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Anotacija

Saja darba tiek petitas visur defineto rekursivo funkciju un valodu induktiva
izveduma teorija labi pazistamu identifikacijas tipu Ipasibas, kas atgadina kopu
slegtibu. Konkretak, aplukotas tiek sadas Ipasibas: ja kadarn n klasern visi
apvienojumi pa n - 1 ir identificejami, tad arl visu n klasu apvienojums ir iden-
tificejams. Izradas, ka sts Ipasibas ir noteicosas, lai izskirtu, kadi nosacijurni,
kas uzlikti klasu apvienojumu identificejarnibai, ir apmierinarni un kadi nay.
Lielakajai dalai aplukoto identifikacijas tipu saja darba ir konstatets, pie kadiern
n mineta Ipasiba ir speka, ka ari atseviskos gadijumos ir izpetits, pie kadiem n
ltdzrga Ipasiba ir speka diviem dazadiern identifikacijas tipiem. Darba petitie
identifikacijas tipi ir dazadas modifikacijas identifikacijai robeza, ko definejis
E. M. Golds.

Abstract

This work investigates properties resembling closed ness that are characteristic
to some well known identification types in inductive inference of total recursive
functions and in language learning. The properties can be formulated as follows:
if every union of n - 1 classes out of n classes is identifiable, then the union
of n classes is identifiable, too. It turns out that these properties are crucial
for establishing which sets of requirements put on the identifiability of unions
of classes are satisfiable and which are not. This work solves the problem of
finding out for which n the mentioned property holds for most of the considered
identification types, and in some cases: for which n a similar property holds for
two different identification types. The identification types involved are different
modifications of identification in the limit introduced by E. M. Gold.



AHHOTaIJ;U.H

B ;nOR pario-r e HCCJIep;yIOTcH CBORCTBa HaIIOMHHaIOJ.IUIe 3aMKHyToCTb, xa-

paxrepnsre HeKOTOpbIM 06rn;eH3BeCTHbIM Hp;eHTHqmKaI.J;:I10HHbIM THilaM B TeO-

pHH HHp;yKTHBHorO BbIBOp;a pexypcanasrx <PYHKIJ;HHH H3bIKOB. PaCCMaTpHBae-

MbIe CBOHCTBa HMeIOT CJIep;YIOIIJ;H:HBHP;: eCJIH xazcnoe o6'beAHHeHHe n -1 KJIaCCOB

li3 n KJIaCCOB HAeHTli<pHIJ;llpyeMo, TO H o6'beAMHeHHe BCeX n KJIaCCOB H.n;eHTH-

<pHn:HpyeMO. KaK OKa:JbIBaeTCJI, CBORCTBa GTOrO porta OrrpeAeJIHIOT, KaKHe Tpe-

60BaHMH K IIp;eBTH<pMIJ;HpyeMocTH 06'bep;HHeHHR KJIaCCOB YAOBJIeTBOpHeMbI, a

KaKHe - BeT. B GTOH paoo-r e AM 60JIbllIHHCTBa paCCMOTpeHHbIx liAeHTHqmKa-

n:HOHHbIX THIIOB penreaa nporinesca HaxmKAeHHH ti, P;JIHKOTOpbIX yrroiaany-roe
CBOHCTBOllMeeT CHJIY, a TaK)J(e B HeKOTopbIX CJIY~a.HX HaH.n;eHbI n aHaJIOrH~HOro

CBOHCTBa P;JIJIABYX Pa:JJIH~bIX HAeHTH<pHKaIJ;HOHHbIX TRIIOB. PaCCMOTpeHHble

HAeHTH<pHKaIJ;IIOHHbIe TIIIIbI HBMIOTCJI Mo.n;II<pI1Kan;MHMI1ll.n;eHTH<pHKaIJ;MI1B npe-

AeJIe, BBeA€HHOH 8. M. rOJIAOM.
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Chapter 1

Introduction

This work deals with a problem in inductive inference of recursive functions and
languages. Inductive inference as a term for finding out an algorithm from sample
computations was the first time used by E. M. Gold in [22].

E. M. Gold in [22] introduced the paradigm of identification in the limit: the
identifying strategy receives more and more input data about the object to be
learned and outputs a sequence of hypotheses about it (usually the hypotheses
are algorithms for the identified object). Beginning with some place the strategy
outputs only one and the same correct hypothesis. According to the current
notation, this identification type is called Ex in case total recursive functions are
the objects of learning, and TxtEx in case recursively enumerable languages are
to be identified. E. M. Gold also proved that TxtEx is not closed under the set
union: there are two Txt Ex-identifiable language classes £1 and £2 such that
£1 u £2 is not Txt Ex-identifiable. Later, a similar non-union theorem for Ex
was proved independently by J. Barzdins in [8] and by L. Blum and M. Blum in
[10].

Since then many identification types have been proposed as modifications or
alternatives to the Gold's learning paradigm, such as prediction [9], behaviourally
correct [8], probabilistic [15], and consistent identification [37], co-learning [18],
identification of minimal Godel numbers [16].

And always one of the first questions that arise after introducing a new iden-
tification type is: "Is it closed under the operation of set union?" Currently this
problem is solved for most if not for all of the known identification types. So the
problem of closedness of identification types seems to be closed. Nevertheless ...

Suppose some identification type, similarly as Ex or TxtEx, is not closed.
Can we impose arbitrary requirements on the identifiablity of the classes and
their unions and still find some classes that satisfy these requirements? Most of
the identification types have a property: if some class is identifiable, then all its
subsets are identifiable, too. So the requirements "[h U U2 is identifiable, U, and
U2 are not identifiable" would be unsatisfiable. But if this property is obeyed?
Suppose we have requirements "U1, U2, U3, U1UU2, U1UU3, U2UU3 are identifiable,
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CHAPTER 1. INTRODUCTION 3

VI UU2UV3 is not identifiable." Does the satisfiability ofthese requirements follow
from the non-union theorem? It turns out that no, it does not. It was proved in [4]
that the mentioned requirements cannot be obeyed for Ex. The property of Ex
that implies the unsatisfiability of them is this: if the unions of two classes out of
three are Ex-identifiable, then the union VI UV2UV3 is Ex-identifiable, too. So Ex
still has some property that resembles closedness! Moreover, this property allows
us to distinguish between satisfiable and unsatisfiable requirements. In [4] such
results were proved also for the identification types EXb, where b denotes a bound
on mindchanges (see [20] and [12]), and Ex6, where the superscript 1 denotes a
bound on anomalies (see [10] and [12]). In this work this problem is solved for
the general case of Ex~-identification of total recursive functions and TxtEx~-
identification of recursively enumerable languages (the identification of partial
recursive functions is equivalent to the identification of recursively enumerable
languages, and usually is investigated in this form, so we complied with the
tradition in this work).

To solve the problem, we extend the notion of closedness. We say that an
identification type is n-closed if the identifiability of all unions of ti - 1 classes out
of ti classes implies the identifiability of the union of all ti classes. Vve show that
finding the minimal such n is sufficient for solving the problem of satisfiability of
requirements for a very broad class of identification types.

It can be easily proved that, if VI, U2 E EXQ, then VI UV2 quite possibly is not
in EXQ and maybe even not in EXl, but it always is in EX2. Indeed, why should
we necessarily require that the union is identifiable with the same mindchange
(anomalies, ... ) complexity? Often it would be sufficient that we identify the
union with a larger, but still finite and estimable amount of mindchanges. So
another generalization seems natural, the n-closedness in superset: if all the
unions of n - 1 classes out of ti classes are identifiable in some sense, then the
union of all n classes is identifiable in another, more general sense. As we shall also
see, most of the results of n-closedness can be more easily proved with the help
of this notion. The closed ness in superset yields many interrelationships between
different identification types. This work contains some results on n-closedness of
Ea· E CXb m xd.

Interestingly, n-closedness can be formulated in terms of team learning ([24]
is a good survey on the team learning of both total recursive functions and recur-
sively enumerable languages), so this work yields some new results in this area.
Also, investigation of the n-closedness of the team learning identification types
[k, I]Ex~ yields some interesting results. One section in this work is dedicated to
these results.

The structure of this work is as follows. In Chapter 2 we introduce notation,
define the identification in the limit of total recursive functions and recursively
enumerable languages with bounds on mindchanges and anomalies, probabilistic
and team learning as well as define the notion of identification type in general
which we use in this work.
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In Chapter 3 we define n-closedness and the closedness degree and formulate
an equivalent problem in team learning. We also show how the closed ness degree
affects the power of team and probabilistic identification types with a high success
ratio (probability); these results were obtained together with K. Apsitis, At the
end of the chapter we prove that the closed ness degree allows us to solve the
problem of satisfiability of requirements for practically all "natural" identification
types.

The next chapters contain the results on the closed ness degrees for particular
identification types. Chapter 4 considers the case when total recursive functions
are identified. At first we find the cIosedness degrees of the identification types
Ex~ (these results appeared in [4, 6, 7], they were coauthored with K. Apsitis,
R. Freivalds, M. Krikis and R. Simanovskis), then we investigate the closedness
in superset among them, and finally we find the closedness degrees for some of
the corresponding team learning identification types (these results appeared in
[34]). We also notice that, if we do not consider anomalies, then the closed ness
degree in all the proved cases turns out to be finite, and we give a proof of such
finiteness for a class of team identification types (this proof was obtained together
with A. Ambainis).

Chapter 5 contains results on n-closedness in language learning. The results
of this chapter have appeared in [5, 7], and they were coauthored with K. Apsitis,
R. Freivalds and R. Simanovskis.

Chapter 6 summarizes the obtained results.



Chapter 2

Preliminaries

2.1 Notation
Any recursion theoretic notation not explained below is from [30]. IN denotes
the set of natural numbers, {O,1,2, ... }. * denotes "an arbitrary finite (nat-
ural) number." In inequalities (\In E :Il\r)[n < * < 00]. \100 means "for all but
finitely many." :300 means "there exist infinitely many." C denotes proper subset.
(" ... ,.) denotes a computable one-to-one numbering of all the tuples of natural
numbers.

Let R: denote the set of total recursivr functions of one argument and P the
set of partial recursive functions of one argument. We fix a Codel numbering of
P and denote it by ip, The function computed by the program i we denote by
'Pi· Its domain Wi is the recursively enumerable language accepted by CPi. Let E
denote the set of recursively enumerable languages.

If f(x) is undefined, we write f(x) t· By f(x) -1.-= y we mean that f(x) is
defined and equal to y, f(x) -I.- means that f(x) is defined. If f, 9 E P, a E
IN u {*}, then f =a 9 denotes the fact that card( {x E IN 1 (J(x) -I.- /\g(:r) -I.-

/\f(x) i- g(x)) V (J(x) t /\g(x) -1.-) V (J(x) -I.- /\g(x) t)}) :::;a. For L1, L2 E e,
a E lNU{*}, by L1 =a L2 we mean that card((L1-L2)U(L2-L1)):::; a. In both
cases the up to a differences are called anomalies. If fEn, n E IN, we define
f[nl = U(O), ... , f(n)).

We shall consider finite and infinite sequences with values from IN U {#},
where # means "no data." The length of a finite sequence 17 is denoted by 1171.

For a sequence 17, the initial sequence of length n (n :::;1171 if 17 is finite) is denoted
by 17[n]. The content of a sequence 17 is the set of natural numbers in the range
of 17, denoted contentfo ). An infinite sequence T is a text for a language L
iff content(T) = L. We fix some computable one-to-one encoding of the finite
sequences of this kind by natural numbers. The code of a sequence 17 is denoted
bya. 17 ~ T means that T is an extension of 17, 17 C T means that T is a proper
extension of 17, 17T denotes concatenation of the sequences (in the last two cases
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CHAPTER 2. PRELIMINARIES 6

a must be finite). In concatenations an denotes the element a repeated n times.
The operator of assignment in descriptions of algorithms will be denoted as

+--.

2.2 Identification of Recursive Functions
An identification strategy F is an arbitrary partial recursive function. It receives
as input f[nJ - the initial segment of the target function fER. We shall refer
to its output F(f[nJ) as a hypothesis on the function f. A mindchange is an event
when F(f[n1) and F(f[n+l1) are both defined and different.

Definition 2.1 [22, 10, 20, 12] Let a, b E IN u {*}. A strategy F Ex~-identifies
a function fER (f E Ex~(F)) iff:

1. (:IN)[(\fn < N)[F(flnJ) tl /\ (\fn 2 N)[F(f[nJ) t]];

2. (:Jh)[(\foon)[F(f[nJ) t= h] /\ <Ph =a f];

3. the number of mindchanges made by F on f does not exceed b.

Definition 2.2 [22, 10, 20, 12] A class U ~ t: is Ex~-identifiable (U E Ex~) iff
(:JF E P)[U < Ex~(F)].

The following relationship has been established between these identification
types.

Theorem 1 [12] (\fa, b, c, d E INu {*} )[Ex~ ~ Ex~ {:} a < c /\ b :::;d].

2.3 Identification of Languages
A language identification strategy F is an arbitrary partial recursive function. It
receives as input T[n] - the initial segment of a text T for the target language
LEE. Note that there are infinitely many texts for any non-empty language.
A mindchange is an event when F(T[n]) and F(T[n + 1]) are both defined and
different.

Definition 2.3 [22, 11, 27] Let a, b E INu {* }. A strategy F TxtEx~ -identifies
a language LEE (L E TxtEx~(F)) iff for every text T for L:

1. (:IN)[(\fn < N)[F(T[n]) l] /\ (\fn 2 N)[F(T[n]) t]];

2. (:Jh)[(\f(X)n)[F(T[n]) = h] /\ 'Ph =a f];

3. the number of mindchanges made by F on T does not exceed b.
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Definition 2.4 [22, 11, 27] A family of languages £ ~ £ is Txt.Exj-identifiable
(c E TxtEx~) iff (::IF)[£ ~ TxtEx~(F)].

'I'le sometimes omit the index a if a = a and b if b = *. Particularly, TxtEx =
TxtEx~.

The following basic relationship has been established between the defined
identification types.

Theorem 2 [11,27] (Va,b,c,d E INU{*})[TxtEx~ ~ TxtEx~ {::}a::; cAb::; d].

2.4 Probabilistic Identification
Probabilistic inductive inference was defined in [15, 28]. Informally, it allows the
strategy to make probabilistic choices, for instance, to toss a coin.

Definition 2.5 [15, 28] Let I be one of the identification types Ex~) TxtEx~
defined above. A probabilistic strategy F identifies a class U with probability p
according to the identification type I (p)I-identifies U) iff for each fEU: the
probability that F I-identifies f is at least p. Then we write U ~ (p)I(F) and
U E (p)"I.

For a more formal and detailed definition with the basic proofs see [15, 28].
Actually, usually it is easy to define the probabilistic type (p)I. for any identi-
fication type I, it only needs to be checked that the probability of successful
identification is measurable.

2.5 Identification Types
In general, we define an identification type by the following scheme.

1. I-identification is defined as a mapping M -* P(A), where M is the set of
the su bjects performing identification (in this work, the set of deterministic
or probabilistic strategies or the set of teams of strategies), A is the set of
objects to be identified (for instance, A = R or A = E), and P(A) is the
set of all the subsets of A; IUv!) is the set of all the objects identified by
AIEM;

2. a class U ~ A is considered I-identifiable iff (::1M E M)[U ~ I(M)];

3. the identification type is characterized by the set I = {U ~ A I U is
I-identifiable} .

This definition takes into account only the set theoretical aspects of identifi-
cation types, not the learning theoretical aspects. But we shall need mostly these
aspects when speaking about identification types in general.
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2.6 Team Learning
Team learning was suggested by Case and first investigated by Smith [31]. The
general definition is due to [26]. According to this model, many strategies par-
ticipate in the identification, and we require only a certain amount of them to be
successful.

Definition 2.6 Let I be an identification type. U ~ R is I-identifiable by a
team ilk out of l" (we write U E [k, l]I, 1 ~ k ~ i) iff there is a "team" of l
strategies such that every function from U is I-identified by at least k of these
strategies.

As we see, team learning allows to build new identification types from the
existing.



Chapter 3

Closedness and Identification

Here we establish the basic properties of n-closedness and connections with the
defined identification types.

3.1 n-Closedness
Definition 3.1 Let A be a set with an associative and commutative binary oper-
ation a: A X A ---+ A defined in it, and let there be an element e E A equal to the
empty a-product. A set 51 ~ A is n-closed in a set 52 ~ A (n :::::1) with respect
to a iff

(Val,"" an EA.)
[(Vi I (1 :::;i :::;n))[a1 a ... a ai-1 a ai+1 a ... a an E 5d => a1 a ... a an E 52]'

Definition 3.2 Let a be an associative and commutative binary operation: A x
A ---+ A, and let there be an element e E A equal to the empty a-product. A set
5 ~ A is n-closed (» > 1) with respect to a iff 5 is n-closed in 5.

So "2-closed" is the same as "closed." In further the binary operation will be
set union, A will be some family of sets, closed with respect to the set union and
containing the empty set, which will be the element e (it is needed only in the
exceptional case n = 1). The following statements concerning n-closedness can
be easily proved.

Proposition 3.1 If a set family 51 is n-closed in a set family 52, then 51 ~ 52'

Proof. Suppose, U E 51. Define VI = ... = Un = V. Since 51 is n-closed in 52,
we get that Uj=:l Vi = U E 52' 0

Corollary 3.1 If Ex~ is n-closed in Ex~ .. then a :::;c and b :::;d.

Corollary 3.2 If TxtEx~ is n-closed in Txt Exj, then a :::;c and b :::;d.

9
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Proposition 3.2 If 52 is ti-closed in 53, 51 ~ 52 and 53 ~ 54, then 51 is
n-closed in 54'

Proposition 3.3 Let 51 be n-closed in 52 and satisfy the property (VU E 51)
(VV ~ U) [V E 51]' Then 51 is m-closed in 52 for all m ~ n.

Proof. Suppose 51 is n-closed in 52 and satisfies the mentioned property. If n = 1,
then we have that 0 E 51 implies U E 52 for any U E A. So 52 = A, and 51 is
m-closed in 52 for all m ~ 1.

Suppose 1 < n ::;m, and sets Ui, ... , Urn E 5 satisfy the property (Vi I 1 ::;
i ::;m)[U;I,#i u, E 51]' Define VI = Ul,···, V~-I = Un-I, V~ = Uj~n u; We
have Vn E 51 because Vn ~ Uj=2 o, E 51, and Uj~11Vj E 51 because Uj~l Vj ~
Uj=lI u, E 51' Thus, (Vi I 1 < i ::; n)[Uj=I,#i Vj E 5Il· Since 51 is n-closed in
52, Uj=1 l-j = Uj=1 u, E 52. D

Note that the identification types built according to the scheme described in
Section 2.5 satisfy the mentioned property.

The next proposition is by K. Apsitis.

Proposition 3.4 Let 5 be n-closed and satisfy the property (VU E 5) (VV ~ U)
[V E 5]. Let U be a set that can be expressed as a finite union U = UI U ... U Urn
so that

(VI ~{I, ... , m}) (II I < n - 1 =* U u. E 5) .
tEl

Then U E 5.

Proof. Ifm < n, we are done, since then we can choose I = {I, ... , m}. Ifm ~ ti,

we fix an arbitrary I' = {iI, ... , in} ~ {l, ... ,m}, II'I = n. Since 5 is n-closed,
it follows from the assumption that UiEI, U, E 5. Since we chose I' arbitrarily,
we can now use a stronger assumption:

(vI ~ {I, ... , m }) (II I < n =* U u, E 5) .
tEl

Repeat the above reasoning replacing n by n + 1 (it follows from Proposition 3.3
that 5 is (n + 1)-closed). By induction we obtain that UiEI Ui E S for larger and
larger I until we reach III = tn, and thus get that UiEI U, = U E 5. D

Proposition 3.3 shows that we need to find the minimal n for which 51 is
n-closed in 52.

Definition 3.3 Let a set family 51 satisfy the property (VU E 5d (VlT ~ U) [l/ E
5Il· We say that n is the closed ness degree of 51 in superset 52 (n = csdeg(51 ,
52)) iff 17. is the smallest number such that 51 is n-closed in 52.

If such ti does not exist, we define csdeg(51, 52) = 00.

We shall call cdeg(5) = csdeg(5, 5) the closed ness degree of 5.
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The next two propositions follow from Proposition 3.2, Theorem 1 and The-
orem 2.

csdeg(Ex~~, Ex~~) ~ csdeg(Ex~;, Ex~~).

csdeg(TxtEx~~, TxtEx~~) ~ csdeg(TxtEx~;, TxtEx~~).

3.2 Connection with Team and Probabilistic
Learning

It turns out that the problem of finding the closed ness degree is equivalent to a
problem in team learning.

Proposition 3.7 'II is n-closed in 'I2 iff [n - 1, n]'II <:;;; 'I2.

Proof. Suppose 'II is n-closed in 'I2. Let V E [n - 1, n]'II, and let FI, ... , Fn be a
team that [n-1, n]'II-identifies V. We define Vi = {f E V I (Vj =I i)[f E 'II (Fj)]}.

Clearly, (Vj I 1 < j < n)[U?=I,i,tj Vi <:;;; 'II (Fj)]. Since 'II is n-closed in 'I2,

U7=1 Vi = V E'I2·

Now, suppose [n - 1, n]'II <:;;; T2. Let VI,"" u, be such sets that (Vj I 1 <
j :s; n)[U~I#j Vi E Td· Let r, be the strategy that identifies U~I,i,ij Vi' Then
the team FI, ... , Fn [n - 1, n]'II-identifies U?=IVi· SO U?=I Vi E'I2. Therefore, 'II
is n-closed in 'I2. 0

Corollary 3.3 Let 'I be an identification type, n E IN, n ~ 1. Then cdeg('I) = n
iff n is the minimal number for which [n - 1, n]'I = I. cdeg('I) = 00 iff for all
n E IN: 'I c [n - 1, n]I.

Proof. It is easy to see that T <:;;; [n - 1, n]I. Indeed, let V <:;;; 'I(F). By defin-
ing FI = ... = Fn = F ,ve get a team that [n - 1, n]'I-identifies (even more,
[n, n]'I-identifies) V. The rest follows from the previous proposition and from the
definition of closed ness degree. 0

Corollary 3.4 Let 'II, 'I2 be identification types, n E N, n ~ 1. The equality
csdeg('II,'I2) = n holds iffn is the minimal number for which [n -1,n]'II <:;;; 'I2.
Otherwise csdeg('II: 'I2) = 00.
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Suppose n = cdeg(I) ~ 2. Then Corollary 3.3 implies that [n - 1, n]I = I
and [n - 2, n - l]I =:).T. How about the team identification types [1', s]I with
(n - 2)/(n - 1) < r] e < (n - l)ln (the results in team learning have shown
that the so-called success ratio 1'1s is often important in determining the learning
power of a team [1', sD? Are they equivalent to I or not?

Another question comes from the probabilistic learning which has proved to be
closely related with team learning [13, 32, 24, 1]. The probabilistic identification
types tend to form probabilistic hierarchies in the following sense: the segment
(0; 1] is divided into an enumerably infinite amount of disjoint intervals (a; b] such
that for any PI, P2 lying in the same interval: (PI)I = (P2)I, and for any PI < P2
from different intervals: (PI)I =:) (P2).T. The endpoints of these intervals are said
to be the elements of the probability hierarchy set of I.

In many studied cases the maximal P < 1 from the probabilistic hierarchy
turned out to be in the form P = (n - 2)/(n - 1) where n = cdeg(I). Is this an
accident? The following two results prove that it is not so. They were obtained
by K. Apsitis and the author of this work.

Theorem 3 Let I be an identification type with cdeg(I) = n ~ 2. Let 1', s E IN,
0< r ~ s. Then [r,s]I = I iff (n - 2)/(n -1) < r]» ~ l.

Proof. Suppose 1'/ s ~ (n - 2)/(n - 1) and [1', s]I = I. We shall prove that
[n-2, n-1]I = I in such case. Let U E [n-2, n-1]I, and let F = {FI, , Fn-d
be a team [n - 2, n - 1]I- identifying U. Then we form a team G = {G I, , G s}
as follows: Gi = Fimodn-l. For any fEU, the number of unsuccessful learners
among F; is at most one, thus among Gi this number is at most rsl(n -1)1. The
assumption implies that r(n - 1) ~ 8(n - 2) = s(n - 1) - s, so sl(n - 1) ~ s - r.
Since s - r is integer, rs/(n - 1)1 ~ s - r. Thus G [1', s]I-identifies U. Since
[1',s]I = I, U E .T. We have proved that [n - 2, n -l]I = I, but that contradicts
the equality cdeg(I) = n. Therefore, [r,s]I =:) I for r f e ~ (n - 2)/(n -1).

Suppose (n - 2)/(n -1) < r f s ~ 1. \Ne shall prove that [1',8]I =.T. Let
U E [1', s]I, and let F = {FI, ... , Fs} be a team [1', s]I-identifying U.

Every fEU is I-identified by some subset of F. We declare two elements
of U to be equivalent iff they are identified by exactly the same members of F.
Denote the equivalence classes by [II, ... , Urn' Let 1be any subset of {I, ... , m},
111 ~ n - l.

We claim that UiE1 U, E.T. Indeed, each U, is I-identified by at least r
members of F. Since IFI = s, at most s - r members of F may fail to identify
Ui· Therefore, at most (n -l)(s - r) members of F can fail to identify the union
UiEI Ui. But r f s > (n - 2)/(n - 1) implies (n - l)(s - r) < s = IFI. Therefore
at least one of the F, I-identifies the union UiEI Ui. By applying Proposition 3.4
we get U = U1 U ... U Urn E .T. 0

Definition 3.4 An identification type I is team reducible iff

(Vp E (0; l))(VE > 0)(3r, 8 E 1\') [~ > P - E 1\ (p)I ~ [T,8]I] .



CHAPTER 3. CLOSEDNESS AND IDENTIFICATION 13

Additionally we require from the identification type a natural property: let
{FI, ... , Fn} be a finite set of learners, and PI, " .Pn are recursive probabilities,
I:r=1 Pi = 1; then there exists a probabilistic learner G which initially chooses a
learner F; with probability Pi, and then simulates it (that is, any f is identified
by G iff it is identified by Fi). All the identification types where the learners
are algorithms or sets of algorithms, and the learning criterion involves only the
output of these algorithms (not the algorithms themselves or their performance)
satisfy this property, since any algorithm can be simulated by another one.

Theorem 4 Let I be a team reducible identification type with cdeg(I) = n 2:
2 which satisfies the simulation properly described above. Then (P)I = I iff
(n - 2)/(n - 1) < P ::;1.

Proof. Suppose P::; (n-2)/(n-l) and (P)I = I. Trivially, (PI)I;;;:> (P2)I if PI <
P2. Hence, ((n-2)/(n-l))I = I. It is easy to see that [r, s]I ~ (r/s)I: consider
a team [r, s] and a probabilistic learner which chooses initially any member of the
team with probability 1/s and simulates it; clearly, its success probability is at
leastr/s. SoI~ [n-2,n-l]I~ ((n-2)/(n-l))I=I, and [n-2,n-l]I=I.
But that contradicts the assumption cdeg(I) = n.

Suppose (n-2)/(n-l) < P::; 1. Take E = (p- (n-2)/(n-l))/2 and apply
the definition ofteam reducibility to get (p)I ~ [T, s]I with T/S > (n-2)/(n-l).
From Theorem 3: [r, s]I = I. So (P)I = I. 0

3.3 Satisfiability of Requirements
Suppose we have a set of requirements on the I-identifiability of every union
of some classes out of UI, U2, ... , Uk' We want to find a simple criterion for
distinguishing if this set of requirements is satisfiable.

A convenient way for expressing such requirements is to use the Boolean
functions. We shall write Boolean vectors in boldface and their components in
italics with indices. A vector x E {O,Ilk corresponds to the union UXi=IUi. Let
f : {O,IV -+ {O,I}. If f(x) = 0, we demand that the corresponding union is
identifiable. If f(x) = 1, the corresponding union must be unidentifiable.

Definition 3.5 Let a, bEN u {*}. A Boolean junction f : {O, l}k -+ {O, I} is

I-satisfiable iff C3U],... , Uk ~ A)('v'x E {O,lY)[Uxi=1 U, E I¢:> f(x) = 0].

Which of the properties of identification types I are relevant for the satisfia-
bility of Boolean functions? Two properties are immediate: I contains the empty
set and together with a set I contains all of its subsets. [4] showed that another
property is relevant: the closed ness degree. The following definition combines
these three restrictions.
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Definition 3.6 A Boolean function f : {O, l}k ---t {O, I} is n-convolutional iff

1. f(O) = 0;

2. (vx, Y E {O, 1Y)[x < y '* f(x) < f(y)] (monotonicity);

3. (Vx E {O,I}k)(ViI, ... ,in 11 ~ il < .,. < in ~ kl\Xil = .. , = Xin =
1)[(Vr 11 ~ r ~ n)[j(xl'"'' Xir-I, 0, XidI, .. ·, Xk) = 0] '* f(x) = 0].

We shall prove by the next theorem that n-convolutionality is the desired
criterion for all identification types satisfying two natural properties.

Definition 3.7 Let t be an injective mapping A x IN ---t A (we shall call such
mapping a tagging of A). An identification type I is t-tag invariant iff

(Vj E IN)[U E I¢:} t(U,j) E I],

where t(U,j) is the image of U under t(·,j).

Informally, I is t-tag invariant iff supplying a tag j to every element of a class
does not affect its identifiability.

Definition 3.8 Let t be a tagging of A. An identification type I is t-tagged
union closed iff

n
(Vn E IN)(VV1, V2,···, u, E I)[ U t(Vj,j) E I].

j=I

The "natural" identification types usually have these properties. We shall
prove it for the types Exg and TxtExg.

Proposition 3.8 There exist taggings t1, t2 such that (Va, b E INu {*})[Ex~ is
t, -tag invariant and tI-tagged union closed, and TxtEx~ is t2-tag invariant and
t2 -tagged union closed].

Proof. Define tI(I,j) = 1', where j'(x) = (.f(x),j), and t2(L,j) = L' = {(x.j) I
x = 0 V x-I E L}. It is easy to see that i, and t2 are taggings for Rand E,
and satisfy the corresponding condition of tag invariance for Exg and TxtEx~
(because the strategy can easily obtain f from 1', L from L', and vice versa).

Suppose that VI, V2, ... , Vn E I. To identify Uj=1 ti(Vj,j), i = 1,2, in both
cases the strategy obtains the tag i from the input and applies the strategy that
identifies Uj. This proves the tagged union closedness. 0

Theorem 5 Let I be a t-tag invariant and t-tagged union closed identification
type. If cdeg(I) = n E INJ then a Boolean function is I -satisjiable iff it is
n -convolutional.

If cdeg(l) = OC., then a Boolean function f is I-satisfiable iff f(O) = 0 and f
is monotone.



CHAPTER 3. CLOSEDNESS AND IDENTIFICATION 15

Proof. At first we prove the necessity. Suppose a function f : {O, l}k --+ {O, I} is
I-satisfiable. Let Ul, ... , Ui; be the classes that satisfy the requirements. Then,
because of the mentioned properties of identification types, f(O) = 0 and f is
monotone. Suppose cdeg(I) = n E IN. Let x be an arbitrary vector from {O, lY·
Let il, ... , in be such that 1 ~ il < .,. < in ~ k and Xii = ... = Xin = 1. We
define s', 1 ~ j ~ n, to be such vectors that

1. y{ = 1,
)

2. Ylr = 0 for r i- j, 1 ~ r < ti,

3. y~ =XS forsE {1, ... ,k}-{il, ... ,in}.

Let Vi be the union of Ui, ... , Uk corresponding to the vector v'. Then the
vectors (Xl,.'" Xir-l, 0, Xir+l,"" Xk), 1 ~ r ~ ti, correspond to the unions of
n - 1 classes out of Vl, ... , Vn. If these are I-identifiable, so is Uj=l Vj, because
I is n-closed. Since Uj=l Vi corresponds to the vector x, we have proved that f
is n-convol utional.

Now, sufficiency.

Definition 3.9 A vector x is a minimal J-vector for a Boolean function f iff

1. f(x) = 1 and

2. (Vy < x)[j(y) = 0].

Let xj, 1 ~ j ~ m, be all the minimal l-vectors for f. Let nj be the number
of components in xj that are equal to 1. Suppose that cdeg(I) = n E IN and
f is n-convolutional. Point 3 in the definition of n-convolutionality implies that
nj < n for every j E {I, ... , m}. Suppose cdeg(I) = 00, f(O) = 0 and f is
monotone. Then, trivially, every nj < 00.

So, in both cases I is not nrclosed, j E {I, ... , m}, and there are such classes
v: ... ,v: that every union of nj - lout of them is I-identifiable, while U~l ul
is not.

Now 'we construct the classes Ul, ... , Uk that satisfy the requirements given
by [, Suppose XI = 1 for some 1 ~ i ~k and 1 S; j ~ m, and suppose XI is the
lj-th component of xj that is equal to 1. Then we add the set t(U!, j) to Ui. So

)

the class U, is the union of these sets for all the values of j such that xi = 1.
Suppose f(x) = 1. Then for some i, Xl ~ x, and the corresponding union

contains as a subset the image of U~l u! ~ I under the tagging t(·,j). Since I
is t-tag invariant, this union is I-unidentifiable.

Suppose f(x) = O. According to the monotonicity, for each j there is such
Sj that XSj = 0 and xt = 1. Suppose X~j is the 'rth component equal to 1
in xj. Then the union corresponding to x is a subset of Uj=l t(Vj,j), where
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Vj = U~l,i;tlj UI is I-identifiable. Since I is t-tagged union closed, this union is
I-identifiable.

This proves I-satisfiability. 0



Chapter 4

Identifying Total Recursive
Functions

The results of the previous chapter imply that to solve the satisfiability prob-
lem for particular identification types, we have only to find the their closed ness
degrees, which we shall do in this and the next chapter. In the proofs we shall
use diagonalization and simulation techniques. Another interesting approach was
considered in [2], where the similarity of such proofs to games was explored.

4.1 Identification in the Limit
Here the case of Exa-identification will be considered.

The first result in the whole area of the closed ness of identification types (for
total recursive functions) was Theorem 2 in [8].

Theorem 6 [8] There are such classes Ui, [h ~ R that U, E Ex, U2 E Ex, and
U1U U2 ¢:. Ex* .

Proof. Define

U, = {f E R I f = ep f(O)},

U2 = {f E R I (:IN)[(\ix ~ N)[f(x) = 0] V ("Ix ~ N)[J(x) = I]]}.

Strategy F( (1(0), ... ,f(n)}) = j(O) identifies Ui, (We see that in fact U1 E Exs.)
Class U2 is identified by a strategy that on the initial segment f[nj outputs a new
hypothesis h such that

{

j(x), x:::; n,
tph(X) = 0, :7: > nand f(n) = 0,

1, x> nand f(n) =/: 0,

if the previous hypothesis is invalid (if f(n - 1) = 0 =I- f(n), or f(n - 1) =I- 0 and
f(n) =I- 1. or n = 0); otherwise it outputs the previous hypothesis.

IT
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Now we shall prove that U1 u U2 ~ Ex". Let F be an arbitrary strategy. We
shall construct a function that belongs to U1 u U2 and is not identified by F.

Consider a family of functions {fi liE IN} ~ P with the following algorithm
for li-

• Stage O.
Define fi(O) = i. Find x for which F((iOX

)) is defined. Then define fi(l) =
!i(2) = ... = fi(X) = 0, let 0"1 f- iOx and go to stage 1.

• Stage m (m 2: 1).
Compute, on which of the segments O"moj and amlj (j E IN,j 2: 1) strategy
F changes its last hypothesis F( (O"m))' If such segment O"mok is found (0
is 0 or 1), define !i(!O"m!) = .. , = fi(IO"ml + k - 1) = 0, let O"m+1 f- O"mok,
and go to stage m + 1.

According to the recursion theorem (see [30]) (:JiO)[Jio = 'Pio]' Thus fio(O) is
a correct Godel number of fio'

If l.; E R; then fio E U1 and F makes infinitely many mindchanges on it, so
fio ~ Ex*(F).

If !io ~ R: then either F did not output any hypothesis, or it did not change
hypothesis on any of functions am 000 and 0"m 100 for some m and remained in
stage m forever. In the former case we choose function with the string of values
ioO':xJ. In the latter case the last hypothesis made by F is incorrect for at least
one of the segments O"mooo (a is 0 or 1), because they differ in infinitely many
points. Choose the corresponding function. The chosen function belongs to U2

and is not Ex* -identified by F. 0

So, csdeg(Ex, Ex") > 2. Then, in team learning, the next result was obtained.

Theorem 7 [29] (Va E IN u {*} )[[2, 3]Exa
~ Exa

].

Using Propositions 3.3 and 3.4 we get:

Theorem 8 (Va E IN U {"'} ) [cdegfEx") = 3].

4.2 A Bound on Mindchanges
Here we find the closedness degrees for the classes EXb and Ex~, b E IN. These
two identification types turn out to be similar in this aspect. Theorem 9 is a
generalization of Theorem 4.2 in [4].

Theorem 9 (Vb E IN)(Va, a' E 1\ U {*} I a' 2: 2b+la)[csdeg(Ex~, Exn ::; 2b+2].

The proof of the theorem is based on a lemma.
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Lemma 4.1 For each b E IN there is an algorithm that can EXb-identify any
function j E R knowing (receiving as parameters) algorithms of 2b+2 -1 strategies
such that each of them produces at least one hypothesis on f and at least 2b+2

- 2
of them EXb-identify j.

Proof. Let strategies F1, F2, ... , F2b+LI and a function j satisfy the conditions.
The algorithm F redirects its input to the strategies F, until they output hy-
potheses hi, i = 1,2, ... , 2b+2 - 1. Then F produces a hypothesis h such that
<Ph(X) = Y iff at least 2b+1 of the values <PhJX), i = 1,2, ... , 2b+2 - 1, are y.

In case b > 0, F waits for 2b+1- 1 of the strategies F, to make a mindchange.
Suppose it happens. Then, to Exs-identify j, these strategies can make no more
than b - 1 mindchanges from now on. So F selects these 2b+1 - 1 strategies,
disregards their hypotheses made before the mindchange and applies to them
the algorithm corresponding to the case of EXb_I-identification. This algorithm
identifies f with no more than b additional mindchanges, so j E EXb(F).

Suppose no more than 2b+1 - 2 strategies make a mindchange or b = O. Then
among hi there are no more than 2b+1- 1 incorrect hypotheses, and \Ph = f. 0

Proof of Theorem 9. It is sufficient to prove that EXb is 2b+2-closed.
Let U1, U2, ... , U2b+2 ~ R be such classes that all the unions of 2b+2 - 1

classes out of them are Exs-identifiable. Let F1, F2, ... , F2b+2 be the strategies
that identify these unions. Vveshall construct a strategy F that identifies Uj:+12 Uj.

The strategy F redirects its input to the strategies Fi until 2b+2 - 1 of them
output a hypothesis. Such an event happens because every function f E Uj::12 Uj
belongs to 2b+2 - 1 of the unions of 2b+2 - 1 classes, thus at most one of the
strategies Fi does not identify f.

Then F selects these 2b+2 - 1 strategies, applies the algorithm from the pre-
vious lemma and identifies the input function. 0

The next theorem is a generalization of Theorems 3.1 and 4.1 from [4].

Theorem 10 (Vb E IN)[csdeg(EXb, Ex~) > 2b+2 - 1].

The method of proof of this and other theorems establishing lower bounds
for csdeg makes use of the idea whose origin is the concept of "self-describing"
functions used in [8, Theorem 2]. (Theorem 6 in this work). Vveshall use functions
that output instructions for Exg-identification of themselves. Even more, they
will output many arrays of such instructions. The instructions will be of three
kinds.

1. An elementary instruction (I,), i, n). i,j 2 1. Informally, it proposes n as
the i-th hypothesis in the j- th array of instructions.
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2. A compound instruction (2, Yl, ... , Yp), where Yi are elementary instruc-
tions. In this way many elementary instructions can be incorporated in one
value output by a function.

3. A split instruction. It consists of two values, (3, i, Yl, Y2) and (4, i, Y3, Y4),
where Yl - Y2 +Y3 - Y4 is an elementary or a compound instruction, and i is
a unique identifier for this pair of values. In this wayan instruction can be
split into two parts so that by changing any of these parts we can obtain a
different instruction. (In fact, we could do this using only two numbers, Yl
and Y3; we have chosen the above form for the ease of writing the proof.)

Among the values f(x) there must be exactly one value of kind (3, i,·,·) and
exactly one value (4, i, " .) to get a split instruction with identifier i. Naturally,
other kinds of instructions can be designed to prove similar results for identifica-
tion types not considered in this work.

Let Instr(f) be the set of elementary instructions output by I, including those
that are contained in the compound and the split instructions.

Definition 4.1 We shall say that a function fER is a j-instructor with respect
to the Ex~ -identification (a, b E IN u {* }) iff there is an instruction (1, i, e, n) E
Instr(f) such that 'Pn =a f, e :::;b + 1 and, if (1, i, e', n/) E Instr(f) for some e/
and n', then e/ < e or n' = n.

Let us denote the class of j-instructors with respect to Ex~ by IjEx~.

Proposition 4.1 Ifx~ E Ex~.

Proof. Receiving values of the input function the strategy extracts from them the
elementary instructions and outputs the sequence of hypotheses corresponding
to the j-th array of instructions. If its previous hypothesis was based on an
instruction (1, j, i, n) and it receives an instruction (1, j, if, n/), it outputs n' iff
i' > i. If it has no new hypothesis to output, it repeats the previous one. It
follows from the definition of instructors that the strategy identifies the function.

o

Proof of Theorem 10. Let us denote k = 2b+2 -1. It is enough to prove that there
are classes V1, V2, ... , Vk such that (Vi) [U7=1,);ii U, E EXb] and U7=1 U, ~ Ex~.

D fi T t. - n· IExb h .. [1 k'] Th U T T C IExb Ee ne U I - J;ii j ,were 1,] E ,. en i;ij L-l _ j E Xb·

We have to prove that Uj=l U, ~ Ex~. Suppose there is a strategy F that
identifies this union. 'iVe shall use the multiple recursion theorem (see [35], it is a
generalization of the recursion theorem used in the proof of Theorem 6). It allows
us to construct functions that use each others G6del numbers as parameters.
\Ve construct functions i:pni' one of which will be the function from U~=1 U, not
identified by F.
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The algorithm below uses a procedure new (x). It lets x +- n., and then
c +- C + 1, where c is a counter in the algorithm.

The algorithm for 'Pn; is as follows .

• Stage O.
c +- 1, j +- 0, P +- k, D +- {p}.
Execute newts.) for 1 :s; i :s; p - 1. Output values as shown in the next
table.

a
'PSI' ... ,'Psp_1 (1,1,1, Sl)

p-2
(1,p - 1,1, Sp-l) 0

The leftmost column contains the functions defined, other columns show
values output at the corresponding inputs. The rightmost column means
that these values are output up to infinity unless the algorithm goes to the
next stage.
Let the variable y throughout this algorithm indicate the maximal value
of argument at which the values have been output at the moment. We
simulate the strategy F on the initial segments of 'PSI' If a hypothesis is
output on 'P1~] for some x, we let h +- F( 'P1~1), Xo +- max(x, y) + 1; we
output () up to Xo - 1, if needed, and go to stage 1.

• Stage m (1 :s; m :s; b + 1).
r +- card(D), l +- (p - 1)/2.
Let d1, ... , d; be the elements of D. Execute new(t), newiu,') for 1 :s; i :s;
l - 1, new(t'), new(vi) for 1 :s; i :s; l - 1. Output values as shown in the
next table.

'PSI' ... , 'PSI' 'Pt, 'PUI' ... , CPUI_I
'PSI I"'" <PSD-l' <Pt', <PUI' ... , <Pt'l_l

'PSI' , <PSI' <Pt, 'PUI' ... , CPUI-l

'PSI4-I' ,<PSu-l' !..pt', CPUI' ... , 'PVI_1

'PSI' ... ,<PSI' <Pt, <PUI' ... , I.{JUI_I
<PSI+l"'" <PSp_I' 'Pt', 'PVI"'" 'PVI_1

Xo + r - 1
(1, dr' m, t)
(1, dn m, t')

Xo
(1, dl, m, t)
(1, dl, m, t')

Xo + r
(1, j + l + 1, m + 1, UI)

(1, j + 1, m + 1, VI)
Xo + r + l- 2

(1,) + 21 - 1,m + 1,Ul-I)

(1, j + l - 1,m + 1, Vi-I)

o
(0)

If m = b + 1, the algorithm remains in this stage forever.
If m < b + 1, we simulate F on functions 'PSI and I.{Jsl+I'

If F changes the current hypothesis h on ;p1~] for some x, we let h +- F (P1~]),
Xo «- max(x.y) + 1, output 0 up to Xo -1, add j + 1.... .i + I,j + p-1
to D, let Si +- Ui for 1 :s; i :s; 1- 1, ) +- j + l, p +- l and go to stage m + 1.
If F changes the current hypothesis h on <p1~L for some x, we let h +-
F(<p1~~J :ro +- max]z , y) +L output (0) up to :TO -1, add j +l, ... .i +p-1
to D, let s, +- Vi for 1 :s; i :s; I - L p +- I and go to stage m + 1.
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Let us explain the meanings of variables at the start of stage m. s, are G6del
numbers that have been proposed as the m-th hypotheses in the instructions. The
indices of these instructions begin with j +1 and their amount is p-1 = 2b+3-m - 2.
D contains the indices of the arrays of instructions for which the m-th hypothesis
has not been proposed yet.

At stage m two alternatives represented by CPSI and CPS/+l are proposed for
F. Since they differ at infinitely many points, the last hypothesis h cannot be
Ex;-correct for both of them. If F does not make a mindchange on any of the
two alternatives, the algorithm remains at stage m forever, CPS1' CPS/+l E U~=I Vi
and at least one of these two functions is not EX;-identified by F. If F makes a
mindchange on one of these alternatives, the algorithm switches to stage m + 1,
choosing this alternative for further consideration. At stage b+ 1 F cannot output
a new hypothesis, since it already has made b mindchanges.

It is easy to check that, in whatever stage the algorithm stays forever, both
proposed alternatives are in U~=I Vi. So F does not identify this class. Contra-
diction. 0

Corollary 4.1 (Vb E IN)[cdeg(Exb) = cdeg(Ex;) = 2b+2].

4.3 Identification with Anomalies
Here we consider the case of Ex~-identification, where a, b E IN, a > O. The
results turn out to be rather surprising. For a = 1, the closed ness degree is finite
and still grows exponentially relative to b, while for a ~ 2 the closed ness degree
is 00.

Proof. Let us denote k = 7'6
b
;1_2. It is enough to show that there are such

classes VI, ... , Uk that the unions of k - 1 classes out of them are identifiable,
while U7=1 it, is not.

We define c. = n7==I,Jiii Ifx~, 1 :S i :S k. Then U~=I,itj t.. ~ Ifx~ E ExL
1 :S j :S k.

We have to prove that U~==IU, ¢:. Ext. y.';e use diagonalization over the strate-
gies. Let F be an arbitrary strategy. Using the multiple recursion theorem
similarly as in Theorem 10 we construct functions 'Pn;, 1 :S i :S N (where N is
a natural number determined only by b) that can use each others G6del num-
bers incorporated in their values. With their help we shall construct a function
f E U7=1 U, not identified by F.

We remind that the procedure new(.r) lets x f- TIc, C f- C + 1, where C is a
counter in the algorithm.

The algorithm for Yn; is as follows.
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• Stage O.
Let c +- 1, j +- 0, P +- (7· 6b+1 - 2)/5, D +- {p}. Execute newj s.) for
1 :s; i :s; p - 1. Output values as shown in the next table.

°<PSI' ... ,<Ps -I (1,1,1, Sl)
fa (1,1,1, Sl)

p-2
(1, p - 1,1, Sp-1) ()

(1, p - 1,1, Sp-1) ()

The function under the last horizontal line (fa in this case) is the function
not identified by F in case the algorithm remains in this stage.
Let the variable y throughout this algorithm indicate the maximal value
of argument at which the values have been output at the moment. We
simulate the strategy F on the initial segments of fo. If a hypothesis is
output on fJx], we let h +- F(fJxl), Xo +- max(x, y) + 1; we output () up to
Xo - 1, if needed, and go to stage 1.

• Stage m (1 :s; m :s; b + 1).
Let r +- card(D). Let d1, •.. , d; be the elements of D. Execute new(t). Go
to substage 1.

- Substage 1.
Let u +- (p - 2)/2, Yl +- (3, 2m - 1,0,0), Z2 +- (2, (1, d1, tti, t), ... , (1,
dr, m,t)), Y2 +- (4,2m-1,z2,0). Output values as shown in the next
table.

Xo Xo + 1
<PSI' ... , 'PSu

? Y2 ()
<PSu+I' ... , !.pSp-2 Y1 ? ()
<PSp_1 ? ? ()
<Pt Yl Y2 ()
hm-6 Yl Y2 ()

The question marks mean that the values are not output at these
points as yet. We compute 'Ph(Xo), !.ph(XO + 1) and the outputs of F
on hm-6'
If m < b+ 1 and F changes its current hypothesis on fJ~-6 for some x,

we let h +- F(fJ~-6), replace question marks with the corresponding
values of hm-6, let Xo +- maxt-», y) + 1, output () up to Xo - 1, add
j + (p- 2)/6+ 1, ... .i +p-1 to D, let p +- (p- 2)/6 and go to stage
m+1.
If !.ph (xo) = Y1, let Xl +- Y + 1, and go to substage 2.
If 'Ph (Xo + 1) = Y2, let 1:1 +- Y + 1, and go to substage 5.

- Substage 2.
Let v +- (p - 2) . 2/3,w +- (p - 2) . 5/6. Execute IHlw(s:) for w +
1:S; i:S; p-3. Let Y3 +- (3,2m,0,0). Z4 +- (2,(1,j+w+1,m+
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I,S~+I), ..·,(1,j+p-3,m+1,s~_3))' Y4 ~ (4,2m,z4'O). Output
values as shown in the next table.

Xo Xo + 1 Xl Xl + 1
tpSI" .. , tps", tpSp_1 ? Y2 0 Y3 Y4 0
tpS,,+I' ... , 'Ps" YI Y2 0 ? Y4 0
tpSv+I' ... , tpSw Yl Y2 0 Y3 ? 0
tpSw+I' ... , tpSp-2 Yl Y2 0 ? ? 0
tpt, tps' ' ... , cp , YI Y2 0 Y3 Y4 0w I S -3

hm-5 Yl Y2 0 Y3 Y4 0
We compute tph(XI), tph(Xl + 1) and the outputs of F on hm-5' If
tri < b + 1 and F outputs a new hypothesis on J+~L5 for some x, we
let h ~ FU~~-5)' Xo ~ max(x, y) + 1, output 0 up to Xo - 1, add
j + 1, ... .i + 111, j + P - 2 and j + P - 1 to D, let s, ~ S~+i for
1 ~i ~ (p - 2)/6 - 1, let j ~ j + 111, P ~ (p - 2)/6 and go to stage
m+1.
If tph(XI) = Y3, go to substage 3.
If tph(XI + 1) = Y4, go to substage 4.

- Substage 3.
Execute new(tf), new(s~) for v + 1 ~ i ~ 1.U - 1. Let Y5 ~ (3, 2m -
1, (2, (1, d1, m, tf), ... , (1, d., m, if)), Z2), Y6 ~ (3, 2m, (2, (1, j + v + 1,
m + 1, S~+l)"'" (l,j + 111 - 1, m + 1, S~'_l))' Z4)' Output values as
shown in the next table.

Xo Xo + 1 Xl Xl + 1
'PSI' ... , !{Js", !(JSp_1 Y5 Y2 0 Y3 Y4 0
tpSU+I' ... , ipsv YI Y2 0 Y6 Y4 0
tpSv+l' ... , tpsUJ YI Y2 0 Y3 ? 0
'PS"o+l' ... , tpSp-2 YI Y2 0 Y6 Y4 0
tpt',ips' ,· .. ,ps' Y.5 Y2 0 Y6 Y4 0v+l tL'-l

hm-4 Y5 Y2 0 Y6 Y4 0
Compute outputs of F on hm-4. If r11, < b + 1 and F outputs a
new hypothesis on f+~L4for some x, we let h ~ FU~~L4)' Xo t-

max(x,y)+I, output 0 up to xo-1, add j+1, ... ,j+v, j+11I, ... ,j+
P - 1 to D, let s, t- S~+i for 1 ~ i ~ (p - 2)/6 - 1, let j t- j + v,
P t- (p - 2)/6 and go to stage m + 1.

- Substage 4 is similar to substage 3.

- Substages 5, 6, 7 are similar to substages 2. 3. 4, respectively.

End of stage m:
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j in the algorithm is used as a base index for the arrays that have output their
m-th hypotheses (s.) before stage m was started. Note that the values are output
so that the corresponding function Ii is a q-instructor for all q E {I, ... , k} except
one, so I, E UJ=l Uj. Note also that there is no way out of the substages 3, 4, 6
and 7 of stage b + 1. So the algorithm remains forever in some substage (or stage
0), and, as it is easy to see, the current hypothesis of F has at least two anomalies
in comparison with the function I; corresponding to this substage (mindchanges
after the b-th mindchange made by F are ignored). 0

Proof. Denote k = 7'6b~I+3, l = 7.6;+3.

Consider classes U1, ... , Uk such that the unions of k - 1 classes out of them
are Exi-identified by strategies F1, •.• , Fi, We shall construct such strategy F
that will identify UJ=l Uj using F1, ... , Fk as subroutines.

Denote the input function by f. Strategy F simulates the strategies F1, ... , Fk

on f. If I E UJ=l Uj, then I is identified by at least k - 1 of these strategies. So
F waits until k - 1 strategies make their first hypotheses. Suppose the strategies
are F1, ... , Fk-1, and their hypotheses are hi," . 1 hk-1. Then F outputs its own
first hypothesis h based on these strategies and their hypotheses.

Suppose b > 0 and l-1 out of these k -1strategies output another hypothesis.
Then F outputs its second hypothesis, based on these l - 1 strategies together
with their hypotheses, and we have reduced our problem to the case of ExLl-
identification.

So it is enough to prove that, if no more than I - 2 strategies make another
hypothesis, or b = 0, then hypothesis h is correct.

In this case there is at most one strategy among F1: ... , Fk-i that does not
identify I and at most l - 2 strategies that identify I, but output another hy-
pothesis. So no more than l - 1 hypotheses among hi,"" hk-i are wrong.

Now we describe the algorithm for 'Ph. It computes the following infinite table
and the hypotheses made by the F/s on all possible initial segments.

0 n
'PhI v»; (0) <Phi (n)

I{Jhk_1 yhk-I (0) '''h (71)Y k-l

Let the weight of a value in a column be the number of occurrences of this value
in the column. We shall say that values u, and 11 in different columns are p-
coordinated iff there are p rows that have 11 and v in the corresponding columns.

The aim is to find a consistent interpretation of the table, that is, such ini-
tial subtable, such 10 :s; 1 and such initial segment gin] that 10 - 2 of strategies
Fi, ... 1 Fk-i output the second hypothesis on a subsegment of g[n] and there are
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at least k - lo rows in the subtable that have no more than one anomaly in com-
parison with g[n]. Such interpretations will be found for all but finitely many n,
because the initial segments of f give consistent interpretations starting with the
segment on which the last of the second hypotheses is output.

When an interpretation is found, <.ph outputs values (those that are not already
output) according to the following rules.

1. Value U is output if its weight is at least (k - 1)/2 and it is l-coordinated
with all the values already output.

2. Value U is output if its weight is at least l(k -lo + 1)/2J, it is equal to the
corresponding value of 9 and it is l-coordinated with all the values already
output.

3. Value Ul is output at point Xl if it is l-coordinated with all the values
already output and there is a column X2 such that:

(a) at point X2 a value U2 has been output;

(b) there is another value V2 #- U2 in column X2 such that, denoting the
numbers of rows that have the corresponding values at points Xl and
X2 as in the table:

Number of rows Value at Xl Value at X2

81 UI U2

82 ?I U2

83 UI ?I
84 ?I ?I
85 UI V2

86 ?I V2

(here "?!" means "undefined value or value different from mentioned
at this column"), the following inequalities are obeyed:

k -l
81 + 82 ~ -2-' (4.1)

(4.2)

4. Suppose there are columns Xl and X2 such that:

(a) column Xl contains two different values Ul and VI (and maybe some
other values);

(b) either UI has been output at Xl, or no value has been output at Xl and
no value has been output according to rule 3;
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(c) column X2 contains two different values U2 and V2 (and maybe some
other values) and U2 has been output at X2;

(d) denoting the numbers of rows that have the corresponding values at
points Xl and X2 as in the table:

Number of rows Value at Xl Value at X2

tl Ul U2

t2 VI U2

t3 ?I U2

t4 UI ?I
t5 VI ?I
t6 ?l ?I
t7 UI V2

ts VI V2

tg ?I V2

the following inequalities are obeyed:

k -l
i, + t2 + t3 ~ -2-'

t2 + t3 + t5 + t6 ::; l - 1,

t« ~ 2l - 1.

(4.3)

(4.4)

(4.5)

Then the algorithm outputs UI at Xl if necessary, and further it outputs a
value iff it is in at least I of ts rows that contain both VI and V2 at Xl and
X2, respectively (any output according to the previous rules is terminated).

To prove that <Ph =1 f in case no more than l - 2 strategies change their
hypotheses, we shall consider some cases.

1. <Ph has output value according to rule 4. Vlfeshall use the notation intro-
duced in this rule. Since no more than I-I hypotheses among hI, ... , hk-l

are wrong, if two values are I-coordinated, then no more than one of them
is incorrect. We get from (4.3), (4.4) and the equality k = 6l - 3 that
t, ~ (k - 1)/2 - l + 1 = 31/2 - 1/2 ~ I, so no more than one of the values
UI and U2 is incorrect. Since t8 2: 2l - 1 ~ l (inequality 4.5), no more than
one of the values VI and V2 is incorrect. Combining these two conclusions
we get that exactly one of the values Ul and U2 is incorrect and exactly one
of the values VI and V2 is incorrect. The latter implies that all of the 21 - 1
or more rows containing VI and V2 except at most I - 1 rows will contain
the correct values at all other points, and according to rule 4 these values
will be output.
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Suppose an incorrect value U3 has been previously output at some point X3

different from Xl and X2. Then it was i-coordinated with U2, therefore U2 is
correct, Ul and V2 are incorrect, and VI is correct. Hence k-1-t2 rows have
already at least one anomaly at columns Xl and X2, so the weight of U3 does
not exceed t2 + l- 1 ~ 21- 2 < (k -i) /2, therefore U3 was output according
to rule 3. According to condition in rule 4, Ul has been already output, so
Ul is i-coordinated with U3. Since both these values are incorrect, we have
a contradiction. Thus the only error made by <Ph is either Ul, or U2.

2. <Ph at least once has output value according to rule 3, but never according
to rule 4. Considering the first value output according to rule 3 we shall
use the notation of this rule.

(a) The weight of Ul in Xl after all the defined values are computed in Xl

turns out to be no less than (k -1)/2. Then U1 satisfies the conditions
of rule 1, and we can consider it to be output according to that rule.
That case will be considered further below.

(b) The weight of U1 in Xl never exceeds (k - 1)/2 - 1. Let s, denote the
numbers defined in the table above in the situation when all the defined
values in columns Xl and X2 have been computed. Note that, when
new values are computed, Sl + S2 cannot decrease, while S2 + S4 cannot
grow, so inequalities (4.1) and (4.2) remain satisfied. Our assumption
implies

k - 1
Sl + 83 + 85 ~ -2- - 1.

Inequalities (4.1) and (4.2) imply

k - l 3l - 1
81> -- -1+ 1= --.

- 2 2

(4.6)

(4.7)

Hence Ul and U2 are I-coordinated. Inequalities (4.2), (4.6) and equal-
ity I:f=l s, = k - 1 imply 84 + 86 ~ 86 ~ (k - 1)/2 - l + 2 = 2l ~ l.
So non-u, and non-u- values are also l-coordinated. Therefore, one of
the values U1 and U2 is correct, and the other is incorrect.

1. U1 is correct, U2 is incorrect. From (4.6) and (4.7) we get that
S3 + 85 ~ (3l - 5)/2. So the amount of rows that have error in Xl

or z , is no less than Sl+S2+S4+S6 ~ k-1-(3l-5)/2= (9l-3)/2.
At least (91- 3)/2 - (i-I) = (7i-1)/2 ~ (k -1)/2 of these have
correct values at all other columns, and using (4.1) we get that at
least 81 + 82 - (l - 1) ~ I of them have U1 at Xl and U2 at X2, so
the correct values are i-coordinated between themselves, with Ul

and '(1,2, while the incorrect values cannot be l-coordinated with
U2· Thus all the correct values are output according to rule 1, and
'Ph has only one error, that is U2'
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II. Ul is incorrect, U2 is correct.
A. 81 ~ 2l-1. Then at least (k-1)-82 ~ (k-1)-(l-I) = 5l-3

rows have an error at Xl or X2, and at least 5l - 3 - (l - 1) =
4l - 2 ~ (k - 1)/2 of them have correct values at all other
columns. Among them are at least Sl - (l - 1) ~ l rows
that have Ul at Xl and U2 at X2. SO the correct values are
l-coordinated between themselves, with Ul and U2, and they
are output according to rule 1 (the incorrect values cannot be
output since they are not l-coordinated with ud. <Phhas only
one error, UI.

B. 81 ~ 21- 2. Let VI be the correct value at Xl, 8~ be the number
of rows that have VI at Xl and V2 at X2, 8~ = 86 - s~. Since no
more than l-1 rows can have two errors, S3+S4+S5+S~ ~ l-I.
Applying this inequality as well as (4.2) and the assumption,

I /I )we get 86 = (k - 1) - 81 - 82 - 83 - 84 - 85 - 86 ~ (k - 1 -
4 . (l - 1) = 2l > 2l - 1. But then columns Xl and X2 satisfy
the conditions of rule 4; this case was considered above.

3. All the values output by <Phsatisfy the conditions of rule 1 or rule 2.

(a) There are two incorrect values output by <Ph. That is impossible, since
all output values are l-coordinated.

(b) Among the values output by <Phthere is an incorrect value Ul at some
column Xl, and 'Ph(X2) is undefined [or some X2· Let VI = j(xd,
U2 = j (X2). Let WI be the weight of UI at Xl, W2 the weight of VI at
Xl, and W3 = (k -1) - WI - W2. Then WI ~ (k -l)/2. So there are at
least WI +W3 - (l-l) ~ (3l-1)/2 ~ 1 rows that have an error at Xl
and correct values at all other columns, including X2. Therefore U2 is
l-coordinated with all the correct values (maybe except vd and with
UI and thus satisfies conditions of one of the rules 1, 2 and 3. There is
a problem, though. Maybe at every interpretation considered by <PhU2
was not l-coordinated with the computed part of a correct value output
in some column. At further interpretations all the defined values at
this column become computed, and U2 becomes l-coordinated with
the correct value, but now U2 can have the same conflict with another
column, etc.
Let us consider such interpretation applied by 'Ph with initial segment
g[x] modelling f that all the defined values at Xl, X2 are computed, U2
is not l-coordinated with some previously output value U3 at X3, and
in the next interpretation considered by <PhU2 is already i-coordinated
with U3· If g(Xl) t= Ul, with the same reasoning as above we get that
U2 and U3 must be l-coordinated. So, g(xd = Ul.
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1. g(X2) = V2 =I- U2·
A. g(X3) =I- U3· Let w' be the weight of U3 at X3, w' ~ (k - l)/2.

There are at least w' - (l - 1) ~ (31 - 1)/2 ~ I rows whose
only error in this interpretation is U3 at X3, so they have UI at
Xl and V2 at X2. Thus UI and V2 are I-coordinated. That is a
contradiction, since in fact UI and V2 are both incorrect.

B. g(X3) = U3. Then the weight of U2 at X2 does not exceed 21-2,
otherwise U2 and U3 would be I-coordinated, contrary to the
assumption. Since VI = f(xd and U2 = f(x2), the number
of rows that have not U2 at X2 and have VI at Xl, is at least
(k - 1) - (21 - 2) - (I - 1) = 31 - 1. Since VI =I- g(xd and
V2 = g(X2), the number of rows that have VI at Xl and V2 at
X2 is at least 31 - 1 - (l - 1) = 2l. But then columns X2 and
Xl (in this order) satisfy the conditions of rule 4; this case was
considered above.

11. g(X2) = U2. Since f(xd =I- UI = g(XI), the weight of U2 is at least
(WI- (I-I)) + (W2 +W3 - (I-I)) = 41- 2.
A. g(X3) =I- U3· Since the weight of U3 exceeds 21 - 1, U3 is l-

coordinated with U2, contrary to the assumption.
B. g(X3) = U3. Since U3 is not l-coordinated with U2, at least

41- 2 - (I - 1) = 31 - 1 rows have U2 at X2 and an error at X3
(in this interpretation), and at least 31 - 1 - (I - 1) = 21 ~ I of
them have no other errors, so they have UI at Xl, U2 at X2 and
values that are correct in relation to both f and 9 at all other
columns, except X3. According to the assumption, in the next
interpretation U2 becomes l-coordinated also with U3, so it will
be output then (according to the algorithm, the new columns
of the new interpretation will be considered only after X2)'

(c) There are two points Xl and X2 at which 'Ph is undefined.
Let a be an interpretation in which all the defined values at Xl and
X2 have been computed, let g[x] be the initial segment modelling f in
0:. Let the number of strategies that have changed their hypothesis on
g[x] be lo - 2 (we are interested only in the case lo ~ I), UI = g(Xj),
U2 = g(X2)' Then the number of rows that have no more than one
error in a is at least (k - 1) - (10 - 1) = k - la, and at least one of the
values Uj and U2 have weight at least l(k - 10 + 1)/2J; let Ul be this
value.

I. The weight of U2 at X2 is less than l(k - 10 + 1)/2 J. Then at
least (k - 1)/2 + 1 = 31 - 1 rows have not U2 at X2, so at least
31 - 1 - (1- 1) = 21 ~ I of them have a-correct values at all other
columns, Uj at Xj among them. Since UI is not output, it is not 1-
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coordinated with some previously output 'U3 at X3, and g(X3) i- 'U3·
Since 'U3 was output according to rule 1 or rule 2, it has weight at
least (k - 1)/2 = (51 - 3)/2, so there are (51 - 3)/2 - (l - 1) =
(31-1) /2 ;:::I rows in which 'U3 is coordinated with all the a-correct
values, 'UI among them. Contradiction.

11. The weight of 'U2 at X2 is at least l (k - la + 1)/2 J. Then 'UI and 'U2
both satisfy the conditions of rule 2. Since they are not output,
they are not I-coordinated with some previously output value(s).
A. Both 'UI and 'U2 are not l-coordinated with some value 'U3 output

at X3. If 'U3 i- g(X3), then as previously we get that UI and
'U2 are I-coordinated with 'U3' So 'U3 = g(X3)' Suppose U3 has
weight at least (k - 1)/2. Then the number of rows that have
'U3 at X3 and no more than one a-error, is at least (k - 1)/2 -
(I - 1) = 21 - 1. These rows have either 'UI at Xl, or 'U2 at X2,
so 'U3 is I-coordinated with at least one of these values.
Suppose 'U3 has weight less than (k-1)/2. Then it was output
according to rule 2. Let us consider interpretation a' with
the initial segment g,[x'j (x' -s; x) at which 'U3 was output.
According to rule 2, 'U3 = g'(X3)' Suppose (:3xa -s; x')[g(xa) =I-
g'(xa)]. Let 'Ua = g'(xa), Va = g(xa). Let r be the number of
rows that have not 'U3 at X3, then r ;::: (k-1)/2+1. According
to a', at least r - (I-I) of these rows have Ua at Xa; according
to a, at least r - (l-I) of these rows have Va at Xa. Since r >
21- 2, we get a contradiction. Therefore such Xa does not exist,
and g[x] is an extension of g,[x'l. Some of the la - 2 strategies
that have changed their hypotheses at a have changed them
already at d. Let their number be it - 2 (it -s; La). The weight
of 'U3 is at least l (k -it + 1)/2 J. The number of rows that have
'U3 at X3 and no more than one a-error at all other columns is
at least l(k-II+1)/2J-1-(la-II)= l(k+ll-1)/2J-Ia;:::
(k + 1)/2 -l = 21-1, Each of these rows have either 'UI at Xl,

or U'2 at X2, so 'U3 is l-coordinated with at least one of these
values, contrary to the assumption.

B. 'UI is not l-coordinaied with some previously output 'U3 at X3, U2
is not l-coordinaied with some previously output 'U4 at X4 i- X3.
As previously, if 'U3 =I- g(X3), then U3 would be i-coordinated
with 'UI' SO 'U3 = g(X3)' Similarly, 'U4 = g(X4)' Since 'UI and
'U3 are not i-coordinated, there are at least (k - 1) - (l - 1)
rows that have an a-error either at Xl, or at X3. At least
(k - 1) - 2 . (l- 1) ;:::l of them have no other a-errors, so they
have 'U2 at X2 and u, at X4, contrary to the assumption.

o
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Corollary 4.2 (Vb E IN)[cdeg(Ex~) = 7'6b~I+3].

Theorem 13 (Va E IN I a > l)(Vb E IN)[cdeg(Exg) = 00].

Proof. Let a > 1, b be some natural numbers. It is enough to prove for an
arbitrary k ~ 2 that there are such classes U1, .•• .Ui. that the unions of k - 1
classes out of them are identifiable, while Uj=l U, is not.

We define u, = (nj=l,#i IfXb), 1 :S i :S k. Then U~=l,i~j ti, < Ifxb E Exg,
1 :S j :S k.

We have to prove that U~=l U, ~ Exg. We use diagonalization over the strate-
gies. Let F be an arbitrary strategy. Using the multiple recursion theorem
similarly as in Theorem lOwe construct functions <Pn;, 1 :S i :S N (where N is a
natural number determined only by a and b) that can use each others G6del num-
bers incorporated in their values. With their help we shall construct a function
f E U~=lU, not identified by F.

We remind that the procedure new(x) lets x f-- nc, C f-- C + 1, where c is a
counter in the algorithm.

The algorithm for <Pn; is as follows .

• Stage O.
Let C f-- 1. Execute newts.] for 1 :S i :S k. Output values as shown in the
next table.

<PSI' ... , <PSk
fo

o
(1,1,1,81)
(1,1,1,81)

k-1
(1, k, 1, 8k)
(1, k, 1, Sk)

oo
Let the variable y throughout this algorithm indicate the maximal value of
argument at which the values have been output at the moment. Simulate
the strategy F on the initial segments of fo. If a hypothesis is output on
fJx], we let h f-- F(fJxl), Xo f-- max(x, y) + 1; we output 0 up to Xo - 1, if
needed, and go to stage 1.

• Stage r (1 :S r :S b + 1).

- Substage O.
Output values as shown in the next table.

IO IO + a-I IO +a
<PSI ? ? ? ? 0
<PS2' ... ,<PSk ? ? ? 0 0
fr,o 0 0 0 0 0

Compute <Ph(XO), ... ,<Ph(XO + a), and, if r < b + 1, simulate F on fr,o.
If ~h(X) = 0 gets computed for Xo :S :r: :S xo +a-I, change fr,o to be
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different from this value: Ir,o(x) = (0), and restart simulating F on
Ir,o as well as computing C{Jh at other points.
If F makes a mindchange on f;~d for some x, we let h +- F(J;~),
Xo +- max(x,y) + 1, a +- f;~ool,and go to substage k.
If C{Jh(XO + a) = 0 is computed, we let Xl +- Xo + a, X2 +- Y + 1, output
C{Js;(Xo + a - 2) = fr,o(xo + a - 2), C{JSi(xo + a-I) = fr,o(xo + a-I) for
1 :s: i :s: k, 0 up to X2 - 1, if needed, and go to substage 1.

- Substage t (1 :s: t :s: k - 2).
Output values as shown in the next table.

Xt Xt+l Xt+l + 1 Xt+l + 2
C{JSI' •.• , C{JSt ? 0 ? 0 0 0
'PSt+1 0 0 ? ? ? 0
C{JSt+2' ... , C{JSk 0 0 0 ? ? 0
Ir,t 0 () c o () o

We compute C{Jh(XO), ... , C{Jh(XO + a - 3), C{Jh(Xt+l), C{Jh(Xt+1 + 1),
C{Jh(Xt+1 + 2) and the outputs of F on fr,t.

If C{Jh(X) = 0 gets computed for Xo :s: X :s: Xo + a - 3, change Ir,t to
be different from this value: Ir,t(x) = (0), and restart simulating F on
Ir,t as well as computing C{Jh at other points.
If r < b + 1 and F changes its current hypothesis on I)~] for some x,
we let h f- F(J)~]), Xo f- max(x, y) + 1, a f- I;~o],and ~o to substage
k.
If C{Jh(Xt+d = 0 is computed, we let Xt+2 +- Y + 1, output C{JSi(Xt) =
C{JsJXt+l + 1) = C{Js;(Xt+l + 2) = 0 for 1 :s: i :s: k (where the values
have not been already output), 0 up to Xt+2 - 1, if needed, and go to
substage t + 1.
The cases when C{Jh(Xt+1 + 1) = () or C{Jh(Xt+1 + 2) = 0 is computed
are similar; we shall describe the first case.
Thus, if C{Jh(Xt+l + 1) = 0 is computed, let x' f- y + 1, and output
values as in the next table.

C{JSI' , C{JSt

C{JSt+l' , C{JSk

Ir,t

Xt

(0)
o
(0)

ooo

Xt+! + 1
o
(0)
(0)

Xt+l + 2
ooo

ooo

x'
?

?
oooo

Compute C{Jh(XO),"" C{Jh(XO + a - 3), C{Jh(X') and the outputs of F on
i;
If 'Ph(X) = 0 gets computed for Xo :s: X :s: Xo + a - 3 or x = x', change
I:,t to be different from this value: f:,t (x) = (0), and restart simulating
F on i: as well a.'3 computing 'Ph at other points.
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If r < b + 1 and F changes its current hypothesis on f;:~] for some x,
we let h f-- FU;:~l), Xo f-- max(x, y) + 1, a f-- f;:~o], and go to substage
k.

- Substage k - 1.
Output values as shown in the next table.

Xk-l Xk-l + 1 Xk-l + 2 Xk
tpSl' ... , tpSk-l (0) o o o ? ()
v., 0 () 0 0 ? 0
fr,k-l (0) () () 0 0 0

Compute tph(XO),"" tph(XO + a - 3), tph(Xk-l + 1), tph(Xk) and the
outputs of F on fr,k-l.
If tph(X) = 0 gets computed for Xo :S x :S Xo + a - 3, x = Xk-l + 1 or
x = Xk, change fr,k-l to be different from this value: fr,k-l (x) = (0),
and restart simulating F on fr,k-l as well as computing tph at other
points.
If r < b + 1 and F changes its current hypothesis on f!xLl for some
x, we let h f-- Fu!xLl), Xo f-- max(x, y) + 1, a f-- f!x~L, and go to, ,
substage k.

- Substage k.
Execute new(sd for 1 :S i :S k. Output values up to Xo - 1 so that
tp~~o-lJ = a and further as shown in the next table.

Xo
tpSl"'" tpSk (1,1, r + 1, Sl)
fr (1,1,r+1,sl)

Let Xo f-- Xo + k and go to stage r + 1.

Xo + k - 1
(1, k, r + 1, Sk)
(l,k,r+ 1,sk)

End of stage r.

Each stage in this algorithm deals with one hypothesis made by F. It makes
the current hypothesis function to have at least a + 1 anomalies by forcing it
to output values based on smaller and smaller evidence from the functions tpSi
(substages 0 to k - 2). When F makes a mindchange, we disregard the previous
functions tpSi by choosing new values for s., remembering only the segment a on
which F made the mindchange. So, either the last hypothesis output by F has
at least a + 1 anomalies, or F makes at least b + 1 mindchanges. 0

4.4 Closedness in Superset
In this section we shall turn our attention to the general case of establishing
csdeg(Ex~, Ex~). According to Corollary 3.1 we have csdeg(Ex~, Ex~) = 00, in
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case c < a or d < b. Some other results important in this section are contained
in Propositions 3.5, 3.4, Theorems 6, 9 and 10. The next theorem have been
obtained from a result in team learning.

Theorem 14 [19] (Va,b E IN)(Vc,d E IN U {*} I c ~ a A d ~ lC-~+l + 2J(2b +
1))[csdeg(Ex~, Ex~) = 2].

It shows that, given a and b, by choosing c and d large enough we can make
the closedness degree for classes Ex~ and Ex~ reach its minimal value 2. From
Theorems 9 and 10 we get the next result showing that, if we do not change the
number of mindchanges, then the minimum reached by csdeg is different.

Theorem 15 (Vb E IN) (Va, a' E lNu {*} I a' ~ 2b+la)[csdeg(Ex~,Exf) = 2b+2].

Now we shall turn our attention to estimating csdeg(Exb, EXd), b < d < *.
By evaluating the influence of anomalies in the algorithms we shall obtain results
for csdeg(Ex~, Ex~) for sufficiently large c relative to a.

At first, not a very exact upper bound.

Theorem 16 (Vk ~ 3)(Va,c E INU l-l I c ~ (lk/2J + 1) ·a)(Vb,d E IN I d ~
2b - 1 + l(2b + 4)j(k - I)J)[csdeg(Ex~,Ex~) ~ k].

Proof. At first, let us note that a similar result for k = 2: csdeg(Ex~, Ex~) = 2
for c ~ 2a, d ~ 4b + 2, follows from Theorem 14.

Let U1, ... , Ui, k ~ 3, be such classes that all the unions of k - lout of
them are Ex~-identifiable. Let Fj, 1 ~ j ~ k be a strategy that Ex~-identifies
U~=l,#jUi· Note that each function from U~=lU, is identified by at least k - 1 of
the strategies Fj. Consider the following strategy F.

At first we describe, when F outputs hypotheses. F simulates the strategies
F, on the input function f. F waits until k - 1 strategies among Fj output
their first hypotheses, we denote them h6, ... , h~-l, then F outputs hypothesis
ho based on these hypotheses. In further, F computes the values output by the
current hypotheses of Fj counting the number of incorrect values output by them
and continues to simulate Fj on f. F does not consider (b + 2)-th and further
hypotheses, in case such are output by some of the strategies Fj.

Suppose k is even. Suppose F has output its previous hypothesis hi.., based
on k - 1 hypotheses. F outputs a new hypothesis hi iff at least k/2 of the
strategies Fj output new hypotheses. hi is based an all k current hypotheses of
r;

Suppose the previous hypothesis hi-1 was based on k strategies. Then F
outputs a new hypothesis hi iff either k/2 - 1 of the strategies F, output a new
hypothesis and among the last hypotheses of the remaining k /2 + 1 strategies
there is one, h', that has output incorrect values at least at a + 1 points, or if
k/2 strategies output a new hypothesis. In the former case hi is based on all the
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current hypotheses except h', in total on k - 1 hypotheses. In the latter case hi
is based on all k current hypotheses.

Suppose k is odd. Then the previous hypothesis hi-1 was based on k - 1
hypotheses. F outputs a new hypothesis iff either (k - 1)/2 of the strategies on
which hypotheses hi-1 was based output a new hypothesis, or if a new hypothesis
is output by (k -1)/2 strategies including the strategy on whose hypothesis hi-1
was not based, and among the current hypotheses of the remaining (k + 1)/2
strategies there is one, h', that has output incorrect values at least at a + 1
points. In the former case hi is based on the current hypotheses of the same
strategies on which hi-1 was based. In the latter case hi is based on all the
current hypotheses except h'.

If at least 3 strategies output their (b + l)-th hypotheses, then F outputs
its own last hypothesis based on them. If two strategies output their (b + l)-th
hypotheses and one of these hypotheses output incorrect values at least at a + 1
points, then F outputs its last hypothesis based on the other hypothesis.

Now we describe the algorithm for 'Phi' Let l be the number of hypotheses
it was based on, l = k - 1 or l = k, and let h 1, ... , hi be these hypotheses.
'Phi' receiving as input x, simulates 'Phi (x), ... , 'Phi (x). When at least l(l + 1)/2 J
among these functions output the same value Y, 'Pho(X) outputs y, too. Note
that, if l is even, lU + 1)/2J = l/2, so the value output by 'Pho could depend on
the order in which the values 'Phi (x) are output.

It is easy to see that, if the conditions for outputting hi are not obeyed,
the previous hypothesis hi-1 is a correct Ex"-hypothesis, since at all but a finite
amount of points majority of the functions on which hi-1 was based output correct
values. Similarly, the last hypothesis output by F is correct, since at most one
of the (b + 1)-th hypotheses of strategies F, can be incorrect.

To conclude proof, we have to count, how many mindchanges F will have
and how many anomalies its hypotheses hi can have. Suppose k is even. Let
us count, how many new hypotheses by Fj are needed for each hypothesis by
F. For ho k - 1 hypotheses are needed. For hI k/2 hypotheses are needed. In
further, for each hi at least k/2 -1 hypotheses are needed, and for two consecutive
hypotheses hi, hi+1 k - 1 hypotheses are needed. When Fj have output bk + 3
hypotheses, at least 3 (b + 1)-th hypotheses have appeared. So the number of
mindchanges made by F does not exceed the minimal d for which the inequality
k - 1 + k/2 + (d - l)(k - 1)/2 ~ bk + 3 holds. The inequality implies d ~
(2bk - 2k + 7)/(k - 1) and, since d is integer,

d > r2bk - 2k + 71 = l2bk - k + 5] = _ l2b + 4]
- k - 1 k - 1 2b 1+ k - 1 .

Suppose k is odd. Then for ho k - 1 hypotheses are needed, and for hi, i > 0,
(k - 1)/2 hypotheses are needed. In this case d is determined by the inequality
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k - 1+ d· (k - 1)/2 ;::::bk + 3. It implies d > (2bk - 2k + 8)/(k - 1) and

d > r2bk - 2k + 81 = l2bk - k + 5] = 2b _ 1+ l2b + 4] .
- k-1 k-1 k-1

(We used the fact that, for k ;::::3 an odd integer and l an integer, IL/(k - l)l =
l(l + k - 3)/(k - l)J.)

Suppose hio is based on l hypotheses, and it is the last hypothesis output by F.
Suppose l is odd. Then at least (l + 1)/2 = ll/2J + 1 > l/2 of these l hypotheses
are correct Ex't-hypotheses, and <Phio can have anomalies only at no more than
(ll /2 J + 1) . a points where at least one of these correct hypotheses have an
anomaly. Now, suppose l is even. Then at least l/2 hypotheses are correct Exa-

hypotheses, and at least one of the remaining hypotheses, hi, outputs no more
than a incorrect values, though it can be undefined at any number of points.
But at the points this function is undefined, any incorrect value can gather no
more than l/2 - 1 "votes" among the incorrect hypotheses. So <Phio can have
anomalies only at the points where either one of the correct hypotheses have
an anomaly, or where <Ph' outputs an incorrect value, that is at no more than
(l/2 + 1)· a = (ll/2J + 1)· a points. 0

This estimation has two flaws: (1) it gives upper bounds only for csdegf Exx,
EXd) where d ;::::2b -1, and (2) as we shall see below these upper bounds are not
simultaneously lower bounds. We shall see also that finding exact csdeg values is
a rather difficult task.

Nevertheless the proved result is not that bad, too. First, it implies the
following corollary.

Corollary 4.3 (Vb E IN)(Va, c E INu {*} l c > (b + 4) . a)[csdeg(Ex~, EX~b_l) ::;
2b + 6].

We see that here estimation is linear in b, unlike results in Theorems 9, 12
and 191,

And, second, these upper bounds give exact csdeg values in some cases.

Theorem 17 (Vb, c E IN) [csdeg(Exbl EX~b+1) > 2]. (Vb E IN) [csdeg(Ex~,
EX:b+1) > 2].

Proof. Let U1 = I~xb , U2 = Ifxb, where a = 0 or a = *. Then U1, U2 E Ex~, we
shall show that U1 U U2 ~ EX~b+I' where c E IN if a = 0, and c = * if a = *, by
using the multiple recursion theorem and constructing functions CPni similarly as
in previous such proofs.

Suppose U1 UU2 ~ EX~b+l(F) for some F. Procedure new (x) lets x +-- ncount,
count +-- count + 1. The algorithm for 'Pni is as follows.

1Further in this section.
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• Stage O.
Let count r- 1. Execute new(st}. Output <PSI (0) = (1,1,1, Sl)' While in
this stage, output <PSI (x) = () for x > O.
Let the variable y throughout the algorithm indicate the maximal value of
argument at which values have been output. We simulate F on <PSI' If a
hypothesis is output on <p~~], we let h f- F(<p~~l), Xo f- max(x, y) +1, u f- 2,
v f- 1, we output 0 up to Xo - 1, let f[xo-l] f- <p~~o-1], and go to stage 1.

• Stage 4m - 3 (1 :::;m :::;b + 1).
Execute new(t1), new(t2). Output <Ptl (x) = <Pt2(x) = f(x) for x < xo, and
further as in the next table.

<PSv
<Ptl (1,u,m,t1) 0
<Pt2 (1, u, m, t2) (0)

Simulate F on <Ptl and <Pt2' If F outputs a new hypothesis on <PtJ
, we let

Su f- t1• h f- F(<p~~]), Q f- 0 and output <Ps,,(xo) = (1, u, m, t1).

If F outputs a new hypothesis on <p~~], we let Su f- t2, h r- F( <p~~]), Q f- (0)
and output <Psv (xo) = (1, u, m, t2)'
In both cases we let Xo f- max(x, y) + 1, output Q up to Xo -1, let f[xo-l] f-

<p~~o-11,and go to stage 4m - 2.

Xo
? ?

• Stage 4m - 2 (1 :::;m :::;b + 1).
Output <Ps..(x) = (),<Ps" (x) = (0) for x 2: Xo while in this stage.
If m = b + 1, the algorithm remains in this stage. If m < b + 1, simulate F
on <Psu and <Psv' If F outputs a new hypothesis on <p~x.I, we let h f- F('P~X.]),
Q f- ().

If F outputs a new hypothesis on <p~~\we let h f- F('P~~,]), Q f- (0),
(u, v) f- (v, u).
In both cases we let Xo f- max(x, y) + 1, output Q up to Xo -1, extend f to
Xo - 1 by defining it equal to <PSu where f was undefined, and go to stage
4m - l.

• Stage 4m - 1 (1 :::;m :::;b).
Execute new(td, new(t2). Output <Pit (x) = 'Pt2 (x) = f(x) for x < Xo and
further as in the next table.

;ro
\..PS

u
? ?

<Ptl (l,v,m+ l,t1) o
'Pt2 (1, v, m + 1, t2) (0)

Simulate F on <Pit and <Pt2' If F outputs a new hypothesis on <p~7J, we let
. [xJ

Sv f- t1, h f- F(rptl ), Q f- 0 and output rp.~u (xo) = (1, v, m + 1, t1).
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If F outputs a new hypothesis on 'P~~],we let s., +- t2, h +- F('P~~l), a +- (0)
and output 'Psu (xo) = (1, v, m + 1, t2).

In both cases we let Xo +- max(x, y) + 1, output a up to Xo -1, let f[xo-l] +-
'P1~o-1], and go to stage 4m .

• Stage 4m (1 S; m S; b).
The algorithm for this stage depends on a.
Suppose a = 0, then c < *. Output 'Ps.(x) = 0 for x 2: Xo while in this
stage. Simulate 'Ph(X) for x 2: Xo and F on 'PSu' If 'Ph(X) = 0 for at least
c + 1 values of argument x 2: xo, we output 'PsJx) = (0) for x 2: Xo at
the same time simulating F on 'Psv' If F outputs a new hypothesis on
'P1~], we let h +- F('PkJ), Xo +- rnaxfz , y) + 1, output (0) up to Xo - 1, let
f[xo-l] +- 'P1~o-I], and go to stage 4m + 1.
If F outputs a new hypothesis on 'P1::], we output 'Pst> (x) = () for Xo S;
x S; x', let h +- F('P1~), Xo +- max(x, y) + 1, output 0 up to Xo - 1, letr-:» +- 'Pko-I], and go to stage 4m + 1.
Suppose a = c = *. Output one by one values 'Psu (x) = () and 'Psv (x) = (0)
for x 2: Xo· Simulate F on 'PSu and 'Ps". If F outputs a new hypothesis on
'P1~J,we let h +- F('P1:]), Xo +- max(x, y) + 1, output (0) up to Xo - 1, let
f[xo-l] +- 'P1~o-1], and go to stage 4m + 1.
If F outputs a new hypothesis on 'P1x], we let h +- F('P1:]), Xo +- max(x, y)+
1, output 0 up to Xo - 1, let f[xo-IT t-- 'P1~o-IJ, and go to stage 4m + 1.
(Note that in the latter case, though 'Ps,., the function that will be used in
stage 4m + 1, differs from f, the function in which the segments feeded to
F are recorded, 'PSv still have only finite amount of anomalies with respect
to f, and that is allowable in case a = *.)

Each stage is constructed so that the current hypothesis h is invalid for at
least one of the considered functions that belong to U1 u U2. So F has to make a
mindchange, and either the last hypothesis output by F is incorrect, or F makes
at least 4b + 2 mindchanges. IJ

Corollary 4.4 (Va, c E IN u{*} I c 2: 2a 1\ (c = * =} a = *)) (Vb, d E IN I 3b + 1 S;
d S; 4b+ l)[csdeg(Ex~,Ex~) = 3].

Theorem 18 (Vb, c E IN)[csdeg(EXb, EX~b) > 3]. (Vb E IN")[csdeg(Ex~, EX;b) >
3].

Proof. Let U, = n;=I,#i Ifxb for 1 S; i S; 3 where a = 0 or a = *. Then union of
any two of these classes is in EXb' We shall show that U1U U2 U U3 t/:. EX~b where
c E IN if a = 0, and c = * if a = *.

Suppose U1 U U2 U c, ~ EX~b(F) for some F. \Ve again use the multiple
recursion theorem to construct 'Pn,' Procedure new(x) lets x+- ncount, count +-
count + 1. The algorithm for 'Pn; is as follows.
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• Stage O.
Let count +-- 1. Execute newf s.), new(s2)' Output values as in the next
table.

o 1
<PSI' <PS2 (1,1,1, Sl) (1,2,1, -'32) 0

Let the variable y throughout the algorithm indicate the maximal value of
argument at which values have been output. We simulate F on <PSI' If
a hypothesis is output on <p~~], we let h +-- F(<p~~J), Xo +-- max(x, y) + 1,
u +-- 1, v +-- 2, w +-- 3, we output 0 up to Xo - 1, let f[xo-l] +-- <p~~o-11, and
go to stage 1.

• Stage 3m - 2 (1 :::;m :::;b + 1).
Execute new(td, new(t2). Output <Ptj (x) = <Pt2(X) = f(x) for x < xo, and
further as in the next table.

Xo
<PSu' <Ptl (1, w, m, t1) 0
<PSv,<Pt2 (1,w,m,t2) (0)

If m = b + 1, the algorithm remains in this stage. If m < b + 1, simulate
F on <Ptl and <Pt2' If F outputs a new hypothesis on <PtJ

, we let Sw +-- t1,
h +-- F(<p~~J),a +-- 0, Cu, v) +-- (v, u).
If F outputs a new hypothesis on 'P~~l,we let Sw +-- t2, h +-- F(<p~~J),a +-- (0).
In both cases we let Xo +-- max(x, y) + 1, output a up to Xo -1, let f[xo-I] +--
rp~~-lJ, and go to stage 3m - 1.

• Stage 3m - 1 (1 :::;m :::;b).
Execute new(td, new(t2). Output <Ptj (x) = <Pt2(X) = f(x) for x < xo, and
further as in the next table.

Xo

<Psv,rptj (1,u,m+1,t1) 0
'PSu.,,<Pt2 (l,u,m+ 1,t2) (0)

Simulate F on 'Ptl and l{Jt2' If F outputs a new hypothesis on l{J~~J,we let
s« +-- t1, h +-- F(<p~~J), Q +-- O.
If F outputs a new hypothesis on 'P~~J,we let Su +-- t2, h +-- F(<p~~.J),a+-- (0),
(v, w) +-- (w, v).
In both cases we let Xo +-- max(x, y) + 1. output a up to Xo - 1, f[xo-l) +--
rp~~o-lJ, and go to stage 3m.

• Stage 3m (1 < m < b).
Here we consider two cases.
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1) a = 0, c < *. Execute new(tI). Output 'Ptl (x) = f(x) for x < xo, and
further as in the next table.

Xo
?

(1, w, m + 1, tI)
?

o
Simulate 'Ph (x) for x > Xo and F on 'Ptl' If 'Ph (x) = 0 for at least c+ 1
values of argument x > xo, we execute new(t2), output 'Pt2(X) = f(x)
for x < xo, and further as in the next table.

Xo
'Psu' 'Pt2 (1, v, m + 1, t2) (0)

We simulate F on 'Pt2' If F outputs a new hypothesis on 'P[~], we let
Sv ~ t2, h ~ F('P[~]), Xo ~ max(x, y) + 1, output (0) up to Xo -1, let
f[xo-I] ~ 'P~~,o-I],and go to stage 3m + 1.

If F outputs a new hypothesis on 'P~7] (see the table before previous),
we output 'PsJx) = 'Ph (x) for Xo ::; x ::; x', let Sw ~ t-, (v, w) ~

[Xl](w, v), h ~ F('Ptl ), Xo ~ max(x, y) + 1, output 0 up to Xo - 1, let
f[xo-I] ~ 'P~~o-Il, and go to stage 3m + 1.

2) a = c = *. Execute new(td, new(t2). Output 'Pdx) = 'Pt2(X) = f(x)
for x < xo, and further as in the next table.

Xo
(l,v,m+ l,tI) 0
(1, w, m + 1, t2) (0)

Simulate F on 'Ptl and 'Pt2' If F outputs a new hypothesis on 'P~~J,we
let Sv ~ tI, h ~ F('P~~]), Xo ~ max(x, y) + 1, output 0 up to Xo - 1,
let f[xo-I] ~ 'P~~o-I], and go to stage 3m + 1.
If F outputs a new hypothesis on 'P~~],we let Sw ~ t2, (v, w) ~ (w, v),
h ~ F('P[~]), Xo ~ max(x, y) + 1, output (0) up to Xo -1, let f[xo-I] ~
'P[~o-I], and go to stage 3m + 1. (Though in the latter case 'PSu i- i,
still e.. =* f·)

Each stage is constructed so that the current hypothesis h is invalid for at
least one of the considered functions that belong to U1 U U2 U U3. So F has to
make a mindchange, and either the last hypothesis output by F is incorrect, or
F makes at least 3b + 1 mindchanges. 0

Corollary 4.5 (Va, c E N U {*} I c 2 2a /\ (c = * :::} a
l(8b+ 1)/3J ::; d::; 3b)[csdeg(Ex~,Ex~) = 4].

* )) (Vb, d E IN I
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A question arises: what flaws has the algorithm described in Theorem 16?
The proof of the next theorem shows the most significant one: this algorithm has
equal confidence in the m-th hypothesis output by a strategy it simulates and
in the (m + l)-th hypothesis. A later hypothesis is "nearer" to the (b + 1)-th
hypothesis that is always correct for a correct Ex~ -strategy, so greater weight
should be attached to later hypotheses than to earlier. On the other hand, as we
shall see in the next theorem, the optimal weight function is rather complex, not
depending only on which hyppothesis it is for the strategy.

Theorem 19 Let kn, n E lN, be the smallest natural number for which kn .

2kn-3 ~ (2n+2 + 1)/3 holds. Then for all s e IN:

or 0

Proof. In proofs of the previous theorems proving upper bounds we saw that, if
all the unions of ti - 1 classes out of U1, ••. , Un are Ex~ -identifiable, then there
are n strategies F1, ... , Fn such that every function f E U~=1U, is Ex~ -identified
by at least ti - 1 of them. Thus some strategy F identifying f can simulate
all the strategies Fj obtaining n sequences of hypotheses at most one of which
(the sequences) is incorrect in the Ex~ -identification sense. In the process of
identification different configurations arise in these sequences such as: F has
output 5 different hypotheses, 7 sequences have produced 6 different hypotheses
each, ti - 9 sequences have produced 5 different hypotheses each, and 2 sequences
have produced 4 different hypotheses each. For a possibly better estimation
of csdeg we are going to find possibly optimal "winning" configurations, that
is configurations at which F can identify the input functions. For instance, a
configuration in which 3 sequences have output b + 1 different hypotheses each
is a winning configuration, since at least two of the last hypotheses in these
sequences are correct, so F can output a correct hypothesis based on the 3 last
hypotheses. Similarly, substituting b = 1 in the proof of Theorem 9 we get that a
configuration in which 7 sequences have output their b-th hypotheses is winning
if F can output two hypotheses. Since we are concerned with upper bounds,
we shall not prove that some configuration is not a winning configuration (that
would be more difficult).

At first some heuristics for eliminating the set of configurations to consider.
First, if F can output no more than i hypotheses, and in some sequence i more
hypotheses can be output not exceeding the bound on mindchanges, then this
sequence shouldn't be considered at all by F. Indeed, each time F bases its new
hypothesis on the current hypothesis in this sequence, a mindchange can occur
in it making thus the previous hypothesis unreliable. Second, some hypotheses
can prove to be incorrect by outputting values different from the values of f.
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We should not consider configurations in which the current hypotheses of two or
more sequences have proved to be incorrect. Indeed, since at most one sequence
is incorrect, new hypotheses are guaranteed to appear, and the strategy can wait
for them until it "sees" no more than one incorrect current hypothesis. Third,
though a situation when between two hypotheses by F two or more mindchanges
are made in some sequences would be "good" for F, our strategy should work
also in the worst case when such events do not ocuur. So, if such event ocuurs:
mindchanges from hi to hi+1 and from hi+1 to hi+2 are made, we shall consider
it equivalent to a situation in which only one mindchange: from hi to hi+2 has
been made. Since initially all the sequences are empty, we shall suppose that
at the moment F outputs its i-th hypothesis no more than i hypotheses have
been output in each of the sequences. Summarizing, since we are interested in
csdeg(Exb, EXb + 1) - F can make one mindchange more compared to Fj -, so
we should consider configurations in which for each j: in the j-th sequence either
the same amount of hypotheses has been output as by F, or one hypothesis more
has been output than F has output, and there is no more than one sequence
whose current hypothesis is known (to F) to be incorrect.

Now we proceed formally.

Definition 4.2 We say that a quadruplet (s, t, o , i), where i, s, t E lN, i 2: 1,
o E {O,I}, is a winning configuration iff there is an algorithm F such that

1. it receives as input the initial segments of fER and s + t + a sequences
of hypotheses;

2. initially it receives one hypothesis in each sequence;

3. if i = 1, s = 0, otherwise s sequences explicitly marked can have no more
than i - 2 mindchanges;

4· t other sequences explicitly marked can have no more than i-I mindchanges;

5. a other sequences explicitly marked have an incorrect first hypothesis and
can have no more ihan i - 1 mindchanges;

6. at least s + t + a-I sequences' last hypothesis is correct;

7. F identifies f making no more than i-I mindchanges (that is by producing
i hypotheses).

Since additional information cannot be harmful, the following is true.

Lemma 4.2 Ifs' 2: s, s' + 0:' 2: s+a, s'+f+a' 2: s+t+a, i' 2: i and (s,t,a,i)
is a winning configuration, then (s', t', a', i') is a winning configuration, too.
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Also, since the last allowed hypothesis must be correct for all sequences but
one, we get the next lemma.

Lemma 4.3 (0,3,0,1) and (0,1,1,1) are winning configurations.

Lemma 4.4 If (s, 0,1, i), i 2: 2, is a winning configuration, then csdeg(Exi_2,
EXi-1) :S s + 1.

Proof. Let VI,' .. , Vs+1 be such classes that the unions of s classes out of them
are EXi_2-identified by strategies F1, ... , Fs+1' Let F' be the algorithm from
Definition 4.2 corresponding to the configuration (s, 0,1, i). Strategy F waits
until s of the strategies F, output their first hypotheses on the input function
f. The previous hypothesis of the remaining one strategy cannot be considered
correct, since it has not output any hypotheses, but it can yet output i-I
hypotheses, while the other s strategies can output only i - 2 more hypotheses
each. So F simulates F' marking the remaining strategy as a strategy whose last
hypothesis is known to be incorrect (and substituting some function undefined at
all points for its hypothesis), and proceeds further feeding the outputs of Fj to
F' and producing hypotheses output by F' as its own. According to Definition
4.2, F will EXi_I-identify i.if f E Uj~~u; 0

The proof of the theorem is based on the next lemma.

Lemma 4.5 Let the sequence {xn} be defined by x.; = llog2((n + 1)/3)J + 4 for
n 2: 1. Let 5m,0 = 2m+l - 1, 5m,n = 2ffi+1 - 1 - L~I Xn for m 2: 2, n 2: 1. Let
Am = (2m + 3· 2km-2-

3 + 1)/(km-2 + 1), Em = Am - 1/(km-2 + 1) for m 2: 2. Let

{
2· IAm 1 - 2,
2· IAm 1 - 3,

{
2· IEm1 - 2,
2· IEm1 - 3,

if Am or Am + 1/(km-2 + 1) E 7l,
otherwise,

if Em or Em + 1/(km-2 + 1) E 7l,
otherwise

for m 2: 2.
Then (n, 5m,n, 0, m) for 0 :S n < c.; (Cm, 0, 0, m), (n,5m,n - 2,1, m) for

o :S ti < o.; and io.; 0, 1, m), where m 2: 2, are winning configurations.

Proof is by induction (applied to m).
Basis. Vve have 52,0 = 7,52,1 = 4, ko = 3, A2 = 2, E2 = 7/4, C2 = 2, D2 = 2.

So we have to prove that (0,7,0,2), (1, 4, 0, 2), (2,0,0,2), (0,5,1,2), (1,2,1,2)
and (2,0,1,2) are winning configurations.

Algorithm of Lemma 4.1 proves that (0,7,0,2) is winning.
Let us consider the case (1,4,0,2). Then one sequence already has output its

last hypothesis. The identifying strategy F outputs its first hypothesis ho based
on the 5 hypotheses similarly as in Theorem 16 ('Pho outputs a value if at least
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half ofthe hypotheses output this value). For ho to be incorrect, 2 more sequences
must output last hypotheses. So we have configuration (0,3,0,1) or better (in
terms of Lemma 4.2). According to Lemma 4.3 this is a winning configuration.

Now, the case (2,0,0,2). F outputs ho based on the hypotheses (last allowed)
of both sequences. For ho to be incorrect, at least one of them must output an
incorrect value at some point. F simulates both hypotheses on all inputs, so it
sees after some time which hypothesis is the wrong one. At that moment we have
configuration (0,1,1,1) which is winning according to Lemma 4.3.

The case (0,5,1,2). F outputs ho based on the 5 hypotheses that have not
proved to be wrong as yet. For ho to be incorrect, new hypotheses must be
output either in three of the corresponding sequences, or in two of them and
in the sequence whose hypothesis was marked as wrong. In both cases three se-
quences output their last allowed hypothesis, and we have a winning configuration
(0,3,0,1).

The case (1,2,1,2). F outputs ho based on the 3 hypotheses that have not
proved to be wrong as yet. For ho to be incorrect, new hypotheses must be output
at least in two of the three sequences that still can make one mindchange, and
we have a winning configuration (0,3,0,1).

The case (2,0,1,2) follows from the case (2,0,0,2) and Lemma 4.2.
Inductive step. Suppose that we have proved the statement for the case m - 1,

m 2: 3. Let us prove it for the case m. For the sake of correctness we should
also prove that Sm,n 2: 0 for 0 < n < c.; and s.: ~2 for 0 < n < o.; In the
course of the proof we shall see that it is so (it was true in the inductive basis).

It follows from Lemma 4.1 that (0, 2m+l - 1,0, m) is a winning configuration.
It is also easy to see that (0, 2m+1 - 3,1, m) is a winning configuration. Indeed,
F outputs its first hypothesis ho based on the 2m+1 - 3 hypotheses that have
not proved to be incorrect. Then at least 2m - 1 sequences must output new
hypotheses, and we get a winning configuration (0,2m - 1,0, m - 1).

Now, let us consider a configuration (n, t, 0, m). We are going to estimate a
sufficient value t = t.; such that this configuration is winning. We shall consider
all the values n 2: 1 until we get that t; = O. So our strategy F has access to n
hypotheses in sequences that can make m - 2 mindchanges, we shall call them {3-
hypotheses, and to t« hypotheses in sequences that can make m - 1 mindchanges,
we shall call them ,-hypotheses. F outputs its first hypothesis ho based on these
n+tn hypotheses. We are going to analyse in which cases 'Pho(X) outputs a value.

Suppose that i (i ~ n) {3-hypotheses output one and the same value at x.
How large should be the amount of -y-hypotheses that output the same value (let
us denote this amount by Ui), for 'Pho(X) to output it? Suppose this value is
incorrect (so ho will be incorrect). That should imply that a winning (m - 1)-
configuration arises after some time. The fact that i ,6-hypotheses and u; ~,-
hypotheses prove to be incorrect implies one of two alternatives. Either sequences
of i-I a-hypotheses and sequences of ii, i-hypotheses make a mindchange (in
case i > 0), then configuration (i - 1, Hi + ti - i, 1, m - 1) arises, or sequences of i

)'
..-.,---- -."_._-.~-~ ...~
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,B-hypotheses and sequences of maxtu, - 1, 0) -y-hypotheses make a mindchange,
then configuration (i,max(ui - 1,0) + n - i,O,m - 1) arises. Let Sk = Sm-l,k
for 0 :::; k < Cm-l, and Sk = 0 for k :::: Cm-l. Vve ensure that both these
configurations are winning (according to the inductive assumption) by letting
u; = max(si-l - 2 - n + i, s, + 1 - n + i, 0) in case s, - n + i > 0, i > 0, and
u, = max(si-l - 2 - n + i, 0) in case s, - n + i :::;0, i > O. But, if s, - ti + i > 0,
then 0 < s, :::;Si-l - 3, so u, = max(si_l - 2 - n + i, 0) in both cases. In case
i = 0 we have only the second alternative, so we let Uo= max(so + 1 - n, 0).

Let us consider case n < Cm-l. Then i < Cm-l, too, and by using the
inequality Sm-l,i-l ::::Sm-l,i + 3 we have: u, = Si-l - 2 - n + i for i > 0, and
Uo= so+l-n (since Si_I-2-n+i > si-2-n+i+l for 1 :::;i < nand Sn-1-2 > 0,
the right sides in these equalities are positive). We have guaranteed that, if I{Jho

outputs an incorrect value, then a winning (m-l)-configuration arises after some
time. We have to guarantee that also for the case when I{Jho is undefined at some
point. Let i be the amount of ,B-hypotheses that output the correct value at
this point. Then no more than Ui - 1 -y-hypothesee output the correct value. So
at least n - i ,B-hypotheses and t-. - u; + 1 -y-hypotheses are incorrect. At least
(n - i) + (tn - u; + 1) -1 of the corresponding sequences must make a mindchange.
If 0 < i < n, then, depending on which is the remaining incorrect hypothesis -
is it ,B- or I-hypothesis -, either the configuration (n - i-I, t; - Si-l + 2 + n -
i + 1 + i + 1,0, m - 1) = (n - i-I, t« - Si-l + n + 4, 0, m -1), or the configuration
(n-i,tn-Si_I+2+n-i+i,0,m-l) = (n-i,tn-si_l+n+2,0,m-1) is reached.
By imposing on tn inequalities tn ::::Si-l +Sn-i-I-n-4 and tn ::::Si-l +Sn-i-n-2
we achieve that these configurations are winning. Since Sn-i-l 2 Sn-i + 3, the
second inequality follows from the first, and we can consider only the first.

If i = 0, we get either the configuration (n - 1, t; - So + n + 1,0, m - 1),
or the configuration (n, t; - So + n - 1,0, m - 1), and impose inequalities tn 2
So+ Sn-l - ti - 1 and t« 2 So+ s., - n + 1. Since the first inequality implies the
second, we shall consider only the first inequality.

If i = n, we get the configuration (0, t« - Sn-l + n + 2,0, m - 1), and impose
the inequality t« 2 Sn-l + So - n - 2, but it follows from the inequality of the
case i = 0, so we shall not consider it.

So, if we find the minimal natural number t« that satisfies the system of
inequalities

t; > Si-l + Sn-i-l - n - 4 for 0 < i < n,
tn > So + Sn-l - n - 1,

(4.8)
(4.9)

then the configuration (n, tn, 0, m) will be winning. In case n = 1 we can choose
i, = 2050-2 = 2m+I-4 = S(m, 1) (according to (4.9)). Un> 1, then (4.9) follows
from (4.8) by substitution i = 1. Since Xk is a non-decreasing sequence, according
to the definition of Sk,l we have Si-l + Sn-i-l :::;s, + Sn-i-2 for 0 < i :::;(n - 2)/2.
Let ti = 2k for some k 2 1. Then we can choose t« = 2Sk-1 - n - 4. If n = 2k + 1
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for some k ~ 1, then we can choose t.; = Sk-l + Sk - ti - 4. By using the next
lemma we obtain that t; = Sm,n'

Lemma 4.6 ("1m ~ 3)(Vk ~ 1)[Sm,2k = 2Sm-l,k-1-2k-4ASm,2k+l = Sm-l,k-l +
Sm-l,k - (2k - 1) - 5].

Proof Let us consider the sequence Xk. Vilehave X2k+l = 1l0g2((2k+2)/3)J +4 =
llog2((k + 1)/3)J + 5 = Xk + 1 for k ~ 1. Also X2k+2 = llog2((2k + 3)/3)J + 4 =
llog2((k + 1)/3 + 1/6)J + 5. Since k is integer, we have llog2((k + 1)/3 + 1/6)J =
llog2((k + 1)/3)J and X2k+2 = Xk + 1 for k ~ 1. Let Yk = L~=lXi for k ~ 0
(Yo = 0). It follows from the proved that

Y2k+l - Y2k = Y2k+2 - Y2k+l = Yk - Yk-l + 1 for k ~ 1. (4.10)

We prove that

Y2k = 2Yk-l + 2k + 5 and Y2k+l = Yk-l + Yk + 2k + 6 for k ~ 1. (4.11)

It is easy to check that Y2 = 2yo + 2 + 5 and Y3 = Yo + Yl + 2 + 6. Suppose that
the equalities (4.11) are true for some k. Then by applying (4.10) we get the
corresponding equalities for Y2k+2 and Y2k+3.

Using the definition of Sm,n we automatically obtain from (4.11) the needed
equalities. IJ

Now we consider the case ti = Cm-l. The only difference is that the inequality
Sn-l - 2 < 0 is possible. At the same time Sn-l > 0 according to our assumption,
so Sn-2 - 2 > 0, thus for the indexes not exceeding n - 2 we get the same
inequalities for tn' Suppose Un = 0 and n ,B-hypotheses output the correct value
of f. Then <Pho outputs it, too, irrespective of the number of 'Y-hypotheses that
output this value. So nothing is to be imposed on t; in this case. If Un > 0,
then, similarly as before, we impose i; 2: Sn-l + So - ti - 2, but this inequality,
as previously, follows from the inequality (4.13) below anyway, so we obtain the
same system

t« > Si-l + Sn-i-l - ti - 4 for 0 < i < ti,

t« > So + Sn-l - ti - 1
(4.12)
(4.13)

'vi th the same solution for the minimal tn: t.; = S im; n).
Now, let us consider the case n > Cm-l' Since sCm_I = 0, we have UCm_1+1 =

O. Let j be the maximal number not exceeding Cm-1 such that Uj = Sj-l - 2 -
n + j > O. Then Uj+l = '" = UCm_l-"-l = O.

Suppose n 2: j + 2 and n - j - 2 or less t3-hypotheses output the correct value.
Then at least j + 26-hypotheses are incorrect, and one of the configurations
(j+ L n- j - L 0, 771-1) or (j+2, n- j -2,0, m-1) (or better in the sense of Lemma
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4.2) is reached. Either Sj+1 == 0, or Sj+1 :::; Sj - 3 :::;2 + n - j - 1 - 3 < n - j - 1,
according to our choice of j. Similarly we get that Sj+2 :::; n - j - 2. So both
these configurations are winning without any restriction on tn'

Suppose only n - j -l;3-hypotheses output the correct value and Sj :::; ti - j.
Then at least j + 1 ;3-hypotheses are incorrect, and one of the configurations
(j, n - j, 0, m - 1) or (j + 1, n - j - 1,0, m - 1) is reached. We already dealt
with the second of them in the previous case, and the first of them is winning
according to our assumption Sj :::;n - j. Hence, if Sj :::;n - j, then we have the
system

t« > Si-I + Sn-i-I - n - 4 for ti - j - 1 < i < j + 1 (4.14)

for t.;
If Sj > ti - i, then, according to the choice of j, either j == Cm-I, or Sj <

2 + n - j - 1 == ti - j + 1* Sj == n - j + 1. In this case the system is

t; ~ Si-I + Sn-i-I - n - 4 for n - j - 2 < i < j + 1. (4.15)

In both cases we get the solution t-. == S(m, n) for the minimal tn similarly as
before if the system contains at least one inequality (we shall see that in this case
S(m, n) > 0). If the system contains no inequalities, the solution is tn == O. We
are going to find the minimal ti for which t« == a and show that this n is equal to
c.;

If Sj :::; ti - j and the system (4.14) has no inequalities, then n - j ~ j + 1,
so n ~ 2j + 1. Suppose n :::=: 2j + 3. If Sj :::; n - j - 1, then tn-I == 0, too, so n is
not minimal. If Sj == ti - j == (n - 1) - j + 1, then we must consider the system
(4.15) for tn-I' Since there is no such i that 2j + 2 - j - 2 == j < i < j + 1,
we have tn-I == 0 again. So, if ti is minimal. then ti == 2j + 1 or n == 2j + 2,
and correspondingly either Sj :::;j + 1, or Sj :::;j + 2 holds. On the other hand,
if Sj :::; j + 1, then t2j+l == 0 according to (4.14); similarly, if Sj == j + 2, then
t2j+2 == O.

Suppose Sj > ti - j and the system (4.15) is empty. Then ti - j - 1 ~ j + 1,
so n ~ 2j + 2. We discard the case j == Cm-1, because, as we shall see, t; == 0
for n == Cm < 2Cm-1 + 2. So Sj == n - j + 1. If n == 2j + 3, then Sj == j + 4, and
Sj+1 :::;Sj - 3 < (j + 1) + 1, thus we get that t2j+3 == 0 according to the previous
case, so we shall not consider this case further. If n ~ 2j + 4, let us denote by
j' the number for the case of computing tn-1 that corresponds to the number j.
Since Sj > n - j > (n - 1) - j and Sj == n - j + 1 =1= (n - 1) - j + 1, we have
j' > j. Since Sj+1 :::; Sj - 3 == (n -1) - (j + 1), we have j' == j + 1 and the system
(4.14) which is empty, because (n - 1) ~ 2· (j + 1) + 1, thus n is not minimal.
So we have to consider only the case n == 2j + 2, when Sj == j + 3. On the other
hand, if Sj == j + 3, then t2j+2 == 0 according to (4.15).

Summarizing, if j + 2 :::; Sj :::; j + 3, then t2j+2 == 0, and, if Sj :::; j + L
then t2j+1 == O. Let j be the minimal natural number for which Sj :::; j + 3
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holds. Suppose j + 2 ~ 8j :; j + 3. Then t2j+l = 8j-l + 8j - (2j + 1) -
4 ~ (j + 3) + (j + 3) - (2j + 1) - 4 = 1 > O. Suppose 8j ~ j + 1. Then
t2j = 28j-l - 2j - 4 ~ 2· (j + 3) - 2j - 4 = 2 > O. So these indeed will be the
minimal values of n for which t« = O.

Now, let us find the minimal j for which 8j :; j + 3. It is easy to notice from
the definition that Xi is a non-decreasing sequence 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, ...
containing the number 4 three times, the number 5 six times, etc., the number k
3 . 2k-4 times for k ~ 4. Thus

k-l

8j = 2m
- 1 - (3 + L(i . 3· 2i-4

) + k . (l + 1))
i=4

for j = 1 + L:7~41(3 . 2i-4) + l + 1 = 3· 2k-4 + l - 1, some k ~ 4 and some l,
o ~ l ~ 3· 2k-4 -1. Let us consider the sequence z, = i·2i. It satisfies the equality
Zi+2 = 4Zi+1 - 4zi· By taking the sum of these equalities for 2 :; i :;p - 2, where
p ~ 4, we obtain the formula L:f=4 Zi = 4zp-1 - 4z2 = (p - 1) .2P+1

- 32. Therefore
8j = 2m - 3 . (k - 2) . 2k-4 - k . (l + 1) + 2. We must solve the system

{
8j-l ~ (j - 1) + 3,
8j ~ J + 3,

or applying the obtained formulae:

{
2m - 3 . (k - 2) . 2k-4 - kl + 2 > j + 2,

2m - 3 . (k - 2) . 2k-4 - kl - k + 2 :; j + 3.

Substituting l = j - 3 . 2k-4 + 1 and simplifying, we obtain

{
(k + 1) . j < 2m + 3· 2k-3 + 1 - (k + 1),
(k + 1) . j ~ 2m + 3· 2k-3 + 1 - 2 . (k + 1).

(4.16)

k is determined by the system

{
2m

- 1 - (3 + L:7::1(-l.· ·3· 2i-4)) > (3· 2k-4 - 2) + 3,
2m - 1 - (3 + L:7=4(i ·3· 2i-4)) :; (3· 2k-3 - 2) + 3.

After simplifying we get

{
3· (k - 1) . 2k-4 < 2m + 1,
3k . 2k-3 ~ 2m + 1.

So k = km-2• From (4.16) we get j = lAm 1 - 2. By imposing additional equality
8j = j + 3 or 8j = j + 2 we get by the same transformations that, respectively,
Am E 7l.. or Am + 1/{km-2 + 1) E 71.. So the minimal n for which in = 0 is n = Cm.

The analysis of the configurations (n, t~, 1,111)is quite similar to that of the
case (n, t-: 0, 111). 0



CHAPTER 4. IDENTIFlrING TOTAL RECURSIVE FUNCTIONS 50

The statement of the theorem follows from the fact that (Dm, 0,1, m) is a
winning configuration. 0

Since the algorithm of the proved theorem seems to be optimal, it is a plau-
sible hypothesis that the proved upper bounds are simultaneously lower bounds,
though proving that seems to be a difficult task.

4.5 Team Learning
In Section 3.2 we pointed to the connection of our research with team learning.
In this section we are going to investigate n-closedness of the team learning iden-
tification types themselves. To simplify matters, we shall consider only identifica-
tion without anomalies. Thus we are interested in cdeg([k, l]Exb) for b E IN{*},
1< k .s l.

4.5.1 Ex-Identification
We shall begin with Ex-identification. 'ATe need some analogue of Theorem 1 to
determine which of the identification types are really different.

Theorem 20 [31] (Vl;::: 1)[[1, l]Ex c [1, l + I]Ex].

Theorem 21 [29] (Vk,lll.s «< l)[[k,l]Ex = [1, lLlkJ]Ex].

We see that the learning power of the class [k, l]Ex is determined by the ratio
kll. Before going further we notice that teams of teams can be introduced by
substituting a team identification type for I in Definition 2.6.

Theorem 22 [3] (Vn;::: 1)[cdeg([I, n]Ex) < n + 2].

Proof. [n + 1, ti + 2][1, n]Ex ~ [n + 1, n- (n + 2)]Ex = [1, n]Ex, so according to
Proposition 3.3 [1, n]Ex is (n + 2)-closed. 0

The exact cdeg value follows from the next theorem.

Theorem 23 (Vk,lll.s k.s l)(Vn;::: l)[[k,l][l,n]Ex = [k,ln]Ex].

Proof. 'rVe have l teams of n strategies each, and for at least k of these teams at
least one of these strategies succeed. So, clearly, [k, l][l, n]Ex ~ [k, In]Ex.

Let m = LlnlkJ. Then [k, In]Ex = [1, m]Ex, so for each [k, In]Ex-identifiable
class U there are m strategies F1, ..•• Fm such that each function from U is
identified by at least one of them. We now compose l teams To, ... , ~-l with
n strategies in each. We put F, for each i, 1 .s i .s m, in the teams Tkimodl,

Tki+lmodl .... , Tki+k-lmodh where x mod y for y > 0 is the smallest non-negative
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residue of x modulo y. Since mk ::; In, In - mk vacancies are left; we fill them
with Fl. Suppose fEU, then f E Ex(Fj) for some j. Therefore at least
k teams Tkjrnodl, ... , Tkj+k-lmodl contain Fj, and so [1, n]Ex-identify f. Hence
U E [k, l][l, n]Ex. We have proved that [k, In]Ex ~ [k, l][l, n]Ex. 0

Note that a more general result [k, l][m, n]Ex = [km, In]Ex is not true. In-
deed, [1,2][2, 3]Ex = [1,2][1, I]Ex = [1, 2]Ex, while [1 ·2,2· 3]Ex = [1, 3]Ex.

Corollary 4.6 (Vn:::: l)[cdeg([l, n]Ex) = n + 2].

Proof. According to Theorem 23 [n, n + 1][1, n]Ex = [1, n + l]Ex ~ [1, n]Ex, so
cdeg([l, n]Ex) > n + 1. 0

4.5.2 Fin-Identification
Now we turn our attention to [k,l]Exb-identification with b E IN. Since in classi-
fication of different learning powers of the identification types [k, l]Exb more or
less significant results have been achieved only for the case b = 0 (and even here
not complete), we also restrict our attention to this case. In literature Exo is
often referred to as Fin-identification; we shall use this notation here.

As the next theorems show, in this case the hierarchy of different learning
powers among [k, l]Fin is very complicated.

Theorem 24 [15, 13]

(Vn:::: 1) (Vk, l 12::\ < ~ :::;2n ~ 1) [[k, l]Fin = [n, 2n - l]Fin].

Theorem 25 [36] [1, 2]Fin C [2,4]Fin.

Theorem 26 [23] (Vk :::: 1)[[2k - 1,4k - 2]Fin
[2,4]Fin].

[1, 2]Fin A [2k,4k]Fin

Definition 4.3 The set A ~ IR n [0, 1] is the hierarchy of success ratios for Fin
iff

1. (Vp E A)(Vk,l, m, n ::::l)[kll < P < min:::; 1 '* [m, n]Fin C [k, l]Fin],
and

2. (Vp,q E A I p < q A (p,q) n A = 0)(Vk,l,m,n:::: 1)(3u,v ::::l)[p < kif ::;
min < q '* [ku, lu]Fin = [mv, nv]Fin].

Theorem 27 [1] A, the hierarchy of success ratios for Fin, in decreasing order-
ing is order-isomorphic to an ordinal no less than co = lim( w, ui", www , ... ).
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\Ve shall not go into details on ordinals here, we only draw a conclusion that
the set A is of a very complex structure. The computed values pEA do not reach
far under 1/2, so we shall consider only the cases [1, 2]Fin and [n, 2n - 1]Fin.

The next result was a surprise (as many things in team Fin-identification).
For any n ~ 1 the automatic inclusion of the class [n, n + 1][1, 2]Fin that first
comes into mind is [n, n + 1][1, 2]Fin ~ [n, 2n + 2]Fin. Even if in fact [n, n +
1][1, 2]Fin due to its additional structuring would be equal to some class [k, t]Fin
with higher success ratio k]] (it could also form some new class), it would seem
improbable that it would be less powerful than [2,4]Fin, a class with the success
ratio 1/2. So one could guess that cdeg([1,2]Fin) = 00. Nevertheless it turns
out not to be true.

Theorem 28 cdeg([1,2]Fin) < 9.

Proof. Suppose all the unions of 8 out of classes UI, ... , Ug are in [1, 2]Fin. Let
TI, ... ,Tg be the teams that identify these unions. Each of these teams consists of
two strategies. We are going to construct an algorithm F that models strategies
FI and F2 [1, 2]Fin-identifying U;=I U, using these 18 strategies as subroutines.

We shall denote by hj,! the first hypothesis output by any strategy of Tj, and
by hj,2 the hypothesis output by the other strategy from Tj, if any. The algorithm
for F is as follows.

• Stage 1.
Receiving f[x] in input perform x steps in computing the outputs of the
strategies on f[O], ..• , f[x] and for any hypothesis hj,a computed perform
x steps in computing 'Phj,JO), ... , 'Phj,JX). This is done throughout all
stages. Wait until in eight teams some hypothesis is produced by one of the
strategies. Output hI based on these eight hypotheses and the 16 strategies
of the corresponding teams as the hypothesis by FI, discard the ninth team
(do not consider it anymore) and go to stage 2.

• Stage 2.
Wait until one of the two events happens.

1. We see that 'Phi outputs an incorrect value (algorithm for <Phi is de-
scribed below) based on incorrect values output by four of the hy-
potheses hI was based on. Then go to stage 4.

2. In four teams the second strategy outputs a hypothesis. Let f[xo] be
the input segment at which the last of them was discovered. Go to
stage 3.

• Stage 8.
Let k(:r) be the amount of the teams in which both strategies have produced
their hypotheses when F has performed all the computations corresponding
to the input j[x]. Wait until one of the two events happens.
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1. We see that <Phi outputs an incorrect value at x ::; Xo based on four of
the eight hypotheses hI was based on. Then go to stage 4.

2. We see for some Xl > Xo that the hypotheses of 8 - k(XI) - 1 teams
among those in which only one hypothesis was produced output correct
values at all points in the interval [0, xo]. Then F2 outputs hypothesis
h2 based on the 2k(XI) hypotheses of the teams that produced two
hypotheses.

• Stage 4.
Wait until in three of the four teams whose hypotheses turned out to be
incorrect the other strategy also produces its hypothesis. Output h~ based
on the three new hypotheses as the hypothesis by F2.

The algorithm for <Phi follows.

• Stage 1.
Let hl,l, ... , hg,l be the hypotheses on which hI was based. <Phi outputs a
value at point X only if it has already output values at points 0, ... , x -1. It
outputs all the values of f that were known at the moment hI was produced.
After that it computes <Phl,1 (x), ... , <Ph8,1 (x). If four of them output some
value Y, <Phi outputs this value, too.

Then <Phi performs x steps in computing the outputs of the 16 strategies on
<p~!, ... , <P~I] and for any hypothesis hj,a computed perform x steps in com-
puting <Phj,JO), ... , <Phj,JX). In this way <Phi learns about new hypotheses
output by strategies and can simulate the strategy F (all this in case it has
correctly guessed the values up to x).
If the second hypotheses have been output in four teams, let us assume
they are hl,2, h2,2, h3,2, h4,2, then go to stage 2.

• Stage 2.
Output value at x if three hypotheses among hj,a, 1 ::; j ::; 4, a E {1, 2},
belonging to different teams produce one and the same value at x.

If the strategy F outputs the second hypothesis h2, go to stage 3. Otherwise
go on computing outputs at x + 1.

• Stage 3.
Let us assume that the hypotheses on which h2 was based are hl,l, ... ,

hk,l, hl,2, ... , hk,2, k ~ 4. At each input x perform computation of these
hypothesis functions until it is clear that r.ph2 (see the algorithm below)
outputs a value based on k - 1 hypotheses from different teams. Wait until
one of two events happens.
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1. k - 1 other hypotheses from different teams output value y at x dif-
ferent from the value output by 'Ph2 and the correct values (from <PhI'S
standpoint) at all the previous points. Then output y and go to stage
4.

2. In total 2· (k - 1) hypotheses produce the value output by 'Ph2 at x
and correct values at all the previous points. Then output the same
value and continue by performing the computations for x + 1.

• Stage 4.
Output value at x if k - 1 hypotheses among hj,o:, 1 ~ j S; k, a E {1,2},
belonging to different teams produce one and the same value at x and
correct values at all the previous points.

Now, the algorithm for 'Ph2'

• Stage 1.
Assume that <Ph2 was based on hj,o:, 1 ~ j ~k, a E {I, 2}, k ~ 4, and that
hl,2, •.. , h4,2 were the first hypotheses output among hj,2. Let Xo and Xl be
as defined in the algorithm for F.

Output the known values of f for 0 ~ x ~ Xl' Simulate 'Phj,c. (x) for
1 S; j S; 4, a E {I, 2}, Xo < x ~ Xl until it is clear if the first value output
by three hypothesis functions from different teams is the correct value at
each of these points. In other words, we check if <PhI outputs correct values
at these points in case it outputs correct values for x ~ xo.

If some incorrect value appears first at some point, go to stage 3. Otherwise
go to stage 2.

• Stage 2.
For each X > Xl, wait until at least k - 1 hypotheses among hl,l, ... , hk,l,

h1,2, ... , hk,2, k ~ 4, coming from different teams produce one and the
same value y at x and the correct values (from 'Ph2'S standpoint) at all the
previous points. Then output y.

• Stage 3.
Three hypotheses among 'Phj,c.' 1 ~ j ~4, a E {I, 2}, coming from different
teams have proved to be incorrect. So by taking the other hypotheses from
these teams, we obtain three hypotheses, at most one of which is incorrect.
Thus by outputting the value produced by at least two of these hypotheses
we always output the correct value.

At last, the algorithm for '{Jh~ is the same as in stage 3 of the algorithm for
'Ph2: output the value produced -by at least two of the three hypotheses h; was
based on.
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Vie see that, unlike the identification algorithms in the previous sections, in
team learning the hypotheses cooperate between themselves and also, in a sense,
with the strategy that outputs them.

Let us analyse some cases to prove that the team composed by FI and F2

identify any j E U;=l u..
1. Hypothesis h2 is never output. There are two alternatives. First, no more

than 3 of the 8 teams on whose hypotheses h., was based output another
hypothesis. Hence at least 8 - 3 -1 = 4 of these first hypotheses are correct,
and 'Phi either is defined at all points and equal to j according to stage 1 of
its algorithm, or outputs some incorrect value. In the latter case a correct
hypothesis h~ is output.

The second alternative is that no more than 8 - k - 2 of the 8 - k teams that
produce only one hypothesis output correct values at points between a and
Xo. Then at least two teams do not identify j, so we have a contradiction.

2. !.ph2'S first anomaly is an undefined value. Suppose we have both hypotheses
of k teams. Since at least k - 1 teams correctly identify j, at least k - 1
hypotheses belonging to different teams are total recursive functions equal
to j. Thus 'Ph2 cannot become stuck in stage 1 or stage 2 of its algorithm.
Clearly, it cannot become stuck also in stage 3. So this case is impossible.

3. !.ph2'S first anomaly is an incorrect output value at some point x. Clearly,
!.ph2 cannot output the incorrect value at stage 1 or stage 3. Thus it is output
at stage 2. This value was produced by k -1 hypotheses that output correct
values at all the previous points. There are other k - 1 hypotheses among
the 2k considered that output correct values at all the previous points and
at x. So there are k - 2 teams in which both hypotheses output are correct
at the previous points. Hence among the 8 hypotheses on which hI was
based there are at least (k - 2) + (8 - k - 1) = 5 hypotheses that produce
correct outputs in interval [0, xo] (8 - k - 1 hypotheses being checked by
F before producing h2). So 'Phi reaches stage 2 of its algorithm. Also,
since 'Ph2 reached stage 2, !.phi outputs correct values in interval (xo, Xl] and
reaches stage 3. Since k 2: 4, we have 3· (k-l) > 2k, so 'Phi has at most one
alternative to choose from in stages 3 and 4. We have 2k - 2 hypotheses that
output correct values in the interval (Xl, z), so !.phi output correct values in
this interval, then produces the correct value at x, switches to stage 4, and
produces correct values thereafter.

\Ve see that at least one of the hypotheses is correct for f. D

It is interesting that every of the identification types not involving anomalies
that were considered in this work has a finite closed ness degree.
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Theorem 29 cdeg([1,2]Fin) > 8.

Proof. We shall modify the instructions a bit to make them useful in team learn-
ing. We shall also reduce the number of components, since some of them will
not be necessary. The instructions will be of kind (i, j, h), where the first two
components indicate that it is an instruction for the j-th strategy of the i-th
team, and h is the proposed hypothesis. We define It,tjFin correspondingly (i is
the number of team this time).

Let it. = nJ=I,#iIy,2]Fin, 1 < i < 8. Then U~=I,ihu, E [1, 2]Fin for 1 ::; j ::;
8.

The following algorithm constructs a function from U~=IU, not identified by
the given team T consisting of two strategies, FI and F2.

• Stage 1.
Output values as in the next table.

'Pnp"" 'Pn71 (1, 1~nl) (7, 1~n7) 0
Let y throughout the algorithm denote the maximal point at which values
have been output. Simulate both strategies on 'Pnl' If a hypothesis hI is
produced by one of them, let it be FI, on 'P~l, then let Xc f-- max(x, y) + 1,
output 0 up to Xc - 1, and go to stage 2.

• Stage 2.
Output values as in the next table.

Xc Xc + 1 Xo + 2 Xo + 3
'Pnl' 'Pn2' 'Pn3' (8,1, ns) (4,2, ng) (5,2, nlO) (6,2, nll) 0'Pns, ... , 'Pnll

'Pn4' ... , 'Pn7 ? ? ? ? ?

Simulate 'Phl (xo + 4) and F2 on 'Pnl'
If 'Phi (xo + 4) = 0, go to stage 3.
If a hypothesis h2 is produced by F2 on 'P~], output the values 'Pn4 (x), ... ,
'Pn7(x) so that they are equal to the values 'Pnl (x) as far as 'Pnl is defined
at the moment, let Xo f-- max(x', y) + 1, output 0 up to Xo - 1, and go to
stage 5.

• Stage 3.
Output values as in the next table.

Xo Xo + 1 Xo + 2
'Pn4"'" 'Pn7'
'Pn12' 'Pn131 'Pn14

Simulate F2 on CPn4' If a hypothesis h2 is produced by F2 on CP~l, let
Xo +- max(x, y) + 1, output (0) up to Xo - 1, and go to stage 4.
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• Stage 4.
Output values as in the next table.

Xo Xo + 5
ynl3 , (3,2, n15) (8,2, n20) oyn15' ... , ynzo
yn14 , (3,2, n21) (8,2, n26) (0)
ynZl , ... , ynz6

• Stage 5.
Output values as in the next table.

Xo Xo + 1 Xo + 2 Xo +3 Xo + 4

Yn4' Yn5' (1,2, n27) (2,2, n28) (3,2, n29) (7,2, n30) (8,2, n3I) ()
ynz7' ... , Yn31

yn6' Yng, (1,2, n32) (2,2, n33) (3,2, n34) (7,2, n35) (8,2, n36) (0)
yn3Z' ... , Yn36
ynlO' Ynll , (1,2,n37) (2,2, n38) (3,2, n39) (7,2, n40) (8,2, n4I) (1)
yn37' ... , Yn41

End oj the algorithm.
Let m be the stage in which the algorithm remains forever. If m = 1, no one of

the strategies F1 and F2 produced any hypothesis. If m = 2, yhl was undefined at
xo+4, and F2 did not output any hypothesis. Ifm = 3, Yhl (xo+4) i= yn4(xo+4),
and F2 did not output any hypothesis. If m = 4, Yhl differs from both Yn13 and
ynl4 at Xo + 4, where we take the Xo value at the beginning of stage 3; and Yhz
cannot be equal to both Ynl3 and I.fJn14' If m = 5, for at least one of the functions
I.fJn4' I.fJn6' I.fJnlO both hypotheses hI and h2 are incorrect. 0

Theorem 30 (Vn ~ l)[cdeg([n, 2n - l]Fin) :::;2n + 2].

Proof. Suppose all the unions of 2n + lout of classes Uh ... ,U2n+2 are in [n, 2n-
l]Fin. Let T1, ... ,T2n+2 be the teams that identify these unions. Each of these
teams consists of 2n - 1 strategies. We are going to construct an algorithm F
that models strategies FI, ... , F2n-I [n, 2n - 1]Fin-identifying ui~i2U, using the
(2n + 2) (2n - 1) strategies as subroutines.

We shall denote by hj,i the i-th hypothesis output in the team Tj, 1 :::;i :::;
2n - 1. The algorithm for F is as follows .

• Stage 1.
Receiving f[x] in input perform T steps in computing the outputs of the
strategies on f[O], ... , jlx] and for any hypothesis hj,i computed perform x
steps in computing 'Phj.; (0), ... , -Phj.; (x). This is done throughout all stages.
Wait until in 2n + 1 teams 11 hypotheses are produced. We can assume that
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they are hj,i for 1 ::; j < 2n + 1 and 1 ::; i < ti. Output hi by r; h2 by F2,

... , hn by Fn based on these (2n+ l)·n hypotheses. and the (2n+ 1)(2n-1)
strategies of the corresponding teams, discard the (2n + 2)-th team (do not
consider it anymore), and go to stage 2.

• Stage 2.
Let k; (x), 1 ::; i ::; n - 1, be the amount of the teams in which the (n + i)- th
hypothesis has been output when F has performed all the computations
corresponding to the input j[x]. Clearly, ki(x) ~ ki+i(X) for 1 ::; i ::; n - 2.

Let m, n ::;m ::; 2n - 2, be the number of hypotheses hj already output.
hm+i is output by Fm+i at input j[x] if ki(X') ~ 2n + 1 - 2i for some
i > m - ti and x' ::;x, and in all teams but one it is computed that at least
ti hypotheses (among those known to F at j[x]) output correct values in
the interval [0, x'].

Now we describe the scheme according to which the hypotheses hj cooperate.
We assign priorities to the hypotheses hj. The hypotheses that are output later
have higher priority than those that were output sooner. If the hypotheses were
output at the same time, then the lower index, the higher priority. The values
are output one by one, at points 0,1,2, . ... When 'Phj outputs value at some
point x, it simulates all the (2n + 1) . (2n - 1) strategies on 'Phj (x) and their
hypotheses with the same procedure as in F. Thus 'Phj can keep track of the new
hypotheses (unknown when hi was output), of what hypotheses are output by F,
and of what values are output by other hypotheses hi"

Let H be a set of hypotheses hj that have output the same values in the
interval [0, x-I]. Let ti, ti ::; ti ::; 2n - 1 be the amount of hypotheses in
the team T; known to the hypotheses from H when they are computing what
to output at x. Each value considered for output must satisfy the following
condition: for each i, 1 ::; i ::; 2n + 1, except one, this value is output by at
least ti - n + 1 hypotheses in Ti, and these hypotheses output the same values in
[O,x -1] as 'Phj' hj E H.

Suppose this condition is obeyed for I ~ 1 different values Yi, ... ,Yt. When
it becomes known for Yj, the hypothesis with the highest priority from H that
has not output any value at :1: yet outputs Yj' Suppose m ~ 1 hypotheses from
H have already output Yj. If for some i ~ 0: in 2n - 2m - 2i teams there are
m + i + 1 hypotheses that output Yj at x and the same values as 'Phj' hj E H, in
the interval [0,X-I], then the next hypothesis from the priority queue formed
in H outputs Yj' Note that the first hypothesis that outputs Yj also satisfies this
condition with m = i = O.

Naturally, if hj was output at j[x] for some x, then 'Ph) outputs the known
values of f in the interval [0, x] and begins to cooperate with other hypotheses
starting with point x + 1.
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Now, let us prove that at least n hypotheses among hj are correct in case f E
U~~i2Ui. Since in this case all teams among Ti; ... , T2n+2 but one finally output
at least n correct hypotheses and since, in the notation of stage 2 of the algorithm
for F, ki(x) is a non-decreasing function, we have: if ki(xo) :::::2n + 1 - 2i for
some xo, then the needed x' will be found sooner or later. Also, if the hypotheses
from H have output the correct values in the interval [0, x-I], then there are at
least t, - n + 1 correct hypotheses in the team T; known to the hypotheses from
H, for each i from [1, 2n + 1] except one.

Let ti +m be the total amount of hypotheses hj output on I, a ::; m ::; n - 1,
and let 1= n-1-m. Then there are at most 2·(/-(i-n-m)+1) teams in which
at least i hypotheses are produced, n + m + 1::;i ::; 2n -1, and there are at least
2n +1 - 21 teams in which at most n +m hypotheses are produced. Let us denote
the set of the latter teams by S. At least 2n - 21 of the teams from 5 have at least
n - m correct hypotheses among their first n hypotheses. Therefore, according to
the conditions on which values are output by 'Phj' hypotheses hj, 1 ::; j ::; n, at
each input see sufficient information for n - m hypotheses from the priority queue
to output the correct values. When hj, j > n, is output, in at least 2n + 1 - 2i
teams there are at least n + i hypotheses for some i :::::j - n. Then at least
2n + 1 - 21- 2i of these teams are in 5, and among their n + i hypotheses known
at the moment there are at least n + i - m correct ones. Therefore, when j > n
hypotheses have been output, there is sufficient information for j - m hypotheses
from the priority queue to output the correct values. For j = n + m that gives
us ti correct hypotheses. The only problem is that, when a correct value is to be
output, the queue may turn out to be empty. There are two possible reasons for
that: some hypotheses might output incorrect values, and some hypotheses might
infinitely wait at some previous argument - where less hypotheses are known,
and therefore the information is insufficient for another hypothesis to output the
correct value.

To show that these possibilities do not occur, let us count how many of hj can
be incorrect due to producing some incorrect value. Since the values at previous
points are checked, one incorrect hypothesis cannot "cheat" the hypotheses hj

twice. Let p be the amount of incorrect values output (for each hypothesis hj

we choose only its first error, if any), and let s, be the amount of hypotheses
among hj that output the i-th incorrect value, 1 ::; i ::; p. Then, according to
the algorithm for 'Phj' there are at least 2n + 1 - 2(Si - 1) - 1 teams in which
at least s, hypotheses output the i-th incorrect value. So, there are at least
2n + 1 - L:f=l (2si - 1) teams with L:f=l s, incorrect hypotheses. If p :::::1, that
gives us at least 2n + 2 - 2 L:f:=l s, such teams. If L:f=l Si reaches the value m + 1,
we have at least 2n - 2m such teams. In at least 2n - 2m - 1 of them there are
at least n correct hypotheses, so the total amount of hypotheses in each of them
is at least n +m + 1. But, according t.o our definitions of m and I, the amount of
such teams does not exceed 2l = 2n - 2m - 2. Contradiction. So no more than
m of the hypotheses hj output incorrect values.
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We are going to prove that, when u ~ n hypotheses hj are output, there are
at least u - m hypotheses in the priority queue. Initially u = n, there are no
more than m of hj output incorrect values, and there is sufficient information
for ti - m hypotheses to output the correct values, so this is true for u = n.
This can become untrue only if for some u > n there are u - m hypotheses in
the priority queue, and one of them outputs an incorrect value at some point
x. Let it be the i-th time when one of hj outputs an incorrect value. Then, for
some i' ~ 0, there are 2n + 2 - 2(i + i') teams in which i + i' hypotheses output
this incorrect value, while at the previous points they output the correct values.
2n + 2 - 2(i + i' + l) of these teams are in S (note that i + i' ~ m). Then among
the first n hypotheses of 2n + 2 - 2(i + i' + I) teams from S there are at least
n-m+i+i' such that output correct values at least in the interval [0, x -1]. Thus
there is sufficient information for at least n-m+i+i' hypotheses hj to output the
correct values up to x. Let i" ~ i - 1 be the amount of hypotheses hj producing
incorrect outputs in the interval [0, x-I]. Then at least n - m + i + i' - i"
hypotheses among hI, ... , hn output the correct values until hn+I is produced.
As we showed above, that implies there is sufficient information for one more
strategy to output correct values, so we have at least n + 1 - m + i + i' - i"
hypotheses among hI, ... , hn+1 that output correct values until hn+2 is produced,
etc., we have at least u - m + i + i' - i" hypotheses among b-, ... , hu that output
correct values up to the point x -1 including. At most i - 1-i" hypotheses have
an error at x before the considered error, so at the moment of this error there are
at least u - m + i + i' - i" - (i - 1 - i") = u - m + i' + 1 > u - m hypotheses in
the priority queue. Contradiction.

So, after hn+m is output, at each point there are always at least n hypotheses
in the priority queue, and there is sufficient information for at least n hypotheses
to output the correct value. Therefore, at least n of hj are correct hypotheses. 0

Theorem 31 ("In ~ l)[cdeg([n, 2n - l]Fin) > 2n + :I.].

Proof. n = 1 yields the class [l,l]Fin = Fin that was considered in Theorem
10. So, we suppose that n > 1. It is enough to show that there are such classes
UI, ... , U2n+1 that the unions of 2n classes out of them are identifiable, while
U2n+1 U· tj=l j IS no .

We define U = (n2n+1 .I[n,2n-I]Fin) 1 < i < 2n + 1 Then U2n+1 . U C
I J=Lrll J ' - - . l=l,I,t'J l_

IJn,2n-l]Fin E [n,2n - l]Fin, 1 ~ j < 2n + 1.
We have to prove that U;~tlU, t/:. [n,2n - l]Fin. As usually, we construct

functions 'Pnj that use each other's G6del numbers. Let T be an arbitrary team
of 2n - 1 strategies, F1, ... , F2n-I.

The procedure new(:z:) is the same as in previous such proofs. The algorithm
for 'Pni is as follows .

• Stage O.
Let c +-- 1. Execute new(8~) for 1 < i < 2n, 1 < j < n. Informally, sj
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will be used as the j-th hypothesis for the i-th team. Let the y throughout
the algorithm indicate the maximal value of argument at which the values
have been output at the moment. All the functions <Psi output (k, l, sf)

)

at point (k - 1) . n + l - 1 for 1 ::; k ::; 2n, 1 ::; l ::; 71, and 0 at further
points, until 71 hypotheses hI, ... ,hn are produced in T on 4?[~J.Then let

SI

Xo f- max(x, y) + 1, output 0 up to Xo - 1, and go to stage 1.

• Stage 1.
Execute new(s~+I) for 1 ::; i ::;271 - 2 and new(s;n+I) for 1 ::; j :::;n. The
functions 4?sj with i E {I, ... , 271 + I} - {2n - I}, 1 :::; j :::; n - 1, 4?S~+1

with 1 :::;i ::;271 - 2, 4?s~n and 4?s~n+l output the value (i,n + 1, S~+l) at
point Xo + i-I for 1 :::;i :::;271 - 2, the value (271 + 1, j, s;n+I) at point
Xo + 271 - 3 + j for 1:::;j :::;71, and 0 at further points while in this stage.
Suppose hypothesis hn+1 is output in T on 'P[~J for some x. Then the

51

functions 'Ps!, with 1:::;i :::;271-1 and 4?s2n-l with 1:::;j :::;n -1 output the
)

values listed above in this stage, let Xo f- max(x, y) + 1, all the introduced
functions output 0 up to Xo - 1, and go to stage 2.
Suppose all the functions 'PhI" .. ,4?hn output 0 at xo+3n-2. Then execute
new(s}) for 1 :::;i :::;271 - 2, 71+ 1 ::; j ::; 271 - 1, new(s;n+l) for 1 ::; j ::; n.
The functions 'PSi with 1 ::; i :::;271 - 2, 71 ::; j ::; 2n - 1, 4?s2n-l and 'Ps2n+1

) ) )

with 1 ::;j :::;71output the value (i,j, s}) at point xo+(i-l)·(n-l)+j-n-l
for 1 :::;i:::; 2n - 2,71 + 1 ::; j :::;271 - 1, and the value (271 + l,j, s;n+l) at
point Xo + (2n - 2)(71 - 1) + j - 1 for 1 ::; j ::; 71, and (0) at all the further
points .

• Stage m (2 ::; m ::; 71 - 1).
Execute new(s~+m) for 1 :::;i ::;2n-2m and new(s~+m_l) for 2n-2m+3:::;
i ::;271 + 1. The functions 4?si with i E {I, ... , 271 + I} - {2n - 2m + I},

)

1 :::;j ::; 71 - 1, 4?s2n-2m+2, 'Psi with 1 ::; i ::; 271 - 2m, and 'Psi with
n n+m n+m-l

2n-2m+3::; i::; 2n+l output the value (i.,n+m,s~+m) at pointxo+i-l
for 1 :::;i :::;271 - 2m, the value (i, n + m - 1,S~+71I-1)at point Xo + i - 3 for
2n - 2m + 3 ::; i :::;271 + 1, and 0 at further points while in this stage.
Suppose hypothesis hn+m is output in T on <p~~Jfor some .r. Then the

1

functions 4?s~ with 1 ::; i ::;271+ 1, i f: 271- 2m + 2, 4?si with 1 ::; i ::; 2n + 1,
)

n + 1 ::; j :::;n + tri - 2, 4?si+ 1 with 1 ::; i :::;2n - 2m + 2, and 'Ps2n-2m+J
n m- J

with 1 ::;j ::;n - 1 output the values listed above in this stage, let Xo f-

maxf:r; y) + 1, all the introduced functions output 0 up to Xo - 1, and go
to stage m + 1.
Suppose n of the functions <Phi' ... ,'Phn+m-l output 0 at Xo + 2n - 1. Then
execute ne\\'(.~~) for 1 :::;i :::;271 - 2m, n + m ::; j ::; 271 - 1, new(sj) for
2n - 2m + 3 ::; i ::; 2n + 1, n + m - 1 :::;i ::;2n - 1. The functions
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'PSi with i E {1, ... ,2n + I} - {2n - 2m + 1,2n - 2m + 2}, n :-; j :-;
J .

2n - 1, and 'Ps2n-2m+l with 1 :-; j :-;n output the value (i,j, sj) at point
J

xo+(i-l)(n-m)+j-n-m for 1 :-; i :-;2n-2m, n+m :-;j ~ 2n-1, and the
value (i,j, s~) at point xo+(2n-2m)(n-m)+(i-1)(n-m+1)+j-n-m+1
for 2n - 2m + 3 :-; i :-;2n + 1, n + m - 1 :-; j :-; 2n - 1, and (0) at all the
further points .

• Stage n.
Execute new (S;n-l) for 3 :-; i :-;2n + 1 and new (t;n-l) for 3 :-; i :-;2n + 1.
The functions 'Psj with 1 :-; i :-;2n + 1, 1 < j ~ n - 1, 'Ps~n_l' and 'Ps2n_

1

with 3 :-; i :-;2n + 1 output the value (i,2n - 1, S~n-l) at point Xo+ i - 3
for 3 < i < 2n + 1, and () at all the further points.
The functions 'Ps) with 1 :-; i :-;2n + 1, n :-; j :-; 2n - 2, 'PS~n_l' and <Pt2n-

1

with 3 :-; i :-;2n + 1 output the value (i,2n - 1, t~n-l) at point Xo + i - 3
for 3 :-; i :-;2n + 1, and (0) at all the further points.

At stage m, 1 ~ m ~ n - 1, if at least n of the hypotheses hi output the
supposedly correct value () at some fixed point, we ensure that they have an
anomaly at this point. If no more than n - 1 of these hypotheses output ()
at this point, then no more than n - 1 of them are correct hypotheses, and the
team T must issue another hypothesis. In stage n T has already issued the 2n - 1
allowed hypotheses, and at least n of them are incorrect for one of the alternatives
represented by the functions 'PsI and <Ps~. So in all cases at least n hypotheses
issued by T are incorrect. 0

4.5.3 Finiteness of cdeg for Team Identification Types
From the previous sections we see that in all considered cases, when the Ex
identification type is modified by bounds on mindchanges and teams, the cdeg
turns out to be finite. Only some number of allowed anomalies introduces infinite
cdeg values. After inspecting the diagonalization proofs for the identification
types with allowed anomalies, it seems intuitively that the reason for infinite
cdeg values is intransitivity of the basic relation =a in the case of a anomalies,
0< a < *.

Now, suppose we discard the types with allowed anomalies due to this property
of theirs. Which other criterions must an identification type obey to have a finite
cdeg? Can we prove the finiteness of cdeg for some large class of identification
types? The first question currently seems to be too complex and too general to
answer. As for the second question, we have this complex hierarchy of [m" n]Fin
identification types for which we were unable to find exact cdeg values. Maybe
we can at least prove that they are finite'?

Well, we can prove such result if we introduce an additional constraint on
the strategies, similarly as it was done in [1] to prove the estimation of the com-
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plexity of the probability hierarchy for the [m, n]Fin identification types. This
constraint requires that all hypotheses output by the strategy on any input are
G6del numbers of total recursive functions. Such identification types are called
Popperian. If we additionally allow no mindchanges, we obtain the Popperian
Fin or, as we shall denote it, PFin identification type.

The next theorem was proved in colaboration with A. Ambainis.

Theorem 32 (Vm,n E IN 1m::; n)[cdeg([m,n]PFin) is finite].

Proof is by induction.
Base case. If m = n, then [m, n]PFin = PFin, and cdeg([m, n]PFin) = 4,

and there is a simulation algorithm proving it.
Inductive case. Assume that cdegUm/, nl]PFin) is finite for all n' < n and all

m' ::;d, and there is a simulation algorithm proving it. We are going to prove
that cdeg([m, n]PFin) is finite for any m < n.

Let C[iJ] be the smallest number for which there is a simulation algorithm
proving the (C[i,j] + l)-closedness of [i,j]PFin (i. e. a simulation of [C[i,j]'C[i,j] +
l][i,j]PFin by [i,j]PFin), where i::; i, and define C[i,j] = 0 for i > j. Define the
sequence {ai} as follows.

0.1 = 2c[m,n-m], aj = max (C[m,n-m+j), 2C[m,n-m] + ~~~imaxlu., aj-i)) ,

for j = 2, ... , m - 1, and
am = 2c[m,n-m] + ~~11 maxlc., am-i).

We claim that cdeg([m, n]PFin) ::; am + 2.
Consider the following algorithm for simulating a multiteam F = {F1, F2, ... ,

F~rn+2} consisting of am + 2 [m, n]PFin-teams by a single [m, n]PFin-team G.
G reads input and waits until at least m strategies output hypotheses in at

least am + 1 teams. Then, m strategies from G output hypotheses based on the
first m hypotheses in these teams.

All remaining strategies in G continue reading input and simulating F and its
hypotheses. Hypotheses already output by G simulate hypotheses of F as well as
the remaining strategies of F on the initial segments which the hypotheses of G
follow. Only a certain amount of steps is performed in simulating the strategies
of F at each new value of the input function by the hypotheses of G to ensure
that these hypotheses are total.

If all the hypotheses of F have the same next value f(n), then the hypotheses
of G have the same value f(n). Otherwise, we say that the hypotheses of F split.
It is enough to define how to simulate splits into two groups because a split into
more groups is equivalent to a sequence of several splits into two groups.

Suppose a split occurs.
If one group (i. e. hypotheses with one next value) contains hypotheses output

by less than Gm + 1 - c~m,n-mj teams, no G'« hypothesis follows this group (i. e.
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has this next value). If the next value of this group is correct, then the remaining
strategies in G apply the simulation algorithm for [171,n - 171]PFin to a multiteam
consisting of those F; which do not have any hypothesis following this group.
There are at least C[m,n-m] + 1 such Fi. In each of them 171hypotheses follow
other next values and n - 171strategies remain. Hence, these F; form a multiteam
of at least C[m,n-m] + 1 [171,n - 171]PFin-teams. By the inductive assumption, this
multiteam can be simulated by a single [171,n - 171]PFin-team.

The first 171hypotheses of G proceed supposing that this value is incorrect. If
the same condition (less than am + 1- c[m,n-m] teams) applies also to the second
group, then these 171hypotheses can output any values; the simulation is done
by the remaining n - 171strategies of G as described above. Otherwise, all the
171hypotheses follow the second group. If the next value of this group is also
incorrect, then, again, there are at least C[m,n-m] + 1 teams in F in which at least
171hypotheses follow incorrect values, and the simulation is done by the remaining
n - 171strategies.

Supposing that the next value of the second group is correct the 171hypotheses
of G follow this group until the next split occurs. Then we apply the same
argument.

So, the simulation will be successful if at each split at least one of the groups
is not followed by any strategy from at least C[m,n-m] + 1 teams of F.

Now, suppose at some split there are no C[m,n-m] + 1 teams in F in which
all the initial 171hypotheses follow one of the groups. This we shall call an
essential split. Let bj be the number of teams in which j hypotheses follow
the first value and 171- j hypotheses follow the second value (if this is not the
first split, we can add the values which split off previously to one of the two
groups; remember that no hypothesis from the first 171hypotheses of G needs to
actually follow these values). According to our assumption, bo ::; Cfm,n-m] and
bm ::; c[m,n-m]' Since I:,j=o bj = am + 1, at least one of the following inequalities
hold: bj > max(aj, am-j) for j = 1, ... , 171- 1. Then the 171hypotheses of G
select one such j, select the corresponding bj teams discarding the others, and
j of the hypotheses follow the first value, and the 171- j remaining follow the
second value.

The j hypotheses following the first value perform the simulation algorithm
described above for the bj ~ aj + 1 teams and their j hypotheses until either
another essential split occurs, or until they calculate that at least 171- j of the
remaining strategies in all of these teams but one output hypotheses following
this group. Similarly the m - j hypotheses following the second value simulate
the bj ~ am-j + 1 teams and their m - j hypotheses.

If another essential split occurs, say, in the first group, then denoting by b~ the
number of teams in which i hypotheses follow the first value and j - i hypotheses
follow the second value (then 'L,;=o b~ = bj > aj + 1) we again obtain for some i
(1 ::; i ::;j - 1): b~ > ma.x(ai, aj - i), and continue the simulation for those b~
teams.
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Now, suppose that after some essential split, when j hypotheses of G follow
at least aj + 1 teams of F and their j hypotheses, the second possibility occurs,
i. e. in at least aj of these teams m - j of the remaining n - m strategies output
new hypotheses following this group, and the j hypotheses of G calculate that.
Then there are in total m hypotheses in each of these teams of F following this
group and known to both the j hypotheses and the remaining ti - m strategies
of G. So, if this group follows the actual values of the input function, then
m - j of the remaining strategies of G output new hypotheses which join with
the j initial hypotheses to simulate the m hypotheses in each of the aj teams of
F. Since aj ~ c[m,n-m+jj, we can apply inductively the simulation algorithm for
[m, ti - m + j]PFin. 0



Chapter 5

Identifying Languages

In this chapter we investigate the closed ness degrees of the language learning
classes TxtEx~ - the analogues of Ex~. For those interested in other language
learning types we recommend the monograph [25].

Many results are similar to the case of function learning.

Theorem 33

(Vb E IN)(Va, a' E INu {*} I a' 2: 2b+la)[csdeg(TxtEx~, TxtExn::; 2b+2].

Proof. It is sufficient to prove that TxtEx~ is 2b+2-closed in TxtEx~/.
Let Ll, £2, ... , £2b+2 ~ [; be such families of languages that all the unions

of 2b+2 - lout of them are TxtEx~ -identifiable. Let F1, F2, ... , F2b+2 be the
strategies that identify these unions. Now we construct a strategy F.

The strategy F redirects its input to the strategies F, until 2b+2 -1of them out-
put a hypothesis. Such an event happens because every language L E Uj=l 2b+2 £j
belongs to 2b+2 - 1 of the unions of 2b+2 - 1 families, thus at most one of the
strategies F, does not identify L.

Then F outputs ho that is based on these hypotheses. In further F outputs
hi, 1 ::; i ::; b, iff it has output hi-1 and at least 2b+2-i - 1 of the strategies, all

whose hypotheses was based hi-I, output a new hypothesis. hi is based on these
hypotheses hI, ... , ht+2

-
i
-
1 in the following way: x E l¥h; iff at least 2b+1-i of

11'h)' 1 ::; j ::; 2b+2-i - 1, contain x. ho is defined similarly.
I

It is easy to see that hi can be a wrong Txt.Exl-hypothesis only if at least
2b+l-i - 1 of the strategies, on whose hypotheses hi was based, output a new
hypothesis. But in this case hHl is output. hi; if output., is always a correct
Txt.Exl-hypothesis, since it is based on the last allowed hypotheses of 3 strate-
gies. at. least 2 of which identify the language. So the last hypothesis hio output
by F is based on 2b+2-io - 1 hypotheses, 2b~1-io of which are right Txt Exf-
hypotheses. hio can have an anomaly only for the values at which at least. one of
these right hypotheses have an auomaly. that is at no more than 2b+ 1a points. 0

66
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Theorem 34 (Vb E IN)[csdegj'I'xt.Exx, TxtEx;) > 2b+2 - 1].

Proof. We prove that Txt Ex, is not (2b+2 - l j-closed in Txt Exl vVe shall use
the same kinds of instructions as in the previous chapter in the case of Ex~-
identification, and define the class of j-instructors I;xtExf, in a similar way. We
define the language classes L, = njfJ;xtExb, where i, j E [1,2b+2 - 1]. Then
u., c. ~ ifxtExb E TxtExb·

We shall prove that L = U~~+12_1Lj ¢: TxtEx;. We apply diagonalization
over the strategies F and the multiple recursion theorem to construct functions
'Pni (and thus the sets WnJ that use F and the G6del numbers of themselves.
The algorithm for 'Pni is as follows .

• Stage O.
Let k +-- 2b+2 - 2. Put (1,1,1, nl), ... , (1, k, 1, nk) in all k languages Wn\,

... , Wnk. Let r +-- 0, S +-- k. Feed larger and larger initial segments of a text
for the defined part of Wn\ to the strategy F. If F outputs a hypothesis on
a segment ao, go to stage 1.

• Stage i (1 ~ i ~b + 1).
Let k +-- k/2 - 1.
Put (1, r + k + 1 + i, i + 1, ns+j) for 1 :S j :S k, and
(1, i, i, ns+k+j) for 1 < j ~ r, and
(l,r + 2k + 2 + j,i,nS+T+k+j) for 1 ~ j :S 2b+2 - T - 2k - 3 in Wnr+l' ... ,

vVnr+k+\·
Make the languages Hlns+i' 1 :S j ~ 2b+2 - k - 3 to be equal to the defined
part of vVnT+\.
Let t +-- S + 2b+2 - k - 3.
Put (1, r + i, i+ 1, nt+j) for 1 :S j :S k, and
(1,j, i, nt+k+j) for 1 ~ j ~ r , and
(1, r + 2k + 2 + j, i, nt+r+k+j) for 1 ~ j :S 2b+2

- T - 2k - 3 in Wnr+k+2' ... ,

lVnr+2k+2 •

Put (0, w) in these k + 1 languages for larger and larger values of w while
in this stage. Make the languages R'n'+i' 1 :S j ~ 2b+2 - k - 3 to be equal
to the defined part of Hlnr+k+2'

The following applies only to the case z ~ b. Take larger and larger exten-
sions of ai-l that give texts for the languages H'nr+\ and vllnr+k+2 and give
them as an input to F. If F makes a mindchange on the text for vVnr+\,

let r +-- s. If F makes a mindchange on the text for vlT

nr+k+2' let r +-- t. In
both cases let a, be the segment on which the new hypothesis is output,
s +-- t + 2b+2 - k - 3, and go to stage i + 1.

k = 2b+2-i - 2 is the number of (i + 1)-th hypotheses proposed in the instruc-
tions which are put in the languages R'nr+\, ... , vVnr4-2k+2 at the z-th stage. s is
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the number of indices nj already used at the beginning of stage, while t is the
corresponding number at the middle of the stage. r is used for the indices of the
languages on whose text F makes a new hypothesis.

Suppose the process reached the stage io and remained there. If io = 0, F
has not issued any hypothesis on a text for Wnl E L2b+L i- If io > 0, the last
hypothesis issued by F is invalid for at least one of the languages ~Vnr+1 E Lr+2k+2

and Wnr+k+2 E .cr+k+1, because they differ in infinitely many values of kind (0, w).
(Note that at the stage b + 1 the strategy F has already made b mindchanges.)
So F does not TxtEx~-identify t: 0

Corollary 5.1 ('Vb E IN)[cdeg(TxtExb) = 2b+2].

Corollary 5.2 ('Vb E IN)[cdeg(TxtEx~) = 2b+2].

The next theorem is rather surprising. Recall that in the identification of
total recursive functions we have: csdeg(Ex~, Ex~,) = 2 for sufficiently large b'
(Theorem 14).

Theorem 35 ('Va E IN I a 2 1)[csdegf'I'xt Ex'[, 'I'xt.Ex") = 00].

PTOOf. Let k E IN, k > 1. We prove that TxtExg is not k-closed in Txt Ex".
We define the language classes L, = n#JJxtE~, where i, j E [1, k]. Then

L ITxtE~ E a
Ui:;tj i <;;;; j E Txt xo'

We shall prove that UJ=l Lj ~ Txt.Ex". We apply diagonalization over the
strategies F and the multiple recursion theorem. The algorithm for <{in; is as
follows .

• Stage O.
Put (l,j, 1, nj), 1 ::; j ::; k, in ar

np ... , Hlnk. Let w +-- O. Simulate F on
some text for l¥nl' If F outputs a hypothesis ho on some initial segment
ao of the text, then go to stage 1.

• Stage r (1' 2 1).
Let L; denote the set of elements put in lVnl before the start of stage 1'.

- Substage O.
Put (0, i), w ::; i ::; w + a-I, in H,'nl"'" a·nk_l.
Put (0, w + a) in Wn1,···, a"nk_2'

Simulate F on such extensions of ar-! that give texts for all the lan-
guages t; U P, where P is a non-empty subset of {(O, i) I w ::; i <
w + a}. Simultaneously compute 'Phr-l ((0, i)) for w ::; i ::; w + a.
Suppose F outputs a new hypothesis h, 1= hr-1 on a segment a; ~
ar-1' Then for w ::; i ::; w + a, add (0, i) to l¥nk' add (0, w + a) to
lVnk_l, letw +-- w + a + 1 and go to stage T + 1.
Suppose <(ihr_I((O, i)) -!- for all i E {ow •... , w+a}. Then go to substage
1.
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- Substage s (1 ::; s ::; k - 3).
Put (0, w + a + s - 2) in ~Vnk_8+1'.· . , Wnk·

Put (0, w + a + s) in l-Vn1,···, ~Vnk_8_2.

Simulate F on such extensions of O"r-I that give a text for Dr U {(O, i) I
(w+a-1::; i::; w+a+s-2)Vi = w+a+s}. Simultaneously
compute 'Phr-l ((0, W + a + s)).
Suppose F outputs a new hypothesis h; i- hr-1 on a segment a; ::)
O"r-I. Then for w ::; i ::; w + a + s, add (0, i) to Wn1,···, Wnk (if
necessary: all these values already have been added to some of these
languages), let w t- w + a + s + 1 and go to stage T + 1.
Suppose 'Phr-l ((0, W + a + s)) l Then go to substage s + 1.

- Substage k - 2.
Simulate F on such extensions of O"r-l that give a text for L; U {(O, i) I
w + a-I::; i ::;tu + a + k - 5}.
Suppose F outputs a new hypothesis hr i- hr-I on a segment a; =>
O"r-I. Then for w ::;i ::;w + a + k - 3, add (0, i) to vVn1, ... , Wnk (if
necessary), let w t- w + a + k - 2 and go to stage r + 1.

End of stage r.

Each of the stages deals with one hypothesis output by F. The language(s)
on which F is simulated is/are chosen so that the current hypothesis has a + 1
anomalies on it/them. There are two ways F can deal with this problem. First,
it can change the current hypothesis. In this case all the differences between
the current versions of languages vVn; are cleared, and the algorithm goes to
the next stage dealing with the new hypothesis. Second, the current hypothesis
function can output a new value, so decreasing the number of anomalies. Then
the algorithm goes to the next substage ensuring again a. + 1 anomalies. At
substage k - 2 the current hypothesis function has no more such possibility.

So, either F makes infinitely many mindchanges, or its last hypothesis has at
least a + 1 anomalies. 0

Corollary 5.3 (Va E IN I a. ~ l)(Vb EN U {*}) [cdeg(TxtExt) = 00].

The next three theorems are obtained from results in team learning (Theorems
17 and 20 in [24]) by applying Corollaries 3.3 and 3.4 to them.

Theorem 36 csdeg(TxtEx, TxtEx*) > 3.

Theorem 37 cdeg(TxtEx) = 4.

Theorem 38 cdeg(TxtEx*) = .t.



Chapter 6

Conclusion

Tables 6.1 and 6.2 summarize the closedness degrees of the classes Ex~ and
TxtEx~. The entries marked with asterisks were proved previously by other
researchers (often in a different form, for instance as a result in team learning).
Please, see references in the main body of this work.

Table 6.3 illustrates the csdeg'(Exs, EXd) values (for the formula of Dn and
the inclusion of the anomalies see the exact formulations of theorems in Section
4.4).

Also, we obtained some results for team identification types: cdeg([1, n]Ex) =
n + 2 (due partly to [3]), cdeg([n, 2n - 1]Exo) = 2n + 2 and cdeg([1, 2]Exo) = 9.

An interesting question is: How does the hierarchy of success ratios k / l for
the classes [k, l]Ex~ (or the probability hierarchy) look like in the cases when the
closed ness degree of Ex~ is oo? Intuitively, it seems that two different success
ratios (or two different probabilities) should yield two different learning powers.
Is it really so?

A survey of the proofs shows that the problem considered in this work is
related to the following model. \Ve have n streams of data on some object (in
this work a function or a language). Some of them are totally incorrect, some

Table 6.1: The closed ness degrees of Ex~

Ex~--+ 0 1 2 *
0 4* 9 DO 00 4
1 8* 51 oo 00 8
2 16* 303 oo 00 16

oo 00

n 2n+2* 7·6"+1+3 X 00 2n+2
.5

DC oo

* 3* 3* 3* 3* 3*

70
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Table 6.2: The closedness degrees of Txt Ex''

TxtEx~--+ 0 1 *
0 4* 00 00 4
1 8 00 00 8

00 00

n 2n+2 00 00 2n+2

00 00

* 4* 00 00 4*

Table 6.3: The csdeg [Exs, EXd) values

b.} \d-+ 0 1 2 3 n n+1 2n - 1
0 4* 3 2 2 2 2 2
1 00 8* 5 4 2 2 2
2 00 00 16* 8
3 00 00 00 32*

00 00 00 00

n 00 00 00 00 00 2n+2* < Dn+2 + 1 ~ 2n + 6
00 00 00 00 00 oc
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are partially incorrect (in the form of some anomalies), and it is unknown which
are which. How many of these streams must be correct (or partially correct)
to outweigh the incorrect data so that it is possible to restore the information
about the object with some given precision? In the cases considered in this work
an incorrect stream can always be outweighed, given enough correct information
streams, in the worst case at some expense in the precision of the restored infor-
mation (additional anomalies). Is this so for all more or less natural identification
types?
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