state and
W(%%) is a regular expression describing all the pos-
sible strings ¥ 1 y seey I k > of numbers accept-
able as the values of the variables r(1), ..., r

at the end of pathd. W(o) can be easily construct-
ed using Lemma 2, It follows from the construction
that for a given program the'number of distinct total
states is finite. Moreover, an analogue of Lemma 3
from Theorem 1 holds for the total states. Hence
arguments analogous to those used in proving Theo-
rem 1 lead to a proof of Theorem 4.

Now some words about another extension of the base
language L,. So far we have considered only sequent-
ial files. The authors have investigated also the case
of direct access files in [5] and have shown that the
CSS construction problem is solvable for a sufficient-
ly wide class of sich programs.

5. PRACTICAL IMPLEMENTATION

Some improvements of the above mentioned algorithm
for constructing a CSS are important in practical
implementation.

1. First, a set of essential instructions of the prog-
ram is selected, i.e., a set of possibly fewer in-
structions, containing the first instruction, and, at
least, one instruction from every loop. Then, during
the construction of realizable paths ol s A2, cee
o, P, states are attached only to essential instruct-
ions. .

2. Next, a set of essential inner variables is select-
ed for each essential instruction. The variable is
essential, if its value.is used (directly or through
assignments) in further comparison instructions.
The improvement now consists in the. following.
When constructing the state S{&) from N(&), we
exclude not only the inactive variables but also act-
ive variables t¢ where the corresponding inner vari-
able t is not essential for the instruction entered by
path & (more precisely the instruction entered by

i the exit of the last instruction of &),This can great-

ly reduce, in practice, the number of states to be
considered. At the same time analogues of Lemma 2
and 3 are preserved.

3.2During thepconstruction of realizable paths 001,
o 3 -« 3y & , yielding a CSS, the following prin-
ciple is used: the brahch, contained the least number
of times in the paths o1, &2, ..., ol already
constructed, is chosen as the next branch for analys-
is. This principle frequently allows to construct a
CSS using only part of possible states.

The following improvement of algorithm allows to
widen the acceptable instruction repertoire. Add/
subtract instructions are allowed in the case when
either the result or at least one of the operands is
not involved in comparisons. In this case the "free”
value can be chosen arbitrarily.

An experimental implementation of a CSS construct—~
ion system was accomplished for a COBOL-like
1anguage. No more that 120K Bytes of main storage
were used with a time limitation of 10 minutes per
program at CPU speed of approximately 40000 oper-
ation/sec. In this environment, the system was able
to construct a CSS for approximately 70% of data
processing programs containing no more than 300
statements. The results obtained make us believe in
the possibility of implementing an automatic CSS
construction system, having a speed comparable to
that of high level language compilers and applying to
most real programs.

REFERENCES

[11 E.F.Miller and M.R.Paige, Automatic generat-
ion of software testcases, Eurocomp Conference
Proceedings,1974,1-12.

[} J.M.Barzdin, J.J.Bicevskis and A.A.Kalninsh,
Construction of complete sample system for
program testing, Uchonye zapiski Latviiskogo
gosudarstvennogo universiteta,vol,210,1974,
1522187 (Russ.)

(81 J.M.Barzdin, J.J.Bicevskis and A.A.Kalninsh s
A solvable and unsolvable cases of the problem
of construction of a complete sample system,
Uchonye zapiski Latviiskogo gosudarstvennogo
universiteta,vol.210,1974,188-205(Russ.)

(o] J.M.Barzdin, J.J.Bicevskis and A.A .Kalninsh,
Construction of complete sample system for
correctness testing, Lecture Notes in Computer
Science,vol.32,Springer-Verlag,Berlin, 1975,
1-12. .

[5] J.M.Barzdin and A.A.Kalninsh,

Construction of complete sample system for
programs using direct access files, Uchonye
zapiski Latviiskogo gosudarstvennogo universite-
ta,vol.233,1975,123-154 (Russ.)

62

1977 IFIP Congress Proceedi_ngs

(6]
7

(8]

]

(9]

W.E.Howden, Methadology for the generation of
Program test data, IEEE Transactions on Com-
puters, vol.C-24,No.5,May 1975,554-559.
J.C.King, A new approach to program testing,
Proc.Int.Conf.Reliable Sofware, Apr.1975,228-
233.

L.A.Clarke, A system to generate test data and
symbolically execute programs, IEEE Transact-
ions on Software Engineering, vol.5E-2, No.3,
Sept. 1976,215-222.

M.O.Rabin and D.Scott, Finite automata and
their decision problems, IBM J.of Research and
Development, vol.3,No.2,1959,114-125.
M.L.Minsky, Finite and infinite machines, Pren-
tice-~Hall, Englewood Cliffs,N.Y.,1967.

A

Lecture Notes in Computer Science

Vol. 1: Gl-Gesellschaft fir Intormatik 8.V, 3. Jahrestagung, Ham-
burg, 8.-10. Cktober 1973. Herausgegeben im Auftrag der Ge-
sellschaft fiir Informatik von W, Brauer. XI, 508 Seiten. 1973,
DM 32,-

Vol. 2: Gl-Gesellschaft fur Informatik e.V. 1. Fachtagung Uber
Automatantheorie und Formale Sprachen, Bonn, 9.-12. Juli 1873,
Herausgegeben im Auftrag der Gesellschaft flr Informatik von
K.-H. Bshling und K. Indermark. VIl, 322 Seiten. 1973. DM 26,~

Vol. 3: 6th Conference on Optimization Techniques, Part 1.
{Series: |F.LP. TC7 Optimization Conferences.) Edited by R.
Conti and A Ruberti. Xill, 565 pages. 1873. DM 38.-

Vol. 4: Sth Conference on Optimization Techniques, Part Il
(Series: LF.LP. TC? Optimization Conferences.) Edited by R.
Conti and A. Ruberti. XIll, 388 pages. 1873. DM 28,

¥ol. 6: International Symposium on Theoretical Programming.
Edited by A. Ershov and V. A Nepomniaschy. V), 407 pages.
1874. DM 30,-

Vol. 8: B. T. Smith, J. M. Boyle, B. S. Garbow, Y. lkebe, V. C.
Klema, and C. B. Moler, Matrix Eigensystem Routines - EISPACK
Guide. X, 387 pages. 1974. DM 28,-

Vol. 7: 3. Fachtagung Uber Programmiersprachen, Kiel, 5.-7,
Mérz 1874. Herausgegeben von B. Schlender und W. Frieling-
haus. VI, 225 Seiten. 1974. DM 20,-

Vol. 8: GI-NTG Fachtagung Uber Struktur und Betrieb von
Rechensystemen, Braunschweig, 20.-22. Mirz 1974, Heraus-
gegeben im Auftrag der Gl und der NTG von H.-O. Leilich. VI,
340 Seiten. 1974, DM 26,-

Vol. 9: GI-BIFOA internationale Fachtagung: Informationszen-
tren in Wirtschaft und Verwaltung. Kéln, 17./18. Sept. 1873,
Herausgegeben im Auftrag der Gl und dem BIFOA von P.
Schmitz. VI, 258 Seiten. 1974. DM 22,

Vol. 10: Computing Methods in Applied Sciences and Engineer-
ing. Part 1. Internati | Symposium, Versailles, D ber17-21,
1973. Edited by R. Glowinski and J. L. Liona. X, 497 pages. 1974.
DM 34,-

Vol. 11: Computing Methods in Applied Sciences and Engineer-
ing, Part 2. International Symposium, Versailles, December 17-21,
1873. Edited by R. Glowinski and J. L. Lions. X, 434 pages. 1974.
DM 30,-

Vol. 12: GFK-GI-GMR Fachtagung Prozessrechner 1974. Karls-
ruhe, 10.-11. Juni 1974, Herausgegeben von G. Krliger und
R. Friehmelt. X|, 820 Seiten. 1974. DM 42,

Vol. 13: Rechnerstrukturen und Betriebsprogrammierung, Er-
langen, 1970, (Gl-Gessllachalt fur Informatik e.V.) Herausgege-
ben von W. Hiéndler und P. P. Spies. Vil, 333 Seiten. 1074.
DM 30,-

Vol. 14: Automata, Languages and Programming - 2nd Col-
loquium, University of Saarbrlcken, July 20-August 2, 1874,
Edited by J. Loeckx. VI, 811 pages. 1874. DM 48,-

Vol. 15: L Systema. Edited by A. Salomaa and G. Rozenberg.
VI, 338 pages. 1874, DM 30~

Vol. 18: Operating Systems, International Symposium, Rocquen-
court 1974, Edited by E Gelenbe and C. Kaiser. VIll, 310 pages.
1874. DM 30,-

Vol. 17: Rechner-Gestltzter Unterricht RGU '74, Fachtagung,
Hamburg, 12.-14. August 1974, ACU-Arbeitskreis Computer-
Unterstiitzier Unterricht. Herausgegeben im Auftrag der Gl von
K. Brunnstein, I. Haefner und W. Hiindler. X, 417 Seiten. 1674,
DM 35~

Vol. 18: K. Jensen and N. Wirth, PASCAL - User Manual and
Report. V1, 187 pages. 2nd Edition 19765, DM 20,-

Vol. 19: Programming Symposium. Proceeding, Colloque sur la
Programmation, Paris, April 9-11, 1974. V, 425 pages. 1974,
DM 35,~ i

Vol. 20: J. Engeliriet, Simple Program Schemes and Formal
Languages. Vi, 254 pages. 1974. DM 25,-

Vol. 21: Compiler Construction, An Advanced Course. Edited by
F. L Bauer and J. Eickel. XIV. 621 pages. 1974. DM 42,-

Vol. 22: Formal Aspects of Cognitive Processes. Proceedings,
Interdisciphnary Conference, Ann Arbor, March 1972. Edited by
T. Storer and D. Winter. V, 214 pages. 1975. DM 23,

Vol. 23: Programming Methodology. 4th Informatik Symposium,
IBM Germany Wildbad, September 25-27, 1974. Edited by C. E.
Hackl. VI, 501 pages. 1975. DM 39,-

Vol. 24: Parallel Processing. Proceedings of the Sagamore Com-

puter Conference, August 20-23, 1974. Edited by T. Feng. VI,

433 pages. 1975. DM 35,-

Vol. 25: Category Theory Applied to Computation and Control.

Proceedings of the Firstinternational Symposium, San Franci

February 25-286, 1074, Edited by E. G. Manes. X, 245 pages.

1975. DM 25,-

Vol. 26: GI- 4. Jahrestagung. Berlin, 9.-12, Oktober 1974. Her-

ausgegeben im Auftrag der Gi von D. Siefkes. IX, 748 Seiten.

1975. DM 49,-

Vol. 27; Optimization T q IFIP Technical Cenference.

MNovosibirsk, July 1-7, 1874, (Series: |.F.LP. TC7 Optimization

Conferences.) Edited by G I Marchuk. VIIl, 507 pages. 1875.
M 39,-

Vol. 28: Math ical Foundati of Comp Science. 3rd

Symposium at Jadwisin near Warsaw, June 17-22, 1974. Edited

by A Blikle. VIIl, 484 pages. 1975. DM 37,-

Vol. 29: Interval Mathematics. Proceedings of the International
Symposium. Karlsruhe, West Germany, May 20-24, 1975. Edited
by K. Nickel. VI, 331 pages. 1975. DM 30,~

Vol. 30: Software Engineering. An Advanced Course. Edited by
F. L. Baver. (Formerly published 1973 as Lecture Notes in Eco-
nomics and Mathematical Systems, Vol. 81) XII, 545 pages. 1975.
DM 42.-

Vol. 31: 5. H. Fuller, Anaoysis of Drum and Disk Storage Units. IX,
283 pages. 1975. DM 28,-

Vol. 32: Mathematical Foundations of Computer Science 1875,
Proceedings 1975. Edited by J. Betvat. X, 476 pages. 1975. DM 39,-

Lecture Notes In
Computer Science

Edited by G. Goos and J. Hartmanis

32

Mathematical Foundations
of Computer Science 1975

4th Symposium, Maridnské Lazné,
September 1-5, 1975

Edited by J. Be¢var

Springer-Verlag
Berlin - Heidelberg - New York 1975

"CONSTRUCTION OF COMPLETE SAMPLE
SYSTEM FOR CORRECTNESS TESTING

J.M.Barzdin,J.J.Bidevskis,A.A.Kalninsh
Computing Center of Latvian State University
Riga, USSR

INTRODUCTION

In spite of success in axiomatic methods for program correctness
proofs (J.McCarthy, D.Scott, R.Milner, C.Hoare e.a.) the old well-
known method for correctness testing (debugging) of programs strongly
prevails. According -to-this method- a-set of samples is constructed
and program is run on these samples. If the program yields correct
results on these samples, programmer usually believes his program
ﬁeing correct. The choice of a suitable samplé set is the most sophis-
ticated part of debugging process. Usually programmer tends to find
a set of samples such that every branch of program is executed when
funning the program on an appropriate sample of this set. If progfaﬁ
runs correctly on all the samples of this set which is called complete
sample system henceforth the programmer has great certainity that his
program will run correctly on every 1nput. 0f course, this criterion .

A ———

not absoiute, nevertheless lt is widely and successfully used in

practlce.
~ Thus the main problem in the automation of debugging process is

automatic construction of complete sample system for a giyen program.

£ .- It is clear that the problem of constructing complete sample

gyatem ls algorlthmlcally unsolvable in general (see also Theorems

2 3_4 :belDW) The aim of thls paper is to show that for a sufficient-

1y wide class of data processing programs this problem.;s solvable.:

5 : Some of the results given here can be found with full proofs

4n [1] , [2] by authors.

SOLVABLE AND UNSOLVABLE CASES

Now let us define a programming language for file processing
using sequential access method. In this language a great part of data
gate construction of complete sample system). - -

Now let file be a variable whose values are finite sequences of
. being i-th record of file. Let parameter

1
be a wvariable with integer values.

integers (nl’nz’ ...,nr), n

Each program has a finite set of input files and input parame-
ters. The program has also a finite set of output files. The program
processes the values of input files and parameters creéting the va-
lues of output files.

Program has also inner variables with integer values (the initi-
al values being equal to 0). Two types of inner variables are avail-
able - main variables and counters.

Let X be an input file, Y - an output file, n - an input para-
meter, t,u - main inner variables, z. - a _counter and c. - a constant .
(a fixed integer).

The following instructions are available.

1. X = t. The current record of file X is assigned to variable
t. Thus if X:(ni,nz,...,nr), the first occurence of instruction
X =t assigns the value n, to t, j:he second - n, and so on. The in-
‘struction is conditional. It has two exits: the exit "+" when current
record exists and exit "-" when end of file is reached. In the last
case the value of t "is not changed.

2. t =Y. The value of variable t is assigned to the current

“pecord of file Y.~ - -
- 3. a=>t where &€ {u,n,c} The value of a is assigned to variab-
le t.

4. b=z, where b.G{.n,c}. The value of b is assigned to counter

5. z+1 =>z. The semantics is evident.
~ 6. a<b, where a€ {u,n,c}, be{t,n,c}. This conditional instruc-

“tion has two exits: if value of a is less than value of b,'"the'- exit
Comgm -i’._s'-."used, otherwise - the exit "-",. - -

; 7. z<b (or b<z), where b € {n,c}. Semantics is analogic to the
previous case.

. 8. NOP. Dummy instruction {(nothing is done). It is used instead
: of in_structions not essential for construction of complete sample

system when more general programming languages are reduced to this

one. (Informally, these are nonconditional instructions not affecting
the range of variable values used in conditions).

9. STOP.)

Let Lo be the language generated by the instructions 1-9. Let Ly

. be-the 1anguagechaLLed.basenlaaguagaJuuhich.is_obtainad.from-La_by —
omitting counters (i.e., instructions 4,5,7).
Programs will be given as flowcharts over an instruction set.
The instructioms have labels for reference.

Fig.1 gives an example of program in Lo’ which creates a new
sorted file Y by merging sorted files A and B. Y contains first m re-
cords from A and n first records from B. m and n are input parameters,
A and B - input files, ¥ - output file. Program has a bug: control

from instruction 12 is passed to the instruction 5 (instead of u).

- L.
2 :

3: 0 >w
i = uy: B b
+

S5: wtl Supe

17: a >Y {6 wn]

18: A=>a

[7: acb |5

12: b =Y

— - . F -
20: zom
+ ¥

— "5 ‘.-10: z+1 =z

By branch of program we understand a linear path between two
conditional instructions (only the first instruction of path can be
conditional). E.g., the program in Fig.1 has branches (7+,8),(6+,7)
etc.

- Letprogram have input fileés A,B,7.. and parameters m,n,... By ~
a sample we shall understand fixed values of all these input variab-
les: A=Ao, BzBo,..., m=mo, n=no,...

Let us say that sample P realizes the branch h of program T if
this branch is executed while running program T on sample P. E.g.,
when program in Fig.1 is run on the sample A=(1,2,3), B=(2,3),
m=1, n=1, the path (1+,2,3,4+,5,6-,7+,8,9+,10,11+,13,14+,15,16+) con-
taining branches (1+,2,3), (8+,5), (6-), (7+,8),... is executed.

Sample system is said to be complete for the given program, if
every branch realizable by some arbitrary sample is realized by some
sample in this system. Evidently, for every program there exists a
finite complete sample system (CSS). The main problem is to find this
system by means of some algorithm.

THEOREM 1.. There is an .algorithm constructing.a finite complete samp--

le system for every program in LO.

In this case it is also decidable whether or not the program can
loop infinitely on some sample (see [1] and [2]).

The following theorems show that Theorem 1 reveals in some sense
the maximal boundaries for problem of constructing CSS to be solvable.

Let us consider a language L1 in which counter values can also
be compared with records of input files. Formally Ly is obtained from
L0 by adding new instructions of type z<t and t<z, t being a main va-
riable and z a counter. ..

--THEOREM -2. -There-exists ne algorithm-constructing a -‘finite complete -
sample system for every program in Ll'

Now let us consider a language L, where values of counters can

2
be both increased by 1 and decreased by 1. Formally, L2 is obtained

from L by adding an instruction z-1=>z.

THEOREM 3. There exists no algorithm constructing a finite complete

sample system for every program in L2 (a subeclass of programs in LZ

with two counters and no files and parameters is sufficient for non-
existence)

Let us consider also a language L, in which a file can be re-

3
opened (i.e., input resumed from the first record). L3 is obtained

from the base language L, by adding instructions of type REOPEN X.

THEQOREM 4. There exists no algorithm constructing a finite complete
sample system for every program in L3 (a subclass of programs in L
with two input files with one usage of REQPEN for each of them is
sufficient for non-existance).

HEURISTIC ALGORITHM.

Unsolvability in the abovementioned cases and complexity of
algorithm used for proof of THEOREM 1 is caused by some artificial
constructs improbable for real data processing programs. Now let us
give a relatively simple heuristic algorithm not always yielding CSS
for programs in Lo but at the same time applicable to more general
language L.

In language L the counters are not specially singled ocut. In-

stead of this the following arithmetic instructions are applicable
to all inner variables:

t+u = v
t-u =>v
| t+c v
t-c =>v
c-t =v

The other instructions of L are those of base language Ly .
Obviously L is a generalization of L .
CSS is unsolvable for this language.

1,L2, and construction of

Now let us describe our heuristic algorithm. Let T be a program
in L and a=(K1,K2,...,Kp) a path in this program, K; - an instruction
with fixed exit (+ or =). E.g., a=(1:A = a+; 2 1==»z 3:0 =>w,4:8 =b-,
17:a == Y¥,18:A = a+) (or a=(1+,2,3 h-,i? 18+) if only labels of instruc
tions are used). - —— T : ST e T T

Our aim is to find a sample realizing the path a. For this pur-

posé the folloﬁing system of inequalities and equalities N(a) is re-
lated with path a:

o
M
N@)=4 =,
M
r
t_=0
where M, = °© , thu,... - inner variables, and

M. is the subsystem corresponding to instruction - Let X be an

m
denoting the values of variables t,u,v after the execution of path

input file and t,u,v inner variables. Let tk’ul’ v_ be variables

ai_1=(K1,_. = % ,Ki_l) and X_ the last record of file X read during it
(at the beginning corresponding variables are ta,uc,vo). Let ¢ be a

. constant .or ar-input parameter- (imr the last case-it is—a variabIe)
and A - the "blank" symbol, being less than any integer by defini-
tion. System Mi is defined in the following manner:

1) 1f Ki=(w:)(=ru-)} then

M, ={X < A

2) If Ki=(w:X = u+) and if Ml’MZ""’Hi—I do not contain in-
equality Xj</\ for any j(i.e.,no instruction of type X = ...-has
been perofrmed) then

s+1

X > N
Mj_ = s+1
Xge1=%141
In this case new variables Uy, and st are introduced which have
the same sense for instruction Ki+1 as ul and XS for Ki'
If- -inequali—ty--—)(jfﬁ-'has occured aXready, thern
M - X5+1(A
i °
Xs+1> A

i.e., a contradictory system is chosen.

3) If Ki=(w:1:=)u) (or Ki=(w:c = u) then

Hi={tk=u1+1 (or Hi=[c=ul+1) .
New variable Uq.1 is introduced in this case.
4) If Ki=(w:t<u+) (or Ki={w:c<u+), or Ki=(w:t<c+) then
= M, = . = -
M, {tkﬂgul (or My {c+1su1, or !“[:L {tu+1$c}
5) If Kiz(w:t<u—_} (or K;=(ﬁ:c<u—), or'Ki':(w":t<c—]) then
——— Hi={t}‘<2u1" " (or M'i:[CZul, or _Hi=ftkzc.
6) If K= (w:t+u = v) (or i:(w:t-u =v)) then
‘Mi={tk+u1=vm+1 (or Hi={tk_u1=vm+1)'
If K =(uwit+c > v) (or K;=(wit-c = v), or-_Ki= (w:c-t =»v))then
Mi={*.:ki»r:ﬂ..rm+1 (or Hi={tk—-c=vm+1, or Hi=[c-t}'c=vm+1}.

=~ Equalities introduced by means of 6) we shall call arithmetic
equalities.
It can be shown that there is an algorithm deciding the existen-

.ce of an inte_ger solution for system N(a) and constructing such a so-

lution in case of existence. For this purpose we can use, e.g.,
Gomory's algorithm fop'integer linear programming. Obviously, every
solution gives a sample ;ealizing the path a (it suffices to consider
the wvalues of input parameters and records of input files only).
—- . -Gaomary's -algorithm can_also_be used to show the existence of an _
algorlthm for the follow1ng problem.

Let as= (Kl""'Kr)’

R L [Mo
M(a) = o (respectively, N(a) = ass)
Mr—l Mr—l
X+1<y X2y
",
and let system (... have a solution, but
Mr—l
" ‘
% 5 (respectively G e 3)
lﬁr—l Mr-l
x+1<y X2y

—have. no-selution. Then-the minimal p must be. found such that the.
following system has a solution:

M M

o o

. (respectively -)
Mr-1 M1
Xx+1<sy+p X+p2y

In this case we define this value of p to be the deficiency of in-
struction K. on the path a.

Let us denote by N'(a) a system obtained from N(a) by deleting
all arithmetic equalities. Now let us exclude variables Wy from N'(a)
such that in N(a) there is w, with n>1. The exclusion is performed
by adding some new inequalities and deleting all inequalities con-
taining Wy New inequalities are added in the following manner: -
If N'(a) contains X+p,<Wy and w 1P,y then x#p1+pz]<y is added; if
X2W,+py and wl_y+p2 then x>y+(p1+p2) is added. Further, if p1+p2>c =
C1-Cz, where C is the maximum and C2 the minimum constants of the
program, then p1+p2 is changed to CO+1 in the new inequality. After
the exclusion of all such'wl we have a system where only one repre-
sentative has remained from the group of variables differing only by
subscripts (this representative has maximal subscript). Let us denote
this system by S(e) and call it a state. Two states are said to be

equal if they coincide after dropping subscripts of variables. Obvi-

ously, the number of different states is finite for every program.

The following assertion characterizing the meaning of the state
san be Droved.

Let @ and B be paths such that:

a) a and B do not contain arithmetic instructions,
b) a and B end with fhe same 1nstruct10n X,

c) S(a)=S(8). : s
Let 7 be a path beglnnlng .at the instruction K.
Then path a+ ¢+ is realizable if path B+ ¢ is realizable. More-

‘over, S(a+f)=S(8+#).

Now let us define_an ordering of paths. Path u:(Kl,K 1K3,...)

is gfeater than path B= (K1 KZ’K3’°'°) if there is such i, that K1 =K,

: ...;K-=K;?K1+1-(k+) and ¥ =(kx' - J where k and k'“is "the same in= -

i+
structlon in the program.

Let us construct a. speclal family of paths (a ,uz,._.,up), be—
ginning at the first -instruction of program. Let paths ul,...z uj =1
be already constructed. Let us describe the construction of al. The
least path a greater than u3 . is considered (if j=1 we consider the
absolutely least path a). More precisely, we construct this path a
stepwise, adding new branches and testing on every step the stopping
conditions described below. After the stopping we get the path al.
We continue this procedure of path constructing until all paths are
exhausted

Now let us descrlbe the stopplng condltlons Let o= (K K?,K
.«+.J). To every instruction K, we attach a state S1 equal to S(al_j)
where o, ,=(K;,... K, _,).

CONDITION 1. Path a is stopped after the instruction Ki if sys-
tem N(u), oy -(K R K), has no solutions, i.e. path oy is not rea-
1lzab1e In thlS case we shall say that path aj-ul is obtained by the

condition C1.
In order to describe the other conditions we shall at first de-
fine the rules of writing and errasing » at instructions in the prog-
ram. Let conditional instruction Ki be equal (ki+) (respectively
(k;-)). Then define K;k;-) (respectively (k;+)). _.
(1) If Ki=(kj_5) is a comparison instruction, path (Kj,.
Xi 1,Ki) is realizable, path (K

ey

1""’Ki—1’?i) is not realizable, and

___lnstnuction-kz—h&s no-#-—at it-in-the-program, then we-write % at kE—-

at this moment, i.e., at the moment when we have reached instruction
Ki during our process of constructing the path a.

(2) ¥ is erased at k; when we have reached an instruction Ki=

fi (Ki=(kit) must be the instruction in the path a which caused %at

ki) during the process of construction of path a=(K1,K2,...,K1) and
thg path (Ki‘xz""’Kl) is realizable. (At this moment no new #* is
written according to (1)).

So the same instruction k in the érogram may have % at it at so-
me moments and have not at other moments. If we consider a fixed mo-

ment, e.g., the one corresponding to some instruction K in patha
then some instructions in program will have % at them and some will
not. If at a given moment instructions kn and km have # at them, then
we shall say that instruction kn is older than km if the current % at
kn has appeared earlier than that at km. So at some moment kn may be
older than km and at some other moment otherwise.

Let us consider the moment when instruction Ki on the path a is
reached. Let some instructions in the program have % at them and there-
fore some age relation be defined among instructions.

CONDITION 2. Let Si be the state attached to the instruction Ks.
We move backwards along the path a and look for the first instruction
Km, m<i, such that K =K; and S =S.. If we find such an instruction and
also the following holds: no instruction km’km+1""’ki lying between
-km—and ki-inuthe—path a-has % at it in the program,.then path a_is
stopped after Ki'

CONDITION 3. Let Ki=(ki &i) be comparison instruction and let kg
have * at it. We move backwards along the path a and look for the pre-
ceding occurence of instruction ks in the same state S i.e., look
for Kmqkm 'Em) where k =k, and S =S.. If £ = &; holds (otherwise the
rule (2) of erasing % is applicable and no stop occurs) then we find
deficiencies P, and p; of instructions K. and K. If p;2p then path
is stopped after K, .

CONDITION 4. Let Si be the state attached to K. We move back-
__VE?§S_i19?g_a and }Eff_fgf;ép“iﬁétrqction Km; m<i, such that Kn=X; and’
S,=S;+ If we find such an instruction and also the Following holds:
there are two instructions___kP and k, in the program such that at the
moment we consider Ky kr is older than k, (hence, they both have %)

but at some previous moment k has been older than kr’ then a is stop-

ped after Ki'

LEMMA. For every program in- language L every path is stopped .in finite
number of steps according to Conditions 1-4.

Hence it follows that the family of paths (ul,uz,...,up) describ-
ed before is finite indeed.
Now let us denote by (ﬁ 52,...,5) the family of paths which is

“obtained from family (a ,uz,...,up) ‘by deleting all paths u] stopped

10

according to condition C1l. Obviously all 81,52,...,55 are realizable.
Solutions of morresponding systems of inequalities N(&i),...,N(BS)
‘allow us to construct a sample system rel izing all these paths. This
system is denoted by . T, T being a program. It follows from the Lem-
ma that the algorithm described here converges in _a_ finite number .of—
step§_for every orbgram T in ianguage L.

Now let us formulate an effectively testable completeness condi-
tion for our sample system Z T.

We EEy that path a is realizable ignoring arithmetic if system
N'(a) obtained from N(a) by deleting all arithmetic equalities has a
solution. Let us denote by (r . r 55 rt) the family of paths which
is obtained from (al,...,mp) by scratchlng all paths not realizable
ignoring arithmetics. Obviously (B ,...B Y ¢ (r 55 5 25 f). During Ehe
previous construction every occurence of instruction X in family (a”,
S35 aP) has a state S attached to it. In this case we shall say that
pair (K,S) is contained in the family (al,...,ap). Further, let us
say that two pairs (Ki’si) and (Kj,Sj) ar equal if, firstly, Kisz,l
e., Ki and Kj are the same instruction in the program with equally
fixed exit, and, jecOndlyT_SI:Sj.

THEOREM 5. If the set of different pairs (X,S) contained in the fami-
ly (Bl,...,BS) coincides with the set of different pairs (K,S) contai-
ned in the family (p 1,..., rt} then the sample system S T is comple-
te for program T.

Real programs as a rule satisfy this completeness condition.
In particular, if the program contains no arithmetic instructi-
ons or contains the ones not affecting the values of variables used
in conditional instructions then the above mentloned algorlthm always
yields complete- sample -system. :) e
-For-the.program-of Fig.t this algcrlthﬂ'tonst?ﬁéts the followlng
famlly of paths (only realizable paths containing new branches are gi-
ven here, in ordér of their appearance):
al=¢1+,2,3,4-,17,18-,21)
82=(1+,2,3,4-,17,18+,19,20-,17,18-,21)
5“*(1+ 2,3,4-,17,18+,19,20~-,17,18+,19,20+,21)
-(1+ 2,3,4%,5,6-,7-,12,5,6-,7-,12)
'(1+ i §+,5,6-,7-,12, 5 ,6+,17,18-,21)
—(1+ 2,3,4+4,5,6-,7+,8,9~,13,14~,21)
5 —(1+ 25 3 4+,5,6-,7+,8,9-,13,14+,15,16-,13)
81%=¢14,2,3,4+,5,6~,7+,8,9-,13,14+,15,16+,21)
8%=(1+,2,3,4+,5,6-,7+,8,9+,10,11-,7-,12,5,6-,7-,12)

11

26.(14,2,3,u+,5,6-,7+,8,9+,10,11+,13,14-,21)

The following- sample system corresponds to it:

PI:A=(1) B=() m=1 & n=1;
PZ'A=(1 2) B=() m=2 n=i;
Y CGAEUTL,2,3)y T TBEUY T TmE2 TTTvTa=sl1yT 7 o o ape—— 2
-PS.A-(Z) B=(1)- - m=1 n=2;
PT:A:(Z) B=(1) m=1 n=1;
P12:A=(1) B=(2) m=1 n=1;
P13:A=(1) B=(2,3) m=1 n=2;
Pl tA=(1) B=(2,3) m=1 n=1;
P A (1,3) B=(2) m=2 n=2;
st tA=(1,3) B=(2) m=1 n=1;

It follows from the construction that conditions of Theorem 5
are satisfied and the constructed sample system is complete. It can
be easily seen that this sample system reveals the bug in the program.

The described algorithm is far from optimum in general. It is
considered here to illustrate a possible direction in studies related
with practlcal lmplementatlon of complete sample system construction.
It is plausible that an algorithm not too complex for 1mplementat10n

yielding CSS for practicallyall real programs can be constructed.

Let us note in conclusion that construction of CSS is an appro-
ach to application of incomplete induction principle in programming.
An another usage of this principle is provided by synthesis of prog-
rams given by sample computations (see, e.g., [3] , [4] , [S]),

though the questions of practical implementation are less clear there.

REFERENCES

1. quannas ﬂ. oy Buqencxmﬁ H H., Enxﬂaasn A .A., Toczpoesue nonaaﬂ
CHCTEMH NDAMEDOB AJNA NDPOBEDEM KOPDERTHOCTH nporpaM. YueHHE 3amEC-
k% JlarBulicKOr0 FOCYZApCTBEHHOT0 yHEBepcarera,T.2I0 (I974), I52- .
187,

2- Kanswgsm A.A., Buvescruit f.d., Bapaames fl. M., Paspemuuse u Repas-
pemMuHE cIyJay MpoCNeMH MOCTPOSHUS MONHOA CUCTEMH ODAMEPOB.
188-205. :

3. Bapannas .M., Baueqaana 0 cuHTEe36 uporpauu no ncropnnu nx_paﬁorn.
—————— 145-I51.

L. Barzdln J.M..Synthesizing programs given by examples.-Lecture Notes

in Computgn Science § (A.Ershov,Ed.l,pp.56-53,Sprlnger-?erlag,Ber—_
1lin,1974.

*

5. Bierman A.W., u.c., Automatic program synthe51s Technical Report.v~
Ohio State University, 1973.

12

Translation of Russian references

1

1. Barzdin, J.M., Biéevskis, J.J. and Kalninsh, A.A., Construction of complete

sampl_e system for testing correctness of programs. Ulenye zapiski Latv.gos.
univ. 210 (1974) , 152=187. '
2. Barazdin,]J.M., Bicevskis, J.]. and Kalnish, A.A., Solvable and unsolvable

cases of the problem of construction of a complete sample system.

Ibid, 188-205.

3. Barzdin,].M., A note on synthesis of programs from their computational
histories. lbid, 145-151.

SDL. °89
THE LANGUAGE AT WORK

Proceedings of the Fourth SDL Forum
Lisbon, Portugal, 9-13 October, 1989

edited by

Ove FARGEMAND
TFL
Hgrsholm, Denmark

Maria Manuela MARQUES
INESC
Lisbon, Portugal

1989

NORTH-HOLLAND
AMSTERDAM « NEW YORK « OXFORD « TOKYO

SDL "89: The Language at Work
0. Fergemand and M.M. Marques (Editors)
© Elsevier Science Publishers B.V. (North-Holland), 1989 (X

SDL TOOLS FOR RAPID PROTOTYPING AND TESTING

J. M. Barzdin, A. A. Kalnins, M. I. Auguston
"7 "Computing Center of the Latvian =~ ~
State University
Blvd. Rainis 29
Riga 226250
USSR—

The paper presents SDL tools which are being implemented at the Computing Center
of the Latvian State University in cooperation with some other institutes. These tools
are based on extended version of SDL’88 oriented towards executable specifications
and include SDL compiler and other support tools for specification testing. The
methodology of SDL use and SDL waining is also discussed. In the conclusion
problems of target code generaton from SDL and other future plans are sketched.

1. INTRODUCTION.

The interest in the Soviet Union about the specification and design language SDL for the informal
description and simulation of telecommunication systems has arisen long ago. This interest
especially arose in the mid eighties in connection with the development of new generation of
telecommunications systems. These systems appeared to be much more complex, and therefore the

- necessity arose for prototyping- and -testing their functions before the implementation: of their
software. A completely formal specificaton language for this purpose was necessary. SDL'88 meet
these demands to a great extent. Therefore many insttutions in the Soviet Union started rapid
development of SDL tools. The paper describes SDL tools developed by the Computing Center of
the Latvian State University (CC, LSU) in cooperadon with some other insttutes. At the present
stage these tools seem to be the most advanced in the Soviet Union. They include graphical editor,
SDL compiler and debugging and testing tools.

2. THE CHOICE OF THE SDL VERSION

The first problem encountered during this project was the choice of SDL version. This SDL version

should supply the user with convenient means for the design of formal specifications executable on

computer. These executable specifications serve as a prototype for the system under development .
~ The complete SDL’88 is too complex for executable implementation, especially its abstract data

types. On the other side it does not contain many important facilities for the design of formal
specifications.-In this-connection amodified version of SDL was developed (mamed SDL/PLUS
[1]) to support the design of executable specifications. SDL/PLUS contains several extensions 1o
. SDL’88 and essential changes of its data handling part.

2.1. Extensions of SDL’88

SDL’88 structuring facilities are perfect to describe the physical structure of the system (block and
channel substructures etc.). Yet the process structuring facilides are unsufficient for the design of
real systems. The introduction of service concept in SDL’88 improved the situation slightly but
problems still remain.

During the top-down design of a complex system it is convenient to introduce large processes 1o be
decomposed into components in the further stages of design. For this purpose the concept of
subprocess is introduced in SDL/PLUS. It means that every process can be decomposed into

smaller processes by the means of process substructure diagram. Signal routing means are also
slightly extended for this purpose.

128

Real systems frequently contain many occurences of the same block or channel. For instance,
digital switch may have many incoming trunks and each of the trunk may be served by its own
microprocessor described as a block in SDL. SDL’88 has no means for the description of number
of uniform blocks or channels. For this purpose the concept of block or channel array is introduced
in SDL/PLUS. For example, system diagram in SDL/PLUS can contain the following fragment:

B(K), K=1..3

D(K), K=1..3 CK)K=1.3 | E

which is equivalent to the following:

o e | -
c()
D(2) B(2) c(2) E
c@)
D(@3) B(3)

SDL/PLUS allows also several input ports for the same process.

Some other important extensions to SDL’88 are supposed to write adequate specificanons for

implementation in a specific target environment. For this purpose the following concepts are
introduced in SDL/PLUS:

- quasiparallel block, i e. , a block corresponding to one CPU and therefore all its processes
are executed in quasiparallel,

- process priorities, i. e. , processes in quasiparallel block are scheduled according their
priorities,

- shared variables in quasiparallel blocks and their protection facilities,

- significant signals corresponding to interrupts in computer and causing instantaneous
rescheduling of processes. o

—— _hereindetail _

SDL/PLUS has also some less important extensions, . g. , graphical leop symbol, not discussed

2.2. Data Handling Means

Experience shows that abstract data types in SDL are not widely accepted by the users due to their
complexity. Actually ADT are replaced by data handling part of the target language in all major
executable SDL implementations [2]. The version of SDL/PLUS implemented at the present stage
uses Pascal for data handling.

L2y

The situation on the spot is the following - the target language often is either of very low level or is
chosen in the late stages of design. As large projects specially require completely formal and
~ testable specifications the use of Pascal isapproved by its wide usage as a data handling language.

Choice of some other high level target langﬂage{ CHILL, C) also requires the usage of its data
handling part in SDL. All our tools are demgned so that the transidon from Pascal to some other
~=---language requires just some momhs*--- £ e P

This is achieved by implementing all language processing components in a special high level
compiler writing language RIGAL [3], also developed in the CC, LSU.

3. SDL OPERATING SYSTEM

SDL operating systemn has also been developed for use on host computer in simulated ume mode.
Several CPU’s can be simulated - they must be described as several blocks in the system executed
in parallel. Quasiparallel executon of processes in a block is assumed and priority scheduling of
processes[1] is supported. Time simulation is implemented to support all timer operations. Time is
advanced by a little increment at every signal sending/recepdon. There are also user conmolled
means for ime advancing at other SDL statements. Every block has its own simulaton time
counter.

The aim of the SDL operating system is to guarantee completely correct externaly visible sequence
of events according to SDL semantics defined more precisely in [1].The number of context
switches from block 10 block was shown to be minimal for the selected scheduling algorithm. This
is very important since executable SDL is intended also for system simuladons with run time being
critical,

No scheduling or timer services of the base operaang system are used. At the moment the operating
system accepts Pascal as the implementation language for SDL, but actually it is language and base
operating system independent.

4. THE TOOL DMPLEMENTATION LANGUAGE RIGAL

The necessity of SDL implementation portability and need to get a working prototype in a short
time implied the use of problem-oriented high level language for compiler development. As none of
the languages familiar to us of this class met the requirements, a new language RIGAL was
designed. It is a simple and powerful high level language for compiler writing. Data structures
comprise atoms, lists and trees. Control structures are based on advanced pattern matching.
Opemuons, such as table creation, code generation, messagc output, are executed simultaneously
with parsing, like in YACC [4] and CDL-2 [5].

RIGAL ia a closed language where all the processing steps of compiling can be writgn Without —
semantic subroutines in some other languages.)
The language has means for easy usage of anribute grammar ideas and supports the style of .
recursive descent. The RIGAL has a special reference facility, that s.olvcs the global attribute
problem better than ordinary attribute grammars.

The language provides tree manipulation facilides, including tree grammars.

All that makes possible to use RIGAL for syntactic analysis, program optimization, code generation
and for preprocessor and convertor writing. RIGAL supports design of multi-pass compilers.

The interpreter of RIGAL was writen in Pascal, and then an optimizing compiler RIGAL--> Pascal
was written in RIGAL itself.

The optimizing RIGAL compiler in the VAX/VMS environment makes it possible to implement a
production quality SDL--> Pascal compiler.

130

U_ser <4—» Graphical Editor

Graphic
Listing

.SDL- - -
Execution

SDL Compiler

r

Syntax Analyzer

v

Code Generator

Testing Facilities

FIGURE 1. SDL support tools

e e

P

131

5. SDL TOOLS AND THEIR IMPLEMENTATION

A set of SDL tools has been developed at CC, LSU to support the u§age of SDL at various
software design phases. Tools are implemented in the VAX/VMS environment. IBM PC’s may be

artached to VAX as g;raphjc workstatons. Figure 1 shows an overview of SDL tools implemented
-uplo_now._ N

5.1. Graphical Editor

Just the graphical form of SDL is used. The graphical SDL input uses IBM PC as a graphic
workstation for VAX. The SDL graphical editor under MS DOS is also developed by CC, LSU but
it has standard faciliies common to many editors and will not be described in detail. Means to
obtain hardcopies of SDL graphs are also available. SDL graphs are stored as disk files in a special
compressed form called G - code.

5.2. SDL Compiler

The main tool in the set is SDL compiler for obtaining executable VAX code from SDL system (via
Pascal).The SDL compiler is implemented in RIGAL. It consists of two parts.

5.2.1. Syntax Analyzer

The first part is the SDL syntax analyzer which includes also a wansformer from G - code to
internal PR form used as input for the analyzer. The syntax analyzer performs SDL syntax and
static semantics checking including Pascal statements in SDL - type checking in assignments, signal
inputs and outputs, signal and process name visibility etc. Error messages in process graphs are

shown by means of graphical listing - a graph with error messages added at-appropriate-statements. -

The graphical editor has a special mode for easy observation of error messages.

The syntax analysis is performed in descending order - first for system, then for blocks, concluding
with processes and procedures.

5.2.2. Intermediate code

The output of syntax analyzer is intermediate code called S - code in the form of abstract syntax tree
with the necessary attributes added and coded as RIGAL data structure. S - code now is passed to
code generator but it will be used also by other tools - statc analyzer, target compiler, etc. S - code
appears to be a very convenient form for storage of SDL objects and is easily processable by
RIGAL statements. S - code for the system serves as a data base 10 maintain integrity during
separate compilations of processes.

...5.2.3." Code Generator

The second part of the compiler is the code generator producing standard VMS Pascal code from S

- - code. Code generator is applied to each of the processes.An external Pascal procedure is obtained
from SDL process. The procedure body consists of CASE staternent with a branch corresponding
to each of the transitions. State/signal/transition table is held in a special coded form. This appears
to be the optimal form for coding SDL in Pascal. All scheduling and timer operations as well as
actual signal sending are compiled into calls to corresponding SDL operating system modules. The
current version of SDL operating system assumes coroutine implementation of process instances
thus the equivalents of Modula - 2 NEWPROCESS and TRANSFER procedures are introduced as
runtime stack swappings (implemented in VAX MACRO).

Code generator automatically invokes VAX Pascal compiler, so an object module is produced for
each of the processes, usually without Pascal diagnostics.

After that the code generaton for the system itself is performed. Some Pascal procedures for
system and blocks are generated and compiled. The Linker command line is generated and executed

132

to link all the produced miodules together with SDL operating system modules. So the result of code
generation for System i$ an executable VMS task.

At process corrections they can be recompiled separately and in most cases only system relinking is
nccessary o
At present stage Pascal is used as the host language for executable SDL because of use of Pascal
data handling in SDL. In the case of another base language choice the code generator can be easily
modified due to convenience of RIGAL both for ree processing and the descripdon of code
generationrules.

5.3. Testng and Debugging Facilities

Executable task obtained from SDL system is mainly intended for testing the SDL description of the
system before its target implementation. Tools for setting up SDL testing environment are
developed. They allow a convenient input from terminal or file of input signal sequences (together
with their parameters). Time delays are also user controllable. Comprehensive ckeck of output
signals is supported by explicit displaying or recording them. Some tools are specially adapted for
testing subscriber interfaces of SPC exchanges when specified in SDL. Multiterminal prototyping
tool for this kind of systems is also available where each terminal simulates a telephone set. All
these tools look like standardized SDL processes to be added to an open system to close it. Tools to
measure completeness of testing are under development.

SDL debugger is also implemented to obtain run-time information from the SDL viewpoint - active
processes, states, signal output/input etc. The most advanced debugger is built as a post debugger
where all the execution_event trace is recorded. in a compressed way and then.examined by the
debugger (possibly in both directions), giving the user illusion of real observing the executon. This
approach appears to be more efficient (though has some deficiencies, t00). On-line debugger with
more limited capabilites is also available.

5.4. Ponability of Tools

The use of RIGAL for all parts of compiler supports its high portability. The other smaller
components of tools are implemented in Pascal and C. RIGAL is being ported into IBM PC and all
the tools will be ponted 1o IBM PC under MS DOS in 1990. Porting to UNIX™ environments also
seems highly possible.

6. THE METHODOLOGY OF SDL USE

The tools support the main phases of switching software design. The editor and hardcopy facilides

. support the use of SDL for semiformal design and documentation of the switching system:
functions.

The main emphasis is made on completely formal design of software, where all the logics of action
is expressed in executable SDL. The tools allow to create an executable prototype of the system

which can be thoroughly validated by testing it on the computer. The same SDL dsscnpuon allows
simulation of the system at various workloads.

At present only manual transition from the validated design to target implementation is possible. But

future plans for a soon target compiler will allow nearly automatic transition to target
implementation,

7. USAGE

The described SDL tools have been successfully applied to the design and testing of algorithms for
an experimental PBX with additional features.The transport, nerwork and data link levels of a
specialized OSI - like protocol have also been tested by our tools. Tools are being applied to some
formal description and testing of algorithms of some other telecommunications and switching

networks, e. g., a specialized local network. We suppose to use these tools for checking and testing
some_standard signalling systems and protocols, €. g., the most important parts of signalling
system No.7. Hence the description of this signalling (CCITT recommendadons Q701-741) is a
somewhat informal in its data handling part, some formalization of this part is 1o be done before
testing. This will allow to test the description exhausdvely on computer.

8. SDL TRAINING)

A textbook on SDL (in Russian) is prepared in the CC, LSU. Experience shows SDL to be a
reladvely complex Tanguage to learn - even without ADT. Therefore the layout of SDL in the
textbook is divided into levels according to user categories:

level 1 - local (stand-alone) process for informal use by algorithm designers,
level 2 - system structure for use by system designers,
level 3 - complete SDL'88, for use by program designers,

level 4 - extensions to SDL’'88 for use by program implementors to describe implementation

specific details.

9. FUTURE PLANS

As it was mentioned above 1ools can be easily adapted to some other target language - not only
Pascal.- The principles of SDL-compiler generating code for some target environments are
developed. The necessary optimization level will be provided using alternartive code parterns for the
same SDL construct. The optimization will be user-controlled by means of formal comments -
pragmas at SDL declarations. Such a conwollable compiler for a target environment will be availabie
in 1990. Its development swongly relies on the possibilities of RIGAL. Actwally only the code
generation part has to be rewritten, besides many of the code generation algorithros of present
compiler will also be retained.

The development of testing tools is also planned including SDL stadc analysis and automatc test

case generation. We suppose (0 generate test case sets exercising all ransitons in processes using
methods similar to [6].

REFERENCES

[1] Barzdin J., Kalnins A, Strods J. and Sicko V., Specification Languagt: SDL/PLUS and its

" "Applicadons {Lat\nan State Umvemty, Riga; 1988, 1n~Rus51an)

[2] Saracco R. and Tilanus P. A. J, (eds.), SDL’88. State of the Art and Future Trends (North-
Holland, Amsterdam, 1987)

E] Auguston M., The RIGAL Programming Language, “Programmirovanije”, 1989, 4, (in
ussian)

[4] Johnson S.C., YACC - yet Another Compiler Compiler. (Bell laboratories, Murray Hill, N.
J., 1978, a technical manual)

[5] Koster C. H. A., Using the CDL Compiler Compiler. Lecture notes in Computer Science,
1977, Vol. 21.

(6] Barzdin J. M., Bicevskis J. M. and Kalninsh A. A., Automatic Construction of Complete

Sample System for Progra.m Testng, in: Proc. [FIP Congrcss 1977, (North-Holland, Amsterdam,
1977) pp. 57-62.

Institutt for Datateknikk og Telematikk

Dmsmn of Computer Systems and Telematics

Gruppe for Systemutviklingsteknologi
Systems Development Technology Group

¢ JEIBERUNIG

SINTEF GRUPPEN

Proceedings of the
Nordic Workshop
_ - on
" Programming Environment Research -
Trondheim, June 11-12, 1990

Editors: Ole Solberg, Ame Venstad

ELAB-RUNIT Phone: +47759 2600 IDT,NTH Phone. +47 7 59 34 40
N-7034 Trondheim Fax: +47 7532586 N-7034 Trondheim Fax: +47 759 44 66
Norway Telex: 520375 ELAB Norway

[=3 2

SDL ZUPRORT ERNVIRONMENT FOR RPROTOTYPING AND TEZSTING
A.A . Kalnins

Computing Center—of-the Latvwia- —- —

University

Blvd. Rainis 29 -
Riga 226250
USSR

The paper presents 3DL supperst enviconment which 1
par (op

&
being implemented at the Computing Centes of the
Latvia lniversify in coopar-ation wWwith some other
instituites. Ths savirsonmant :'mp?.sés 3 82T ofi tcols

which ar2 sasad an 2xtended version of SDL 83 ar 1enrpd
towards execatanl specifications and include 3SDL
compller and other support tools ‘for specification
ftesting. The metnodology oif ZDL use and 3SDL training
i5 also discussed. In the concius:o2n Dproblems of
arget u

cde generation f-om SDL and othes fut
= el

hed. The pape~ 13 a further deve

1. INTRORUZTION

The interest in the Soviet Union about the
specification and design language SDL for the 1nformal
description and simulation of telecommunication systems has
arisen long ago. This interest especially arose in the mid
_eighties in connection with the development SF new
generation of telecommunications systems. These systems
appeared to Dbe much more complex., and therefore the

necessity arose for prototyping and testing thel: functions

before the implementation of thelr software. A completely
formal specification language T[oOr this purpose Was

necessary. 3DL'88 me2t these demands to a great extent.

Therefore many insti-utions in rtnhe Soviet lnion started

(=

rapid development of SDL tools. The pape:n ~descrices 3DL
- tools developed by the ;Comput1na Center df; the Latvia
University (CC,LU) in cooperation wilth -some othe -
—institutes, mainly the Kvazar research- assoclation 1I1n
Moscow. At the present stage these tcols seem to be the
most advanced in the Soviet Union. They include graphical

editor, SDL compiler and debuagging and teétinq tools.
2. THE PROPOSED SOFTWARE DEVELOPMENT PARADIGM

The main approach of this project is a consistent use
of SDL in all phases of the software 1life cycle. It
includes semiformal use of SDL in the early stages of
system design suppocted only by }Qp}s _for editing and
documenting. Then tollows the form&l gﬁécificét{6n of
system functions. which should be accompanied Dby thorough
tool—based testing and prototyping of these functions. The
main implémentation' dependent features should also be
specifiable and testable at the SDL level. The transition
to target ihplementéfion should -be - through automatic
compllatlon 1nc1ud1na user guided opt1m171na to- adapt the
code to- {a get enV1fonment pecultiarities.

-

...-3.. THE CHOICE OF THE SDL VERSION

The first problem encountered during this project was
‘thE'chdicé*bf SDL version. This SDL:version - should supply
the user. with-convenient meghs for the _dealgn of formal
spoc1f1cat10n5\gxecutable on computer Thesa ‘executable
specifications servé as a prototype ~for - “the- ~system - under
development The'”Fomplete SDL'88 " is: “too “complex for
“executable implementation; especially its abstract data
types. On the other side it dcoes not contain many important
facilities for the design of formal sSpecifications. In this
connection a modified version of SDL was developed (named

SDL/PLUS (21) to support the design of executable

rJ

specificaticns. SDL/PLUS cantain

i

(A%

&

fal extensions to

1}

t

SDL'38 and essential changes of its data handling part.

3.1. Extensions of SDL'&8

cDL'28 structuring facilities are perfect to. describe
the physical structure of the svstem (block and <hannel
substructures etc.). Yet the process structuring facilities
are insufficient for the design o¢f real systems. The
intr-cduction of service concept in 5DL'88 1mproved the
situation slightly but psoblems still remain.

During the top-down design of a complex system 1t is
convenient to introduce large processes to be decomposed
into components in the further stages of design. For this

"purpose the concept of-subpcocess is introduced in SDL/PLUS.
It means that every process can be decomposed into. éméfléf”
processes by;the means of process subst;ucture diagram,
arbitrary depth of decomposition 1s allowed. Signal routing
means are also slightly extended for this purpose.

Réal sYstems frequently contain many occurrences of
the same block or channel. For instance, digital switch may
have many--incoming-trunks.and each of the trunk may be

“served by itS"own-m%erapaocessoc.desc}iqu_ag_—é.uiiéék jin
SDL-.- SDL'88 has no means for the description of number ;f
uniform blocks or channels..For this_ purpose the concept of
block or channel array is intcoduced in SDL/PLUS. For
example, system diagram in SDL/PLUS can contain the
following fragment: " : -

D(K) .K=1..3] C(K),K=1..3 _

which 1s eguivalent to the following:

D(1) B{d)

C(1l)

|

tn

B(2) =

-D{3) == ug?ggq; = £{3)

SDL/PLUS allows also several input ports for the same

process. thus supporting. e.g., the description of a

nandler for various types of iﬁterfupts as one process.
Some other Important extensions to SDL'38 are supposed

to write adeguate specifications for implementation i a.

SQecific‘target'envifonment. For this purpose the following
concepts are introduced in SDL/PLUS:

- quasiparallel lock. 1.e.. a Dplock corresponding
to one CPU and therefore all its processes are executed in
Juasiparallel.

- process priorities, i.e.. processes in quasiparallel
block are scheduled according their priorities.,

- shared variables in jJuasiparallel blocks and their
protection facilities,

— significant signals corresponding to interrupts 1in
computer and causing instantaneous rescheduling of
processes.

SDL/PLUS has also some less important extensions,
e.g.. graphical loop symbel. not discussed here in detail.
Some rarely used facilities 1n SDL'88. e.g.. exporit/import,
are omitted on SDL/PLUS.

Part of the extensions to SDL'88 included in SDL/PLUS
are mainly in line.with the object oriented extensions to

SDL proposed by Nordic countries.

3.2. Data Hardling Means
Experience shows that abstcract data types in SDL ar-e
not widely accepted by the users due to their complexity.
Actually ADT are replaced by data handling part of the

+arget language in exXecutable SDL implementations ([3].

Though SDL predefined data types are used in some
implementations [(4].the introduction of new data types Is
actually pecformed by means of user written procedures and
functions in target language corresponding to abstract
operation. So user actually describes data handling in the
target language (T, Pascal. CHILL].

n

The current version of S3DL/PLUS uses Pascal o data

handling. This is due to the fact that 1In our <cases the
target ianguage orten is either i very law level o s
chose in the late stages of design. As large proiecis
specially require completely formal and testable

spaecifications the use of Pascal! is approved by its wide
usage as 3 data handling language and so facilitates the

testing of functional specifications with lesser efforts.

Choice of some other high level target language (CHILL,.

C) alsc requires the usage of its data handling part in
SDL. All our tools are designed so that the transition from
Pascal to some other language requires just some months.

This 1s achieved by - implementing all language
processing components in a. special high level compiler
writing language RIGAL [5], also devéloped in the CC.LU. A
Special care is also taken to isolate the data handling
part of the language 1n both syntactic analysis and cade
generation.

4. SDL SUPPORT ENVIRONMENT AND IT3 IMPLEMENTATION-
SDL support environment called RIGA-SDL has been

developed at CC. LU to support the usage of SPL at various

design phases. The support environment consists of an

User - <4—® -Graphical Editor-. . 4=

SDL Compiler

Graphic

Syntax Analyzer
Listing

Code Generator

xecution

L)
‘
A

\
L]
L]
\
]
L]
]
\
]
\
]
]
\
]
L]
]
\

Testing Facilities

c
w
(1)
=
O
0]
o
|
«
©«
]
bt

FIGURE 1. SDL support tools

integrated set of tools.

Tools are implemented in both VAX/VMS and IBM PT , MS

]

DOS eanvironments. A mixed senvirsonment where PC's are

‘

attached to VAX as graphic workstations is also pessipl

i)

Figure 1 shows an overview of SDL tools implemented up to
now.

4.1. User Interface

All tools on IBM PC are accessible from an iIntegrated

menu—-driven interface. This interface gives an overview of

SDL-system.under development in a tree—like form. It serves ...

also as a simple project data Dbase. The operations
available for the selected SDL object (editing. compiling
etc.) are shown by menus and submenus.

On VAX most of the operations are available from a

single-SDL command -1ine naming the object to be processed.

4.2. Graphical Editor

Just the graphical form of SDL is used for process
diagrams. The SDL graphical editor under MS DOS is
developed by CC.LU. It has standard facilities common to
many SDL editors and will not be described in detail. Means
to obtain hardcopies of SDL graphs are alsc available. 35DL
graphs are stored as disk files 1in a special compressed
form called G-code. |

Graphical editor for Dblock infgféétisn -diagfams. {5

under development, for the moment this kind of information

i1s entered via PR-form. There 1s also a simple graphical
editor for VAX alphanumeric terminals.and PC with its

editors can be used as graphic woarkstation for VAX.
4.3. SDL Compiler

The main tocl in the set is SDE_compiler for obtaining

executable ¢ode from SDL system {(via Pa=zcal). The SOCL

compiler {5 implementecd in RIGAL. The compilunion 1=
perfurmed in descending order - firsh for system, then for
blocks, concluding with pracesses and procedures.

SDL-compiler consists of two Pparts. acting —as -a—-ftwe—pass .

compiler.
4.3.1. Syntax Anaivzer

The firs par-t 13 the GSDL syntax analyzer which
includes also a transformer from G-code to internal PR form
used as input for the analyzer. The syntax analyzer

performs GDL svntax and static semantics checking

{including Pascal statements in 3DL) - type checking in

assignments. Signal inputs-and outputs.. signal and _process
name visibility etc. Error messages in process graphs are

shown by means of graphical listing - a graph with error
messages added at appropriate statements. The graphical
aditor has a special mode for easy obsecvation of error
messages.

T - 4.3.2. Intermediate code

The output of syntax analyzer is intermediate code
called S-code in the form of abstract syntax tree witB the
necessary attributes added and coded as RIGAL - data
Structure. S-code now is passed to code generator but it
will be used also-by other tools - static analyzer, target
compiler, etc. S-code appears to be a very convenient form
“for storage of SDL objects and 1is easily processable by
RIGAL statements. S5—code for the system sesves as a data
base to maintain integrity during separate compilations of
processes.

- . 4.3.3. Code Generator

The second part of the compiler is the code generator

‘O

producing standa:sd Pascal code from S-—code.

It generates =standard YMS Pascal for VAX and Turro
Pascal for IBM PC. An external Pascal procedure (unit) 1s
generated for an 5DL object (system. Dblock, process). In
the case of SDL process the prccedure body consists cof CASE
statement with & Dbranch corresponding to each of the
transitions; State/signal/transition table 1s held in a
special coded form. This appears to be the optimal form for
coding SDL in Pascal. All scheduling and timer operations
as well as actual signal sending are compiled into calls to
corresponding SDL operating system ‘modules. The current
version of " SDL épérating -system assumes coroutine”
implementation of process instances thus the eguivalents of
Modula-2 NEWPROCESS and TRANSFER procedures are - introduced
‘as runtime-stack swappings. . '

Code generator automatically. invokes Pascal compiler,
so an object ‘module is produced for each of the SDL
objects;usually without Pascal diagnostics. |
-~ . ".When user-selects a’Link operation, the_Linkef command.
line is generated and executed to link .all the prodaced
modules together with SDL operating system modules (or to
assemble the compiled units in the case of Turbo Pascal).
So the result of linking is an executable task functioning
as an executable model for the SDL system.

At process corrections they can be recompiled
separately and only system relinking 1is necéssary after
-that. -If a higher .level object, .e.g.,. block is . changed,
UNIX like MAKE-mode avtomatically ensuces all the necessary
recompilations.

At present stage Pascal is used as the host language
for executable SDL because of use of Pascal data handling
in SDL.In the case of anothes base language cholice the code
generator can be easily modified due to convenience of
RIGAL both for tree processing and the description of code
generation rules.

10 = sk b omans

4.4. SDL Cperating System

(o7}

In order to suppaert the exscution of Pascal oode

‘generated by compiler,

. SDL operating system has- also been’

devéibbed for use on host computer 1n 3imulated time
mode .Several CPU's can be simulated - they must be
describad as several blaocks in the system executed in
parallel. Quasiparailel execution of processes 1n a block
is assumed and priority scheduling of processes [Z2] is
supported. Time simulation is implement2d to sSupport all
timer operations. Time is advanced by a little increment
at every signal sending/reception. There are also user
controlled means for time advancing (DELAY statements).
"Every block has its own simulation time counter. ~ ' o
The aim of the SDL operating system 1s to guarantee
completely correct externally visible seguence of events
according to SDL semantics defined more pracisely in [2].
The number of context switches firom Dblock to Dblock . was
shown to be minimal for the selected scheduling algorithm.
This is very impor-tant since executable SDL i1s intended
also for system simulations with run time being critical.
~ No scheduling or timer services of the base operating
system (VMS or MS DO3) are wused. At the moment ~the
operating system _accepts Pascal _as the implementation
language for SDL, but actually it is language and - base
operatihg system independent.

4.5. Testing and Debugging Facilities

,-:..-/ N .- -

Executable task obtained from SDL . system 1is mainly
intended for testing the SDL déscription of the system
before 1ts target implementation. Tools for setting up SDL
testing enviconment are developed. They allow a convenient
input from terminal or file of 1nput signal sequences
(together with their parameters). Time delays are also user

controllable. The storing of input signali seguences in a

11

file ensures the creation of comprehensive test sets fao-
regression testing afters system changes. Caomprehensive
check ¢f output signals is supperted by explicit displaving
or recording them. The recording of both input ard output
signals at selected intersfaces gives a highly «<hser-vable
representation of the system functiocning 1n a form similar-
Lo seguence charts. Some tools are _specially adapted for
testing subscriber interfaces of SPC exchangas when

specified in SDL. Multiterminal prototyping tocl for this

kind of systems is also available where each terminal

simulates a telephone set.. All these tools lock 1like

standardized géneric SDL processes to be addedito an open’
system to close 1it. Tools to measure completeness of
testing or to gene'ate stubs for pwocesses not- desxgned ye+
are under development. ' ' _

SPL- debugger is also implemented to ~obtain run-time
information “Trom the SDL ~ viewpoint— active processes,
states, signal output/input etc. The most advanced debuager
is-built as a post debugger where all the: _execution ewvent.
trace'is reéordéd in-a compressed way and- then examined by
the -debugger (possibly in both directions). giving the user
illusion of real observing the execution. This approach
appears to be more efficient (though has some deficiencies,
too). On-line debuager with more limited capabilities is
also available. Interfaces to standard Fascal debuggers are

also provided for debugging of data handling parts.

4.6. Target compiler

In accordance with our software development paradigm
an automatic transition from the validated design
specification in SDL to target implementation 1is AJuite
needed. The main problems encountered here are very
specific optimization requirements and variety of target
environments. A target compiler generating Pascal code for
a real-time env1*onment from fhe inte*mediate S5- code 1S

under development The main fa0111ty adnpth fn 1mprove the

A

"

optimization is pragmas. They are formal comments attached
by designesr to SDL declarations and statements to gquide the

code generation. Pragmas are used in cases where th

I

o & e

- atternative Tode patterms~Tor "the same SDLTConstsuct whose

selection is Timposed by external reguirements and in cases
where designer supplied interface procedures chould be
preferred to the compiler- generated cnes. Prototype target
compiler for extended MS DOS environment as a target will

be completed in 199C. It wil! be used to produce softwar

!

for an experimental netwock of PC's. Target compilers for

other environments and languages are also considered.

4.7. Portability of Tecols

The use of RIGAL for all parts of compiler supports
its high portability. The other smaller components of tools
are implemented in Pascal and . Complete compatibility of
RIGAL environments -on VAX and IBM PC has provided a
relatively easy porting of SDL compiler from VAX to PC
disregarding the differences of Pascal versions. Porting
the Rigal itself was alsc -easy .due to use of standard
Pascal only.-Porting --to S UNIX™ environments - also ~seems
highly possible.

5. THE METHODOLOGY QF SDL USE -

" An SDL based methodology for - telecommunications
software design has been developed [2]. It is tool based in
all development phaées. Some additional telephone switching
oriented notations are prapoSed to Tacilitate the
semiformal use of SDL in the early stages of design. The
aditor and hardcopy facilities support the

use of SDL for semiformal design and documentation of the
switching system functions.

_ The main emphasis is made on completely formal
design of software, where all the logics of action 1s

2xpressed in executanle SDL. The tools ailew To or2at2 an

—_—

executable protoiype of the system which can be thao-augh!'y
validated Zy testing it on the computes. The sgame STL
descripticon allows simulation oI the system at various
workloads. The major implementation details should be added
to the validated functional specificaticon. this possipility
is supporied by the abovementioned language extensions in
SDL. Some additional teétiﬁg- of the implementation
specification by the tools 1s desirable. An automatic
transition to target implementation with minimum debugging
at-the target level should follow. In the absence of target
compiler some methods of manual transition have been

= o

developed. -

6. USAGE

-~ The described SDL tools have been successfully applied
"to'the_design;and"testing,of the subscriber.interface part

for an experimental PBX with additional features in
accordance with CEPT standards. Most of the applicatien has
been —performed - by --Kvazar - —reseanch ---association. - The

transport. network and data link levels of a specialized
0SI-like protocol have also been tested by our tools. Tools
are being applied to some formal description and testing of
algorithms of some other telecommunications and switching
networks.,e.g., an experimental PC based local network. We
hope to produce the software for the latter system
~completely. by means-of .the SDL.-support -environment. - -Some-
applications in +the area «of ISDN and common <channel

signaling are also planned.
7. SDL TRAINING

A textbook on SDL (in Russian) 1is prepared 1in the
C,LU. Experience shows SDL to be a vrelatively complex
language to learn — even without ADT. Therefore the layout
of SDL in the textbook is divided into levels according to
ggei_éategories;";_

14

level-1 local (stand-alone) process for informal use by
algorithm desiqre?cn
level-2 system structure for use Dy system designer
“;___HLeveLra.complete,SDL~88 -for~ use-—Ly- DIGGLﬁde64 lgner
level-4 extensions to ©SDL'88 for use Dy program
implementorss to describe implementaticn

specific details.
8. FUTURE PLANS

The main research perspectives are connected with
Aautomatic target code generation and improved testing
facilities. The comptiier befspectlves include various
target languages and more powerful optimization hy means of. .
flow analysis,more powerful pragma language and SDL level
prog-am transformations.

The main problem in the testling area 1y automatic test
case generation from OSDL specifications. We suppose to
generate test case sets exercising all transitions in
processes using methods similar to [6], thus taking intoc
account axqo the data dep@ndenf Pondxflons We hope that
_these methods = will allow = more theorough. testing _than
methods based solely on finite state machine approach [7}
especially in protocol area. More advanced 5DL static

analysis tools are also considered.
~REFERENCES

(1] Bafédin J.. Kalnins A., Auguston M.. SDL Tools for
:;ﬁapid_prototyping and testing, in Fourth 3DL Forum, Lisbon
Oct. 1989 {North?Holland._1989) pp. 127 - 133.

[2] Barzdin J., Kalnins A., Strods J. and ©Sicko
V., Specification Language SDL/PLUS and its Applications
(Latvia State University, Riga, 1988, in Russian)

" [3] Saracco R. and Tilanus P.A.J. (eds. - SDLY

State of the Art and Future Trends (North-Holland,
Amsterdam, 1987)

{4} Encontre V. GECDE: An Indust:s-ial Environment fo-

Designing Real Time Distributed Systems 1In SDL. in
Fourth 3DL Fosum. Lisben Oct. 1989 (Nosth-Holland., 1588
pp. 105 - 116.

5] Augusticn M.The RIGAL Frogramming Language.
"Programmirowvanije". 1589, 4, (in Russian)

{6} Barzdin J.M., Bicevskis--J..J. and Kalninsh 2.2,

Actomatic Construction of Complete Sample System for
Program Testing, in: Proc. IFIP Congress 1977,
{(North-Holland, Amsterdam, 1977) pp. 57 - 62.

(71} Bramstrup L., Hogrefe D. . TESDL:. Experience with
Generating Test Cases from 5DL Specifications, in Fourth
SDL Forum , Lisbon, QOct. 1989-{Norttholland, 1989) pp. 267
- 279.

16

J. Barzdin§ D. Bjgrner (Eds.)

Baltic
Computer Science

Selected Papers

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo

Hong Kong Barcelona
Budapest

AUTOMATIC CONSTRUCTION OF TEST SETS:
THEORETICAL APPROACH

Andrejs Auzin$, Janis Barzdin, Janis Bievskis, Karlis Cerans, Audris Kalnin
The University of Latvia
Raina bulv. 19, Riga 226250, Latvia
374

Abstract

We consider the problem of automatic construction of complete 1est set (CTS) from program text. The
completeness criterlon adopted is C,, Lo, itis nacessary to execute all feasible branches of program at least once on
the tests of CTS. A simple prog ! e Is introduced with the property that the values used in conditional
statements are not arrlhrnatlcal'y delormad For th|s language the CTS problem is proved to be algorithmically solvable
and CTS construction algorithm Is obtained. Some generalizations of this language containing counters, stacks or
arrays are considered whera the CTS problem remains solvable. In conclusion the applications of the obtained results
to CTS construction for real time systems are considered.

1 Introduction

Program testing remains the least automated and most resource—demanding
step in the program development process. There are several testing methods:
functional testing, structural testing, random testing, etc. In this paper we consider only
structural testing. In the structural testing all activities, including test case selection, are
based on program structure. The question about the completeness of the selected test
set appears naturally. In the case of structural testing the most widely accepted
completeness criterion is Cy [11]: a test set is said to satisfy criterion Cy if all feasible
branches of program can be executed on this set. We shall not discuss how complete
criterion C, is (see, e.g. [1,15]), we just note once more that this criterion is widely
accepted in practice and there seems to be found no better criterion up to the moment.
For a fixed completeness criterion the problem of automatic construction of complete
(with respect to the criterion) test set from program text arises. In this paper we consider
the automatic construction of complete test sets according to criterion C4. Such test sets
will be simply called complete test sets (CTS), and !he construction problem of such test
sets will be called CTS problem.

We note just now that CTS problem is algorithmically unsolvable in general
case, besides, as further results show, the algorithmic unsolvability appears swiftly. The
aim of the paper is to find sufficiently large program classes with algorithmically
solvable CTS problem and to develop the corresponding algorithms.

Yet, another remark. The variable value ranges are limited for real programming
languages. For example, integer variable in Pascal can assume values from
—2147483648 to 2147483647. These value limits formally yield the algorithmic
solvability of CTS problem: the set of theoretically possible values of all internal
variables of program can be used as the set of program states (this set will always be
finite for the assumed restrictions), hence, CTS can be constructed by means of
exhaustive search. However, it is clear that such a method is unusable in practice. A
question arises how to exclude the trivial solution by means of exhaustive search. One
of the ways is to drop the restrictions on variable value ranges. In this case the variable
value range is infinite and thus the trivial solution to CTS problem by means of
exhaustive search is excluded. If we, nevertheless, find an algorithm for CTS

287

construction, it is probabile that this algorithm will not use exhaustive search. Therefore
we can hope that this algorithm will not use exhaustive search aiso for finite value
ranges. Namely this way will be used in the paper. The obtained results confirm that the
CTS construction algorithms obtained this way don't use exhaustive search indeed and
are practically usable in many cases. .

To conglude the introduction we give brief characteristics of program classes for
which the solvability of CTS problem has been proved and corresponding algorithms
obtained. FirstFy these program classes have the property that variable values used in
conditional statements are not arithmetically deformed, l.e., these values are read
directly from program input data. The second characteristic property of these classes is
connected with some restrictions on direct access to data. An important class of
programs is formed by programs with counters. The CTS construction problem is
obviously unsolvable for programs with free use of counters. Nevertheless, sufficiently
general program classes with counters having solvable CTS problem can be found.
One of the most important of such classes with solvable CTS problem is programs with
real time counter. .

In the concluslon some methods are presented for reducing real time programs
to the models considered. :

The paper contains results obtained by the authors at various times [2-10], as
well as new results. New results are presented in Section 5 (J.Barzding) and Sections

9, 10 (K.Cerans).

2 The First Solvable Case: Programs in Base Language L,
2.1 Description of Languagel,

In order to expose the principal ideas we introduce a very simple programming
language L, for the processing of sequential files. Nevertheless, a large part of
business data processing in the sequential files area can be formalized in this
language (adequately enough to investigate the construction of complete test set). This
language can be characterized by the fact that values taking part in comparison
statements are undeformed (i.e., such as read from input). This restriction is acceptable
in practice because it is typical for data processing programs that program logic is
controlled only by input data (e.g., record type) and that these data are used in.
comparison statements undeformed. ‘

Now let us describe the language Ly. Programs in Ly use external variables of
special type, named tapes. We shall use tapes to represent finite sequences of integers.
We shall say that tape X contains a sequence of integers (x4.x,, . .. ,X,), if the first cell of

the tape contains x,, the second - x,, . . ., the rth - x,, but the other cells are empty
{fig.1).
X%y x| ooni x|
Fig. 1 _
To put it otherwise it means that the value of the variable X is (xy, X2, . .., %) in

this case. We shall denote the i-th cell of X by X; this notation being used also as an

288

Integer - valued varlable (the value of X;is undefined if X; is empty).

A program in Lg has a finite number of input tapes and a finite number of output
tapes associated with it. The program processes the values of its input tapes into values
of its output tapes.

Initially the reading (writing) head is located on the first cell. The exacution of an
input (output) statement moves the head one position right. A program also has a finite
number of integer-valued internal variables. We assume that all internal variables are
initialized to 0 In the beginning. Now let us describe the statements of Ly. Let X be an
Input tape, Y - output tape, t, u - i\nternal variables and ¢ - constant (fixed integer). The
following statements are avallable

1. X— t. The current cell of tape _X is’ assigned to variable t. Thus, if X = (x4, X3, . - - Xp)
the first occurrence of statement X— t assigns the value x; 10 t, the second - x, and so
on. The statement has two exits: "+" if the current cell is nonempty and exit "-" if the cell
is empty (tape is exhausted). In the last case the value of t is not changed. (input
statement).)

2. t—>Y . The value of variable t is assigned to the current cell of tape Y. (Output
statement).

3. u—t (respectively c—t). The value of variable u (constant c) is assigned to variable t.
(Assignment statement).

4. uat (respectively c<t, u<c). The statement has two exits: if the value of u
(respectively ¢) is less than the value of t (respectively c), then the exit "+" is used,
‘otherwise, the exit "-". (Comparison statement).

5. NOP. Dummy statement (nothing is done). It is used instead of statements not
essential for the construction of complete test set when more general programing
languages are reduced to Ly. (Informally, these are unconditional statements not
affecting the variable values used in comparisons).

6. STOP.

Statements 1 and 4 having two exns are called conditional statements, the other
ones are called unconditional.

Informally a program in Ly is a program constructed from the abovementioned
statements in a normal way. Formally we define a program in the language L, as a
quadruple

(X.Y.Z,P),

where X is a set of input tapes (e.g., X=(A, B, ..., C}), Y is a set of output tapes (e.g.,
Y={U,V,..., T}, Zis aset of internal variables (e.g., Z={ a, b, ..., v}), Pis a flowchart
constructed from statements of Ly. We require also all exits of statements in flowchart to
be attached to some statements, i.e., no pending exits are allowed (c.f. the case in
Section 4). We also assume the flowchart to be connected. The execution starts from
the first statement (marked by the label "—"). Program stops when it reaches a STOP
statement.

Fig. 2 gives an example of a program which creates a new sorted tape (file) by
merging sorted tapes A and B. The program has a bug: control from statement 7 is
passed to statement 8 (instead of 10).

289

1:A -a

3:a<b

4:a-Y 5:b =Y
6:A —a
I r
L 10:B —>b
i i
9A-a 11:b Y
+ -
12: STOP

Fig. 2

290

By program path we understand a statement sequence (K, k, . - . , k;}, where
each statement k, has one of its exits ("+" or "-") fixed and this exit leads to the statement
ki1, I=1,2, .

The program in fig. 2 contains, for example, the path a=(1: A—a+, 2: B-b+, 3:
a<b+, 4: a—Y, 6: A—a+) or sumply’ a=(1+, 2+, 3+, 4, 6+), if only labels of statements are
used.

If the path starts from the 7irst statement of the program, we call it initial path. A
path a=(k¢, ks, . . . , k)is called a‘program branch if k, is a conditional statement (or the
first statement of the program), ks.'ks, . . . k, are unconditional statements and the exit of
k; leads to a conditional statement {or a STOP statement). For example, the program in
fig. 2 has branches (1+), (10+, 11), (1-), etc. '

2.2 CTS_éonstruction Problem

By test T for program P=(X, Y, Z, P) we understand an association which
associates a sequence of integers to each of the input tapes (i. e., to each element of

set X). Let us say that test T executes the branch if this branch is executed while
running program P on test T. When the program in fig. 2 is run on the test A=(0}, B=(1),
the path (1+, 2+, 3+, 4, 6-, 7, 12) containing branches (1+), (2+), . . . is executed.

A test set is said to be a complete test set (CTS) for the given program if every
feasible branch (i.e., branch executable-by some test) is executed by some test of this
set. For the program in fig. 2, for example, the following test set is complete: T1={ A=(0,
1), B=(2)}, T2={A=(6), B=(1, 2, 3)}, T3={ A=(2), B=(0, 2)}, T4={A=(1, 2, 3), B=(0)}, T5={A=(
), B=(0, 1, 2)}. It is easy to see that the bug in the program is found on this set.

Evidently for every program there exists a finite CTS. The main problem is to find
this set.

THEQREM 1. There is an algorithm for constructing a finite complete test set for
every program in L,.

The proof will consist of several auxiliary assertions.

An important role in the proof will be played by systems of inequalities. At first let
us introduce a slightly extended inequality relation <(r)<, where r=0, 1, . . . We say that
x < (r) <y ify - x 2 r. Now the rule of transivity is the following: x<(r)<y&y<(p)<z—)
X< (r+p)< z.

By a system of inequalities we understand the following system

Xy < (r) <y
Xn < {fn) <¥n,
where xq,..., X%, Yy, ..., Y, are variables or integer constants, for example,
a<(0)<3
b<{2)<a
b<(5)<3
b<(3)<c
c<(0)<d
d<{0)<c
-4<(1)<b
4<(2)<3.
We represent systems of inequalities also as graphs: vertices are labsled by variables

291

and constants of the system and an edge of the weight r is drawn from vertex y to vertex
X if the system contains inequality x < (r) < y. So the previous example of inequality
system corresponds to the graph in fig. 3.

3
7o
:o
\a

Fig. 3

Vertices labeled by variables are called variable vertices (vertices a, b, ¢, d in fig.
3), and vertices labeled by constants are called constant vertices (vertices 3 and -4).

Let us consider a directed path in the graph of inequality system. We define the
weight of the path to be the sum of weights of the edges contained in the path.

Let us remark the following simple lemma.

LEMMA 1. The inequality system N has a solution iff its graph Gy has the following
properties:

1. There is no cyclic path with the weight greater than 0.

2. The weight of every path leading from a constant vertex ¢, to a constant vertex ¢, is

not greater than ¢;-ca

The necessity is obvious. Let us prove the sufficiency. We build the solution by
induction: at every induction step we assign constant value to some variable vertex of
Gy, in such a way that, first, the assigned constant satisfies all inequalities of the graph
concerning the given vertex and, second, the replacement of the variable vertex by the
constant vertex in the graph preserves validity of lemma conditions. To do this we need
some additional notions. Let us say that vertex x is p units (p>0) greater {less) than
vertex y if the maximum weight of paths leading from x to y (from y to x) is equal to p.
Let us consider a variable vertex z in Gy with no constant value assigned in the
previous steps. Let us find all constant vertices (including the ones created in the
previous steps) with the paths leading to them from z.

Let ¢!, col,, ..., ¢! be the values of these vertices and py', pa', py' be
numbers showing how many units the corresponding vertex is less than z. Similarly we
find all constant vertices with the paths leading from them to z. Let ¢;2, c,2,, ..., c2 be
their values and p42, p;2, , . .. p2 be numbers showing how much they are greater than
z. Now let us consider numbers

uil=¢;'+p;T, i=1,2,...,k and
uR=c2-p2, i=1,2,...1.

292

Let uy=max(ut, upt, ..., u ') and ug=min(us2, us2, ... u?). If the set{ u,!, us,.
.., Ul } is empty (i.e., there are no paths from z to constant vertices), then let us
assume uy=-°°. Similarly, if the set { U2, u2,...,u2} is empty, then let u;=+c0. Now let
us consider the interval [uy, u, .

If the lemma conditions (namely, condition 2) are valid for Gy after previous
induction steps, then it is easy to see that the interval [uy, U5] Is nonempty. It is also
easy to see that every value of the variable z within the interval [u,, up] satisfies
inequalities ot Gy with respect,to the constants contained in Gy up to that moment

(taking into account also transitivity). So let us choose any value from this interval and
assign it to z. So vertex z now is a constant vertex. From the abovementioned it is clear
that such replacement of variable vertex by constant vertex in Gy preserves the validity

of the lemma conditions. By continuing the replacement of variable vertices by constant
ones the same way we obtain the solution of the system of inequalities N.
This proves the lemma.

Let us remark that the proof of the lemma yields a simple algorithm for solving
inequality systems.

Let P be a program in Ly and a=(ky, ks, - . ..k,) an initial path in this program.
Now let us define a system of inequalities N{(a) corresponding to path a. N{a) will
describe the feasibility conditions of path «. Let o; denote the initial segment (ky, ky, . .
.k)otpatha,i=1,2,...,r,and o the empty initial segment. Let X be an input tape and
t, u internal variables of program P. Let t,, u, be variables denoting the values of
variables t, u after the execution of path o;,_;=(ky, ks,k.y) and X the last cell of tape
X read during the execution (at the beginning the corresponding variables are tg, Up,
Xp). Let ¢ be a constant.

The system N(a) will be defined inductively: N(ag), N(a;), ..., N(o,)= N{(a). Let
us remember that internal variables are equal to 0 in the beginning. Thereiore we
define

N(g)= | Ug=0

Now let us assume that the system of inequalities N{a_,) is already defined.
Then we define N(a;) as a system obtained from N(oi_;) by adding the following
inequalities (in the seque! we use also standard inequality and equality relations x<y ,
x<y , x=y understanding by them x<(0)<y , x<(1)<y , x<(0)<y & y<(0)<x respectively):
(1) lfk=(X-u-), then inequality X<0 is added. By inequality X<0 we code the fact

that integer sequence on tape X is exhausted.
(2) If k=(X—u+) and N{o;_,) does not contain inequality X<0 (i.e., no statement of

type X—u- has been performed), then equality

Up1=Xs54q
is added. In this case new variables u,,; and X,, are introduced which have the same
sense for statement k;,; as u; and X, have for k;. If inequality X< 0 has already occured,
then inequality 0< X is added in order to obtain a contradictory system.
(3) lk=(tou) (or k=(c—u)), then equality

U=tk (oruyy-c)
is added. A new variable u,,, is again introduced in this case.

293

(4) Mke=(t<us) (or k=(c<u+) or ki=(t<c+)), then inequality
te<(1)<y; (or c<(1)<u)) or t,<(1)<c) is added.
(5) Mk=(t<u-) (or k=(c<u-) or ki=(t<c-)), then inequality
{>(0)>u; (or c>(0)>y; or t>(0)>c) Is added.
Let us give an example. For a*=(1+, 2+, 3+) (see fig. 2) we have the inequality
system
ap=0
bg=0
N@®) = | ag=Ay
by=B,
ay<(1)<b,
N(c*) is represented as a graph In fig.4.

0 0
Ar 1 B:
0 [:! b
0
Fig.4

From the construction of N(a) there follows:

LEMMA 2. The path a is feasible iff the system N(a) has an integer solution. 'Any
solution of N{e) with respect to variables - cells of input tapes yields a test executing
patha. N

Our aim is to reduce N(a) while praserving the existence (or the nonexistence) of
the solution in such a way that there will be only a finite number of possible reduced
systems for the given program P. This reduction relies on a variable exclusion method.
Let us introduce some notations for this purposs.

Let us consider all the constants of program P (including 0). Let ¢, be the minimal

and ¢, the maximal among these constants. Let ¢, = ¢»-¢4. Let us consider an arbitrary
system of inequalities N (e.g. N(a)) where all constants are within the segment [c,, ¢; |
and weights of edges within [0, ¢o+1). Let y be a variable in system N. Now let us define
the exclusion of variable y. We consider all the pairs x, z of variables and / or constants
distinct from y for which there exist inequalities x < {p;) <y and y < (p,) < z in the system
N. For each of these pairs we add a new inequality x < (r) < z to N where r=p,+p, if
Py+P2 S Co+1 and r=co+1 if py+p; > Co+1. Then we delete all inequalities containing y
from N. It N contains inequality of the type y<(p)<y with p > 0, then this inequality is
replaced by some standard contradicting inequality, e.g., 0 < (1) < 0 (because the new
system must have no solutions). So obtained inequality system is denoted by N'. From
the construction of N' there follows an assertion:

The conditions for solution existence from Lemma 1 hold for inequality system N
iff these conditions hold for inequality system N' In other words, inequality system N

has a solution iff N' has a solution.
Now let us return to inequality system N(c). Let program P have input tapes A, B,

294

... and internal variables t, u, Then the system N(x) contains, in general, variables
AB .. iALA, L AG By By Bttt Uy U, L UL Let s
remember that internal variables with maximal subscripts %, ug, . . . denote values of
internal variables t, u, . . . after the execution of path a.. These variables t, ug, ..., as
well as variables A, B, . . . denoting input files are called active variables, the other ones
- inactive. For example, the system N(a*) from the previous sxample has active
variables ay, by. Now let us exclude, one after another, all inactive variables from N{x).
It is easy to see that the order of variable exclusion doss not affect the resulting system.
Thus, we obtain a new system of nequalities containing only active variables. Then we
drop all subscripts of the variables in it. The resulting system is denoted by S(a) and
called a program state after the execution of path a.

Informally the state describes relations between current values of internal
variables. The state corresponding to the path o*=({ 1+, 2+, 3+) from the previous
example, as it can be easily deduced from the inequality system N{a*), is

S(a*)={ a<(1)<b. ‘
From the assertion about variable exclusion and state construction there follows

LEMMA 3. A path ais feasible (i.e., system N(a} has an integer solution) iff the state
S(o) is consistent (i.e., S(a) has an integer solution as a system of inequalities).

The system of inequalities containing only internal variables and constants of
program P and having no weights of inequalities r greater than co+1 is called state of
the program P, Like every system of inequalities a state can be represented by a graph.
Two states will be called equal if the corresponding graphs are isomorphic (as graphs
with labeled vertices and edges). It is easy to see that every program P has a finite
number of distinct states. This fact together with the next lemma will play the main role
in the proof of Theorem 1.

Now we need to generalize slightly the notion of the system of inequalities N{x)
for path. At first there will be no longer the requirement for a path a=(kq, ks,...k,) 1o be
initial. Further, we allow to have arbitrary state ¢ of program P as an initial inequality
system for construction. Under these conditions we define the system

N(o,0) .
the following way. N(c,0q) is the same initial inequality system o with only zero
subscripts added to internal variables: to, ug,
Further, N(o,a;) is defined from N{o,0;.¢) and statement k; just as betore. For

example, if o={a<(1)<b and a=(4, 6+, 3+), then

N(G,ao)={ao<(1)<b0 .

N(o,a4)={ag<(1)<bg (output statement adds nothing),
N(o.az)={ag<(1)<bg , a;=A, ,

N(o,0)=N(o,a3)={ag<(1)<bg, ai=A, ag<(1)<byg

Just as before we define state S(o,a) corresponding to system N{o,a), the state is
obtained by excluding inactive variables from N(o,a) the same way. For example, the
state

S(o,a)={a<(1)<b
corresponds to the system N(o,at) from the previous example. Let us note that this time
state S(o,a) occurs to be equal to o. It has the following simple graph depicted in fig. 5.

Flg. 5

A path B is said to be a continuation of a path a if the exit of the last statement of
the path « leads to the first statement of the path p. The concatenation of paths a and B
is denoted by a+p.
. .

LEMMA 4, .".rsr o be a state of program P, a a path and B a continuation of path o.

Then
S(o,a+B)=S(S(o,a), B).

To prove:the lemma we consider systems of inequalities N(o,a+B), N(o,a) and
N(S(o,a), B). By excluding inactive variables we obtain states S(o,a+B), S(o,a) and
S{S(o,a), B) from them. Let us remember that the order of exclusion of inactive
variables does not affect the result. Therefore while constructing S(o,a+8) from
N(o,o+p) we can exclude inactive variables in the starting period just in the same order
as when constructing S(o,a) from N(c,a). It means that while constructing S{c,a+B) we
obtain S(o,a) as an intermediate result and the construction of S(S(o,x), p) from
N(S(o.0), B) follows just after that. In this consideration we have essentially used two
facts; first, inactive. variables in system N(o,a) are also inactive in N{(o,a+B) and, second,
inequalities in N(o,0+53) generated by the path (i.e., the continuation of N(s,a) up to
N(o,a+B)) do not contain inactive variables of N(o,at). It means that the exclusion of
these inactive variables does not affect the continuation of N(g,a) up to N(c,a+B). All
this becomes completely clear if we represent systems of inequalities and the exclusion
process as graphs.

This completes the proof of Lemma 4.

Now let us construct the reachability graph tor program P. Vertices of this graph
are labeled by pairs (n,S), where n is a statement label and S a state of P. There will be
as many edges issuing and with the same labels from the vertex (n,S) as from the
statement n in P. Simultaneously with the vertex we also build the edges issuing from it
(for the moment they are pending). The construction of the graph will be by induction.
The initial vertex of the reachability graph will be the pair (ng,Sg), where ny=1 and S, is
the initial state of program P: t=0, u=0, Edges issuing from this vertex will be pending
for a while.

Let us assume that part of reachability graph has been constructed. Edges
issuing from its vertices can be in three different states:

(1) an edge can be pending,

(2) an edge can be joined to a vertex,

(3) an edge can be forbidden (the emergence of forbidden edges will be explained
further).

Only the pending ones will be of interest. So we choose a vertex (n;,S;) with a
pending edge labeled by e issuing from it (€ belongs to {+, -, e}). Let y; denote a path
consisting of the sole statement n; with exit £ : ni. Let us build the state 5;=S(S;y). Two
cases are possible:

(1) the state S;is contradictory, i.e., it has no solution as a system of inequalities; in this
case the exit e from the vertex (n;,S)) is said to be forbidden (for example, the edge

296

is marked by special label "X"). (Let us remind tHat our notion of directed graph

allows pending edges in it),
(2) the state S is consistent. Let n; be the label of statement entered by exit € of the

statement n;. Let us consider the pair (n,S;). Again two cases are possible:

(a) the vertex (n;,S)) exists in the part of reachability graph already constructed; in this
case we join the edge & from vertex {(n;,S)) to vertex (n;,Sy),

(b) the vertex (n;,S)) does not exist in the part already constructed; in this case we build
a new vertex (n;,S)) together with all the pending edges issuing from it and then join
the edge labeled by e from vetex (n;,S)) to the new vertex.

The described procedure is continued until we obtain a graph with no unmarked
pending edges. Since the program’P has a finite number of different states the before
mentioned procedure will stop after a finite number of steps. The graph obtained as a
result of this procedure we call reachability graph of the program P.

This graph has several important properties. Let us consider a path

V=((no,So)Eo, (n1'S1)£1 e '(nrvsr)er)
in this graph starting from the initial vertex. Such a path will be called an initial path.
Such a path may not contain forbidden edges. It means that edge ¢, leads to some
vertex, say (n,1.S,1)-

~ Woe shall say that the path v is feasible if there is a test T such that the program P

executes the path_

o=(NgEy, NEy, ..., NE)
and passes the state sequence _

S1, SZ" . Sr+1 on this test.

From the construction of reachability graph and Lemma 4 there follow equalities
Si=S((ngep, NyEy, . . . Njygy)) fori=1, 2, . .. ,r+1. The state S, is consistent by
construction. Thus the state S{(nyeo, ny€y, . . ., Ng)) is also consistent and the path o in
P is feasible by Lemma 3. This proves the following

LEMMA 5, Every initial path in reachability graph is feasible.

Let v be the beforementioned path in rechability graph. In this case the path
a=(Ng€y, N4y, ..., NE) .
in program P will be said to be the projection of path v.

LEMMA 6. An initial path a in program P is feasible iff there is an initial path v in
rechability graph whose projection is a.

The sufficiency of lemma condition follows directly from Lemma 5. Let us prove

the necessity. Let

o=(NgEg, N4€y, - . ., NiE)
be an initial path in program P. Let us consider the sequence of current states
So=S(ag), S1=5(ety), Sa=5(ap), . . . ,Sr,1=S(0r,1)=S(cx), where o=(ngg, N4Ey, - . -\ Nict&ig)-
It follows from Lemma 3 that the path « is feasible iff the states Sy, Sy, . . ., S,y are
consistent. Further it follows from Lemma 4 that the states S;, Sy, . . ., Sy, can be
obtained also in a different manner:

S1=8(So.Noo), S2=5(Sp. NyE4), . - ., Sp1=S(Spneer),
i.e., by constructing the new state from the previous one and the current statement.

297

Hence, and from the construction of reachability graph, it follows that feasibility of path o
implies the existence of path
((no,So)ea, (N1, Sq)eq, - - - (N, Sp)er)
in the reachability graph whose projection is path a.
This proves the lemma.

Let U be a set of initial paths in the reachability graph. U is said to be a complete
path setif it contains all edges of the graph. Let us denote by pr_U a set of paths in the
program P obtained by taking projections of paths in U.

From Lemma 6 there follows an obvious

((1,80)
" A
i

; (8,84)

298
COROLLARY. Let U be a complete path set of the reachability graph of program P.
Then the set of program P paths pr_U contains all feasible branches of program P.

Hence follows the algorithm constructing CTS for a program P:
1. Construct reachability graph G for the program P. Fig. 6.1 and 6.2 show the’
reachability graph for the program in fig. 2.

Se= {a=0, b=0}

Si= {b=0} \,
Sp= {A<0, a=0, b=0}
S3= {} .
S,= {B<0, b=0}

Ss= {a<b}

Sg= {a<b, A<0Q}

S,= {b<a)

Sg= {b<a, B<0}
Sg= {B<0, A<0}
Syo= {bsa, B<0, A<0}
Si= {A<0, a=0, b=0, B<0}
Sio= {A<0, a=0}
© Sqa= {A<0, B<0, a=0}
Sy4= {A<0, B<0, b=0}
S1s= {B<0}
Fig.6.2

2. Construct a complete path set U for graph G consisting of finite paths. It is clear that
there exists an efficient algorithm for finding such a path set. Henceforth we shall
construct this path set the following way: we go along the "+" branches until the vertices
repeat, then we interrupt the path and start a new one repeating the previous path up to
the last (i.e., the first from bottom) "-" branch, select this "-" branch and again proceed
along "+" branches, etc. Fig 7. shows the covering of reachability graph for the
abovementioned program.

P1=(1,S0)+, (2,5¢)+. (3,83)+, (4,Ss)+, (6,Ss)+, (3,S3)

p2=(1,S0)+, (2,S1)+, (3,S3)+, (4,85)+, (6,Ss)-, (7,5¢). (8,S6), (9.5¢)-, (12,S¢)

Pa=(1.80)+. (2.54)+, (3.S3)-, (5,S7), (2,57)+, (3.53)

P4=(1.Sg)+, (2,81)+, (3,S3)-, (5,57), (2,S7)-, (8,Sg), (9.8g)+, (8,S1s).
(9,S45)+, (8,55)

ps=(1,So0)+, (2,S1)+, (3,S3)-, (5.57), (2,57)-, (8,S¢), (9,5s)+, (8,515).
(9.S45)+, (8,S1s), (9,515)-, (12,5¢)

p6={1 -SD)"'r (2'31)+r (3.83)". {5.8?). {2-87)_- {a'ss)r {9158)'- (12189}'

p7=(1,S0)+, (2,54)-, (8,S4). (9,54)+, (8,S4)

pg=(1,S0)+, (2,51)-, (8,S4), (9,S4)-, (12,514)

Po=(1,80)~, (10,82)+, (11,845, (10,512)+, (11,S12)

P10=(1,S0)-, (10,S2)+, (11,843), (10,S42)~, (12,543)

p11=(1,S¢)-, (10,S2)-, (12,Sy)

Fig. 7

299

3. Take pr_U. For every aepr_U construct the inequality system N(a) and find its
solution with respect to variables-cells of input tapes. This solution forms the test T,.
The test set
T={Tg|laepr U}
is obtained as a result.
Test set corresponding to the covering in f ig. 7 is deplcted in fig. 8.

Ti={A=(01), B=(1)}
To={A=(0), B=(1)}
Ta={A=(1), B=(0,1)}
Ta={A=(123), B=(0)
Ts={A=(12), B=(0)

Te={A=(1), B=(0)
Tz={A=(01), B=()
Tg={A=(0), B=()}
To={A=(), B =(0)}
Tio={A=() B=(0)
Tu={A=() B=()
Fig. 8

It is clear that test T, reveals the bug yielding wrong result Y=(0, 1,0).

It follows from the beforementioned that T is a complete test set for program P.
This completes the proof of the Theorem.

2.3 Termination Problem

Some problems of program static analysis are closely related to the construction
of CTS, reachability problem is one of them. The problem is to find out whether all
program branches are feasible (reachable). It is easy to see that this problem is a
special case of CTS problem and therefore no more attention is paid to it.

The second important problem is termination problem. The problem is to find out
for a program whether it terminates on all input data selections. If there exist input data
where the program does not stop, the program is said to be nonterminating. The
decidability of reachability problem for a class of programs does not imply the
decidability of termination at all. Therefore the following theorem arouses some interest.

THEQREM 2. There is an algorithm which determines for every program in L,
whether the program is nonterminating.

To prove the theorem we use substantially the notion of reachability graph from the
proof of the previous theorem.

Path B=((ny,S;)ey, . . ., (nk,Sk)e) in the reachability graph G is said to be closed if

(1) Bis a cyclic path, i.e., the exit g, leads to the vertex (n,, S;),

2)B contains no input statement with "+" exit, i.e., if n; is statement X—1t, then g is "-"

LEMMA 7. Program P does not terminate on a test T iff a vertex of a closed path in the

300

reachability graph can be reached on this test. Program P is nonterminating iff there is a
closed path in its reachability graph.

At first et us assume that there is a test T on which the program P does not

terminate. It means that the execution of P on T creates an infinite path

V=(n181, NoEp, ...)
Since the test T is finite, there is | such that I-tail of path v

8=(ne;, Nya8iyt, .- -)
contains no more input statements with "+" exit. Since the set of program states is finite
and the number of statements is fin\Ige, the path § certainly will contain a segment

(n]ejv s n]+u£j+u) S
such that g, leads to the statement’n; and states S;and S, are equal. It means that
there is a closed path, namely, o

({npSydegs - -« 4 (Nar Sjru)Ejan)
in the reachability graph reached on the test T. This proves the necessity of lemma
condition.

Let us prove sufficiency. Let us assume that there is a closed path

B=((ny,Sy)e. . . ., Nk, Si)ex)
in the reachability graph G. Let a be an initial path leading to the vertex (n,,S,). Let us
consider path aBf...8 with the segment B repeated v times, v - "large enough”. This
path, like every path in a reachability graph, is feasible. Since the segment Bp...p
contains no input statements with "+" exit, the values of internal variabies will begin to
repeat. It means that, if the program executes path opp... on some test T, then it will
continue to repeat the segment B on the same test, i.e., it will loop forever. Hence, by
the way, follows that a closed path B has the property that conditional statements
contained in the path have only one of their exits executable, namely, the one
contained in the path B. In other words, there can be no paths ybranching off the closed
path in the reachability graph. Actually, were such a path v, then, taking into
consideration that all paths are feasible in reachability graph the test forcing the path
afp . .. Bp would also force the path app...By. This yields a contradiction. it means that
the program loops forever on every test where some vertex of the closed path is
reached. It proves the sufficiency of lemma conditions.)

The condition of nontermination used in the lemma is algorithmically decidabie.

This proves the theorem. -
3 Efficient Algorithms for CTS Construction

The proof of Theorem 1 gives us an algorithm for CTS construction which is not
very efficient, especially because of the size of reachability graph. To reduce the size of
this graph we introduce two notions: essentially located statements and essential
variables. '

A set of program statements is selected in such a way that every program loop
contains at least one statement from this set.The first statement of the program and
STOP statements are also included in this set. We call the statements from this set
essentially located statements (ELS's). Our intent is to keep the set of ELS's as small
as possible, therefore, if several loops have a common part, ELS is selected from this

301

common part. In the program of fig. 2, for example, statements 1, 3, 9, 10, 12 form a set

of ELS's.

Associated with every ELS there is a list of variables called essential variables
associated tvith the ELS. An internal variable t is said to be an essential variable for a
certain ELS if there exists a path beginning with the ELS such that the value possessed
by the variable t immediately before the execution of the ELS is used unchanged in
some comparison statement of the path.The use of unchanged value in comparison
statement méans that either the variable t Is contained in some comparison statement
(e.g.,1<9) of\the path before the new value is assigned to t or the unchanged value of t
is assigned to some other variable u which, in turn, is used unchanged in a comparison
statement. |

There are several ways to find out whether the given variable is essential for the
given ELS. We give an algorithm which is based on reverse analysis of program path
from the end to the beginning. When traversing a path in a reverse order, a set of
essential variables V is formed according to the following rules depending on the
current statement K:

(1) if Kiis t<v (both "+" and "-" exit), then V:= VU{t, v};
(2) if Klis t<c (both exits), then V:= V{t};

(3) if Kis X—>t+ , then Vi= W(t};

(4) if Kis X—t- , then V is not changed;

(5) it Kis tov, then V:= if ve V then VU{t}\{v} else V;
(6) if Kis c—v , then Vi= W\{v}.

Further we form a graph for program P with ELS's as vertices and program paths
a; from one ELS to another as edges. Each vertex n has a set of essential variables V,
ascribed, initially all V,, are empty. Each vertex has also a status assuming one of the
three values: not visited, active, inactive. Initially all vertices except those corresponding
to STOP statements are not visited, STOP statements are marked active. On each step
of the algorithm an active vertex n is selected, it is marked inactive and all edges e/
entering it are traversed as program paths in the reverse order as described before (Vq
is taken as the initial value of V). When another ELS m is reached in the reverse
analysis the resulting value of V is added to V. If V, Is actually increased, the status of
m is set to active (also in the case when n=m). If the status of m was 'not visited', it is set
to active anyway. Algorithm proceeds until all vertices are inactive. If the situation
occurs where all vertices are either inactive or not visited, one of the not visited vertices
is made active. The resulting values of V,, are the sets of essential variables for each of
the ELS's. The termination of the algorithm is guaranteed by the monotonity of V, for all
n.

Of course, the feasibility of paths is not taken into account. In the program
example considered, statement 1 has no essential variables because a and b are given
new values from input tapes before using them. Statement 3 obviously has a and b as
essential variables because the statement itself is a comparison statement using them.
Statements 9, 10, 12 have no essential variables.

After these preparations a reduced reachability graph is constructed. lts
construction is similar to that of the reachability graph. The main difference is that
vertices correspond only to ELS's, other statements are not included. For each of the
ELS's we build a set of all paths in the program starting with it and leading to some

302

other ELS. These paths, let them be ely, el,, . .., ely for ELS i, will play the role of edges
in reachability graph construction. The choice of ELS’s guarantees us the boundedness
of this set for every ELS. The other difference is that when constructing a state for the
given ELS we exclude from the corresponding system of inequalities also those internal
variables which are not essential for this ELS. Let us remark that formal variables A, B,...
used to code the exhaustion of input tape (e.g., A<0) are retained in state.

Likewise for reachability graph, the construction starts from the first statement of
the program (which is ELS by definition) and empty state. For the given ELS | and state
S, we consider the paths e} from thls ELS one after another. The system of inequalities
N(S;, el) and state S(S;, el) (in the new sense with respect to ELS reached by e}) are
constructed for each path. If the path is infeasible (i.e., 5(S),ek) is contradictory), it is
labeled by X. Otherwise we check whether ELS I' reached by e, and state S(Sj.ek)
form a vertex already in the reduced reachability graph and join edge e to the existing
vertex or build a new vertex respectively.

We also have to change the definition of path projection in reduced reachability
graph, replacing every edge e, by the corresponding sequence of program statements.

It can be shown that Lemmas 5 and 6 from Theorem 1 hold also for reduced
reachability graph (the proof will not be given here).

The construction of CTS using reduced reachability graph is similar to the
previous case. A more economical covering principle can be used where a path
traverses all loops at the given vertex once and then proceeds further. For nearly all
real programs the reduced reachabilty graph is considerably less than full reachability
graph and thus completely outweighs some additional efforts to bulld it.

Now let us return to our example. ELS's and their essential variables had

So={ Si={B<0 S:={A<0 S3={A<0 B<0

Fig. 9.

303

aiready been mentioned. Paths leading from one ELS to another are the following:
from 1 ey=(1+, 2+) 03,

a=(1+,2-,8) t09,

93=(1') to 10,
from 3 04=(3+, 4, 6+) tc 3,

e5=(3+,4,6-,7,8) 109,

8g=(3-,5,2+) to3,

07=(3,5,2,8) o9,

from 9 §a=(9+- 8) 09,
€g=(9-) to 12,

from10 84p=(10+, 11) to 10,
911=(10') to 12

The reduced reachability graph is shown in fig.9, its covering in fig.10 and the
corresponding CTS in fig.11. The bug is detected by T. It can be seen that states in fact
contain no Internal variables, for they don't affect the feasibility of paths in this simple
program (c.f., in fact, surplus states Syq, S11, Sya, Sya, - . - in fig.6.). The test set is also
reduced but it still detects the bug.

P1= (1, So) &1, (3, So) 84, (3, Sp) @6, (3, So) &5, (9, S) eg, (12, Sp)
P2= (1, Sp) €2, (9, Sy) eg, (9, S4) eg, (12, S3)

P3= (1, Sp) €3, (10, S3) @40, (10, S3) €41, (12, Sy)

P4= (1, Sp) €1, (3, So) &7, (9, S) eg, (12, S)

Fig. 10
Ti={A=(0,1),B=(1.2)}
To={A=(0,1),B=()}
Ta={A=(),B=(0)}
T4={A=(0),B=(0)}

Fig. 1"1

The reduced reachability graph can also be used for termination analysis of
programs described in the previous section. We just note that every cyclic path will
certainly contain some ELS and therefore will be present in the reduced reachability
graph (in most cases as loop with one vertex in it).

There can be some further improvements of the algorithm for constructing CTS.
At first let us remark the simple fact that for a program with all feasible paths we can
simply construct its covering by paths and solve the corresponding inequality system by
the method described. If it is not completely so, we start to construct the reduced
reachability graph for the part of the program not traversable so simply and we look at
every step of its construction (i.e., adding a path from one ELS to another) whether all
branches have been covered. So with all statements reachable, usually only a small
part of reachability graph is to be constructed. Both the original and improved
algorithms are obviously exponential with respect to the size of the program in the worst
case. Therefore no theoretical complexity analysis of the algorithms is given here.
Nevertheless the performance of the algorithm described in this section is quite
acceptable, for most real programs the numbers of steps required is nearly linear with

304

respect to the size. The practical aspects of CTS construction will be covered more
thoroughly in [17].

There is another aspect of optimality, namely, the optimality of CTS obtained. It is
reasonable to minimize the number of tests or the total size. Here the main issue is to
find the optimal (with respect to the criterion selected) covering of the reduced
reachability graph. Obviously it is very difficult to find the absolute optimum,
nevertheless, algerithms yielding nearly optimal covering can be devised. The covering
proposed in this section (traversing all the loops at the given vertex once and then
proceeding further) is clearly orie{lted towards minimizing the number of tests.

4 Conditional Programs and Programs with Preconditions |

In previous sections we have discussed only programs without pending exits, i.e,
there was a requirement that every exit of a statement should be attached to some other
statement. In the sequel such programs will be called closed programs. In this section
we drop the requirement and consider also programs with pending exits, i.e., exits not
attached to other statements. We shall say such exits to be forbidden exits and
programs with forbidden exits to be conditional programs. Conditional programs offer
us some new possibilities. By means of forbidden exits we can specify conditions on
input data. Fig. 12 shows us a program for merging two nondecreasing files which in
addition check whether the input files are really nondecreasing. To describe formally
the meaning of such checks we introduce the notion of a correct test. A test is said to be
correct if the program running on this test never reaches a forbidden exit. It is easy to
see that for the program in fig. 12 only nondecreasing input files serve as corract tests.

In the case of a conditional program a test set will be called a correct complete
test set if
(1) the test set contains only correct tests,

(2) all program branches executable on correct tests are executed on tests of this
set.

It is clear that the construction of a correct complete test set is more complicated
than the construction of usual CTS. Nevertheless there holds

THEQREM 3. There is an algorithm construcng a finite correct complete test set for
every conditional program in L.

To prove the theorem we consider an arbitrary program in Ly and its reachability
graph. The definition of reachability graph for a conditional program is similar to that for
a closed program. Let us remember that we already had a kind of torbidden edges
when constructing the reachability graph, namely, we said that an edge € from a vertex
(n;, S)) is forbidden if the state S(S;,ng) is contradictory, i.e., the exit € of the statement n;
is infeasible in the state S;. We call these forbidden edges the forbidden edges of the
first type. Reachability graph for a conditional program will also have forbidden edges of
the second type: we say that an edge & from a vertex (n;, S;) is also forbidden in the case
when the exit e from the statement n; is forbidden. There are no other differences in the
construction of reachability graph for a conditional program. Lemma 6 holds true also

for this case.
The main problem in the construction of correct CTS is to prevent the constructed
tests from generating paths in the reachability graph leading to the forbidden edges of

a-Y
I
a-c
I
A—a
+]
a<c
T
B—ob L
+
™ b-oY
b—d
B-b
+
b<d
[*+

Fig. 12

A—a (e
|+
Bob -
|+ .
a<b =
> A
> b-oY
b—-d
I
B—-b
1. |+
b<d
4 —
a-Y
a—c |
A—a
+
a<c
J
I vy
STOP

306

the second type. To tackle the problem we remark the following facts. Lemma 7 can be
generalized to conditional programs without difficulties. Hence follows that every correct
test corresponds in the reachability graph to a path leading either to a STOP-vertex or
to a vertex belonging to a closed path. On the other hand, if a STOP-vertex or a vertex
in a closed path in the reachability graph is reached on some test, the test certainly is a
correct one.

Now let us consider the vertices in the reachabillity graph from which it is
impossible to reach either a STOP-vertex or a vertex in a closed path. We call these
vertices the forbidden ones. |t follows from the abovementioned that all program
branches executable by correct tests belong to that part of reachability graph which
remains when we delete all forbidden vertices (together with incoming edges). -

Now let us delete all forbidden vertices from the reachability graph and call edges
leading to them the forbidden edges of the third type. The graph so cbtained will be
called the abridged reachability graph. From the abovementioned there follows that all
program branches executable by correct tests (and only such branches) belong to the
abridged reachability graph. Evidently, all permitted edges of reachability graph can be
covered by a finite set of paths where each of the paths either ends with a STOP-vertex
or reaches a closed path. Tests corresponding to these paths will form a correct CTS.

This proves the theorem.

Now let us define programs with preconditions. To do this we consider
predicates defined on a finite sequence of integers. We call such predicates tape
conditions. We say that the value X° of tape X satisfies a tape condition S if S(X%=true.

Assume a program P with input tapes A, B, ... ,C and tape conditions S, Sg, ..,
Screspectively be given. Let us call such a program to be a program with preconditions
_____ S¢. For example, if we say that P is a program for merging two sorted tapes
A and B (fig. 2), then in fact we assert that P is a program with preconditions S, and Sg
where both Sp(X) and Sg(X} are true if and only if the sequence X =(xy, xp, .., Xn) is
nondecreasing.

Wae say that the test

A=A0,B=B9,...,C=Co N
is a correct test for program P with preconditions S,, Sg ., Scif
{1) the test satisfies the tape conditions Sa, Sp . | Sc.
(2) itis a correct test for P without preconditions (if P is a conditional program).

A test set T will be called a correct complete test set for program P with
preconditions Sy, Sg ., Scit
(1) T consists only of corract tests,

(2) every branch of P executable by a correct test is executed on some test from T.

The question arises for what kind of preconditions the CTS problem is still
solvable algorithmicaly for programs in Lg. In the sequel we define a natural class of
preconditions and show the solvability of CTS problem for it.

We consider tape conditions definable as programs in Ly. One of the most
natural ways to do this is as follows. Let Sy be a program in L with one input tape X. A
predicate Is associated with Sy which is true for those and only those values of tape X
where the program Sy stops. Namely this predicate is called tape condition specified
by Sy :
A tape condition specified by a program could be defined also otherwise. We
could say that a tape value X° satisfies the condition if and only if X0 is a correct test for

307

the program Sy ,i.e., the program Sy when executed on X° does not reach a forbidden
exit (we allow Sy to be a conditional program). It is not difficult to show by using previous
results on program termination that both definitions are uniform, i.e., describe the same
class of conditions.

IHEQBEM There is an algorithm constructing a finite correct CTS for every program
in Lo with preconditions also specified by programs in Lg.

The proof of the theorem follows from Theorem 3 and Lemma 1.

LEMMA 1, For every program P in Ly with preconditions specified by programs in Ly
thereis a oondi?{ona! program P* in Lo without preconditions such that every correct CTS

for P* is a correct CTS for P with its preconditions. There is an algorithm constructing P*
from P and its preconditions.

The idea of the proof of the lemma is simple. Let us assume for the simplicity that
P has only one input tape A with a tape condition specified by a program S,. It is not
difficult to see that we can merge the reading of tape A for checking the precondition Sy
and the reading of A during the execution of P into a single process. It means that we can
build a program that will execute the job of both program P and program Sy between two
consecutive reads from tape A. If a statement has a pending exit in-program Sy, then the

corresponding exit is left pending for "maps” of this statement in P*. In such a way the

program P* will contain, on the one hand, the maps of all branches of program P and, on
the other hand, all the restrictions In the form of forbidden exits imposed by the condition
S,. If P has more than one input tape with corresponding tape conditions, the method
just described allows us, first, to insert the check of the first tape condition into P, then
that of the second tape and so on. In such a way we can always build the desired

program P*. This completes the proof.

It is easy to see that for programs in Ly with preconditions in Lg there also holds
an equivalent of Theorem 2 stating the decidability of nontermination.

5 Programs with Other Simple Data Types

So far we have considered only one simple type — integer in the language L. The
aim of this section is to generalize the previous resuits to arbitrary simple types with
comparison operators defined. There can be a great variety of such types and
comparison operators can be defined In a highly different manner in respect to types. For
example, let us consider charstring type. The comparison operator "<" can be defined for
it according to the lexicographic ordering: Xy...X, < ¥y...Ym If 3ig such that x;=y, . ., Xjp_ =
Yio-1 and Xjp<yjp, Or n<m and x;=y,, . . ., X,=Y, (the ordering adopted in Turbo Pascal).
New situations arises for this ordering as there are infinitely many words between some
two words x and y and a finite number of words between some other words. The relation

<" can be defined for this type also otherwise: xy...x, < ¥i...Yn if n<m or n=m and 3i,
such that x)=y,, . . . ,Xjp-1<Yio-; @and X;p=Y;g, (ordering used by some other Pascal

308

implementations). In this case there will be only a finite number of words between any
two words x, y. This example shows us the variety of possible situations here. To
comprise all the cases we use an “axiomatic” approach in this section: the comparison
operator will be requested only to satisfy some “axioms™ of constructivity. All the types
appearing in real programming languages will satisty these “axioms”. On the other hand
we will show that these axioms are sufficient to make the CTS construction problem
algorithmically solvable. Our aim is to investigate more deeply what is essential and what
is not essential for the algorithmic solvability of the CTS construction problem. So,let
Ty.To...\Ta

be arbitrary simple types with cor\npanson operators =,#,<,< defined.

Further we assume these operators to be total. As far as the first three operators
can be expressed by the last one (using boolean expressions), we assume (without
restriction of generalization) only operator "<" to be defined a priori for each type.

Let us assume the values of the types considered to be constructive objscts, thus
algorithms over the domains of these types can be considered. We shall say that

operator "<" is constructive (satisfies the constructiveness “axioms”) for the type T if

(1) there is an algorithm A which, given any x, ye T, determines whether the relation x <
y holds;

(2) there is an algorithm B which, given any x, ye T such that x < y, determines whether
there exists ze T such that x < z and z <y and in the cass of existence gives one such z;
(3) there is an algorithm £ which, given any xe T, determines whether there exists ze T
such that z < x and in the case of existence gives one such z;

(4) there is an algorithm O which, given any xe T, determines whether there exists ze T
such that x < z and in the case of existence gives one such z.

Let us consider the most popular simple types:

-~ integer with operator "<”

— natural with operator "<"

— rational with opserator "<"; (e.g., binary and decimal fixed point data)

— real, as treated by most common programming languages, I.e., floating point data
(values are of form ny.n,E + nj with limited precision and Ilmlted exponent, in fact, they
are rational numbers);

— charstring with operator "<" defined in one of the ways considered at the beginning of
this section;

- integer subranges and enumerable types (like in Pascal) with operator "<

It is easy to see that all these types are constructive in the abovementloned sense.

So let us assume some constructive types Ty,...,T, to be fixed. We also assume
that every value constant of these types uniquely determines the type to which it belongs.
Now let us consider the following generalization of the language Lg, namely, the
language
LoTten T,

Programs in LoT!.-T8 like in Lo will have both internal and external variables. Each
internal variable will be of some fixed simple type (to stress that internal variable x is of

the type T we sometimes use the denotation xT). Again tapes will be used as external
variables. We suppose that a cell of a tape can contain a value of any simple type. Thus,
the value of a tape is an arbitrary finite sequence (x,...,x,) where x; belongs to some of

309

the types Ty,...,T,. Just as before be both input and output tapes are used.

Statements in LyT!.- T are just the same as In L. Assignments and comparisons
are allowed only between the variables (and constants) of the same type. Some
additional comments are necessary for input statement

X=u,
where X is an input tape and u is an internal variable of the type T. Let the reading head
of the tape X e on the i-th cell at the moment when the statement is executed. If the i-th
cell contains alvalue of the type T, the statement is executed normally, i.e., the value of
the i-th celi is assigned to the variable u and the head moves one position right (at the
beginning the head was at the first cell). If the i-th cell contains a value of some other
type, an error (crash) occurs and the execution of the program is halted.

A natural question arises whether previous theorems can be generalized to
programs with arbitrary constructive simple types. We shall consider the analogue of
Theorem 1 in some detail.

Further on by a program we understand only a closed program, i.e., a program
without pending exits. Let P be such a program in LoT!.-.T# with input tapes A,B,....C. A
test A= A%, B =B0,..., C = C0is said to be admissible if the program P does not crash on
this test.

A test set T Is said to be a complete test set for a program P if

(1) it contains only admissible tests,
(2) every branch of the program executable by an admissible test is executed by some

test of the set.

JHEOREM 5. Let Ty,..., T, be fixed constructive types.Then there exists an algorithm
constructing complete test set for every program in LyT!-Ta

The proof of the theorem will be similar to that of Theorem 1, only some lemmas
will be more complicated.

Let T be a fixed constructive type with its corresponding algorithms A, B, L, I . We
need the generalization x < (r) < y of the inequality x <y for re {0,1,2,...}:

x<(0)<y meansx <y (i.e. lly > x)),

x<(1)<y meansx <y,)

x < (r) <y where r 2 2 means that there are elements ey, e,,...,8..4 of the type T
suchthatx<ey<@y<..<8.1<Y.

By an inequality system N of the type T we understand a system
Xy < {ry) <y

X5 < (Ip) < ¥p
where x;, y; are variables or constants of the type T.

Such a system of inequalities N (like in Section 2) is represented by a graph Gy, :
the vertices of the graph are labeled by variables and constants of the system N and an
edge of weight r is drawn from vertex y to vertex x if there is an inequality x < (r) <y in
the system N. Vertex x is called constant vertex, if it corresponds to a constant in the
system N and variable vertex, if it coresponds to a variable. Variable vertices with no
edges issuing are called minimal ones. Variable vertices with no incoming edges are
called maximal ones. Let us consider a path in the graph Gy. By weight of a path we
understand, just as before, the sum of the weights of its edges.

310

Let us introduce some more notations. Let x,ye T. Let us denote
M(x,y)={z| 2e T & z<x & y<z },
M(*.x)={ 2| ze T & x<z},
M(y,")={ z| ze T & z<y}.
The cardinality of the set M is denoted by IMI (it can also be Infinity).
Let us define
Jifx=y .
x-y=4 [M(x,y)|+1 if y<x
-|IM(y.x)|-1 if,x<y
The "-" operator just |ntroduced coincides with the conventional minus operator in the
case when T is the integer type. -

LEMMA 1. An inequality system N of a type T has a solution if and onlj/'if its graph Gy

has the following properties:
(1) the weight of every cyclic path is equal to 0,
(2) the weight of every path leading from a constant vertex ¢, to other constant vertex

¢ does not exceed cy-Co,

(3) if the type T has the smallest value w, then the weight of every path leading from a
constant vertex c to a minimal variable vertex does not exceed c- @,

(4) if the type_T has the largest value 2, then the weight of every path leading from a
maximal variable vertex to a constant.vertex does not exceed 2,

(5) if the type T has both the smallest value w and the largest value £, then the weight
of every path leading from a maximal vertex x to a minimal vertex y does not exceed -
0.

Before we proceed to the proof of the lemma let us remark that the

beforementioned algorithms A, B, €, I do not yield a constructive method to check the
lemma conditions. Therefore, up to now the lemma has only qualitative meaning.

Now let us begin the proof.

The necassity of lemma conditions is obvious.

Let us prove the sufficiency, we assume lemma condmons (1) - (5) to be true. We
search the solution by induction. On each step of the induction we assign a constant
value of the type T to a variable vertex of Gn. We assign the constant values (i.e.,
replace the variable vertices by constant ones) so that the validity of lemma conditions is
preserved.

To implement this idea we have to make some preparations. At first let p(x,y)
denote the maximal weight of the paths leading from vertex x to vertex y.

1) Let us consider all pairs of constant vertices (c;,c,) where there is a path from
¢y to c,. The second condition of lemma implies ¢, < ¢y. For every pair of vertices, where
plci.cz) -1 2 1, we construct elements ey, 85, . . . ,€pc1,c2)1 » SUCh that co<ey<ey<. .

.<@p(ct1,c2)-1<Cy , Using algorithms A and B. The existence of such elements is provided by

the second condition of the lemma.

2) Let us consider all pairs (c,x) where ¢ is a constant vertex, x is a minimal
variable vertex and there is a path from c to x. For every pair of vertices, where p(c,x) 1,
we construct elements €'y, @', . . . ,8'y(cx) , SUCh that @';<@'p<. . <@y) <C, Using

algorithms A, Band L.

an

3) Let us consider all pairs (x,c) where ¢ is a constant vertex, x is a maximal
variable vertex and there is a path from x to c. For every pair of vertices, where p(x,c)2 1,
we construct elements e"y, 8™, . . . ©"p(xc) Such that c < @"y < 8" <. . . <@y q), UsIng

algorithms A, B and I . The existence of such elements is provided by the fourth
condition of the lemma.

4) Let us consider all pairs (x, y) where x is a maximal variable vertice, y is a
minimal variable vertice and there is a path from x to y For every pair of vertices we
construct elements e"'y, 8", . . . ,8"py)e1, SUCh that 8"y < 8™ <. . . < 8"y 41, USING

algorithms A, B C.D (and assuming that we know at least one element of each type). The
existence of such elements is provided by the fifth condition of the lemma.
Now let us consider all the beforementioned elements e, &', 8", 8™ together with

constants of the inequality system. By means of the algorihtm A we sort them in
ascending order:
ai<@<az<..<q, (*)

The elements corresponding to constants of the inequality system are called
constant elements, the other ones — auxiliary elements.

We begin to solve the inequality system N by assigning the value a, to all minimal
variables and the value a,, to all maximal variables. This will introduce new constants in
the inequality system N and its graph Gy. It is not difficult to ascertain that the
introduction of such constants does not affect the truth of the lemma conditions (1) — (5).
In the sequel we have, in fact, to deal only with conditions (1) and (2), the conditions (3) -
(5) are used no more.

At first let us deal with vertices which belong to a cyclic path (its weight is 0 by the
condition (1)). If there is a constant among them, assign the constant to all variable
vertices. If all vertices of the path are variable ones, then select one variable as a
representative of the path (for other variables must have the same value) and replace the
cyclic path by this variable.

Let us consider a vertex z in the graph G with no constant value assigned to it in
the previous steps. Let us take all constant vertices (including the ones introduced in the
previous induction steps) with the paths leading from the vertices to z. We make an
inductive assumption that all the values of these vertices are within the sequence (*).
Hence we suppose these vertices to form a subsequence

ai1s 8-y,
of the sequence (*), i.e., every such vertex has a corresponding ordinal number i in the
sequence (*). The maximal weights of paths leading from these vertices fo z are denoted
by Iy, b, . . . I, respectively. Let us consider the following elements of the sequence (*)
111, A2 Bim-im i

Let us denote by a, the least of these elements (i.e., the element positioned
leftmost in the sequence (*)).

Further we take all constant vertices (including the ones introduced in the previous
induction steps) which have paths leading from z to them. Again we make an inductive
assumption that values of these vertices form a subsequence

ay, aj,.--, 8
jv Zjae-Sin
of the sequence (*). Let us denote the maximal weights of paths leading from z to these
verticesby ry ra 1, andconsider the following elements of (¥)

A14r1s A2er2e By
Let ag be the largest of these elements.

312

It follows from the second condition of the lemma that
ag<ah .
Indeed,’if it were not so, it is easy to deduce that constants a4 and a; would violate the
second condition of lemma.
Let us choose any element u; of the subsequence

8g, 8g41,...,8n
of the sequence (*) as the value z. So the vertex z becomes a constant vertex in the
graph Gy. It is easy to observe th‘at_,lemma conditions are preserved. Moreover, the set of

values of constant vertices will not exceed the sequence (*).
Thus we continue the process until all variable vertices in Gy are replaced by

constants. These constants form the solution of the system N.
This proves the sufficiency of lemma conditions (and aiso lemma).

The proof of sufficiency yields us an algorithm for solving inequality systems. Let
us express this result as a separate lemma.

LEMMA 2, For each constructive type T there is an algonthm which, given any inequality

system N of the type T,
(1) finds a solution if such exists,
(2) produces special indication if there is no solution.

Let us make some remarks to the proof of the second assertion of the lemma. If
we consider the abovementioned algorihm for solving inequality systems more in detail,
we can see that, in case Lemma 1 conditions fail, the algorithm certainly is aborted, i.e.,
either there are not enough elements a,, a,,..., a, or inequality a; < a, fails. The aborting
definitely occurs after a finite number of steps. It means the algorithm can always "catch”
the nonexistence of solution. So it is possible to overcome the nonconstructiveness of
Lemma 1 conditions.

Now let P be a program in LyT!.-+T2 and a= (ky,...,.k;) be an initial path in this
program. We define the system of inequalities corresponding to path o just as in the
proof of Theorem 1. The only difference is that every occurrence of intemal variable in

the system will have its type ascribed, e.g., 1773 ;-ugT!, etc. The inequality system also
contains variables X; where X is an input tape. These variables occur only in equalities

Xi=t;Te where the instance of the internal variable tTe has already the type T, ascribed to.
Relying on this equality we ascribe the same type T, also to the variable X;:

X;Te.

As assignments and comparisons are allowed only for variables of the same type,
the inequality system N(a) splits into independent inequality systems according to types:

N(a) = {NT(a),...,NTa(a)}.
Obviously there holds

LEMMA 3. A path « is feasible iff for each of the types T, the corresponding inequality

system NTeé(at) has a solution. Any solution of the systems NT1(a),...,NTe(a) with respect
to cell variables of input tapes yields a test executing the path a.

313

Further we consider each of the inequality systems NT!(a),...,NTa(ct) separately.

Let NT(c) be one of these inequality systems. Our aim is to define the T—state ST(x) for a
program after the execution of path a, i.e., part of the program state S(«) referring to the

type T. The complete state S(a) is defined as {S™!(a),...,S™8(a)}.

The idea for the definition of ST(a) Is similar to that used in the proof of Theorem
1, namely, we take the inequality systems NT(«) and exclude inactive variables. However,
a new problem arises: how to choose the constant ¢, used to delimit the weights of
edges (see the definition of the exclusion of variable y in the proof of Theorem 1). Let us
proceed as follows. Let us consider all constants of the type T in the program P, as well

as the smallest and largest values of the type T, if there are such. Sort all these
constants in ascending order

C1s C2-0s Cpme
Let us consider differences ¢; - ¢, These differences can be infinite for some pairs
and finite for some others. Let us consider all pairs (c;, ¢;) where the difference Is finite.

Let us denote the largest of the differences by CqT.

Now let us define the exclusion of inactive variables from the inequality system
NT(a) just as before, with just defined constant CoT playing the role of c,. Let us recall
that the constant CoT is used to delimit the weight of edge: if there is a weight r > CyT + 1,
it is replaced by CoT + 1. It is not difficult to ascertain that after every exclusion of the
variable the following assertion holds for the obtained inequality system N'T(a): N'T(a)
satisfies the conditions of the existence of a solution from Lemma 1 iff NT(a) satisfies
these conditions. By the way, let us note the following easily provable proposition. Had
we used some smaller constant instead of C,T in variable exclusion, only the folloiuing
assertion would hold instead of the previous: if NT(a) satisfies the conditions of solution
existence from Lemma 1, then also N'T(«) satisfies the conditions (but not vice versa).

Now let us define the state ST(a) to be the inequality system obtained from NT(cx)
by excluding all inactive variables. It follows from the above mentioned that an analogue

of Lemma 3 from Theorem 1 holds for state ST(a) .

However, state ST(a) cannot be used directly. The matter is that the constant C,T,
upon which the construction of state ST(a) relied, cannot be effectively found for every
constructive type T. Therefore we do as follows. For every natural constant ¢ we consider
the state ST.<(a), the definition of which differs from the definition of ST(a) only in the
point that constant c is used instead of C,T . By the way, if c = CyT, then ST(a) = ST¢(a).
From the abovementioned there follows

LEMMA 4, For every constant ce N the existence of a solution for system NT(a) implies
the existence of a solution for system ST.5(a;) (i.e., the consistency of the state ST(a)).
if c 2 CyT, then also the existence of a solution for the system ST¢(a) implies the

existence of a solution for the system NT(a).

314

It is not difficult to see that for every ce N an analogue of Lemma 4 from Theorem
1 holds for the state ST.c.

LEMMA 5. Let o be a state of the type ST for the program P, a a path in the program
and B a continuation of the path c.. Then the equality holds:

STe¢ (0,a+f) = ST (ST<(0,0),B).

Now let us define for an arbitrary tuple of natural numbers (c;....,c,) general state
Set,...ca (CL) \ {STI cl {a),... , STa, ca(ar)). .

Let us emphasize that, given constants {cq,...,C4), the state S¢l...ca (a) can be
effectively constructed for an arbitrary path a. We also emphasize that the number of
possible states for program P is finite for a fixed tuple (c,....Ca)-

Thus for every tuple of naturals {c;,...,c,} we can build for a program P, using
states S¢l...ca (a), its reachability graph denoted by Ge'--¢a (o). Let us consider the
properties of this graph.

From Lemma 4 and other previous lemmas there follows an analogue of Lemma 6
from Theorem 1:

],_MMA_QL For every tuple of naturals (c,, ,Ca) the feasibility of an initial path a in

whose projection is a. If conditions

€1 2CpT,..., 02 CyTe
hold for the tuple (c;,...,c5), then the existence of an initial path vy in the reachability graph
whose projection is o implies the feasibility of path a in program P.

Let us consider the covering U of the reachability graph, namely, the set of paths
covering all allowed edges of the graph Ge'.-ca, A set of paths pr_U in a program is
assoaciated with the set U.

From the previous lemma there follows

COROLLARY. Every tuple of natural numbers (cy,...,c,) has a property: if U is a covering
of reachability graph Ge'--ca for program_ P, then pr_U contains all feasible branches of
the program. If in addition B

€12 CyT! ..., ca2CyTa, (**)
then all paths in pr_U are also feasible.

These lemmas show that, if we knew the constants CoT! ..., CoT2 for the given
program, we could, using Lemma 2, construct CTS for the program just the same way as
in the case of Theorem 1. However, the algorithms A, B, £, I used in the definition of
type constructivity do not yield a method to find these constants. Therefore much more
complex actions should be performed as in the case of Theorem 1.

Initially as ¢;....,c,, we choose any natural numbers, e.g., ¢; = 0,..., ¢ = 0. Using
these numbers we construct the reachability graph Ge.-ca and its covering U consisting
of finite paths. Just as before we consider pr_U and for each path aepr_U construct the
inequality system

N(a) = {NT!(a),...,NTa(ar)}.

315

Then we try to solve these inequality systems using the algorithm from Lemma 2.
If the algorithm ylelds solutions for all paths «, then, as it is implied by the first assertion
of the Corollary, these solutions will form CTS. Now let us assume that the algorithm
aborts on some inequality system N{a). It means that there is i such that the algorithm
will produce the solution inexistence indication when applied to the inequality system

NTi(a). It follo\\(vs from the definition of the reachability graph and Lemma 4 that the case
is possible only for ¢; < C,T! . This inequality means that there are two constants ¢, Cg in
program P such that ¢, - ¢, < e and ¢, - ¢, > ¢;. Since we know this thing, now we apply
the algorithms A, B, £, D for the type T; to all possible pairs of constants in the
program and so in a finite number of steps we can construct p2¢; elements between
some palr of constants ¢ and c,, besides, by using the algorithm B we can ascertain
that there are no-more elements between these constants. In the next iteration step we
use the number p+1 as a constant ¢; .Thus with every iteration step we approximate
constants ¢y,....Ca t0 the constants GoT! ..., CoT2 . In such a way we assure that after a
finite number of steps constants ¢;.....c, can be reached such that the covering U of the

reachability graph Ge!.---.ca will have the required property: all aepr_U will be feasible,
e., inequality systems N(c) will have solutions. These solutions will form the desired

CTS.
This completes the proof of the Theorem.

Natural question arises whether we can generalize other theorems proven in the
previous sections for the language L, to programs in LT1....Ta with T ..., Ta being
arbitrary constructive types. Using the techniques elaborated in the previous proofs it is

not difficult to obtain a positive answer to this question.
Now we return back to the base language Lg in the next sections. Methods

developed for the language L, in many cases can be transferred to wider classes of
programs.

6 Programs with Stack

Let us consider a language L4 where a program has additional internal memory
- stack. Formally L, is obtained from the base language Ly by adding the following
statements:

t—M (respectively c—M). The value of variable t (constant c) is added to the
stack. We use the capital M to denote the stack. (Push statement).

Mot. The last element of the stack is assigned to variable t and erased in the
stack. The statement has two exits: if the stack is not empty, then the exit ‘+' is used,
otherwise use the exit -'. In the last case the value of t is not changed. (Pop statement).

THEOREM 6. There is an algorithm for constructing a finite complete test set for every
program in L.

The proot is based on the slight modification of the notion of the program state
and new lemmas about path replace. Qur aim is to construct a reachability graph

316

containing all feasible branches of the program.
Let us consider the construction of the system of inequalities N(a) corresponding
to initial path o =(k; ,ka,....k;) for programs in Ly. The construction is similar to that in

Section 2. Additionally the initial system N(a,) has ineguality

mg =0,
where mylis a variable denoting the number of stack elements. Further variables Mi with
subscript are used to denote the value of the i-th stack element, and m are variables

denoting the number of stack elements.
Now let us assume that\the system of inequalities N(a;.¢) is already defined. Let

m, be a variable denoting the number of stack elements after the execution of path @, ,.
Let us denote the value of m, by w} Let u, be a variabie denoting the value of variable u
after the execution of path a,.;. Let z be the greatest subscript of all variables M with

superscript w and let v be the greatest subscript of all variables M with superscript w+1.
If there is no variable with superscript w or w+1, then we assume z=0 or v=0. Then we
define N(«;) as system obtained from N{ a4} by adding the following inequalities:

1) f ki= (u>M), then equalities
Mgy1=W+1, MV:}=U|
are added. In this case new variables mg,; and M¥%! are introduced. The value of
variable mg, 4 is equal to the number of stack elements.

2) i k= (M—u+) and my>0, then equalities
Mgy 1=W-1, Upy = M7 '
are added. New variables u |,y and mg, 4 are introduced. If mg=0, then inequalities
Up1<0 , Uy >0
are added to obtain contradictory inequality system.

3) If k= (M —> u-) and if mg=0, then no inequality is added.
If mg>0, then inequalities
Upy1<0 , Uy y>0 A
are added to obtain contradictory inequality system.

4) lf kie Lq, then we proceed the same way as defined for the language L.

Let us give an example. For o = (1: A-u+, 2: u—M, 3: M—>t+) we have ineguality
system

up=0
=0
my=0
N(@)= { uy=A,
my =1
M] =Uy
m2=0
t; =M}

317

also In our case. So initial path o Is feasible iff system N(x) has a solution. Now let us
define state inequality system S{a) for our case. Internal variables with maximal
subscripts and variables denoting Input files are called active variables. Previous rules
of variable exclusion will be used also for all variables mg and Mli- Let us exclude all of
them and all other inactlve variables. We obtain inequality system containing only
active variables and constants. The resulting system is also denoted by S(e) and called
a program sﬁare after execution of path a. Easy to see that Lemma 3 from Section 2 is
valid also in this case.

Let us consider a path o with the following property: the number of stack
elements on path « is equal to or greater than the initial, after the execution of path a it
Is equal to the initial. Such path Is called a normal path.

Let o be.a normal path (there Is no requirement for « to be initial) and o be an
arbitrary program state. Then we define N{o,a) the same way as for the language L.
N(o,a) is the same initial inequality system o with only zero subscripts added to initial
variables. The equality my=0 is also added to describe the Initial status of stack. Further
N(o,w;) is defined from N(o,a.y) and statement k; just as before. Let us exclude inactive
variables, except initial variables from N(o,a). We obtain inequality system containing
constants and internal variables with zero subscript and perhaps internal variables with
another subscript. Let us replace second type subscripts of all variables by one. The
reduced system is denoted by E(o,«) and called a path effect.

LEMMA 1. Let initial path a have two normal continuations B and y with the same last
statement. Let us denote S(a) by o. If E(o,B)=E(a,y), then path a+§ and path a+y have
the same feasible continuations.

Let path & be a continuation of path a+p or path o+ y. Let us consider syétems
N{a+8+8) and N(o+y+8). All variables of systems which are created on path p or ¥,
except those which are active at the beginning of the path 8, have no inequalities with
the variables created on path 8. If we exclude all inactive variables created on path B or
v, we obtain path effect E{(c,B) and path effect E(c,y). Further we have equivalent
systems of inequalities which may differ only by subscripts of the variables created on
path 8. There follows the proof of Lemma.

LEMMA 2. Let initial path e have the continuation p+y+8 where f+y+8 is normal path
and y also is normal path. Let states S(e) and S(a+p) are equal. Let path p and path y
have the same first statement and let path y and path 6 have the same last statement. If
E(S(a),p+y+8)=E(S(a+B),y), then path a+y and path a+B+y+6 have the same feasible
continuations.

It follows from lemma condition that E(S{a),y)=E(S{a+B),y). Then E(S{a),y) =
E(S(a),p+y+8). Now according to Lemma 1 path a+B and path a+B+y+8 have the same
feasible continuations.This proves the lemma.

The number of the pairs (n;,S;), where n; is the statement label and S; is the.
program state, can be estimated by constant R, effectively evaluated from the given
program. Also the number of quadruples (n;, S;, E;, k;), where n;k; are statements labels,
S, is a state and E; is path effect, can be estimated by constant R, effectively evaluated
from the giveh program.

318

LEMMA 3. For any feasible branch & there exists a path a such that path a+ & is
feasible and the number of stack elements is less than Ry+R,on the path a.

Let us denote by B feasible initial path to branch &. Let us assume that the
number of stack elements after the execution of B is more than Ry. Then we consider

stack elements pushed on path B and not popped on path B. Let us denote by By the
initial part of path § to the statement when the i-th abavementioned stack element is
pushed and by Bji the continuation. If we find By and By, K<k, where S(By)=S(Bx) and
first statements of By and By a\r‘%the same, then path By + By is feasible. So we find
feasible path B’ to the branch 3 where the number of stack elements after executing f' is
less than Ry. " 2 e

Let us denote by a the initial part of path B until maximal stack length of path p is
reached and by & the continuation of . Let us consider the stack elements pushed on
path & and popped on path e. Let us denote by o the initial part of path o to statement,
when the I-th stack element is pushed, and by g continuation to statement, when this
element is popped, and by v, continuation to branch 8. Every path g is normal path and
we consider E(S(ay).g). If we find that path g and path g satisfy conditions of Lemma
2, then path oy+g+y+3 is also feasible. So we find path o with no more than Ry+R;
stack elements used.

Before we start the construction of reachability graph we must extend the notion
of the program state. We must include in the state inequality system all variables
denoting the values of stack elements. So additionally the state inequality system has
active variables M!, M2 .. .M where Mi denote the value of the i-th stack element.The
number of active variables denoting stack elements is equal to the value of variable m,
where m,, is variable with maximal subscript. Let us denote by F(a) the extended
program state after the execution of initial path a. Let us dencte by F(w,a) the extended
program state after the execution of the path a from the extended state w.

LEMMA 4, Let w be an extended state, « a path and B a continuation of path a. Then
Flw,a+B)=F(F(w,a),B).

We can notice that inequalities generated on path B do not contain inactive
variables of path a. So while constructing F(@,a+B) from N(w,c+p) we at first can
exclude inactive variables generated by path a. We obtain F(w,a) as intermediate
resuit, and the construction of F(F(w,a),B) from N(F(w,x),p) starts on equivalent
inequality system. This proves the lemma.

Now we can start the construction of the reachability graph. In our case vertices
of the graph are labeled by pairs (n,F), where n is a statement label and F is extended
state. To construct the reachability graph we use the same algorithm as for programs in
language L with one additional rule: if the number of stack elements exceeds Ry+R; in
the state of the new vertex, then we do not construct edges from this vertex.

From the construction of the reachability graph and Lemma 3 follow

LEMMA 5. Every initial path in the reachability graph is feasible.

319

LEMMA_6. A branch B in the program is feasible iff there is an initial path c in its
reachability graph whose projection contains f.

Complete test set is constructed from the reachability graph the same way as in
case of the language Ly. This completes the proof of Theorem 6.

7 Programs with Direct Access

Let us extend the language L, by adding a new statement

RESET(X)
where X is input tape. The statement returns the input head of tape X to the beginning of
the tape. By using this statement we can have the repeated reading of input tape. Let us
denote the new language by L,

THEOREM 7. There exists no algorithm for constructing a finite complete test set for
avery program in L .

A subclass of programs in L, with two input tapes with one usage of RESET for
each of them is sufficient for non-existence. We consider two-tape automata by Rabin
and Scott [13]. These automata may be represented by programs in base language Ly
with two input tapes. Let us denote by LynLg the intersection of languages Ls and Lg
represented by two-tape automata A and B. The problem of determination of Lanlg
emptiness is known to be undecidable [13]). We shall consider tapes of automata to be
two input tapes of a program in L _ It is easy to construct a program Pg using RESET
statement only once for each of the tapes where STOP statement is accessible iff
LanLg=0. Hence it follows that the emptiness of LynLg can be decided by means of a

complete test set.

The previous theorem indicates that the unsolvability of CTS construction
problem tends to appear readily if multiple reading of input tapes is allowed.
Nevertheless it is possible to select the natural program classes with direct access by
addressing to tape cells and retain the CTS problem solvability.

Further we consider a certain class of the type. In this case input and output
tapes are not divided. We use both access methods for every tape. For this purpose the
tape cells are addressed by numbers 1,2,3,..., and additionally to internal variables
u,v,...,t we introduce a finite number of internal address variables which store tape-cell
addresses. Every tape has its own address variables. We use capital letter to denote
the tape and a corresponding small letter with superscript to denote the address
variable. The address variables of tape A are denoted by al, a2, a3,...,ak, those of tape
B by b, b2, b3,..., bm, etc. We say that a tape contains the sequence of integers
ny,Ng,...,N, if integers ny,n,,...,n, are written on the tape beginning from the first cell. As
we need to modify the statements of the language L, we will repeat the definition of all
statements. Let A be an arbitrary tape. Let u,t be arbitrary internal variables and al,al
arbitrary address variables of tape A. A program is constructed using the following
statements:

1. START. The first statement of the program. This statement transfers heads of
all tapes to the beginning and sets values of all internal and address variables to the

initial value 0. A program has exactly one START statement.

Loy

2. A — u. The value of the scanned csll of tape A is assigned to variable u. The
statement has two exits; exit "+", when the scanned cell contains a number, and exit ™"
when the scanned cell Is empty.This statement does not move the head on tape A
(Input statement). y

3 u — A. The value of variable u is assngned to the scanned cell of tape A.
(Output statement).

4. NEXT(A). The head moves right to the next cell of tape A. (Shift statement).

5. u — t (respectively cw-)t) The value of variable u (constant c) is assigned to
variable t. (Assignment statement)

6.uct (respectively c<t.;"i.|<c)- The statement has two exits: if the value of u
(respectively ¢) is less than the value of t (respectively c), then exit "+" is used, otherwise
use exit "-". (Comparison statement).

7. ADR(A) — al. The address of the scanned cell on tape A is assigned to the
address variable al. (Address input statement).

8. al = u . The value of tape A cell whose address is equal to the value of

variable alis assigned to variable u. The statement has two exits: exit "+", when the tape
A cell contains an integer, and exit "-", when it is empty. (Direct access input statement).

9. u =al. The value of variable u is assigned to tape A cell whose address is
equal to the value of the address variable al. (Direct access output statement).

10. a' — al . The value of address variable a is assigned to address variable al
Only address variables of the same tape are allowed in the statement. (Address
assignment statement).

11.STOP.

Let us denote the language obtained In such a way by L‘:;

Programs in the language L differ by the following constraints:

1) there is no special statement START, i.8., the exits of other statements cannot
lead to START;

2) every input or output statement |s directly followed by the shift statement of the
corresponding tape;

3) all tapes are-divided into input tapes and output tapes.

Now all these constraints are dropped.

The new statements dealing with addresses are used for all tapes. Note,
however, that the address assignment statement can be applied only to address
variables associated with the same tape. Removing this restriction leads to unsolvability
of the problem of construction of complete test set. The same result is also obtained if
we allow a comparison statement for address variables. In reality, these restrictions
usually hold. The new language can be used to code the bubblesort algorithm. Fig.13
gives an example of such a program.

T4l

1.START

2.A-x

!

3. ADR(A)> a

|

4. NEXT(A)

¥ | 5A-y

- 6y§%

8.y »x

—

7.2>0

9.y=a

11.x -A

12.1 -z

Fig. 13

10. STOP

322

THEOREM 8, There exists an algorithm for construction a complete test set for any
program in the language L.

At first we can notice that we must consider only those paths where statement
START is executed only once. The content of tapes after the execution of START
statement is considered as initial.

Further we use a new concept for program state.

Let us interrupt the program execution on fixed tape values. Now all variables
have some fixed values. Let ¢, be the smallest constant and ¢, be the largest
constant of the program. Let us note on the number line all integer values from cyn.to
Cmax @nd all variables according to their values. Such ordering of variabies and
constants is calledaconflguratlon For example, if Cryjn =1, Cmax =2, u=-5 v=-5, t=1, 2=7,
then we obtain

For values less than ¢y, or more than cmay oOnly relations between them are important.
So, if u=-6 and v=-6 or z=10, then we obtain the same configuration. Configuration is
considered to be a special type inequality system. Further not only internal variables
and constants are noted in the configuration but also the values of scanned cells and
the values of cells whose addresses are equal to the values of address variables. Tape
A scanned cell value is denoted by Al and the value of cell whose address is equal to
the address variable ai by ail.

Let us involve the new concept of the program state. The state is triple [d,Q,R],
where

D is the state of all tapes D=(d, ,dg ,...,dz }, where dy=0, if the tape X Is
exhausted, otherwise dy =1, :

Q is the set of configurations,

R is the list of sets of address variables. The list contains sets of address
variables with address variables of one set containing the same address. Likewise the
sets may also contain the address of the scanned cell of every tape. In the list we
denote the address of the scanned cell of tape A by A, that of tape B by B, etc.

Now we can start the construction of the reachability graph.

The initial state Syis [D,Q,R] where D=(1,1,...,1), Q contains one configuration Ky
and R is empty. Ky is a configuration where all variables are located at constant 0. The
constant 0 is always noted in a configuration, as it is the initial value of variables.

The first vertex is labeled by the pair (ng,S,) where Syis the initial state and ng
is the label of the START statement. Then we construct the edge from vertex (ng,Se) to
vertex (ny ,S;), ny is the label of the next statement and S is the state [D,Q,R] where set
Q contains all configurations that are obtained from the configuration K, by adding
variables Al, Bl,..., ZL. The adding of variables is described further when we consider
shift statement.

Further we define construction rules for all other statements. Let us consider an
arbitrary vertex (n,S) with S being the state [D,Q,R].

323

1) If n = (NEXT(A)) and the statement exit leads to statement ny, then the new
vertex is (ny,S,). If dp=1 in the state S, then state S, is [D,Q,,R,] where set Q, contains

all configurations which can be obtained from set Q configurations by transferring or
deleting variable Al. Ry is obtained from R by deleting A from all sets. In the case sets

with one element appear they are also deleted.
Actually the deleting of variable Al from configuration means that the current

scanned cell |s empty.
Variable transferring means its deleting from the current point and adding to any

point of configuration.
For example, If Q contains a configuration

0 1 2 1

u

and Al must be added, then 7 possible configurations are obtained:

0 u 2t Ou2t 0 u?2t 0Ou?2t
Al Al Al Al
0u?2 t 0Ou2t 0 u?2t

Al Al Al

If da=0, then state S is [D,Q,Ry].

2) If n=(A—u) and the exit "-" leads to statement n, and exit "+" to statement ny,
then new vertices are constructed the following way. If da=0 in state S, then we
construct an edge from vertex (n,S) to vertex (ny,S;) where S, is [D,Q,R]. If da=1, then let
us denote by Q, the subset of Q where configurations contain variable Al and by Q. the
set Q\Qy. If set Q4 is not empty, then an edge to vertex (n,,S,) is constructed. State S, is
[D.Q3,R] where configurations of set Q4 are obtained from configurations of set Qq by
transferring variable u to the point where variable Al is noted. If set Q, is not empty,
then an edge from vertex (n,S) to vertex (n,,S;) is also constructed. State S is [D',Q,,R]
where D' is obtained from D by setting d, to 0.

3) If n=(u — A) and the exit leads to ny, then the new vertex is (ny, S,). State S,

is [D,Q',R] where configurations of Q' are obtained from set Q configurations by
transferring Al to the point where variable u is noted. If list R contains a set T with A,
then all variables of set T are also transferred to the point where variable u is noted.

4) If n=(u — v) and exit leads to n,, then the new vertex is (n;, S;). State S, is
[D,Q',R] where configurations of Q' are obtained from configurations of Q by transferring
u to the point where variable v is noted.

5) If n=(u < v) and exit "-": leads to statement n, and exit "+" to statement n,, then
the new vertices are constructed the following way. Let us denote by Q, the subset of
configurations from Q where u is noted on the left from v and by Q, the set Q\Q,. If Q; is

324

not empty, then an edge to vertex (n,,S,) is constructed where Sy is [D,Q,,R]. if Q,is not
empty, then an edge to vertex (np,S,) is constructed where S, is [D,Q5,R].

6) If n=(ADR(A) — a') and the exit leads to ny, then the new vertex is (ny,S:).
State S, is [D,Q',R’] where configurations of Q' are obtained from set Q configurations
by transferring ail to the point where variable Al is noted, it Al is noted in the
configuration, or by deleting ail, if Al is not noted in the configuration. List R’ is
obtained from R by adding set {l\.a'}, if list R does not contain a set with A, or by adding
alto the set with A, otherwise. ‘%

7) lf n=(al = u) and the exit."-" leads to statement n, and the exit "+" to statement
ny, then the new vertices are constructed the following way. Let us denote by Q, the
subset of Q where configurations contain variable ail and by Q,the set Q\Qy. if Q4 is not
empty, then an edge to vertex (n;,S4) is constructed. Sy Is [D,Q;',R] where
configurations of Q," are obtained from set Q configurations by transferring u to the
point where variable all is noted. If Q,is not empty, then also an edge to vertex (n,,S,)
is constructed,where S, is [D,Q,,R].

8) If n=(u = al) and the exit leads to n4, then the new vertex is (n,,S;). State S,
is [D,Q",R] where configurations of Q' are obtained from set Q configurations by
transferring all to the point where variable u is noted. If R contains a set T with ai, therv
all variables of set T are also transferred to the point where variable u is noted.

9) If n=(al— al) and the exit leads to ny, then the new vertex is (n,,S,). State S, is
[D,Q',R’] where configurations of Q' are obtained from set Q configurations by
transferring ail to the point where variable ail is noted if the configuration contains ajil.
List R’ is obtained from R by adding set {ai,a}} if list R does not contain al, or by adding ai
to the set with ai, if R contains a.

If the new vertex already exists, then the edge is joined to the old vertex. When
no new edges can be constructed the construction of the reachability graph is finished.

in such a way we receive a lot of paths in the reachability graph. It follows from
the construction of the reachability graph that for any feasible path a of the program
where START statement is executed only once there exists path a' in the reachability
graph whose projection is path a.

LEMMA 1. Every initial path in the reachability graph is feasible.

Let us denote by a=((ng,Sg).(n1,S4),(n,,S;)) an arbitrary initial path in the
reachability graph. Let us consider the sequence of configurations Kg,Kj,..., K; where for
every j=0,..,r K is a configuration from state S; configuration set and for every j=0,..,1-1
the configuration Kj,; can be obtained from K; applying abovedescribed construction
rule corresponding to the statement n;. '

Let us denote by a=((ng.Sp).(n4,S4),(n;,S;)) the initial part of path a. Let us
prove by induction on i that for every path a; there is a test T; such that program
traverses path a; on the test T; and program variables satisfy configuration sequence
Ko.K1,..., Ki,

325

The test Ty Is empty tapes.

If n; is NEXT(X) and Kj,; contains variable X{, then test T, is obtained from the
-test T; by adding to tape X a cell with value s that locates X{ at the right place in the
configuration Ky, ;. Let us consider possible variable X! relations with other variables or
constants in the configuration Ki,4. At first we can notice that every variable except Xl
has a fixed value that is received from a tape or is equal to some constant of program. If
X is located at the point where some variable is noted or the point is in interval [Cqy,
Cmax]. We take the value s equal to the value of the noted variable or constant. If X1 is
located at the last point of the configuration, we take as value s the largest value of the
configuration increased by one. If X! is transferred to the first point, we will take as
value s the smallest value of the configuration decreased by one. The last case is that
X! is located just between z and v, where z and v denote variables or constants. It is
easy to see that only one of them can be equal to constant. If the difference of z and v
values is less than 2, we must change the previous values of the tapes of the test T;. If
V>Cpax then we replace all values of tapes which are equal or greater than the value of
v by the same value increased by one. If z is less than cqy,, then we can decrease by
one all the values of tapes equal or less than the value of z. This operation has no
influence on the sequence of configurations Kg,Kj.,..., K; and the program traverses on
the updated test T, the same path o;. But now the difference of z and v values is 2, and
we can choose the integer value s satisfying the configuration K, ;.

If K;,4 does not contain variable X{ then T;,,=T;.

If n; is START, then T,,, is obtained by adding a cell to every tape X, such that
configuration Ki, contains variable X{.

If n;is another statement, then T;,4=T,.

This proves the lemma.

Now the usual aléorithm constructing CTS from the reachability graph can be
used. This completes the proof of Theorem 8.

8 Programs with Counters

At first, it is clear that, if we consider programs with two—way counters and
comparisons between a counter and a constant, the problem of CTS construction is
algoritmically unsolvable even in the case of two counters. This follows from the
well-known result (see, e.g., [12]) that every recursive function can be computed by a
special coding on so—called Minsky machine using only two counters Z, and Z; and

statements
' +_+[2=0 |-_*‘ [stop |
Therefore, we can hope at best for the solvability of CTS construction problem in

the case of one—way counters. However, as the next theorem shows, the algorithmic
unsolvability appears quickly also in this case.

[Zu+l—>zi| I 2i-1-z

So let us denote by L4 the language obtained from the base language Lo by
adding internal variables of a new type — counters and the following statements for
them:

326

c-H2Z. The value of constant c is assigned to counter Z.

Z + 15 Z. Counter Zis incremented by 1.

N

Z <t The value of counter Z is compared with the value of internal
variable 1. The statement has two exits: "+" and "-".

The last statement allows us to compare the value of a counter with the values of
an input tape. \

THEQREM 9. There exists no algorithm for constructing a complete test system for
avery program in L4. (The subclass of L4 programs w:rh one mput tape and one

counter is sufficient for the nonex:stence of algonthm).

The proof of the theorem relies on testing, by means of constructions of language
L4, whether the input tape contains a configuration sequence of some Minsky machine.

More detailed it means the following. Let M be a Minsky machine with two counters Z,
and Z,. Let us assume the initial value y to be always assigned to the first counter Z,.
Then by a configuration sequence corresponding to the initial value y we understand
the following sequence of integers

20,20 | Z\Zj

where Z,9, Z,0 are the initial values of counters: Z,° =y, Z,0=0, and Z,|.Z,! are the values
of counters after the execution of the i-th step of machine M. For example, if machine M
executes statement Zy+1 — Z on the i-th step, then Z,i=Z,;1+1 and Z,)=Z,1. If machine
M stops on the k—-th step (i.e., STOP statement is executed), then configuration
sequence is terminated upon Z.k, Z,k. We shall say in this case that the configuration
sequence of machine M is finite for the initial value y. We can ascertain easily that it is
possibie for any machine M and initial value ye N to build a program PM,Y in L4, such
that Py, reaches STOP statement only if the configuration sequence of machine M is
finite for the initial value y and this sequence is written on the input tape of Py, . In
addition the program Py, uses only one counter Z. The idea of construction of Py,
relies on the fact that it is possible to check whether the relation t=u+1 holds by means
of one counter Z (foru20):

‘ . +
0-Z Z<u Z<t : Z+1 » Z

_|Z+1 - Z

4

327

Hence it is possible to determine whether the integer sequence written on the
input tape is the configuration sequence of machine M for the initial value y. Thus the
halting problem for an arbitrary Minsky machine M and initial value y can be reduced to
the STOP statement reachability problem for program Py ,. Hence follows the
algorithmic unsolvability of CTS construction problem for programs in L .

Let us denote by Ly a languge differing from L, only in the fact that the counter
values can b’@ compared solely with constants. It is easy to see that CTS construction
problem is algorithmically solvable for programs in Lg . The same ideas as for the proof
of Theorem \1 could be used. The difference is that the counter values, if they lie
between minimal and maximal constants of the program, are included in the state.

Funther research is connected with finding such restrictions on counters that the
solvability of CTS problem is preserved.

A.G.Tadevosjan [14] has considered the following generalization of the language
Ls where together with the beforementioned statements of Ly the following statement is
admitted:

t-2Z, :

where t is an arbitrary internal variable. The CTS construction problem appears to be
solvable also in this case.

In practice counters are mainly used for loop organisation. This is done by
means of DO statement:

DO Z =1 TO rWHILE V; W; END;

where W — the body of the loop is a program block (by program block we understand
part of the program consisting of Ly statements and, possibly, DO statements and
having a single entry and a single exit), V is boolean expression constructed from
comparisons of Lg (e.g., {t <u) & (5 < t)), and r — the bound of the loop is an internal
variable. DO statement (called also a DO-loop) is interpreted as an abbreviation of the
following program block:

328

It is assumed that counter Z is used in no statements other than the above
mentioned ones Z < rand Z + 1 — Z used for loop organization.

Let us consider the programming language generated by statements of Ly and
DO statement. There is no algorithm for constructing a CTS for every program in this
language (a stronger version of Theorem 9). The proof is close to the one used for
Theorem 9 except that a slightly different coding of Minsky machine configurations is
used. This proof of unsoivability strongly relies on comparing the loop bound r with
other internal variables. Now let us exclude this possibility.

We shall not allow the use of the loop bound r in comparisons with other internal
variables and in assignments. Th|s means that the loop bound r along with the loop
organization statement Z < r can be used only in input statement (X — r), comparisons
with constants (r < ¢, ¢ < r) and output statements (r — Y). In practice these restrictions
are not essential but they usually hold for real programs. Let us note that several
DO-loops can have a common bound r. The programming language generated by the
base language statements and the DO statement with the above mentioned restrictions
is called Lg.

JHEOREWM 10. There exists an algorithm for constructing a finite complete test set for
every program in L.

A detailed proof of Theorem 10 is rather lengthy, so we shall outline only the
main ideas. By a simple state we understand a state in the sense of Theorem 1, i.e., the
one obtained by ignoring the statements containing counters and loop bound. Let us
consider a DO-loop having no nested DO-loops in it. By entering the DO-loop in a
simple state S (at entry point A) and going through all possible values of bound r we
can obtain, at the exit of the loop (point B), generally speaking, distinct simple states Sy,
S,,,S, . Further, for every state S; there exists the set R; of the value bound r for
which the state S;is reached at the exit. More precisely, r'e R, iff for r = 1 there exists a
teasible path through the DO-loop beginning at the point A in the state S and reaching
the point B in the state S; .The set R is said to be regular if there exists a regular
expression R'in the binary alphabet {1, 0} such that forr> ¢

reRiff, 11..1eR

———
r

andforr<0 R -
re Riff, 00..0 e R’
——

-T

The expression R'is said to be a regular representation of the set R. Regular
expressions are preferable due to the decidability of the emptiness problem.

LEMMA 1. Set R; is regular for every i. States 84,8, . . .,S, and the corresponding
regular representations of sets Ry,Ry, . . .,R, can be constructed effectively from the

DO—loop and state S.

Theorem 10 can be proved by Lemma 1 in the simplest case when the program
contains only non—nested DO-loops, none of which includes statements involving
bounds of other DO-loops. In the general case some generalization of Lemma 1 is
necessary.

329

Let us order the variables used as loop bounds in the program:
(A RN

Let us consider a set of strings of the type

[ral, rpl. ra2, 2, ... ek, k.,
where rje N, rje NU{*}, N is the set of mtegers and * a special symbol

A set of strings is said to be regular if it can be expressed as a finite union of
cartesian products of regular set ({*} is considered to be a regular set):
Ra 1! xRy, 1‘x .XRg *xRp kU... URy ! X Rp ! X... X Ry K X Rp K,

Ra11 Ry1'.... Ry m* Ry mk - regular sets.

The expression’ !
Ria 1" X Ry % xRy (kX Ry kUL .. UR ! X Ryt X X Ry * X Rl ¥,
where

Ras! Ryt Rlamk X Rpmk
are regular representations of the sets

Ha 1 an1 [ERRN Fla,mky Rb.mkr
is said to be a regular representation of the corresponding set of strings.

Let a program block with entry C and exit D be given. Let S be a simple state at
point C and S; be a simple state accessible at exit D. Let us denote by U, the following
set of strings:

[ralirptira2, r2 .k ik 1e U,

ifffor ri=r,1, ..., rk=r,k there exists a feasible path B through the block,
beginning at the point C in the state S, and reaching the point D in the state- S,
satisfying the condition: if r,J=* , then the path contains no input statements of the type
"tape” — 1, if ry) is a number, then the path contains one or several input statements
“tape”-+ rl and rplis a possible value of variable r at point D on the path B (j=1, 2, .. ., k).

LEMMA_2." The set of strings U, is reqular for every i. The possible states Sy,S,, . . .,5,
at the exit of the block and the corresponding regular representions of the sets
U, Us,...,U, can be constructed effectivaly from the program block and state S.

The lemma is proved by indl]ction on the depth of nesting of loops in the block.
For depth 1 Lemma 2 is a slight strengthening of Lemma 1.

Now let us consider a block path a=(k; ks,k). It differs from the usual path in
that k; can be either a L, statement or a DO-loop. If k; is a DO-loop, we fix one of the
possible simple states S; at its exit. An instance of a block path is a=(X—a+, (D,S)),
a—Y) where D is some DO-loop. Now let us define the total state Z{a) as a pair (S(a),
W(a)) where S(a) is a simple state and W(a) is a regular expression describing all
possible strings [r'!, ... ,r] of numbers acceptable at the end of the path. W(a) can be
easily constructed using Lemma 2. It follows from the construction that for a given

program the number of distinct total states is finite.
Now using arguments analogous to those used in the proof of Theorem 1 we

obtain the proof of Theorem 10.

330

9 Programs with Real Time Counter

In this section we consider a programming language (let us call it Ly) allowing
the simulation of a comparatively wide class of real time systems. At the same time L,
occurs to have a solvable CTS construction problem. So we have a method for CTS
construction for a certain class of real time systems (we show an example how to apply
L7 and its CTS construction algoritm to the analysis of real time systems in the next

section).
Programs in Ly have a fmlte number of input tapes (output tapes are inessential

for CTS constructlon) and a finite number of internal variables.
The first difference of language Ly from L, is the replacement of integers by

rationals in Ly, i.e., cells of input tapes and internal variables have rational values. Thus
a test for a program in L4 will be a fixed assocation of rationals to cells of input tapes.

Let X be an input tape, t,u’internal variables and ¢ a rational constant. L, have
the same statements for these objects as Lg:

1. X-»t. The statement has two exits just as in Lg; "+, if the current cell is nonempty and
"-", otherwise. (Input statement).

2. u—t (respectively c—t). The value of the variable u (constant c) is assigned to the
variable t. (Asignment statement).

3. t<u. The statement has two exits "+" and "-", determined by the result of comparison.
(Comparison statement).

4.STOP.

Besides that every program in Ly can have one special internal variable z
(named real time counter) with the foliowing statements permitted:

5. t 2. The statement has two exits "+" and "-". If t>z, then the value of t is assigned to
z and the exit "+" is used. If t<z, then the value of z is not changed and the exit "-" is
used. (Positive assignment statement). .

The statement can be explained by means of the following block:

t>z

toz

P.

6. z+c—t. The value of z increased by ¢ is assigned to the variable t. Only nonnegative
rational constants ¢ are allowed here. (Activation statement for the variable t).

When modelling real time systems the activation statements will be used to
model the activation of the associated timers, the positive assignment statement will
correspond to the treatment of input signals (both from outside the system and from
timers).

We assume that all internal variables are set to 0 in the beginning.

331

We can assume without loss of generalization that constants used in the
statements of type 2 and 6 are integers (a program in Ly with arbitrary constants can be
transformed to a program with integer constants by changing the scale of number line,
easy to sea that program logic will not be affected by the scale change).

No principial casualties would appear if rational negative constants were
permitted in variable activation statements but there is no real need for it.

Let usmote that if we allow normal assignment t—z instead of positive asignment,
a language with algorithmically unsolvable CTS construction problem would be
obtained.

The main result in the section is

JHEOREM 11, There is an algorithm constructing finite CTS for every programin L.

Now let us prove the theorem.

At first for every path o we define the state S{a) corresponding to it, further we
use the states to construct the reachability graph (as in the proofs for previous
theorems).

Let us call the constants used in assignment statements basic constants and the
ones In variable activation statements counter constants (0 is assumed to be both basic
and counter constant by definition). The maximal and minimal basic constants are
denoted by ¢, and ¢%,,, , the maximal counter constant is denoted by c'y,., (let us
remind that we assume all constants to be integers). We define ¢pa=max{c®nay € max}-

Let a program P have input tapes A,B,...,C, internal variables t! ...t and real time
counter z. Let us assume the program P to be executing on some test T, i.e., on fixed
values of input tapes Ag By ,..,.Cq . If we suspend the execution at some time moment,
we find that the tuple of internal variables (z,t'2,...tk) has a definite numeric value from
@Q+1 (here Q is the set of rational numbers). So at the fixed moment of P execution we
may consider as numeric values:

1)all basic constants of the program P,

2)all internal variables t'and z,

3) z, z+1,..., Z+Cppqy (let us call them further active points).

Every one of these values is located somewhere on the number line, thus
defining the ordering of basic constants, internal variables and active points. Let us call
this ordering an absolute configuration (absolute ordering) of P variables at the fixed
moment,

Variables t and basic constants ¢ whose values at the given moment are within
segment [z, z+Cpay | are said to be active variables and active constants at this moment.
Further the segment [z, z+Cp,,] is called z-interval.

For every active variable t' (active constant c) we define its relative offset tiy (ca
respectively) as the difference between ti (¢) and its nearest active point on the left:

=(t-z)-[ti-z] (cy=(cz)-[cz]); here[x]denotes the integer part of x.

The ordering of relative offsets of active variables and constants on number line
(with number 0 included) is called the relative configuration (relative ordering) of P
variables at the given moment.

' The pair consisting of absolute and relative configurations of P variables is called
variable configuration of P at the given moment (while working on the fixed values of

input tapes Ag By,Cg).

332

Example, If at the given moment of P execution z=7.15, 11=2.43, 12=6.86, 13 =7.68,
14=9.65, t5=10.15, t6 =14.30 and P has basic constants 1 and 3, ¢, = 4, then P has
the foliowing variable configuration; '

O0<1<t!<3<t2<z<tBcz+l <242 <td<t5=2+3 < z+4 <16,

0=15,<t4, <13, .

The definition of the variable configuration at the given moment utilizes only the
values of internal variables at the moment and the values of P constants. Thus, if we
know a priori the values of P constants, we can likewise define the P-configuration for

every tuple of k+1 rationals (z, t1,, t¢)e Q1.
Wae define the variable cénfiguration set for program P to be the set consisting of
P-configurations corresponding to:all tuples { z, t!, ... , 1K Je @k+1 where z20 . It is easy to

see that the variable conﬁguratidn set C;M is finite for every program P inL;.

Since every variable configuration is actually an inequality system, then, in case
a configuration C corresponds to a tuple of variables t, we say that t satisfies C or tis
one of the solutions of C.

Let k be a statement in the programm P and € an exit of it. We define the relation

-(k,g)>e Cp X Cp for this statement and exit the following way:
1)ifk=(cot)ork = (tioti) or k = (z+c—ti), then Cy -(k,e)— C2 iff the
configuration C, can be obtained from C, by erasing ti and t/, (retaining the absolute
and relative ordering of all other variables and constants) and then locating them at ¢
and ¢, , or at ti and i, or at z+c and O respectively (if c, or i is undefined respectively,
tiy also remains undefined); A
2)ifk = (X—tl) and e="+", then C, -(k,g)— C, holds iff C, can be obtained from C,

the following way:

(i) just as before, we erase tiand ti, in Cy ;

(i) we locate t' at an arbitrary place in the absolute ordering of the configuration
obtained;

(iii) if ti in the absolute ordering is placed within z-interval, we locate ti, in the

relative one at any place not contradicting with the place of thin the absolute ordering (if
=1l in the absolute ordering, then, certainly, ti,=ti, in the relative one, if ti is located so

that 2+cS i < 1l < 15 € 24C+1 (C<Cray), then tlA < tiy <18, should hold in the relative
ordering);

3)ifk = (X—ti) and e="-", then C, -(k,e)— C, iff Cy=Cy;

4)ifk=(tic<t) ork= (1t 5z)ande="", then Cy -(k,e)> C, itf C; does not
contradict with the exit of the statement and C=C; ;

5)ifk = (22) and e="+", then C; -(k,£)— C, holds iff C, can be obtained from C,

the following way:
() 1ft< z , then C, does not exist.

(ii) If t>z , then proceed as follows:
Step 1 (deterministic).

At first we determine the mutual ordering and allocation with respect to active
points of the configuration C, under construction for the variables and constants which

333

are on the left (below) z+cpa, in Cy. To do this we define (calculate) for each variable t
and basic constant ¢ which are within segment [1!, z+Cmay] In C; the value

8(t) = [UH4] = [tl-2] - [t-2] + Aywhere A;=0, iftiySt, , and Ay=-1, if tly<tly ,
here [t -z] and [t -z] can be inferred from the allocation of ti and ti with respect to active
points in the configuration Cy, the value of Ajjis determined by the relative ordering from
Cy (8(c) is obtained in a similar way). "

We retain the mutual absolute ordering of variables ti and basic constants the
same as in Gy and move z at tl. The location of ti and ¢ with respect to new active points
is determined by 8(ti) (5(c) respactively) (if 5(ti)=a, then tl is to be located between z+a
and z+a+1 in|C,, besides, if ti,=ti, in Cy, then tl must be placed just at z+a). If tiS z+Cpay
in the configufation Cy, then we also insert the old value z+cp,, (wWe denote it further by
29)in the conﬁuration under construction (its location with respect to new active points
is determined by §(20) = Cray -(ti-2]+A¢;, Where Ag=0, if tiy = 0, and Agi=-1, if tiy > 0).

Step 2 (deterministic).
While constructing the new relative configuration, at first we represent relative
offsets only for those variables and constants which were within [ti,z+cpay] in the

configuration C4, as well as z%, (the relative offset of value z°). We reorganize the
relative ordering from C, the following way:
0=tlA <tuA<. . .trA < tsA=ZoA < th<. .. <tkA

those ti, which were if there those i, which were
greaterthanti, in C; wasts, =0 less than ti, in C4
are represented here in Cy; are represented here
in ascending order; in ascending order.

Step 3 (nondeterministic).

Now we determine the place in C, for the variables located to the right of z+Cy 5
in Cy. Let us denote them in the ascending order by tlt, tiz, tis, ..., tis (if two or more
variables are equal, denote them by the same symbol t).

We allocate these variables in the same order, every one in an arbitrary
admissible place in the configuration built so far. The variable ti+* must be allocated to
the right of t allocated in the previous step (ti" is to be allocated to the right of z0 (to the
right of ti if there was t > z+c 4, in the configuration Cy)). .

For every variable t to be allocated we determine both its relations to the new
active points (they are defined within Step 1 of the algorithm) and the placé of its
relative offset tk, in the relative configuration built so far (cf. the case of command (X—t)
with exit "+" for the description of admissible locations of variable offsets).

When all variables tir,...tls are allocated between active points or some ti is
located on the right of z+c., (the last active point in the configuration under
construction) we delete z° and 2z, from the obtained absolute and relative orderings,
respectively, and stop the construction, retaining the mutual ordering of the variables on
the right of z+cpa, the same as it was in C,.

Examples. LetCy=(0<2<z<z+l <t! <242 <12 <243 <13, 0 <12, <tly);
1) ifk = (2t), then Cy -(k,e)— C, iff

334

Co=(0<t!=2<z<z+1 <242 <2< 243 <13,0< 2,);
2)ifk = (t'<t?) and e="+", then C, -(k,€)— C, iff C;=Cy, if e="-", then the relation holds for
no Cy;
3)itk = (1'%z) and e="+", then C, -(k,e)— C, holds iff C; is one of the following:
0<2<z=t1<tP<cz+1 <t3<242<243,0=11, <13, <12, ;
0<2<z=t<t2<z+1 <3 <242 <z+3,0=t1, <12, =13, ;
0<2<z=t1<t?<z+1 <P <z42<243,0=11, <12, <13, ;
0<2<z=t1<tP<z41 <¥=242<2z+43,0=11, =13, <12, ;
0<2<z=1'<t2<z+1 <z+2 <1< 243, all possible t, orderings for
which there hold t1, = 0,2, > 0,13, > 0;
0<2<z=11<t2<z41 <242 <t3=243,0=t1, =13, <12, ; _
0<2<z=t1<t?<z+l <242 <z+3 < 13,0 =11, <t2,.
In this case the transformation algorithm after Step 2 yields the conhguratnon
O0<2<z=t1<t2<241<20<2+2<2+3,0=11, <20, <12,
Inserting 13 in it in arbitrary place to the right of z0, we obtain the variety of the
abovementioned configurations C,.

From the definition of relation -(k,e)— there follows

LEMMA 1, For-every statement k and its exit € the relation C,-(k,e)—=C, holds iff there
are rationals z,t!,...1° satisfying the configuration Cy, such that the statement k can be
executed at these values of variables with exit € in a way that the tuple of variable
values obtained in the result would satisfy the configuration Cs.

Let o be an initial path in the program P. The variable state Q(a) corresponding
to path a is defined by induction:

(1) to empty path there corresponds one element set containing the configuration
with all internal variables equal to 0;

(2} if state Q(o) corresponds to path o, then for path a+{k £) we define Qa+(K,e))

={CeCp | 3CeQ(@):C-(ke)-C'}.

The state of input tapes D(a) corresponding to path « is defined as a tuple
(dy.da....dm) (M is the number of input tapes), where di=0, if input statement from the i-th
tape with exit "-" has occurred in the path, d=1 otherwise. The (complete) state S(a)
corresponding to path a is defined as the pair (Q(c),D{cx)).

Vi
Let us note the following. if we define for an arbitrary state ¢ = (¢9,0P) (09 Epr.

oDe {0,1}m) and path a (not necessarily initial) the conditional state S(o,o) in a way
similar to S{a) (only induction basis has to be changed), we see that an analogue of
Lemma 4 from Theorem 1 holds.
The complete state S(a) defined for every path a allows us to construct (in a
similar way as in the proof of Theorem 1) the reachability graph for the given program P.
The vertices of the graph are pairs (n,S) where n is a statement label and

S=(Q,D) is a state of the program P (OEC;", De {0,1}m). For every path a+(k.e) in the

program P we draw in the graph an edge labeled by & from (k,S(a)) to (K',S(a+(ke)) if
there is an edge labeled by € from k to k' in the program P. It is easy to see that the

335

reachability graph is finite for every program P (since the set C;.is finite).

For every Initial path v=((no,So)eq, (N4,S1)€y, - ,(n,.S,)e;) in the reachability graph
the corresponding path u=(NgEg, N4&y, - ,NE) In the program P is called the projection
of the path v.

LEMMA 2. An initial path o in program P is feasible iff there is an initial path v in the
reachability graph of P whose projection is « (cf. Lemma 6 in Theorem 1).

If path a=(neeo, N4eq, ... N,) is feasible, let us consider a fixed test T which
forces the execution of this path. For every j=0,1,...,r+1 we consider the configuration of
program variables C; and state of tapes D, after the path a;=(negp, Ny€y, ... , Nj4€p¢) While
the program is executed on T. It follows from Lemma 1 and properties of D; that there is
a path v=((no,Sp)eg, (n1,S1)eq, .. (N, S,)e;) with the edge &, leading from (n,,S,) to
(Nry1,S:44) in the ieachability graph, such that S; = (Q;,D;) and Cie Q, for j=0,..,r+1

Now let us prove that for every initial path in the reachability graph the
corresponding projection is feasible in the program P.

Let us choose an initial path v=((ng,So)ea, (N1,S1)€q, . (N.1,Sr.1)€r1) in the
reachability graph and consider the sequence of configurations Cy,C;....,C,.; such that
(1) Cie Qforevery j=0,.r-1;

(2) Cj-(kie)— Cy,q for every j=0,..r-2.

Let an edge labeled by ¢, leads from (n,.,,S,.) to (n,,S,) in the reachability
graph, let C,e Q, and C,.; -(k,e)— C,.

For every j<r we define v;to be the initial fragment ((no,So)ep,--., (Nj-1,5;.1)81) ot V.
Let o be the projection of v; (aj=(ngeo,N4€y,..\Nj.1€j-1))

Let us prove by |nductron on j that for every v; there is a test T; forcing the
execution of P along oin a way that for every s<j the program variables after the path
o satisfy the configuration C,.

The existence of the test T, for empty path is obvious (test with empty input tapes
A,B,...,C suffices).

The transition j — j+1 is different depending on n;and g;:

1) If nje { coti, tv—t, z+cHt}, or n= (X—ti) and g="-", we can take Tj,=T;.

2) If nj = (ti<tv), or n; = (fi+5z) and g="-", then it follows from the definition of -(k,e)— that
every tuple of variables satistying C; forces the execution along the branch needed,
once again we can take Ty 4=T;.

3) If nj= (X—t') and g="+", then by the definition of reachability graph no input statement
from tape X with exit "-" has occurred in path «;. The test T;,; is obtained from T;
concatenating to tape X a cell with a value that locates tiin the configuration C.,, in the
appropriate place with respect to other variables and constants of the program.

4) lf n= (ti+s2) and g="+", we describe a method for obtaining T}, from T;. Let us fix the
values of program variables in the moment when P has executed the path a; on the test
T;. Consider variables with the values fixed greater than z+Cnay (the list of them can
also be obtained from the configuration C;). Each of these variables has received its
current value in path o; only by means of input statement (because they are greater

336

than z+C.,) and has used this value in various comparison statements. So each of
these values has an input tape cell corresponding to It in the test T;. Let us update the
values of cells of input tapes corresponding to the considered variables which are
located below z+Cpey (0r are equal to it) in the configuration Cy,4, in order to ensure that
these variables after the execution of n; have correct places with respect to active points
and other variables’ relative offsets in Cy, .

it follows from the definition of re!ation -(k,e)— in the case of positive assignment
statement, namely, Step 3 of the algorithm, that we shall be able to update the values of
tape cells preserving for the qonsidered variables tY the ordering and locations with
respect to the old z+Cy,y - It means that on the new test Ty, the program traverses the

path oy, 1=ay+(n;g), besades for ssj+1 the internal variables satisfy the configuration Cg
after the path o. i
This proves the lemma.

We note that the proof of the lemma yields a constructive method how to find for a
feasible path a test executing it. So, just as in the case of Theorem 1, we can build a
finite CTS from the reachability graph of the program.

This completes the proof of the theorem.

Theorem 11 yields a principal possibility to build CTS for every program in Ly.
However, if a program has a large number of variables, the algorithm given in the proof
can be Infeasible in practice due to enormous number of variable configurations. Let us
describe a principally more efficient algorithm of CTS construction for programs in Ly
based on the usage of inequality systems.

We begin with the association (just as for programs In Lg) of inequality system
N(a) to every initial path a, such that

1) path « Is feasible iff N(a) has a rational solution,

2) every solution of N{a) with respect to cells of input tapes yields a test on which
the program executes the path a.

Example, Let us consider the path
(Aot #1152+, 245 9 R At 4t <124, 11 52 +),
Its inequality system is

o' =ty=20=0
= A

11‘ >2g,2Z5 =141

1 '[12 =2y + 5
=A,

t21 < 112

\l'> 2y, 2 =15!
It is easy 1o see that with respect to A, and A, it is equivalent to the system
0<A; <Az <A, +5, the consistency of which assures the feasibility of the path.

Path inequality systems are used for efficient obtaining for a given path in the
reachability graph a test forcing the execution of the corresponding path in the program.
The construction of the reachability graph is based on relating a set

U(a)={Uy(ax),...,U, ()} of certain type inequality systems Ug(a) to an arbitrary path « in

337

the program. So the vertices of reachability graph are pairs (n,U), where n;is a

statement label and U=U(a) for some path a. The idea of inequality systems Ug(a) is
that the set Q(a) of configurations, corresponding to o, will be distributed during the
graph construction in several subsets Qq(a),Q,(a),...,Q,(cc), such that their union
coincides with Q(a) and each Q;(c) is coded by the inequality system Ua) (actually, the
state of input tapes D(c) is represented in every Ug(c.) as well).

When ¢onstructing the reachability graph we use the systems consisting of
inequalities of the form

(1) aA(b+cy), where Ae {>,<,2,<}, a and b are program internal variables or
basic constants; 0<¢;<C max.

(2) A< 0\\ A >0, where A is a program Input tape (external variable).

Let us call the systems of the described form state inequality systems.

Let us say‘that a state inequality system U codes a pair (Q,D), where QEC;".

De{0,1}m (m Is the number of program input tapes) if

(1) every solution of U with respect to z, t! ,..., tk satisfies at |east one
configuration Ce Q;

(2) for every configuration Ce Q there are values of variables z, t! ,..., t satisfying
both C and U;

(3) for every tape A, U contains inequality A<0 iff d4=0 in the state D; there is no
inequality of the form A>0 in U.

Let us represent the state inequality systems as graphs (just as it was done in the
case of the base language Lg). Let all program internal variables, basic constants and
input tape .names serve as verices in them. We label the edges of the graphs by
weights of the form (x,£), where xe Z and £e{0,"+"} (the comparison and the addition ¢an
be defined in the set of weights quite naturally: (xq,£1)>(x2,E5) if x;>x5 or x;=x, and
E1="+", Ep=0; (x1.81)+(X2.E0)=(X1+X2,E4+Ep), where & +E,= "+" if either &, or £, is "+",
0+0=0).

Let us represent the inequalities of the system in the graph the following way:

azb+c, - an edge, weighted by (c,,0) fromato b,
a>b+c, - an edge, weighted by (c;,"+"} from ato b,
as<b+c, - an edge, weighted by (-¢4,0) from b to a,
a<b+c, - an edge, weighted by (-c,,"+") from b to a.

Not difficult to prove that the state inequality system has a solution iff there is no
cyclic path with positive sum of weights and no path from constant vertex ¢, to c2 with
the weight greater than (cy'-c42,0) in its graph.

We define the exclusion of a graph vertex a as replacement of all the edges
leading to and from a by edges bd between other vertices b and d, such that before
exclusion the graph contained both the edges ba and ad. The weight w(bd) is defined
as the sum of weights w(ba)+w(ad). For every two vertices b and d we retain only that
edge from b to d which has the maximum weight.

We define an edge a;a, with weight w(a;a,) in the state inequality systems graph
(further - state graph) reducible if there are vertices a,,...,a,.1 {(n23), such that the graph
contains edges aa,,y, i=1,...,n-1 and the sum of weights w(aay)+ ... + w(a,4a,) 2 2
w(a,a,).’

We introduce a reduced form for each state graph, which can be obtained from
the graph the following way:

338

(1) if the state graph is contradictory (i.e., it is a graph of a contradictory inequality
system), replace it by the inequality systems "0>0" graph, otherwise execute (2), (3) and
(4)' (2) for every cyclic path aay,....azay with (0,0) sum of weights, find out the
ordering a;Aqa@;2ha...An.18p, (A€ {<,s}) of vertices ay.a,....,.2,. Then replace all edges
between these vertices by the edges from as to a1 and from a1 to ap (s=1,..,n-1),
weighted by (as-a;5+1,0) and (a;s+1-a;5,0) respectively;

(3) for every cyclic path with (0,0) weights on all its edges, gather all its vertices

into one vertex;
(4) delete the reducible edges from the graph until it contains no ones.

Let us call a variable or‘basic constant a in a state inequality system U very
essential if there exists an edge leading to or from a, labeled by the weight different
both from (0,0) and (0,"+") in the reduced form of U graph. We denote the set of very
essential variables and basic constants in U by VE(U).

Let us consider an arbitrary set V of program P variables and basnc constants.
Wae say that a state inaquality system U is complete with respect to V if for every a,be V,
such that asb<z holds in one of U solutions (z is the value of program real time counter),
the inequalities a<b and b<z hold in every solution of U.

In other words, the complete with respect to V state inequality system must
unequivocally determine the ordering of set V variables and constants which are below
than z. We define U-bottom(V)={ae V| a<z in some solution of U}.

Now we are able to describe the reachability graph construction algorithm.

Wae relate the state inequality systems' set with just one element, namely, the
inequality system 0 =z = t'=... =tk to the empty path.

Assume that we have constructed the state inequality system set U(a)=
={Uy(a),Us(x).....Uy(e)} corresponding to a path o. Let us describe how to construct the
set U(a+(k,g)) corresponding to the path a+(k,e).

The following cases are possible:

1) k={ti+>z) and e="-", or k=(ti<ti).

Add the corresponding inequality to each of Ug(a).
2) k=(c->tl) or k=(ti>t), or k=(z+c—tl).

Exclude ti from each U (a) Add the equality c=ti (=t or z+c=ti respectively) to the
obtained systems.

3) k=(X-t) and e="+".

Exclude ti from each Ug(o). If any of U (a) contains the inequality (X<0), add the
inequality (X>0) to lt
4) k=(X—-t) and e="-

If Ug(ax) does not contain the inequality (X<0), add it to the system (s=1,..,r).

5) k=(ti-z) and e="+". Process every Uj(e) the following way:

Add the inequality (z<ti) to Uj(ar), exclude 2 from the obtained system. Locate z at
tt (add the equality z=t! to the system). If the obtained system U'j(a) is not complete with
respect to the variables' and constants’ set VE(U'(a)), supplement it (by determining the
ordering of variables and constants in U-bottom(VE(Uj(e)))) in all possible ways to the
complete ones, so obtaining the list U ((a),U'j2(a)..... U] () of the complete systems

339

(each U'j ¢(a) is a complete system due to VE(U'j(a))=VE(U'} s(cx)).
Further process every U'| s(c) the following way:
Exclude from it all variables and constants being in U-bottom(VE(U, s(c))) (we

have defined the exclusion of the graph vertex, it can be applied also to the constant
one). Afterwards add the inequalities, determining the ordering of the set U-
bottom(VE(U]'s(a))) variables and constants and their relations with z, to the obtained

system, so we have obtained an element of thé set U(cu+(k.e)).

The transtormation of the state inequality systems in the case of the positive
assignment stafpment with the exit "+" may be roughly considered as erasing weights
on edges connecting the variables and constants which are below z (i.e., represent the
past time moménts) one with another and to other program internal variables and
constants. However, in the general case a more sophisticated approach (like the
performed one) is necessary. We note also that in the most typical cases the number of

systems in U(c) Is quite small; for the most of real time systems for every o the set U(a)
consists of just one system U{a) which codes the set of configurations Q(c).

Example. Let us consider the path
(Aot 1 524,245 52 Aot 4t <24, 1152 4).
Forit U(og) = {U{og)} =(0=2z=t' =12),
Woy) = {U(ay)} = (0=2=12),
Wap) = {U(ap)} = (0 =2 <z =t"),
Ulag) = {U{ag)} = (0<z=t' <z+5 =12),
WUloy) = {U(ag)) = (0 <z <245 =12),
W(os) = {U{as)) = (0 <z <z+5 =12, 11 <12),
Wo) = U(ag) = (U(ag)} = (0 <z =t <2< 2+5).

Using the state inequality systems sets W(a) as states corresponding to program
paths we build a reachability graph for the program likewise in the proof of Theorem 11.

LEMMA 3. An initial path « in the given program P is feasible iff there is an initial path
vin the constructed reachability graph whose projection is a.

We note that for every path a all weights on edges of state graphs for inequality
systems Uy(a),...,U;(a) are bounded from (-Cpay,0) t0 (Cmax."+"), this ensures us about

the finiteness of the constructed graph.
The proof of the lemma is based on inductive demonstration that for every path a

the inequality systems Uy(a),...,U,(a) code the pairs (Q,(a),D{a)},...,(Q,(a),D(a)),
respectively, where the union of configuration sets Q,(c) coincides with Q(a).

The given construction of the reachability graph, together with the solvability of
path inequality systems, form the base for the desired more efficient algorithm of CTS
construction for the programs in L.

At the end of the section we introduce a new programming language Ly with
operations over both rational and integer data types. We define the language Ly as

follows:

340

Every program in L} may have internal variables of two types - rationals (i.e., t!
and z) with operations of L; permitted and integers with permitted operations from
language Ly. A type mismatch in the commands in Ly is forbidden. Each external

variable - input tape of the program has a definite type (integer or rational) as well. This
determines in which system of commands the input from this tape can be used.

THEOREM 12, There exists an algorithm constructing finite CTS for every program in
Lz

The proof of the theore(h ;elies upon the construction of the reachability graph,

where for every path a in the program corresponds the state (Sg(a),S7(o)) with Sg(a)
being the state in the sense of Ly associated with a, but Sz(a) - the one in the sense of
Ly. o .
The proof that an initial path in the program is feasible iff it is a projection of any
path in the reachability graph follows from the analogous results for languages L, and
L7 (cf. Lemma 6 from Theorem 1, Lemma 2 from Theorem 11).

A more efficient generation of CTS for programs in Ly can be performed by using

the inequality systems, i.e., by ascribing the state (Sy(c),W(c)) to an arbitrary path o in
the program.

Just as for programs in Ly (cf. Section 4) the conditional programs can be
introduced in Ly as well (the conditions are allowed to stand for the variables of each
data type separately). Likewise in Section 4 we can introduce the notions of the correct
test and correct CTS for conditional programs in L7. Following the aforementioned
ideas we can prove

THEQREM 13, There exists an algorithm constructing finite correct CTS for every
conditional program in Ly.

10 CTS Generation for Real Time Systems. An Example

In this section we consider a simple example how to apply the CTS generation
means to real time programs.

10.1 Example Specification Language

In the current section we use a subset of specification language SDL [16] to
specify the example. Now let us describe the subset.

Only one SDL process is used to describe a real time system. SDL process is a
program executing in real time and communicating with the environment by means of
signals. SDL process has an input queue into which the environment at certain time
moments puts input signals for the process (time moment can be an arbitrary rational,
time counting begins at the process start). Process input signal can have a definite
number of integer valued parameters, the signal is recorded in the queue together with
its parameters. We can assume for sake of simplicity that no two signals are put into the
queue simultaneously. The process also has output signals, these signals are sent to
the environment at certain time moments according to the process program (process
diagram), as a reaction to input signals.

341

SDL process is a finite state machine extended by variable notion and some
special statements. To be more precise, we assume that SDL process can use a finite
number of internal variables, the process diagram can contain the following statements.
1. START - the beginning of the process execution. We assume that all process internal
variables are initialized to 0 at the execution ‘of START. We depict the statement in the
diagram the following way:

|
2. STATE/ INP\UT - the complex of statements for awaiting / reading of input signals, it
has the following form in the process diagram:

(Q ¢)
1
> S D s2(xy) |

Here Q is a state name, S1 and S2 are names of signals awalited in this state, x,y are
process internal variables to which the values of parameters conveyed by signal S2 are
assigned at consumption (reading) of S2.

If the process has reached the state Q during the execution, it is awaiting for the
arrival of some signal in the input queue. At the moment when a signal arrives the
signal is consumed (and the necessary assignments of parameter values to internal
variables performed). Further control flow in the diagram depends on the name of
incoming signal (for the sake of clarity we assume that reaction to every possible sugnal
is specified in every state).

3. OUTPUT - signal sending statement. It has the form:

and it denotes the sending of signal to the environment at the given moment of process
execution. Here S is a signal name and x is an internal variable whose value is
assigned to parameter of the signal.

4. SAVE - signal save statement, it is included in STATE / INPUT complex the following

G
| |
dst | Dsawy | [s3sa]

Fig.14 _ -
The location of signals S3 and S4 in SAVE statement at the state Q means that, if the
process is in state Q, signals S3 and S4 are not consumed but retained in the input
queue in the order of their arrival (i.e., the process waits for the arrival of some other
signal, S1 or S2 in the case). For every state Q we assume that the name of every input
signal is mentioned in just one INPUT or SAVE statement at this state.

If the process diagram contains a fragment (fig.15) and there the sequence
S3(1), S4, 83(2), S1, $2(0,0) of signals arrive to the process queus, then these signals
are consumed in the order S1, S3(1), S4, S3(2), $2(0,0) (we assume the process being
in the state Q just before the arrival of signal S3(1)).

5. TASK - action statement representing assignment to internal variables of the
process, e.g.,

| X =y |' | Xx:=5 |

Se] Sww] ()

GID

) 51.52(x,y).53(x).84 |
s may :

Fig.15+
6. DECISION - representing variable comparison statement (in fact, the same
comparison statement used in Lg):

s

7. SET, RESET statements and timer signals. -

SDL process has a predefined function now, at every time moment returning the
numeric time value of this moment (certain nonnegative rational). Process may have a
finite number of timers (informally each timer is an “alarm-clock” which can be set to
send a special signal after the expiring 2f a definite tinte interval).

A timer in SDL process can be set by statement

set (now+c,T)

Here T is a timer name and ¢ - an integer constant (a timer is said to be active after
setting). The activity of the timer T, before it “rings”, can be disrupted by the statement

reset (T)

When the interval of timer activity expires (i.e., ¢ time units have passed) and it has not
received the reset statement, a special signal is put into the process input queue, the
signal name being the same as timer name. This signal can be consumed in a process
state (a special input branch has to be added to the state):

J :

27

If some active timer is set, an automatic reset is executed for the timer before the
new setting. The statement “reset(T)" also erases all signals with the name T from the
input queuse (if there are such).

The execution of the process begins with START statement at a time moment
now =0, further processing is performed in accordance with the process diagram. We
assume that all internal actions of the process (assignment, comparison, signal
sending/consuming, timer setting/resetting) are performed instantaneously, so the
function now changes its value only when the process waits for signals (or timer) in
some state.

N\
o

343

10.2 Passenger Lift Specification

We describe a control program for some kind of passenger lift by means of SDL
process. Tha environment for the process consists of lift users and lift hardware.

A lift user can press a call button in every floor thus sending the signal S with
parameter x {the floor number) to the process. Besides that the user can press the
button in the lif--cage to pass the request for the lift to go to some floor; so the signal R
with one paran{leter - the destination floor number is sent to process. In some situations
the user can ar§o generate signals FU(FioorUp) and FD(FloorDown) by leaving the lift-
cage and entenhg it respectively (i.e., changing the status of cage floor).

The lift hardware consists of lift driving motor controlled by signals M-Up,M-
Down, M-Stop, lift door motor {controlled by signals MDoor1(open the door), MDoor2
(close the door) and MDoorStop) and some sensors informing the process about the
physical state of the lift. The following signals from sensors to process are considered:
Z(x) - floor number x is reached, DOp(Door is Open), DC(Door is Ciosed).

Behaviour of the lift can be characterized by the following:

1) the lift has no memory for user requests, signals S(x),R(x) are accepted for
processing only after previous request has been executed,

2) it empty lift with open door stays in some floor for more than 20 seconds, the
door is being closed,

3} it the status of cage floor is changed while the door is closing {i.e., somebody
has entered or left the cags), the closing of the door is interrupted and the door opens.
Besides, if the door was being closed to execute some request to go somewhers, the
request is canceled.

Besides the control algorithm also a partial correctness check of incoming
signals is included in the specification of lift process, it will enforce tests in the
generated CTS to be actually possible sequences of lift input signals. To do this in the
specification language some exits are allowed to be pending for branching statements
(DECISION statements, STATE/INPUT complexes). This is done in a way similar to
conditional programs in Section 4.

The specification of the lift process is presented in fig. 16.1 thru 16.3.

10.3 Simulation of SDL Process by Program in L;,

By a test for an SDL process we understand a sequence of signals which are put
by environment at certain time moments into the process input queue (every signal is
considered together with its parameter values). We remind that simultaneous input
signals are not allowed.

If signal S1 with parameters 7 and 12 is sent to the process at moment 3, signal
S2 Is sent at moment 3.7 and another signal S1 with parameters 0 and -5 at 7.22, then
the sequence of signals is recorded as a test for SDL process the following way:
(51(7,12) at 3), (S2 at 3.7), (S1(0,-5) at 7.22)

A test for SDL process is said to be correct if the process never reaches pending
exit while executing on the test.

We don't consider direct construction of correct CTS for SDL processes. Instead
we describe a method how to simulate specifications (programs) in the described
sibset of SDL by conditional programs in L. We also demonstrate previously
described algorithm for the construction of correct CTS on lift process example.

We say that a program P(R) in L} simulates SDL process R if:

1) a one-to-one mapping between correct tests for process R and program P(R)

344

Idle * FI=0 means Floor is Up
Fl=1 means Floor is Down */

>R(u) TIM,FU,FD,

DOp,DC.Z
|

M-Up

FlyingUp

[[|
DC,FU,FD, S(u),R V4
D]] Saw

| FlyingDown

>S(u),H(u) DC,FU,FD,

DOp,TIM

I
(e)

> .I.\.ﬁ-Slob' >

D-Opening

Fig.16.1

345

D-Opening

| [|
ODOp | MSw)R() | >zDCTM| /FUFD/

L
|

MDoorSt;op> (D'Opening) .

Iset (now+20,TIM) —-

> FU TIM,FD,
Dop! DC rz

Fl.=0
|set (now+20,TIM)
DoorClosing WaitEnter
S(u),R(u) FD TIM FU,DC,
DOp,2
I
('_WaitEnter) reset (TIM) MDoor2
Fl:=1 (DoorClosing)

WaitRequest

Fig.16.2

346

(DoorClosing)

L | | | |
pDC | DFU DFD | DSu)R() Z,00p,TIM

<® (DoorClosing)

MDoorStop

Fl:=1 MDoorStop >

r
Fig.16.3

is defined together with algorithms yielding program test from the corresponding
process test and vice versa,

2) for every S=(Vy ,V; ...V,) being a correct CTS for program P(R), the set
consisting of tests for process R corresponding to tests V, is a correct CTS for process R
according to some analogue of criterion C; .

Now let us describe a method how to transform a correct test V for SDL process
Rinto a test for simulating program P(R).

The execution of process R on the test V means that at certain time moments the
environment and process timers insert into the process input queue definite signals.
Likewise, the test V determines the sequence in which the process R reads (consumes)
the signals from the queue (this sequence can differ from insertion sequence due to
SAVE statements). Relying on this we write the test for P(R) correspondang to the test V
on three tapes T,S, and P the following way:

on the tape T we write the arrival time for every signal read by process R;

on the tape S we write the signal-name coded by natural;

on the tape P we write the signal parameter values (if the signal has parameters).

Arrival times, signal names and parameter values are written on tapes in the
signal reading sequence corresponding to the test V (hence there will be correct tests
for P(R) with not increasing cell values on the tape T).

It is easy to see that a test for SDL process can be simply obtained back from the
corresponding test for the simulating program. The fact that every correct test for the
simulating program corresponds to a correct test for SDL process is guaranteed by the
construction of simulating program described below,

The main idea of the simulation of SDL process performance on some correct
test by program in L7 is to represent the current time (i.e., the value of the function now)
by the real time counter z. Every time the process reads a new signal the simulating Ly
program reads the arrival time of this signal from tape T into variable t and assigns it to
the real time counter z by means of statement t-sz ("-" exit from this statement will be
processed depending on the situation, see below).

347

The simulating program in L} is obtained from SDL process diagram the

following way: .
1)START statement is transformed into the start label "—>" of the program;
2)STATE/INPUT statement complex (timer signals and SAVEs are considered

later), fig.17,

@

>31(x,;()] D st])s‘tl(x) |)sal.ss |

\
N Fig.17
is transformed as'‘shown in fig.18.

Qs

1 2 4 IOtherwise
é)
+
©

+

Fig.18
Here @ is @ normal CASE statement (easily expressible in Ly), further on we

do not show the pending OTHERWISE branch, this branch sets correctness condition
upon the code of signal name contained in the corresponding tape cell {s in the
example cannot assume the value either 3 or 5, or some other value different from 1,2
and 4);

3) output signals are not represented in L; -program (they are inessential from
CTS viewpoint);

4) internal variables are transferred to L; -program without changes, only the
syntactic form of variable operations is changed (see the example below);

5) if SDL process has at least one SAVE statement, then in the simulating L7 -
program: .
(iYfor every signal used in at least one SAVE statement the variable ts (s being
the code of signal name) is introduced;

o)
S st |)slzj > sEs | >S4],S7 | /sa,{las/

© © ©

Fig.19
(iiYfor every state Q in SDL process, e.g., the state shown in fig.19, (including

Q:

Tt

Sos

s
6
thHz
e

tht
thtt
O,

t>t'—

Here denotes the block of statements tk—u' T
|.|.

Fig.20

states without SAVE statements), if SAVE statements in the process contain, let us say,
slgnals S1,52,53,54,S5 and do not contaln signals $6,S7, then the corresponding L7 -
fragment is transformed as shown in fig. 20.

If some signals Si,Sj,Sk appear in SAVE statemems of the process always
together, sole variable t can be defined for all of them.

If a signal S in the simulated SDL-process appears in some SAVE statement,
then the amival time of the signal, read from thé input tape T, may happen to be less
than the current value of z (i.e., less than the corresponding value ef the function nowin
the process) because the signal could have been retained in the input queue for some
time. In the given moment of execution of Ly -program the value of variable ts,
corresponding to S indicates the lower bound for the arrival time of S (ts is the largest
arrival time for the signals read so far in the states which don’t contain S in their SAVE
statements).

The reading of signal S with the arrival time less than t8 would violate the FIFO
discipline of the input queue (taking into account the corrections made by SAVE's).

6) for every timer Tn in the process we define a corresponding variable {7 in the
simulating program. In the situation of timer Tn being active the variable t" will hold the
value of the expected moment of signal appearance from the timer; let 1"=-1, if Tn is
inactive (for the sake of simplicity we don’t consider the case when timer signals are
retained by SAVE statements in SDL process, principal complications do not appear in

349

this case, too).
If SDL process has timers, e.g., T1 and T2, then every "-" exit from statement
reading the tape T Is augmented by condition expressing the inactivity of the timers:

|T—n |—-| t'=-1 L—'lt’s-1 L—

F
, Fig.21
If input of timer signals, e.g., T3 and T4 is admissible in the state Q of the process

Q

st | >s|2| >T|3 | >T4]|

'| | @5 é

Fig.22
(we define that input of timer signal Tn is admissible in state Q if there is a path in the
process diagram from START to Q such that the timer Tn remains active after the path),
then the corresponding fragment (see fig. 22) is transformed in such way:

<]

[Fot—{F] —{s=s]

A [sToP]
1

2 3 4
[1>-1 I;l [P>1 1 [thz]| [tHz]
- " F
[t<t® | [t<t®] [t -1 [1%>-1
‘—I.'_ S— - _
[t> -1 L_| [t -1 L_’+ <t t<1®
<t] | <t s .
L L [t=t*] [t=t*]
* - |+ |+
RES [(1) -t
Fig.23

7) statement set(now+c,Tn) is transformed into z+¢ —tn, statement reset(Tn) into
(-1)->tn.

350

1 2

L [ooje—]rPox] [Poul——(Tde)
n
x>y I >[x>y |->{ D-Opening)
n

FlyingUp: i FlyilngDown:
[Tot ——{s55] [Tt f—>{s-5s]|
[t ' [[
[152] [Pyl [t52] =
n . .
[S—s| [sTop| [s-s | [sTOP|
+
s s)
1 P 1 o 2
IPax| IPaw|__ |Pax| |Paw

r r f'“um +
ﬂngUp) (FiyingDown) [w>y

3

Fig.24.1

351

D-Opening:
L2 [Totfl—»[ss |—>{Pu}—>]sTOP|
i ‘
[t5z ——>{Sos] o

1,2

HR>o0] =

WailRequest: [T—1]— >[5 s : 20}' t. .
- 2+20) —

- *
s
1 2 4
Ltsnz] [tvz] o]
+]+ [+
| litt'l I libl'l |Li>z t<z
+ + [t

DoorClosing: |T—>t| ;| I_).I

| ;
|P—>u| IH:OI}J—H IFI>0| |FI>D|—

(DoorCIoslng) [o—Fi]H (D-Opening) 1—)Fl| (L1)(—!IQ

Fig.24.2

352

WaitEnter: [T

[() s s{1 R
)

Fig.24.3
In order to reduce the size of the simulating Lj -program obtained by the described
algorithm we pertorm some simple optimizations with respect to rational internal
variables (i.e., variables t' and z) preserving the sequence of reads and the value of z at
any read from the tape T on every correct test (see the example below).

10.4 Simulating Program for Lift Process in L;

The following dictionary is used to code the input SIQnals of the lift process on
input tape S while simulating it by Ly -program:

S$-1,R-2,Z2-3,FU-4,FD-5,D0p-6,DC-7,TIM-8.

Let us apply the transformation described in the previous subsection to the lift
process. By this we note that signals FU and FD saved in state D-Opening can be
retained in the input queue only while the process is in states Wait-Enter or Wait-
Request. Due to the stated we build corresponding L7 fragments for all other states as
described in Step (2) of the transformation algorithm and define the variable t4 which
simulates delay time for signals FU and FD to be set to z just at the label D-Opening
{hadn't we performed this optimization the resulting program would be a bit more
complicated).

We also note that the value of 8 in the simulating program can differ from (-1)
only at the label WaitEnter, therefore the timer activity condition t8=-1 will not be
checked elsewhera.

So we obtain the program in Ly depicted in fig. 24.1 thru 24.3.

10.5 Reachability Graph for Lift Program in L;

The reachability graph for the lift program in L is built using the algorithm

353

described in the previous section, as well as some methods for reachability graph
minimizing (similar to those described in Section 3 for Ly-programs).

We define essentially located statements (ELSs) to be the statements with labels
attached to them except those with label "D-Opening"” (this label is located “nearly at the
same place”™'as "L2") and "L1".

In the| construction of the reachability graph we use the following states
(inequality siﬁtems} corresponding to program paths:

S1 ={"-||1 =la<0=2,y=1, FI::O]'

S2={-1=t8<0<zy=1,Fl=0}

S3={-1=t8<0<z=t4, x=y=1,FI=0}

S4={-1=18<0<td<cz,x=y=1,Fl=0}

S5={1 «0<tt<z<z+20=18, x=y=1,Fl=0}

S6={1<0<z=t4<t<z2+20,x=y=1,FI=0}

S7={‘1 ¢O<z:t“-:z+20=t“,x=y=1,Fln0}

S8={-1=18<0<td<cz, x=y=1,Fl=1)

S9={1=18<0<z=t4x=y=1,Fl=1}

S10={-1 =ta(0=Z,X=y=1,Fl=0}

S1M={1=t8<0=2x>y=1,Fl=1)}

S12={1=18<0=2x>y>1,Fl=1}

S13={-1=18<0<z=t4, x=y>1,Fl=1}

S14={-1=18<0<tt<z,x=y>1,Fl=1}

S15={1 <0<tt<z<z+20=t8,x=y>1,Fl=0}

S16={-1 <0<z=1t4<t8<z+20,x=y>1,Fl=0}

S17={1 <0<z=14<z+20=18,x=y>1,Fl =0}

$18={-1=18<0=2,x=y>1,Fl=0}

S19={-1=t8<0<z,y>1,Fl=0}

S20={-1=18<0<z=tx=y>1,Fl=0}

S21={-1=18<0<td<cz, x=y>1,Fl=0}

8$22=(-1=t8 <0<z x>y>1,Fl=0}

S23={-1=t8<0=20<x<y,Fl=0}

S24={-1=t8<0=2,0<x=y,FI=0}

S25={-1=18<0=2,0<x<y,Fl=1}

S26={-1=18<0=2,0<x=y,Fl=1}

S27={-1 =t3<0(2.x>y=1. F'=0}

Vertices of the reachability graph are pairs (ELS label, state corresponding to
program path).

Let Li and Lj be labels of ELS's, and the path B from Li to Lj contains no other
ELS's. There an edge correspending to the path B is drawn from vertex (Li,Si) to (Lj,S])
in the graph if S(Si,p)=S] (i.e., if the state Si is transformed into Sj by the path B
according to inductive state building algorithm). The edge in the reachability graph
corresponding to some path in the program will be labeled by exits of conditional
statements defining the path (for the sake of brevity only exits of the statements with
other exit not pending are shown in labels).

In order to make the representation of the reachability graph more compact and
comprehensible we have chosen for every vertex the following kinds of paths:

1) from the vertex to stop,
2) from the vertex to itself,
3) not feasible
to be represented in special fields inside the image of the vertex. For example, the

354

vertex Image

WaitRequest,S9
- | 41,42 |+4-42-4
represents the following fragment of graph:

+2-+
IWaltHequest S9 ,th(J(
-2~
[STOP] U \,

Fig.25 :

The constructed reachabtlaly graph is depicted in fig. 26.1 and 26.2.

During the construction of the graph a nondeterministic branching was admitted
to reduce the size. Namely, while forming the inequality system S24 (S26 respectively),
it is easy to see that the set of its solutions coincides with the union of solution sets for
S3 and 520 (S13 and S9 respectively). Thus, instead of drawing an edge from
(FlyingDown,S23) ((FlyingDown,S25) respectively) to (L2,524) ((L2,526) respectively)
corresponding to path +3- we make a nondeterministic branching leading to both
(L2,83) and (L2,520) ((L2,S13) and (L2,510) respectively).

It is easy to see that nondeterministic branching causes no obstacles for finding
the coverings of graph and solving corresponding inequality systems. If
nondeterministic branching were not used, additional 11 states in the graph would have
been necessary.

10.6 Path Inequality Systems: Example

Now let us show how to build an inequality system for some path in the lift
program (being a projection of a path in the reachability graph) and find a test enforcing
the execution of it.

Let us consider a path in the reachability graph v=(ldle,S81)+1+,
(FlyingUp,827)+3+, (FlyingUp,522)+3-, (L2,520)+6-, (WaitEnter,S15)+5+-,
(WaiRequest,S14)+4-, (WaitEnter,S15)+1+, (WaitEnter,516)+8, (DoorClosing,S18)+7-,
(Idle,S19)-, STOP.

It has the following projection c in the program:

(-1)> 8, 15y, Tot+, t 52+, S—s+, 51 1, PSx+, X20+, Xo¥+,
Tot+, 1524, S5+, i 3, Pow+, Woy+, WOy, WX+,
Tot+, tH2+, S5+, 81 3, Pow+, Woy+, Woy, W<X-, WoX-,
251, T o t+, 152+, Sos+, 8: 6, FI>0-, {z+20)—>t3.\
T o t+, S5+, 5: 5, t8>-14, t<tbs, D144, t 2~ t<z+, (1) 18, 15F,
T = t+, Sos+, 5: 4, 15144+, 1 52-, t<z+, 1F], (2+20)> 18,
T t+, Sos+, 5.1, 18> 14, 1<t t Hz+, t S, Pus,
T > t+, Sos+,5: 8, tHz+, t=t84, t2tds, (- 1}—) t,
T-t+,t92z+, S—s+,s: 7, FI>0-,
T-o1t, S5s-, P-u-, STOP.
There the following inequality system corresponds to the path a.:
z°=to=t04=toa =0, Yo =Xg=Wp= Flo= Sp= 0;
18 = -1; yy=1, ty=T{: ty>2p, 24=ty; 51=5y; 81=1, X4=Py; X1>0; Xy>y¢:
to=Tp; 15224, Zo=ts; S3=5,; 55=3; W =Po; Wi>Yy; Yo=Wqi Wy<xy;

355

||-1+ l
Idle,S1 |52 Idle,S2 Fs FlyingUp,S27
-1 ki - |42 [+1-+ s #1422 |
+1-- |+1- [+3- +3+
L2,S3 L2,520 FlyingUp,S22
T T T % ¥ T aq240v |
+B. +1, +1, |16-
+2 +2
IT&S4 L2,521 pe- WaitEnter,S15 |
-[+1,+2] +6+ -]+1,42]+6+
[+6-

y |+5+- J +4- 2+ 1
WaitEnter,S5 WaitRequest,S8 (< oorClosing,S11
| | -+1-42-45- - | [+2-+ - | +1,42 [+5,47- +7+-

J+8 +1+, S5++ 4+ [+, +4 T++

+24 +2--

WaitEnter,S6 ; o ‘-
ancnter, WaitRequest,S9 1553
+H4, | 4142, '
424 | 454-45- - | -:1,+2-- [+4- +2-+

+8 4 |+5++ e+
1+,
2+ i

WaitEnter,S7 L2,S8 |5 :

e e b | FlyingUp,S11 |

- |+8 |+5++
1
_l y 5 L2 g
DoorClosing,S101*> 5 12,89 [
12 |+?.+7+ T Ta bilety52
|+7-

Fig.26.1

356

FlyingUp,S11 5] FlyingUp,812 |«J (2,513
-1 +142] +1,42,+3+ | e 3 I 2
. [+a-) +6+ +£.
+5+- +4- y ; ‘ l+6+
WaitEnter,S15 | \|WaitRequest,S14,, . L2,S14
[T -+1-+2-,45- -1 [- [+1,42]+6-
+8 [+1+, +5++ -;. 4+ H1, hL2+
J 2 2
¢ i 7 ++
WaitEnter,516 WaitRequest,S13| | |DoorClosing,S12
::12:' +§1:§ - | +1.+2--4|++4: , -]+1,42]+5 :j’-.+7+-
+8 |+5++ e
14,
-2+)
WaitEnter,S17 DoorClosing,S25 FlyingDown,S25
[1-#+1-42-,45+-,451 - [+1,42 [45,47+--, - T +1,+2,43+ |
48 |+5++ 7=+ 7 ++ +3-
j J...d. |y
DoorClosing,S18 S 12,513
| »:(17._+2 IT}.:% . :) 12.59
6,579 RETYTT
] i 22
S {12520] [FlyingUp.S22 |
-1-+ |+1+
3 12,83
FlyingDown,S23 — -
- | +1,42,43+ | - L2528 {

Fig.26.2

357

t3=Ta:13>25, Z3=13] S3=53; 53=3; W=Pg; Wo>Y2; Ya=Wa; Wa2Xy; Wo=Xy;
l|4=23:t4='r‘; t4>23, Z‘=l4] 54=S4: 34=6; FIOSO; t1&=\24+20:
|5=T5; 55-—-55; 55=5; t1 85-1 N 15<!|a; ts)t1 4. t2‘=15; 1557.4; t5<24; 125='1 X F'1 =1;
ts=Te; Se=S¢; Se=4; ts>1o?, tad=tg; tg=24; ts<z4; Flo=0; 148=2,+20;
t7=T7; S7=57; S7=1, 138=-1; ty<taB; ty>24, Zg=t7; ty>13%, t4#=ty; Uy=Py;
1g=Tg; Sg=Sg; S=8; tg>25, Zg=1g; tg=ta®; tg>ts*, t54=tg; 1,8=-1;
19=Tg:t9>Z5, Z7=lg; Sg=Sg; Sg=7; Flps0;
T<0; S<0; P<q.
With raspect to the values of Input tape cells Ty,..,Tg, Sy....5g, Py....Ps it Is
equivalent to t\ll'le following Iinequality system:
0<T<Tp<Tg<Ty<T7<Tg<Tq: Ta<T5<Tg<Ty<Tg;:
T5<T4: T6<T4; =1 <T4+20; T5{T4+20; T?<T4+20='TB:
S1=1; S=8; S3=3; S4=6; S5=5; Sg=4; Sy=1; Sg=8; Sg=7,
P‘>1 i P2>1: PE‘PS: PQ)PQ: P3=P1-
From this inequality system we can obtain, for example, the following test on
which lift program traverses the path
T=(1,2,3,6,4,5,7,26,27) ; S=(1,3,3,6,5,4,1,8,7) ; P=(3,2,3,0)
Computational complexity of solving path inequality systems is not considered
here, we note that the special form of path inequality systems is very essential for
solving algorithm.

10.7 CTS for Lift Program

Using the constructed reachability graph for every branch in the program we can

1) determine whether It Is feasible,

2) if so, find a feasible path containing the branch.
Further, by solving the inequality system for the obtained path, we find a test on which
the given branch is executed.

Thus, considering consecutively all branches in the program, we construct a
correct CTS for the program.

Choosing a definite order of branch consideration we obtain the following correct
CTS for lift program.

Test N1, T=(1), S$=(2), P=(0);

Toest N2, T=(1,2,3,4), S=(1,1,2,3), P=(3,0,0,2);

Test N3, T=(1,2,3), S=(1,1,2), P=(1,0,0);

Test N4, T=(1,2,3,4,56,7.8), S=(1,3,6,1,251.2), P=(220,0,0,.2);
Test NS, T=(1,3,2,4,56), S=(1,6521.2), P=(120,0),;

Test N6, T=(1,2,22,23), S5=(1,6,85), P=(1);

Test N7, T=(1,2.3,456), S=(1,36524), P=221);

Test N8, T=(1,4,2,3,24,25,26,27,28), S=(1,6,5,4,8,56.27), P=(1,2);
Test N9, T=(1,2,3,4,56,7,8,9), 5=(1,3,6527123),

P=(3,3,1,00,2) ;
Test N10, T=(1,2,3,4,56,7), S=(136,5273), P=(22,1,1).

358

To conclude the analysis of lift example we demonstrate how to transform tests
from the obtained CTS into tests for the lift SDL process (as It has been explained
before, these tests will form correct CTS for the process according to analogue of
criterion Cy).

TestN1, (R(0) at 1).

Test N2. (S(3) at 1), (S(0) at 2), {R(0) at 3), (Z(2) at 4).

Tost N3, (S(1) at 1), (S(0) at 2), (R(0) at 3).

Tost N4. (S(2) at 1), {Z(2) at 2), (DOp at 3), (S(0) at 4), (R(0) at 5), (FD at 6), (S(0) at 7),

(R(2) at 8).

Test NS, (S(1) at 1), (FD at 2), (DOp at 3), (R(2) at 4), (S(0) at 5), (R(0) at 6).
{Let us note the different order of signals in the corresponding L7 test).
Jest N6, (S(1) at 1), (DOp at 2), (FD at 3).
(Let us note that 4 signals were coded in the Ly test).
Tast N7, (5(2) at 1), (Z(2) at 2), (DOp at 3), (FD at 4), (R(1) at 5), (FU at 6).
JTest N8, (S(1) at 1), (FD at 2), (FU at 3), (DOp at 4), (FD at 25), (DOp at 26), (R(2) at 27),

(DC at 28).

(See notes at tests N5 and N6).

Jest NO. (S(3) at 1), (Z(3) at 2), (DOp at 3), (FD at 4), (R(1) at 5), (DC at 8), (S(0) at 7),
(R(0) at 8), (Z(2) at 9).
Test N10, (S(2) at 1), (2(2) at 2), (DOp at 3), (FD at 4), (R(1) at 5), (DC at 8), (Z(1) at 7).

11 Concluslons

In the mid 70-ies using the ideas described in Sections 2,3,4 an experimental
CTS generation system for data processing programs (the system SMOTL [8,10]) was
developed at the Computing Center of Latvia University. A COBOL-like language
SMOD was used as source language for SMOTL. The system SMOTL was tested on
many real business data processing programs. Experiments showed that SMOTL was
able to build automatically complete test sets for the described class of programs at a
speed comparable to that of high level language compilers. However, business data
processing programs have no sufficiently high demands for their reliability to outweigh
the additional efforts of developing and using automatic test generation systems.
Therefore practical research in this direction was not continued.

The situation has changed essentially in the last few years when the necessity
appeared to test complicated real time systems with very high demands on reliability.
Automatic generatlon of test cases has sufficient practical importance for programs of
this class. At the same time it is clear that automatic test generation is a very hard job for
these systems. Theoretical foundation of test generation for systems of the kind is
considered in Section 9. Practical methods for test generation are described in the
companion paper [17].

REFERENCES

[1] D.S.Alberts. The economics of software quality assurance. In Proc. AFIPS Cont.
1976, pp. 433-442,

[2] A.l.Auzins. On the Construction of complete sample systems. Dokl. Akad. Nauk
SSSR, Vo!. 288, No. 3, 1984, pp. 564-568 (in Russian).

[3] A.l.Auzins. Decidability of the reachability for the relational push—down automata.

359

Programmirovanie, No. 3, 1984, pp. 3-12 (in Russian).

[4] J.M.Barzdin, J.J.Bicevskis, and A.A.Kalninsh. Construction of complete sample
system for program testing. Latv. Gosudarst. Univ. Uch. Zapiski, Vol. 210, 1974, pp.
152—-187 (in Russian).

[5] J.M.Barzdin, J.J.Bicevskis, and A.A.Kalninsh. Decidable and undecidable cases of
the problem of Construction of the complete sample system. Latv. Gosudarst. Univ.
Uch. Zapiski, Vol. 210, 1974, pp. 188205 (in Russian).

[6] J.M.Barzdin, J.J.Bicevskis, and A.A.Kalninsh. Construction of complete sample
system for correctness testing. Lecture Notes in Computer Science, Vol. 32,
Springer-Verlag, 1975, pp. 1-12.

[7] J.M.Barﬁdin and A.A.Kalninsh. Construction of complete sample system for
programs \Jslng direct access files. Latv. Gosudarst. Univ. Uch. Zapiski, Vol. 233,
1975, pp. 123—-154 (In Russian).

[8} J.J.Bicevskis. Automatic construction of sample systems. Programmirovanie, No. 3,
1977, pp. 60~70 (in Russian).

[9] J.M.Barzdin, J.J.Bicevskis, and A.A.Kalninsh. Automatic construction of complete
sample systems for program testing. In Proc. IFIP Congress, 1977, North-Holland,
1977, pp. 57-62.

[10] J.Bicevskis, J.Borzovs, U.Straujums, A.Zarins, and E.F.Miller. SMOTL-a system to
construct samples for data processing program debugging. IEEE Transactions on
Software Engineering, SE-5, No. 1, 1979, pp. 60-66.

[11] E.F.Miller, Jr. Program testing technology in the 1980s. In Tutorial: Software Testing
and Validation Techniques, 1978, pp. 399—-406.

[12] M.L.Minsky. Finite and infinite machines. Prentice—Hall, Englewood Cliffs, N.Y.,
1967.

[13] M.O.Rabin and D.Scott. Finite automata and their decision problems. IBM J. of
Research and Development, vol. 3, No. 2, 1959, pp. 114-125. .

[14] A.G.Tadevosjan. Decidable cases of the problem of construction of a complete
sample system. Kibernetika, No. 6, 1985, pp. 41—44 (in Russian).

[15] K.C.Tai. Program testing complexity and test criteria. IEEE Trans. Software
Engineering, SE-6, No. 6, 1980, pp. 531-538.

[16] CCITT Specification and Description Language (SDL), Recomendation Z. 100,
1988.

[17] J.Barzdins, J.Borzovs, A.Kalnins, .Medvedis. Automatic construction of test sets:
practical approach, this volume.

AUTOMATIC CONSTRUCTION OF TEST SETS
PRACTICAL APPROACH

Juris Borzovs, Audris Kalnin3, Inga Medvedis

Institute of Mathematics and Computer Science
The University of Latvia
Raina Bulv. 29, Riga 226250, Latvia

Abstract. The problem of éymbolic execution and test generation is
considered both for sequential and concurrent programs. Practical
methods for test construction for the given program path are
presented. Lo .

1. Introduction

Computer program testing (i.e., program execution on different
input wvalues - tests) remains an essential basis of program
correctness decision. It is accepted that testing is not capable of
program correctness proving (except cases when program is executed
on all possible input values), nevertheless, in practice, if program
gives correct oufputs on sufficiently large amount of tests,
confidence of its correctness becomes psychologically very strong.

As test generation is rather labor-consuming and quite often
rather subjective, already tens of years ago trials were performed
to automate this process [1,2]. One possible approach to the
solution of the problem is test generation by means of symbolic
execution of program paths and the following solution of path
conditions (which mainly are systems of equalities and inequalities
over program input parameters) obtained by symbolic execution.

Since 70-ies rather many experimental systems have been
developed on the basis of the before mentioned approach [3-11]. In
the second half of the 80-ies this approach has experienced the
revival in the application of testing of specifications -of large
program systems (especially telecommunication) [12-14,28,29].

This paper deals with automated test generation methods for
sequential programs and protocol specifications written in SDL
language [15,16). -In both cases symbolic execution of programs is
used.

The paper consists of two major parts. Part 2 deals with
sequential programs. The notion of symbolic execution is formalized
here. Sequential subset of SDL (equivalent to large part of Pascal)

is described and an example of program is given. Correct symbolic

361

‘execution is defined for this subset of SDL and demonstrated on the
program example. A heuristic method for solving equations (path
conditions) obtained as the result of symbolic execution of program
path is presented, thus yielding a practical method to generate a
test executing a selected program path.

In Part 3 the approach is extended to concurrent programs.
Correct symbolic execution is extended to all major concurrency
concepts of SDL. The method is demonstrated on a realistic example -
sliding window protocol in SDL, test generation procedure based on
symbolic execution is shown for selected paths. Moreover, a
heuristic metﬁod is presented for path selection (according to
criterion Cl) based on state concept related to that used for
theoretical approach to test generation [17]. The method ensures the
generation of test set executing all branches for the sliding window
example in a reasonable time. A more sophisticated heuristic test
generation method supposed to work efficiently on comparatively
large SDL systems is also outlined.

Part 2 has been written by J.Borzovs and I.Medvedis. It
contains rxesults obtained by the authors at various times [10, 21,
22]. Part 3 has been written by A.KalnipnZ and it contains new

results.

2, Symbolic execution and test generation

for sequential programs

Symbolic execution of programs is a wide area per se and has
various applications. In this paper we restrict ourselves to the use
of symbolic execution for feasibility condition description for
program paths and test generation for a path based on these
conditions.

Our approach to test generation by means of symbolic execution
can be applied to a class of programming languages characterized by
the following properties. These are block structured procedural
languages with strong typing. A typical representative of this class
is Pascal together with its newest derivatives 1like Modula-2,
Turing, etc. Some restrictions,’ nevertheless, are present. We
exclude direct memory management (pointers and related operations),
calls of external procedures and functions as black boxes (with no
source text available), nondeterministic functions (like random

number generators).

362

Languages of the considered class have common property that
the main control unit is a procedure with formal input parameters
-and declaration part defining local variables and their types.
Procedure body consists of statements (assignments, conditionals,
etc.) which can be represented both in conventional textual form and
in flowchart like form.

Symbolic execution can be defined by our methods for any
lanquage of the class dascribed. To do this a special symbolic
execution language correlated to the given programming language must
be designed. In this paper we describe only symbolic execution of
SDL - in Part 2 for its sequential subset (equivalent in fact to
large Pascal subset), in Part 3 we expand this definition to

concurrent aspects of SDL.

2.1 Formalization of Symbolic Execution of Program Path

In order to define formally symbolic execution we must describe
more precisely some notions present in any programming language L of
the considered language class.

1. All data types permitted in the programming language L are
denoted by Tx’ 1}, TB,.... If the language L permits only predefined
types, then the number of the types used is finite. If the language
L has type defining facilities (like Array [1..10] Of Integer in
Pascal), then the number of possible types is infinite. Nevertheless
we assume that syntax and semantics definition of the language L
determines uniquely the complete type list T;, T;, ... and type
declaration in a program is only a way to select one of these types.
The domains of types (i.e., sets containing possible values of the
variables of the type) are denoted by D,y D,y Dy eee If the
language L has type naming facilities like

Type Seqno = Integer;
List Array[l..10] Of Seqno;
Var Buf : List;
in Pascal, the corresponding ground type containing no intermediate
program defined identifiers and having the same domain (Array[l..10]
Of Integer for variable Buf in the example) is used to denote the

]

type of variable in our discussions. A program independent list of
possible ground types Tlﬁ%,... can actually be defined for Pascal
like languages (in a way similar to that used further for SDL

subset).

363

2. We assume type T, to correspond to normal Boolean data type,
s0 D1 = {True,False}.

3. Every program P in the language L has a certain number n of
variables. K Each variable has a hame and a certain type (from the
list T,,T,,.-.). If program P has variables XseeasX, then the

corresponding types are denoted by T’ ,T’ ,...T° and domains by
1 2 n

D:1t---rD:nf

4. A certain number of the program variables are input
parameters, i.e., variables containing program input data. We assume
the first m variables xl,...,xh to be the parameters.

5. The body of program P consists of statements, each of them
having one or more exits (e.g., If-statement normally has two
exits), all statements are somehow labelled. A sequence (S’ez,
Szez,..., Skek) is called a path if S1 is the first statement of the
program and if exit e of statement SI determines S“1 as the next
statement to be executed. If statement 5, has only one exit or the
exit is uniquely determined by some other syntactic mearns, e, will
not be given explicitly.

Now let us describe the symbolic execution of programs .in the
language L.

The symbolic language SL corresponding to the programming
language L is defined as:

1. Many-sorted signature } defined over the same (ground) types
T, +T,s+++ used in the programming language L. A special type T with
only one value undef in its domain D, is introduced (this value is
used to denote undefined variable values). The signature contains
function symbols f:'fz'°" and for every function symbol f’ its
argument types and result type are specified

fl: T, ¢ eney T ===> T
1- k o
(including zero argument constant functions) .No function fl is

defined over Th, only constant function Undef has Tb as value type.

2. An interpretation I of functions symbols f1'fz"“ from
signature ¥ .

The main objects considered in the language SL are terms. Terms
in SL are well-typed expressions composed of function symbols and
typed variables in normal sense. Terms are used to describe the,
behaviour of programs in L. Though it is not required formally,
function symbols f1'f2"" and their interpretation I normally
isclosely related to functions used in the language L itself or in

364

its semantics description.

A term in SL is said to be a predicate term if its range is D1=
{True,False}.

We‘say that a term T conforms with a program P if all variables
occurring in the term T are also input parameters of the program P
and the type of the variable determined by its occurrence in the
term T coincides with the type specified for the variable in the
program P. If the languagé .L uses type naming, then variable having
some type in program P must have the corresponding ground type in
term T (domains are the s‘a:'\-me!). Conformance informally means that
term T is defined for the same entities which are processed by

program P.

By symbolic execution (of programs in the language L) we
understand an algorithm which, given a program P in the language L
and a path « in P, produces:

1) a predicate term PC conforming with the program P,

2) for each variable xl(i=1,...,n) of program P a term T
- 1

conforming with program P such that range of T, according to

1
signature § coincides with the value range of x, determined by its
type (or the range is D°={Undef}).

The predicate term PC 1is called path condition, the terms
Tx ,...,Tx associated with variables - gystem of symbolic values,

ar:d both l:)f them together symbolic state.

Symbolic execution is said to be correct if it produces for
every program P in the lanquage L and for every path o in P a
symbolic state such that, for; all parameter values of program P

a_ep® . a_eD” ,+++, a €D’ , there holds:
1 x1 2 x2 m X

1) path condition PC(al,a,...,am)=true iff +the program P

2
executed on parameter values a,...,a traverses the path «,
m

2) if term Tx is associated with variable X, (i=1l,..., n)
1
according to the system of symbolic values and the value of the

instantiated term T, (al,...,am) is z 4 then after the program P
i i

has traversed the path a on parameter values a 13,0002 variable

1
X, contains the same value z i if T = Undef, then variable x, has
1 1

no value assigned on path «.

So informally path condition is an assertion on parameter
values of program P in order to force the execution of this path.
Path condition actually accumulates the information from the

365

conditional statements (If, Case,...) traversed in the path . Some
assertions to prevent from overflow-like errors are also accumulated
in path condition. In test generation applications path condition is
used to find parameter values (i.e., a test) forcing the execution
of the path.

To summarize the above mentioned we can say that symbolic
execution dhfinition for some programming language L requires three
tasks to be done:

1. symbolic language corresponding to L must be defined,

2. symbolic execution algorithm must be constructed,

3. correctness of symbolic execution must be proved.

In practice the majority ofmost attention usually is paid to
symbolic execution algorithm, nevertheless, the two other items are
important as well.

The next sections are devoted to symbolic execution definition

for a certain programming language.

2,2 Programing Language

In this section we consider a simple sequential programming
language. Constructions of the language we denote in traditional SDL
[15,16] graphical form, adhering completely to SDL syntax, although
many typical SDL language constructions (such as state, signal,
timer...) do not occur. The considered subset of SDL functionally do
not exceed the capability of Pascal language, therefore, in order to
improve readability, sometimes we present translation of SDL
construction in Pascal terminology.

This simple sequential programming language is used to
demonstrate symbolic execution and test generation algorithms later
on. We stress that the scope of the language constructions could be
substantially wider from the point of view of our methods. However,
we shall consider only those language constructions having been used
in examples.

In this part test generation methods are demonstrated on
separate SDL procedure. In SDL language the procedure has textual
and graphic parts. Textual part contains the description of
procedure formal parameters, types and variables. Graphic part
describes data manipulations and control flow. Further we describe

this language more precisely.

366
Data type definitions

1. Our language has three predefined data types: Integer,
Boolean' and Real associated with usual operations:
Newtype Integer

Literals 0,1,2,3,... ;

Operators
"+ : Integer, Integer -> Integer ;
n_mn : Integer,'Integer -> Integer ;

"mod" : Integer, iInteger -> Integer
= : Integer, Integer -> Boolean

-

"/=" : Integer, Integer -> Boolean
nan : Integer, Integer -> Boolean

- wms wme

"> : Integer, Integer -> Boolean
"<=" : Integer, Integer -> Boolean

-

L : Integer, Integer -> Boolean

Endnewtype Integer;
Newtype Boolean
Literals True, False;
Operators
"NOT" : Boolean -> Boolean ;
"AND" : Boolean, Boolean -> Boolean

"OR" : Boolean, Boolean -> Boolean

-

-

Wim® : Boolean, Boolean -> Boolean
n/=n
Endnewtype Boolean ;

Boolean, Boolean -> Boolean

-

Newtype Real
Literals ...
Operators

o Real, Real -> Real ;
nen : Real, Real -> Real ;

Real, Real -> Boolean

-

/=" : Real, Real -> Boolean ;
<" : Real, Real -> Boolean ;
"> : Real, Real -> Boolean ;
"<=" : Real, Real -> Boolean ;
">=" : Real, Real -> Boolean ;

Endnewtype Real

367

2. Subranges of Integer type with the following declaration:
Syntype Mytype=Integer
Constants First : Last ;

Endsyntype Mytype ;
According to SDL semantics the beHhaviour of the subrange type is the
same as the behaviour of the Integer type with the only difference
that during the assignment of a value to subrange type variable
(and in some other special cases) the range check of the value is

performed.

3. Enumerated type with the following declaration:
Newtype Mytype
Literals Litl, Lit2, Lit3 ... ;
Endnewtype Mytype ;
For these types only the following equality relations are defined:
i : Mytype, Mytype -> Boolean ;
"/=" : Mytype, Mytype -> Boolean ;

4. Records (structs) with fields of any type mentioned above:
Newtype Mytype
Struct
Fieldl Typel;
Field2 Type2; ...
Endnewtype Mytype

5. Arrays with integer subscripts and values of any type
mentioned above (including structs):

Newtype Mytype

Array (Typel, Type2)

Endnewtype Mytype;
Here Typel - type of index, Type2 - type of value.

Ground types corresponding to the introduced SDL types will be
described in Section 2.3.

Statements of textual part

Along with type declarations textual part may also contain the
following statements.
1. Procedure heading which is the first statement in every

procedure specifying its name and describing its formal parameters:

368

Procedure Myproc
Fpar
In Parameterl Typel, ...
In/Out ParameterZ Type2, ...
Types Typel, Type2... must be defined outside the procedure or must
be predefined.

2, Declarations of fariables:
DCL
Varl Typel,
Var2 Type2 ... ;
In the case of embedded procedures usual visibility rules are valid.

Statements of graphic part

" 1. Procedure start:

2. Procedure termination:

3. Assignment statement:

Here V is either name of variable, element of array A(I), structure
element SI!F or element of array of structures S(I)!F. Symbol E

denotes expression of appropriate type in the usual sense.

4. Decision statement:

where E is expression of scalar type (except Real) and C1,C2,C3 ...
- constants of the same type.
5. Procedure call:

l
PCVL,V2...)

!

where P - name of procedure; V1, V2 ... - variables or expressions

of appropriate type.

Example of Sequential Program

Let us consider a program FIND [19] which is often used to
demonstrate different techniques of verification and testing.

Input of the program FIND is integer array A, its length N and
some integer F. The purpose of the program is to find the element of
array A whose value is F-th in the order of magnitude and to
rearrange the array in such a way that this element is placed in
A(F) and, furthermore, all elements with subscripts lower than F
have lesser values and all elements with subscripts greater than F
have greater values. Thus on completion of the program the following
relationship holds:

A(l), A(2), +.. A(F-1) <= A(F) <= A(F+1), ... A(N)

370

Syntype Int=Integer

' nstants 1:100;
Endsyntype Int;

Newt

e [A
yﬂrray(lnt,Int)

Endnewtype IA;
e
Procedure Find ..
Fpar §
InOut A " IA
In N Inﬂ,
F- Int;
Dcl

= O N
—
o
=

3N

1<
: =ACL)

ACI): =ACD)

ACJ): =W

1=+
=]-1

I
J:

101y

372
2.3 Symbolic Language

Here we describe a symbolic language SDLS corresponding to our
SDL subset. Let us remind that we have to define many-sorted
signature and its interpretation.

However, at first we must present the list of ground types for
our SDL subset. Since SDL has both type defining and type naming
facilities the concept of ground type is non-trivial here. So we
consider all type deflnlng constructs in SDL subset and introduce
notations for the correspondlng ground types.

1. Predefined types. The three predefined types: Boolean,
Integer and Real are defined as ground types for all uses of these
types under synonym names. For example, if type declarations

Syntype Counter = Integer
Endsyntype Counter;
Syntype Index = Counter
Endsyntype Index;
are used, the ground type corresponding to Index type is Integer.

2. All Integer subranges have the same ground type - Integer.
The treatment of range checking is discussed later.

- 3. Enumerated types. We assume that ground type corresponding
to an enumerated type determines only the number of constants, not
their names. Notations for ground types are "Enumerated 1" for
enumerated types with one constant, "Enumerated 2" for enumerated
types with two constants, etc. For example, if we have

Newtype Color :
Literals Black, White ;
Endnewtype Color; _
Newtype Sex
Literals Male, Female ;
Endnewtype Sex;
then ground type Enumerated 2 correspond to both type Sex and type
Color (Appropriate adjustment of constant functions see later).
4. Records (structs). Ground type for structs is defined as a
list of ground types of struct fields. For example, if we have
Newtype Sex
Literals Male, Female ;
Endnewtype Sex;
Newtype Person
Struct

373

Sex_of_Person Sex;
Age_of_Person Integer ;
Endnewtype Person;
then the ground type corresponding to type Person 1is Struct
(Enumerated 2, Integer).
5. Arra&s. Ground type for arrays defines the range of index
and ground tipe of components. For example, if we have
Syﬂmype Index=Integer
Constants 1:100 ;
Endsyntype Index;
Newtfpe Table
Array(Index, Real)
Endnewtype Table;
then the ground type of Table is Array(1:100, Real).

This completes the list of ground types (cf. T rTyrens in 2.1).
Domains corresponding to ground types follow straightforwardly from
the language definition so they are discussed no more.

Now let us introduce function symbols of SDLS signature. The
interpretation is described only for those functions where it is not
obvious. Function symbols mainly are based on the operators
introduced in our programming language (+, -, =, /=,...), and they
use the same infix notation. However, most of the operators in our
lanquage are overloaded (i.e., defined for various data types
simultaneously). Therefore SDLS contains derived function symbols
for each of the ground types. So we have functions +, -, mod, =,
/=... for Integer type; -, &, Vv, =poolean’ Spoolean for Boolean
type and *ocal’ “Real’ “Real’ /=ha“... for Real type.

Four new groups of function symbols are introduced for complex
data types (arrays and structs). They are based on functions used in
SDL semantics definition.

1. Functions of extraction of value of array element
extractr(a,i), where T - ground type of array as described above.
These functions have array as the first arqgument and array index as
the second one. Function yields value of corresponding array
element.

2. Functions of modification of array modifyT(a,i,v), where T -
ground type of array, a - array, i- index of element and v- new
value of element. Function yields a new array differing from the
array a in the modified element i.

3. Functions of extraction of value of structure element

374

extractT(s,i). Functions yield the i-th element in structure s.

4. Functions of modification of structure element
modifyt(s,i,v). Functions yield a new structure with the value of
the i-th element set to v.

In order to describe array operations adequately we assume that
the first argument (array) of the function modifyT can assume both
values from the domain determined by type T and special value Undef
of type To' (We couldfybe completely formal in this case and
introduce an auxiliary function UndefarrayT: T,-=> T, but this would
make array expressions -more awkward). Thus the interpretation of
modify_r is extended in a natural way, so that, e.g., the term

extract (Modify (Undef,1,3),1),

Array(1:10, Integer) Array(1:10,Integer)

has value 3.

The domain of modify function for structs is extended in a
similar way.

The signature of SDLS also contain functions with zero
arguments or constants. The same notations for constants as in SDL
are used (of\course, excluding overloading by means of ground type
postfixes). So, e.g., the signature contains constants 1,2,3,... for
Integer type, True and False for Boolean type and

IMANZRnl'3Mal"" for Real type. New constant notations are

introduced for enumerated types (in accordance with the

corresponding ground type definitions). So the type Enumerated 2 has

two constants 1 ’ 2 . Constant notations
Enumerated2 Enumerated 2

adopted in SDL are used for arrays and structs, for example,

(° 1'2 4 3.) or (° 1' 18.)SLruct(EnmmratodZ,In!:eqo!') .

Array(1:3,Integer)
This concludes the definition of the symbolic language SDLS.

Unfortunately, terms in this- language look very lengthy. For
example, if we use data types from the program FIND, a correct term
would be eXtraFthrw(hlm,hnwem(A'F)' To make terms more
readable we introduce a new notation system called the derived
symbolic language. In this language as function and constant
postfixes we do not use ground type notations but corresponding type
names from the program declarations. So the beforementioned term in
the derived symbolic language is extract“(A,F). This is no more a
correct term in the signature of SDLS, since there is no function
extractIA in it and it can’‘t be introduced unambiguously because
identifier IA can designate various types in different programs.
However, if we consider pairs <type declarations in program, term in
derived language>, evidently there is an algorithm yielding an

375

equivalent term in SDLS for such a pair. For this reason we use the
derived lanquage without any special indication.

2,4 Algorithm of Symbolic Execution of Program Path

The aiﬁ of symbolic execution of program path is to obtain
correct symbolic state.

Assume that a program path is given. In the case of procedure
call program path contains also the corresponding sequence of
statements of the called procedure. We shall show how to build
symbolic state traversing the given path statement by statement.

Procedure Start

If symbolic execution begins with the given procedure, then
variables - input parameters are assigned terms consisting of single
variable, namely, the parameter itself. The rest of procedure
veriables are assigned undefined values (i.e., term Undef). The path
condition is assigned term True.

If, on the contrary, we have reached this statément from .other
procedure, then, according to the range of accessibility of variable
names, those pairs of variables are determined whose values are the
same in the caller procedure and in this one. Formal parameters are
assigned the same symbolic values as actual parameters in the caller
procedure have (or terms formed by call statement). Local variables
are assigned Undef values.

In both cases, if some of the input parameters are of subrange
type, we also add (by means of & function) appropriate range
checking predicate (such as N >= 1 & N <= 100) to the path

condition.

Assignment Statement

The execution of assignment statement consists of value
extraction of expression operands, calculation of value of
expression and, the last, assignment of calculated value to the
variable located in the lefthand side of the statement.

1. Extraction of values.
Due to the correspondence of names and values within the system

376

of symbolic values of current symbolic state we find symbolic values
of variables contained in the righthand side of the statement.

If the considered variable is an element -of array or record
(struct), then we must form a new term using functional symbols of
extract type. We also add predicates to the path condition to ensure
that the range of indexes for the array is not violated.

For constants contained in the righthand side their ground
types are determined {accordlng to SDL typing rules for expresslons}
and the corresponding constant denotations are found.

2. Calculation of value of expression. _

Taking previously obtained operand terms and functional symbols
associated with corresponding operations (with correct type
postfixes found) we construct a new term. If any of the operands has
Undef as symbolic value, the resulting term is also Undef.

3. Assignment of value.

~ If the lefthand side of the statement contains scalar variable
(or whole array), then the latter is assigned the newly obtained
term in the system of symbolic values. If the variable is of
subrange type, we add range checking predicate to the path
condition, too.

If, on the contrary, the lefthand side contains array or record
element, then the term of the modified value is constructed by means
of modify function and this new value is assigned to the
corresponding variable (i.e., array or record) in the system of
symbolic values. We also enhance the path condition to ensure that

RS

the range of indexes is not violated.

Procedure .Call

Here we remind that program path contains also corresponding
sequences of statements of called procedures, and we permit only
calls of procedures whose texts are available.

Therefore the next statement of the path is procedure start
statement of the called procedure, and the given statement will be
executed when we determine the binding of actual and formal
parameters of procedure statement. If actual parameter is an
expression, the corresponding term is formed as in assignment

statement.

377
Decision Statement

As in the case of assignment statement we extract values of
operands (terms) and construct the resulting term. If its type is
Boolean, then such decision statement is called If statement,
otherwise, Case statement.

In case of If, if the path proceeds along True-exit, the newly
constructed term (simultaneously it is also a predicate term) is
added to the path condition by means of & function. If the path
proceeds along False-exit, we form negation of the previous term by
means of -~ function and add it to the path condition.

In the case of Case a new predicate term is constructed by the
help of function = (equality) with the above mentioned term as the
first arqument, but the second argument is the constant assigned to
the corresponding exit of the statement in the program. This last
predicate term is added to the path condition.

Procedure Exit

Local variables of the procedure are removed from the system of
symbolic values.

This concludes the definition of symbolic execution. It remains
to formulate the following assertion:

The symbolic execution defined in this section is correct for
SDL subset described in Section 2.2.

The proof of this assertion is a little bit lengthy and is left
to very patient readers.

We just note that formally correctness refers only to the basic
form of symbolic language. As far as this form can be uniquely
restored from the derived form and program declarations the derived
form is also correct in some sense and henceforth only this form is
used (sometimes omitting type qualifiers for owerloaded functions at

all, if they can be uniquely restored from the context).

Simplifier of Symbolic State

Whenever a new term is assigned to any variable or a new:
predicate is added to path condition we try to simplify this
symbolic value or path condition. Our simplifier is rather primitive

378

and is mainly designed to find and calculate constant subterms in
expressions. The simplifier is able to perform the following
‘transformations:

1. Find out and calculate numerical and enumerated subterms
composed of constants. Term ((1+x)+1)+1, for example, is reduced to
x+3.

2. Find out and calculate subterms composed of array-type
constants. Simplify array-type terms according to the following
rules: T H)
extractT(modify&{a,i,x),i){_> x _
modifyT{modify}(A,i,x},i,y) -> modify}(A,i,y)

If i /= j then extractT(modifyT{h,i,x],j) -> extractT[A,j}
Here T - type of array; A - array-type term; i,j,x,y - scalar terms.

3. Simplify record-type terms the same way as arrays.

4. Reduce predicate terms to normal form. We define the normal

form as conjunction P & P, & ... P . Here P - elementary relations
in form E op F , where E and F are numerical (enumerated) type
terms and op is one of the operations =, /=, >, ... Our normal

form is a special case of the conjunctive normal form and, of
course, arbitrary predicate term can’t be reduced to such a form.
Nevertheless, in order to simplify material presentation, we discuss
predicate terms only in normal form.

5. Simplify elementary relations (i.e., E > F & E < F ->
False).

6. Calculate constant predicate terms ti.e., P & False ->
False).

It should be noted that in th;g section we give only examples

of simplification rules, not a complete list of them.

2.5 Example of Symbolic Execution of Program Path

Here we do not analyze particular methods of program path
selection, although one of them actually is used to select program
paths to be executed (the fundamental principle is to proceed along
those feasible branches having been selected less frequently; in the
case of several equal variants a generator of pseudo random numbers
is used).

We apply symbolic execution to the program FIND mentioned in
Section 2.2, namely, to path :

379

(1,2,3,4,5,6,5,7,9,10,4,5,7,8,7,9,4,11,14,2,3,4,5,6,5,7,

9,10,4,11,12,15).
After symbolic execution of procedure
symbolic state is as follows: g

start statement the

System of symbolic values Path condition

A=A N> 14&N<= 100 &

N =N F>14&F <= 100 &
F=F extract“(n,l) >= 1 &

K = undef - extractu(A,l} <= 100 &
L = undef « oo

I = undef extractl‘(n,IOO} >= 1 &
J = undef extract (A,100) <= 100
R = undef

W = undef

Parameters of the procedure are assigned terms consisting of
single term variable, all other program variables are assigned undef

term and the path condition consists of range checking predicates.
Further for the sake of brevity we demonstrate only changes of
symbolic state. If some term can be simplified by our simplifier, we

show the result of the simplification ({especially it refers to the

range checking predicates).

After statement 1 (K:=1; L:=N) the symbolic state is changed as

follows:

System of symbolic values Path condition
K=1 No changes
L=N

After statement 2 (If K<L true exit):
No changes 1 <N

After statement 3 (R:=A(F); I:=K; J:=L):
R = extractu(A,F] No changes

I =]
J =N

380
After statement 4 (I<=J true exit):

no changes no changes (1 <= N is
reduced by simplifier)

We conclude the example by showing the symbolic state at the
end of the given path. We use the following shorthand denotation:
B = modify“(modify“(A,2,\gxtract“(A,N)) ,N,extractu(A.2))
The resulting symbolic state is as follows:

System of symbolic values

>

= modify“(modify“(B, 2, extractu(B,N-2)s
N-2 ,extract“(B, 2))

=N

= F

= 1 -

= N-2

=3

= N-3

extract“(B,F)

T WU HE XY

extract“(B, 2)

Path condition

extract“(A,l) < extract“(A,F) &
extract“(A,Z) >= extract“(A,F) &
extract“(A,F) >= extract“(A,N) &

4 <= N &
extract“(A,3) >= extract“(B,F) &
extract“(B,F) < extract“(B,N—l) &
extract“(B,F) >= extract“(B,N—l) &
5 >N &
F <= N-2 &
extract“(A,l) < extract“(B,F) &
extract“(A,N) >= extractI‘B,F) &

extract“(B,F) >= extract“(B,N-Z) &
F>N-3 &
3>F

381
2.6 Method for Solving Path Conditions

In the result of the symbolic execution of program path we
obtain path condition PC{xl...xnj, where X, - scalar, array or
record type variable. In order to find a test case which forces this
path to be executed we must solve PC as a system of equalities
(inequalities). The fact that PC is reduced to normal form is
irrelevant for our solution algorithm; it is used only to simplify
the explanation.

Before we begin solving the path condition we, first, free it
from variables and functions of record type. It can be done easily
because we can assume that record fields are independent variables
or arrays (if array of records). Next we separate the given path

condition into independent components PC(xi...xn] = Pl(xi...xl] &

P;(xhi...xjj & ..., where Pk and Pl have no common variables. After
that we begin to solve these independent components.
Our method (see method of segments in [22]) is in fact

exhaustive search algorithm which is improved by a number of
heuristics. These heuristics are based on the study of real-life
programs and are proved to be useful in test generation systems
[10,22].

First let us sketch pure exhaustive search algorithm:

1 Procedure Resolve(P:Path_condition);
2 Select X - any variable or element of array in P;
3 For C := all possible values of X do

4 Q := P with X fixed to C;

5 Simplify Q;

6 If Q = True)

7 Then System solved;

8 If Q /= True & Q /= False

9 Then Resolve(Q);

10 End

11 End Resolve;

To fix the value of X to C in step 4 we simply replace X by
constant C or, in the case when X is an element of array (i.e.,
A(I)), we replace A by modify(A,I,X). In step 5 the above described
simplification procedure is used to determine how successful our

fixations were.

382

This algorithm, of course, can solve any path condition, but it
is extremely impractical. After the improvements the algorithm
becomes much faster, but it is not able to solve some very complex
path éonditions. Nevertheless, inability to solve some path
condition is not dangerous for test generation system. It may lead
(and even then not always) only to test systems with lower quality.

We discuss heuristics related to the three steps of the given
algorithm. \,

First, in step 2 we select the next variable to be fixed. In
practice the sequence in Wthh we fix variables is very important
for the speed-up of algorithm [8].

Second, in step 3 we try all possible values of the given
variable. Yet, most of these values are not useful a priori [10].

Third, when values are fixed in step 3, first of all we must
try those values that are more likely to be solutions of path
condition.

Let us discuss these three heuristics separately.

Selection of Next Variable

The following criteria are used to select the next variable to
be fixed:

1. Select only scalar variables or elements of arrays that are
addressed in path condition with constant index (i.e., if path
condition contains extract(A,5), then we are allowed to fix A(5)).
It is easy to see that this criterion can never lead us to a
situation when none of the varlables can be selected.

2. If criterion 1 leaves some freedom for selection, we find in
path condition the elementary relation containing the least number
of variables and we fix one of these variables (according to
criterion 1). It allows us to simplify the path condition as early
as possible.

3. If criterion 2 also leaves some freedom, we select a

variable with the smallest set of admissible values (see below).

Set of Admissible Values

With every variable in path condition we associate a set of

admissible values, namely, some segment [a,b], such that no value

383

outside the segment can act as solution of the given path condition.
We do not worry if some value inside the segment can never be
solution of the system, but we are interested to keep these segments
as small as possible.

For Boolean and Enumerated variables we discuss only two types
of sets of admissible values: "anj value (no limitations)” and "only
one value C admitted”. Further these sets of admissible values we
call segments.

Before we begin to solve the path condition we find initial
segments of variables. After fixation of every new value we revise
them. First, we can set up initial segments according to the
declaration of variable (for example, if the variable is a
subrange). Second, a very valuable source of information is the user
of the test generation system. Single remark, such as: "I am
interested only in the case when all variables are less than 10",
can significantly improve the performance. Third, the source of
initial segments can be input/output formats, the use of variable in
some language constructs, etc.

The most interesting procedure of our algorithm is reduction of
segments with respect to the path condition. The aim of this
procedure is to make our segments as small as possible. Weiapply
this procedure any time when a new value of variable is fixed (after
step 5). For example, if the current path condition is x+y<z & x>2
and all variables are of integer type with equal segments [1,9], we
are able to reduce the segment of x to [3,7], the segment of y to
[1,5] and the segment of z to [5,9]. Reduction of segments is based
on simple properties of arithmetic operations and relations. For
example: "If the segment of x is [al,a2], the segment of y is
[bl,b2] and the wvalue of x+y must be in segment [cl,c2], then the
segment of x can be reduced to [max(al,cl-bl), min(a2,c2-bl)], the
segment of y can be reduced to [max(bl,cl-a2),min(b2,c2-al)] but the
value of x+y must be in the segment [max(cl,al+bl),min(c2,a2+b2)]".
Or another example: "If the segment of x is [al,a2] and path
condition contains relation x=b, then the segment of x can be
reduced to [b,b]".

With iterative application of these local reductions we can
propagate improvements through entire path condition. The algorithm
of propagation is not quite trivial and includes some new heuristics

for performance improvement, yet we do not discuss it in detail.

384

Selection of Values

It is possible that even after segment reduction exhaustive
search is not useful. For that reason we first try to fix some
outstanding values of variable: 1) both ends of segment, 2) those
valuesC within the segment that appear in the program text as
constants, 3) one arbitra{y point between every two values mentioned
above. These rules (like bur algorithm as a whole) are very simple

but they work on real-life;programs.

Example of Test Generation

Now we demonstrate how the path condition produced at the end
of the previous section can be solved by our methods. It is easy to
see .that this path condition is only roughly simplified but we do
not need a stronger simplifier because our method of segments can
take into account all relations between variables.

We begin with the setup of initial segments. According to the
declarations, segments of all variables (i.e., N, F and A) are set
to [1,100]. The second step is the reduction of segments. During
reduction the segment of N is ‘improved to [4,4], the segment of F
to [2,2] but segments of A are not significantly improved. Now we
must fix a value of one of the variables. It was suggested that
scalar variables must be fixed first, so we can fix N to 4 (no
choice). A

Next we perform the simplification and the reduction of
segments once more. Then, the\éame way, we fix F to 2 and after just
another simplification and reduction of segments get the following
results:

Path condition:

extractXA(A,l) < extractIA(A,Z)
extractlA(A,l) < extractlA(A,4)
extractIA(A,2) >= extractIA(A,4)
extractXA(A,B) > extractIA(A,4)

Segments:

extractXA(A,l) [1,98]

extractXA(A,Z) [2,100]
extractXA(A,3) [3,100]

extractIA(A,4) [2,99]

385

Now one element of A is to be fixed. All elements are accessed
with constant indexes and three of them have segments of equal size
(i.e., 1l-st, 3-rd and 4-th). Let us assume that we select the 3-rd
element at random and fix it to 3 (the left end of the segment).
This time the following reduction of segments is not trivial,

nevertheless, it is very successful:

extractIA{a,u} {1,1]
extract (A,2) [2,100]
extractll(h,du [2,2]

~ So we proceed until the system is solved. It should be noted
that during the solution of this system we are never forced to step
back and fix a variable repeatedly. The resulting test is as

follows:
A = (.1,2,3,2.)
N = 4
F = 2

If one tries to build a test for the same path manually, he
probably will get a slightly different array A = (.1,4,3,2.} and
will expect the procedure FIND to exchange the 2-nd and the 4-th
elements. The test we have built is not so natural but it shows a
significant drawback of the procedure FIND -~ although input array
has been already partially sorted the procedure wastes time to
exchange equal elements of the array.

Our path selection method coupled with the above mentioned test
generation algorithm produce the following set of tests:

A = (.1,2,3,2.) A = (.1.) A = (.1,3,2,4.)
N = 4 N = 1 N = 4
F = 2 F = 1 F = 2

2.7 Abstract Data Types and Symbolic Execution

So far we have considered only programs with predefined data
types. As we know, when new data types are introduced. in SDL, their
semantics is specified by means of axioms. So let some new types

ta’tz"" with new operators CRT R of some fixed signatures be

386

given. The new operators are just included in the definition of
symbolie functional term. (Now the formal definition of symbolic
execution language changes for program to program even for the basic
form of the 1anguagé). The main problem is how to cope with a
widened class of terms while simplifying symbolic values and solving
path conditions. So we request axioms for new types and operators to
be respecified as term rewriting system (TRS) rules [23,27]. The TRS
should be as good as posslble ~ confluent and terminating.

TRS describing the new types is supplied to the simplifier. As
we see from the general description of the simplifier (2.4), its
basic action (simplifying arithmetic, logic, array and struct terms)
could also be in fact described by means of TRS (though not always
with a unique normal form, due to commutative rules). So the new and
basic rules are merged together making a single TRS for both old and
new types. So the simplifier tries to simplify any symbolic value of
a variable using this TRS as far as possible. Boolean terms in path
conditions are simplified in the same way. In this paper we limit
ourselves to the case when path conditions involving new types can
be simplified by means of TRS to relations containing only
predefined types (and boolean True or False in the best case). So
the solver is not supposed to find values of new types
t . t,,...(except for trivial cases: any value and the value which
has to be equal to some constant (literal) of new type).

Conditional rules in TRS (like in OBJ2 [24,27]) are also
allowed, conditions should contain equalities (or inequalities) for
predefined types, in particular, integers. If.types and operators
are generic, corresponding rules are also considered generic.

Let us consider an example: a new type queue of integers (it is
used in a more general manner in Part 3). Let it have literal gnew
and operators

_qadd:integer, gueue =--> queue
gfirst: queue --> integer
grest: queue --> queue.
Then a standard form of TRS for this queue would be
gfirst (gadd (x, gnew)) --> x
gfirst (gadd (x1, gadd (x2, q))) --> gfirst (gadd (x2, q))

grest (gnew) --> gnew

grest (gadd (x,gnew)) --> gnew

grest(gadd(x1,qadd(x2,q)))-->gadd(x1l,qrest(qadd(x2,q)))

It can be simply deduced from the signatures that x, x1, x2

387

stand for integers, g for queue.
If we have a program fragment (with variable gl declared as

queue)

ql: =qnew
]
ql: =qadd(i,ql)

(true)

then we have at its symbolic execution:
ql=gnew (after statementl)
gl=qadd (ix’ gnew) (after statement2)
The true exit of the decision yields condition
gfirst (qadd(i‘,qnew))>0
which is reduced by simplifier (using the first rule for queues) to
i>0
(a condition completely manageable by the solver).

3, Symbolic Execution and Test Generation for
Concurrent Programs

3.1 General Principles of Test Generation for
Communicating Processes

In this part we consider symbolic execution and automatic test
generation for real time programs in the specification language SDL.
Our investigations are demonstrated for a subset of SDL including
all essential concepts of the language used to describe parallel
processes. We consider open systems having one or more channels from
environment to system (and possibly some channels to environment).
A system can contain one or more blocks, a block can contain one or
more processes, procedures are also permitted. Dynamic creation of
process instances is not included and all signals are assumed to be
sent via channels and signalroutes. Each process is assumed to have
only one instance, interprocess communication is solely by signals,

viewing/revealing and export/import are not considered. We also

388

don’t consider enabling conditions and continuous signals.

A test for an SDL system is a completely ordered sequence of
input signals (including their parameter values) sent from
environment to system through appropriate channels. If there are
timers in the system, also the signal arrival times are fixed in the
test (if there are no timers, only the order of signals ‘is
significant).

The main goal of our‘¥ésearch is to comstruct complete test set
(CTS) for an SDL system. Agpfoblem of completeness criterion arises
just as for sequential proéfams. We accept the same criterion Cl1,
nonetheless this time its use is not so obvious, besides, its
definition requires some comments. By a branch in an SDL process we
understand either an input branch starting from signal input
statement or a conventional program branch starting from decision
statement (or START statement). A branch ends at nextstate, decision
or stop statement. Criterion Cl requires every feasible branch in
every process .to be executed at least once. Let us remark that
sometimes more stringent criteria taking into account the concurrent
nature of SDL processes are used, however, there is no such one
widely adopted.

All our research in SDL area is demonstrated on a popular
protocol example, namely, the sliding window protocol [25,26]. At
first we describe the example itself. Then we define the symbolic
execution of a path in SDL system (defining at first the path itself
in some reasonable way). We explain how to construct and solve path
inequalities like in Sections 2.4 - 2.6. A method for constructing
(potentially infinite) execution tree similar to ACT used in [14] is
given. A heuristic state~based épproach to construct CTS using an
initial segment of this tree is briefly described, CTS for the
sliding window example can be built by means of this -approach. To
improve the performance of CTS construction algorithms we outline
the main ideas of a more sophisticated approach which uses the
symbolic execution of separate processes more deeply and allows to
construct CTS for this example (and even more realistic protocols)
while keeping the search 'in reasonable limits acceptable for

practice.

389

3.2 Sliding Window Protocol Example

Sliding window protocol is a popular error recovery technique
used in many real protocols at data link layer. At first we present

its informal description taken from [25].

3.2.1 Overview

The sliding window protocol supports unidirectional message
flow from transmitter to receiver with positive acknowledgement sent
back on each ‘transfer. Windows are used for flow control in both
transmitter and receiver. The protocol operates over a medium which
may lose, reorder or corrupt messages and acknowledgements. It is
assumed that corruption of messages can be reliably detected by

protocol using checksums sent with messages.

3.2,2 Sequence Humbering

The transmitter sends a sequence number with each message. A
sequence number is unbounded and is incremented for each new
message. The first message transmitted is given sequence number 1.

The receiver sends an Acknowledgement when it receives a
message. The Acknowledgement carries a sequence number which refers
to the last message successfully transferred to the receiving user.
If an Acknowledgement has to be sent before a successful reception
(e.g., the first message was corrupted), it is given sequence number
0.

3.2.3 Transmitter Behaviour

The transmitter maintains a window of sequence numbers as shown
in Figure 3.1.

This gives the lowest sequence number for which an
Acknowledgement is awaited, and the highest sequence number so far

used. The window size is limited to the value tws.

390

transmitter
+——— window size —_—
77 T 1 LI R4
244 4 o /74
LowestUnacked HighestSent.

Figure 3.1.. Transmitter Window Parameters

receiver
e window size —
V222 LI B
27 77
Next.quuired High(!stReceived

- Figure 3.2. Receiver Window Parameters

The transmitter behaves initially as (a) below, and then loops
doing (b), (c) and (d) where possible:

(a) LowestUnacked is set to 1 and HighestSent to 0

(b) If the current window size (HighestSent-LowestUnacked+l) is
less than tws, then a message with the next sequence number
(BighestSent+l) may be transmitted. In this case, HighestSent is
incremented, and a timer for that message is sta;ted.

(c) If an Acknowledgement is received which is not corrupted
and whose sequence number is not less than LowestUnacked, then all
timers for messagés up to and'including that sequence number are
cancelled. In this case, LowestUnacked is set to the sequence number
following the acknowledged one.

(d) If a time-out occurs, then the timers for all messages
transmitted after the timed-out one are cancelled. All these
timed-out messages are retransmitted (in sequence, starting with the

earliest) and have timers started for them.

3.2.4 Receiver Behaviour

The receiver maintains a window of sequence numbers as shown in

Figure 3.2.

391
’

This gives the lowest sequence number which is awaited
NextRequired and the highest sequence number which has been
received. The window size is limited to the value rws.

The receiver behaves initially as (a) below, and then loops
doing (b) and (c) where possible.

(a) NextRequired is initialized to 1

(b) If a message is received which is not corrupted, which has
not alreadyﬂbeen received and which lies within the current receive
window (NextRequired +rws-1), then all messages from NextRequired up
to but not including the first unreceived message are delivered to
the receiving user. (There may be no such messages if there is a gap
due to misordering). In this case, NextRequired is set the sequence
number of the next message to be delivered to the receiving User.

(c) If a message is received under any circumstances, an
Acknowledgement giving the last delivered sequence number

(NextRequired-1) is returned.

3.2.5 SDL Description of Protocol

SDL description of the protocol is also taken from [25]. Some
obvious errors are corrected and medium description is slightly
changed to adapt it for testing purposes.

The description consists of three blocks representing sender,
receiver and medium. Both protocol user supplying data for sender
and user consuming data from receiver are located in the
environment. The sending user supplies data via channel ut by
signals UDTreq, the receiving one gets data via channel ur by
signals UDTind. The sender forms messages from each data unit
(signal MDTreq) and passes them to medium via channel mt,
acknowledgements (MAKind) are received from medium via the same
channel.Conversely, the receiver gets messages from medium (MDTind)
and puts acknowledgements (MAKreq) onto it wvia bidirectional channel
mr.

The Sender_entity block contains one process Transmit
performing all sending actions. Each message (MDTreq) sent contains
the generated sequence number, user data (of some unspecified type
Udata) and cyclic range check computed by function dcheck. Data in
transmitter window (i.e., sent but not acknowledged) are represented
by queue mq, the current window limits are held in variables lu and

hs. Time-out management is accomplished by setting indexed timer tim

392

with the corresponding seqno parameter for every message sent (and
resetting it when acknowledgement arrives). The timer parameter also
shows which timer instance has expired (and which messages are to be
resent respectively). The time-out value is some constant delta.
When the window contains maximum number of messages, the process
enters the second state window_closed.

The receiver_ entity block contains one process Receiver. The
Next-Required sequence nuhber is held in nr, message data received
out of order (within window) are held in the array recbuf, the
boolean array already_ rec fbf the same size) records which messages
have arrived (but have not been delivered to the user Yet).

The medium block contains processes MsgMan and AckMan managing
the message and acknowledgement queues respectively. Message queue
actions (normal transfer of message, loss of first message,
reordering of messages in queue, corruption of the first message)
are controlled by corresponding orders from system tester (signal
MsgContr) sent from the environment. We note that in [25] the
equivalent sig;als are generated randomly.

In the case of normal transfer the medium actually performs
only signal renaming (from MDTreq to MDTind) while retaining the
same parameters. Message corruption is performed by special function

corrm. Acknowledgement queue manager performs the same way.

SYSTEM SLW 1(3x

oIGNAL ' 5
UDTreq (Udata), UDTind (Udata),
MDTreg (Seqnot, p, Udata, datacrc)
MDTin (Seqnot Udata, datacrc),
MAKr eqnotp, ackere),

MAKind (Seqnotp, ackcre),
gContr (contrfype ,
AckContr (contrtype);

TﬁﬁTFEET* sender_entity receiver_entity 'TUDT¥EHTT

[MAKind] ~ |tMDTind)
mt mr

[MDTrea‘l medium | (ARreq!

EContr
Contr |

em

393

SYSTEM SLW 2(3)

NEWTYPE Udata
ENDNEWTYPE Udata;

SYNTYPE Seqnotp=INTEGER
ENDSYﬁTYPEqulquotp,
NEWTYPE datacrc
OPERATORS dcheck: Seqnotp, Udata — datacrc
»¥builds crec field for a glven pair of sequence
number\ and userdata in data message %/

YPE datacrc;

NEWIYPE ackere

OPERATORS acheck: Seqnotp — ackerc

»% builds cre field for a sequence number in ack—
nowledgement »/

ENDNEWIYPE ackerc;

NEWTYPE contrtype

LITERALS norm, lose, reord, corr;
/% tester control options for medium action %/
ENDNEWTYPE contrtype;

SYNONYM tws NATURAL = EXTERNAL;
SYNONYM rws NATURAL = EXTERNAL;
SYNONYM delta REAL = EXTERNAL;
s% external parameters of the syst.em */

GENERATOR queue (TYPE item);
LITERALS qnew;

add: item, queue — queue;
gfirst: queue — item;
qrest: queue = queue;
qdelete: integer,queue == queue;
greplace: item, queue — queue;
gempty: queue —+ BOOLEAN;
AXTOMS
qfirst(qnew)== ERRQOR!;
gfirst(qadd(x,qnew))==
qfirst(qadd(xi, qadd(x2 q5)) =qfirst(qadd(x2,q));
qrest(qnew) ==qnew
grest(qadd(x, qnew5
qrest.(qadd(xl qa.dd(xZ q))5 qadd(xl,qrest(qaddg})cg,
q)l);

ﬁ T?ty(qnew
emgty(add(x q)))
qdelete(i =IF 1=0 ?
ELSE delete (i-1, grest(q))FI

greplace(x!, qadd(ew))—=qad (x1,qnew)
greplace(xl, add(x2, ?addCx3 qQ)))=

add x2,qreplace(xl qadd(xS q)));
/xﬁDglaces the first element of queue by new valuex/

ENERATOR queue;

394

SYSTEM SLW . 3(3)

NEWTYPE message
STRUCT

seq Seqnotp;

dag UdgEa;p

dc datacrc;
ADDING \,
OPERATORS Y

corrm: message — message;
% mGSSﬁge corruption procedure %/

AXI0

NOT (dcExtract!(corrm(m))=dcheck(seqgExtract!
(corrm(m)),datExtract!(corrm(ml)J));
/% ever corrﬁption is reliably detected by dcheck»/
ENDNEWTYPE message;

NEWTYPE acknow
STRUCT

seq seqnotp;
ac ackcere:
ADDING
OPERATORS
corra: acknow —+ acknow;
AXIOMS
NOT(CacExtract!(corra(al))=acheck(seqExtract!

(corra(al))));
ENDNEWTYPE acknow;

SYNTYPE rsn=INTEGER
CONSTANTS 0:rws-1
ENDSYNTYPE rsn:

BLOCK sender_entity

[UDTreql
[MAK1nd

s
[MDTreql

mt

395

BLOCK receiver_entity

Receiver

r_sap

Jor

TODTind]

396

PROCESS i Transmit

10

i1

hsi=0, lui=1

I\

DCL

hs,lu,segno Seqnotp,

cq queuea (Udata),

data Udata,acrc ackere;
TIHER tim (Seanotp);

Vo
1 1.
cQ.:=qgnew Reltin Retransa
/
data_transaf
NAK ind(se tini{segno
13 gno,acre) 20)
heltin
14 21 (|(seqno,hs)
(false) l
Retransn
15 22 ||tsegno,hs)
{false)
cq:=qgadd 14 eltin(lu,
tgala,:q) Eggnn) 23
SET (NOH+ cqi=qdelete(
delta,tin(hs 17 |seano-lu+l,
)) cq)
18 | lui=segnotl
(true) (false) !

- Hindow_clos
) 12 |og 19

397

25,

24 [Hindow_clos
ed

UDTre
a

27

28

29

30

Il

HAKind(se

gno,acrc)

(false)

Reltin(lu,
seqno)

l

cq.=qdelete(
seqno-lutl,

cq)
|

lui=seqno+l

data_transf
er

33

{false)

;in(seqno

||IReltin

(seqno shs)

|

37 lﬂetransn

{seqno,hs)

398

PROCEDURE : RELTIM
FPAR IN si,; sj Seqnotp;

DCL r Segnotp,
1 k INTEGER;

L

o [kizsi-sist,

ri=si : /% prucedure releases
. tiner instances with
paraneters from si to

sj (including) W/

?ESEI{tin(r)

399

PROCEDURE :Retransn

FPAR IN py v Seqnotp;

1
DCL k INTEGER,
inf Udata;
2 -prl /" pracedure retransmits
nessages held in ecq with
J sequence nunhers fron p
te v {including), updates
|inf:-qfir:sti.r cq and tinmers ®/
cq),cqi=qres
3 |/t(cg),cq:=
qad (fnr,eql

inf,dchec

k(p,inf))

SET (NON+
5 ?alta,tiu(p)

pi=p+l,
& |lki=k-1

400

PROCESS :Receiver
1 PCL nr,seqno Seanotp,
data Udata,
already_rec ARRAY (rsn,boalean),
rechuf AARAY (rsn,Udata)},
. derc datacre)
Ly
2 nri=1
3 already_rec:=
(.false.)
4 | data_transfer Delivies

KDY ind
5 |{seqno,data,
ere

decrc=dch
b eck(seqn

o,data)

7 no)AND(s

(fatse)

(false)

NAKrmalnr-1,
15 ?check(nr—l)

401

10

16

aleady_r
ec(seqno
nod rus)

11.

(false)

Recbuf (seqno nod
rus):=data

l

already_rec
{seqno mod res)
y=true

13

14

elivies
{nr,sagno)

402

PROCEDURE :Delivles

FPAR IN/OUT xnr,xseqno Seqnotp;

1 DelivHes

xseqno=

UDTind(rechu
fi{xnr nod
rus))

HAKreq(xnr,
acheck (xnr))

5 already_rec{xnr
nod rus) :=false

6 XNri=xnr+]

already_
rec{xnr
nod rus)

(false)

HAKreg{xnr-1
ia)u):heck(xnr-

403

BLOCK medium

rmr
mr
[MDTind]
' Eﬁ&KFeq] r

[MAKind]

404

PROCESS :Msglan

1 DCL na queue (nessage),
qiten nessage,
seqno Segnotp,
data Udata,

derc datacrc,
2 HQ:=qnev \ action contrtupe;
3 H ‘. ’

MDTreg(se
HsgContr(
4 32gé?ata, B |action)

qlten
S |(.seqno,data, 9
dcrc.
(true)
ng:=qadd _
b |(aiten,na) 10
[{norn) [{Tose) [{reord) corr)
itsn.—qfirst "
na’. .. Na:=qa S bomecmafi
7 - 11 |na:=arest(nq)| 14 [nai=arestinald| 14 leafirst(ng), | 18 ?;tgn. qfirst
arest{ng)) 9
i) [
antseq.,q .
itentdat, 15 - - 17 - 19 qiteni=corrn(
12 qitentde) qiten)

|

nq:=qreplace(
13 20 |qiten,nq)

21

405

PROCESS :AckNan
RckNan
1 ager
2 agq:=qnew
3

DCL ag queue (acknow),
giten acknow,
seqno Segnotp,
data Udata,
acrc ackerc,
action contrtype;

NAKreq
(seqno,
acrc)

gitem;=(,
S |segna,acre.)

I

& [2aizaadd
{giten,aq)"

AckContr(
action)

10

(true)

l J{norn) [{lose) {(reord) Jfcorr)
aiteni= o igail smafi
- 1 .z (qfirst(aq), qgiteni=qfirst
1 g;E:::::fiéqJ 14 [aai=arest(aa)| 14 |oracitan)) 18 [(zq)
MAKind(ai .
- - iten:=corra
124 vt 18 12 19 Haiten
aq:=qreplace
13 20 {(qiten,na)

21

406

Some notes have to be added with respect to testing of the
system. At first external constants (synonyms) have to be fixed. Two
of them:~tws and rws are very essential, since they control loops
and array sizes. Some reasonable values (not too small to make some
branches infeasible, not too large to make tests enormous) are to be
selected. So we set both

tws = rws = 3. . .
The third constant defﬁav is less essential, it can be fixed to
value, e.g., 10, when it;hatters.

The other problem ig abstract data types. As we have explained
in 2.7, axioms should be replaced by some TRS to make the
simplifier work with new data types. So we present the following TRS
which is "compatible" with axioms, confluent and terminating (not
for every set of axioms such TRS can be found). Rules are given for
the generic type queue (with some nonstandard operations) and
corruption /crc check of messages (acknowledgements)

qfirst(gadd(x,gnew)) -->x

qfirst(qada(xl,qadd(xz,q)))—->qfirst(qadd(x2,q))
grest(gnew)-~->qnew

grest(qadd(x,qnew)) -->gnew

grest(qadd(xl,qgadd(x2,q)))-->gadd(x1,qrest(qadd(x2,q)))

qempty(qnew)-->true

gempty(qgadd(x,q))-->false

gdelete(0,q)-->q

i>0 =>gdelete(i,q)-->qgdelete(i-1,qrest(q))

greplace(x1l,qadd(x2,qnew))-->qgadd(x1,qnew)

greplace(x1,qadd(x2,qadd(x3,q))}-->
qadd(x2,qreplace(x1l,qadd(x3,q)))

eq(dcExtract! (corrm(m)),dcheck(seqExtract!

(corrm(m)),datExtract! (corrm(m))))-->false
eq(acExtract! (corra(a)),acheck(seqExtract!
(corra(a))))-->false
/* eq is the equality relation */
(Here and further we use standard SDL syntax for struct extract

functions, namely, <field_name>Extract!, not the one used in 2.3.).

3.3 Semantic Constraints on SDL Subset

We assume in general that SDL system is executing according to

semantics of SDL-88 [15]. However, some inessential limitations and

407

changes are introduced to make the description of process of test
generation more understandable. These changes are inessential for
the example considered and, as we hopé, for protocol specification
in general. :

First, no two events in the whole system are assumed to be
simultaneous, thus the events can be completely ordered in time.
Actually, we make an even stronger assumption that only one
transition from state to state occurs in the whole system at a given
moment of time, the transition is always completed before another
one takes place.

Second, all SDL actions including signal sending inside the
system are assumed to be executing zero time. Thus, if a signal is
sent from one process to other (including sending via channel), the
receiving process is ready to operafe just after the sending process
has completed its transition, no time advancement occurs at that
operation. Time is advanced only at reception of every signal from
environment, and at active timer "firing".

Third, "internal" signals have priority before the signals from
environment, i.e., whilst some process queue is nonempty (except the
case when all existing signals are saved in the current state), no
signal from environment is permitted.

The abovementioned semantic restrictions allow to assume that
the whole system is executing under the control of some
nondeterministic scheduler, which chooses at random an active
process (i.e., a process with nonempty queue containing nonsavable
signals) and activates it for one transition.If no process is
active, the scheduler allows either an environment signal to arrive
or an active timer to "fire" (if there is such). At the very
beginning of execution the scheduler activates the initial
transitions of all processes one after another.

The semantics considered is very appropriate for test
generation and deterministic testing in general. To confirm
practical reasonability of it we note that deterministic testing of
a protocol specification makes similar assumptions. as a rule
[13,14]. If there are time-consuming operations in process diagrams
(making zero time wunrealistic), explicit tiﬁing should be
introduced. We recommend delay (delta) statement for this purpose
(it is in fact a macro call for the following macrodefinition:

408

)

. SET(now+delta, timer0)

y

; Ltimer0Q / * 7
)
which is completely within our SDL subset.)
Signal propagating delays along "real channels" should actually
be described explicitly as testing environment controlled medium

description processes in the system (e.g., MsgMan and AckMan
processes in our example) in order to make delay dependencies

actually testable.

3.4 Symbolic Execution of SDL Programs
(many communicating processes)

Now, as we have discussed our semantic restrictions of SDL
system behaviour, we can define the symbolic execution of a path in
SDL system.

At first we have to explain what is a path in a concurrent
system like SDL. We rely strongly on our semantic restrictions and
the notion of the nondeterministic scheduler. fnformally, a path is
a particular execution trace of an SDL system. To be more formal, a
path is a sequence of transition -seqments where each transition
segment is a path from state to state (start to state, state to
exit) (containing no state inside) in some process. If the path
contains a procedure call, a path fragment inside the called
procedure body has to follow immediately (separated into several
transition segments if states are entered).If transition segments
Al,A2,... referring to the same process P are singled out from path,
then Ri must lead to the same state Si from which Ai+l begins.
Pseudo - transition segments (save for an environment signal,

implicit transition, i.e., signal consumption in a state where it is
not awaited) are also admitted in the path where they are possible
according to SDL semantics. Some additional choices refining the

409

path will be described in the course of symbolic execution.

If the order of transition segments in the path were chosen at
random, it might be highly probable that SDL semantics were
violated, e.g., consumption of .a signal would be required when no
signal has been sent to the procebs. Therefore the notion of an
admissible p#th'is introduced. Informally an admissible path is one
which complies with finite automata properties of SDL semantics and
the scheduling principles described above, e.g., a signal can be
consumed only if there is such in the corresponding queue, a timer
can "fire" only after it has been set, etc. The admissibility of a
path can be checked formally, but this check can be performed only
along with the symbolic execution of the path. On the other hand,
symbolic execution is defined only for admissible paths. We define a
joint procedure for admissibility check and symbolic execution of a
given path. The procedure is halted when the path is not admissible.
Let us point out that admissibility does not imply feasibility, it
is only a prerequisité for it.

Now let us describe the admissibility check and symbolic
execution algorithm. The admissibility check is defined in the form
of admissibility rules to be applied to the current symbolic state.
Let an SDL system S containing processes P1,P2,...,Pn be given and «
be a path in S. Two new "implicit" variables Q(P) and T{?) are
introduced for every process P, and the symbolic values of these
variables are maintained. Informally, Q(P) is the signal queue for
process P, and T(P) is its active timer set. Symbolic values of Q(P)
are finite sequences of symbolic values of signals denoted as
<81,...,5k>, values of T(P) are sets of symbolic values of timers
{T1,...,Te}.

Let us begin with the description of admissibility check and
symbolic execution for SDL systems without timers (as we have
mentioned before, the symbolic execution and test generation is
simpler in that case). So the variable T(P) will not be used for a
while.

Symbolic execution is performed for every SDL statement, while
admissibility check is performed only at the beginning of transition
segment, i.e., when interpreting its state and input (or save)
statements. In the beginning of the algorithm Q(P) are empty for all .
P, i.e., they contain empty signal sequence < >, Let us assume that

| 1 1

2 3

. .4 1
o contains transition segments Ai . An ye++, Irom processes

Pil,Piz,Pia,..., respectively. For the moment we are interested in

412

and symbolic values of parameters are assigned to correspohding
variables, e.g., X1 assumes symbolic value t:. In the case of
"internal input" the symbolic value of signal is obtained from the
symbélic value of queue, i.e., the signal instance to be consumed is
found in the corresponding signal sequence and after assignment this
instance is deleted from the queue. In the case of "external input”,
as it was described earlier, new symbolic signal value S(S:,Sf) is
generated (i is the ndhber of instance of signal S sent from the
environment). In the case of saving an ENV signal its symbolic value
is added to the end bof queue; implicit transition means the
discarding of symbolic signal value. .

Let us remark that generation of symbolic values for queues and
signal consumption could be formalized by some TRS (using
conditional rules), but we think this would add no clarity to our
explanation.

Before proceeding to an example we note that a "very short"
form of symbolic language is used to improve readability (type
postfixes omitted at all, trivial path conditions from range checks
not included).

Let us show an example of symbolic execution of a path in our
system SLW. Although actually it is a system with timers, we ignore
them for a moment (omitting the setting statement 9). To indicate a
path we use numeric labels of statements preceded by the first
letter of process name (T for Transmit, R for Receiver, M for
MsgMan,A for AckMan). Exits of decision statements are not indicated
explicitly (they can be deduced from the next Qtatement label). So,
let us consider an initial path
T1,T2,T3,T4,R1,R2,R3,R4,M1,M2,M3,A1,A2,A3,T4,T5,T6,T7,T8,
T10,T11,M3,M4,M5,M6,M7.

i The presence of start transitions (T1,T2,T3,T4,...) for all
processes in the beginning of the path was required by admissibility
rules (certainly, the order is inessential). As initial transitions
contain no statements of "genuine SDL", the symbolic execution
proceeds the same way as in Part 2.

So we present the symbolic state after the path
T1,T2,T73,T4,R1,R2,R3,R4,M1,M2,M3,A1,A2,A3 at once. All symbolic
values are shown to be simplified as far as possible by the

simplifier described in 2.4

413

Transmit Receiver MsgMan AckMan

hs=0 nr=1 mg=qnew ag=qnew

lu=1 already_rec= gitem=undef gitem=undef
(.false,false, false.)

cg=gnew Q(Receiver)=<> action=undef action=undef

seqno=undef recbuf=undef Q(MsgMan) =<> Q(AckMan) =<>

data=undef '

acrc=undef

Q(Transmit)=<>
Path condition: true
Some variables with undef values are not shown.
Statements T4,T5,...T11l form the first nontrivial transition segment
(in the process Transmit). It conforms to admissibility rules since
all queues are empty and "external input" occurs (namely, ENV signal
UDTreq enters). After statement T5 the symbolic value of variable
data is updated

data = UDTreq:
(a2 new symbolic initial value has been generated, involving the
first instance of UDTreq).

Statement T6 also updates one value

hs=1. .
Statement T7 updates the queue value of process MsgMan, since
channels and routes direct the signal MDTreq to this process

Q(Hngan]-<MDTreq[l,UDTreqi,dcheck{l,UDTreq:]]>.

Statement T8 adds the following
Cq-Qadd[UDTreq:,qnewj.

Decision statement T10 adds no path condition since its value
1<1+3-1 is reduced to true by simplifier, the "true” exit implicitly
assumed in the path is valid. Statement T1ll closes the transition by
returning to state Data-transfer.

Now let us consider the second transition segment
M3,M4,M5,M6,M7. As the queue Q(MsgMan) is nonempty (the other queues
being empty), this is the only transition segment permitted by
admissibility rules in this situation. The statement M4 updates the
values of variables mentioned in this input statement

seqno=1

datanUDTreq:

dcrc=dcheck[1,UDTreq:}. =
Statement M5 forms new struct value

qitem={.l,UDTreqi,dcheck(l,UDTreq:]].

414

After M6 we have
mq=(qadd{(.1,UDTreq:,dcheck{1,UDTreq:}.},qnew}.

The final symbolic state after the path is:

Transmit

hs=1

lu=1

cq=qadd(UDTreq:,qnar}

seqgno=undef i

data=UDTreq: i

acrc=undef

Q(Transmit)=<>
MsaMan

mq-qadd((.1,UDTreq:,dcheck{l,unwreq:].},qnew)

gitem=(.1,UDTreq,,dcheck(1,UDTreq)).)

action=undef

Q(MsgMan)=<>
Recejver

nr=1

already_rec=(.false,false,false.)

recbuf=undef

Q(Receiver)=< >
AckMan

ag=qnew

gitem=undef

action=undef

Q(AckMan)=<>
The path condition remains true.

The path occurs to be both admissible and feasible.

Now let us consider the general case when timers are used. In
this case the active timer set T(P) is maintained during the
symbolic execution for every process P and admissibility rules for
timers rely on this set. The initial value of T(P) is empty set {}.
Timer instances (or, more precisely, symbolic values of timers) are
added to the set by SET statements. The symbolic value of the timer
consists of its name followed by the symbolic value of time moment
to which the timer is set (and symbolic values of parameters, if
there are such), for example, tcon(t®), tim(t],1). The set T(P)
contains at most one instance of each timer in the process P (in
the case of timers with parameters, one instance for each distinct

value of parameters).

415

Admissibility rule for timers says that "timer transition”
"(i.e., transition starting with timer input) is permitted only in
"external input" situation if the corresponding timer instance is in
T(P) for pr%cess P under consideration. To define the symbolic
execution of time involving gtatements, a new, real va;ued variable
NOW is intrpduced (ong for the whole system). Thg initial value of
NOW is 0, and it contains the symbolic value of system time at every
moment (as demanded by SDL semantics).

Basic "reference points" for time counting are times of arrival
of ENV signalé. Every instance of signal S sent from the environment
has associated its symbolic arrival time value S: (i is the instance
number just as for initial values of parameters). Values of the form
Sr (for all ENV signals) play the role of initial symbolic values
for time counting. When the input of ENV signal S is executed, the
symbolic value of NOW is set to S:. The old symbolic value of NOW
(i.e., before the new assignment, let us denote this value by
NOWold) is used to add a new ipequality

NOWold < S|
to path condition. The inequality expresses the fact that according
to our modifications of SDL semantics a new ENV signal cannot be
simultaneous with some previous event in the system. The saving of
ENV signal advances NOW in the same way.

For example, if we consider the previous example as a system
with timers (in fact, it is such), then after statement T5 the value
of NOW is

NOW=UDTreq)
and the inequality 0<UDTreq: is added to path condition (the
previous value of NOW was the initial wvalue 0).

Next we consider the symbolic execution of SET statement. This
statement has the form SET(t,tim), where t is an expression of type
real (as a rule, in the form NOW+t1, t can also be an expression of
type real but often is a constant) and tim is a timer name. At first
the symbolic value of t (denoted by t°) is obtained. Then the
symbolic value of timer tim(t') is added to T(P), where P is the
current process.

If there already is an instance of tim in T(P), the old
instance is removed. For a timer with parameters the action is
similar. Let us consider SET statement SET(t, timl(pl)). At first we
assume that expression p, can be reduced to some constant Cl(of the

corresponding type) when computing its symbolic value p:. Then

416

timl(C‘) acts in fact as an independent timer. We also assume
instances of timl in T(P) having the same property that their
parameters are reduced to constants. So symbolic value tiq}(t',cl)
is added to T(P), and, if there is an instance timl(t ; C) with the
same constant parameter in T(P), the previous one is deleted.Let us
return to our example and restore statement T9, omitted at first.
- Let us remind that before T9 the value of NOW is UDTreq: and
HS=1. Then after statemeﬁt T9 we have a timer value
tim(UDTreq:+de1ta, 1)
and T(Transmit) assumes value
{tim(UDTreq:+delta,1)}.

Now we have to consider the most general case when either the
parameter value p: for the timer timl to be set cannot be reduced to
constant by simplifier or T(P) already contains an instance of timl
with non-constant parameter. Let us assume the instances of timl in
T(P) to be

tim}(ti,ql), timl(t,,q,), ..., timl(t_,q)
(q‘ are symbolic values of the parameter).

In this moment path refinement is done. The following cases are
possible here -~ either the new symbolic value of the parameter p:
coincides with one of the existing values, say, q,, or p: is a new
value. Path refinement means an a priori choice of one of the
possibilities (it 1is reasonable +to «call this choice a path
refinement because admissibility of timer transitions later on the
path depends on the choice). If the first case is chosen,
timl(t',p:) is added to T(P), timl(tj,qj) is removed, and besides
that equality .
P, = g, e
is added to path condition. If the second case is chosen,
timl(t‘,p:) is added to T(P) and inequalities

i, 0%,
are added to path condition.

The symbolic execution of RESET statement is similar. The
corresponding instance of the timer is simply removed from T(P) when
the timer has no parameters or all parameters of timer instances
(i.e., their symbolic values) can be reduced to a constant. In
general case for timer resetting with parameters a similar path
refinement is made and corresponding equalities (inequalities) are
added to path condition.

The using of timers involves additional timing constraints in

417

path condition. So, when active timer set T(P) is nonempty for at
least one of the processes P, additional inequalities are to be
added to path condition at ENV signal input. The new symbolic value
of NOW (namely, ST if signal S is consumed the i-th timé) has to be
less than the value of time held in any instance of active timer, so
inequalities
S, <t

are added to path condition for symbolic value of time tj held in
any active timer instance in any of T(Pl).

Let us consider an example. We extend the path considered in
the previous example (with statement T9 reinserted) the following
way:

T1,T72,T3,T4,R1,R2,R3,R4,M1,M2,M3,A1,A2,A3,T4,T5,T6,T7,T8,
T9,T10,T11,M3,M4,M5,M6,M7,T4,T5,T6,T7,T8,T9,T10,T11.

We describe completely the symbolic execution of the second
occurrence of TS5. We have before it

hs=1

T(Transmit)={tim(UDTreq:+delta /1)}

NOW=UDTreq)

The execution of T5 gives

NOW=UDTreq,
and two new inequalities in the path condition

UDTrqu'(UDTreq;

UDTreq:<UDTreqT+delta
After the second occurrence of T9 we have
T(Transmit]={tim{UDTreq:+de1ta,1],tim(UDTreq:+delta,2}}

The last item to be described is the symbolic execution of

timer "firing". In process P the symbolic execution of timer input,

E tim(x) '

invokes the following actions. At first an instance of timer tim is
selected in T(P), let it be tim(t®,p") (for timers without
parameters, it is the only instance of the timer, its existence is
guaranteed by admissibility rules). The act of timer instance
selection again is a path refinement. Then the symbolic value of NOW
is set to t", the selected timer instance is excluded from T(P) and
X assumes the value p°. New inequalities expressing the fact that

i.e., statement

418

time is nondecreasing and the timer with the least time value should
"fire" the first are added to path condition. So inequalities
NOWold = t°
and
t? = t,
for all symbolic values of time 1:J held in any (remaining) active
timer instance in any of T(P,). Inequalities are nonstrong this time
because two timers can be:set on the same time moment.

Now we give an example of timer "firing" which is the
continuation of the préVious example with the following two
transitions added: .

M3,M4,M5,M6,M7,T4,T20,T21,RL1,RL2,RL3, RL4 ,RLS5,
RL3,RL4,RL5,RL6,T22,...
(RL stands for RelTim).

" The “internal input" transition M3...M7 is implied by
admissibility rules (the queue Q(MsgMan) 1is nonempty). This
occurrence of the transition is similar to the first one and affects
only variables in process MsgMan, so it is not described. We start
the description with T20. The previous example shows that before it
there holds

NOW=UDTreq,

T(Transmit)={tim(UDTreq:+de1ta,1),tim(UDTreq:+delta,2))

hs=2,
all queues are empty. So T20 is admissible, we can select the timer
instance to "fire". We choose the first one. After the execution of
T20 we have ‘

NOW=UDTreq, +delta

T(Transmit)={tim(UDTreq +delta,2)}

seqno=1
The following inequalities are added to the path condition

UDTre TsUDTreq:+delta
UDTreql+de1taSUDTreq:+delta

Just the last inequality shows that our choice of timer
instances is the only possible one to obtain a feasible path (and
corresponds to reasonable behaviour of timers). Had we selected the
second instance, we have had contradicting inequalities in path
condition

UDTreq, <UDTreq, and
UDTreq2+deltaSUDTrqu+delta,
the fact obviously noticed by our inequality solver. The next

419

statement T22 calls the procedure RelTim, so after statements

RL1,RL2 we have

k=2

r=1

si=1

8j=2,

After RL3

T{Transmit)n{tim(UDTreq:+delta,2J}

(no instance to reset actually). The path chosen in RelTim is the
only feasible one in the given context, after second occurrence of
RL3

T(Transmit)={ }

(because r=2 this time). So we can continue the execution, the path
occurs to be feasible.

The defined timing inequalities have the property that path
condition has a solution with respect to arrival times of ENV
signals (i.e., the wvariables in the form Si:] iff all events along
the path can be allocated in time so that they comply with the
details of SDL semantics laid out in Section 3.3. We could formulate
this result as a theorem, had our description of symbolic execution
been more formal.

We conclude this section by one more example, namely, we show
the symbolic execution of another extension of the path considered
in the first example. So we consider the path

T1,T2,T3,T4,R1,R2,R3,R4,M1,M2,M3,A1,A2,A3,T4,T5,

T6,T7,T8,T9,T10,T11,M3,M4,M5,M6,M7,M3,M8,M9,M10,

M11,M12,M13,R4,R5,R6,R7,R8,R11,R12,R13,D1,D2,D3,

D4,D5,D6,D7,D10,R14,A3,A4,A5,A6,A7,A3,A8,A9,A10,

Al11,A12,A13,T4,T13,T14,T15,T16,RL1,RL2,RL3,RL4,RL5,

RL6,T17,T18,T19. _

(Prefix D stands for procedure DelivMes, RL for RelTim).

This path corresponds to complete successful sending of one message
from transmitter to receiver and successful acknowledgment sending
vice versa. Active use of TRS to simplify symbolic values is
demonstrated on the path. From the first example we know the
symbolic state after M7:

Transmit
hs=1 T(Transmit)={tim(UDTreq +delta,1)}
lu=1 Q(Transmit)=< >

cq=qadd{UDTreqi,qnew}

420

dataﬂUDTreq:
acrc=undef
seqno=undef
MsgMan
mq-qadd((.l,UDTreq:,dcheck[l,UDTreq:}.},qnew)
qitem-(.1,UDTreq:,dcheck(l,UDTreq:].]
action=undef \
T(MsgMan)={ } ‘Q(MsgMan=< >
Receiver '
nr=1 .
already_rec=(.false,false, false.)
recbuf=undef
T(Receiver)={ } Q(Receiver)=< >
AckMan
ag=qnew T(AckMan)={ }
‘gitem=undef Q(AckMan)=< >
action=undef
NOW=UDTreq,
Path condition
0<UDTreq:
External input in M3, M8 is obviously admissible.
We have after it
action = MsgContr

NOW = MsgContr
path condition is augmented by
UDTrqu < HsgContrI
HschntrIc UDTrqu +delta
From M9 with exit "false" we have condition
not(qempty(qadd[(.1,UDTreq:,dcheck(l,UDTreq:}.),qnew}},which is
obviously reduced by a single TRS rule application to
not(false)=true. So the feasibility of the selected path is not
violated, no path condition is added.
Statement M10 (with exit norm implied) gives path condition

1
1
T
1 !

Msgcdntr: =Noxrm
After M1l we have
gitem= qfirst{qadd{(.l,UDTreq:,dcheck[l,UDTreq:}.),qnew}}
evidently reduced by TRS to
gitem=(.1,UDTreq, ,dcheck(1,UDTreq;).)
(namely the reduced value is fixed in symbolic value system),

gimilarly the new value of mg is reduced to

421

mg=gnew.
Statement Mlzhaugments the queue of Receiver
Q(Receiver};<HDTind{l,UDTreq:,dcheck(l,UDTreq:}}>
Further a nonempty queue for Receiver makes R4, R5 be the sole
admissible continuation. After R5 we have in Receiver
T

data hUDTreq:

dcrc ﬂdcheck(l,UDTreqi].
The exit true in statement R6 is, in fact, implied (
dcheck(l,UDTreq:}-dcheck[l,UDTreqi) is reduced to true by the
simplifier).
The chosen exit in the next two statements is also implied, for both

(1<= 1) AND (1<=1+3-1)

seqno

and
not(extract((.false,false,false.),1 mod 3))
reduces to true.
Statements R11 and R12 make
recbuf-modify(undef,l,UDTreq:]
already rec=modify((.false,false,false.),1l,true)).
In the procedure DelivMes we have after D1
xnr =1
Xsegno=1,
which implies the chosen exit of D2 (parameters are in/out, so the
changed values are returned to nr, segno). D3 sends signal
UDTind [UDTreq:} to environment.
We can continue the symbolic execution of the path in the same way.
All remaining decisions in the path uniquely reduce to true (except
one in process AckMan which gives path condition
AckContr: =Norm). Admissibility rules uniquely determine the
chosen internal transitions.
So we end the path with the following values (only the

essential ones are given)

Transmit MsgMan Receiver ckMan

hs=1 mg=qnew nr=2 ag=qnew
lu=2 already_rec=

cg=qnew =(.false,false, false.)

All sets T and queues Q are empty, NOWBAckContr:,
final path condition is
0<UDTreq:

422

UDTreq:<MsgContrI

MsgContr:<UDTreq:+delta
\ MsgContr:=norm

MsgContr <AckContr:

AckContr <UDTreq:+delta

AckContr. =norm.

The path is obvioﬁéay feasible. The path condition requires
only the arrival times of:three ENV signals to be ordered properly,
taking into account also the time-out interval delta. So the
following ENV signal sequence
UDTreq(datal) ,MsgContr(norm),AckContr(norm) with arrival times 1,2,3
(if delta is assumed to be, e.g., 10) is a test executing the chosen
path (value of datal is inessential).

So it is easy to ascertain that for every feasible path in the
SLW example trivially solvable path conditions can be obtained. Due
to this the corresponding ENV signal sequence (with their arrival
times fixed) can be generated which actually forces the execution of

the path.

T
1
T
1
1
1

3.5 Path Selection for Test Generation - Simple Approach

As we have seen in the previous section, it is logically easy
(though a little bit lengthy) to find a test (ENV signal sequence)
forcing the execution of a given feasible path. In order to obtain
CTS for the system SLW it would be necessary to fix some path
selection strategy. However, the paths considered in the previous
section show a special feature of the system SLW (and this feature
is common to many protocol and similar programs). Namely, the choice
of feasible path continuations in decision statements is uniquely
determined (i.e., a sole exit is feasible). The only exceptions are
decisions relying upon ENV signal parameters. So the only free
choice is the choice of ENV signal to be received (including

parameters for signals to MsgMan and AckMan). The analysis of timing

inequalities show that actually two things are significant - the
order of arrival of ENV signals and whether the current ENV signal
arrives before the time-out period has expired (for the timer set

earliest). So the following choices are available at every "external
input” point (in parenthesis the shorthand notation for the choice

423

is presented):

input of UDTreq (u),

input of MsgContr with parameter values norm (MN),

lose (ML), reorder (MR), corrupt (MC),

input of AckContr with parameter values norm (AN),

lose (AL), reorder (AR), corrupt (AC),

no ENV signal until the timer tim fires (T).

If we fix the ENV input string, the internal behavior of the
system (and'consequently, the path traversed in process bodies) is
uniquely determined. As we have seen in the previous section,
admissibility rules sometimes exclude T choice. The possible choices
can be summarized in the following potentially infinite tree (if
complete symbolic state remains unchanged after the choice, we cut
off the tree after the branch). We call this tree an external signal
tree (EST) (£fig.3.3).

Any feasible branch in process bodies is executed somewhere in
the tree. However, there is no good means to.find out where exactly
the point is in the tree. For example, to execute the branch RB, R9,
R10, a path of length 7 in the tree is necessary (this branch seems
to be the most "hidden").

" As we see, the branching coefficient for the tree is 10
(excluding few first vertices), so direct exhaustive search of
nearly 10° vertices would not be very efficient. State based
theoretical methods from [17] are not directly applicable to the
example (because of potentially unlimited queues), thus some
heuristic methods are necessary to limit the search.

We outline briefly one such heuristic idea which uses the
state notion as in [17}, however, in a more heuristic sense. We
recall the notions of essential variable and essentially located

statement (ELS) introduced in [10,17], Section 3.

424

MN AN
i m) AL
MR AR

oM AC >0
U
>.]
MN
U M/ wr| mc
AN A
AL uN
o AR MC O
AC v WL o

6 °

Figure 3.3, External Signal Tree

AN

AL
AR

AC

425

A comparatively simple analysis shows that there can be no
unbounded loops within transition segments in our example. Moreover,
only a bounded sequence of "internal" transition segments can follow
an ENV signal input or timer firing. So we can choose the inputs of
ENV and timer signals as ELS. Thus, essential variables are
associated only with transitions corresponding to ENV and timer
signals.

So, in a more pragmatic approach , we can say that a variable
in a process is essential if it is used in decision statement and is
not reassigned from ENV input to its usage in a decision (actually,
for SLW example this requirement is equivalent to the formal one
used in [17]. The variables affecting path admissibility are also
considered essential. As we consider only external inputs as ELS,
signal queues are not essential (they are always empty at these
inputs), however timer sets aré essential. So the following
variables occur to be essential in our example: hs, 1lu, nr,
already_rec, mq, aq, T(Transmit). Some additional argquments show
that for elements of gqueues (mg and aq) only the sequence numbers
and corrupted/not corrupted property is essential, so these elements
can be reduced to pairs (s, 'n’|’c’) in our state concept. For timer
sets only the sequence numbers held as parameters are essential (the
ordering of time moments is implied}. So a reduced heuristic state
containing only reduced values of essential variables is attached to
each node of EST. And, as usually, the tree is cut off at state
repetition, however, the finiteness of the set of states is not
achieved this way. Some more stringent heuristic cut-off rules can
be given, specific to this example, guaranteeing the finiteness of
state set (e.g., replacing the counter values hs, lu, nr by some
differences in state comparisons and estimating maximum lengths of
mg, ag). A simpler heuristic abproach is based on fact that all
branches actually are reachable for hs, lu, nr and gueue lengths not
exceeding 4. So the estimated number of EST nodes to be searched for
CTS building is approximately 1000 (cutting off nodes with variable
values or queue lengths exceeding 4 and stopping the search when all
branches have been reached). The introduced state concept actually
also supports symbolic execution of each path, so the outlined
approach can be used in tools generating CTS (a tool generating CTS
for this example could be implemented on IBM PC). Essential variable

selection and cut-off rules for states would be user supplied for

426

such tool. The heuristic state approach is practically acceptable
for test generation for medium size protocols. A more efficient idea
applicable to large systems is outlined in the next section.

To conclude the theme on signal tree we have to mention that
EST is similar to asynchronous communication -tree (ACT) used in
[12,14]. ACT contains also signals from system to environment but
our approach allows to find them as well (see signal UDTind in
symbolic execution example). So the symbolic execution method allows
to construct ACT also ,;6: protocols whose functioning depends

essentially upon some data processing.

3.6 A More Intelligent Approach to Test Generation

As we have seen in the previous section, CTS can be generated
on the basis of symbolic execution approach. However, though there
are 34 branches {all feasible) in our example system, the state
oriented approach requires considerable search (of %1000 states).
When a humen is asked to generate a test executing some branch he
performs, as a rule, some backward search from the specified branch
trying to find out gradually some meaningful considerations on input
data (signals in our case) finally leading to some test case.

The same idea can also be used for automatic test generation.
We ocutline it briefly on some example. So let us assume we have to
generate a test executing branch D7, D3, D4, D5, D6, D7 (in
procedure Delivmes in process Receiver). So for a moment we assume
the process Receiver with its procedures to form a separate system
(with corresponding declarations updéted). So the signal MDTind is
an ENV signal for the modified sysfeﬁ} its parameters are treated as
input values.

Now we try to find a feasible path containing the branch D7,
D3,... . As one process is in fact a sequential program, heuristic
methods from [21] can be applied. The shortest path containing the
branch is R1, R2, R3, R4, R5, R6, R7, R8, R11l, R12, R13, D1, D2, D3,
D4, bS5, D6, D7, D3,... , however, this path occurs to be infeasible
(during the symbolic execution the solver founds the path condition
contradictory). So by some (not described here) reasonable heuristic
the next (by length) path is found, namely,
R1,R2,R3,R4,R5,R6,R7,R8,R11,R12,R13,D1,D2,D8,D9,R14,R4,R5,
R6,R7,R8,R11,R12,R13,D1,D2,D3,D4,D5,D6,D7,D3,D4,D5,D6,D7,...

The symbolic execution of the path gives the following path

427

condition (no timing conditions included, as there are no timers)

MDTind3=dcheck(MD’rind1 , MDTind;) :

ISMDTlnd & MDTLnd =3

ﬂ(MDqud =1)

MDTlndﬁ-dcheck(MDTlnd MDTlnd)

15MDT1nd & MDTlnd =3

extract(hodlfy((false false,false.), MDTlnd mod3, true),
MDTlnd mod3)=false

MDTlnd 1

extract(modlfy(modify(modlfy((false,false, false.},

MDTlmﬁmodB,true),MDTlnd2m0d3,true),Lﬁalse),Z)—true

The solver is able to find from the path condition unique
values for numeric parameters of signals: MDTind:=2, MDTind;=1. The
values of two other parameters are bound only by the conditions

.MDTind?=dcheck(MDTind; , MD'I‘indf) (*)

MDTind =dcheck (MDTind,, MDTind:)

These two conditions can be treated as preconditions for the process
Receiver. Thus our solver can be extended so that it can be used not
only for finding test values but also for generating preconditions
from path conditions (we can also consider this process as a special
kind of simplification). :

Now we return to the whole system and find out (statically from
declarations) that signal MDTind can come only from process MsgMan.
Then we consider MsgMan alone in a similar manner with both MDTreq
and MsgContr treated as ENV signals. However, this time the aim is
different, namely, we have to find a path in MsgMan with the
specified postcondition, namely, two instances of MDTind are sent
with fixed values of the first parameter 2 and 1 respectively, in
addition parameters are bound by (*). Using similar heuristics for
path finding, the shortest path is found

M1,M2,M3,M4,M5,M6,M7,M3 ,M4 ,M5,M6,M7 ,M3 ,M8,M9,M10,M11,M12,
M13,M3,MB8,M9,M10,M11,M12,M13,
which satisfies the given postcondition.

The postcondition and path condition from symbolic execution of
the path together yield:

MDTreq:=2

MDTreq;=1

MDTreq3=dcheck(MDTreq:, MDTreqf)

428

HDTreq:-dcheck(MDTreq;, MDTreq:)
HsgContr:=norm

MsgContI;-norm
(see how postconditions are transformed by symbolic execution into
preconditions). The order of ENV signals is

HDTreql,MD‘I‘reqz,MsgC_ontr1,M:s_gContr2 (timing again is
unessential). As far as only the last two signals are true ENV
signals from the system point of view, the search has to be
continued to obtain two .input signals MDTreq from Transmit with the
first four equalities as postconditions. However similar analysis of
Transmit yields the postcondition to be unfeasible - because under
no circumstances sequence MDTreq(2,...) MDTreq(l,...) can issue from
Transmit. So another path in MsgMan (with another postcondition
arising for Transmit) must be found conforming with its own
postcondition. The next (by length) path is the path induced by
input signaiﬁ 'MDTreql, MDTreqz, MsgContrl(Raord), HsgContrz(Norm},
HsgConFrs{Norm). This path gives the postcondition for Transmit with
the first two equations modified -

MDTreq:-l

MDTreq;-Z
(and equations three and four remaining the same).

This is a completely "acceptable" postcondition for Transmit.
The corresponding path is induced by (this time true) ENV signals
UDTreq,, UDTreq,. So the complete sequence of ENV signals for the
system is

UDTreq, , UDTreq,, MsgContrl[Reord), MsgContr, (Norm),

HagContré(Norm).

(or U, U, MR, MN, MN in terms of EST)

The complete ordering of signals is found substituting
intermediate signals by ENV signal sequences generating these
signals (likewise nonterminals are substituted by terminals in
grammars). Timing conditions remain to be added to specify the test
completely (the most stringent of them requesting that arrival times
of all ENV signals are less than UDTreqf+delta).

The search space for the method outlined is some tens of paths
in the example considered (if powerful heuristics is used for path
selection in one process). We also note that several branches in the
"terminal™ process (this time Receiver) can be searched for
simultaneously, so reducing the complete search space for CTS even

429

more. So, similarly we can find that ENV signal sequence activating
our "champion" branch R8,R9,R10 is (in terms of EST)
Ur U, T, ML, MN, ML, MN

Maybe to find the latter path it would be more effective to
consider at first Receiver alone and then Transmit and MsgMan
together. Oﬁr estimate is that some hundreds of paths have to be
considered ﬁo find CTS, a value completely acceptable for the
example. So we hope a tool can be built using the approach outlined
constructing CTS for pretty large protocols (and we hope also for
large parts of electronic exchanges). However, such a tool would
require some methods of reasoning on processes and
pre/postconditions not completely formalized here.

We note only that the transformation of path postcondions to
its preconditions by means of symbolic execution bears some
resemblance to the methods used in program verification.

4 Conclusions

The results in both parts show that automatic test case
generation has reached the status where practical implementations
yielding acceptable results for programs of considerable size are
possible. Certainly, such test generation systems would be
complicated enough and will use the precise and heuristic methods
described in the paper as well as some other ones. The main problem
requiring some additional solutions is the path selection for
traversing deeply "hidden" branches. In the theoretical approach the
main principle used in path selection was state concept. Its
modifications have proved their fitness also in a heuristic setting,
however much work remains to be done to select appropriate heuristic
state concepts for wvarious classes of programs. One possible
approach would be the attachment of formal comments by program
authors to guide the automatic system in the right direction.

Acknowledgements

The authors would like to thank Prof. Janis Barzdind for the
setting of the problem and valuable suggestions. They also wish to
thank their colleagues at the Software Research and Development

Department for help in the preparation of the paper.

430

References

.

1. Sauder R.L. General Test Data Generator for COBOL. - AFIPS
Conference Proceedings, SJCC, 1962, pp. 317-323.

2. Hanford K.V. Automatic Generation of Test Cases. - IBM Systems
Journal, 1970, vol. 9, No. 4, pp. 242-257.

3. Balzer R.M. EXDAMS - Extendable Debugging and Monitoring
System. - In: Proc. 1969 SJCC, Montvale, N.Y., 1969, pp. 567-580.

4. Barzdin# J.M., Bi&evskis J.J., Kalnip3¥ A.A. Constructicn of
Complete Sample Systems for Correctness Testing. - In: Mathematical
Foundations of Computer Science, Berlin: Springer, 1975, pp. 1l-12.

L Howden W.E. Methodology for the Generation of Program Test
Data. - IEEE Trans. Comput., vol C-24, pp. 554-559.

6. Clarke L.A. A System to Generate Test Data and Symbolically
Execute Programs. - IEEE Trans. Software Eng., 1976, vol. SE-2, No.
3, pp. 215-222,

7. King J.C. Symbolic Execution and Program Testing. - CACM, 1976,
vol. 19, No. 7, pp. 385-394.

1

8. Ramamocorthy C.V., Ho S.B.F., Chen W.T. On the Automated
Generation of Program Test Data. - IEEE Trans. Software Eng., 1976,
vol. SE-2, No. 4, pp. 293-300.

9. Pravilschikov P.A. Test Generation for Programs. - Avtomatika i
Telemekhanika, 1977, No. 5, pp. 147-160 (In Russian).

10. Bi&evskis J., Borzovs J., Straujums U., Zarip¥ A., Miller E.F.
Jr. SMOTL - a System to Conﬁtruct Samples for Data Processing
Program Debugging. - IEEE Trans. Software Eng., 1979, vol. SE-5, No.
1, pp. 60-66.

11. Pozin B.A. A Method of Structural Test Generation for Programs.
- Programmirovanie, 1980, No. 2, pp. 62-69 (In Russian).
12. Hogrefe D. Automatic Generation of Test Cases from SDL

431
Specifications. ~ In: SDL Newsletter, 1988, No. 12, pp. 34-52.

13. Kristoffersen F. Conformance Testing Based on SDL
Specifications. - In: SDL’89: The Language at Work, North-Holland,
1989, pp. 257-266.

14. Bromstrup L., Hogrefe D. TESDL - Experience with Generating
Test Cases from SDL Specifications. - In: SDL’89: The Language at
Work, North-Holland, 1989, pp. 267-280.

15. CCITT : Specification and Description Language (SDL).
Recommendations 2.100. - CCITT Blue Book, - 1988, 199 p. .

16. Saracco R., Smith J.R.W., Reed R. Telecommunication Systems
Engineering Using SDL. - North-Holland, 1989, 633 p.

17. ARuzip3 A., Barzdip3 J., Bidevskis J., Cerans K., Kalnipd A.
Automatic Construction of Test Sets: Theoretical Approach. - This

volume.
18. Wirth N. Systematic Programming. - Prentice-Hall, 1973. -

19. Hoare C.A.R. Algorithms 65; FIND. - CACM, 1961, vol 4, No. 1,
p. 321.

20. Hoare C.A.R. Proof of Programm FIND. - CACM, 1971, vol. 14, No.
1, pp. 39~45.

21. Borzovs J.V., Urtdns G.B., Shimarov V.A. Program Path Selection
for Test Generation. - Upravlayuschie Sistemi i Mashini, 1989, No.

6, pp. 29-36 (In Russian).

22. Borzovs J.V., Medvedis I.E., Urtans G.B. The Segment Method for
the Solution of Systems of Equalities and Inequalities at Test
Generation for Program Validation. = Upravlayuschie Sistemi i

Mashini, 1990, No. 2, pp. 49-58 (In Ruséian].

23. Huet G., Oppen D. Equations and Rewrite Rules: a Survey. - In:

Formal Languages: Perspectives and Open Problems, Academic Press,

N.Y., 1980.

432

24. Futatsugi K., Goguen J.A., Jouannaud J.P., Meseguer J.
Principles of OBJ’2. - In: Proceedings of Principles of Programming
Languages, ACM, 1985.

25. Guidelines for the Application of Estelle, Lotos and SDL, Draft
Manual. - CCITT, Geneva, 1988, 347 p.

A
26. Stenning N.V. A Da%a Transfer Protocol. - Computer Networks,
1976, No. 1, pp. 99-110. i

27. Bergstra J.A., Heering J., Klint P. (ed.) Algebraic
Specification. - ACM Press, N.Y., 1989, 397 p..

28. Sato F., Katseryama K., Mizuno T. TENT: Test Sequence
Generation Tool for Communication Systems. - In: FORTE’S89,
Proceedings of 2nd Int. Conf. on Formal Description Techniques,
North Hollané,‘lQQQ,_pp. 1-6.

29. Chan W.Y.L., Vuong S.T., Ito M.R. On Test Sequence Generation
for Protocols. - In: Proceedings of the IFIP WG 6.1 Nineth Int.
Workshop on Protocol Specification, Testing and Verification, 1989,
North Holland, 1989.

AGGREGATE APPROACH FOR SPECIFICATION, VALIDATION,
SIMULATION AND IMPLEMENTATION OF COMPUTER NETWORK
PROTOCOLS

Henrikas Pranevitchius

Kaunas University of Technology
Faculty of Informatics
V.Juro 50, Kaunas, 2330028
Lithuania

ABSTRACT

The application of aggregate approach for the formal description,
validation, simulation and implementation of computer networks
protocols is considered in the paper. With this approach the above
mentioned design stages can be executed using a single mathematical
scheme. The method of reachability states is used for the validation
of protocol general properties, while individual characteristics are
analysed by the invariant method which enables to verify the
correctness of the invariant by protocol formal description.
Aggregative mathematical schemes are used in the specification
languages AGREGAT-84 and ESTELLE/AG applied in creating protocol
analysing systems simulation and wvalidation of protocols. Protocol
automated implementation method based on the specification language
ESTELLE/AG is presented. Formal description and results of alternating
-bit protocol validation and simulation as its speciffication in
AGREGAT 84 and Estelle/Ag are presented for illustration.

Introduction

The main function of computer networks software is providing
interaction of information processes realized in a distributed and,
as a rule, non - homogenous mediumm. The main part of this software,
namely, detailed system agreement and rules of interaction, realized

in computer networks is called the protocol.

SDL *91
EVOLVING METHODS

Proceedings of the Fifth SDL Forum -
Glasgow, Scotland, UK, 29 September — 4 October, 1991

edited by

Ove FERGEMAND
TFL
Horsholm, Denmark

Rick REED ¢
Coventry, UK /

/&aa/aqpﬁﬁ

iy, od
Wﬁ@m/ﬂ.ﬁ

#odk_

1991

NORTH-HOLLAND
AMSTERDAM + NEW YORK « OXFORD « TOKYO

302

ever, according to [7], service features in the telephone exchange systems should be
independent of each other, so they can be tested separately or in small portions.

Evidently, all the aforementioned applies only to the construction of test cases with 100%
coverage according to criterion C1. If, say, 90% coverage is satisfactory, then the | generatlon
of tests will speed-up several times.

7. ACKNOWLEDGMENTS

y
The authors would like to thank-Prof. Janis Barzdig§ and Prof. Audris Kalnig3 for the
setting of the problem and valuable suggestions.

8. REFERENCES

1 Hogrefe D. Automatic Generation of Test Cases from SDL Specifications. - In: SDL
Newsletter, 1988, No. 12, pp. 34- 52.

2 Bromstrup L., Hogrefe D. TESDL - Experience with Generating Test Cases from SDL
Specifications. - In: SDL’89: The Language at Work, North-Hoiland, 1989, pp. 267-
280.

3 Sato F., Katseryama K., Mizuno T. TENT: Test Sequence Generation Tool for Com-
munication Systems. - In: FORTE’89, Proceedings of 2nd Int. Conf. on Formal Descrip-
tion Techniques, North-Holland, 1990, pp. 1-6.

4 Bourgnet-Rouger A., Combes P. Exhaustive Validation and Test Generation in ELVIS.
- In: SDL’89: The Language at Work, North-Holland, 1989, pp. 231-245.

5 Holzmann G.J. Automated Protocol Validation in ARGOS: Assertion Proving and
Scatter Searching. - IEEE Trans. on Software Eng., vol. SE-13, No. 6, 1987.

6 Kalnins A. Global State Based Automatic Test Generation for SDL. - This volume.

7 CEPT Handbook on Services and Facilities Offered to the Subscribers in Modern
Telephone Systems. - CEPT, 1984.

8 LOTOS - A Formal Description Technique Based on the Temporal Ordering of
Observational Behaviour. - ISO DIS 8807, 1987.

9 Kroger F. Temporal Logic of Programs. - Springer Verlag, 1987 148 pp.

10 Barzdin J., Bicevskis J., Kalnins A. Construction of Complete Sample Systems for
Correctness Testing. - In: Mathematical Foundations of Computer Science, Springer
Verlag, 1975, pp. 1-12.

11 Clarke L.A. A System to Generate Test Data and Symbolically Execute Programs. -
IEEE Trans. Software Eng., 1976, vol. SE-2, No. 3, pp. 215-222.

12 Barzdin J., Kalnins A., Auguston M. SDL Tools for Rapid' Prototyping and Testing. -
In: SDL’89: The Language at Work, North-Holland, 1989, pp. 127-133.

SDL '91: Evolving Methods
O. Faergemand and R. Reed (Editors) H
© Elsevier Science Publishers B.V. (North-Holland), 1991 303

Global State Based Automatic Test Generation for SDL

A.Kalnip$

Institute of Mathematics and Computer Science
University of Latvia
Raipa Bulv. 29, Riga 226250, Latvia

Abstract
The possibility of automatic test case generation for SDL systems is considered. Methods

for optimal global state definition including not only process states but also essential
information on variable values are described. Based on these methods an algorithm and
its implementation for automatic test set generation for a class of protocol programs is
described. Test generation experience on sliding window example is shown.

1. INTRODUCTION

Automatic test case generation for ordinary sequential programs first became popular
in mid seventies [1,2]. A significant contribution in this area was made by research group
headed by prof. Barzdin at Latvia University [3,4,5]. While automatic test generation hasn’t
become an essential part of general software engineering, it has appeared to be very
significant for telecommunications systems described in SDL and other related languages.
Both theoretical and practical aspects of automatic test generation experience by Latvia
University group (including the author of this paper) recently have been reported in [6,7],
including also some SDL oriented approach.

The main idea of this paper is to carry over the experience obtained in automatic test
generation for sequential programs to SDL, especially the state concept.

In recent years the automatic test generation for SDL has gained significant popularity,
specially in protocol area [8,9]. This is due to large interest by practitioners, particularly in
conformance testing. Up to now SDL systems are mainly considered as collections of finite
state machines. So global state of the system is considered in general as a tuple of all process
states and internal queue contents. As states in SDL can be coded by finite set valued
variables and vice versa, at least some variables must be considered as part of the global
state, This paper focuses on the matter how to include the information on the variables
really influencing the behaviour (essential variables) in the global state while keeping the
state space as small as possible.

The other issue is test coverage criteria. It is assumed quite frequently that all global
states must be exercised thus leading to a state explosion. In this paper more attention is
paid to a "program-like" criterion C1 - to execute all branches in the system, clearly reducing

304

the search space. So the aim of the paper is to present a method yielding thorough
automatic testing for realistic systems on not very powerful computers.

There exist some similar approaches [10,11,12]. The closest is the PROTAN approach
[10] for systems described in Estelle. The main difference is that [10] gives no method to
decide what information on variables should be included in the global state. It is also
focused on reachability analysis, not on test generation. :

2. TESTING GOALS AND CRITERIA

It is very common to consider [8,10] that the testing of an SDL system is complete if
every global state (as a tuple of all process states) is reached. While it is reasonable in
reachability analysis for deadlock detection, it is not always so for ordinary testing.

So we propose to carry over the completeness criterion C1, widely used for sequential
programs, also to SDL. We say that a test set T (i.e., a set of external signal sequences) is
complete for the given system S with respect to Cl, if every executable branch in every
process (procedure) of S is executed at least once on some test of T. By a branch we
understand both input branch in a state and ordinary decision branch.

Testing in SDL can have two different purposes. On the one hand, SDL specification
itself should be tested as a program with manual checking of results. In this case criterion
C1 seems to be more appropriate. On the other hand, in conformance testing the SDL
specification is used as a reference model for an implementation of the protocol unit, in
this case much larger test sets are recommended.

The methods for practical test generation described in this paper can be used with
various criteria, only the termination conditions must be adapted. Certainly, the used
resources heavily depend on the criterion.

3. SUBSETS OF SDL WHERE AUTOMATIC TEST GENERATION IS POSSIBLE

In [6] various sequential programing languages are described where completely auto-
matic (algorithmic) test generation is possible (or proven to be impossible). We carry over
most of these results to subsets of SDL.

So we consider a subset of SDL with only simple predefined types (integer, character,
boolean) and statements including signal sending/receiving (with parameters, both internal
and to/from environment), simple assignments of type x1:=x2, x1:=c, decisions of type
x1<x2 (other relational operators and constants also allowed), other statements not
allowed.

The following list of results has been obtained:

1. For one process there is an algorithm generating test sets according to C1 (the process
is communicating with the environment only)

2. There is no algorithm generating test sets if two communicating processes and save
statement are allowed

3. n processes allowed, but no save - an algorithm seems to exist (not proven up to the

moment) \

305

4. n processes, save al]owed,.but there is a constant N such that any queue length never
exceeds N - algorithm exists (but the case itself cannot be deduced formally from syntax

restrictions
5. One process, with one-way counter z added (with statements z:=c, z:=z+1, 2<x) - no

algorithm exists

6. One process, with n timers and save added - algorithm exists (this result has been
obtained by K.Cerans already in SDL terms in [6]).

The above mentioned results show that in general completely automatic test generation
is possible only for quite narrow subsets of SDL. Nevertheless the methods used to obtain
the results, especially the notion of the global state, can be used in practice for much wider
classes of SDL systems.

So in the next sections we consider in general a large subset of SDL with only create,
import/export, view/reveal facilities execluded. Only specific state construction methods
are related to SDL subsets described in this section. There is also a semantic restriction
that no two statements in the whole system are executed simultaneously, so the execution
history of a system can be described uniquely by a sequence of events (path).

4. GENERAL PRINCIPLES OF GLOBAL STATE

All the results in the previous section, where algorithmic construction of test sets is
possible, are based on an appropriate global state concept.

The global state is some condensed information about an SDL system during its
execution, i.e., after a given sequence of statements W has been executed. The information
coded in the state should be rich enough to determine which future actions in the system
are legal.

Let us denote the state after execution of the sequence W by S(W). State concept is said
to be correct if from the fact that two execution sequences W1 and W2 in a system lead to
equal states, i.e., S(W1)=S(W2) there follows that both W1 and W2 have the same set of
possible continuation sequences. Only reachable states (emerging after some legal execu-
tion sequence in the system) are considered.

At the same time, in order to make the test construction algorithmic, the set of possible
states for every SDL system in the class has to be finite.

If there is a correct concept of state for the given class of SDL systems yielding finite
sets of states, then the set of tests for the given system M can be built the following natural
way, using the reachability graph [6]. We start with an empty initial state So (and mark it
as the "root" of the graph). Then we find a statement L1 in one of the processes of M which
can be executed in the given situation. So we construct the state S(L1) and add a new vertex
S(L1), connected by an edge to So . Now we have two vertices from which to continue the
process the same way. If a state S is obtained which already exists in the graph, no new
vertex is added, but an edge is drawn to the existing instance.

Let us give a small example (see Fig. 1). Let a system consist of two processes P1 and
P2.

The state concepts for various system classes differ in the way state S(W) is generated
from the execution sequence W. We assume the example to belong to the solvable case 4,

306

Process P1 ‘ Process P2

L2 > S1X) \ |_7> Y]
/% from ENY »/ N /» from PL #/
| L
13 < Xs > false L8 0]
/% to ENV »/
true

L4 < S200 L5< 4
/% to P2 %/ /% to ENV %/ Q2
1 ql ' ‘ ql

Block B

(11
ml? s

(54

Fig. 1. Example of a system

so the state will contain equalities and mequalmes between process variables and
(bounded) queue contents.

Initially P1 and P2 are in states q1 and q2 rcspcctlvely The first possible event in the
system is consumption of signal S1 from environment by P1 (statement L2). The state
contains only the statement labels L2;1.6. The only next event is execution of L3 by P1 with
two possible exits, exit true is assumed, yielding the state L3():X <5;L6. We stress once
more that the state does not contain the value of X, only the information on admissible
values of X. After sending the signal to P2 the state is L4:X <5; L6:queue(P2)=<S2(X)>.
Now the choice of continuations is possible, one of them is signal consumption by P2:
LA4:X<5; L7:Y=X. Fig 2. shows the initial fragment of the reachability graph.

307

LL; LB
|
L2; L6
T |
| I |
L3():X<5; LB L3(F):X>=5; L6
I |
L4:X<5; LB:queus(P2)={S2(X}>| <+
I |
L4:X<5; L7:Y=X =
|

LER]

Fig. 2. Initial fragment of the reachability graph

When more than one process can be active, all possible "schedulings” of actions should
be shown in the graph. It should be noted that in some cases inequalities are generated in
a more sophisticated manner.

To find a test a finite path in the reachability graph is taken. A system of equalities and
inequalities with respect to parameters of input signals is formed and solved. The solution
should exist by construction of state (as states are built only for executable paths, ex-
ecutability fact actually is coded in the state itself). In the example considered the only
inequality for the leftmost path in Fig. 2 implies that the parameter of S2 must be less than
5. Some set of paths covering the graph (in the sense of the selected criterion, in our case
C1) yields the complete test set.

5. METHODS FOR GLOBAL STATE REDUCTION

The number of global states in the reachability graph is quite large even for small
programs. To reduce the size of this graph we introduce two notions: essentially located
statemenis (ELS) and essential variables (EV). For sequential programs these notions were
introduced in [4], see also [6].

The set of ELS for an SDL system is a set containing at least one statement from each
loop in every process. The start and stop statements are also considered as ELS. The loops
in SDL programs are formed by both conventional control statements and state - nextstate
pairs, in the latter case, namely, the state is recommended as ELS. The main idea behind
the notion of ELS is that there is only a finite number of paths between ELS, there is no
infinite path without ELS.

For every ELS a set of EV is defined. A variable v is said to be essential for a certain
ELS if there is an execution sequence beginning with the ELS such that the value possessed
by the variable v immediately after ELS is used in some branching statement of the path.

308

The use of the value means that either the variable v appears in some decision statement,
e.g., v<9, (before a new assignment to v) or v is assigned to some other variable u which,
in turn, is used in branchmg The values could even be transferred by means of a signal to
another process and used in branching there.

There exists a formal algorithm (based on static analysis of process diagrams) to decide
whether the variable is essential for the given ELS. The version of this algorithm for
sequential programs is described in [6].

It should be noted that implicit SDL variables, i.e., signal queues and active timer sets
are EV in general. AW

With ELS and EV the size of the reachability graph can be reduced significantly (while
preserving the correctness of state concept). Now only the statement label tuples containing
one ELS from each of the processes are taken as vertices, only the information about EV
is coded in the global state. The set of tests is obtained from the graph in a similar (though
more sophisticated) way.

The reduction of state space is significant. So in the previous example the only ELS are
states ql and g2, no variable is essential except signal queues, the reachability graph
becomes trivial (consisting of one vertex).

The construction of the reachability graph is based on some kind of symbolic execution
of an SDL system (the notion is widely used for sequential programs [2,13] and defined
accurately for SDL by the author of this paper in [7]). Symbolic execution yields for the
given path the symbolic values of variables and path condition, a system of equalities and
inequalities expressing the condition under which the path can be executed. The informa-
tion contained in the state is obtained (according to the selected state concept) from
symbolic values of essential variables and from path condition.

6. FURTHER HEURISTIC METHODS FOR STATE REDUCTION

The selection of ELS may be restricted even more while still preserving the correctness
of state concept. We must keep in mind that the only requirement is that the length of every
path from one ELS to other must be bounded.

Further assumptions are valid only for a smaller subset of SDL (maybe specified not
completely formally). The subset is characterized by the following properties:

- parameters of external signals (i.e., signals sent from environment) are not essential

(i.e., they are not used directly or indirectly in decisions)

— the onlyvariables which are essential are either of counter type (i.e., using statements
like vi=¢, vi=v+c, vi=v-c, vl:=v2, vl <v2, vl1=v2) or variables with bounded set of
values (like boolean, enumerated types etc.).

There are no restrictions on operations with nonessential variables.

Nearly all popular protocol specifications belong to this class. Certainly, the first
restriction to be valid, protocol entities should be selected properly, in general, the
complete description of a protocol layer is to be taken.

It can be shown that for this class of SDL systems single loops of the form for i:=v1 to
v2 (actually expressed by normal SDL statements) cannot cause unbounded paths. So no
ELS must be taken from such loops, only Joop bounds (if they are not constants) are to be
taken as EV. For nested loops the abovementioned is not always true.

309

Likewise, frequently ELS are not necessary in loops caused by state/nextstate. It is so in
the case, when only "internal" signals are received in the state, and signals in the state are
not received from a process, to which signals are sent in the transitions of the state (i.e.,
there is no internal "signal loop" between two or more processes, not involving any external
signal).

The abovementioned heuristic methods (and some similar) allow for many protocol
specificatiins to take only states where external signals are received as ELS. The finding
of EV is as described before, but their values must simply be recorded in the state (because
there is no more economic coding for counters). In general, signal queues are EV, for they
influence signal branch execution. But in many cases a simplifying semantic assumption
can be made'that internal signals have priority over the external ones, i.e., no external signal
isreceived until all internal queues (certainly, not saved ones) are empty. In this case queues
for processes where states afe not ELS and no saves are contained are not EV and must
not be kept in global state.

So the global state space is not very large even for relatively long paths thus allowing to
generate tests for real protocol specifications. On the other hand, such a choice of ELS is
very convenient for implementation.

In the described heuristic approach the state correctness is preserved. At the same time
the finiteness of state set can be no more guaranteed, some other heuristic methods to
terminate the reachability graph construction must be used.

Let us note also that the nature of essential variables for the described class of SDL
systems makes the symbolic execution normally used in the state construction coincide with
the actual execution.

Additional heuristic idea to be used to reduce the state space is not to save completely
the values of essential variables v1,v2,..., but try to find functions f1,f2,..., such that state
with fi(vi) instead of vi is also correct and value space of fi is not large. Certainly, there is
no general method for finding such functions. i

7. IMPLEMENTATION OF AUTOMATIC TEST GENERATION

7.1. Implementation environment
The described methods for global state based automatic test case generation for SDL

systems are being implemented in RIGA-SDL integrated environment.

The earlier version of RIGA-SDL has been described in [14]. The current version is
implemented on IBM PC and has been in industrial use for nearly a year. The SDL version
used is SDL-88 [15] with the following differences. Pascal data types are used instead of
abstract data types, structuring facilities like subprocesses, block arrays, explicit loop
statements are added, some rarely used options like import/export are excluded. RIGA-
SDL has a unified menu based user interface. Tool components include graphical editors
both for blocks and processes, SDL to Pascal compiler with complete "graphic" error

-diagnostics, runtime kernel implemented in Pascal and supporting complete SDL seman-
tics (in simulated time mode). The debugging facilities include online/offline signal and
process activation trace analyzer and sequence chart generator. Testing environment
contains facilities for convenient external signal input both in interactive mode and from

310

test case files and for test result recording. The environment is specially oriented towards
large scale SDL specification testing and debugging.

7.2. Implementation methods *

The automatic test case generator is based on the existing SDL compiler, all the
necessary information about SDL system is extracted from its intermediate representation.
"The test generation facilities in fact will consist of two parts. One is static analyzer
determining ELS and EV. The other is global state graph generator and test case extractor.
For the moment only the second part has been developed, ELS and EV must be determined
manually. ELS which are states with possible external signal input are registered automat-
ically. The values of determined EV are either registered as they are, or by means of user
supplied coding functions.

To find the global state after some external input, the normal compiler gcnerated code
is used. Only a modified runtime kernel is used which stops the execution at the next ELS
and passes control to state generator. It also supplies on the request from the generator
the values of EV and other relevant information (process states, queue contents, active
timer sets). The state generator forms the current global state, compares it with the saved
state list and updates the list accordingly. The current branch of the state graph (tree) is
also recorded. The next external signal to be exercised is found by means of some heuristics
and passed to the execution system (it may also be a "time delay" instruction to let a timer
ring).

The automatic termination condition of state space exhaustion is not allways effective
as state space can be infinite. Termination condition "the completeness criterion C1 has
been reached" is also added. User supplied termination conditions can also be used both
in the form of a bound on search depth and a "cut-off" function for states with too large
variable values.

The last phase of the test generation analyzes the constructed graph and generates test
cases (external signal sequences with time marks). Some sort of test case minimization is
included. For the moment tests are generated as input files for RIGA-SDL testing environ-
ment, but TTCN [8] notation could be used as well.

8. EXPERIENCES IN AUTOMATIC TEST GENERATION

As the development of the test generator has been recently finished, only some examples
have been examined. One of them is the popular sliding window protocol [16,17,7]. The
, description given in [17] is slightly transformed to adapt it to Pascal data types used in
RIGA-SDL. The protocol description by the transmitter and receiver processes is not
changed, both window sizes are set to 3 for test runs. The medium description (with two
processes) is made completely deterministic by introducing external control signals deter-
mining medium impact on the current message/acknowledgement. So the set of external
signals contain UDTreq, MsgNorm, MsgLose, MsgCorrupt, MsgReorder, AckNorm, Ack-
Lose, AckCorrupt, AckReorder (plus the possibility for a timeout to occur). The protocol
is completely in the described class. EV for the sliding window contain the basic counters
(HighestSent, LowestUnacked, NextRequired) , reception tags for receiver window
(booleans AlreadyReceived;) and the explicit message and acknowledgement queues in

311

medium processes (with a user specified coding function). For criterion C1, with a user
specified cut-off rule for states added, 760 states have been constructed and 29 test cases
have been generated (with the maximum length of 7 signals). The test generation requires
40minutes on 12 MHZ PC AT for the sliding window example, the performance is expected
to be 'impr}oved after fine-tuning of the test generator. To compare the results, we have
imp]emenéed also algorithm from [8], where only process states and queues are included
in the global state. Much more states and test cases were generated, but not all system
branches were traversed. This is due to the fact that signal sequences of length 7 are to be
examined to reach C1 (with maximum branching at any point 10).

The other example examined is Kermit protocol, where a Cl-complete test set can also

be constructed.

9. CONCLUSl?NS

The experiments done so far have shown that automatic test case generation based on
fine tuned correct global state concept is quite acceptable in practice. The state sets
necessary to reach criterion C1 seems to be by order of magnitude less than those for
reachability analysis. Certainly, the testing goals are a bit different but program-like testing
is necessary also for protocols, moreover, some kinds of deadlocks can be fixed by our
methods during state graph construction.

Of course, many improvements can still be applied to the state generation described
here. The other future direction is to apply a proper symbolic execution during global state
construction. So a much wider class of SDL systems including telephone switches could be
covered. This approach (briefly sketched in [7]) requires powerful symbolic expression
simplification (possibly based on term rewriting systems). An alternative approach to test
generation for telephone systems is given in the other paper by Latvia University group

[18].

10. REFERENCES

1 Howden W.E. Methodology for the Generation of Program Test Data. - IEEE
Trans. Comput., vol C-24, pp. 554-559.
2 Clarke L.A. A System to Generate Test Data and Symbolically Execute Programs. -

IEEE Trans. Software Eng., 1976, vol. SE-2, No. 3, pp. 215-222.
3 Barzdins J.M,, Bicevskis J.J., Kalnins A.A. Construction of Complete Sample Sys-
tems for Correctness Testing. - In: Mathematical Foundations of Computer Science,

LNCS, Vol. 32, Springer-Verlag, 1975, pp. 1-12.
4 Bicevskis J., Borzovs J., Straujums U., Zarins A., Miller E.F. Jr. SMOTL - a System

to Construct Samples for Data Processing Program Debugging. - IEEE Trans.

Software Eng,., 1979, vol. SE-5, No. 1, pp. 60-66.
5 Barzdins J.M,, Bicevskis J.J.,, Kalnins A.A. Automatic Construction of Complete

Sample Systems for Program testing. - In: Proc. IFIP Congress, 1977, North-Hol-
land, 1977, pp. 57-62.

312

10

11

12

13

14

15

16

17

18

Auzins A., Barzdins J., Bicevskis J., Cerans K., Kalnins A. Automatic Construction
of Test Sets: Theoretical Approach. - In: LNCS, Vol 502, Springer-Verlag, 1991, pp.
287-360.

Borzovs J., Kalnins A., Medvedis I. Automatic Construction of Test Sets: Practical
Approach. - In: LNCS, Vol 502, Springer-Verlag, 1991, pp. 361-433.

Bromstrup L., Hogrefe D. TESDL - Experience with Generating Test Cases from
SDL Specifications. - In: SDL’89: The Language at Work, North-Holland, 1989, pp.
267-280. : :
Kristoffersen F. Conformance Tésting Based on SDL Specifications. - In: SDL’89:
The Language at Work, North-Holland, 1989, pp. 257-266. ,
Tienari M., Aaltonen K., Eloranta J., Keskinen J., Lehtinen K., Summanen L.,
Tapila K., Turunen I. PROTAN 88 - a Software tool for Verifying Communication
Protocols Specified with an Extended State Transition Model. - University of Hel-
sinki, Dept. of Comp. Sci., Report No. A - 1988 - 5, Helsinki, 1988, 65 p.

Sato F., Katseryama K., Mizuno T. TENT: Test Sequence Generation Tool for Com-
munication Systems. - In: FORTE’89, Proceedings of 2nd Int. Conf. on Formal
Description Techniques, North Holland, 1990, pp. 1-6.

Chan W.Y.L., Vuong S.T., Ito M.R. On Test Sequence Generation for Protocols. -
In: Proceedings of the IFIP WG 6.1 Ninth Int. Workshop on Protocol Specification,
Testing and Verification, 1989, North Holland, 1989.

King J.C. Symbolic Execution and Program Testing. - CACM, 1976, vol. 19, No. 7,
pp. 385-394.

Barzdin J.M., Kalnins A.A., Auguston M.L. SDL Tools for Rapid Prototyping and
Testing. - In: SDL’89: The Language at Work, North-Holland, 1989, pp. 127-134.
CCITT: Specification and Description Language (SDL). Recommendations Z.100. -
CCITT Blue Book, Volume X Fascicle X.1, 1990.

Stenning N.V. A Data Transfer Protocol. - Computer Networks, 1976, No. 1, pp. 99-

110.

“Guidelines for the Application of Estelle, Lotos and SDL, Draft Manual. - CCITT,

Geneva, 1988, 347 p.
Grasmanis M., Medvedis I. Approach to Behaviour Specification and Automated

Test Generation for Telephone Exchange Systems. - this volume.

YO lfln
0. Fmgemanr] md R. Reed (Editors) ’
© Elsevier Science Publishers B.V. (North-Holland), 1991 313

TEST SELECTION BASED ON SDL SPECIFICATIONS WITH SAVE
|
Gang LUO, Anindya DAS and Gregor v. BOCHMANN

Department d'iRO, Universite de Montreal, C.P. 6128,Succ.A, Montreal, P.Q., H3C 3J7,
Canada. E-mail:luvo@iro.umontreal.ca, Fax: (514) 343-2155.

Abstract
The signal SAVE function is one of the characteristics distinguishing SDL from conventional

high-level specification and programming languages. However, this feature increases the
difficulties of testing SDL-specified software. This paper proposes a method for developing
tests for system testing based on SDL specifications including the SAVE construct. It also
investigates the effects of the input queue of SDL.

1. INTRODUCTION

During the development of SDL, the first feature added to SDL which considerably increased
the difficulty of transforming SDL to CHILL was the SAVE construct[1]. However, the SAVE
function increases SDL's descriptive power considerably by providing a concise formalism for
expressing the indeterminate order of arrivals of input signals. Its presence raises a challenge in
testing SDL-specified software. Some initial efforts have been made to tackle this issue [2,3]; a
formal method was proposed in [2] and a similar framework was introduced informally
through examples in [3]. However they did not address the case where the SAVE construct has
several SIGNALS, a case which is quite common.

This paper investigates software testing based on SDL specifications when SAVE constructs
contain several signals. Our approach is to transform an SDL description containing SAVE to
an equivalent SDL description without SAVE which preserves the same relationship between
input signal sequences and output signal sequences. The testing methods for the finite state
machine can then be applied [4,5,6,7]. In the case of an SDL description which does not have
an equivalent finite state machine (FSM) without SAVE, an alternate approach is proposed.

Our approach assumes that the SDL description is a FSM with the SAVE extension. Such a
description can be obtained from a general SDL specification in the following fashion. The
variable extension can be eliminated by transforming conditions which cause branches at the
DECISION construct; the combinations of inputs and conditions can be used to create a FSM
with new inputs being the combination of conditions ‘and original inputs. The details can be
obtained from [3]. By ignoring parameters and other variables, we obtain a finite state machine
containing SAVEs and an input queue, which we call an "SDL-machine".

The rest of the paper is organized as follows. Section 2 is devoted to the fault model and
gives a brief introduction to the SDL-machine formalism. Section 3 investigates the relations
between SDL-machines and FSMs in order to adopt the testing methods for FSMs to test SDL-
machines. We propose an algorithm to transform an SDL-machine to an equivalent FSM which
preserves the input/output relation, For the SDL-machine which cannot be transformed to an
equivalent FSM leaving the input/output relation unchanged, another al gorithm is given to
transform it to a FSM which approximates the ongmal SDL-machine. Section 4 handles the
test case selection methods based on the results of section 3, and analyzes the test coverage thus

obtained.

mailto:E-mail:luo@iro.umontreal.ca,

The 6t International

Conference on
Software Engineering
and
Knowledge Engineering

- Co-Sponsored by
Knowledge Systems Institute
University of Latvia
University of Pittsburgh

In Cooperation with
IEEE Computer Society

Technical Program, June 21-23, 1994
JURMALA, LATVIA

GRADE Windows :an Integrated CASE Tool
for Information System Development

A Kalnin§, K.Podnieks,

A.Kilis, P Krastins§,
University of Latvia

Institute of Mathematics and Computer Science

I.LEtmane,

J.Barzdins,
S, S.Rozenfelds

A.Auzin

Rainis boul. 29, Riga LV-1459, Latvia

Abstract

The paper ~outlines the basic ideas of unified
specification language called GRAPES/4GL and
corresponding toolset called GRADE Windows. The
toolset is -aimed fo support all system development
phases including analysis, requiremenis
specification,design and implemntation.

" 1. 'Introduction ™ T

By integrated CASE tools (ICASE tools) we
understand computer aided system and software
engineering tools supporting all system development
phases including analysis, requirements specification,
design and implementation. It is a generally accepled
view that complex software systems, including
information systems, can be built only using ICASE
tools. The core of such tools is a specification language
on which all tool activities are based. High level
specification languages accepted in practice have been
developed - for “telecommunications “systems (SDL,
LOTOS, Estelle) and for process control applications
(e.g., STATEMATE). On the basis of these languages
the corresponding CASE tools have been developed
(e.g., SDT[1], GEODE[2], SPECS[3], STATEMATE[4]
et.al.).

However, in the area of information systems the
situation is much worse. There is no generally accepted
high level specification languages for this area. There
exist specification languages with slightly theoretical
bias (e.g., SPEC[5], SF[6]). However, it seems that up to
the moment they have not reached the status of real
industrial languages with full CASE tool support. In fact,
there are specification language elements present in

" some popular CASE tools, e.g., IEF[7]. yet the

——specificationr language-has not-obtained -the status of .__ .

independent and well-defined component in these tools.

*This work was supported by Software House Riga and
Infologistik GmbH, Munich

-

In recent years the research and development in the area
of specification languages and CASE tools has been
significantly tumed towards object orientation ([8], [9],
{101.)

If we look at the situation some years before
one of the practically most advanced languages for
analysis and design of information systems was
GRAPES-86 proposed by Siemens [11]. We started our
research and development three years ago with a goal to

_develop further the GRAPES-86 language and to build

the corresponding CASE tools. The research resulted in
the development of the language GRAPES/4GL as an
extension of GRAPES-86 and the corresponding CASE
touls named GRADE Windows. This paper outlines the
basic ideas of GRAPES/4GL language and GRADE
Windows tools (short description of GRAPES/4GL and
GRADE Windows is given also in [12]).

Several years ago, when we started our
developments, there existed already advanced CASE
tools like 1EF [7] (and many others). However, a
significant distinction of GRAPES approach was putting

“in the foreground the description of system structure and

its external interfaces (i.e., what messages enter the
system and what leave). In other words, GRAPES
approach is focused on system understanding from the
view point of incoming/outgoing information. At the
same time IEF approach puts in the foreground the
conceptual data model of the system and its databases,
around which applications are then being built. To our
mind, these are two principally different approaches each
having its own merits and flaws.

2. Basic Ideas of Language GRAPES-86

As it was mentioned in introduction, the basis
for GRAPES/4GL is Siemens Nixdorf system design
language GRAPES-86 [11]. This language united well
known diagramming techniques - data flow diagrams,
ER-models, graphic process descriptions into a coherent

Order no:

ORDER

——Custome o= [CTEITE] - Custone s name: [ETERIR]

-DATA

Date:

Quantity

Qty

ITEMS:

No Prouwet_no
nn prod_no
nn pred_no
?ﬁf prod_no
ﬁ prod_no

Qty
Qry
Qry

Total items:

TYPE REFERENCE:
SIZE: 15, 55
FIELD LIST:

- order_no, REQUIRED

’ Order_date, "TYPE DATE

item,

cust_no
cust_name, NOENTRY
ARRAY Items, 4 ROWS

nn = AUTONUM
prod_no, REQUIRED
Qty, REQUIRED
END ARRAY Items

graphic design -language. The main_paradigm of the
GRAPES language is a multilevel static system
structuring, and description of system behaviour as a set
of processes communicating via messages and
performing each own job in response to received
messages. :

Formally, GRAPES-86 uses a fixed set of
diagram types for system description :

CcD for system structure description;
DD - for graphic datatype definition;
IT - forcommunication description;
-ER- for Entity-relationship modeling (as a

standalone feature);

PD for graphic process/procedure behaviour
descriptions;

SD - for procedure/inodule interface
definition

DT for process/procedure local variable
definition.

A system in GRAPES-86 is described as a model
representing a hierarchy of the abovementioned

ocrder

55

Fig. |

_diagrams, the topmost one being a CD diagram. This
diagram hierarchy is called a model tree.)
However, GRAPES-86 lacks some important
features for system design description and doesn't
support actual implementation at all. The most
outstanding deficiencies are lack of user interface
description and missing data manipulation features.

3. Basic Ideas of Language GRAPES/4GL

GRAPES-86 is strongly oriented towards the
needs of system analysis and "coarse” design level. As a
result, if we follow the GRAPES-86 methodology, there
is a large gap between high level specification and
implementation in some target environment. The basic
goal of GRAPES/4GL approach is to reduce this gap as
far as possible. In order to achieve this goal we tried to
design the GRAPES/4GL language so that it can serve
both as specification and programming language. Hence,
we had to incorporate into GRAPES typical features of
advanced 4th generation languages, not "damaging" the
language features oriented towards specification. Such a

PH

Orders after :

ORDER

SURVEY

PRODUCT CODE

CUSTOMER Icus:_name.

== - T r—
CUST_NUMBER |cust_no|' - o -

QUANTITY AMOUNT

4 prod_name] |prod_no

R

|amount. |

CUSTOMER TOTAL

S_amoun t |

GLOBAL TOTAL

PT

TYPE REFERENCE: report_data_el

FIELD LIST:
cdate, TYPE DATE
e = . _ ARRAY

GROUP OF cust;né N
cust_name

cust_no

ROW

prod_name

prod_no

Qty

amount = price*qty, TYFE DECIMAL(9,2]

{price]
END ROW

° s”amount = SUM(amount), TYPE DECIMAL(Y,2]

END ARRAY

-+ END G'ROHP____.__ s B S .

unified language, valid for all aevelopnlenl phases, from

our point of view is an extremely significant component
of advanced CASE tools.)

. First of all, GRAPES/4GL has several new
types of diagrams when compared to GRAPES-86. The
most important of them are screen forms (SF diagrams)
and report forms (RF diagrams), serving as the graphic
basis for advanced. screen input/output and report
generation facilities, respectively. The other area of the
most impressive” extensions is PD diagrams, where
advanced facilities for form-based input/output and
database management are added.

56

= - 3 2§ R iy

Fig. 2

4. Screen Forms

First, we present a brief discussion of screen
forms (SF diagrams). In order to make their use easier, -
the typical subcases of man-machine interaction - data
input/output, fixed menu choice and selection from a
data list are represented by separate subtypes of SF
diagrams : /O, MENU, SELECT respectively. Each
screen form coutains the active elements - fields (items)
and the passive ones - texts, the fields being connected to
program data elements during input/output. Important
elements of forms are screen arrays, which are connected
to data arrays, lists or sets thus permnitting the
representation of large data objects via easy predefined
scrolling. The form sublanguage is closely related to data
type definition facilities,, thus on the one hand, covering
easily the traditional form generation in data base

management languages and, on the other hand, yielding
much greater flexibility due to broader data type
concept.
Fig.1. presents
GRAPES/4GL screen form.
However, these are not the screen forms

a typical example of

6. Data Base Facilities

Though GRAPES-86 already contains the ER
model concept, it is significantly extended on
GRAPES/4GL, and plays a much more important role.
The most significant extensions are nested entities and

-themselves _which__give_ a _significantly increased subtype entities._The graphic notation used for ER

~ input/output functionality, but rather their close
cooperation with I/O facilities in PD diagrams, which
actually connect data to forms. These facilities will be
described later in greater detail. But one important
feature must be mentioned on the spot. Namely, the
application-specific control of the data input or
modification process is ensured by advanced set of input
events generated by user actions. These events include
AT START, AT FINISH, KEY keyname, BEFORE
FIELD fieldname, AFTER FIELD fieldname, BEFORE
ANY FIELD, AFTER ANY FIELD, BEFORE ROW,
AFTER ROW, AT DELETE, AT INSERT.

The situation when an event occurs should be evident
from the event name.

5. Report Forms
novel elements than screen forms and are more
complicated in a sense. In addition to standard data
layout specification they contain built-in facilities for
row grouping and group break processing. Namely,
group headers and footers in the fornm layout part
together with the related grouping/ordering specification
in the field description part completely specify the
needed grouping in- most staridard cases. Computable
- form fields specified by expressions are used the same
way as in screen forms. Thus the corresponding report
generation- statements in PD. diagrams may be very
simple, as a rule, just presenting the data (a set of records
as a rule) on which the report is to be generated. Fig.2.
presents a typical example of report form.

However, it is much more difficult to have an
easy merge of standard report control mechanism with
non-standard additional printing related to some data
elements in the report. The solution is also presented for
this problem in GRAPES/4GL. Namely, a report form
also defines an event concept, a print interrupt in this
case. The print interrupt is defined at the corresponding
row in form layout (see the letter A in the example), and
invokes the actual interrupt during report generation,
when printing reaches this row. The application-specific
interrupt processing is described in PD diagrams, in a
very similar way to event processing during input/output.
The regular printing defined by the form in this row may
be freely- combined with any desired non-standard
printing in the corresponding event fragment.

57

models is that introduced by JMartin [13]. A new
graphic element is the notation for nested entities by just
placing them inside parent entities. Fig.3. presents a
typical ER model in GRAPES/4GL - a standard sales
department data base (with nested entities).

Order
PK order_no

item
PK item_no

refers_to
FK prod_no

is_placed_by
FK cust_no

places is_ordered_in

Product
PK prod_no

Fig .3

However, the main novelty is not in ER model
internal features, but rather in its broad and consistent
use, much deeper than one conceptual data model for a
system. CD diagrams in GRAPES/4GL contain an
explicit symbol for (passsive) data base, whose type is

. defined by the corresponding ER model. Access rights of -

each process to entities are described by special access
paths and tables. Relationships are explicitly used in data
manipulation, and their cardinalities serve as executable
data base integrity coastraints.

“The traditional way of system implementation is
to transform the conceptual ER model into relational
models describing actual data bases. GRAPES/ 4GL
approach is quite different, namely, to reference directly
the components of ER model in data manipulation
statements of PD diagrams (see some details later). Thus,
a complete continuity from design phase to

implementation phase in the data definition area is
obtained.

7. Extensions to PD diagrams

GRAPES-86 PD diagrams are more or less
traditional flowcharts from graphics point of view.

Grapes/4GL PD diagrams contain a number of
new elements. From the graphic syntax point of view an
important element is a staternent body. It is used to

(

INPUT new_order BY
NAME VIA FORM

— S VRN | Btttk N
—T _
ATFiNlSH AFTER FIELD
cust_no
LOCATE Customer
FALSE WHERE cust_no=new_order.cust_no
hv.d

J,

new_order.cust_name:=
Customer.cust_name

T—

group together repeated actions related to one statement.
One use of statement body is a more readable graphic
form for conventional WHILE and FOREACH lovops.
However, the main use of bodies is GRAPES/4GL

—-screen input/output_statements_based on screen_forms

described above. Now let us describe the screen input
- statement in greater detail (the graphic syntax for other
screen /O and for report generation statements is
similar).

Fig.4 presents an example of input statement for
entering data via the form from Fig.1. _

The statement consists of head and body. The
head of INPUT statement performs the connection of
fields from variable new_order (which is meant to be of
an appropriate record type) to equally named form fields
and it starts the statement execution. There should be an
array or set field with name items in new_order, which is
connected to the form array. The elements of the array
must, in tumn, be records with fields named like screen
array fields; thus the connection of data elements to
screen elements is performed up to the lowest level,
using this by-name principle. For the simplest case with
only default checks of entered data no body is needed.
However, as a rule, problem-specified data checks are
necessary. They are performed by means of event-related
fragments in the body. Each event activates the fragment

58

Fig. 4

starting with the corresponding event symbol. For
example, after the user has entered the field cust_no (i.e.
he presses ENTER for that field), the event fragment
AFTER FIELD cust_no is activated, which could, e.g.

_check whether such customer code is present in the data

base (in the entity-Customer). In addition the value of the
fonn field cust_nmne may be supplied from the entity
(by sitnple assignment to the corresponding field in the
variable new_order). The fragment terminates either
with CONTINUE (continue input) or EXIT (end the
whole statement) symbols.

Each event fragment is independent of others,
so it is more like a rule to be checked in the specified
occasion.

The other group of statements, worthwile to be
mentioned, is data manipulation statements. The
functionality of these statements completely cowers SQL
for the relational model. But their form seems to be more
readable since it is based directly on ER-model. In
addition, a based variable (in other words, automatically
dereferenced pointer) is defined for each entity in a data
base, and use of these variables seems to be easier than
that of SQL cursors. For example,

LOCATE Customer WHERE cust_no = 125
immediately gives access to the desired instance of
Customer entity (if there is such).

[} [11
{|Unchoose ...lllwithoui formlllFROM 1eX1 F}LEI} :

avejClosefCancel [~
Patte J@i(...] '
L . ing _ {{add pew clementl}” S
: gmmenthShortt) ¢ inpyt | J: INPUT = =

2} VvOrder BY NAME , K<variable>>] BY NAME , ...

Variables : {{Add new clement]}*
¢} VIA FORM order_data
K {|attributes: AT, COLOURSs, START, noCLOSE]}:
VDate
IR. vOrder

ZZZ

/ oMder_dam

Role name in relationships may be used for
easier specifications of joins (using an extended syntax
of SELECT expressions).

There is a lot of built-in functions and other
details in GRAPES/4GL, but they are of a more
technical nature to make the language a full-blown 4th
generation data base programuning language.

So to sum up, a language suitable for all
development phases, from system analysis via design to
implementation is proposed. Certainly, a subset of

___language facilities is used in each phase, but the actual

bounds of each subset very much depend on
development style and teamn individualities. For
example, screen forms may be used to specify
documents already in analysis phase (thus enabling early
prototyping), or they may be introduced as actual forms
during implementation.

Complete description . of
language is given in [14].

GRAPES/4GL

8. O_vcrview of GRADE WindowsToolset

The toolset contains the following components :

o graphic editors

. syntax analyzer

o language interpreter, supporting
prototyping, simulation and debugging

o code generator for target environment,

currently MS DOS or UNIX with
INFORMIX as a standard SQL
database.

59

Fig. 5

All components are supported by common
repository used for storing GRAPES models (diagram
hierarchy together with diagramns themselves). A lot of
cormunon functions are supported by the repository, e.g.
cross-referencing, supply of the lists of visible names
etc.

Now let us characterize the most novel features
of each component.

9. . Graphic Editors

The main objective of graphic editors in
GRADE is to support a graphic design and graphic
programming in a manner as easy and simple for the user
as the use of textual editors. To achieve this goal a lot of
innovative features have been incorporated in the family
of GRADE editors for all sorts of diagrams. Now let us
characterize briefly the most important of them.

« Automatic allocation of elements.
Editors support automatic allocation of diagram
elements, wherever it is reasonable. All this is done in a
fast and effective manner. At the same time the user can
combine the automatic allocation with a manual
allocation for diagrams where some special outlook is of
great importance. It should be noted that namely an
efficient combination of both styles poses the most
serious problems in editor design. Additional feature that
the user can select manually is the diagram element style
(colours, bold lines, shadows etc.)

Now let us be more specific for separate
diagram types. The automatic layout is the main style for
CD editor, however, the manual "prettydrawing"” is also

supported for these diagrams when needed. The same is
true for ER model diagramns. Process diagrams are
allocated automatically, with the possibility to compress
the layout afterwards.

The automatic allocation (for CD, ER editors) is.

based on special sophisticated graph theory algorithms

- (authors P.Kikusts and P.Rufevskis). These algorithms

are very fast and yield an allocation which is both
compact and easily perceivable from the user's point of
view.

« Syntax promptin

Several prompting mechanisms are present from which
the most remarkable is GRAPES/AGL PD statement
syntax prompter. It should be noted that GRAPES/4GL
PD statement syntax is rather complicated since it covers
all features typically present in industrial 4GL's. At the
same time it is very important for the user to start using
the tools without a long leaming period. A very
convenient prompting is supplied for each statement
allowing to enter the statement correctly as soon as the
idea of the statement is grasped. The proinpting is based

_on.a set_of predefined scenarios (generated from the

language grammar).

More precisely, the prompting proceeds in the
following way. First, all statements are grouped into
Jarge groups (according to the shape of their graphic
symbol):

Decision

Case

Loop :

Procedure.

Receive

Send - -
Assjsn_.__._____ o o s e s @
Screen input

Screen output

Report

Data manipulation

The user selects the necessary group via icon or
menu. Then the group is split into smaller ones using

submenus (formed as dialog boxes). At last the user has .

selected the specific statement type he wants to enter.
The prompter shows the general syntactic form of the
statement.

The user then fills in the placeholders in the
syntactic form or selects subcases of the statement by
clicking on the appropriate selection marked by a
representative keyword, e.g. [qualified] var BY NAME.

This immediately invokes the refinement of the
template yet to be entered. A special provision is
supplied for iterative parts of the statement
({add_new_element}*) where as many instances of that
part may be generated as needed. Whenever the
placeholder must be substituted by a defined name of
the appropriate name class (variable, entity, type etc.),

60

the visible names of that class are supplied. Thus even
inexperienced users can enter a statement completely
and without elementary syntax errors. Fig.5 shows an
_example of entering INPUT statement via syntax
prompter.

The same principle is used to enter complex
" built-in functions.

The experience shows that prompting is
principal for mcxpcncnccd users to have a quick start of
GRADE usage.

10. Syntax Analyzer

The syntax analyzer is the most conventional
component of all. It is implemented in a special compiler
writing language RIGAL [15] (developed by
M.Auguston and V.Engelson). Thus a high versatility
(due to frequent changes in language syntax during
development) and a high performance at the same time is
obtained. The diagnostic messages are displayed to the
user via the same graphic editors, in the case of PD
diagrams using the same syntax prompter. Thus a precise
ertor location and ease of correction is obtained.

11. GRAPES/4GL Language Interpreter

The language interpreter starts from the
intermediate code prepared by syntax analyzer. This sole
component is used for three related, yet different
purposes: rapid prototyping of systems, system
simulation for evaluating design solutions, and as a full-
scale debugger for GRAPES/4GL programming. Due to
this versatility a lot of execution modes has to be
supported. =

For prototyping and simulation, the process
concurrency present in GRAPES has to be simulated.
This is done in the most efficient way, completely
preserving the GRAPES concurrency semantics at the
same time (and allowing in addition for experienced
users to have some control over the process scheduling).

All GRAPES/4GL screen input/output and
report features are supported, thus an early prototyping
of system user interface is also facilitated.

There are special provisions for systemn
performance simulation. Though GRAPES/4GL is not a
special simulation language, the same functional models
with very little adds-on (like delay, workload etc.
specification) may be used for performance simulation.
Standard statistics are collected automatically in this
mode and are stored as special predefined entities in data
base. Thus special problem-related performance reports
may be prepared easily by few GRAPES/4GL
statements. The most commonly used statistics may be
displayed in diagrams by graphic edtors.

When using GRAPES/4GL interpreter as
normal language debugger, the main concems are ease
of use and complete semantic compatibility with the
generated code. Both these requirements. are _strictly
observed in the GRADE design.

12. CodeGenerator-— - -

Code generator starts with the same
intermediate code as interpreter, and generates C code
with embedded SQL statements. At present time the
code is for MS DOS or UNIX environments, with screen
input/output in text mode. INFORMIX data base engine
is currently used for SQL support (with an easy switch to
ORACLE possible). Code generator generates both data
base definition/creation statements (from ER models of
the data bases) and executable code for each independent
execution unit (process in GRAPES terminology) of the
system. The optimization level is sufficient for quite
large systems to be completely generated tn this way. In
case of need external C procedures may be linked in, e.g.
to support interfaces to already existing parts of the
system.

Complete description-of GRADE tools is given
in [16].

13. Conclusions and Future Work

The GRAPES/4GL language and GRADE tools
described in the previous sections are cumrently being
used for the development of several large information
systems.

-Currently the GRADE toolset is running in MS
Windows. - The minimum requirements for hardware
platforms are 386-based machine with 4dMB of RAM,
with full MS Windows 3.1 support. However, for
development of large projects 486-based machine with 8
or 16 MB of RAM is recommended. Then fairly good
response time is achieved for large system models
containing several hundreds of process/procedure
diagrams and large ER models with several hundred
entities.

Future perspectives of the GRADE development
include Windows GUI style screen forms as the main
extension of GRAPES/4GL language and support for
team development of large models with the repository on
network server.

Porting of GRADE to UNIX/MOTIF
environment is also planned. We have also plans to
incorporate OO ideas in the next versions of
GRAPES/4GL and GRADE Tools.

61

14.

11

12.

13.

14

15.

16.

References

J.Karlsson, A.Ek, " SSI - an SDL Simulation
Tool", Proc. 4-th SDL Forum, North-Holland,
1989, pp.211-219. '

V.Encontre, "GEODE : An Industrial
Environment for Designing Real Time Systems
in SDL" Proc.4-th SDL Forum, North-Holland,
1989,pp.105-117.

M.Dauphin, G.Fonade, R.Reed, "SPECS :
Making Formal Techniques Usable”, /EEE
Software, November 1993, pp.55-57.
D.Harel, et.al. "STATEMATE: A working
environment for the development of complex
reactive systems, "[ELEE Transactions on
Software Engineering, 16(4), April 1990, pp.
403414,

V.Berzins, Luqi, Software Engineering with
Abstractions, Addison-Wesley, 1991.

A.Berztiss, The Specification and prototyping

. language SF, SYSLAB, Report 78, Royal

Institute of Technology and Stockholm
University, 1990

G.Martin, Information Engineering Book 1-11-
III, Prentice Hall, 1991.

P.Coad, E.Yourdon, Object-Oriented Design,
Prentice Hall, 1991.

J.Rumbaugh, et.al.,, Object-oriented Modeling
and Design, Prentice Hall, 1991.

G.Martin, Principles of Object-Oriented
Analysis and Design, Prentice Hall, 1993.

G.He]d (ed.), Sprar,-'}:be_s_éhrefbrmg GRAPES.
Siemens Nixdorf, 1990.

J.Barzdins, et.al., "Unified Specification
Language and Integrated CASE Tools for
Information System Development”, Proc. Baltic
DB'94, May 1994, Vilnius (to appear)

G.Martin, C. McClure, Structured Teclhniques:
The Basis for Case, Prentice Hall, 1988.

Grade V1.0 : Modeling and Developnient
Environment for GRAPLS-86 and
GRAPES/4GL, Language Déscription, Siemens
Nixdorf, 1993.

M.Auguston, "Programming Language RIGAL
"ACM SIGPLAN Notices, Vol.25, N12,
December 1990, pp. 61-69.

GRADE V1.0: Modeling and Development
Environment for GRAPLES-86 and
GRAPES/4GL, User Quide, Siemens Nixdorf,
1993.

Extensions of GRAPES/4GL for Windows style input/output

- = A.Kalnipd
Institute of Mathematics and Computer Science

Abstract

The paper presents a short description of extensions
made to specification and implementation language
GRAPES/4GL in order to support Windows style
graphic user interfaces. Doth Windows style screen form
definition facilities and new fealures in process diagrams
supporting extended event processing and new control
patterns typical to Windows interfaces are presented.
Most of the GRAPES/4GL style proven valuable for
existing textual I/0 has been retained in the new version.

1. Introduction

A assive transition from textual interfaces to
Windows style graphic user interfaces is going on for
nearly all information systems in the recent years.
Consequently, the same is to happen for tools supporting
the infonmation system development. Tlie paper
describes how this transition is being performed in
GRAPES/MMGL specification and implementation

language and its supporting tool GRADE Windows [1].

"Onie popular approach in this area is represented -

by system development languages based on SQL servers
for Windows environmient, like Microsoft ACCESS{3] or
Gupta SQL [4]. The user interface sublanguages in these
systems comply - to -Windows standards, but are
completely SQL table based on the other hand. Simple
table-related screen fonns and their support logic can be
generated very quickly this way, but it is not so easy to
obtain more general and sophisticated graphical user
interfaces by these means.

On the other extreme, there are object-oriented
developinent interfaces above the standard MS Windows
API, like Borland's Object Windows for Pascal [5] and
Object Windows for C++[6]. Though these interfaces
significantly simplify the application development when
compared to standard API based tool kits, that approach,
though universal, is still too complicated to be used on a
broad scale for infonnation system development.

The main objective during the design of
graphical user interface facilities in the new version of

____Rainis boul.29, Riga LV-1459, Latvia

GRAPES/4GL (called GRAPES/4GL-W in the paper)
was to find a compromise between the two above
mentioned extremes, or in other words, to define a
language simple enough for standard cases and f(lexible
enough for sophisticated user interface definitions really
appearing in information systems. The major goal was
also to aintain the continuity with existing
GRAPES/4GL text based user interfaces, to facilitate a
semiautomatic conversion of these interfaces to graphic
style. :

The paper describes the graphical screen form
definition sublanguage based both on CUA standards [7]
and UNIX/Motif environment Style guides [8]. The

* available atiributes of forms and their. elements_are

specially tailored to the needs of information systems.
Properties required to define, e.g., or full scale graphic
editor are intentionally omitted as too complex.

Then the GRAPES/4GL-W statements to be
used in process diagrams (PD) for controlling the screen
forms and relations of these forms to data (the widely
used GRAPES/4GL connection principle) are described,
as well as broad facilities for describing reactions to
events generated by users interacting with the forms on
the screen. Namely, the event processing is the most
essential partof Windows programming, and it is where
a lotof innovative features have been incorporated in
GRAPES/4GL-W . A short description of more technical
features like statements and built-in procedures for
updating the fonin and element attributes is presented,
but the role of these functions is significantly less
significant here than in, e.g., Object Wihidows [5).

2. Graphic Screen Forms

Though graphical user interface elements are
strongly determined by documents such as CUA
definitions [7] and Motif style guides [8],
incompatibilities in these documents leave sotme room
for choice. In GRAPES/4GL-W namely those elements
have been chosen, which are supported by all Windows
style environtnents, and which are of some significance
for information systems. New elements in

GRAPES/AGL-W are combinations of the standard ones
and represent a typical building blocks of user interfaces.

It should be mentioned that some influence in
the selection of elements bas come from the product
Dialog Builder being developed by Siemens Nixdorf [9].
That approach also has a goal to unify different

Windows environments, though it has no_sufficient _

orientation towards infornmation systeins.

2.1 Scrcen Form Types in GRAPES/4GL-W

Like in GRAPES/4GL , screen forms are
defined by diagrams of type SF, however with
completely new subtypes.

‘The main division of forms in GRAPES/4GL-W
is into mon-modal and modal ones . The non-modal
fonns are normally called windows and have the
property that one application may have several windows
open simultaneously with the possibility for the
application user to select which window to interact with.
Modal fonns are often called dialog boxes also, and only

the current one of them may be accessed by ‘the user.’

Non-modal forns are further divided into the following
subtypes:

- main windows (with subype name MAINWIN).
There may be only one main window per
application, it is open for the application's lifetime
and controls all other forms of this application, its
closure tenninates the application.

- start windows (with subtype name STARTWIN).
Start window is displayed at the beginning of

application execution (visually before the main

window) in order to present e.g., the company's
logo or some animation. There are special closure
agreements for this type.

- windows
ordinary windows for exchanging the information
with the user, there mnay be many windows open in
‘the same application, including instances of the
same form. The user may manually select the
window for interaction. p

- subwindows (with subtype name SUBWIN). They
are used to structurize complex window definitions
with large number of elements. Each subwindow is
described by independent SF diagram, but actually it
is a fixed part of parent window, represented by
subwindow reference in it.

Modul forms (with subtype naune DIALOG) in
GRAPES/4GL-W remind most closely the previous VO
formns in GRAPES/4GL. The user can cominunicate with
only one modal fonn at a time, and that must be closed
before another one may be accessed. Modal forms are

(with subtype name WINDOW) are -

-2
(3]

normally used for input or modification of limited
amount of data. It should be noted that other
GRAPES/4GL forin subtypes (SELECT, MENU) have _

‘become just elements of GRAPES{4GL-W forms.

2.2. Form Elemcnts

GRAPES/4GL-W. forms consist of elements.
Only three kinds of them: fields, texts and field arrays
are actually inherited from previous GRAPES/4GL form
elements, the other ones are implied by Windows GUI
standards. Elements are of two types: data elements used
for data input or output and command elements used to
generate events related to user activities. Data elements,
in turn, are active ones, which may be used both for
entering and displaying data, and passive ones, which
may be only displayed.

The active data elements are:

- field (for elementary data I/0 of any type,
- listhox - for selection from a list,
- combobox - for data selection or entry,

- scroller - fur sclccliou of a numcric value within a
range, ' -
- radio button group - for selection of a value from a
set,
- checkbox group - for setting a group of flags,

- field array - for /O of an array of rccords

The passive data elements are:

- fext - for display of texts,
- bitmap - fur display of graphic biunaps,
- druwing area - for - display of graphic
information via special dmwing functious,
--sfatus line - for displaying status messages,
. - frame-.__ ___ visual element (line or.rectangle)

for frauming other elements.

The ouly element not traditionally proposed by
Windows standards is field amay. It has the sane
structure of equal rows of fields as in GRAPES/AGL,
ouly a scroller is added for moving the visible part of a
larger data aray, list or set. All active data elements are
meant for connecting them to variables or their parts at
1/O statemnents, thus the proper data I/O occurs via these
elements. Listbox and combobox elements actually have
two subparts: the ITEMS subpart (referenced via special
syntax listbox_name:ITEMS) for displaying a selection
list'and the selection subpart named as the element itself
for returning the selected value(s).

Passive data elements are used normally as
fixed decorative elemeuts whose values are set by
special functions. For example, texts may be changed,
one of several bitmaps made visible, and so on.

Customer name Company

-
Number Street

City O new

gg T Q waiting
city O registered
city registere
city
city
city

DIALOG cust_reg,
.. POSITION=(65,72, 473, 294),
"TITLE="Customer Registration Form", - ST
AUTORESHOW,
TYPE REFERENCE = cust_reg_t BY STRUCTURE;
ELEMENT LIST
FIELD cname, POSITION=(63,33), REQUIRED:
FIELD company POSITION=(362,33), REQUIRED:
TEXT T1l, POSITION=(48,9), VALUE="Customer name";
TEXT t2,POSITION=(255,9), VALUE="Company";
GROUP caddr
FIELD no, POSITION=(14,86,53);
FIELD street, POSITION=(118,86);
LISTBOX city, POSITION=(18,136,177,135);
TEXT t3, POSITION=(14,67), VALUE="Number";
""TEXT t4, POSITION=(118,67), VALUE="Street';
TEXT t5, POSITION=(21,117), VALUE="City";
FRAME fl, POSITION=(4,64,218,220); ’
END GROUP caddr;
RADIOBUTTONS status, POSITION=(262,107),
: ORLENTATION=VERTICAL,
RBUTTON LIST :
RBUTTON bl, VALUE=new, TITLE="new";
3 RBUTTON b2, VALUE=wait, TITLE="waiting":
RBUTTON b3, VALUE=reg, TITLE="registred";
END RBUTTON LIST:
BUTTON OK, POSITION=(246,238), TITLE="OK", DEFAULT:
BUTTON Cancel, POSITION=(346,238), TITLE="Cancel";
END ELEMENT LIST;

Fig.1

203

The command elements of GRAPES/4GL-W
are
- button - standard Windows button,
- pull-down menu - a menu element of the window
positioned according to Windows standards,

- popup-menu --a command list_which_pops up wheu _

right fmouse button is pressed,

- accelerator - a key combination used as a shortcut for
other command element.

It should be noted, that according to Windows standards,
GRAPES/4GL . menu forms are to be transformed in
GRAPES/4AGL-W either to pull-down menu elements of
some window, or to pop-up menus appearing on user's
demand. .

A special element of a window is reference to a
subwindow which is described in a separate screen form.

Yet another special element is group which has
no graphic appearance, but only defines a list of
elements (or other groups) contained in it. Group is
introduced to facilitate structured data connection to SF
elements and common actions with several elements.
Group concept is an analoguc to record concept in data
type definition. .

Each form-element has a name, which tnust be
unique in the form (or comprising group, if there are
groups defined). Elements are referenced by their names,
which may be qualified (by group names).

2.3. Form and Element Attributes

The form as a whole and each of the elements
has attributes- which specify both the graphical aud

- logical properties of it._The graphical attributes like x-,

y-coordinates, height, width, colour, border etc. actually
are implied by Windows standards. A -number of logical
attributes are induced by GRAPES style of interaction
with elements and they are cotninon to all eleinents, like:
visible, enabled, ' autoreshow, required, helpid. These
attributes determine the rules of entering thé element
value by user or the rules of displaying the value. Each
type of element has also its specific attributes. For
example, field, in addition to above mentioned, has
atributes defaull, expression, font, -word-wrap,
alignment, password, multiline, maxlen, type. These
attributes partially are inherited from GRAPES/4GL and
partially imposed by Windows standards (on Edit
control, which is the same).

Each attribute has a specific value range,
mainly integer or yes/no, however for some attributes
larger fixed value sets or string type values apply.
Auribute values for the form and its elements are
mainly defined at creating the form diagram via the
appropriate GRADE editor. However, some logical and

204

even graphical attributes may be changed by special
statements and functions during execution, for example,
field may be moved or resized, it.may be made
visible/invisible, enabled/disabled, required/optional.

The main objective in definiiig the attribute set
in GRAPESMGL W Ims beeu to make as mucll
as possible, in ordcr to simplify lhc corresponding PD
diagrams.

As in the previous version of GRAPES/4GL, SF
diagramns contain the graphic layout paut and textual
description part where attributes of the form and all its
elements are visible. If an attribute is not present in the
description, it has the default value. The four
geometrical attributes: x,y, width and height are gouped
together as position attribute in the textual form. The
presence of a yes/no type attribute ineauns the "yes” value
for it, with "no" values coded by the corresponding
"opposite” keywords. Fig.l shows an example of
GRAPES/4GL-W screen fonn - a modal form, as it will
be entered by next version of GRADE editors.

3. Input/Oulput Statements in GRAPES/4GL-W.

The main concern in /O statement design has
also been the balance between the simplicity and vast
possibilities of form behaviour typically to be found in
Windows environment. The main idea was to preserve
general mechanisms in GRAPES/4GL - the connection
of data to fonns by major input/output statements and
processing of input/vutput details in event fragiments, in
rcsponsc to events genented by user actious.

3.1. Main lnpub"Outpu{ Stdlecnts

Modal forms in GRAPES/4GL-W have in
general the. same interaction logics as 1/0 forms in
GRAPES/4AGL. Therefore the sune INPUT, MODIFY
and DISPLAY statements are retained in GRAPES-4GL.-
W for modal forms. The statements open the form and
connect data to for elements. When the user has ended
the data modification or entry, and has pressed the OK
button, the statement is also ended. Fig.2 presems the
simplest example of how the new value of
customer_record variable (cusi_rec) is entered via the
screen form in fig.1. Here cusi_rec is assumed to have
record type with fields cname, company, caddr, status,
with caddr being a record in turm with fields no, street,
city.

&

)IN PUT cust_rec BY STRUCTURE,

city_set TO city.ITEMS
VIA FORM cust_reg

Fig.2

The statement looks much like as in previous
GRAPES/4GL version, except that new connection type
BY STRUCTURE is used instead of BY NAME (due to
the fact that the form has a group) and the special syntax
for setting the value of ITEMS list of the city list box.
The details of the extended connection concept in
GRAPES/4GL-W are presented in the next subsection.
Two exits of the statement comrespond to two possible
buttons for ending the input.

However , it is not very typical in Windows /O
style to have no event processing for an input. Event
processing may be done either in statement body, as in

Due to several subtypes of windows, there are
several typical cases of SHOW usage. First, it is very
typical in Windows application, that the corresponding
process has the simplest structure depicted in fig.3,
containing . only . SHOW__for the applications main
window - the form mainwind.

SHOW mainwind
WITH mainproc

X

I':g.':'

GRAPES/4GL, or in the special event procedure (which - - - - -

actually is a remote body, witlr soine extended features).
The event processing mechanisms are described in
detail in 3.3,

Thus, the complete syntax of statements for
modal screen forms is:

{INPUT | MODIFY | DISPLAY}

connection_list

VIA modal_screen_fonn_name

[WITH event_procedure [(paran_list)]]

The last option is used to reference the event procedure
(the remote body), which may even have its explicit
parameters (e.g., when common event procedure is uséd
for several statements relying on the same screen form).

The statement names express the sume
traditional semantics from GRAPES/4GL, however, the
differences are no more so significant (input inay be
more freely mixed with output in Windows style).

Non modal forms, i.e., windows, have a
completely new interaction logio for GRAPES/4GL.
They remain opened for a long period of time, and, what
is more essential, there'may be several windows for an
application opened simultaneously, with the possibility
for thé user to select the window he wants to interact
with. Thus a new element of quasiparallelism is
introduced, since the bodies (or event procedures) for all
the open windows must be ready to work. When several
windows of the same type are open (e.g., to process
several related documents of the same type), there must
be instances of the event procedure, each having its own
data. Due to all this, a new
introduced for windows,

statement SIHOV is

205

All the re.xl job done by lhe appllcatlun is performed by
the event procedure mainproc, which responds to events
invoked by user activating the control elements of the
main window - selecting menu items, pressing buttons
etc. Each of the responses certainly may be as
complicated as necessary and invoke any other /0. The
structure of the process may obviously be alsv mwre
complicated and some preparatory and conclusive data-
related activities may be present before/after the SHOW
statement. However, any I/O related activity must be
within the event procedure. It should be noted, that a.

" typical Motif application has no-main program atall, itis_

just a "pile of call-back-routines”, a style, which seemns
not very appropriate for GRAPES/4GL.

If the start window is to be shown bLefore the
main one, the corresponding SHOW statement is to be
placed in AT START event of the main window.

The most complicated forin of SHOW statement
is used for (simple) windows, several of which may be
open. The full form of SHOW statement is:

SHOW [connection_list IN]

non_modal _screen_form_name

[WINID winid_var]

[WITH event_procedure_name [(p.l.r.tm list)])

{FOR duration_expr]

[NOCONTINUE]

The connection_list is the saune as for modal forms, but
it is used only if the window actually has data elements.
Window identifier is used if there is a need to reference
one of several open instances of the same window form
(otherwise the form niume is sufficient for reference to

the window). The usage of event procedures is the same
as for INPUT, but it is even more typical here due to
typically larger event processing (however, event
processing in body also may be used). FOR-expression
may be used for windows to be visible for a limited time.
The NO 'CONTINUE option (which is by default for
main window) tells the statement to wait until the
window is closed aiid only then proceed fo the next
statement. However, without this option the window is
opened, event procedure (or body) instance is activated
and just after this the next statement is started, thus
allowing, e.g., the same SHOW statement to be executed
once more after a while,

3.2. Conncction Principle

As it was already mentioned, the connection
principle of GRAPES/4GL is taken over and extended to
cover the new forn features also. The principle lies in
the following that an appropriate variable is connected to
each element of the form by connection list of the
input/output statement. This connection, in general, lasts
while the-statement is- executed (or:-window- is open for
SHOW statement). Very typical case is that one record
variable is counected to the whole form, with record
components connected to the corresponding elements, as
it was demonstrated in fig.2. To explain the connection
more closely, the type structure of variable cust_rec
(used in fig.2) is presented in fig.4.

cust_reg_t

cname
STRING[20]
vl STRING[20] e T
caddr — i
- —-—--——-—-—I addresst ,
5 no
1 I INTEGER |
' sireet
STRING[15)
I

Fig.4

e

If we consider once more the screen form, with the group
caddr in it, it is easily observable that the structures of
the form and record type are isomophic, with elementary
record fields corresponding to form elements, and
subrecord to group. Just to represent this very typical

situation, a new conmnection type BY STRUCTURE is
used in the example in fig.2. Certainly, the BY NAME
option as in GRAPES/4GL ‘may also be used. The

 difference is, that BY NAME" comnpletely ignores
subrecords on the one side, and groups on the other,
while BY STRUCTURE takes them into account. In the
be used as well, since all elemnents are unique formwide
liere, but it is not always the case, B)

Variables and their parts may be independently

connected to separate elements also. In that case, the
same BY NAME, TO and FROM options may be used as
in GRAPES/4GL. However. element names .may be
qualified by group names, e.g., city]l FROM caddr.city.
For BY NAME option, additional {TOIFROM}
group_name clause may be used, 1o indicate the desired
group if the element name repeats in the form, for
example, nol FROM caddr BY NAME. It should be
noted that group names also may be qualified (in case of
nested groups), and {TOIFROM} group_name clause
may be added for record connection also, before the BY
NAME or BY STRUCTURE clause.

- Now ~ some¢ words about thé elementary

" connection to form elements. Any elementary data type
may be connected to field, combobozx, single selection
single column list box. Numeric types may be connected
to scroller, and enumerated types or lypes with defined
VALUE_SET attribute to radio button group.

List, array or set (of records) may be connected

to field array. The same is true for listbox: ITEMS of a
multicolumn list box, while list, array or set of
clementary-typed elements must be connected to
combobox: ITEMS. List or set may be connected to
multiselection listbox. Apparent integrity rules apply for
objects™ connected _to” listbox and listbox:ITTEMS
respectively (the same is true for combobox). It should
be stressed that list box: ITEMS nomally is connected
by TO option, even in INPUT statements, since that
connection always is of display type. We conclude with
the remark, that a special CONNECT statement is

. introduced in GRAPES/4GL-W to change connection,

e.g., inside SHOW statement.

3.3 Events and their processing.

~ As it was mentioned in 3.1, Windows style
input/output is highly event based, and GRAPES/4GL-W
provide a lot of new features f[or event processing. The
event concept per se is the sume as in GRAPES/4GL,
only the event list is significantly uppgraded and new
event management mechanisms introduced.
The statement body as a container for input
event processing remains valid also for GRAPES/4GL-
W. However, since the body could become enormous

206

and contain the whole program (see example of fig.3), a
new concept of event procedure is introduced. It is a PD
diagram of new subtype EVENTPROC. Its syntax is

_similar to existing MACRO subtype, in the sense it

contains disjoint event fragments. However, the diagram

of type EVENTPROC is also similar to procedure, in

that it may | have its local DT and SD (formally it has SD
always, but there may be also nontrivial SD™ witl
- parameters).

An event procedure is referenced in WITH
option of the comesponding /O statement, in thaf case
the statement may have no body, since all event
processing is then done in the event procedure. Event
procedure may also be activated by CALL slatement in a
body or other event procedure, then the relevant event
processing is delegated to this subordinated event
procedure (some restrictions apply to this case, see later).

Variable visibility within event procedures is
the standard one for GRAPES/4GL. Event procedure’s
DT describes its local data, with lifetime of the statement
execution (for modal forms) or of the corresponding
window lifetime (for non-modal forms). Each event

-~ procedure instance for an open-window has also its own -

- instance of the :local data (the subordinated.-event
procedures bebave cosrespondingly). Certainly, if some
process data are connected to a window in SHOW
statement, no instances of that data are generated. To
save these data in the local instance, event procedures
with formal parameters are to be used. Parameters also
have the lifetime of the instance (i.e., they are copies of
actual parameters). Actual parameters may be supplied
explicitly in WITH option, but an additional
arrangement is provided also. If parameters are specified
in SD, but not in WITH option; data elements from the
connection list are taken as actual parameters (in their
natural order, disregarding BY NAME, BY
STRUCTURE, TO, FROM options). =6

Another (and a very traditional for Windows)
possibility is to obtain necessary data for a window

- 1s. defined for

The following events are defined for any forn
(imodal or non-modal):

AT START

AT FINISH

AT START occurs after the form is opened, AT
FINISH when it is to be closed. If AT FINISH ends in
CONTINUE, closing is postponed (an eqqulenl lo
- Windows CanClose returning false).

For windows, two events related -to obtaining
focus/loosing focus are defined:

BEFORE FOCUS

AFTER FOCUS

A group of events is related to form elements.
All active data elements define events:

BEFORE element_name

AFTER element_name

AT CHANGE eleinent_name

DOUBLE-CLICK element_namne

Before- and after-events are related to input
focus moves, AT CHANGE is invoked by value change
of any type. For elements with keyboard input, an event

AT INVALID DATA element_narne
programming - application-specific
corrective actious. For field axy there are two specific
events:

AT INSERT element_nune

AT DELETE element_name

For command element, only the event

ACTIVATED element_name
is defined. A qualified element_name may be used, e.g..
for multilevel menu items.

There is a special event for any element (or
group)

: EVENT FOR element_name

- used only- for structuring the event .processing. Only a-

call to subordinated event procedure may follow this

- event (and this is the only placc where-such a call may

instance during start event processing, store them in

local variables of the event procedure, and connect them
to visible elements using CONNECT statement(see 3.4).

The event fragments in general look like those
in GRAPES/4GL. They start with event symbol
specifying the event, e.g., AT START, AFTER cname,
inay coptain any GRAPES/4GL-W activities including
nested /O, and end with either CONTINUE or EXIT
symbols. CONTINUE just ends the fragment, while
EXIT ends the whole statement (or closes the window,
respectively).

The event types roughly correspond to Windows
messages (Motif callbacks), however, only those of
sufficiently high level and relevant to information
systems are included. Thus, actually the type list is not
so different from GRAPES/4GL.

207

be). Then any event processing for the given eleinent is
delegated further.

Some auxiliary events may be used’
coordinate and control several open windows. They are:

MESSAGE message_name [INTO variable]

TIMER timer_name

AT duration_expr IDLE

Messages are sent and tiiers are set by special
new modifications of GRAPES SEND statement (for
sending inter-window messages and setting local (clock-
based) timers).

3.4. Special Statements and Functions'

From the vast number of functions and
procedures, used in Windows to control forms and
elements, not so many are actually needed in
GRAPES/4GL-W. This section presents only a brief

overwiew of special statements and functions in
GRAPES/4GL-W.

NEXT statement is used for forced move of
input focus to form or element. The statement
MAKE ELEMENT element_name attribute_list is used
to change element attributes of type yes/no e.g., to make
_element_visible/hidden, enabled/disabled etc.- Attributes -
of a group of elements may also be changed.

MOVE and RESIZE modify the gcome!m,
attributes of forms and elements. -

The RESHOW statement is used for forced
immediate reshow (i.e., of updating the visible image
according to the connected value) of an element or form.
It is used when automatic reshow is not sufficient.

The statement CONNECT connection_list is
used for changing or setting the element connection
inside body or event procedure, e.g., for changing the
selecnon list in listbox: ITEMS.

Special functions and procedures are mainly
used for changing the (partially entered) element value
while input focus is still on the element, or obtaining
some speclf c all.nbutc va!ues Somc typlcal samples are
" functions: 5

GET_ VALUE (ﬁeld namc) strmg

GET_CURR_POS (field_name): integer

GET_SEL_POS(field_name) : integer

IS_VALID (field_name) :boolean

and procedures

SET_VALUE (field_name, string)

SHOW_STATUS (string)

etc.

The complete list, though small when compared
to Windows, cannot be presenied here for the sake of
place. S

4, Conclusions

Extensions of GRAPES/4GL language for

supporting the Windows style graphic user interface .

have been briefly described in the paper. They require no
significant changes in the kernel of language. The new
extended version of GRAPES/4GL (GRAPES/4GL-W)
is to be supported by GRADE Windows toolset [1] by
the end-of the year. The most significant effort will be
necessary for the design of new screen form editor,
where a lot of services are to be built in, e.g., for
automated element /group structuring basing on a record
type definition. The /O part of the prototyper/debugger
is also to be redesigned, and code generation will
certainly support the MS Windows target environment.

5. Acknowledgements

I would like to thank Viktors Supe for numerous

~ discussions arid suggestions during this work.

6. Refercnces

208

1.

J..Barzdins, A.Kalnins et. al. GRADE Windows : an
Integrated CASE Tool for Information System
Development, this volume.

GRADE V1.0 Modelling and Development
Environment for GRAPES-86 and GRAPES/4GL,
User Quide, Siemens Nixdorf, 1993.

Microsoft Access Step by Step, Microsoft Press.

1993

SQL Talkl\Windows. ~ Users Guide. Gupta
Technologies Inc, 1990.
Object Windows. Programming Guide. Borland

Intemnational Inc., 1992.
Object Windows for C++. Users Guide. Borland

.- International Inc., 1991.

Systents Apphcarwns Architecture Common User
Access. Advanced Interface Design Guide. 1BM,
1989.

OSF/MOTIF, Style Guide.
Foundation, Prentice-Hall, 1991.
Dialog Builder/Windows V2.1. Benutzerhandbuch.
Siemens Nixdorf, 1993.

Open Software

lan's DNarzclin
PROCEEDINGS /é / /5 S

The 7" International
Conference on
Software Engineering
and
"Knowledge Engineering

Sponsored by

Knowledge Systems Institute (Founder and Organizer)
The Johns Hopkins University Applied Physics Laboratory
University of Pittsburgh

In Cooperation with
ACM (SIGSOFT)
IEEE Computer Society (TC on Software)

Technical Program, June 22-24, 1995
Rockville, Maryland, USA

RULE-BASED APPROACH TO BUSINESS MODELING

Janis Barzdins, Guntis Barzdins, Audris Kalnins

Institute of Mathematics and Computer Science, University of Latvia
Rainis blvd. 29, Riga LV-1459, LATVIA
E-mail: guntis@mii.lu.lv

Abstract

A system description model, sometimes called
“business model” is considered. The business model
describes the separation of the whole system into
individual tasks and the sequence of these tasks. A
completely formal rule-based language for precise
description of tasks in the business model context is
proposed. The language includes means both for precise
description of task triggering conditions and of actions
performed by the task. Finally the semantics problems
caused by concurrent functioning of rules are discussed.

1 INTRODUCTION

By business model we understand a model unifying
three widely accepted paradigms: dynamic model, data
flow diagram and sequence chart .It is becoming widely
accepted that the design of complicated information
systems has to start with the business modeling of the
system [1,2,3,4]. However, the concept of the business
model itself has not completely established yet.
Different authors put slightly different meaning into
this concept. But all these approaches have one thing in
common, namely, they are semiformal. A natural
question arises how to formalize such a model
completely. :

Roughly speaking, the business model describes the
separation of the whole system into individual tasks and
the possible execution sequences of these tasks. The
basic problem which arises there is how to formalize
the individual task in the context of business model. A
complete formalization of tasks in the form of rules is
proposed. '

The rule-based approach used here is influenced by a
number of papers where the rule-based system
description principles are elaborated. Rule-based
approach used here is especially influenced by [5]

where a rule-based language is applied to the
specification of external behavior of the telephone
exchange. Rule-based approach applied to information
systems is studied in [6,7,8,9,10]. In terms of [7,8,9],
the rule-based approach used in this paper may be
considered as a further development of the “action
rules”.

2 BUSINESS MODEL: STRUCTURAL
DESCRIPTION

We will start the definition of the business model (like
in [4]) with the definition of Task Communication
diagram which describes the separation of a system into
individual tasks and the interfaces between these tasks.
Formally we define the Task Communication Diagram
as a graph containing four types of nodes:

e tasks,

® message queues,

e data stores,

e environment

and two types of edges :

e message routes
e access paths.

Figure 1 shows an example of a Task communication
diagram, where T1, T2, T3 represent tasks, M1, M2,
M3, M4, M5 - message routes and E1 - data store.

M1_,IT1 M3 T2 M5
M
M2 T3 JE1

Figure 1. Example of Task Communication Diagram

161

mailto:guntis@mii.lu.lv

We would like to stress one important difference
between the Business model and the classic Data flow
diagram. If in a Data flow diagram messages only
denoted data transfer between the tasks, then in a
business model messages also pass the control between
“the tasks and may trigger the tasks if their triggering
conditions are fulfilled.

3 TASK: BASIC PROPERTIES

The main problem is to formalize the tasks. The
nontriviality of this problem is caused by the following:

e tasks have to be activated automatically, thus task
triggering conditions must be formalized,

e tasks have to perform actions which may continue
for an unlimited time period; thus task instances are
necessary,

e task instances have to perform independently from
each other and concurrently. .

The basic idea of our approach is that we define tasks in
the form of special rules. For the sake of simplicity we
assume that one task corresponds to one rule (though in
general case one task may consist of several rules).

4 RULE: GENERAL SYNTAX
The general syntax of a rule is shown in Figure 2.

Rule
triggering
condition

Rule

Rule
prolonged action

Figure 2. General syntax of rule

Rule contains :

e ftriggering condition
¢ rule instant action
¢ rule prolonged action.

Rule triggering condition is a logical expression in the
graphical form built from the events. If this expression
becomes frue, the rule action is started.

Rule instant action is the action which executes
instantly, and it is executed in the same time moment ¢
when the rule triggering condition is checked to be true.
Instant action may not contain WAIT statements.

Rule prolonged action is the process which is started
after the rule triggering condition is fulfilled and rule
instant action is completed. Rule prolonged action
describes an activity which can execute for an unlimited
time period. In other words, rule prolonged action may
contain WAIT statements. By WAIT statements we
understand the waiting statements for various events.

Motivation for the prolonged action will be given later.

S RULE TRIGGERING CONDITION

We propose four types of events for describing
triggering conditions:

® message events

* entity events

e time events

ali

e data events (called also data conditions)

)

Rule triggering condition is defined as a Boolean
expression in graphical form built from these types of
events. Figure 3 shows an example of rule triggering
condition. It corresponds to conjunction:

(*.*.15) AND (((Order O AND (Customer C AND
C.Status=1) AND Product P) AND O.Name=C.Name
AND 0.1d=P.Id)

In the natural language this condition would be phrased
like that:

162

If current date is /5, and if O is some instance of
message Order currently in the input queue, and C is
some instance of entity Customer such that its field
Status=1, and P is some instance of entity Product,
and O.Name=C.Name, and O.1d=P.Id, then for such
triplet <O, C, P> the rule action has to be executed.

Such “translation” of the triggering condition into
natural language already provides some idea about the
triggering condition semantics.

o

@
\.[/_

Order Customer Product
O C P
ki
O.Name=C.Name

0.1d=P.Id

:*.‘.15

Figure 3. Example of triggering condition

Advanced facilities for describing events and triggering
conditions composed of them are proposed. For
example, a special sublanguage is proposed for
describing time events. Quantifiers for expressing
global conditions on data stores are also introduced. In
complicated cases the semantics of triggering
conditions requires a detailed explanation which is
omitted here.

6 RULE ACTION

For the description of the rule action we have to choose
some primary language. In our case as a primary
language we will use GRAPES/4GL (see [12]) which is
a well developed graphic specification and
programming language. For those who are not familiar
with GRAPES/4GL, here we will mention the main
GRAPES/4GL statements:

e WAIT statement - for waiting for a message to
appear.

e SEND statement - for sending a message.

e Besides the above mentioned statements, in
GRAPES/4GL there are available also traditional
data manipulation statements (assignment, case,
loop etc.) and statements for interaction with Entity
Relationship database.

Now we can describe in more detail the action part of
the rule. As it is shown in Figure 2, there are two types
of actions triggered by the rule condition: instant action
and prolonged action

Syntactically the instant action is any program fragment
in the underlying language (in our case it is
GRAPES/4GL) which contains no WAIT statements.
Prolonged action may contain WAIT statements.
Roughly speaking, the prolonged action is the same
GRAPES/4GL process.

Now some words about the motivation why instant and
prolonged actions have to be separated: ke

As 1t was stated before, the instant action executes
instantly in the same moment when the Rule triggering
condition is checked to be true. On the other hand, the
prolonged action may function for unlimited time
period. Such division of the rule action in two parts has
the following reason. Frequently, immediately after
checking the rule triggering condition being rue, we
may want to perform simple data manipulations before
other rules functioning concurrently have “corrupted”
the data - such statements have to be included in the
instant action which by definition is executed at the
same time moment as the triggering condition is
checked. On the other hand, it is clear that we cannot
get around with the instant action alone, because inside
the action part we may want to describe also message
waiting and other prolonged actions. For example, if we
want to describe a telephone conversation by a rule,
then it is evident that waiting for messages in the rule
body is absolutely necessary. A special property of
prolonged action is that several instances of the same
prolonged action may execute in parallel, for example,
servicing separate telephone calls.

163

7 SEMANTICS

From the semantics point of view, the Business model
is a set of rules:

{RI!--‘ar}

In the previous sections, where we defined Rule syntax,
we also partially defined their semantics. This
semantics we will call “naive” semantics. In most cases
it is sufficient for describing of the system by means of
rules. But there are cases when this “naive” semantics is
not sufficient. Therefore a more precise definition of
the semantics is necessary.

But before we pass to the main principles of this
definition we will point out some problems making this
definition nontrivial.

The main problems are caused by the prolonged action,
which may contain unlimited waiting. Therefore several
rules may perform concurrently. Moreover, whenever
the triggering condition of a rule is true, a new instance
of the rule is activated whose prolonged action again
may perform for an unlimited time. Thus, according to
our “naive” semantics, several instances of the rule may
be created and perform concurrently. The main problem
here is to define the instance creation mechanism in a
precise and consistent way.

Another nontrivial semantics problem is related to a
time event, i.e., exactly when and how long this event is
true and invokes the triggering of new rule instances. A
similar problem is related to data conditions due to

several entity instances. The main difficulty here is to
define the exact triggering semantics so that the .

creation of unreasonably many rule instances may be
avoided.

Exact and consistent solutions to all these semantic
problems are proposed in the semantics definition of the
rule language. This definition is an operational one,
i.e,, an interpretative concurrent model for language
execution is proposed. This model corresponds to the
mentioned “naive” semantics in all normal cases.

8 CONCLUSION

The paper outlines the ideas of a rule based language
for business modeling more from the theoretical point
of view. However, pragmatically the goal of this study
is to incorporate Business modeling and Rule-based
approach in the family of GRAPES languages [11,12]
and in the next generation of GRADE CASE tools [13].
Thus, completely formal and exact business modeling
will also be available in these tools. Certainly, several

pragmatic extensions of the described language are
necessary for this purpose.

REFERENCES

1. A.LScherr, “A new Approach to Business

Processes”, IBM Systems Journal, Vol.32, No.l,
1993, p.80-97.

2. A.G.Nilsson, “Business Modeling as a Base for
Information System Development”, 3rd
International Conference on Information Systems
Developers Workbench, Gdansk, 1993.

3. R.Gustas, “From Conceptual to Business
Modeling”, Proceedings of the Baltic Workshop on
National Infrastructure Databases, Vol.1, Trakai,
Lithuania, 1994, p.218-229.

4, A_Aue, M.Breu, “Distributed Information Systems:
An Advanced Methodology”, IEEE Transactions
on Software Engineering, Vol.20, No.8, 1994, 594-
605.

5. M.Grasmanis,] Medvedis, “Approach to Behavior
Specification and Automated Test Generation for
Telephone Exchange Systems”, Proc. Fifth SDL
Forum, North-Holland, 1991, 291-302.

6. P.McBrien, N.Niezette, D.Pantazis, A.H.Seltveit,
U.Sundin, C.Theodoulidis, G.Tziallas, R.Wohed,
“A Rule Language to Capture and Model Business
Policy Specifications”, CAIiSE 91, Trondheim,
Norway: Springer Verlag, 1991, 307-316.

7. P.Loucopoulos, B.Wangler, P.McBrien,
F.Schumacker, B.Theodoulidis, V.Kopanas,
“Integrating Database Technology Rule Based
Systems and Temporal Reasoning for Effective
Information Systems: The TEMPORA Paradigm”,
Journal of Information Systems, Vol.1, No.1, 1991,
129-152.

8. C.Theodoulidis, P.Loucopoulus, B.Wangler, “The
Entity Relationship Time Model and the
Conceptual Rule Language”, Swedish Institute for
System Development, SISU Report 1992:01.

9. B.Wangler, U.Wingstedt, R.Wohed, “Experience
from Rule-based Modeling at Swedish Post”,
Proceedings of the Baltic Workshop on National
Infrastructure Databases, Vol.2, Trakai, Lithuania,
1994, 35-49.

164

10. G.Harhalakis et al, “Implementation of Rule-

11.

Based Information Systems for
Manufacturing”, IEEE Transactions on Knowledge
and Data Engineering, Vol.6, No.6, 1994, p.892-
908. :

‘G.Held (Hrsg), “GRAPES Language Description:

Syntax, Semantics and Grammar of GRAPES”,
Siemens, 1991.

Integrated .

165

12.

13.

“GRADE VI1.0: Modeling and Development
Environment for GRAPES-86 and GRAPES/4GL:
Language Description”, Siemens Nixdorf, 1993.

J.Barzdins, A.Kalnins, K.Podnieks et.al., “GRADE
Windows: an Integrated CASE Tool for
Information System Development”, Proceedings of
the SEKE’94, Knowledge Systems Institute, 1994,
p-54-61.

