
LATVIJAS UNIVERSITATE • UNIVERSITY OF LATVIA

Using Hypothetical Knowledge
for Driving Inductive Synthesis

Ugis Sarkans

Thesis for the Dr.Sc.Degree
at University of Latvia

Institute of Mathematics and
Computer Science

University of Latvia
Rainablvd. 29

Riga LV-1459
LATVIA

Riga, 1998

Acknowledgements

First I would like to thank my supervisor Prof., Dr.hab. Janis Barzdins

for involving me into the exciting field of practical inductive synthesis and

continuous support over several years since I was an undergraduate student.

I would also like to thank Prof., Dr.hab. Rusins Freivalds for introducing

me to the field of theoretical computer science and teaching me rigorous

reasoning about algorithms.

During the first stage of this work I had an opportunity of very productive

collaboration with Dr.Guntis Barzdins, Dr.Kalvis ApsTtis and Ingars Ribners;

I would like to thank them for sharing with me their ideas.

I am grateful to the Scientific Council of Latvia for financial support that

allowed me to spend more time on research.

And finally, I would like to hug my family and relatives for bearing with

me and allowing me to finish this work.

Contents

1 Introduction 5

2 Synthesis of arithmetic expressions 6

2.1 Introduction . 6

2.2 Definitions and notations 9

2.3 Synthesis from one example 13

2.3.1 Construction of annotated sample graph 17

2.3.2 Term output 21

2.4 Synthesis from several examples 26

2.5 Computer experiments 28

3 Simple attribute grammars 32

3.1 Introduction 32

3.2 Main Theorems 36

3.3 Examples 50

4 More complex attribute grammars 55

4.1 Introduction 55

4.2 Definitions 57

4.3 The main result 62

4.4 Notes on implementation details 69

5 Conclusion 71

1 Introduction

The dissertation is devoted to one of the possible approaches to practically

feasible inductive synthesis. In the field of inductive synthesis it is studied

how to induce a general description of some object from its particular fea

tures. The usual problem is how to synthesize a black-box function from

input-output examples.

More often inductive synthesis appears in theoretical context, where the

space of possible black-box functions is, e. g., recursive functions and the

task is to find the Godel number of one of them. Our study is more practical

in nature, we construct algorithms that can be implemented and tested on

real computers. W e have been designing efficient search algorithms, avoiding

exhaustive search by means of taking full advantage of semantic equality of

many considered expressions. This might be the way that people avoid too

extensive search when finding proof strategies for theorems, etc.

The formal model for the development of the method has been chang

ing over the years. First we had arithmetic expressions over the domain of

natural numbers. Then we proceeded to simple attribute grammars. This

generalization was very crucial, as it allowed us to incorporate knowledge

about the object to be synthesized in a very general fashion, e. g., to use hy

pothesis about unknown object's syntactic structure or assumptions about

the process of function evaluation. We have shown that synthesis of this kind

is possible by efficiently enumerating the hypothesis space and illustrated it

with several examples.

As the last step we introduce a more general class of attribute grammars

as suitable for describing inductive synthesis search space. We still have

to realize the full potential of the last, general case by making extensive

computer experiments.

In this dissertation we follow the development of our method, starting

with arithmetic expressions, then considering simple attribute grammars and

concluding with more complex attribute grammars. The presented results

were published — see [4], [5], [16].

2 Synthesis of arithmetic expressions

2.1 Introduction

Inductive synthesis of recursive functions from input/output examples is a

very well studied problem in the recursive-theoretic framework [8] [9]. At

the same time few works have been devoted to the problem in the practical

perspective because it was considered impossible to synthesize non-trivial

functions from input/output examples in the reasonable time.

One of the methods used to synthesize functions from input/output ex

amples is the Occam razor principle stating that we have to search for the

simplest hypothesis, which complies with all available examples. This method

could produce very reliable results, but it is difficult to be implemented with

out exhaustive search.

Nevertheless people are able to guess quite complicated functions from

several input/output examples. Many such functions in the form of number

sequences are collected in the Angluin's paper "Easily inferred sequences"

[1]. The question is: what allows us to generalize such sequences so easily?

In [2] an idea to use algebraic axioms to synthesize functions from in

put/output examples was suggested. The main advantage of axioms is that

they can be synthesized independently of each other and that the complexity

of a separate axiom is much smaller than that of the whole program com

puting the function. If sufficiently many axioms are found, they can describe

the function completely. The techniques known in the theory of term rewrit

ing systems can be used to construct an executable program. The computer

experiments have shown that algorithms for adding and multiplying binary

numbers can be synthesized in this way. The most time-consuming part in

such synthesis happens to be the synthesis of expressions in fixed signature

which satisfy several input/output examples.

The problem of efficient synthesis of expressions from input/output ex

amples presents interest also by itself. We might wish to be able to induce

some formula, like the one for the volume of the frustum of a square pyramid:

V{k,a,b) = h

using as input only the results of several measurements, e.g.:

1/(6,4,2) = 5 6

V (3,4,3) = 3 7

1/(9,2,1) = 2 1

V (6 , l , 3) = 2 6

(This formula is particularly interesting because it was known in the an

cient Egypt a long time before Euclid's deductive method in geometry was

introduced [11]).

The studies on the problem of efficient inductive synthesis of expressions

were initiated in [3] where a reasonably efficient method for such synthesis

was proposed. The results of computer experiments illustrating this approach

were described in [4], These experiments have shown that the formulas like

the one of the volume of the frustum of the square pyramid can be synthesized

on the 33MHz Sparc workstation in about 10 minutes. The ultimate goal was

to improve the method by an order of magnitude so that the formulas like the

one for solving quadratic equations could be synthesized from input/output

examples. In this case the method might become practically interesting.

Here we will consider a new, improved algorithm for inductive synthesis

of expressions from input/output examples. In many cases it might be more

efficient than the one described in [3]. Then we will briefly describe the first

experimental results with this algorithm.

2.2 Definitions and notations

Let the signature S be a finite set of functional symbols . . • , / m } where

any symbol /,- has a fixed arity. Let T> be a finite domain set. For the sake

of simplicity we will assume that I? is a subset of natural numbers. We will

say that S is interpreted on T>, if for all functional symbols / e E a partially

defined function with domain and range in T> is associated with it. By A'E.D

we will denote a particular interpretation of £ on T>. Since we are considering

a finite domain T>, an interpretation KT,,V can be completely specified by a

finite number of equalities. By equality we mean an expression

/(<*!,..., an) = aQ

where / 6 £ is a functional symbol of arity n and c 0 , a-y,..., an € V.

E x a m p l e . Let S 0 = {z,s,+} and X>0 = { 0 , 1 , 2 , 3 } . Then a particular

interpretation Kx,0lv0
 c a n ^ e described by the following equalities:

{ 2 = 0,^(0) = 1 , S (1) = 2 ,6 (2) = 3,

+ (0 ,0) = 0 , + (0 , l) = 1,+(1,0) = 1,+(1,1) = 2 ,+ (2 ,0) = 2,

+ (0 , 2) = 2, + (1 ,2) = 3, + (2 ,1) = 3, + (3 ,0) = 3, + (0 ,3) = 3 } .

For other parameter values functions are undefined in this interpretation.

By Tt-algebra K we will understand a set of equalities as in the Example

describing an interpretation Ks.,v over a fixed domain V. We assume that

T> contains only those domain elements which appear on left-hand or right-

hand side of some equality in K. The volume of S-algebra fC is denned to be

the number of equalities in K. and will be denoted \K\. E 0-algebra AC0 in the

Example above has volume \JCo\ = 14.

Let there be a fixed alphabet {xi,x2l...} of term variables. Open terms

axe expressions made of term variables and functional symbols from the sig

nature S.

By weight function we will understand a mapping from the set of all

open terms to the set of all nonnegative integers w : T (£) —*• N with certain

properties. Namely, weight function w is defined by means of auxiliary weight

functions {fi,..., fm) where fj : Nn —> N is of the same arity as fj. We

will precisely define open terms and also the weight function:

• Any variable £; is an open term of weight w(x,) = 0.

• Any 0-arity functional symbol is an open term of constant weight

«>(/()) = /

• If / is a functional symbol of arity n (n > 0) and f-i , . . . , t n are open

terms, then the expression f(h,..., tn) is an open term of weight

Auxiliary weight functions fj, j £ { l , . . . , m } , must satisfy monotonicity

axioms:

A l . / j (p i , . . . , p n) > m a x (p i , . . . , p n) .

A2. If p\ > p, for each i € { l , . . . , n } then f}{v'i,---,v'n) >

/ j (p i , . . . , p „) .

Besides that functions / j , j € { l , . . . , m } , must be computable from their

arguments in constant time.

Some examples of weight function w (over signature So = {z,s,+})\

• z = l,s(p) = p + l , + (p i , P 2) = m a x (p 1 ; p 2) + 1 (in this case w(t)

describes the number of levels in the term),

• z — l ,5(p) = P + 1,+(pi ,P2) = Pi + P2 + 1 (in this case w(t) is the

number of functional symbols in the term).

Let weight function w is arbitrary fixed, then by weight of an open term

t we will understand w(t).

The size of an open term t is defined to be the number of instances of

the functional and variable symbols in t and will be denoted by \t\.

The term obtained from an open term t by replacing its variables by

elements of domain set V will be called a closed term, and its weight and

size are defined to be the same as the weight and size of the corresponding

open term i.

We will say that a closed term t can be computed in S-algebra K if its

value can be derived by means of elementary equations of K.

Let there be given a tuple (a i , . . . , ak) £ l?*, a,- / ctj if i ^ j 1 , and b (E V.

Then the pair

((a i , . . . , a i) , 6)

will be called input/output example. We will say that an open term t satisfies

the I/O-example ((a i , . . - ,flfc), b) in the S-algebra /C if:

• t contains no other variables than X i , . . . , x*,,

• the value of the closed term t' obtained from t by replacing variables

$ 1 , . . . , Xjt by %, • • •, Q/t respectively, can be computed in /C,

• the value of t1 is equal to 6.

Let / be a natural number (/ > 0) . We will denote by 4JjS»*-**»W1 the set

of all open terms such that:

• they satisfy the input/output example ((a l 5 . . . ,afc), b) in AT,

•"̂ This restriction is not essential, it is added only to simplify the explanation of the
algorithm.

• they have weight no more than I.

Example. If we consider the Eo-algebra KQ and the weight function w(t)

equal to the number of functional symbols in t, then the set J^Jf is

{+(x1,x2), +{x2,x1), + (ar 1,s(a; 1)), +(s(xi),x1), +(x1,+(x1,xl)),

+ (+ (x i , x i) , x i) , s(x2), s(s(xi)),

2.3 Synthesis from one example

We will say that an algorithm having received the input U enumerates the

set of objects {wi, w2,..., ws] in setup time T and zth step time T,, if this

algorithm outputs ("prints" on the output tape) the first object Wi in T + Tx

time, and the ith object 10,(2 = 2 ,3 , . . .) in time from the moment when

the previous object u;;_i was output. In this paper by algorithm we mean a

RAM-machine.

Theorem 1 Let signature £ and weight function w be fixed. There ex

ists an algorithm which, given any ^-algebra fC, any input/output example

. . . afc), 6) and any natural number I > 0, enumerates without repeat

ing the set of terms /^*1'-a*)'i) {n setup time 0 (|£|log/) and iih-step time

0(|ii| log /) , where fj is the term output during the ith step (i = 1 , 2 , . . . ,

I * a k) , b) \) -

Proof. For £-algebra K we define the corresponding 2-algebra graph GK-

S-algebra graph GK contains nodes of two types: domain nodes denoted by

D/c and functional nodes denoted by FK- To distinguish nodes of these two

types, in the figures we will show domain nodes as dots and functional nodes

as small circles. Domain nodes will correspond to the elements of domain set

V of E-algebra fC. Functional nodes will correspond to elementary equations

of S-algebra K and will be marked by the functional symbol on the left-hand

side primitive term in this equation. For any equation

f(au ...,an) = b

of E-algebra K, the following arcs are added to the graph GK- From the func

tional node v corresponding to this equation an arc is drawn to the domain

node b; the node b is called the upper node for the functional node v. From

domain nodes a i , . . . , a n arcs (marked by numbers 1,2, . . . , n respectively)

are drawn to the functional node v\ domain nodes a i , . . . , an are called lower

nodes for the functional node v.

E x a m p l e . The Eo-algebra graph GK0 which corresponds to the Scr

algebra KQ given above is shown in Fig.l .

Let there be some tuple (a i , . . . , f l f c) € T>k such that a; ^ a,j if i ^ j , and

let there be some natural number /. In this case we define weights for nodes

of the graph GK according to the following conditions (weight will not be

Figure 1: Eo-algebra graph G>c0.

defined for all nodes):

• Domain nodes a i , . . . , a& have weight 0.

• Any functional node which corresponds to 0-arity functional symbol /

has weight / .

• If a functional node v corresponds to some n-arity functional symbol /

and d\,..., dn are lower nodes of the node v and for all of them weights

hi,..., hn are defined, then the weight of the node v is f(hx,..., &„);

otherwise the weight for the node v is not defined.

• Let i ? i , . . . , vn be functional nodes for which the upper domain node

is d and weights hi,..., hn are defined. In this case the weight of the

domain node d is minf fc j , . . . ,hn); otherwise the weight of the domain

node d is not defined (i.e. if no such functional nodes V{ exist).

• All weights do not exceed /.

It is easy to see that the weight related this way to some domain node d

is exactly the smallest weight among weights of closed terms which in £ -

algebra JC satisfy the pair ((a-i,..., a-k), d), if it does not exceed /. (According

to axiom A2, if t = f(t\, . . . , £*) and minimal weights of terms i l 7 . . . , tk are,

respectively, ti,..., it , minimal weight of t is

t = / (* ! , . . . , 4).)

Additional arcs, called dotted arcs (they are denoted by dotted lines), are

added to the graph GK in the following way. Let d be some domain node

for which weight is defined. Let vi,...,vn be functional nodes whose upper

node is d and for which weights are defined and let these nodes . . . , vn be

already ordered according to their weights (weight(v,-)<weight(t;; +i)). Then

dotted arcs are drawn to connect the node d to vi, the node v\ to v2, ..., the

node vn-i to vn.

The graph GK, which is supplemented by weights and dotted arcs accord

ing to some fixed tuple (a i , . . . , aft) and fixed / will be called an annotated

H-algebra graph and will be denoted by G'j^j

E x a m p l e . The graph which corresponds to the Eo-algebra graph

GK0 is shown in Fig.2.

Figure 2: Annotated So-algebra graph GJc^.

2.3.1 Construction of annotated sample graph

L e m m a 2 The annotated H-algebra graph C?r},*",tt*^ can be built from S -

algebra K, in time 0{\fC\\ogl).

Proof. The algorithm consists of initial step, iterative step and final step.

Initial step. For every domain node a^i = l , . . . , f c , we introduce an

additional 0-arity functional node with the upper node a t and set its weight

equal to zero. For every "proper" 0-arity functional node /,• we set the weight

to fi, if and only if Jj < /.

Iterative step. First let us examine the graph after the ith iterative step.

(We will refer to the initial step as the 0-th step.) There are four kinds of

functional nodes.

c) d)

d—weight defined
n—weight not defined
?—either d or n

a) b)

Figure 3: Types of functional nodes after iterative step.

• Node with a dotted arc entering it. Weights of ite lower nodes, upper

node and itself are defined (Fig. 3a). We denote the set of all such

nodes by A{.

• Node without a dotted arc entering it, but with defined weight. Weights

of the lower nodes are defined (Fig. 3b). The set of all such nodes is

denoted by B{.

• Node with undefined weight. The weight of the upper node is also

undefined. At least one lower node has undefined weight (Fig. 3c).

The set of all such nodes will be called C,-.

• Node with undefined weight, but all lower nodes has defined weight

(Fig. 3d). The corresponding set is denoted by D{.

After the initial step only BQ and Co are not empty.

And now the iterative step itself.

While Bi is not empty, we take from it the functional node with minimal

weight (any, if there are several ones) Two cases should be distinguished.

1. The weight of /,- upper node di is denned. Then we add /,- to the end

of the dotted path associated with di.

Bi+1 = 5, \ { / , } , Al+l = A U { / , - } , Ci+1 = 0 j , A + i = Di

2. The weight of / ; upper node di is not defined. We set it equal to the

weight of fi and draw a dotted arc from of,- to

A l + 1 = At U { / ; }

Afterwards we examine all functional nodes with di as a lower node

(they belong to C,) . Suppose there are ki functional nodes ^ , t o , . . . ,gi,k,

for which all lower nodes have defined weights. (For any node gij,j =

0 , . . . ,Ar;, di was the last node with undefined weight.) Now we can

compute ^ t i o , - -. ,gix- u s suppose that there is li such that for any

j = 0 , . . . , g y < /, and for any j = l i + 1 £ y > I. We set

weights for nodes g t i o , . . .

Bt+l = (Bl\ft)V{ghj\j = 0,...,U},

Ci+i =Ci\{gij\j = 0 , . . . , * , } ,

A + i = Dt{j{gi}j\j = U-rl,...ik}.

It is important to notice that, if every node in Ai has weight not greater

than any node in B{ has, the same property holds also for A;+i and

(because /,- is the node with the minimal weight and for every j = 0 , . . . , fc,-,

9<,j > /«' — axiom A I) . Therefore every dotted path is correct, i. e. nodes

along the path are ordered according to their weights.

Final step. We remove additional 0-arity func'ional nodes that were

added during the initial step. (It is necessary to delete them correctly from

the dotted paths.) These nodes were added during the initial step only to

make explanation of the iterative step easier.

We must be able to find a functional node in Bi with minimal weight.

W e will organize set Bi so that it would be possible to insert, delete and find

a functional node with minimal weight in time 0(log /) . For this purpose a

priority queue [6] will be used.

Let us analyze the time complexity of our algorithm.

Initial step. The number of domain nodes and 0-arity functional nodes is

0(|/C|), adding to B0 takes time 0 (l o g /) for every node. Therefore

initial step takes time 0(|/C|log/).

Iterative step. The number of iterative steps is 0(|/C|). Although an indi

vidual step may require time greater than 0(log I) (if there are many

functional nodes with di as a lower node), total time required by iter

ative steps is 0(|/C| log /) . (Every node can be moved from C,- to Bi+1

only once and from Bi to A t + i also only once.)

Final step. It takes time C>(|/C|). •

2.3.2 Term output

Let there be a graph. Qf^Y",ak'! placed in memory so that its nodes can be

accessed by their addresses.

A closed term will be called an ct-term if:

• it contains no other domain symbols than a i , . . . ,ajt,

• it belongs to the E-algebra K.

An a-term will be called annotated if, for each of its symbols, the address

of some node in the graph G ^) i s attached according to the following

rules:

• domain symbols have addresses of the corresponding domain nodes

attached to them,

• if f(g\, • • • ,gn) is a subterm of the term t and V\, . . . , » „ are domain

nodes which represent values of closed terms gi,..., gm then the symbol

f has the address of the functional node marked by f and having lower

nodes V\,...,vn attached to it.

It is easy to see that any a-term can be annotated.

+

A
\
z

Figure 4: Tree and linear representation of the same a-term.

We will use two representations of a-terms— ordered, tree form and linear

form in prefix notation (see Fig. 4) . Subterms of the same level which

are included in brackets of the same functional symbol (their parent in the

tree) will be called siblings. Siblings are ordered according to the number of

argument they represent. Therefore we can speak of right siblings for a given

subterm. (Such trees and linear layouts for current a-terms will be stored

apart from the E-algebra graph G^}AK\)

We define the minimal a-term of a domain node d in the following way.

If d G {0.1,.. •, ajt}, then the symbol d itself is the minimal a-term of the

node d. Otherwise we consider the functional node v which is connected to

the node d by a dotted arc (if there is no dotted arc from the node d, then

the minimal term is not defined). If the node v corresponds to a 0-arity

functional symbol / , then this symbol itself is the minimal term. If the node

v corresponds to an n-arity (n > 0) functional symbol / , then the minimal

term is the term / (t i , . . . ,tn) where ti,... , f„ are minimal ct-terms of the

lower nodes of the node v.

It is easy to see that the minimal a-term of the node d is a closed term

which satisfies the pair ({ a l 5 . . . ,a*) , d) in E-algebra K and has minimal

weight which is the weight of the node d in the E-algebra graph.

Now we will also define the minimal a-term for functional nodes. Let

v be some functional node for which the weight is defined (otherwise the

minimal term for v is not denned). Let the functional node v correspond to

the functional symbol / of arity n. If n = 0, then the symbol / itself is the

minimal term of the node v. Otherwise there are lower nodes di,... ,dn for

the node v and minimal terms t i y . . . ,tn for those domain nodes. Then the

term / (* i , . . . ,tn) is the minimal term of the functional node v. It is easy to

see that the weight of the minimal term of the functional node v is equal to

the weight of the node v in the E-algebra graph.

Lemma 3 Inequality

f(pi,... ,Pi^,x,pi+l,... ,pn) < I

can be solved in time 0 (log /) and solution, if it exists, is in form

x<V

(p1,...,pn,l,l'!x are natural numbers, I' < I).

Indeed, A2 implies that together with /' all x < V suit inequality as well.

A l implies that I' (if it exists at all) should be smaller than /. The exact

value of V can be found in O(log I) steps of dichotomy. 2 •

For the representation of a given a-term we attach actual and maximal

weights to every ordered tree node (or, equivalently, to every instance of

functional or variable symbol) in the following way:

• for the root symbol the maximal weight / is attached to it,

• if a parent node / has its maximal weight /', then its i-th child node

has maximal weight /", where x < I" is the solution of inequality

f(Pl,---,Pi-l,X,Pi+l,---7Pn.) < t

(pi,. .. ,pn are actual weights of sibling nodes). In the case solution

does not exist, we assume I" — — 1.

Maximal weight shows how far we can raise the weight of a given subterm

without making other changes.

Actual weights are computed upwards in 0(|i|) time, and after that max

imal weights are computed downwards in time 0(\t\ l og /) .

We will say that there exists an V-alternative for an annotated a-term

t = q{...) in the graph Grf^j''" if from the node q\ there is a dotted arc to

the node q2 of weight /'. In this case the minimal a-term of the node q2 is

called the I'-alternative of term t.
2 Some important weight functions allow solving the inequality in constant time.

The following ordering of subterms for a term t is defined: we say that a

subterm t\ is left from the subterm t2 if the root symbol of ii is left from the

root symbol of t2 in the usual linear layout of the term t.

We mark the current a-term in the following way. A special symbol, say

"*" , is associated with the rightmost subterm ti of the term i (according

to the ordering of subterms defined above) for which an /'-alternative exists,

where /' is not greater than the maximal weight assigned to this subterm in

the tree representation of t.

It is easy to see that in order to mark an annotated a-term t or to detect

it as unmarkable, 0(\t\) steps are necessary.

For a marked a-term t we define the succeeding a-term t' in the following

way. Let t x be the subterm marked by and t2 be the alternative of the

term tj. The succeeding term is obtained from the term t by replacing its

subterm t\ by the subterm t2 and all its right siblings by the minimal terms

of the same value.

The next lemma follows easy from the facts already proved.

Lemma 4 The number of steps necessary to construct from a marked a-term

t, its succeeding a-term t' and to mark it is 0(\t' \ l o g /) .

The algorithm mentioned in Theorem 1 works as follows. Having received

as input a E-algebra £ , a pair ((a i , . . . ,Ofc), b) and / > 0, first it constructs

the graph Q^j ' - ' a * '_ Jt takes 0(jJC|log?) steps. After that the algorithm

outputs the minimal term ti of the node b (in which the different domain

values a i , . . . , ctk are replaced by variables X i , . . . , xjt respectively); this takes

0(|*i|) steps. Then for the term i 2 which is the succeeding term of t\ the

corresponding open term is output (according to the last lemma it takes

0(|i2| log 0 steps), etc. We proceed while marking is possible. It is easy to

see that in this way the algorithm enumerates the set J4jj a
(

1-" , a*'* 6^ without

repeating in the time mentioned in Theorem l.D

2.4 Synthesis from several examples

In the previous section the case where an open term satisfies one input/output

example

((« ! , . . . , Oft), 6)

was considered. Now we will consider the case where an open term has to

satisfy several input/output examples simultaneously. More precisely, let

there be a set of input/output examples belonging to E-algebra K:

Q = {(«... ,<4), 6 1) , [(4 . . . , a l) , b % . . . , ({ai,...,4), ¥)},

We will say that an open term t satisfies a set Q in E-algebra fC, if t

satisfies all elements of Q in K.

Let us denote by l the set of all open terms which in E-algebra K.

satisfy a set Q and have weight no more than / (/ > 0) . In other words,

AQ = M ~ n A((-i ^) . t 3) _

In real situations it is typical that separate sets

AM A(*l,...,*lhi>2)

are of relatively large size but their intersection is of relatively small size.

Therefore an important question arises: can elements of AJ? ; be found di

rectly (i.e. enumerated sufficiently fast) without constructing all s sets?

The next theorem gives a positive answer to this question in some sense.

Theorem 5 Let signature S and weight function w be fixed. There exists an

algorithm which, given any Ti-algebra K, any set Q of input/output examples

and any natural number I > 0, enumerates without repeating the set of terms

A%ti in setup time 0(|/C|'Q') and ith-step time 0(\ti\) where t{ is the output

term in the step i ft = 1 , 2 , . . . , t\).

Proof. For the sake of simplicity we will consider the case when the set

Q contains only two examples: ((a j , . . . ,0.1),$) and ({a\,..., a|), b2).

For E-algebra fC we define a square H-algebra)C2 which describes an

interpretation K^V2:

(fi((a1,a[),...,(an,a'n)) = (6,6')) e K2

if and only if

(/ i (o i , . . . , o B) = b) e JC and {fi{a[,..., a'n) = &') G /C.

It is easy to deduce the next important equality:

A((4 a D ^ M K "I).* 3)} _ ,««J n 4««?,...,a5>,62) _

_ AM*\A) {«i.«l)>.(*1̂))
_ AT2,/

To enumerate the set A^l---A)^)M-l.-.^)M)} t h g a l g o r i t h m described in

Theorem 1 can be applied with respect to E-algebra K2. Because \fC2\ < |/Cj2

the correctness of Theorem 5, when \Q\ — 2, follows immediately. •

2.5 Computer experiments

The advantage of the given algorithm (if compared -with the algorithm de

scribed in [3]) is that it allows to effectively enumerate not only terms having

limited depth, but it also permits to enumerate terms according to more so

phisticated criteria, like the number of functional symbols e t c In the case

some function (like square root) is not likely to appear in the expression more

than once, the new method allows to restrict its appearances by assigning

higher weight to the particular function. Another approach could be used

to restrict (to some extent) the number of 2-arity functional nodes in the

graph, thus limiting the size of graph that tends to grow exponentially. For

this purpose we count only 2-arity functional symbols in the term.

First some implementation details. Setup time 0([/C|'*") and correspond

ing volumes of graphs still are too large for practical implementations. An

other approach was used — not only the weight of terms was restricted with

some wt but also the term level was said not to exceed some / (it is easy to

see that the method described above works also for such a pair of restric

tions). Besides, the annotated sample graph was constructed dynamically,

it contained only reachable domain nodes. Reachability of some node here

means that

• there is a term of depth not greater than / such that, substituting its

variables with values from the input example, the value of the term

corresponds to the node;

• the weight of this term does not exceed w;

• there is a term of depth not greater than / such that, substituting some

of its variables with the value corresponding to the node and other

variables with values corresponding to reachable nodes, the value of

the term equals to the value of the output example;

• the weight of this term also does not exceed w. (Note that there is

only one input example consisting of several tuples and only one output

example (tuple) as described in the previous section).

Computer experiments showed that the graph corresponding to 3 actual

examples usually was smaller than the graph corresponding to 2 examples.

Using described approach the formula for the volume of a frustum of

a square pyramid was synthesized. The experiment showed that the new

algorithm finds the formula several times faster than the algorithm described

in [7].

The next formula we tried to synthesize was the formula for finding the

greatest root of quadratic equation of the form x2 + bx + c = 0. Unfor

tunately we were not able to synthesize the formula from input/output ex

amples using 33MHz Sparc workstation in the reasonable time, assuming

£ = {+,—,*,/, yfi 1,2,3,4} and using weight function which counts in

stances of functional symbols . Therefore the algorithm of Theorem 5 was

further modified taking into account the following observation: the outer

most function of the formula is one of the 9 functions appearing in S, and

having fixed one of them we can reduce the depth of the unknown term by 1

level (we have to consider all 9 possible cases of the outermost function). In

fact it is reasonable to fix functions appearing in the two outermost levels,

yielding 377 cases but reducing the depth of the unknown term by 2 levels.

In this way the formula for greatest root of the quadratic equation

\/&2 - 4c - b

was synthesized on the 33MHz Sparc workstation in 20 minutes from the

following examples:

F(3, - 4) = 1

F (- 2 , - 3) = 3

F(5 ,4) = - l

F (~ 4 , 3) = 3

F (- 3 , - 4) = 4

F (- 3 , 2) = 2

F (3 , 2) = - l

Limit on the number of functional symbols — 8, limit on term depth — 6.

domain — [-16,25]. Analogical attempt without weight restriction failed.

Then we changed domain for [-24,36], and examples were as follows:

F < - l , - 6) = 3

F(4, - 5) = 1

F(5 ,6) = - 2

F (- 4 , - 5) = 5

F(6 ,5) = - l

F (- 5 , 4) = 4

We expected to obtain greater annotated sample graphs, as the domain was

greater, but surprisingly the correct formula was synthesized in 10 minutes

with much smaller graph volumes. Apparently these examples were "better"

if compared to the previous ones. Therefore it seems to be hard to make

any theoretical estimations of the behavior of annotated sample graphs on

various examples.

3 Simple attribute grammars

3.1 Introduction

The problem of discovering new proofs, formulas, algorithms etc. usually is

solved by some kind of exhaustive search. One of the main issues here is how

to minimize the extent of search by using our hypothetical knowledge about

the object to be discovered. In this section we will concentrate our attention

on synthesis of general descriptions of functions from various hypothetical

knowledge about them, including function values on some sample argument

values, i.e., generalizing the results presented in the previous section. In the

general case the knowledge could be of different nature, e.g., assumptions

that during function computation intermediate values do not exceed some

limits. . i , - .

The question that arises here is, can we rapidly examine those and only

those functional descriptions that match our knowledge, with an aim to fur

ther test them on some additional examples. Roughly speaking, the aim of

this section is to show that in some sense it is possible to perform such search

efficiently enough.

Now in more detail about our approach. As it was already mentioned

above, our central aim here will be synthesis of functional descriptions. By

functional description we will understand a description of the function in

some formal language that makes it possible to compute the values of that

function. A typical functional description is a definition in the form of an

expression over some fixed signature; we already partly considered this par

ticular case. It is possible to think also about some more general kinds of

descriptions, like A-expressions or some fixed programming language.

Already in the dawn of programming it was understood that it is conve

nient to describe such descriptions by context-free grammars. An example

of a grammar describing arithmetic expressions:

S^E
E^ E + T
E^-E-T
E^T
T <—T *A
T^-T/A
T *-A
A^(E)
A <— x
A^y

In the same way we can describe A-expressions and functional descriptions

in other, more complicated languages.

The well-known notion of attribute grammars with synthesized attributes

and conditions is linked with the notion of context-free grammars. Our cen

tral observation that our approach is based on is that various kinds of hypo

thetical knowledge about the unknown function usually can be described by

means of an attribute grammar with synthesized attributes and conditions

that is based on the context-free grammar denning the description space.

Let us explain this idea on the previous example. Assume that the hy

pothetical knowledge about the function to be found says that the number

of operators in the defining expression does not exceed 2. Obviously all

such expressions can be described by the following attribute grammar:

(Here and in the following examples by ax we will denote the attribute of

Now let us examine another case. Suppose we know that the unknown

(CFG productions) (Attributes)
S *- E as < - CLE
E <- E + T aE « - aE + or
E <- E - T aE < - <zE + a T

E <— T aE<-aT

T «- T * A aT <- ar + aA + 1
T <- T / A aT <- a T + aA

(Conditions)
a S < 2

T A a-r <— a
A <- (E) aA «- aE

A <— x aA 4— 0
A <— y aA <- 0

CFG symbol X.)

function / is such that / (3 , 4) = 5. It is possible to write down this restriction

by means of an attribute grammar as well:

S <— E a$ *— Q-e as = 5
E «— E + T cle *— as + a?
E E — T a,£ <— CLE — O>T

E <— T as *— O-T

T <r-T * A aT *- aT * a A

T*—T/A CLT^CLTIGA

T <— A ax <— a A

A <— (E) aA <— as
A <— x aA <— a»
,4 <- jr (2,4 <- a y

ax *~ 3

a y -I- 4

At the end of this section we will present some other examples.

Thus, the main problem we will solve is the following. Suppose that an

attribute grammar with synthesized attributes and conditions is given. Is it

possible to efficiently enumerate the corresponding language without consid

ering strings that do not belong to it? In the previous examples, is it possible

to enumerate only expressions containing no more than 2 multiplication op

erations, or expressions that evaluate to 5 if 3 and 4 are substituted for x

and y? The aim of this section is to show that, if some conditions hold, it is

possible.

The results discussed in this section generalize the results presented in the

previous one. There only input/output examples could serve as hypothetical

knowledge, and the notion of expression's weight was introduced that we

could use for expressing limited knowledge about the syntactic structure of

the target expression.

Other approaches to synthesis of expressions include discovery systems

BACON ([14], [15]), genetic programming ([10], [12], [13]).

3.2 Main Theorems

Let us consider attribute grammars with synthesized attributes and condi

tions. For the sake of simplicity first we will restrict the number of attributes

to 1. A very similar example to the previous one, only more extensive usage

of conditions:
S <— E as <— aE as = 5
E<-E + T aE<-aE + aT aE < 10
E <— E — T aE <— aE — a? aE < 10
E <— T aE <— ar aE < 10
T <— T * A aT <— ar * °A ax < 10
T <— T/A ax <— a j / a A ax < 10
T <— A aj *— a j < 10
A +— (E) aA *— aE CLA 5: 10
A <— x QA *— ax

A*— y aA <— ay

ax <— 3
S « - 4

In this example intermediate results of computation can not exceed 10.

The attribute grammar can associate constant values with terminal sym

bols. For nonterminals attribute values are evaluated by means of corre

sponding functions. In the previous example constants 3 and 4 are associated

with ax and ay respectively, while other terminals (for example, '*') do not

have any attributes. Every production of the grammar has the correspond

ing function for evaluating the attribute value of the symbol that is on the

left-hand side of the production (hence the name 'synthesized attributes'). If

there would be a production with several instances of the same nonterminal

on the right-hand side, we would write the expression defining the function

for computing attributes like this:

S *— AA as <— aAi " <*A2

Conditions can be associated with productions, they are predicates with

the domain equal to that of the attribute of the production's left-hand side.

The start symbol will be the left-hand side symbol of the first production.

Acceptable inference trees in such a grammar are only those with nodes

such that the corresponding conditions are satisfied. An acceptable and an

unacceptable trees are shown on Figure 5, nodes are labeled with grammar

symbols and, in parenthesis, with attribute values. The acceptable tree cor

responds to the string x * x — y, and the unacceptable tree corresponds to

the string x * y — x — y in the grammar above. The tree for x * y — x — y

is unacceptable because condition at the T-node denoted by a larger filled

circle {a? < 10) does not hold.

By language that is defined by such grammar we will understand the set

of all strings that can be inferred by means of acceptable inference trees.

b)

Figure 5: a) Unacceptable inference tree, b) Acceptable inference tree.

In general functions that are used for attribute evaluation can be partially

defined. For example, instead of introducing conditions of the form a < 10

in the grammar above we could use partially defined functions, e.g., function

+•:

x+'y-
x + y i f x + j / < 1 0
undefined otherwise

In acceptable inference all conditions are true, and besides that all attribute

values can be evaluated (default condition).

There is some domain associated with the attribute. In the previous

example it was N, but from now on we will consider only attributes with

finite domains D (for the sake of simplicity we will assume that these domains

are subsets of N). That means that arguments of functions for computing

attributes, as well as their results belong to D, As we already mentioned,

these functions can be partially defined as well.

We will say that an attribute grammar is unambiguous, if for every word

belonging to the language generated by that grammar there exists only one

inference tree. We will say that a grammar is finite if its attributes are of

finite domain.

Later we will need the notion of the volume of function f(xi,..., Xk) for

evaluating attributes; this volume will be defined equal to the volume of the

set

S = { { x i , . . . ,Xk)\xi, . . . , £ * € D k f(xi,. ..,Xk) is defined}

By volume of the grammar we will understand the cumulative sum of volumes

of functions for evaluating attributes of separate productions. Suppose that

in our example D = [1..10] and + , —,* and / are the usual partially defined

functions with both arguments and result in D. Then it is easy to see that the

volume of each of the unary productions (with a single nonterminal on the

right-hand side) equals to 10, the volumes of productions with + and — equal

to 45, and the volumes of productions with * and / equal to 27. We will define

the volumes of productions with only terminals on the right-hand side to be 1;

therefore, the volume of the entire grammar is 4* 10+2*45+2*27+2*1 = 186.

In the subsequent theorems, in order to avoid talking about complexity

of attribute evaluation functions and condition predicates, we will assume

that algorithms receive as an input function value tables and domain subsets

where condition predicates are true. Also, we will assume that the volume of

domain D is of the same order of magnitude or less than the volume of the

grammar.

We will say that an algorithm enumerates a language in setup time T

and ith. step time if this algorithm outputs the first word Wi in time

T + T\, and the ith word Wi (i — 2 ,3 , . . .) in time T; from the moment when

outputting the previous word W i - i was finished. In this paper by algorithm

we mean a RAM-machine.

Theorem 6 There exists an algorithm which, having received an arbitrary

finite unambiguous attribute grammar with one synthesized attribute and con

ditions, enumerates without repeating the corresponding language in setup

time 0(\G\), where \G\ is the volume of the grammar, and ith step time

0(\wi}), where ti>, is the word output in the ith step.

Proof. To make the proof clearer we will shortly re-introduce the notions

already discussed from a more formal perspective.

A context-free language G = (T, A ,̂ P, S):

• T — finite terminal symbol set;

• JV — finite nonterminal symbol set;

• S £ N — start symbol;

• P — a finite production set, where each production (1 < k < \P\) is

in form

Ak *- BkilBkj2 • • • B k A k) , where Ak G N and % e J V U T

By trees we will denote structures of the form (T;) (where T, € T) or

(JV ; ,Ki ,K 2 , . . . , Kn) (where JVj G JV and .Kj are trees). We will say that

a tree K corresponds to a terminal symbol 21,, if K — (Ti), We will say

that a tree K corresponds to a production JV,- <— Bk^BKT2 •.. BkiS(k), \i K =

(Ni, Kkti,KK,2 • • • -Kk,s(k)), where trees Kk,i correspond to symbols Bk,i. We

will say that a tree K corresponds to a nonterminal JV,-, if it corresponds to

some of productions JV; *— Bk,iBKL2 • • • Bk^ky

Now we will define the notion of a terminal string iv(K) corresponding

to a tree K:

w((Nu KUK2,...,Kn)) = w{Kx)w{K2)... w(Kn)

A string w G T* can be inferred in grammar G, if there exists a finite tree

Km corresponding to start symbol S such that w ~ w(Kw), such tree we will

call an inference tree of w. The set of all strings that can be inferred in G

will be called language L(G). The grammar G is unambiguous, if for every

word w £ L(G) there exists only one inference tree Kw. By depth of a word

w G L(G) we will denote the depth of the corresponding inference tree.

Each of the elements Ck G N U T may have an attribute ck, domains

of all attributes are finite subsets of natural numbers. Values of attributes

assigned to T elements (terminals) are constants, while values of N attributes

are computed, using attribute evaluation functions.

Every production has an attribute evaluation function assigned to it: if the

production is in form C,-0 <— C t lC,- 2 ...C^, then the corresponding function

is / (C j , . . . , ^) .

Additionally, every production C,0 <— C{XC{2.. .C{} has a corresponding

predicate i?,- : { c , 0 domain set} —*• {True, False] for describing conditions

that C j 0 must satisfy.

A context-free grammar G that is supplemented with attributes, attribute

evaluation functions and condition predicates will be called attribute gram

mar with synthesized attributes and conditions and denoted by G+.

A tree (T;) has the same attribute as the terminal symbol Tj, and its

value is the same constant. A tree (C; D , A t l , Ki2... A',-) that corresponds

to the production Pi = (Cj 0 <— C^C^ ...C{-) has the same attribute as

nonterminal C; 0 , and it is evaluated by first evaluating the values of attributes

,..., Ci} that are assigned to A t l , . . . , and then by using the function

/ corresponding to production Pi.

We will say that a word w can be inferred in grammar G + , if it can be

inferred in G, and the values of attributes Ci assigned to the inference tree

and each of its subtrees are such that the corresponding predicates R, are

true for these values. By language L(G+) we will understand the set of all

words that can be inferred in G + .

We will define the graph QQ+ corresponding to the grammar G+. It will

contain two kinds of nodes: terminal and nonterminal symbol nodes and

production nodes.

There will be a node in QQ\ corresponding to each pair (C, u), where

C € N U T and v is some value of the C attribute. Production nodes will

correspond to equations that define G+ attribute evaluation functions: if the

function / that corresponds to production C, 0 «— C,-jC,-s . . . Cii is defined by

n equalities of the form / (c , ^ , . . . , c^) = c,-0, each of these equalities will have

a corresponding production node p, if i2,-(c,-0) = True. There will be the

following arcs in QQ+ as well. There will be an arc from p to symbol node

{Ct 0 , c , D) , this node will be called the upper node of the production node p.

There will also be arcs from every node (Cik,Cik) (1 < k < jf) that will enter

p; these symbol nodes will be called lower nodes of p. For nodes of QQ+ (not

necessarily for each of them) we will define weights:

• the weight of terminal symbol nodes is 0;

• if a production node p corresponds to the production d0 Ci2 ...

C{}, the weight of this node equals m a x (t i) ! , . . . , WJ) + 1, where WI are

the weights of p lower nodes;

• if pi,..., pk are production nodes with a common upper node s whose

weights are defined and are equal to wt,... ,Wk, then the weight of s

equals m i n (w i , . . . , u;*), otherwise the weight of s is not defined (i. e.,

if there is no such production node).

By C we will denote some symbol of G, and by v — some value of

its attribute. It is easy to see that the weight of the symbol node that

corresponds to pair (C,v) equals the depth of the most shallow inference

tree that corresponds to C whose attribute value is v and values of all its

subtrees' attributes are such that the corresponding conditions hold.

Graph QG+ will be augmented by dotted arcs according to the following

rule. Assume that s is some symbol node and pi , . . . ,pfc are production

nodes with defined weights w(pi) such that their upper node is s, and they

are ordered so that w(pi) < wfa) < • • • < w(pk). Then dotted arcs go from

s to pi, from pi to p 2 , . . . , from pjt-i to pk.

Lemma 7 Graph QG+ can be constructed from grammar G+ in time 0(\G+\).

Proof. The algorithm consists of the initial step and the iterative step.

Initial step. Weights 0 are assigned to terminal nodes.

Iterative step. Consider all production nodes with weights not yet known,

but such that for all their lower nodes weights are known. If there are no

such production nodes, the algorithm terminates. Otherwise their weights

are computed (in fact, all weights computed during the ith step will be equal

to i). If the upper node s of such a production node p does not have a known

weight yet, now it can be computed (and it equals to i), and a dotted arc

from 5 to p is added to the graph. Otherwise a dotted arc is added from

the production node that is the last on the path formed by dotted arcs and

leaving 5 to p.

It is easy to see that the complexity of this algorithm is 0(|G + |) , because

the manipulations with every production node can be performed in constant

time. •

The inference tree K of a word w € i (G +) will be called annotated if

there is a node of graph QQ+ associated with every K subtree A, according

to the rule that, if K\ is in form (S), where S € T, or (5 , A ' ^ , . . . , A ' ; > n) ,

where S £ iV, and the value of its attribute is v, the associated graph node

is (S, v).

We will define the minimal subtree of a symbol node s that corresponds to

symbol S. If S G T , then the minimal subtree is (S). If S € N and there is no

dotted arc leaving s, the minimal subtree is not defined for this node. If 5 €

JV and there is a dotted arc leaving s, then we have to consider the production

node p that this arc enters. If this production node corresponds to the

production P Si... Sn, then the minimal subtree of s is (S, Ki,..., Kn),

where Ki are minimal subtrees of p lower nodes. It is clear that, if for some

node the minimal subtree is defined, it is a finite object with depth equal to

the weight of this node — it follows from the construction of QQ\ .

Similarly we define the minimal subtree of a production node. It will be

defined only for production nodes with defined weights. The minimal subtree

of a production node will be equal to the minimal subtree of its upper node.

The depth of minimal subtrees of production nodes are equal to their weights

as well. The number of steps necessary for outputting the terminal string

w(K) that corresponds to the minimal subtree K of some node is 0(\w(K)\),

where ^ (A ') ! is the length of this string.

We will say that for an annotated inference tree K there exists an alter

native inference tree, if there is a dotted arc leaving the production node p

corresponding to K and entering some production node p'. Then the minimal

subtree of node p' will be called alternative inference tree for tree A'.

The language L(G+) that the present algorithm enumerates can be infi

nite, therefore enumeration will be performed in a breadth-first manner. A

potentially infinite queue will be used for storing marked inference trees. By

a marked inference tree we will understand an annotated inference tree with

possibly marked those subtrees for which there exist alternative inference

subtrees.

Now it is possible to finish the proof, assuming that the condition predi

cate Rs that corresponds to the start symbol 5 of grammar G is true only on

a single value v of S attribute. The algorithm for enumerating the language

again has the initial step and the iterative step.

Initial step.

• The terminal string w(K) that corresponds to the minimal subtree of

node (S,v) is output.

• K is entered into the queue, marking all subtrees for which alternative

subtrees exist.

Iterative step. While the queue is not empty:

• Take the first inference tree A from the queue.

• If at least two subtrees of K are marked, enter A at the end of the

queue, removing the first marker from the left-hand side.

• Replace the first marked subtree of K by its alternative inference sub

tree, obtaining inference tree K'.

• Output u;(A'').

• If in K' there is a subtree to the right of the changed point with an

alternative, put K' at the end of the queue, marking all alternative

points from the changed point (including) to the right.

In the general case when Rs is true for several values vi,...,vn of S

attribute, n instances of the algorithm are executed in parallel with n separate

queues: the words for which the value of their inference tree is vi are output

on the first, n + l-st, 2n + l-st etc. steps of the algorithm, the words for which

that value is v2 are output on the second n -f 2-nd, In + 2-nd etc. steps, etc.

•

The limitation that there can be only one attribute in the attribute gram

mar can be removed. If there are several independent attributes a\,.. .,ak

with corresponding volumes . . . , |<-?fc|, the next corollary holds, only

then setup time is proportional to the product of all volumes. This corollary

follows from the observation that it is possible to encode several attributes

into one vector-like attribute.

Corollary 8 There exists an algorithm which, having received an arbitrary

finite unambiguous attribute grammar with k independent synthesized at

tributes and conditions, enumerates without repeating the corresponding lan

guage in setup time 0(|Gi| x ••• x I G f c l) , where \Gj\ is the volume of the

corresponding attribute grammar with only jth attribute, and ith step time

0(\wi\), where Wi is the word output in the ith step.

Obviously the most time-consuming part of this algorithm is the setup

step. If there is an attribute that confirms to some additional requirements,

the algorithm can be modified, improving the complexity of the setup step,

although at the same time increasing the time necessary for iterative steps.

We will say that a function for computing an attribute is monotonic if it

confirms to the following requirements:

1. / (c i , . . . , c „) > m a x (c i , . . . , c n) ,

2. If c- > a for every i £ { 1 , . . . n), then / (c j , . . . , c'n) > / (c i , . . . , cn).

We will call an attribute monotonic if the function for computing it is mono-

tonic. A condition predicate R over domain D will be called monotonic if

there exists such c € D that Vx G D : (x < c h R{x) = True) V (x >

c &; R{x] = False). If one of k attributes (see Corollary 8) is monotonic and

the corresponding predicates are monotonic as well, the following theorem

holds.

Theorem 9 There exists an algorithm which, having received an arbitrary

finite unambiguous attribute grammar with k independent synthesized at

tributes, one of which (kth) is monotonic, and conditions such that the con-

dition predicates that correspond to the kth attribute are monotonic, enu

merates without repeating the corresponding language in setup time 0{|C?i| x

• • • x |G/fc-ij xlog \Gk\), where \Gj\ is the volume of the corresponding attribute

grammar with only jth attribute, and ith step time 0(\w{\ x log \Gk\), where

Wi is the word output in the ith step.

The proof of this theorem is based on the proof of the previous theorem

and on the ideas of the proof of Theorem 1 of the previous section where

only algebraic expressions were considered.

Typical usage of this Theorem would be imposing constraints on the

length or depth of the words that we want to be enumerated. In fact, for

these and some other simple cases the complexity of the iterative step remains

the same as in the Theorem 6, i. e., 0(|t^|) instead of 0(|iu,-| x log

3.3 Examples

The first example will deal with synthesis of geometric formulas. It is some

times forgotten that such formulas are typed, with types 'scalar', 'linear',

'area', 'volume' instead of single type 'number 1. We can encode type corre-

spondence rules by the following attribute grammar:

E +— (E + E) aE <— if aEl = aE2 then aEl else "undefined"
E *— (E — E) cle *— if ^Ei = ^£2 then aEl else "undefined"
£ *- (E * E) aE *- aEl + aE2

sqrtfun(O) = 0; sqrtfun(l) = "undefined"
sqrtfun(2) = 1; sqrtfun(3) = "undefined"

In this example the domain of attributes is [0..3], and 0 corresponds to

scalar expressions, 1 — to linear expressions, 2 — to area expressions and 3 —

to volume expressions. In order to make the example easier to understand one

more domain value denoted by "undefined" has been added. We will assume

that the variables x and y are linear values (lengths), then the grammar

describes only expressions with correct type usage, prohibiting, e.g., adding

area to volume.

The next example deals with A-expressions. In order to describe, e. g.,

some language over N* (i. e., consisting of strings of natural numbers) it

is very convenient to use A-expressions describing higher order functions

in the definition of the language. For example, the most natural way of

describing the language consisting of those and only those strings whose

right half elements equal the corresponding squared left half elements (e. g.,

E «_ (E/E)
E «— s/E
E^x
E^y

aE <— aEl — c e 2

aE <— sqrtfun(aE)
aE*-l
aE « - 1

[1,2,3,4,1,4,9,16]) might look like this:

lcft(w) = map(right(w), Xx.x * x)

Here the higher order function map : JV*, (JV —» JV) —• JV* takes as arguments

a string consisting of natural numbers and a function from N to JV and

returns a string over JV obtained by applying the argument function to each

element of the argument string. A is used in such an expression for marking

the parameter of the argument function. It ft, right: N" —*• JV* are functions

that return respectively left and right half of the argument string.

The problem is, how to discover such language descriptions from examples

(here we are not interested in the type of examples — positive, negative,

both positive and negative). By using the results described in this paper it

is possible to efficiently enumerate such descriptions that conform to some

structural restrictions. After output of each hypothetical description it has

to be tested whether language examples match the description.

Language descriptions in the form of equations will be generated by the

following CFG:
A^S = S
S t— w
S <-teft(S)
S *— right(S)
S <— map(S, F)
N length(S)
S <— generate(N)
N^(N + N)
N<-(N- N)
Ni~(N*N)
N *- (N/N)
N « - F(AT)
/V X
F « - AXJV
X <— xX
X *— x

Although understanding of semantics of functional symbols is not necessary,

let us assume that length : N* —* N returns the length of the argument

string, and generate(n) returns [1 , 2 , . . . , n — 1, n].

Structural restrictions on language descriptions will be imposed by adding

attribute evaluation functions and conditions to CFG. The number of vari

ables of type Af in expressions is not pre-set, it is limited only by attribute

domain extent. Variables will be of form x, etc. We want to ensure

that equations generated by the grammar do not contain free variables of

type N, i. e., for every variable of this type appearing in expression (not

under A) there is an instance of the same variable appearing under A to the

left. For this purpose we can use an attribute with the following evaluation

functions and conditions:

A <— S = S s$k == as2 = 0
S *— w as *— 0
5 *— left(S) as <— as
S <— right(S) as <— as
5 <— rnap(S,F) as <— max(as,ap)
JV <— lengtk(S) ajv <— as
5 +— generate(N) as <— a#
JV <—(JV + JV) ajv «— maxfajv^ajVj)
JV *— (JV — JV) ajv <— Tnax(a^i,a^2)
JV •<— (JV * JV) ajv <— m a x f a j v ^ a ^)
JV <— (N/N) ajv «— max(a jV) ,a jv 2)
JV <— F(A') ajv t— m a x (a F , ajv)
N X ajv *— ax
F <— XX.N ax = ajv & o f <— ax - 1
X <— i X ajf <— + 1
X <— x ajt <— 1

Similarly we can ensure that the statement has at least one occurrence

of string variable w and that outer symbols of expressions on both sides of

equality sign are different (to exclude enumeration of trivial statements like

left(w) = left(w))). According to Corollary 8 it is possible to efficiently

enumerate all statements that conform to all these evaluation function and

condition sets.

4 More complex attribute grammars

4.1 Introduction

In this section the question of whether more complex attribute grammars

than considered in the previous section can be used for describing inductive

synthesis search space will be studied. Let us shortly remind the problem

statement. We want to be able to use a priori knowledge in the process of

inductive synthesis, and we should be able to accommodate a wide range of

possible types of such knowledge.

If the objects we are trying to synthesize are, e. g., expressions in some

fixed signature, then in the simplest case that knowledge will be (after as

signing some interpretation to the signature) function values computed on

some sample argument values, i.e., usual input/output examples. However,

we want to be able to describe also some other properties of the unknown

expression (function), i.e., treat the unknown function not as a black box

function but as a "gray box" function. These other properties could be ei

ther some entirely syntactical properties of the expression we are looking for,

or, taking into account also some interpretation, dynamical properties of the

function evaluation process.

The question we are seeking answers to in this section is, how we should

present our knowledge so that it would be possible to rapidly examine those

and only those objects that match our knowledge? In the previous sections

we already examined some possibilities; here we want to study a more general

type of knowledge presentation.

Our central aim is synthesis of syntactic objects, i.e., expressions over

some fixed signature or programs in some fixed programming language, that

can be supplemented by semantic interpretation. It is convenient to describe

such syntactic objects by means of attribute grammars. Then a grammar

generates a language with strings belonging to this language being our syn

tactic objects. Here the type of attribute grammars we are able to deal with

will be more general than only attribute grammars with one synthesized at

tribute, as in the previous section. Extending the class of attribute grammars

enables us to encode even wider range of hypothetical knowledge about the

unknown object

The main problem we will solve here is the following: if some attribute

grammar is given, is it possible to efficiently enumerate the corresponding

language without considering strings that do not belong to it? The aim of

this section is to show that, if some conditions hold, it is possible.

The results discussed in this section generalize the results presented in the

previous sections. We show that a more general class of attribute grammars

can be considered, having possibly also inherited attributes and dependencies

between different attributes. Thus by this section we conclude the research

direction this dissertation is devoted to.

4.2 Definitions

We suppose that an attribute grammar associates constant values with ter

minal symbols. For nonterminals attribute values are evaluated by means

of corresponding functions. Every production of the grammar has one func

tion for each synthesized attribute of the left-hand side nonterminal and one

function for each inherited attribute of each of the right-hand side nontermi

nal and terminal symbols. If there is a production with several instances of

the same nonterminal on the right-hand side, we would write the expression

denning the function for computing attributes like this:

S AA j as <— aAl - aA2

In the previous section we used conditions — binary predicates that could

be attached to every production — , and only inference trees with every

predicate being true for every tree node were acceptable. Here predicates will

be modeled by partially defined functions, and only inference trees with all

attributes defined will be acceptable; see below for more detailed explanation.

By language that is defined by such a grammar we will understand the

set of all strings that can be inferred by means of acceptable inference trees.

There is some domain associated with every attribute. From now on we

will consider only attributes with finite domains D (for the sake of simplicity

we will assume that these domains are subsets of N). That means that argu

ments of functions for computing attributes, as well as their results belong to

D. As we already mentioned, these functions can be partially defined as well.

We will say that a grammar is finite if its attributes are of finite domain.

In the following discussion, in order to avoid talking about complexity

of attribute evaluation functions, we will assume that each function value,

given function arguments, can be computed in constant time.

We will say that an algorithm enumerates a language in setup time T

and ith step time X1,', if this algorithm outputs the first string w\ in time

T + Ti, and the ith. string W{ (i = 2, 3 , . . .) in time X; from the moment when

outputting the previous string Wi-i was finished.

Now let us repeat some definitions in a more formal manner that would

be convenient for presenting our results.

Let G = (T, N, P, S) is a context-free grammar, where:

• T — finite terminal symbol set;

• N — finite nonterminal symbol set;

• S € N — start symbol;

• P — a finite production set, where each production (1 < k < \P\) is

in form

Ak *- Bk,iBkt2 ... £ M t) , where Ak € N and Bkii e NUT

By trees we will denote structures of the form

• (Tt) , where T{ e T, or

• {Ni, Ki, A " 2 , . . . , Kn), where N E N and A_, are trees.

We will say that a tree A corresponds to a terminal symbol T;, if A' = (T;).

We will say that a tree A corresponds to a production Ni *— Bk,iBK,2 ,..

Bk,t(k}, if A = (Ni,Kk,i,KK,2... Kkl3(k)), where trees Ifjy correspond to

symbols Bk,i. We will say that a tree K corresponds to a nonterminal Ni, if

it corresponds to some of productions Ni <— Bk,\Bk^, • • • Bk,s[k)-

Now we will define the terminal string w(K) corresponding to a tree K:

mm) = Ti
w((N, Ku K2,..., A'„)) = w{Kt)w(K2) • • • w(Kn)

A string w ET* can be inferred in grammar G, if there exists a finite tree

Kw corresponding to start symbol S such that w = w(Kw); such tree will

be called an inference tree of w. The set of all strings that can be inferred

in G will be called language L(G). The grammar G is unambiguous, if for

every string w e L(G) there exists only one inference tree Kw. By depth of

a string w £ L(G) we will denote the depth of the corresponding inference

tree.

Each of the elements Ck £ NUT may have several attributes c y , domains

of all attributes are finite subsets of natural numbers. Values of attributes

assigned to T elements (terminals) are constants, while values of N (nonter

minals) are computed using attribute evaluation functions. We will denote

by Cfc the tuple of all attributes of C/t, i.e., (c j t t o , . . . , Ckj).

There will be two kinds of attributes: synthesized and inherited at

tributes. We will denote synthesized attributes by <? y n and inherited at

tributes by ctnh.

Every production has several attribute evaluation functions assigned to

it: if the production is in form C;0 <— C t l C, ' 2 . . . C t j , then there is a corre

sponding function for each synthesized attribute of C,-0 and for each inher

ited attribute of dyCi2. . . C ^ . For a synthesized attribute ca?n
k the evalua

tion function is f(di0,..., c^-), for an inherited attribute c j ^ the evaluation

function is /(c,- 0 , c,-m), i.e., synthesized attributes can depend on all other

attributes in the production, while inherited attributes can depend only on

other attributes of the same symbol as well as on attributes of the left hand

side symbol of the production.

Although there could be the same function used as the attribute eval

uation function for several attributes (e.g., the identity function), we will

assume that each attribute has its own, separate evaluation function (possi

bly partially defined). If we regard some evaluation function as defined by

means of a table where there is a separate row for each possible argument tu

ple together with the corresponding function value, then by function volume

we will understand the number of rows in this table. By production volume

we will understand the sum of volumes of all attribute evaluation functions

attached to this production. By volume of the grammar we will call the sum

of all grammar production volumes.

A context-free grammar G that is supplemented with attributes and at

tribute evaluation functions will be called attribute grammar and denoted by

G+.

A tree (T;) has the same attributes as the terminal symbol Tj, and at

tribute values are the same constants. A tree (Ci 0 , A t l , Ki2... K\}) that cor

responds to the production Pi = (Ci0 <— C t l Ci 2 . . . CV,-) has the same synthe

sized attributes as nonterminal C^D, and attributes are evaluated by first eval

uating the values of attributes c t l , . . . ,c~i } that are assigned to A ' t l , . . . , K{}

and then by using the corresponding functions attached to production Pi.

Similarly, subtrees Kj have the same inherited attributes as nonterminals

We will say that a string w can be inferred in grammar G + , if

• it can be inferred in G, and

• it is possible to compute the values of all attributes assigned to the

inference tree and each of its subtrees (it is not always possible, because

attribute evaluation functions axe partially defined).

By language L(G+) generated by an attribute grammar G+ we will under

stand the set of all strings that can be inferred in G+.

4.3 The main result

Theorem 10 There exists an algorithm which, having received an arbitrary

finite unambiguous noncircular attribute grammar, enumerates without re

peating the corresponding language in setup time 0(\G+\k), where \G+\ is the

volume of the grammar and k is the maximal number of attributes belonging

in the grammar to a single symbol, and ith step time (?(Ju;,'|), where Wi is the

string output in the ith step.

We will define the grammar graph QQ+ corresponding to the grammar

G 4". It will contain two kinds of nodes: terminal and nonterminal symbol

nodes and production nodes.

There will be a symbol node in Qa+ corresponding to each triple {C,a,v),

where C € N U T, a is some attribute belonging to C and v is some value

of this attribute. Production nodes will correspond to table rows (equalities)

that define G+ attribute evaluation functions: if the function / that is defined

for computing attribute c of production C, 0 *— C^C^ . . . C t j is defined by

n rows of the form /(c, - 0 , c ^ , . . . , c,^) = c, each of these rows will have a

corresponding production node p. For each p there will be the following arcs

in QG+ as well. There will be an arc from p to symbol nodes (G, 0 , c, 0 fc, v),

where CI0 K is an attribute present in the definition of the attribute evaluation

function corresponding to P and V is some value of this attribute that is

used in the specific table row for P. These symbol nodes will be called

UPPER NODES of the production node P. There will also be arcs from every

node {CiM,CIM K, V) (M > 0) to p where c , m f c is some attribute present in the

definition of the attribute evaluation function corresponding to P and V is

some value of this attribute that is used in the specific table row for P; these

symbol nodes will be called LOWER NODES of P.

Now we will define the COMPRESSED GRAMMAR GRAPH CQ+ that corresponds

to the grammar graph Qa+ • It will also contain symbol nodes and production

nodes. In this graph symbol nodes will contain pointers to symbol nodes in

grammar graph QQ+ , and similarly production nodes will contain pointers to

production nodes in the grammar graph QQ+ • For each symbol node in Cg+

there will be as many pointers to symbol nodes in QG+ as there are attributes

attached to the corresponding symbol in G + , and for each production node

in Cg+ the number of pointers to symbol nodes in QG+ will equal the number

of attribute evaluation functions attached to the corresponding production

in G + .

The compressed grammar graph Cg+ will contain the following nodes:

• For each terminal symbol in G+ there will be a single terminal symbol

node in CQ+ with pointers to corresponding terminal nodes in QQ+ (for

each attribute c of C € T there is only one node {C,c,v) in QG+)-

• If, for some production P with k attached attribute evaluation func

tions, there are k production nodes p; in QG+ such that for every at

tribute c of the right hand side of P and for all lower nodes of pi

corresponding to c there is a symbol node s, in CG+ with pointers to

all these nodes, than there is a production node in CG+ with pointers

to all nodes p,-, and there are arcs in CG+ from all s,- to this production

node.

• If there is a set of symbol nodes Si in QQ+ such that there is a production

node p in CQ+ containing pointers to all lower nodes of s;, then there

is a symbol node in CG+ containing pointers to all s, nodes, and there

is an arc from p to this symbol node.

For nodes of CQ+ (not necessarily for each of them) we will define weights:

• the weight of terminal symbol nodes is 0;

• if a production node p has lower nodes s j , . . . ,sk, the weight of this

node equals m a x (u j a i , . . . , wSk) + 1, where wSt are weights of p lower

nodes;

• if pi,. . . ,pk are production nodes with a common upper node s whose

weights are defined and are equal to wPl,..., wPk, then the weight of $

equals minfu ; ! , . . . ,u?jt), otherwise the weight of s is not defined (i. e.,

if there is no such production node).

Graph CG+ will be augmented by dotted arcs according to the following

rule. Assume that 5 is some symbol node and pi,... ,pk are production

nodes with defined weights w(pi) such that their upper node is s, and they

are ordered so that w(p\) < w(p2) < • •• < w(pk). Then dotted arcs go from

s to pi, from pi to p 2 ; - • •: from pk-i to p^.

By C we will denote some symbol of G, and by v = (vi,..., vk) — some

vector of its attributes' values. It is easy to see that the weight of the symbol

node in CG+ that corresponds to C and has pointers to nodes (C, CJ,VJ) in

QQ+ equals the depth of the most shallow inference tree that corresponds to

C whose attributes' value vector is v.

Grammar graph Qa+ construction. Can be performed in time 0(|G + |) ,

because in QQ+ the number of production nodes equals \G+\ and each pro

duction node can be added in constant time.

Graph compression. The compressed graph CG+ will be constructed in

several stages. During the first stage for each grammar symbol two attributes

will be compressed, obtaining a partial CG+ with every node containing no

more than two pointers to nodes of QG+. In the consecutive stages other

attributes will be added, until the full C<j+ is obtained. For the sake of

simplicity here we will briefly consider only how the first stage is carried out.

The algorithm will consist of the initial step and iterative step.

Initial step. Terminal symbol nodes of Cc+ are constructed. Weights 0

are assigned to these nodes.

Iterative step. Consider all pairs of production nodes pi and p2 in QG+

such that no corresponding node in CG+ is constructed yet, but for all lower

nodes in QQ+ there are matching nodes in CQ+ • Then a production node p

in CQ+ with pointers to pi and p2 can be constructed and its weight can be

computed. If there is a symbol node s in C3+ with pointers to upper nodes of

Pi and P2, a dotted arc is added in CG+ from the last production node on the

path formed by dotted arcs leaving s to p. Otherwise such s is constructed,

and a dotted arc is added from s to p.

The j - th stage of graph compression can be performed in time 0(| G+ |J+1),

hence we get the time complexity estimation of 0 (|G +) f c) where k is the

maximum number of attributes attached to a single symbol in G+.

In the terms of Theorem 10 grammar graph construction and graph com

pression comprise the setup stage, therefore we have shown that time com

plexity of the setup stage is 0(\G+\k).

String output. The inference tree A" of a string w € L{G+) will be called

annotated if there is a node of graph CG+ associated with every K sub

tree Ki according to the rule that, if Ki is in form (5) , where S £ T , or

(S, A~;,i, . . . , A~,>), where S € N, and the value of its attribute vector is v,

the associated graph node is {S,v).

We will define the minimal subtree of a symbol node s in CG+ that cor

responds to symbol S. If S € T, then the minimal subtree is (S). If 5 E JV

and there is no dotted arc leaving s, the minimal subtree is not defined for

this node. If S € JV and there is a dotted arc leaving s, then we have to

consider the production node p that this arc enters. If this production node

corresponds to the production P <— Si... Sn, then the minimal subtree of

s is (5", Ku • - • > Kn}, where Ki are minimal subtrees of p lower nodes. If for

some node the minimal subtree is defined, it is a finite object with depth

equal to the weight of this node.

Similarly we define the minimal subtree of a production node of CQ+ . It

will be defined only for production nodes with defined weights. The minimal

subtree of a production node will be equal to the minimal subtree of its

upper node. The depth of minimal subtrees of production nodes are equal

to their weights as well. The number of steps necessary for outputting the

terminal string w(K) that corresponds to the minimal subtree K of some

node is 0(\w(K)\), where |u>(A')| is the length of this string.

We will say that for an annotated inference tree K there exists an alter

native inference tree, if there is a dotted arc leaving the production node p

corresponding to K and entering some production node p'. Then the minimal

subtree of node p' will be called alternative inference tree for tree K.

The language L(G+) that the presented algorithm enumerates can be in

finite, therefore enumeration will be performed in a breadth-first manner.

A potentially infinite queue will be used for storing marked inference trees.

By marked inference trees we will understand annotated inference trees with

(possibly) marked subtrees for which there exist alternative inference sub

trees.

Assuming that CQ+ contains only one node 5 corresponding to the start

symbol S of grammar G+, the algorithm for enumerating will be as follows.

Initial step.

• The terminal string w(K) that corresponds to the minimal subtree of

the node s is output.

• K is entered into the queue, marking all subtrees for which alternative

subtrees exist.

Iterative step. While the queue is not empty:

• Take the first inference tree A from the queue.

• If at least two subtrees of K are marked, enter A' at the end of the

queue, removing the first marker from the left-hand side.

• Replace the first marked subtree of K by its alternative inference sub

tree, obtaining inference tree A ' .

• Output w(K').

• If in K' there is a subtree to the right of the changed point with an

alternative, put K' at the end of the queue, marking all alternative

points from the changed point (including) to the right.

In the general case when graph CQ+ contains n nodes Sj corresponding to

the grammar start symbol S, n separate queues are set up. The words for

which the value of their inference tree corresponds to Si are output on the

first, n + 1-st, 2n + 1-st etc. steps of the algorithm, the words for which that

value corresponds to 52 are output on the second, n + 2-nd, 2n + 2-nd etc.

steps, etc.

4.4 Notes on implementation details

The described algorithms are under development as a practical inductive

inference system. Here we will shortly describe its architecture. For purposes

of practical implementation some deviations were made compared to the

theoretically "clean" algorithms.

There is a separate module of grammar graph construction and a separate

module of graph compression in the system. According to the theoretical

algorithms these two modules have to work sequentially in the order that

they were just mentioned in. However, we have noticed that for some search

spaces it is more efficient to start compressing the graph before it is fully

constructed. To be able to organize synthesis process in such manner we

implemented a control module which acts as a dispatcher between graph

constructor and graph compressor, that can be easily customized for different

dispatching strategies.

For real world examples domain node and production node sets become

quite large, and we have experimented with several strategies of compressing

these sets. In the compression process several domain nodes are merged into

a single node. When such compression takes place, the graph loses precision

in the sense that it encodes some strings that do not belong to the language.

However, if we add to the grammar some more information, e.g., additional

input /output examples, incorrect paths through the graph are filtered out.

In the case of input/output examples graph nodes can be compressed more

safely if they have values further from zero. For experimentation purposes we

have implemented a separate domain node writer module that can be easily

changed to support different node compression strategies.

A separate module implements graph cleaning procedure. According

to our theoretical algorithms graphs are constructed and compressed in a

bottom-up manner, and language strings are output in a top-down manner.

Compressed graphs can be made smaller by traversing noncompressed graphs

in a top-down manner and registering which nodes are reachable; then during

compression only reachable nodes are considered. We call this process graph

cleaning. Graph cleaning can help us to manipulate with more attributes

and with deeper inference trees.

5 Conclusion

To summarize, the main result of this dissertation is construction of the

following three algorithms:

• an algorithm that can efficiently enumerate a set of arithmetic ex

pressions that correspond to several input/output examples and match

some simple restrictions on syntactic structure;

• an algorithm that can efficiently enumerate a language generated by a

simple attribute grammar with only synthesized attributes (and some

other restrictions);

• an algorithm that can efficiently enumerate a language generated by a

more general kind of attribute grammars.

These results were presented at several international conferences, including

International Conferences on Algorithmic Learning Theory in 1993 (Tokyo),

1996 (Sydney) and 1998 (Otzenhausen, Germany).

Usually "inductive synthesis" means rigorous, but practically unimple-

mentable algorithms, and "machine learning" means practical approach and

theoretically not so clear, ad hoc algorithms. Here we have tried to use

rigorous algorithms to practical synthesis problems.

Although in some sense this dissertation concludes a series of related

works, lots of unresolved and interesting problems remain, especially from

the practical side. It is necessary to finish implementation of the most general

version of the presented algorithm as a "workbench" of practical inductive

synthesis, and to make extensive computer experiments.

References

[1] D.Angluin: Easily inferred sequences. Memorandum No. ERL-M499, Uni

versity of California, 1974

[2] G.Barzdins: Inductive synthesis of term rewriting systems. Lecture Notes

in Computer Science, vol.502 (1991), pp. 253-285

[3] J.M.Barzdins and G.J.Barzdins: Rapid construction of algebraic axioms

from samples. Theoretical Computer Science 90 (1991), pp. 199-208

[4] J.Barzdins, G.Barzdins, K.Apsitis, U.Sarkans. Towards Efficient Induc

tive Synthesis of Expressions from input/output Examples. Lecture Notes

in Computer Science, vol.744 (1993), pp. 59-72.

[5] J.Barzdins, U.Sarkans. Incorporating Hypothetical Knowledge into the

Process of Inductive Synthesis. Lecture Notes in Computer Science,

vol.1160 (1996), pp. 156-168.

[6] P.van Emde Boas, R.Kaas and E.Zijlstra: Design and Implementation

of an Efficient Priority Queue. Mathematical Systems Theory 10 (1977),

pp. 99-127

[7] J.Barzdins and G.Barzdins: Towards efficient inductive synthesis: rapid

construction of local regularities. Lecture Notes in Computer Science,

vol.659 (1993), pp. 132-140

[8] R.Freivalds: Inductive inference of recursive functions. Qualitative theory.

Lecture Notes in Computer Science, vol.502 (1991), pp. 77-110

[9] R.Freivalds, J.Barzdins, K.Podnieks: Inductive inference of recursive

functions: Complexity bounds. Lecture Notes in Computer Science,

vol.502 (1991), pp. 565-613

[10] J.H.Holland. Adaptation in Natural and Artificial Systems: An Intro

ductory Analysis with Applications to Biology, Control, and Artificial

Intelligence. MIT Press, 1992.

[11] E.Howard: An Introduction to the History of Mathematics. New York:

Holt, Reinhard and Winston 1961

[12] J.R.Koza. Genetic Programming: On the Programming of Computers

by Means of Natural Selection. MIT Press, 1992.

[13] J.R.Koza. Genetic Programming II: Automatic Discovery of Reusable

Programs. MIT Press, 1994.

[14] P.Langley, G.Bradshaw, H.A.Simon. Rediscovering chemistry with the

BACON system. In Machine Learning: An Artificial Intelligence Ap

proach, R.S.Michalski, J.G.Carbonell, T.M.Mitchell (eds.), Tioga Press,

Palo Alto, CA, 1983.

[15] P.Langley, H.A.Simon, G.Bradshaw. Heuristics for Empirical Discov

ery. In Computational Models of Learning, L.Bolc (ed.), Springer-Verlag,

1987.

[16] U.Sarkans, J.Barzdins. Using Attribute Grammars for Description of

Inductive Inference Search Space. To appear in Proceedings of the 9th

International Conference on Algorithmic Learning Theory, Otzenhausen,

Germany, 1998.

