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Anotacija

Saja darba tiek pétitas visur definéto rekursivo funkciju un valodu induktiva
izveduma teorija labi pazistamu identifikacijas tipu Ipasibas, kas atgadina kopu
slegtibu. Konkrétak, aplikotas tiek $adas Ipasibas: ja kadam n klasem visi
apvienojumi pa n — 1 ir identificéjami, tad arT visu n klaSu apvienojums ir iden-
tificejams. Izradas, ka Sis TpaSibas ir noteicosas, lai izskirtu, kadi nosacijumi,
kas uzlikti klasu apvienojumu identificejamibai, ir apmierinami un kadi nav.
Lielakajai dalai aplukoto identifikacijas tipu $aja darba ir konstatets, pie kadiem
n minéta ipasiba ir speka, ka ari atseviskos gadijumos ir izpetits, pie kadiem n
lidziga 1pasiba ir speka diviem dazadiem identifikacijas tipiem. Darba pétitie
identifikacijas tipi ir dazadas modifikacijas identifikacijai robeza, ko defingjis
E. M. Golds.

Abstract

This work investigates properties resembling closedness that are characteristic
to some well known identification types in inductive inference of total recursive
functions and in language learning. The properties can be formulated as follows:
if every union of n — 1 classes out of n classes is identifiable, then the union
of n classes is identifiable, too. It turns out that these properties are crucial
for establishing which sets of requirements put on the identifiability of unions
of classes are satisfiable and which are not. This work solves the problem of
finding out for which n the mentioned property holds for most of the considered
identification types, and in some cases: for which n a similar property holds for
two different identification types. The identification types involved are different
modifications of identification in the limit introduced by E. M. Gold.



Anxnoranus

B sToit pabore mCCIENYIOTCS CBOMCTBA HANOMMHAIOLINE 3aMKHYTOCTD, Xa-
PaKTEepHBIE HEKOTOPLIM OOGINEN3BECTHLIM HACHTUPHKAIUOHHBIM THIAM B TeEO-
pPHY HHIYKTUBHOI'O BHIBO[A PEKYPCUBHBIX QYHKUMHA M A3BIKOB. PaccMmarpuBae-
Mbie CBOUCTBA, AMEIOT CACNYIOWHXY BUI: €ClIH Kaxkaoe o6bennHeraue n— 1 KiIaccos
M3 N KIAcCOB mueHTHPUIIPYeMO, TO M OOBeIUHEHHE BCEX N KIACCOB UIEHTH-
¢unupyemo. Kax okaswiBaeTCs, CBONCTBA 3TOT0 POJA ONPEENSIOT, KaKue Tpe-
6oBaHusA K MICHTHPUUIUDPYEMOCTH OOBLEIUHEHUH KIACCOB YIOBIETBOPSEMEI, &
Kakue — HeT. B aTont pabore g 601bUIMHCTBA PACCMOTPEHHBIX UaeHTuduKa-
[MOHHBIX TUIIOB PelIeHa MPOoO6IeMa HAXOXAEHUS N, HIA KOTOPBHIX YIOMAHYTOE
CBOMCTBO MMeEET CHILY, & TAKXKE B HEKOTODBIX CIIy4YasX HAUIEHBI 7. AaHAJOTUTHOT O
CBOMCTBa I ABYX PasIMYHBIX MICHTUPUKANMOHHBLIX THIOB. PaccMOTpEHHBIE
UAeHTHPUKAIMOHELIE TUIII ABIAIOTCS MOquPUKAIUAMY UNeHTUPUKALMY B TIpe-
mene, Beegennon 9. M. Tonmom.
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Chapter 1

Introduction

This work deals with a problem in inductive inference of recursive functions and
languages. Inductive inference as a term for finding out an algorithm from sample
computations was the first time used by E. M. Gold in [22].

E. M. Gold in [22] introduced the paradigm of identification in the limit: the
identifying strategy receives more and more input data about the object to be
learned and outputs a sequence of hypotheses about it (usually the hypotheses
are algorithms for the identified object). Beginning with some place the strategy
outputs only one and the same correct hypothesis. According to the current
notation, this identification type is called Ex in case total recursive functions are
the objects of learning, and TxtEx in case recursively enumerable languages are
to be identified. E. M. Gold also proved that TxtEx is not closed under the set
union: there are two TxtEx-identifiable language classes £, and L5 such that
L, U L5 is not TxtEx-identifiable. Later, a similar non-union theorem for Ex
was proved independently by J. Barzdigs in [8] and by L. Blum and M. Blum in
(10].

Since then many identification types have been proposed as modifications or
alternatives to the Gold’s learning paradigm, such as prediction [9], behaviourally
correct [8], probabilistic [15], and consistent identification [37], co-learning [18],
identification of minimal Gddel numbers [16].

And always one of the first questions that arise after introducing a new iden-
tification type is: “Is it closed under the operation of set union?” Currently this
problem is solved for most if not for all of the known identification types. So the
problem of closedness of identification types seems to be closed. Nevertheless ...

Suppose some identification type, similarly as Ex or TxtEx, is not closed.
Can we impose arbitrary requirements on the identifiablity of the classes and
their unions and still find some classes that satisfy these requirements? Most of
the identification types have a property: if some class is identifiable, then all its
subsets are identifiable, too. So the requirements “U; U Us is identifiable, U; and
U, are not identifiable” would be unsatisfiable. But if this property is obeved?
Suppose we have requirements “U;, U,, Us, U;UU,, U;UU5, U,UU5 are identifiable,
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U,UU,UUs is not identifiable.” Does the satisfiability of these requirements follow
from the non-union theorem? It turns out that no, it does not. It was proved in [4]
that the mentioned requirements cannot be obeyed for Ex. The property of Ex
that implies the unsatisfiability of them is this: if the unions of two classes out of
three are Ex-identifiable, then the union U; UU,UU; is Ex-identifiable, too. So Ex
still has some property that resembles closedness! Moreover, this property allows
us to distinguish between satisfiable and unsatisfiable requirements. In [4] such
results were proved also for the identification types Ex,, where b denotes a bound
on mindchanges (see [20] and [12]), and Ex, where the superscript 1 denotes a
bound on anomalies (see [10] and [12]). In this work this problem is solved for
the general case of Exy-identification of total recursive functions and TxtEx;-
identification of recursively enumerable languages (the identification of partial
recursive functions is equivalent to the identification of recursively enumerable
languages, and usually is investigated in this form, so we complied with the
tradition in this work).

To solve the problem, we extend the notion of closedness. We say that an
identification type is n-closed if the identifiability of all unions of n—1 classes out
of n classes implies the identifiability of the union of all n classes. We show that
finding the minimal such n is sufficient for solving the problem of satisfiability of
requirements for a very broad class of identification types.

It can be easily proved that, if Uy, U, € Exg, then Uy UU, quite possibly is not
in Exy and maybe even not in Exy, but it always is in Ex,. Indeed, why should
we necessarily require that the union is identifiable with the same mindchange
(anomalies, ...) complexity? Often it would be sufficient that we identify the
union with a larger, but still finite and estimable amount of mindchanges. So
another generalization seems natural, the n-closedness in superset: if all the
unions of n — 1 classes out of n classes are identifiable in some sense, then the
union of all n classes is identifiable in another, more general sense. As we shall also
see, most of the results of n-closedness can be more easily proved with the help
of this notion. The closedness in superset yields many interrelationships between
different identification types. This work contains some results on n-closedness of
Ex; in Ex}.

Interestingly, n-closedness can be formulated in terms of team learning ([24]
is a good survey on the team learning of both total recursive functions and recur-
sively enumerable languages), so this work yields some new results in this area.
Also, investigation of the n-closedness of the team learning identification types
[k, !|JEx} yields some interesting results. One section in this work is dedicated to
these results.

The structure of this work is as follows. In Chapter 2 we introduce notation,
define the identification in the limit of total recursive functions and recursively
enumerable languages with bounds on mindchanges and anomalies, probabilistic
and team learning as well as define the notion of identification type in general
which we use in this work.
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In Chapter 3 we define n-closedness and the closedness degree and formulate
an equivalent problem in team learning. We also show how the closedness degree
affects the power of team and probabilistic identification types with a high success
ratio (probability); these results were obtained together with K. Apsitis. At the
end of the chapter we prove that the closedness degree allows us to solve the
problem of satisfiability of requirements for practically all “natural” identification
types.

The next chapters contain the results on the closedness degrees for particular
identification types. Chapter 4 considers the case when total recursive functions
are identified. At first we find the closedness degrees of the identification types
Ex; (these results appeared in [4, 6, 7], they were coauthored with K. Apsitis,
R. Freivalds, M. Krikis and R. Simanovskis), then we investigate the closedness
in superset among them, and finally we find the closedness degrees for some of
the corresponding team learning identification types (these results appeared in
[34]). We also notice that, if we do not consider anomalies, then the closedness
degree in all the proved cases turns out to be finite, and we give a proof of such
finiteness for a class of team identification types (this proof was obtained together
with A. Ambainis).

Chapter 5 contains results on n-closedness in language learning. The results
of this chapter have appeared in [5, 7], and they were coauthored with K. Apsitis,
R. Freivalds and R. Simanovskis.

Chapter 6 summarizes the obtained results.



Chapter 2

Preliminaries

2.1 Notation

Any recursion theoretic notation not explained below is from [30]. IN denotes
the set of natural numbers, {0,1,2,...}. * denotes “an arbitrary finite (nat-
ural) number.” In inequalities (Vn € IN)[n < * < oo]. V> means “for all but
finitely many.” 3 means “there exist infinitely many.” C denotes proper subset.
(-,...,-) denotes a computable one-to-one numbering of all the tuples of natural
numbers.

Let R denote the set of total recursivr functions of one argument and P the
set of partial recursive functions of one argument. We fix a Godel numbering of
P and denote it by . The function computed by the program ¢ we denote by
;. Its domain W; is the recursively enumerable language accepted by ;. Let £
denote the set of recursively enumerable languages.

If f(z) is undefined, we write f(z) T. By f(z) = y we mean that f(z) is
defined and equal to y, f(z) | means that f(z) is defined. If f,g € P, a €
IN U {#}, then f =* g denotes the fact that card({z € IN | (f(z) | Ag(z) |
AF(@) # 9(2)) v (f(z) T Agla) 1)V (F(z) L Ag(z) DY) < a. For Ly, Ly € £,
a € NU{«}, by L; =* L, we mean that card((L; — L2)U (L2 — L1)) < a. In both
cases the up to a differences are called anomalies. If f € R, n € IN, we define
= (£(0), .., F(m)).

We shall consider finite and infinite sequences with values from IN U {#},
where # means “no data.” The length of a finite sequence o is denoted by |o|.
For a sequence o, the initial sequence of length n (n < |o| if o is finite) is denoted
by o[n]. The content of a sequence ¢ is the set of natural numbers in the range
of o, denoted content(s). An infinite sequence T is a text for a language L
iff content(7) = L. We fix some computable one-to-one encoding of the finite
sequences of this kind by natural numbers. The code of a sequence ¢ is denoted
by 0. ¢ C 7 means that 7 is an extension of o, ¢ C 7 means that 7 is a proper
extension of o, o7 denotes concatenation of the sequences (in the last two cases
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o must be finite). In concatenations o™ denotes the element o repeated n times.
The operator of assignment in descriptions of algorithms will be denoted as
.

2.2 Identification of Recursive Functions

An identification strategy F' is an arbitrary partial recursive function. It receives
as input f[® — the initial segment of the target function f € R. We shall refer
to its output F(f(™) as a hypothesis on the function f. A mindchange is an event
when F(fI™) and F(f**1) are both defined and different.

Definition 2.1 [22, 10, 20, 12] Let a,b € INU {x}. A strategy F' Ex;-identifies
a function f € R (f € Ex;(F)) iff:

1. BN)[(Yn < N)[E(fT) 1] A (Yn > N)[F(S) J]);
2. BR(ven)[F(f™) 1= hl Apn =* f;
3. the number of mindchanges made by F on f does not exceed b.

Definition 2.2 [22, 10, 20, 12| A class U C R is Ex}-identifiable (U € Ex} ) iff
(3IF € P)[U C Exp(F)].

The following relationship has been established between these identification
types.

Theorem 1 [12] (Va,b,c,d € NU {*})[Ex; CEx{ < a<cAb<d.

2.3 Identification of Languages

A language identification strategy F' is an arbitrary partial recursive function. It
receives as input T'[n] — the initial segment of a text T for the target language
L € £ Note that there are infinitely many texts for any non-empty language.

A mindchange is an event when F(T[n]) and F(T[n + 1]) are both defined and
different.

Definition 2.3 [22, 11, 27] Let a,b € IN U {x}. A strategy F TxtExj-identifies
a language L € € (L € TxtExy(F)) iff for every text T for L:

1. @N)[(Vn < NFAT]) 1A (¥r > NFTT]) 4];
2. (@n)((v>n)[F(TT]) = b Aon =2 f];

3. the number of mindchanges made by F on T does not exceed b.
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Definition 2.4 [22, 11, 27] A family of languages £ C £ is TxtEx;-identifiable
(L € TxtExS) off (3F)[L C TxtEx;(F))].

We sometimes omit the index a if @ = 0 and b if b = . Particularly, TxtEx =
TxtEx?.

The following basic relationship has been established between the defined
identification types.

Theorem 2 [11, 27] (Va, b,c,d € NU{x})[TxtEx; C TxtEx] < a < cAb < d].

2.4 Probabilistic Identification

Probabilistic inductive inference was defined in [15, 28]. Informally, it allows the
strategy to make probabilistic choices, for instance, to toss a coin.

Definition 2.5 [15, 28] Let I be one of the identification types Ex;, TxtEx;
defined above. A probabilistic strategy F' identifies a class U with probability p
according to the identification type Z ((p)I-identifies U) iff for each f € U: the
probability that F T-identifies f is at least p. Then we write U C (p)IZ(F) and
U e (p)I.

For a more formal and detailed definition with the basic proofs see [15, 28].
Actually, usually it is easy to define the probabilistic type (p)Z for any identi-
fication type Z, it only needs to be checked that the probability of successful
identification is measurable.

2.5 Identification Types

In general, we define an identification type by the following scheme.

1. Z-identification is defined as a mapping M — P(A), where M is the set of
the subjects performing identification (in this work, the set of deterministic
or probabilistic strategies or the set of teams of strategies), A is the set of
objects to be identified (for instance, A =R or A = £), and P(A) is the
set of all the subsets of A; Z(M) is the set of all the objects identified by
M e M,

2. aclass U C A is considered Z-identifiable iff (3M € M)[U C I(M)];

3. the identification type is characterized by the set T = {U C A | U is
Z-identifiable}.

This definition takes into account only the set theoretical aspects of identifi-
cation types, not the learning theoretical aspects. But we shall need mostly these
aspects when speaking about identification types in general.
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2.6 Team Learning

Team learning was suggested by Case and first investigated by Smith [31]. The
general definition is due to [26]. According to this model, many strategies par-
ticipate in the identification, and we require only a certain amount of them to be
successful.

Definition 2.6 Let 7 be an identification type. U C R is I-identifiable by a
team “k out of 1”7 (we write U € [k,l]Z, 1 < k < 1) iff there is a “team” of |
strategies such that every function from U is T-identified by at least k of these
strategies.

As we see, team learning allows to build new identification types from the
existing.



Chapter 3

Closedness and Identification

Here we establish the basic properties of n-closedness and connections with the
defined identification types.

3.1 n-Closedness

Definition 3.1 Let A be a set with an associative and commutative binary oper-
ation o: A x A — A defined in it, and let there be an element e € A equal to the
empty o-product. A set S; C A 1s n-closed in a set Sy C A (n > 1) with respect
to o iff

(Val,...,anEA)
[(Vi]|(1<i<n))ayo...0a;.10a;410...0a, € S| = a10...0a, € 5.

Definition 3.2 Let o be an associative and commutative binary operation: A X
A — A, and let there be an element e € A equal to the empty o-product. A set
S C A is n-closed (n > 1) with respect to o iff S is n-closed in S.

So “2-closed” is the same as “closed.” In further the binary operation will be
set union, A will be some family of sets, closed with respect to the set union and
containing the empty set, which will be the element e (it is needed only in the
exceptional case n = 1). The following statements concerning n-closedness can
be easily proved.

Proposition 3.1 If a set family S, is n-closed in a set family S,, then S} C S,.

Proof. Suppose, U € S;. Define U, = ... = U, = U. Since S, is n-closed in Sy,
we get that Uj_, U; = U € S,. a

Corollary 3.1 If Exp is n-closed in Ex§, thena < c and b < d.

Corollary 3.2 If TxtEx; is n-closed in TxtEx], then a < ¢ and b < d.
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Proposition 3.2 If S, is n-closed in S3, S C S, and Sz C Sy, then S; s
n-closed in Sy.

Proposition 3.3 Let S| be n-closed in S, and satisfy the property (VU € S))
(VW CU) [V €S Then S, is m-closed in Sy for all m > n.

Proof. Suppose S; is n-closed in S; and satisfies the mentioned property. Ifn =1,
then we have that § € S; implies U € S, for any U € A. So S; = A, and S is
m-closed in S, for all m > 1.

Suppose 1 < n < m, and sets Uy, ...,Un, € S satisfy the property (Vi | 1 <
i < MUty Us € Si]. Define Vi = Uy,...,Vooy = Up—1, Vo = UjL, U We
have V, € S; because V,, C UjL,U; € S;, and U;‘;f V; € S because U}‘;ll V; C
Ut Uj € S Thus, (Vi | 1 <@ < n)[Uj, Vs € Si]. Since ) is n-closed in
So, U_?:l L’; = ;?1:1 UJ‘ € 5s. O

Note that the identification types built according to the scheme described in
Section 2.5 satisfy the mentioned property.
The next proposition is by K. Apsitis.

Proposition 3.4 Let S be n-closed and satisfy the property (VU € S) (YV C U)
[V € S]. Let U be a set that can be expressed as a finite union U = Uy U... U Uy,
so that

(VI C{1,...,m}) (|I|gn—1:> UUieS).

iel
Then U € S.

Proof. If m < n, we are done, since then we can choose I = {1,...,m}. If m > n,
we fix an arbitrary I' = {i1,...,i,} C {1,...,m}, |[I'| = n. Since S is n-closed,

it follows from the assumption that U;c U; € S. Since we chose I' arbitrarily,
we can now use a stronger assumption:

(VI C{1,...,m}) (|[| <n=|JU; € S) :
iel
Repeat the above reasoning replacing n by n+ 1 (it follows from Proposition 3.3
that S is (n 4 1)-closed). By induction we obtain that \J;c; U; € S for larger and
larger I until we reach |I| = m, and thus get that U,c; U; =U € S. O

Proposition 3.3 shows that we need to find the minimal n for which S, is
n-closed in S,.

Definition 3.3 Let a set family S, satisfy the property (VU € S;)(VV C U)[V €
Si]. We say that n is the closedness degree of S; in superset S, (n = csdeg(S,
S2)) if n is the smallest number such that S, is n-closed in S,.

If such n does not ezist, we define csdeg(S,, S3) = oc.

We shall call cdeg(S) = csdeg(S, S) the closedness degree of S.



CHAPTER 3. CLOSEDNESS AND IDENTIFICATION 11

The next two propositions follow from Proposition 3.2, Theorem 1 and The-
orem 2.

Proposition 3.5 If a1 < ay, by < by, ¢y < ¢ and dy < dy, then
csdeg(Exy,, Exgl) > csdeg(Ex;!, Exg).
Proposition 3.6 If a1 < ag, by < by, ¢; < ¢ and dy < dy, then

csdeg(TxtEx,?, TxtExg ) > csdeg(TxtEx;!, TxtExZ ).

3.2 Connection with Team and Probabilistic
Learning

It turns out that the problem of finding the closedness degree is equivalent to a
problem in team learning.

Proposition 3.7 Z; is n-closed in I iff [n — 1,n|Z; C I,.

Proof. Suppose Z; is n-closed in Zp. Let U € [n—1,n]Z;, and let Fy,..., F, be a
team that [n—1,n|Z;-identifies U. We define U; = {f e U | (V5 # 0)[f € T.(F})]}.
Clearly, (Vj | 1 < j < n)[Uk,;4; Ui € Li(Fy)]. Since I, is n-closed in I,
U?:l Ui =UE€e IQ.

Now, suppose [n — 1,n|Zy C Z,. Let Uy,...,U, be such sets that (V7 | 1 <
J < n)[Uit1iz; Ui € Th]. Let Fj be the strategy that identifies Ui, ;; U;. Then
the team Fi,..., F, [n — 1, n]|Z;-identifies U7, U;. So UL, U; € T,. Therefore, 7
is n-closed in Z,. a

Corollary 3.3 Let T be an identification type, n € IN, n > 1. Then cdeg(Z) = n
iff n is the minimal number for which [n — 1,n]Z = I. cdeg(Z) = oo iff for all
n€ N: T Cn- 1,n]T.

Proof. 1t is easy to see that T C [n — 1,n|Z. Indeed, let U C I(F). By defin-

ing F = ... = F, = F we get a team that [n — 1, n]Z-identifies (even more,
[, n]Z-identifies) U. The rest follows from the previous proposition and from the
definition of closedness degree. O

Corollary 3.4 Let I,,Z, be identification types, n € IN, n > 1. The equality
csdeg(Zy, Iz) = n holds iff n is the minimal number for which [n — 1,n]Z, C I,.
Otherwise csdeg(Zy,Z,) = oo.
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Suppose n = cdeg(Z) > 2. Then Corollary 3.3 implies that [n — 1,n|]Z =T
and [n — 2,n — 1|7 D Z. How about the team identification types [r, s|Z with
(n—2)/(n—1) < r/s < (n—1)/n (the results in team learning have shown
that the so-called success ratio /s is often important in determining the learning
power of a team [r, s])? Are they equivalent to Z or not?

Another question comes from the probabilistic learning which has proved to be
closely related with team learning [13, 32, 24, 1]. The probabilistic identification
types tend to form probabilistic hierarchies in the following sense: the segment
(0; 1] is divided into an enumerably infinite amount of disjoint intervals (a; b] such
that for any p;, p, lying in the same interval: (p,)Z = (p3)Z, and for any p, < p
from different intervals: (p;)Z D (p2)Z. The endpoints of these intervals are said
to be the elements of the probability hierarchy set of Z.

In many studied cases the maximal p < 1 from the probabilistic hierarchy
turned out to be in the form p = (n — 2)/(n — 1) where n = cdeg(Z). Is this an
accident? The following two results prove that it is not so. They were obtained
by K. Apsitis and the author of this work.

Theorem 3 Let I be an identification type with cdeg(Z) =n > 2. Let r,s € IN,
0<r<s. Then[r,s]I=Z iff (n-2)/(n—1) <r/s <1.

Proof. Suppose 7/s < (n —2)/(n — 1) and [r,s]T = Z. We shall prove that
[n—2,n—1]Z = T insuch case. Let U € [n—2,n—1]Z, and let F = {F},..., F,_}
be a team [n — 2, n — 1]Z-identifying U. Then we form a team G = {G,,..., G}
as follows: G; = Fimodn_1- For any f € U, the number of unsuccessful learners
among F; is at most one, thus among G; this number is at most [s/(n—1)]. The
assumption implies that 7(n— 1) < s(n—-2)=s(n—1)—s,s0 s/(n—1) < s—r.
Since s — 7 is integer, [s/(n — 1)] < s —r. Thus G [r, s]Z-identifies U. Since
[r,s|T =Z,U € Z. We have proved that [n —2,n — 1|Z = Z, but that contradicts
the equality cdeg(Z) = n. Therefore, [r,s|Z D Z for /s < (n— 2)/(n - 1).

Suppose (n — 2)/(n — 1) < r/s < 1. We shall prove that [r,s|Z = Z. Let
Ue|rs|Z, and let F = {Fy,...,F;} be a team [r, s]Z-identifying U.

Every f € U is Z-identified by some subset of F'. We declare two elements
of U to be equivalent iff they are identified by exactly the same members of F.
Denote the equivalence classes by Uy, ..., Uy,. Let I be any subset of {1,...,m},
[ <n-—1.

We claim that U;; U; € Z. Indeed, each U; is I-identified by at least r
members of F'. Since |F| = s, at most s — r members of F may fail to identifv
Ui. Therefore, at most (n — 1)(s — r) members of F' can fail to identify the union
Uier Ui. But 7/s > (n — 2)/(n — 1) implies (n — 1)(s — 7) < s = |F|. Therefore
at least one of the F; Z-identifies the union [J;c; U;. By applying Proposition 3.4
weget U=UU...uU,€T. .

Definition 3.4 An identification type T is team reducible iff
(Vp € (0;1))(Ve > 0)(3r,s € N) [ > p— e A (DT C [r, 5]T] .
S
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Additionally we require from the identification type a natural property: let
{F,...,F,} be a finite set of learners, and py, ...p, are recursive probabilities,
" . pi = 1; then there exists a probabilistic learner G’ which initially chooses a
learner F; with probability p;, and then simulates it (that is, any f is identified
by G iff it is identified by F;). All the identification types where the learners
are algorithms or sets of algorithms, and the learning criterion involves only the
output of these algorithms (not the algorithms themselves or their performance)
satisfy this property, since any algorithm can be simulated by another one.

Theorem 4 Let Z be a team reducible identification type with cdeg(Z) = n >
2 which satisfies the simulation property described above. Then (p)IT = T iff
(n—2)/(n-1)<p<1L

Proof. Suppose p < (n—2)/(n—1) and (p)Z = Z. Trivially, (p1)Z D (p2)Z if p; <
pe. Hence, {((n—2)/(n—1))Z = I. It is easy to see that [r, s]Z C (r/s)Z: consider
a team [r, s] and a probabilistic learner which chooses initially any member of the
team with probability 1/s and simulates it; clearly, its success probability is at
least 7/s. SoZ C [n—2,n—1]T C ((n—2)/(n—1))Z =7, and [n—2,n—1]T = T.
But that contradicts the assumption cdeg(Z) = n.

Suppose (n—2)/(n—1) <p < 1. Takee = (p— (n—2)/(n—1))/2 and apply
the definition of team reducibility to get (p)Z C [r, s|Z withr/s > (n—2)/(n—1).
From Theorem 3: [r,s|Z =Z. So (p)Z = T. O

3.3 Satisfiability of Requirements

Suppose we have a set of requirements on the Z-identifiability of every union
of some classes out of Uy, Uy, ..., Uy. We want to find a simple criterion for
distinguishing if this set of requirements is satisfiable.

A convenient way for expressing such requirements is to use the Boolean
functions. We shall write Boolean vectors in boldface and their components in
italics with indices. A vector x € {0, 1}* corresponds to the union Uz,=1 Ui. Let
f:{0,1}* - {0,1}. If f(x) = 0, we demand that the corresponding union is
identifiable. If f(x) = 1, the corresponding union must be unidentifiable.

Definition 3.5 Let a,b € INU {x}. A Boolean function f : {0,1}* — {0,1} is
I-satisfiable iff (3Uy,...,Ux C A)(Vx € {0,1}")[U,= Ui € T & f(x) = 0].

Which of the properties of identification types Z are relevant for the satisfia-
bility of Boolean functions? Two properties are immediate: Z contains the empty
set and together with a set T contains all of its subsets. {4] showed that another
property is relevant: the closedness degree. The following definition combines
these three restrictions.
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Definition 3.6 A Boolean function f : {0,1}* — {0,1} is n-convolutional iff
1. f(0) = 0;
2. (Vx,y € {0,1}")[x <y = f(x) < f(y)] (monotonicity);

3. (VX S {O,l}k)(VZl,,Zn | 1 S i] < ... < Z'n, S k/\l‘il = ... =Ty, =
Dvr |1 <7 <n)[f(z1,.. -, %5,-1,0,Ti 1, .., 2k) = 0] = f(x) =0].

We shall prove by the next theorem that n-convolutionality is the desired
criterion for all identification types satisfying two natural properties.

Definition 3.7 Let t be an injective mapping A x N — A (we shall call such
mapping a tagging of A). An identification type I is t-tag invariant iff

(Vi eN)[U e T < tU,j) eI,
where t(U, j) is the image of U under t(-, 7).

Informally, 7 is ¢-tag invariant iff supplying a tag j to every element of a class
does not affect its identifiability.

Definition 3.8 Let t be a tagging of A. An identification type T is t-tagged
union closed iff

n

(Vn € ]N)(VUl, UQ, Cey Un € I)[U t(Uj,j) € I]

j=1

The “natural” identification types usually have these properties. We shall
prove it for the types Ex; and TxtEx;.

Proposition 3.8 There ezist taggings t, to such that (Va,b € INU {x})[Ex; is
t1-tag invariant and t)-tagged union closed, and TxtEX; is to-tag invariant and
ty-tagged union closed].

Proof. Define t,(f,j) = f’, where f'(z) = (f(z),7), and t5(L,7) = L' = {(z,j) |
x=0Vx—1¢€ L}. It is easy to see that t; and t, are taggings for R and &,
and satisfy the corresponding condition of tag invariance for Ex; and TxtExj
(because the strategy can easily obtain f from f’, L from L', and vice versa).
Suppose that Uy, Us,...,U, € . To identifv Uj= ti(U;,4), i = 1,2, in both
cases the strategy obtains the tag 7 from the input and applies the strategy that
identifies U;. This proves the tagged union closedness. 0

Theorem 5 Let T be a t-tag invariant and t-tagged union closed identification
type. If cdeg(I) = n € IN, then a Boolean function is I-satisfiable iff it is
n-convolutional.

If cdeg(Z) = oc, then a Boolean function f is I-satisfiable iff f(0) = 0 and f
15 monotone.
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Proof. At first we prove the necessity. Suppose a function f : {0,1}* — {0, 1} is
Z-satisfiable. Let Uy,...,Ux be the classes that satisfy the requirements. Then,
because of the mentioned properties of identification types, f(0) = 0 and f is
monotone. Suppose cdeg(Z) = n € IN. Let x be an arbitrary vector from {0, 1}*.

Let 41,...,i, besuch that 1 < i3 < ... <, <kandz;, =...=z;, =1. We
define y7, 1 < j < n, to be such vectors that
1yl =1,

2.yl =0forr#3j,1<r<n,
3. yd =z, forse{l,....k} —{i1,...,in}.

Let V; be the union of Ui,..., Uy corresponding to the vector y?. Then the
vectors (Z1,...,%4,-1,0,Zi41,---,Zk), 1 < 7 < n, correspond to the unions of
n — 1 classes out of V},...,V;,. If these are I-identifiable, so is j_, V;, because
7 is n-closed. Since UJj_, V; corresponds to the vector x, we have proved that f
is n-convolutional.

Now, sufficiency.

Definition 3.9 A vector x is a minimal 1-vector for a Boolean function f iff
1. f(x) =1 and
2. (Vy <x)[f(y) =0].

Let x7, 1 < j < m, be all the minimal 1-vectors for f. Let n; be the number
of components in x’ that are equal to 1. Suppose that cdeg(Z) = n € IN and
f is n-convolutional. Point 3 in the definition of n-convolutionality implies that
n; < n for every j € {1,...,m}. Suppose cdeg(Z) = oc, f(0) = 0 and f is
monotone. Then, trivially, every n; < oc.

~So, in both cases T is not nj-closed, j € {1,...,m}, and there are such classes
ui,..., U,J;J_ that every union of n; — 1 out of them is Z-identifiable, while U2, U7
is not.

Now we construct the classes Uy, ..., Uy that satisfy the requirements given
by f. Suppose 27 =1 for some 1 < i < k and 1 < j < m, and suppose 1:{ is the
l;-th component of x’ that is equal to 1. Then we add the set t(Ué,j) to U;. So
the class U; is the union of these sets for all the values of j such that 27 = 1.

Suppose f(x) = 1. Then for some j, x < x, and the corresponding union
contains as a subset the image of U2, U ¢ T under the tagging ¢(-, 7). Since T
1s t-tag invariant, this union is Z-unidentifiable.

Suppose f(x) = 0. According to the monotonicity, for each j there is such
sj that z,, = 0 and zJ = 1. Suppose i, is the /;-th component equal to 1
in x7. Then the union corresponding to x is a subset of UL, t(V;,J), where
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V= U?;l’#lj U? is Z-identifiable. Since T is t-tagged union closed, this union is
Z-identifiable.
This proves Z-satisfiability. O



Chapter 4

Identifying Total Recursive
Functions

The results of the previous chapter imply that to solve the satisfiability prob-
lem for particular identification types, we have only to find the their closedness
degrees, which we shall do in this and the next chapter. In the proofs we shall
use diagonalization and simulation techniques. Another interesting approach was
considered in [2], where the similarity of such proofs to games was explored.

4.1 Identification in the Limit

Here the case of Ex®-identification will be considered.
The first result in the whole area of the closedness of identification types (for
total recursive functions) was Theorem 2 in [8].

Theorem 6 [8] There are such classes Uy,Uy C R that U, € Ex, U, € Ex, and
U, ul; ¢ Ex*.

Proof. Define

Uh={feR|f=vuy}
Uz ={f €R|@N)[(Vz > N)[f(z) =0] vV (Vz > N)[f(z) = 1]]}.

Strategy F((f(0),..., f(n))) = f(0) identifies U;. (We see that in fact U; € Ex,.)
Class U, is identified by a strategy that on the initial segment f outputs a new
hypothesis h such that

0, z>nand f(n) =0,
1, x> nand f(n) #£0,

if the previous hypothesis is invalid (if f(n —1) =0 # f(n), or f(n — 1) # 0 and
f(n) # 1. or n = 0); otherwise it outputs the previous hypothesis.

on(z) =

{f(:c), z < n,

17
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Now we shall prove that U, U U, ¢ Ex*. Let F' be an arbitrary strategy. We
shall construct a function that belongs to U; U U, and is not identified by F'.

Consider a family of functions {f; | ¢ € IN} C P with the following algorithm
for fi'

o Stage 0.
Define f;(0) = i. Find z for which F((:0%)) is defined. Then define fi(1) =
fi(2) = ... = fi(z) =0, let oy < i0% and go to stage 1.

e Stagem (m > 1).
Compute, on which of the segments 0,0V and 0,,17 (j € IN,j > 1) strategy
F changes its last hypothesis F'({0,,)). If such segment o,,&* is found («
is 0 or 1), define fi(|lom|) = ... = fillom| +k — 1) = @, let g1 — omat,
and go to stage m + 1.

According to the recursion theorem (see [30]) (Ji)[fi;, = ¢io)- Thus fi,(0) is
a correct Godel number of f;;.

If fi, € R, then f;, € U, and F makes infinitely many mindchanges on it, so
fio ¢ EX'(F).

If fi, ¢ R, then either F' did not output any hypothesis, or it did not change
hypothesis on any of functions ¢,,0®° and 0,,1> for some m and remained in
stage m forever. In the former case we choose function with the string of values
1,0°°. In the latter case the last hypothesis made by F'is incorrect for at least
one of the segments 0,,a6™ (a is 0 or 1), because they differ in infinitely many
points. Choose the corresponding function. The chosen function belongs to Us
and is not Ex"-identified by F'. a

So, csdeg(Ex, Ex*) > 2. Then, in team learning, the next result was obtained.
Theorem 7 [29] (Va € INU {x})[[2, 3]Ex* C Ex“].
Using Propositions 3.3 and 3.4 we get:

Theorem 8 (Va € INU {x})[cdeg(Ex®) = 3].

4.2 A Bound on Mindchanges

Here we find the closedness degrees for the classes Ex, and Ex;, b € IN. These
two identification types turn out to be similar in this aspect. Theorem 9 is a
generalization of Theorem 4.2 in [4].

Theorem 9 (Vb € N)(Va,a' € NU {x} | ' > 2"*'a)[csdeg(Ex?, Ex¥) < 20+2,

The proof of the theorem is based on a lemma.
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Lemma 4.1 For each b € IN there is an algorithm that can Ex,-identify any
function f € R knowing (receiving as parameters) algorithms of 2°%2—1 strategies
such that each of them produces at least one hypothesis on f and at least 222 — 2
of them Exy-identify f.

Proof. Let strategies Fi, Fy, ..., Fos+2_; and a function f satisfy the conditions.
The algorithm F' redirects its input to the strategies F; until they output hy-
potheses h;, i = 1,2,...,2°%2 — 1. Then F produces a hypothesis A such that
on(x) = y iff at least 227! of the values o4 (z), i = 1,2,...,2%2 — 1, are y.

In case b > 0, F waits for 21 — 1 of the strategies F; to make a mindchange.
Suppose it happens. Then, to Ex,-identify f, these strategies can make no more
than b — 1 mindchanges from now on. So F selects these 2! — 1 strategies,
disregards their hypotheses made before the mindchange and applies to them
the algorithm corresponding to the case of Ex,_;-identification. This algorithm
identifies f with no more than b additional mindchanges, so f € Ex,(F).

Suppose no more than 2°*! — 2 strategies make a mindchange or b = 0. Then
among h; there are no more than 2°¥! — 1 incorrect hypotheses, and ¢, = f. O

Proof of Theorem 9. It is sufficient to prove that Ex, is 2°*%-closed.

Let Uy, Us,,...,Up+> € R be such classes that all the unions of 20+ — 1
classes out of them are Ex,-identifiable. Let Fi, Fy, ..., Fis+2 be the strategies
that identify these unions. We shall construct a strategy F' that identifies U?b:f Uj.

The strategy F redirects its input to the strategies F; until 2+2 — 1 of them
output a hypothesis. Such an event happens because every function f € U?l: U;
belongs to 22 — 1 of the unions of 2°¥2 — 1 classes, thus at most one of the
strategies F; does not identify f.

Then F selects these 2°*2 — 1 strategies, applies the algorithm from the pre-
vious lemma and identifies the input function. O

The next theorem is a generalization of Theorems 3.1 and 4.1 from [4].
Theorem 10 (Vb € N)[csdeg(Ex,, Ex}) > 202 — 1].

The method of proof of this and other theorems establishing lower bounds
for csdeg makes use of the idea whose origin is the concept of “self-describing”
functions used in {8, Theorem 2. (Theorem 6 in this work). We shall use functions
that output instructions for Ex;-identification of themselves. Even more, they
will output many arrays of such instructions. The instructions will be of three
kinds.

1. An elementary instruction (1, j.i,n). ¢, 7 > 1. Informally, it proposes n as
the i-th hypothesis in the j-th array of instructions.
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2. A compound instruction (2,y,...,yp), where y; are elementary instruc-
tions. In this way many elementary instructions can be incorporated in one
value output by a function.

3. A split instruction. It consists of two values, (3,%,y1,y2) and (4,1, ys, Ya),
where y; — y2 +y3 — ¥4 is an elementary or a compound instruction, and i is
a unique identifier for this pair of values. In this way an instruction can be
split into two parts so that by changing any of these parts we can obtain a
different instruction. (In fact, we could do this using only two numbers, y,
and y3; we have chosen the above form for the ease of writing the proof.)

Among the values f(z) there must be exactly one value of kind (3,1, -,-) and
exactly one value (4,1, -,-) to get a split instruction with identifier 7. Naturally,
other kinds of instructions can be designed to prove similar results for identifica-
tion types not considered in this work.

Let Instr(f) be the set of elementary instructions output by f, including those
that are contained in the compound and the split instructions.

Definition 4.1 We shall say that a function f € R is a j-instructor with respect
to the Ex}-identification (a,b € IN U {x}) iff there is an instruction (1,7,¢,n) €
Instr(f) such that ¢, =* f, c < b+ 1 and, if (1,7,c,n') € Instr(f) for some ¢
and n', thenc < c orn' =n.

Let us denote the class of j-instructors with respect to Ex; by I]Ex“.

Proposition 4.1 IJExg € Ex}.

Proof. Receiving values of the input function the strategy extracts from them the
elementary instructions and outputs the sequence of hypotheses corresponding
to the j-th array of instructions. If its previous hypothesis was based on an
instruction (1, j,4,n) and it receives an instruction (1, j,7',n'), it outputs n’ iff
¢ > 4. If it has no new hypothesis to output, it repeats the previous one. It
follows from the definition of instructors that the strategy identifies the function.

g

Proof of Theorem 10. Let us denote k = 2°*2—1. It is enough to prove that there
are classes Uy, U, ..., Uy such that (Vi)[UleJ# U; € Ex,| and U_I;:l U; ¢ Ex;.
Define U; = N4 I]Ex”, where i, j € [1,k]. Then U,,; U; C I]Ex” € Ex,.

. We ha,ve_ to prove that Ule U; ¢ Ex;. Suppose there is a strategy F' that
identifies this union. We shall use the multiple recursion theorem (see [35], it is a
generalization of the recursion theorem used in the proof of Theorem 6). It allows
us to construct functions that use each others Gédel numbers as parameters.
We construct functions i,,. one of which will be the function from U, U; not
identified by F.
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The algorithm below uses a procedure new(z). It lets z + n., and then
¢ + ¢+ 1, where ¢ is a counter in the algorithm.
The algorithm for ¢,, is as follows.

e Stage 0.
c+ 1,70, p+ k, D+ {p}.
Execute new(s;) for 1 < i < p — 1. Output values as shown in the next
table.

‘ 0 p—2
Psir- s,y | (L1 1s1) .. (Lp=1,1,5-1) ()

The leftmost column contains the functions defined, other columns show
values output at the corresponding inputs. The rightmost column means
that these values are output up to infinity unless the algorithm goes to the
next stage.

Let the variable y throughout this algorithm indicate the maximal value
of argument at which the values have been output at the moment. We
simulate the strategy F' on the initial segments of ¢, . If a hypothesis is
output on ¢l for some z, we let h + F(¢pf), zg « max(z,y) + 1; we

S1

output {) up to zg — 1, if needed, and go to stage 1.

e Stagem (1<m<b+1).
r < card(D), | + (p — 1)/2.
Let di,...,d, be the elements of D. Execute new(t), new(y;) for 1 < i <
! — 1, new(t'), new(v;) for 1 <4 <[ —1. Output values as shown in the

next table.
o oo ZTop+T-—-1
Osiy -y Psyr Pty Pugs - - - Puyy (1,di,m,ty ... (1,d,,m,t)
Osiprr - Psy 1, P, Puys - Puy | (Ld,m, t) ... (1,d,,m,t)
Tg+T
Psis -1 Pspr Pt Puys -+ -5 Py (1,j+l+1,m+1,u1)
Psiprs -2 Pspers P Porr - Pu, | (LJ+1,m+1,01)
To+r+1—2 ..
Py 1 Psr Pt Puys - - -5 Py <1,j+21—1,77l+1,7l1_1> <>
Pstp1s 3 Psp1r Bt Pus - Puy | (LF+HL=1,m+1Lu_) (0)

If m = b+ 1, the algorithm remains in this stage forever.

If m < b+ 1, we simulate F' on functions ¢, and ¢,,, .

If F' changes the current hypothesis 4 on p;f' for some z, we let h F(cp[fl]),
To 4 max(z.y) + 1, output Y uptozg—1,add j+1,....5+Lji+p—1
toD,let s; «—u;forl <i<l—1,j« j+1[, p+ [ and go to stage m + 1.
If F changes the current hypothesis h on ‘P[sﬂ, for some z, we let h «
F((,aml), Tp ¢ max(x,y)+1, output (O)up toxg—1,add j+I,...,j+p—1
to D, let s; «—v; for 1 <i <1 —1.p+« [ and go to stage m + 1.
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Let us explain the meanings of variables at the start of stage m. s; are Godel
numbers that have been proposed as the m-th hypotheses in the instructions. The
indices of these instructions begin with j+1 and their amount is p—1 = 26¥3-m—2,
D contains the indices of the arrays of instructions for which the m-th hypothesis
has not been proposed yet.

At stage m two alternatives represented by ¢, and g, , are proposed for
F. Since they differ at infinitely many points, the last hypothesis A cannot be
Ex;-correct for both of them. If /' does not make a mindchange on any of the
two alternatives, the algorithm remains at stage m forever, ¢, , @, € Uk, U;
and at least one of these two functions is not Ex;-identified by F'. If F' makes a
mindchange on one of these alternatives, the algorithm switches to stage m + 1,
choosing this alternative for further consideration. At stage b+1 F' cannot output
a new hypothesis, since it already has made b mindchanges.

It is easy to check that, in whatever stage the algorithm stays forever, both
proposed alternatives are in U*, U;. So F does not identify this class. Contra-
diction. O

Corollary 4.1 (Vb € N)[cdeg(Ex;) = cdeg(Ex;) = 2°+%].

4.3 Identification with Anomalies

Here we consider the case of Exj-identification, where a,b € IN, @ > 0. The
results turn out to be rather surprising. For a = 1, the closedness degree is finite
and still grows exponentially relative to b, while for a > 2 the closedness degree
is oo.

Theorem 11 (Vb € IN)[cdeg(Ex)) > Z62=2]

Proof. Let us denote k = T$=2. It is enough to show that there are such

classes Uy, ..., Uy that the unions of £ — 1 classes out of them are identifiable,
while U;_, U; is not.
k Ex; ) 3 Ex;}
We define U; = N5_y ., 1,7, 1 <@ < k. Then UL, ., U; € I;™ € Ex;,
1<j5<k

We have to prove that U, U; ¢ Ex,. We use diagonalization over the strate-
gies. Let F' be an arbitrary strategy. Using the multiple recursion theorem
similarly as in Theorem 10 we construct functions ¢,, 1 < i < N (where N is
a natural number determined only by ) that can use each others Godel num-
bers incorporated in their values. With their help we shall construct a function
f € UL, U; not identified by F.

We remind that the procedure new(z) lets  « n., ¢ + ¢+ 1. where cis a
counter in the algorithm.

The algorithm for ¢, is as follows.
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e Stage 0.
Letc+ 1,5« 0, p « (7-6°"' —2)/5, D « {p}. Execute new(s;) for
1 <i < p-—1. Output values as shown in the next table.

0 p—2 .
(1081,"'7803},_1 (17171731> (1;1)_ 1717311—1) <>
fO (1)1v1)31> <1ap_ 171,813—*1) ()

The function under the last horizontal line (fp in this case) is the function
not identified by F' in case the algorithm remains in this stage.

Let the variable y throughout this algorithm indicate the maximal value
of argument at which the values have been output at the moment. We
simulate the strategy F on the initial segments of fo. If a hypothesis is
output on ff7, we let h « F(fo ) To < max(z,y) + 1; we output () up to
zg — 1, if needed, and go to stage 1.

o Stagem (1<m<b+1).
Let r « card(D). Let d,,...,d, be the elements of D. Execute new(t). Go
to substage 1.

— Substage 1.
Let u «— (p—2)/2, y1 « (3.2m —1,0,0), 2o « (2,(1,dy,m,t),..., (1,
dr, m,t)), ya < (4,2m — 1, 25,0). Output values as shown in the next

table.
o X+ 1 ...
Psys- 5 sy ? Y2 ()
(;Osu+1; | (fgsp—‘Z n ? ()
D5y, [ S}
Yt Y1 Yo ()
frm—s6 n Y2 ()

The question marks mean that the values are not output at these
points as vet. We compute (%), @r(xo + 1) and the outputs of F
on frm_g.
If m < b+1 and F changes its current hypothesis on f,m ¢ for some z,
we let h + F( éﬂ_ﬁ), replace question marks with the corresponding
values of fr,_¢, let zg ¢« maz(x,y) + 1, output () up to zo — 1, add
J+(@—2)/6+1,...,7+p—1to D, let p+ (p—2)/6 and go to stage
m + 1.
If @a(zo) = y1, let z; « y + 1, and go to substage 2.
If wp(zo + 1) = yo, let 21 «+ y + 1, and go to substage 5.

— Substage 2.
Let v < (p—2)-2/3, w + (p—2)-5/6. Execute new(s;) for w +
1 <1 <p-3. Let y3 « (3.2m.0,0), z4 « (2,(1,j+w+1,m+
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7

1, 8,410, {Lj+p—3m+ 1,5;_3)), ys + (4,2m,24,0). Output
values as shown in the next table.

To .’L‘0+1 A 5] 1131+1
Oy PsrPspy | 7 Y2 O ¥z w ()
Dsuprr- - Psy v 07 v ()
Pspgrr- -1 Psu n Y2 () Y3 ? ()
Pswsrs -1 Pspa vow O 77 ()
Pupg sy vt e 0w v )
fim=s W Y2 <> Y3 Y4 <)

We compute (z1), @n(z1 + 1) and the outputs of F on f7,,-5. If
m < b+ 1 and F outputs a new hypothesis on f7[';'“',]1_5 for some z, we
let h + F( 7[22_5), xo < max(x,y) + 1, output () up to zo — 1, add
j+1l,...,+w, j+p—2and j+p—1to D, let s; « s,,,; for
1<i<(p-2)/6—1,let j « j+w, p+ (p—2)/6 and go to stage
m+ 1.

If pn(z1) = y3, go to substage 3.

If pn(z1+1) = y4, go to substage 4.

Substage 3.

Execute new(t'), new(s'i) forv+1<i<w-—1. Letys « (3,2m—
L,(2,{1,dy,m,t"),...,(1,d,,m,t")), 22), ys < (3,2m,(2,(1, j +v + 1,
m+1, 500, {(LJj+w—1,m+ 15, ;))z2). Output values as
shown in the next table.

iy iEo+1 L. I $1+1
Osiro s PourPspr (U5 2 O w3 v ()
Psugrr -1 Py noove O ¥ ya ()
Psugrr -9 Psy hn Y2 (> Y3 ? <>
Osgrr -+ 1 Pspos no o2 O ove v ()
P P! soaPyl Y5 Y2 (O s Y4 ()
frm—4 Ys Yo 0 ¥ Ya ()

Compute outputs of F on fr_y. If m < b+ 1 and F outputs a
new hypothesis on fi_, for some z, we let h « F(fI2_,), zo
max(z,y)+1, output {) uptoxe—1, add j+1,...,5+v, j+w,...,j+

p—1toD, lets;« s, for1<i<(p—2)/6—1,1letj ¢ j+uv,

v+t

p+ (p—2)/6 and go to stage m + 1.

— Substage 4 is similar to substage 3.

— Substages 5, 6. 7 are similar to substages 2. 3. 4, respectively.

End of stage m.
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j in the algorithm is used as a base index for the arrays that have output their
m-th hypotheses (s;) before stage m was started. Note that the values are output
so that the corresponding function f; is a g-instructor for all ¢ € {1,...,k} except
one, so f; € U§:1 U;. Note also that there is no way out of the substages 3, 4, 6
and 7 of stage b+ 1. So the algorithm remains forever in some substage (or stage
0), and, as it is easy to see, the current hypothesis of F' has at least two anomalies
in comparison with the function f;, corresponding to this substage (mindchanges
after the b-th mindchange made by F are ignored). O

Theorem 12 (Vb € IN)[cdeg(Ex}) < 78043,

Proof. Denote k = 787143 | — 16143,

Consider classes Uy, ..., Uy such that the unions of £ — 1 classes out of them
are Ex;-identified by strategies F}, ..., Fy. We shall construct such strategy F'
that will identify Ule U; using Fi, ..., Fi as subroutines.

Denote the input function by f. Strategy F' simulates the strategies Fi, ..., Fi
on f.If fe Ule Uj, then f is identified by at least k — 1 of these strategies. So
F waits until k£ — 1 strategies make their first hypotheses. Suppose the strategies
are Fi,..., Fx_1, and their hypotheses are h;, ..., hy_;. Then F outputs its own
first hypothesis A based on these strategies and their hypotheses.

Suppose b > 0 and [—1 out of these k—1 strategies output another hypothesis.
Then F' outputs its second hypothesis, based on these [ — 1 strategies together
with their hypotheses, and we have reduced our problem to the case of Ex; ;-
identification.

So it is enough to prove that, if no more than [ — 2 strategies make another
hypothesis, or b = 0, then hypothesis h is correct.

In this case there is at most one strategy among Fi,..., Fy_; that does not
identify f and at most [ — 2 strategies that identify f, but output another hy-
pothesis. So no more than [ — 1 hypotheses among hy, ..., hy_; are wrong.

Now we describe the algorithm for ;. It computes the following infinite table
and the hypotheses made by the F;’s on all possible initial segments.

[ 0 n
©h, en (0) ... @ (n)

Chy_ 1 | Phyp_y (O) cee Phyy (77’)

Let the weight of a value in a column be the number of occurrences of this value
in the column. We shall say that values u and v in different columns are p-
coordinated iff there are p rows that have u and v in the corresponding columns.

The aim is to find a consistent interpretation of the table, that is, such ini-
tial subtable, such /o < ! and such initial segment g{™ that l; — 2 of strategies
Fy...., Fy_y output the second hypothesis on a subsegment of ¢[*! and there are
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at least k — [p rows in the subtable that have no more than one anomaly in com-
parison with g, Such interpretations will be found for all but finitely many n,
because the initial segments of f give consistent interpretations starting with the
segment on which the last of the second hypotheses is output.

When an interpretation is found, @5, outputs values (those that are not already
output) according to the following rules.

1. Value u is output if its weight is at least (kK — 1)/2 and it is l-coordinated
with all the values already output.

2. Value u is output if its weight is at least [(k — lp +1)/2], it is equal to the
corresponding value of g and it is [-coordinated with all the values already

output.

3. Value u; is output at point z; if it is [-coordinated with all the values
already output and there is a column z5 such that:

(a) at point z, a value uo has been output;

(b) there is another value vy # us in column z, such that, denoting the
numbers of rows that have the corresponding values at points z; and

T, as in the table:

Number of rows | Value at z;

Value at z,

51
52
83
S4
S5
56

Uup
71

Uy
?1
Uup
N

Uz
Uz
7!
7!
U2
U

(here “?!I” means “undefined value or value different from mentioned
at this column”), the following inequalities are obeyed:

4. Suppose there are columns z; and z, such that:

N >k—l
S _
1T 82 =2 5

82+S4Sl—1;

(4.1)

(4.2)

(a) column z; contains two different values u;, and v; (and maybe some

other values);

(b) either u; has been output at z;, or no value has been output at z; and
no value has been output according to rule 3;
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(¢) column z, contains two different values u, and v, (and maybe some
other values) and uy has been output at z»;

(d) denoting the numbers of rows that have the corresponding values at
points z; and z as in the table:

Number of rows | Value at x; | Value at x,
tl Uy U2
to (51 U
ts ?! U2
4 U 7
t5 (51 7!
te 7! !
t7 Uy (%)
ts vy ()
tg ?' V2

the following inequalities are obeyed:

k—1
ti+t+ 13 > T, (43)
to+tz+ts+te <1l —1, (4.4)
t > 20— 1. (4.5)

Then the algorithm outputs u; at x; if necessary, and further it outputs a
value iff it is in at least [ of ¢g rows that contain both v, and v, at x; and
Zq, respectively (any output according to the previous rules is terminated).

To prove that ¢, =! f in case no more than | — 2 strategies change their

hypotheses, we shall consider some cases.

1. ¢n has output value according to rule 4. We shall use the notation intro-
duced in this rule. Since no more than { — 1 hypotheses among Ay, ..., hx_;
are wrong, if two vaiues are [-coordinated, then no more than one of them
is incorrect. We get from (4.3), (4.4) and the equality & = 6/ — 3 that
tp > (k=1)/2-1+1=3l/2-1/2 >, so no more than one of the values
u; and uy is incorrect. Since tg > 21 — 1 > { (inequality 4.5), no more than
one of the values v; and v, is incorrect. Combining these two conclusions
we get that exactly one of the values u; and u, is incorrect and exactly one
of the values v; and v, is incorrect. The latter implies that all of the 2/ —1
or more rows containing v; and v, except at most [ — 1 rows will contain

the correct values at all other points, and according to rule 4 these values
will be output.
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Suppose an incorrect value uz has been previously output at some point z3
different from z; and z,. Then it was [-coordinated with u,, therefore u, is
correct, u; and v, are incorrect, and vy is correct. Hence £ —1—1, rows have
already at least one anomaly at columns z; and x4, so the weight of u3 does
not exceed to+1—1 < 21 —2 < (k—1)/2, therefore uz was output according
to rule 3. According to condition in rule 4, u; has been already output, so
u is l-coordinated with us. Since both these values are incorrect, we have
a contradiction. Thus the only error made by y}, is either u;, or u,.

2. ¢n at least once has output value according to rule 3, but never according
to rule 4. Considering the first value output according to rule 3 we shall
use the notation of this rule.

(a) The weight of uy in zy after all the defined values are computed in x,
turns out to be no less than (k—1)/2. Then u, satisfies the conditions
of rule 1, and we can consider it to be output according to that rule.
That case will be considered further below.

(b) The weight of uy in x, never exceeds (k — 1)/2 — 1. Let s; denote the
numbers defined in the table above in the situation when all the defined
values in columns z; and z, have been computed. Note that, when
new values are computed, s; + s9 cannot decrease, while sy + s4 cannot
grow, so inequalities (4.1) and (4.2) remain satisfied. Our assumption

implies
k—1
$1+$3+35§—2——1- (4.6)
Inequalities (4.1) and (4.2) imply
k-1 3—1
> — —l+1=—. 4.7
S12 5 + 5 (4.7)

Hence u, and u, are I-coordinated. Inequalities (4.2), (4.6) and equal-
ity Y28 ;s =k —1imply sq+86 > 86 > (k—1)/2-14+2=20> 1.
So non-u; and non-u, values are also I-coordinated. Therefore, one of
the values u; and uy is correct, and the other is incorrect.

1. uy 1s correct, uy is incorrect. From (4.6) and (4.7) we get that
83+ 85 < (3l — 5)/2. So the amount of rows that have error in z,
Or Ty is no less than s;+s;+s4+56 > k—1—(31—5)/2 = (91-3)/2.
At least (91—3)/2—(1—-1) = (71—1)/2 > (k—1)/2 of these have
correct values at all other columns, and using (4.1) we get that at
least s; + 55 — (I — 1) > | of them have u, at z; and u, at 24, so
the correct values are [-coordinated between themselves, with u,
and us, while the incorrect values cannot be [-coordinated with
uyz. Thus all the correct values are output according to rule 1, and
wp, has only one error, that is us.
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1. uy is incorrect, uy is correct.

A. s > 2l—1. Then at least (k—1)—sy > (k—1)—(I—1) =5[-3
rows have an error at z; or z,, and at least 5/ -3 — ([ - 1) =
4l — 2 > (k — 1)/2 of them have correct values at all other
columns. Among them are at least s; — (I — 1) > [ rows
that have u; at z; and u, at 2. So the correct values are
[-coordinated between themselves, with u; and u,, and they
are output according to rule 1 (the incorrect values cannot be
output since they are not [-coordinated with u;). ¢y, has only
one error, u;.

B. s; < 21—-2. Let v; be the correct value at z;, 3'6 be the number
of rows that have v; at x; and vy at z,, sg = 8¢ — s;. Since no
more than [—1 rows can have two errors, 33+s4+85+sg <l-1.
Applying this inequality as well as (4.2) and the assumption,
we get s'6=(k—l)—sl—32—33—s4—35—sg >(k—1)—
4-(l—1)=2]> 2l —1. But then columns z; and z, satisfy
the conditions of rule 4; this case was considered above.

3. All the values output by y satisfy the conditions of rule 1 or rule 2.

(a) There are two incorrect values output by . That is impossible, since
all output values are [-coordinated.

(b) Among the values output by w, there is an incorrect value u, at some
column x1, and pp(x2) is undefined for some x9. Let v = f(x1),
ug = f(z2). Let w; be the weight of u; at z;, wy the weight of v; at
z1, and w3 = (k — 1) —w; — wy. Then w; > (k —1)/2. So there are at
least wy +w3 — ({ — 1) > (31 — 1)/2 > [ rows that have an error at z,
and correct values at all other columns, including z5. Therefore u, is
[-coordinated with all the correct values (maybe except v;) and with
uy and thus satisfies conditions of one of the rules 1, 2 and 3. There is
a problem, though. Maybe at every interpretation considered by @5, u,
was not [-coordinated with the computed part of a correct value output
in some column. At further interpretations all the defined values at
this column become computed, and u; becomes I-coordinated with
the correct value, but now u, can have the same conflict with another
column, etc.

Let us consider such interpretation applied by ¢, with initial segment
gl=! modelling f that all the defined values at x,, T3 are computed, u,
is not l-coordinated with some previously output value uz at z3, and
in the next interpretation considered by ¢y us is already (-coordinated
with uz. If g(x1) # u;, with the same reasoning as above we get that
up and uz must be [-coordinated. So, g(z,) = u;.
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i. g(x2) = vo # us.

A. g(z3) # us. Let w' be the weight of uz at z3, w' > (k —1)/2.
There are at least w' — (I — 1) > (3l — 1)/2 > [ rows whose
only error in this interpretation is usz at 3, so they have u; at
z; and vy at z,. Thus u; and v, are l-coordinated. That is a
contradiction, since in fact u; and vy are both incorrect.

B. g(z3) = us. Then the weight of u; at z, does not exceed 2{—2,
otherwise 13 and ug would be [-coordinated, contrary to the
assumption. Since v; = f(x1) and uy = f(z3), the number
of rows that have not uy at zo and have v; at z, is at least
(k—1)—(20-2)— (I -1) =3l — 1. Since v; # g(x;) and
ve = g(z2), the number of rows that have v; at z; and v, at
To is at least 3] — 1 — (I — 1) = 2[. But then columns z, and
z1 (in this order) satisfy the conditions of rule 4; this case was
considered above.

ii. g(x9) = ug. Since f(z1) # u1 = g(x;), the weight of u, is at least
(wy —(-1))+(wot+tws—(I—1))=4l-2.
A. g(x3) # uz. Since the weight of uz exceeds 21 — 1, uy is I-
coordinated with ug, contrary to the assumption.

B. g(z3) = u3. Since ujz is not [-coordinated with u,, at least
4l —2— (I —1) = 3l — 1 rows have uy at o and an error at z3
(in this interpretation), and at least 3/ —1— (I —1) = 2] > [ of
them have no other errors, so they have u, at z,, us at o and
values that are correct in relation to both f and g at all other
columns, except z3. According to the assumption, in the next
interpretation us becomes [-coordinated also with us, so it will
be output then (according to the algorithm, the new columns
of the new interpretation will be considered only after z5).

(c) There are two points T, and o at which ¢y is undefined.

Let o be an interpretation in which all the defined values at z; and
T2 have been computed, let gl be the initial segment modelling f in
«. Let the number of strategies that have changed their hypothesis on
gl be 1y — 2 (we are interested only in the case Iy < [), uy = g(z1),
uy = g(z;). Then the number of rows that have no more than one
error in « is at least (k — 1) — (lp — 1) = k — ly, and at least one of the

values u; and u, have weight at least |(k — lo + 1)/2]; let u; be this
value.

1. The weight of uy at x5 is less than [(k — ly + 1)/2]. Then at
least (k —1)/2+ 1 = 3] — 1 rows have not u, at z,, so at least
3l—1—(I—1) =2l > of them have a-correct values at all other
columns, u; at x; among them. Since u, is not output, it is not (-
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il.

coordinated with some previously output u3 at z3, and g(z3) # us.
Since u3 was output according to rule 1 or rule 2, it has weight at
least (k —1)/2 = (5] — 3)/2, so there are (5! — 3)/2 - ({ —1) =
(3l—1)/2 > I rows in which uj3 is coordinated with all the a-correct
values, u, among them. Contradiction.

The weight of us at T is at least [(k —lp+1)/2]. Then u; and u,
both satisfy the conditions of rule 2. Since they are not output,
they are not [-coordinated with some previously output value(s).

A. Both u, and uy are not l-coordinated with some value uz output
at z3. If us # g(x3), then as previously we get that u; and
uq are l-coordinated with uz. So us = g(z3). Suppose uj has
weight at least (k — 1)/2. Then the number of rows that have
us at 3 and no more than one a-error, is at least (k—1)/2 —
(I —1) = 2l — 1. These rows have either u; at z;, or uy at z,
so uj is l-coordinated with at least one of these values.
Suppose ug has weight less than (k—1)/2. Then it was output
according to rule 2. Let us consider interpretation o’ with
the initial segment ¢'*! (2 < z) at which uz was output.
According to rule 2, uz = g'(23). Suppose (Jzo < z')[g(xq) #
g'(x0)]. Let up = ¢’(xo), vo = g(xo). Let r be the number of
rows that have not uj at z3, then 7 > (k—1)/2+1. According
to o', at least r — (I — 1) of these rows have ug at z¢; according
to a, at least r — ({ — 1) of these rows have vy at xy. Since r >
2{—2, we get a contradiction. Therefore such zy does not exist,
and ¢!* is an extension of ¢'¥1. Some of the I, — 2 strategies
that have changed their hypotheses at o have changed them
already at o'. Let their number be [, —2 (I; < lp). The weight
of uz is at least [(k—1I; +1)/2]|. The number of rows that have
ug at 3 and no more than one a-error at all other columns is
atleast [(k—0L+1)/2|-1-(lo—0L)=|(k+1,—-1)/2] =y >
(k+1)/2—1 = 2l-1. Each of these rows have either u; at z,
or us at Zo, SO usz is [-coordinated with at least one of these
values, contrary to the assumption.

B. u; is not -coordinated with some previously output us at 3, us

18 not l-coordinated with some previously output uq ot x4 # x3.

As previously, if us # g(z3), then uz would be [-coordinated

with u;. So uz = g(z3). Similarly, uy = g(z4). Since u; and

uz are not [-coordinated, there are at least (k — 1) — (I — 1)

rows that have an a-error either at z;, or at z3. At least

(k—1)—2-(l—1) > [ of them have no other a-errors, so they
have u, at x5 and uy at x4, contrary to the assumption.

a
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b+l
Corollary 4.2 (Vb € N)[cdeg(Ex}) = 787+3].
Theorem 13 (Va € IN | a > 1)(Vb € IN)[cdeg(Ex;) = o0].

Proof. Let a > 1,b be some natural numbers. It is enough to prove for an
arbitrary k > 2 that there are such classes Uy, ..., U that the unions of £k — 1
classes out of them are identifiable, while U;‘Il U; is not.

We define U; = (N, ;4 [7%), 1 < i < k. Then UL, ;U € I € Ex¢,
1<j<k

We have to prove that |US_, U; ¢ Ex¢. We use diagonalization over the strate-
gies. Let F' be an arbitrary strategy. Using the multiple recursion theorem
similarly as in Theorem 10 we construct functions ¢,, 1 <7 < N (where N is a
natural number determined only by a and b) that can use each others Gédel num-
bers incorporated in their values. With their help we shall construct a function
f € UL, U; not identified by F.

We remind that the procedure new(z) lets  <— n., ¢ < ¢+ 1, where c is a
counter in the algorithm.

The algorithm for ¢,, is as follows.

e Stage 0.
Let ¢ «~ 1. Execute new(s;) for 1 < i < k. Output values as shown in the
next table.
0 k-1
99311"'3903;@ (111:1331> (11k11}3k> <)
fﬂ (11111931> <1$k1113k> ()

Let the variable y throughout this algorithm indicate the maximal value of
argument at which the values have been output at the moment. Simulate
the strategy F' on the initial segments of fy. If a hypothesis is output on

1 we let h + F(fI7), 2o « max(z,y) + 1; we output () up to zo — 1, if
needed, and go to stage 1.

e Stager (1<r<b+1).

— Substage 0.
Output values as shown in the next table.
Zg ... Zg+a—-1 zg+a
(:051 .? .? ? ? ()
Psgr- - Ps | T ? f O 0
fro 0 O () 0 0

Compute @u(xo), .. .. pn(2zo +a), and, if r < b+ 1, simulate F on f,.
If wn(z) = () gets computed for zo < z < 1o+ a — 1, change f, to be
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different from this value: f,o(z) = (0), and restart simulating F' on
fro as well as computing ¢, at other points.

If F makes a mindchange on f,[:%] for some z, we let h « F( T[IJ),

zo]

To < max(z,y) + 1, 0 fr[,o , and go to substage k.
If op(x9+a) = () is computed, we let z; < 2o +a, 2 < y+1, output
(psi(l'() +a-— 2) = fr,o(l'() +a— 2), (Psl-(:L'O +a-— 1) = f,-yo(.’l?g +a— 1) for
1 <i<k, () up to z; — 1, if needed, and go to substage 1.

— Substaget (1 <t<k-—2)
Output values as shown in the next table.

Ty ... Tgp1 Ty + 1 oz +2 .
(10311 MR} (psz ? () ? () () <>
Psisr 0 0 7 ? ? ()
Porrar P [ ) O () ? ? Q)
o O 0 0 () 9) ()
We compute on(zo), ..., @n(zo + a — 3), wn(Ti11), @r(zesr + 1),

©n(xi41 +2) and the outputs of F' on f,;.

If pr(z) = () gets computed for 2y < z < 29 + a — 3, change f,; to
be different from this value: f,:(z) = (0), and restart simulating F' on
fr+ as well as computing @, at other points.

If r <b+1 and F' changes its current hypothesis on fr[i] for some z,

we let h « F( ,[':";]), zo < max(z,y)+1, 0 + fr[i"], and go to substage

k.

If on(zey1) = () is computed, we let 2,10 < y + 1, output s, (2;) =
0s;(Te41 + 1) = @5, (Te41 + 2) = () for 1 < ¢ < k (where the values
have not been already output), () up to z;12 — 1, if needed, and go to
substage t + 1.

The cases when @p(z41 + 1) = () or pp(x141 + 2) = () is computed
are similar; we shall describe the first case.

Thus, if p(x4y; +1) = () is computed, let 2’ + y + 1, and output
values as in the next table.

Ty ... Tg+1 T +2 .0 L

Dsis-- s | (0) () () () 0 7 0

G- P | O () (0) Q) 07 0

Jra © ¢ (O 0 0 0 0
C,ompute Yr(Zo), - - -, pn(xo +a — 3), ¢n(z’) and the outputs of F on

fr.t'

If on(z) = () gets computed for to < z < zg+a — 3 or T = 7/, change
fr4 to be different from this value: f, ,(z) = (0), and restart simulating
F on fr",_ as well as computing ¢, at other points.
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If r < b+ 1 and F changes its current hypothesis on frl‘[f] for some z,
we let h < F(f,’,[f]), Ty + max(z,y)+1, 0 + frly[f"], and go to substage
k.

— Substage k — 1.
Output values as shown in the next table.

Tk—-1 Tk-1t+ 1 Tp_1+ 2 ... T ...

Psiveer sy | (0) () 0 0 7 0

Ds, () () () Q0 7 Q

frge-1 (0) 9) () 0 0 0
Compute @n(zo), ..., oa(xo + @ — 3), wn(zk-1 + 1), @n(zx) and the

outputs of F' on f,x_;.
If pr(z) = () gets computed for 2o <z < zp+a -3,z =x4_1+ 1 0Or
T = T, change f,x_, to be different from this value: f,x_1(z) = (0},
and restart simulating F' on f,x_; as well as computing ¢, at other
points.
If r < b+ 1 and F changes its current hypothesis on f,[i]_l for some
x, we let h F(fr[f,l_l), To <+ max(z,y) + 1, o0 « fr[,z,f]_l, and go to
substage k.

— Substage k.
Execute new(s;) for 1 < i < k. Output values up to zp — 1 so that
(,o[sf"‘ll = o and further as shown in the next table.

To (I;'0+k—1
Psir--0s, | (L, L, m+1,81) ... (Lk,r+1,s)
I (L,1,7+1,81) ... (L,k,7+1,5;)

Let zy <~ o + k and go to stage r + 1.
End of stage r.

Each stage in this algorithm deals with one hypothesis made by F. It makes
the current hypothesis function to have at least a + 1 anomalies by forcing it
to output values based on smaller and smaller evidence from the functions ¢,
(substages 0 to k — 2). When F makes a mindchange, we disregard the previous
functions ¢,, by choosing new values for s;, remembering only the segment ¢ on
which F' made the mindchange. So, either the last hypothesis output by F' has
at least a + 1 anomalies, or F' makes at least b + 1 mindchanges. O

4.4 Closedness in Superset

In this section we shall turn our attention to the general case of establishing
csdeg(Ex;, Exg). According to Corollary 3.1 we have csdeg(Ex}, Ex§) = oo, in
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case ¢ < a or d < b. Some other results important in this section are contained
in Propositions 3.5, 3.4, Theorems 6, 9 and 10. The next theorem have been
obtained from a result in team learning.

Theorem 14 [19] (Va,b € N)(Ve,d €e NU{*} |c > aAd>|
1))[csdeg(Ex;, ExS) = 2].

— a+1 +2](2b +

It shows that, given a and b, by choosing ¢ and d large enough we can make
the closedness degree for classes Ex; and Exj reach its minimal value 2. From
Theorems 9 and 10 we get the next result showing that, if we do not change the
number of mindchanges, then the minimum reached by csdeg is different.

Theorem 15 (Vb € N)(Va,a' € NU {*} | o' > 2*'a)[csdeg(Ex¢, Ex¢) = 20+2).

Now we shall turn our attention to estimating csdeg(Ex;, Exy), b < d < *.
By evaluating the influence of anomalies in the algorithms we shall obtain results
for csdeg(Exg, Ex) for sufficiently large c relative to a.

At first, not a very exact upper bound.

Theorem 16 (Vk > 3)(Va,c € NU {x} | ¢ > (|k/2] + 1) -a)(Vb,d € N | d >
26— 14 [(2b+4)/(k — 1)) [csdeg(Ex?, ExS) < k]

Proof. At first, let us note that a similar result for k = 2: csdeg(Ex;, Exj) = 2
for ¢ > 2a, d > 4b + 2, follows from Theorem 14.

Let Uy, ...,Us, kK > 3, be such classes that all the unions of £ — 1 out of

them are Exj-identifiable. Let Fj, 1 < j < k be a strategy that Exj-identifies
=14z Ui- Note that each functlon from U%_, U; is identified by at least k — 1 of
the strategies F;. Consider the following strategy F'.

At first we describe, when F' outputs hypotheses. F' simulates the strategies
F; on the input function f. F' waits until k¥ — 1 strategies among F} output
their first hypotheses, we denote them h{, ..., h'g_l, then F' outputs hypothesis
ho based on these hypotheses. In further, F' computes the values output by the
current hypotheses of Fj counting the number of incorrect values output by them
and continues to simulate F; on f. F' does not consider (b + 2)-th and further
hypotheses, in case such are output by some of the strategies Fj.

Suppose k is even. Suppose F' has output its previous hvpothesis h;_; based
on k£ — 1 hypotheses. [’ outputs a new hypothesis h; iff at least k/2 of the
strategies F; output new hypotheses. h; is based an all k£ current hypotheses of
F;.

Suppose the previous hypothesis h;_; was based on k strategies. Then F
outputs a new hypothesis h; iff either £/2 — 1 of the strategies F; output a new
hypothesis and among the last hypotheses of the remaining k/2 + 1 strategies
there is one, A, that has output incorrect values at least at a + 1 points, or if
k/2 strategies output a new hypothesis. In the former case h; is based on all the



CHAPTER 4. IDENTIFYING TOTAL RECURSIVE FUNCTIONS 36

current hypotheses except h’, in total on k¥ — 1 hypotheses. In the latter case h;
is based on all k£ current hypotheses.

Suppose k is odd. Then the previous hypothesis h;_; was based on k£ — 1
hypotheses. F' outputs a new hypothesis iff either (k — 1)/2 of the strategies on
which hypotheses h;_, was based output a new hypothesis, or if a new hypothesis
is output by (k — 1)/2 strategies including the strategy on whose hypothesis h;_;
was not based, and among the current hypotheses of the remaining (k£ + 1)/2
strategies there is one, h', that has output incorrect values at least at a + 1
points. In the former case h; is based on the current hypotheses of the same
strategies on which h;_; was based. In the latter case h; is based on all the
current hypotheses except h'.

If at least 3 strategies output their (b + 1)-th hypotheses, then F' outputs
its own last hypothesis based on them. If two strategies output their (b + 1)-th
hypotheses and one of these hypotheses output incorrect values at least at a + 1
points, then F' outputs its last hypothesis based on the other hypothesis.

Now we describe the algorithm for ;. Let | be the number of hypotheses
it was based on, = k —~ 1 or | = k, and let h!,... h! be these hypotheses.
©n,, Teceiving as input z, simulates @p1(z), . .., @p(z). When at least | (I +1)/2]
among these functions output the same value y, yn,(z) outputs y, too. Note
that, if [ is even, |({ + 1)/2| = /2, so the value output by ¢, could depend on
the order in which the values yp;(z) are output.

It is easy to see that, if the conditions for outputting h; are not obeyed,
the previous hypothesis h;_; is a correct Ex*-hypothesis, since at all but a finite
amount of points majority of the functions on which h;_; was based output correct
values. Similarly, the last hypothesis output by F' is correct, since at most one
of the (b+ 1)-th hypotheses of strategies F; can be incorrect.

To conclude proof, we have to count, how many mindchanges F' will have
and how many anomalies its hypotheses h; can have. Suppose k is even. Let
us count, how many new hypotheses by F; are needed for each hypothesis by
F. For hg k — 1 hypotheses are needed. For h; k/2 hypotheses are needed. In
further, for each h; at least k/2—1 hypotheses are needed, and for two consecutive
hypotheses h;, h;y1 k — 1 hypotheses are needed. When F} have output bk + 3
hypotheses, at least 3 (b + 1)-th hypotheses have appeared. So the number of
mindchanges made by F' does not exceed the minimal d for which the inequality
k—1+k/2+ (d—1)(k—1)/2 > bk + 3 holds. The inequality implies d >
(2bk — 2k + 7)/(k — 1) and, since d is integer,

Wk — 2k + 7 N
dz[ + wzlzbk k+oJ:2b_1+[2b+4J'

k—1 k-1 k—1

Suppose k is odd. Then for hy k — 1 hypotheses are needed, and for h;, i > 0,
(k — 1)/2 hypotheses are needed. In this case d is determined by the inequality
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k—1+d-(k—1)/2> bk +3. It implies d > (2bk — 2k + 8)/(k — 1) and

i [2bk—2k+8} _ l?bk—k+5J :2b_1+{2b+4J'

- k-1 k-1 k—1

(We used the fact that, for ¥ > 3 an odd integer and ! an integer, [I/(k —1)] =
(1 +k—3)/(k—1)].)

Suppose h;, is based on [ hypotheses, and it is the last hypothesis output by F'.
Suppose [ is odd. Then at least ({+1)/2 = |l/2| +1 > [/2 of these [ hypotheses
are correct Ex®-hypotheses, and ¢, can have anomalies only at no more than
(|l/2] + 1) - a points where at least one of these correct hypotheses have an
anomaly. Now, suppose [ is even. Then at least {/2 hypotheses are correct Ex®-
hypotheses, and at least one of the remaining hypotheses, h', outputs no more
than a incorrect values, though it can be undefined at any number of points.
But at the points this function is undefined, any incorrect value can gather no
more than [/2 — 1 “votes” among the incorrect hypotheses. So Pn,, can have
anomalies only at the points where either one of the correct hypotheses have

an anomaly, or where y outputs an incorrect value, that is at no more than
(1/2+1)-a=(|l/2] +1) - a points. 0

This estimation has two flaws: (1) it gives upper bounds only for csdeg(Ex,,
Ex4) where d > 2b—1, and (2) as we shall see below these upper bounds are not
simultaneously lower bounds. We shall see also that finding exact csdeg values is
a rather difficult task.

Nevertheless the proved result is not that bad, too. First, it implies the
following corollary.

Corollary 4.3 (Vb€ N)(Ya,c € NU {#} | ¢ > (b+4) - a)[csdeg(Exg, ExS, ;) <
2b + 6].

We see that here estimation is linear in b, unlike results in Theorems 9, 12
and 19!,

And, second, these upper bounds give exact csdeg values in some cases.

Theorem 17 (Vb, ¢ € IN) [csdeg(Exy, Ex§,.q) > 2]. (Vb € IN) [csdeg(Ex;,
Exiyi1) > 2]

Proof. Let U, = IlExg, U, = L?xg, where @ = 0 or a = . Then U,,U; € Ex,. We
shall show that U; UU, ¢ Ex§,,,, where c € N if a = 0, and ¢ = * if a = %, by
using the multiple recursion theorem and constructing functions ¢,, similarly as
in previous such proofs.

Suppose U;UU, C Ex},, (F) for some F. Procedure new(z) lets z < neount.»
count « count + 1. The algorithm for i, is as follows.

1Further in this section.
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e Stage 0.
Let count + 1. Execute new(s;). Output ¢, (0) = (1,1,1,s1). While in
this stage, output @, (z) = () for z > 0.
Let the variable y throughout the algorithm indicate the maximal value of
argument at which values have been output. We simulate F' on ¢,,. If a
hypothesis is output on go[sf], we let h « F( Lf]), zo + max(z,y)+1, u « 2,

v + 1, we output () up to 2o — 1, let fi2o~U « lzo-1l "and go to stage 1.
o Stagedm —3 (1 <m <b+1).
Execute new(t;),new(t;). Output ¢, () = ¢, (z) = f(z) for z < x0, and
further as in the next table.
I
Vs, ? ?
(ptl (1,U,m, tl) ()
Pte <1’ u,m, t?) (0)
(=]
1

Simulate F on ¢; and ¢y,. If F outputs a new hypothesis on y;
Sy ¢ t1. h F(@Ef]), a + () and output ¢, (xo) = (1, u, m, ty).
If F outputs a new hypothesis on (,DZ], we let s, < to, h F((pgl), a + (0)
and output @, (zo) = (1, u, m,ts).

In both cases we let £y + max(z, y)+1, output o up to zo— 1, let flro—1
oo~ and go to stage 4m — 2.

, we let

o Stagedm —2 (1 <m <b+1).
Output ¢, (z) = (), ps.(z) = (0) for z > o while in this stage.
If m = b+ 1, the algorithm remains in this stage. If m < b+ 1, simulate F’
on p,, and ¢, . If F outputs a new hypothesis on Lp[fu], we let h « F(Lp[f'}),
o+ ().
If F outputs a new hypothesis on ¢, we let b « F(ol%), a « (0),
(u,v) + (v, u).
In both cases we let g + max(z,y) + 1, output & up to g — 1, extend f to
zo — 1 by defining it equal to ¢;, where f was undefined, and go to stage
4m — 1.

o Stagedm —1 (1 <m < b).
Execute new(t;),new(t;). Output ¢, (x) = ¢, (z) = f(z) for z < zo and
further as in the next table.
‘ T .
Py ? ?
vy, | (Ly,m+1.4) ()
¢, | (Lv,m+ 1t (0)

Simulate F' on ¢, and ¢,,. If F outputs a new hypothesis on cpﬁ], we let

Sy t1, h + F((pEf]), a + () and output ¢, (z0) = (1, v,m + 1,1,).
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If F' outputs a new hypothesis on Lpgf],

and output s, (zo) = (1,v,m + 1,12).
In both cases we let zo < max(z,y) + 1, output a up to zo— 1, let floo-1
plo~1 and go to stage 4m.

we let s, « t9, h F((pg]), a + (0)

e Stage 4m (1 <m <b).

The algorithm for this stage depends on a.

Suppose a = 0, then ¢ < *. Output ¢, (z) = () for z > x, while in this
stage. Simulate pp(z) for x > zg and F on @,,. If pp(z) = () for at least
¢ + 1 values of argument z > xzy, we output ¢, (z) = (0) for x > z4 at
the same time simulating F' on ¢,,. If F outputs a new hypothesis on
@, we let h + F(pl2l), 2y « max(z,y) + 1, output (0) up to zo — 1, let
feo=ll ¢ plo=1l “and go to stage 4m + 1.

If F outputs a new hypothesis on ¢Z), we output ¢,,(z) = () for zo <
z <z, let h « F( Lf‘]), zo ¢ max(z,y) + 1, output () up to zg — 1, let
fEo1l ¢ pleo=1l"and go to stage 4m + 1.

Suppose a = ¢ = x. Output one by one values ¢, (z) = () and @, (z) = (0)
for x > . Simulate F' on @,, and ¢, . If F' outputs a new hypothesis on
cp[;f}, we iet h + F( Lf]), zo + max(z,y) + 1, output (0) up to = — 1, let
feo=l ¢ plzo-1l “and go to stage 4m + 1.

If F' outputs a new hypothesis on (,OLI], we let h F(go[f]), zo + max(z,y)+

1, output () up to o — 1, let f[IO‘IT o=l and gouto stage 4m + 1.

(Note that in the latter case, though g, , the function that will be used in
stage 4m + 1, differs from f, the function in which the segments feeded to
F are recorded, (s, still have only finite amount of anomalies with respect

to f, and that is allowable in case a = *.)

Each stage is constructed so that the current hypothesis h is invalid for at
least one of the considered functions that belong to Uy UU,. So F has to make a
mindchange, and either the last hypothesis output by F' is incorrect, or F' makes
at least 4b + 2 mindchanges. 0

Corollary 4.4 (Va,c € NU{x}|c>2aA(c=%=>a=1x%))(Vb,d e IN|3b+1 <
d < 4b+ 1)[csdeg(Ex;, Ex§) = 3.

Theorem 18 (Vb,¢ € IN)[csdeg(Ex,, Ex§,) > 3]. (Vb € IN)[csdeg(Ex;, Ex3,) >
3].

Proof. Let U; = 2, ;; IjExg for 1 <i < 3 where a = 0 or a = *. Then union of
any two of these classes is in Ex,. We shall show that U, UU; UU; ¢ Exj, where
ceNifa=0,and c=* if a = *.

Suppose U; U U, UU; C Ex§,(F) for some F. We again use the multiple
recursion theorem to construct , . Procedure new(z) lets < neoypt, count

count + 1. The algorithm for ¢,, is as follows.
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e Stage 0.
Let count + 1. Execute new(s;),new(sz). Output values as in the next
table.
0 1

Ps1s Psa l (17171’31) (172,1,S2> <>
Let the variable y throughout the algorithm indicate the maximal value of
argument at which values have been output. We simulate F' on ¢,,. If
a hypothesis is output on @7, we let h + F(oll), o « max(z,y) + 1,
w1, v 2, w3, we output () up to zo — 1, let fleo—1) <,0[sf°‘1], and
go to stage 1.

o Stage3m —2 (1<m <b+1).
Execute new(t1), new(tz). Output ¢y, () = ¢, (z) = f(z) for z < zy, and
further as in the next table.

‘ Ty Ca
Psus Pty (Lw’mvtl) <>
Psyr Pta (1, w,m, ty) <0>

If m = b+ 1, the algorithm remains in this stage. If m < b+ 1, simulate

F on ¢, and ¢.,. If F outputs a new hypothesis on <p£f], we let s, « 1,

b Fpl), a (), (u,0) ¢ (v, ).

If F outputs a new hypothesis on @E’;l, we let sy <+ g, b F(@Ef]), a <+ (0).
In both cases we let zo + max(z,y)+1, output o up to zo—1, let flzo=1l
©l=0=11 "and go to stage 3m — 1.

Sw

e Stage3m —1 (1 <m < b).
Execute new(¢;), new(¢z). Output ¢y, (z) = ¢, (x) = f(z) for z < zg, and
further as in the next table.

’ Ty .
Psur Pty (1,u.3m+ 11t1) ()
Psu: Pty (1,u,m + ]-at2> <0>

Simulate £ on ¢, and ¢;,. If F outputs a new hypothesis on (p£f1
Sy & t1, h « F(QOE]) a — ()

If F’ outputs a new hypothesis on \;EJ
(v,w) + (w,v).

In both cases we let zo < max(z,y) + 1, output o up to zg — 1, flFo~1
pl2o=1and go to stage 3m.

, we let

, we let sy  tg, h « F(pl)), o « (0),

o Stage3m (1 <m <b).
Here we consider two cases.
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1) a =0, ¢ < *. Execute new(¢;). Output ¢, (z) = f(z) for z < xo, and
further as in the next table.

| Zo
Ps ? ?
Ps,s Pty (1,w,m+ 17t1> <>

Simulate @, (z) for z > zg and F on ¢y, . If gi(z) = () for at least ¢+1
values of argument z > z, we execute new(ty), output ¢y, (z) = f(z)
for x < z9, and further as in the next table.

| To A
Psar 1, | (Lv,m+ 1,8) (0)

=1 we let

Sy 1o, h F((pE‘Z]), To + max(z,y) + 1, output (0) up to zo — 1, let
[l pleo=1l "and go to stage 3m + 1.

If F outputs a new hypothesis on cpf] (see the table before previous),
we output g, () = @ (z) for 2o < z < 2/, let s, 11, (v,w)
(w,v), h + F(cpfl]), To < max(z,y) + 1, output () up to zo — 1, let

[:L‘o—l

flo=1l o, ], and go to stage 3m + 1.

We simulate F' on ¢,,. If F' outputs a new hypothesis on ¢

2) a = ¢ = x. Execute new(t;), new(ts). Output ¢y, (z) = ¢, (z) = f(2)
for ¢ < zp, and further as in the next table.

‘ Ty ..
s, s Pty <1vvvm+17tl> <>
sy Pty (17w)m+17t2> <0>

Simulate F on ¢,;, and ¢,. If F outputs a new hypothesis on gogf], we
let s, ¢ t1, h F(cpgf]), zo ¢ max(z,y) + 1, output () up to zy — 1,
let fl7o=1 — l=~1 and go to stage 3m + 1.

]

If F outputs a new hypothesis on <pg , we let s,  t, (v, w) « (w,v),

h « F(cptl), Ty + max(z,y) +1, output (0) up to zo — 1, let flzo-1
(,og's"_l], and go to stage 3m + 1. (Though in the latter case @,, # f,

still s, =* f.)

Each stage is constructed so that the current hypothesis h is invalid for at
least one of the considered functions that belong to U; U U; U Us. So F has to
make a mindchange, and either the last hypothesis output by F is incorrect, or
F makes at least 3b + 1 mindchanges. u!

Corollary 4.5 (Va,c € NU{x} | ¢ > 2aA(c = * = a = x))(Vb,d € IN |
[ (80 +1)/3] < d < 3b)[csdeg(Ex;, Ex5) = 4].
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A question arises: what flaws has the algorithm described in Theorem 167
The proof of the next theorem shows the most significant one: this algorithm has
equal confidence in the m-th hypothesis output by a strategy it simulates and
in the (m + 1)-th hypothesis. A later hypothesis is “nearer” to the (b + 1)-th
hypothesis that is always correct for a correct Exj-strategy, so greater weight
should be attached to later hypotheses than to earlier. On the other hand, as we
shall see in the next theorem, the optimal weight function is rather complex, not
depending only on which hyppothesis it is for the strategy.

Theorem 19 Let k,, n € IN, be the smallest natural number for which k, -
2kn—=3 > (27*2 4+ 1)/3 holds. Then for all b € IN:

[LEEBR] _ if 22 4 3.2k~ = 1 or 0

kp+1
csdeg(Exy, Expy1) < (mod &y + 1);
2 [2b+2+3_2kb—3-| 2 th .
TRl | & oLnerwise.

Proof. In proofs of the previous theorems proving upper bounds we saw that, if
all the unions of n — 1 classes out of Uy, ..., U, are Ex;-identifiable, then there
are n strategies Fi, ..., F, such that every function f € U, U; is Exj-identified
by at least n — 1 of them. Thus some strategy F' identifying f can simulate
all the strategies F; obtaining n sequences of hypotheses at most one of which
(the sequences) is incorrect in the Exj-identification sense. In the process of
identification different configurations arise in these sequences such as: F has
output 5 different hypotheses, 7 sequences have produced 6 different hypotheses
each, n —9 sequences have produced 5 different hypotheses each, and 2 sequences
have produced 4 different hypotheses each. For a possibly better estimation
of csdeg we are going to find possibly optimal “winning” configurations, that
is configurations at which F can identify the input functions. For instance, a
configuration in which 3 sequences have output b + 1 different hypotheses each
is a winning configuration, since at least two of the last hypotheses in these
sequences are correct, so F' can output a correct hypothesis based on the 3 last
hypotheses. Similarly, substituting b = 1 in the proof of Theorem 9 we get that a
configuration in which 7 sequences have output their 5-th hypotheses is winning
if F' can output two hypotheses. Since we are concerned with upper bounds,
we shall not prove that some configuration is not a winning configuration (that
would be more difficult).

At first some heuristics for eliminating the set of configurations to consider.
First, if F' can output no more than 7 hypotheses, and in some sequence i more
hypotheses can be output not exceeding the bound on mindchanges, then this
sequence shouldn’t be considered at all by F. Indeed, each time F bases its new
hypothesis on the current hypothesis in this sequence, a mindchange can occur
in it making thus the previous hypothesis unreliable. Second, some hypotheses
can prove to be incorrect by outputting values different from the values of f.



CHAPTER 4. IDENTIFYING TOTAL RECURSIVE FUNCTIONS 43

We should not consider configurations in which the current hypotheses of two or
more sequences have proved to be incorrect. Indeed, since at most one sequence
is incorrect, new hypotheses are guaranteed to appear, and the strategy can wait
for them until it “sees” no more than one incorrect current hypothesis. Third,
though a situation when between two hypotheses by F' two or more mindchanges
are made in some sequences would be “good” for F', our strategy should work
also in the worst case when such events do not ocuur. So, if such event ocuurs:
mindchanges from h; to h;;; and from h;;; to h;yo are made, we shall consider
it equivalent to a situation in which only one mindchange: from h; to hi;s has
been made. Since initially all the sequences are empty, we shall suppose that
at the moment F outputs its i-th hypothesis no more than ¢ hypotheses have
been output in each of the sequences. Summarizing, since we are interested in
csdeg(Ex,, Ex;, + 1) — F' can make one mindchange more compared to £} —, so
we should consider configurations in which for each j: in the j-th sequence either
the same amount of hypotheses has been output as by F', or one hypothesis more
has been output than F' has output, and there is no more than one sequence
whose current hypothesis is known (to F') to be incorrect.
Now we proceed formally.

Definition 4.2 We say that a quadruplet (s,t,«,i), where i,s,t € IN, 1 > 1,
a € {0,1}, is a winning configuration iff there is an algorithm F such that

1. it recetves as tnput the initial segments of f € R and s +t + a sequences
of hypotheses;

2. initially it receives one hypothesis in each sequence;

3. if1 =1, s =0, otherwise s sequences explicitly marked can have no more
than i — 2 mindchanges;

4. t other sequences explicitly marked can have no more than i—1 mindchanges;

5. o other sequences explicitly marked have an incorrect first hypothesis and
can have no more than i — 1 mindchanges;

6. at least s+t + a — 1 sequences’ last hypothesis is correct;

7. F identifies f making no more than i — 1 mindchanges (that is by producing
¢ hypotheses).

Since additional information cannot be harmful, the following is true.

Lemma 4.2 Ifs' > s, s'+a' > s+a, s +t'+a' > s+t+a, i’ > i and (s,t,a,1)
is a winming configuration, then (s'.t',a’,7) is a winning configuration, too.
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Also, since the last allowed hypothesis must be correct for all sequences but
one, we get the next lemma.

Lemma 4.3 (0,3,0,1) and (0,1,1,1) are winning configurations.

Lemma 4.4 If (s5,0,1,7), ¢ > 2, is a winning configuration, then csdeg(Ex;_»,
Ex;,) <s+1.

Proof. Let Uy,...,Us41 be such classes that the unions of s classes out of them
are Ex;_,-identified by strategies Fj,..., Fs1;. Let F' be the algorithm from
Definition 4.2 corresponding to the configuration (s,0,1,7). Strategy F waits
until s of the strategies F; output their first hypotheses on the input function
f- The previous hypothesis of the remaining one strategy cannot be considered
correct, since it has not output any hypotheses, but it can yet output i — 1
hypotheses, while the other s strategies can output only ¢z — 2 more hypotheses
each. So F' simulates F' marking the remaining strategy as a strategy whose last
hypothesis is known to be incorrect (and substituting some function undefined at
all points for its hypothesis), and proceeds further feeding the outputs of Fj to
F’ and producing hypotheses output by F" as its own. According to Definition
4.2, F will Ex;_i-identify f, if f € Ut U;. 0

The proof of the theorem is based on the next lemma.

Lemma 4.5 Let the sequence {z,} be defined by z, = |log,((n+1)/3)] +4 for
n>1 Let Spo=2""-1,8,,=2""—-1-%" 2, form>2,n>1 Let
Ap=0Q2m+3-2km—273 4 1) /(ky_94+1), By = Am = 1/(km_g+ 1) form > 2. Let

- |
- |

for m > 2.
Then (n, Sma.0,m) for 0 < n < Cp, (Cn,0,0,m), (n,Smn — 2,1,m) for
0 <n < Dy, and (D,,,0,1,m), where m > 2, are winning configurations.

JAR] =2, fAm or Ay +1/(km_o+1) € Z,
- [Am] — 3, otherwise,

[
[
- [Bm] =2, if Bm or By +1/(km—a+ 1) € Z,
- [Bm| — 3, otherwise

Proof is by induction (applied to m).

Basis. We have SQ’[) = 7, 52'1 = 4, k[) = 3, A2 = 2, B2 = 7/4, C-z = 2, Dg =2
So we have to prove that (0,7,0,2), (1.4,0,2), (2,0,0,2), (0,5,1,2), (1,2,1,2)
and (2,0,1,2) are winning configurations.

Algorithm of Lemma 4.1 proves that (0, 7,0,2) is winning.

Let us consider the case (1,4,0,2). Then one sequence already has output its
last hypothesis. The identifying strategy F' outputs its first hypothesis hy based
on the 5 hypotheses similarly as in Theorem 16 (5, outputs a value if at least
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half of the hypotheses output this value). For hq to be incorrect, 2 more sequences
must output last hypotheses. So we have configuration (0,3,0, 1) or better (in
terms of Lemma 4.2). According to Lemma 4.3 this is a winning configuration.

Now, the case (2,0,0,2). F outputs hy based on the hypotheses (last allowed)
of both sequences. For hy to be incorrect, at least one of them must output an
incorrect value at some point. F' simulates both hypotheses on all inputs, so it
sees after some time which hypothesis is the wrong one. At that moment we have
configuration (0,1, 1,1) which is winning according to Lemma 4.3.

The case (0,5,1,2). F outputs hy based on the 5 hypotheses that have not
proved to be wrong as yet. For hy to be incorrect, new hypotheses must be
output either in three of the corresponding sequences, or in two of them and
in the sequence whose hypothesis was marked as wrong. In both cases three se-
quences output their last allowed hypothesis, and we have a winning configuration
(0,3,0,1).

The case (1,2,1,2). F outputs hy based on the 3 hypotheses that have not
proved to be wrong as yet. For hg to be incorrect, new hypotheses must be output
at least in two of the three sequences that still can make one mindchange, and
we have a winning configuration (0, 3,0, 1).

The case (2,0, 1, 2) follows from the case (2, 0,0, 2) and Lemma 4.2.

Inductive step. Suppose that we have proved the statement for the case m —1,
m > 3. Let us prove it for the case m. For the sake of correctness we should
also prove that S,,, > 0 for 0 < n < Cp, and Sy, = 2for 0 < n < D,y,. In the
course of the proof we shall see that it is so (it was true in the inductive basis).

It follows from Lemma 4.1 that (0,2™*! — 1,0, m) is a winning configuration.
It is also easy to see that (0,2™*! — 3,1,m) is a winning configuration. Indeed,
F outputs its first hypothesis hy based on the 2™*! — 3 hypotheses that have
not proved to be incorrect. Then at least 2™ — 1 sequences must output new
hypotheses, and we get a winning configuration (0,2™ - 1,0, m — 1).

Now, let us consider a configuration (n,t,0,m). We are going to estimate a
sufficient value ¢ = ¢, such that this configuration is winning. We shall consider
all the values n > 1 until we get that ¢, = 0. So our strategy F' has access to n
hypotheses in sequences that can make m — 2 mindchanges, we shall call them -
hypotheses, and to ¢, hypotheses in sequences that can make m — 1 mindchanges,
we shall call them y-hypotheses. F' outputs its first hypothesis ho based on these
n+t, hypotheses. We are going to analyse in which cases @5, (z) outputs a value.

Suppose that i (i < n) B-hypotheses output one and the same value at z.
How large should be the amount of v-hypotheses that output the same value (let
us denote this amount by u;), for ¢, (z) to output it? Suppose this value is
incorrect (so hg will be incorrect). That should imply that a winning (m — 1)-
configuration arises after some time. The fact that i g-hypotheses and u; -
hypotheses prove to be incorrect implies one of two alternatives. Either sequences
of i — 1 B-hypotheses and sequences of u; v-hypotheses make a mindchange (in
case ¢ > 0), then configuration (i — 1, u; +n —14, 1, m — 1) arises, or sequences of i

prr—m———

1]



CHAPTER 4. IDENTIFYING TOTAL RECURSIVE FUNCTIONS 46

B-hypotheses and sequences of max(u; ~ 1,0) y-hypotheses make a mindchange,
then configuration (¢, max(u; — 1,0) + n —4,0,m — 1) arises. Let sy = Spm-14
for 0 < k < Cp_1, and s, = 0 for £k > C,,_;. We ensure that both these
configurations are winning (according to the inductive assumption) by letting
u; = max(s;_1 —2-n+14,8+1—-n+140)incase s, —n+1%>0,7>0, and
u; = max(s;-1 —2—n+1i,0)incase s; —n+1<0,¢>0. But,if s, —n+1>0,
then 0 < s; < s;_; — 3, s0 u; = max(s;_; — 2 — n +¢,0) in both cases. In case
i = 0 we have only the second alternative, so we let ugp = max(sq + 1 — n,0).

Let us consider case n < Cp,_1. Then i < C),_, too, and by using the
inequality Sp-14-1 > Sm_1, + 3 we have: u; =5, —2—-n+1t fors >0, and
up = Sp+1—n (since 8;_;—2—n+i > s;—2—n+i+lforl <i<nands, ;-2 >0,
the right sides in these equalities are positive). We have guaranteed that, if ¢y,
outputs an incorrect value, then a winning (m —1)-configuration arises after some
time. We have to guarantee that also for the case when ¢}, is undefined at some
point. Let ¢ be the amount of G-hypotheses that output the correct value at
this point. Then no more than u; — 1 y-hypotheses output the correct value. So
at least n — 7 B-hypotheses and t,, — u; + 1 y-hypotheses are incorrect. At least
(n—1)+(t, —ui+1)—1 of the corresponding sequences must make a mindchange.
If 0 < 7 < n, then, depending on which is the remaining incorrect hypothesis —
is it g- or y-hypothesis —, either the configuration (n — i — 1,¢, — 8,1 +2+n —
i+1+i+1,00m—1)=(n~i—1,t,—s;_1 +n+4,0,m— 1), or the configuration
(n—i, ty,—si1+24+n—i+14,0,m—1) = (n—1i,t,—s;—1+n+2,0, m—1) is reached.
By imposing on ¢,, inequalities ¢, > $;_1+Sp_;_1—n—4and t, > 8;_1+S,_;i—n—2
we achieve that these configurations are winning. Since s,_;_; > s,_; + 3, the
second inequality follows from the first, and we can consider only the first.

If i+ = 0, we get either the configuration (n — 1,¢t, — so +n + 1,0,m — 1),
or the configuration (n,t, — so + n — 1,0, m — 1), and impose inequalities ¢, >
S0+ Sp-1—n—1and t, > sy + s, —n+ 1. Since the first inequality implies the
second, we shall consider only the first inequality.

If 1 = n, we get the configuration (0,t, — s,—1 +n + 2,0, m — 1), and impose
the inequality t, > s,_1 + s — n — 2, but it follows from the inequality of the
case ¢ = 0, so we shall not consider it.

So, if we find the minimal natural number ¢, that satisfies the system of
inequalities

tn
tn

> S 1+8pio1—n—4for0<i<n, (4.8)
> Sp+ Sy —n—1, (4.9)
then the configuration (n,t,,0, m) will be winning. In case n = 1 we can choose
t; = 25p—2 = 2™*1—4 = S(m, 1) (according to (4.9)). If n > 1, then (4.9) follows
from (4.8) by substitution i = 1. Since x4 is a non-decreasing sequence, according
to the definition of Sy; we have s;_1+s,_;_1 < 8+ 82 for0<i < (n—2)/2.
Let n = 2k for some & > 1. Then we can choose t, =2sx_1—n—-4. lf n =2k+1
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for some k£ > 1, then we can choose t,, = s¢_; + sy —n — 4. By using the next
lemma we obtain that ¢, = Sp,.

Lemma 4.6 (Vm > 3)(Vk > 1)[Smar = 2Sm-1k-1—2k—4ASmok+1 = Sm—14-1+
Sm-1x — (2k — 1) = 5].

Proof. Let us consider the sequence zx. We have zox 4 = |log,((2k+2)/3)|+4 =
|log,((k +1)/3)] +5 =z + 1 for k > 1. Also zok10 = [log,((2k +3)/3)| +4 =
|log,((k+1)/3+1/6)] + 5. Since k is integer, we have |log,((k+1)/3+1/6)] =
|log,((k + 1)/3)] and Zopys = zx + 1 for k > 1. Let yp = SF  z; for k > 0
(yo = 0). It follows from the proved that

Yok+1 — Yok = Y2k+2 — Y2k+1 = Yk — Ye—1 + 1 for k > 1. (4.10)

We prove that
Yor = 2Yx_1 + 2k + 5 and yor4+1 = Yr_1 + yx + 2k + 6 for k > 1. (4.11)

It is easy to check that yo = 2yo + 2+ 5 and y3 = yo + y1 + 2 + 6. Suppose that
the equalities (4.11) are true for some k. Then by applying (4.10) we get the
corresponding equalities for Yoo and yok 3.

Using the definition of S,,, we automatically obtain from (4.11) the needed
equalities. O

Now we consider the case n = C,,,_;. The only difference is that the inequality
Sn-1—2 < 01is possible. At the same time s,_; > 0 according to our assumption,
SO Sp—p — 2 > 0, thus for the indexes not exceeding n — 2 we get the same
inequalities for #,,. Suppose u, = 0 and n (-hypotheses output the correct value
of f. Then ¢, outputs it, too, irrespective of the number of y-hypotheses that
output this value. So nothing is to be imposed on t, in this case. If u, > 0,
then, similarly as before, we impose t, > s,-1 + So — n — 2, but this inequality,
as previously, follows from the inequality (4.13) below anyway, so we obtain the
same system

th > Si1+Spioi—n—4for0<i<n, (4.12)
tn Z S+ Sp—1 — N — 1 (413)
with the same solution for the minimal ¢,: ¢, = S(m,n).
Now, let us consider the case n > C,,_,. Since s¢,,_, =0, we have uc,,_, 4, =
0. Let j be the maximal number not exceeding Cy,_; such that u; = sj_; — 2 —
n +] > 0. Then Uj1 = ... = UC,,_,+1 = 0.

Suppose n > j+2 and n— j — 2 or less 3-hypotheses output the correct value.
Then at least j + 2 8-hypotheses are incorrect, and one of the configurations
(j+1.n—3-1,0,m—1) or (j+2.n—j—2,0,m—1) (or better in the sense of Lemma
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4.2) is reached. Either sj;; =0,0rs;41 <s;-3<2+n—-j—-1-3<n—-j—1,
according to our choice of j. Similarly we get that s;42 < n —j — 2. So both
these configurations are winning without any restriction on #,.

Suppose only n— j — 1 G-hypotheses output the correct value and s; < n—j.
Then at least j + 1 B-hypotheses are incorrect, and one of the configurations
(j,mn—70m—1)or (j+1,n—3j—1,0,m— 1) is reached. We already dealt
with the second of them in the previous case, and the first of them is winning
according to our assumption s; < n — j. Hence, if s; < n — 7, then we have the
system

th > Sici+Spii—n—4dforn—j—-1<i<j+1 (4.14)

for t,.
If s; > n — j, then, according to the choice of j, either j = Cp,_1, or 55 <
24+n—-—j—1=n—-j+1=s;=n—j+ 1. In this case the system is

tn > Sic1+Spsy—n—4dforn—j—-2<i1<j+1. (4.15)

In both cases we get the solution ¢, = S(m, n) for the minimal t,, similarly as
before if the system contains at least one inequality (we shall see that in this case
S(m,n) > 0). If the system contains no inequalities, the solution is ¢, = 0. We
are going to find the minimal n for which ¢, = 0 and show that this n is equal to
Chm-

If s; < n— jand the system (4.14) has no inequalities, then n — j > j + 1,
son > 25+ 1. Supposen > 2j+3. If 5; <n—7—1, thent,_; =0, too, so nis
not minimal. If s; =n — j = (n— 1) — j 4+ 1, then we must consider the system
(4.15) for t,_,. Since there is no such ¢ that 25 +2 —j —2 = j <@ < j+ 1,
we have t,_; = 0 again. So, if n is minimal, then n = 2j + 1 or n = 25 + 2,
and correspondingly either s; < j + 1, or 5; < j 4+ 2 holds. On the other hand,
if s; < j + 1, then ty;41 = 0 according to (4.14); similarly, if s; = 7 + 2, then
toj+2 = 0.

Suppose s; > n — j and the system (4.15) is empty. Then n —j —12> j+1,
son > 27 + 2. We discard the case j = C,,_;, because, as we shall see, t, =0
forn=Cp <2C,_1+2 Sosj=n—j+1. Ifn=25+3, then s; = j +4, and
8541 <85 —3 < (j+ 1)+ 1, thus we get that ¢5;,3 = 0 according to the previous
case, so we shall not consider this case further. If n > 25 + 4, let us denote by
j' the number for the case of computing t,_; that corresponds to the number j.
Since s; >n—j>(n—-1)—jands;=n—-j+1# (n—-1)—j+1, we have
J'>j. Since 5;41 < s;—3=(n—1)—(j+1), we have j' = j+ 1 and the system
(4.14) which is empty, because (n — 1) > 2- (j + 1) + 1, thus n is not minimal.
So we have to consider only the case n = 2j + 2, when s; = j + 3. On the other
hand, if s; = j + 3, then ¢,;,, = 0 according to (4.15).

Summarizing, if j +2 < s; < j + 3, then #3540 = 0, and, if s; < j + 1,
then #;,, = 0. Let j be the minimal natural number for which s; < j + 3
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holds. Suppose j +2 < s; < j+ 3. Then ty41 = sjo1 +5; — (27 + 1) —
4> (G+3)+(H+3)—(25+1)—4=1>0. Suppose s; < j + 1. Then
tyj =281 —2j—4>2-(j+3)—2j—-4=2>0. So these indeed will be the
minimal values of n for which ¢, = 0.

Now, let us find the minimal j for which s; < j 4 3. It is easy to notice from
the definition that z; is a non-decreasing sequence 3, 4, 4, 4,5, 5,5, 5,5, 5,6, ...
containing the number 4 three times, the number 5 six times, etc., the number &
3 - 284 times for £ > 4. Thus

k-1
$;=2"—-1-0B+> (327" +k-(1+1))
i=4

for j =1+ 3-2"Y)+1+1=3-2F*41-1, some k > 4 and some I,
0 <1< 3-2F=%4_1. Let us consider the sequence z; = i-2%. It satisfies the equality
Ziyo = 42i41 — 42z;. By taking the sum of these equalities for 2 <7 < p— 2, where
p > 4, we obtain the formula Y°7_, z; = 4z,_1 —42, = (p—1)-2P*! — 32. Therefore
s;=2"—3-(k—-2) -2 — k- (I+ 1) + 2. We must solve the system

Sj-1 >(]—1)+3,
S]§J+37

or applying the obtained formulae:

om 3. (k—2)- 26 —kl+2>j+2,
2m — 3. (k—2) -2k —kl-k+2<j+3.

Substituting [ = j — 3 - 284 4 1 and simplifying, we obtain

{(k+1)-j<2’"+3-2"‘3+1—(k+1),

(k+1)'j22m+3'2k_3+1—2-(k-}—l). (4.16)

k is determined by the system

2m 1 — (34 YK N(6-3-24) > (3-254 —2) 4 3,
2™ —1-(B3+%k,(:-3-2774)) < (3-283-2) + 3.

After simplifving we get

3-(k-1)- 2k <c2m 41,
3k-2k3>09m 11

So k = k. From (4.16) we get j = [A,,] — 2. By imposing additional equality

s; =j+3ors; =7+ 2 we get by the same transformations that, respectively,

An€Zor Ay +1/(kpm—2+1) € Z. So the minimal n for which t, = 0isn = C,,.

The analysis of the configurations (n.t,,1,m) is quite similar to that of the

case (n,t,,0,m). 0
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The statement of the theorem follows from the fact that (D,,,0,1,m) is a
winning configuration. O

Since the algorithm of the proved theorem seems to be optimal, it is a plau-
sible hypothesis that the proved upper bounds are simultaneously lower bounds,
though proving that seems to be a difficult task.

4.5 Team Learning

In Section 3.2 we pointed to the connection of our research with team learning.
In this section we are going to investigate n-closedness of the team learning iden-
tification types themselves. To simplify matters, we shall consider only identifica-
tion without anomalies. Thus we are interested in cdeg([k,{|Ex;) for b € IN{x},
1<k<l.

4.5.1 Ex-Identification

We shall begin with Ex-identification. We need some analogue of Theorem 1 to
determine which of the identification types are really different.

Theorem 20 [31] (VI > 1){[1,/]Ex C [1,!{+ 1]Ex].
Theorem 21 [29] (Vk,1 | 1 < k < D)[[k,]]Ex = [1, |{/k]]Ex].

We see that the learning power of the class [k, [JEx is determined by the ratio
k/l. Before going further we notice that teams of teams can be introduced by
substituting a team identification type for Z in Definition 2.6.

Theorem 22 [3] (Vn > 1)[cdeg([1, n]Ex) < n + 2].

Proof. [n+1,n+2|[1,n]Ex C [n+ 1,n- (n + 2)]Ex = [1,n|Ex, so according to
Proposition 3.3 [1, n]Ex is (n + 2)-closed. 0

The exact cdeg value follows from the next theorem.
Theorem 23 (Vk,[ |1 <k <1)(Vn > 1)[[k, [, n]Ex = [k, In|Ex].

Proof. We have [ teams of n strategies each, and for at least k of these teams at
least one of these strategies succeed. So, clearly, [k, ][1, n]JEx C [k, In]Ex.

Let m = |In/k]. Then [k, In]Ex = [1, m]Ex, so for each [k, In]Ex-identifiable
class U there are m strategies Fi,....F,, such that each function from U is
identified by at least one of them. e now compose | teams Ty, ..., T;_; with
n strategies in each. We put F; for each i, 1 < ¢ < m, in the teams Tyimodr,
Tkizimodi- - - -+ Thitk—1modi, Where x mod y for y > 0 is the smallest non-negative
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residue of z modulo y. Since mk < In, In — mk vacancies are left; we fill them
with Fi. Suppose f € U, then f € Ex(Fj) for some j. Therefore at least
k teams Tijmodi, - - > Lkj+k—1moat coOntain Fj, and so [1,n]Ex-identify f. Hence
U € [k,][1,n]Ex. We have proved that [k, In|Ex C [k, [][1, n]Ex. O

Note that a more general result [k,(][m,n|Ex = [km,[n|Ex is not true. In-
deed, [1,2][2,3]Ex = [1,2][1, 1]Ex = [1, 2]Ex, while [1-2,2 - 3]Ex = [1, 3]Ex.

Corollary 4.6 (Vn > 1)[cdeg([1,n]Ex) = n + 2].

Proof. According to Theorem 23 [n,n + 1][1,n]Ex = [1,n + 1]Ex D [1,n]Ex, so
cdeg([1,n)Ex) > n+ 1. 0

4.5.2 Fin-Identification

Now we turn our attention to [k, {|Ex,-identification with & € IN. Since in classi-
fication of different learning powers of the identification types [k, []Ex; more or
less significant results have been achieved only for the case b = 0 (and even here
not complete), we also restrict our attention to this case. In literature Exq is
often referred to as Fin-identification; we shall use this notation here.

As the next theorems show, in this case the hierarchy of different learning
powers among [k, [|Fin is very complicated.

Theorem 24 [15, 13|

n+1
2n+1

n
2n—1

(Vo > 1) (Vk,! <'§'5

) ((k,l|Fin = [n,2n — 1|Fin).

Theorem 25 [36] [1,2]Fin C [2,4]Fin.

Theorem 26 [23] (Vk > 1)[[2k — 1,4k — 2]Fin = [1,2|Fin A [2k,4k|Fin =
2, 4]Fin).

Definition 4.3 The set A C RN 0, 1] is the hierarchy of success ratios for Fin
uf

1. (Vp € A)(Vk,l,m,n > 1)[k/l < p < m/n < 1= [m,n|]Fin C [k,{|Fin],
and

2. (Vpge Alp<qgA(p,g)NA=0)(Vk,,m,n > 1)(Fu,v> 1)[p < k/l <
m/n < g = [ku, lu]Fin = [mv, nv|Fin)].

Theorem 27 [1] A, the hierarchy of success ratios for Fin, in decreasing order-
ing is order-isomorphic to an ordinal no less than gy = lim(w, w*, w*”,...).



CHAPTER 4. IDENTIFYING TOTAL RECURSIVE FUNCTIONS 52

We shall not go into details on ordinals here, we only draw a conclusion that
the set A is of a very complex structure. The computed values p € A do not reach
far under 1/2, so we shall consider only the cases [1,2|Fin and [n,2n — 1]Fin.

The next result was a surprise (as many things in team Fin-identification).
For any n > 1 the automatic inclusion of the class [n,n + 1|[1,2]Fin that first
comes into mind is [n,n + 1][1,2]Fin C [n,2n + 2]Fin. Even if in fact [n,n +
1][1, 2]Fin due to its additional structuring would be equal to some class [k, {|Fin
with higher success ratio &/l (it could also form some new class), it would seem
improbable that it would be less powerful than [2,4]Fin, a class with the success
ratio 1/2. So one could guess that cdeg([1,2]Fin) = co. Nevertheless it turns
out not to be true.

Theorem 28 cdeg([1, 2]Fin) < 9.

Proof. Suppose all the unions of 8 out of classes Uy, ...,Us are in [1,2]Fin. Let
T\,...,Ty be the teams that identify these unions. Each of these teams consists of
two strategies. We are going to construct an algorithm F' that models strategies
F; and F; [1, 2]Fin-identifying U?:l U; using these 18 strategies as subroutines.

We shall denote by h;; the first hypothesis output by any strategy of T;, and
by h;9 the hypothesis output by the other strategy from Tj, if any. The algorithm
for F' is as follows.

e Stage 1.
Receiving f1#! in input perform z steps in computing the outputs of the
strategies on fl0 ...  fl#l and for any hypothesis h;, computed perform

z steps in computing ¢, ,(0), ..., ¢s;,(z). This is done throughout all
stages. Wait until in eight teams some hypothesis is produced by one of the
strategies. Output h; based on these eight hypotheses and the 16 strategies
of the corresponding teams as the hypothesis by Fj, discard the ninth team
(do not consider it anymore) and go to stage 2.

o Stage 2.
Wait until one of the two events happens.

1. We see that o5, outputs an incorrect value (algorithm for ¢y, is de-
scribed below) based on incorrect values output by four of the hy-
potheses h; was based on. Then go to stage 4.

2. In four teams the second strategy outputs a hypothesis. Let fl*ol be
the input segment at which the last of them was discovered. Go to
stage 3.

e Stage 3.
Let k(z) be the amount of the teams in which both strategies have produced
their hypotheses when F" has performed all the computations corresponding
to the input fi¥. Wait until one of the two events happens.
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1. We see that ¢, outputs an incorrect value at z < z, based on four of
the eight hypotheses h; was based on. Then go to stage 4.

2. We see for some z; > zy that the hypotheses of 8 — k(z;) — 1 teams
among those in which only one hypothesis was produced output correct
values at all points in the interval [0, o). Then F; outputs hypothesis
h, based on the 2k(z;) hypotheses of the teams that produced two
hypotheses.

e Stage 4.
Wait until in three of the four teams whose hypotheses turned out to be
incorrect the other strategy also produces its hypothesis. Qutput h, based
on the three new hypotheses as the hypothesis by F;.

The algorithm for ¢, follows.

o Stage 1.
Let hi1,...,hs1 be the hypotheses on which h; was based. ¢, outputs a
value at point x only if it has already output values at points 0, ...,z —1. It

outputs all the values of f that were known at the moment h; was produced.
After that it computes o, (2), ..., ¥hg,(z). If four of them output some
value y, pp, outputs this value, too.

Then @, performs z steps in computing the outputs of the 16 strategies on
zpﬁl, ceey cpﬁfj and for any hypothesis h;, computed perform z steps in com-
puting @y, . (0), ..., @n,, (). In this way ¢, learns about new hypotheses
output by strategies and can simulate the strategy F' (all this in case it has
correctly guessed the values up to z).

If the second hypotheses have been output in four teams, let us assume
they are hy o, ho g, h3 2, ha o, then go to stage 2.

o Stage 2.
Output value at z if three hypotheses among hja, 1 <7 <4,a€{l,2},
belonging to different teams produce one and the same value at z.

If the strategy F' outputs the second hypothesis hs, go to stage 3. Otherwise
g0 on computing outputs at = + 1.

e Stage 3.
Let us assume that the hypotheses on which hy was based are hy, ...,
Rk, hi2, ..., heo, kK > 4. At each input z perform computation of these

hypothesis functions until it is clear that g, (see the algorithm below)
outputs a value based on k — 1 hypotheses from different teams. Wait until
one of two events happens.
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1. k — 1 other hypotheses from different teams output value y at x dif-
ferent from the value output by ¢, and the correct values (from ¢y,’s
standpoint) at all the previous points. Then output y and go to stage
4.

. In total 2- (k — 1) hypotheses produce the value output by ¢, at z
and correct values at all the previous points. Then output the same
value and continue by performing the computations for z + 1.

[N

e Stage 4.
Output value at = if k — 1 hypotheses among h;q, 1 < j < k, a € {1,2},
belonging to different teams produce one and the same value at z and
correct values at all the previous points.

Now, the algorithm for ¢y, .

e Stage 1.
Assume that @5, was based on hjq, 1 <j <k, a€ {1,2}, k > 4, and that
hig2,...,hso were the first hypotheses output among h;,. Let zy and z; be

as defined in the algorithm for F'.

Output the known values of f for 0 < z < z;. Simulate @y, () for
1<j<4, ae{l,2}, 2o <z <z until it is clear if the first value output
by three hypothesis functions from different teams is the correct value at
cach of these points. In other words, we check if @), outputs correct values
at these points in case it outputs correct values for z < xzg.

If some incorrect value appears first at some point, go to stage 3. Otherwise
go to stage 2.

e Stage 2.
For each z > z;, wait until at least kK — 1 hypotheses among h; 1, ..., hx 1,
hia, ..., hg2, k > 4, coming from different teams produce one and the

same value y at z and the correct values (from ¢4,’s standpoint) at all the
previous points. Then output y.

o Stage 8.
Three hypotheses among ¢y, ,, 1 < j < 4, o € {1,2}, coming from different
teams have proved to be incorrect. So by taking the other hypotheses from
these teams, we obtain three hypotheses, at most one of which is incorrect.
Thus by outputting the value produced by at least two of these hypotheses
we always output the correct value.

At last, the algorithm for ¢y 1s the same as in stage 3 of the algorithm for

@h,: output the value produced by at least two of the three hypotheses h, was
based on.
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We see that, unlike the identification algorithms in the previous sections, in
team learning the hypotheses cooperate between themselves and also, in a sense,
with the strategy that outputs them.

Let us analyse some cases to prove that the team composed by F; and F,
identify any f € US_, Us.

1. Hypothesis hy is never output. There are two alternatives. First, no more
than 3 of the 8 teams on whose hypotheses h; was based output another
hypothesis. Hence at least 8 —3 —1 = 4 of these first hypotheses are correct,
and (;, either is defined at all points and equal to f according to stage 1 of
its algorithm, or outputs some incorrect value. In the latter case a correct
hypothesis A is output.

The second alternative is that no more than 8 — k — 2 of the 8 — k teams that
produce only one hypothesis output correct. values at points between 0 and
To. Then at least two teams do not identify f, so we have a contradiction.

2. pp,’s first anomaly is an undefined value. Suppose we have both hypotheses
of k teams. Since at least k£ — 1 teams correctly identify f, at least k — 1
hypotheses belonging to different teams are total recursive functions equal
to f. Thus ¢y, cannot become stuck in stage 1 or stage 2 of its algorithm.
Clearly, it cannot become stuck also in stage 3. So this case is impossible.

3. ©n,’s first anomaly is an incorrect output value at some point x. Clearly,
©n, cannot output the incorrect value at stage 1 or stage 3. Thus it is output
at stage 2. This value was produced by £ —1 hypotheses that output correct
values at all the previous points. There are other £ — 1 hypotheses among
the 2k considered that output correct values at all the previous points and
at z. So there are k£ — 2 teams in which both hypotheses output are correct
at the previous points. Hence among the 8 hypotheses on which h; was
based there are at least (k — 2) + (8 — k — 1) = 5 hypotheses that produce
correct outputs in interval [0, zo] (8 — k — 1 hypotheses being checked by
F before producing hy). So ¢p, reaches stage 2 of its algorithm. Also,
since ¢y, reached stage 2, ¢, outputs correct values in interval (zg, ;] and
reaches stage 3. Since k > 4, we have 3-(k—1) > 2k, so 5, has at most one
alternative to choose from in stages 3 and 4. We have 2k —2 hypotheses that
output correct values in the interval (z;, z), so ¢n, output correct values in
this interval, then produces the correct value at x, switches to stage 4, and
produces correct values thereafter.

We see that at least one of the hypotheses is correct for f. O

It is interesting that every of the identification types not involving anomalies
that were considered in this work has a finite closedness degree.
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Theorem 29 cdeg([1,2|Fin) > 8.

Proof. We shall modify the instructions a bit to make them useful in team learn-
ing. We shall also reduce the number of components, since some of them will
not be necessary. The instructions will be of kind (i, 7, h), where the first two
components indicate that it is an instruction for the j-th strategy of the i-th
team, and h is the proposed hypothesis. We define Ii[k’L]Fi“ correspondingly (i is
the number of team this time).

Let U; = N2y 11"F™, 1 <i < 8. Then UL, ;,; Us € [1,2]Fin for 1 < j <
8.

The following algorithm constructs a function from {J}_, U; not identified by
the given team 7T consisting of two strategies, F} and Fj.

o Stage 1.
Output values as in the next table.
| 0 6
Pnir - one | (LLna) ... (T,1,n7) ()

Let y throughout the algorithm denote the maximal point at which values
have been output. Simulate both strategies on ,,. If a hypothesis A, is
produced by one of them, let it be F}, on 995’11, then let zg « max(z,y)+ 1,
output () up to o — 1, and go to stage 2.

e Stage 2.
Output values as in the next table.
‘ Zo To+ 1 To+ 2 o+ 3
(pn“wnv(pnw <831,n8> <4,2,TL9) (572:n10> (6,2,”11) <)
(10718) rty (pn”
Pnys- -+ Pny ? ? ? ? ?

Simulate @y, (2o +4) and F, on ¢, .

If n, (zo + 4) = (), go to stage 3.

If a hypothesis ks is produced by F, on (pgflll, output the values ¢,,(z), ...,
©n,(2) so that they are equal to the values @, () as far as @, is defined
at the moment, let x5 + max(z’,y) + 1, output {) up to zo — 1, and go to
stage 5.

e Stage 3.
Output values as in the next table.

4 Zo Ty +1 o+ 2
CP""“'"’V"”’ —‘ <851,'n12) <l727n13) (2,2,”14) <0>

‘n o
Prizs Pnyzy Pnyg

Simulate F; on ¢,,. If a hypothesis hy is produced by F, on c,aﬁf}, let
To + max(z,y) + 1, output (0) up to zp — 1, and go to stage 4.
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e Stage 4.
Output values as in the next table.
Ty P Zo + )
Pris: 3.2.n5) ... (82 m
Sanw)---ygonzo < y &, 15> ( P 20) <>
Prias 3,2,1m0) ... (8,2 n9) (0
(pnm"“,gon% <7 3 21) (a 3 26) <>
e Stage 5.
Output values as in the next table.
Tg I0+1 .’170+2 $0+3 CL'()+4
(10714’ Qons’ <17 27 n27> (27 2) n28> (37 27 n29> (77 2) n30> <8a 27 n31> <>
(pn27’ .. 7(pn31
P Pno; (1,2,n3) (2,2,n3) (3,2,m80) (T,2,m85) (8,2,736) (0)
()07132: s a(p'n.ge
(pnw,(pn”’ (1,2,”37) (2)2)n38> <3)27n39> (7,2,”40) <8»27n41> <1>
(pn377 R | (pTL41

End of the algorithm.

Let m be the stage in which the algorithm remains forever. If m = 1, noone of
the strategies F; and F; produced any hypothesis. If m = 2, ¢, was undefined at
zo+4, and F; did not output any hypothesis. If m = 3, ¢, (o +4) # @n, (o +4),
and F; did not output any hypothesis. If m = 4, ¢, differs from both ¢,,, and
©¥n,s at o + 4, where we take the zo value at the beginning of stage 3; and ¢y,
cannot be equal to both ¢, , and ¢,,,. If m =5, for at least one of the functions
Pnas Prgyr Pno DOth hypotheses h; and hy are incorrect. O

Theorem 30 (Vn > 1)[cdeg([n,2n — 1]Fin) < 2n + 2].

Proof. Suppose all the unions of 2n+1 out of classes Uy, . .., Uapyo are in [n, 2n—
1JFin. Let T1,...,T5,,, be the teams that identify these unions. Each of these
teams consists of 2n — 1 strategies. We are going to construct an algorithm F
that models strategies Fy, ..., Fo,_; [, 2n — 1]Fin-identifying J%*7? U; using the
(2n + 2)(2n — 1) strategies as subroutines.

We shall denote by hj; the i-th hypothesis output in the team T3, 1 < 7 <
2n — 1. The algorithm for F is as follows.

o Stage 1.
Receiving fI*! in input perform z steps in computing the outputs of the
strategies on fl% ..., f=l and for any hypothesis h;i computed perform z

steps in computing ©p;,(0), . ... 2k, (x). This is done throughout all stages.
Wait until in 2n+ 1 teams n hypotheses are produced. We can assume that
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they are hj; for 1 < j <2n+1and 1 < <n. Output hy by Fi, hy by Fy,
..., hy by F, based on these (2n+1)-n hypotheses. and the (2n+1)(2n—1)
strategies of the corresponding teams, discard the (2n + 2)-th team (do not
consider it anymore), and go to stage 2.

e Stage 2.
Let k;(z), 1 <i < n—1, be the amount of the teams in which the (n+¢)-th
hypothesis has been output when F' has performed all the computations
corresponding to the input f@*|. Clearly, k;(z) > ki 1(2) for 1 <i<n—2.

Let m, n < m < 2n — 2, be the number of hypotheses h; already output.
hms1 is output by F,., at input fI# if k;(z') > 2n 4+ 1 — 2i for some
i>m—nand 2’ <z, and in all teams but one it is computed that at least
n hypotheses (among those known to F at f[*l) output correct values in
the interval [0, z'].

Now we describe the scheme according to which the hypotheses h; cooperate.
We assign priorities to the hypotheses A;. The hypotheses that are output later
have higher priority than those that were output sooner. If the hypotheses were
output at the same time, then the lower index, the higher priority. The values
are output one by one, at points 0,1,2,.... When p,, outputs value at some
point z, it simulates all the (2n + 1) - (2n — 1) strategies on @, (r) and their
hypotheses with the same procedure as in F'. Thus ¢, can keep track of the new
hypotheses (unknown when h; was output), of what hypotheses are output by F,
and of what values are output by other hypotheses h;.

Let H be a set of hypotheses h; that have output the same values in the
interval [0,z — 1]. Let t;, n < t; < 2n — 1 be the amount of hypotheses in
the team 7; known to the hypotheses from H when they are computing what
to output at x. Each value considered for output must satisfy the following
condition: for each i, 1 < i < 2n + 1, except one, this value is output by at
least t; — n + 1 hypotheses in T;, and these hypotheses output the same values in
[O,IE— 1] as QOhj, hj € H.

Suppose this condition is obeyed for ! > 1 different values y;,...,y. When
it becomes known for y;, the hypothesis with the highest priority from H that
has not output any value at x yet outputs y;. Suppose m > 1 hypotheses from
H have already output y;. If for some ¢ > 0: in 2n — 2m ~ 2¢ teams there are
m+1+ 1 hypotheses that output y; at = and the same values as @, h; € H, in
the interval [0,z — 1], then the next hypothesis from the priority queue formed
in H outputs y;. Note that the first hypothesis that outputs y; also satisfies this
condition with m =i = 0.

Naturally, if h; was output at f! for some z, then ©p, outputs the known
values of f in the interval [0, z] and begins to cooperate with other hypotheses
starting with point x + 1.
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Now, let us prove that at least n hypotheses among h; are correct in case f €
U2t U;. Since in this case all teams among 77, .. ., Ton42 but one finally output
at least n correct hypotheses and since, in the notation of stage 2 of the algorithm
for F, k;(z) is a non-decreasing function, we have: if k;(zo) > 2n + 1 — 2i for
some Zg, then the needed z’ will be found sooner or later. Also, if the hypotheses
from H have output the correct values in the interval [0, z — 1], then there are at
least t; — n + 1 correct hypotheses in the team T; known to the hypotheses from
H, for each 4 from [1,2n + 1] except one.

Let n + m be the total amount of hypotheses h; output on f, 0 <m <n -1,
and let I = n—1—m. Then there are at most 2-({— (¢ —n—m)+1) teams in which
at least 7 hypotheses are produced, n+m+1 <1 < 2n—1, and there are at least
2n+1—2[ teams in which at most n+m hypotheses are produced. Let us denote
the set of the latter teams by S. At least 2n — 2! of the teams from .S have at least
n —m correct hypotheses among their first n hypotheses. Therefore, according to
the conditions on which values are output by pn,, hypotheses hj, 1 < j < n, at
each input see sufficient information for n—m hypotheses from the priority queue
to output the correct values. When h;, j > n, is output, in at least 2n + 1 — 2i
teams there are at least n + i hypotheses for some ¢ > j — n. Then at least
2n+1— 2] — 21 of these teams are in S, and among their n+ ¢ hypotheses known
at the moment there are at least n + ¢ — m correct ones. Therefore, when j > n
hypotheses have been output, there is sufficient information for j —m hypotheses
from the priority queue to output the correct values. For j = n + m that gives
us n correct hypotheses. The only problem is that, when a correct value is to be
output, the queue may turn out to be empty. There are two possible reasons for
that: some hypotheses might output incorrect values, and some hypotheses might
infinitely wait at some previous argument — where less hypotheses are known,
and therefore the information is insufficient for another hypothesis to output the
correct value.

To show that these possibilities do not occur, let us count how many of A; can
be incorrect due to producing some incorrect value. Since the values at previous
points are checked, one incorrect hypothesis cannot “cheat” the hypotheses h;
twice. Let p be the amount of incorrect values output (for each hypothesis h;
we choose only its first error, if any), and let s; be the amount of hypotheses
among h; that output the ¢-th incorrect value, 1 < ¢ < p. Then, according to
the algorithm for ¢y, there are at least 2n + 1 — 2(s; — 1) — 1 teams in which
at least s; hypotheses output the i-th incorrect value. So, there are at least
2n 41— 3% _,(2s; — 1) teams with 3°7_, s; incorrect hypotheses. If p > 1, that
gives us at least 2n+2— 2 Y% _| s; such teams. If 3°7_, s; reaches the value m + 1,
we have at least 2n — 2m such teams. In at least 2n — 2m — 1 of them there are
at least n correct hypotheses, so the total amount of hypotheses in each of them
is at least n +m+ 1. But, according to our definitions of m and [, the amount of
such teams does not exceed 2l = 2n — 2m — 2. Contradiction. So no more than
m of the hypotheses h; output incorrect values.
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We are going to prove that, when u > n hypotheses h; are output, there are
at least u — m hypotheses in the priority queue. Initially u = n, there are no
more than m of h; output incorrect values, and there is sufficient information
for n — m hypotheses to output the correct values, so this is true for u = n.
This can become untrue only if for some v > n there are u — m hypotheses in
the priority queue, and one of them outputs an incorrect value at some point
z. Let it be the i-th time when one of A; outputs an incorrect value. Then, for
some i’ > 0, there are 2n + 2 — 2(i + ¢') teams in which i + ¢’ hypotheses output
this incorrect value, while at the previous points they output the correct values.
2n+2—2(2+ i +1) of these teams are in S (note that ¢ +i' < m). Then among
the first n hypotheses of 2n + 2 — 2(i + ¢’ + 1) teams from S there are at least
n—m+i+1' such that output correct values at least in the interval [0, z —1]. Thus
there is sufficient information for at least n—m+-i+34’ hypotheses h; to output the
correct values up to z. Let ¢ <7 — 1 be the amount of hypotheses h; producing
incorrect outputs in the interval [0,z — 1]. Then at least n — m + i + ¢’ — ¢"
hypotheses among A, ..., h, output the correct values until h,,; is produced.
As we showed above, that implies there is sufficient information for one more
strategy to output correct values, so we have at least n + 1 —m + i+ 1 — 7"’
hypotheses among hy, ..., h,,1 that output correct values until h,_, is produced,
etc., we have at least u — m + i+ 1 — " hypotheses among h, ..., h, that output
correct values up to the point z —1 including. At most i — 1 —¢” hypotheses have
an error at x before the considered error, so at the moment of this error there are
atleastu —m+i+d¢ —-1"—(i—1—-4")=u—m+1i+1>u—m hypotheses in
the priority queue. Contradiction.

So, after h,,,, is output, at each point there are always at least n hypotheses
in the priority queue, and there is sufficient information for at least n hypotheses
to output the correct value. Therefore, at least n of h; are correct hypotheses. O

Theorem 31 (Vn > 1)[cdeg([n,2n — 1]Fin) > 2n + 1].

Proof. n =1 yields the class [1,1]Fin = Fin that was considered in Theorem
10. So, we suppose that n > 1. It is enough to show that there are such classes
Ui, ...,Usny1 that the unions of 2n classes out of them are identifiable, while
U231 Uj is not.

We define U; = (N224L, I 1 < ¢ < 204 1. Then Ut Ui C
IJ[-"'Q"_I]FI" €[n,2n - 1]Fin, 1 <j <2n+1.

We have to prove that U2} U; ¢ [n,2n — 1]Fin. As usually, we construct
functions ¢y, that use each other’s Godel numbers. Let T be an arbitrary team
of 2n — 1 strategies, F, ..., Fon_;.

The procedure new(x) is the same as in previous such proofs. The algorithm
for ¢, is as follows.

e Stage 0.
Let ¢ «~ 1. Execute new(s}) for 1 < ¢ < 2n. 1 < j < n. Informally, s
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will be used as the j-th hypothesis for the i-th team. Let the y throughout
the algorithm indicate the maximal value of argument at which the values
have been output at the moment. All the functions (si output (k,l,sF)
at point (k —1)-n+l—1forl <k <2n,1<1 <n,and () at further
points, until » hypotheses hi, ..., h, are produced in T on go[s?. Then let
To ¢+ max(z,y) + 1, output () up to zo — 1, and go to stage 1.

e Stage 1.
Execute new(s?,_ ;) for 1 <1 < 2n — 2 and new(s;"*") for 1 < j < n. The
functions ¢ with i € {1,....2n+1} - {2n -1}, 1 <j<n-1, ¢,
with 1 < i < 2n— 2, @z and 2.1 output the value (i,n +1,s%,,) at
point o +1 — 1 for 1 < ¢ < 2n — 2, the value (2n + 1, 5, s;’f"“) at point
To+2n—3+jfor 1 < j < n, and () at further points while in this stage.
Suppose hypothesis h;,,, is output in 7" on ¢, 1] for some z. Then the
functions ¢, with1 <1< 2n—1 and @ 2. mth 1 <7 < n—1output the
values listed above in this stage, let zg (—i max(x,y) + 1, all the introduced
functions output () up to zo — 1, and go to stage 2.
Suppose all the functions ¢y, . . ., @n, output () at zo+3n—2. Then execute
new(st) for 1 <i<2n—-2,n+1<j<2n-1, new(s?"“) for1 <j<n.
The functions ©si with1 <i<2n-2,n<j<2n-1, Pyt and P ansy
with 1 < j < noutput the value (3, 7, s;) at point zo+(i—1)-(n—1)+j—n—1
for1<i<2n—-2,n+1<j<2n-1, and the value 2n + 1, 7,s"*') at
point o + (2n —2)(n—1)+j — 1 for 1 < j < n, and (0) at all the further
points.

e Stagem 2<m<n-1).

Execute new(s%,,,) for 1 <7 < 2n—2m and new(s4,,_,) for 2n—2m+3 <
i < 2n+ 1. The functions ¢, with i € {1,...,2n+ 1} — {2n — 2m + 1},
1 <jSn—1, pan-imsz, (ps-Jm with 1 <12 < 2n — 2m, and i with
2n-2m+3 <1< 2n4—1 output the value (i,n+m, s, ) at point zo+7—1
for 1 <i < 2n—2m, the value (i,n+m —1,s%_,,_|) at point g + 1~ 3 for
2n —2m+4+ 3 <i<2n+ 1, and () at further points while in this stage.
Suppose hypothesis h,,,, is output in T on ¢[ for some x. Then the
functions . with1 <4 <2n+1.4 # 2n— 2771+2 Psi with 1 <i:<2n+1,
n+l1<7< n+m-—2, Osi with 1 <i< 272—2m+2 andgozn 2m+1
with 1 < j < n — 1 output the values listed above in this stage, let Ty
max(x,y) + 1, all the introduced functions output () up to 5 — 1, and go
to stage m + 1.

Suppose n of the functions @y, .. .. ¢h,.,._, output {) at xp+2n — 1. Then
execute new(s}) for 1 <7< 2n—-2m, n+m < j < 2n - 1, new(s}) for
In-2m4+3 < i< 2n+1l, n+m~1< 35 < 2n—1. The functions
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Vi with i € {1,...,2n+1} —{2n—2m+ 1,2n - 2m + 2}, n < j <
2n — 1, and P gan-zmi with 1 < j < n output the value (3, 7, s;) at point
zo+(i—1)(n—m)+j—n—mfor1l <i < 2n—2m, n+m < j < 2n—1, and the
value (, 7, §4) at point zo+(2n—2m)(n—m)+(i—1)(n—m+1)+j—n-m+1
for2n—2m+3<i<2n+1,n+m—-1<j <2n -1, and (0) at all the
further points.

e Stage n.
Execute new(s, ;) for 3 <i < 2n+ 1 and new(t}, ;) for 3 <i < 2n+ 1.
The functions Psi withl<i<2n+1,1<j<n-1¢a ,andps
with 3 <4 < 2n + 1 output the value (i,2n — 1,55, ;) at point 5 + 7 — 3
for 3 <1< 2n+1, and () at all the further points.
The functions s with1 <i<2n+1,n<j<2n—2, ¢, and O
with 3 < ¢ < 2n + 1 output the value (i,2n — 1,t},_,) at point zg + 7 — 3
for 3 <i<2n+1, and (0) at all the further points.

At stage m, 1 < m < n — 1, if at least n of the hypotheses h; output the
supposedly correct value () at some fixed point, we ensure that they have an
anomaly at this point. If no more than n — 1 of these hypotheses output ()
at this point, then no more than n — 1 of them are correct hypotheses, and the
team T must issue another hypothesis. In stage n T has already issued the 2n—1
allowed hypotheses, and at least n of them are incorrect for one of the alternatives
represented by the functions P and ;. So in all cases at least n hypotheses
issued by T are incorrect. ad

4.5.3 Finiteness of cdeg for Team Identification Types

From the previous sections we see that in all considered cases, when the Ex
identification type is modified by bounds on mindchanges and teams, the cdeg
turns out to be finite. Only some number of allowed anomalies introduces infinite
cdeg values. After inspecting the diagonalization proofs for the identification
types with allowed anomalies, it seems intuitively that the reason for infinite
cdeg values is intransitivity of the basic relation =* in the case of a anomalies,
0<a<*

Now, suppose we discard the types with allowed anomalies due to this property
of theirs. Which other criterions must an identification type obey to have a finite
cdeg? Can we prove the finiteness of cdeg for some large class of identification
tvpes? The first question currently seems to be too complex and too general to
answer. As for the second question. we have this complex hierarchy of [m,n|Fin
identification types for which we were unable to find exact cdeg values. Mavbe
we can at least prove that they are finite?

Well, we can prove such result if we introduce an additional constraint on
the strategies, similarly as it was done in [1] to prove the estimation of the com-
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plexity of the probability hierarchy for the [m,n|Fin identification types. This
constraint requires that all hypotheses output by the strategy on any input are
Godel numbers of total recursive functions. Such identification types are called
Popperian. If we additionally allow no mindchanges, we obtain the Popperian
Fin or, as we shall denote it, PFin identification type.

The next theorem was proved in colaboration with A. Ambainis.

Theorem 32 (Vm,n € IN | m < n)[cdeg([m, n]PFin) is finite].

Proof is by induction.

Base case. If m = n, then [m,n|PFin = PFin, and cdeg([m, n|PFin) = 4,
and there is a simulation algorithm proving it.

Inductive case. Assume that cdeg([m’', n'|PFin) is finite for all n’ < n and all
m' < 7/, and there is a simulation algorithm proving it. We are going to prove
that cdeg([m, n]PFin) is finite for any m < n.

Let cj;;) be the smallest number for which there is a simulation algorithm
proving the (cji ;) + 1)-closedness of [i, j]PFin (i. e. a simulation of [} ;}, iz +
1][¢, /]PFin by [¢, j]PFin), where ¢ < j, and define ¢ ;) = 0 for ¢ > j. Define the
sequence {a;} as follows.

ap = 2c[m,n—m]y a; = max( Clmn—-m+j] 20mn m] 21, 1 ma.x(al, aj— z)) )
for j = 2,. - 1 and
m = 2c[m n—m] + 1 ma‘x(aﬂ OQm— T)

We claim that cdeg([m,n|PFin) < a,, + 2.

Consider the following algorithm for simulating a multiteam F' = {F}, F5, ..
F,,.+2} consisting of a;, + 2 [m, n]PFin-teams by a single [m, n]PFin-team G.

G reads input and waits until at least m strategies output hypotheses in at
least a,, + 1 teams. Then, m strategies from G output hypotheses based on the
first m hypotheses in these teams.

All remaining strategies in G continue reading input and simulating F' and its
hypotheses. Hypotheses already output by G simulate hypotheses of F as well as
the remaining strategies of F on the initial segments which the hypotheses of G
follow. Only a certain amount of steps is performed in simulating the strategies
of F' at each new value of the input function by the hypotheses of G to ensure
that these hypotheses are total.

If all the hypotheses of F' have the same next value f(n), then the hypotheses
of G have the same value f(n). Otherwise, we say that the hypotheses of F' split.
It is enough to define how to simulate splits into two groups because a split into
more groups is equivalent to a sequence of several splits into two groups.

Suppose a split occurs.

If one group (i. e. hypotheses with one next value) contains hypotheses output
by less than a,, + 1 — Cimn—m] teams, no G's hypothesis follows this group (i. e.

1
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has this next value). If the next value of this group is correct, then the remaining
strategies in G apply the simulation algorithm for [m, n — m|PFin to a multiteam
consisting of those F; which do not have any hypothesis following this group.
There are at least Cynn-m) + 1 such F;. In each of them m hypotheses follow
other next values and n — m strategies remain. Hence, these F; form a multiteam
of at least ¢{m,n—m)+1 [m,n —m|PFin-teams. By the inductive assumption, this
multiteam can be simulated by a single [m,n — m|PFin-team.

The first m hypotheses of G proceed supposing that this value is incorrect. If
the same condition (less than a,, + 1 — ¢jmn-m] teams) applies also to the second
group, then these m hypotheses can output any values; the simulation is done
by the remaining n — m strategies of G as described above. Otherwise, all the
m hypotheses follow the second group. If the next value of this group is also
incorrect, then, again, there are at least cj,n—m)+ 1 teams in F' in which at least
m hypotheses follow incorrect values, and the simulation is done by the remaining
n — m strategies.

Supposing that the next value of the second group is correct the m hypotheses
of G follow this group until the next split occurs. Then we apply the same
argument.

So, the simulation will be successful if at each split at least one of the groups
is not followed by any strategy from at least ¢pmn—m + 1 teams of F.

Now, suppose at some split there are no ¢pnn-m + 1 teams in F in which
all the initial m hypotheses follow one of the groups. This we shall call an
essential split. Let b; be the number of teams in which j hypotheses follow
the first value and m — j hypotheses follow the second value (if this is not the
first split, we can add the values which split off previously to one of the two
groups; remember that no hypothesis from the first m hypotheses of G needs to
actually follow these values). According to our assumption, by < Clm,n—m] and
b < Clmn—m]. Since 2 jeobj = am + 1, at least one of the following inequalities
hold: b; > max(a;,am—;) for j =1, ..., m — 1. Then the m hypotheses of G
select one such j, select the corresponding b; teams discarding the others, and
j of the hypotheses follow the first value, and the m — j remaining follow the
second value.

The j hypotheses foilowing the first value perform the simulation algorithm
described above for the b; > a; + 1 teams and their j hypotheses until either
another essential split occurs, or until they calculate that at least m — j of the
remaining strategies in all of these teams but one output hypotheses following
this group. Similarly the m — j hypotheses following the second value simulate
the b; > a,_; + 1 teams and their m — j hvpotheses.

If another essential split occurs, say, in the first group, then denoting by b the
number of teams in which i hypotheses follow the first value and j — i hypotheses
follow the second value (then Y>]_; b, = b; > a; + 1) we again obtain for some 1
(1 <i<j—1) b > max(a;,a; — i), and continue the simulation for those b/
teams.
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Now, suppose that after some essential split, when j hypotheses of G follow
at least a; + 1 teams of F' and their j hypotheses, the second possibility occurs,
i. e. in at least a; of these teams m — j of the remaining n — m strategies output
new hypotheses following this group, and the j hypotheses of G calculate that.
Then there are in total m hypotheses in each of these teams of F' following this
group and known to both the j hypotheses and the remaining n — m strategies
of G. So, if this group follows the actual values of the input function, then
m — j of the remaining strategies of G output new hypotheses which join with
the j initial hypotheses to simulate the m hypotheses in each of the a; teams of
F'. Since a; > Cymn—m+j5], we can apply inductively the simulation algorithm for
[m,n —m + j]PFin. 0



Chapter 5
Identifying Languages

In this chapter we investigate the closedness degrees of the language learning
classes TxtEx; — the analogues of Ex;. For those interested in other language
learning types we recommend the monograph [25].

Many results are similar to the case of function learning.

Theorem 33
(Vb € N)(Va,a' € NU {x} | ' > 2°*'a)[csdeg(TxtEx¢, TxtEx?) < 2047,

Proof. Tt is sufficient to prove that TxtEx¢ is 20+2-closed in TxtEx{ .

Let £q,L,,...,Lyp+2 € & be such families of languages that all the unions
of 2°¥2 — 1 out of them are TxtEx{-identifiable. Let Fi, Fy,..., Foe+2 be the
strategies that identify these unions. Now we construct a strategy F'.

The strategy F redirects its input to the strategies F; until 2°+2—1 of them out-
put a hypothesis. Such an event happens because every language L € U;-, 20%2L,
belongs to 252 — 1 of the unions of 2°%2? — 1 families, thus at most one of the
strategies F; does not identify L.

Then F outputs hy that is based on these hypotheses. In further F' outputs
hi, 1 < i < b, iff it has output h;_; and at least 2°%27% — 1 of the strategies, on
whose hypotheses was based h;_,, output a new hypothesis. h; is based on these
hypotheses k!, ... hZ""7'~! in the following way: z € W, iff at least 20+1~% of

iy 1 < § < 2%%271 _ 1 contain z. hyg is defined similarly.

Tt is easy to see that h; can be a wrong TxtEx;-hypothesis only if at least
26+1-1 _ 1 of the strategies, on whose hvpotheses h; was based, output a new
hypothesis. But in this case h;,, is output. hy. if output, is always a correct
TxtEx;-hypothesis, since it is based on the last allowed hvpotheses of 3 strate-
gies. at least 2 of which identify the language. So the last hypothesis h;, output
by F is based on 2°+27% — 1 hypotheses. 2°7!-% of which are right TxtEx}-
hyvpotheses. h;, can have an anomaly only for the values at which at least one of
these right hvpotheses have an anomaly. that is at no more than 2°*!a points. O

66
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Theorem 34 (Vb € IN)[csdeg(TxtEx,, TxtEx;) > 20+2 — 1].

Proof. We prove that TxtEx, is not (2°+2 — 1)-closed in TxtEx;. We shall use
the same kinds of instructions as in the previous chapter in the case of Ex;-

identification, and define the class of j-instructors I;-PXtExg in a similar way. We
define the language classes £; = ;4 I;-I‘XtExb, where 7,7 € [1,2°72 — 1]. Then

Ui#j Ei Q ]_;-I‘XtExb € TXtEXb.

We shall prove that £ = U?':f‘l L; ¢ TxtEx;. We apply diagonalization
over the strategies F' and the multiple recursion theorem to construct functions
©n, (and thus the sets W,,) that use F' and the Godel numbers of themselves.
The algorithm for ¢, is as follows.

o Stage 0.
Let k « 2°¥2 — 2. Put (1,1,1,n,),...,(1,k, 1,n) in all k¥ languages W, ,
.y Wh,. Let r <~ 0, s < k. Feed larger and larger initial segments of a text
for the defined part of W, to the strategy F. If F' outputs a hypothesis on
a segment gg, go to stage 1.

o Stagei (1<i<b+1).
Let k « k/2 — 1.
Put (1,7 +k+1+j,i+1,n,;) for 1 <j <k, and
(1,7,%,ns4k4j) for 1 < j <r, and
(1,7 +2k+ 24 j,8, Noyrpnsy) for 1 <j<22¥2—7p — 2k — 3 in W,

ety
Wa, i

Make the languages Wy, , 1 < j < 22 — k — 3 to be equal to the defined
part of W;, . ..

Let t ¢ s +2°%2 — k — 3.

Put (1,7 +j,i + 1,n44;) for 1 < j <k, and
(1,7,4,nyyry;) for 1 < j <r, and

(L, 7+ 2k + 2+ 5,4, Nersnsgy for 1 <7< 22¥2— 7 2k —3in W,

Mpyk427 ° 770
I“Vnr+2k+2'
Put (0, w) in these k + 1 languages for larger and larger values of w while

in this stage. Make the languages W, .1 < j <2°%2 — k — 3 to be equal

to the defined part of W,

Ny ky2”
The following applies only to the case i < b. Take larger and larger exten-

sions of 0;_; that give texts for the languages W, and W,, ., . and give

them as an input to F. If F makes a mindchange on the text for W, .,
let 7 ¢~ s. If F makes a mindchange on the text for W, ., .., let 7 < ¢. In
both cases let o; be the segment on which the new hypothesis is output,

s t+2°%2 — k — 3, and go to stage 7 + 1.

Ngtje

k = 20%2=% _ 2 is the number of (i + 1)-th hypotheses proposed in the instruc-
tions which are put in the languages W, ...... W, at the i-th stage. s is

Rra2k+2
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the number of indices n; already used at the beginning of stage, while ¢ is the
corresponding number at the middle of the stage. 7 is used for the indices of the
languages on whose text F' makes a new hypothesis.

Suppose the process reached the stage ¢y and remained there. If ¢ = 0, F
has not issued any hypothesis on a text for W, € Los+2_y. If 39 > 0, the last
hypothesis issued by F is invalid for at least one of the languages W, ., € L, ox+42
and W, ., ., € L.1k41, because they differ in infinitely many values of kind (0, w).
(Note that at the stage b + 1 the strategy F' has already made b mindchanges.)
So F' does not TxtEx;-identify L. O

Corollary 5.1 (Vb € IN)[cdeg(TxtEx;) = 2°+2].
Corollary 5.2 (Vb € IN)[cdeg(TxtEx;) = 2°+2].

The next theorem is rather surprising. Recall that in the identification of
total recursive functions we have: csdeg(Exy, Exy ) = 2 for sufficiently large &'
(Theorem 14).

Theorem 35 (Va € IN | a > 1)[csdeg(TxtExg, TxtEx®) = co].

Proof. Let k € IN, k > 1. We prove that TxtExj is not k-closed in TxtEx".
We define the language classes £; = [, I;-TXtExg, where 4,5 € [1,k]. Then
Uigs Li C L% € TxtExS.

We shall prove that U;?:l L; ¢ TxtEx". We apply diagonalization over the

strategies F' and the multiple recursion theorem. The algorithm for ¢, is as
follows.

o Stage 0.
Put (1,5,1,n;),1 < j <k, in W,,,...,W,,. Let w « 0. Simulate F on
some text for W,,. If F outputs a hypothesis hy on some initial segment
oo of the text, then go to stage 1.

o Stager (r>1).
Let L, denote the set of elements put in W, before the start of stage r.

— Substage 0.
Put (0,4), w<i<w+a—1,in Wy,,... . W,,__,.
Put (0. w+ a) in Wy,,... ;W’nk—z'

Simulate F' on such extensions of o,_, that give texts for all the lan-
guages L, U P, where P is a non-empty subset of {(0,7) | w < ¢ <
w + a}. Simultaneously compute ¢y, _, ((0,7)) for w < ¢ < w +a.
Suppose F' outputs a new hypothesis h, # h,_, on a segment g, D
or—1- Then for w < i < w + a, add (0,¢) to W,,, add (0,w + a) to
Wa,_,. let w « w+a+1 and go to stage r + 1.

Suppose p;,_,((0.7)) L forall i € {w, ..., w+a}. Then go to substage
1.
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~ Substage s (1 <s<k-3).
Put (O, w+a+s—2)in Wy, ...

Put (O,w+a+s)in Wy,,..., Wy, _,_,.

Simulate F on such extensions of o,_; that give a text for L, U{(0,1) |

(w+ta—-1<i<w+a+s—2)Vi=w+a+ s} Simultaneously

compute ¢,,_, ({0, w + a + s)).

o W,

Suppose F' outputs a new hypothesis k. # h,_; on a segment o, D
0r-1. Then for w <1 < w+a+s, add (0,i) to W,,,...,W,, (if
necessary: all these values already have been added to some of these
languages), let w < w+ a + s+ 1 and go to stage r + 1.

Suppose ¢p,_, ((0,w +a + s)) . Then go to substage s + 1.

— Substage k — 2.
Simulate F on such extensions of o,_; that give a text for L, U{(0,1%) |
w+a-1<i<w+a+k—5}.
Suppose F outputs a new hypothesis A, # h,_; on a segment o, D
Or—1. Then for w <i<w+a+k— 3, add (0,i) to W,,,..., W, (if
necessary), let w < w+a + k — 2 and go to stage r + 1.

End of stage r.

Each of the stages deals with one hypothesis output by F. The language(s)
on which F is simulated is/are chosen so that the current hypothesis has a + 1
anomalies on it/them. There are two ways F' can deal with this problem. First,
it can change the current hypothesis. In this case all the differences between
the current versions of languages W, are cleared, and the algorithm goes to
the next stage dealing with the new hypothesis. Second, the current hypothesis
function can output a new value, so decreasing the number of anomalies. Then
the algorithm goes to the next substage ensuring again a + 1 anomalies. At
substage k — 2 the current hypothesis function has no more such possibility.

So, either F' makes infinitely many mindchanges, or its last hypothesis has at
least a + 1 anomalies. O

Corollary 5.3 (Va € IN | a > 1)(Vb € INU {x})[cdeg(TxtEx}) = 0.

The next three theorems are obtained from results in team learning (Theorems
17 and 20 in [24]) by applying Corollaries 3.3 and 3.4 to them.

Theorem 36 csdeg(TxtEx, TxtEx") > 3.
Theorem 37 cdeg(TxtEx) = 4.

Theorem 38 cdeg(TxtEx") = 4.



Chapter 6

Conclusion

Tables 6.1 and 6.2 summarize the closedness degrees of the classes Exj and
TxtExy. The entries marked with asterisks were proved previously by other
researchers (often in a different form, for instance as a result in team learning).
Please, see references in the main body of this work.

Table 6.3 illustrates the csdeg(Ex,, Ex,) values (for the formula of D, and
the inclusion of the anomalies see the exact formulations of theorems in Section
4.4).

Also, we obtained some results for team identification types: cdeg([1,n]Ex) =
n + 2 (due partly to [3]), cdeg([n, 2n — 1]Exq) = 2n + 2 and cdeg([1, 2|[Ex,) = 9.

An interesting question is: How does the hierarchy of success ratios k/I for
the classes [k, l[JExj (or the probability hierarchy) look like in the cases when the
closedness degree of Exj is co? Intuitively, it seems that two different success
ratios (or two different probabilities) should yield two different learning powers.
Is it really so?

A survey of the proofs shows that the problem considered in this work is
related to the following model. We have n streams of data on some object (in
this work a function or a language). Some of them are totally incorrect, some

Table 6.1: The closedness degrees of Ex;

Ex$™ 0 1 2 *
i
0 4* o0 oG 4
1 8* 51 20 00 8
2 16* 303 > oo 16
n 2n+29 ]’% o 00 2n+2
* 3" 3" 3 3 3
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Table 6.2: The closedness degrees of TxtEx;

TxtEx{” | 0 1 *
4
0 4 oo o 4
1 8 oo ™ 8
. ... 00 00 ...
n 2n+2 00 00 2n+2
L. 00 00 ...
* 4* o0 o 4

Table 6.3: The csdeg(Ex,, Ex,) values

bl\d—]0 1 2 3 n n+1 2n — 1
0 4* 3 2 2 2 2 2
1 oo 8 5 4 2 2 2
2 oo oo 160 8 ..
3 o0 oo oo 32
00 00 00 OO
n 00 o0 00 oo o 2V < Dpa+1 <2n+6
00 00 0C OC 00 OC
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are partially incorrect (in the form of some anomalies), and it is unknown which
are which. How many of these streams must be correct (or partially correct)
to outweigh the incorrect data so that it is possible to restore the information
about the object with some given precision? In the cases considered in this work
an incorrect stream can always be outweighed, given enough correct information
streams, in the worst case at some expense in the precision of the restored infor-
mation (additional anomalies). Is this so for all more or less natural identification
types?
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