
Audris Kalnins
Dr. Compo Sci.

Automation of testing, specification languages
and CASE tools

Habilitation Thesis

Collection of works

Part 1

Riga 1997

INFORMATION PROCESSING 77, B. GILCHRIST, EDITOR
© IFIP, NORTH-HOLLAND PUBLISHING COMPANY (1977)

AUTOMATIC CONSTRUCTION OF COMPLETE SAMPLE SYSTEM FOR
PROGRAM TESTING

J. M. BARZDIN, J. J. BICEVSKIS and A. A. KALNINSH
Computing. Centre of Latvian State University
Riga, USSR

A sample system is said to be complete for the given program if all executable branches (linear paths) of
the program are executed on some sample of this system. The algorithmic solvability of the construction
of a finite complete sample system is proven for a sufficiently wide class of programs. In conclusion the
first results of the implementation of such a system are presented.

1. INTRODUCTION

Considerable success in precise methods of program
correctness testing has been achieved in recent
years (J.McCarthy .• D.Scott, R.Floyd, C.R.Hoare,
S.Igarashi et al.). In spite of this in practice the
most widely used testing method is the old one in
which some sample system is constructed and then
the program is run on this sample. The sample sys-
tem choice is the most sophisticated part of such a
testing process. Usually the programmer tends to
find a sample system such that every branch of the
program is executed when running the program on an
appropriate sample of the system. Such a sample
system we shall call complete. If the program runs
correctly on such a system the programmer (and the
customer too) usually considers the program to be
correct. This heuristic principle is widely and suc-
cessfully used in practice. It is considered also in[l].
We shall not investigate the theoretical foundations of
this principle but assume it as basic. Thus the main
problem in the automation of program testing is the
automatic construction of a complete sample system
for a given program. It is clear that the problem of
the construction of a complete sample system is
algorithmically unsolvable in general (see also The-
orems 2,3 below) • The authors have shown [2 - 4J
t hat for a sufficiently wide class of data processing
programs this problem is solvable. The aim of this
paper is to present these together with some further
results and also give the first experience of the ex-
perimental implementation of the above mentioned
system. Let us note that some papers related to
these topics [6,7,8 et alJ have appeared recently.
However, the authors of these Papers confine them-
selves mainly to the analysis of paths specified by
the user.

2. A SOLVABLECASE

In order to expose the principal ideas we introduce a
very simple programming language for the process-
ing of sequentional files. Nevertheless, a large part
of business data processing problems can be formal-
ized in this language (adequately enough to investig-
ate the construction of a complete sample system).
This language can be characterized by the fact that

the values taking part in the comparison instruct-
ions are undeformed (i.e., such as read from in-
put) • This restriction is acceptable in practice be-
cause it is typical for data processing problems,
t hat program logic is controlled only by input data
(e. g., record type) and that these data are used in

. comparison instructions undeformed.

Now let us describe this language. Let file be a vari-
able whose values are finite. sequences of integers
(Xl' X2' ••• , X), where X. is i-th record of file.
Eacll program haR a finite sel of input files and a
finite set of output files. The program processes the
values of input files into values of output files. The
program has also inner variables with integer values
(the initial values are set to 0). Let X be an input
file, Y - an output file, t ,u - inner variables and
c - a constant (a fixed integer). The following in-
structions are available.

1. X ==:i> t , The current record of file X is assign-
~ to variable t , Thus if X=(X 'X

2
' ••• , X), the

f rr st occurence of instruction JX =- t assignR the
value Xl to t , the second - X and so on. The in-
struction has two exits: "+" itthe current record
exists and exit "_" if the file is exhausted. In the
1ast case the value of t is not changed (Input in-
struction) •

2. t ~ Y. The value of variable t is assigned to
the current record of file Y (Print instruction) •

3. u ~t (respectively, c ~t). The value of
variable u (constant c) is assigned to variable t
(Assignment instruction) •

4. u < t (respectively, c < t , u <c). The in-
struction has two exits: if the value of u (respectiv-
ely c) is less than the value of t (respectively c)
then the exit "+" is used, otherwise.- the exit "_"
(Comparison instruction).

5. NOP. Dummy instruction (nothing is done).
It is used instead of instructions not essential for the
construction of a complete sample system when more
general programming languages are reduced to this
one. (Informally, these are nonconditional instruct-
ions not affecting the range of variable values used
in comparisons).

6. STOP

57

58 1977 IFIP Congress Proceedings

Let L be the language generated by the instructions
1 - 6~ where the programs are given as flowcharts
over this instruction set. Weshall call L the base
language. Fig. 1 gives an example of a p~ogram,
which creates a new sorted file Y by merging sorted
files A and B. The program has a bug: control from
instruction 7 is passed to instruction 12 (instead of
10).

Fig.l

By a branch of the program we understand a linear
path between two adjacent conditional instructions
(i.e., instructions with two exits). For example, the
program in Fig. 1 has branches (l:A =>a-i) , (10: B=>
b+, l1:b=>Y), (l:A=>a-) etc.

Let the program have input files A,B, •••• By a:
sample we shall understand fixed values of all these
files: A=A0, B=Bo, ••• • Let us say that sample P
realizes the branch h of program T if this branch is
executed while running program T on sample P. E.g.,
when the program in Fig. 1 is run on the sample
A=(O), B=(1), the path (l:A 9a+, 2:B =';>b+,3:a"':::'
b+, 4:a ~Y, 6:A ==;>a-,7:b =;:'Y, 12:STOP) contain-
ingbranches (l:A=>a+), (2:B=>b+), ••• isexecut-
ed , The sample system is said to be a complete
sample system (css) for the given program, if every
branch realizable by some arbitrary sample is realiz-
ed by some sample in this system. For the program
in Fig.l, for example, the following sample system
is complete P1= (A=(O, 1), B=(2)} , P2={A=(O), B=
(1,2,3)}, P3={A=(2), B=(0,2)}, P4 =.{A=(1,2,3),
B=(O)}, P = {A=() , B=(0, 1,2)}. It 1Seasy to see
that the JJRg in the program is found in this system.
EvidenUy, for every program there exists a finite
ess. The main proble~:J.s· to"find this system.

THEOREM1. There is an algorithm for constructing
a finite complete sample system for every program
in L •

o

The proof will consist of several auxiliary assertions.
Let T be a program in Lo and G\ =(Kl ,K2, ••• , Kr)

a path in T, K. - an instruction with fixed exit (+ or
-). The exit or instruction K. must enter K. 1. The.1 1+
progr am in Fig. 1 contains, lor example, tfie path
cV=(1:A~a+, 2:B=>b+, 3:a<.b+, 4:a=>Y, 6:A=9
a-s) (or simply c<.=(1+,2+,3+,4,6+), if only labels
of instructions are used). If it is not stated other-
wise, we shall assume that the path always begins
with the first instruction of the program. The follow-
ing system of inequalities N(OC-) is related to path"":
N(o(,)= {M ,M , ••• , M}, where M ={t =0, u =0•• ,

o 1. r d M . 0 0 .0 ht,u - inner Variabl es , an .,.1=1., ••• , r, rs t e
subsystem corresponding to iAstruction K. in the
following way. Let X be an input file and t~ u inner
variables in the program. Let tk, "i be variables
denoting the values of variables t , u after the execut-
ion of path 0<.. = (K , ••• , K.) and X the last
record of file X-lead dJring it (at (he begiriliing
corresponding variables are t , u , X). Let c be a
constant. System ~ is definecfin {he fallowing man-
ner:

(1) If K. = (X =?>u-), then M. ={X< o}. Byin-
equality X< b we code the exhaust10n of file X.

(2) If~i = (X~.u+) and.i~Ml,r:2' ••• ? Mi_ do
not contain Inequal ity X<O (l.e. no inst ruct ion or
type X=;:. ••• - has been performed) then M. =

{u = X }. In this case new variables u. 11 and
_-1+1 s-e l . 1+
X are mtroduced which have the same sense for
in~ti:uction K. as u and X have for K.• If inequal-

1+1 -1 s 1r
ity X< 0 has occurecf already, then M. '" 1.X< O,X>o},

1
i,e., a contradictory system is chosen.

(3) If K. = (t =>u) (or K. = (c =;>-u)), then
M.={u.. =\ J (orM.={u1 =c}).Anewvari-

i 1+1 k.. i, edlTlth' .able u 1Sagam mtroduc in lS case.
(4)\f K. = (t < u-s) (or K. = (c < u-s) or K. =

1 { 1 {1(t <i c-e)) then M. = t +1';:;~} (or Mi = c+l~
~}, or Mi ={\+1 ~ c)).

(5) If K. = (t<u-) (or K. = (c<u-), or K. =I.._ {1 1 .
(t<c-))then Mi = tk~ ul) (or Mi ={ c,";;!>ul], or Mi '"
{tk;;i!: q).

I
Let us give an example. For 0<:.=(1+,2+,3+) we have
N(""') = {a = O,b =0, a =A ,b =B ,a +1~ b J. From·o . 0 1 I' 1 1 1 1the constr-uction of N(0(.) {here follows:

LEMMA1. The path eX. is realizable iff the system
N(<x,.) has an integer solution. Any solution of N(~)
with respect to variables-records of input files
yields a sample realizing path cV •

Our aim is to reduce N(C(....) while preserving the
existence (or the nonexistence) of the solution in
such a way that there will be only a finite number of
possible reduced systems for the given program.
Let the program have input files A, B, ••• and inner
variables t, u, ••• • Then the system N(0(.) contains,
in general, variables A,B, ,. •• , AI' A2, ••• , Ad'
B1, B2, ••• , Be' •••••• , t1, t2, ••• , tf, u '.
u2' ••• , u , •• 0 •••• Let us remember thal1nner
variables ~ith maximal subscripts - tf, u , •••
denote values of inner variables t ,u , ••• a~er the
execution of path 0<,• These variables tf, u , ••• , as
well as variables A,B, ••• denoting input gfiles -
we shall call active variables of system N(0(,). For
example, the system N(o{/) from the previous
example has active variables a ,b • Out of all the
variables of N(O(,)., only the achvJ ones can enter
inequalities added to N(e(,) during the construction
of N(C<-+;3). Now let us define the exclusion of vari-
able Y from the system of inequalities N, taking into
account all the inequalities induced by transitivity.

Automatic Construction of Complete Sample System for Program Testing 59

Formally, we consider all the pairs x , z of variables
and/or constants different from y, for which there
exist inequalities x+Pl<'y and y+P2~z (p ~O,
P2~ 0 j equality x' =y' is substituted her e by in~qual-
iiles x'" y' and Y'~ x"}, For each of these pairs we
add inequality x + (p + P2)~ z to the system N. It
turns out that it is pos1ible to restrict the range of
the constant appearing in the added inequalities pres-
erving again the existence of a solution: if p + P2 '>
C = C

2
- C ,where C is the maximum and

l
C the

o . 1 f2 . hI.rntmmumconstants 0 The program, t en Pj + P2 IS
changed to C + 1 in the added inequality. Then we
delete all ine~ualities and consequently, equalities,
containing y from N. If N contains inequalities of
type y + p(, Y with p o-O then these inequalities are
substituted by some Standard contradicting inequality,
e.g., 1<'0 (because the new system must have no
solutions). Now 'let us exclude, one after another, all
inactive variables from N(o(.). Thus, we get a new
system of inequalitie's'S Then we drop all the sub-
scripts of the variables in W. The ~~~;ulting system is
denoted by S(0(,) and called a state,.vlnformally the
state describes relations between current values of
inner variables. In the pr-evious example state S(tXI) =
{a+l< b} corresponds to the path ~/=(l+,2+,3+).

LEMMA 2. Path a" is realizable (i.e., system N(~)
has an integer solution) iff the state S(~) is consist-
ent 0. e., 5(ot-) has an integer solution as a system
of inequalities) •

I t follows from the definition of state that if two paths
ot- and fi end with the same instruction and r is a

continuation of both paths then S(~) = S(j3) implies
S('" +1) = S(}3 +f). Hence from Lemma 2 there
follows:

LEMMA 3. Let paths 0(, and fi end with one and the
same instruction and S(oG-) = S(j3). Let r be a
continuation of these paths. Then path oc.. + r is re-
alizable iff path.ft + 1is realizable.

Let us note that state 5(0(,) can be effectively const-
ructed from path 0(.. and the number of different
states is finite for a given program. Lemma 3 gives
us the possibility (using a technique popular in auto-
mata theory) to construct effectively from the prog-
ram a finite system of realizable paths

t 2 pc(, , 01. I ••• , 0(.

such that every realizable branch is contained by
some of these paths. Now the solutions of correspond.,..
ing systems of inequalities N(o(,f) ,N(ctz), ••• ,N«(~/)
yields us a sample system P ,P 2' ••• ,P which is a
complete sample system. This concludeP the proof of
Theorem 1.

3. UNSOLVABLE CASES

Let us consider a language L where the same file X
can be opened (i.e., read frbm the first record) re-
peatedly. Formally, L is obtained from the base
language L by adding instructions of the type REOPEN
X. 0

THEOREM 2. There exists no algorithm for construct-
i ng a finite complete sample system for every prog-
ram in L (a subclass of programs in L

1
with two in-

put files lith one usage of REOPEN for each of them
is sufficient for non-existence) •

We consider two-tape automata by Rabin and Scott [9].
These automata may be represented by programs in
base language L with two input files. According to
[9J, the followi~g problem is undecidable: determ-
ine for two-tape automat? A. and B the emptiness of
t he intersection of languages LA and L represented
by these automata. We identify tapes o~ automata with
two input files. It is easy to construct a program
PAB using the REOPEN instruction only once for each
of the files where the STOP instruction is accessible
iff L12 L

B
! ¢ . Hence it follows that the emptiness

of LAII L
8

can be decided by means of a complete
sample system.

Now let us consider a language L which is obtained
from the base language by adding2variables of a new
type - counters and the following instructions for
them:

C"'>Z, Z+I~Z, Z<t
where Z is a counter and t - an inner variable. In-
struction Z <. t allows us to compare counters with
records of input files in L

2
•

THEOREM 3. There exists no algorithm for construct-
ing a complete sample system for every program in

L2•

The proof of Theorem 3 relies on testing, by means
of constructions of language L , whether or not the
input file is a sequence of int~gers which is the
configuration sequence of some l'v1insky machine.
[10J It is easy to see that this test can be reduced to
the tests of type II is it t=u+l?". Such a test (for u~
0) can be performed by means of one counter Z:

-f 0 ~ z 1

At the same time, if counters can be compared only
with constants, the problem of construction of CSS
is solvable. This follows from the same ideas as the
proof of Theorem 1. Only the values of counters if
t hey lie between the minimum and maximum cons-
t ants of the program are included in the state.

4. SOLVABLE EXTENSIONS

Theorem 3 shows that the unlimited usage of counters
ina program causes the unsolvability of the problem
of CSS construction. However, in practice counters
are mainly used for loop organization. This is done
by means of the DO statement:

DO Z=1 TO I' WHILE V; Wj ENDj

where W - the body of the loop is a program block
(by program block we understand part of the prog-
ram consisting of base instructions and, possibly,
DO statements and having a single entry and a single
exit) , V is a boolean expression constructed from
comparisons of La (e.g., (t < u) & (5< t) , and I' -

t he bound of the loop is an inner variable. A DO
statement (called also a DO-loop) will be interpreted
as an abreviation of the following program block:

60 1977IFlP Congress Proceedings

A

B

It is assumed that counter Z~is used in no instruct-
ions other than the above mentioned ones Z~ r and
Z+l 9 Z used for loop organization. '

Let us consider the programming language generated
by the base instruction set and the DO statement.
There is no algorithm for constructing a C5S for
every program in this language (a stronger version
of Theorem 3) • The proof is close to the one used
for Theorem 3 except that a slightly different coding
of the Minsky machine configurations is used. This
proof of unsolvability strongly relies on comparing
the loop bound r with other inner variables. Now let
us exclude this possibility.

Weshall not allow the use of the loop bound r in com-
parisons with other inner, variables and in assign-
ments. This means that the .Ioop bound r along with
the loop organization instruction Z~ r can be used
only in input instructions (X => r), comparisons with
constants (r< c , c < r) and print instructions (r =;'Y).
In practice these restrictions are not essential but
they usually hold for real programs. Let us note
that several DO-loops can have a common bound r ,
The programming language 'generated by the base in-
struction set and the DO statement with above ment-
ioned restrictions is called L3•

THEOREM4. There exists an algorithm for construct-
ing a finite complete sample system for every prog-
ram,in L3•

A detailed proof of Theorem 4 is rather lengthy, 50

we shall outline only the main ideas used. Bya simp-
le state we shall understand a state in the sense of
Theorem 1, i.e., one obtained by ignoring the in-
structions containing counters and loop bound. Let
us consider a DO-loop having no nested DO-loops in
it. Byentering the DO-loop in a simple state S (at
entry point A) andjjoinq throuqh all the possible
values of bound r'we can obtain, at the exit of the
loop (point B), generally speaking, distinct simple
states S1' 52' ••• , Sa' Further, for every state Si
there exrst.sthe set Ri of the values of bound r, for:
which the state Si is reached at the exit. More pre-
cisely,rE Ri iff for r = r and state 5 at point A there
exists a realizable path through the DO-loop beginn-

ing in the point A and reaching point B in the state Si'
The set R is said to be regular if there exists a reg-
ular expression Ii in the binary alphabet {I,o} such
that for r? 0

r ER iff~ ER
r

and for r <: 0

r ER iff ~ E:R.
Irl

The expression Ii is said to be regular representat-
ion of the set R. Regular expressions are preferable
due to the decidability of the emptiness problem.

LEMMA1. Set Ri is regular for every I, States
S , ••• , Sa and the corresponding regular represent-
aflons of sets R1, ••• , Ra can be constructed effectiv-
ely from the DO-loop and state S.

Theorem 4 can be proved by Lemma 1 in the simplest
case when the program contains only non-nested DO-
loops, none of which includes instructions involving
bounds of other DO-loops. In the general case some
generalization of Lemma 1 is necessary.

Let us order the variables used as loop bounds in the
program:

(1) (2) (k)
r ,r , ... ,r

Let us consider a set of strings of the type

(1) (1) (2) (2) (k) (k)
(rI ,rn ,rI ,rn , ... ,rI ,rn>

(J) (')
where r i E M, rI~ ~ MU{.l, M is the set of in-
t egers and • a special symbol.

The set of strings is said to be regular if it can be
expressed as a finite union of cartesian products of
regular sets ({.} is considered to be a regular set) :

(k)
x ••• XR

I
x

,1
R(k) x R(k)

I,b n,»
R(k) R(k) _ regular sets.

••• , I ,.b ' . II,b

R(1) x R(l)
1,1 II,l

R(1)n,u " ... x

R(l) (1)
1,1' R II,l'

U R
(1)
I,b x

The expression

-(1) -(1) xRI1xRII1, ,
-(1)
Rn,bx •••

-(k) -(k)
xRI1xRniU, ,

-(k)
R II b ',

U R:(1) x
I,b

where

-(1) '-(1) -(k), R(k)
RI,l' RII,I' ••• , R I,b' n ,»
are regular representations of the sets

R(I) (1) '(k) (k)
1,1' R II, l' ••• ~HI,b ' RII,b '

is said to be a regular representation of the corresp-
onding set of strings.

Let a program block, with entry C and exit D, be
given. Let 5 be a simple state at point C and Sjbe
a simple state accesible at exit D. Let us denote by
Vithe following set of strings.

Automatic Construction of Complete Sample System for Program Testing 61

< (1) (1) (k) (k)
r I' rn, ... , r I' "n)eUi

iff for r(l)= r(Il), ••• , r(k)= /k)
. I

and state S at point C there exists a realizable path
through the block, beginning at point C, reaching
point D in state Si' and satisfying the condition:

if
(j) .

r II = " , then the path contains no input instruct-

i on of the type <file~r (j) ;

. f (j) .
1 r II IS a number, then the path contains one or

several input instructions (file;>:;.r (j) and r (j\s a
possible value of variable r{j) at point D on {he given
path (j=I, ••• , k}, /

LEMMA2. The set of strings 'Vi'·is regular for eve-
ry t , The possible. states SI' ••..••, Sd at the exit of
the block and the corresponding regUlar representat-
ions of the sets Ul' ••• , Ud can be constructed
effectively from the program block and. state S.

The lemma is proved by induction over the depth of
nesting of loops in the block. For depth 1 Lemma 2
is a slight strengthening of Lemma 1.

Nowlet us consider a block path o(.=(KI,K2, ••• ,K).
It differs from the usual path in that the K· can bem

1
either a base instruction or a DO-loop. If K· is a
DO-loop we fix one of the possible simple states S·
at its exit. An instance of a block path is «=(X""l>~+,
a<e-, (D,Si), a *Y), where D is some DO-loop.
Nowlet us define the total state Z(OV) as a pair
(S(ex.) , w(0(,)), where s(c<-) is a simple state and
W(0<,,) is a regular expression describing all the pos-
sible Strings (f(1), ••• , r{k» of numbers accept-
able as the values of the variables r(1), ••• , r(k)
at the end of pathe(.. W(0(..) can be easily construct-
ed using Lemma 2. It follows from the construction
that for a given program the'number of distinct total
states is finite. Moreover, an analogue of Lemma 3
from Theorem 1 holds for the total states. Hence
arguments analogous to those used in proving Theo-
rem 1 lead to a proof of Theorem 4.

Now some words about another extension of the base
1anguage Lo• So far we have considered only sequent-
i al file,s. The authors have investigated also the case
of direct access files in [5] and have shown that the
CSSconstruction-problem is solvable for a sufficient-
1y wide class of such programs.

5. PRACTICALIMPLEMENTATION

Some improvements of the above mentioned algorithm
for constructing a ess are important in practical
implementation.

1. First, a set of essential instructions of the prog-
ram is selected, i.e., a set of possibly fewer in-
structions, containing the first instruction, and, at
least, one instruction from every loop. Then, during
t he construction of realizable paths ~1, 0(..2, ••• ,

0(, P, states are attached only to essential instruct-
ions.

2. Next, a set of essential inner variables is select-
ed for each essential instruction. The variable is
essential, if its value. is used (directly or through
assignments) in further comparison instructions.
The improvement now consists in the. following.
Whenconstructing the state S(~) from N(V<--), we
exclude not only the inactive variables but also act-
ive variables tf where the corresponding inner vari-
able t is not essential for the instruction entered by
path c<- (more precisely the instruction entered by
t he exit of the last instruction of ()(,)•This can great-
ly reduce, in practice, the number of states to be
considered. At the same time analogues of Lemma 2
and 3 are preserved.

3.2During the construction of realizable paths ov 1,
oe.- , ••• , o(..P,yielding a CSS, the following prin-
ciple is used: the branch, contained the least number
of times in the paths 0(,1, (X,2, ••• , ","j already
constructed, is chosen as the next branch for analys-
is. This principle frequently allows to construct a
CSS using only part of possible states.

The following improvement of algorithm allows to
widen the acceptable instruction repertoire. Add/
subtract instructions are allowed in the case when
either the result or at least one of the operands is
not involved in comparisons. In this case the "free"
value can be chosen arbitrarily.

An experimental implementation of a CSS construct-
ion system was accomplished for a COBOL-like
1anguage. No more that 120KBytes of main storage
were used with a time limitation of 10 minutes per
program at CPU speed of approximately 40000 oper-
ation/sec. In this environment, the system was able
to construct a CSS for approximately 7rf/o of data
processing programs containing no more than 300
statements. The results obtained make us believe in
the possibility of implementing an automatic CSS
construction system, having a speed comparable to
that of high level language compilers and applying to
most real programs.

REFERENCES

[2J

E.F .Miller and M.R.Paige, Automatic generat-
ion of software testcases, Eurocomp Conference
Proceedings,1974, 1-12.
J.M.Ba:tzdin, J.J.Bicevskis and A.A.Kalninsh,
Construction of complete sample system for
program testing, Uchonye zapiski Latviiskogo
gosudarstvennogo universiteta, vol , 210, 1974,
152"':187(Russ.)
J .M.Barzdin, J.J •Bicevskis and A.A.Kalninsh,
A solvable and unsolvable cases of the problem
of construction of a complete sample system,
Uchonye zapiski Latviiskogo gosudarstvennogo
universiteta, vol , 210,1974,188-205 (Russ ,)
J •M.Barzdin , J. J •Bicevskis and A.A. Kalninsh,
Construction of complete sample system for
correctness testing, Lecture Notes in Computer
Science, vol, 32,Springer-Verlag, Berlin, 1975,
1-12.
J •M.Barzdin and A.A. Kalninsh,
Construction of complete sample system for
pro?ra.ms u~ing direct access files, Uchonye
zaplskl Latvliskogo gosudarstvennogo universite-
~,vol.233,1975,123-154 (Ruas;)

[3]

[4J

[5J

62 1977 IFlP Congress Proceedings

[6] W.E.Howden, Methadology for the generation of
Program test data, IEEETransactions on Com-
puters, vol.C-24,No.5,May 1975,554-559.

[7J J.C .King, A new approach to program testing,
Proc. Int. Conf. Reliable Sofware, Apr. 1975,228-
233.

[8J L.A .Clarke, 'A system to generate test data and
symbolically execute programs, IEEETransact-
ions on Software Engineering, vol.SE-2, No.3,
Sept. 1976,215-222.

[9] M.O.Rabin and D.Scott, Finite automata and
their decision problems, IBM J .of Research and
Development, vol.3 ,No.2, 1959,114-125.

[}.o] M.L.Minsky, Finite and infinite maGhines, Pren-
t ice-Hall, Englewood Cliffs,N. Y .,1967.

Lecture Notes in Computer Science

Vol. 1: GI-Gesellschafl fUr Informatik a.V. 3. Jahrestagung, Ham-
burg, 8,-10. Oktober 1973. Herausgegeben im Auftrag der Ge-
sellschaft fUr Informatik von W. Brauer. XI, 508 Seiten. 1973.
DM 32,-
Vol. 2: GI-Gesellschaft tur Informatik eV. 1. ,Fachtagung Uber
Aulomatentheorie und Formale Sprachen, Bonn, 9.-12. Juli 1973.
Herausgegeben irn Auftrag der Gesellschaft fUr lnformalik von
K.·H. Bl>hling und K. Indermark. VII, 322 Seilen. 1973. DM 26,-

Vol. 3: 5th Conference on Optimization Techniques, Part I.
(Series: I.F.I.P. TC7 Optimization Conferences.) Edited by R.
Conti end A. Ruberti. XIII, 565 pages. 1973. OM 38.-

Vol. 4: 5th Conference on Optimization Techniques, Part II.
(Series: I.F.I.P. TC 7 Optimization Conferences.) Edited by R.
Conti and A. Ruberti. XIII, 389 pagea. 1973. DM 28,-

Vol. 5: International Symposium on Theoretical Programming.
Edited by A. Ershov and V. A. Nepomniaschy. VI, 407 pagea.
1974. DM 30,-

Vol. 6: B. T. Smith, J. M. Boyle, B. S. Garbow, Y. Ikebe, V. C.
Klema, and C B. Moler, Matrix Eigensyatem Routines - EISPACK
Guide. X, 387 pages. 1974. DM 28,-

Vol. 7: 3. Fachtagung uber Programmiersprachen, Kiel, 5.-7.
Marz 1974. Herausgegeben von B. Schlender und W. Frieling'
haua. VI, 225 Seiten. 1974. DM 20,-

Vol. 8: GI-NTG Fachtagung Ober Struktur und Betrieb von
Rechensystemen, Braunschweig, 20.-22. M~rz 1974, Heraus-
gegeben im Auftrag der GI und der NTG von H.-O. Leilich. VI,
340 Seiten. 19~. DM 26,-

Vol. 9: GI-BIFOA Internationale Fachtagung: Informationszen-
tren in Wirtschaft und Verwaltung. Min, 17.118. Sept. 1973.
Herausgegeben im Auftrag der GI und dem BIFOA von P.
Schmitz. VI, 259 Seiten. 1974. DM 22,-

Vol. 10: Computing Methods in Applied Sciences and Engineer-
ing, Part 1. International Symposium, Versaillee, December 17-21,
11173. Edited by R. Qlowinaki and J. L. Lions. X, 497 pages. 1974.
DM 34,-
Vol. 11: Computing Methods in Applied Sciences and Engineer-
ing, Part 2. International Symposium, Versailles, December 17-21,
t973. Edited by R. Glowinski and J. L Lions. X, 434 pages. 1974.
DM 30,-

Vol. 12: GFK-GI-GMR Fachtagung Prozessrechner 1974. Karls·
ruhe, 10.-11. Juni 1974. Herausgegeben von G. KrOger und
R Friehmelt. XI, 620 Seiten. 1974. DM 42,-

Vol. 13: Rechnerslrukturen und Betriebsprogrammierung, Er-
langen, 1970. (GI-Gesellschaft fOr Informatik e.V.) Herauagege-
ben von W. Hlndler und P. P. Spiea. VII, 333 Seiten. 1974.
DM 30,-
Vol. 14: Automata, Languages and Programming - 2nd Col·
loquium, Univeralty of Saart>rOcken, July 29-Augusl 2, 1974.
Edited by J. Leeckx VIII, 611 pagea. 1974. DM 48,-

Vol. 15: L Systems. Edited by A. Salomaa and G. Rozenberg.
VI, 338 pages. 1974. DM 30,-

Vol. 18: Operating Systema, International Symposium, Rocquen-
court 1974. Edited by E. Gelenbe and C. Kaiser. VIII, 310 pages.
1974. OM 30,-

Vol. 17: Rechner·Ge"Otzter Unterricht RGU '74, Fachtagung,
Hamburg, 12.-14. August 1974, ACU-Arbeitskreis Computer-
Unteratlllzter Unterricht. Herauegegeben im Auftrag der GI von
K Brunnalein, K Haefner und W. Hlndler. X, 417 Seiten. 1974.
OM 35.-
Vol. 18: K Jen •• n and N. Wirth, 'PASCAL - U •• r Manual and
Report. VI,l87 pag •••. 2nd Edition 1975. OM 20,-

Vol. 111: Programming Symposium. Proceeding, Colloque eur ta
Programmation, Pari •• April 9-11, 1974. V, 425 pagee. 1974.
OM3ll,-

Vol. 20: J. Engellrie~ Simple Program Schemea and Formal
Language •. VJ~ 254 page •. 11174. OM 211,-

Vol. 21: Compiler Construction, An Advan.,.d Courae. Edited by
F. L Bauer Ind J. .Eickel. XIV. 821 plge •. 1974. OM 42,-

Vol. 22: Formal Aspects of Cognitive Processes. Proceedings,
Interdisciphnary Conference. Ann Arbor, March 1972. Edited by
T. Storer and D. Winter. V, 214 pages. 1975. OM 23,-

Vol. 23: Programming Methodology. 4th Informatik Symposium,
IBM Germany Wildbad, September 25-27, 1974. Edited by C. E.
Hackl. VI, 501 pages. 1975. DM 39,-

Vol. 24: Parallel Processing. Proceedings of the Sagamore Com-
puter Conference, August 20-23, 1974. Edited by T. Feng. VI,
433 pages. 1975. DM 35,-

Vol. 25: Category Theory Applied to Computation and Control.
Proceedings of the First International Symposium. San Francisco,
February 25-26, 1974. Edited by E. G. Manes. X, 245 pages.
1975. DM 25,-

Vol. 26: GI-4. Jahreslagung, Berlin. 9.-12. Oktober 1974. Her-
ausgegeben im Auflrag der GI von O. Siefkes. IX, 748 Seiten.
1975. DM 49,-

Vol. 27: Optimization Techniques. IFIP Technical Conference.
Novosibirsk. July 1-7,1974. (Series: I.F.I.P. TC7 Optimization
Conferences.) Edited by G. I. Marchuk. VIII, 507 pages. 1975.
DM 39,-

Vol. 28: Mathematical Foundations of Computer Science. 3rd
Symposium at Jadwisin near Warsaw, June 17-22, 1974. Edited
by A Bhkle. VIII, 484 pages. 1975. DM 37.-

Vol. 29: Interval Mathematics. Proceedings of the International
Sympoaium. Karlsruhe, West Germany, May 20-24, 1975. Edited
by K. Nickel. VI. 331 pages. 1975. DM 30,-

Vol. 30: Software Engineering. An Advanced Course: Edited by
F. L. Bauer. (Formerly published 1973 as Lecture Notes in Eco-
nomics and Mathematical Systems. Vol. 81) XII, 545 pages. 1975.
DM 42.-
Vol. 31: S. H. Fuller, Anaoysis of Drum and Disk Storage Units. IX,
283 pages. 1975. OM 28,-

Vol. 32: Mathematical Foundations of Computer Science 1975.
Proceedings 1975. Edited by J. ElOO;aI. X, 476 pages. 1975. DM 39,-

Lecture Notes in
Computer Science
Edited by G. Goos and J. Hartmanis

32

Mathematical Foundations
of Computer Science 1975
4th Symposium, Marianske Lazne,
September 1-5,1975

II
"

i
I----------------------,1
jl

i
"I

Edited by J. Becvar

Spri nger- Verlag
____ j3erlin· Heidelberg· New York 1975

- CONST-RUCTION ---OF COMPLETE SAMPLE

SYSTEM FOR CORRECTNESS TESTING

J.M.Barzdin,J.J.Bicevskis,A.A.Kalninsh
Computing Center of Latvian State University

Riga, USSR

INTRODUCTION

In spite of success in axiomatic methods for program correctness
proofs (J.McCarthy, D.Scott, R.Milner, C.Hoare e.a.) the old well-
known method for correctness testing (debugging) of programs strongly
preYailS-.-Accor-di.ngct oc t.hi s method- a.---set-o-f sampl-es --is-c-ons-tructed-
and program is run on these samples. If the program yields correct
results on these samples, programmer usually believes his program
being correct. The choice of a suitable sample set is the most sophis-
ticated part of debugging process. Usually programmer tends to find
~ _se~ of samples such that every branch of program is executed when
~ning the program on an appropriate sample of this set. If program
runs-correctly on all the samples of this set which is called complete
~~p~~ system henceforth the programmer has great certainity that his
;PROgram will run correctly on every input. Of course, .this_~cr.i~eX'i.on_.
is-I'l.Q:t~bs~Iu~e. neverth~-less- -it'is ~idel~ and succe~sfully'-u~~d in
~~...::.c~~.:- - -.!:""- .. ._~. __ . _. .'P.z.actiC-e-.-

Thus the main problem in the automation of debugging process is
~~!~~atic construction of complete sample system for a given program.
~~"It _is clear that the pnob Lem of constructing complete sample
~~~~m-Js_algorithmically unsOlvable in general (see .also Th~orems_
~ •• _~ __ ._~ • __ .__ ~_ . 0 ._ _ _ ~ ~~_ •

~2':_;~'i~.l:?elow).Th~ aim of this paper is to show that lor a __s.;'lffici~r:.t:-
~w~~ __.class- of-data processing programs this pr-obLem; is soLvab Le s: -

~~~~S~me of the results given here can be found with full p~;of;
;n - (;:'J - [2] by authors.

~:':l_--'-

~-- ~

2

SOLVABLE AND UNSOLVABLE CASES

Now let us define a programming language for file processing
using sequential access method. In this language a great part of data

-p·rocess [rig-problems ·can-be-formaI:CZed -(adequateiY- e·nough~·t·o~nvestI-:'
gate construction of' complete sample system) ..

Now let file be a variable whose values are finite sequences of
integers (n1,n2, ... ,nr), ni being i-th record of file. Let parameter
be a variable with integer values.

Each program has a finite set of input files and input parame-
ters. The program has also a finite set of output files. The program
processes the values of input files and parameters creating the va-
lues of output files.

Program has also inner variables with integer values (the initi-
al values being equal to 0). Two types of inner variables are avail-
able - main variables and counters.

Let X be an input file, Y - an output file, n - an input para-
meter,..t.,u_- m~in. inner var-Lab Le s j z. - .~.i:ol).nterand. c._:-_.aconstant
(a fixed integer).

The following instructions are available.
1. X => t . The current record of file X is assigned to variable

t. Thus if X=(n1,n2, ••• ,nr), the first occurence of instruction
X ~t assigns the value n1 to t, the second - n2 and so on. The in-
·struction -is condi ticlnal. It has two exits: the exit" + 11 when current
record exists and exit "_" when end of file is reached. In the last
case-'the value of t "Ls not 'changed.

C" 2: t ~ Y. The value o{ variable t is assigned to the current
-recora.;co-frfle--y.:=-.::-.---.- .-::0-- .. - ...

3-'-a~t--'Where aE {u,n ,-c}-;-The·v;llueof"a i's"assi grred tb varlab-·
Ie t.

4. b=;;>z, where bE.{n,c}. The value of b is assigned to counter
z.

z: 5. z+l::::>z.- The semantic's is evident.
-=... ~·6~a<b,-wh~rea,({u ,~';cr. b 'E{t,n,o} • This c-onditional ins-truc--

;;~ionfas'- two' e-xit:·s':~'i:i- value' ~f a is Less than value of b;· the exit
-"+"-is'·usea, 'otherWise =-·the exit "_"

7. z<b (or bcz) , wher'e bE {n,c}. Semantics is analogic to the
previous case.

-=-'··"'8-~=-NOP.'Dummy instruction (nothing is done). It is used instead
~=of instru~ti~ns not essential for construction of complete sample

system when more general programming languages are reduced to this

3

one. (Informally, these are nonconditional instructions not affecting
the ~ange of variable values used in conditions).

9. STOP.

Let Lo be the language generated by the instructions 1-9. Let ~*
• -1:l~-the. lan.g.ua..ge--C-ea1-:ked -b-ase-cL:u:l-guage+.-WA-ich- -i.s- .cb t a i.ned -frollt- L-o-b¥

omitting counters (i.e., instructions ~,5,7).
Programs will be given as flowcharts over an instruction set.

The instructions have labels for reference.
Fig.1 gives an example of program in Lo' which creates a new

sorted file Y by merging sorted files A and B. Y contains first m re-
cords from A and n first records from B. m and n are input parameters,
A and B - input files, Y - output file. Program has a bug: control
from instruction 12 is passed to the instruction 5 (instead of ~).

__-_.I

1: A =>a
+

2 : 1 ~z
3 : 0 =>1'1

~: B ~b
-i-

5: w+1 =>w

17: a::;'Y

18: A=>a

19: z+1 =>z 12: b -:;.y

::::----=- r_ 20: z>m

+
~--
••••~ w

;:=--or _ ..

Fig. 1

4

8y branch of, program we understand a linear path between two
conditional instruc~ions (only the first instruction of path can be
conditional). E.g., the program in Fig.1 has branches 0+,8),(6+,7l
etc.

L'er-progralllhave--tnpurrires A,l'l,r .':and -parame-1:ers-'m;h~.'.~'Fy ---
a sample we shall understand fixed values of all these input variab-
les: A=Ao, 8=8°, ... , m=mo, n=no, ...

Let us-say that sample P realizes the branch h of program T if
this branch is executed while running program T on sample P. E.g.,
when program in Fig.1 is run on the sample A=(1,2,3), 8=(2,3),
m=l, n=l, the path (1+,2,3,4+,5,6-,7+,8,9+,10,11+,13,14+,15,16+) con-
taining branches (1+,2,3), (4+,5), (6-), (7+,8), ... is executed.

Sample system is said to be complete for the given program, if
every branch realizable by some arbitrary sample is realized by some
sample in this system. Evidently, for every program there exists a
finite complete sample system (CSS). The main problem is to find this
system by means of some algorithm.

_THEORE~1-J. There Ls, an .a.l.gorvithm coris t.r-uct i ng .a finite complete s-amp-'

le system for every program in Lo'

In this case it is also decidable whether or not the program can
loop infinitely on some sample (see [lJ and [2J).

The following theorems show that Theorem 1 reveals in some sense
the maximal boundaries for problem of constructing CSS to be solvable.

Let us consider a language L1 in which counter values can also
be compared with records of input. files. Formally L1 is obtained from
Lo by adding new instructions of type z<t and t<z, t being a main va-
riable and z a counter •

..---THEOREM-2. There exist-s no algori thm-construc-ting a -f inite complete- -
sample system for every program in L1.

Now let us consider a language LZ where values of counters can
be both increased by 1 and decreased by 1. Formally, L2 is obtained
from La by adding an instruction z-l ~ z .

THEOREM 3. There exists no algorithm constructing a finite complete
sample system for every program in L2 (a subclass of programs in L2
with two counters and no files and parameters is sufficient for non-
existence)

Let us consider also a language L3 in which a file can be re-
opened (i.e., input resumed from the first record). L3 is obtained
from the base language L* by adding instructions of type REOPEN X.

5

THEOREM ~. There exis~s no algorithm constructing a finite complete
sample system for every program in L3 (a subclass of programs in L3
with two input files with one usage of REOPEN for each of them is
sufficient for non-existance).

HEURISTIC ALGORITHM.

Unsolvab~lity in the abovementioned cases and complexity of
algorithm used for proof of THEOREM 1 is caused by some artificial
constructs improbable for real data processi~g programs. Now let us
give a relatively simple heuristic algorithm not always yielding CSS
for programs in Lo but at the same time applicable to more general
language L.

In language L the counters are not specially singled out. In-
stead of this the following arithmetic instructions are applicable
to all inner variables:

t+u ~v
t-u ~v
t-+c ~ ~~- - -=;.v
t-c =;'V
c-t ::;>v

The other instructions of L are those of base language L* .
Obviously L is a generalization of Lo,L1,L2, and construction of

CS5 is unsolvable for this language.
Now let us describe our heuristic algorithm. Let T be a program

in Land a=(K1,K2, ..• ,Kr) a path in this program, Ki - an instruction
with fixed exit (+ or -L E.g., (1=(1:A =>a+,2:1 =>z,3:0 =>w,~:B ~b-,
17:a ~'i,18:A =>a+) (or (1=(1+,2,3,~--,17,18+) if only -labels -of instruc-
tions are used). ----------- - -- ----- -- --~--

Our aim is to find a sample realizing the path (1. For this pur-
-

pose the following system of inequalities and equalities N«(1) is re-
lated with path a:

, t,u, ... - inner variables, andwhere

6

Mi is t~e subsystem correspo~ding to instruction ~i· Let X be an

input file and t,u,v inner variables. Let tk,ul, vm be variables

denoting the values of variables t,u,v after the execution of path

ai_1=(K1'~·. ,Ki-1) and Xs the last record of file X read during it

(at the beginning corresponding variables are to'uo'vo). Let c be a
'._cons can t .·or -an-.in-!l1:ff parame-t-er·-C-±n=the-ia-st case- i-t imJrial5Ier-

and 1\ - the "blank" symbol, being less than any Lrrt ege r- by defini-

tion. System Mi is defined in the following manner:

l)If Ki=(w:X ~u-) then

H.={X 1 < /\~ s+

2) If Ki=(w:X ~u+) and if H1,H2, ... ,Mi-1 do not contain ~n-

equality X.</\ for any j(i.e.,no instruction of type X=> ... -has
]

been perofrmed) then

M. = {XS+1> 1\
1. X

s
+1=ul+1

In this case new variables ul+1 and Xs+1 are' introduced which have

the same sense for instruction Ki+1 as ul and Xs for Ki.

If- -ineaua-lity-'X, .:-A-has occur-edra rr-e ady ; then.]

H. =[XS+1</\
1. Xs+1> 1\

i.e., a contradictory system is chosen.

3) If Ki=(w:t =9 u) (or Ki=(w:c ~ u) then

Mi={tk=u1+1 (or Hi={c=ul+1).

New variable ul+1 is introduced in this case.

4) If Ki=(w:t<u+) (or Ki=(w:c<u+), or Ki=(w:t<c+) then

Mi={tk+l~ul (or Mi={c+l~ul' or Mi={tu+1Sc).

- - .0.5) If Ki=(w:t<u-:} (or Ki.=(w:c<u-), or Ki=(f,,:t<'c-» then'
..JL":::;::'" ,. - -

Mi={t"k~ui.- (or Mi={c~ul,------cir--Mi=rtk~c. - -- ----

6) If .Ki=Cw:t+u ~ v) (or Ki=(w:t-u =9v))- ~hen

Mi={tk+ul=vm+l (or Mi={tk-ul=vm+l).

_-==~I:::f:..::~~i=5w,;,~-+c "'> v) (or Ki=(w:t-c ~ v), or Ki=~w:c-t=9v))then

-'.0.- M.=ft +c=v (or M.={tk-c=v l' or M;={c-tk=vm+1).~::;::~~.-'.- ~ '" k m+l 1. m+ •
~----_ : Equ~lities introduced by means of 6) we shall call arithmetic

equalities.

It can be shown that there is an algorithm deciding the existen-

-" :._~e.of ..an, i~tegex solution for system N(a) and constructing such a so-

7

lution in case of existence. For this purpose we can use, e.g.,
Gomory's algorithm fo~Oi~teger linear programming. Obviously, every
solution gives a sample realizing the path a (it suffices to consider
the values of input parameters and records of input files only).

,----Gomo_ry.'_s-al.gorithm can.i.a.Lso _.b.~l,lSedto .show__the __existe_n~~_ of an
algorithm for the fOJlowing problem.
Let a:(K1, ... ,Kr),

N(a) : (respectively, N(a) :

and let sy-stem {:~.
r-l

have a solution, but

(respectively l>r-lx?y

--have no, selu-ti.on. Then--Ule minimal- p mus-t be found such that the
following system has a solution:

{
MO {MO(respectively
Mr-1 Mr-1
x+lsy+p x+p~y

In this case we define this value of p to be the deficiency of in-
struction Kr on the path a.

Let us denote by N'(a) a system obtained from N(a) by deleting
all arithmetic equalities. Now let us exclude variables Wi from N'(a}
such that in N(a-) there is wn with n>l_.The exclusion is performed

--by--acicii~'g-some newi-nequal1"ties and- deleting all i"neq"ualities con-
taining wl. New inequalities are added in the following manner:
If N'(a) contains x+Plswl and wl+P2SY then x~Pl+P2)SY is added; if
x?,wl+Pl and wl?Y+P2 then x?'Y+(Pl+P2) is added. Further, if Pl+P2>Co=
C1-C2, where C1 is the maximum a~d C2 the minimum constants of the
program, then Pl+P2 is changed to Co+l in the new inequality. After
the exclusion of all such wI we have a system where only one repre-
sentative has remained from the group of variables differing only by
subscripts (this representative has maximal subscript). Let us denote
this system by Sea) and call it a state. Two states are said to be
equal if they coincide after dropping subscripts of variables. Obvi-

8

eusly., the number of differen~ states is fini~~ for every program •
.....,.,......•- Tbefo,llowing assertion characteri:z;ing -the -meaning of the state

~~-'~. :or?ved: _.. ...,..~ _o: .. ~ _

~,. -Let a and f> be paths such that:

a) a and B do not contain arithmetic instructions.,
.b) a and Bend wlth._otne SaJne-'i-nsn-uction K.

-_.-- - ~ -..
c) S(a)=S{P..) " -r ~,. --,-;--

..••L. .' .•...••• ~..r-=::.--=-=--_ ~- ~=-. - ~

'Let-r be a path ,-neg~nning.at the instruct ionK .
. Then pa:th~+ 1. is ~~aifzabi~ if path B+ tis rea li ian Le . More-

over. S (a+ r)=S CB+ t). .
Now let us define.a~ ordering of paths. Path a=(K1,K2·,..K3"")

is greater than path B=(!<i,K2,K3 •...) if there is such i., that K1=Ki,
~=-:O-'-='-.'*i-=1<1:'*i +1'= O~+)· amT-_Ki'+'1::::-tk"' -J- W'~ k and'- k ' -is-tne· sanieln~
-, struction in th-e -Progr'aJn~.~_;;.r
~ ~. .- 1 2

Let us construct a.special family of paths (a .,a ,._. ,aP), be-
--ginning at the first -instructiOn 'Of -program. Let paths a1, ... , aj-1

be already constructed. Let us -describe the construction of aj. The
least path a greater ~han ;j-l is considered (if j=l we consider the
absolutely least path a). ~ore precisely. we construct this path a
stepwise. adding new branches and testing on every step the stopping
conditions described below. After the stopping we get the path aj.
We continue this procedure of path constructing until all paths are
exhausted.

Now let us describe the stopping conditions. Let a=(K1,K2,K3,
...). To every instruction Ki we attach a state 5i equal to 5(ai_1)
where Qi-1=(K1,··· ,Ki_1).

CONDITION 1. Path a is stopped after the instruction Ki if sys-
tern N(ai),ai=(K1, .•. ,Ki), has no solutions, i.:. path
lizable. In this case we shall say that path aJ=a. is~
condition Cl.

In order to describe the other conditions we shall at first de-

a. is not rea-~
obtained by the

fine the rules of writing and errasing * at instructions in the prog-
ram. Let conditional instruction Ki be equal (ki+) (respectively
(k;-)). Then define K.~.-) (respectively (k.+)). _~ ~ ~ ~

(1) If Ki=(kiE) is a comparison instru.ction, path (K1, ... ,
- K. 1,K.) is realizable, path (K1, ... ,K. 1,K.) is not realizable, and
_ 1.- 1. ~- L .

_--inS-n!-uCtion -klha-snG-~-t k--i-n---th-e~ogr-am-; -t-hen -we--'"\orI--rte*-at x-i-- 0

at this moment, i.e., at the moment when we have reached instruction
Ki during our process of constructing the path a.

(2) * is erased at ki when we have reached an instruction Kl=
Ki (Ki = (ki f.) must be the instruction in the path a which caused ~ at

9

ki) during the process of construction of path ~=(K1,K2, ..• ,KI) and
the path (K1,K2, ... ,K1) is realizable. (At this moment no new * is
written according to (1».

So the same instruction kn in the program may have * at it at so-
me moments and have not at other moments. If we consider a fixed mo-

-- ----- • -....;.--=---~-, . ---

merrt , e.g., the one corresponding to some i~structLoo'K. '{il path 0:'-'---1,

then some instructions in program will have * at them and some will
not. If at a given moment instructions kn and km have * at them, then
we shall say that instruction kn is older than km if the current * at
kn has appeared earlier than that at km. So at some moment kn may be
older than k and at some other moment otherwise.m

Let us consider the moment when instruction Ki on the path ~ is
reached. Let some instructions in the program have * at them and there-
fore some age relation be defined among instructions.

CONDITION 2. Let Si be the state attached to the instruction Ki.
We move backwards along the path a and look for the first instruction
Km, m<i, such that Km=Ki and Sm=Si' If we find such an instruction and
also the following holds: no instruction km,km+1, ... ,ki lying between

'k-m-dndkiin"the-path a-has -ll-atit in the pnogr-am.,__then path,~_is_
stopped after Ki.

CONDITION 3. Let Ki = (ki E i) be comparison instruction and let ki
have * at it. We move backwards along the path a and look for the pre-
ceding occurence of instruction ki in the same state Si' i.e., look
for K * c) where k ek , and S =S .. If E = E. holds (otherwise themm m m1, m1, m 1,
rule (2) of erasing * is applicable and no stop occurs) then we find
deficiencies p and p. of instructions K and K .. If p.>p then pathm 1, m 1, 1- m
is stopped after K .•

1
CONDITION ~. Let Si be the state attached .to Ki. We move back-

wards along ~ and look for an' instruction K ~ m<i, such tnat K =K. and
_ '_". -r , __ ' ' '" 'In. m].

Sm=Si' If we find such an instruction- and also'-tne'ronowl:righolds:- -
there ftre two instructionskr and kn in the program such that at the
moment we consider Ki kr is older than kn (hence, they both have *')

but at some previous moment kn has been older than k , then a is stop-
, r

ped afte'r-K ..
1

;,..,L~~._-For "every program in language L every, path is stopped .Ln finite
number of steps according to Conditions 1-4.

Hence it follows that the family of paths (~1,~2, ... ,aP) describ-
ed before is finite indeed.

. 1 2 sNow let us denote by (8 ,8 ,.•. ,8) the family of paths which is
Z"'ol:itained-iro~family (a1 ,a2, ... ,aP) by deleting all paths aj stopped

10

according to condition Ct. Obviously all 81,B2, ... ,Bs are realizable.
Solutions of ~orresponding systems of inequalities NCB1), ... ,NCBs)

.allow us to construct a sample system r-eL .izing all these paths. This
system is denoted by L T, T being a program. It follows from the Lem-
ma that the algorithm described here converges j r13- f_iniJ:~...number..of-~

--step'sror every program Ti~-la;~~~ge- L. ----.
Now let us formulate an effectively testable completeness condi-

tion for our sample system LT.
We say that path n is realizable ignoring arithmetic if system

N'(n) obtained from N(n) by deleting all ~ithmetic equalities has a
solution. Let us denote by (r 1, r 2, ... , r t) the family of paths which
is obtained from (n1, ... ,nP) by scratching all paths not realizable
ignoring arithmetics. Obviously (81,...Bs) £ C r1, ..., tt,. During the
previous construction every occurence of instruction K in family (n1,
... , nP) has a state S attached to it. In this case we shall say that
pair (K,S) is contained in the family (n1, ... ,nP). Further, let us
say that two pairs (Ki,Si) and (Kj,Sj) ar equal-if, firstly, Ki=Kj,i.
e., Ki and Kj are the same instruction in the program with equally
fixed _~xi t 1 _and, ..s.econdly~--S.~-S-j .

THEOREM S. If the set of different pairs CK,S) contained in the fami-
ly (B1 •... ,Bs) coincides with the set of different pairs (K,S) contai-
ned in the family (r 1, .•• , rt) then the sample system L ~ is comple-
te for program T.

Real programs as a rule satisfy this completeness condition.
In particular, if the program contains no arithmetic instructi-

ons or contains the ones not affecting the values of variables used
in conditional instructions then the above mentioned a..!gorithm always
yields~completecsample-system •

.::_~_:'~foz-'the_program--gf~ig.l this algorithllcconstructs 'the foilow{ng-
family of paths (only realizable paths containing new branches are gi-
ven here, in oreer of their appearance);
1 .B ~(1+.2,3,4-,17,18-,21)
2 - ,B =(1+,2,3,4-,17,~8+,19,20-,17,18-,21)
4-

B ~(1+,2,3,4-~17,18+,19,20-,17,18+,I9,20+,21)
:-B_6~=(1f-,2-;j-.4-~;5,6-,7- ,12,5,6-,7- ,12) .
.,!-----,-- -_. - - - .:-:,-6 _=- ("r.-; 2 .-3,4-+,5 ,6-, 7- ,j.2 ,5 :> 6 + ,17 ,18 - ,21)

. 12 . -
B =(1~,2,3,4+,5,6-,7+,B,9-,13,14-,21),13 - . -
B =(1+,2,3,4+,5,6-,7+,B,9-,13,14+,15,16-,13)

- B1~=(1~-,2--;3;4-·j:-,5;6-,7+-.•8,9":,13,14+,15, 16+ ~-21)
15' .B =(1+,2,3,4+~S,6-,7+,B,9+,lQ,11-,7-,12,S,6-,7-,12)--- ~~ ~----:::. -- --; . -- .--- - .

11

Z68 =(1+ , Z , 3 ,~+ , S ,6- ,7+ ,,8 , 9+ , 10 ,11 + , 13 ,14- ,Z 1)
The following- sample system corresponds to it:

P1:A=(l) B=() m=l n=l;
PZ:A=(l,Z) B=() m=Z n=l;

-:-?~:A=_n, 2 ,~)"-~ -tr=t ~'r-- -m:=Z -~--.~-n=lT"--
.P6:A=(Z) B=(l)- m=l n=Z;
P7:A=(2) B=(l) m=l n=l;
P1Z:A=(1) B=(2) m=l n=l;
P13:A=(1) B=(Z,3) m=l n=Z;
P14:A=(l) B=(2,3)' m=l n=l;
P1S:A=(1,3) B=(2) m=Z n=Z;
PZ6:A=(1,3) B=(2) rn=l n=l;

It follows from the construction that conditions of Theorem 5
are satisfied and the constructed sample system is complete. It can
be easily seen that this sample system reveals the bug in the program.

The described algorithm is far from optimum in general. It is
considered here to illustrate a possible direction in studies related
with practical implementation of complete sample system construction.---_. - - .-~ - - - --'-.' ----- -- ..-~--.... --_ .. _. - -- -

It is plausible that an algorithm not too complex for implementation
yielding CSS for practicallyall real programs can be constructed.

Let us note in conclusion that construction of CSS is an appro-
ach to application of incomplete induction principle in programming.
An another usage of this principle is provided by synthesis of prog-
rams given by sample computations (see, e. g., [3] , [4J , [5]),
though the questions of practical implementation are less clear there.

REFERENCES

._~J~~~~,!ll a.!M_.~_·EH~.e:ll.cm_~.~~,~I!~_A_":~., II~.~~O~e.H~_enoaaoa
CHC~eMH npZUepOB ~~H npOBepKH KOppeK~ROC~H apOrpaMM. Y~eRHe 3anHC-
KH !a!BHHCKOrO rOC~apC!BeaHOrO YHHBepCHTe'fa,T.210 (1974), 152- _.
187.

2. KanRHRllm A.A., EH~eBCKH~ H.H., EaP3~Rll H.~., 'Pa3pemHM~e H aepaa-
pemRYwe C~aH npo~~eMH aOc~poeaRH nO~RO« CHc~eUH apHMepOR. -----,
188-205.

3. EaPS1.tHRllfl.ll., 3aJ161;1aRae0 CaH~eSe nporpaJOl no JdC'fOpHU ax:pa6"olffi.
-------, 145-151.

4. Barzdin J.M ..Synthe~izing programs given by examples.-Lecture Notes
in Computer. Science 5 (A.Ershov ,Ed. ~,pp. 56-63 ,Springer-Verlag ,Eer:._
lin, 1974.

5. Bierman A.W., u s c ,, Automatic program synthesis.Technical Report •....·
Ohio State University, 1973.

12

Translation of Russian references

1. Barzdin, J .M., Btcevski s , J.J. and Kalninsh, A.A., Construction of complete

sampl~ ~!s_!t:!mfor te_s~lL'=-0n:ectn~~()f]J~gx:.ams: Ucenye zapiski Law .gos.

umv, 210 (1974) , 152;;187.

2. Barzdin, J.M., Btcev.skt s , J.J. and Kalnish, A.A., Solvable and unsolvable

cases of the problem of construction of a complete sample system.

Ibid, 188-205.

3. Barzdin, J .M., A note on synthesis of programs from their computational

histories. Ibid, 145-151.

•.._~ ~~-- -
~~~~~ •. :"__~-:__ ;2r --~--~ --- .~.-.- ----- ~~--- -- •...~ ~.- - -- ...~ ... ~.-_~_ ~~::~':'::::!...-.... _"1J.~-- -==:1""'"""..--::: __ -----=- _.~-~-~ __=_=_--:.-=_----- ..,---- ----~_.----~---

.•• -~ ..=. ••. _------
."": "" .•

...3--~~~~~~~:=:~...:..~ ::_'~ --_-:=:.~-

- --~-------~;r~~~~~~~~:;:~~. ~~~~=-~~-__~~~~.=~~._~~~ _
.~~T :-:r=z;r~;¥':;eQ ~~.~.::.-.:~: -?~~-_~~...:--::-~:;'oL~ "'-'~~~~ ....~=-:'2=.- .

I·.... _
r-;~7~~~~~~ ..~



SDL '89
THE LANGUAGE AT WORK

Proceedings of the Fourth SDL Forum
Lisbon, Portugal, 9-13 October, 1989

edited by

Ove FJERGEMAND
TFL

Horsholm, Denmark

Maria Manuela MARQUES
INESC

Lisbon, Portugal

~tt
m
~
1989

NORTH-HOLLAND
AMSTERDAM· NEW YORK· OXFORD· TOKYO



<;DL '89: The Language at Work
O. Fasrgemand and M.M. Marques (Editors)
© Elsevier Science Publishers B.V. (North-Holland), 1989

1:7

SDL TOOLS FOR RAPID PROTOTYPING AND TESTING

J. M. Barzdin, A. A. Kalnins, M. 1. Auguston

~ComputingT:enteiofthe Latvian ~
State University
Blvd. Rainis 29
Riga 226250
USSR--

The paper presents SDL tools which are being implemented at the Compunr;g-Ceiuer
of the Latvian State University in cooperation with some other institutes. These tools
are based on extended version of SDL'88 oriented towards executable specifications
and include SDL compiler and other support tools for specification testing. The
methodology of SDL use and SDL training is also discussed. In the conclusion
problems of target code generation from SDL and other future plans are sketched.

1. INTRODUCTION.

The interest in the Soviet Union about the specification and design language SDL for the informal
description and simulation of telecommunication systems has arisen long ago. This interest
especially arose in the mid eighties in connection with the development of new generation of
telecommunications systems. These systems appeared to be much more complex, and therefore the
necessity arose for prototyping- and -eesting their- functions before the-implementation of their
software. A completely formal specification language for this purpose was necessary. SDL'88 meet
these demands to a great extent, Therefore many institutions in the Soviet Union started rapid
development of SDL tools. The paper describes SDL tools developed by the Computing Center of
the Latvian State University (CC, LSU) in cooperation with some other institutes. At the present
stage these tools seem to be the most advanced in the Soviet Union. They include graphical editor.
SDL compiler and debugging and testing tools.

2. THE CHOICE OF THE SDL VERSION

The first problem encountered during this project was the choice of SDL version. This SDL version
should supply the user with convenient means for the design of formal specifications executable on
computer. These executable specifications serve as a prototype for the system under development .
TIle complete SDL'SS is too complex for executable implementation, especially its abstract data
types. On the other side it does not contain many important facilities for the design of formal

- specifications. -Inthis-connection amodifiedversion 'of -SDL was developed (named SDL/PLUS
[1]) to support the design of executable specifications. SDL/PLUS contains several extensions to

. SDL' 88 and essential changes of its data handling pan.

2.1. Extensions of SDL'88

SDL'88 structuring facilities are perfect to describe the physical structure of the system (block and
channel substructures etc.), Yet the process structuring facilities are unsufficient for the design of
real systems. The introduction of service concept in SDL'88 improved the situation slightly but
problems still remain.

During the top-down design of a complex system it is convenient to introduce large processes to be
decomposed into components in the further stages of design. For this purpose the concept of
subprocess is introduced in SDL/PLUS. It means that every process can be decomposed into
smaller processes by the means of process substructure diagram. Signal routing means are also
slightly extended for this purpose.



128

Real systems frequently contain many occurences of the same block or channel. For instance,
digital switch may have many incoming trunks and each of the trunk may be served by rts own
microprocessor described as a block in SOL. SDL'SS has no means for the descripti~n .of number
of uniform blocks or channels. For this purpose the concept of block or channel array is rntroduced
in SDL/PLUS. For example, system diagram in SOlJPLUS can contain the following fragment:

t

O(K), K=1 ..3
8(1<), K=1 ..3 C(K), K=1 ..3 E

":"'liichis equivalent to the following:

0(1 )
8(1)- ---

0(3) 8(3)

E0(2) 8(2)

SOL/PLUS allows also several input pons for the same process.

Some other important extensions to SDL'88 are supposed to write adequate specifications for
implementation in a specific target environment, For this purpose the following concepts are
introduced in SDUPLUS:

- quasiparallel block, i. e. , a block corresponding to one CPU and therefore all its processes
are executed in quasiparallel,

- process priorities, i. e. , processes in quasi parallel block are scheduled according their
priorities,

- shared variables in quasiparallel blocks and their protection facilities,

- significant signals corresponding to interrupts in computer and causing instantaneous
rescheduling of processes. --

SDI../PLUS has also some less important extensions, e. g. , graphical loop symbol, not discussed
here in q~t@. -:..

2.2. Data Handling Means

Experience shows that abstract data types in SOL are not widely accepted by the users due to their
complexity. Actually ADT are replaced by data handling part of the target language in all major
executable SDL implementations [2]. The version of SOUPLUS implemented at the present stage
uses Pascal for data handling.



The situation on the spot is the following - the target language often is either of very low level or is
chosen in the late stages of design. As large projects specially require completely formal and
testable specifications the use of Pascal is approved by its wide usage as a data handling language.

Choice of some other high level target language( CHILL, C ) also requires the usage of its data
handling pan in SDL. All our tools are designed so that the transition from Pascal to some other

~---hmguage-requiresjustsomemoBths~-- ~-- --- -- __-_ __ __

This is achieved by implementing all language processing components in a special high level
compiler writing language RIGAL [3], also developed in the CC, LSU.

3. SDL OPERATING SYSTEM

SDL operating system has also been developed for use on host computer in simulated time mode.
Several CPU's can be simulated - they must be described as several blocks in the system executed
in parallel. Quasiparallel execution of processes in a block is assumed and priority scheduling of
processes[l] is supported. Tune simulation is implemented to support all timer operations. Time is
advanced by a little increment at every signal sendinglreception. There are also user conn-oiled
means for time advancing at other SDL statements. Every block has its own simulation time
counter.

The aim of the SDL operating system is to guarantee completely correct externaly visible sequence
of events according to SDL semantics defined more precisely in [l l.The number of context
switches from block to block was shown to be minimal for the selected scheduling algorithm. This
is very important since executable SDL is intended also for system simulations with run time being
critical,

No scheduling or timer services of the base operating system are used. At the moment the operating
system accepts Pascal as the implementation language for SDL, but actually it is language and base
operating system independent.

4. TIIE TOOL IMPLEMENTATION LANGUAGE RIGAL

The necessity of SDL implementation portability and need to get a working prototype in a short
time implied the use of problem-oriented high level language for compiler development. As none of
the languages familiar to us of this class met the requirements, a new language RIGAL was
designed. It is a simple and powerful high level language for compiler writing. Data structures
comprise atoms, lists and trees. Control structures are based on advanced pattern matching,
Operations, such as table creation, code generation. message output, are executed simultaneously
with parsing, like in YACC [4] and CDL-2 [5].

RIGAL ia a closed language where all the processing -steps of compiling can be written withouC-
semantic subroutines in some other languages.

The language has means for easy usage of attribute grammar ideas and supports the style of
recursive descent. The RIGAL has a special reference facility, that solves the global attribute
problem better than ordinary attribute grammars.

The language provides tree manipulation facilities, including tree grammars.

All that makes possible to use RIGAL for syntactic analysis, program optimization, code generation
and for preprocessor and convertor writing. RIGAL supports design of multi-pass compilers.

The interpreter of RIGAL was written in Pascal, and then an optimizing compiler RIGAL--> Pascal
was written in RIGAL itself.

The optimizing RIGAL compiler in the VAXNMS environment makes it possible to implement a
production quality SDL--> Pascal compiler.



130

User

User •

, - --- - - - - - - - - - - - ' - .. - .. - - - .. - .
-_.: -SOb- .-,

\ Execution
I

I,,,
\
\
\

: ·1 D_e_b_u_g_g_e_r--
\ I~---------------------------------------------,

Graphical Editor

, SOL Compiler

Syntax Analyzer

Code Generator

--_ .. _----- .

Testing Facilities

FIGURE 1. SDL support tools



131

5. SDL TOOLS AND TIIEIR fMPLEMENTA TION

A set of SDL tools has been developed at CC, LSU to support the usage of SDL at various
software design phases. Tools are implemented in the VAXNMS environment IBM PC's may be
attached to VAX as graphic workstations. Figure 1 shows an overview of SDL tools implemented

- -up-to.now-- .. _.____ .__ __ ~ _. .

5.1. Graphical Editor

Just the graphical f9m1 of SDL is used. The graphical SDL input uses IBM PC as a graphic
workstation for VAX. The SDL graphical editor under MS DOS is also developed by CC, LSU but
it has standard facilities common to many editors and will not be described in detail. Means to
obtain hardcopies of SDL graphs are also available. SDL graphs are stored as disk files in a special
compressed form called G - code.

5.2. SDL Compiler

The main tool in the set is SDL compiler for obtaining executable VAX code from SDL system (via
Pascal ).The SDL compiler is implemented in RIGAL It consists of rwo pans.

5.2.1. Syntax Analyzer

The first part is the SDL syntax analyzer which includes also a transformer from G - code to
internal PR form used as input for the analyzer. The syntax analyzer performs SDL syntax and
static semantics checking including Pascal statements in SDL - type checking in assignments, signal
inputs and outputs, signal and process name visibility etc. Error messages in process graphs are
shown by'means of graphical listing c a graph with error messages added at-appropriate-starements.· --
The graphical editor has a special mode for easy observation of error messages.

The syntax analysis is performed in descending order - first for system, then for blocks, concluding
with processes and procedures.

5.2.2 Intermediate code

The output of syntax analyzer is intermediate code called S - code in the form of abstract syntax tree
with the necessary attributes added and coded as RlGAL data structure. S - code now is passed to
code generator but it will be used also by other tools- static analyzer, target compiler, etc. S - code
appears to be a very convenient form for storage of SDL objects and is easily processable by
RIGAL statements. S - code for the system serves as a data base to maintain integrity during
separate compilations of processes.

5.2.3: Code Generator- -- ,- --

The second part of the compiler is the code generator producing standard VMS Pascal code from S
- - code. Code generator is applied to each of the processes.An external Pascal procedure is obtained
from SDL process. The procedure body consists of CASE statement with a branch corresponding
to each of the transitions. State/signal/transition table is held in a special coded form. This appears
to be the optimal form for coding SDL in PascaL All scheduling and timer- operations as well as
actual signal sending are compiled into calls to corresponding SDL operating system modules. The
current version of SDL operating system assumes coroutine implementation of process instances
thus the equivalents of Modula - 2 NEWPROCESS and TRANSFER procedures are introduced as
runtime stack swappings ( implemented in VAX MACRO ).

Code generator automatically invokes VAX Pascal compiler, so an object module is produced for
each of the processes, usually without Pascal diagnostics.

After that the code generation for the system itself is performed Some Pascal procedures for
system and blocks are generated and compiled. The Linker command line is generated and executed



132

to link all the produced modules together with SDL operating system modules. So the result of code
generation for system is an executable VMS task.

At process corrections they can be recompiled separately and in most cases only system relinking is
necessary.

At present stage Pascal is used as the host language for executable SDL because of use of Pascal
data handling in SDL. In the case ofanother base language choice the code generator can be easily
modified due to convenience of RIGAL both for tree processing and the description of code
generation.rules.

5.3. Testing and Debugging Facilities

Executable task obtained from SDL system is mainly intended for testing the SDL description of the
system before its target implementation. Tools for setting up SDL testing environment are
developed. They allow a convenient input from terminal or file of input signal sequences (together
with their parameters). TIme delays are also user controllable. Comprehensive ckeck of output
signals is supported by explicit displaying or recording them Some tools are specially adapted for
testing subscriber interfaces of SPC exchanges when specified in SDL. Multiterminal prototyping
tool for this kind of systems is also available where each terminal simulates a telephone set All
these tools look like standardized SDL processes to be added to an open system to close it. Tools to
measure completeness of testing are under development.

SDL debugger is also implemented to obtain run-time information from the SDL viewpoint - active
processes. states, signal output/input etc. The most advanced debugger is built as a post debugger
w~eI'!<.all jheexecutionevent traceis recorded in.a compressed- way and then examined by the
debugger" (possibly in both directions), giving the user illusion of real observing the execution. This
approach appears to be more efficient (though has some deficiencies, too). On-line debugger with
more limited capabilities is also available.

5.4. Portability of Tools

The use of RIGAL for all pans of compiler supports its high portability. The other smaller
components of tools are implemented in Pascal and C. RIGAL is being POrted into liM PC and all
the tools will be ported to IBM PC under MS DOS in 1990. Porting to UNJXThI environments also
seems highly possible.

6. THE METHODOLOGY OF SOL USE

The tools support the main phases of switching software design. The editor and hardcopy facilities
. support the use of SDL for semiformal design and documentation of the switching system

functions.

The main emphasis is made on completely formal design of software, where all the logics ofaction
is expressed in executable SOL The tools allow to create an executable prototype of the system
which can be thoroughly validated by testing it on the computer. The same SDL description allows
simulation of the system at various workloads.

At present only manual transition from the validated design to target implementation is possible. But
future plans for a soon target compiler will allow nearly automatic transition to target
implementation.

7. USAGE

The described SDL tools have been successfully applied to the design and testing of algorithms for
an experimental PBX with additional features.The transport, nerwork and data link levels of a
specialized OSI - like protocol have also been tested by our tools.Tools are being applied to some
formal description and testing of algorithms of some other telecommunications and switching



133

networks. e. g.• a specialized local network. We suppose to use these tools for checking and testing
some. standard signalling systems and protocols, e. g.• the most important pans of signalling
system No.7. Hence the description of this signalling (ccrrr recommendations Q701-741) is a
somewhat informal in its data handling pan. some formalization of this pan is to be done before
testing. This will allow to test the description exhaustively on computer.

- 8. SDL TRAINING

A textbook on SDL (in Russian) is prepared in the CC, LSU. Experience shows SOL to be a
relatively complex "language to learn - even without ADT. Therefore the layout of SDL in the
textbook is divided into levels according to user categories:

levell-local (stand-alone) process for informal use by algorithm designers,

level 2 - system structure for use by system designers,

level 3 - complete SDL'88. for use by program designers,

level 4 - extensions to SDL'88 for use by program implementors to describe implementation
specific details.

9. FUTURE PLANS

As it was mentioned above tools can be easily adapted to some other target language - not only
PascalvThe principles of-SOL" compiler generating code for. some .target .environments are
developed. The necessary optimization level will be provided using alternative code patterns for the
same SDL construct The optimization will be user-controlled by means of formal comments .
pragmas at SDL declarations. Such a controllable compiler for a target environment will be available
in 1990. Its development strongly relies on the possibilities of RIGAL. Actually only L'Je code
generation pan has to be rewrritten, besides many of the code generation algorithms of present
compiler will also be retained.

The development of testing tools is also planned including SOL static analysis and automatic test
case generation. We suppose to generate test case sets exercising all transitions in processes using
methods similar to [6].

REFERENCES

[1] Hamlin J., Kalnins A:, Strods 1. and Sicko V .• Specification Language SDLJPLUS and its
. "Applications {Latvian State University. Riga; 1988, in-Russian)

[2] Saracco R. and Tilanus P. A. J. (eds.), SOL'S8. State of the An and Future Trends (North-
Holland. Amsterdam, 1987) ~

[31 Auguston M.• The RlGAL Programming Language. "Programrnirovanije", 1989, 4, (in
Russian)

[4] Johnson S.c.. YACC - yet Another Compiler Compiler. (Bell laboratories, Murray Hill. N.
J., 1978, a technical manual)

[5] Koster C. H. A.. Using the CDL Compiler Compiler. Lecture notes in Computer Science.
1977. Vol. 21.

[61 Barzdin J. M., Bicevskis J. M. and Kalninsh A. A.• Automatic Construction of Complete
Sample System for Program Testing, in: Proc. IFlP Congress 1977, (North-Holland, Amsterdam,
1977) pp. 57-62.



Gruppe forSystemutviklingsteknologi
Systems Development Technology Group

(J~N~LA~~~ODmDu
Proceedings of the

Nordic Workshop

on
Programming Environment Research-

Trondheim, June 11-12, 1990

Editors: Ole Solberg, Arne Venstad

". -.,-'

ELAB-RUNIT Phone: +4775926 00
N-7034 Trondheim Fax: +47753 2586
Norway Telex: 520375 ELAB

IOT,NTH Phone: +-4775934 40
N-7034 Trondheim Fax: +-4775944 66
Norway



SDL SUP?ORT ENVIROi'l"MENT FOR PROTOTfP ING AND T::STING

A.A.Kalnins

Comp_uC-tng -Cent-e:o-f --the La.-t\f-t,} -----

Un ; '';e :-sit Y

Blvd. Rainis 29
Ri'J<3.226250

USSR

The paper present~ SDL 3uppc~t envi~onment which is
being implemented at the ~omputlng :ente:" ()f the

i~ ~0ope-aticn ~ith some othe-

towards executable soecifications 3nd include SOL
compile~ and other support tools 'for specification
te s t ino . The metnod o l oqv '-"';L SDL IJse3nd SDL t r a i n i nc

is dlso discussed. In the concluslon Droble~s of
target cede generation f-om 3DL and other fut.u:e plans
are sketched. The pape- IS a further dAvelnpmeilt ot
(1) .

1. TNTR()DU::'TTON

The inter-est in the Soviet Un iori about the
specification and design language SOL foe the informal
descr-iption and simulation of telecommunication systems has
arisen long ago. This inteeest especially arose in the mid

/cighties in connection with the development of new
generation of telecommunications systems. These systems
appeaeed to be much moce complex. and therefore the
ne cess it y arose r o r p ro t ot.vp inq and t e s t inq t he i . functions
befor-e the implement.ation of their software. A completely
for-mal speciflcation language for this pu:"pose was
necessa cv . SOL' 88 meet these demands to ,3. g'-",a t ext: en t .
Ther-efoee many insti:utions in the Soviet Union sta-ted

1



rapid development of SDL tools. The pape~ ,desccibes SDL
t.oo Is deve loped by the Coruput i n.r Ce.nte r d( -t ne La.t v ie

University (CC.LU) in coopecCltion wi th some ot he r
--insti tut.es.yO mai.nl Y-- .t.ne __~~'LQ.zaf _i':~~~~(,CD---':"- a?~~cta_t i ~l-~_~ n

MGscow. At the peesent stage these tools seem to be the
most advanced in the Soviet Union. They include graphical

editoc. SOL compile~ and debugging and testing tools.

2. THE PROPOSED SOFTWARE DEVELOPMENT ?AP~DIGM

The main appcoach of this project is a consistent use

of SDL in all phases of the softwace life cycle. It

includes semiformal use of SDL in the early stages af
sys tern desig_Q sugp9_c~ed only -ov tools for- editing and

documenting. Then tollows the focmal specification of
system functions. which should be accompanied by tho cough

tool-based testing and pcototyping of-these functions. The

main -implementation dependent features should also be

-spec-ifiable and testable at the SDL leveL'- The t reris i t ion
_ _ t ~ - >

-to -t-arget - rmpremente t ion - shou Idbe -.- thr-ough automatic

comQ.i~latLon .Lnc l ud incr use:,,_guide~_op!imizing to' adapt the
-~o~e; ::t:o"---tac~~i~~en~-ic~~~nJ p~cu 1ia:"i!:- ie~... 1- ~.... ~.

. .
-

• ~, _ ~•• 'Co •••• r-3-;: THE~ C!"fO:I;CE OF THE SDL -VERSION
- - -----,,-,"- -~- -- ~--=- ,...."..••...•.•.. - "'~~ •• --.--.f _ ,.c

--- !- _--

The" ficst pr-ob Lemiericount.e r'ed dllr-ih-g~·thfs-pr-oject W,3,S

·-the--~cho·Fce~of-:SDL--ver~ i-·oti"~·Thts~SDL~::~ersio'n--;';S-hould-=--supp1y
the use r wi th conven-ient means for- the-, -des ign of fo::ma 1

~-.~ ~~:.~..:.. ..!-_~-I__ "":{!'" I~·.J'; ~-_--I:".l.~ -"1.1

spec~tts..a~Lon~-~?'J3C,~~a~l~ on c<?f?pu~J-'~ ~"T~~se- -exe'ctltabl e
"spec fflcat"ions s~e,:;ve a"s-a: p~ototYpe-"·fo'r-:---the--system - under"
deve 1opment-. The" ....~..;complet-e- SDL' 8"8'-:---'fs--~~D6 -"--comp1ex -to ("

.-....-- - ~- -&~- ~,,-~. -- .
//-execu-t-a:bl-e implementation; especiall-y - its abstr-act data

type s. ---On- the of he (- s ide It does not .corrt a in many irnpor t an t

facilities fo(" the design of formal ~~e~[fications. In this

connection a modified vecsion of SDL was developed (namen
SDL/PLUS [2 1) to sup por t the design <)f executable



3DL'88 and essential changes of its data handling part.
~- - ----

3.1. Extensions of SDL'88
'"'~.-. ----

3D1"88 st:uctur-ing f eci Li t ies ar-e pe-rfe.c,t to. describe
the physical structure o~ the system (block and channel
substructures etc.). Yet the process structuring fdcilities
are insufficient for the design of real systems. The

intcoduction of se,vice concept in SDL'88 improved the
situation slightly but problems still remain.

During the top-down design of a complex system it is
convenient to introduce large processes to be decomposed
into components in the £ur-ther stages of design. For this

"=pllrpose the concep,to-f~subp...c:ocess...t,s.. intr~cl"uce~i<n_SDL/PLUS.
It meuns that every process can be decomposed into smaller
processes by 'the means of process substructure diagram.
ax-bit("arydepth of decomposition is allowed. Signal rout inq
means'are.alsO--slightly ext ended.jfo r this purpose.

Real systems frequently contain many occurcences of
the same block or channel. For instance, digital switch may
have many -·i nceming..,..o.trunJ~£c,a~q."e_C!ch~_0 f th~ .t::~n~..-=-may~_~e

'-Eier-·"Tedbyit-s--own-J'!ll-e-r-Gp-cocessor:deec r ined as -a block" in
SDL"-.--.SDL'88 has no means for the descr ipt ion of numbe r of
un lfo rm blocks or .~ha!}nels..::.YOi:'" .t.n is rpurpos e the concept of
block or channel a~cay is intcoduced in SDL/PLUS. For
exemp le , __sys.t em; d.iag('_~ in· SPL/PLUS can contain ';the
following tra-gment:-

3



which is equivalent to the f 01 1ow-i ng ;

DO) B(1)
C (1)

D (2)
.~-~~-
-a,

C(2)~

-~-~~---:L3,,)~ ~~~~-,:~:_B-L~J:,,:=,--=- _~'
----.........=. -.••-=-......::a-=-~_ .............-:LZ".J~-~_~_ _ - ~ ""'lL..- ~~ ~.~..........,-._ ~_~ _

4



SDL/PLUS allows also seve~al input P0~ts for the same
process. thus suppo rt inq , e.g., the descr-iption of a
handle: fa, va:ious types of in t errup t s as one process .

Some other important extenSions to SDL'8S a:e supposed
to write adequate specifications for implementation in a_

-~~.---.; ----- --- ----------~---- - ---- ----.-------- ----_. -:------

specific tar-get'env i c-onrnen t . Fa:' this pu rpose the f olLow inq
concepts d:e int:oduced in SDL/PLUS;

'.ques i pera lLe I lock. l.e .. a block corresponding
to one CPU and therefo,e all its processes a::e ~xecut~d in
qua s ipe r a l le l .

- proceS 3 Prio: itie s. i.e .. pro cesse sin :j11as iparalle 1

block ~re scheduled according their p~io("itles.
- shared variables in quasipa:allel blocks and their

p::otection facilities,
- significant signals corresponding to inte~:upts 1n

compute,' and causing instantaneous rescheduling of
p;Dcesses.

SDL/PLUS has also ~0me less important extensions.
e.g .. graphical loop symbol. not discussed here in detail.
Some ra:ely used facilities in SDL'88. e.g.. expo::t/impo:t.
a:e omitted on SDL/PLUS.

P~-t of the extensions to SDL'8A included in SDL/PLUS
ace mainly in lin~with the object o:i~nt~~-':~~tensi~ns to
SDL proposed by Nordic countries.

3.2. Data Handling Means

Experience shows that abstract data types in SOL a-a
not widely accepted by the use::s due to their complexity.
Actually ADT are ::eplaced by data handling pa::t of the
;~~rget language in executable SDL implementations [3].
Though SDL pr-edefined data types a:~ used in some
implementations [4] .the int~oduction of new data types is
actually pe~formed by means of use~ written pcoceduces and
functions in target language coccesponding to abstract
ope~at1on. So usee actually desccibes data handling in the
ta~get language [C. Pascal, CHILL].

5



"he cu~~ent vecsion of SDL/PLUS uses Pascal IO:- da t e

handling. This is due to the fact that in our cases the
ta~get i~ngu3ge orten IS eIther 0f very
chose in the late stages of design. As
specially r,=,quire completely f 0 rrne 1 and testa.ble
specifications the use of Pascal is approved by its wide

usag~ as .j dat.ahand 1 j ng 1enquarr e arid so f ec illt otes the
testing of functional specifications with lesse~ effo~ts.

Choice of some ot he r high level tar-get language (CHILL.
C) also requires the usage of its data handling pa~t in
SDL. All ou~ too15 are designed so that the transition from
Pascal to some other language requires just

This is achieved by implementing
processing cqIDRonents )!2_a. special high
wr i ting 1ar~g-uagefUGAL [5]. a 1so deve loped---
spec-ial care is 'also taken to isolate the
part of the language in both syntactic analysis and code

some months. /.-.- ..

all language
level comp i1e t-

in the CC.LU. A

data hand 1ing

. "'-t'gene,a_lon.

4. SDL' SUPPORT ENVIRONJv1.ENT AND ITS IMPLEMENTATION,

SDL support environment called RIGA-SDL has been
developed at CC. LU to support the usage of SDL at various
design phases. The support environment ronsists of an

6



User -Graphicat Editor..

,----------------------
SOL Compiler

Syntax Analyzer

,,,,,,,,,,,,,,,,
•,

._--------------------- ----------,

- - .- - - .-.- - .,,,,,,,,,,,,,
r-------------, ,,,,,,,,, ,~-----------------------_._------------------_.

Code Generator

,.- - - - - - - - - - - - - - - - -~_.- - .. - - - - - - - - - - - - - -,,,,,,,,
\,,,

us~':'-·---~--1

SOL
Execution

Debugger I Testing Facilities

FIGURE 1. SOL support tools



integ~ated set of tools.
Tools d:e implemented

DOS enVIronments. A mixed
/ MS

pr-' C'•....... ._'

attached to VAX as graphic workstations IS also possIble.
Figu:."e1 shows an over-view of SDL tools implemented up tc
now.

4.1. User Interface

All tools on IBM PC are accessible from an integrated
menu-dr-iven inter-face. This inter-face gives an overview of
SDL· syst-em.under-development in a tr-ee-like f o rrn. It serves "--.'
also as a simple project data base. The operations
available for the selected SDL object (editing. compiling
etc.) a~e shown by menus and submenus.

On,="VAX·~most.of _the operat ions are avo.i1able from a
single SDL.-command-line naming the object to be processed.

4.2. Graphical Edito('

Just the graphical form of SDL is used for process
diagrams. The SDL graphical editor under MS DOS is
developed by CC.LU. It has standat"d facilities common to
many SDL editors and will not be descrIbed in detail. Means
to obtaIn hardcopies of SDL graphs are also available. SDL
graphs are stored as disk files in a special compressed
form called G-code.

Graphical editor for block interaction diagrams lS

under development. for the moment this kind of information
is entered via PH-form. There is also .3 simple gcaphlcill
editor for VAX alpl1anumer-ic tet"minals.and PC with its
editors can be used as graphic workstation for VAX.

4.3. SDL Compiler

The main tool in the set IS SDL compiler for obtaining

8



executabl~ Gode f~om SDL system (vi~ r~~cal). Th~ SDL
Lmplemented in RIGAL. The c ornpi l u t io n ,:3

blocks. concluding with processes and procedures.
SDL-~o~pil~/~onslsts of two-pa?"~s.-a-cting--as-~a----tTJO-p.dS3

c omp i le r .

4.3.1. Syntax Analyze:·

The fi:st pa:t is the SDL syntax analyze: WhiCh
includes also a transformer f(offi G-code to internal PR fonm
used as input for-

SDL svnte x

the ane lyz e r ,
and static

The syntax analyze~
semantics checkingperfor-ms

lincluding Pascal statements in SDL) type checking in
--;-s;-ignments-.--5igna l-i"nputs-and out-puts.-signa 1 and __proc_ess

naJ!levi:?_L:QLl-ity:etc. Er ro r messages in pr-ocess g("aphs a:e
shown by means of gcaphical listing - a gr-aph with e:(o:
messages added at approp(iate statements. The graphical
editor _has a special mode foc easy obsecvat~on of ec:o:
messages.

4.3.2. Intermediate code

The output of syntax analyze: is inte rmed iat e code
called S~cod~ in the form of abst:act syntax~ree with the
necessary attributes added and coded as RIGAL - data
structure. S-code-nowis passed to coue generator but it
will be used also by other tools - statiC analyzer. target
compiler. etc. S-code appears to be a ve~ convenient fo:m
~~( storage of SDL objects and is easily p:ocessable by

RIGALstatements. S-code for the sYstem serves as a dataL~ .__ •

base to maintain int~g~ity during sepa:ate compilations of
pr-ocesses.

4.3.3. Code Generato("

The second par-t of the compiler is the code generator

9



producing standard Pascal code from S-code.
It generates standard VMS Pascal for VAX

Pas ca I for IBM PC. An exte rnalP as cal pro ced I": re ( ur, it) 1 S

generated for an SDL object (system. block. process). In
the case of SDL process the procedure body consists of CASE
statement with a branch corresponding to each of the
transitions. State/signal/transition table IS held In a
special coded fonn. This appears to be the optimal form for
coding SDL in Pascal. All scheduling and timer operations
as well as actual signal sending are compiled into calls to
corresponding SDL op~rating system modules. Thi current

- ....•.....•
ve r-s ton of··SDL ope ret i ng .0_ system assumes corout ine
implementation of process instances thus the equivalents of
Modula-2NEWPROCESS and TRANSFER procedures are introduced
as -runtime';stack swapp incs .

--:C6clegenerator aut.omet icelIy., invokes Pascal
so an objecto~module is~ produced 'for each of
objects;usually withou~ Pascal diagnostics .

..When uae.c vse lects a '.Link -ope ra'tion . the.Linker- command
1inets'gener-ateti and' exe cut ed to 1 ink a 11 the' pr-oduced

modules together with SDL operating system modules (or to
assemble the 'compiled units in the case of Tur-bo Pascal).
So'the-~esult ~flinking is an executable task functioning
as an executable model for- the SDL system.

At process corrections they can
separately arid only system '-elinking is necesser-y o f t e r

compiTer.
the SDL

be r-ecompiled

·that.-IfahLghe:-·level-Obiect. c..€'.g...o lock i s changed,
lJN'IX 1 i ke MAKE-me1de e u t orne t i ce l lv ensuc'es:ill the ne c e s s e r y

recomp i1at-ions.
At present stage Pascal is used as the host language

for executable SDL because of use of Pascal data handling
in SDL.In the case of anothe~ base language choice the code
generator can be easily modified due to convenience of
RIGAL both for-t~ee processing and the description of code
gene~ation rules.

10



4.4. SDL Ope:ating System

In orde r to suppor-t the exe cut ion of Pe sc« l cc·<i.e
~gene:-ated-b-y-=compiTer-.. SDL ope:ating -s'y;tem h.ls-~;l-~o"'-b;e~'
developed to: u~~ on host computer- In sImulated tIme
mode.Seve~al CPU's can be simulated they must be
described ~s seve~3l blocks in the system executed in
pa:allel. Quasipa:allcl execution of p:ocesses In a block
is .:\ssumedand pr-io:-ity:3cheduling o t p rocesses [21 1S
3uppo:ted. Time simulation is implemented to suppo:t all
timer- op~~ations. Time is advanced by a little incr-ement
at eve:y signal sending/:eception. Ther-e a:e also user-
cont:olled means fo: tIme advancing (DELAY statements) .

.E"ve::yb lock nas itsown- s irnulat iori"]; irnecount e r . -
The aim of the SDL ope:ating system IS to gua:antee

completely co::ect extetnally visible sequence of events
acco:ding to SDL semantIcs ~eflned mor-e pcecisely in [21.

The numbet'"of context switches fLom block to block _.was
shown to be minimal fo: the selected scheduling algo:ithm.
This is very impo:tant since executable SDL IS intended
also for system simu let Lons with run time be inc c rit icel .. -

-"'-~----No-schedufingor-' t ime~"-secvices'of the ':Dase- ope ret ing
system (VMS 0: MS DOS) a:e used. At the moment -the
operating system ._acc~pts.~as.cal _ astt'le irnpl ernerit et ron
language for SDL. but actually it is language and - ba~e
opecating system independent.

4.5. Testing and Debugging Facilities

Execut.ab le task obt a ined f rorn SDL system. is ..mai n ly
intended for testing the SDL description of the system
before its target implementation. Tools ro(' setting up SDL
testing environment ar-e developed. They allow a convenient
inp~~ !~om terminal or file or input signal sequences
(together with thei: parameters). Time delays a~e also use~
controllable. The sto:ing of input SIgnal sequences In a

11



file ensu~es the c~eation of comp~ehensive test 5~tS fo'
'eg~esslon testinG afte~ sYstem =hanges.
check of output signals is su~_'po:·ted by e xp l r c i t c.:.3plaY';-;;:i

0: record inq t hern, The reco r-dino of Duth input er.d <-,,-,t~;'jt

signals at selected inte:faces gives a highly observable
:ep~esentation of the system fJnctionjng In a form similar
to sequence charts. Some tools are specially adapted for
testing subsc~iber interfaces of SPC exchanges when
specified in SDL. Multite:minal prototyping tool fo~ this
kind of systems is also available where each terminal
simulates a- teiephone set~ All these· tools- look like

-. - - '. - - - --- - -- .' - /".s£andacdized gene~ic SDL pcocesses to be added~ to an open
system to close it. Tools to measure completeness of
testing O~ to generate stubs for processes not-designed yet

- -
e r e" unde'F -deve 1oprne nt .
• .»: -Sa-!:f:-debuggeris 03.1 so imp Iemerrt ed -to':-obta-in :--un-time
n1'f(i~at'ion'--=-r?om-':-the---BDL-: v iewpo int='- a:ct-(ve - p~ocesses.
states. signal output/input etc, The most advanced debugger
is-bui 11; as..:..a_post__d~bugg~c __'W'h~::.e,~_U _tb_e-ex~c:ution event .
tr'ac--eis recor-dedin-a-compr-essed. way and then examined by

the -debugge~ (possibly in both dicectionsl. giving the use~
illusion of real obsecving the execution. This app:--oach
appea~s to be mo~e efficient (though has some deficiencies.
too). On-line debugge( with mo~e limited capabilities IS
also available. Interfaces to standa~d Pascal debugge~s a~e
also p~ovided for debugging of data handling pa~ts.

4.6. Ta~get compiler

In acco~dance with our softwa:e development paradIgm
an automatic transition from the validated design
specification in SDL to t~:--get implementation is quite
needed. The main p~oblems encounte:--ed here a~e ve~y
specific optimization requi~ements and va:--iety of ta:--get
environments. A target compile~ generating Pascal code for
a ~eal-time environment f~om the intermediate S-code IS
undec development. The main faci~ityadopted to improve the

._~ _._-_....::._-~:=.-""" ---~-- --- --_.~ -._-"-----

12



opt irn ize t ion is pr'Ct';Tmas. They ,3.
0
(e r o rma l comne rrt s .3.tt,:;.ched

by desiqne~to-SDL decla~ations and statement§ to·guide the
code gener-ation. P:agmas ere ueed in ceses wh'C"-eth~,-E- a,E-
a-he ~n-atrve ---code pe.tt e :'"-IlS~~--ro:LoTIe- ·same- SDr:,~c6hst c I..ic t:- Tl'1nos-e

~election is ~mpoBed by exte{"nal ~equi~em€-nts and in cases
whe~e designer- supplied- interface p:ocedu:es should be
prefer-:ed to the compile: generated ones. P~ototype ta~get
compile: fa: extended MS DOS envi:or~ent as a ta:get will
be completed in 1990. It will be used to produce softwa?e
fo: an expe~imental netwo:k of P~'s. Ta:get compile:s fQ(-

othe r envir-onments and lenquaq es ar-e also consider-ed.

4.7. Po:tability of Tools

The use of RIGAL for all pa~ts of compiler- suppo,ts
its h1.gh por-tability. The ot he r: smaller- components of tools
a:e implemented in Pascal and C. Complete compatibility of
RIGAL.envir-onments .on VAX and IBM PC has pr-ovided a
relatively easy por-ting of SDL compile: from VAX to PC
dis:egacding the diffecences of Pascal ve:-sions. Po::ting
tj1e Riga 1. it se 1f ·tlas a1so ;",e~sydue to use of standa rd

.-Pascal 0nly.-Por-ting --to - lINI-X-T~-~eri7i·r-onments·also ··seems
highly possible.

5. THE METHODOLOGY OF SDL USE

An SDLbased methodology fo;;· telecommunications
softwd("e design has been developed [21. It is tool based in

_ all development phases. Some additional telephone switching
,~~~ -

or-iented notations u("e p;;oposed to facilitate
semifonnal use of SDL in the ea;;ly stages of design.
editor and ha:dcopy facilities suppo;;t the
use of SDL fo;; semifo;;mal design and documentation of the
switching system functions.

The main emphasis is made
design of softwa~e. whe~e all the

the
ThE-

on completely formal
logics of action is



validated ~y testing it on the compute:. The same SL~
d e s c r ipt ion e r lows e imulet j on o r lhe system e t, Vd:'l'_'L!.S

workloads. The major implementation details should be added
to the ve Li de t ed functional s pec i f icet ion , this possibility
is suppo:ted by the abovementioned language extensions In

SDL. Some additIonal testIng of the Implementation
specification by the tools IS desirable. An automatic
t~ansition to ta:get implementation with minimum debugging
at-the ta~get level should follow. In the absence of ta~get
compiler some methods of manual transition have been
developed. - -.-~~---

6. USll.GE

~~'::--'O---Tffe described SDL tools have been successfully applied
~.to:th~.design~and:::testing ..o f the. subac rl ne r ..intezfece part

for an experimental PBX with additional features in
.a~C:9r:d.anC'e_.wjth' CEPT ,s.t.andar:ds..:. .MusL:.o.Lthe epp lLce t.i.on. has

•be~.;=;pei~forme_d_·,J)y:'_KvaZi1r-·=--r,:esea·!'eh,:::-.:::associet ion. . The

transport. netwo~k and data link levels of a specialized
OSI-like p~otocol have also been tested by ou~ tools. Tools
e re being applied to some f o rrnel description and testing of
algorithms of some other telecommunications and sWitching
netwo~ks.e.g .. an expe~imental PC based local networK. We
hope to p:oduce the software fOe the latte: system

- cornp l.e.t.e.Iy.r.ny rneensco.f .the-SDL~suppoct env i r-orime n-t-,~'Some
applications in the area of ISDN and common channel
signaling a,e also planned.

7. SDL TRAINING

A textbook on SDL (in Russian) is prepared in the
CC.LU. Experience shows SDL to be a relatively complex
language to learn - even without ADT, Therefore the layout
of SDL in the textbOOK is divided into levels according to
user cateqories:--~ ._- -------_.

14



level-l local (stand-alone) process for informal use by

algorithm deslgners~
level-2 system structure for use by system designe~5.

-- - - Lev.e.L-3-compl-_e_ta SDL-'--a-€l, - t-o r-- us-e~Y-P-f'~m---4e-e- ig~ (e. -~~

level-4 extensions to SDL'88 foc use by ~(og(am
implemento..cs to describe imp lernent at ion
specific details.

8. FUTURE PLANS

The main research per-spectives are connected with
automatic tacget code generation and improved testing
facilities. The compiler perspectives include various
t.9:rget,_l':E)gllaq~Sandr:nQr_,?__powe r f u 1 opt i m izet ion__bY .me.ensof_

flow ane lye is i mo re powe rru l p:-,).gmalenq uaq e and SDL level
p"'o-g-c-a-m - t :"ans-fo rrne t ions.

The main p;,"oblem tn the testing iJ.ceais automatic lest
case generation from SDL specifications. We suppose to
generate test case sets exercising all transitions in
processes using methods similar to [61, thus taking into
accotlnt also the data dependent conditions. We hope thnt
these methods _ wi 11 a Il-m-/ -----ffiOr-e _ tho,rough- .t.est-ing-than
methods based solely on f in i t e. state machine epproe ch [7},
especially in protocol area. Moce advanced SDL static
analy~_is tools are also consideC'"ed.

REFEREN(:ES

[1].Be rzd in .J .• Kalnins A .. Augustan M., SDL Tco ls f0:

·-:""itapidp roto typ inq and t.esti nq , in Fou rt n SDL Fo rurn, Lisbon
Oct. 1989 (Noct~-Holland. 1989) pp. 127 - 133.

[21 Baczdin J .• Kalnins A .. Strads J. and Sicko
V .. Specification Language SDL/PLUS dnd its Applications
(Latvia State Un ive rs ity , Riga. 1988. in Russian)

l31 SaC'"accoR. and Tilanus P.A.J. t eds v ) • --SDL'88.
State of the Aet and Future T~ends (Noeth-Holland.
Amste:--dam. 1987)

15



3I:iL. In

Fou~th SDL Forum. Lisbon Oct. lS139,

pp. 105 - 116.

[5] Auguston M.The RIG AL .p :-·:'C1' ~-ernrn i ng

"P::ogr-amrni::ovanije". 1989.4. (in Russian)

[61 Be r zd in J.M .. r3icA'Iski-s--J . ..:r. e nd Ka Ln i n s t, A.A.

Automatic Constr-uction o f Complete Sa.mple SystelIi ro.
Pr oq r am Test inq . in: Pr oc . IFIP Coriq r es s 1977.
(North-Holland. Amsterdam. 1977) pp. 57 - 62.

[7] Bromst~up L., Hog:-efe D. TESDL:~ Experience with
Gene:-ating Test Cases fr:om SDL Specifications. in Fou rtn,
SDL Fo;:um ..Lisbon. Oct. 1989 (No~th-Holland, 1989) pp. 267
- 279.

16



1.Barzdins D. Bjerner (Eds.)

B\altic
I

Cbrnputer Science
Selected Papers

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest



A~TOMATIC CONSTRUCTION OF TEST SETS:
THEORETICAL APPROACH

Andrejs Auzi~s, Janis Barzdir]s, Janis Bicevskis, Karlis Cerans, Audris KalnilJs
The University of Latvia

RailJa blJlV. 19, Riga 226250, Latvia
, '1,

Abstract

We consider the problem of automatic construction of complete test set (CTS) from program text. The
completeness crkerlon adopted Is C" I.e.. it is necessary to execute all feasible branches of program at least once on
the tests of CTS. A simple programming language Is Introduced wkh the property that the values used In condkional
sta1ements are not arithmetically deformed. For this language the CTS problem is proved to be algorkhmically solvable
and CTS construction algorkhm is obtained. Some generalizations of this language containing counters, stacks or
arrays 81e considered where the CTS problem remains solvable. In conclusion the applications of the obtained results
to CTS construction for real time systems are considered.

1 Introduction

Program tastinq remains the least automated and most resource-demanding
step in the program development process. There are several testing methods:
functional testing, structural testing, random testing, etc. In this paper we consider only
structural testing. In the structural testing all activities, including test case selection, are
based on program structure. The question about the completeness of the selected test
set appears naturally. In the case of structural testing the most widely accepted
completeness criterion is C1 [11]: a test set is said to satisfy criterion C1 if all feasible
branches of program can be executed on this set. We shall not discuss how complete
criterion C1 is (see, e.g. [1,15]), we just note once more that this criterion is widely
accepted in practice and there seems to be found no better criterion up to the moment.
For a fixed completeness criterion the problem of automatic construction of complete
(with respect to the criterion) test set from program text arises. In this paper we consider
the automatic construction of complete test sets according to criterion C1. Such test sets
will be simply called complete test sets (CTS), and the construction problem of such test
sets will be called CTS problem.

We note just now that CTS problem is algorithmically unsolvable in general
case, besides, as further results show, the algorithmic unsolvability appears swiftly. The
aim of the paper is to find sufficiently large program classes with algorithmically
solvable CTS problem and to develop the corresponding algorithms.
Yet, another remark. The variable value ranges are limited for real programming
languages. For example, integer variable in Pascal can assume values from
-2147483648 to 2147483647. These value limits formally yield the algorithmic
solvability of CTS problem: the set of theoretically possible values of all Internal
variables of program can be used as the set of program states (this set will always be
finite for the assumed restrictions), hence, CTS can be constructed by means of
exhaustive search. However, it is clear that such a method is unusable in practice. A
question arises how to exclude the trivial solution by means of exhaustive search. One
of the ways is to drop the restrictions on variable value ranges. In this case the variable
value range is infinite and thus the trivial solution to CTS problem by means of
exhaustive search is excluded. If we, nevertheless, find an algorithm for CTS



287

construction, it is probable that this algorithm will not use exhaustive search. Therefore
we can hope that this algorithm will not use exhaustive search also for finite value
ranges. Namely this way will be used in the paper. The obtained results confirm that the
CTS construction algorithms obtained this way don't use exhaustive search indeed and
are practically usable in many cases.

To conelude the Introduction we give brief characteristics of program classes for
which the soNability of CTS problem has been proved and corresponding algorithms
obtained. First,y these program classes have the property that variable values used In
conditional statements are not arithmetically deformed, I.e., these values are read
directly from p~gram Input data. The second characteristic property of these classes is
connected wit I) some restrictions on direct access to data. An important class of
programs is fo~med by programs with counters. The CTS construction problem is
obviously unsol~ble for programs with free use of counters. Nevertheless, sufficiently
general program classes with counters having solvable CTS problem can be found.
One of the most Important of such classes with solvable CTS problem is programs with
real time counter.

In the conclusion some methods are presented for reducing real time programs
to the models considered.

The paper contains results obtained by the authors at various times [2-10]. as
well as new results. New results are presented in Section 5 (J.Barzdir)s) and Sections
9, 10 (K.Cerans).

2 The First Solvable Case: Programs in Base Language La
2.1 Description of Language La

In order to expose the principal ideas we introduce a very simple programming
language La for the processing of sequential files. Nevertheless, a large part of
business data processing in the sequential files area can be formalized in this
language (adequately enough to investigate the construction of complete test set). This
language can be characterized by the fact that values taking part in comparison
statements are undeformed (l.e., such as read from input). This restriction is acceptable
in practice because it is typical for data processing programs that program logic is
controlled only by input data (e.g., record type) and that these data are used in
comparison statements undeformed.

Now let us describe the language La. Programs in La use external variables of
special type, named tapes. We shall use tapes to represent finite sequences of integers.
We shall say that tape X contains a sequence of integers (X,.X2' ... .x.), if the first cell of
the tape contains x,. the second - x2 •...• the roth - xp but the other cells are empty
(fig.1).

Fig. 1

To put it otherwise it means that the value of the variable X is (x,. X2, ... , x.) in
this case. We shall denote the i-th cell of X by Xi. this notation being used also as an



2BB

Integer - valued variable (the value of XI is undefined if XI is empty).
A program In Lo has a finite number of input tapes and a finite number of output

tapes associated with it. The program processes the values of its input tapes into values
of its output tapes.

Initially the reading (writing) head is located on the first cell. The execution of an
Input (output) statement moves the head one position right. A program also has a finite
number of integer-valued internal variables. We assume that all internal variables are
Initialized to 0 in the beginning. Now let us describe the statements of Lo. Let X be an
Input tape, Y - output tape, t, u - \nternal variables and c - constant (fixed integer). The
following statements are available:': .

1. X -+ t . The current cell of tape X is assigned to variable t. Thus, if X = (Xl, X2, ••• ,xp),

the first occurrence of statement X-+ t assigns the value Xl to t, the second - X2 and so
on. The statement has two exits: "+" if the current cell is nonempty and exit "-" if the cell
is empty (tape is exhausted). In the last case the value of t is not changed. (Input
statement).

2. t-+Y . The value of variable t Is assigned to the current cell of tape Y. (Output
statement).

3. u-+t (respectively c-+t). The value of variable u (constant c) is assigned to variable t.
(Assignment statement). .
4. u.t"(respectively c-et, u e c). The statement has two exits: if the value of u
(respectively c ) is less than the value of t (respectively c), then the exit "+" is used,
'otherwise, the exit "_H. (Comparison statement).

5. NO P. Dummy statement (nothing is done). It is used instead of statements not
essential for the construction of complete test set when more general programing
languages are reduced to Lo. (Informally, these are unconditional statements not
affecting the variable values used in comparisons).

6. STOP.

Statements 1 and 4 having two exits are called conditional statements, the other
ones are called unconditional. ._.

Informally a program in Lo is a program constructed from the abovementioned
statements in a normal way. Formally we define a program in the language Lo as a
quadruple

(X, i, Z, P),
where X is a set of input tapes (e.g., X={ A, S, ... , C }), Y is a set of output tapes (e.g.,
Y={ U, V, ... , T}), Z is a set of internal variables (e.g., Z={ a, b, ... ,v n, P is a flowchart
constructed from statements of Lo. We require also all exits of statements in fiowchart to
be attached to some statements, i.e., no pending exits are allowed (c.f. the case in
Section 4). We also assume the flowchart to be connected. The execution starts from
the first statement (marked by the label "-+"). Program stops when it reaches a STOP
statement.

Fig. 2 gives an example of a program which creates a new sorted tape (file) by
merging sorted tapes A and S. The program has a bug: control from statement 7 is
passed to statement 8 (instead of 10).



289

Fig. 2



290

By program path we understand a statement sequence (k1, k2, ..•• kr). where
each statement kj has one of its exits ("+" or "0") fixed and this exit leads to the statement
ki+,. 1=1;2•... , r-1.

The program In fig. 2 contains, for example,the path a=( 1: A~a+. 2: B~b+. 3:
aeb-, 4: a~Y. 6: A~a+) or simpl(a=(1+, 2+, 3+, 4, 6+), if only labels of statements are
used. (

If the path starts from the first statement of the program, we call it initial path. A
path a=(k,. k2, ... , kr)is called a 'Program branch if k1 is a conditional statement (or the
first statement of the program), k2,'k3, ... k, are unconditional statements and the exit of
k, leads to a conditional statement (or a STOP statement). For example, the program in
fig. 2 has branches (1+), (10+, 11), (10

), etc.

2.2 eTS Construction Problem

By test T for program P=( X, y. Z, P ) we understand an association which
associates a sequence of integers to each of the input tapes (L e., to each element of
set X). Let us say that test T executes the branch if this branch is executed while
running program P on test T. When the program in fig. 2 is run on the test A=(O), B=(1),
the path (1+, 2+, 3+, 4, 6-, 7, 12) containing branches (1+), (2+ ), ... is executed.

A test set is said to be a complete test set ( CTS ) for the given program if every
feasible branch ( l.e., branch executable-by some test) is executed by some test of this
set. For the program in fig. 2, for example, the following test set is complete: T1={ A=(O.
1), B=(2)}, T2={A=(6), B=(1, 2, 3)}, T3={ A=(2), B=(O, 2)}, T4={A=(1, 2, 3), B=(O)}, T5={A=(
), B=(O, 1, 2)}. It is easy to see that the bug in the program is found on this set.

Evidently for every program there exists a finite CTS. The main problem is to find
this set.

THEOREM 1. There is an algorithm for constructing a finite complete test set for
every program in La.

.The proof will consist of several auxiliary assertions.
An important role in the proof will be played by systems of inequalities. At first let

us introduce a slightly extended inequality relation « r )<, where r=O, 1, ... We say that
x < (r) <y if Y • x ~ r. Now the rule of transivity is the following: x < ( r ) < y & Y < ( p) < z ~
x < (r+p)< z.

By a system of inequalities we understand the following system
Xl < (rl) < Yl

xn«rn)<Yn,
where Xl, ... , xn' Yl' .... Ynare variables or integer constants. for example.

a < (0) < 3
b < (2) < a
b < (5) < 3
b < (3) < C

C < (0) < d
d < (0) < C
04 < (1) < b
-4 < (2) < 3.

We represent systems of inequalities also as graphs: vertices are labeled by variables



291

and constants of the system and an edge of the weight r is drawn from vertex y to vertex
x if the system contains inequality x < (r) < y. So the previous example of inequality
system corresponds to the graph in fig. 3.

o
d

Fig. 3

Vertices labeled by variables are called variable vertices (vertices a, b, c, d in fig.
3), and vertices labeled by constants are called constant vertices (vertices 3 and -4).

Let us consider a directed path in the graph of inequality system. We define the
weight of the path to be the sum of weights of the edges contained in the path.

Let us remark the following simple lemma.

LEMMA 1. The inequality system N has a solution iff its graph GN has the follow(i1g
properties:

1. There is no cyclic path with the weight greater than O.
2. The weight of every path leading from a constant vertex c, to a constant vertex C2 is

not greater than crc2-

The necessity is obvious. Let us prove the sufficiency. We build the solution by
induction: at every Induction step we assign constant value to some variable vertex of
GN in such a way that, first, the assigned constant satisfies all inequalities of the graph
concerning the given vertex and, second, the replacement of the variable vertex by the
constant vertex in the graph preserves validity of lemma conditions. To do this we need
some additional notions. Let us say that vertex x is p units (p>O) greater (less) than
vertex y if the maximum weight of paths leading from x to y ( from y to x ) is equal to p.
Let us consider a variable vertex z in GN with no constant value assigned in the
previous steps. Let us find all constant vertices ( including the ones created in the
previous steps ) with the paths leading to them from z.

Let C1l, C21, , ... , Ck 1 be the values of these vertices and p1l, P21, ••• , Pk 1 be
numbers showing how many units the corresponding vertex is less than z. Similarly we
find all constant vertices with the paths leading from them to z. Let C12, ~2, , ... , Cf be
their values and P12, pi, , ... Pl2 be numbers showing how much they are greater than
z. Now let us consider numbers

Ujl=Cjl+pjl , i=1, 2, ,k, and
uf=Cf-Pf, i=1, 2, 1.



292

Let ul=max( Ul1, U21,... , Uk1 ) and u2=min( U12,U22,... ,un. If the set {Ul1, U21,.
. . , uk1 } is empty (i.a., there are no paths from z to constant vertices ), then let us

assume ul=-oo. Similarly, if the set { U12•U22•...• u12} is empty, then let u~+oo. Now let

us consider the interval [ Ul' U2]'
If the lemma conditions (namely, condition 2 ) are valid for GN after previous

induction steps, then it is easy to see that the interval [ Ul' U2] is nonempty. It is also
easy to see that every value of the variable z within the interval [ Ul' U2] satisfies
Inequalities of GN with respec\to the constants contained in GN up to that moment
(taking into account also transltivity ). So let us choose any value from this interval and
assign it to z. So vertex z now is a constant vertex. From the abovementioned it is clear
that such replacement of variable vertex by constant vertex in GN preserves the validity
of the lemma conditions. By continuing the replacement of variable vertices by constant
ones the same way we obtain the solution of the system of inequalities N.

This proves the lemma.

Let us remark that the proof of the lemma yields a simple algorithm for solving
inequality systems.

Let P be a program in Lo and a=( k1, k2, ... ,kr) an initial path in this program.
Now let us define a system of inequalities N(a) corresponding to path a. N(a) will
describe the feasibility conditions of path a. Let aj denote the initial segment ( k1, k2, ..
.,k! ) of path a, i=f, 2, ' .. , r, and no the empty initial segment. Let X be an input tape and
t, u internal variables of program P. Let tk' ul be variables denoting the values of
variables t, u after the execution of path ai-I=( k1, k2, .. "~.1 ) and Xs the last cell of tape
X read during the execution (at the beginning the corresponding variables are 10. uo,
Xo). Let c be a constant.

The system N(a) will be defined inductively: N( ao ), N( al ), ... , N( ar)= N(a). Let
us remember that internal variables are equal to 0 in the beginning. Therefore we
define

{

to=O

N( no)= ~~=~

Now let us assume that the system of inequalities N(al-l) is already defined.
Then we define N(ai) as a system ootalned from N(ai_d by adding the following
inequalities (in the sequel we use also standard inequality and equality relations x~y ,
x<y , x=y understanding by them x«O)<y , x«1 )<y • x«O)<y & y«O)<x respectively):
(1) If1<j=(X-,+u-),then inequality X<O is added. By inequality X<O we code the fact
that integer sequence on tape X is exhausted.
(2) If kj=(X-.+u+) and N(al-1) does not contain inequality X<O (i.e., no statement of
type X-.+u- has been performed ), then equality

Uk-l·Xs+l
is added. In this case new variables Uk-l and Xs+1 are Introduced which have the same
sense for statement kf+.las ul and Xs have for kj. If inequality X< 0 has already occured,
then inequality 0< X is added in order to obtain a contradictory system.
(3) If kj=(Hu) (or kp(c-,+u)). then equality

Uk-l·tk (or Uk-l-e)
is added. A new variable uk-l is again introduced in this case.



293

(4) If !<F(t<u+) (or kj=(c<u+) or kj=(t<c+)), then Inequality
~«1 )<UI (or c«1 )<UI)or tk«1 )<c) is added.

(5) If kj=(t<u-) (or k1=(c<u-)or kj=(t<c-)), then inequality
~>(O»uJ (or c>(O»UI or tk>(O}>C) Is added.

Let us give an example. For a *=(1+, 2+, 3+ ) (see fjg. 2) we have the Inequality,
system I

ab=Obq=O
N(a*) = al~Al

bl'=;B1

al«1)<b1

N(a*) is represented as a graph In fig.4.
o

o

80 o o

o

Fig.4
From the construction of N(a) there follows:

LEMMA 2. The path a is feasible iff the system N(a) has an integer solution. Any
solution of N(a) with respect to verisbles » cells of input tapes yields a test executing
path a. .

Our aim is to reduce N(a) while preserving the existence (or the nonexistence) of
the solution in such a way that there will be only a finite number of possible reduced
systems for the given program P. This reduction relies on a variable exclusion method.
Let us introduce some notations for this purpose.

Let us consider all the constants of program P (including 0). Let c, be the minimal
and C2the maximal among these constants. Let Co= C2-Cl' Let us consider an arbitrary
system of inequalities N (e.g. N(a) ) where all constants are within the segment [Cl' ~ 1
and weights of edges within [0, co+1]. Let y be a variable in system N. Now let us define
the exclusion of variable y. We consider all the pairs x, z of variables and I or constants
distinct from y for which there exist inequalities x < (PI) < y and y < (P2)< Z in the system
N. For each of these pairs we add a new inequality x < (r) < z to N where r=Pl +P2 if
Pl+P2 S co+1 and r=Co+1 if Pl+P2 > Co+1. Then we delete all Inequalities containing y
from N. If N contains inequality of the type y«p)<y with P > 0, then this inequality is
replaced by some standard contradicting inequality, e.g., 0 < (1) < 0 ( because the new
system must have no solutions ). So obtained inequality system is denoted by N'. From
the construction of N' there follows an assertion:

The conditions for solution existence from Lemma 1 hold for inequality system N
iff these conditions hold for inequality system N'. In other words, inequality system N
has a solution iff N' has a solution.

Now let us return to inequality system N(a). Let program P have input tapes A, B,



294

... and Internal variables t, u, . .. . Then the system N(a) contains, in general. variables
A. B, ... ; A1• A2, •.•• Act;B1• B2,· •• ,Be;" . ; t1• t2, ••• ,t,; Ul. U2••••• ug; •••• Let us
remember that Internal variables with maximal subscripts ttl Ug, ••• denote values of
internal variables t, u, ... after the execution of path a. These variables tIl ug••••• as
well as variables A, B•... denoting input files are called active variables, the other ones
- inactive. For example, the system N(a*) from the previous example has active
variables al' b1• Now let us exclude, one after another. all inactive variables from N(a).
It Is easy to see that the order of variable exclusion does not affect the resulting system.
Thus, we obtain a new system of ~nequalities containing only active variables. Then we
drop all subscripts of the varlables in it. The resulting system is denoted by S(a) and
called a program state after the execution of path a.

Informally the state describes relations between current values of internal
variables. The state corresponding to the path a*=( 1+. 2+. 3+ ) from the previous
example. as it can be easily deduced from the Inequality system N(a*). is

S (a*)={ a«1 )<b.
From the assertion about variable exclusion and state construction there follows

LEMMA 3. A path a is feasible (i.e., system N(a) has an integer solution) iff the state
S(a) is consistent (l.e., S(a) has an integer solution as a system of inequalities).

The system of inequalities containing only internal variables and constants of
program P and having no weights of inequalities r greater than £:0+1is called state of
the program P. Like every system of inequalities a state can be represented by a graph.
Two states will be called equal if the corresponding graphs are Isomorphic (as graphs
with labeled vertices and edges). It is easy to see that every program P has a finite
number of distinct states. This fact together with the next lemma will play the main role
in the proof of Theorem 1.

Now we need to generalize slightly the notion of the system of inequalities N(a)
for path. At first there will be no longer the requirement for a path a=( k1, k2,oo,k, ) to be
initial. Further, we allow to have arbitrary state cr of program P as an initial inequality
system for construction. Under these conditions we define the system

N(cr,a)
the following way. N(cr,ao) is the same initial inequality system o with only zero
subscripts added to internal variables: to, uo, ....

Further, N(cr,aj) is defined from N(cr,aj.l) and statement kj just as before. For
example, if cr={a«1 )<b and a=( 4, 6+,3+ ), then

N(cr,ao)={ao«1 )<bo.
N(cr,al)={ao«1 )<bo (output statement adds nothing),
N(cr,a2)={ao«1 )<bo , al=A1 ,

N(cr,a)=N(cr,a3)={ao«1 )<bo, al=A1, ao«1 )<bo.

Just as before we define state S(cr,a) corresponding to system N(cr,a), the state is
obtained by excluding inactive variables from N(cr,a) the same way. For example, the
state

S (cr,a)={a«1 )<b
corresponds to the system N(cr,a) from the previous example. Let us note that this time
state S(cr,a) occurs to be equal to cr. It has the following simple graph depicted in fig. 5.



295

10..-
a

o
b

Fig. 5

A path ~ is said to be a continuation tlf a path a if the exit of the last statement of
the path a le~ds to the first statement of the path ~. The concatenation of paths a and ~
is denoted byi a+~.

i
LEMMA 4, 4et a be a state of program P, a a path and {J a continuation of path a.
Then \

S-(a,a+{J)=S(S(a,a), {J).

To prove-the lemma we consider systems of inequalities N(cr,a+~). N(cr,a) and
N(S(cr,a), ~). By excluding inactive variables we obtain states S(cr,a+~), S(cr,a) and
S(S(cr.a), ~) from them. Let us remember that the order of exclusion of inactive
variables does not affect the result. Therefore while constructing S(cr,a+~) from
N(cr,a+~) we can exclude inactive variables in the starting period Just in the same order
as when constructing S(cr,a) from N(cr.a). It means that while constructing S(cr.a+~) we
obtain S(cr,a) as an intermediate result and the construction of S(S(cr,a), ~) from
N(S(cr.a), ~) follows just after that. In this consideration we have essentially used two
facts; first. inactive variables in system N(cr,a) are also inactive in N(cr.a+~) and, second.
inequalities in N(cr.a+J.} generated by the path (Le.• the continuation of N(cr,a) up to
N(cr.a+~» do not contain inactive variables of N(cr.a). It means that the exclusion of
these inactive variables does not affect the continuation of N(cr,a) up to N(cr,a+~). All
this becomes completely clear if we represent systems of inequalities and the exclusion
process as graphs.

This completes the proof of Lemma 4.

Now let us construct the reachability graph for program P. Vertices of this graph
are labeled by pairs (n.S), where n is a statement label and S a state of P. There will be
as many edges issuing and with the same labels from the vertex (n.S) as from the
statement n in P. Simultaneously with the vertex we also build the edges issuing from it
(for the moment they are pending). The construction of the graph will be by induction.
The initial vertex of the reachability graph will be the pair (no,So). where no=1 and So is
the initial state of program P: t=O, u=O, .... Edges issuing from this vertex will be pending
for a while.

Let us assume that part of reachability graph has been constructed. Edges
issuing from its vertices can be in three different states:

(1) an edge can be pending,
(2) an edge can be Joined to a vertex,
(3) an edge can be forbidden (the emergence of forbidden edges will be explained

further).
Only the pending ones will be of interest. So we choose a vertex (ni,Sj) with a

pending edge labeled by E issuing from it ( E belongs to {+, -, e}). Let 11 denote a path
consisting of the sale statement nl with exit E: ne. Let us build the state Sj=S(Sj.Yi). Two
cases are possible:

(1) the state Sj is contradictory, l.e., it has no solution as a system of inequalities; in this
case the exit E from the vertex (nl,Sj) is said to be forbidden (for example. the edge



296

Is marked by special label "X"). (Let us remind that our notion of directed graph
allows pending edges in It).

(2) the state 5 is consistent. Let nJbe the label of statement entered by exit £ of the
statement ni' Let us consider the pair (nj,5j)' Again two cases are possible:

(a) the vertex (nJ,5J)exists in the part of reachabillty graph already constructed; in this
case we join the edge e from vertex (ni.SI) to vertex (nj.Sj).

(b) the vertex (nj,51) does not exist in the part already constructed; in this case we build
a new vertex (nJ.SJ)together with all the pending edges Issuing from It and then join
the edge labeled by £ from ve~?x (ni.SI) to the new vertex.

, ."
The described procedure Is continued until we obtain a graph with no unmarked

pending edges. Since the proqrarn'P has a finite number of different states the before
mentioned procedure will stop after a finite number of steps. The graph obtained as a
result of this procedure we call reachability graph of the program P.

This graph has several important properties. Let us consider a path
v=«(no.5o}£o, (n,.5, )£, , ...• (nr.5r}e.-)

in this graph starting from the initial vertex. Such a path will be called an initial path.
Such a path may not contain forbidden edges. It means that edge e, leads to some
vertex. say (nl+,,5r+,)'

We shall say that the path v is feasible if there is a test T such that the program P
executes the path,

a=(no£o, n,£, •... , nre.-}
and passes the state sequence

5,.52., ..• Sr+, on this test.
From the construction of reachability graph and Lemma 4 there follow equalities

5 i=S((nO£o, n,£" ...• ni-'£i-'}} for i=1. 2, ...• r+ 1. The state Sr+, is consistent by
construction. Thus the state S((no£o, n,£, •...• nre.-))is also consistent and the path a in
P is feasible by Lemma 3. This proves the following

LEMMA 5, Every initial path in reach ability graph is feasible.

Let v be the beforementioned path in rechability graph. In this case the path
a=(no£o, n,£, •...• nre.-} .

in program P will be said to be the projection of path v .

L EM M A 6, An initial path a in program P is feasible iff there is an initial path v in
rechability graph whose projection is a.

The sufficiency of lemma condition follows directly from Lemma 5. Let us prove
the necessity. Let

o.=(no£o.n,£" ... , nre.-}
be an initial path in program P. Let us consider the sequence of current states
So=S(ao), S,=S(a,}, S2=S(a2} •...• 8r+,=8(ar+d=S(a}. where aF(nO£o,n,£, •...• ni.,Ei.,}·
It follows from Lemma 3 that the path a is feasible iff the states So, S" ...• Sr+' are
consistent. Further it follows from Lemma 4 that the states So. 8, •...• 8r+, can be
obtained also in a different manner:

S,=8(80,no£o). S2=S(80' n,£d •. · .• 81+,=S(Spnre.-).
I.e., by constructing the new state from the previous one and the current statement.



297

Hence, and from the construction of reachability graph, it follows that feasibility of path a
implies the existence of path

«(no,So)eo, (n1 ,51)£1 , ... ,(nr,5r)er)
In the reachabllity graph whose projection Is path a.
This proves the lemma.

\
Let U Ibe a set of initial paths in the reachability graph. U is said to be a complete

path set if it \x>ntains all edges of the graph. Let us denote by pr_U a set of paths in the
program P ol;>tainedby taking projections of paths in U.
From Lemma 6 there follows an obvious

Fig. 6.1



298

COROLLARY. Let U be a complete path set of the reachabifity graph of program P.
Then the set of program Ppaths pr_U contains all feasible branches of program P.

Hence follows the algorithm constructing CT8 for a program P:
1. Construct reachability graph G for the program P. Fig. 6.1 and 6.2 show the'
reachabillty graph for the program in fig. 2.

80= {a=O, b=O}
81= {b=O} I\;
82= {A<O, a=O. b=O}
83= {} ,.

1..-

84= {B<O, b=O}
85= [a-eb}
86= (aeb, A<O}
87= [bsa]
8a= [bsa, B<O}
89= {B<O, A<O}
810= {bsa, B<O, A<O}
811= {A<O, a=O, b=O, B<O}
812=- {A<O, a=O}
813= {A<O, B<O, a=O}
814= {A<O, B<O, b=O}
815= {B<O}

Fig.6.2

2. Construct a complete path set U for graph G consisting of finite paths. It is clear that
there exists an efficient algorithm for finding such a path set. Henceforth we sh311
construct this path set the following way: we go along the "+" branches until the vertices
repeat, then we interrupt the path and start a new one repeating the previous path up to
the last (i.e., the first from bottom) "." branch, select this "-" branch and again proceed
along "+" branches, etc. Fig 7. shows the covering of reachability graph for the
abovementioned program.

P1=(1 ,80)+, (2,81)+, (3,83)+, (4,85)+, (6,85)+, (3,83)
p~(1 ,80)+,(2,81)+, (3,83)+, (4,85)+, (6,85)-, (7,86), (8.86), (9,86)-, (12,86)

p3=(1,8o)+, (2.81)+, (3.83)-, (5.87), (2,87)+, (3,83)
P4=(1 ,80)+, (2,81)+, (3,83)-, (5,87), (2,87)-, (8,8a), (9,8a)+. (8,815),

(9,815)+, (8,815)
p5=(1,80)+. (2,81)+, (3,83)-, (5,87), (2,87)-, (8,88). (9,8a)+, (8,815),

{9.815)+, (8,815), (9,815)-, (12,812)
p6=(1,80)+, (2,81)+. (3,83)-, (5,87), (2,87)-, (8,88). (9,88)-. (12,89),
PF(1,80)+, (2,8,)-, (8,84), (9,84)+. (8,84)
P8=(1.80)+, (2,81)-, (8,84). (9,84)-, (12.814)
p9=(1,80)-, (10,82)+, (11,812), (10,812)+. (11,812)
p10=(1,80)-, (10,82)+, (11,812), (10,812)-, (12,813)
P11=(1,80)-, (10,82)-, (12,811)

Fig. 7



299

3. Take pr_U. For every ae pr_U construct the Inequality system N(a) and find its
solution with respect to variables-cells of input tapes. This solution forms the test Ta'

The test set
T={Talaepr_U}

is obtained as a result,
Test set corr~sponding to the covering in fig. 7 is depicted in fig. 8.

tr1 = {A = (0,1),
\f2= {A = (0),
t3 = {A = (1),
T",= {A = (1,2,3),
Ts= (A= (1,2),
Ts:l;{A=(1),
T7={A=(0,1),
Ts = (A = (0),
Tg={A=(),
T10 = {A = (),
Tll = {A = (),

B = (1)}
B = (1)}

B = (0,1)}
B = (O)}
B = (O)}
B= (0)
B=()}
B = ()}

B = (O)}
B = (O)}
B = ()}

Fig. 8

It is clear that test T2 reveals the bug yielding wrong result Y=(O, 1,0 ).

It follows from the beforementioned that T is a complete test set for program P.
This completes the proof of the Theorem.

2.3 Termination Problem

Some problems of program static analysis are closely related to the construction
of CTS, reachability problem is one of them. The problem is to find out whether all
program branches are feasible (reachable). It is easy to see that this problem is a
special case of CTS problem and therefore no more attention is paid to it.

The second important problem is termination problem. The problem is to find out
for a program whether it terminates on all input data selections. If there exist input data
where the program does not stop, the program is said to be non terminating. The
decidability of reachability problem for a class of programs does not imply the
decidability of termination at all. Therefore the following theorem arouses some interest.

THEOREM 2, There is an algorithm which determines for every program in Lo
whether the program is nonterminating.

To prove the theorem we use substantially the notion of reachability graph from the
proof of the previous theorem.

Path ~=«nl,Sl)El"" ,(nk,Sk)G<) in the reachability graph G is said to be closed if
(1) ~ is a cyclic path, i.e., the exit 91 leads to the vertex (nl' SI),
(2) ~ contains no input statement with "+" exit, i.e., if nl is statement X~t, then Ejis ".".

LEMMA 7. Program P does not terminate on a test T iff a vertex of a closed path in the



300

reachability graph can be reached on this test. Program Pis nonterminating iff there is a
closed path in its reachability graph.

At, first let us assume that there is a test T on which the program P does not
terminate. It means that the execution of P on T creates an Infinite path

v=(nlE1' n~2"")'
Since the test T is finite, there is I such that l-tall of path v

B=(nIEI,nI+1Et+1'... )
contains no more input statements with "+" exit. Since the set of program states is finite
and the number of statements is finIte, the path 1) certainly will contain a segment

(njEj,... , nl+uEJ+u) .
such that 9+u leads to the staternento, and states SJand Sj+U+1are equal. It means that
there Is a closed path, namely, -

((nJ,SI)£j'... , (nJ+u'Sj+u)£j+u)
in the reachability graph reached on the test T. This proves the necessity of lemma
condition.

Let us prove sufficiency. Let us assume that there is a closed path
~=((nl,Sl)E1"'" (nk,Sk)€Jt)

in the reachability graph G. Let lX be an initial path leading to the vertex (n1,Sl)' Let us
consider path lX~~"'~ with the segment ~ repeated v times, v • "large enough". This
path, like every path in a reachability graph, is feasible. Since the segment ~~"'~
contains no input statements with "+" exit, the values 01 internal variables will begin to
repeat. It means that, if the program executes path lX~~"'~ on some test T, then it will
continue to repeat the segment ~ on the same test, I.e., It will loop forever. Hence, by
the way, follows that a closed path ~ has the property that conditional statements
contained in the path have only one of their exits executable, namely, the one
contained in the path ~' In other words, there can be no paths y branching off the closed
path in the reachability graph. Actually, were such a path y, then, taking into
consideration that all paths are feasible in reachability graph the test forcing the path
lX~~ ••• ~~ would also force the path lX~~ •.• ~y. This yields a contradiction. It means that
the program loops forever on every test where some vertex of the closed path is
reached. It proves the sufficiency of lemma conditions. '

The condition of nontermination used in the lemma is algorithmically decidable.
This proves the theorem. -

3 Efficient Algorithms for CTS Construction

The proof of Theorem 1 gives us an algorithm for CTS construction which is not
very efficient, especially because of the size of reachability graph. To reduce the size of
this graph we introduce two notions: essentially located statements and essential
variables. '

A set of program statements is selected in such a way that every program loop
contains at least one statement from this set.The first statement of the program and
STOP statements are also Included in this set. We call the statements from this set
essentially located statements (ELS's). Our intent is to keep the set of ELS's as small
as possible, therefore, if several loops have a common part, ELS is selected from this



301

common part. In the program of fig. 2, for example, statements 1, 3, 9, 10, 12 form a set
of ELS's.

Associated with every ELS there is a list of variables called essential variables
associated r.!th the ELS. An internal variable t is said to be an essential variable for a
certain ELSlf there exists a path beginning with the ELS such that the value possessed
by the variable t immediately before the execution of the ELS is used unchanged in
some comparison statement of the path. The use of unchanged value in comparison
statement means that either the variable t Is contained in some comparison statement
(e.g., t<9 ) of\the path before the new value is assigned to t or the unchanged value of t
is assigned td some other variable u which, in turn, Is used unchanged in a comparison
statement.

There are several ways to find out whether the given variable is essential for the
given ELS. We give an algorithm which is based on reverse analysis of program path
from the end to the beginning. When traversing a path in a reverse order, a set of
essential variables V is formed according to the following rules depending on the
current statement K:

(1) if K is tcv (both "+" and "." exit), then V:= Vv{t, v};
(2) if K Is t<c (both exits), then V:= Vu{t};
(3) If K is X-+t+ , then V:= V\{t};
(4) if K is X-+t· , then V is not changed;
(5) if K is t-+v , then V:= if VE V then Vv{t}\{v} else V;
(6) if K is c-+v , then V:=.V\{v}.

Further we form a graph for program P with ELS's as vertices and program paths
e~from one ELS to another as edges. Each vertex n has a set of essential variables Vn

ascribed, initially all Vn are empty. Each vertex has also a status assuming one of the
three values: not visited, active, Inactive. Initially all vertices except those corresponding
to STOP statements are not visited, STOP statements are marked active. On each step
of the algorithm an active vertex n is selected, It is marked Inactive and all edges ei
entering it are traversed as program paths in the reverse order as described before (Vn

is taken as the initial value of V). When another ELS m is reached in the reverse
analysis the resulting value of V is added to Vm. If Vm Is actually increased, the status of
m is set to active (also in the case when n=m). If the status of m was 'not visited', it is set
to active anyway. Algorithm proceeds until all vertices are inactive. If the situation
occurs where all vertices are either inactive or not visited, one of the not visited vertices
is made active. The resulting values of Vn are the sets of essential variables for each of
the ELS's. The termination of the algorithm Is guaranteed by the monotonity of Vn for all
n.

Of course, the feasibility of paths is not taken into account. In the program
example considered, statement 1 has no essential variables because a and b are given
new values from Input tapes before using them. Statement 3 obviously has a and b as
essential variables because the statement itself is a comparison statement using them.
Statements 9, 10, 12 have no essential variables.

After these preparations a reduced reachability graph is constructed. Its
construction is similar to that of the reachability graph. The main difference is that
vertices correspond only to ELS's, other statements are not included. For each of the
ELS's we build a set of all paths in the program starting with it and leading to some



302

other ELS. These paths. let them be e'l. e12'... , el~for ELS I, will play the role of edges
In reachability graph construction. The choice of ELS's guarantees us the boundedness
of this set for every ELS. The other difference is that when constructing a state for the
given ELS we exclude from the corresponding system of Inequalities also those internal
variables which are not essential for this ELS. Let us remark that formal variables A, B•...
used to code the exhaustion of Input tape (e.g., A<O ) are retaIned In state.

Likewise for reachability graph, the construction starts from the first statement of
the program (which Is ELS by definition) and empty state. For the given ELS I and state
Sj' we consider the paths ek from,tpls ELS one after another. The system of inequalities
N(Sj,e~) and state S(Sj,ek) (in the' new sense with respect to ELS reached by ek) are
constructed for each path. If the, p~th is infeasible (i.e .• S(SJ.ek) is contradictory ). it is
labeled by X. Otherwise we check whether ELS i' reached by ek and state S(Sj,e~)
form a vertex already in the reduced reachability graph and Join edge e~ to the existing
vertex or build a new vertex respectively.

We also have to change the definition of path projection in reduced reachability
graph, replacing every edge elk by the corresponding sequence of program statements.

It can be shown that Lemmas 5 and 6 from Theorem 1 hold also for reduced
reachability graph (the proof will not be given here).

The construction of CTS using reduced reachability graph is similar to the
previous case. A more economical covering principle can be used where a path
traverses all loops at the given vertex once and then proceeds further. For nearly all
real programs the reduced reachabilty graph is considerably less than full reachability
graph and thus completely outweighs some additional efforts to build it.

Now let us return to our example. ELS's and their essential variables had

So = { 81 = {8<0 82 = {A<O 83= {A<O 8<0

Fig. 9.



303

already been mentioned. Paths leading from one EL8 to another are the following:
from 1 e1=(1+,2+ ) to 3 ,

e2"'(1+, 2-, 8) to 9,
e3=(1- ) to 10 ,

from 3 e4=(3+, 4, 6+ ) to 3 ,
95=(3+,4,6-,7,8) to 9,r6=(3-, 5, 2+ ) to 3 ,
~r-(3-,5, 2-, 8 ) to 9 ,

from 9 ~8=(9+, 8 ) to 9 ,
e'~(9-) to 12,

from10 e;1>=(10+,11 ) to 10,
e11=( 10 - ) to 12

The reduced reachability graph is shown in fig.9, Its covering In fig.10 and the
corresponding CT8 in 1Ig.11. The bug is detected by T1. It can be seen that states In fact
contain no internal variables, for they don't affect the feasibility of paths in this simple
program (c.t., in fact. surplus states 810, 811, 8'2. 813•... in fig.6.). The test set is also
reduced but it still detects the bug.

P1= (1, 80) el' (3, 80) e4' (3, 80) e6' (3, 80) e5' (9, 82) e9' (12, 82)
P2= (1, So) e2' (9, 81) ea, (9, 81) e9' (12, 83)
P3= (1, 80) e3' (10, 82) el0, (10, 82) ell' (12, 83)
P4= (1, 80) el' (3, 80) e7' (9, 81) e9' (12, 83)

Fig. 10

T1 = { A = (0,1), B = (1,2)}
T2 = { A = (0,1), B = ( )}
T3 = {A = ( ), B = (O)}
T4 = {A = (0), B = (0))

Fig. 1.1

The reduced reach ability graph can also be used for termination analysis of
programs described in the previous section. We just note that every cyclic path will
certainly contain some ELS and therefore will be present in the reduced reachability
graph (in most cases as loop with one vertex in it).

There can be some further improvements of the algorithm for constructing CTS.
At first let us remark the simple fact that for a program with all feasible paths we can
simply construct its covering by paths and solve the corresponding inequality system by
the method described. If it is not completely so, we start to construct the reduced
reachability graph for the part of the program not traversable so simply and we look at
every step of its construction (i.e., adding a path from one ELS to another) whether all
branches have been covered. 80 with all statements reachable, usually only a small
part of reachability graph is to be constructed. Both the original and improved
algorithms are obviously exponential with respect to the size of the program in the worst
case. Therefore no theoretical complexity analysis of the algorithms is given here.
Nevertheless the performance of the algorithm described in this section is quite
acceptable, for most real programs the numbers of steps required is nearly linear with



304

respect to the size. The practical aspects of CTS construction will be covered more
thoroughly in (17).

There is another aspect of optimality, namely, the optimality of CTS obtained. It is
reasonable to minimize the number of tests or the total size. Here the main issue is to
find the optimal (with respect to the criterion selected) covering of the reduced
reachabillty graph. Obviously it is very difficult to find the absolute optimum,
nevertheless, algorithms yielding nearly optimal covering can be devised. The covering
proposed in this section (traversing all the loops at the given vertex once and then
proceeding further) is clearly oriented towards minimizing the number of tests.

\ '., 1

4 Conditional Programs and Programs with Preconditions

In previous sections we have discussed only programs without pending exits, l.e,
there was a requirement that every exit of a statement should be attached to some other
statement. In the sequel such programs will be called closed programs. In this section
we drop the requirement and consider also programs with pending exits, l.e., exits not
attached to other statements. We shall say such exits to be forbidden exits and
programs with forbidden exits to be conditional programs. Conditional programs offer
us some new possibilities. By means of forbidden exits we can specify conditions on
input data. Fig. 12 shows us a program for merging two nondecreasing files which in
addition check whether the input files are really nondecreasing. To describe formally
the meaning of such checks we introduce the notion of a correct test. A test is said to be
correct if the program running on this test never reaches a forbidden exit. It is easy to
see that for the program in fig. 12 only nondecreasing input files serve as correct tests.

In the case of a conditional program a test set will be called a correct complete
test set if
(1) the test set contains only correct tests,
(2) all program branches executable on correct tests are executed on tests of this
set.

It is clear that the construction of a correct complete test set Is more complicated
than the construction of usual CTS. Nevertheless there holds

THEOREM 3. There is an algorithm constructig a finite correct complete test set for
every conditional program in Lo. .

To prove the theorem we consider an arbitrary program in La and its reachability
graph. The definition of reachability graph for a conditional program is similar to that for
a closed program. Let us remember that we already had a kind of forbidden edges
when constructing the reachability graph, namely, we said that an edge Efrom a vertex
(n, SI) Is forbidden if the state S(SI,njE) is contradictory, l.e., the exit Eof the statement nj
is infeasible in the state Sj. We call these forbidden edges the forbidden edges of the
first type. Reachability graph for a conditional program will also have forbidden edges of
the second type: we say that an edge Efrom a vertex (nj, Sj) is also forbidden in the case
when the exit Efrom the statement nj is forbidden. There are no other differences in the
construction of reachability graph for a conditional program. Lemma 6 holds true also
for this case.

The main problem in the construction of correct CTS is to prevent the constructed
tests from generating paths in the reachability graph leading to the forbidden edges of



305

Fig. 12



306

the second type. To tackle the problem we remark the following facts. Lemma 7 can be
generalized to conditional programs without difficulties. Hence follows that every correct
test corresponds in the reach ability graph to a path leading either to a STOP-vertex or
to a vertex belonging to a closed path. On the other hand, if a STOP-vertex or a vertex
in a closed path in the reachability graph is reached on some test, the test certainly is a
correct one.

Now let us consider the vertices In the reachabllity graph from which It is
impossible to reach either a STOP-vertex or a vertex in a closed path. We call these
vertices the forbidden ones. lt follows from the abovementioned that all program
branches executable by correct 'tests belong to that part of reachability graph which
remains when we delete all forbidden vertices (together with incoming edges).

Now let us delete all forbidden vertices from the reachabllity graph and call edges
leading to them the forbidden edges of the third type. The graph so obtained will be
called the abridged reachability graph. From the abovementioned there follows that all
program branches executable by correct tests (and only such branches) belong to the
abridged reachability graph. Evidently, all permitted edges of reachability graph can be
covered by a finite set of paths where each of the paths either ends with a STOP-vertex
or reaches a closed path. Tests corresponding to these paths will form a correct CTS.

This proves the theorem.

Now let us define programs with preconditions. To do this we consider
predicates defined on a finite sequence of integers. We call such predicates tape
conditions. We say that the value Xo of tape X satisfies a tape condition S if S(XO)=true.

Assume a program P with input tapes A, B, ... ,C and tape conditions SA, Sa, ... ,
Sc respectively be given. Let us call such a program to be a program with preconditions
SA, Sa, ... , Sc· For example, if we say that P is a program for merging two sorted tapes
A and B (fig. 2). then In fact we assert that P is a program with preconditions SAand Sa
where both SA(X) and Sa(X) are true if and only if the sequence X =(xl' x2, ... , xn) is
nondecreasing.

We say that the test
A=Ao, B=80, ••. , C=co

is a correct test for program P with preconditions SA, Sa, .... Sc if
(1) the test satisfies the tape conditions SA, Sa, ... , Sc.
(2) it is a correct test for P without preconditions (if P is a conditional program).

A test set T will be called a correct complete test set for program P with
preconditions SA, Sa, "', Sc if
(1) T consists only of correct tests,
(2) every branch of P executable by a correct test is executed on some test from T.

The question arises for what kind of preconditions the CTS problem is stiil
solvable algorithmicaly for programs in La. In the sequel we define a natural class of
preconditions and show the solvability of CTS problem for it.

We consider tape conditions definable as programs in La. One of the most
natural ways to do this is as follows. Let Sx be a program in La with one Input tape X. A
predicate Is associated with Sx which is true for those and only those values of tape X
where the program Sx stops. Namely this predicate is called tape condition specified
bySx·

A tape condition specified by a program could be defined also otherwise. We
could say that a tape value XOsatisfies the condition if and only if XOis a correct test for



307

the program Sx J.e., the program Sx when executed on XOdoes not reach a forbidden
exit (we allow Sx to be a conditional program). It is not difficult to show by using previous
results on program termination that both definitions are uniform, i.a., describe the same
class of conditions.

THEOREM 4. There is an algorithm constructing a finite correct CTS for every program
in La with pr~nditions also specified by programs in L(1o

I
The proo! of the theorem follows from Theorem 3 and Lemma 1.

\
LEMMA 1, For every program P in Lo with preconditions specified by programs in La

there Is a conditional program P* in La without preconditions such that every correct CTS

for P* is a correct CTS for P with its preconditions. There is an algorithm constructing P*
from P and its preconditions.

The idea of the proof of the lemma is simple. Let us assume for the simplicity that
P has only one input tape A with a tape condition specified by a program SA- It is not
difficult to see that we can merge the reading of tape A for checking the precondition SA
and the reading of A during the execution of P Into a single process. It means that we can
build a program that will execute the job of both program P and program SA between two
consecutive reads from tape A. If a statement has a pending exit i!>program SA, then the

corresponding exit is left pending for "maps" of this statement in pt. In such a way the

program P* will contain, on the one hand, the maps of all branches of program P and, on
the other hand, all the restrictions in the form of forbidden exits imposed by the condition
SA' If P has more than one input tape with corresponding tape conditions, the method
just described allows us, first, to insert the check of the first tape condition into P, then
that of the second tape and so on. In such a way we can always build the desired
program pt. This completes the proof.

It is easy to see that for programs in Le with preconditions in Lo there also holds
an equivalent of Theorem 2 stating the decidability of nontermlnation.

5 Programs with Other Simple Data Types

So far we have considered only one simple type - Integer in the language Le. The
aim of this section is to generalize the previous results to arbitrary simple types with
comparison operators defined. There can be a great variety of such types and
comparison operators can be defined In a highly different manner in respect to types. For
example, let us consider charstring type. The comparison operator "<" can be defined for
it according to the lexicographic ordering: xl ...xn < y,. ..YmIf 3io such that Xl=YIo .. , xiO-l=
YI(}-Jand XiO<YiO,or n-em and x1=Y., ... , xn=Yn(the ordering adopted in Turbo Pascal).
New situations arises for this ordering as there are infinitely many words between some
two words x and Y and a finite number of words between some other words. The relation
"<" can be defined for this type also otherwise: xl",xn < y,. ..Ym if n-em or n=m and 3io
such that X.=Yl' ... ,xio-l<Yio-l and xiO=Yio,(ordering used by some other Pascal



308

implementations). In this case there will be only a finite number of words between any
two words x, y. This example shows us the variety of possible situations here. To
comprise all the cases we use an "axiomatic" approach in this section: the comparison
operator will be requested only to satisfy some "axioms" of constructivity. All the types
appearing in real programming languages will satisfy these "axioms". On the other hand
we will show that these axioms are sufficient to make the CTS construction problem
algorithmically solvable. Our aim is to Investigate more deeply what is essential and what
is not essential for the algorithmic solvability of the CTS construction problem. SO,Iet

T!,T2,···,T.
be arbitrary simple types with comparison operators =.~.~.<defined.

Further we assume these 'operators to be total. As far as the first three operators
can be expressed by the last One (using boolean expressions). we assume (without
restriction of generalization) only operator "<" to be defined a priori for each type.

Let us assume the values of the types considered to be constructive objects. thus
algorithms over the domains of these types can be considered. We shallsay that
operator "<" is constructive (satisfies the constructiveness "axioms") for the type T if
(1) there is an algorithm R which, given any x, ye T, determines whether the relation x <
y holds;
(2) there is an algorithm B which, given any x, ye T such that x < y, determines whether
there exists ze T such that x < z and z < y and in the case of existence gives one such z;
(3) there is an algorithm C which, given any xe T, determines whether there exists ze T
such that z < x and In the case of existence gives one such z;
(4) there is an algorithm D which, given any xe T, determines whether there exists ze T
such that x < z and in the case of existence gives one such z.

Let us consider the most popular simple types:
- integer with operator "<";
- natural with operator "c";
- rational with operator "c"; (e.g., binary and decimal fixed point data)
- real, as treated by most common programming languages, i.e., floating point data

(values are of form n,.n2E + n3 with limited precision and limited exponent, in fact, they
are rational numbers);
- charstring with operator "<" defined in one of the ways considered at the beginning of

this section;
- integer subranges and enumerable types (like in Pascal) with operator "<",

It is easy to see that all these types are constructive in the abovementioned sense.
So let us assume some constructive types T1•... ,T. to be fixed. We also assume

that every value constant of these types uniquely determines the type to which it belongs.
Now let us consider the following generalization of the language La, namely, the

language
LOTI •.:.•T •.

Programs in loTI .....T. like in La will have both internal and external variables. Each
internal variable will be of some fixed simple type (to stress that internal variable x is of
the type T we sometimes use the denotation xT ). Again tapes will be used as external
variables. We suppose that a cell of a tape can contain a value of any simple type. Thus,
the value of a tape is an arbitrary finite sequence (Xl'" ,xn) where XI belongs to some of



309

the types T I•...•T•. Just as before be both Input and output tapes are used.
Statements In IoTI •...,T. are just the same as In lo. Assignments and comparisons

are allowed only between the variables (and constants) of the same type. Some
additional co"?ments are necessary for input statement .

X -i u,
where X is a~ input tape and u is an Internal variable of the type T. Let the reading head

of the tape X qe on the l-th cell at the moment when the statement Is executed. If the i-th
cell contains alvalue of the type T, the statement is executed normally, i.e .• the value of
the i-th cell is assigned to the variable u and the head moves one position right (at the
beginning the h~ad was at the first cell). If the l-th cell contains a value of some other
type, an error (cr~sh) occurs and the execution of the program is halted.

A natural question arises whether previous theorems can be generalized to
programs with arbitrary constructive simple types. We shall consider the analogue of
Theorem 1 In some detail.

Further on by a program we understand only a closed program, i.e., a program
without pending exits. Let P be such a program in IoTI .....T. with input tapes A.B •...•C. A
test A = AO, B = BO,...• C = Co is said to be admissible if the program P does not crash on
this test.
A test set T Is said to be a complete test set for a program P if
(1) it contains only admissible tests,
(2) every branch of the program executable by an admissible test is executed by some
test of the set.

THEOREM 5. Let TI, ..., T, be fixed constructive types. Then there exists an algorithm
constructing complete test set for every program in LoTI.....T, .

The proof of the theorem will be similar to that of Theorem 1, only some lemmas
will be more complicated.

Let T be a fixed constructive type with its corresponding algorithms R. B. C. D. We
need the generalization x < (r) < y of the inequality x < y for re {O, 1,2, ... J:

x < (O) < Y means x s y (i.e.,l(y > x)}.
x < (1) < Y means x < y,
x < (r) < y where r ~ 2 means that there are elements el. e2,00.,er-l of the type T

such that x < el < e2 < ...< er-l < y.

By an Inequality system N of the type T we understand a system
Xl < (rl) _< Yl

xp < (rp) < yp,

where Xi, YIare variables or constants of the type T.
Such a system of inequalities N (like in Section 2) is represented by a graph GN :

the vertices of the graph are labeled by variables and constants of the system N and an
edge of weight r is drawn from vertex y to vertex x if there is an inequality x < (r) < y in
the system N. Vertex x is called constant vertex. if it corresponds to a constant in the
system N and variable vertex. if it coresponds to a variable. Variable vertices with no
edges issuing are called minimal ones. Variable vertices with no incoming edges are
called maximal ones. Let us consider a path in the graph GN• By weight of a path we
understand. just as before. the sum of the weights of its edges.



310

Let us Introduce some more notations. Let x,ye T. Let us denote
M(x,y)={ z] ze T & z-oe & y<Z },
~(·.x)=( z] ZeT & xcz },
M(y,*)={ z] ze T & z<y l-

The cardinality of the set M Is denoted by IMI (It can also be Infinity).
Let us define

{

0 ,if x=y
x-y= IM(x,y)I+1 if y<x

-IM(y,x)I-1 If,x,<y
The "-" operator just introduced, coincides with the conventional minus operator In the

case when T is the Integer type. ;.
1.-'

LEMMA 1. An inequality system N of a type T has a solution if and only if its graph GN
has the following properties:

(1) the weight of every cyclic path is equal to 0,
(2) the weight of every path leading from a constant vertex c/ to other constant vertex

C2 does not exceed C/-e2,

(3) if the type T has the smallest value co, then the weight of every path leading from a
constant vertex c to a minimal variable vertex does not exceed c- co ,

(4) if the type.I' has the largest value n, then the weight of every path leading from a
maximal variable vertex to a constant vertex does not exceed n-<:,

(5) jf the type T has both the smallest value co and the largest value a. then the weight
of every path leading from a maximal vertex x to a minimal vertex y does not exceed D-
co.

Before we proceed to the proof of the lemma let us remark that the
beforementioned algorithms E, B, C, D do not yield a constructive method to check the
lemma conditions. Therefore, up to now the lemma has only qualitative meaning.

Now let us begin the proof.
The necessity of lemma conditions is obvious.
Let us prove the sufficiency, we assume lemma conditions (1) - (5) to be true. We

search the solution by induction. On each step of the induction we assign a constant
value of the type T to a variable vertex of GN, We assign the constant values (i.e.,
replace the variable vertices by constant ones) so that the validity of lemma conditions is
preserved.

To implement this idea we have to make some preparations. At first let p(x,y)
denote the maximal weight of the paths leading from vertex x to vertex y.

1) Let us consider all pairs of constant vertices (c"C:!) where there Is a path from
c, to C2' The second condition of lemma implies C2S c., For every pair of vertices, where
p(c,,~) -1 ~ 1, we construct elements e" e2' ... ,ep(e',c2)-' , such that c2<e,<e2<' .

.<ep(e',c2)-'<C, ,using algorithms E and B. The existence of such elements is provided by
the second condition of the lemma.

2) Let us consider all pairs (c.x) where c is a constant vertex, x is a minimal
variable vertex and there is a path from c to x. For every pair of vertices, where p(c,x)~ 1,
we construct elements e'" e'2' ... ,e'p(e,x) , such that e',<e'2<' .. <e'p(e,x)-cc, using
algorithms E, Band C.



311

3) Let us consider all pairs (x,c) where c is a constant vertex, x is a maximal
variable vertex and there is a path from x to c. For every pair of vertices, where p(x,c)~ 1,
we construct elements e"lo e"2, .•. ,e"p(x.c)' such that c < e"l < e"2 < ... <e" p(x,c),using

algorithms R. Band D . The existence of such elements is provided by the fourth
condition of the lemma.

4) Let ~s consider all pairs (x, y) where x is a maximal variable vertice, y is a
minimal variable vertice and there is a path from x to y. For every pair of vertices we
construct ele"jents e"'l' e"'2' ... ,e"'p(X,Y)+l.such that e"'l < e"'2 < ... < e"'p(x,y)+l. using

algorithms R. B. C.D (and assuming that we know at least one element of each type). The
existence of SUChelements is provided by the fifth condition of the lemma.

Now let IUSconsider all the beforementioned elements e, e', e", e'" together with
constants of the inequality system. By means of the algorihtm R we sort them in
ascending order:

al < a2 < a3 <...< au (.)
The elements corresponding to constants of the inequality system are called

constant elements, the other ones - auxiliary elements.
We begin to solve the inequality system N by assigning the value al to all minimal

variables and the value am to all maximal variables. This will Introduce new constants in
the Inequality system N and its graph GN. It is not difficult to ascertain that the
introduction of such constants does not affect the truth of the lemma conditions (1) - (5).
In the sequel we have, in fact, to deal only with conditions (1) and (2), the conditions (3) -
(5) are used no more.

At first let us deal with vertices which belong to a cyclic path (its weight is 0 by the
condition (1)). If there is a constant among them, assign the constant to all variable
vertices. If all vertices of the path are variable ones, then select one variable ?S a
representative of the path (for other variables must have the same value) and replace the
cyclic path by this variable.

Let us consider a vertex z in the graph G with no constant value assigned to it in
the previous steps. Let us take all constant vertices (including the ones introduced in the
previous induction steps) with the paths leading from the vertices to z. We make an
inductive assumption that all the values of these vertices are within the sequence (.).
Hence we suppose these vertices to form a subsequence

all' al2,· .. ,Sjm.
of the sequence (.), i.e., every such vertex has a corresponding ordinal number i in the
sequence (.). The maximal weights of paths leading from these vertices to z are denoted
by 11, 12, ... ,1m respectively. Let us consider the following elements of the sequence (.)

ail-II, al2-12,·.. ,aim-lm
Let us denote by ah the least of these elements (Le., the element positioned

leftmost in the sequence (.)).
Further we take all constant vertices (inclUding the ones introduced in the previous

induction steps) which have paths leading from z to them. Again we make an inductive
assumption that values of these vertices form a subsequence

ajl' aj2,... ,ajn
of the sequence (.). Let us denote the maximal weights of paths leading from z to these
vertices by rl, r2, _.. , rn, and consider the following elements of (.)

all HI , aj2H2.·.. ,ajnHn·
Let CIg be the largest of these elements.



312

It follows from the second condition of the lemma that
8g<ah'

Indeed.' if it were not so. it is easy to deduce that constants ag and ah would violate the
second condition of lemma.
Let us choose any element ul of the subsequence

ag. 8g+1..... ah
of the sequence (*) as the value z. So the vertex z becomes a constant vertex in the

graph GN• It is easy to observe that. lemma conditions are preserved. Moreover. the set of
values of constant vertices will not "~xceed the sequence (*).

Thus we continue the proc~ss until all variable vertices In GN are replaced by
constants. These constants form the solution of the system N.

This proves the sufficiency of lemma conditions (and also lemma).

The proof of sufficiency yields us an algorithm for solving inequality systems. Let
us express this result as a separate lemma.

LEMMA 2. For each constructive type T there is an algorithm which. given any inequality
system N of the type T,
(1) finds a solution if such exists.
(2) produces special indication if there is no solution.

Let us make some remarks to the proof of the second assertion of the lemma. If
we consider the abovementioned algorihm for solving inequality systems more in detail,
we can see that, In case Lemma 1 conditions fail, the algorithm certainly is aborted. i.e .•
either there are not enough elements a., a2,...• au or inequality ag < ah fails. The aborting
definitely occurs after a finite number of steps. It means the algorithm can always "catch"
the nonexistence of solution. So it is possible to overcome the nonconstructive ness of
Lemma 1 conditions.

Now let P be a program in LoTI....,T. and a= (k1,... .k.) be an initial path in this
program. We define the system of inequalities corresponding to path a just as in the
proof of Theorem 1. The only difference is that every occurrence of intemal variable in
the system will have its type ascribed, e.g:: 17T3 ;'uoT1, etc. The inequality system also
contains variables XI where X is an input tape. These variables occur only in equalities

X,=tjTe where the Instance of the internal variable tjTe has already the type Te ascribed to.

Relying on this equality we ascribe the same type Te also to the variable Xi:

As assignments and comparisons are allowed only for variables of the same type,
the inequality system N(a) splits into independent inequality systems according to types:

N(a) = {NT1(a), ... ,NTa(a)}.
Obviously there holds

LEMMA 3. A path a is feasible iff for each of the types Ta the corresponding inequality

system NTa(a) has a solution. Any solution of the systems NT/(a) •...•NTs(a) with respect
to cell variables of input tapes yields a test executing the path a.



313

Further we consider each of the Inequality systems NT1(a),...•NTa(a) separately.
Let NT(a} be one of these inequality systems. Our aim is to define the T-state ST(a} for a
program after the execution of path a, I.e., part of the program state S(a} referring to the

type T. The complete state S(a) Is defined as (ST1(a)•...,STa(a)}.
The ide~ for the definition of ST(a} is similar to that used in the proof of Theorem

I

1. namely, we take the inequality systems NT(a} and exclude inactive variables. However,
a new problem\arises: how to choose the constant Co used to delimit the weights of
edges (see the clIefinitionof the exclusion of variable y in the proof of Theorem 1). Let us
proceed as follows. Let us consider all constants of the type T in the program P, as well
as the smallest and largest values of the type T, if there are such. Sort all these
constants in ascending order

Cl. C2"'" cm·

Let us consider differences Cj - c.These differences can be Infinite for some pairs
and finite for some others. Let us consider all pairs (c, Cj) where the difference Is finite.

Let us denote the largest of the differences by CoT.
Now let us define the exclusion of inactive variables from the Inequality system

NT(a) just as before. with just defined constant CoT playing the role of Co. Let us recall

that the constant CoT is used to delimit the weight of edge: if there is a weight r> COT+ 1,

it is replaced by CoT + 1. It is not difficult to ascertain that after every exclusion of the

variable the following assertion holds for the obtained inequality system N'T(a): N'T(a)
satisfies the conditions of the existence of a solution from Lemma 1 iff NT(a) satisffes
these conditions. By the way, let us note the following easily provable proposition ..Had
we used some smaller constant instead of CoT in variable exclusion, only the following

assertion would hold instead of the previous: if NT(a} satisfies the conditions of solution
existence from Lemma 1, then also N'T(a} satisfies the conditions (but not vice versa).

Now let us define the state ST(a} to be the inequality system obtained from NT(a}
by excluding all inactive variables. It follows from the above mentioned that an analogue
of Lemma 3 from Theorem 1 holds for state ST(a} .

However. state ST(a} cannot be used directly. The matter is that the constant CoT,

upon which the construction of state ST(a} relied, cannot be effectively found for every

constructive type T. Therefore we do as follows. For every natural constant c we consider
the state ST.c(a}, the definition of which differs from the definition of ST(a} only in the
point that constant c is used instead of CoT. By the way, if c = CoT, then ST(a} = ST.c(a}.
From the abovementioned there follows

LEMMA 4, For every constant ce N the existence of a solution for system NT(a) implies
the existence of a solution for system ST.c(a) (i.e., the consistency of the state ST.c(a) ).
It c ~ CoT. then also the existence of a solution for the system ST.c(a) implies the

existence of a solution for the system NT(a).



314

It is not difficult to see that for every ce N an analogue of Lemma 4 from Theorem
1 holds for the state ST.c.

LEMMA 5, Let (J be a state of the type ST., for the program P, a a path in the program
and p a continuation of the path a. Then the equality holds:

5T.c (O'.a+~)= 5T.c (5T.c(O',a).~).

Now let us define for an arbitrary tuple of natural numbers (Cl•...'Ca)general state
\ '5el, ....ca (a)'={5Tl,cl (a), ..., 5TI,cI(an. .

Let us emphasize that, giyen constants (Cl•...,Ca). the state sel, ...,ea (a) can be
effectively constructed for an arbitrary path a. We also emphasize that the number of
possible states for program P Is finite for a fixed tuple (Cl,...•Ca). .

Thus for every tuple of naturals (c, •...,Ca) we can build for a program P, using
states sel, ...,ca (a). its reachability graph denoted by Gel,...,ca (a). Let us consider the
properties of this graph.

From Lemma 4 and other previous lemmas there follows an analogue of Lemma 6
from Theorem 1 :

LEMMA 6, For ever; tuple of naturals (C, •...• CaJ the feasibility of an initial path a in
program P implies the existence of an initial path r in the reachability graph Gc1·· ..,ca (a)
whose projection is a. If conditions

c, :? CoTI •...• cs:? CoTI
hold for the tuple (C" ...• CaJ. then the existence of an initial path r in the reachability graph
whose projection is a implies the feasibility of path a in program P.

Let us consider the covering U of the reachability graph, namely, the set of paths
covering all allowed edges of the graph Gel,....ea A set of paths pr_U in a program is
assoaciated with the set U.

From the previous lemma there follows

COROLLARY. Every tuple of natural numbers (C" ...• CaJ has a property: if U is a covering
of reachability graph Gel ....,es for proqremP; then pr_U contains all feasible branches of
the program. If in addition -

c, :? CoTt •...• Cs ~ CoT., (**)
then all paths in pr_U are also tessible.

These lemmas show that, if we knew the constants CoTI ,... , CoT. for the given
program, we could, using Lemma 2, construct CTS for the program just the same way as
in the case of Theorem 1. However, the algorithms R. B. C. D used in the definition of
type constructivity do not yield a method to find these constants. Therefore much more
complex actions should be performed as in the case of Theorem 1.

Initially as Cl •...,Ca' we choose any natural numbers, e.g., Cl = 0,..., ca = 0. Using
these numbers we construct the reachability graph Gel,...,eaand its covering U consisting
of finite paths. Just as before we consider pr_U and for each path ae pr_U construct the
inequality system

N(a) = {NT1(a), ...,NTa(a)}.



315

Then we try to solve these inequality systems using the algorithm from Lemma 2.
If the algorithm yields solutions for all paths a, then, as It is implied by the first assertion
of the Corollary, these solutions will form CTS. Now let us assume that the algorithm
aborts on some inequality system N(a). It means that there Is I such that the algorithm
will produce the solution inexistence indication when applied to the inequality system
NTi(a). It folloWs from the definition of the reachability graph and Lemma 4 that the case

I

is possible only for CI < CoT! . This inequality means that there are two constants Ck, ce in
program P sU¢h that ce • Ck < 00 and c, - <11 > ci' Since we know this thing, now we apply

the algorithm~ B. B. C. D for the type T1 to all possible pairs of constants in the
program and so in a finite number of steps we can construct ~CI elements between

some pair of constants Ck and ce' besides, by using the algorithm B we can ascertain
that there are no-more elements between these constants. In the next iteration step we
use the number p+1 as a constant Cj .Thus with every iteration step we approximate

constants cl ,...,ca to the constants COTI ,..., CoTa. In such a way we assure that after a
finite number of steps constants C1'''''Ca can be reached such that the covering U of the
reachability graph Gel ,.... ea will have the required property: all ae pr_U will be feasible,
i.e., inequality systems N(a) will have solutions. These solutions will form the desired
CTS.

This completes the proof of the Theorem.

l':ratural question arises whether we can generalize other theorems proven in the
previous sections for the language Lo to programs in LTl. ....T. with TI ,..., T. being
arbitrary constructive types. Using the techniques elaborated in the previous proofs it is
not difficult to obtain a positive answer to this question.

Now we return back to the base language Lo in the next sections. Methods
developed for the language Lo in many cases can be transferred to wider classes of
programs.

6 Programs with Stack

Let us consider a language L1 where a program has additional internal memory
- stack. Formally L1 is obtained from the base language Lo by adding the following
statements:

t~M ( respectively c~M ). The value of variable t (constant c) is added to the
stack. We use the capital M to denote the stack. (Push statement).

M ~t. The last element of the stack is assigned to variable t and erased in the
stack. The statement has two exits: if the stack is not empty, then the exit '+' is used,
otherwise use the exit ••.. In the last case the value of t is not changed. (Pop statement).

THEOREM 6, There is an algorithm for constructing a finite complete test set for every
program in L,.

The proof is based on the slight modification of the notion of the program state
and new lemmas about path replace. Our aim is to construct a reachability graph



316

containing all feasible branches of the program.
Let us consider the construction of the system of inequalities N(a) corresponding

to initial path a =(k, ,k2,... ,kr) for programs in L1. The construction is similar to that In
Section 2. Additionally the initial system N(aa) has Inequality

ma=O,
where ma is a variable denoting the number of stack elements. Further variables Mi with
subscript are used to denote the value of the i-th stack element, and mk are variables
denoting the number of stack elements.

Now let us assume thaq~e system of inequalities N(ai_') is already defined. Let
rn, be a variable denoting the number of stack elements after the execution of path cll_l'
Let us denote the value of m, by 'iI. Let u 1be a variable denoting the value of variable u
after the execution of path al-,' Let z be the greatest subscript of all variables M with
superscript wand let v be the greatest subscript of all variables M with superscript w+1.
If there is no variable with superscript w or w+ 1, then we assume z=O or v=O. Then we
define N( ail as system obtained from N( ai.') by adding the following inequalities:

1) If kj= (u~M ), then equalities

ms+,=w+1 ,M~l=u,
are added. In this case new variables ms+' and M~:l are introduced. The value of
variable ms+' is ~qual to the number of stack elements.

2) If ki= ( M~u+ ) and ma>O,then equalities
mS+,=w-1 ,uk-, = M~

are added. New variables u 1+'and ms+' are introduced. If ma=O,then inequalities
UI+'<O , UI+l>O

are added to obtain contradictory inequality system.

3) If kp (M ~ u- ) and if ms=O. then no inequality is added.
If ma>O, then inequalities

UI+'<O , UI+'>O
are added to obtain contradictory inequality system.

4) If kjE La, then we proceed the same way as defined for the language La-

Let us give an example. For a = ( 1: A~u+, 2: u~M, 3: M~t+) we have i"!eguality
system

N( a)=

ua=O
10=0
mo=O
u,=A,
m,=1
Ml=u,
m2=O
t, =Ml



317

also In our case. So initial path a Is feasible iff system N(a) has a solution. Now let us
define state inequality system S(a) for our case. Internal variables with maximal
subscripts and variables denoting Input files are called active variables. Previous rules
of variable exclusion will be used also for all variables m, and MI. Let us exclude all of
them and all other inactive variables. We obtain Inequality system containing only
active varla~,les and constants. The resulting system Is also denoted by S{a) and called
a program slfte after execution of path a. Easy to see that Lemma 3 from Section 2 is
valid also in t;his case.

I,
Let u$ consider a path a with the following property: the number of stack

elements on path a is equal to or greater than the initial, after the execution of path a It
Is equal to thei,nitial. Such path is called a normal path.

Let a bela normal path ( there is no requirement for a to be initial) and CJbe an
arbitrary program state. Then we define N(CJ,a)the same way as for the language LQ•

N(CJ,ao)is the same initial Inequality system (J with only zero subscripts added to Initial
variables. The equality mo=Ois also added to describe the Initial status of stack. Further
N(CJ,ai)Is defined from N(CJ,al.l) and statement kj Just as before. Let us exclude inactive
variables, except initial variables from N(CJ,a).We obtain inequality system containing
constants and internal variables with zero subscript and perhaps internal variables with
another subscript. Let us replace second type subscripts of all variables by one. The
reduced system is denoted by E(CJ,a)and called a path effect.

L E M M A 1. Let initial path a have two normal continuations {3 and r with the same last
statement. Let us denote S(a) by a. If E(u,{3)=E(u, y). then path a+{3 and path a+r have
the same feasible continuations. '

Let path 0 be a continuation of path a+~ or path a+ y. Let us consider systems
N(a+~+o) and N(a+y+o). All variables of systems which are created on path ~ or t,
except those which are active at the beginning of the path 0, have no inequalities with
the variables created on path o. If we exclude all inactive variables created on path ~ or
y, we obtain path effect E(CJ,~)and path effect E(CJ,y).Further we have equivalent
systems of inequalities which may differ only by subscripts of the variables created on
path o. There follows the proof of Lemma.

LEMMA 2. Let initial path a have the continuation {3+r+8 where {3+r+8 is normal path
and ralso is normal path. Let states S(a) and S(a+{3) are equal. Let path {3 and path r
have the same first statement and let path rand path 8 have the same last statement. If
E(S(aJ,{3+r+8)=E(S(a+{3J,r), then path a+r and path a+{3+r+8 have the same feasible
continuations.

It follows from lemma condition that E(S(a),'y)=E(S(a+~),y). Then E(S(a),'y) =
E(S(a).~+y+o). Now according to Lemma 1 path a+~ and path a+~+y+o have the same
feasible continuations. This proves the lemma.

The number of the pairs (nl,Si)' where n, is the statement label and Si is the
program state, can be estimated by constant R1 effectively evaluated from the given
program. Also the number of quadruples (n, 8j, E1, kj), where nl,ki are statements labels,
81 is a state and Ej is path effect, can be estimated by constant R2 effectively evaluated
from the given program.



318

LEMMA 3. For any feasible branch 0 there exists a path a such that path a+ 0 is
feasible and the number of stack elements is less than R1+R2on the path a.

Let us denote by ~ feasible initial path to branch Il. Let us assume that the
number of stack elements after the execution of ~ is more than R1. Then we consider
stack elements pushed on path ~ and not popped on path p. Let us denote by 13k'the

initial part of path ~ to the statement when the i-th abovementioned stack element Is
pushed and by ~klthe continuation. If we find ~k' and ~kl • k'<kJ, where S(~kl)=S(~kl) and

first statements of ~kl and 13k!arVthe same, then path ~kl + ~kJ is feasible. So we find
feasible path J3'to the branch Il where the number of stack elements after executing W is
less than R1• r'

Let us denote by a the initial part of path ~ until maximal stack length of path ~ is
reached and by E the continuation of a. Let us consider the stack elements pushed on
path a and popped on path E. Let us denote by ak' the initial part of path a to statement,
when the l-th stack element is pushed, and by ~I continuation to statement, when this
element is popped. and by 1k'continuation to branch Il. Every path ~,is normal path and
we consider E(S(ak').~I). If we find that path ~, and path ~i satisfy conditions of Lemma
2. then path ak'+~)+'Ykl+1lis also feasible. So we find path a with no more than R,+R2

stack elements used.

Before we start the construction of reachability graph we must extend the notion
of the program state. We must include in the state inequality system all variables
denoting the values of stack elements. So additionally the state inequality system has
active variables Ml. M2 ,...•M! where Mi denote the value of the i-th stack element.The
number of active variables denoting stack elements is equal to the value of variable mp

where mp is variable with maximal subscript. Let us denote by F(a) the extended
program state after the execution of initial path a. Let us denote by F(ro,a) the extended
program state after the execution of the path a from the extended state eo.

LEMMA 4, Let ro be an extended state, a a path and {3a continustion of path a. Then
F(ro,a +{3)=F(F( ro.aJ.{3).

We can notice that inequalities generated on path ~ do not contain inactive
variables of path a. So while constructing F(61,a+~) from N(ro.a+~) we at first can
exclude inactive variables generated by path a. We obtain F(ro.a) as intermediate
result. and the construction of F(F(ro,a),~) from N(F(ro.a),~)·starts on equivalent
Inequality system. This proves the lemma.

Now we can start the construction of the reachability graph. In our case vertices
of the graph are laboled by pairs (n.F}, where n is a statement label and F is extended
state. To construct the reachability graph we use the same algorithm as for programs in
language La with one additional rule: if the number of stack elements exceeds R1+R21n
the state of the new vertex, then we do not construct edges from this vertex.

From the construction of the reachability graph and Lemma 3 follow

LEMMA 5. Every initial path in the reach ability graph is feasible.



319

LEMMA 6. A branch {3in the program is feasible iff there is an initial path a in its
reach ability graph whose projection contains {3.

Complete test set is constructed from the reachability graph the same way as in
case of the language La. This completes the proof of Theorem 6.

I

I
7 Programs with Direct Access

\
Let us e,xtend the language La by adding a new statement
RESET(X)

where X is Input tape. The statement returns the input head of tape X to the beginning of
the tape. By using this statement we can have the repeated reading of input tape. Let us
denote the new language by L2•

THEOREM 7, There exists no algorithm for constructing a finite complete test set for
every program in Lz.

A subclass of programs in L2 with two input tapes with one usage of RESET for
each of them is sufficient for non-existence. We consider two-tape automata by Rabin
and Scott [13]. These automata may be represented by programs in base language La
with two Input tapes. Let us denote by LAnLB the intersection of languages LAand LB
represented by two-tape automata A and B. The problem of determination of LAnLB
emptiness is known to be undecidable [13]. We shall consider tapes of automata to be
two input tapes of a program in L2• It is easy to construct a program PABusing RESET
statement only once for each of the tapes where STOP statement is accessible iff
LAnLB;tO. Hence it follows that the emptiness of LAnLB can be decided by means of a
complete test set.

The previous theorem indicates that the unsolvability of CTS construction
problem tends to appear readily if multiple reading of input tapes is allowed.
Nevertheless it is possible to select the natural program classes with direct access by
addressing to tape cells and retain the CTS problem solvability.

Further we consider a certain class of the type. In this case input and output
tapes are not divided. We use both access methods for every tape. For this purpose the
tape cells are addressed by numbers 1,2,3, ...• and additionally to internal variables
u,v •...•t we intrcduce a finite number of internal address variables which store tape-cell
addresses. Every tape has its own address variables. We use capital letter to denote
the tape and a corresponding small letter with superscript to denote the address
variable. The address variables of tape A are denoted by at, a2•a3 •..• ,ak• those of tape
8 by bl, b2• b3, ...• bm, etc. We say that a tape contains the sequence of integers
nl.n2 •...•n, if integers nl.n2, ...•n, are written on the tape beginning from the first cell. As
we need to modify the statements of the language La we will repeat the definition of all
statements. Let A be an arbitrary tape. Let u,t be arbitrary internal variables and al,aJ
arbitrary address variables of tape A. A program is constructed using the following
statements:

1. START. The first statement of the program. This statement transfers heads of
all tapes to the beginning and sets values of all internal and address variables to the
initial value O. A program has exactly one START statement.



2. A -+ u. The value of the scanned cell of tape A is assigned to variable u. The
statement has two exits: exit "+", when the scanned cell contains a number, and exit "-",
when the scanned cell Is empty.This statement does not move the head on tape A.
(Input statement).

3. u -+ A. The value of variable u is assigned to the scanned cell of tape A.
(Output statement). '

4. NEXT(A). The head moves right to the next cell of tape A. (Shift statement).

5. u -+ t (respectively C~,). The value of variable u (constant c) is assigned to
variable 1. (Assignment stateme'nt) .. ,"

6. u < t (respectively c<t,\l<c ). The statement has two exits: if the value of u
(respectively c) Is less than the value of t (respectively c), then exit "+" is used, otherwise
use exit "-". (Comparison statement).

7. ADR(A) -+ a', The address of the scanned cell on tape A is assigned to the
address variable a', (Address input statement).

8. al ~ u . The value of tape A cell whose address is equal to the value of
variable al is assigned to variable u. The statement has two exits: exit "+", when the tape
A cell contains an integer, and exit "-", when it is empty. (Direct access input statement).

9. u =7al. The value of variable u is assigned to tape A cell whose address is
equal to the value of the address variable a', (Direct access output statement).

10. a! -+ aJ . The value of address variable ai is assigned to address variable aJ
Only address variables of the same tape are allowed in the statement. (Address
assignment statement).

11.STOP.

Let us denote the language obtained In such a way by L:i

Programs in the language La differ by the following constraints:
1) there is no special statement START, rs.. the exits of other statements cannot

lead to START;
2) every input or output statement is directly followed by the shift statement of the

corresponding tape;
3) all tapes are divided into input tapes and output tapes.

Now all these constraints are dropped.
The new statements dealing with addresses are used for all tapes. Note,

however, that the address assignment statement can be applied only to address
variables associated with the same tape. Removing this restriction leads to unsolvability
of the problem of construction of complete test set. The same result is also obtained if
we allow a comparison statement for address variables. In reality, these restrictions
usually hold. The new language can be used to code the bubblesort algorithm. Fig.13
gives an example of such a program.



3Z1

2. A -+ x

+

3. ADR(A}--+ a

4. NEXT(A)

5. A -+ Y

10. STOP

Fig. 13



322

THEOREM 8, There exists an algorithm for construction a complete test-set for any
program in the language Ls. .

At first we can notice that we must consider only those paths where statement
START is executed only once. The content of tapes after the execution of START
statement is considered as initial.

Further we use a new concept for program state.
Let us interrupt the program execution on fixed tape values. Now all variables

have some fixed values. Let c(Tl!nbe the smallest constant and cmaxbe the largest
constant of the program. Let us note on the number line all integer values from Cmln.to
cmax and all variables accordin~ to their values. Such ordering of variables and
constants is called a conflquratlon.For example. if cmln=-1, cmax=2. u=-5. v=-5, t=1, z=7,
then we obtain

u -1 D 2 z
v

For values less than cmlnor more than cmaxonly relations between them are important.
So, if u=-6 and v=-6 or z=1 D, then we obtain the same configuration. Configuration is
considered to be a special type inequality system. Further not only internal variables
and constants are noted in the configuration but also the values of scanned cells and
the values of cells whose addresses are equal to the-values of address variables. Tape
A scanned cell value is denoted by A.!. and the value of cell whose address is equal to
the address variable a' by a'l..

Let us involve the new concept of the program state. The state is triple [d.Q,R],
where

D is the state of all tapes D=(dA ,ds ,...•dz ), where dx=O. if the tape X is
exhausted, otherwise dx =1,

Q is the set of configurations.
R is the list of sets of address variables. The list contains sets of address

variables with address variables of one set containing the same address. Likewise the
sets may also contain the address of the scanned cell of every tape. In the list we
denote the address of the scanned cell of tape A by A, that of tape B by B, etc.

Now we can start the construction of the reachability graph.
The initial state So is [D.Q,R] where D';(1,1 ,....1), Q contains one configuration Ko

and R is empty. Ko is a configuration where all variables are located at constant O. The
constant 0 is always noted in a configuration. as it is the initial value of variables.

The first vertex is labeled by the pair (no ,So) where So is the initial state and no
is the label of the START statement. Then we construe! the edge from vertex (no ,So) to
vertex (n, ,51)' n1 is the label of the next statement and Sl is the state [D.Q.R] where set
Q contains all configurations that are obtained from the configuration Ko by adding
variables A.!.. B.!.•...• Z.!.. The adding of variables is described further when we consider
shift statement.

Further we define construction rules for all other statements. Let us consider an
arbitrary vertex (n.S) with S being the state [D,Q,R].



323

1) If n = ( NEXT(A) ) and the statement exit leads to statement nl' then the new
vertex is (nl ,SI)' If dA=1 in the state S, then state SI is [D,OI.Al1 where set 01 contains
all configurations which can be obtained from set 0 configurations by transferring or
deleting variable A.!.. A1is obtained from A by deleting A from all sets. In the case sets
with one eleTent appear they are also deleted.

Actually the deleting of variable A.!. from configuration means that the current
scanned cell is empty.

Variabl,e transferring means Its deleting from the current point and adding to any
point of confiQuration.
For example, If 0 contains a configuration

C' 2
u

and A.!.must be added, then 7 possible configurations are obtained:

C u 2 t
A.!.

C u 2 t
AI:

o u 2Al C u 2 t
AI:

o u 2 tAl o u 2 t
AI:

C u 2 t Al

2) If n=( A~u ) and the exit "-" leads to statement n, and exit "+" to statement n2'
then new vertices are constructed the following way. If dA=O in state S, then we
construct an edge from vertex (n,S) to vertex (n1,Sl) where Sl is [D,O,A]. If dA=1, then let
us denote by 01 the subset of 0 where configurations contain variable AJ. and by 02the
set 0\01, If set 0, is not empty, then an edge to vertex (n2,S2) is constructed. State S2 is
[D,03,A] where configurations of set 03 are obtained from configurations of set 01 by
transferring variable u to the point where variable A.!. is noted. If set O2 is not empty,
then an edge from vertex (n,S) to vertex (n, ,S3) is also constructed. State S3 is [D',02,A]
where D' is obtained from D by setting dA to O.

3) If n=( u ~ A) and the exit leads to n" then the new vertex is (n" S,). State S,
is [D,O',A] where configurations of 0' are obtained from set 0 configurations by
transferring A.!. to the point where variable u Is noted. If list A contains a set T with A,
then all variables of set T are also transferred to the point where variable u is noted.

4) If n=( u ~ v ) and exit leads to n" then the new vertex is (n" S,). State Sl is
[D,O',A] where configurations of Q' are obtained from configurations of 0 by transferring
u to the point where variable v is noted.

5) If n=( u < v) and exit "-": leads to statement n2and exit "+" to statement n" then
the new vertices are constructed the following way. Let us denote by 0, the subset 01
configurations from 0 where u is noted on the left from v and by O2 the set 0\01, If 01 is



324

not empty, then an edge to vertex (n"S,) is constructed where S, is [D,O"R].1f02is not
empty, then an edge to vertex (n2 ,S2) is constructed where S2 Is [D,02,R].

6) If n=( ADR(A) ~ a' ) and the exit leads to n" then the new vertex is (n,.S,).
State S, is [D,O',R'] where configurations of 0' are obtained from set 0 configurations
by transferring alJ. to the point where variable AJ. is noted, if AJ. is noted In the
configuration. or by deleting alJ., if AJ. is not noted in the configuration. List R' is
obtained from R by adding set {~,~~, If list R does not contain a set with A, or by adding
a' to the set with A, otherwise. \ 'I _

7) If n=( al ~ u ) and the exit~-" leads to statement n2 and the exit "+" to statement
n1' then the new vertices are constructed the following way. Let us denote by 0, the
subset of 0 where configurations contain variable alJ.and by O2the set 0\0,. If 0, is not
empty, then an edge to vertex (n1'S,) is constructed. S, Is [D,O,·.R] where
configurations of 0,' are obtained from set 01 configurations by transferring u to the
point where variable alJ. is noted. If O2 is not empty, then also an edge to vertex (n2,S2)
is constructed,where S2 is [D,02,R].

8) If n=( u ~ a! ) and the exit leads to n" then the new vertex is (n"S,). State S,
is [0,0' ,R] where configurations of 0' are obtained from set 0 configurations by
transferring alJ. to the point where variable u is noted. If R contains a set T with a', their
all variables of set T are also transferred to the point where variable u is noted.

9) If n=(ai~ ail and the exit leads to n" then the new vertex is (n"S,). State Sl is
[D,O',R'] where configurations of 0' are obtained from set Q configurations by
transferring aiJ. to the point where variable aiJ. is noted if the configuration contains aiJ..
List R' is obtained from R by adding set {ai,a!} if list R does not contain ai, or by adding a'
to the set with a', if R contains al,

If the new vertex already exists, then the edge is joined to the old vertex. When
no new edges can be constructed the construction of the reachability graph is finished.

In such a way we receive a lot of paths in the reachability graph. It follows from
the construction of the reachability graph that for any feasible path a of the program
where START statement is executed only once there exists path a' in the reachability
graph whose projection is path a.

LEMMA 1. Every initial path in the reachability graph is feasible.

Let us denote by a=((no.So).(n"S,), ...•(npSr)) an arbitrary initial path in the
reachability graph. Let us consider the sequence of configurations Ko,K, ,...•Kr where for
every j=O,..,r Kj is a configuration from state Sj configuration set and for every j=O,..,r-1
the configuration Kj+' can be obtained from KJ applying abovedescribed construction
rule corresponding to the statement nj.

Let us denote by aF((nO.So),(n,.Sl), ...,(ni,SI)) the initial part of path a. Let us
prove by induction on i that for every path ai there is a test Ti such that program
traverses path al on the test Ti and program variables satisfy configuration sequence
Ko.K1, .. ·, Ki.



325

The test To Is empty tapes.
If nl is NEXT(X) and Ki+l contains variable X!. then test T1+1 is obtained from the

test T1 by adding to tape X a cell with value s that locates X! at the right place in the
configuration Ki+1' Let us consider possible variable X! relations with other variables or
constants in t~e configuration Kj+1. At first we can notice that every variable except X!
has a fixed valGe that is received from a tape or is equal to some constant of program. If
XJ. is located dtthe point where some variable is noted or the point is In Interval [Cmin'
cmaxl. we take ~he value s equal to the value of the noted variable or constant. If X! is
located at the I~st point of the configuration. we take as value s the largest value of the
configuration irlcreased by one. If X! is transferred to the first point. we will take as
value s the smallest value of the configuration decreased by one. The last case is that
X! is located juit between Z and v, where z and v denote variables or constants. It Is
easy to see that only one of them can be equal to constant. If the difference of z and v
values is less than 2, we must change the previous values of the tapes of the test T, If
v>cmax•then we replace all values of tapes which are equal or greater than the value of
v by the same value increased by one. If z Is less than cmln•then we can decrease by
one all the values of tapes equal or less than the value of z. This operation has no
influence on the sequence of configurations Ko.K1•.•.• Kj and the program traverses on
the updated test Tj the same path al' But now the difference of z and v values is 2. and
we can choose the integer value s satisfying the configuration Ki+1'

If Ki+1 does not contain variable X! then Ti+1= T1.

If nl is START, then T1+1 is obtained by adding a cell to every tape X. such that
configuration Ki+1 contains variable X!.

If nj is another statement, then Ti+1= T,
This proves the lemma.

Now the usual algorithm constructing CTS from the reachability graph can be
used. This completes the proof of Theorem 8.

8 Programs with Counters

At first, it is clear that, if we consider programs with two-way counters and
comparisons between a counter and a constant, the problem of CTS construction is
algoritmically unsolvable even in the case of two counters. This follows from the
well-known result (see, e.g., [12]) that every recursive function can be computed by a
special coding on so-called Minsky machine using only two counters Z1 and Z2 and
statements

Zl + 1 --+ Zi I, 1Zi - 1 --+ Zj I, r-I 1- I STOP I" .
Therefore. we can hope at best for the solvability of CTS construction problem in

the case of one-way counters. However. as the next theorem shows. the algorithmic
unsolvability appears quickly also in this case.

So let us denote by L4 the language obtained from the base language La by
adding internal variables of a new type - counters and the following statements for
them:



326

c -+ z. The value of constant c is assigned to counter Z.

z + 1 -+ Z. Counter Z is incremented by 1.

Z < t. The value of counter Z is compared with the value of internal
variable t. The statement has two exits: "+" and "-".

The last statement allows us to compare the value of a counter with the values of
an input tape.

.\j
THEOREM 9. There exists no algorithm for constructing a complete test system for
every program in L .•. (The subclass of L.• programs with one input tape and one
counter is sufficient for the nonexistence of algorithm). -

The proof of the theorem relies on testing, by means' of constructions of language
L4, whether the input tape contains a configuration sequence of some Minsky machine.
More detailed it means the following. Let M be a Minsky machine with two counters Z,
and Z2' Let us assume the initial value y to be always assigned to the first counter Z,.
Then by a configuration sequence corresponding to the initial value y we understand
the following sequence of integers

where Z,O, Z20 are the initial values of counters: Z,O =y, Z20=0, and Z,I,221 are the values
of counters after the execution of the i-th step of machine M. For example, if machine M
executes statement Z,+1 -+ Z, on the i-th step, then Z,i=Z,~'+ 1 and Z21=Zi'. If machine
M stops on the k-th step (i.e., STOP statement is executed), then configuration
sequence is terminated upon Z,k, Z2k.We shall say in this case that the configuration
sequence of machine M is finite for the initial value y. We can ascertain easily that it is
possible for any machine M and initial value ye N to build a program PM,yin L4, such
that PM,y reaches STOP statement only if the configuration sequence of machine M is
finite for the initial value y and this sequence is written on the input tape of PM,y . In
addition the program PM,y uses only one counter Z. The idea of construction of PM,y
relies on the fact that it is possible to check whether the relation t=u+ 1 holds by means
of one counter Z (for u ~ 0 ):

+

+

t '" u+1
t = u-t



327

Hence it is possible to determine whether the integer sequence written on the
input tape is the configuration sequence of machine M for the Initial value y. Thus the
halting problem for an arbitrary Minsky machine M and Initial value y can be reduced to
the STOP statement reachability problem for program PM,y' Hence follows the
algorithmic unsolvabllity of CTS construction problem for programs in L4 .

Let us denote by Ls a languge differing from L4 only in the fact that the counter
values can ~ compared solely with constants. It is easy to see that CTS construction
problem is algorithmically solvable for programs in Ls . The same ideas as for the proof
of Theorem 1 could be used. The difference is that the counter values, if they lie
between minimal and maximal constants of the program, are included in the state.

Further research is connected with finding such restrictions on counters that the
solvability of CTS problem is preserved.

A.G.Tadevosjan [14] has considered the following generalization of the language
Ls where together with the beforementioned statements of Ls the following statement is
admitted:

t-+Z,
where t is an arbitrary internal variable. The CTS construction problem appears to be
solvable also in this case.

In practice counters are mainly. used for loop organisation. This is done by
means of DO statement:

DO Z =1 TO r WHILE V; W; END;

where W - the body of the loop is a program block (by program block we understand
part of the program consisting of La statements and, possibly, DO statements and
having a single entry and a single exit), V is boolean expression constructed from
comparisons of La (e.g., (t < u) & (5 < tll, and r - the bound of the loop is an internal
variable. DO statement (called also a DO-loop) is interpreted as an abbreviation of the
following program block:

A

B



328

It Is assumed that counter Z is used in no statements other than the above
mentioned ones Z :Srand Z + 1 -+ Z used for loop organization.

Let us consider the programming language generated by statements of Lo and
DO statement. There is no algorithm for constructing a CTS for every program in this
language ( a stronger version of Theorem 9). The proof is close to the one used for
Theorem 9 except that a slightly different coding of Minsky machine configurations is
used. This proof of un solvability strongly relies on comparing the loop bound r with
other internal variables. Now let us exclude this possibility.

We shall not allow the use ,of the loop bound r in comparisons with other internal
variables and in assignments. This means that the loop bound r along with the loop
organization statement Z s r can b~. used only in input statement (X -+ r), comparisons
with constants (r < c, c < r) and output statements (r ~ V). In practice these restrictions
are not essential but they usually hold for real programs. Let us note that several
DO-loops can have a common bound r. The programming language generated by the
base language statements and the DO statement with the above mentioned restrictions
is called Le.

THEOREM 1Qr There exists an algorithm for constructing a finite complete test set for
every program in L6.

A detailed proof of Theorem 10 is rather lengthy, so we shall outline only the
main ideas. By a simple state we understand a state in the sense of Theorem 1, i.e., the
one obtained by ignoring the statements containing counters and loop bound. Let us
consider a DO-loop having no nested DO-loops in it. By entering the DO-loop in a
simple state S (at entry point A) and going through all possible values of bound r we
can obtain, at the exit of the loop (point B), generally speaking, distinct simple states S1'
S2' ... ,Sn . Further, for every state Sj there exists the set Aj of the value bound r for
which the state Sj Is reached at the exit. More precisely, r'e A; iff for r = r' there exists a
feasible path through the DO-loop beginning at the point A in the state S and reaching
the point B in the state Sj .The set A is said to be regular if there exists a regular
expression A' in the binary alphabet {1, O}such that for r ~ 0

re A iff, 11...1 e A'
'-v--'

r
and for r < 0

re A iff, 00 ...0 e A'
'-y-'

- r

The expression A' is said to be a regular representation of the set R. Regular
expressions are preferable due to the decidability of the emptiness problem.

LEMMA 1. Set R; is regular for every i. States 51,52, .•. ,Sn and the corresponding
regular representations of sets Rl,R2, ... ,Rn can be constructed effectively from the
DO-loop and state S.

Theorem 10 can be proved by Lemma 1 in the simplest case when the program
contains only non-nested DO-loops, none of which includes statements involving
bounds of other DO-loops. In the general case some generalization of Lemma 1 is
necessary.



329

let us order the variables used as loop bounds In the program:
r', r2, ... ,r!<

let us consider a set of strings of the type
[ ra'; rb1, ra2, rb2, ... .rak, rbk,],

where raJeN, r~e Nu{*}, N is the set of integers and * a special symbol.
A set of strings Is said to be regular if it can be expressed as a finite union of

cartesian products of regular set ({*} is considered to be a regular set):
Ra,,' x Rb,,' X ..• x Ra} x Rb} v ... vRa,m' X Rb,m'X ..• x Ra,mkx Rb,mk,

Ra,,' , Rtl,,' , ... ,Ra,mk, Rb,mk- regular sets.
The expression'

" '., \ 'k 'k "" 'k' kR a,' X R b.' X ... x R a,' X R b,' V •.• vR a,m X R b,m X ... x R a,m X R b,m '
where

R'a,,', R'b,", ... , R'a,mkx R'b,mk

are regular representations of the sets
Ra,,', Rb,,'.···, Ra,mk,Rb,mk•

is said to be a regular representation of the corresponding set of strings.

let a program block with entry C and exit D be given. let S be a simple state at
point C and SI be a simple state accessible at exit D. let us denote by Uj the following
set of strings:

[ra', rbl, ra2, rb2, •.• .rak,rbk,] e U1

iff for r'=ra', ... , rk=rak there exists a feasible path ~ through the block,
beginning at the point C in the state S, and reaching the point D in the state SI,
satisfying the condition: if r~=* , then the path contains no input statements of the type
"tape" -+ rJ, if r~ is a number, then the path contains one or several input statements
"tape"-+ rl and r~ is a possible value of variable rl at point D on the path ~ 0=1,2, ... , k).

lEMMA 2,' The set of strings U, is regular for every i. The possible states 51.52, ... ,5n
at the exit of the block and the corresponding regular representions of the sets
Ul,U2 •...•Un can be constructed effectively from the program block and state 5.

The lemma is proved by induction on the depth of nesting of loops in the block.
For depth 1 lemma 2 is a slight strengthening of lemma 1.

Now let us consider a block path a=( k1 ,k2•...• km). It differs from the usual path in
that kl can be either a la statement or a DO-loop. If k, is a DO-loop, we fix one of the
possible simple states SI at its exit. An instance of a block path is a=(X-+a+, (D,S,),
a-+Y) where D Is some DO-loop. Now let us define the total state Z(a) as a pair (S(a),
W(a)) where S(a) is a simple state and W(a) is a regular expression describing all
possible strings [r", ... ,r'k] of numbers acceptable at the end of the path. W(a) can be
easily constructed using lemma 2. It follows from the construction that for a given
program the number of distinct total states is finite.

Now using arguments analogous to those used in the proof of Theorem 1 we
obtain the proof of Theorem 10.



330

9 Programs with Real Time Counter

In this section we consider a programming language (let us call it L7) allowing
the simulation of a comparatively wide class of real time systems. At the same time L7
occurs to have a solvable CTS construction problem. So we have a method for CTS
construction for a certain class of real time systems (we show an example how to apply
L7 and its CTS construction algoritm to the analysis of real time systems in the next
section).

Programs in L7 have a finlt~ number of Input tapes (output tapes are inessential
for CTS construction) and a finite number of internal variables.

The first difference of langpage L7 from Lo is the replacement of integers by
rationals in L7, i.e., cells of input tapes and internal variables have rational values. Thus
a test for a program in L7 will be a fixed assocation of rationals to cells of input tapes.

Let X be an input tape, t.u internal variables and c a rational constant. L7 have
the same statements for these objects as Lo:

1. X~t. The statement has two exits just as in Lo; "+", if the current cell is nonempty and
"-", otherwise. (Input statement).

2. u-st (respectively c~t). The value of the variable u (constant c) is assigned to the
variable t. (Aslqnrnent statement).

3. t-eu. The statement has two exits "+" and "-", determined by the result of comparison.
(Comparison statement).

4. STOP.

Besides that every program in L7 can have one special internal variable z
(named real time counter) with the following statements permitted:

5. t -4z. The statement has two exits "+" and "-". If tc-z, then the value of t is assigned to
z and the exit "+" is used. If tsz, then the value of z is not changed and the exit "-" is
used. (Positive assignment statement). .

The statement can be explained bymeans Of the following block:

6. z -c-et. The value of z increased by c is assigned to the variable t. Only nonnegative
rational constants c are allowed here. (Activation statement for the variable t).

When modelling real time systems the activation statements will be used to
model the activation of the associated timers, the positive assignment statement will
correspond to the treatment of input signals (both from outside the system and from
timers).

We assume that all internal variables are set to 0 in the beginning.



331

We can assume without loss of generalization that constants used in the
statements of type 2 and 6 are Integers (a program In L7 with arbitrary constants can be
transformed to a program with Integer constants by changing the scale of number line,
easy to see that program logic will not be affected by the scale change).

No pnincipial casualties would appear if rational negative constants were
permitted in ~ariable activation statements but there is no real need for it.

Let usmote that if we allow normal assignment t-sz instead of positive asignment.
a language ~ith algorithmically unsolvable CTS construction problem would be
obtained. \

The main result In the section is

\
THEOREM 11.. There is an algorithm constructing finite CTS for every program in LT'

Now let us prove the theorem.
At first for every path a we define the state Stu) corresponding to it, further we

use the states to construct the reach ability graph (as in the proofs for previous
theorems).

Let us call the constants used in assignment statements basic constants and the
ones in variable activation statements counter constants (0 Is assumed to be both basic
and counter constant by definition). The maximal and minimal basic constants are
denoted by COmlnand cOmax, the maximal counter constant is denoted by c'max (let us
remind that we assume all constants to be integers). We define cmax=max(comax,c'max}'

Let a program P have input tapes A,B, ...,C, internal variables t' •...,tk and real time
counter z. Let us assume the program P to be executing on some test T, i.e., on fixed
values of input tapes Ao ,Bo ,...•Co . If we suspend the execution at some time moment.
we find that the tuple of internal variables (Z,t

'
.t2, ..••tk) has a definite numeric valu~ from

~k+' (here ~ is the set of rational numbers). So at the fixed moment of P execution we
may consider as numeric values:

1)all basic constants of the program P,
2)all internal variables tl and z,
3) Z, Z+1•...•z+Cmax (let us call them further active points).
Every one of these values is located somewhere on the number line. thus

defining the ordering of basic constants. internal variables and active points. Let us call
this ordering an absolute configuration (absolute ordering) of P variables at the fixed
moment.

Variables tl and basic constants c whose values at the given moment are within
segment [z, Z+cmax] are said to be active variables and active constants at this moment.
Further the segment [z, z+cmax ] is called z-tntervet.

For every active variable tl (active constant c) we define its relative offset t'6 (C6
respectively) as the difference between t' ( c ) and its nearest active point on the left:
tl6 = (t' -z ) • [ t

'
-z ] (C6 = ( c-z ) • [ c-z ]); here [ x] denotes the integer part of x.

The ordering of relative offsets of active variables and constants on number line
(with number 0 Included) is called the relative configuration (relative ordering) of P
variables at the given moment.

The pair consisting of absolute and relative configurations of P variables is called
variable configuration of P at the given moment (while working on the fixed values of
input tapes Ao ,Bo •...• Co ).



332

Example, If at the given moment of P execution z=7.15, t1=2.43, t2=6,86, t3 =7.68,
t4=9.65, t5=1 0,15, t6 =14.30 and P has basic constants 1 and 3, c1max = 4, then P has
the following variable configuration:
0< 1 < t1 < 3 < t2 < Z < t 3< z+ 1 < z+2 < t4 < t5 = z+3 < z+4 < t6 ,
0= t56'< t46 < t36 .

The definition of the variable configuration at the given moment utilizes only the
values of internal variables at the moment and the values of P constants. Thus, if we
know a priori the values of P constants, we can likewise define the P-configuration for
every tuple of k+1 rationals (z, t\,ro" tk)e CQk+1.

We define the variable configuration set for program P to be the set consisting of
P-configurations corresponding to-all tuples ( z, t1 ,.ro , tk )e CQk+1where z~O . h is easy to

Var .
see that the variable configuration set Cp is finite for every program P inL7.

Since every variable configuration is actually an inequality system, then, in case
a configuration C corresponds to a tuple of variables t, we say that t satisfies C or t is
one of the solutions of C.

Let k be a statement in the programm P and Ean exit of it. We define the relation
':Iar Vat

-(k,£)~e Cp x Cp for this statement and exit the following way:
1) if k = ( c~tl ) or k = ( ti~ti ) or k = ( z+C~ti ), then C1 -(k,E)~ C2 iff the

configuration C2• can be obtained from C1 by erasing tl and t16 (retaining the absolute
and relative ordering of all other variables and constaots) and then locating them at c
and C6 , or at tJand t]6, or at z+c and 0 respectively (if C6or ti6 is undefined respectively,
tl6 also remains undefined);

2) if k = ( X~tl) and e="+", then C1 -(k,E)~ C2 holds iff C2 can be obtained from C,
the following way:

(i) just as before, we erase tl and ti6 in C1 ;

(ii) we locate tl at an arbitrary place in the absolute ordering of the configuration
obtained;

(iii) if ti in the absolute ordering is placed within z-interval, we locate tl6 in the
relative one at any place not contradicting with the place of tl in the absolute ordering (if
tl = tJin the absolute ordering, then, certainly, ti6=ti6 in the relative one, if ti is located so
that z-cs tJ< tl < t5 s z+c+1 (c<cmax ), then ti6 < tl6 < t56 should hold in the relative
ordering);

3) if k = (X~tl) and e="-", then C1 -(k,E)~ C2 iff C1=C2;

4) if k = ( ti < tJ ), or k = (t -4z ) and E="-", then C1 -(k,£)~ C2 iff C1 does not
contradict with the exit of the statement and C1=C2 ;

5) if k = (tl-4z ) and e="+", then C1 -(k,£)~ C2 holds iff C2 can be obtained from C1

the following way:
(i) If ts z , then C2 does not exist.

(ii) If l>z , then proceed as follows:

Step 1 (deterministic),
At first we determine the mutual ordering and allocation with respect to active

points of the configuration C2 under construction for the variables and constants which



333

are on the left (below) z+cmaxin C1• To do this we define (calculate) for each variable tJ
and basic constant c which are within segment [ tl , Z+Cmaxlin C1 the value

o(tJ)= [tl-tq= [tl-z] - [tLz] + ~JIwhere ~ii = 0, If tl~~ tJ~ • and ~~=-1, if tJ~<ti~ ,
here [ti -z] and [tl -z] can be inferred from the allocation of 11and tl with respect to active
points in the configuration C1, the value of £\jiis determined by the relative ordering from
C1 ( o(c) is optalnsd in a similar way). .

We r~tain the mutual absolute ordering of variables 11and basic constants the
same as in til and move z at tl. The location of 11and c with respect to new active points
is determined by 0(11)( I>(c) respectively) (if 1>(1I)=a,then ti is to be located between z-a
and z+a+ 1 in\C2, besides, if tl~=ti~ in C1, then 11must be placed just at z-a). If tis z+Cmax
in the configur"ation C1, then we also insert the old value HCmax (we denote it further by
zO) in the confIguration under construction (its location with respect to new active points
is determined by o(Zo)= cmax-[tLzl+£\oi' where £\Qj=0, if ti~ = 0, and £\Oi=-1, if ti~ > 0).

Step 2 (deterministic).
While constructing the new relative configuration, at first we represent relative

offsets only for those variables and constants which were within [tl,HCmax] in the
configuration C1, as well as ZO~ (the relative offset of value ZO). We reorganize the
relative ordering from C1 the following way:

O=tl~<tu~< ... tr~ < tS~=zo~ < tm~< ... <tk~

~
those tl~ which were
less than ti~ in C1

are represented here
in ascending order.

~
those tJ~which were

greater than ti~ In C1

are represented here
in ascending order;

-,
if there

was ts~ =0
in C1;

Step 3 (nondeterministic).
Now we determine the place in C2 for the variables located to the right of z+cmax

in C1. Let us denote them in the ascending order by th, ti2, tb, ... , ti, (if two or more
variables are equal, denote them by the same symbol ti,).

We allocate these variables in the same order, every one in an arbitrary
admissible place in the configuration built so far. The variable ti,., must be allocated to
the right of ti, allocated in the previous step (t;' is to be allocated to the right of ZO(to the
right of ti if there was tl > z+Cmaxin the configuration C1)).

For every variable tJ• to be allocated we determine both its relations to the new
active points (they are defined within Step 1 of the algorithm) and the place of its
relative offset tj,~ in the relative configuration built so far (ct. the case of command (X~ti)
with exit "+" for the description of admissible locations of variable offsets).

When all variables th, ..,t), are allocated between active points or some ti, is
located on the right of z+cmax (the last active point in the configuration under
construction) we delete zOand zo~ from the obtained absolute and relative orderings,
respectively, and stop the construction, retaining the mutual ordering of the variables on
the right of z+cmaxthe same as it was in C1.

Examples Let C1= ( 0 < 2 < z < H 1 <11 < z+2 <12 < Z+3 < t3, 0 < t2~ <!1~ );
1) if k = ( 2~tl ), then C1 -(k,e)-) C2 iff



334

C2= ( 0 < t1 = 2 < Z < Z+1 < z+2 < t2 < z+3 < t3, 0 < t26 );

2) If k = (t1<t2 ) and £="+", then C1 -(k,e)-+ C2 iff C2=C1, if £="-", then the relation holds for
no C2;

3) if k = (t1 ~z ) and £="+", then C1 -(k,e)-+ C2 holds Iff C2 is one of the following:
o < 2 < Z = t1 < t2 < z+ 1 < t3 < z+2 < z+3 , 0 = t16 < t36 <126 ;

o < 2 < Z = t1 < t2 < z+ 1 < t3 < z+2 < z+3 , 0 = t16 < t26 = t36 ;

o < 2 < Z = t1 < t2 < z- 1 < t3 < z+2 < z+3 , 0 = t16 < t26 < t36 ;

o <2<z=t1 <t2<z+1 <t3 =z+2 -ez-a , 0=t16 =t36 <t26;

o < 2 < Z = t1 < t2 < z+ 1 < z+2 < tj,-<z+3 , all possible t6 orderings for
which there hold t16 = 0, t26 > 0, t36 > 0;

0<2 < z = t1 <t2 < z+1 < z+2 <13 ';z+3, 0 = t16 = t36 <126 ;

o < 2 < Z = t1 ,<t2 < z+ 1 < z+2 < z+3 <13 , 0 = 116 < t26 •

In this case the transformation algorithm after Step 2 yields the configuration
o < 2 < Z = t1 < t2 < z+ 1 < ZO< z+2 < z+3 , 0 = t16 < ZO6 < t26 •

Inserting t3 in it In arbitrary place to the right of zO,we obtain the variety of the
abovementioned configurations C2.

From the definition of relation -(k,e)-+ there follows

LEMMA 1, For.every statement k and its exit e the relation Ct-(k,e)-+C2 holds iff there
are rationals z.tt •...•fS satisfying the configuration Ct. such that the statement k can be
executed at these values of variables with exit e in a way that the tuple of variable
values obtained in the result would satisfy the configuration C2-

let a be an initial path in the program P. The variable state Q(a) corresponding
to path a is defined by induction:

(1) to empty path there corresponds one element set containing the configuration
with all internal variables equal to 0;

(2) if state Q(a) corresponds to path a, then for path a+(k,e) we define Q(a+(k,e))
Va' I= ( C'e Cp 3 Ce Q(a): C -(k,e)-+ C' }.

The state of input tapes D(a) corresponding to path a is defined as a tuple
(d1,d2,oo.,dm)(m is the number of Input tapes), where dj=O, if input statement from the I-th
tape with exit "-" has occurred in the path, dj="(otherwise. The (complete) state 8(a)
corresponding to path a is defined as the pair (Q(a),D(a)).

VOl
Let us note the following. If we define for an arbitrary state 0" = (00,00) (oO~Cp ,

aDe (O,1}m ) and path a (not necessarily initial) the conditional state S(a,n) in a way
similar to S(a) (only Induction basis has to be changed), we see that an analogue of
lemma 4 from Theorem 1 holds.

The complete state S(a) defined for every path a allows us to construct (In a
similar way as in the proof of Theorem 1) the reach ability graph for the given program P.

The vertices of the graph are pairs (n,S) where n is a statement label and

8=(Q,D) is a state of the program P ( QSC~II, De (O,1}m). For every path a+(k,e) in the

program P we draw in the graph an edge labeled by e from (k,S(a)) to (k',S(a+(k,e)) if
there is an edge labeled by e from k to k' in the program P. It is easy to see that the



335

VOl

reach ability graph is finite for every program P (since the set Cp is finite).

For every initial path V=( (no,80)Eo.(nl ,81)£1' ...• (np8r)£r) in the reachability graph
the corresponding path a=( no£o.nl£I' ... ,nrEt) In the program P Is called the projection
of the path v.

LEMMA 2, {!oninitial path a in program P is feasible iff there is an initial path v in the
reaehability graph of P whose projection is a (ef. Lemma 6 in Theorem 1).

If path ~=( no£o.nl£l •...• nrEt ) is feasible. let us consider a fixed test T which
forces the execution of this path. For every J=O.1•...•r+1 we consider the configuration of
program varia~les Cj and state of tapes OJ after the path aj=( noEo,nl£l' ... , ni-1Ej-l) while
the program is executed on T. It follows from Lemma 1 and properties of OJ that there Is
a path v=( (no.So)£o. (nl.Sl)£I, ...• (npSr)£r ) with the edge e, leading from (nr,Sr) to
(nr+l ,Sr+l) in the teachability graph, such that Sj = (Qj.Oj) and CjE C4 for j=O...,r+1.

Now let us prove that for every initial path in the reachability graph the
corresponding projection is feasible in the program P.

Let us choose an initial path v=( (no,So)Eo, (nl,Sll£I' ... ,(nr-l.Sr.l)£r-l ) in the
reachability graph and consider the sequence of configurations CO.C1"",Cr.1 such that
(1) CjE C4 for every j=O,..r-t:
(2) Cj ·(k,£)~ Cj+l for every j=O•..r-z,

Let an edge labeled by £r-l leads from (nr.l,Sr.l) to (nr,Sr) in the reachability
graph, let CrEQr and Cr.1 ·(k.£)~ Cr'

For every jsr we define Vjto be the initial fragment ((no,So)£o,...• (nj_l,8j.l)£j.1l of v.
Let aj be the projection of Vj(aj=(nOEo,nl£j, ...,nj.l£j-l))

Let us prove by induction on j that for every Vj there is a test Tj forcing the
execution of P along aj in a way that for every S:5jthe program variables after the path
as satisfy the configuration Cs'

The existence of the test To for empty path is obvious (test with empty input tapes
A.B, ...,C suffices).

The transition j ~ j+ 1 is different depending on nj and Ej:
1) If njE{ e-st', tu~ti. z-e-st}, or nj= (X~ti) and £j=•••• we can take Tj+l=Tj.
2) If nj = (ti<tu). or nj = (ti-4z) and £j="_•• then it follows from the definition of ·(k,£)~ that
every tuple of variables satisfying CJ forces the execution along the branch needed,
once again we can take T1+1=Tj.

3) If nj= (X~tl) and £jc·+·, then by the definition of reachability graph no input statement
from tape X with exit -, " has occurred in path aj' The test Tj+1 is obtained from Tj
concatenating to tape X a cell with a value that locates ti in the configuration Ci+1 in the
appropriate place with respect to other variables and constants of the program.
4) If nj= (ti-4z) and £j=.+•• we describe a method for obtaining Tj+l from TJ• Let us fix the
values of program variables in the moment when P has executed the path aj on the test
Tj. Consider variables with the values fixed greater than HCmax (the list of them can
also be obtained from the configuration Cj). Each of these variables has received its
current value in path aj only by means of input statement (because they are greater



336

than z+cmax ) and has used this value in various comparison statements. So each of
these values has an input tape cell corresponding to It In the test Tj. Let us update the
values of cells of input tapes corresponding to the considered variables which are
located below z+cmax (or are equal to it) in the configuration Clt1• in order to ensure that
thesevanablss after the execution of nj have correct places with respect to active points
and other variables' relative offsets in Clt1.

It follows from the definition of relation -(k.£)~ in the case of positive assignment
statement, namely. Step 3 of the algorithm. that we shall be able to update the values of
tape cells preserving for the considered variables tU the ordering and locations with
respect to the old z+cmax • It means that on the new test TJ+1the program traverses the
path alt1=aJ+(nj,£j), besides, for s:5:j+1.the internal variables satisfy the configuration Cs
after the path as' i.

This proves the lemma.

We note that the proof of the lemma yields a constructive method how to find for a
feasible path a test executing it. So, just as in the case of Theorem 1, we can build a
finite CTS from the reachability graph of the program.

This completes the proof of the theorem.

Theorem 11 yields a principal possibility to build CTS for every program in L7.

However. if a program has a large number of variables, the algorithm given in the proof
can be Infeasible in practice due to enormous number of variable configurations. Let us
describe a principally more efficient algorithm of CTS construction for programs in L7
based on the usage of inequality systems.

We begin with the association Oust as for programs In La) of inequality system
N(a) to every initial path a. such that

1) path e ls feasible iff N(a) has a rational solution,
2) every solution of N(a) with respect to cells of input tapes yields a test on which

the program executes the path a.

Example Let us consider the path
(A ~ t1 -t-, t1~z +, z+5 ~ t2, A ~ t1 +, t1 < t2 +. t1~z + ).

lis inequality system is
101=to=20=0
t11 = Ai
t11> Zo , Z1 = t11

t12 = Z1 + 5
t21 = A2

t21<t12

t21 > 21 ,z2 = t21

It is easy to see that with respect to A1 and A2 it is equivalent to the system
o < A1 < A2 < A1 + 5, the consistency of which assures the feasibility of the path.

Path inequality systems are used for efficient obtaining for a given path in the
reachability graph a test forcing the execution of the corresponding path in the program.

The construction of the reachability graph is based on relating a set
U(a)={U1(a), ...•Ur(a)} of certain type inequality systems Us(a) to an arbitrary path IX in



337

the program. So the vertices of reachability graph are pairs (nl.U). where nl is a

statement label and U=U(a) for some path a. The Idea of Inequality systems Us(a) is
that the set Q(a) of configurations, corresponding to a. will be distributed during the
graph construction In several subsets Ql(a).Q2(a), ... ,Q,(a). such that their union
coincides with Q(a) and each Qj(a) is coded by the Inequality system Uj(a) (actually, the
state of input tapes D(a) is represented In every Us(a) as well).

When qonstructing the reachability graph we use the systems consisting of
inequalities of ~he form

(1) aACb+cl), where Ae {>,<,~,~}. a and b are program internal variables or
basic constants: O~Cl~clmax,

(2) A < d. A > 0, where A is a program input tape (external variable).
Let us callths systems of the described form state inequality systems.

Vor
Let us say'that a state Inequality system U codes a pair (Q,D), where o s Cp ,

De {0.1}m (m Is the number of program input tapes) if
(1) every solution of U with respect to z, t' ,... , tk satisfies at least one

configuration Ce Q ;
(2) for every configuration Ce Q there are values of variables z, t' ,...• tk satisfying

both C and U;
(3) for every tape A, U contains inequality A<O iff dA=O in the state 0; there is no

inequality of the form A>O in U.
Let us represent the state inequality systems as graphs Oust as it was done in the

case of the base language La). Let all program internal variables, basic constants and
input tape names serve as vertices in them. We label the edges of the graphs by
weights of the form (x,~), where XeZ and ~e{O,"+"} (the comparison and the addition can
be defined in the set of weights quite naturally: (Xl '~1»(X2'~2) if X,>X2 or Xl=x2 and
~1="+"' ~2=0; (Xl'~1)+(X2'~2)=(Xl+x2'~1+~2)' where ~1+~2= "+" if either ~1 or ~2 is "+",
0+0=0).

Let us represent the inequalities of the system in the graph the following way:
azb-c, . an edge, weighted by (Cl'O) from a to b.
asb-c, - an edge, weighted by (Cl ."+") from a to b,
asb-c, - an edge. weighted by (-Cl'O) from b to a.
a<b+cl - an edge, weighted by (-C1."+") from b to a.

Not difficult to prove that the state Inequality system has a solution iff there is no
cyclic path with positive sum of weights and no path from constant vertex COlto Co2with
the weight greater than (co1-co2,0)in its graph.

We define the exclusion of a graph vertex a as replacement of all the edges
leading to and from a by edges bd between other vertices band d, such that before
exclusion the graph contained both the edges ba and ad. The weight w(bd) is defined
as the sum of weights w(ba)+w(ad). For every two vertices band d we retain only that
edge from b to d which has the maximum weight.

We define an edge alan with weight w(alan) in the state inequality systems graph
(further- state graph) reducible if there are vertices a2,...,an-l (n~3), such that the graph
contains edges ajai+l' i=1 •...,n-1 and the sum of weights w(ala2)+ ... + w(an_lan) ~ ~
w(alan)'

We introduce a reduced form for each state graph, which can be obtained from
the graph the following way:



338

(1) if the state graph is contradictory (i.e., it is a graph of a contradictory inequality
system), replace it by the inequality systems "0>0" graph, otherwise execute (2), (3) and
(4);

(2) for every cyclic path ala2, ... ,anal with (0,0) sum of weights, find out the
ordering ajlAlaI2A2 ...An_lajn, (Aje{<,S}) of vertices al,a2, ...•an. Then replace all edges

between these vertices by the edges from ai" to ai".' and from ajl.l to al" (s=1 ,...n-t),

weighted by (ajl-ajl.l,O) and (ajI+1-al"'0) respectively;

(3) for every cyclic path with (0,0) weights on all its edges, gather all its vertices
into one vertex; ,\ ,

(4) delete the reducible 'edges from the graph until It contains no ones.

Let us call a variable orbaslc constant a in a state inequality system U very
essential if there exists an edge leading to or from a, labeled by the 'weight different
both from (0,0) and (0,"+") in the reduced form of U graph. We denote the set of very
essential variables and basic constants in U by VE(U).

Let us consider an arbitrary set V of program P variables and basic constants.
We say that a state inequality system U is complete with respect to V if for every a,be V,
such that asb-ez holds in one of U solutions (z is the value of program real time counter),
the inequalities asb and b-cz hold in every solution of U.

In other words, the complete with respect to V state inequality system must
unequivocally determine the ordering of set V variables and constants which are below
than z. We define U-bO!1om(V)={ae VI a-cz in some solution of U}.

Now we are able to describe the reachability graph construction algorithm.
We relate the state inequality systems' set with just one element, namely, the

inequality system 0 = z = t1= ... = tk to the empty path.

Assume that we have constructed the state inequality system set U(a)=
=(U1(a),U2(a), ...,Un(a)} corresponding to a path a. Let us describe how to construct the

set U(a+(k,e)) corresponding to the path a+(k,e).
The following cases are possible:

1) k=(ti~z) and e="-", or k=(tl<ti).
Add the corresponding inequality to each of Us(a).

2) k=(C~ti) or k=(tj~tl), or k=(Z+C~tl).
Exclude tl from each Us(a). Add the equality c=ti (tbtl or z+c=tj respectively) to the

obtained systems. .
3) k=(X~tl) and e="+".

Exclude tl from each Us(a). If any of Us(a) contains the inequality (X<O), add the
inequality (X>O) to it.
4) k=(X~tj) and e="-".

If Us(a) does not contain the inequality (X<O), add it to the system (s=1 ,..,r).
5) k=(tl~z) and e="+". Process every Uj(a) the following way:

Add the inequality (z-d') to Uj(a), exclude z from the obtained system. Locate z at
tl (add the equality z=tl to the system). If the obtained system U'j(a) is not comp!ete with
respect to the variables' and constants' set VE(U'j(a)), supplement it (by determining the
ordering of variables and constants in U-bO!1om(VE(Uj(a))) ) in all possible ways to the
complete ones, so obtaining the list U'j,l(a),U'j,2(a), ...,U'j,p(a) of the complete systems



339

(each U'j.s(a) is a complete system due to VE(U'j(a))=VE(U'j.s(a)).
Further process every U'j,s(a) the following way:
Exclude from it all variables and constants being in U-bottom(VE(UJ.s(a») (we

have defined the exclusion of the graph vertex. it can be applied also to the constant
one). Afterwards add the inequalities. determining the ordering of the set U-
bottom(VE(Uj.s(a))) variables and constants and their relations with z, to the obtained
system. so we have obtained an element of the set U(a+(k,E)). .

The transtcrrnatlon of the state inequality systems in the case of the positive
assignment stafsmsnt with the exit "+" may be roughly considered as erasing weights
on edges connectlnq the variables and constants which are below z (i.e., represent the
past time moments) one with another and to other program internal variables and
constants. However, in the general case a more sophisticated approach (like the
performed one) is necessary. We note also that In the most typical cases the number of
systems in U(a) Is 'quite small; for the most of real time systems for every a the set U(a)
consists of just one system U(a) which codes the set of configurations Q(a).

Example Let us consider the path
( A ~ t1 +, tl-4z +. z+5 ~ t2 .A ~ t1 +, t1 < t2 +. t'-4z + ).

For it U(ao) = {U(ao)} = ( 0 = z = t1 = t2 ),

U(al) = {U(a,)} = (0 = z = t2).

U(a2) = {U(a2)} = ( 0 = t2 < Z = t' ),

U(a3) = {U(a3)} = ( 0 < z = t' < z+5 = t2 ).

U(a4) = {U(a4)} = ( 0 < z < z+5 = t2 ).

U(as) = {U(as)} = (0 < z < z+5 = t2 ,t1 < t2).

U(a) = U(a6) = {U(a6)} = ( 0 < Z = t1 < t2 < z+5 ).

Using the state inequality systems sets Uta) as states corresponding to program
paths we build a reach ability graph for the program likewise in the proof of Theorem 11.

L E M M A 3, An initial path a in the given program P is feasible iff there is an initial path
v in the constructed reachability graph whose projection is a.

We note that for every path a all weights on edges of state graphs for inequality
systems U1(a) •...•Ur(a) are bounded from (-cmax.O)to (cmax."+"). this ensures us about
the finiteness of the constructed graph.

The proof of the lemma is based on inductive demonstration that for every path a
the inequality systems U,(a), ...•U,(a) code the pairs (Q,(a).D(a» •... '(Qr(a),D(a».
respectively. where the union of configuration sets Qs(a) coincides with Q(a).

The given construction of the reachability graph. together with the solvability of
path inequality systems. form the base for the desired more efficient algorithm of CTS
construction for the programs in L7.

At the end of the section we introduce a new programming language L7 with
operations over both rational and integer data types. We define the language L7 as
follows:



340

Every program in L7 may have internal variables of two types· rationals (l.e., tl

and z) with operations of L7 permitted and Integers with permitted operations from
language La. A type mismatch in the commands in L7 is forbidden. Each ext~rnal
varlable - input tape of the program has a definite type (integer or rational) as well. This
determines in which system of commands the input from this tape can be used.

THEOREM 12, There exists an algorithm constructing finite CTS for every program in
Lj..

The proof of the theorem relies upon the construction of the reachability graph,
where for every path a in the program corresponds the state (SO(a),S7( a)) with So(a)
being the state in the sense of Lo., associated with a, but S7(a) • the one in the sense of

L7·
The proof that an initial path in the program is feasible iff it Is a projection of any

path in the reachability graph follows from the analogous results for languages Lo and
L7 (cf. Lemma 6 from Theorem 1, Lemma 2 from Theorem 11).

A more efficient generation of CTS for programs in L7 can be performed by using

the inequality systems, i.e., by ascribing the state (So(a),U(a)) to an arbitrary path a in
the program.

Just as for programs in Lo (cf. Section 4) the conditional programs can be
introduced in L7 as well (the conditions are allowed to stand for the variables of each
data type separately). Likewise in Section 4 we can introduce the notions of the correct
test and correct CTS for conditional programs In L7. Following the aforementioned
ideas we can prove

THEOREM 13, There exists an algorithm constructing finite correct CTS for every
conditional program in Lj..

10 CTS Generation for Real Time Systems, An Example,

In this section we consider a simple example how to apply the CTS generation
means to real time programs. .

10,1 Example Specification Language

In the current section we use a subset of specification language SOL [16) to
specify the example. Now let us describe the subset.

Only one SOL process is used to describe a real time system. SOL process is a
program executing in real time and communicating with the environment by means of
signals. SOL process has an input queue Into which the environment at certain time
moments puts Input signals for the process (time moment can be an arbitrary rational,
time counting begins at the process start). Process input signal can have a definite
number of integer valued parameters, the signal is recorded in the queue together with
its parameters. We can assume for sake of simplicity that no two signals are put into the
queue simultaneously. The process also has output signals, these signals are sent to
the environment at certain time moments according to the process program (process
diagram), as a reaction to input signals.



341

80L process Is a finite state machine extended by variable notion and some
special statements. To be more precise, we assume that 80L process can use a finite
number of internal variables, the process diagram can contain the following statements.
1. 8TART - the beginning of the process execution. We assume that all process internal

variables are inltlaflzad to 0 at the execution 'of 8TART. We depict the statement in the
diagram the fol'owi'll;! way:cp
2. 8TATE IIN~UT - the complex of statements for awaiting I reading of Input signals, It
has the followin~ form in the process diagram:

Q \

Here Q is a state name, 81 and 82 are names of signals awaited in this state, x,y are
process internal variables to which the values of parameters conveyed by signal 82 are
assigned at consumption (reading) of 82.

If the process has reached the state Q during the execution, it is awaiting for the
arrival of some signal In the Input queue. At the moment when a signal arrives the
signal is consumed (and the necessary assignments of parameter values to internal
variables performed). Further control flow in the diagram depends on the name of
incoming signal ( for the sake of clarity we assume that reaction to every possible signal
is specified in every state).
3. OUTPUT· signal sending statement. It has the form:

I S(x)

and it denotes the sending of signal to the environment at the given moment of process
execution. Here 8 is a signal name and x is an internal variable whose value Is
assigned to parameter of the signal.
4. 8AVE • signal save statement, it is included in 8TATE I INPUT complex the following

way:

S2(x,y)

Fig.14
The location of signals 83 and 84 in 8AVE statement at the state Q means that, if the
process is in state Q, signals 83 and 84 are not consumed but retained in the input
queue in the order of their arrival (l.s., the process waits for the arrival of some other
signal, 81 or 82 in the case). For every state Q we assume that the name of every input
signal is mentioned In just one INPUT or 8AVE statement at this state.

If the process diagram contains a fragment (fig.15) and there the sequence
83(1), 84, 83(2), 81, 82(0,0) of signals arrive to the process queue, then these signals
are consumed in the order 81,83(1),84,83(2),82(0,0) (we assume the process being
in the state Q just before the arrival of signal 83(1)).
5. TA8K • action statement representing assignment to internal variables of the

process, e.g.,
X :=Y I I x :=5----, ----



342

Fig.15 :.:_
6. DECISION - representing variable comparison statement (in fact, the same

comparison statement used in La):

r·~
7. SET, RESET statements and timer signals.

SDL process has a predefined function now, at every time moment returning the
numeric time value of this moment (certain nonnegative rational). Process may have a
finite number of timers (informally each timer is an "alarm-clock" which can be set to
send a special signal after the expiring ¢ a definite time interval).

A timer in SDL process can be set by statement

I set (now+c,T) I
Here T is a timer name and c - an integer constant (a timer is said to be active after
setting). The activity of the timer T, before it "rings", can be disrupted by the statement

I reset (T) I
When the interval of timer activity expires (i.a., c time units have passed) and it has not
received the reset statement, a special signal is put into the process Input queue, the
signal name being the same as timer name. This signal can be consumed in a process
state (a special input branch has to be added to the state):

a

If some active timer is set, an automatic reset is executed for the timer before the
new setting. The statement "reset(T)" also erases all signals with the name T from the
input queue (if there are SUCh).

The execution of the process begins with START statement at a time moment
now =0, further processing is performed in accordance with the process diagram. We
assume that all internal actions of the process (assignment, comparison, signal
sending/consuming, timer setting/resetting) are performed instantaneously, so the
function now changes its value only when the process waits for signals (or timer) in
some state.



343

10.2 Passenger Lift Specification

We describe a control program for some kind of passenger lift by means of SDL
process. ThE!environment for the process consists of lift users and lift hardware.

A lift user can press a call button In every floor thus sending the signal S with
parameter x (the floor number) to the process. Besides that the user can press the
button In the lift-cage to pass the request for the lift to go to some floor; so the signal R
with one para~eter - the destination floor number Is sent to process. In some situations
the user can a~o generate signals FU(FloorUp) and FD(FloorDown) by leaving the 11ft-
cage and enterillg it respectively (i.e .• changing the status of cage floor).

The lift Hprdware consists of lift driving motor controlled by signals M-Up,M-
Down, M-8top, li,ft door motor (controlled by signals MDoor1 (open the door), MDoor2
(close the door) and MDoorStop) and some sensors informing the process about the
physical state of the lift. The following signals from sensors to process are considered:
Z(x) - floor number x is reached, DOp(Door Is Open), DC(Door is Closed).

Behaviour of the lift can be characterized by the following:
1) the lift has no memory for user requests, signals S(x),R(x) are accepted for

processing only after previous request has been executed,
2) If empty 11ftwith open door stays in some floor for more than 20 seconds, the

door is being closed,
3) if the status of cage floor is changed while the door Is closing (I.e., somebody

has entered or left the cage), the closing of the door is interrupted and the door opens.
Besides, if the door was being closed to execute some request to go somewhere, the
request Is canceled.

Besides the control algorithm also a partial correctness check of incoming
signals is included in the specification of lift process, it will enforce tests in the
generated CTS to be actually possible sequences of lift input signals. To do this in the
specification language some exits are allowed to be pending for branching statements
(DECISION statements, STATE/INPUT complexes). This is done in a way similar to
conditional programs in Section 4.

The specification of the lift process is presented in fig. 16.1 thru 16.3.

10.3 Simulation of SOL Process by Program In L~

By a test for an SDL process we understand a sequence of signals which are put
by environment at certain time moments into the process input queue (every signal is
considered together with Its parameter values). We remind that simultaneous input
signals are not allowed.

If signal 81 with parameters 7 and 12 is sent to the process at moment 3, 'signal
S2 Is sent at moment 3.7 and another signal S1 with parameters 0 and -5 at 7.22, then
the sequence of signals is recorded as a test for SDL process the following way:
(S1(7,12) at 3), (S2 at 3.7), (S1(0,-5) at 7.22)

A test for SDL process is said to be correct If the process never reaches pending
exit while executing on the test.

We don't consider direct construction of correct CTS for SDL processes. Instead
we describe a method how to simulate specifications (programs) in the described
sthlset of SDL by conditional programs in L;'. We also demonstrate previously
described algorithm for the construction of correct CTS on lift process example.

We say that a program P(R) in L7 simulates SDL process R if:
1) a one-to-one mapping between correct tests for process R and program P(R)



344

r FI=O means Floor is Up
FI=1 means Floor is Down *1

M2

Fig.16.1



345

Iset (now+20,TIM) 1-----> ( WaitEnter )

Fig.16.2



346

Fig.16.3
is. defined together with algorithms yielding program test from the corresponding
process test and vice versa.

2) for every S=(V, 'V2 ,•.••Va ) being a correct CTS for program P(R), the set
consisting of tests for process R corresponding to tests VI is a correct CTS for process R
according to some analogue of criterion C, .

Now let us describe a method how to transform a correct test V for SOL process
R into a test for simulating program P(R).

The execution of process R on the test V means that at certain time moments the
environment and process timers insert into the process input queue definite signals.
Likewise, the test V determines the sequence in which the process R reads (consumes)
the signals from the queue (this sequence can differ from insertion sequence due to
SAVE statements). Relying on this we write the test for P(R) corresponding to the test V
on three tapes T,S, and P the following way: '

on the tape T we write the arrival time for every signal read by process R;
on the tape S we write the slqnalname coded by natural;
on the tape P we write the signal parameter values (if the signal has parameters).
Arrival times, signal names and parameter values are written on tapes in the

signal reading sequence corresponding to the test V (hence there will be correct tests
for P(R) with not increasing cell values on the tape T).

It is easy to see that a test for SOL process can be simply obtained back from the
corresponding test for the simulating program. The fact that every correct test for the
simulating program corresponds to a correct test for SOL process is guaranteed by the
construction of simulating program described below.

The main idea of the simulation of SOL process performance on some correct
test by program in Lj. is to represent the current time (i.e.• the value of the function now)
by the real time counter z. Every time the process reads a new signal the simulating L7
program reads the arrival time of this signal from tape T into variable t and assigns it to
the real time counter z by means of statement t -4z ("-" exit from this statement will be
processed depending on the situation. see below).



347

The simulating program in L;' Is obtained from SOL process diagram the
following way: ,

1)START statement Is transformed Into the start label "->" of the program;
2)STATE/INPUT statement complex (timer signals and SAVEs are considered

later), fig.17,

\ Fig.17
is transformed as'shown in fig.18.
Q:

Otherwise

Fig.18

Here ~ is a normal CASE statement (easily expressible in L7 ), further on we

do not show the pending OTHERWISE branch, this branch sets correctness condition
upon the code of signal name contained in the corresponding tape cell (s in the
example cannot assume the value either 3 or 5, or some other value different from 1,2
and 4);

3) output signals are not represented In L7 -program (they are inessential from
CTS viewpoint);

4) internal variables are transferred to L7 -program without changes, only the
syntactic form of variable operations is changed (see the example below);

5) if SOL process has at least one SAVE statement, then in the simulating L7 .
program: _.

(i)for every signal used in at least one SAVE statement the variable ts (s being
th,e code of signal name) is introduced;

Q

Fig.19

(ii)for every state Q in SOL process, e.g., the state shown in fig.19, (including



348

Here0/ denotesthe blockof statements

Fig.20
states without 8AVE statements), if 8AVE statements in the process contain, let us say,
signals 81,82,83,84,85 and do not contain signals 86,87, then the correspanding 17· .
fragment is transformed as shown in fig. 20.

If some signals Sl.Sj.Sk appear in 8AVE statements of the process always
together, sole variable tl can be defined for all of them.

If a signal 8 in the simulated snt-orccess appears in some 8AVE statement,
then the arrival time of the signal, read from the input tape T, may happen to be less
than the current value of z (l.s., less than the corresponding value of the function now in
the process) because the signal could have been retained in the input queue for some
time. In the given moment of execution of L;' -program the value of variable t5,

corresponding to S indicates the lower bound for the arrival time of 8 (t5 is the largest
arrival time for the signals read so far in the states which don't contain S in their SAVE
statements).

The reading of signal 8 with the arrival time less than t8 would violate the FIFO
discipline of the input queue (taking into account the corrections made by SAVE's).

6) for every timer Tn In the process we define a corresponding variable t" in the
simulating program. In the situation of timer Tn being active the variable t" will hold the
value of the expected moment of signal appearance from the timer; let t"=-1, If Tn is
inactive (for the sake of simplicity we don't consider the case when timer signals are
retained by SAVE statements in SDL process, principal complications do not appear in



349

this case, too).
If SOL process has timers, e.g., T1 and T2, then every "-" exit from statement

reading the tape T Is augmented by condition expressing the Inactivity of the timers:

T ~t t'=-1 t2=-1

\ Fig.21
If input ~f timer signals, e.g., T3 and T4 is admissible In the state Q of the process

Q

Fig.22
(we define that input of timer signal Tn is admissible in state Q if there Is a path in the
process diagram from START to Q such that the timer Tn remains active after the path),
then the corresponding fragment (see fig. 22) is transformed in such way:

Q:

Fig.23
7) statement sattnow-c.Tn) is transformed into z-c -.+t", statement reset(Tn) into

(-1 )-.+t" .



350

Idle:

L1:

( D-opening )

Fig.24.1



351

D-Opening:

L2:

\

\
\

WallReqlJest:

Fig.24.2



352

WaltEnter:

Fig.24.3
In order to reduce the size of the simulating 17· -program obtained by the described
algorithm we perform some simple optimizations with respect to rational internal
variables (l.s., variables tl and z) preserving the sequence of reads and the value of z at
any read from the tape T on every correct test (see the example below).

10.4 Simulating Program for Lift Process in Lj.

The following dictionary is used to code the input signals of the lift process on
input tape S while simulating it by Lj -program:

S - 1, R - 2, Z - 3, FU - 4, FD - 5, DOp - 6, DC . 7, TIM - 8.
Let us apply the transformation described in the previous subsection to the lift

process. By this we note that signals FU and FD saved in state D-Opening can be
retained in the input queue only while the process is in states Wait-Enter or Wait-
Request. Due to the stated we build corresponding Lj fragments for all other states a_s
described in Step (2) of the transformation algorithm and define the variable t4 which
simulates delay time for signals FU and FD to be set to z just at the label D-Opening
(hadn't we performed this optimization the resulting program would be a bit more
complicated).

We also note that the value of t8 in the simulating program can differ from (-1)
only at the label WaitEnter, therefore the timer activity condition t8=-1 will not be
checked elsewhere. .

So we obtain the program in Lj depicted in fig. 24.1 thru 24.3.

10.5 Reachability Graph for Lift Program in Lj.

The reach ability graph for the lift program in Lj is built using the algorithm



353

described ,in the previous section, as well as some methods fo~ reachability graph
minimizing (similar to those described In Section 3 for to·programs).

We define essentially located statements (EL5s) to be the statements with labels
attached to them except those with label "D-Opening" (this label Is located "nearly at the
same place" las "L2") and "U".

In thel construction of the reach ability graph we use the following states
(inequality sy~tems) corresponding to program paths:

51 = {-~ = t8 < 0 = Z, Y =1, FI = O}
52 = {-, = t8 < 0 < Z, Y =1, FI = O}
53 = {-1\= t8 < 0 < Z = t4, X = Y = 1, FI = O}
54 = {-1 \= t8 < 0 < t4 < Z, X = Y = 1, FI = O}
55 = {-1 <: 0 < t4 < Z < Z + 20 = t8, X = Y = 1, FI = O}
56 = {-1 < 0 < Z = t4 <t8 < Z + 20, x = Y = 1, FI = O}
57 = {-1 < 0 < z = t4 < z + 20 = t8, X = Y = 1, FI = O}
58 = {-1 = t8 < 0 < t4 < Z, X = Y = 1, FI = 1}
59 = {-1 = t8 < 0 < Z = t4, X = Y = 1, FI = 1}
510={-1 =t8<0=z,x=y=1,FI=0}
511 ={-1 =t8<0=z,x>y=1,FI=1}
S12={-1 =t8<0=z,x>y>1,FI=1}
513={-1 = t8<0<z=t4, x=Y> 1, FI = 1}
S14 = {-1 = t8 < 0 < t4 < Z, X = Y > 1, FI = 1}
515 = {-1 < 0 <t4 < Z < Z + 20 = t8, X = Y > 1, FI = O}
S16 = {-1 < 0 < z = t4 < t8 < z + 20, x = Y > 1, FI = O}
S17 = {-1 < 0 < Z = t4 < z + 20 = t8, X = Y > 1, FI = O}
S18 = {-1 = t8 < 0 = z, x = y > 1, FI = O}
S19={-1 =t8<0<z,y>1,FI=0}
820 = (-1 = t8 < 0 < Z = t4, X = Y> 1, FI = O}
521 ={-1 =t8<0<t4<z,x=y>1,FI=0}
S22 = (-1 = t8 < 0 < Z, x > Y >1, FI = O)
S23 = {-1 = t8 < 0 = Z, 0 < x < y, FI = O}
S24 = {-1 = t8 < 0 = Z, 0 < x = y, FI = O}
525 = {-1 = t8 < 0 = Z, 0 < x < y, FI = 1}
526 = {-1 = t8 < 0 = Z, 0 < x = y, FI = 1}
527 = (-1 = t8 < 0 < Z, x e- y = 1, FI = O}
Vertices of the reachability graph are pairs (ELS label, state corresponding to

program path).
Let U and Lj be labels of ELS's, and the path ~ from U to Lj contains no other

ELS's. There an edge corresponding to the path ~ is drawn from vertex (U,Si) to (Lj,Sj)
in the graph if 5(5i,~)=5j (i.e., if the state Si is transformed into S] by the path ~
according to inductive state building algorithm). The edge in the reachability graph
corresponding to some path in the program will be labeled by exits of conditional
statements defining the path (for the sake of brevity only exits of the statements with
other exit not pending are shown in labels}.

In order to make the representation of the reachability graph more compact and
comprehensible we have chosen for every vertex the following kinds of paths:

1) from the vertex to stop,
2) from the vertex to Itself,
3} not feasible

to be represented In special fields inside the image of the vertex. For example, the



354

Fig.25 .,<

The constructed raachablllty graph is depicted in fig. 26.1 and 26.2.
During the construction of the graph a nondeterministic branching was admitted

to reduce the size. Namely, while forming the Inequality system S24 (S26 respectively).
it is easy to see that the set of its solutions coincides with the union of solution sets for
S3 and S20 (S13 and S9 respectively). Thus, instead of drawing an edge from
(FlyingDown,S23) ((FlyingDown,S25) respectively) to (L2,S24) ((L2,S26) respectively)
corresponding to path +3- we make a nondeterministic branching leading to both
(L2,S3) and (L2,S20) ((L2,S13) and (L2,Sl 0) respectively).

It is easy to see that nondeterministic branching causes no obstacles for finding
the coverings of graph and solving corresponding Inequality systems. If
nondeterministic branching were not used, additional 11 states in the graph would have
been necessary.

10.6 Path Inequality Systems: Example

Now let us show how to build an inequality system for some path in the lift
program (being a projection of a path in the reachability graph) and find a test enforcing
the execution of it.

Let us consider a path in the reachability graph v=(ldle,Sl )+1 +,
(FlyingUp,S27)+3+, (Flying Up,S22) +3-, (L2 ,S20)+6- ,(WaitEnter,S 15)+5+-,
(WaiRequest,S14)+4-, (WaitEnter,S15)+1 +, (WaitEnter,S16)+8; (DoorClosing,S18)+7-.
(ldle,S19)-, STOP.

It has the following projection a in the program:
(-1)~ t8 , 1~Y. T~t+, t .!.+Z+,S~s+, s: 1, P4X+, x:;.O+,X>Y+.
T~t+, t.!.+z+, S~s+, s: 3, P~w+, w>y+, w~y, w<x+,
T~t+, t.!.+z+, S~s+, s: 3, P~w+, W>y+, w~y, w<x-, W>X-,
z~t4, T ~ t+, t.!.+Z+, S~s+, s: 6, FI>O-, (z+20)-+t8,'

T -+ t+, S-+s+, s: 5, t8>-1 +, 1<18+,p·~t4+, 1.!.+z-,t-cz», (-1)~ til. 1~FI.
T -+ t+. S~s+, s: 4, t.!.+t4+,t.!.+z-, tez-, 1~FI, (z+20)~ til,

T ~ t+. S~s+. s: 1, t8>-1 +, 1<18+,t .!.+Z+,t .!.+t4+,P~u+.
T ~ t+, S-+s+, s: 8, t.!.+Z+,t=t8+, t.!.+t4+,(-1)--+ til,

T-+t+, t.!.+z+, S-+s+, s: 7. FI>O-,
T -+ to, s-ss-, P~u-, STOP.

There the following inequality system corresponds to the path a:
Zo= to = t04 = t08 = 0, Yo=xo =wo = Flo = So= 0;
t18 = -1; Yl=l, t1= T1; t1>zo, zl=tl; Sl=Sl; sl=l, Xl=P1; xl>O; Xl>Yl;
t2=T2;t2>Zl, z2=t2; s2=S2; s2=3; Wl=P2; Wl>Yl; Y2=Wl: Wl<Xl;



355

6-

WaitEnter,S6

Fig.26.1

FlyingUp,S11



356

WaitEnter,S16

L2,S24

Fig.26.2

L2,S13

L2,S9

I FlyingUp,S22 I

{ L2,S3

L2,S20



357

t3=T3:t3>Z2'Z3=t3:s3=53: s3=3: W2=P3:W2>Y2:Y3=W2:W2~Xl:W2=Xl:
tl4::Z3:t4=T4:t4>Z3,Z4=t4:s4=54: s4=6: FIOSO:t1s..z4+20:
Is=T5: 55=55; 55=5; t,8>-1; t5<1,8;t5>t,4, t24=t5;t5SZ4;t5<Z4;t28:-1; F/,=l;
~=T6:s6=56: s6=4: t6>t24,t34=t6:t6=Z4:t6<Z4:F12=O;t3s:'Z4+20:
tF T7: s7=57: s7=1; t38=-1:t7<138:t7>Z4,Z5=t7:t7>t34,44=t7:Ul=P4;
t8=T8:58=58: f8=8: t8>ZS,Z6=18:t8=t38:t8>t44,tS4::te:t48=-1;
tg=Tg:t9>Z6'zttg: Sg=5g:Sg=7:FI2SO;
T<0; 5<0: p<q.

With r~spect to the values of Input tape cells T1, ..• Tg, 51, .•• 5g• P1",.P4 It is
equivalent to the following inequality system:
0<Tl<T2<T3<T~<Tr<T8<Tg: T3<1S<T6<Tr<T8:
Ts<T4: T6<T4: \-1<T4+20: T5<T4+20: T7<T4+20=T8:
51=1; 52=3; 53=3: 54=6; 55=5: 56=4; 5F1: 58=8; 5g=7:
P1>1: P2>1; P2<P3: P3>P2;P3=P1·

From this inequality system we can obtain, for example, the following test on
which lift program traverses the path
T=(1,2,3,6,4,5,7,26,27); 5=(1,3,3,6,5,4,1,8,7) : P=(3,2,3,O)

Computational complexity of solving path inequality systems is not considered
here, we note that the special form of path inequality systems is very essential for
solving algorithm.

10.7 crs for Lift Program

Using the constructed reachability graph for every branch in the program we can
1) determine whether it Is feasible,
2) if so, find a feasible path containing the branch.

Further, by solving the inequality system for the obtained path, we find a test on which
the given branch is executed.

Thus, considering consecutively all branches in the program, we construct a
correct CT5 for the program.

Choosing a definite order of branch consideration we obtain the following correct
CT5 for lift program.
Test Nl, T=(1), 5=(2), P=(O):

Test N2 T=(1,2,3,4), 5=(1,1,2,3), P=(3,0.0,2):

Test N3 T=(1,2,3), ~=(1, 1,2), P=(l ,0,0) :

Test N4 T=(1,2,3,4,5,6,7,8), 8=(1,3,6,1,2,5,1,2), P=(2,2,O,O,0,2);

Test N5 T=(1,3,2,4,5,6), 5=(1,6,5,2,1,2), P=(1 ,2,0,0) ;

Test N6, T=(1,2,22,23), 5=(1,6,8,5), P=(I):

Test N7. T=(1,2,3,4,5,6). 8=(1,3,6,5.2,4), P=(2,2,1);

Test N8 T=(1.4,2,3,24,25,26,27,28), 5=(1,6,5,4,8,5,6,2,7), P=(I,2):

Test N9, T=(1,2,3,4,5,6,7,8,9), 8=(1,3,6,5,2,7,1,2,3),
P=(3,3,1,0,0,2) ;

Test N1D, T=(1,2,3,4,5,6,7), 5=(1,3,6,5,2,7,3), P=(2,2,l,I).



358

To conclude the analysis of lift example we demonstrate how to transform tests
from the obtained .CTS Into tests for the 11ftSDL process (as It has been explained
before, these tests will form correct CTS for the process according to analogue of
crlteri(;ln C1).

Test Nl. (R(O) at 1).
Test N2. (S(3) at 1), (S(O) at 2), (R(O) at 3), (Z(2) at 4).
Test N3. (S(l) at 1), (S(O) at 2), (R(O) at 3).
Test N4. (S(2) at 1), (Z(2) at 2), (DOp at 3), (S(O) at 4), (R(O) at 5), (FD at 6), (S(O)at 7),

(R(2) at 8).
Test N5. (S(l) at 1), (FD at 2), (C!Qpat 3), (R(2) at 4), (S(O)at 5), (R(O)at 6).

(Let us note the different order of signals In the corresponding L'; test).
Test N6. (S(l) at 1), (DOp at 2), (FD at 3).

(Let us note that 4 sIgnals were coded in the L'; test).
Test N7 (S(2) at 1), (Z(2) at 2), (DOp at 3), (FD at 4), (R(l) at 5), (FU at 6):
Test N8 (S(l) at 1), (FD at 2), (FU at 3), (DOp at 4), (FD at 25), (DOp at 26), (R(2) at 27),

(DC at 28).
(See notes at tests N5 and N6).

Test N9 (S(3) at 1), (Z(3) at 2), (DOp at 3), (FD at 4), (R(l) at 5), (DC at 6), (S(O) at 7),
(R(O) at 8), (Z(2) at 9).
TE!stNl 0 (S(2) at 1), (Z(2) at 2), (DOp at 3), (FD at 4), (R(l) at 5), (DC at 6), (Z(l) at 7).

-
11 Conclusions

In the mid 70-ies using the ideas described In Sections 2,3,4 an experimental
CTS generation system for data processing programs (the system SMOTL [8,10]) was
developed at the Computing Center of Latvia University. A COBOL-like language
SMOD was used as source language for SMOTL. The system SMOTL was tested on
many real business data processing programs. Experiments showed that SMOTL was
able to build automatically complete test sets for the described class of programs at a
speed comparable to that of high level language compilers. However, business data
processing programs have no sufficiently high demands for their reliability to outweigh
the additional efforts of developing and using automatic test generation systems.
Therefore practical research in this direction was not continued.

The situation has changed essentially in the last few years when the necessity
appeared to test complicated real tlma systsrns with very high demands on reliability.
Automatic generation of test cases has sufficient practical importance for programs of
this class. At the same time it is clear that automatic test generation is a very hard job for
these systems. Theoretical foundation of test generation for systems of the kind is
considered In Section 9. Practical methods for test generation are described in the
companion paper [17].

REFERENCES
[1] D.S.Alberts. The economics of software quality assurance. In Proc. AFIPS Cant.

1976, pp. 433-442.
[2] A.I.Auzins. On the Construction of complete sample systems. Dokl. Akad. Nauk

SSSR, Vol. 288, No.3, 1984, pp. 564-568 (in Russian).
[3] A.I.Auzins. Decidability of the reachability for the relational push-down automata.



359

Programmlrovanie, No.3, 1984, pp. 3-12 (In Russian).
[4] J.M.Barzdin, J.J.Bicevskis, and A.A.Kalninsh. Construction of complete sample

system for program testing. Latv. Gosudarst. Univ. Uch. Zaplskl, Vol. 210, 1974, pp.
152-187 (In Russian).

[5] J.M.Barzdin, J.J.Blcevskis, and A.A.Kalnlnsh. Decidable and undecidable cases of
the problem of Construction of the complete sample system. Latv. Gosudarst. Unlv.
Uch. Zaplski, Vol. 210, 1974, pp. 188-205 (In Russian).

[6] J.M.Ba~dln, J.J.Bicevskls, and A.A.Kalninsh. Construction of complete sample
system f~r correctness testing. Lecture Notes In Computer Science, Vol. 32,
Springer ....•Verlag, 1975, pp. 1-12.

[7] J.M.Baddin and A.A.Kalnlnsh. Construction of complete sample system for
programs ~slng direct access files. Latv. Gosudarst. Unlv. Uch. Zaplskl, Vol. 233,
1975, pp. N~3-154 (In Russian).

[8] J.J.Bicevskl~. Automatic construction of sample systems. Programmirovanle, No.3,
1977, pp. 60'-70 (in Russian).

[9] J.M.Barzdln, J.J.Blcevskis, and A.A.Kalninsh. Automatic construction of complete
sample systems for program testing. In Proc. IFIP Congress, 1977, North-Holland,
1977, pp. 57-62.

[10] J.Bicevskis, J.Borzovs, U.Straujums, A.Zarins, and E.F.Miller. SMOTL-a system to
construct samples for data processing program debugging. IEEE Transactions on
Software Enqlneering, SE-5, No.1, 1979, pp. 60-66.

[11] E.F.Miller, Jr. Program testing technology in the 1980s. In Tutorial: Software Testing
and Validation Techniques, 1978, pp. 399-406.

[12] M.L.Minsky. Finite and infinite machines. Prentice-Hall, Englewood Cliffs, N.V .•
1967.

[13] M.O.Rabln and D.Scott. Finite automata and their decision problems. IBM J. of
Research and Development, vol. 3, No.2, 1959, pp.114-125.

[14] A.G.Tadevosjan. Decidable cases of the problem of construction of a complete
sample system. Kibernetika, No.6, 1985. pp. 41-44 (in Russian).

[15] K.C. Tai. Program testlng complexity and test criteria. IEEE Trans. Software
Engineering, SE-6, No.6, 1980, pp. 531-538.

[16] CCITI Specification and Description Language (SDL), Recomendation Z. 100,
1988.

[17] J.Barzdins, J.Borzovs, A.Kalnins, I.Medvedis. Automatic construction of test sets:
practical approach, this volume.



AUTOMATIC CONSTRUCTION OF TEST SETS:
PRACTICAL APPROACH

Juris Borzovs, Audris Kalni~s, Inga Medvedis
Institute of Mathematics and Computer Science
The University of Latvia
Rail}aBulv. ,29,Riga 226250, Latvia
Abstract. The problem of symbolic execution and test generation is
considered both for sequential and concurrent programs. Practical
methods for test construction for the given program path are
presented. i..

1. Introduction

Computer program testing (i.e., program execution on different
input values tests) remains an essential basis of program
correctness decision. It is accepted that testing is not capable of
program correctness proving (except cases when program is executed
on all possible input values), nevertheless, in practice, if program
gives correct outputs on sufficiently large amount of tests,
confidence of its correctness becomes psychologically very strong.

As test generation is rather labor-consuming and quite often
rather subjective, already tens of years ago trials were performed
to automate this process [1,2]. One possible approach to the
solution of the problem is test generation by means of symbolic
execution of program paths and the following solution of path
conditions (which mainly are systems of equalities and inequalities
over program input parameters) obtained by symbolic execution.

Since 7o-ies rather many experimental systems have been
developed on the basis of the before mentioned approach [3-11]. In
the second half of the 8o-ies this approach has experienced the
revival in the application of testing of specifications -of large
program systems (especially telecommunication) [12-14,28,29].

This paper deals with automated test generation methods for
sequential programs and protocol specifications written in SOL
language [15,16].,In both cases symbolic execution of programs is
used.

The paper consists of two major parts. Part 2 deals with
sequential programs. The notion of symbolic execution is formalized
here. Sequential subset of SOL (equivalent to large part of Pascal)
is described and an example of program is given. Correct symbolic



361

execution is defined for this subset of SOL and demonstrated on the
program example. A heuristic method for solving equations (path
conditions) obtained as the result of symbolic execution of program
path is presented, thus yielding a practical method to generate a
test executipg a selected program path.

In Part 3 the approach is extended to concurrent programs.
Correct symbolic execution is extended to all major concurrency

I

concepts of ~OL. The method is demonstrated on a realistic example -
sliding winddw protocol in SOL, test generation procedure based on
symbolic exe~ution is shown for selected paths. Moreover, a
heuristic method is presented for path selection (according to
criterion Cl) based on state concept related to that used for
theoretical approach to test generation [17]. The method ensures the
generation of test set executing all branches for the sliding window
example in a reasonable time. A more sophisticated heuristic test
generation method supposed to work efficiently on comparatively
large SOL systems is also outlined.

Part 2 has been written by J.~rzovs and I.Medvedis. It
contains results obtained by the authors at various times [10, 21,
22]. Part 3 has been written by A.Kalnil}B and it contains new
results.

2. Symbolic execution and test generation
for sequential programs

Symbolic execution of programs is a wide ~rea per se and has
various applications. In this paper we restrict ourselves to the use
of symbolic execution for feasibility condition description for
program paths and test generation for a path based on these
conditions.

Our approach to test generation by means of symbolic execution
can be applied to a class of programming languages characterized by
the following properties. These are block structured procedural
languages with strong typing. A typical representative of this class
is Pascal together with its newest derivatives like Modula-2,
Turing, etc. Some restrictions, nevertheless, are present. We
exclude direct memory management (pointers and related operations),
calls of external procedures and functions as black boxes (with no
source text available), nondeterministic functions (like random
number generators).



362

Languages of -t.heconsidered class have common property that
the main control unit is a procedure with formal input parameters

.and declaration part defining local variables and their types.
Procedure body consists of statements (assignments, conditionals,
etc.) which can be represented both in conventional textual form and
in flowchart like form.

Symbolic execution can be defined by our methods for any
language of the class d~.scribed. To do this a special sYmbolic
execution language correi~ted to the given programming language must
be designed. In this paper we describe only symbolic execution of
SOL - in Part 2 for its sequential subset (equivalent in fact to
large Pascal subset), in Part 3 we expand this definition to
concurrent aspects of SOL.

2.1 Formalization of Symbolic Execution of Program Path

In order to define formally symbolic execution we must describe
more precisely some notions present in any programming language L of
the considered language class.

1. All data types permitted in the programming language L are
denoted by T

1
, T

2
, T

3
, •••• If the language L permits only predefined

types, then the number of the types used is finite. If the language
L has type defining facilities (like Array [1••10 j Of Integer in
Pascal), then the number of possible types is infinite. Nevertheless
we assume that syntax and semantics definition of the language L-,
determines uniquely the complete type list T

1
, T

2
, and type

declaration in a program is only a way to select one of these types.
The domains of types (i.e., sets 'containing possible values of the
variables of the type) are denoted by 0

1
, D

2
, 0

3
, If the

language L has type naming facilities like
Type Seqno = Integer;

List = Array[l ••lOj Of Seqno;
Var Buf : List;

in Pascal, the corresponding ground ~ containing no intermediate
program defined identifiers and having the same domain (Array[l .•lOj
Of Integer for variable Buf in the example) is used to denote the
type of variable in our discussions. A program independent list of
possible ground types T

1
,T

2
,. •• can actually be defined for Pascal

like languages (in a way similar to that used further for SOL
subset).



363

2. We assume type T
1

to correspond to normal Boolean data type,
so 0

1
{True,False}.

3. Every program P in the language L has a certain number n of
variables. ,Each variable has a name and a certain type (from the

I

list T
1
,T2'1 ••• ). If program P has variables X

1
, ••• ,X

n
, then the

correspondiJng types are denoted by TP , TP , ••• TP and domains by
\

x x x
1 2 n

oP , ••• ,Op f
x 1 x n I

4. A Icertain number of the program variables are input
\

parameters, i.e., variables containing program input data. We assume
the first m variables X

1
, ••• ,Xm to be the parameters.

5. The body of program P consists of Rtatements, each of them
having one or more exits (e.g., If-statement normally has two
exits), all statements are somehow labelled. A sequence (Slel'
S2e2'•••' Skek) is called a path if 51 is the first statement of the
program and if exit el of statement S. determines SI+I as the next
statement to be executed. If statement 51 has only one exit or the
exit is uniquely determined by some other syntactic means, el will
not be given explicitly.

Now let us describe the symbo li,o execution of programs .Ln the
language L.

The symbolic language 5L corresponding to the programming
language L is defined as:

1. Many-sorted signature L defined over the same (ground) types
T1,T2, ••• used in the programming language L. A special type To with
only one value undef in its domain Do is introduced (this value is
used to denote undefined variable values). The signature contains
function aymbo l,s f

1
, f2,... and for every function symbo L fl its

argument types and result type are specified
fl: T1 r ••• , T

1
---> T.

1- k 0

(including zero argument constant functions) •No function f. is
defined over To, only constant function Undef has To as value type.

2. An interpretation I of functions sYmbols fl,f2, ••• from
signature L .

The main objects considered in the language 5L are terms. Terms
in 5L are well-typed expressions composed of function aymbo ls and
typed variables in normal sense. Terms are used to describe the,
behaviour of programs in L. Though it is not required formally,
function sYmbols fl,f2, ••• and their interpretation I normally
isclosely related to functions used in the language L itself or in



364

its semantics description.

A term in SL is said to be a predicate ~ if its range is 01=
{True,False}.

We'say that a term T conforms with a program P if all variables

occurring in the term T are also input parameters of the program P

and the type of the variable determined by its occurrence in the

term T coincides with the type specified for the variable in the

program P. If the languag~.,L uses type naming, then variable having

some type in program P must have the corresponding ground type in

term·T (domains are the s~e I ). Conformance informally means that

term T is defined for the "same entities which are 'processed by

program P.

By symbolic execution (of programs in
understand an algorithm which, given a program

and a path a in P, produces:

.1) a predicate term PC conforming with the program P,

2) for each variable Xl (i=I, .•• ,n) of program P a term T
xl

according to

the language L) we

P in the language L

conforming with program P such that range of T
xl

determined by itssignature [ coincides with the value range of ~

type (or the range is 0o={Undef}).

The predicate term PC is called

T
x

, ••• ,T
x

associated with variables
1 n

and both of them together symbolic state.

Symbolic execution is said to be correct if it produces for

every program P in the language L and for every path a in P a

symbolic state such that, for all parameter values of program P

a eDP , a eDP , ••• , a eDP , there holds:
1 X 2 x m x

12m

1) path condition PC(al,a2, ••• ,am)=true iff

executed on parameter values al, .•• ,am traverses the

2) if term T
x

is associated with variable
I

according to the system of symbolic values and the value of the

instantiated term

path condition, the terms

system of symbolic values,

the program

path a,
XI (i=l, ••• ,

P

n)

Tx (al, •.. ,a
lll

) is zx' then after the program P
I I

has traversed the path a on parameter values

XI contains the same value zx; if T = Undef,
I xI

a,a , ••. ,a, variable
1 2 II

then variable XI has

no value assigned on path a.
So informally path condition is an assertion on

values of program P in order to force the execution of

Path condition actually accumulates the information

parameter

this path.

from the



365

conditional statements (If, Case, ••• ) traversed in the path. Some
assertions to prevent from overflow-like errors are also accumulated
in path condition. In test generation applications path condition is
used to find parameter values (i.e., a test) forcing the execution
of the path.

To suknarize the above,
execution d~finition for some
tasks to be\done:

1. symqolic language corresponding to L must be defined,
2. symbolic execution algorithm must be constructed,
3. correctness of symbolic execution must be proved.
In practice the majority ofmost attention usually is paid to

symbolic execution algorithm, nevertheless, the two other items are
important as well.

The next sections are devoted to symbolic execution definition
for a certain programming language.

mentioned we can say that symbolic
programming language L requires three

2.2 Programing Language

In this section we consider a simple sequential programming
language. Constructions of the 'language we denote in traditional SOL
[15,16] graphical form, adhering completely to SOL syntax, although
many typical SOL language constructions (such as state, signal,
timer .•• ) do not occur. The considered subset of SOL functionally do
not exceed the capability of Pascal language, therefore, in order to
improve readability, sometimes we present translation of SOL
construction in Pascal terminology.

This simple sequential programming language is used to
demonstrate symbolic execution and test generation algorithms later
on. We stress that the scope of the language constructions could be
substantially wider from the point of view of our methods. However,
we shall consider only those language constructions having been used
in examples.

In this part test generation methods are demonstrated on
separate SOL procedure. In SOL language the procedure has textual
and graphic parts. Textual part contains the description of
procedure formal parameters, types and variables. Graphic part
describes data manipulations and control flow. Further we describe
this language more precisely.



366

Data type definitions

1. Our language has three predefined data types: Integer,
Boolean'and Real associated with usual operations:
Newtype Integer

Literals 0,1,2,3, •••
Operators

"+" Integer,\,Integer -> Integer
. ', ,;:

Integer, Integer -> Integer
"mod" Integer, ttnteger -> Integer
"-" Integer, Integer -> Boolean
"1-" Integer, Integer -> Boolean
"c" Integer, Integer'-> Boolean
">" Integer, Integer -> Boolean
"C-" Integer, Integer -> Boolean
">-" Integer, Integer -> Boolean

Endnewtype Integer;
Newtype Boolean

Literals True, False;
Operators

"NOT" Boolean -> BQolean ;
Boolean, Boolean -> Boolean
Boolean, Boolean -> Boolean
Boolean, Boolean -> Boolean
Boolean, Boolean -> Boolean

"AND"
"OR"
"="
h/="

Endnewtype Boolean
Newtype Real

Literals
Operators

"+" Real, Real -> Real
"- " Real, Real -> Real
.1=" Real, Real -> Boolean
"1=" Real, Real -> Boolean
"C" Real, Real -> Boolean
">" Real, Real -> Boolean
"<:;:::" Real, Real -> Boolean
">=" Real, Real -> Boolean

Endnewtype Real



367

2. Subranges of Integer type with the following declaration:
Syntype Mytype=Integer

Constants First : Last ;
Endsyntype Mytype ;

According tQ SOL semantics the behaviour of the subrange type is the
"

same as the behaviour of the Integer type with the only difference
that during I the assignment of a value to subrange type variable
(and in som~ other special cases) the range check of the value is
performed. \

\
3. Enurner~ted type with the following declaration:
Ne••••type Mytype

Literals Litl, Lit2, Lit3 •.• ;
Endne ••••type Mytype ;

For these types only the following equality relations are defined:
"=" Mytype, Mytype -> Boolean
"/=" Mytype, Mytype -> Boolean

4. Records (structs) with fields of any type mentioned above:
Ne••••type Mytype

Struct
Field1 Type1;
Field2 Type2;

Endne ••••type Mytype

5. Arrays with integer subscripts and values of any type
mentioned above (including structs):

Ne••••type Mytype
Array (Typel, Type2)

Endn.e••••type Mytype;
Here Type1 - type of index, Type2 - type of value.

Ground types corresponding to the introduced SDL types will be
described in Section 2.3.

Statements of textual part

Along with type declarations textual part may also contain the
following statements.

1. Procedure heading which is the first statement in every
procedure specifying its name and describing its formal parameters:



368

Procedure Myproc
Fpar

In Parameterl Typel, ••.
In/Out Parameter2 Type2, •.•

Types Typel, Type2 ••• must be defined outside the procedure or must
be predefined.

2. Declarations of ~ariables:. ~:.

DeL
Varl Typel, 1.
Var2 Type2 •••

In the case of embedded procedures usual visibility rules are valid.

Statements of graphic part

1. Procedure start:

G__ D
2. Procedure termination:

3. Assignment statement:

Here V is either name of variable, element of array A(I), structure
element S IF or element of array of structures S (I) !F. Symbol E
denotes expression of appropriate type in the usual sense.



369

4. Decision statement:

I
\

where E is expression of scalar type, (except Real) and Cl,C2,C3 ••.
- constants cif the same type.

5. Procedure call:

i
C1
J

i
C2
J

i
C3
J

where P - name of procedure; VI, V2 ••• - variables or expressions
of appropriate type.

Example of Sequential Program

Let us consider a program FIND [19] which is often used to
demonstrate different techniques of verification and testing.

Input of the program FIND is integer array A, its length Nand
some integer F. The purpose of the program is to find the element of
array A whose value is F-th in the order of magnitude and to
rearrange the array in such a way that this element is placed in
A (F) and, furthermore, all elements with subscripts lower than F
have lesser values and all elements with subscripts greater than F
have greater values. Thus on completion of the program the following
relationship holds:

A(l), A(2), •.. A(F-l) <= A(F) <= A(F+l), •.• A(N)



370

Synt~e Int=Integer
, . Constants 1:100;
Endsyntype Int;
Newtype IA

Array( Int , Int.)
Endnewt.ype I A;

'\'Procedure Find
Fpar

In/Out A IAIn N Int.,
F· Int;

Del K Int,LInt,I Int,
J Int,R Int,>W Int;



371



372

2.3 Symbolic Language

Here we describe a symbolic language SOLS corresponding to our
SOL subset. Let us remind that we have to define many-sorted
signature and its interpretation.

However, at first we must present the list of ground types for
our SOL subset. Since SOL has both type defining and type naming
facilities the concept Of, ground type is non-trivial here. So we
consider all type defini'ng constructs in SOL subset and introduce
notations for the corresporiding ground types.

1. Predefined types. The three predefined types: Boolean,
Integer and Real are defined as ground types for all uses of these
types under synonym names. For example, if type declarations

Syntype Counter = Integer
Endsyntype Counter;
Syntype Index = Counter
Endsyntype Index;

are used, the ground type corresponding to Index type is Integer.
2. All Integer subranges have the same ground type - Integer.

The treatment of range checking is discussed later.
3. Enumerated types. We assume that ground type corresponding

to an enumerated type determines only the number of constants, not
their names. Notations for ground types are "Enumerated 1" for
enumerated types with one constant, "Enumerated 2" for enumerated
types with two constants, etc. For example, if we have

Nevtype Color
Literals Black, White ;

Endnevtype Color;
Nevtype Sex

Literals Male, Female ;
Endnevtype Sex;

then ground type Enumerated 2 correspond to both type Sex and type
Color (Appropriate adjustment of constant functions see later).

4. Records (structs). Ground type for structs is defined as a
list of ground types of struct fields. For example, if we have

Nevtype Sex
Literals Male, Female

Endnevtype Sex;
Nevtype Person

Struct



373

Sex of Person Sex;
Age_of_Person Integer

Endnewtype Person;
then the ground type corresponding to type Person is Struct
(Enumerated ~, Integer).

5. Arra~s. Ground type for arrays defines the range of index
and ground t~pe of components. For example, if we have

syntype Index=Integer
Constants 1:100

Endsrntype Index;
Newtype Table

Array(Index,Real)
Endnewtype Table;

then the ground type of Table is Array(1:100, Real).
This completes the list of ground types (cf. T

I
,T

2
, ••• in 2.1).

Domains corresponding to ground types follow straightforwardly from
the language definition so they are discussed no more.

Now let us introduce function symbols of SOLS signature. The
interpretation is described only for those functions where it is not
obvious. Function symbols mainly are based on the operators
introduced in our programming language (+, -, =, /=, ••• ), and they
use the same infix notation. However, most of the operators fn our
language are overloaded (i.e., defined for various data types
simultaneously). Therefore SDLS contains derived function symbols
for each of the ground types. So we have functions +, -, mod, ••,
/= ••. for Integer type; " s , v, =Boolean'/=Boolean for Boolean
type and +Real'-Real'=Real'/=Real'··· for Real type.

Four new groups of function symbols are introduced for complex
data types (arrays and structs). They are based on functions used in
SDL semantics definition.

1. Functions of extraction of value of array element
extractT (a,L}, where T - ground type of array as described above.
These functions have array as the first argument and array index as
the second one. Function yields value of corresponding array
element.

2. Functions of modification of array modifYT(a,i,v), where T -
ground type of array, a - array, i- index of element and v- new
value of element. Function yields a new array differing from the
array a in the modified element i.

3. Functions of extraction of value of structure element



374

extractT(s,i). Functions yield the i-th element in structure s.
4. Functions of modification of structure element

modifYr(s,i,v). Functions yield a new structure with the value of
the i-th element set to v.

In order to describe array operations adequately we assume that
the first argument (array) of the function modifYT can assume both
values from the domain determined by type T and special value Undef
of type To. (We could \.be completely formal in this case and
introduce an auxiliary fuhction Undefarray : T --> T, but this would

.> T 0

make array expressions more awkward)• Thus the interpretation of
modifYT is extended in a natural way, so that, e.g., the term
extract (Modify (Undef 1,3),1),

Array(1:10,Inleger) Array(1:10IInleger) ,

has value 3.
The domain of modify function for structs is extended in a

similar way.
The signature of SOLS also contain functions with zero

arguments or constants. The same notations for constants as in SOL
are used (of course, excluding overloading by means of ground type
postfixes). So, e.g., the signature contains constants 1,2,3,••• for
Integer type, True and False for Boolean type and
lReal ,2Real '\eal ' • • • for Real type. New constant notations are
introduced for enumerated types (in accordance with the
corresponding ground type definitions). So the type Enumerated 2 has
two constants lEnumerated2' 2Enumerated 2 Constant notations
adopted in SOL are used for arrays and structs, for example,
(•1,2,3.) or (.1,18.) .

ArrayCl: 3, Integer) Struct (Enumerated2, Integer) •
This concludes the definition of the symbolLc

Unfortunately, terms in this language look very
example, if we use data types from the program FIND, a correct term
would be extract (A,F). To make

.. Array( 1: 100, Integer)
readable we introduce a new notation system called the derived
symbolic language. In this language as function and constant
postfixes we do not use ground type notations but corresponding type
names from the program declarations. So the beforementioned term in
the derived symbolic language is extract (A,F). This is no more a

lA
correct term in the signature of SOLS, since there is no function
extractu in it and it can't be introduced unambiguously because
identifier IA can designate various types in different programs.
However, if we consider pairs <type declarations in program, term in
derived language>, evidently there is an algorithm yielding an

language SOLS.
lengthy. For

terms more



375

equivalent term in SDLS for such a pair. For this reason we use the
derived language without any special indication.

2.4 Algorithm of Symbolic Execution of Program Path

The aij of symbolic execution of program path is to obtain
correct symb~lic state.

Assume ~hat a program path is given. In the case of procedure
call program path contains also the corresponding sequence of
statements of the called procedure. We shall show how to build
symbolic state traversing the given path statement by statement.

Procedure Start

If symbolic execution begins with the given procedure, then
variables - input parameters are assigned terms consisting of single
variable, namely, the parameter itself. The rest of procedure
v~iables are assigned undefined values (i.e., term Undef). The path
condition is assigned term True.

If, on the contrary, we have reached this statement from ,other
procedure, then, according to the range of accessibility of variable
names, those pairs of variables are determined whose values are the
same in the caller procedure and in this one. Formal parameters are
assigned the same symbolic values as actual parameters in the caller
procedure have (or terms formed by call statement). Local variables
are assigned Undef values.

In both cases, if some of the
type, we also add (by means of
checking predicate (such as N >=
condition.

input parameters are of subrange
& function) appropriate range

1 & N <= 100) to the path

Assignment Statement

The execution of assignment statement consists of value
extraction of expression operands, calculation of value of
expression and, the last, assignment of calculated value to the
variable located in the lefthand side of the statement.
1. Extraction of values.

Due to the correspondence of names and values within the system



376

of symbolic values of current sYmbolic state we find symbolic values
of variables contained in the righthand side of the statement.

If the considered variable is an element· of array or record
(struct), then we must form a new term using functional symbols of
extract type. We also add predicates to the path condition to ensure
that the range of indexes for the array is not violated.

For constants contained in the righthand side their ground
types are determined (according to SOL typing rules for expressions)

\ '1.".-

and the corresponding constant denotations are found.
2. Calculation of valueof.·expression.

Taking previously obtained operand terms and functional sYmbols
associated with corresponding operations (with correct type
postfixes found) we construct a new term. If any of the operands has
Undef as sYmbolic value, the resulting term is also Undef.
3. Assignment of value.

If the lefthand side of the statement contains scalar variable
(or whole array), then the latter is assigned the newly obtained
term in the - system of aymbo.li,c values. If the variable is of
subrange type, we add range checking predicate to the path
condition, too.

If, on the contrary, the lefthand
element, then the term of the modified
of modify function and this new
corresponding variable (i. e ,, array
aymbo.Ld,cvalues. We also enhance the
the range of indexes is not violated.

side contains array or record
value is constructed by means
value is assigned to the

or record) in the system of
path condition to ensure that

Procedure ..Call

Here we remind that program path contains also. corresponding
sequences of statements of called procedures, and we permit only
calls of procedures whose texts are available.

Therefore the next statement of the path is procedure start
statement of the called procedure, and the given statement will be
executed when we determine the binding of actual and formal
parameters of procedure statement. If actual parameter is an
expression, the corresponding term is formed as in assignment
statement.



377

Decision Statement

As in the case of assignment statement we extract values of
operands (terms) and construct t~e resulting term. If its type is
Boolean, then such decision statement is called If statement,
otherwise, Oase statement.

In cas~ of If, if the path proceeds along True-exit, the newly
constructed \term (simultaneously it is also a predicate term) is
added to the, path condition by means of & function. If the path
proceeds along False-exit, we form negation of the previous term by
means of , function and add it to the path condition.

In the case of Case a new predicate term is constructed by the
help of function = (equality) with the above mentioned term as the
first argument, but the second argument is the constant assigned to
the corresponding exit of the statement in the program. This last
predicate term is added to the path condition.

Procedure Exit

Local variables of the procedure are removed from the system of
symbolic values.

This concludes the definition of symbolic execution. It remains
to formulate the following assertion:

The symbolic execution defined in this section is correct for
SDL subset described in Section 2.2.

The proof of this assertion is a little bit lengthy and is left
to very patient readers.

We just note that formally correctness refers only to the basic
form of symbolic language. As far as this form can be uniquely
restored from the derived form and program declarations the derived
form is also correct in some sense and henceforth only this form is
used (sometimes omitting type qualifiers for owerloaded functions at
all, if they can be uniquely restored from the context).

Simplifier of Symbolic State

Whenever a new term is assigned to any variable or a new'
predicate is added to path condition we try to simplify this
symbolic value or path condition. Our simplifier is rather primitive



378

and is xnainly designed to find and calculate constant subterms in
expressions. The simplifier is able to perform the following
·transformations:

1. Find out and calculate numerical and enumerated subterms
composed of constants. Term «l+x)+l)+l, for example, is reduced to
x+3.

2. Find out and calculate
constants. Simplify array-type

.. ' .

subterms composed
terms according to

of

the
array-type

following
rules:
extractT(modifYT(A,i,x) ,i)! ..-> x
modifYT(modifYT(A,i,x),i,y) -> modifYT(A,i,y)
If i /= j then extractT(modifYT(A,i,x),j) -> extractT(A,j)

Here T - type of array; A - array-type term; i,j,x,y - scalar terms.
3. Simplify record-type terms the same way as arrays.
4. Reduce predicate terms to normal form. We define the normal

form as conjunction P
1

& P
2

& .•• P
n

• Here PI - elementary relations
in form E op F , where E and F are numerical (enumerated) type
terms and op is one of the operations =, /=, >, .•. Our normal
form is a special case of the conjunctive normal form and, of
course, arbitrary predicate t erm can't be reduced to such a form.
Nevertheless, in order to simplify material presentation, we discuss
predicate terms only in normal form.

S. Simplify elementary relations (i. e., E > F & E < F ->
False) •

6. Calculate constant predicate terms (i. e., P & False ->
False) •

It should be noted that in this section we give only examples
of simplification rules, not a complete list of them.

2.5 Example of Symbolic Execution of Program Path

Here we do not analyze particular methods of program path
selection, although one of them actually is used to select program
paths to be executed (the fundamental principle is to proceed along
those feasible branches having been selected less frequently; in the
case of several equal variants a generator of pseudo random numbers
is used).

We apply symbolic execution to the program FIND mentioned in
Section 2.2, namely, to path:



379

(1,2,3,4,5,6,5,7,9,10,4,5,7,8,7,9,4,11,14,2,3,4,5,6,5,7,
9,10,4,11,12,15).

After symbolic execution of procedure start statement the
symbolic state is as follows:

\
System of sympolic values
A A

N N
F F
K undef
L ••undef
I ••undef
J ••undef
R ••undef
W ••undef

Path condition
N >= 1 & N <= 100 &

F >= 1 & F <•• 100 &

extractu (A,1) >= 1 &

extractu (A,1) <•• 100 &

extract I A (A,100) >= 1 &

extractIA(A,100) <= 100

Parameters of the procedure are assigned terms consisting of
single term variable, all other program variables are assigned undef
term and the path condition consists of range checking predicates.
Further for the sake of brevity we demonstrate only change'S of
symbolic state. If some term can be simplified by our simplifier, we
show the result of the simplification (especially it refers to the
range checking predicates).

After statement 1 (K:=l; L:=N) the symbolic state is changed as
follows:

System of symbolic values Path condition

K

L

1

N

No changes

After statement 2 (If K<L true exit):

No changes 1 < N

After statement 3 (R:=A(F); I:=K; J:=L):

R = extractu (A,F)
I •• 1
J N

No changes



380

After statement 4 (I<"'J true exit):

no ch~nges no changes ( 1 <= N is
reduced by simplifier)

We conclude the example by showing the symbolic state at the

end of the given path. We use the following shorthand denotation:

B •••modifyu (modifyu (A, 2 ,\e.xtractu (A,N) ) ,N, extractu (A,2) )

The resulting symbolic state is as follows:
'.'

System of symbolic values

A •••modifyu (modifY1A(B, 2, extractu (B, N-2) ,

N-2, extractu (B, 2) )
N ••• N

F ••F
K •••1
L = N-2
I 3
J '" N-3
R - extractu(B,F)
W extractIA (B, 2 )

Path condition

extractu (A,l)

extractu (A, 2)

extractIA (A,F)
4 <... N &
extractu (A, 3)

extractu (B, F)

extractIA (B,F)

5 > N &
F <- N-2 &
extractu(A,l)

extractu(A,N)

extractIA (B,F)

F > N - 3 &
3 > F

< extract (A,F) &
u.

>'" extractu(A,F) &
>= extractIA(A,N) &

>= extractu (B, F) &

< extractu (B,N-l) s

>= extractu (B, N-l) s

< extractu (B,F) &

>= extractIIB,F) &
>= extractu (B,N-2) s



381

2.6 Method for Solving Path Conditions

In the result of the symbolic execution of program path we
obtain path condition PC(XI •••xnl, where Xl scalar, array or
record type ~ariable. In order to find a test case which forces this
path to be lexecuted we must solve PC as a system of equalities
(inequalitie~). The fact that PC is reduced to normal form is
irrelevant for our solution algorithm; it is used only to simplify
the explanatiQn.

\Before we begin solving the path condition we, first, free it
from variables and functions of record type. It can be done easily
because we can assume that record fields are independent variables
or arrays (if array of records). Next we separate the given path
condition into independent components PC(xl •••Xn) = PI(Xl•••XI) &

P
2
(XI+I•. ·X

J
) & ••• , where P

k
and PI have no common variables. After

that we begin to solve these independent components.
Our method (see method of segments in [22]) is in fact

exhaustive search algorithm which is improved by a number of
heuristics. These heuristics are based on the study of real-life
programs and are proved to be useful in test generation systems
[10,22].

First let us sketch pure exhaustive search algorithm:

1 Procedure Resolve(P:Path_condition);
2 Select X - any variable or element of array in P;
3 For C := all possible values of X do
4 Q := P with X fixed to C;
5 Simplify Q;
6 If Q = True
7 Then System solved;
8 If Q /= True & Q /= False
9 Then Resolve(Q) ;
10 End
11 End Resolve;

To fix the value of X to C in step 4 we simply replace X by
constant C or, in the case when X is an element of array (i.e. ,
A(I)), we replace A by modify(A,I,X). In step 5 the above described
simplification procedure is used to determine how successful our
fixations were.



382

This algorithm, of course, can solve any path condition, but it
is extremely impractical. After the improvements the algorithm
become~ much faster, but it is not able to solve some very complex
path conditions. Nevertheless, inability to solve some path
condition is not dangerous for test generation system. It may lead
(and even then not always) only to test systems with lower quality.

We discuss heuristics related to the three steps of the given
algorithm. ,.\}

First, in step 2 we select the next variable to be fixed. In
practice the sequence in which we fix variables is very important
for the speed-up of algorithm [8].

Second, in step 3 we try all possible values of the given
variable. Yet, most of these values are not useful a priori [10].

Third, when values are fixed in step 3, first of all we must
try those values that are more likely to be solutions of path
condition.

Let us discuss these three heuristics separately.

Selection of Next Variable

The following criteria are"used to select the next variable to
be fixed:

1. Select only scalar variables or elements of arrays that are
addressed in path condition with constant index (Le., if path
condition contains extract(A,S), then we are a~lowed to fix A(S)).
It is easy to see that this criterion can never lead us to a
situation when none of the variables can be selected.

2. If criterion I leaves some "freedom for selection, we find in
path condition the elementary relation containing the least number
of variables and we fix one of these variables (according to
criterion 1). It allows us to simplify the path condition as early
as possible.

3. If criterion 2 also leaves some freedom, we select a
variable with the smallest set of admissible values (see below).

Set of Admissible Values

With every variable in path condition we associate a set of
admissible values, namely, some segment [a,b], such that no value



383

outside the segment can act as solution of the given path condition.
We do not worry if some ,value inside the segment can never be
solution of the system, but we are interested to keep these segments
as small as possible.

For Bo~lean and Enumerated variables we discuss only two types
of sets of admissible values: "any value (no limitations)" and "only
one value C \admitted". Further these sets of admissible values we
call segments.

I,

Before we begin to solve the path condition we find initial
segments of variables. After fixation of every new value we revise
them. First, ,we can set up initial segments according to the
declaration of variable (for example, if the variable is a
subrange). Second, a very valuable source of information is the user
of the test generation system. Single remark, such as: "I am
interested only in the case when all variables are less than 10",
can significantly improve the performance. Third, the source of
initial segments can be input/output formats, the use of variable in
some language constructs, etc.

The most interesting procedure of our algorithm is reduction of
segments with respect to the path condition. The aim of this
procedure is to make our segments as small as possible. We apply
this procedure any time when a new value of variable is fixed (after
step 5). For example, if the current path condition is x+y<z & x>2
and all variables are of integer type with equal segments [1,9], we
are able to reduce the segment of x to [3,7], the segment of y to
[1,5] and the segment of z to [5,9]. Reduction of segments is based
on simple properties of arithmetic operations and relations. For
example: "If the segment of x is [a1,a2], the segment of y is
[b1,b2] and the value of x+y must be in segment [c1,c2], then the
segment of x can be reduced to [max(a1,c1-bl), min(a2",c2-b1)], the
segment of y can be reduced to [max(b1,c1-a2),min(b2,c2-al)] but the
value of x+y must be in the segment [max(c1,a1+bl),min(c2,a2+b2)]".
Or another example: "If the segment of x is [a1,a2] and path
condition contains relation x=b, then the segment of x can be
reduced to [b,b]".

With iterative application of these local reductions we can
propagate improvements through entire path condition. The algorithm
of propagation is not quite trivial and includes some new heuristics
for performance improvement, yet we do not discuss it in detail.



384

Selection of Values

It is possible that even after segment reduction exhaustive
search is not useful. For that reason we first try to fix some
outstanding values of variable: I) both ends of segment, 2) those
values

c
within the segment that appear in the program text as

constants, 3) one arbitrary point between every two values mentioned
\ .'above. These rules (like our algorithm as a whole) are very simple

but they work on real-life[programs.

Example of Test Generation

Now we demonstrate how the path condition produced at the end
of the previous section can be solved by our methods. It is easy to
see.that this path condition is only roughly simplified but we do
not need a stronger simplifier because our method of segments can
take into account all relations between variables.

We begin with the setup of initial segments. According to the
declarations, segments of all variables (i.e., N, F and Al are set
to [1,100]. The second step is the reduction of segments. During
reduction the segment of N is .improved to [4,4], the segment of F
to [2,2] but segments of A are not significantly improved. Now we
must fix a value of one of the variables. It was suggested that
scalar variables must be fixed first, 50 we can fix N to 4 (no
choice)•

Next we perform the .simplification and the reduction of
segments once more. Then, the'same way, we fix F to 2 and after just
another simplification and reduction of segments get the following
results:
Path condition:
extractIA(A,l)
extractIA(A,l)
extractIA(A,2)
extractIA(A,3)

Segments:
extract I A (A,1)
extractI A (A,2)
extractIA(A,3)
extractI A (A,4)

<
<
>=

extractIA(A,2)
extractIA(A,4)
extract I A (A,4)
extractIA(A,4)>

[1,98]
[2,100]
[3,100]
[2,99]



385

Now one element of A is to be fixed. All elements are accessed

with constant indexes and three of them have segments of equal size

(i.e., 1-st, 3-rd and 4-th). Let us assume that we select the 3-rd

element at random and fix it to, 3 (the left end of the segment).

This time lthe following reduction of segments is not trivial,

nevertheles~, it is very successful:

1
extract I A (A,It)
extractIJ. (A, ~)

extract I A (A, 4\)

[1,1]

[2,100]

[2,2]

that

back

So we proceed until the system is

during the solution of this system

and fix a variable repeatedly.

solved. It should be noted

we are never forced to step

The resulting test is as
follows:

A (.1,2,3,2.)
N 4
F 2

If one tries to build a test for the same path manuaLl.y , he

probably will get a slightly different array A •• (.1,4,3,2.) and

will expect the procedure FIND to exchange the 2-nd and the 4-th

elements. The test we have built is not so natural but it shows a

significant drawback of the procedure FIND - although input array

has been already partially sorted the procedure wastes time to

exchange equal elements of the array.

Our path selection method coupled with the above mentioned test

generation algorithm produce the following set of tests:

A

N

F

(.1,2,3,2. )

4

2

A

N

F

(.1. )

1

1

A

N

F

(.1,3,2,4.)

4

2

2.7 Abstract Data Types and Symbolic Execution

So far we have considered only programs with predefined data

types. As we know, when new data types are introduced. in SOL, their

semantics is specified by means of axioms • So let some new types

\,t
2
, ••• with new operators 0

1
,0

2
, ••• of some fixed signatures be



386

given. The new operators are just included in the definition of
symbolic functional term. (Now the formal definition of symbolic
execution language changes for program to program even for the .basic
form of the language). The main problem is how to cope with a
widened class of terms while simplifying symbolic values and solving
path conditions. So we request axioms for new types and operators to
be respecified as term rewriting system (TRS) rules [23,27]. The TRS
should be as good as poss~~le - confluent and terminating.

TRS describing the ~~w types is supplied to the simplifie~. As
we see from the general description of the simplifier (2.4), its
basic action (simplifying arithmetic, logic, array and·struct terms)
could also be in fact described by means of TRS (though not always
with a unique normal form, due to commutative rules). So the new and
basic rules are merged together making a single TRS for both old and
new types. So the simplifier tries to simplify any symbolic value of
a variable using this TRS as far as possible. Boolean terms in path
conditions are simplified in the same way. In this paper we limit
ourselves to the case when path conditions involving new types can
be simplified by means of TRS to relations containing only
predefined types (and boolean True or False in the best case). So
the solver is not suppose<;l to find values of new types
t

1
, t

2
, ••• (except for trivial cases: any value and the value which

has to be equal to some constant (literal) of new type).
Conditional rules in TRS (like in OBJ2 [24,27]) are also

allowed, conditions should contain equalities (or inequalities) for
predefined types, in particular, integers. If types and operators
are generic, corresponding rules are also considered generic.

Let us consider an example: a new type queue of integers (it is
used in a more general manner in Part 3). Let it have literal qnew
and operators

qadd:integer, queue --> queue
qfirst: queue --> integer
qrest: queue --> queue.

Then a standard form of TRS for this queue would be
qfirst (qadd (x, qnew)) --> x

qfirst (qadd (xl, qadd (x2, q))) --> qfirst (qadd (x2, q))
qrest (qnew) --> qnew
qrest (qadd (x,qnew)) --> qnew
qrest(qadd(xI,qadd(x2,q)))-->qadd(xl,qrest(qadd(x2,q)))
It can be simply deduced from the signatures that x, xl, x2



387

stand for integers, q for queue.
If we have a program fragment (with variable ql declared as

queue)

\

then we have at its symbolic execution:
ql=qnew (after statementl)
ql=qadd (ii' qnew) (after statement2)

The true exit of the decision yields condition
qfirst (qadd(il,qnew) »0

which is reduced by simplifier (using the first rule for queues) to
i >0

1

(a condition completely manageable by the solver).

3.SYmbolic Execution and Test Generation for
Concurrent Programs

3.1 General Principles of Test Generation for
communicating Processes

In this part we consider symbolic execution and automatic test
generation for real time programs in the specification language SOL.
Our investigations are demonstrated for a subset of SDL including
all essential concepts of the language used to describe parallel
processes. We consider open systems having one or more channels from
environment to system ( and possibly some channels to environment).
A system can contain one or more blocks, a block can contain one or
more processes, procedures are also permitted. Dynamic creation of
process instances is not included and all signals are assumed to be
sent via channels and signalroutes. Each process is assumed to have
only one instance, interprocess communication is solely by signals,
viewing/revealing and export/import are not considered. We also



3BB

don't consider enabling conditions and continuous signals.
A test for an SOL system is a completely ordered sequence of

input signals (including their parameter values) sent from
environment to system through appropriate channels. If there are
timers in the system, also the signal arrival times are fixed in the
test if there are no timers, only the order of signals -is
significant~. \~

The ma~n goal of our research is to construct complete test set
(CTS) for an SOL system. A ,problem of completeness criterion arises
just as for sequential programs. We accept the same criterion C1,
nonetheless this time its use is not so obvious, besides, its
definition requires some comments. By a branch in an SOL process we
understand either an input branch starting from signal input
statement or a conventional program branch starting from decision
statement (or START statement). A branch ends at nextstate, decision
or stop statement. Criterion C1 requires every feasible branch in
every process .t.obe executed at least once. Let us remark that
sometimes more stringent criteria taking into account the concurrent
nature of SOL processes are used, however, there is no such one
widely adopted.

All our research in SOL area is demonstrated on a popular
protocol example, namely, the sliding window protocol [25,26]. At
first we describe the example itself. Then we define the symbolic
execution of a path in SOL system (defining at first the path itself
in some reasonable way). We explain how to construct and solve path
inequalities like in Sections 2.4 - 2.6. A method for constructing
(potentially infinite) execution tree similar to ACT used in [14] is
given. A heuristic state-based approach to construct CTS using an
initial segment of this tree is briefly described, CTS for the
sliding window example can be built by means of this "appz'oaoh , To
improve the performance of CTS construction algorithms we outline
the main ideas of a more sophisticated approach which uses the
symbolic execution of separate processes more deeply and allows to
construct CTS for this example (and even more realistic protocols)
while keeping the search in reasonable limits acceptable for
practice.



389

3.2 Sliding Window Protocol Example

used
its

Sliding window protocol is a popular error recovery technique
in many real protocols at data link layer. At first we present

\

infOrmal\ de.cription taken frc. [25].

\ 3.2.1 Overview

The slid\~ng window protocol supports unidirectional message
flow from transmitter to receiver with positive acknowledgement sent
back on each 'transfer. Windows are used for flow control in both
transmitter and receiver. The protocol operates over a medium which
may lose, reorder or corrupt messages and acknowledgements. It is
assumed that corruption of messages can be reliably detected by
protocol using checksums sent with messages.

3.2.2 Sequence ~ering

The transmitter sends a sequence number with each message. A
sequence number is unbounded and is incremented for each new
message. The first message transmitted is given sequence number 1.

The receiver sends an Acknowledgement when it receives a
message. The Acknowledgement carries a sequence number which refers
to the last message successfully transferred to the receiving user.
If an Acknowledgement has to be sent before a successful reception
(e.g., the first message was corrupted), it is given sequence number
O.

3.2.3 Transmitter Behaviour

The transmitter maintains a window of sequence numbers as shown
in Figure 3.1.

This gives the lowest
Acknowledgement is awaited,' and
used. The window size is limited

sequence number for which an
the highest sequence number so far
to the value twa.



390

lransmitlerwindow size ---+
///
///

///
///

T
HigheslSenl

Figure 3.1~. Transmiller Window Paramelers

T
LoweslUnacked

';:."
'.

receiverwindow size -----+
///

, ///
///
///

NextR!quired fHigheslReceived

Figure 3.2. Receiver Window Parameters
The transmitter behaves initially as (a) below, and then loops

doing (b), (c) and (d) where possible:
(a) LowestUnacked is set to 1 and HighestSent to 0
(b) If the current window size (HighestSent-LowestUnacked+l) is

less than tws, then a message with the next sequence number
(HighestSent+l) may be transmitted. In this case, HighestSent is
incremented, and a timer for that message is st~rted.

(c) If an Acknowledgement is received which is not corrupted
and whose sequence number is not less than LowestUnacked, then all
timers for messaqes up to and· including that sequence number are
cancelled. In this case, LowestUnacked is set to the sequence number
following the acknowledged one.

(d) If a time-out occurs, then the timers for all messages
transmitted after the timed-out one are cancelled. All these
timed-out messages are retransmitted (in sequence, starting with the
earliest) and have timers started for them.

3.2.4 Receiver Behaviour

The receiver maintains a window of sequence numbers as shown in
Figure 3.2.



391

This gives the lowest sequence number which is awaited
NextRequired and the highest sequence number which has been
received. ·The window size is limited to the value rws.

The r~ceiver behaves initially as (a) below, and then loops
doing (b) a~d (c) where possible.

I

(a) NextRequired is initialized to 1
(b) If\a message is received which is not corrupted, which has

\not already been received and which lies within the current receive
window (Next~equired +rws-l), then all messages from NextRequired up
to but not including the first unreceived message are delivered to
the receiving user. (There may be no such messages if there is a gap
due to misordering). Iri this case, NextRequired is set the sequence
number of the next message to be delivered to the receiving User.

(c) If a message is received under any circumstances, an
Acknowledgement giving the last delivered sequence number
(NextRequired-l) is returned.

3.2.5 SDL Description of Protocol

SDL description of the protocol is also taken from [25]. Some
obvious errors are corrected and medium description is slightly
changed to adapt it for testing purposes.

The description consists of three blocks representing sender,
receiver and medium. Both protocol user supplying data for sender
and user consuming data from receiver are located in the
environment. The sending user supplies data via channel ut by
signals UDTreq, the receiving one gets data via channel ur by
signals UDTind. The sender forms messages from each data unit
(s~gnal MDTreq) and passes them to medium via channel mt,
acknowledgements (MAKind) are received from medium via the same
channel.Conversely, the receiver gets messages from medium (MDTind)
and puts acknowledgements (MAKreq) onto it via bidirectional channel
mr.

The Sender_entity block contains one process Transmit
performing all sending actions. Each message (MDTreq) sent contains
the generated sequence number, user data (of some unspecified type
Udata) and cyclic range check computed by function dcheck. Data in
transmitter window (i.e., sent but not acknowledged) are represented
by queue mq, the current window limits are held in variables lu and
hs. Time-out management is accomplished by setting indexed timer tim



392

with the corresponding seqno parameter for every message sent (and
resetting it when acknowledgement arrives). The timer parameter also
shows w~ich timer instance has expired (and which messages are to be
resent respectively). The time-out value is some constant delta.
When the window contains maximum number of messages, the process
enters the second state window closed.

The receiver_entity block contains one process Receiver. The
Next-Required sequence nukber is held in nr, message data received
out of order (within win~ow) are held in the array recbuf, the
boolean array a1ready_rec (of the same size) records which messages
have arrived (but have not been delivered to the user yet).

The medium block contains processes MsgMan and AckMan managing
the message and acknowledgement queues respectively. Message queue
actions (normal transfer of message, loss of first message,
reordering of messages in queue, corruption of the first message)
are controlled by corresponding orders from system tester ( signal
MsgContr) sent from the environment. We note that in [25] the
equivalent signals .are generated randomly.

In the case of normal transfer the medium actually performs
only signal renaming (from MDTreq to MDTind) while retaining the
same parameters. Message corruption is performed by special function
corrm. Acknowledgement queue manager performs the same way.

SYSTEM SLW 1(3)

:-. ('iNAI.

UDTreq CUdaia), UDTind CUdaia),MDTreq CSeqnoip, Udaia, daiacrc),MDTind CSeqnoip, Udaia, daiacrc),MAKreq CSeqnoip, ackcrc) ,
MAlCind CSeqnot.p{ ackcrc) ,MsgCont.r Ccont.r ype),AcRCont.r Ccont.rt.ype);

••

sender_entity receiver _entit.y
[MAKindlmt. [MDTindl

mr



393

SYSTEM SLW
NEWl'YPE UdataEND~wrYPE Udata; .
SYN'd,PE Seemotp=INTEGERENDSYNTYPE Seqnotp;
NEwrijE datacrcOPERA ORS dcheck: Seqnotp, Udata .....•dat.acrcI*bui ds crc field for a given pair of sequencenumber\and userdat.a in data message *1ENDNEWTYPE dat.acrc;
NEwrYPE ackcrcOPERATORS acheck: Seqnot.p .....•ackcrc
1* builds crc field for a sequence number in ack-nowle~g~ment */ENDNEWTYPE ackcrc;
NEwrYPE contrtypeLITERALS norm, lose reord, carr;
1* tester control options for medium action *1ENDNEWTYPE cont.rtype;
SYNONYM tws NATURAL = EXTERNAL;SYNONYM rws NATURAL = EXTERNAL;SYNONYM delta REAL = EXTERNAL;/* external paramet.ers of the system */

GENERATOR queue CTYPE item);LITERALS qnew;OPERATORSqadd: it.em, queuer--e queue;qfirst: queue .....•item;~est: queue...... queue;qdelete: integer, queue .....•queue;qreplace: it.em,queue .....•queue;qempt.y: queue .....•BOOLEAN;AXIOMSqfirstCqnew)== ERROR! ;qfirstCqaddCx,qnew))== x·qfirslCqaddCxl,qaddCx2,q)))==qfirslCqaddCx2,q));qrest.Cqnew)==qnew·qrest.CqaddCx,qnew)) ==qnew'qrest.CqaddCxl,qaddCx2,q)))==qaddCxl,qrestCqaddCx2,
q))) ;qempt.yCqnew);NOT{qemptyCqaddCx,q))li~.qdelete{i,qJ==IF 1=0 l~ qELSE qdelete C1-1,qrestCq))FI;qreplaceCxl,qaddCx2,qnew))==qaddCxl,qnew);qreplaceCxl,qaddCx2,qaddCx3,q)))==qaddCx2,qreplaceCxl,qaddCx3,q)));/*r~2laces the first element of queue by new value*!ENDGENERATOR queue;

2(3)
u



394

SYSTEM SLW 3(3)
I;l

NEWTYPE messageSTRUCTseq Secp1olp;dat:Udata;dc datacrc;ADDING \OPERATORS \'". corrm:message --+ message;/* mess~ge corruption procedure */AXIOt-f) .NOT CdcExtract!CcorrmCm))=dcheckCseqExtract!CcorrmCm)),datExlract!CcorrmCm)J));/* every_corr¥ption is reliably detected by dcheck*/ENDNEWTYP~message;
NEWTYPE acknowSTRUCTseq seqnotp;ac ackcrc;ADDINGOPERATORScorra: acknow --+ acknow;AXIOt-ENOTCacExlracl!CcorraCa))=acheckCseqExt.racllCcorraCa))));ENDNEWTYPE acknow;

SYNTYPE rsn=INTEGERCONSTANTS O:rws-lENDSYNTYPE rsn;

BLOCK sender_entity
s_saput Transmit[UDTreql Cl,l)

[



395

BLOCK receiver_entity

Receiver
O,D

[MD In
r

[MAKreqJ

mr



2 hs::O, lu:"1

3 cq:=qnell

4

5

396

DCL
hs.lu,seqno Seqnolp,
cq queue (Udata),
data Udata.acrc ackcrc;
T("ER tl" (Seqnotp);

IV,

~"'_"~

13 20

6 hs: =hs+1 14 21 Relt!"(seqno.hs)

(false)

7 15 22 Retrans"(seqno,hs)

(false)

c~:=qadd 16 Reltl"Clu. 238 ( ata.cq) se_qno)

SET (NOIl+ cq:=qdelete(
9 delta. t1,,(hs 17 seqno-Iu+ 1.

» cq)

10

11

'18 lu:=seqno+ 1

19



24

26

27

28

29 Relti"Clu,
seqnol

cq:=qdelete(
30 seqno-!uH.

cq)

3:L lu: =seqno+!

397

(false)

33

. Relti"
3b (seano ,11s)

37 Retrans"
(seqno,hs)

38



398

PROCEDUNE:RELrln
FPAR IN sis sj Seqnotp;

2
" ~{

k : =sj -si +1,
r:=si

3 RESETCtin(r)
)

4 r :=r+l,
k : =k-l

5

<true)

Del r Seqnotp,
k IHTEGER;

IN procedure releases
tlner Instances ulth
paraneters fran si to
sj (including) III

(false)

6



399

PROCEDURE:RetranSR
FPAR IN P, V Seqnotp;

2 k :=\I-p+1

inf:-qfirst<
cq) ,cq :=qres
tCcq) !Cq: =
qaddClnf ,cq)

SEHNOIH
5 delta, tinCp)

)

b
p:=p+1.
k: =k-1

7

(true)

Del k INTEGER,
inf Udata:

/- procedure retransnits
nessages held in cq with
sequence nu"bers fran p
to \I (including), updates
cq and tiners -/

Cfalse)

B



PROCESS:Receiuel'

2 nr: =1

3 aIready_ree:=
l.'aI5e,)

4

6

7

<true)

400

DeL nr.seqno Seqnotp,
data Udata,
already_ree ARRAV (rsn,boolean).
reebu' ARRAV (rsn,Udata),
dcre dataere;

..\;
i"

(false)

(false)

"AKreq(nr-1,15 acheek(nr-ll
)



401

9

(false)

B

IlAKreqCnr-l/aeheekCnr-l}
)

Reebuf(seqno ftod
11 rws): =data

10
already_ree12 (seqno ftod rus):=true

Delivl1es13 (nr.5lIqno)

14



402

PROCEDURE:Deliu~es
FPAR IN/OUT xnr,xseqno Seqnotp;

2

3
UDTind(recbu
f(xnr !'Iod
r liS»

4

aIread~Lrec{xnr
5 nod rus ) :=false

6 xn•.:=xnr~l

7

(true)

(false)

e
HAKreq hcnr-l•acheck(xnr-
1»

9

(false>

10



403

BLOCK medium
smr rmr

mt MsrMan mr
( [MDTreq] ( , D [MDTind]
I

e~
I,

\em'
mt AckMan mr[MAKindJ Cl,D



PROCES8:nS9'nan

2 nq:=qnell

3

4

404

Del nq queue (nessas'el.
qiten ness_ge,
seqno Seqnotp.
data Udata.
dcrc datacrc.
action contrtype;

B

qite"::z
5 (.seqno.data.

dcrc.)

(true)

b
nq:-qadd
(qiten.nq)

7 11

12

13

15

nq:-qadd
1b (qfirst(nq).

qrest(nq) )

17

lB qiten:-qfirst
(nq)

19 qlten:=corrn(qitl!n)

21



PROCESS:/lckllan

2

:3

HRlCreq
4 (seqno,

acre)

405

Del aq queue (aeknou),
qiten acknou,
seqno leqnotp,
data Udata,
aerc aekerc,
action contrtype;

8

5
qilen:=(.
seqna, acre..) 9

<true )

6 aq:=qadd
(qilen.aq) .

qiten:~
11 qfirst(aq). 14 aq:=qrest(aq)

aq: =qrest (aq)
qil"n:-qfirst
(aq)

12

13

15

20 aq:-qr"olaee
(qilen,lID)

21



406

Some notes have to be added with respect to testing of the
system. At first external constants (synonyms) have to be fixed. Two
of them: -tws and rws are very essential, since they control loops
and array sizes. Some reasonable values (not too small to make some
branches infeasible, not too large to make tests enormous) are to be
selected. So we set both

tws = rws = 3.
\ -The third constant delta is less essential, it can be fixed to

value, e.g., 10, when it;matters.
The other problem is abstract data types. As we have explained

in 2.7, axioms should be replaced by some TRS to make the
simplifier work with new data types. So we present the following TRS
which is "compatible" with axioms, confluent and terminating (not
for every set of axioms such TRS can be found). Rules are given for
the generic type queue (with some nonstandard operations) and
corruption Icrc check of messages (acknowledgements)

qfirst(qadd(x,~new)) -->x
qfirst(qadd(x1,qadd(x2,q)))-->qfirst(qadd(x2,q))
qrest(qnew)-->qnew
qrest(qadd(x,qnew))-->qnew
qrest(qadd(x1,qadd(x2,q)))~->qadd(x1,qrest(qadd(x2,q)))
qempty(qnew)-->true
qempty(qadd(x,q))-->false
qdelete(O,q)-->q
i>O =>qdelete(i,q)-->qdelete(i-1,qrest(q))
qreplace(x1,qadd(x2,qnew))-->qadd(x1,qnew)
qreplace(xl,qadd(x2,qadd(x3,q)))-->

qadd(x2,qreplace(x1,qadd(x3,q)))
eq(dcExtractl(corrm(m)),dcheck(seqExtractl

(corrm(m)),datExtractl(corrm(m))))-->false
eq(acExtractl(corra(a)),acheck(seqExtractl

(corra(a))))-->false
1* eq is the equality relation *1

(Here and further we use standard SOL syntax for struct extract
functions, namely, <field_name>Extractl, not the one used in 2.3.).

3.3 Semantic Constraints on SOL Subset

We assume in general that SOL system is executing according to
semantics of SOL-SS [15]. However, some inessential limitations and



407

changes are introduced to make the description of process of test
generation more understandable. These changes are inessential for
the example considered and, as we hope, for protocol specification
in general.

First, lno two events in the whole system are assumed to be
simul taneous ~ thus the events can be completely ordered in time.

\

Actually, we make an even stronger assumption that only one
transition from state to state occurs in the whole system at a given
moment of time, the transition is always completed before another
one takes place.

Second, all SOL actions including signal sending inside the
system are assumed to be executing zero time. Thus, if a signal is
sent from one process to other (including sending via channel), the
receiving process is ready to operate just after the sending process
has completed its transition, no time advancement occurs at that
operation. Time is advanced only at reception of every signal from
environment, and at active timer "firing".

Third, "internal" signals have priority before the signals from
environment, i.e., whilst some process queue is nonempty (except the
case when all existing signals are saved in the current state), no
signal from environment is permitted.

The abovementioned semantic restrictions allow to assume that
the whole system is executing under the control of some
nondeterministic scheduler, which chooses at random an active
process (i.e., a process with nonempty queue containing nonsavable
signals) and activates it for one transition.If no process is
active, the scheduler allows either an environment signal to arrive
or an active timer to "fire" (if there is such) . At the very
beginning of execution the scheduler activates the initial
transitions of all processes one after another.

The semantics considered is very appropriate for test
generation and deterministic testing in general. To confirm
practical reasonability of it we note that deterministic testing of
a protocol specification makes similar assumptions, as a rule
[13,14]. If there are time-consuming operations in process diagrams
(making zero time unrealistic) , explicit timing should be
introduced. We recommend delay (delta) statement for this purpose
(it is in fact a macro call for the following macrodefinition:



408

*

which is completely within our SOL subset.)
Signal propagating delays along "real channels" should actually

be described explicitly as testing environment controlled medium
description processes in the system (e.g., MsgMan and AckMan
processes in our example) in order to make delay dependencies
actually testable.

3.4 Symbolic Execution of SOL Programs
(many communicating processes)

Now, as we have discussed our semantic restrictions of SOL
system behaviour, we can define the symbolic execution of a path in
SOL system.

At first we have to explain what is a path in a concurrent
system like SOL. We rely strongly on our semantic restrictions and
the notion of the nondeterministic scheduler. Informally, a path is
a particular execution trace of an SOL system. To be more formal, a
path is a sequence of transition· segments where each transition
segment is a path from state to state (start to state, state to
exit) (containing no state inside) in some process. If the path
contains a procedure call, a path fragment inside the called
procedure body has to follow immediately (separated into several
transition segments if states are entered).If transition segments
AI,A2, ••• referring to the same process P are singled out from path,
then Ai must lead to the same state Si from which Ai+l begins.
Pseudo transition segments (save for an environment signal,
implicit transition, i.e., signal consumption in a state where it is
not awaited) are also admitted in the path where they are possible
according to SOL semantics. Some additional choices refining the



409

path will be described in the course of symbolic execution.
If the order of transition segments in the path'were chosen at

random, it might be highly probable that SOL semantics were
violated, e.g., consumption of .a signal would be required when no
signal has ~een sent to the process. Therefore the notion of an
admissible p~th' is introduced. Informally an admissible ~ is one
which compli~s with finite automata properties of SOL semantics and

\

the schedulirlg principles described above, e.g., a signal can be
consumed only if there is such in the corresponding queue, a timer
can RfireR only after it has been set, etc. The admissibility of a
path can be checked formally, but this check can be performed only
along with the symbolic execution of the path. On the other hand,
symbolic execution is defined only for admissible paths. We define a
joint procedure for admissibility check and symbolic execution of a
given path. The procedure is halted when the path is not admissible.
Let us point out that admissibility does not imply feasibility, it
is only a prerequisite for it.

Now let us describe the admissibility check and symbolic
execution algorithm. The admissibility check is defined in the form
of admissibility rules to be applied to the current symbolic state.
Let an SOL system S containing processes P1,P2, •••,Pn be given and a
be a path in S. Two new "dmp.Li.cLt;" variables Q(P) and T(P) are
introduced for every process P, and the symbolic values of these
variables are maintained. Informally, Q(P) is the signal queue for
process P, and T(P) is its active timer set. Symbolic values of Q(P)
are finite sequences of symbolic values of signals denoted as
<SI, •••,Sk>, values of T(P) are sets of symbolic values of timers
{T1, ••• ,Te}.

Let us begin with the description of admissibility check and
symbolic execution for SOL systems without timers (as we have
mentioned before, the symbolic execution and test generation is
simpler in that case). So the variable T(P) will not be used for a
while.

Symbolic execution is performed for every SOL statement, while
admissibility check is performed only at the beginning of transition
segment, Le., when interpreting its state and input (or save)
statements. In the beginning of the algorithm Q(P) are empty for all -
P, i.e., they contain empty signal -sequence < >. Let us assume that

I I I
tai t 't' t 1 2 A 3 fa con a~ns rans~ ~on segmen s Al ,A2, 3 ,••• , rom processes

Pi ,Pi ,Pi, ••• , respectively. For the moment we are interested in
1 2 3



412

and symbolic values of parameters are assigned to corresponding
variables, e.g., xl assumes symbolic value t;. In the case of
"internal input" the symbolic value of signal is obtained from the
symbolic value of queue, i.e., the signal instance to be consumed is
found in the corresponding signal sequence and after assignment this
instance is deleted from the queue. In the case of "external input",
as it was described earlier, new symbolic signal value 5(51,52

) is
\ 1 1

generated (i is the number of instance of signal 5 sent from the
environment). In the cas~.of saving an ENV signal its symbolic value
is added to the end bf queue; implicit transition means the
discarding of symbolic signal value.

Let us remark that generation of symbolic values for queues and
signal consumption could be formalized by some TR5 (using
conditional rules), but we think this would add no clarity to our
explanation.

Before proceeding to an example we note that a "very short"
form of s~olic language is used to improve readability (type
postfixes omitted at all, trivial path conditions from rang~ checks
not included).

Let us show an example of symbolic execution of a path in our
system 5LW. Although actually it is a system with timers, we ignore
them for a moment (omitting the setting statement 9). To indicate a
path we use numeric labels of statements preceded by the first
letter of process name (T for Transmit, R for Receiver, M for
MsgMan,A for AckMan). Exits of decision statements are not indicated
explicitly (they can be deduced from the next statement label). So,
let us consider an initial path
TI,T2,T3,T4,RI,R2,R3,R4,Ml,M2,M3,Al,A2,A3,T4,TS,T6,T7,TB,
TIO,TII,M3,M4,MS,M6,M7.

The presence of start transitions (TI,T2,T3,T4,•••) for all
processes in the beginning of the path was required by admissibility
rules (certainly, the order is inessential). As initial transitions
contain no statements of "genuine SOL", the symbolic execution
proceeds the same way as in Part 2.

So we present the symbolic
TI,T2,T3,T4,Rl,R2,R3,R4,Ml,M2,M3,AI,A2,A3
values are shown to be simplified as
simplifier described in 2.4

state after the path
at once. All symbolic

far as possible by the



413

Transmit Receiver MsgMan AckMan
aq-=qnew

qitem=undef
hs=O nr=l mq=qnew
lu-l already_rec- qitem-undef

\(.false,false,false.)
cq-=qnew \Q(Receiver)-<> action=undef
seqno-undef recbuf=undef Q(MsgMan)-<>
data=undef
acrc=undef '

action=undef
Q(AckMan)-<>

Q(Transmit)=<~
Path condf.t Lone true
Some variables with undef values are not shown.
Statements T4,TS, •••Tll form the first nontrivial transition segment
(in the process Transmit). It conforms to admissibility rules since
all queues are empty and "external input" occurs (namely, ENV signal
UDTreq enters). After statement T5 the symbolic value of variable
data is updated

data = uDTreql
I

(a new symbolic initial value has been generated, involving the
first instance of UDTreq).

State~ent TG also updates one value
hs=l.

Statement T7 updates the queue value of process MsgMan, since
channels and routes direct the signal MDTreq to this process

Q(MsgMan)=<MDTreq(l,UDTreql,dcheck(I,UDTreql))>.
I I

Statement T8 adds the following
C -Qadd (UDTreql,qnew) •

q I

Decision statement TIO adds no path condition since its value
1<1+3-1 is reduced to true by simplifier, the "true" exit implicitly
assumed in the path is valid. Statement TIl closes the transition by
returning to state Data-transfer.

Now let us consider the second transition segment
M3,M4,M5,M6,M7. As the queue Q(MsgMan) is nonempty (the other queues
being empty), this is the only transition segment permitted by
admissibility rules in this situation. The statement M4 updates the
values of variables mentioned in this input statement

seqno=l
data=UDTreql

I

dcrc=dcheck(l,UDTreql).
I

Statement MS forms new struct value
qitem=(.l,UDTreq~,dcheck(l,UDTreq~)).

-'



414

After M6 we have
1 1mq=(qadd«.l,UDTreql,dcheck(l,UDTreql).),qnew). L

The final symbolic state after the path is:
Transmit

hs=l
lu=l
cq=qadd(UDTreql,qnew)

1 . \ ,
seqno=undef '1

data=UDTreql
1

acrc=undef
,
( ...

Q(Transmit)=<>
MsgMan

mq=qadd«.l,UDTreql,dcheck(l,UDTreql).),qnew)
1 1

qitem=(.l,UDTreql,dcheck(l,UDTreql).)
1 1

action=undef
Q(MsgMan)=<>

Receiyer
nr=l
already_rec=(.false,false,false.)
recbuf=undef
Q(Receiver)=< >

AckMan
aq=qnew
qitem=undef
action=undef
Q(AckMan)=<>

The path condition remains true.
The path occurs to be both admi~sible and feasible.
Now let us consider the general case when timers are used. In

this case the active timer set T(P) is maintained during the
symbolic execution for every process P and admissibility rules for
timers rely on this set. The initial value of T(P) is empty set {}.
Timer instances (or, more precisely, symbolic values of timers) are
added to the set by SET statements. The symbolic value of the timer
consists of its name followed by the symbolic value of time moment
to which the timer is set (and symbolic values of parameters, if
there are such), for example, tcon(e), tim(e,l). The set T(P)

1

contains at most one instance of each timer in the process P ( in
the case of timers with parameters, one instance for each distinct
value of parameters).



415

Admissibility rule for timers says that "timer transition"
(Le., transition starting with timer input) is permitted only in
"external input" situation if the corresponding timer instance is in
T(P) for prbcess P under consideration. To define the sYmbolic
execution ol time involving statements, a new, real valued variable

I ,

NOW is intrpduced (one for the whole system). The initial value of
\. .

NOW is 0, a~d it contains the sYmbolic value of system time at every
moment (as demanded by SOL semantics).

Basic "reference points" for time counting are times of arrival
of ENV signals. Every instance of signal S sent from the environment
has associated its sYmbolic arrival time value S~ (i is the instance
number just as for initial values of parameters). Values of the form
S~ (for all ENV signals) play the role of initial sYmbolic values
for time counting. When the input of ENV signal S is executed, the
sYmbolic value of NOW is set to ST. The old sYmbolic value of NOW

I

(1.e ,, before the new assignment, let us denote this value by
NOWold) is used to add a new inequality

NOWold < ST
I

to path condition. The inequality expresses the fact that ac~ording
to our modifications of SOL semantics a new ENV signal cannot be
simultaneous with some previo~s event in the system. The saving of
ENV signal advances NOW in the same way.

For example, if we consider the previous example as a system
with timers (in fact, it is such), then after statement T5 the value
of NOW is

NOW=UDTreqT
t

and the inequality O<UOTreq~ is added to path condition (the
previous value of NOW was the initial value 0).

Next we consider the sYmbolic execution of SET statement. This
statement has the form SET(t,tim), where t is an expression of type
real (as a rule, in the form NOW+tt, ttcan also be an expression of
type real but often is a constant) and tim is a timer name. At first
the symbo li,c value of t (denoted by til) is obtained. Then the
aymbo lLc value of timer tim(t") is added to T(P), where P is the
current process.

If there already is an instance of tim in T(P), the old
instance is removed. For a timer with parameters the action Ls
similar. Let us consider SET statement SET(t, timl(pt))' At first we
assume that expression Pt can be reduced to some constant Ct(of the
corresponding type) when computing its sYmbolic value p~. Then



416

timl(C
1
) acts in fact as an independent timer. We also assume

instances of timl in T(P) having the same property that their
parameters are reduced to constants. So symbolic value t~l(tB,Cl)
is added to T(P), and, if there is an instance timl(t'~ C

1
) with the

same constant parameter in T(P), the previous one is deleted.Let us
return to our example and restore statement T9, omitted at first.

Let us remind that before T9 the value of NOW is uDTreq~ and
HS=l. Then after statement T9 we have a timer value

tim(UDTre~T+delta,l)
1.

and T(Transmit) assumes value
{tim(UDTreqT+delta,l)}.

1

Now we have to consider the most general case when either the
parameter value pH for the timer timl to be set cannot be reduced to

1

constant by simplifier or T(P) already contains an instance of timl
with non-constant parameter. Let us assume the instances of timl in
T(P) to be

timl(t1,ql)' timl(t2'~)"" ,timl(tk,qk)
(ql are symbolic values of the parameter).

In this moment path refinement is done. The following cases are
possible here - either the new symbolic value of the parameter p;
coincides wi th one of the exis.ting values, say, qj' or p; is a new
value. Path refinement means an a priori choice of one of the
possibilities (it is reasonable to call this choice a path
refinement because admissibility of timer transitions later on the
path depends on the choice). If the first case is chosen,
timl(tB,p;) is added to T{P), timl(tj,qj) is removed, and besides
that equality

p; = qj
is added to path condition. If the second case is chosen,
timl(tS,p;) is added to T(P) and inequalities

• B

Pl"ql' ••• , Pl"qk
are added to path condition.

The symbolic execution of RESET statement is similar. The
corresponding instance of the timer is simply removed from T(P) when
the timer has no parameters or all parameters of timer instances
(L, e., their symbolic values) can be reduced to a constant. In
general case for timer resetting with parameters a similar path
refinement is made and corresponding equalities (inequalities) are
added to path condition.

The using of timers involves additional timing constraints in



417

path condition. So, when active timer set T(P) is nonempty for at
least one of the processes P, additional inequalities are to be
added to path condition at ENV signal input. The new symbolic value
of NOW (namely, S: if signal S is consumed the i-th tim~) has to be
less than the value of time held in any instance of active timer, so
inequalitiefl

1
ST < t

1 J
are added to path condition for symbolic value of time t

J
held in

any active timer instance in any of T(P ).
I 1

Let us consider an example. We extend the path considered in
the previous example (with statement T9 reinserted) the following
way:

Tl,T2,T3,T4,Rl,R2,R3,R4,Ml,M2,M3,Al,A2,A3,T4,TS,T6,T7,Ta,
T9,T10,Tll,M3,M4,MS,M6,M7,T4,TS,T6,T7,TB,T9,T10,Tll.

We describe completely the symbolic execution of the second
occurrence of TS. We have before it

hs=l
T(Transmit)={tim(UDTreqT+delta,l)}
NOW=UDTreqT 1

1

The execution of TS gives
NOW=UDTre~

and two new inequalities in the path condition
T TUDTreql<UDTre~

T TUDTre~<UDTreql+delta
After the second occurrence of T9 we have

T(Transmit)={tim(UDTreq~+delta,l),tim(UDTre~+delta,2)}
The last item to be described is the symbolic execution of

timer "firing". In process P the symbolic execution of timer input,
i.e., statement

) timeX)

invokes the following actions. At first an instance of timer tim is
selected in T(P), let it be tim(t·,p·) (for timers without
parameters, it is the only instance of the timer, its existence is
guaranteed by admissibility rules). The act of timer instance
selection again is a path refinement. Then the symbolic value of NOW
is set to tB, the selected timer instan~e is excluded from T(P) and
x assumes the value p•• New inequalities expressing the fact that



418

time is nondecreasing and the timer with the least time value should
"fire" the first are added to path condition. So inequalities

NOWold :se
and

tB :s t
J

for all symbolic values of time t held in any (remaining) active
Jtimer instance in any of T(P ). Inequalities are nonstrong this time

because two timers can b~:se~ on the same time moment.
Now we give an example of timer "firing"

continuation of the previous example with the
transitions added:

M3,M4,M5,M6,M7,T4,T20,T21,RLl,RL2,RL3,RL4,RL5,
RL3,RL4,RL5,RL6,T22, •••

(RL stands for RelTim).
The "internal Lnput;" transition M3 •••M7 is implied by

admissibility rules (the queue Q(MsgMan) is nonempty). This
occurrence of the transition is similar to the first one and affects
only variables in process MsgMan, so it is not described. We start
the description with T20. The previous example shows that before it
there holds

NOW=UDTre~
T(Transmit)={tirn(UDTreq~+delta,1),tim(UDTre~+delta,2)}
hs=2,

all queues are empty. So T20 is admissible, we can select the timer
instance to "fire". We choose the first one. After the execution of

which is
following

the
two

T20 we have
TNOW=UDTreql+delta

T(Transmit)={tim(UDTre~+delta, 2»
seqno=l

The following inequalities are added to the path condition
T TUDTre~:SUDTreql+delt~

UDTreql+delta:SUDTre~+delta
Just the last inequality shows that our choice of timer

instances is the only possible one to obtain a feasible path (and
corresponds to reasonable behaviour of timers). Had we selected the
second instance, we have had contradicting inequalities in path
condition

T TUDTreq <UDTre~ and
f TUDTre~+delta:SUDTreql+delta,

the fact obviously noticed by our inequality solver. The next



419

statement T22 calls the procedure RelTim, so after statements
RLl, RL2 we have

k=2
r=l
si=l \
sj=2,

After RL3 I
T(Tran~mit)={tim(UOTre~+delta,2)}

(no instance to reset actually). The path chosen in RelTim is the
only feasibre one in the given context, after second occurrence of
RL3

T(Transmit)={ }
(because r=2 this time). So we can continue the execution, the path
occurs to be feasible.

The defined timing inequalities have the property that path
condition has a solution with respect to arrival times of ENV
signals (i.e., the variables in the form SiT) iff all events along

J
the path can be allocated in time so that they comply with the
details of SOL semantics laid out in Section 3.3. We could formulate
this result as a theorem, had our description of sYmbolic execution
been more formal.

We conclude this section by one more example, namely, we show
the sYmbolic execution of another extension of the path considered
in the first example. So we consider the path

Tl,T2,T3,T4,Rl,R2,R3,R4,Ml,M2,M3,Al,A2,A3,T4,T5,
T6,T7,T8,T9,TIO,Tll,M3,M4,M5,M6,M7,M3,M8,M9,MlO,
Mll,M12,M13,R4,R5,R6,R7,R8,Rll,R12,R13,Ol,02,03,
04,05,06,07,OlO,Rl4,A3,A4,AS,A6,A7,A3,A8,A9,AlO,
All,A12,Al3,T4,Tl3,Tl4,TlS,Tl6,RLl,RL2,RL3,RL4,RLS,
RL6,T17,T18,T19.

(Prefix 0 stands for procedure OelivMes, RL for ReITim).
This path corresponds to complete successful sending of one message
from transmitter to receiver and successful acknowledgment sending
vice versa. Active use of TRS to simplify sYmbolic values is
demonstrated on the path. From the first example we know the
symbolic state after M7:

Transmit
hs=l T(Transmit)={tim(UOTreqT+delta,l)}

I

lu=l Q(Transmit)=< >
Icq=qadd(UOTreql,qnew)



420

data"UDTreq~
acrc=undef
seqno"undef

MsgMan
mq=qadd«.l,UDTreq~,dcheck(I,UDTreq~).),qnew)
qitem=(.I,UDTreq~,dcheck(I,UDTreq~).)
action=undef

\ .\Q(MsgMan-< >T(MsgMan)={ }
Receiver

nr"l
already_rec=(.false,false,false.)
recbuf=undef
T(Receiver)={ }

AckMan
Q(Receiver)=< >

aqaqnew
qitem"undef
action=undef

TNOW=UDTreql
Path condition

O<UDTreq~
External input in M3, M8 is obviously admissible.
We have after it

action Msgcontr~

NOW MsgContrT
1

path condition is augmented by
UDTreqT < MsgContrT

1 1

MsgContrT< uDTreqT +delta
1 1 -

From M9 with exit "false" we ha~e condition
not(qempty(qadd«.I,UDTreql,dcheck(I,UDTreql).),qnew)),which is

1 1
obviously reduced by a single TRS rule application
not (false) ••true. So the feasibility of the selected path is not
violated, no path condition is added.

Statement MIO (with exit norm implied) gives path condition
- 1MsgContr

1
=Norm

After MIl we have
qitem= qfirst(qadd«.I,UDTreql,dcheck(I,UDTreql).),qnew))

1 1
evidently reduced by TRS to
qitem=(.I,UDTreql,dcheck(I,UDTreql).)

1 1
(namely the reduced value is fixed in sYmbolic value system),
similarly the new value of mq is reduced to

T(AckMan)={ }
Q(AckMan)=< >

\

to



421

mq-qnew.
Statement M12 augments the queue of Receiver
Q(Receiver)~<MDTind(1,UoTreq~,dcheck(1,UDTreq~))>
Furthe~ a nonempty queue for Receiver makes R4, RS be the sole

admissible cfnltinuation. After RS we have in Receiver
seqno ~

\ 1data ,\uoTreql
dcrc -dcheck(l,UoTreq~).

The exit true in statement R6 is,
dcheck(1,UOTrenl)=dcheck(1,UoTreql) is reduced";11 1

simplifier) •
The chosen exit in the next two statements is also implied, for both

in fact, implied (
to true by the

(1<- 1) AND (1<=1+3-1)
and

not(extract«(.false,false,false.),l mod 3))
reduces to true.

Statements Rll and R12 make
recbuf=modify(undef,l,UOTreql)

1

already_rec=modify«(.false,false,false.),1,true)).
In the procedure OelivMes we have after 01

xnr =1
xseqno=l,

which implies the chosen exit of D2 (parameters are in/out, 50 the
changed values are returned to nr, seqno). 03 sends signal

UOTind (UOTreql) to environment.
1

We can continue the symbolic execution of the path in the same way.
All remaining decisions in the path uniquely reduce to true (except
one in process AckMan which gives path condition

Ackcontr~ =Norm ). Admissibility rules uniquely determine the
chosen internal transitions.

So we end the path with the following values (only the
essential ones are given)

Transmit MsgMan Receiver ACkMan
hs=l mq=qnew nr=2 aq=qnew
lu=2 already_rec=

=(.false,false,false.)
Tempty, NOW=AckContr

1
,

cq=qnew
All sets T and queues Q are
final path condition is

O<UDTreqT
1



422

uDTreq~<Msgcontr~

Msgcontr~<UDTreq~+delta

MsgContr1=norm
1

MsgContrT<AckContrT
1 1

AckContrT<UDTreqT+delta
1 1

AckContr1=norm.
1 . \ ;

The path is obviously feasible. The path condition requires
only the arrival times of;three ENV signals to be ordered properly,

..:

taking into account also the time-out interval delta. So the
following ENV signal sequence
UDTreq(data1),MsgContr(norm),AckContr(norm) with arrival times 1,2,3
(if delta is assumed to be, e.g., 10) is a test executing the chosen
path (value of datal is inessential).

So it is easy to ascertain that for every feasible path in the
SLWexample trivially solvable path conditions can be obtained. Due
to this the corresponding ENV signal sequence (with their arrival
times fixed) can be generated which actually forces the execution of
the path.

3.5 Path Selection for Test Generation - Simple Approach

As we have seen in the previous section, it is logically easy
(though a little bit lengthy) to find a test (ENV signal sequence)
forcing the execution of a given feasible path: In order to obtain
CTS for the system SLW it would be necessary to fix some path
selection strategy. However, the pat.hs considered in the previous
section show a special feature of the system SLW (and this feature
is common to many protocol and similar programs). Namely, the choice
of feasible path continuations in decision statements is uniquely
determined (i.e., a sole exit is feasible). The only exceptions are
decisions relying upon ENV signal parameters. So the only free
choice is the choice of ENV signal to be received (including
parameters for signals to MsgMan and AckMan). The analysis of timing
inequalities show that actually two things are significant - the
order of arrival of ENV signals and whether the current ENV signal
arrives before the time-out period has expired ( for the timer set
earliest). So the following choices are available at every "external
input" point (in parenthesis the shorthand notation for the choice



423

is presented):
input of UDTreq (U),
input of MsgContr with parameter values norm (MN),

]ose (ML), reorder (MR), corrupt (MC),
input pf AckContr with parameter values norm (AN),

lose (AL), reorder (AR), corrupt (AC),
no ENV\signal until the timer tim fires (T).
If we fix the ENV input string, the internal behavior of the

system (and\consequently, the path traversed in process bodies) is
uniquely determined. As we have seen in the previous section,
admissibility rules sometimes exclude T choice. The possible choices
can be summarized in the following potentially infinite tree (if
complete symbolic state remains unchanged after the choice, we cut
off the tree after the branch). We call this tree an external signal
tree (EST) (fig.3.3).

Any feasible branch in process bodies is executed somewhere in
the tree. However, there is no good means to find out where exactly
the point is in the tree. For example, to execute the branch RB, R9,
R10, a path of length 7 in the tree is necessary (this branch seems
to be the most RhiddenR).

As we see, the branching coefficient for the tree is 10
(excluding few first vertices), so direct exhaustive search of
nearly 106 vertices would not be very efficient. State based
theoretical methods from [17] are not directly applicable to the
example (because of potentially unlimited queues), thus some
heuristic methods are necessary to limit the search.

We outline briefly one such heuristic idea which uses the
state notion as in [17], however, in a more heuristic sense. We
recall the notions of essential variable and essentially located
statement (ELS) introduced in [10,17], Section 3.



424

Figure 3.3. External Signal Tree



425

A comparatively simple analysis shows that there can be no
unbounded loops within transition segments in our example. Moreover,
only a bounded sequence of "internal" transition segments can follow
an ENV sign~l input or timer firing. So we can choose the inputs of
ENV and t~er signals as ELS. Thus, essential variables are
associated ~mly with transitions corresponding to ENV and timer
signals.

So, in a more pragmatic approach , we can say that a variable
\in a process is essential if it is used in decision statement and is

not reassigned from ENV input to its usage in a decision (actually,
for SLW example this requirement is equivalent to the formal one
used in [17]. The variables affecting path admissibility are also
considered essential. As we consider only external inputs as ELS,
signal queues are not essential (they are always empty at these
inputs), however timer sets are essential. So the following
variables occur to be essential in our example: hs, lu, nr,
already_rec, mq, aq, T(Transmit). Some additional arguments show
that for elements of queues (mq and aq) only the sequence numbers
and corrupted/not corrupted property is essential, so these elements
can be reduced to pairs (s, 'n'l 'c') in our state concept. For timer
sets only the sequence numbers held as parameters are essential (the
ordering of time moments is implied). So a reduced heuristic state
containing only reduced values of essential variables is attached to
each node of EST. And, as usually, the tree is cut off at state
repetition, however, the finiteness of the set of states is not
achieved this way. Some more stringent heuristic cut-off rules can
be given, specific to this example, guaranteeing the finiteness of
state set (e.g., replacing the counter values hs, lu, nr by some
differences in state comparisons and estimating maximum lengths of
mq, aq ), A simpler heuristic approach is based on fact that all
branches actually are reachable for hs, lu, nr and queue lengths not
exceeding 4. So the estimated number of EST nodes to be searched for
CTS building is approximately 1000 (cutting off nodes with variable
values or queue lengths exceeding 4 and stopping the search when all
branches have been reached). The introduced state concept actually
also supports symbolic execution of each path, so the outlined
approach can be used in tools generating CTS (a tool generating CTS
for this example could be implemented on IBM PC). Essential variable
selection and cut-off rules for states would be user supplied for



426

such tool. The heuristic state approach is practically acceptable
for test generation for medium size protocols. A more efficient idea
applicable to large systems is outlined in the next section.

To conclude the theme on signal tree we have to mention that
EST is similar to asynchronous communication -tree (ACT) used in
[12,14]. ACT contains also signals from system to environment but
our approach allows to find them as well (see signal UOTind in
symbolic execution exampie). So the symbolic execution method allows
to construct ACT also Jor protocols whose functioning depends
essentially upon some dat~ processing.

3.6 A More Intelligent Approach to Test Generation

As we have seen in the previous section, CTS can be generated
on the basis of symbolic execution approach. However, though there
are 34 branches (all feasible) in our example system, the state
oriented approach requires considerable search (of "'1000 states).
When a" hun.m is asked to generate a test executing some branch he
performs, as a rule, some backward search from the specified branch
trying to find out gradually some meaningful considerations on input
data (signals in our case) finally leading to some test case.

The same idea can also be used for automatic test generation.
We outline it briefly on some example. So let us assume we have to
generate a test executing branch 07, 03, 04, OS, 06, 07 (in
procedure Oelivmes in process Receiver). So for a moment we assume
the process Receiver with its procedures to form a separate system
(with corresponding declarations updated). So the signal MDTind is
an ENV signal for the modified systern~ its parameters are treated as
input values.

Now we try to find a feasible path containing the branch 07,
03, .••• As one process is in fact a sequential program, heuristic
methods from [21] can be applied. The shortest path containing the
branch is R1, R2, R3, R4, RS, R6, R7, R8, R11, R12, R13, 01, 02, 03,
04, OS, 06, 07, 03, ••• , however, this path occurs to be infeasible
(during the symbolic execution the solver founds the path condition
contradictory). So by some (not described here) reasonable heuristic
the next (by length) path is found, namely,
R1,R2,R3,R4,R5,R6,R7,R8,R11,R12,R13,01,02,08,09,R14,R4,RS,
R6,R7,R8,R11,R12,R13,01,02,03,04,OS,06,07,03,04,OS,06,07, •••
The symbolic execution of the path gives the following path



427

condition (no timing conditions included, as there a~e no timers)
MDTind:=dcheck(MDTind~, MDTind:)
lsMDTind1

, MDTind1s3\ 1 1.,(MDTirydl=1 )
MDTind~=dcheCk(MDTind~,MDTind~)
lsMDTinF~ , MDTind~s3

extract(~odify((.false,false,false.),MDTind~mod3,true),
MD~indlmod3)=false

• 1 \ 2MDT~nd =1
2 \

extract(modify(modify(modify((.false,false,false.),
MDTind~mod3,true),MDTind~mod3,true),lJalse),2)=true
The solver is able to find from the path condition unique

values for numeric parameters of signals: MDTind~=2, MDTind~=l. The
values of two other parameters are bound only by the conditions

,MDTind:=dcheck(MDTind~, MDTind~) (*)
MDTind3=dcheck(MDTind1

, MDTind2)222
These two conditions can be treated as preconditions for the process
Receiver. Thus our solver can be extended so that it can be used not
only for finding test values but also for generating preconditions
from path conditions (we can also consider this process as a special
kind of simplification).

Now we return to the whole system and find out (statically from
declarations) that signal MDTind can come only from process MsgMan.
Then we consider MsgMan alone in a similar manner with both MDTreq
and MsgContr treated as ENV signals. However, this time the aim is
different, namely, we have to find a path in MsgMan with the
specified postcondition, namely, two instances of MDTind are sent
with fixed values of the first parameter 2 and 1 respectively, in
addition parameters are bound by (*). U~ing similar heuristics for
path finding, the shortest path is found

M1,M2,M3,M4,M5,M6,M7,M3,M4,M5,M6,M7,M3,MB,M9,M10,M11,M12,
M13,M3,MB,M9,M10,M11,M12,M13,

which satisfies the given postcondition.
The postcondition and path condition from symbolic execution of

the path together yield:
1MDTreql=2
1MDTre~=l

MDTreq3=dcheck(MDTreql, MDTreq21)
1 1



428

312MDTre~ =dcheck (MDTre~, MDTre~)
MsgContr1=norm1 .

Msgcontr~"norm
(see how postconditions are transformed by symbolic execution into
preconditions). The order of ENV signals is

MDTreq ,MDTrea ,MsgContr ,MsgContr (timing again is
1 ""2 ., 1 _ 2

unessential). As far as only the last two signals are true ENV
signals from the system point of view, the search has to be
continued to obtain two input signals MDTreq from Transmit with the
first four equalities as 'postconditions. However similar analysis of
Transmit yields the postcondition to be unfeasible - because under
no circumstances sequence MDTreq(2, •••) MDTreq(l,•••) can issue from
Transmit. So another path in MsgMan (with another postcondition
ar~s~ng for Transmit) must be found conforming with its own
postcondition. The next (by length) path is the path induced by
input signals MDTreq, MDTrea, MsgContr (Reord), MsgContr

2
(Norm),

. 1""2 1

MsgContr
3
(Norm). This path gives the postcondition for Transmit with

the first two equations modified .
MDTreq~=l

1MDTre~=2
(and equations three and four rema~n~ng the same).

This is a completely "acceptable" postcondition for Transmit.
The corresponding path is induced by (this t~e true) ENV signals
UDTreql' UDTre~. So the complete sequence of ENV signals for the
system is

UDTreql' UDTre~, MsgContr
1
(Reord), MsgContr

2
(Norm),

MsgContr
3
(Norm) •

(or U, U, MR, MN, MN in terms of EST)
The complete ordering of signals is found substituting

intermediate signals by ENV signal sequences generating these
signals (likewise nonterminals are substituted by terminals in
grammars). Timing conditions remain to be added to specify the test
completely (the most stringent of them requesting that arrival times
of all ENV signals are less than uDTreqT+delta).

1

The search space for the method outlined is some tens of paths
in the example considered (if powerful heuristics is used for path
selection in one process). We also note that several branches in the
"terminal" process (this time Receiver) can be searched for
simultaneously, so reducing the complete search space for CTS even



429

more. So, similarly we can find that ENV signal sequence activating
our "champion" branch RB,R9,RlO is (in terms of EST)

u\, U, T, ML, MN, ML, MN.

Maybe fO find the latter path it would be more effective to
consider a~ first Receiver alone and then Transmit and MsgMan
together. O~r estimate is that some hundreds of paths have to be
considered '0 find CTS, a value completely acceptable for the
example. So we hope a tool can be built using the approach outlined
constructing CTS for pretty large protocols (and we hope also for
large parts of electronic exchanges I. However, such a tool would
require some methods of reasoning on processes and
pre/postconditions not completely formalized here.

We note only that the transformation of path postcondions to
its preconditions by means of symbolic execution bears some
resemblance to the methods used in program verification.

4 Conclusions

The results in both parts show that automatic test case
generation has reached the status where practical implementations
yielding acceptable results for programs of considerable size are
possible. Certainly, such test generation systems would be
complicated enough and will use the precise and heuristic methods
described in the paper as well as some other ones. The main problem
requ~r~ng some additional solutions is the path selection for
traversing deeply "hidden" branches. In the theoretical approach the
main principle used in path selection was state concept. Its
modifications have proved their fitness also in a heuristic setting,
however much work remains to be done to select appropriate heuristic
state concepts for various classes of programs. One possible
approach would be the attachment of formal comments by program
authors to guide the automatic system in the right direction.

Acknowledgements

The authors would like to thank Prof. Janis Barzdil}s for the
setting of the problem and valuable suggestions. They also wish to
thank their colleagues at the Software Research and Development
Department for help in the preparation of the paper.



430

References

1. Sauder R.L. General Test Data Generator for COBOL. - AFIPS
Conference Proceedings, SJCC, 1962, pp. 317-323.

2. Hanford K.V. Automatic Generation of Test Cases. - IBM Systems
Journal, 1970, vol. 9, Nq~ 4, pp. 242-257.

3. Balzer R.M. EXDAMS" - Extendable Debugging and Monitoring
System. - In: Proc. 1969 SJCC, Montvale, N.Y., 1969, pp. 567-580.

4. Barzdil}s J.M., Bicevskis J.J., Kalnil}s A.A. Construction of
Complete Sample Systems for Correctness Testing. - In: Mathematical
Foundations of Computer Science, Berlin: Springer, 1975, pp. 1-12.

5. Howden.W. E. Methodology for the Generation of Program Test
Data. - IEEE Trans. Comput., vol C-24, pp. 554-559.

6. Clarke L.A. A System to Generate Test Data and Symbolically
Execute Programs. - IEEE Trans. Software Eng., 1976, vol. SE-2, No.
3, pp. 215-222.

7. King J.C. Symbolic Execution and Program Testing. - CACM, 1976,
vol. 19, No.7, pp. 385-394.

8. Ramamoorthy C.V., Ho S.B.F., Chen W.T. On the Automated
Generation of Program Test Data. - IEEE Trans. Software Eng., 1976,
vol. SE-2, No.4, pp. 293-300.

9. Pravilschikov P.A. Test Generation for Programs. - Avtomatika i
Telemekhanika, 1977, No.5, pp. 147-160 (In Russian).

10. Bicevskis J., Borzovs J., Straujums U., Zaril}sA., Miller E.F.
Jr. SMOTL - a System to Construct Samples for Data Processing
Program Debugging. - IEEE Trans. Software Eng., 1979, vol. SE-5, No.
1, pp. 60-66.

11. Pozin B.A. A Method of Structural Test Generation for Programs.
- Programmirovanie, 1980, No.2, pp. 62-69 (In Russian).
12. Hogrefe o. Automatic Generation of Test Cases from SOL



431

Specifications. - In: SDL Newsletter, 1988, No. 12, pp. 34-52.
<

13. Kristo~fersen F. Conformance Testing Based on SDL
specificatibns. - In: SDL'89: The Language at Work, North-Holland,
1989, pp. 257-266.. I

I

14. Bromst~p L., Hogrefe D. TESDL - Experience with Generating
Test Cases from SOL Specifications. - In: SDL' 89: The Language at
Work, North-Holland, 1989, pp. 267-280.

15. CCITT Specification and Description Language (SDL) •
Recommendations Z.100. - CCITT Blue Book, 1988, 199 p.

16. Saracco R., Smith J.R.W., Reed R. Telecommunication Systems
Engineering Using SDL. - North-Holland, 1989, 633 p.

17. Auzil}s A., Barzdil}s J., Bicevskis J., ~erans K., Kalnil}s A.
Automatic Construction of Test Sets: Theoretical Approach. - This
volume.

18. Wirth N. Systematic Programming. - Prentice-Hall, 1973. '.

19. Hoare C.A.R. Algorithms 65; FIND. - CACM, 1961, vol 4, No.1,
p. 321.

20. Hoare C.A.R. Proof of Programm FIND. - CACM, 1971, vol. 14, No.
1, pp. 39-45.

21. Borzovs J.V., Urtans G.B., Shimarov V.A. Program Path Selection
for Test Generation. - Upravlayuschie Sistemi i Mashini, 1989, No.
6, pp. 29-36 (In Russian).

22. Borzovs J.V., Medvedis I.E., Urtans G.B. The Segment Method for
the Solution of Systems of Equalities and Inequalities at Test
Generation for Program Validation. Upravlayuschie Sistemi i
Mashini, 1990, No.2, pp. 49-58 (In Russian).

23. Huet G., Oppen D. Equations and Rewrite Rules: a Survey. - In:
Formal Languages: Perspectives and Open Problems, Academic Press,
N.Y., 1980.



432

24. Futatsugi K~,
princ~ples of OBJ'2.
Languages, ACM, 1985.

Goguen J.A., Jouannaud J.P., Meseguer J.
- In: Proceedings of Principles of Programming

25. Guidelines for the Application of Estelle, Lotos and SDL, Draft
Manual. - CCITT, Geneva, 1988, 347 p •

.\t
26. Stenning N.V. A Data Transfer Protocol. - Computer Networks,
1976, No.1, pp. 99-110. l

27. Bergstra J .A., Heering J., Klint P.
Specification. - ACM Press, N.Y., 1989,397 p ••

(ed.) Algebraic

28. Sato F., Katseryama K., Mizuno T. TENT: Test Sequence
Generation Tool for Communication Systems. In: FORTE'89,
Proceedings of 2nd Int. Conf. on Formal Description Techniques,
North Holland, -1990,.pp. 1-6.

29. Chan W.Y.L., Vuong S.T., Ito M.R. On Test Sequence Generation
for Protocols. - In: Proceedings of the IFIP WG 6.1 Nineth Int.
Workshop on Protocol Specification, Testing and Verification, 1989,
North Holland, 1989.



\
AGGREGATE APPROACH FOR SPECIFICATION, VALIDATION,

SIMULATION AND IMPLEMENTATION OF COMPUTER NETWORK
'I

\ PROTOCOLS

Henrikas Pranevitchius

Kaunas University of Technology
Faculty of Informatics

V.Juro 50, Kaunas, 2330028
Lithuania

ABSTRACT

The application of aggregate approach for the formal description,
validation, simulation and implementation of computer networks
protocols is considered in the paper. With this approach the above
mentioned design stages can be executed using a single mathematical
scheme. The method of reachability states is used for the vaiidation
of protocol general properties, while individual characteristics are
analysed by the invariant method which enables to verify the
correctness of the invariant by protocol formal description.
Aggregative mathematical schemes are used in the specification
languages AGREGAT-84 and ESTELLE/AG applied in creating protocol
analysing systems simulation and validation of protocols. Protocol
automated implementation method based on the specification language
ESTELLE/AG is presented. Formal description and results of alternating
-bit protocol validation and simulation as its speciffication in
AGREGAT 84 and Estelle/Ag are presented for illustration.

Introduction

The main function of computer networks software is providing

interaction of information processes realized in a distributed and,

as a rule, non - homogenous mediumm. The main part of this software,

namely, detailed system agreement and rules of interaction, realized

in computer networks is called the protocol.



\

\ Proceedings of the Fifth SDL Forum
Glasgow, Scotland, UK, 29 September - 4 October, 1991

\

SDL '91
EVOLVING METHODS

edited by

Ove FiERGEMAND
TFL

Horsholm, Denmark

Rick REED
CPT

Coventry, UK

~

~

~
1991

NORTH-HOLLAND
AMSTERDAM· NEW YORK· OXFORD· TOKYO



302

ever, according to [7], service features in the telephone exchange systems should be
independent of each other, so they can be tested separately or in small portions.

Evidently, all the aforementioned applies only to the construction of test cases with 100%
coverage according to criterion Cl. If, say,90% coverage is satisfactory, then the generation
of tests will speed-up several times.

7. ACKNOWLEDGMENTS
\

The authors would like to thank-Prof, Janis Barzdir;t~and Prof. Audris Kalnir;t~for the
setting of the problem and valuable suggestions.

'.

8. REFERENCES

1 Hogrefe D. Automatic Generation of Test Cases from SDL Specifications. - In: SDL
Newsletter, 1988, No. 12, pp. 34- 52.

2 Bromstrup L., Hogrefe D. TESDL - Experience with Generating Test Cases from SDL
Specifications. - In: SDL'89: The Language at Work, North-Holland, 1989, pp. 267-
280.

3 Sato F., Katseryama K., Mizuno T. TENT: Test Sequence Generation Tool for Com-
munication Systems. - In: FORTE'89, Proceedings of 2nd Int. Conf. on Formal Descrip-
tion Techniques, North-Holland, 1990, pp. 1-6.

4 Bourgnet-Rouger A, Combes P. Exhaustive Validation and Test Generation inELVIS.
- In: SDL'89: The Language at Work, North-Holland, 1989,pp. 231-245.

5 Holzmann GJ. Automated Protocol Validation in ARGOS: Assertion Proving and
Scatter Searching. -IEEE Trans. on Software Eng., vol. SE-13, No.6, 1987.

6 Kalnins A Global State Based Automatic Test Generation for SDL. - This volume.
7 CEPT Handbook on Services and Facilities Offered to the Subscribers in Modern

Telephone Systems. - CEPT, 1984.
8 LOTOS - A Formal Description Technique Based on the Temporal Ordering of

Observational Behaviour. - ISO DIS 8807,1987.
9 Kroger F. Temporal Logic of Programs. - Springer Verlag, 1987, 148pp.
10 Barzdin J., Bicevskis J., Kalnins A Construction of Complete Sample Systems for

Correctness Testing. - In: Mathematical Foundations of Computer Science, Springer
Verlag, 1975, pp. 1-12."

11 Clarke L.A A System to Generate Test Data and Symbolically Execute Programs. -
IEEE Trans. Software Eng., 1976,vol. SE-2, No.3, pp. 215-222.

12 Barzdin J., Kalnins A, Auguston M. SDL Tools for Rapitf'Prototyping and Testing. -
In: SDL'89: The Language at Work, North-Holland, 1989,pp. 127-133.



SDL '91: Evolving Melhods
O. Faerpand IIld R. Reed (Editors)
e Elsevier Science Publishers B.Y. (Nonh-Holland), 1991 303

Global State Based Automatic Test Generation for SDL
I

A.KalniJ;1~ \

Institute of Mathematics and Computer Science
University of Latvia
RaiJ;1aBulv. 29, Riga 226250, Latvia

Abstract
The possibility of automatic test case generation for SOL systems is considered. Methods

for optimal global state definition including not only process states but also essential
information on variable values are described. Based on these methods an algorithm and
its implementation for automatic test set generation for a class of protocol programs is
described. Test generation experience on sliding window example is shown.

1. INTRODUCTION

Automatic test case generation for ordinary sequential programs first became popular
in mid seventies [1,2]. A significant contribution in this area was made by research group
headed by prof. Barzdin at Latvia University [3,4,5]. While automatic test generation hasn't
become an essential part of general software engineering, it has appeared to be very
significant for telecommunications systems described in SOL and other related languages.
Both theoretical and practical aspects of automatic test generation experience by Latvia
University group (including the author of this paper) recently have been reported in [6,7],
including also some SOL oriented approach.

The main idea of this paper is to carry over the experience obtained in automatic test
generation for sequential programs to SOL, especially the state concept.

In recent years the automatic test generation for SOL has gained significant popularity,
specially in protocol area [8,9]. This is due to large interest by practitioners, particularly in
conformance testing. Up to now SOL systems are mainly considered as collections of finite
state machines. So global state ofthe system is considered in general as a tuple of all process
states and internal queue contents. As states in SOL can be coded by finite set valued
variables and vice versa, at least some variables must be considered as part of the global
state. This paper focuses on the matter how to include the information on the variables
really influencing the behaviour (essential variables) in the global state while keeping the
state space as small as possible.

The other issue is test coverage criteria. It is assumed quite frequently that all global
states must be exercised thus leading to a state explosion. In this paper more attention is
paid to a "program-like" criterion Cl- to execute all branches in the system, clearly reducing



304

the search space. So the aim of the paper is to present a method yielding thorough
automatic testing for realistic systems on not very powerful computers.

There exist some similar approaches [10,11,12].The closest is the PROTAN approach
[10] for systems described in Estelle. The main difference is that [10] gives no method to
decide what information on variables should be included in the global state. It is also
focused on reachability analysis, not on test generation.

2. TESTING GOALS AND CRITERIA

It is very common to consider [8,10] that the testing of an SDL system is complete if
every global state (as a tuple of all process states) is reached. While it is reasonable in
reachability analysis for deadlock detection, it is not always so for ordinary testing.

So we propose to carry over the completeness criterion Cl, widely used for sequential
programs, also to SDL. We say that a test set T (i.e., a set of external signal sequences) is
complete for the given system S with respect to Cl, if every executable branch in every
process (procedure) of S is executed at least once on some test of T. By a branch we
understand both input branch in a state and ordinary decision branch.

Testing in SDL can have two different purposes. On the one hand, SDL specification
itself should be tested as a program with manual checking of results. In this case criterion
Cl seems to be more appropriate. On the other hand, in conformance testing the SDL
specification is used as a reference model for an implementation of the protocol unit; in
this case much larger test sets are recommended.

The methods for practical test generation described in this paper can be used with
various criteria, only the termination conditions must be adapted. Certainly, the used
resources heavily depend on the criterion.

3. SUBSETS OF SDL WHERE AUTOMATIC TEST GENERATION IS POSSIBLE

In [6] various sequential programing languages are described where completely auto-
matic (algorithmic) test generation is possible (or proven to be impossible). We carry over
most of these results to subsets of SDL.

So we consider a subset of SDL with only simple predefined types (integer, character,
boolean) and statements including signal sending/receiving (with parameters, both internal
and to/from environment), simple assignments of type xl:=x2, xl:=c, decisions of type
xl <x2 (other relational operators and constants also allowed), other statements not
allowed.

The following list of results has been obtained: :
1.For one process there is an algorithm generating test sets according to Cl (the process

is communicating with the environment only)
2. There is no algorithm generating test sets if two communicating processes and save

statement are allowed
3. n processes allowed, but no save - an algorithm seems to exist (not proven up to the

moment)



305

4. n processes, save allowed, but there is a constant N such that any queue length never
exceeds N - algorithm exists (but the case itself cannot be deduced formally from syntax
restrictions ~

5. One prpcess, wit~ one-way counter z added (with statements z: =c, z: =z+ 1, z-cx) - no
algorithm e~sts

6. One p~ocess, with n timers and save added - algorithm exists (this result has been
obtained by K.Cerans already in SDL terms in [6]).

The abovrl mentioned results show that in general completely automatic test generation
is possible only for quite narrow subsets of SDL. Nevertheless the methods used to obtain
the results, especially the notion of the global state, can be used in practice for much wider
classes of SDL systems.

So in the next sections we consider in general a large subset of SDL with only create,
import/export, view/reveal facilities execluded. Only specific state construction methods
are related to SDL subsets described in this section. There is also a semantic restriction
that no two statements in the whole system are executed simultaneously, so the execution
history of a system can be described uniquely by a sequence of events (path).

4. GENERAL PRINCIPLES OF GLOBAL STATE

All the results in the previous section, where algorithmic construction of test sets is
possible, are based on an appropriate global state concept.

The global state is some condensed information about an SDL system during its
execution, i.e., after a given sequence of statements W has been executed. The information
coded in the state should be rich enough to determine which future actions in the system
are legal.

Let us denote the state after execution of the sequence W by SeW). State concept is said
to be correct if from the fact that two execution sequences WI and Wz in a system lead to
equal states, i.e., S(WI )=S(Wz) there follows that both WI and Wz have the same set of
possible continuation sequences. Only reachable states (emerging after some legal execu-
tion sequence in the system) are considered.

At the same time, in order to make the test construction algorithmic, the set of possible
states for every SDL system in the class has to be finite,

If there is a correct concept of state for the given class of SDL systems yielding finite
sets of states, then the set of tests for the given system M can be built the following natural
way, using the reachability graph [6]. We start with an empty initial state So (and mark it
as the "root" of the graph). Then we find a statement LI in one of the processes of M which
can be executed in the given situation. So we construct the state SeLl) and add a new vertex
SeLl), connected by an edge to So . Now we have two vertices from which to continue the
process the same way. If a state S is obtained which already exists in the graph, no new
vertex is added, but an edge is drawn to the existing instance.

Let us give a small example (see Fig. 1). Let a system consist of two processes PI and
P2.

The state concepts for various system classes differ in the way state SeW) is generated
from the execution sequence W. We assume the example to belong to the solvable case 4,



306

Process Pl

L4

Block B

\!

L5

Process P2

Fig. 1. Example of a system

so the state will contain equalities and inequalities between process variables and
(bounded) queue contents. _,

Initially PI and P2 are in states ql and q2 respectively. The first possible event in the
system is consumption of signal SI from environment by PI (statement L2). The state
contains only the statement labels L2;1.,6.The only next event is execution of L3 by PI with
two possible exits, exit true is assumed, yielding the state L3(t):X <5;1.,6.We stress once
more that the state does not contain the value of X, only the information on admissible
values ofX. After sending the signal to P2 the state is L4:X<5; 1.,6:queue(p2)=<S2(X».
Now the choice of continuations is possible, one of them is signal consumption by P2:
L4:X<5; L7:Y=X. Fig 2. shows the initial fragment of the reachability graph.



307

•••

Fig. 2. Initial fragment of the reachability graph

When more than one process can be active, all possible "schedulings" of actions should
be shown in the graph. It should be noted that in some cases inequalities are generated in
a more sophisticated manner.

To find a test a finite path in the reachability graph is taken. A system of equalities and
inequalities with respect to parameters of input signals is formed and solved. The solution
should exist by construction of state (as states are built only for executable paths, ex-
ecutability fact actually is coded in the state itself). In the example considered the only
inequality for the leftmost path in Fig. 2 implies that the parameter of S2 must be less than
5. Some set of paths covering the graph (in the sense of the selected criterion, in our case
Cl) yields the complete test set.

5. METHODS FOR GWBAL STATE REDUCTION

The number of global states in the reachability graph is quite large even for small
programs. To reduce the size of this graph we introduce two notions: essentially located
statements (ELS) and essential variables (EV). For sequential programs these notions were
introduced in [4], see also [6].

The set of ELS for an SDL system is a set containing at least one statement from each
loop in every process. The start and stop statements are also considered as ELS. The loops
in SDL programs are formed by both conventional control statements and state - nextstate
pairs, in the latter case, namely, the state is recommended as ELS. The main idea behind
the notion of ELS is that there is only a finite number of paths between ELS, there is no
infinite path without ELS.

For every ELS a set of EV is defined. A variable v is said to be essential for a certain
ELS ifthere is an execution sequence beginning with the ELS such that the value possessed
by the variable v immediately after ELS is used in some branching statement of the path.



308

The use of the value means that either the variable v appears in some decision statement,
e.g., v< 9, (before a new assignment to v) or v is assigned to some other variable u which,
in turn, is used in branching. The values could even be transferred by means of a signal to
another process and used in branching there.

There exists a formal algorithm (based on static analysis of process diagrams) to decide
whether the variable is essential for the given ELS. The version of this algorithm for
sequential programs is described in [6].

It should be noted that implicit SOL variables, i.e., signal queues and active timer sets
are EV in general. ,\,

With ELS and EV the size of the reachability graph can be reduced significantly (while
preserving the correctness of state concept). Now only the statement label tuples containing
one ELS from each of the processes are taken as vertices, only the information about EV
is coded in the global state. The set of tests is obtained from the graph in a similar (though
more sophisticated) way.

The reduction of state space is significant. So in the previous example the only ELS are
states ql and q2, no variable is essential except signal queues, the reachability graph
becomes trivial (consisting of one vertex).

The construction of the reachability graph is based on some kind of symbolic execution
of an SOL system (the notion is widely used for sequential programs [2,13] and defined
accurately for SOL by the author of this paper in [7]). Symbolic execution yields for the
given path the symbolic values of variables and path condition, a system of equalities and
inequalities expressing the condition under which the path can be executed. The infonna-
tion contained in the state is obtained (according to the selected state concept) from
symbolic values of essential variables and from path condition.

6. FURTHER HEURISTIC METHODS FOR STATE REDUCTION

The selection of ELS may be restricted even more while still preserving the correctness
of state concept. We must keep in mind that the only requirement is that the length of every
path from one ELS to other must be bounded.

Further assumptions are valid only for a smaller subset of SOL (maybe specified not
completely formally). The subset is characterized by the following properties:

- parameters of external signals (i.e., signals sent from environment) are not essential
(i.e., they are not used directly or indirectly in decisions)

- the only variables which are essential are either of counter type (i.e., using statements
like v:=c, v:=v+c, v:=v-c, vl:=v2, vl <v2, vl=v2) or variables with bounded set of
values (like boolean, enumerated types etc.).

There are no restrictions on operations with nonessential variables.
Nearly all popular protocol specifications belong to this class. Certainly, the first

restriction to be valid, protocol entities should be selected properly, in general, the
complete description of a protocol layer is to be taken.

It can be shown that for this class of SOL systems single loops of the form for i: =vl to
v2 (actually expressed by normal SOL statements) cannot cause unbounded paths. So no
ELS must be taken from such loops, only loop bounds (if they are not constants) are to be
taken as EV. For nested loops the abovementioned is not always true.



309

Likewise, frequently ELS are not necessary in loops caused by state/nextstate. It is so in
the case, when only "internal" signals are received in the state, and signals in the state are
not received from a process, to which signals are sent in the transitions of the state (i.e.,
there is no, internal "signal loop" between two or more processes, not involving any external
signal).

The abovernenticned heuristic methods (and some similar) allow for many protocol
specifications to take only states where external signals are received as ELS. The finding
of EV is as described before, but their values must simply be recorded in the state (because
there is no kore economic coding for counters). In general, signal queues are EV, for they
influence signal branch execution. But in many cases a simplifying semantic assumption
can be madexhat internal signals have priority over the external ones, i.e., no external signal
is received until all internal queues (certainly, not saved ones) are empty. In this case queues
for processes where states a~ not ELS and no saves are contained are not EV and must
not be kept in global state.

So the global state space is not very large even for relatively long paths thus allowing to
generate tests for real protocol specifications. On the other hand, such a choice of ELS is
very convenient for implementation.

In the described heuristic approach the state correctness is preserved. At the same time
the finiteness of state set can be no more guaranteed, some other heuristic methods to
terminate the reachability graph construction must be used.

Let us note also that the nature of essential variables for the described class of SDL
systems makes the symbolic execution normally used in the state construction coincide with
the actual execution.

Additional heuristic idea to be used to reduce the state space is not to save completely
the values of essential variables vl,v2, ..., but try to find functions fl,f2, ..., such that state
with fi(vi) instead of vi is also correct and value space of fi is not large. Certainly, there is
no general method for finding such functions.

7. IMPLEMENTATION OF AUTOMATIC TEST GENERATION

7.1. Implementation environment
The described methods for global state based automatic test case generation for SDL

systems are being implemented in RIGA-SOL integrated environment.
The earlier version of RIGA-SOL has been described in [14]. The current version is

implemented on IBM PC and has been in industrial use for nearly a year. The SOL version
used is SOJ...,-88[15] with the following differences. Pascal data types are used instead of
abstract data types, structuring facilities like subprocesses, block arrays, explicit loop
statements are added, some rarely used options like import/export are excluded. RIGA-
SOL has a unified menu based user interface. Tool components include graphical editors
both for blocks and processes, SOL to Pascal compiler with complete "graphic" error

. diagnostics, runtime kernel implemented in Pascal and supporting complete SOL seman-
tics (in simulated time mode). The debugging facilities include online/offline signal and
process activation trace analyzer and sequence chart generator. Testing environment
contains facilities for convenient external signal input both in interactive mode and from



310

test case files and for test result recording. The environment is specially oriented towards
large scale SDL specification testing and debugging.

7.2. Implementation methods
The automatic test case generator is based on the existing SDL compiler, all the

necessary information about SDLsystem is extracted from its intermediate representation.
The test generation facilities in fact will consist of two parts. One is static analyzer
determining ELS and EV. The other is global state graph generator and test case extractor.
For the moment only the second part h\asbeen developed, ELS and EV must be determined
manually. ELS which are states with possible external signal input are registered automat-
ically. The values of determined EV are either registered as they are, or by means of user
supplied coding functions.

To find the global state after some external input, the normal compiler generated code
is used. Only a modified runtime kernel is used which stops the execution at the next ELS
and passes control to state generator. It also supplies on the request from the generator
the values of EV and other relevant information (process states, queue contents, active
timer sets). The state generator forms the current global state, compares it with the saved
state list and updates the list accordingly. The current branch of the state graph (tree) is
also recorded. The next external signal to be exercised is found by means of some heuristics
and passed to the execution system (it may also be a "time delay" instruction to let a timer
ring).

The automatic termination condition of state space exhaustion is not allways effective
as state space can be infinite. Termination condition "the completeness criterion Cl has
been reached" is also added. User supplied termination conditions can also be used both
in the form of a bound on search depth and a "cut-off' function for states with too large
variable values. .

The last phase of the test generation analyzes the constructed graph and generates test
cases (external signal sequences with time marks). Some sort of test case minimization is
included. For the moment tests are generated as input files for RIGA-SDL testing environ-
ment, but TTCN [8] notation could be used as well.

8. EXPERIENCES IN AUTOMATIC TEST GENERATION

As the development of the test generator has been recently finished, only some examples
have been examined. One of them is the popular sliding window protocol [16,17,7]. The

. description given in (17] is slightly transformed to adapt it to Pascal data types used in
RIGA-SDL. The protocol description by the transmitter and receiver processes is not
changed, both window sizes are set to 3 for test runs. The medium description (with two
processes) is made completely deterministic by introducing external control signals deter-
mining medium impact on the current message/acknowledgement. So the set of external
signals contain UDTreq, MsgNorm, MsgLose, MsgCorrupt, MsgReorder, AckNorm, Ack-
Lose, AckCorrupt, AckReorder (plus the possibility for a timeout to occur). The protocol
is completely in the described class. EV for the sliding window contain the basic counters
(HighestSent, LowestUnacked, NextRequired) , reception tags for receiver window
(booleans Alreadylceceivedi) and the explicit message and acknowledgement queues in



311

medium processes (with a user specified coding function). For criterion C1, with a user
specified cut-off rule for states added, 760 states have been constructed and 29 test cases
have been generated (with the maximum length of 7 signals). The test generation requires
40 minuteS on 12 MJ-;lZPC AT for the sliding window example, the performance is expected
to be °imptoved after fine-tuning of the test generator. To compare the results, we have
implemented also algorithm from [8], where only process states and queues are included
in the glo~al state. Much more states and test cases were generated, but not all system
branches w,ere traversed. This is due to the fact that signal sequences of length 7 are to be
examined to reach C1 (with maximum branching at any point 10).

The other example examined is Kermit protocol, where a C1-complete test set can also
be constructed.

9. CONCLUSIONS
f

The experiments done so far have shown that automatic test case generation based on
fine tuned correct global state concept is quite acceptable in practice. The state sets
necessary to reach criterion C1 seems to be by order of magnitude less than those for
reachability analysis. Certainly, the testing goals are a bit different but program-like testing
is necessary also for protocols, moreover, some kinds of deadlocks can be fixed by our
methods during state graph construction.

Of course, many improvements can still be applied to the state generation described
here. The other future direction is to apply a proper symbolic execution during global state
construction. So a much wider class of SDL systems including telephone switches could be
covered. This approach (briefly sketched in [7]) requires powerful symbolic expression
simplification (possibly based on term rewriting systems). An alternative approach to test
generation for telephone systems is given in the other paper by Latvia University group
[18].

10. REFERENCES

1 Howden W.E. Methodology for the Generation of Program Test Data. - IEEE
Trans. Comput., vol C-24, pp. 554-559.

2 Clarke L.A A System to Generate Test Data and SymbolicaJJy Execute Programs. -
IEEE Trans. Software Eng., 1976, vol. SE-2, No.3, pp. 215-222.

3 Barzdins J.M., Bicevskis 1.1., Kalnins AA Construction of Complete Sample Sys-
tems for Correctness Testing. - In: Mathematical Foundations of Computer Science,
LNCS, Vol. 32, Springer-Verlag, 1975, pp. 1-12.

4 Bicevskis J., Borzovs J., Straujums V., Zarins A, Miller E.F. Jr. SMOTL - a System
to Construct Samples for Data Processing Program Debugging. - IEEE Trans.
Software Eng., 1979, vol. SE-5, No.1, pp. 60-66.

5 Barzdins J.M., Bicevskis 1.J., Kalnins AA Automatic Construction of Complete
Sample Systems for Program testing. - In: Proc. IFIP Congress, 1977, North-HoI-
land, 1977, pp. 57-62.



312

6 Auzins A, Barzdins J., Bicevskis J., Cerans K., Kalnins A Automatic Construction
of Test Sets: Theoretical Approach. - In: LNCS, Vol 502, Springer-Verlag, 1991, pp.
287-360.

7 Borzovs J., Kalnins A, Medvedis I. Automatic Construction of Test Sets: Practical
Approach. - In: LNCS, Vol 502, Springer-Verlag, 1991, pp. 361-433.

8 Bromstrup L., Hogrefe D. TESDL - Experience with Generating Test Cases from
SDL Specifications. - In: SDL'89: The Language at Work, North-Holland, 1989, pp.
267-280.

9 Kristoffersen F. Conformance Testing Based on SDL Specifications. - In: SDL'89:
The Language at Work, North-Holland, 1989, pp. 257-266.

10 Tienari M., Aaltonen K., Eloranta J., Keskinen 1., Lehtinen K., Summanen L,
Tapila K., Turunen I. PROT AN 88 - a Software tool for Verifying Communication
Protocols Specified with an Extended State Transition Model. - University of Hel-
sinki, Dept. of Comp. Sci., Report No. A - 1988 - 5, Helsinki, 1988, 65 p.

11 Sato F., Katseryama K., Mizuno T. TENT: Test Sequence Generation Tool for Com-
munication Systems. - In: FORTE'89, Proceedings of 2nd Int. Conf. on Formal
Description Techniques, North Holland, 1990, pp. 1-6.

12 Chan W.Y.L., Vuong S.T., Ito M.R. On Test Sequence Generation for Protocols.-
In: Proceedings of the IFIP WG 6.1 Ninth Int. Workshop on Protocol Specification,
Testing and Verification, 1989, North Holland, 1989.

13 King J.e. Symbolic Execution and Program Testing. - CACM, 1976,vol. 19, No.7,
pp. 385-39~.

14 Barzdin J.M., Kalnins AA, Auguston M.1.SDL Tools for Rapid Prototyping and
Testing. - In: SDL'89: The Language at Work, North-Holland, 1989, pp. 127-134.

15 CCITT: Specification and Description Language (SDL). Recommendations Z.100.-
CCITT Blue Book, Volume X Fascicle X.l, 1990.

16 Stenning N.V. A Data Transfer Protocol. - Computer Networks, 1976, No.1, pp. 99-
110..

17 .Guidelines for the Application of Estelle, Lotos and SDL, Draft Manual. - CCITT,
Geneva, 1988, 347 p.

18 Grasmanis M., Medvedis I. Approach to Behaviour Specification and Automated
Test Generation for Telephone Exchange Systems. - this volume.



""""IiS~DrI"'L"'9I1"1i'!": 'Il':Bv::::o:l::iv~m::'g"l:Mr:anoasle!!~------------------------
O. Faergemand and R. Reed (Editors)
e Elsevier Science Publishers B.V. (North-Holland), 1991 313

TEST SEL~CTION BASED ON SDL SPECIFICATIONS WITH SAVE

Gang LUO, Aj1indya DAS and Gregor v. BOCHMANN

Department d'lRO. Universite de Montreal. C.P. 6128,Succ.A, Montreal, P.Q., H3C 317,
Canada. E-mail:luo@iro.umontreal.ca, Fax: (514) 343-2155.

. \

Abstract
The signal SAVB function is one of the characteristics distinguishing SDL from conventional

high-level specification and programming languages. However, this feature increases the
difficulties of testing SDL-specified software. This paper proposes a method for developing
tests for system testing based on SDL specifications including the SA VB construct. It also
investigates the effects of the input queue of SDL

1. INTRODUCTION

During the development of SDL, the first feature added to SDL which considerably increased
the difficulty of transforming SDL to CIDLL was the SAVB construct[I]. However, the SAVE
function increases SDL's descriptive power considerably by providing a concise formalism for
expressing the indeterminate order of arrivals of input signals. Its presence raises a challenge in
testing SDL-specified software. Some initial efforts have been made to tackle this issue [2,3]; a
formal method was proposed in [2] and a similar framework was introduced informally
through examples in [3]. However they did not address the case where the SAVE construct has
several SIGNALs, a case which is quite common.

This paper investigates software testing based on SDL specifications when SAVE constructs
contain several signals. Our approach is to transform an SDL description containing SAVE to
an equivalent SDL description without SAVE which preserves the same relationship between
input signal sequences and output signal sequences. The testing methods for the finite state
machine can then be applied [4,5.6,7]. In the case of an SDL description which does not have
an equivalent finite state machine (FSM) without SAVE. an alternate approach is proposed.

Our approach assumes that the SDL description is a FSM with the SA VB extension. Such a
description can be obtained from a general SDL specification in the following fashion. The
variable extension can be eliminated by transforming conditions which cause branches at the
DECISION construct; the combinations of inputs and conditions can be used to create a FSM
with new inputs being the combination of conditions 'and original inputs. The details can be
obtained from [3]. By ignoring parameters and other variables, we obtain a finite state machine
containing SAVEs and an input queue, which we call an "SDL-machine".

The rest of the paper is organized as follows. Section 2 is devoted to the fault model and
gives a brief introduction to the SDL-machine formalism. Section 3 investigates the relations
between SDL·machines and FSMs in order to adopt the testing methods for FSMs to test SDL-
machines. We propose an algorithm to transform an SDL-machine to an equivalent FSM which
preserves the input/output relation. For the SDL-machine which cannot be transformed to an
equivalent FSM leaving the input/output relation unchanged, another algorithm is given to
transform it to a FSM which approximates the original SDL-machine. Section 4 handles the
test case selection methods based on the results of section 3, and analyzes the test coverage thus
obtained.

mailto:E-mail:luo@iro.umontreal.ca,


The 6th International
Conference on

Software Engineering
and

Knowledge Engineering

. Co-Sponsored by
Knowledge Systems Institute

University of Latvia
University of Pittsburgh

In Cooperation with
IEEE Computer Society

Technical Program, June 21-23, 1994
J URMALA, LATVIA



GRADE Windows :an Integrated CASE Tool
for Information System Development.'

A.KalniI}s, K.Podnieks, I.Etmane,
A.Kalis, P.KrastiQs, S.Rozenfelds

University of Latvia
Institute of Mathematics and Computer Science

Rainis boul. 29, Riga LV-1459, Latvia

J.Barzdil}s,
A.Auzil}s,

Abstract

The paper <outlines the basic ideas of unified
specification language called GRAPES/4GL and
corresponding toolset called GRADE Windows. 17,e
toolset is -aimed: .tlJ- support all system development
phases including analysis, requirements
specification.design and implemntation.

1. .Introduction -

By integrated CASE tools (lCASE tools) we
understand computer aided system and software
engineering tools supporting al1 system development
phases including analysis. requirements specification,
design and implementation. It is a generally accepted
view that complex software systems, including
information systems, can he built only using ICASE
tools. TIle core of such tools is a specification language
on which all tool activities are based. High level
specification languages accepted in practice have been
developed " forlelecommunicationssystems ( SDL,
LOTOS, Estelle) and for process control applications
(e.g., STATEMATE). On the basis of these languages
the corresponding CASE tools have been developed
(e.g., SDT[I), GEODE[2), SPECS[3), STATEMATE[4)
et.a1.).

However, in the area of information systems the
situation is much worse. There is no generally accepted
high level specification languages for this area. There
exist specification languages with slightly theoretical
bias (e.g., SPEC[5], SF[6]). However, it seems that up to
the moment they have not reached the status of real
industrial languages with full CASE tool support. III fact,
there are specification language elements present in
some popular CASE tools, e.g., IEF[7).· yet . the

-~cification- language-bas-not-obtained -.the-status of _~ ..
independent and well-defined component in these tools.

"This work was supported by Software House Riga and
Infologistik GmbH, Munich

In recent years the research and development in the area
of specification languages and CASE tools has been
significantly turned towards object orientation ([8], [9].
[10].)

If we look at die situation some years before
one of the practically most advanced languages for
analysis and design of information systems was
GRAPES-86 proposed by Siemens [II]. We started our
research and development three years ago with a goal to
~e.~~I.tP further the GRAPES-~6 language and to build
the corresponding CASE tools. The research resulted in
the development of die language GRAPES/4GL as an
extension of GRAPES-86 and the corresponding CASE
tools named GRADE Windows. This paper outlines the
basic ideas of GRAPES/4GL language and GRADE
Windows tools (short description of GRAPES/4GL and
GRADE Windows is given also in [12]).

Several years ago. when we started our
developments, there existed already advanced CASE
tools like IEF [7] (and many others). However, a
significant distinction of GRAPES approach was putting

- in the.foreground the description of system structure and
its external interfaces (i.e., what messages enter the
system and what leave). In other words. GRAPES
approach is focused on system understanding from the
view point of incoming/outgoing information. At the
same time IEF approach puts in the foreground the
conceptual data model of the system and its databases,
around which applications are then being buill. To our
mind, these are two principally different approaches each
having its own merits and flaws.

2. Basic Ideas of Language GRAPES-86

As it was mentioned ill introduction, the basis
for GRAPES/4GL is Siemens Nixdorf system design
langu~.ge .Gij.APE~-~_6_[I IJ:_This. language united wet!
known diagramming techniques - data flow diag-~~s~
ER-models, graphic process descriptions into a coherent

54



ORDER DATA

Order no: Date:

ITEMS:

No Prolle-t no Quantity

TYPE REFERENCE: item, order

SIZE: IS, 55

FIELD LIST:

order_no, REQUIRED

Order_date, -TYPE OATE--

_cust_no

cust_name, NOENTRY

ARRAY Items, 4 ROWS

nn = IIUTONUM

prod_no, REQUIRED

Qty. REQUIRED

END ARRAY Items

graphic design -language. The main.iparadigm of .the
GRAPES language is a multilevel static system
structuring, and description of system behaviour as a set
of processes communicating via messages and
performing each own job in response to received
messages.

Formally, GRAPES-86 uses a fixed set of
diagram types for system description :

CO for system structure description;
00 - for graphic datatype definition;
IT - for communication description;
J~R· for Entity-relationship modeling (as a

standalone feature);
PO for graphic process/procedure behaviour

descriptions;
SO

definition
OT for process/procedure local variable

definition.
A system ill
representing

for procedure/module interface

GRAPES-86 is described as a model
a hierarchy of the abovementioned

Tota 1 items:

Fig. I

_diagrams, the topmost one bein~ a CD diagram. This
diagram hierarchy is called a model tree. -

However, GRAPES-86 lacks some important
features for system design description and doesn't
support actual implementation at all. The most
outstanding deficiencies are lack of user interface
description ami missing data manipulation features.

3. Basic Ideas of Language GRAPES/4GL

GRAPES-86 is strongly oriented towards the
needs of system analysis and "coarse" design level. As a
result, if we follow the GRAPES-86 'methodology, there
is a large gap between high level specification and
implementation in some target environment. The basic
goal of GRAPES/4GL approach is to reduce this gap as
far as possible. In order to achieve this goal we tried to
design the GRAPES/4GL language so that it can serve
both as specification and programming language. Hence,
we had to incorporate into GRAPES typical features of
advanced 4th generation languages, not "damaging" the
language features oriented towards specification. Sud) a

55



PH
:

"--. - - - - --ORDER SURVEY
Orders after : Icdate I

-- ---,....- ---:" --.
CUSTOMER Icus-t name _ I CUST NUMBER Icust nor- --

- - - --

PRODUCT CODE QUANTITY AMOUNT
Iprod name I [p r od no I IQty I [amoun t . I I

CUSTOMER TOTAL 15 amount I

GLOBAL TOTAL Itota 1 I
PT

TYPE REFERENCE: report_data_el
FIELD LIST:
cdate. TYPE DATE

ARRAY
GROUP OF cust no
cust name

prod_name
prod_no
Qty
amount a price"qty. TYPE DE~I~~L[9.2J
(price)
END ROW

s~amount - SUH(alllOuntl.TYPE DECI/1Jl.L(9.2)
- END GROOP---- ---

END ARMY

unified language, valid for all development phases, from
our point of view is an extremely significant component
of advanced CASE tools. -

First of aU, GRAPES/4GL bas several new
types of diagrams when compared to GRAPES-86. The
most important of them are, screen forms (Sf. diagrams)
and. report forms (RF diagrams). serving as the graphic
basis ~or ad~~ced __screen _input/output and. report
generation facilities, respectively. TIle other area of the
most impressive- extensions is PO diagrams. where
advanced facilities for form-based input/output and
database management are added.

Fig. 2

4. Screen Forms

FIrSt, we present a brief -discussion of screen
forms (SF diagrams). In order to make their use easier.
the typical subcases of man-machine interaction - data
input/output, fixed menu choice and selection from a
data list are represented by separate subtypes of SF
dia-grams : YO. MENU. SELECT' respectively. Each
screen form contains the active elements - fields (items)
and the passive ones - texts. the fields being connected to
program data elements during input/output. Important
elements of forms are screen arrays. which are connected
to data arrays, lists or sets thus permitting the
representation of large data objects via easy predefined
scrolling. The form sublanguage is closely related to data
type definition facilities" thus all the one hand, covering
easily the traditional form generation in data base

56



management languages and, on the other hand. yielding
much greater flexibility due to broader data type
concept. Though GRAPES-86 already contains the ER

Fig.1. presents a typical example of model concept, _it is _significantly extended on
GRAPES/4GL screen fonn. GRAPES/4GL, and plays a much more important role.

However, these are not the screen forms TIle most significant extensions are nested entities and
~ .tbemseJve&_whicIL-Bi1LlL a _signifi~tly ~.£rease<! su~t~ eJltiti~,_ Th~ &-r..y>ill~ notation u~~ _for. ~~_
- input/output functionality; but rather their close models is that introduced by J.Martin [13}. A new

cooperation with YO facilities in PO diagrams, which graphic element is the notation for nested entities by just
actually connect data to forms. These facilities wi}~be placing them inside parent entities. Fig.3. presents a
described later in greater detail. But one important typical ER model in GRAPES/4GL • a standard sales
feature must be mentioned 00 the spot Namely, the department data base (with nested entities).
application-specific control of the data inpu! or
modification process is ensured by advanced set of input
events generated by user actions. These events include
AT START. AT FINISH. KEY keyname, BEFORE
FIELD fieldname, AFfER FIELD fieldname, BEFORE
ANY FIELD. AFTER ANY FIELD, BEFORE ROW,
AFTER ROW. AT DELETE, AT INSERT.
TIle situation when an event occurs should be evident
from the event name.

S. Report Forms

ReporHoiins (RF diagrams) contain even more
novel elements than screen forms and are more
complicated in a sense. In addition to standard data
layout specification they contain built-in facilities for
row grouping and group break processing. Namely,
group headers and footers in the form layout part
together with the related grouping/ordering specification
in the field description part completely specify the
needed grouping in -most staridard cases. Computable

- form fields specified by expressions are used-.!l~_~~_
way as in screen forms. Thus tile corresponding report
generation-statements in PD - diagrams may be very _
simple. as a rule. just presenting the data (a set of records
as a rule) 00 wbich the report is to be generated. Fig.2.
presents a typic::aIexample of report form,

However. it is much more difficult to have an
easy merge of standard report control mechanism with
non-standard additional printing related to some data
elements in the report. The solution is also presented for
this problem in GRAPES/4GL. Namely, a report form
also de~Jl$S an event concept. a print interrupt in this
case. The print interrupt is defined at the corresponding
row in fonn layout (see the letter A in the example), and
invokes the actual interrupt during report generation,
when printing reaches this row. The application-specific
interrupt processing is described in PO diagrams, in a
very similar way to event processing during input/output.
The regular printing defined by the form in this row m.1Y
be freely-combined with any desired non-standard
printing in the corresponding event fragment.

6. Data Base Facilities

refers_to
FK prod_no

iSJllaced_by
FKcust_no

places

Fig .3

However, the main novelty is not in ER model
internal features, but rather in its broad and consistent
use, much deeper than one conceptual data model for a
system. CD diagrams in GRAPES/4GL contain an
explicit symbol for (passsive) data base, whose type is
defined _by_the_c_OlTe$JN!wing~ model. Access rights of _
each process to entities are described by special access
paths and tables. Relationships are explicitly used in data
manipulation. and their cardinalities serve as executable
data base integrity constraints.

The traditional way of system implementation is
to transform the conceptual ER· model into relational
models describing actual data bases. GRAPES! 4GL
approach is quite different, namely, to reference directly
the components of ER model in data manipulation
statements of PD diagrams (see some details later). Thus,
a complete continuity from design phase to
implementation phase in L11e data definition area is
obtained.

7. Extensions to PD diagrams

GRAPES-86 PO diagrams are more or less
traditional flowcharts from graphics point of view.

Grapes/4GL PD diagrams contain a number of
new elements. From the graphic syntax point of view an
important element is a statement body. 11 is used to

57



FALSE

ERROR 'Too many
items'"

group together repeated actions related to one statement.
One use of statement body is a more readable graphic
form for conventional WHILE and FOREACH loops.
However, the main use of bodies is GRAPES/4GL

--screen inputzoutput.statementa.basedon screen .forms
described above. Now let us describe the screen input
statement in greater detail (the graphic syntax fur other
screen 110 and for report' generation statements is
similar).

Fig.4 presents an example of input statement for
entering data via the Iorm from Fig. I.

The statement consists of bead and body. The
head of INPlIT statement performs the connection of
fields from variable new_order (which is meant to be of
an appropriate record type) to equally named fonn fields
and it starts the statement execution. There should be an
array or set field with name items in new_order, which is
connected to the form array. The elements of the array
must, in tum, be records with fields named like screen
array fields; thus the connection of data elements to
screen elements is performed up to the lowest level,
using this by-name principle. For the simplest case with
only default checks of entered data no body is needed.
However, as a rule, problem-specified data checks are
necessary. They are performed by means of event-related
fragments in the body. Each event activates the fragment

LOCATE Customer
WHERE cusCno=new_order.cust_no

new_order.cust_name: =
Customer.cust_name

Fig. 4

starting wit!I' the corresponding event symbol. For
example, after the user has entered the field cust_no (i.e.
he presses ENTER for that field), the event fragment
AFfER FIELD custno is activated, which could. e.g.
.check ~hetller such customer code i~pre_sent.i!, the data
base (in the entity Custorner). IIIaddition the value of the
fonn field cust_name may be supplied from the entity
(by simple assignment to the corresponding field in the
variable new_order). The fragment terminates either
with CONTINUE (continue input) or EXIT (end the
whole statement) symbols. .

Each event fragment is independent of others,
so it is more like a rule to be checked ill the specified
occasion.

The other group of statements, worthwile to be
mentioned, is data manipulation statements. The
functionality of these statements completely cowers SQL
for the relational model. But their form seems to be more
readable since it is based directly on ER-model. In
addition, a based variable .(in other words, automatically
dereferenced pointer) is defined for each entity in a data
base, and use of these variables seems to be easier than
that of SQL cursors. For example,
LOCATE Customer WHERE custjio = 125
immediately gives access to the desired instance of
Customer entity (if there is such).

58



( input ! ): INPUT
VOrder__BY NAME • !«V~lriable»1 BY NAME ••.•

{IAdd new elemciiih*
VIA FORM order_data

{18ttributes: AT. COLOURs. START. noCLOSEll:K
VDate

R. VOrder
zzz

Role name in relationships may be used for
easier specifrC:itlons of]oins (using an extended syntax
of SELECT expressions).

There is a lot of built-in functions and other
details in GRAPES/4GL. but they are of a more
technical nature to make the language a full-blown 4th
generation data base programming language.

So to sum up, a language suitable for all
development phases, from system analysis via design tu
implementation is proposed. Certainly, a subset. of .

-language facilities Isused ineach p!!;lse,- but the actual
bounds of each subset very much depend on-
development style and team individualities. For
example. screen forms may be used to specify
documents already in analysis phase (thus enabling early
prototyping), or they may be introduced as actual forms
during implementation.

Complete description . of GRAPES/4GL
language is given in [14].

8. Overview of GRADE WindowsToolsel

The toolset contains the following components :
• graphic editors
• syntax analyzer
• language interpreter. supporting

prototyping. simulation and debugging
• code generator for target environment.

currently MS DOS or UNIX with
INFORMIX as a standard SQL
database.

Fig. 5

All components are supported by common
repository used for storing GRAPES models (diagram
hierarchy together with diagrams themselves). A lot of
common functions are supported by the repository, e.g.
cross-referencing. supply of the lists of visible names
etc.

Now let us characterize the most novel features
of each component.

9.. Graphic Editors

illi-main objective' 'of graphic editors in
GRADE is to support a_ graphic design and graphic
programming in a manner as easy and simple for the user
as the use of textual editors. To achieve this goal a lot of
innovative features have been incorporated in the family
of GRADE editors for all sorts of diagrams. Now let us
characterize briefly the most important of them.
• Autumatic allocation of elements.
Editors support automatic allocation of diagram
elements, wherever it is reasonable. All this is done in a
fast and effective manner. At the same time the user can
combine the automatic allocation with a manual
allocation for diagrams where some special outlook is of
great importance. It should be noted that namely an
efficient combination of both styles poses the most
serious problems in editor design. Additional feature that
the user can select manually is the diagram element style
(colours, bold lines, shadows etc.)

Now let us be more specific for separate
diagram types. The automatic layout is the main style for
CD editor, however. the manual "prettydrawing" is also

59



supported for these diagrams when needed. TIle same is
true for ER model diagrams. Process diagrams are
allocated automatically, with the possibility to compress
the layout afterwards.

The automatic allocation (for CD. ER editors) is
based on special sophisticated graph theory algorithms

. (authon P~ and-UuCev~kisl......IJtese alg.oritJID:Is.
are very fast and yield an allocation which is both
compact and easily perceivable from the user's point of
view.
• Syntax promptin
Several prompting mechanisms are present from which
the most remarkable is GRAPES/4GL PD statement
syntax prompter. It should be noted that GRAPES/4GL
PD statement syntax is rather complicated since it covers
all features typically present in industrial 4GL's. At the
same time it is very important for the user to start using
the tools without a long learning period. A very
convenient prompting is supplied for each statement
allowing' to enter the statement correctly as soon as the
idea of the statement is grasped TIle prompting is based

..00 .a set. of. predefined scenarios. (g~ne~t~d i!om the
language grammar).

More precisely. the-prompting proceeds in the
fullowing way. -prrst. all statements are grouped into
large groups (according to the shape of their graphic
symbol):
Decision
Case
Loop
Prucedure
Receive
Send
Assisn--
Screen input
Screen output
Report
Data manipulation

The user selects tile necessary group via icon or
menu. Then the group is split into smaller ones using
submenus (formed as dialog boxes). At last the user has
selected the specific statement type be wants to enter.
The prompter shows the general syntactic form of the
statement,

The user then fills in the placeholders in the
syntactic form or selects subcases of the statement by
clicking on the appropriate selection marked by a
representative keyword, e.g. [qualified] var BY NAME.

This immediately invokes IDe refinement of the
template yet to be entered. A special provision is
supplied for iterative parts of the statement
([ add_new _element} *) where as many instances of that
part may be generated as needed. Whenever the
placeholder must be substituted by a defined name of
the appropriate name class (variable. entity, type etc.),

the visible names of that class are supplied. Thus even
inexperienced users can enter a statement completely
.and without elementary syntax errors. Fig.5 shows an
. example of _en!ering INPUT statement via syntax
prompter.

The same principle is used to enter complex
. _g~P~~!4GL ex~ressions containing tile numerous

- '-huilt-in functi~ns.· -- -~--.'-- - - -- - ---

The experience shows that prompting is
principal for inexperienced users to have a quick start of
GRADE usage.

10. Syntax Analyzer

TIle syntax analyzer is the most conventional
component of all. It is implemented in a special compiler
writing language RIGAL [15] (developed by
M.Auguston and V.Engelson). Thus a high versatility
(due to frequent changes in language syntax during
development) and a high performance at the same time is
obtained. TIle diagnostic messages are displayed to the
user viathe same graphic editors. in the case of PD
diagrams usingthe same syntax prompter. Thus a precise
errur location and ease of correction is ubtained.

11. GRAPES/4GL Language Interpreter

The language interpreter starts from the
intermediate code prepared by syntax analyzer. This sole
component is used for three related, yet different
purposes: rapid prototyping of systems. system
simulation for evaluating design solutions, and as a full-
scale debugger for GRAPES/4GL programming, Due to
this versatility a 101 at execution modes has to be
supported.

For prototyping and simulation. the process
concurrency present in GRAPES has to be simulated.
This is done in the most efficient way. completely
preserving the GRAPES concurrency semantics at the
same time (and allowing in addition for experienced
users to have some control over the process scheduling).

All GRAPES/4GL screen input/output and
report features are supported. thus an early prototyping
of system user interface is also facilitated.

There are special provisions for system
performance simulation. Though GRAPES/4GL is not a
special simulation language. the same functional models
with very little adds-on (like delay. workload etc.
specification) may be used for performance simulation.
Standard statistics are collected automatically in this
mode and are stored as special predefined entities in data
base. Thus special problem-related performance reports
may be prepared easily by few GRAPES/4GL
statements. The most commonly used statistics may be
displayed in diagrams by graphic edtors,

60



When using GRAPES/4GL interpreter as
nonnal language debugger. the main concerns are ease
of use and complete semantic compatibility with the
generated code. Botb these requirements are .strictly
observed in the GRADE design.

12. -C~euerator7--

Code . generator starts with tlie same
intermediate code as interpreter. and generates C _~e
with embedded SQL statements. At present time the
code is for MS DOS or UNIX environments. with screen
input/output in text mode. lNFORMlX data base engine
is currently used for SQL support (with an easy switch to
ORACLE possible). Code generator generates both data
base definition/creation statements (from ER models of
the data bases) and executable code for each independent
execution unit (process in GRAPES terminology) of the
system. The optimization level is sufficient for quite
large systems to be completely generated tn this way. In
case of need extemal C procedures may be linked in. e.g.
to sUPpoJ1hHeJ:fac~ JO_ already .existing parts.o( the.
system.

Complete description-of ORADE tools is given
in [16}.

13. Conclusions and Future Work

The GRAPES/4GL language and GRADE tools
described in the previous sections are currently being
used for the development of several large information
systems.

·Currently the GRADE toolset is running in MS
Windows. -The -minimum requirements for hardware,
platforms are 386-based machine with 4MB of RAM.
with full MS Windows 3.1 support. However. for
development of large projects 486-based machine with 8
or 16 MB of RAM is recommended, Then fairly good
response time is achieved for large system models
containing several hundreds of process/procedure
diagrams and large ER models with several hundred
entities.

Future perspectives of the GRADE development
include Windows GUI style screen forms as rue main
exteosiQQ,.of GRAPES/4GL language and support for
team development of large models with rue repository on
network server.

Porting of GRADE
environment is also planned. We
incorporate 00 ideas in the
GRAPES/4GL and GRADE Tools.

to UNIXIMOTIF
have also plans to
next versions of

14. References

2.

3.

4.

61

I. J.Karlsson. A.Ek. " SSI - an SDL Simulation
Tool". Proc. 4-111SDL Forum, North-Holland,
1989; pp.211-219.

V.Encontre. "GEODE: An Industrial
EnyirQlune~~ forJ)esigl!il!&..R~al }ime ~ y~tem~_
in SDL" Proc.e-tli SDL Forum, North-Holland.
1989.pp.105-117.

M.Dauphin. G.Fonade. R.Reed. "SPECS:
Making Formal Techniques Usable ". .IEEE
Software. November 1993. pp.55-57.

D.Harel, et.al, "STATEMATE: A working
environment for the development uf complex
reactive systems. "IEEE Transactions on
Software Engineering. 16(4). April 1990. pp.
403-414.

5. V.Berzins, Luqi, Software Engineering witli
Abstractions, Addison-Wesley. 1991.

A.Berztiss, 111eSpecification and prototyping
language SF•.-SYSLAB. Report 18. Royal
Institute of Technology and Stockholm
University. 1990

G.Martin. lnformation Engineering Book 1-11-
III. Prentice Hall, 1991.

P.Coad. E.Yourdon. Object-Oriented Design.
Prentice Hall. J991.

J.Rumbaugh. et.al .•• Object-oriented Modeling
and Design. Prentice Hall. 1991.

G.Martin. Principles oj Object-Oriented
Analysis and Design. Prentice Hall. 1993.

- - - ---. --- -
G.Held (ed.), Sprachbeschreibung GRAPES.
Siemens Nixdorf. 1990.

LBarzdins, et.al., "Unified Specification
Language and Integrated CASE Tools for
Information System Development". Proc. Baltic
D8'94. May 1994, Vilnius (to appear)

G.Martin. C. McClure. Structured Techniques:
771eBasis Jor Case, Prentice Hall. 1988.

Grade Vl.O: Modeling and Development
Environment for GRAPES-86 and
GRAPESl4GL, LAnguage Description. Siemens
Nixdorf. 1993.

M.Auguston. "Programming Language RlGAL
"ACM SIGPLAN Notices. Vo1.25. N12.
December 1990. pp. 61-69.

GRADE VI.O: Modeling and Development
Environment for GRAPES·86 and
GRAPESI4GL, User Quide, Siemens Nixdorf,
1993.

6.

7.

8.

9.

10.

II.

12.

13.

14

15.

16.



Extensions of GRAPES/4GL for 'VillUOWSstyle input/output

A.Kalnil,1s
Institute of Mathematics and Computer Science

_~~ ~~inis bouL29, Riga LV-~4~9~~~tvia

Abstract

171e paper presents a short description of extensions
made to specification and implementation language
GRAPESl4GL in order to support Wi/ldows style
graphic user interfaces, Both Willdows style screen form
definition facilities and new features ill process diagrams
supporting extended event processing and /lew control
pat/ems typical to Willdows interfaces are presented.
Most of th« GRAPESl4GL style provell valuable for
existing textual l/O lias been retained ill the /lew version.

1. Il1lrodJlctiOD_--

A massive transition from textual interfaces to
Windows style graphic user interfaces is going on for
nearly all information systems in the recent years.
Consequently, the same is to happen for tools supporting
the information system development The paper
describes how this transition is being performed in
GRAPES/4GL specification and implementation
language and its-supporting tooiGRAD~ Windows fl].

--Clle popular approach in thisarea is represented .
by system development languages based on SQL servers
for Windows environment, like Microsoft ACCESS[3] or
Gupta SQL [4]. The user interface sublanguages in these
systems comply· to ·Windows standards. but nre
completely SQL table based on the other hand. Simple
table-related screen fonns and their support logic can be
generated very quickly this way, but it is not so easy to
obtain more general and sophisticated graphical user
interfaces by these means.

On the other extreme, there are object-oriented
development interfaces above the standard MS Windows
APL like Borland's Object Windows for Pascal [5] and
Object Windows for C++ [6]. Though these interfaces
significantly simplify the application development when
compared to standard API based tool kits, that approach,
though universal, is still too complicated to be used on a
broad scale for information system development.

The main objective during the design of
graphical user interface facilities in the new version of

GRAPES/4GL (called GRAPES/4GL-W in the paper)
was to find a compromise between the two above
mentioned extremes, or in other words, to define a
language simple enough for standard cases and flexible
enough for sophisticated user interface definitions really
appearing in information systems. The major goal was
also to maintain the continuity with existing
GRAPES/4GL text based user interfaces, to facilitate a
semiautomatic conversion of these interfaces to graphic
style.

The paper describes the graphical screen fonn
definition sublanguage based both on CUA standards [7J
and UNIX/Motif environment Style guides [8]. The

. available attributes of forms and their elements __are
specially tailored to the needs of information systems.
Properties required to define, e.g .• or full scale graphic
editor are intentionally omitted as too complex.

Then the GRAPES/4GL·W statements to be
used in process diagrams (PO) for controlling the screen
forms and relations of these fonns 10 data (the widely
used GRAPES/4GL connection principle) are described,
as well as broad facilities for describing reactions to
events generated by users interacting with the fonns on
the screen. Namely. the event processing is the must
essential part of Windows programming, and it is where
a lot-of innovative features have been incorporated in
GRAPES/4GL-W. A short description of more technical
features like statements and built-in procedures for
updating the fonn and element attributes is presented,
but the role of these functions is significantly less
siguificant here than in, e.g., Object Whrdows l5J.

2. Gruphlc Screen Forms

Though graphical user interface elements are
strongly determined by documents such as CUA
definitions [7] and Motif style guides [8J,
incompatibilities in these documents leave some room
for choice. In GRAPES/4GL- W namely those elements
have been chosen, which are supported by all Windows
style environments, and which are of some significance
for infonuation systems. New elements in

201



GRAPES/4GL- W are combinations of the standard ones
and represent a typical building blocks of user interfaces.

It should be mentioned that some influence in
the selection of elements has come from the product
Dialog Builder being developed by Siemens Nixdorf [9].
That approach also bas a goal to unify different
Windo,ws .ellv.i[OnmeD~ ~ou&!!- j! has Do~ficient
orientation towards Information systems, -

2.1 Screen Form Types in GRAPES/4GL-W

Like in GRAPES/4GL • screen Iorrns are
defined by diagrams of type SF, however with
completely new subtypes.

TIle main division of fonns in GRAPES/4GL-W
is into non-modal and modal ones . The non-modal
Conns are normally called windows and have the
property that one application may have several windows
open simultaneously with the possibility for .the
application user to select which window to internet with.
Modal fonns are often called dialog boxes also, and only
the current one of them may be accessed-by 'the-user ..
Non-modal forms are further divided into the following
subtypes:

main wi"dows (with subype name MAINWIN).
There may be only one main window per
application, it is open for the application's lifetime
and controls all other fonns of this application, its
closure terminates the application.

- start windows (with subtype name ST ARTWIN).
Start window is displayed at the beginning of
application execution (visually before the main ..
witloow)ip _ord,~r to present e.g., the. ~!!Ipa_ny~_
logo or some animation. There are special closure
agreements for this. type. _

windows (with subtype name WINDOW) are
ordinary windows for exchanging the information
with theuser, there may be many windows open in
the same application, including instances of the
same form, The user may manually select the
window for interaction.

- subwlndows (with subtype name SUB WIN). They
are used to structurize complex window definitions
with large number of elements. Each subwindow is
described by independent SF diagram. but actually it
is a fixed part of parent window, represented by
subwindow reference in it

Modal/oTms (with subtype name DIALOG) in
GRAPES/4GL-W remind most closely tile previous 1/0
forms ill GRAPES/4GL. TIle user can communicate with
only one modal fonn at a time, and that must be closed
before another one may be accessed. Modal forms are

nonnally used for input or modification of limited
amount of data. It should be noted that other
GRAPES/4GL fonn subtypes (SELEcr, MENU) have
.become just elements of GRAPES(4GL- W forms.

2.2. Form Elements
,....--,.. - -.' -:- -----.-:- _ .._- -0-- --- --

GRAPES/4GL·W. forms. consist of elements.
Only three kinds of them: -fields, texts and field arrays
are actually inherited from previous GRAPES/4GL form
elements, the other ones are implied by Windows GUI
standards, Elements are of two types: dataelements used
for data input or output and command elements used 10

generate events related to user activities. Data elements,
in tum, nre active ones, which may be used both for
entering and displaying data, and passive ones, which
may be only displayed.

The active data elements are:
• field (for elementary data I/O of any type,
- listbox - for selection from a list,
- combobox - for data selection or entry,
- scroller » fur selection of a numeric value within a
range,
• radio button grullp • for selection of a value from a
set,
• checkbox grullp - for setting a group of flags,
- field a""y - for 1/0 of an array uf records.

TIle passive data elements are:
- text - for display of texts,
• bitmap - fur display of graphic bitmaps,
• drawing area - for display of graphic
lnfonnatlon via special drawing functiuns,
-- status line» fur displaying status messages,
- frame --- -- visual.element (line or.rectaugle)
for framing other Clements.

TIle only element not traditionally proposed by
Windows standards is field array. It has the sallie
structure of equal rows of fields .IS in GRAPES/4GL,
only a scroller is added for moving the visible part of a
larger datu array, list or set. All active data elements are
meant for connecting them to variables or their parts at
110 statements, thus tile proper data 1/0 occurs via these
elements. Listbox und combobox elements actually have
two subparts: the ITEMS subpart (referenced via special
syntax listbox_nmne:ITEMS) for displaying a selection
listand the selection subpart named as tile element itself
for returning the selected value(s).

P.1S5ive data elements are used nonnally 015
fixed decorative elements whose values are set by
special functions. For example, texts may be changed,
one of several bitmaps made visible, and so on.

202



-.-::::::::~:::::: :::: ::::::::::::::Cus{ome; .Reglstratlon Form:::::::: ::::::::::::::::::::::: :::

Icname I
Company

Icompanv I
Customer name

Number

100-- - ~--

Street

- 1 street--- I
Status
-- --- ._--- --~- - ~--.----------,

City
city
city
city
city
city
city
city

o new

o waiting

o registered

DIALOG cust reg,
_ PO~ITION=(65,72, 473, 294),
-TITLE";'''CustomerRegistration Foiriin~ - -
~UTORESHOW,
TYPE REFERENCE = cust reg t BY STRUCTURE;
ELEMENT LIST --

FIELD cname, POSITION=(63,33), REQUIRED;
FIELD company POSITION=(362,331, REQUIRED;
TEXT TI, POSITION=(48,91, VALUE="Custorner name";
TEXT t2,POSITION=(255,91, VALUE="Company";
GROUP ca~dr

FIELD no, POSITION=(14,86,531;
FIELD street, POSITION=(118,B61;
LISTBOX city, POSITION=(18,136,177,1351;
TEXT t3, POSITION=(14,67), VALUE="Nurnber";

-'"TEXTt4, POSITION=(118,67),- VALUE=!'..Street.!!.;
TEXT t5, POSITION=(21,117), VALUE="City";
FRAME fl, POSITION=(4,64,218,220);

END GROUP caddr;
RADIOBUTTONS status, POSITION=(262,I07),

: ORIENTATION=VERTlCAL,
RBUTTON LIST :

RBUTTON bl, V.ALUE=new, TITLE="new";
RBUTTON b2, VALUE=wait, TITLE="waiting";
RBUTTON b3, V.ALUE=reg, TITLE="registred";

END RBUTTON LIST;
BUTTON OK, POSITION=(246,238), TITLE="OK", DEFAULT;
BUTTON Cancel, POSITION=(346,238), TITLE="Cancel";

END ELEMENT LIST;

Fig.1

203



Tbe command elements of GRAPES/4GL- W
are
- button - standard Windows button,
- pull-down "'UIU - a menu element of the window
positioned according to Windows standards,
~ J1opup--menu ~-a _command.,JisLwbi~ILI19PS~ wl~~_I1__
right mouse button is pressed,
-accelerator - a key combination used as a shortcut for
other command element.
It should be noted. that according to Windows standards,
GRAPES/4GL, menu forms are to be transformed in
GRAPESl4GL-W either to pull-down menu elements of
some window, or to pop-up menus appearing on user's
demand.

A special element of a wiudow is reference to a
subwin<.lowwhich is described in a separate screen fonn.

Yet another special element is group which has
no graphic appearance, but only defines a list of
elements (or other groups) contained in it. Group is
introduced to facilitate structured data connection to SF
elements and common actions with several elements.
Group concept is an ~aiogue to -reco~dconcept in-data
type definition. '

Each.fcrm-elemeut has a name, which must be
unique in the form (or comprising group, if there are
groups defined). Elements are referenced by their names.
which may be qualified (by group names).

2.3. Fonn anti Element Attributes

TIle form as a whole and each of the elements
lias attributes which spec-ify both the graphical and

-logical properties of it.-The graphical attributes like ,J;~L-_

y-coordinates,lIeiglll, widt1l,colour, border etc. actually
are implied by Windows standards. A -number of logical
attributes are induced by GRAPES style or interaction
with elements and they are COlJUllOnto nil elements, like:
visible, ellabled, . ailtoreshow. required, helpid. These
attributes determine the rules of entering the element
value by user or the rules of displaying the value. Each
type of element has also its specific attributes. For
example, field, in addition to above mentioned. has
attributes default, expression, fOIlI. word-wrap,
alignment, password, multilin«, maxlen, '1pe. These
attributes partially are inherited from GRAPES/4GL and
partially imposed by Windows standards (on Edit
control, which is the same).

Each attribute has a specific value range,
mainly integer or yeslno, however for some attributes
larger fixed value sets or string type values apply.
Attribute values for the form and its elements are
mainly defined at creating the fonn diagram via the
appropriate GRADE editor. However, some logical and

even graphical attributes may be changed by special
statements and functions during executiou, for example,
field may be moved or resized" it .may be m•.ide
visible/invisible, enabled/disabled, required/optional, .

TIle main objective in defining the attribute set
in GRAPESl4GL-W has been to make as much
proPerties -orereme'ritsstal1calty <1efiajablearfonn design--
as possible, in order to simplify the corresponding PD
diagrams,

As in the previous version of GRAPESl4GL, SF
diagrams contain the graphic layout part and textual
description part where attributes of the form and all its
elements eirevisible. If an attribute is not present in the
description, it has the default value. The four
geometrical attributes: x,y, width and height are gouped
together as position attribute in the textual. fonn. TIle
presence of a yes/no type attribute means the ·yes· value
for it, with "no" values cooed by the corresponding
"opposite" keywords. Fig. I shows an example of
GRAPES/4GL-W screen fonn - a modal Conn,as it will
be enteredby next version of GRADE editors.

3.1npuUOuLpul Statements in GUAPES/4GL-W.

TIle main concern in I/O statement design has
also been the balance between the simplicity and vast
possibilities of form behaviour typically to be found in
Winduws environment The main idea was to preserve
general mechanisms in GRAPES/4GL - the connection
of data to forms by major input/output statements and
processing of input/uutput details in event fragments, in
responseto events generated by user actions.

3.1. Main Input/Output StaLcmcnts

Modal forms in GRAPES/4GL-W have in
general the same iuteructlon logics as 1/0 forms in
GRAPES/4GL. Therefore the same INPUT, MODIFY
and DISPLAY statements are retained in GRAPES-4GL-
W for modal forms. TIle statements open the form illld
connect deltato fonn elements. When the user has ended
the data modification or entry, and has pressed the OK
button, the statement is also ended. Fig.2 presents the
simplest example of how the new value of
customer_record_ variable (cust_rec) is entered via the
screen funn in fig.I. Here c/lslJec is assumed to have
record type with fields cname, COli/PUll)', caddr, status,
with caddr being a record in tum with fields 110, street,
city.

204



INPUT cust ree BY STRUCTURE,
city_set TO c:ily:ITEMS

VIA FORM CUIUeo

--....,..-.----:;- - -- -:-- ._-~.- ..

Fig.2

The statement looks much like as in previous
GRAPES/4GL version, except that new connection type
BY STRUCTURE is used instead of BY NAME (due to
the fact that the form has a group) and the special syntax
for setting the value of ITEMS list of the city list box.
TIle details of the extended connection concept in
GRAPES/4GL-- W are presented in the next subsection.
Two exits of the statement correspond to two possible
buttons for ending the input

However, it is not very typical in Windows I/O
style to have no event processing for an input. Event
processing OIay be done either in statement body, as in
GRAPES/4GL. or in the special event procedure -(which
actually is a remote body, wl!Jl--some extended features).
The event -prccessing rfnechauisms are described in
detail in 3.3.

Thus, the complete syntax of statements for
modal screen forms is:

{INPUT I MODIFY I DISPLAY}
connection_list .
VIA modal_screen_fonn_n:une
lWITH event-procedure [(par:un_Iist)]j

The last option is used toreference the event procedure
(the remQti -bQc.JY1- which may even have its explicit
parameters (e.g., when common event proceoure- is used
for several statements relying on the same screen fonn).

The statement names express the same
traditional semantics from GRAPES/4GL, however, the
differences are no more so significant (input may be
more freely mixed with output in Windows style).

Non modal forms, i.e., windows, have a
completely new interaction logio for GRAPES/4GL.
TIley remain opened for a long period of time, and, what
is more essential, there' may be several windows for an
applicatlon opened simultaneously, with the possibility
for the'user to select the window be wants to interact
with. Thus a new element of quasi parallelism is
introduced, since tile bodies (or event procedures) for all
the open windows must be ready to work. When several
windows of the same type are open (e.g., to process
several related documents of the same type), there must
be instances of the event procedure, each having irs own
data. Due to all this, a new statement SIlOlV is
introduced for windows.

Due to several subtypes of windows, there are
several typical cases of SHOW usage. First. it is very
typical in Windows application, that the corresponding
process has the simplest structure depicted in fig.3,
containing - onLy .SHOW~_(Qr the applications main
window - the form mainwind.

Fig.3

All the real job done by the application is performed by
the event procedure mainproc, which responds to events
invoked by user activating the control elements of tile
main window • selecting menu items, pressing buttons
etc. Each of the responses certainly may be as
complicated as necessary and invoke any uther VO. The
structure of the process may obviously be also more
complicated and some preparatory and conclusive dab-
related activities may be present before/after the SHOW
statement However, any 110 related activity must be
within the event procedure. It should be noted, that a.
typical Motif application has-no-main programat.all, it is-
just a "pile of call-back-routines", a style, which seems
not very appropriate for GRAPESl4GL.

If the start window is to be shown before the
main one, the corresponding SHOW statement is to be
placed in AT START event of the main window.

The most complicated form of SHOW statement
is used for (simple) windows, several of which may be
open. TIle full form of SHOW statement is:

SHOW [connection_list IN]
uon jnodal _screell_fonn_name
[WINID winid_varJ
[WITH eventjprocedure jmme [(par,U1dist)]J
{FOR duration_expr]
INOCONTINUE]

The connection_Jist is the same as for moon I forms, but
it is used only if the window actually has data elements.
Window identifier is used if there is a need to reference
one of several open instances of the sallie window form
(otherwise the form name is sufficient for reference to

205



the window). TIle usage of event procedures is the same
as for INPtrr, but it is even more typical here due to
typically larger event processing (however, event
processing in body also may be used). FOR-expressioll
may be used for windows to be visible for a limited time.
The NO 'CONTINUE option (which is by default for
main window) tells the statement to' wait until the
window -is etased -ana' ooWtben proeeetno the next
statement, However, without this option the window is
opened. event procedure (or body) instance is activated
and just after this the next statement is started, thus
allowing, e.g., the same SHOW statement to be executed
once more after a while.

3.2. Connection Principle

As it was already mentioned, the connection
principle of GRAPES/4GL is taken over and extended to
cover the new fonn features also. The principle lies in
the following that an appropriate variable is connected to
each element of the form by connection list of the
input/output statement. This connection, in general, lasts
wh-ile the-statement is-executed (or-window- is open for
SHOW statement). Verytypica1 case is that one record
variable is connected to jhe- Whole form, with record
components COllnectC«!t<;-the corresponding elements, as
it was demonstrated in fig.2. To explain the connection
more closely, the type structure of variable cust rec
(used in fig.2) is presented in fig.4.

Fig.4

If we consider once more the screen fonn, with the group
caddr in it, it is easily observable that the structures of
the form and record type are isomophic, with elementary
record fields corresponding to form elements. and
subrecord to group. Just to represent this very typical

situation. a new connection type BY STRUCTUIlE is
used in the example in fig.2. Certainly, tile BY NAME
option as ill GRAPES/4GL 'may also be used. The
difference is, that BY NAME"-coJnpletely ignores-
subrecords on the one side, and groups on the other,
while BY STRUCfURE takes them into account. In the
very simple _exrunp~QL flg.2, _C,-,su:ec.~aY..NAME-could

~ be used as well. since all elements are unique fonnwide
here. but it is not always the case. -

Vnriubles and their parts may be independently
connected to separate elements also. In that case. the
same BY NAME. TO and FROM options may be used as
in GRAPESl4GL. However. element names .niay be
qualified by group names, e.g., city] FROM caddr.city.
For BY NAME option, additional {TOIFROM}
group juune clause may be used, to indicate the desired
group if the element name repeats in the fonn, for
example, 1101 FROM caddr BY NAME. It should be
noted that group names also may be qualified (in case of
nested groups). and {TOIFROM} gruup_nrune clause
may be added for record connection also, before the BY
NAME or.BY STRUCTURE clause.

Now" some words about" lfu: elementary
connection to form elements.' Any elementary data type
may be connected to field, combobox, single selection
single column list box. Numeric types may be connected
to scroller, and enumerated types or types with defined
VALUE_SET attribute to radio button group.

List, array or set (of records) may be connected
to field army. The same is true for listbox: ITEMS of a
multicolumn list box, while list, array or set of
elementary-typed elements must be connected to
corubobox: ITEMS. List or set 111.,ybe connected til
multiselectiori listbox. Apparent integrity rules apply fur
objecrs~ connected _to "listbox illldlistbox:lTEMS
respectively (the same is true for combobox). It should
be stressed that list box: ITEMS normally is connected
by TO option, even in INPUT statements, since that
connection always is of display type. We conclude with
the remark, that a special CONNECT statement is
introduced in GRAPES/4GL·W to change connection,
e.g., inside SHOW statement. .

3.3 Events and their processing.

- As it was mentioned in 3.1, Windows style
input/output is high!)' event based. and GRAPES/4GL- W
provide a lot of new features for event processing. The
event concept per se is the same as in GRAPES/4GL,
only the event list is significantly uppgraded and new
event management mechanisms introduced.

The statement body as a container for input
event processing remains valid also for GRAPES/4GL·
W. However. since the body could become enormous

206



and contain the whole program (see example of fig.3). a
new concept of event procedure is introduced. It is a PD
diagram of new subtype EVENTPROC. Its syntax is
similar to existing MACRO subtype, in the sense -it
contains disjoint event fragments. However, tile diagram
of type EVENTPROC is also similar to procedure, in'
tbat it may have its local OT and SO (formally it has SO
alwaYs, tlut--ihere may be--arso- nontifYfar-SO-'witlJ --
parameters).

An event procedure is referenced in WITH
option of the corresponding I/O statement, in thatcase
the statement may have no body, since all event
processing is then done in the event procedure. Event
procedure may also be activated by CALL statement in a
body or other event procedure, then the relevant event
processing is delegated to this subordinated event
procedure (some restrictions apply to this case, see later).

Variable visibility within event procedures is
the standard one for GRAPES/4GL. Event procedure's
OT describes its local data, with lifetime of the statement
execution (for modal forms) or of the corresponding
window lifetime (for non-modal forms). Each event

-- procedure instance-Cor an open-window has also its own
instance of tbe-Iocal data (the subordinated --event
procedures belmv~ ~~spoJl\.Iingly): Certainly, if some
process c:Jafil:-lie connected to a window in SHOW
statement, no instances of that data are generated. To
save these data in the local instance, event procedures
with form •.lI parameters are to be used. Parameters also
have the lifetime of the instance (i.e., they are copies of
actual parameters). Actual parameters may be supplied
explicitly in WITH option, but an additional
arrangement is provided also. If parameters are specified
in SO, but not in WITH option; data elements from the
connection list -are taken as actual- parameters (in their
natural order, disregarding BY NAME, BY
STRUCTURE. TO, FROM options).

Another (and a very traditional for Windows)
possibility is to obtain necessary data for a window
instance during start event processing, store them in -
local variables of the event procedure, and connect them
10 visible elements using CONNECf stntemeuttsee 3.4).

The event fragments in general look like those
in GRAPES/4GL. They start with event symbol
specifying the event. e.g., AT START, AFrER cname,
may c01IJ,olinany GRAPES/4GL-W activities including
nested 110, and end witb either CONTINUE or EXIT
symbols. CONTINUE just ends the fmgment, while
EXIT ends the whole statement (or closes the window,
respecti ve Iy).

The event types roughly correspond to Windows
messages (Motif callbacks), however, only those of
sufficiently high -level and relevant to information
systems are included. Thus, actually the type list is not
so different from GRAPES/4GL.

The following events are defined for any form
(modal or non-modal):

AT START
AT FINISH
AT START occurs after the form is opened. AT

FINISH when it is to be closed. If AT FINISH ends in
CONTINUE, closing is postponed (an equivalent to

--WUldows altlCrose refurning-carse). --~- -
For windows, two events related to obtaining

focus/loosing focus are defined:
BEFORE FOCUS
AFTER FOCUS
A group of events is related to form elements.

All active data elements define events:
BEFORE element_name
AFTER elernent jiarne
AT CHANGE element jmme
DOUBLE-CLICK element_name
Before- and after-events are related to input

focus moves, AT CHANGE is invoked by value change
of any type. Fur elements with keyboard input, an event

AT !NV ALID DATA elemeut jiame
is defined for programming application-specific
corrective actions. For field array there are two specific
events:

AT INSERT element jiame
AT DELETE elemeut jiame
For command element. only the event
ACfIV ATED element jmme

is defined. A qualified element_name may be used. e.g .•
for multilevel menu items.

There is a special event for any element (or
group)

EVENT FOR element jsame
used only- for structuring the- event-processing, Only a--
call to subordinated event procedure may follow this
event (and this is the only place where-such a call may
be). 111en any event processing for the given element is
delegated fun her.

Some auxiliary events may be used to
coordinate and control several open windows. TIley are:

MESSAGE rnessage jiame [INTO variable}
TIMER timer_name
AT dumtion_expr IDLE
Messages are sent and timers are set by special

new modifications of GRAPES SEND statement (for
sending inter-window messages and setting local (dock-
based) timers).

3.4. Special Statements and Functions \

From the vast number of functions and
procedures, used in Windows to control forms and
elements. not so many are actually needed ill

GRAPES/4GL-W. This section presents only a brief

207



overwiew of special statements and functions in
GRAPESl4GL-W.

NEXT statement is used for forced move of
input focus to fonn or element. The statement
MAKE ELEMENT element_name attribute jlist is used
to change element attributes of type yes/no e.g., to make

---.-e~meut_visjble1b~4d.~ enabledzdisabled.etc.i.Anributes.
of a group of elements may also be changed.

MOVE· and .RESIZE modify the geometric
auributes of forms and elements.

The RESHOW statement is used for forced
immediate reshow (i.e., of updating the visible image
according to the connected value) of an element or fonn.
It is used when automatic reshow is not sufficient

The statement CONNECT connection_list is
used for changing or setting the element connection
inside body or event procedure, e.g., for changing the
selection list in listbox: ITEMS.

Special functions and procedures are mainly
used fur changing the (partially entered) element value
while input focus is still on the element, or obtaining
some ~ificattribute values. Some:typical samples are.
functions: '.'. ... . . .. .

GET_VALUE (field_name): string
QgI_CURICPOS (field_name): integer
GET_SEL_POS(field_name): integer
IS_VALlD (field_name) .boolean
and procedures
SET_VALUE (field_name, string)
SHOW_STATUS (string)
etc.
The complete list, though small when compared

to Windows, cannot be presented here for the sake of
p~~~_. - "-_.

4. Conclusions

Extensions of GRAPES/4GL language for
supporting the Windows style graphic user interface.
have been briefly described in the paper. TIley require no
significant changes in the kernel of language. The new
extended version of GRAPES/4GL (GRAPES/4GL-W)
is to be supported by GRADE Windows toolset [I] by
the end-of the year. The most significant effort will be
necessary for the design of new screen form editor
where a lot of services are to be built in, e.g., for
automated element Igroup structuring basing on a record
type definition. The I/O part of the prototyper/debugger
is also to be redesigned, and code generation will
certainly support the MS Windows target environment.

5. Acknowledgements

I would like to thank Viktors Supe for numerous
.. discussions arid suggestions during this work.

1. J..Barzdins, A.Kalnins et. al. GRADE Windows: an
Integrated CASE Tool for Information System
Development. this volume.

2. GRADE Vl.O : Modelling and Development
Environment for GRAPES-86 and GRAPES/4GL,
User Quide, Siemens Nixdorf, 1993.

3. Microsoft Access Step by Step, Microsoft Press.
1993

4. SQL Talk\Windows. Users Guide. Gupta
Technologies Inc, 1990.

5. Object Willdows. Programming Guide. Borland
International Inc.. 1992.

6. Object Vli~ldolVsJor c++. Users Guide .. Borland
.International Inc., 1991.

. 7.Syste~is·Appli~aiiolls Arclzitecti,re Common User
Access. Advanced Interface Design Guide. IBM,
1989.

8. OSF/MOTIF. Style Guide. Open Software
Foundation, Prentice-Hall, 1991.

9. Dialog BuilderlWindows V2.J. Benutzerhandbuch.
Siemens Nixdorf, 1993.

208



The 7th International
Conference on

Software Engineering
and

Knowledge Engineering

Sponsored by
Knowledge Systems Institute (Founder and Organizer)

The Johns Hopkins University Applied Physics Laboratory
University of Pittsburgh

In Cooperation with
ACM (SIGSOFT)

IEEE Computer Society (Te on Software)

Technical Program, June 22-24, 1995
Rockville, Maryland, USA



RULE-BASED APPROACH TO BUSINESS MODELING

Janis Barzdins, Guntis Barzdins, Audris Kalnins

Institute of Mathematics and Computer Science, University of Latvia
Rainis blvd. 29, Riga LV-1459, LATVIA

E-mail: guntis@mii.lu.lv

Abstract
A system description model, sometimes called
"business model" is considered. The business model
describes the separation of the whole system into
individual tasks _~d the sequence of these tasks. A
completelyrformal rule-based language for precise
description of tasks in the business model context is
proposed. The language includes means both for precise
description of task triggering conditions and of actions
performed by the task. Finally the semantics problems
caused by concurrent functioning of rules are discussed.

1 INTRODUCTION
By business model we understand a model unifying
three widely accepted paradigms: dynamic model, data
flow diagram and sequence chart .It is becoming widely
accepted that the design of complicated information
systems has to start with the business modeling of the
system [1,2,3,4]. However, the concept of the business
model itself has not completely established yet.
Different authors put slightly different meaning into
this concept. But all these approaches have one thing in
common, namely, they are semiformal. A natural
question arises how to formalize such a model
completely.

Roughly speaking, the business model describes the
separation of the whole system into individual tasks and
the possible execution sequences of these tasks. The
basic problem which arises there is how to formalize
the individual task in the context of business model. A
complete formalization of tasks in the form of rules is
proposed. .

The rule-based approach used here is influenced by a
number of papers where the rule-based system
description principles are elaborated. Rule-based
approach used here is especially influenced by [5]

where a rule-based language is applied to the
specification of external behavior of the telephone
exchange. Rule-based approach applied to information
systems is studied in [6,7,8,9,10]. In terms of [7,8,9],
the rule-based approach used in this paper may be
considered as a further development of the "action
rules".

2 BUSINESS MODEL: STRUCTURAL
DESCRIPTION
We will start the definition of the business model (like
in [4]) with the definition of Task Communication
diagram which describes the separation of a system into
individual tasks and the interfaces between these tasks.
Formally we define the Task Communication Diagram
as a graph containing four types of nodes:

• tasks,
• message queues,
• data stores,
• environment

and two types of edges:

• message routes
• access paths.

Figure 1 shows an example of a Task communication
diagram, where Tl, 12, 13 represent tasks, M1, M2,
M3, M4, M5 - message routes and E1 - data store.

M1 T1 M5

M2 T3

Figure 1. Example of Task Communication Diagram

161

mailto:guntis@mii.lu.lv


We would like to stress one important difference
between the Business model and the classic Data flow
diagram. If in ~ Data flow diagram messages only
denoted data transfer between the tasks, then in a
business model messages also pass the control between
the tasks and may trigger the tasks if their triggering
conditions are fulfilled.

3 TASK: BASIC PROPERTIES
The main problem is to formalize the tasks. The
nontriviality of this problem is caused by the following:

• tasks have to be activated automatically, thus task
triggering conditions must be formalized,

• tasks have to perform actions which may continue
for an unlimited time period; thus task instances are
necessary,

• task instances have-to perform independently from
each other aiid~ncurrently. . .

The basic idea of our approach is that we define tasks in
the form of special rules. For the sake of simplicity we
assume that one task corresponds to one rule (though in
general case one task may consist of several rules).

4 RULE: GENERAL SYNTAX
The general syntax of a rule is shown in Figure 2.

Figure 2. General syntax of rule

Rule contains:

• triggering condition
• rule instant action
• rule prolonged action.

Rule triggering condition is a logical expression in the
graphical form built from the events. If this expression
becomes true, the rule action is started.

Rule instant action is the action which executes
instantly, and it is executed in the same time moment t
when the rule triggering condition is checked to be true.
Instant action may not contain WAIT statements.

Rule prolonged action is the process which is started
after the rule triggering condition is fulfilled and rule
instant action is completed. Rule prolonged action
describes an activity which can execute for an unlimited
time period. In other words, rule prolonged action may
contain WAIT statements. By WAIT statements we
understand the waiting statements for various events.

Motivation for the prolonged action will be given later.

5 RULE TRIGGERING CONDmON
We propose four types of events for describing
triggering conditions:

• message events
)

• entity events f
• time events I
• data events (called also data conditions)

<'--------<>Rule triggering condition is defmed as a Boolean
expression in graphical form built from these types of
events. Figure 3 shows an example of rule triaaerinz0::> 0

condition. It corresponds to conjunction:

(*.*.15) AND «(Order 0 AND (Customer C AND
C.Status=l) AND Product P) AND O.Name=C.Name
AND O.Id=P.Id)

In the natural language this condition would be phrased
like that:

162



If current date is 15, and if 0 is some instance of
message Order currently in the input queue, and C is
some instance of entity Customer such that its field
Status= 1, and P is some instance of entity Product,
and OiName-CiName, and o./d=P./d, then for such
triplet <O,C,P> the rule action has to be executed.

Such "translation" of the triggering condition into
natural language already provides some idea about the
triggering condition semantics.

Figure 3. Example of triggering condition

Advanced facilities for describing events and triggering
conditions composed of them are proposed. For
example, a special sub language is proposed for
describing time events. Quantifiers for expressing
global conditions on data stores are also introduced. In
complicated cases the semantics of triggering
conditions requires a detailed explanation which is
omitted here.

6 RULE ACTION
For the description of the rule action we have to choose
some primary language. In our case as a primary
language we will use GRAPES/4GL (see [12l) which is
a well developed graphic specification and
programming language. For those who are not familiar
with GRAPES/4GL, here we will mention the main
GRAPES/4GL statements:

• WAIT statement - for waiting for a message to
appear.

• SEND statement - for sending a message.
• Besides the above mentioned statements, in

GRAPES/4GL there are available also traditional
data manipulation statements (assignment, case,
loop etc.) and statements for interaction with Entity
Relationship database.

Now we can describe in more detail the action part of
the rule. As it is shown in Figure 2, there are two types
of actions triggered by the rule condition: instant action
and prolonged action

Syntactically the instant action is any program fragment
in the underlying language (in our case it is
GRAPES/4GL) which contains no WAIT statements.
Prolonged action may contain WAIT statements.
Roughly speaking, the prolonged action is the same
GRAPES/4GL process.

Now some words about the motivation why instant and
prolonged actions have to be separated:

As it was stated before, the instant action executes
instantly in the same moment when the Rule triggering
condition is checked to be true. On the other hand, the
prolonged action may function for unlimited time
period. Such division of the rule action in two parts has
the following reason. Frequently, immediately after
checking the rule triggering condition being true, we
may want to perform simple data manipulations before
other rules functioning concurrently have "corrupted"
the data - such statements have to be included in the
instant action which by definition is executed at the
same time moment as the triggering condition is
checked. On the other hand, it is clear that we cannot
get around with the instant action alone, because inside
the action part we may want to describe also message
waiting and other prolonged actions. For example, if we
want to descnbe a telephone conversation by a rule,
then it is evident that waiting for messages in the rule
body is absolutely necessary. A special property of
prolonged action is that several instances of the same
prolonged action may execute in parallel, for example,
servicing separate telephone calls.

163



7 SEMANTICS
From the semantics point of view, the Business model
is a set of rules:

{RJ,... ,R,,}

In the previous sections, where we defined Rule syntax,
we also partially defmed their semantics. This
semantics we will call "naive" semantics. In most cases
it is sufficient for describing of the system by means of
rules. But there are cases when this "naive" semantics is
not sufficient. Therefore a more precise defmition of
the semantics is necessary.

But before we pass to the main principles of this
definition we will point out some problems making this
definition nontrivial.

The main problems are caused by the prolonged action,
which may contain unlimited waiting. Therefore several
rules may perform concurrently. Moreover, whenever
the triggering condition of a rule is true, a new instance
of the rule is activated whose prolonged action again
may perform for an unlimited time. Thus, according to
our "naive"semantfcs, several instances of the rule may
be created and perform concurrently. The main problem
here is to define the instance creation mechanism in a
precise and consistent way.

Another nontrivial semantics problem is related to a
time event, i.e., exactly when and how long this event is
true and invokes the triggering of new rule instances. A
similar problem is related to data conditions due to
several entity instances. The main difficulty here is to
define the exact triggering semantics so that the·
creation of unreasonably many rule instances may be
avoided.

Exact and consistent solutions to all these semantic
problems are proposed in the semantics defmition of the
rule language. This definition is an operational one,
i.e., ~ in~rpretative concurrent model for language
execution IS proposed. This model corresponds to the
mentioned "naive" semantics in all normal cases.

8 CONCLUSION
The paper outlines the ideas of a rule based language
for business modeling more from the theoretical point
of view. However, pragmatically the goal of this study
is to incorporate Business modeling and Rule-based
approach in the family of GRAPES languages [11,12]
and in the next generation of GRADE CASE tools [13].
Thus, completely formal and exact business modelinz
will also be available in these tools. Certainly, several

pragmatic extensions of the described language are
necessary for this purpose.

REFERENCES

I. A.L.Scherr, "A new Approach to Business
Processes", IBM Systems Journal, Vol.32, No.1,
1993, p.80-97.

2. A.G.Nilsson, "Business Modeling as a Base for
Information System Development", 3rd
International Conference on Information Systems
Developers Workbench, Gdansk, 1993.

3. R.Gustas, "From Conceptual to Business
Modeling", Proceedings of the Baltic Workshop on
National Infrastructure Databases, VoU, Trakai,
Lithuania, 1994,p.218-229.

4. A.Aue, M.Breu, "Distributed Information Systems:
An Advanced Methodology", IEEE Transactions
on Software Engineering, Vol.20, No.8, 1994,594-
605.

5. M.Grasmanis, I.Medvedis, "Approach to Behavior
Specification and Automated Test Generation for
Telephone Exchange Systems", Proc. Fifth SDL
Forum, North-Holland, 1991,291-302.

6. P.McBrien, N.Niezette, D.Pantazis, A.H.Seltveit,
U.Sundin, C.Theodoulidis, G.Tziallas, R.Wohed,
"A Rule Language to Capture and Model Business
Policy Specifications", CAiSE 91, Trondheim,
Norway: Springer Verlag, 1991,307-316.

7. P.Loucopoulos, B.Wangler, P.McBrien,
F.Schumacker, B.Theodoulidis V K, . opanas,
"Integrating Database Technology Rule Based
Systems and Temporal Reasoning for Effective
Information Systems: The TEMPORA Paradigm",
Journal of Information Systems, VoLl, No.1, 1991,
129-152.

8. C.Theodoulidis, P.Loucopoulus, B.Wangler, "The
Entity Relationship Time Model and the
Conceptual Rule Language", Swedish Institute for
System Development, SISU Report 1992:01.

9. B.Wangler, U.Wingstedt, R.Wohed, "Experience
from Rule-based Modeling at Swedish Post",
Proceedings of the Baltic Workshop on National
Infrastructure Databases, Vol.2, Trakai, Lithuania,
1994,35-49.

164



10. G.HarhaJakis et, aI., "Implementation of Rule-
Based Information Systems for Integrated
Manufacturing", IEEE Transactions on Knowledge
and Data Engineering, VoI.6, No.6, 1994, p.892-
908.

11. .G.Held (Hrsg), "GRAPES Language Description:
Syntax, Semantics and Grammar of GRAPES",
Siemens, 1991.

12. "GRADE V1.0: Modeling and Development
Environment for GRAPES-86 and GRAPES/4GL:
Language Description", Siemens Nixdorf, 1993.

13. J.Barzdirls,A.Kalnins, K.Podnieks et.al., "GRADE
Windows: an Integrated CASE Tool for
Information System Development", Proceedings of
the SEKE'94, Knowledge Systems Institute, 1994,
p.54-61.

165


