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ABSTRACT 
 
Development of complex analytical scheme for determination of priority persistent 

organic pollutants in fish using high resolution mass specrometry. Začs D., supervisors Dr. 

chem., prof. Vīksna A. and Dr. chem., asoc. prof. Bartkevičs V. Doctoral thesis in analytical 

chemistry, 129 pages, 23 figures, 5 tables, 190 literature references, 11 appendices. In English. 

A new analytical scheme for efficient and reliable simultaneous analysis of seven groups of 

persistent organic pollutants (POPs) in fish from a single sample extraction procedure has been 

elaborated. Separation of components by gas chromatography (GC) or ultra high performance liquid 

chromatography (UHPLC) and detection by high resolution mass spectrometry (HRMS) was used 

to ensure selective determination of the analytes of interest at toxicologically significant levels. 

Intensive multi-stage column chromatography clean-up and fractionation procedure ensured the 

elimination of mass spectral interferants from the fraction containing poorly investigated 

toxicologically significant polyhalogenated (brominated and mixed bromo/chloro-substituted) 

dibenzo-p-dioxins and dibenzofurans (PBDD/Fs and PXDD/Fs). For the first time, the analytical 

capabilities of Orbitrap mass spectrometry were applied to the analysis of POPs. The application of 
13C12-labeled surrogates of the analyzed compounds allowed internal standardization and accurate 

measurement of selected contaminants. The developed procedure was robustly validated and used 

to measure the occurrence of selected POPs in Baltic wild salmon samples and eel samples 

collected from Latvian lakes. The universal presence of poorly studied PBDD/Fs and PXDD/Fs, as 

well as polyhalogenated mixed bromo/chloro-biphenyls (PXBs) was confirmed in the investigated 

samples. However, these compounds were found to be minor contaminants, compared to their 

chlorinated analogs.  

 

PERSISTENT ORGANIC POLLUTANTS, FISH, HIGH RESOLUTION MASS 

SPECTROMETRY, BROMINATED FLAME RETARDANTS, POLYHALOGENATED 

AROMATIC COMPOUNDS, ORBITRAP 
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ANOTĀCIJA 

 
Prioritāro noturīgo organisko piesārņotāju kompleksās analīzes shēmas izstrādāšana 

zivīs ar izšķirtspējas masspektrometrijas metodi. Začs D., zinātniskie vadītāji Dr. ķīm., asoc. 

prof. Bartkevičs V. un Dr. ķīm., asoc. prof. Vīksna A. Promocijas darbs, 129 lappuses, 23 attēli, 

5 tabulas, 190 literatūras avoti, 11 pielikumi. Angļu valodā. 

Tika izstādāta jauna analītiskā shēma efektīvai un drošai septiņu grupu noturīgo organisko 

piesārņotāju (NOP) vienlaicīgai analīzei zivīs no vienas ekstrakcijas procedūras. Komponentu 

atdalīšana ar gāzu hromatogrāfiju (GH) vai ultra augsti efektīvo šķidruma hromatogrāfiju 

(UAEŠH) un detektēšana ar augstas izšķirtspējas masspektrometriju (AIMS) nodrošina 

interesējošo analītu selektīvu noteikšanu toksikoloģiski nozīmīgākajos līmeņos. Intensīva multi-

soļu kolonnas hromatogrāfijas attīrīšanas un frakcionēšanas procedūra nodrošina traucējošo vielu 

izslēgšanu no frakcijas, kas satur maz pētīto toksikoloģiski nozīmīgos polihalogenētos bromētos 

un jauktos bromo/hloro-aizvietoto dibenzo-p-dioksīnus un dibenzofurānus (PBDD/F un PXDD/F). 

Pirmo reizi tika izvērtētas Orbitrap masspektrometrijas analītiskās iespējas NOP analīzēs. 13C12-

iezīmēto analīzējamo savienojumu surogātu izmantošana ļauj lietot iekšējo standartizēšanu un 

izmeklējamo kontaminantu precīzu noteikšanu. Izstrādātā procedūra tika validēta un pielietota 

izmeklēto NOP sastopamības noteikšanai Baltijas jūras savvaļas laša paraugos un zušu paraugos, 

kas tiek ņemti no Latvijas ezeriem. Universāla PBDD/F un PXDD/F, kā arī polihalogenēto jaukto 

bromo/hloro-bifenīlu (PXB) klātbūtne tiek apstiprināta izmeklētajos paraugos, taču tika konstatēts, 

ka šo savienojumi koncentrācija salīdzinot ar hlorētiem analogiem ir neliela. 

 

NOTURĪGIE ORGANISKIE PIESĀRŅOTĀJI, ZIVIS, AUGSTAS IZŠKIRTSPĒJAS 

MASSPEKTROMETRIJA, BROMĒTIE LIESMAS SLĀPĒTĀJI, POLIHALOGENĒTI 

AROMĀTISKIE SAVIENOJUMI, ORBITRAP  
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INTRODUCTION 

 
The 20th century was associated with rapid technological progress, which led to increased 

welfare in many parts of the world. A large number of halogenated aromatic chemical substances 

were developed and put to use in numerous applications, such as PCBs for insulating fluids in 

electrical equipment, halogenated pesticides to protect crops from insects and fungi, and 

polybrominated diphenyl ethers (PBDEs) as flame retardants incorporated into polymers to reduce 

the risk of fires. The majority of these chemicals were designed to be stable with regard to long 

lasting use in their applications. However, the chemical stability is also a significant drawback of 

these compounds, causing them to be persistent in the environment. The stability of these 

substances resulted in increasing environmental presence, and they were soon shown to cause 

adverse effects in wildlife, in particular at high trophic levels. Due to the unfavorable properties, 

production of these POPs was gradually phased out and the unintentional release was decreased by 

optimization of the industrial processes and stricter legislative control. Although production of most 

POPs has been phased out for over 20 years, we are still facing considerable POP levels in the 

environment [1-3]. 

The practical relevance of the problem. According to the sources of POPs in the 

environment, they can be sub-divided as (i) chlorinated pesticides, (ii) industrial chemicals (PCBs, 

brominated flame retardants (BFRs) (e.g., PBDEs), and (iii) unintentionally produced compounds 

(such as PCDD/Fs) [4]. The majority of these compounds are toxic and due to the persistency and 

lipophilicity tend to bioaccumulate in food chains. Many of them are known xenobiotics of high 

toxicological significance with an aryl hydrocarbon (Ah) receptor mediated mechanism of toxicity. 

The most toxic representative is 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD or TCDD). The 

toxicities of other individual halogenated POPs are expressed relative to 2,3,7,8-TCDD. This toxic 

equivalency factor (TEF) concept is used to determine the toxic equivalent concentration (TEQ) in a 

sample, providing the information on overall toxicological hazard caused by "dioxin-like" (DL) 

contaminants present in the sample. In this context, DL-contaminants refer to substances that have 

similarities to 2,3,7,8-TCDD in terms of structure, physicochemical properties, and in the toxic 

responses they elicit. It has been suggested that for including a compound in the TEF concept, it 

should: (i) share certain structural relationships to the PCDD/Fs; (ii) bind to the Ah receptor; (iii) 

elicit Ah receptor-mediated biochemical and toxic responses; (iv) be persistent and accumulate in 

the food chain [5,6]. 

Only 17 out of the 210 PCDD/Fs and 12 out of the 209 PCBs have been assigned TEFs and 

meet the stated criteria. Nevertheless, a wide range of other potential DL-contaminants and other 



 10 

toxicants could be present in the samples at high levels and alter their contamination status. Many 

laboratories have developed effective analytical protocols for the isomer-specific analysis of 

toxicologically significant 2,3,7,8-chlorine substituted PCDD/Fs and DL-PCBs in environmental 

samples, and many other DL-compounds may be included in the scope of analysis in the future. The 

lack of analytical and toxicological data precludes the assignment of TEFs to many DL-compound 

candidates. The toxicological data [7-10] on PBDD/Fs, PXDD/F, and PXBs reveal a similar mode 

of Ah receptor mediated toxicity seen in PCDD/Fs, with similar or, in some cases, higher relative 

potencies [11]. Therefore, the elaboration of reliable complex methodologies that are capable of 

simultaneously covering different classes of priority POPs, including organobromines, such as 

BFRs, PBDD/Fs, PXDD/Fs, PXBs, and their chlorinated analogs, is of great significance in terms 

of providing a complete information on the contamination status of analyzed samples. 

The aim of the work. Elaboration of an efficient and reliable analytical scheme for the 

simultaneous analysis of seven target groups of POPs (PCDD/Fs, PBDD/Fs, PXDD/Fs, PCBs, 

PXBs, and BFRs (including PBDEs and hexabromocyclododecanes (HBCD)) in fish by a single 

sample extraction procedure using high resolution mass spectrometric (HRMS) detection.  

The approach used. To achieve the aim of the work, several tasks were proposed: 

i) Development of an efficient sample extraction and clean-up procedure, and selection of 

optimal instrumental conditions for the analysis of compounds of interest; 

ii) Validation of the elaborated method for fish matrix; 

iii) Application of the developed method for analysis of selected POP groups in fish from the 

Baltic region; 

iv) Characterization of contamination of fish from the Baltic region with selected POPs, 

including the evaluation of the contribution of the less studied PBDD/Fs, PXDD/Fs, and PXBs to 

the overall contamination status. 

Scientific novelty.   

i) Improvement of analytical methodologies for the determination of brominated and mixed 

brominated/chlorinated POPs using HRMS; 

ii) Implementation of a new type of HRMS (Orbitrap-HRMS) in the analysis of POPs; 

iii) Comparative evaluation of Orbitrap-HRMS versus conventional MS detection approaches 

in the analysis of BFRs; 

iv) Characterization of the contamination status of fish from the Baltic region with largely 

unexplored brominated and mixed brominated/chlorinated contaminants. 
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Practical application of the work. The elaborated analytical scheme could be applied to 

performing continuous European monitoring programs for the selected POPs in fish and fish 

products. 

Scientific publications.  

1. Zacs, D.; Bartkevics, V.; Frank, H.  Levels and congener profiles of PCDD/Fs and dioxin-
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1.  LITERATURE REVIEW 
 

1.1.  Compound classes included in the scope of the study 

1.1.1. Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) 

The impact of PCDD/Fs on the environment has been a source of great concern since the 

beginning of the 1970s. PCDD/Fs commonly referred to collectively as "dioxins", are two classes of 

"quasi-planar" tricyclic aromatic ethers representing 210 different compounds (congeners) in total, 

including 75 PCDDs and 135 PCDFs. The general structures of these classes of compounds are 

given in Figure 1.1. 

 
Fig. 1.1. The general molecular structure of PCDD/Fs 

 

PCDD/Fs have never been commercially produced, however they are present as trace 

contaminants in various industrial chemicals and technical products (chlorophenols, PCB 

formulations, "Agent Orange", etc.), or are formed unintentionally in various combustion processes 

such as waste incineration, in the production of metals, in the bleaching of pulp with chlorine gas 

[2,12,13]. The improvements and optimization of the treatment of industrial emissions resulted in 

reduced release of PCDD/Fs into the environment, and the relative significance of sources such as 

open burning of waste or secondary sources such as the release of pollutants from "hot spots" has 

increased [2,13,14]. A number of accidents, such as the explosion in Seveso, Italy and the Yusho 

accident in Japan when PCDD/Fs were released into the environment during the late 1960s and 

1970s increased public awareness and concern about these pollutants. 

PCDD/Fs have similar chemical and physical properties, and their toxicity is highly dependent 

on the chlorination degree and the position of the chlorine substituents. Congeners which are fully 

chlorinated at the positions 2, 3, 7, and 8 (Figure 1.1) are the most toxic ones, including 7 PCDDs 

and 10 PCDFs. The most toxicologically significant congener 2,3,7,8-TCDD is one of the most 

toxic chemicals ever described [15]. The extreme toxicity of 2,3,7,8-TCDD was first showed in 

acute toxicological experiments with guinea pigs where low lethal doses (LD50) of 0.6 – 2.5 μg kg-1 
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bodyweight (orally ingested) were determined for this congener [16]. The toxic action of the 

2,3,7,8-substituted congeners is mediated through binding to the Ah-receptor, which is present in 

most vertebrate tissues [6] and results in multisite carcinogenicity and other adverse effects. The 

difference of affinity of individual PCDD/F congeners to the Ah-receptor resulted in their different 

toxicities. In order to facilitate risk assessments and regulatory control, the concept of TEFs was 

proposed [5,6]. According to this approach, the toxicity of different congeners relates to the toxicity 

of the most toxicologically significant 2,3,7,8-TCDD which has a TEF 1, while other 

representatives have values ≤1. A number of TEF-systems have been developed (e.g., the Nordic-

TEF and the I-TEF), however the World Health Organization TEF (WHO-TEF) is the 

internationally used system today and the latest re-evaluation of the TEFs in 2005 provides TEF 

values ranged from 1 for 2,3,7,8-TCDD and 1,2,3,7,8-PeCDD to 0.0003 for OCDD and OCDF [6]. 

In order to express the toxicity of the sample due to the presence of PCDD/Fs, the concentration of 

each individual congener is multiplied by its respective TEF value, and all products are added, to 

give a single 2,3,7,8-TCDD equivalent (toxic equivalent or TEQ). This approach can be described 

mathematically by the equation 1.1. 
 

𝑇𝐸𝑄 = ∑ 𝐶𝑛 × 𝑇𝐸𝐹𝑛𝑘
𝑛=1                                      (1.1)         

where: TEQ – toxic equivalent; 

 Cn – concentration of the individual congener in the sample; 

 TEFn – established TEF for the individual congener. 

 

1.1.2.  Polychlorinated biphenyls (PCBs)  

PCBs are a class of organic compounds characterized by two benzene rings linked by a C-C 

bond, which were first discovered in the late 1800s and first commercially synthesized in 1929 [17]. 

PCBs comprise a group of 209 structurally distinct congeners with 10 PCB homologue groups 

(mono- to deca-CBs) with different numbers of isomers. The general molecular structure and 

nomenclature of the PCBs is shown in Figure 1.2. Today, a numbering system (PCB 1 to PCB 209) 

developed in 1980 [18] is used for the identification of individual PCB congeners.  

Crude PCB formulations have been widely used in transformers, capacitors, heat transfer 

fluids, e.g., in the production of asphalt, sealants in the construction of buildings, as additive to 

paint and in carbonless copy paper. Properties like thermal stability, high resistance to oxidation and 

reduction, electrical conductance, low flammability, resistance to acids and alkali were 

advantageous in all of these applications. The total accumulated volume of crude PCBs produced in 

the world has been estimated to be more than 1.3 million tons [3], with the peak annual production 
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around 1970. PCBs are lipophilic and several of those are stable enough to be strongly 

bioaccumulative in wildlife and humans, and they are ubiquitously distributed almost in every 

matrix including air, water, soil, and sediments [19].  

 

 
Fig. 1.2. The general molecular structure of PCBs 

 

The degree of lipophilicity (octanol/water partition coefficient (log Kow) increases and 

solubility in water decreases with higher degree of chlorination (PCB 1, log Kow = 4.46; PCB 209, 

log Kow = 8.18) [20]. PCBs can be divided into sub-groups depending on the number of chlorine 

atoms at the ortho- positions (2, 2´, 6, 6´ positions) of the biphenyl ring system. These sub-groups 

(non-, mono-, di-, tri-, and tetra- ortho PCBs) include 20, 48, 72, 48 and 21 congeners, respectively. 

One of the most important conformational characteristic of PCB molecules is their ability to rotate 

around the phenyl-phenyl (1, 1’) bond, attaining a planar configuration (co-planar PCBs), similar to 

the PCDD/Fs. Some of these non- and mono-ortho substituted PCBs bind to the Ah-receptor and 

are therefore referred to as the dioxin-like PCBs (DL-PCBs), all having chlorine atoms in the meta- 

and para- positions. Likewise, 17 PCDD/Fs and twelve DL-PCBs were included into the TEF 

concept with assigned TEF values [5,6]. Four of them are congeners that lack chlorine atoms at the 

ortho-position, the non-ortho PCBs (77, 81, 126, 169), and eight have one chlorine substituent at 

the ortho-position, the mono-ortho PCBs (105, 114, 118, 123, 156, 157, 167, 189). The non- and 

mono-ortho PCBs overall have lower TEFs than the PCDD/Fs (0.1 – 0.00003) [6], but since the 

concentration of PCBs in environmental samples often far exceeds the concentration of PCDD/Fs, 

their contribution to the total TEQ can be significant [21].  

 

1.1.3. Polybrominated diphenyl ethers (PBDEs) 

PBDEs, also known as polybrominated diphenyl oxides, are flame retardants used as additives 

in a variety of plastics, textiles, surface coatings, foams, and man-made fibers. Like PCBs, the 

theoretical number of possible congeners is 209, and the same numbering system as proposed for 

PCBs is used [18]. The general molecular structure and nomenclature of the PBDEs is shown in 
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Figure 1.3. 

 
Fig. 1.3. The general molecular structure of PBDEs 

 

There are three major technical products of PBDEs: pentabromodiphenyl ether (Penta-mix), 

octabromodiphenyl ether (Octa-mix), and decabromodiphenyl ether (Deca-mix), which are mixtures 

of congeners with differing degree of bromination, similar to the commercial crude products of 

PCBs. Because of the chemical properties of the oxygen directing the bromine to para- and ortho- 

positions, and the steric hindrance of the substituted bromines, only a limited number of congeners 

are present in commercial mixtures [22]. The major congeners in the Penta-mix are tetra- and penta-

substituted BDEs, Octa-mix is composed mainly of hepta- and octa-BDEs, and in the Deca-mix 

formulation the main component is decabromodiphenyl ether or PBDE 209. Towards the end of the 

20th century, great concerns over PBDEs grew due to observations of bioaccumulation and toxic 

properties, and of rapidly rising concentrations in environmental and human tissue samples world-

wide [23,24]. PBDEs were one of the most utilized group of BFRs until the mid-2000s when strict 

bans were imposed on the production of PBDE formulations due to their persistency and 

bioaccumulation properties [25]. Nevertheless, significant quantities of PBDEs have been released 

into the environment, and as a result, these compounds have became ubiquitous and are found in 

various matrices (e.g., water, sediments, biota, and humans) [26]. Recent data show that PBDE 

levels tend to decrease in biota in Europe [27], while the concentrations of tetra- to hepta-BDEs in 

the Arctic region are increasing or possibly stagnating during the last 2 – 5 years, and BDE 209 

concentrations are still increasing in the Arctic air [28]. A growing number of published reports 

show that PBDEs can elicit toxicity and biological effects via several different mechanisms [29]. 

The developmental neurotoxicity of these substances currently is little understood [30]. It is 

believed that PBDEs present a risk to the developing brain [31]. The other possible source of 

concern attributed to the use of PBDEs is that these technical mixtures may contain highly toxic 

impurities, such as polybrominated dibenzo-p-dioxins and furans (PBDD/Fs), which have similar 

toxicities and long-range transport properties as their chlorinated analogues [7]. It was found that 

combustion processes in the presence of PBDEs can also lead to the production of PBDD/Fs [32]. 
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1.1.4. Hexabromocyclododecane (HBCD) 

Hexabromocyclododecane (HBCD, Figure 1.4.) is an aliphatic brominated flame retardant. 

HBCD is seen by manufacturers as a possible replacement to PBDEs. HBCD is an off-white, 

crystalline, free-flowing solid. It is soluble in organic solvents and has a melting range of 185 – 

195°C. HBCD is thermally quite labile, breaking down through dehydrobromination reactions 

between 240 and 270°C, forming a myriad of products, typically via a tribromocyclododecatriene 

intermediate [26]. HBCD was introduced to the market in the 1960s. HBCD is an additive flame 

retardant that is incorporated in synthetic materials and is one of the most widely used compounds 

among the BFRs with annual usage in Europe of 6000 tons [33]. The commercially available crude 

HBCD is a mixture of 1,2,5,6,9,10-hexabromocyclododecane isomers, consisting mainly of α-, β-, 

and γ-HBCD diastereomers [26]. The physical and chemical properties of HBCDs are similar to 

those of POPs, and HBCD was classified in 2008 by the European Commission (EC) as persistent, 

bioaccumulative, and toxic compound [34]. Discarding of HBCD-containing materials results in the 

release of this chemical to the environment, and HBCD has thus become a ubiquitous contaminant 

found in water, soil, sediments, fish, birds, mammals, and people [26,35].  

 

 
α-HBCD β-HBCD γ-HBCD 

Fig. 1.4. The structure of HBCD diastereomers 

 

HBCD is chemically closely related to the pesticide hexachlorocyclohexane and, as such, it is 

persistent and bioaccumulative [31]. The environmental transport and fate of HBCD is uncertain. It 

has been hypothesized that HBCD is unlikely to leach from most polymeric matrices and will only 

contaminate discrete areas surrounding point sources. Recent evidence has suggested that 

combustion of HBCD in the presence of aluminum can trigger polycondensation reactions during 

HBCD decomposition, leading to the formation of high molecular weight, highly toxic 

polyaromatic compounds such as PAHs and brominated polycyclic compounds [36]. It is worth 

noting that many modern automotive parts are manufactured of aluminum, with interiors being 

heavily flame retarded with BFRs, such as HBCD. It has been stated that HBCD may be a potential 

mutagen and liver toxicant [31]. HBCD caused statistically significant increases in intragenic 
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recombination of mammalian cells indicating that it may induce cancer via a nonmutagenic 

mechanism, similarly to other environmental contaminants, such as DDT and PCBs [37].  

 

1.1.5. Polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs). 

The general structures of PBDD/Fs are shown in Figure 1.5. Similarly to PCDD/Fs, they are 

co-planar compounds with two aromatic rings coupled through one or two oxygen bridges. There 

are eight possible positions for bromine substitution, which gives 75 different PBDD congeners and 

135 different PBDF congeners, taking all bromination degrees into account. 

 

 
Fig. 1.5. The general molecular structure of PBDD/Fs 

 

The main sources of PBDD/Fs are combustion processes and the substantial use of BFRs, 

where these contaminants have been found to be present as by-products [38] or formed through 

photolytic [39,40] and thermal degradation of BFRs [41-43]. Chemical precursors, such as 

brominated phenols [44] or PBDEs form PBDD/Fs during reactions at 250 – 500°C temperatures on 

catalytically active surfaces, or also spontaneously at the relevant temperatures (Figure 1.6.). 

PBDD/Fs levels were found to correlate positively with PBDE levels in the atmosphere, revealing 

the pollution sources associated with using of these crude formulations [45]. Moreover, the 

detection of elevated PBDD/Fs concentrations, in relation to PCDD/Fs levels in industrialized areas 

near the factories of electric machinery and equipment [46,47], supports the connection between the 

use of BFRs and the PBDD/F emissions to the environment. 
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Fig. 1.6. Possible mechanisms for the formation of PBDD/Fs from PBDEs [26] 

 

The concentrations of PBDD/Fs in environmental and human tissue samples have begun to 

reach detectable levels and have been determined in various matrices, including ambient air 

[45,46,48] at electronic waste dismantling areas and in plastics [49], fuel gases [50,51], fly ash 

[52,53], sediments [54,55], food samples [56], shellfish [57,58] and fish [59,60], adipose tissue 

[61], and human breast milk [48]. 

The number of studies on the formation of PBDD/Fs during incineration of bromine 

containing waste shows that the formation is significant, although not as high as PCDD/F formation 

[51,62]. The majority of these studies were small scale experiments or on-line measurements during 

the incineration process, and few authors have investigated the PBDD/F levels that were emitted 

from the incineration facilities. The lower brominated dioxins were found to be produced by algae 

and cyanobacteria due to eutrophication, and assimilated in blue mussels in the Baltic Sea [63]. 

Nevertheless, these were mono- to tri- substituted PBDDs and would not contribute significantly to 

the toxic burden of PBDD/Fs. 
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PBDD/Fs exhibit somewhat different properties than the PCDD/Fs, due to the larger size of the 

bromine atom, as well as the weaker C-Br bond, compared to the C-Cl bond. PBDD/Fs have higher 

molecular weights, higher melting points, lower water solubilities and vapour pressures than 

PCDD/Fs. PBDD/Fs are believed to bioaccumulate similarly to their chlorinated homologues, but 

appear to be less persistent in the environment due to the higher sensitivity towards UV 

degradation. This is suggested to result from the fact that bromide is a better leaving group than 

chloride. Nonetheless, the toxic properties of these brominated contaminants are not completely 

known, some studies have shown that toxicity of 2,3,7,8-TBDD is even higher in comparison to 

2,3,7,8-TCDD, and PBDD/Fs seem to be more resistant against mammalian metabolism, compared 

to chlorinated analogs [8]. Moreover, PBDD/Fs show the same DL toxicity as their chlorinated 

analogues in both human and mammalian cell lines [9,64]. 

Despite the structural similarity to PCDD/Fs, the analysis of PBDD/Fs is more difficult due to 

the differences in physico-chemical properties. The unavailability of isotopically labeled standards 

and analytical interference from degradation products of PBDEs (i.e., brominated furans) also 

obstruct the analytical determination. 

 

1.1.6. Mixed bromo/chloro polyhalogenated dibenzo-p-dioxins and dibenzofurans 

(PXDD/Fs) and mixed bromo/chloro polyhalogenated biphenyls (PXBs). 

Relatively little is known about the environmental and toxicological significance of PXDD/Fs 

and PXBs. While chlorinated analogues have been studied for several decades, mixed bromo/chloro 

analogues are less known. However, they have also been identified as potentially toxic, 

environmental pollutants. Little research has been carried out on the toxicity of PXDD/Fs and 

PXBs, and limited studies have suggested an equivalent or even higher toxicity and biological 

activity of these compounds compared to chlorinated analogues [9,11]. By analogy to PCDD/Fs and 

PBDD/Fs, combustion and incineration in the presence of halogens are also the typical processes 

for the formation of PXDD/Fs [65]. A wide range of electrical equipment contains both chlorinated 

substances like polyvinyl chloride or polyvinylidene chloride and brominated flame retardants, 

which serve as precursors for PXDD/F formation. Because these organic pollutants are highly 

lipophilic and persistent, they tend to migrate and accumulate in the food chain. 

In contrast to PBDD/Fs and PCDD/Fs, and PCBs for which 210 and 209 congeners are 

theoretically possible, PXDD/Fs and PXBs (the respective structures are shown on Figure 1.7.) are 

far larger groups with 4600 and 9179 possible congeners, including about one thousand of 

potentially significant 2,3,7,8-substituted PXDD/F congeners. 
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Fig. 1.7. The general molecular structure of PXDD/Fs and PXBs 

 

The limited toxicological data on these compounds reveals a similar mode of Ah receptor 

mediated toxicity seen in PCDD/Fs, with similar or in some cases higher relative potencies [9]. This 

is confirmed by more recent studies [10,66], and in particular [11], that characterizes a number of 

PXDD/Fs and PXBs, and the proposal to introduce the TEF concept (as used for PCDD/Fs) to 

define the toxicity of PBDD/Fs [67]. 

The literature on these contaminants is scarce. A limited amount of the available data confirms 

the occurrence of these compounds in incineration process emissions [68-72], biota and food 

products [60,66,73,74]. The majority of this data deals with unspeciated homologue groups, relating 

to the different substitution pattern of chlorine and bromine on the parent dibenzo-p-dioxin, 

dibenzofuran or biphenyl molecule, and reflects the analytical difficulties in congener-specific 

determination due to the chromatographic and spectrometric interferences caused by the presence of 

other POPs, which in some cases could be isobaric compounds and are present in the samples at 

much higher levels (e.g., PCBs and PBDEs).  

 

1.2. The analytical approaches for determination of POPs 

The analytical methodologies for POP analyses are especially complex due to the diversity of 

the mixtures of possible congeners of interest (especially if mixed bromo/chloro-substituted POPs 

are included in the scope of the analysis) and the low detection limits required (from ppb to sub-

ppq). In addition, time consuming sample preparation and clean-up steps are needed because of the 

presence of matrix components and a large number of interfering compounds. Overcoming these 

analytical problems has only been possible with the application of rigorous clean-up protocols and 
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the use of highly selective and sensitive approaches, such as capillary GC, HPLC or UHPLC 

coupled to low resolution MS (LRMS) or HRMS. A principal analytical protocol to determine 

POPs is shown in Figure 1.8. The clean-up steps allow a suitable removal of the bulk matrix and 

some interfering compounds; GC or LC methods provide an appropriate separation between the 

different congeners or groups; and, finally, MS affords a sensitive and selective detection. In order 

to provide reliable and accurate quantification, a stable isotope dilution technique based on the use 

of internal standardization with 13C- or 2H-isotopically labeled surrogates is commonly used. 

 
Fig. 1.8. The principal analytical scheme used for the quantification of POPs 

 

1.2.1. Extraction 

For trace analysis of DL-contaminants, Soxhlet extraction is accepted as one of the most 

efficient approaches. However, the main drawback of this technique is the time required and the 

considerable consumption of solvents used for extraction procedure, which necessitates the 

evaporation of a large amount of usually hazardous liquids (such as dichloromethane) before the 

subsequent clean-up. Recent developments in extraction techniques with reduced solvent volumes, 

shorter times, and high levels of automation provide further advancements in the analysis of POPs. 

Microwave-assisted extraction (MAE) [75,76] and pressurized or accelerated liquid extraction (PLE 

or ASE) [77,78] have been applied by several laboratories in the extraction of priority POPs, such 

as of PCDD/Fs and PCBs. These advances resulted in a considerable shortening of extraction time 
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(to 1 hour) and low solvent consumption (approx. 30 mL) by the aforementioned techniques, in 

comparison with a conventional Soxhlet extraction. Although several parameters influence the 

extraction efficiency (e.g., extraction solvents, extraction time, pressure and temperature), these 

parameters should be optimized for complete extraction of the pollutants from matrix [79,80].  

 

1.2.2. Clean-up procedures 

The extract clean-up procedures should remove the potentially large quantities (up to a gram 

or even more) of organic material selectively, while retaining as much of the desired analytes as 

possible. This is a quite challenging task, especially for the DL-compounds, where the 

concentration factors of 106 or 108 are typically needed to meet the very low detection limits 

required for these compounds (in most cases sub-ppt (picogram per gram) for soils/sediments/biota 

and sub-ppq (picogram per liter) for aqueous samples). The basic principles and procedures behind 

sample clean-up in POP analyses have not changed in many years and are usually based on solid-

liquid destructive or non-destructive adsorption chromatography in open columns utilizing the 

combination of different sorbents, such as silica, Florisil, alumina, and various types of activated 

carbon [81,82]. Size exclusion chromatography (mostly gel permeation chromatography (GPC)) is 

also a frequently used method for the removal of the bulk of high molecular weight compounds 

(e.g., lipids) from the sample extracts. The most commonly applied sorbents are polystyrene – 

divinylbenzene based copolymeric materials (e.g., Bio-beads SX-3) [83-85]. The presence of 

isobaric compounds that could interfere with instrumental analysis is another problem in the 

analyses of DL-compounds, requiring intensive extract fractionation in order to achieve selective 

separation of the POP groups in several fractions [74,86,87]. Despite the fact that the typically used 

manual clean-up approaches are time- and labor-consuming, these are the most common routine 

procedures for the determination of POPs. Due to the advent of automated sample-handling 

techniques, automated clean-up systems are more preferable and recently have been developed and 

applied for routine purposes [88]. In most of the cases, sample extracts must be concentrated prior 

to clean-up, therefore a variety of sample concentration procedures, including nitrogen or gas blow 

down, rotary evaporation, Kuderna-Danish concentration, or automated evaporative concentration 

systems have been proposed [81,82]. 

 

1.2.3. Instrumental analysis 

The PCDD/F, PCB, and PBDE analysis involves the detection of multiple congeners at the 

levels from ppb to sub-ppq, for which isotope dilution techniques using GC-HRMS are the current 

methods of choice (US EPA Method 1613, US EPA Method 1668, US EPA Method 1614) [89-91]. 
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Conventionally, HRMS was used in the electron ionization (EI) mode, with the electron energy 

usually between 36 – 38 eV at a mass resolving power of 10 000. However, the analysis of mixed 

bromo/chloro-substituted compounds requires higher MS resolution due to the potential presence of 

isobaric compounds in the sample extracts [74,87]. Typically, MS systems are operated in selective 

ion recording mode (SIR) to achieve the best possible selectivity and sensitivity, while additionally 

applying the isotope dilution approach for reliable and accurate quantification. 

Regarding the chlorinated POPs, alternative techniques are electron capture detector (ECD) 

(for mono-ortho PCBs, but with possible selectivity problems due to the co-elution risks) [92], 

electron capture negative ionization (ECNI) coupled with LRMS (for non-ortho CBs) [93, 94], ion-

trap tandem mass spectrometry (IT-MS/MS) and two dimensional GC (GC×GC) coupled with time-

of-flight MS (TOF-MS) [95]. The optimization of collision characteristics in IT-MS/MS provided 

an improvement of the instrumental limit of detection (i-LOD) for 2,3,7,8-TCDD up to 50 fg, which 

satisfies the sensitivity requirements for screening methods [96]. The GC×GC-µECD and GC-IT-

MS/MS procedures were subjected to an extensive validation against the GC-HRMS technique 

[97], and it was found that for real samples the accuracy, precision, and limit of quantification 

(LOQ) were in the same range (fish oil, fish) or slightly lower (milk, pork), compared to the GC-

HRMS results [95,97,98], confirming the potential of these alternative techniques. Nevertheless, it 

should be pointed out that despite the lower investments for GC×GC-µECD and GC-IT-MS/MS 

equipment, the samples may require longer preparation times due to additional clean-up steps, the 

instrumental part requires more frequent maintenance of the MS systems (GC-IT-MS/MS) or more 

data treatment time to evaluate the complex chromatograms (GC×GC-µECD) [95]. Moreover, the 

space-charging effect in using of IT-MS/MS is a considerable disadvantage that affects the 

reproducibility. 

For BFRs such as PBDEs or HBCD, the most common detection techniques are EI-HRMS 

and ECNI-LRMS [99,100], but ECD or µECD could be used as well [101]. ECNI-MS provides a 

good sensitivity and selectivity for the detection of bromine containing compounds. Despite the 

poor specificity, the most commonly monitored ions are m/z 79 and 81, representing the two stable 

bromine isotopes [99]. Such a choice is explained by the low yields of molecular ions during the 

ionization process, resulting in insufficient sensitivity. For deca-brominated BDE (PBDE 209), the 

sufficiently strong m/z 485 and m/z 487 peaks can be monitored as well, and HBCD m/z 561 can be 

used as a qualifier ion. In EI-MS, the most commonly monitored ions are [M-Br2]+ and [M]+. They 

provide a good selectivity, but a lower sensitivity, especially for the higher brominated PBDE 

congeners [100]. Moreover, selectivity problems could be caused by the presence of PCBs in the 

samples, which could interfere with the GC-MS analysis of PBDEs [102]. EI-MS techniques, such 
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as GC-LRMS, GC-HRMS, or GC-MS/MS enable the use of isotopically labeled standards, which 

allows applying internal standardization – the most powerful approach for a reliable and accurate 

quantification. HRMS provides a good sensitivity and selectivity, but at higher instrumentation 

investment and maintenance costs. Alternatively, TOF-MS may be used for the detection of PBDEs 

at a sensitivity comparable to other MS techniques [103,104], but the restricted linear range of the 

instrument limits the use of this type of MS [104]. 

One of the most critical issues in the analysis of BFRs, such as PBDEs and HBCD, is the 

thermal lability of these compounds. In contrast to GC, the application of LC eliminates the 

problem of thermal lability or interconversion of BFRs during the analysis, providing an effective 

chromatographic resolution of components. The selective detection by mass spectrometry positions 

the LC-MS combination as a method of choice for the analysis of HBCDs. Several studies reported 

the application of LC-MS based methods in diastereomer-specific analysis of HBCDs in various 

types of matrices, including sewage sludge [105], sediments [106], indoor and airborne dust 

[107,108], food products [109], and fish [110-113]. The most frequently used detection technique 

for diastereomer-specific analysis of HBCD is LC-MS/MS, which utilizes triple quadrupole or IT-

MS analyzers operated in the selected reaction monitoring (SRM) mode [114]. Monitoring of the 

specific transition [M-H]- (m/z 639 and 641) → [Br]- (m/z 79 and 81) provides a selective analysis 

of trace levels of HBCDs. Typically, a sufficient ionization degree could be obtained by the means 

of using electrospray ionization (ESI) operated in negative mode. 

Fewer studies have reported the analysis of PBDEs using LC-MS techniques, which may be 

attributed to the availability of well-established, sensitive, and efficient analytical methodologies for 

the determination of these compounds using GC-MS based techniques. However, LC-MS analysis 

has a major advantage for the analysis of highly brominated PBDEs, which may undergo thermal 

degradation and/or extensive fragmentation during a GC-MS analysis [115]. The ESI mode in the 

LC-MS analysis of PBDEs is limited due to poor ionization in this source [116]. Recently, an 

isotope-dilution method for the determination of 14 major tetra- to deca-BDEs using LC coupled to 

MS/MS system equipped with atmospheric pressure photoionization (LC-APPI-MS/MS) under the 

conditions of reversed-phase LC has been reported [117]. The method was applied the soft APPI 

technique, to obtain stable pseudomolecular ions [M-Br+O]- and [M-2Br+O]- in Q1, with further 

detection of [Br]- (m/z 79 and m/z 81) ions for selective detection in Q3. LC-APPI-MS/MS based 

methods were successfully applied for the analysis of PBDEs in dust [118], air [119], fish [110], 

and human breast milk [120]. The performance of atmospheric pressure chemical ionization (APCI) 

has been also tested in the analysis of PBDEs in wastewater samples under the conditions of LC-

MS/MS [121], and it was found that the LC-APCI-MS/MS technique could provide 2 – 8 times 
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better sensitivity than APPI [122]. 
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2. EXPERIMENTAL PART 
 

2.1. General flow diagram of analytical methodology 

A multi-group analytical procedure was developed and used for the analysis of fish samples 

from the Baltic region, including Baltic wild salmon (Salmo Salar) and eels (Anguilla Anguilla) 

collected from Latvian lakes, as well as for other freshwater and saltwater fish species. This 

analytical procedure allowed to perform the analysis of seven groups of POPs, including the little 

studied brominated and mixed bromo/chloro-substituted compounds with further possibility to 

expand the list of analyzed contaminants (e.g., including pesticides and BFRs other than PBDEs 

and HBCDs). The method development procedures are described in detail in the Papers 5 – 7, while 

application of the elaborated methods to real samples is presented in the Papers 1 – 3 and 8. To 

evaluate the possibility of extending the number of analyzed matrices, the elements of the method 

have been applied to the analysis of several samples other than fish matrices, including fish 

products, food samples, and animal feed samples. The study was carried out in the frame of the 

official monitoring programme with regard to PCDD/Fs and PCBs, for which MLs and ALs have 

been established by the European Commission and the results are presented in Paper 4. 

An analytical flow diagram showing the principal clean-up and analysis steps for the various 

POP groups is showed in Figure 2.1. The analytical methodology was designed to enable the 

determination of various POPs in fish samples. The scheme is associated with the clean-up and 

analysis of planar DL-compounds (e.g. PCDD/Fs, PBDD/Fs, PXDD/Fs, and non-ortho PCBs and 

PXBs), and other DL and NDL contaminants, such as mono-ortho PCBs and PXBs, PBDEs, and 

HBCDs.  

After the collection, the samples were homogenized, subjected to extraction and a 

sophisticated, multi-step clean-up procedure. The analytes of interest were elicited from the sample 

matrix using Soxhlet extraction. After the extraction, a 1/10 aliquot of the extract was subjected to 

clean-up using destructive acidic treatment and Florisil column chromatography (alternatively, non-

destructive clean-up procedure could be applied by using of GPC for elimination of lipids from the 

sample extract) prior to the determination of HBCD diastereomers by means of LC-Orbitrap-

HRMS. For the analysis of PCDD/Fs, PBDD/Fs, PXDD/Fs, PCBs, PXBs, and PBDEs, a complex 

multi-column clean-up protocol was applied, including GPC, silica, and Florisil columns. The 

sample extract was split into three portions according to its potential toxicological significance, 

using carbon column chromatography in automated manner: the most toxicologically significant 

planar compounds (polyhalogenated DD/Fs), non-ortho substituted compounds which tend to attain 
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planar configuration, and the less toxicologically significant poly-ortho substituted contaminants. 

The final analysis of the target compounds was carried out using GC-HRMS, or either LC-Orbitrap-

HRMS or LC-MS/MS systems. 

 

2.2. Sample collection and storage 

2.2.1. Baltic wild salmon (Salmo Salar) samples  

A total of fifty three Baltic wild salmon specimens of various age, length, and weight were 

caught during the spawning period from the Daugava and Venta rivers from October 2010 and 

October 2012. Due to the large volume of POP data obtained during the practical application of the 

elaborated methodology (or its elements), only the results for the selected salmon samples are 

presented in this thesis. These were selected based on the frequency and levels of contamination, 

and in the case of the poorly studied POPs (e.g. PBDD/Fs and PXDD/Fs), also to emphasize the 

data not reported by other researchers. More detailed information on the analyzed samples that were 

measured as part of this work is presented elsewhere (Paper 1, 3 and 5).  

Analyzed salmons were migrating for spawning to the Latvian rivers and therefore represented 

the open Baltic Sea region (River Venta) and Riga Gulf region (River Daugava). The selection of 

salmons for the study was carefully designed in order to achieve an even representation of two 

different regions and sexes and to have a maximum variation in weight and length of fishes. All the 

specimens had gonads at a stage of development typical for spawning. After individual laboratory 

codes were given for all the caught salmon, lengths and weights were measured, and the sex was 

noted. Age of the fish was determined according to squama characteristics. Samples were delivered 

to the laboratory, placed in polyethylene bags, and packed in ice. Thirteen male and twelve female 

specimens were collected. Average length and weight of female salmon was 79 cm (range from 59 

to 86 cm) and 6.0 kg (range from 3.5 to 10.5 kg). Female fish had an age of 2 – 3 years, which is the 

typical spawning starting age for female wild Baltic salmon. Characteristics of male salmon were as 

follows: average length 68 cm (range from 56 to 93 cm) and average weight of 4.6 kg (range from 

2.0 to 11.3 kg). Generally, the male specimens were 1 – 3 years old with the most common age of 1 

year, which is typical for Baltic salmon; most males die during the spawning period. During the 

sample pretreatment the specimens were dissected, the edible fish fillets (including subcutaneous 

fat) were isolated and homogenized using a food blender (Kenwood FP101T, Kenwood Ltd., U.K.), 

and the homogenates were packed into polyethylene bags and stored at -18 °C until analysis. Baltic 

wild salmon samples were subjected for analysis of PCDD/Fs, PBDD/Fs, PXDD/Fs, PCBs, PBDEs 

and HBCDs. 
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2.2.2. Eel (Anquilla Anquilla) samples collected from Latvian lakes  

Fifty eight eel (Anquilla anquilla) specimens of various length and weight were caught from 

Latvian freshwater lakes during the period from September 2013 to May 2014. To get an overview 

of the actual contamination levels of selected POPs in eels, sampling locations were selected to 

evenly cover all territory of Latvia. The selection of eels for this study was carefully designed in 

order to achieve an even representation of five of the most essential eel stocks over Latvia and to 

have a maximum variation in weight and length of fishes. At least five eel specimens were collected 

to represent each sampling site. Samples were packed in polyethylene bags and stored with ice 

during delivery to the laboratory. The samples were uniquely coded and lengths and weights were 

measured. Average length and weight of eels was 76 cm (range from 39 to 101 cm) and 1.0 kg 

(range from 0.1 to 1.9 kg). During the sample pretreatment the specimens were dissected, the edible 

fish fillets (including subcutaneous fat) were isolated and homogenized using a food blender 

(Kenwood FP101T, Kenwood Ltd, UK), and the homogenates were packed into polyethylene bags 

and stored at -18 °C until analysis. Eel samples were subjected for analysis of PCDD/Fs, PBDD/Fs, 

PXDD/Fs, PCBs, PXBs, PBDEs and HBCDs and the results on the occurrence of these 

contaminants in analyzed samples are described in details in Papers 6 and 8. 

 

2.2.3. Other fish species  

To get an overview of the actual contamination levels of POPs in freshwater fish in Latvia, ten 

fish species were collected in Latvian freshwater lakes, at sampling locations selected to evenly 

cover all territory of Latvia. At least five specimens of each fish species of various weights were 

collected. Samples were packed in polyethylene bags and stored with ice during the delivery to the 

laboratory. Upon receiving at the laboratory, a unique code was given to each sample. To obtain a 

representative sample after the cutting and pooling of fish fillets, the material was homogenized in a 

food blender (Kenwood FP101T, Kenwood Ltd., UK), packed in polyethylene bags and stored at -

18°C until the analysis. An appropriate sample amount was analyzed for the content of PCDD/Fs 

and PCBs. More detailed information is presented in Paper 2. 

 

2.3.  Chemicals and materials 

All the solvents used were at least of pesticide purity grade. Hexane, toluene, 

dichloromethane, cyclohexane, and ethyl acetate were purchased from Lab-Scan (Glivice, Poland); 

silica gel (Kieselgel 60, 0.063 – 0.200 mm), Florisil, Celite-545, Carbopack B and Carbopack C 

were from Sigma-Aldrich Chemie GmbH (Buchs, Switzerland). Alumina (basic, 50 – 200 µm), 

sulfuric acid and sodium sulfate were obtained from Acros (New Jersey, USA). High-purity water 
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(18.2 MΩ) was prepared using Millipore Milli-Q purification system (Billerica, MA, USA). The 

native and isotopically-labeled standards for analyzed contaminants were purchased from 

Cambridge Isotope Laboratory, Inc. (CIL) (MA, USA), Wellington Laboratories, Inc. (Ontario, 

Canada) and AccuStandard, Inc. (New Haven, USA). Calibration solutions were prepared by serial 

dilution of stock solutions in toluene or nonane, evaporation of the organic solvent to dryness under 

gentle nitrogen stream and redissolving the residue in appropriate solvent or solvent mixture. The 

following seven groups of persistent organic pollutants were analyzed (for compounds given in 

bold, 13C12-labeled surrogates were available and were used as internal or recovery standards): 

1) Tetra-octa polychlorinated dioxins and furans (PCDD/Fs): 2,3,7,8-TetraCDF, 1,2,3,7,8-

PentaCDF, 2,3,4,7,8-PentaCDF, 1,2,3,4,7,8-HexaCDF, 1,2,3,6,7,8-HexaCDF, 2,3,4,6,7,8- 

HexaCDF, 1,2,3,7,8,9-HexaCDF, 1,2,3,4,6,7,8-HeptaCDF, 1,2,3,4,7,8,9-HeptaCDF, 

OctaCDF, 2,3,7,8-TetraCDD, 1,2,3,7,8-PentaCDD, 1,2,3,4,7,8-HexaCDD, 1,2,3,6,7,8-Hexa-

CDD, 1,2,3,7,8,9-HexaCDD, 1,2,3,4,6,7,8-HeptaCDD, OctaCDD; 

2) Tri-hepta polychlorinated biphenyls (PCBs): IUPAC numbers 18, 28, 33, 47, 49, 51, 52, 60, 66, 

74, 77, 81, 99, 101, 105, 110, 114, 118, 123, 126, 138, 153, 156, 157, 167, 169, 180, 189; 

3) Di-deca polybrominated diphenyl ethers (PBDEs): IUPAC numbers 7, 15, 17, 28, 47, 49, 66, 

71, 77, 85, 99, 100, 119, 126, 138, 153, 154, 155, 166, 181, 183, 190, 203, 204, 205, 206, 207, 

209; 

4) Tetra-octa polybrominated dioxins and furans (PBDD/Fs): 2,3,7,8-TetraBDF, 1,2,3,7,8-

PentaBDF, 2,3,4,7,8-PentaBDF, 1,2,3,4,7,8-HexaBDF, 1,2,3,4,6,7,8-HeptaBDF, OctaBDF, 

2,3,7,8-TetraBDD, 1,2,3,7,8-PentaBDD, 1,2,3,4,7,8-Hexa-BDD, 1,2,3,6,7,8-HexaBDD, 

1,2,3,7,8,9-HexaBDD,1,2,3,4,6,7,8-HeptaBDD, OctaBDD 

5) Tetra-octa mixed bromo/chloro- polyhalogenated dioxins and furans (PXDD/Fs): 3-B-2,7,8-

TriCDF, 2-B-3,7,8-TriCDD, 2,3-DiB-7,8-DiCDD, 1-B-2,3,7,8-TetraCDF, 1-B-2,3,7,8-

TetraCDD, 2-B-1,3,7,8-TetraCDD, 2-B-3,6,7,8,9-PentaCDD, 1-B-2,3,6,7,8,9-HexaCDD, 1-B-

2,3,4,6,7,8,9-HeptaCDD; 

6) Six penta- to hexa-,  mono- to tri-brominated/di- to penta-chlorinated PXBs with the 

arrangement of the halogen atoms in the molecules corresponding to the structures of DL-PCBs: 

4'-B-3,3',4,5-TetraCB (structure analog of non-ortho PCB 126), 3,4-DiB-3',4',5'-TriCB (analog 

of non-ortho PCB 126), 3',4',5-TriB-3,4-DiCB (analog of non-ortho PCB 126), 4'-B-2,3',4,5-

TetraCB (analog of mono-ortho PCB 118), 4'-B-2,3,3',4-TetraCB (analog of mono-ortho PCB 

105), 4'-B-2,3,3',4,5-PentaCB (analog of mono-ortho PCB 156); 

7) Hexabromocyclododecane diastereomers: α-HBCD, β-HBCD, γ-HBCD 
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2.4. Sample preparation and clean-up 

An overall diagram of clean-up procedure is shown in Figure 2.1. A sample aliquot was 

spiked with 13C-labeled POP mixture solution in toluene and equilibrated for at least 1 h. The 

weight of the sample aliquot was dependent on the species of the fish and lipid content in the 

sample, and usually was equivalent to not more than 8 g of lipids. After equilibration, the sample 

was freeze dried for 48 h and the lipids were extracted using Soxhlet extraction with 

dichloromethane/n-hexane (1:1, v/v) mixture with extraction time at least 16 h. The extracts were 

filled into pre-weighed round-bottom flasks, and the solvent was removed using rotary evaporator at 

< 30°C. The lipid content was determined gravimetrically and the residue was diluted with 

cyclohexane/ethyl acetate (1:1, v/v) mixture to obtain the proportion of 1 g of lipids per 5 mL of the 

final extract volume. An aliquot A of 90% of the final extract volume was subjected to clean-up for 

the analysis by PCDD/Fs, PBDD/Fs, PXDD/Fs, PCBs, PXBs, and PBDE, while the remaining 10% 

of the extract volume (aliquot B)) was reconstituted in dichloromethane/n-hexane mixture and 

treated prior to the analysis of HBCD diastereomers using destructive acidic clean-up procedure. 

Non-destructive clean-up procedure (GPC method) could be applied for the HBCD containing 

fraction as well, by means of taking 10% of the aliquot after GPC stage and treatment of this extract 

using Florisil column chromatography. 

 

2.4.1. Procedures applied for aliquot A): PCDD/Fs, PBDD/Fs, PXDD/Fs, PCBs, PXBs 

and PBDE 

The high molecular substances were removed by gel permeation chromatography (GPC). The 

system was equipped with a glass column (50 x 2.5 cm) filled with 50 g of Bio-Beads SX-3 (Bio-

Rad, Philadelphia, USA) stationary phase and eluted with cyclohexane/ethyl acetate (1:1, v/v) 

mobile phase at a flow rate of 5 mL min-1. The automated GPC program was as follows: dump time 

0 – 19 min, collection time 19 – 45 min; the collected eluate was concentrated by rotary evaporation 

at < 30 oC. The pre-purified sample extract was placed on top of a glass column (25 x 1.2 cm) filled 

with 2.5 g silica gel containing 50% of 18M sulfuric acid for degradation of remaining lipids. The 

analytes were eluted with 1.0 mL of toluene and subsequently with 25 mL of n-hexane, and the 

eluate volume was reduced by rotary evaporation to 0.5 mL. PBDD/Fs, PCDD/Fs and PXDD/Fs 

were chromatographically separated from PBDEs, PCBs and PXBs using a glass column (25 x 1.2 

cm) filled with 6.0 g of Florisil deactivated with 3% water: first the fraction of the PBDEs, PCBs 

and PXBs was eluted with 80 mL of n-hexane, followed by 120 mL toluene for elution of the 

PBDD/F, PCDD/F and PXDD/F fraction. After solvent removal and concentration of each of the 

two fractions by rotary evaporation to 1.0 mL, additional clean-up and separation steps using active 
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carbon column were performed in an automated manner using Waters (Milford, USA) preparative 

chromatography system consisting of Controller 600, Autosampler 717 plus and Fraction collector 

III. For the PBDD/Fs, PCDD/Fs and PXDD/Fs a glass column (25 x 1.0 cm) was consequently 

filled with 0.5 g of Carbopack C/Celite-545 (10/90, w.w.) and 0.5 g of Carbopack B/Celite-545 

(10/90, w.w.). After application of the sample extract to the top of the Carbopack C/Celite-545 

layer, the column was washed with n-hexane/dichloromethane (65:35, v/v) mixture at a rate of 1.5 

mL min-1 for 20 min and the PBDD/Fs, PCDD/Fs, and PXDD/Fs were eluted with toluene in the 

back flush mode at a flow rate of 2.5 mL min-1 for 40 min. PBDEs, DL-PCBs, NDL-PCBs and 

PXBs were separated in direct flow using a glass column (25 x 1.0 cm) filled with 2.0 g of a 1:1 

(w/w) mixture of Carbopack B and Celite-545; PBDEs, mono-ortho PCBs and PXBs and NDL-

PCBs were eluted with n-hexane at a flow of 2.0 mL min-1 within 25 min, the non-ortho PCBs and 

PXBs subsequently by elution with toluene at a flow rate of 2.5 mL min-1 within 30 min.  Finally, to 

remove potentially remaining interferants such as PBDEs and PCBs from the fraction containing 

PBDD/Fs and PXDD/Fs, the fraction was purified using glass column filled with 3.0 g of basic 

alumina (activated at 450 °C for 16 h) as follows: the fraction containing PBDD/Fs, PCDD/Fs, and 

PXDD/Fs was evaporated on rotary evaporator and the solvent was exchanged to n-hexane without 

traces of toluene; after addition of the n-hexane extract to column, the column was rinsed with 20 

mL of n-hexane/dichloromethane (90:10, v/v) mixture to waste and analytes of interest were 

collected with a 60 mL fraction of dichloromethane. After rotary evaporation to about 150 – 200 µL 

all three extracts were transferred to 2 mL chromatographic vials, treated with 37 N sulfuric acid 

(30 µL) and mixed. The mixture was allowed to stand for 20 min and centrifuged at 3000 rpm to 

separate the acid and organic layers. The acidic bottom layer was discarded and the organic layer 

was evaporated with addition of recovery standard solutions in n-nonane. As recovery standards, 
13C12-1,2,3,7,8-PentaBDF and 13C12-1,2,3,7,8,9-HexaBDD were used for PBDD/Fs, while 13C12-

1,2,3,4-TetraCDD and 13C12-1,2,3,7,8,9-HexaCDD were used for PCDD/Fs and PXDD/Fs. For 

PBDE, mono-ortho PCB and PXB, and non-dioxin-like PCB fraction, the 13C12-PBDE 138, 13C12-

PCB 101, and 13C12-PCB 138 surrogates were added as recovery standards, while for non-ortho 

PCB and PXB fraction the recovery standards were 13C12-PCB 101 and 13C12-PCB 138. The final 

volume of the PBDD/F, PCDD/F and PXDD/Fs fraction was 10 µL. The fraction containing 

PBDEs, mono-ortho PCBs and NDL-PCBs was evaporated to 50 µL. Non-ortho PCB fraction was 

also reduced to 50 µL. After the analyses of PBDEs and PCBs, the corresponding extracts were 

evaporated until 20 µL and analyzed on the content of PXBs. 
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2.4.2. Procedures applied for aliquot B): HBCDs 

2.4.2.1. Destructive removal of high molecular compounds (acidic method) 

The organic extract was evaporated to dryness, the residue was dissolved in 35 mL 

dichloromethane/n-hexane (1:1, v/v) mixture and treated with 10 mL of 18M sulphuric acid by 

intense shaking for 15 min. The mixture was allowed to stand for 15 min and centrifuged at 3000 

rpm using a Falcon 6/300 benchtop centrifuge (MSE, London, UK). The bottom (aqueous) layer 

was discarded and the organic extract was treated with 10 g of silica gel impregnated with sulphuric 

acid (50% of 18M sulphuric acid). After intense shaking of the mixture, the organic phase was 

filtered and silica residue was washed with 20 mL of extraction solvent mixture. The filtrate and 

washings were combined and transferred to a round-bottom flask and concentrated to approximately 

1 mL on a rotary evaporator, and the solvent was exchanged to 1 mL of n-hexane. The extract was 

further treated on a glass column (25 × 1.0 cm) filled with 3.0 g of Florisil deactivated with 3% of 

water: after the addition of the sample extract, the column was washed with 20 mL of n-hexane and 

the eluate was discarded. HBCD diastereomers were eluted from the column with 40 mL of n-

hexane/dichloromethane (1:1, v/v) mixture, the fraction was concentrated by rotary evaporation, 

reconstituted in 200 µL methanol-water-acetonitrile mixture (60:20:20, v/v/v), transferred to an 

autosampler vial and analyzed on the content of HBCDs. 

 

2.4.2.2. Non-destructive removal of high molecular compounds (GPC method) 

A sample aliquot of 10% for determination of HBCDs was taken after the removing of the bulk 

of the high molecular components (e.g. lipids) by means of GPC. The solvent was evaporated and 

the sample was reconstituted in 1mL of n-hexane. Further clean-up procedure was performed using 

Florisil column according to section 2.4.2.1. 

 

2.4.2.3. Preparation of the fish sample extracts for the comparative evaluation of 

the instrumental responses of UHPLC-Orbitrap-HRMS, UHPLC-TOF-

HRMS and UHPLC-QqQ-MS/MS systems 

For the establishing the influence of different sample clean-up steps on the instrument response 

to the analytes of interest, a butter fish homogenate was used as model matrix. The 5 g of the 

material was extracted with dichloromethane/n-hexane (1;1, v/v) using cold extraction and was 

treated according to the individual steps of the procedure, or their combinations (e.g. GPC method, 

acidic method and the addition to the scheme of Florisil column). The model matrix was previously 

analyzed for the content of HBCD diastereomers and found to contain only traces of α-HBCD 

(triplicate analysis of the material showed the average concentration of 11 pg g-1 sample fresh 
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weight (f.w.))whereas β- and γ-HBCDs were found to be below the LOQ. To evaluate the possible 

instrumental signal suppression by the matrix components, the sample extracts obtained after the 

corresponding clean-up stage were spiked with the appropriate volume of HBCD diastereomer 

solution in toluene and were evaporated until dryness under a gentle stream of nitrogen. The 

obtained samples were reconstituted in 200 µL of methanol-water-acetonitrile mixture (60:20:20, 

v/v/v), and transferred to an autosampler vial. The amount of the standard solution added before the 

instrumental analysis provided the final 10 pg µL-1 concentration for each HBCD stereoisomer. The 

samples for instrumental signal suppression experiments were prepared in triplicate (n=3) and each 

sample was injected in duplicate. It was found that the relative standard deviation (RSD) for the 

obtained instrumental responses for each set of samples corresponding to the evaluated sample 

preparation step or their combinations was below 20%. 
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Homogenized sample aliquot

Freeze drying or grinding with anhydrous Na2SO4

GPC (Bio-Beads SX-3)
elution with ethyl acetate/cyclohexane (1/1)

Spiking with 13C12-labeled internal standards

Soxhlet extraction
dichloromethane/n-hexane (1/1)

Acidic silica gel (2.5 g)
elution with n-hexane

Florisil  (6.0 g)

PCDD/Fs, PBDD/Fs, PXDD/Fs
elution with toluene

PCBs, PBDEs, PXBs
elution with n-hexane

Carb-B/Celite-545 (2.0 g)

NDL-PCBs, mono-ortho 
DL-PCBs/PXBs,

 PBDEs
elution with n-hexane

non-ortho 
DL-PCBs/PXBs,

elution with toluene

Carb-B/Carb-C/Celite-545 (1.0 g)
PCDD/Fs, PBDD/Fs, PXDD/Fs
backflush elution with toluene

Alumina column (3.0 g)
PCDD/Fs, PBDD/Fs, PXDD/Fs

 elution with dichloromethane

Treatment of  the fnal extract with 18M H2SO4, addition of  13C12-labeled recovery 
standards and GC-HRMS analysis

1/10 aliquot for destructive clean-up for HBCDs

Exchange of  the 
solvent to n-hexane

Treatment of  the extract 
with acidic silica gel

Florisil  (3.0 g)

Elution with  n-hexane
(discard eluate)

HBCDs
elution with 

dichloromethane/n-hexane

UHPLC-HRMS (MS/MS) 
analysis

Treatment of  the extract 
with 18M H2SO4

  1/10 aliquot for non-destructive
 clean-up for HBCDs (alternative)

 

Fig. 2.1. The analytical diagram, showing principal clean-up and analysis steps for PCDD/Fs, PBDD/Fs, PXDD/Fs, PCBs, PXBs, PBDEs and HBCDs
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2.5. Instrumental analysis 

2.5.1. Instrumental analysis and quantification of PCDD/Fs, PBDD/Fs, PXDD/Fs, 

PCBs, PXBs and PBDEs by GC-HRMS 

Selected analyte groups were analyzed by GC-HRMS. The measurements were performed on 

Micromass Autospec Premier high resolution mass spectrometer (Milford, USA) coupled with 

Agilent 6890 N gas chromatograph (Santa Clara, USA). Aliquots of 1 µL of the final sample 

extracts and calibration solutions were introduced into GC-HRMS system equipped with a silica 

capillary column and a split/splitless injector operated in splitless mode. The transfer line from the 

GC to the HRMS and the ion source temperatures were kept at 280 oC. Ion source was operated in 

the positive electron impact mode (EI+) with electron energy of 36 eV and a trap current of 600 µA. 

The resolution of the mass spectrometer was better than 10 000 (at 10% peak valley) for all analyte 

groups with the exception of PXDD/Fs and PXBs, for which resolution was in the range of 13 500 

– 15 000 (at 10% peak valley). Mass calibration for all analyzed compounds was obtained at 

acceleration voltage of 7.5 kV. Table 2.1 presents the GC conditions used for selected POP groups. 

 
Table 2.1 

GC conditions for the analysis of target compounds 

PCDD/Fs  
Column ZB-5MS, 60 m, 0.25 mm i.d., 0.25 µm film thickness (Phenomenex, Torrance, USA) 
Temperature program 140 °C (held for 3 min), 15 °C min-1 to 200 °C, 3 °C min-1 to 235 °C (held for 15 min),  4 °C 

min-1 to 300 °C (held for 12 min) 
Injection temperature 280 °C 
Carrier gas helium at flow rate of 1.0 mL min -1 
PCBs  
Column ZB-5MS, 60 m, 0.25 mm i.d., 0.25 µm film thickness (Phenomenex, Torrance, USA) 
Temperature program 75 °C (held for 2 min), 15 °C min-1 to 150 °C, 2.5 °C min-1 to 290 °C (held for 1 min) 
Injection temperature 270 °C 
Carrier gas helium at flow rate of 1.0 mL min -1 

PBDD/Fs  
Column DB-5MS, 18 m, 0.25 mm i.d., 0.10 µm film thickness (J&W Scientific, Folsom, USA) 
Temperature program 100 °C (held for 4 min), 40 °C min-1 to 200 °C (held for 3.5 min), 10 °C min-1 to 320 °C (held 

for 2.5 min) 
Injection temperature 260 °C 
Carrier gas helium at flow rate of 1.0 mL min -1 

PXDD/Fs  
Column DB-5MS, 30 m, 0.25 mm i.d., 0.10 µm film thickness (J&W Scientific, Folsom, USA) 
Temperature program 120 °C (held for 2 min), 20 °C min-1 to 240 °C, 5 °C min-1 to 320 °C (held for 4 min) 
Injection temperature 250 °C 
Carrier gas helium at flow rate of 1.0 mL min -1 

PXBs  
Column ZB-5MS, 60 m, 0.25 mm i.d., 0.25 µm film thickness (Phenomenex, Torrance, USA) 
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Table 2.1continuation 

GC conditions for the analysis of target compounds 
 

Temperature program 70 °C (held for 3 min), 100 °C min-1 to 140 °C, 15 °C min-1 to 210 °C ,4 °C min-1 to 310 °C 
(held for 10 min), 10 °C min-1 to 315 °C (held for 4 min) 

Injection temperature 290 °C 
Carrier gas helium at flow rate of 1.0 mL min -1 

Di-hepta BDEs  
Column DB-5MS, 30 m, 0.25 mm i.d., 0.10 µm film thickness (J&W Scientific, Folsom, USA) 
Temperature program 100 °C (held for 3 min), 5 °C min-1 to 320 °C (held for 15 min) 
Injection temperature 250 °C 
Carrier gas helium at flow rate of 1.0 mL min -1 

Octa-deca BDEs  
Column DB-5MS, 15 m, 0.25 mm i.d., 0.10 µm film thickness (J&W Scientific, Folsom, USA) 
Temperature program 100 °C (held for 3.5 min), 40 °C min-1 to 200 °C (held for 4 min), 10 °C min-1 to 320 °C (held 

for 3 min) 
Injection temperature 280 °C 
Carrier gas helium at flow rate of 1.0 mL min -1 

 

All analyte groups were determined by selected ion recording (SIR) using the two most 

abundant ions of the respective molecular ion cluster of both the native and the 13C12-labeled 

surrogates. The run was time segmented and SIR descriptors changed according to elution times for 

analytes of interest. Quantification was carried out using isotope dilution method applying the 
13C12-labeled surrogates as internal standards. Masslynx™ software was used for raw data 

interpretation and for targeting/quantification of selected contaminants. 

 

2.5.2. Instrumental analysis and quantification of HBCD diastereomers 

2.5.2.1. UHPLC separation of the target analytes 

Within the framework of this study UHPLC separation of target compounds was carried out 

using Kinetex C18, 100 mm × 2.1 mm, 1.7 µm reversed-phase analytical column at 25°C, applying a 

flow rate of 250 µL min-1 with a mobile phase gradient based on (A) methanol-water (75:25, v/v) 

and (B) acetonitrile. The effective gradient began at the initial composition (A/B) of 20:80 (v/v) that 

was maintained for 1.0 min and then ramped to 55:45 over 0.1 min, where it was held for 6.0 min 

before returning to the initial conditions over 1.0 min. The column was equilibrated for 2.0 min 

between the runs. The injection volume of 10 µL was used both for the standard solutions and 

sample extracts. 

  

2.5.2.2. UHPLC-Orbitrap-HRMS system 

The UHPLC-Orbitrap-HRMS system used in this study consisting of Thermo Accela UHPLC 

system (Zwingen, Switzerland) coupled to an Orbitrap Q Exactive mass spectrometer (Bremen, 
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Germany) equipped with heated electrospray ionization (HESI-II) interface. The negative ion mode 

was used for acquisition of the mass spectra. During the tuning procedure the signal of HBCD 

diastereoisomers was preliminarily optimized for the highest response of the [M-H]  ion. Direct 

introduction of the target compounds (native and 13C12-labeled α-, β-, and γ-HBCDs, 1 ng µL−1 of 

each in methanol) into the HESI-II interface of MS system was performed at 10 µL min−1using a 

Chemyx Fusion 100T (Stafford, USA) infusion pump. Orbitrap-MS detection in targeted selected 

ion monitoring (t-SIM) mode was used for a quantitative determination of selected compounds 

using the two [M-H]  most abundant ions of the respective molecular ion cluster for both the 

native and the 3C12-labeled surrogates. The channels monitored for HBCD diastereoisomers were 

m/z 640.6374 (quantification) and m/z 638.6396 (confirmation) for the native components, and m/z 

652.6782 (quantification) and m/z 650.6804 (confirmation) for the 13C12-labeled surrogates. 

External calibration of the Orbitrap-MS system was performed before each batch of samples over 

the mass range of m/z 50 – 2000 according to the guidelines provided by the instrument supplier. 

The details of the optimized instrumental conditions are summarized in Table 2.2. Thermo 

XcaliburTM and TraceFinderTM 3.0 software were used for raw data interpretation and for targeting/ 

quantification of selected contaminants.  

 

2.5.2.3. UHPLC-TOF-HRMS system 

The UHPLC-TOF-HRMS instrument consisted of an Agilent Technologies 1290 Infinity 

UHPLC system coupled to a 6230 TOF mass spectrometer (Santa Clara, CA, USA) equipped with a 

heated ESI interface. The negative ion mode was used for the acquisition of mass spectra. A TOF-

HRMS detection in the scan mode over the m/z range 600 – 700 was used for a quantitative 

determination of selected compounds using the two most abundant [M-H]  ions of the respective 

molecular ion cluster for both the native and the 13C12-labeled surrogates. The nominal channels 

monitored for HBCD diastereomers were the same as for Orbitrap-HRMS. External calibration of 

the TOF-HRMS instrument was performed before each batch of samples over the mass range of m/z 

100 – 3200 and achieving mass resolving power greater than 10 000 FWHM according to the 

guidelines provided by the instrument supplier. For the raw data treatment and targeting/ 

quantification of selected contaminants, Agilent Technologies MassHunter Workstation software 

was used. The details of the optimized instrumental conditions are summarized in Table 2.2.  

 

2.5.2.4. UHPLC-QqQ-MS/MS system 

For MS/MS analyses an AB SciexQTrap 5500 mass spectrometer (AB SCIEX, Framingham, 

−

−

−
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MA, USA) equipped with heated ESI interface and a Waters Acquity UHPLC system (Waters, 

Milford, MA, USA) were used. The data acquisition was performed in the negative SRM mode to 

obtain sufficient number of quantification points for the confirmation of each HBCD diastereomer.  

Analyst® software was used to control all the components of the instrument and for the data 

acquisition and processing. The channels monitored for the three HBCD diastereomers were m/z 

640.6 → 78.9 (quantification) and m/z 640.3 → 80.9 (confirmation), and the internal standard 

channels were m/z 652.6 → 78.9 and m/z 652.6 → 80.9. External calibration of the mass 

spectrometer was performed according to the manufacturer requirements. Detailed instrumental 

conditions of the system are summarized in Table 2.2. 
Table 2.2 

The optimised instrumental conditions for determination of HBCD diastereomers using different 

MS techniques 

 Orbitrap-HRMS TOF-HRMS QqQ-MS/MS 
ESI- conditions    

Drying gas temperature - 260°C - 
Drying gas flow - 13 L min-1 - 
Nebulizer pressure - 25 psig - 
Sheath gas temperature - 280°C - 
Capillary voltage  - 3.0 kV - 
Nozzle voltage - 3.0 kV - 
Fragmentor voltage - 150 V - 
Skimmer voltage - 75 V - 
Sheath gas flow/pressure 15 a.u.* 12 L min-1 60 psi 
Auxiliary gas flow/pressure 5 a.u.* - 30 psi 
Capillary temperature 250°C - - 
Source heater temperature  250°C - 400°C 
Spray voltage 4.5 kV - 4.5 kV 
S-lens radio frequency 50 - - 

MS conditions    
Maximum injection time 100 ms - - 
Automatic gain control (AGC target) 5 × 104 - - 
MS resolution  35 000 FWHM 15 000 FWHM UNIT 
Detection mode t-SIM FULL SCAN SRM 
Declustering potential - - 90 V 
Collision energy - - 60 V 

a.u.* – arbitrary units. 

 

2.6. Quality assurance and quality control 

Before use, all the glassware was solvent washed to remove possible background 

contamination. To prevent the degradation of potentially photolabile compounds such as HBCDs, 

PBDD/Fs and PBDEs, all stages of analytical procedure, including sample extraction, purification 

and handling of the final extracts were performed under ‘‘UV-protect’’ conditions (e.g. using amber 
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glassware or wrapping the glassware with aluminum foil). To compensate the losses of the analytes 

during the extraction and clean-up steps, each sample was spiked before the analytical procedure 

with 13C12-labeled congeners and quantification was carried out on the basis of stable isotope 

dilution and internal standardization. Recovery standards added after clean-up procedure were used 

for internal standard recovery control and calculation. Five to six point calibration curves were used 

for quantification of congener concentrations in each sample run. At the end of the analytical run, a 

reference standard solution was analyzed to check the system performance and calibration validity. 

Linearity of the calibration curves was checked with relative response factors (RRFs). 

The following internal quality control criteria for the positive identification of analytes of 

interest were applied:  

i) The retention time of native compound should be within a window of +3 to 0 seconds 

compared to the corresponding 13C12-labeled internal standard.  

ii) The isotope ratios of the two molecular ions of the halogen ion distribution cluster 

analyzed in SIR-mode should be within ± 15% of the theoretical values. 

iii) The signal-to-noise ratio should be equal to or greater than 3 (S/N ≥ 3); 

iv) Procedural blanks and quality control samples should be run in each sample sequence, 

consisting of not more than 10 samples; 

v) Recovery of 13C12-labeled internal standards was in the range of 60 – 120% (with exception 

of HBCDs, for which recovery of internal standards was not evaluated for each analyzed sample). 

To control the ongoing precision and recovery of the selected POPs, quality control samples 

were routinely added in each sample sequence. Quality control samples consisted of “in house” 

prepared fish oil or freeze-dried salmon fillet naturally contaminated with PCDD/Fs, PCBs, PBDEs, 

and HBCDs which was tested by four different laboratories. To control the ongoing precision and 

recovery of the PBDD/Fs, PXDD/Fs and PXBs quality control samples were spiked with the 

analytes of interest. To reveal the performance in analysis of POPs, laboratory participates on a 

regular basis in international proficiency tests on determination of PCDD/Fs and PCBs in food and 

feed matrices. 
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3. RESULTS AND DISCUSSION 
 

3.1. Clean-up and fractionation 

The sample preparation procedure applied in the present study was based on the 

dehydratation of fish tissue using freeze drying (lyophilization) followed by the extraction of 

lipophilic target compounds into a dichloromethane/n-hexane mixture. Alternatively, the 

dehydration procedure could be performed with anhydrous sodium sulphate or other drying agent 

(e.g., magnesium sulphate) suitable for these purposes. Extraction of POPs from the samples was 

performed using Soxhlet extraction approach as one of the simplest and most effective methods, 

which does not require sophisticated and expensive equipment [81]. The sample extract was split 

into two portions after the extraction step: 90% was subjected to the clean-up and fractionation 

steps required for the analysis of PCDD/Fs, PBDD/Fs, PXDD/Fs, PCBs, PXBs, and PBDEs, while 

the remaining 10% portion was used for the analysis of HBCDs. 

 

3.1.1. Clean-up and fractionation for the fraction containing PCDD/Fs, PBDD/Fs, 

PXDD/Fs, PCBs, PXBs and PBDEs 

Because of the structural similarity of PBDD/Fs and PXDD/Fs to PCDD/Fs, and PXBs to 

PCBs, for which a robust method has been successfully used over the course of many years for food 

and feed matrices, a similar analytical approach with modifications to better suit PBDD/F and 

PXDD/F analysis was used. Taking into account the typically low levels (ppt or sub-ppt) at which 

PBDD/Fs and PXDD/Fs are represented in food products and environmental matrices, relatively 

high sample aliquots were taken for analysis with a concentration factor up to 10 000 to provide 

better sensitivity for PBDD/Fs PXDD/Fs and PXBs. The most commonly used procedures to 

remove the bulk of high molecular compounds from the samples of animal origin are destructive 

(acid/base treatment) and nondestructive methods (size exclusion chromatography (e.g. GPC), 

dialysis through the semi-permeable membranes) [123]. Although under the conditions of well 

established analytical procedures for POPs destructive methods give reliable results, there are some 

potential risks. On one hand, the acid treatment of large sample amounts with high fat content leads 

to a risk of losing of analytes of interest by adsorption on the treated carbonaceous matrix. On the 

other hand, sample digestion with alkali could cause the breakdown of highly halogenated 

compounds resulting in formation of respective congeners with lower halogenation pattern [124]. 

Moreover, the acid treatment alone is not effective for some types of matrices (e. g. materials of 

plant origin), due to the presence of waxes, which are relatively stable to hydrolysis. To prevent the 

possible risks related to the usage of destructive lipid elimination methods, GPC was used to 
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remove the bulk (up to 95%) of high molecular compounds from the sample. Furthermore, GPC 

presented several advantages: this type of chromatography is flexible and robust; a column could be 

used repetitively without regeneration and could be easily operated in automated manner. 

Additionally an acidic silica column was used for the degradation of the remaining part of lipids, as 

well as for retaining the polar matrix components. 

As it was reported previously [41,74,125-127], the separation of PBDEs and PCBs from 

PBDD/Fs and PXDD/Fs has been of great concern to prevent the mass spectral interference from 

similar fragments during the ionization. Table 3.1 shows the example of possible interference of 

PCBs in mass spectral analysis of monobromo-trihloro and monobromo-tetrachloro DD, and 

dibromo-dichloro and dibromo-trichloro DFs. 

Table 3.1 

Possible example of mass spectral interference of PCBs in analysis of PXDD/Fs 

Component Isotopic fragment and mass (m/z) Isotope ratio (± 15%) Required MS 
resolution (R) 

Br1Cl3DD [M]+ [M+2]+ 0.51 (± 0.08) 
> 35 000 363.8455 365.8430 

HexaCB [M+6]+ [M+8]+ 4.1 (± 0.62) 363.8351 365.8321 

Br1Cl4DD [M+2]+
 [M+4]+

 1.2 (± 0.18) 
> 37 000 399.8040 401.8013 

HeptaCB [M+8]+
 [M+10]+

 5.2 (± 0.78) 399.7932 401.7902 

Br2Cl2DF [M+2]+ [M+4]+ 1.1 (± 0.17) 
> 110 000 393.7878 395.7955 

HeptaCB [M+2]+ [M+4]+ 1.0 (± 0.15) 393.8020 395.7991 

Br2Cl3DF [M+2]+ [M+4]+ 0.93 (± 0.14) 
> 113 000 427.7588 429.7563 

Br2Cl3DF [M+2]+ [M+4]+ 0.89 (± 0.13) 427.7630 429.7601 
   

On one hand, it is clearly seen that the interference of PCBs could not be distinguished by 

using conventional MS with the high resolution of R = 10 000. On the other hand, increasing of the 

MS resolution in magnetic sector HRMS instruments dramatically decreases the sensitivity. The 

isotope ratios of the two molecular ions of the halogen ion distribution cluster, which are constant 

for the selected groups of compounds, serve as a clear indicators of the presence of the component 

of interest in the sample. Nevertheless, in the case of the presence of selected components in the 

sample at ultra-trace levels, isotope ratios could be affected due to the background of the 

instrument, leading to an incorrect interpretation of the SIR chromatograms.  Moreover, 

overlapping of the retention ranges of different classes of compounds prevents unequivocal 

chromatographic identification of the analytes. As it could be seen from Papers 1 – 4, typically, fish 
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is the matrix most contaminated with PCBs and PBDEs among the food products and the latter 

compounds reach ppb or even higher concentrations on f.w. basis. Due to the significant difference 

of concentration profiles of target compound groups in the samples and the ability of some 

compounds to affect or interfere with instrumental analysis, these groups should be eliminated from 

the extracts as completely as possible during the clean-up procedure, thus extensive sample 

fractionation should be used. In our study an elaborated clean-up procedure with three-step 

fractionation for the fraction containing PBDD/Fs and PXDD/Fs was used in order to provide a 

more complete exclusion of possible interferants. The first fractionation stage involved a Florisil 

column chromatography, taking advantage of the almost complete separation of PCBs, PXBs and 

PBDEs from PBDD/Fs, PCDD/Fs and PXDD/Fs [127,128]. The elution profile for all these classes 

of analytes is shown in Figure 3.1. 

 

 
Fig. 3.1. Elution profiles of PCBs, PXBs, PBDEs, PCDD/Fs, PBDD/Fs and PXBs in Florisil column 

 

Although the Florisil column was capable of separating up to 99.5% of PBDEs from the 

sample extract, taking into account the differences in typical levels of PBDEs and PBDD/Fs (ppb 

and ppt or sub-ppt, respectively), the remaining 0.5% of PBDEs could provide undesirable GC-MS 

interference. Due to the different retention characteristics of planar and non-planar aromatic 

molecules on activated carbon, based on different interactions between the p-electrons of the 
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aromatic molecules and p-electrons of the carbon graphite structure, carbon column 

chromatography was suggested for the separation of PCBs and PBDEs from PBDD/Fs and 

PXDD/Fs [50,57,74,86], and it was applied in this study in automated manner as a second 

fractionation step. Polyhalogenated dioxins and furans have planar aromatic structures and tend to 

interact stronger with the carbon surface in comparison to the mono- to tetra-ortho substituted PCBs 

and PBDEs, which have restricted rotation around the phenyl-phenyl bond and remain relatively 

non-planar. This results in weak or intermediate retention of PCBs and PBDEs on activated carbon 

and by using moderately polar solvent mixtures (e.g., n-hexane/dichloromethane) it is possible to 

isolate these potential interferants from the extract. Moreover, the using of dual-layer reversible 

carbon column consisting of activated carbon sorbents with different surfaces areas (Carbopack C 

with surface area of 10 m2 g-1 and Carbopack B with surface area of 100 m2 g-1) provides a better 

and more reproducible recoveries for 13C12-labeled hepta- and octa-substituted dioxins and furans, 

which is common issue for these compounds [129]. The benefit is associated with the fact that the 

sample extract is applied on the additional Carbopack C layer, which has weaker adsorption 

strength to low chlorinated congeners, compared to Carbopack B, while the highly chlorinated 

congeners are retained on this material with further possibility to elute them with smaller volumes 

of solvent. The comparison of the recoveries for 13C12-PCDD/Fs obtained by using conventional 

and dual-layer carbon columns is shown in Figure 3.2. 

 
Fig. 3.2. Improvement of the recoveries for 13C12-PCDD/Fs obtained by using of dual-layer carbon 

column 
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The final purification stage for fraction containing polyhalogenated DD/Fs utilizes a basic 

alumina column to exclude the possible remaining mass interferants, and this step is particularly 

useful in analysis of matrices with high PCB and PBDE contamination (e.g., Baltic wild salmon and 

other fish from the Baltic Sea). 

Finally, due to the fact that non-ortho PCBs can attain a planar configuration, these 

compounds are more toxic in comparison with ortho PCBs and PBDEs [6]. Taking into account the 

toxicological significance of non-ortho PCBs and the occurrence of these compounds in the 

samples at lower concentrations compared to other PCBs, this group of contaminants was isolated 

as an individual fraction using carbon column, to improve the sensitivity and robustness of the 

method. 

 

3.1.2. Clean-up and fractionation for the fraction containing HBCDs 

 For analysis of HBCDs after the extraction procedure an aliquot of the sample extract was 

subjected to the destructive clean-up procedure with additional purification stage on a Florisil 

column. This approach was chosen as the simplest and less time consuming in comparison with 

non-destructive methods such as GPC in development of a target-oriented method where the 

analytes (HBCDs) are stable under the aggressive conditions.  Although the bulk of high-molecular 

compounds (e.g., lipids) were decomposed with concentrated sulphuric acid, polar matrix 

components could remain in the sample extract, thus the additional treatment with acidic silica gel 

was introduced in order to remove these interferants. Fish is a matrix known to be potentially highly 

contaminated with brominated organic compounds [130,131], and some of those (e.g., PBDEs) 

could interfere with the mass spectrometric analysis of HBCD by giving rise to similar mass 

fragments during the ionization of the sample extract. In order to remove these potentially isobaric 

mass interferants from the sample extract, additional clean-up on a Florisil column was used with 

the successful elution of analytes of interest from the column with a medium polarity solvent 

mixture (dichloromethane/n-hexane). Moreover, a three-stage sample clean-up procedure provided 

the final sample extracts of the desired purity, which was essential for the analysis of 

organobromine compounds, since the matrix components tended to adhere on the hot surfaces of 

the ion source and the thermally labile compounds such as HBCDs were destroyed on these spots 

resulting in a drop of method sensitivity. Since the clean-up procedure might become the most 

critical step, elution profiles of the analytes of interest were tested first and found to acceptably 

provide the absolute recoveries of the HBCD diastereoisomers in the range of 70 – 110%, without 

correction for the isotopically labeled internal standards. 
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Alternatively, clean-up for analysis of HBCDs could be performed under conditions of non-

destructive clean-up protocol by means of using of GPC as the first step for the elimination of high-

molecular compounds. Such approach could be more affordable with respect of extension of the list 

of the analytes by ensuring of more flexible conditions of the method and to minimizing the 

degradation of susceptible compounds. Moreover, sample extracts obtained in such way could be 

analyzed in full scan modes using either UHPLC-Orbitrap-HRMS or UPLC-TOF-HRMS with the 

possibility of retrospective post-run evaluation of the instrumental raw data and screening of 

unknown compounds (e.g. other BFRs). 

 

3.2. Instrumental analysis 

3.2.1. GC-HRMS in analysis of PCDD/Fs, PBDD/Fs, PXDD/Fs, PCBs, PXBs and 

PBDEs 

Although the increase in the halogenation degree of dibenzo-p-dioxins and furans is linked to a 

decrease in their potential toxicity, some of the PBDD/Fs with high degree of bromination (e.g., 

hepta- and octa-brominated congeners) might be of high toxicological concern. Unfortunately, in 

most studies data on highly brominated congeners is scarce. Although the sensitivity of reported 

GC-HRMS methods for analysis of PBDD/F congeners with low degree of substitution, such as di- 

to penta-brominated dioxins and furans, is comparable to the methods reported for chlorinated 

analogs, the analysis of highly brominated components is often complicated, resulting in increased 

LOQs for these toxicologically significant compounds. Due to the thermal lability of highly 

brominated congeners, the transit time through the GC column becomes critical for these 

compounds. To avoid thermal degradation problems during the GC separation of brominated POPs, 

such as PBDD/Fs and PBDEs, shorter columns with a thinner internal coating are more preferable 

[86,115,132]. In this study an 18 m GC column with phase coating of 0.10 µm that offered both 

adequate chromatographic resolution and sensitivity for PBDD/Fs was used. Taking into account 

the possibility of thermal degradation of PXDD/Fs, especially at high degree of halogenation, the 

latter were checked by application of two columns with different lengths and phase loadings (a 60 

m column with phase loading of 0.25 µm and 30 m column with phase loading of 0.10 µm). As was 

expected, the 30 m column with film thickness of 0.10 µm provided much better sensitivity for 

hepta- and octa-halogenated PXDDs without significant loss of chromatographic resolution for low 

halogenated congeners. Since only penta- and hexa-substituted PXBs were included in the scope of 

the study, no sensitivity problems due to the thermal degradation were obtained for these 

compounds during the GC run, thus 60 m GC column with phase loading of 0.25 µm was used with 

regard to provide better selectivity. For chromatographic separation of PBDEs, where thermal 
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degradation was of great concern during the GC-MS analysis [115,132], columns with phase 

loading of 0.10 µm were used to improve the sensitivity. 

In spite of the extensive multistep sample clean-up and fractionation, the possible presence of 

mass interferants (e.g., PBDEs and PCBs) in the final PBDD/F and PXDD/F extracts could not be 

excluded. During the analysis of PBDD/Fs, possible thermal degradation of potentially present 

PBDEs and debromination with release of two bromine atoms can be expected, resulting in the 

formation of intensive fragment peaks with the same number of bromines and molecular weight as 

the PBDF congeners [86]. To prevent the false-positive identification of PBDFs, simultaneous 

monitoring of the fragment ions of PBDEs with one and two extra bromines in comparison with 

PBDFs of interest was carried out and no signals with the retention times corresponding to the 

analytes of interest were found. Taking into account previous studies [74,133], the corresponding 

ions for PXDD/Fs and PXBs were chosen in the way to prevent the overlapping of the analyte ions 

with the main mass interferants (PBDEs and PCBs) as much as possible. In addition, higher mass 

resolution (13 500 – 15 000) was used during the analyses of PXDD/Fs and PXBs. Within the scope 

of this study [M]+ fragments for GC-MS determination of di- to hepta-BDEs were chosen, although 

for octa- to deca-BDEs [M-2Br]+ type ions were used because of the higher peak intensity in the 

mass spectrum compared to ions from [M]+ ion cluster [134]. The selected mass descriptors for 

measurement of PBDD/Fs, PBDEs, PXDD/Fs and PXBs are overviewed in Annexes 1, 2 and 3. 

Specific m/z fragments for the determination of PCDD/Fs and PCBs were selected according to the 

standard methods US EPA 1613 and US EPA 1668A [89,90]. 

 

3.2.2. LC-Orbitrap-HRMS in analysis of HBCD diastereomers 

3.2.2.1. LC separation 

Until this study there was no available literature on the analysis of BFRs or other contaminants 

using Orbitrap-HRMS based methods, thus special attention was paid on the capabilities of this 

emerging type of mass spectrometry in analysis of POPs. Since an analytical approach based on 

LC-MS for determination of HBCD was proposed [135], several studies have documented the 

chromatographic separation of HBCD diastereoisomers under reversed-phase conditions 

[106,112,113,136,137]. In this study the three HBCD diasteromers found to be baseline separated 

under the UHPLC conditions described in Section 2.5.2., using methanol, acetonitrile, and water 

gradient on C18 reversed-phase analytical column.  

 

3.2.2.2. Q Exactive Orbitrap-HRMS system 

The Q Exactive Orbitrap-HRMS used in this study consists of five main modules: ion source, 
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quadrupole mass filter for precursor ion selection, intermediate storage device (C-Trap) for short 

pulse injection, collision cell for performing HCD (Higher Energy Collisional Dissociation) 

experiments and Orbitrap analyzer for Fourier transform mass analysis. After the chromatographic 

separation, sample components are introduced into the heated ionization source. The observed ions 

are transferred into the C-Trap through the quadrupole rod assembly which operates as ion 

transmission device with the possibility to filter the transmitted ions according to its m/z ratios. In 

the C-Trap, the ions are accumulated and their energy dampened using a bath gas (nitrogen). The 

ions are then injected using a lens system into the Orbitrap analyzer where mass spectra are 

acquired via image current detection. In the case of operation of the instrument in targeted-MS2 (t-

MS2) mode, before the injection into the Orbitrap analyzer ions are passed through the C-Trap into 

the HCD cell where higher energy collision induced dissociation takes place. In combination with 

the quadrupole mass filter this allows MS/MS experiments. After the ions have been fragmented in 

the HCD cell, the HCD cell voltages are ramped up and the ions are transferred back into the C-

Trap from where they are injected into the Orbitrap analyzer for detection. The principal scheme of 

the Q Exactive Orbitrap-HRMS system is shown on Figure 3.3. 

 

 
Fig. 3.3. Principal scheme of the Q Exactive Orbitrap-HRMS system 

 

3.2.2.3. Detection mode selection 

To gain the optimal MS sensitivity, infusion experiments were performed in a full scan mode 

over the m/z range of 50 – 700. The [M-H]− peaks with different bromine isotopic content were 

predominant in the MS spectra of HBCD after the pair of the ions with m/z 78.9173 and m/z 

80.9152 corresponding to [Br]  ions with different isotopic pattern. No other specific peaks were 

found to be present, which is in accordance with previous studies [135,136]. Two different targeted 

detection modes were attempted during the method development process: t-MS2 and t-SIM (analog 

−
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of SIR mode) modes. Initially the t-MS2 mode was checked in order to achieve a potentially better 

selectivity of the method in comparison to t-SIM detection. This type of detection utilized the 

tandem MS option and comprised a full MS scan done by the Orbitrap analyzer with a defined 

isolation window set by the quadrupole mass filter followed by a data dependent scan with the 

fragmentation energy applied and selected mass resolution adjusted. The fragmentation of the 

precursor ions of m/z 638.6396 and m/z 640.6374 in the HCD collision cell resulted in the intensive 

formation of m/z 78.9173 and m/z 80.9152 pair corresponding to [Br]  and, these specific transitions 

were used for evaluation of the t-MS2 mode efficiency in analysis of HBCD. Contrary to t-MS2 

mode, application of the t-SIM mode did not rely on the tandem mass spectrometry option. This 

type of scanning comprised a full MS scan with an adjusted mass resolution within a defined 

isolation window, and further registration of target ions with selected m/z values. The results of 

analysis of the standard solutions using above mentioned detection modes showed a strong 

prevalence of the t-SIM mode over the t-MS2 mode in terms of sensitivity. The t-SIM method 

provided at least ten times lower LOQs for selected HBCDs in comparison to the t-MS2 method. 

The chromatograms of spiked butter fish sample (0.40 pg g-1 f.w. of each HBCD diastereoisomer) 

analyzed in the t-MS2 and t-SIM modes are shown in Figure 3.4. The decreased sensitivity of the t-

MS2 mode can be logically explained by taking into account the losses/incomplete fragmentation of 

precursor ions during the collision process in HCD cell, or different detector response factors for 

ions with different m/z. During the analysis of spiked samples no selectivity problems or 

interferences were observed under the t-SIM conditions. Taking into account the aforementioned 

results, the t-SIM mode with the registration of two specific fragments corresponding to the [M-H]  

peaks of the respective molecular ion clusters both for the native and 13C12-labeled HBCDs, and the 

adjusted mass resolution of 35 000 FWHM was considered to be the most suitable option for the 

application of high-resolution Q Exactive Orbitrap-HRMS system in analysis of these 

contaminants. 

 

 

−

−
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Fig. 3.4. The chromatograms of spiked butter fish sample (0.40 pg g-1 f.w. of each HBCD 

diastereoisomer) analyzed in the t-MS2 and t-SIM modes 

 

3.2.2.4. Ion population in the Orbitrap mass analyzer 

To provide the most accurate data in terms of spectral resolution, the ion population transferred 

into the Orbitrap mass analyser should be controlled. This can be achieved by the curved C-trap 

operated in different modes according to the trapped ion count. The insufficient ion count leads to 

the signal and spectral instability; on the contrary, if the ion count is too high, the overcharge per 

unit area results in the “space charging” effect, thus a shift in mass accuracy could be observed. The 

optimal ion count of 5 × 104 controlled by the automatic gain control (AGC target) option was 

determined on the basis of S/N ratio, peak area, peak shape, and reproducibility of the results in the 

analysis of fortified fish oil samples at background concentrations. 

 

3.2.2.5. Orbitrap-HRMS resolution 

The use of high resolution mass spectrometry involves a compromise between the selectivity 

and sensitivity. Increasing of mass resolution provides higher mass accuracy resulting in better 

selectivity of the developed MS conditions. However, because of the reduced scanning speed 

provided by the Q Exactive MS system at maximum possible mass resolution mode, selecting the 

higher possible resolution of 140 000 FWHM in combination with the processing of the data with 

appropriate scan filter option and smoothing of the raw chromatograms affects the sensitivity and 

reproducibility of the results obtained at background contamination levels compared to those 

obtained at lower mass resolution modes. On the contrary, the application of lower resolution 

modes creates higher background noise and could lead to reduced S/N ratios and false 

positive/negative results because of the degraded mass accuracy. On the basis of the results 

obtained in analysis of the spiked samples and naturally contaminated salmon samples employing 

different mass resolution modes (17 500, 35 000, 70 000 and 140 000 FWHM), a resolution of 
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35 000 FWHM was found to be optimal for the analysis of HBCD diastereoisomers as a 

compromise between selectivity, sensitivity and reproducibility of the analytical data. Figure 3.5 

illustrates the chromatograms of spiked fish oil sample obtained at different mass resolution modes. 

The raw data were processed by application of the Fourier Transform Mass Spectrometry (FTMS) 

filter option and negative ion profile signal acquired in the single stage t-SIM mode within the mass 

window of m/z 640.14 – 641.14. The raw chromatograms were treated employing Gaussian 

smoothing with the degree of 13 points. 

 

3.2.2.6. Mass extraction window 

For confirmation of the analytes of interest in the analyzed samples the exact masses of analyte 

fragments were extracted within a specific mass window after the UHPLC-MS analysis in t-SIM 

mode. On the one hand, the narrowing of the mass extraction window during the interpretation of 

the raw data resulted in increased intensity of selected peaks in comparison to the background, thus 

improving the S/N ratio for selected fragments and providing better results in terms of selectivity. 

On the other hand, the significantly narrowed mass extraction window potentially could decrease 

the sensitivity and provide false negative results. In this study the difference of 5 ppm between the 

mass window and the theoretical mass of selected fragments was used with no significant matrix 

interference at the levels around the limit of quantification (LOQ). Figure 3.6 shows the effect of 

different mass extraction windows during the processing of the raw chromatogram of salmon 

sample contaminated with β- and γ-HBCDs at background levels. 
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Fig. 3.5. The effect of using different mass resolution modes in analysis of spiked fish oil at the level corresponding to injection of 10 pg of each 

HBCD diastereoisomer on the column (t-SIM chromatograms for m/z 640.6374 (quantification ion))
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Fig. 3.6. The effect of different mass extraction windows in the processing of the raw 

chromatogram of naturally contaminated salmon sample (t-SIM chromatograms for m/z 640.6374 

(quantification ion) and m/z 638.6396 (confirmation ion)) 
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3.2.3. Orbitrap-HRMS full scan mode capabilities  

After targeted analytical method for determination of HBCD diastereoisomers was successfully 

established, the perspective of HBCD detection in a full scan mode was evaluated. The principal 

aim of these experiments was to establish the method capability for the detection of target analytes 

at the levels of interest using non-targeted full scan detection mode, with the opportunity to store 

and post-process the raw data. The retrospective post-targeted evaluation of experimental data 

offered the possibility to screen for non-targeted analytes and offered the possibility to 

simultaneously perform a screening of virtually unlimited number of compounds. The analyses of 

standard solutions, as well as spiked samples of fish oil and fish tissue were performed using both 

the t-SIM mode and a full scan mode over the m/z range of 50 – 750. The results were compared in 

terms of S/N ratio for chromatographic peaks of target compounds, by replicated analyses of the 

same samples using different detection modes. The obtained analytical data showed the possibility 

of reliable detection and confirmation of selected HBCDs in a full scan mode without degradation 

of the sensitivity. Thus, it could be concluded that considerable extension of the analyte list and 

post-targeted detection of new compounds is possible. Moreover, the possible modification of 

clean-up procedure with the exchange of destructive matrix component removal methods (e.g. 

acidic digestion) to non-destructive treatment of the sample (e.g. gel permeation chromatography) 

would provide the possibility to analyse compounds that are labile in the conditions of destructive 

sample clean-up (e.g. organophosphorus flame retardants) and persistent contaminants in one run, 

thus a more complete information on the sample contamination status could be obtained.  

 

3.2.4. Comparative evaluation of Orbitrap-HRMS versus TOF-HRMS and MS/MS in 

analysis of HBCD diastereomers 

In order to provide a more complete information regarding the analytical capabilities of the 

UHPLC-Orbitrap-HRMS additionally to optimization of the instrumental conditions, importance of 

sample clean-up stages in the detection of HBCD was evaluated. Moreover, taking into account the 

absence of comparative evaluation of the most frequently used LC-MS based HBCD detection 

techniques, a detailed information on the analytical capabilities of UHPLC-TOF-HRMS and 

UHPLC-QqQ-MS/MS systems in the analysis of this contaminant in fish samples, including the 

influence of sample clean-up steps on the response of the employed MS systems is presented. To 

compare the examined LC-MS techniques for the analysis of HBCD, the previously mentioned 

clean-up and UHPLC conditions (Sections 2.4.2.1, 2.4.2.2 and 2.5.2.1) were kept constant and three 

types of MS systems – TOF-HRMS, Orbitrap-HRMS, and QqQ-MS/MS were applied for the 
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detection of this BFR in fish. The elaborated analytical methods were robustly validated and used 

for the analysis of eel samples collected in Latvia, and these results were compared.  

One of the most important factors that can affect the performance of the LC-MS system is the 

signal suppression caused by matrix components. Several papers in the field of LC-MS are devoted 

on this effect, and it could be seen from the literature that MS systems coupled to ESI are more 

vulnerable to signal suppression in comparison to atmospheric-pressure chemical ionization (APCI) 

or atmospheric-pressure photo-ionization (APPI) techniques [138,139]. The signal suppression 

effect depends mostly on the efficiency of ionization interface of the LC-MS system and is not 

connected to the type of MS analyzer. The possible reasons of the signal suppression are: 1) the 

charge competition between the analyte and signal suppressing substances, resulting in a decreased 

conductivity of the liquid phase and reduced ionization of the analyte; 2) the reduction of the 

droplet evaporation efficiency due to the increasing surface tension and viscosity of the liquid phase 

in the presence of large amounts of signal suppressing substances; 3) the reduction of the ionization 

efficiency due to the reactions in gas phase between the analyte and signal suppressing molecules 

[138]. Due to the complexity of the food and environmental matrices, the primary concern of the 

signal suppression phenomenon in LC-MS is the severe decrease of the sensitivity of the method. 

An investigation of the importance of proposed clean-up steps was carried out by evaluation of the 

signal suppression for three LC-MS techniques. The influence of the signal suppression effect was 

estimated by adding known amounts of analytes of interest to the final sample extracts, which were 

processed using different clean-up steps (or their combinations). The influence of the sample weight 

taken for analysis was evaluated as well. The S/N ratios, which were calculated for the 

chromatographic peaks of HBCD diastereomers obtained for the investigated extracts, were 

compared to those obtained for standard solution of equivalent analyte concentrations in the mobile 

phase. The data for the analyte solution in mobile phase provide a relative 100% response (S/N) 

value, whereas the data for the same amount of compound added to processed samples show the 

effect of sample matrix on MS response and on the obtained S/N. The Figure 3.7 shows decreasing 

S/N values obtained by the investigated LC-MS techniques for each HBCD diastereomer, by 

application of different clean-up steps or their combinations and using different sample amounts for 

analysis. 

Firstly, the efficiency of destructive (acidic treatment) and non-destructive (GPC) approaches 

for removing matrix components was evaluated. Both methods and their combinations are well 

known in the sample preparation for POP analysis (particularly for HBCD [115]). Acidic treatment 

was chosen as one of the most efficient and simplest ways to remove high molecular matrix 

components (e.g., lipids) from the sample extract. However, it should be noted that such destructive 
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approach could be used only when the stability of the compounds of interest under the harsh 

conditions of acidic treatment is assured. On the contrary, GPC provides a non-destructive 

procedure for high molecular compound removal, which is based on the separation of the sample 

components according to molecular size, and this type of chromatography offers great advantages 

in the sample preparation for potentially labile compounds, particularly for non-targeted analysis 

[81]. Nevertheless, the efficiency of the separation of high molecular matrix components is usually 

not more than 95%, therefore additional clean-up steps are needed in some cases. The results of our 

study indicate that significant signal suppression effects could be observed in the analysis of HBCD 

using the examined LC-MS methods. The UHPLC-TOF-HRMS system seems to be most 

influenced by the signal suppression in comparison with UHPLC-QqQ-MS/MS and UHPLC-

Orbitrap-HRMS. Application of the one-stage clean-up protocol including only acidic treatment of 

the sample extract or GPC caused a more than 90% sensitivity drop for the UHPLC-TOF-HRMS 

system, while the analytical response of the UHPLC-QqQ-MS/MS and UHPLC-Orbitrap-HRMS 

systems was suppressed by about 50%. No significant differences between these analytical 

techniques in terms of signal suppression were obtained neither with destructive nor non-destructive 

clean-up.  

A significant improvement of S/N values was achieved by implementing an additional 

adsorption chromatography clean-up stage on a Florisil column. For UHPLC-TOF-HRMS system 

the S/N ratio for chromatographic peaks due to analytes of interest could reach up to 50% of the 

instrumental response obtained for standard solution. For the UHPLC-QqQ-MS/MS and UHPLC-

Orbitrap-HRMS systems, the application of a two-stage clean-up procedure including removal of 

high molecular substances and Florisil column chromatography could provide S/N ratios up to 80 – 

90% of the ratios obtained for standard solution. Florisil column chromatography provides better 

sensitivity of analysis because the signal suppressors originating from the matrix could be either 

fractionated or permanently adsorbed during this clean-up stage. Moreover, taking into account the 

fact that fish samples usually contain significant amounts of organobromines (e.g. PBDEs) which 

could potentially interfere with the mass spectrometric analysis of HBCD by providing similar mass 

fragments during the ionization of the sample extract, the using of Florisil column could ensure an 

additional benefit due to the ability to isolate these potential mass interferants in separate fractions. 
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Fig. 3.7. Changes of the S/N values obtained for the investigated LC-MS techniques for each HBCD 

diastereomer by application of different clean-up steps or their combinations and different sample 

amounts taken for analysis 

 

In addition to evaluating the importance of the proposed clean-up steps or their combinations, 

the influence of the sample amount taken for analysis was investigated for aliquots of 5, 10, and 15 

grams of butter fish homogenate. The observed degree of signal suppression indicates that this 

effect plays a significant role, and it was more expressed for UHPLC-TOF-HRMS and UHPLC-

Orbitrap-HRMS systems, while the UHPLC-QqQ-MS/MS system seems to be more robust in terms 

of this phenomenon (Figure 3.7).  
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3.3. Validation of the developed method 

3.3.1. Validation of GC-HRMS method for analysis of PCDD/Fs, PBDD/Fs, PXDD/Fs, 

PCBs, PXBs and PBDEs 

Since there were no specific requirements or guidelines for the validation of analytical 

procedures for determination of PBDD/Fs, PXDD/Fs, PXBs and PBDEs a validation protocol based 

on the criteria of Commission Regulation (EU) No 252/2012 which related to the criteria for 

PCDD/Fs and PCBs was used [129]. The validation study was performed in terms of recovery, 

precision and limit of quantification. The experiments were carried out at two spiking levels with 

six parallel samples and each fortification level was repeated on two different days. The precision, 

repeatability and recovery were calculated for fish oil spiked with native compounds. The detailed 

validation results are summarized in Table 3.2. For reproducibility estimation of the developed 

method within laboratory, in-house prepared reference material (freeze-dried salmon tissue) was 

used which was naturally contaminated with PCDD/Fs, PCBs and PBDEs and was fortified with 

native PBDD/Fs, PXDD/Fs and PXBs. Repeated analyses of this material were performed in 

different routine sample sequences. The results showed good consistency at selected fortification 

levels. Reproducibility for selected compounds appeared to be similar to that found for PCDD/Fs 

and PCBs in routine analyses. There were no proficiency tests or certified reference materials for 

PBDD/Fs, PXDD/Fs and PXBs, but in order to confirm the performance in persistent organic 

pollutant analysis, our laboratory successfully participated in international proficiency tests for 

determination of PCDD/Fs, PCBs, PBDEs and HBCDs in food and feed matrices organized by 

European Union Reference Laboratory for Dioxins and PCBs in Feed and Food, Freiburg, 

Germany. 

In spite of multi-stage sample preparation and fractionation, typical quantitative recoveries of 

used 13C12-labeled internal standards were in the range 60 – 110% with exception of 13C12-labeled 

octa-brominated and octa-chlorinated dibenzo-p-dioxins and furans and octa- through deca-

brominated diphenyl ethers, for which typical recoveries were in the range of 30 – 50%. The 

reagent blanks were free of PBDD/Fs and PXDD/Fs. Some insignificant concentrations of PCDD/F, 

PBDE and PCB congeners were usually found in the reagent blank extracts and the calculated 

concentrations in the samples were subjected to correction. The limits of quantification (LOQ) of 

selected POPs for the developed analytical procedure were calculated on the basis of investigated 

unspiked matrix. As it was anticipated, the sensitivity of the method decreased with higher degree 

of halogen substitution in the molecules of investigated compounds. This phenomenon was 

particularly emphasized for PBDD/Fs and, to a lesser extent, for PXDD/Fs, as expected from the 

thermal lability of highly halogenated organobromines [86,140]. The sensitivity of the elaborated 
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method for PBDD/Fs and PXDD/Fs was in the range of 0.03 – 1.6 pg g-1 fat, which was sufficient 

for determination of these contaminants in fish, while taking into account the toxicological 

properties and typical distribution of these compounds in aquatic biota.    
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Table 3.2. 
Validation results for PBDD/F, PCDD/F, PXDD/F, PXB, PCB and PBDE groups 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
a – parameters differ for individual congeners depending on halogenation degree; 
b – recovery range (%) for selected contaminant group for corresponding fortification level calculated from the data obtained on two different days; 
c – intraday precision range (%) for selected contaminant group for corresponding fortification level calculated from the data obtained on two different days; 
d – interday precision range (%) for selected contaminant group for corresponding fortification level calculated from the data obtained on two different days. 
 
 
 
  

Congener group Linearity of 
measurement,  

pg 

LOQ a , 
 pg g-1 

product  

 1st spiking level 

 

2nd spiking level 

Spiking 
level a, 

 pg g-1 fat 

Recovery 
(n=2) b, % 

Intra-day 
presision, 
(n=2) c, % 

Inter-day 
presision 

(n=2) d, % 

Spiking  
level a,  

pg g-1 fat 

Recovery 
(n=2) b, % 

Intra-day 
presision, 
(n=2) c, % 

Inter-day 
presision 

(n=2) d, % 

PBDD/Fs 0.05 – 30 0.04 – 1.6  0.53 – 4.5 86 – 117 5 – 23 4 – 24  1.1 – 8.9 81 – 117 3 – 18 3 – 17 
PCDD/Fs 0.05 – 200 0.02 – 0.11  0.25 – 2.5 90 – 120 3 – 13 3 – 14  0.50 – 5.0 94 – 119 2 – 10 2 – 10 
PXDD/Fs 0.05 – 3.8 0.03 – 0.10  0.33 – 1.3 92 – 106  7 – 12  8 – 14  0.67 – 2.7  89 – 114 3 – 15  4 – 14 
PXBs 0.05 – 20 0.03 – 0.11  0.33 – 1.3 89 – 108 4 – 14 4 – 15  0.67 – 2.7 87 – 117 2 – 8 3 – 9 
DL-PCBs 0.10 – 200 0.17 – 0.34  100 94 – 115  2 – 8 4 – 9   200 93 – 114 2 – 4 3 – 5 
NDL-PCBs 1.0 – 700 0.25 – 0.65  620 – 940 81 – 120  4 – 9  6 – 9  1200 – 1900 84 – 120  6 – 9  6 – 10 
PBDEs 0.50 – 500 0.11 – 2.2  190 – 940 75 – 123  3 – 10 4 – 11  380 – 1900  79 – 120 5 – 10  6 – 10 
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3.3.2. Validation of UHPLC-Orbitrap-HRMS method for analysis of HBCDs and 

comparison of performance characteristics versus UHPLC-TOF-HRMS and 

UHPLC-QqQ-MS/MS 

Since a target-oriented approach was used for the determination of HBCD diastereomers, 

destructive acidic treatment clean-up protocol with additional purification stage on a Florisil 

column was chosen for validation exercises as the simplest and less time consuming in comparison 

with a GPC based clean-up procedure. Essential analytical characteristics such as linearity, 

accuracy (recovery), repeatability (intra-day precision), intermediate precision (inter-day precision), 

instrumental limit of quantification (i-LOQ) and method limit of quantification (m-LOQ) were 

examined in order to evaluate the analytical performance of the compared analytical procedures. 

The methods were provisionally validated using butter fish homogenate, and the performance of the 

methods was evaluated by run-to-run (n=5) and day-to-day (n=3) analyses of spiked matrix at three 

concentration levels (200, 1000, and 2000 pg g-1 f.w. of each HBCD diastereomer). The 

repeatability and intermediate precision were expressed as RSD from the results obtained during the 

recovery experiments. Table 3.3 outlines the above mentioned analytical performance parameters 

for the three applied MS systems.  

During the linearity experiments, both the matrix matched and solvent matched calibration 

experiments were performed at five calibration levels from 1.0 to 100 pg µL-1, and each calibration 

solution was analyzed in triplicate. The working range was selected by taking into account the 

typical distribution profiles (e.g., strong predominance of α-HBCD in comparison to β-and γ-

HBCDs in biota samples and predominance of the γ-HBCD for environmental objects), and the 

levels of HBCD diastereomers in the most frequently analyzed objects, as well as sample intake and 

the amount of analyte injected on-column limited by the final volume and injection volume of the 

sample extract. For the Orbitrap-HRMS and QqQ-MS/MS instruments, the equations of the 

calibration curves were fitted to a linear function and the relationship obtained by internal standard 

method was found to be rectilinear with correlation coefficients of 0.995 or greater, and residual 

values less than 15% for both matrix matched and solvent matched calibration experiments. There 

were no differences in the plots of calibration curves obtained by matrix matched and solvent 

matched linearity experiments. Contrary to the Orbitrap-HRMS and QqQ-MS/MS techniques, for 

TOF-HRMS the non-linear calibration curve was observed within the examined working range 

from 1.0 to 100 pg µL-1 for all analyzed compounds, thus a quadratic type of the curve was selected 

as an appropriate fit. There are several mentions in the literature on non-linear behavior of the TOF-

HRMS techniques, which could be attributed to analyte "saturation" effect during the charge 

competition phenomena inside the analyzer [141-143]. The Figure 3.8 shows the typical matrix 
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matched quadratic type standard curve for α-HBCD. Although the non-linear relationship for the 

TOF-HRMS technique may at first glance be considered as a disadvantage for quantitative 

determination, correlation coefficients of 0.999 or greater were obtained for the quadratic type 

calibration curves for all three HBCD diastereomers within the working range, and these were 

successfully used for quantification purposes during the validation experiments and analyses of real 

samples. Similarly to Orbitrap-HRMS and QqQ-MS/MS techniques, in the case of TOF-HRMS 

system no difference was observed between the matrix matched and solvent matched calibration 

plots. 

 

Fig. 3.8. An example of the matrix matched quadratic type standard curve for α-HBCD within the 

working range from 1.0 to 100 pg µL-1, generated by the TOF-HRMS system 

 

There was a good agreement between the studied LC-MS techniques in terms of recovery, 

repeatability, and intermediate precision. According to the obtained results, the evaluated 

instruments demonstrated similar performance in diastereoselective analysis of HBCD. All three 

applied analytical systems provided adequate recovery values at 200, 1000, and 2000 pg g-1 f.w. for 

each HBCD diastereomer, which were as follows: α-HBCD 102 – 114%, β-HBCD 99 – 116%, and 

γ-HBCD 99 – 112%. The UHPLC-QqQ-MS/MS system provided a slightly better repeatability and 

intermediate precision in comparison to the other two studied techniques. The RSD values of run-

to-run and day-to-day validation experiments were 1 – 7% and 2 – 8%, respectively. 

The i-LOQ values for the studied HBCD diastereomers were all within a similar range and 

suitable for confirmatory purposes. The S/N ratio used for the calculation of i-LOQ values was 

10:1. The calculated values for i-LOQ for the studied LC-MS techniques were expressed as analyte 

amount injected on-column and were the following: 1.1 – 4.5 pg for α-HBCD, 1.4 – 3.0 for β-
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HBCD, and 0.7 – 1.4 pg for γ-HBCD, respectively. The m-LOQ values were assessed by 

calculations taking into account the sample preparation procedure (sample weight taken for analysis 

and the final volume of the sample extract), and the signal suppression effect obtained by using 

acidic treatment procedure with additional purification on Florisil column. The m-LOQs were 

expressed as pg g-1 of sample f.w., and were in the range from 4.0 to 29 pg g-1 for α-HBCD, from 

7.0 to 13 pg g-1 for β-HBCD, and from 4.0 to 7.0 pg g-1 for γ-HBCD. 
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Table 3.3. 
Analytical characteristics of the compared LC-MS techniques for analysis of HBCD diastereomers 

 
a – average recovery (%) for a selected diastereomer at the corresponding fortification level, calculated from the data obtained on three different days; 
b – average intra-day precision (%) for a selected diastereomer at the corresponding fortification level, calculated from the data obtained on three different days; 
c – average inter-day precision (%) for a selected diastereomer at the corresponding fortification level, calculated from the data obtained on three different days. 

Compound 
Linearity of 

measurement, 
pg µL-1 

 UHPLC-QqQ-MS/MS  UHPLC-Orbitrap-HRMS  UHPLC-TOF-HRMS 

 Detection traces i-LOQ, 
pg 

m-LOQ, 
pg g-1 f.w.  Detection traces i-LOQ, 

pg 
m-LOQ, 

pg g-1 f.w.  Detection traces i-LOQ, 
pg 

m-LOQ, 
pg g-1 f.w. 

α-HBCD 1.0 - 100  640.6→78.9/80.9 1.3 5.0  638.6396/640.6374 1.1 4.0  638.6396/640.6374 4.5 29 
β-HBCD 1.0 - 100  640.6→78.9/80.9 2.1 9.0  638.6396/640.6374 3.0 13  638.6396/640.6374 1.4 9.0 
γ-HBCD 1.0 - 100  640.6→78.9/80.9 0.9 4.0  638.6396/640.6374 1.4 7.0  638.6396/640.6374 0.9 7.0 

1st validation level 

Compound Spiking level, 
pg g-1 f.w. 

 UHPLC-QqQ-MS/MS  UHPLC-Orbitrap-HRMS  UHPLC-TOF-HRMS 

 Recovery 
(n=3)a, % 

Intra-day 
precision, 
(n=3)b, % 

Inter-day 
precision 
(n=3)c, % 

 Recovery  
(n=3)a, % 

Intra-day 
precision, 
(n=3)b, % 

Inter-day 
precision 
(n=3)c, % 

 Recovery 
(n=3)a, % 

Intra-day 
precision, 
(n=3)b, % 

Inter-day 
precision 
(n=3)c, % 

α-HBCD 200  109 3 4  114 4 4  104 5 5 
β-HBCD 200  103 3 4  111 7 7  102 5 5 
γ-HBCD 200  107 3 4  112 5 5  99 2 4 

2nd validation level 

Compound Spiking level, 
pg g-1 f.w. 

 UHPLC-QqQ-MS/MS  UHPLC-Orbitrap-HRMS  UHPLC-TOF-HRMS 

 Recovery 
(n=3)a, % 

Intra-day 
precision, 
(n=3)b, % 

Inter-day 
precision 
(n=3)c, % 

 Recovery 
(n=3)a, % 

Intra-day 
precision, 
(n=3)b, % 

Inter-day 
precision 
(n=3)c, % 

 Recovery 
(n=3)a, % 

Intra-day 
precision, 
(n=3)b, % 

Inter-day 
precision 
(n=3)c, % 

α-HBCD 1000  107 2 3  106 4 8  110 3 3 
β-HBCD 1000  104 6 7  105 3 5  112 3 4 
γ-HBCD 1000  103 2 2  105 2 3  106 3 3 

3rd validation level 

Compound Spiking level, 
pg g-1 f.w. 

 UHPLC-QqQ-MS/MS  UHPLC-Orbitrap-HRMS  UHPLC-TOF-HRMS 

 Recovery 
(n=3)a, % 

Intra-day 
precision, 
(n=3)b, % 

Inter-day 
precision 
(n=3)c, % 

 Recovery 
(n=3)a, % 

Intra-day 
precision, 
(n=3)b, % 

Inter-day 
precision 
(n=3)c, % 

 Recovery 
(n=3)a, % 

Intra-day 
precision, 
(n=3)b, % 

Inter-day 
precision 
(n=3)c, % 

α-HBCD 2000  104 1 3  102 3 5  105 6 6 
β-HBCD 2000  99 4 4  103 2 3  116 7 8 
γ-HBCD 2000  101 2 2  103 3 4  101 6 6 



 65 

In order to compare the applicability of the elaborated LC-MS procedures for analysis of real 

fish samples, and to obtain the information on the actual levels of HBCD diastereomers in eels from 

Latvian lakes (Section 2.2.2), the determination of three HBCD diastereomers in eight samples was 

performed. The samples were extracted and purified according to the destructive acidic treatment 

clean-up protocol with the additional purification stage on Florisil column described in Section 

2.4.2.1. The obtained extracts were analyzed using the above mentioned LC-MS systems as rapidly 

as possible after the sample preparation to prevent the possible changes of the final extracts. As it 

could be seen from the results, good agreement was observed between the analytical data obtained 

by applying the studied LC-MS systems for the analysis of fish samples contaminated with HBCD 

at sub-ppb levels (Figure 3.9). The maximum RSD between total-HBCD concentrations obtained 

for the analyzed samples was 9%. The RSD values between the concentrations obtained for α- and 

β-HBCDs were in the range of 3 to 9% and 3 to 27%, respectively. Higher deviations were obtained 

at concentrations near the m-LOQ. Thus, for γ-HBCD, which was generally found in the samples at 

concentrations near the m-LOQ, the RSD values varied from 5% up to 60%. The total-HBCD and 

individual diastereomer concentrations obtained with each studied LC-MS technique were 

statistically compared using a Friedman non-parametric statistical test and the probability value (p-

value) was evaluated. The p-value was used to decide whether or not the null hypothesis (H0) 

according to which the results come from the same population, was true. In the case if the p-value 

for some of components was smaller than the pre-established significance level (α = 0.05), the H0 

was rejected, indicating that the alternative hypothesis could be true. No statistically significant 

differences were found for α-, β-, γ-, and total-HBCD with the p-values 0.197, 0.054, 0.065, and 

0.233, respectively, and therefore these results indicated that the studied techniques produced 

adequate and similar results on HBCD content in fish samples. However, it should be pointed out 

that the Friedman test was performed only for samples in which all analytes were detected above 

the m-LOQ, in order to obtain more realistic results. In the case of calculating p-values for 

upperbound analyte concentrations (if the analyte was not detected in the sample or detected at 

concentrations below the m-LOQ, the m-LOQ was used for calculation), γ-HBCD showed p-value 

of 0.046, thus the H0 for this component should be rejected. Nevertheless, the factor of statistical 

significance could not be estimated in such a way with high degree of confidence, because of the 

inability to provide the real analyte concentration in the sample, but giving only the most 

pessimistic approximation on the occurrence of the contaminant in the analyzed object. Moreover, 

the concentrations of β- and γ-HBCDs determined in the analyzed samples were in the range near 

the m-LOQ (especially for the γ-diasteroisomer), and this could be an additional source of increased 

dispersion of the results due to the higher measurement uncertainty at these low levels.  
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Fig. 3.9. Comparison of the total-HBCD concentrations in eel samples obtained by applying 

different LC-MS techniques (error bars indicate measurement uncertianty of 20%) 

 
3.4. Application of the method to fish samples and evaluation of contamination status of fish 

from Baltic region 

The developed methodology was used in a study of fish samples (Section 2.2) for the 

quantitative determination of selected persistent organic pollutants. Taking into account the 

bioaccumulative properties and formation mechanisms of poorly studied PBDD/Fs, PXDD/Fs and 

PXBs, the presence of these compounds in fish tissues might be expected. Due to the lack of 

analytical standards, from the wide range of possible bromo-, and particularly mixed bromo/chloro-

substituted congeners, only selected PBDD/Fs, PXDD/Fs and PXBs were analyzed. For the 17 

PCDD/Fs and 12 DL-PCBs, which had TEFs2005 set by the WHO, the rounded result of each 

congener was multiplied by the corresponding TEF [6], and TEQs were calculated by summarizing 

the obtained values for selected POP groups. For comparative purposes for eel samples TEQ values 

for PCDD/Fs and DL-PCBs were additionally calculated using TEFs1998 [5].  Because the TEFs 

have not been established for PBDD/Fs and PXDD/Fs, for tentative estimation of the possible 

toxicity risks of salmon tissue caused by the presence of these compounds, the TEQs for these 

contaminant groups were estimated using the corresponding TEFs2005 of chlorinated analogs. 

Results were expressed as upperbound (UB) and lowerbound (LB) values and are expressed on a 
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Baltic wild salmon. Length, weight, lipid content and place of sampling where the corresponding 

specimen was collected are also included. For salmon samples age and sex additionally reported. 

 
3.4.1. Levels and congener profiles of POPs in Baltic wild salmon samples 

PCDD/Fs and PCBs. The data showed an extremely high level of Baltic wild salmon 

contamination with PCDD/Fs and DL-PCBs, and this information is in good agreement with 

previous studies on Baltic wild salmon [144,145]. The congener profile typical of Baltic Sea fish 

was observed for all samples, and the major contributors to the total-WHO2005-TEQ were tetra-, and 

penta-chlorinated DD/Fs and PCBs 118, 126 and 156. For most of the analyzed salmon samples, 

MLs established by European Commission [146] for PCDD/Fs and DL-PCBs were exceeded. The 

analyzed samples showed PCDD/F concentrations in the range of 2.1 – 6.1 pg WHO2005-PCDD/F-

TEQ g-1 f.w., with an average of 3.8 pg WHO2005-PCDD/F-TEQ g-1 f.w., and DL-PCBs were found 

in the concentration range of 2.4 – 8.5 pg WHO2005-PCB-TEQ g-1 f.w.  Only for six samples out of 

the twenty five analyzed the ML of 6.5 pg total-WHO2005-TEQ g-1 f.w. was not exceeded. The 

results are in agreement with the fact that salmon is the largest fish in the Baltic Sea, at the top of 

food chain, and tend to accumulate high levels of chlorinated POPs.  

The NDL-PCBs represented in the samples had a wide range of concentrations, depending on 

the congener. The total sum of NDL-PCB concentrations was within the range of 26 – 65 ng g-1 

f.w., with an average of 46 ng g-1 f.w. The congener pattern of NDL-PCBs in the samples consisted 

mainly of penta-, hexa-, and hepta-chlorinated biphenyls and was in good agreement with previous 

studies of the Baltic fish [130,147]. Out of the analyzed PCBs, the group of so called indicator 

PCBs (namely PCBs: 28, 52, 101, 138, 153 and 180) represented about 80% of total PCB 

concentration, with the main contributors PCB 153 and PCB 138. Other significant congeners were 

PCB 99 and PCB 110, which constituted about 13% of the total measured PCB concentration.  

In 2011, the maximum level of 75 ng g-1 f.w. for ∑ind.PCB in fish was included in Commission 

Regulation (EU) No 1259/2011 [146]. Analyzed salmon samples show the levels for this parameter 

in the range of 20 – 51 ng g-1 f.w. with an average of 37 ng g-1 f.w. According to the obtained 

results, none of the analyzed salmon samples exceeded the ML. These levels are in line with a 

recent study [145], in which 2-year salmon samples collected in the open Baltic Sea showed the 

∑ind.PCB in the range of 39 – 55 ng g-1 f.w., while the ∑ind.PCB concentration in salmon from the Gulf 

of Finland and Bothnian Sea was up to 2 times higher. 

PBDD/Fs and PXDD/Fs. Deatiled information on the occurence of PBDD/Fs and PXDD/Fs in 

analyzed salmon samples is represented in Annex 5. The analyzed salmon samples contained a 

wide range of detectable PBDD/F congeners with the domination of PBDFs, which was in 
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accordance with the formation mechanisms of these compounds and reflected the typical 

composition of these contaminants in industrial emissions [47], food [57,58,74] and environmental 

matrices [148,149]. Three congeners (1,2,3,7,8-PentaBDF, 1,2,3,7,8-PentaBDD and OctaBDD) 

were not detected above the LOQ in any of samples. The most abundant congeners 2,3,7,8-

TetraBDF, 1,2,3,4,6,7,8-HeptaBDF and OctaBDF were detected in the range of 0.16 – 0.92 pg g-1 

f.w., on average 0.41 pg g-1 f.w.; 0.27 – 1.4 pg g-1 f.w., average 0.76 pg g-1 f.w. and 0.32 – 2.1 pg g-

1 f.w., average 0.88 pg g-1 f.w., respectively. In most cases, the concentrations of PBDDs were 

below the LOQ, with the exception of 1,2,3,4,6,7,8-HeptaBDD, which was found in all samples. 

Potentially the most significant from toxicological point of view was 2,3,7,8-TetraBDD, which was 

detected above the LOQ in four of twenty five samples in the concentration range from 0.002 to 

0.01 pg g-1 f.w., with an average of 0.01 pg g-1 f.w. Only one HexaBDF congener (1,2,3,4,7,8-

HexaBDF) was analyzed in this study, and it was present in all samples in the range from 0.03 and 

0.13 pg g-1 f.w., with an average value of 0.08 pg g-1 f.w. Chromatographically unseparated 

1,2,3,4,7,8/1,2,3,6,7,8-HexaBDD congeners and 1,2,3,7,8,9-HexaBDD were each detected in four 

samples with average concentrations of 0.01 pg g-1.  

Due to the fact that very few references are available regarding PBDD/F content in biota, the 

systematization and evaluation of these data is problematic. Available references emphasized 

mainly the low brominated components (e.g. di-, through hexa-brominated congeners). Generally 

PBDD/Fs are far less represented in environmental samples and food products compared to their 

chlorinated analogs, and at the moment there are no established MLs for these contaminants. For 

tentative estimation of the possible toxicity risks of salmon tissue caused by presence of PBDD/Fs, 

TEQs were calculated as described above. Taking into account the TEFs2005 [6], the analyzed 

salmon samples show PBDD/F-TEQ (UB) concentrations in the range of 0.04 – 0.14 pg g-1 f.w., 

with an average of 0.07 pg g-1 f.w. On the basis of the obtained results, it could be concluded that 

the presence of PBDD/Fs in the analyzed salmon samples is less pronounced than the chlorinated 

analogs, and therefore the PBDD/F-TEQ values are considerably lower compared to those found for 

PCDD/F-TEQs. The approximate calculations on the upper bound basis indicate that for the 

analyzed salmon PBDD/F-TEQ could contribute to the total PCDD/F-PBDD/F-TEQ in the range 

from 1% to 4%, with an average of 2%. Although the average contribution of PBDD/Fs to the 

aggregated POP contamination background of Baltic wild salmon is of secondary importance, 

calculation of individual congener concentrations and PBDD/F-TEQ values on lipid weight basis in 

some cases shows dramatically high levels of these contaminants. Some analyzed salmon samples 

reached contamination up to 4.8 pg PBDD/F-TEQ g-1 l.w., what might be a source of concern due 

to the tendency of such POPs to bioaccumulate and migrate through food chains. 
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The profile of thirteen 2,3,7,8-substituted PBDD/F congeners analyzed in tissue of Baltic wild 

salmon and the contribution of each congener to PBDD/F-TEQ is shown in Figure 3.10. The 

OctaBDF was the predominant congener, followed by 1,2,3,4,6,7,8-HeptaBDF and 2,3,7,8-

TetraBDF (Figure 3.10 A). These congeners constitute more than 90% of the total sum of detected 

2,3,7,8-substituted PBDD/F concentrations. Although the impact of the 2,3,7,8-TetraBDF (TEF 0.1) 

on the total sum of concentrations was only about 20%, due to its high toxicological significance 

compared to other contributors (TEF 0.001 – 0.0001) present in the samples at elevated 

concentrations, influence of this congener on the PBDD/F-TEQ reached up to 55% (Figure 3.10 B).  

The total contribution of 1,2,3,4,6,7,8-HeptaBDF and OctaBDF to the PBDD/DF-TEQ was about 

20%. Several studies show the intensive formation of PBDFs, especially of highly brominated 

dibenzofurans, during the incineration and recycling of electronic waste [149,150]. High levels of 

1,2,3,4,6,7,8-HeptaBDF and OctaBDF were reported as impurities in commercial PBDE mixtures 

as well [151]. According to the obtained results, the presence of bioaccumulated PBDFs in large 

aquatic top predators such as salmon indicates anthropogenic sources, although the metabolic 

persistence of such contaminants is under question. 

Out of the nine analyzed PXDD/F congeners, only one compound (3-B-2,7,8-TriCDF) was 

present in quantifiable concentrations. It was found in all samples in the concentration range of 0.02 

– 0.08 pg g-1 f.w., with an average of 0.04 pg g-1 f.w. Some of the analyzed samples showed the 

presence of potentially much more toxicologically significant 2-B-3,7,8-TriCDD and 2,3-DiB-7,8-

DiCDD, but in all cases the concentrations were not quantifiable, although were above the LOD. 

Mixed bromo/chloro-substituted dibenzo-p-dioxins and furans are usually minor impurities formed 

during the unintentional formation of polyhalogenated dibenzo-p-dioxins and furans, and the 

obtained data are in line with the formation pattern and data on distribution of PXDD/Fs in the 

environment [152,153]. 
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Fig. 3.10. Congener profiles (A) of PBDD/Fs in Baltic wild salmon and contributions (B) of individual 

components to the PBDD/F-TEQ (UB) 
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PBDEs. The total concentrations of twenty seven PBDE congeners in the analyzed salmon 

samples were in the range of 1.3 – 5.6 ng g-1 f.w., with an average of 3.3 ng g-1 f.w. (Annex 7). 

Tetra- through hexa-, and deca-brominated homologues were the predominant congeners 

contributing about 85% of the total PBDE load with the following order of contribution to the total 

sum of PBDEs: PBDE 47 > PBDE 49 > PBDE 100 > PBDE 99 > PBDE 154 > PBDE 209. The 

main contributor PBDE 47 was presented in the range of 0.47 – 2.1 ng g-1 f.w, with an average of 

1.2 ng g-1 f.w. The levels of PBDEs in this study were comparable to those found for wild salmon 

from other references [131,154]. Generally, due to the strong contamination of the Baltic region 

with POPs, Baltic wild salmon shows higher levels of bioaccumulated PBDEs than salmon from 

other regions [155,156]. The obtained congener profile and distribution is typical for aquatic biota 

from the Baltic region found in other references [130,131] and is shown in Figure 3.11. Correlation 

of the total sum of PBDEs with concentrations of tetra-, and penta-brominated congeners 

(correlation of PBDE 47 with total PBDE sum up to R2 = 0.98) reflects the source of contamination 

from widely used commercial “penta-BDE” mixture (Figure 3.11), in which PBDE 47, 49, 99 and 

100 congeners are predominant [157]. Despite the widespread use of “octa-BDE” mixture 

containing mainly octa- and nona-brominated congeners, as well as the “deca-BDE” mixture 

containing mainly PBDE 209, contribution of those congeners to the sum of PBDEs was only about 

6%, and there was no correlation between concentrations of octa-, nona-, and deca-brominated 

congeners with the total PBDE concentration. The explanation for such PBDE distribution in 

salmon was found in the different aquatic bioaccumulation and biotransformation potential of 

congeners with different extent of bromination. Highly brominated PBDEs are characterized by low 

uptake potential and are more susceptible to metabolic transformation, compared to congeners with 

low degree of bromine substitution [157,158]. There are reports on the short half-life times of 

highly brominated congeners in humans and biotransformation to lower brominated congeners in 

fish [159,160]. Species-selective bioaccumulation and biotransformation, probably via 

debromination of different PBDE congeners, was revealed for some types of fish and shellfish 

[58,161,162], and should be taken into account during the estimation of PBDE bioaccumulation and 

biotransportation in living organisms.  
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Fig. 3.11. Congener profile of PBDEs in Baltic wild salmon and potential sources of contamination 
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shown). Unfortunately the data on the correlation between the α-, β- and γ-HBCDs in selected fish 

species are not provided in the available literature, although some studies indicate the absence of 

correlation between these diastereoisomers in the eggs of predatory sea birds [169,170]. Such 

behavior could be provided by the differences in long range transport properties of selected 

contaminants in the sequence: contamination source  – feeding area – target species. 

 

 

Fig. 3.12. Correlations between α- and γ-HBCDs in the tissue of Baltic wild salmon 
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European Commission [146] for eel tissue. When TEFs1998 were used, PCDD/F-TEQs values 

ranging from 0.35 to 3.5 pg WHO1998-PCDD/F-TEQ f.w. (average 1.4 pg WHO1998-PCDD/F-TEQ 

f.w.) were obtained, with an increase of the PCDD/Fs-TEQ concentration value by about 18% on 

average, which is in line with previous reports [172]. In general, levels of the PCDD/F 

contamination obtained in our study were comparable or somewhat lower to those reported in the 

majority of studies for eels collected from other European sites. For example, levels in the range 

from 0.20 to 9.8 pg WHO1998-PCDD/F-TEQ g-1 f.w. were found in eels from Flanders [175]; eels 

from Irish waters showed contamination in the range of 0.20 – 4.4 pg WHO1998-PCDD/F-TEQ g-1 

f.w. [176] and 0.40 – 5.9 pg WHO1998-PCDD/F-TEQ g-1 f.w. were measured in eels from the 

Western Baltic Sea [147]. Higher concentrations of 0.48 – 22 pg and 5.0 – 23 pg WHO1998-

PCDD/F-TEQ g-1 f.w. were obtained for eels originating from the river Elbe and its tributaries, and 

from Greenland fjords, respectively [174,177]. Lower contamination with PCDD/Fs in the range 

0.29 – 1.9 pg WHO1998-PCDD/F-TEQ g-1 f.w. was observed for eels collected from Polish lagoons 

[173].  

The DL-PCB concentrations ranged from 0.56 to 13 pg WHO2005-PCB-TEQ f.w. with an 

average value of 3.5 pg WHO2005-PCB-TEQ g-1 f.w.  For some samples analyzed within the current 

study, application of TEFs1998 resulted in a large increase (up to 250%) of the recalculated PCB-

TEQs. An average increase of WHO-PCB-TEQ concentrations of 48% was observed, with the 

corresponding concentrations ranging from 0.71 to 27 pg WHO1998-PCB-TEQ g-1 f.w. (average 

value of 5.2 pg WHO1998-PCB-TEQ g-1 f.w.). The current observed levels of the DL-PCB 

contamination in Latvian eels represent the intermediate position in comparison to other European 

sites. Noticeably lower DL-PCB contamination was obtained for eels in Spain (0.09 pg WHO1998-

PCB-TEQ g-1 f.w. [178]; Greenland fjords (1.4 – 3.9 pg WHO1998-PCB-TEQ g-1 f.w. [177]; and 

Ireland (0.17 – 1.2 pg WHO1998-PCB-TEQ g-1 f.w. [176]. Somewhat similar DL-PCB levels were 

observed in eels originating from Poland (1.6 – 7.1 pg WHO1998-PCB-TEQ g-1 f.w. [173]; Western 

Baltic Sea (0.93 – 15 pg WHO1998-PCB-TEQ g-1 f.w. [147]; and France (0.24 – 14 pg WHO1998-

PCB-TEQ g-1 f.w. [172]. Considerably higher WHO1998-PCB-TEQ concentrations were measured 

in eels originating from Germany (8.5 – 47 pg g-1) [174]; and Belgium (up to 140 pg g-1) [171].  

Total-WHO2005-TEQ values for analyzed samples varied between 0.85 and 16 pg g-1 f.w., with 

an average value of 4.7 pg g-1 f.w. Five of the analyzed eels (9% of all samples) exceeded the 

current European Commission ML of 10 pg total-WHO2005-TEQ g-1 f.w. [146] for muscle of eels. 

The average total-WHO2005-TEQ value for the samples exceeding the ML was 13 pg g-1 f.w., which 

exceeds the ML by 25%.  
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 Overall, DL-PCB TEQ was much higher in comparison with PCDD/Fs. The contribution of 

individual PCDD/Fs and DL-PCBs to the WHO2005-PCDD/F-TEQ, WHO2005-PCB-TEQ and total-

WHO2005-TEQ values for the investigated lakes are shown in Figure 3.13.  

The total sum of NDL-PCB concentrations in the eel samples ranged from 6.4 to 320 ng g-1 f.w., 

with an average of 51 ng g-1 f.w. (Annex 10). The congener pattern of NDL-PCBs was in good 

agreement with previous studies for Baltic fish [147,130] and for European eels in other studies 

[179-181]. The distribution showed a congener profile typical of widely used PCB mixtures (e.g. 

Aroclor 1254 and 1260) dominated by penta-, hexa- and hepta-chlorinated congeners. The indicator 

PCBs (∑ind.PCB (namely PCBs: 28, 52, 101, 138, 153 and 180)) represented about 70% of total 

NDL-PCB concentration with values in the range of 4.8 – 190 ng g-1 f.w., with an average of 36 ng 

g-1 f.w. The ML for ∑ind.PCB in eel tissue of 300 ng g-1 f.w.  specified in Commission Regulation 

(EU) No 1259/2011 [146] was not exceeded in any of the samples. The obtained results are 

consistent with previous studies where large variations of ∑ind.PCB in European eel samples were 

observed: 1.7 – 290 and 3.4 – 530 ng g-1 f.w. (PCB 118 was included with the indicator PCBs) in 

Polish studies [173]; 69 – 250 ng g-1 f.w. in France [172]; 1.9 – 18 ng g-1 f.w. in Ireland [176]; 16 – 

1500 ng g-1 f.w. in Netherlands [182].  
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Fig. 3.13. Contribution of individual PCDD/Fs and DL-PCBs to the total-WHO2005-TEQ (A), 

WHO2005-PCB-TEQ (B) and WHO2005-PCDD/F-TEQ (C) values among the investigated lakes 
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PBDD/Fs, PXDD/Fs and PXBs. One of the focuses in this study was to investigate the 

possible occurrence of the less studied POPs such as PBDD/Fs, PXDD/Fs and PXBs, in eel tissue. 

To the best of our knowledge this is the first attempt to characterize the contamination status of 

Latvian freshwater fish with these ecotoxicants. Taking into account the high fat content and typical 

diet of eels (e.g. scavenger fish) they are suspected to contain elevated levels of POPs in 

comparison to other fish species, thus detectable amounts of PBDD/Fs, PXDD/Fs and PXBs could 

be expected in tissue of analyzed specimens. The detailed information on the content of PBDD/Fs, 

PXBs and PXDD/Fs in analyzed eel samples is summarized in Annex 9. 

The analyzed samples showed a wide range of detectable PBDD/F congeners with the 

domination of PBDFs, which was in accordance with the formation mechanisms of these 

compounds and reflects the typical composition of these contaminants in industrial emissions (47), 

food [57,58,183] and environmental matrices [148,149]. All of the PBDD/Fs included in the scope 

of the study were detected, however, in most cases the concentrations of PBDDs were below the 

LOQ. 2,3,7,8-TetraBDD and 1,2,3,7,8-PentaBDD were detected in three and one, respectively of 

fifty eight samples, showing   maximum concentrations of 0.09 and 0.05 pg g-1 f.w. The most 

abundant congeners bwere 2,3,7,8-TetraBDF (detected in 52% of samples) and 1,2,3,4,6,7,8-

HeptaBDF (detected in 100% of samples) and were observed in concentration ranges of 0.02 – 0.25 

pg g-1 f.w. and 0.03 – 1.1 pg g-1 f.w., respectively. Highly brominated dibenzofurans were found to 

be the most abundant PBDD/F congeners in stack flue gases [150], and this anthropogenic emission 

may account for the universal occurrence of these congeners in our eel samples. Only one 

HexaBDF congener (1,2,3,4,7,8-HexaBDF) was analyzed in this study, and it was present in 19% 

of analyzed eels in the range from 0.04 to 0.20 pg g-1 f.w., with an average value of 0.11 pg g-1 f.w., 

while penta-brominated dibenzofurans, namely 1,2,3,7,8-PentaBDF and 2,3,4,7,8-PentaBDF, were 

present in 14% and 16% of samples, with maximum concentrations of 0.06 and 0.04 pg g-1 f.w., 

respectively.  

Out of nine analyzed PXDD/Fs only three congeners (3-B-2,7,8-TriCDF, 1-B-2,3,7,8-

TetraCDF and 2-B-3,6,7,8,9-PentaCDD) showed quantifiable concentrations, 3-B-2,7,8-TriCDF 

being  the predominant congener presented in seven of fifty eight samples at maximum 

concentration of 0.04 pg g-1 f.w., whereas 1-B-2,3,7,8-TetraClDF and 2-B-3,6,7,8,9-PentaClDD 

were presented in one and five samples, respectively. Generally, detected PXDD/F congeners 

showed concentrations slightly above the LOQ and in accordance with the formation patterns from 

combustion/incineration sources and data on distribution of PXDD/Fs in the environment 

[152,153,184].  
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Among the above mentioned micro contaminants, three PXBs with the arrangement of halogen 

atoms corresponding to the non-ortho substitution pattern (4'-B-3,3',4,5-TetraCB (mono-bromo 

PXB 126), 3,4-DiB-3',4',5'-TriCB (di-bromo PXB 126) and 3',4',5-TriB-3,4-DiCB (tri-bromo PXB 

126)) and three PXBs with mono-ortho configuration (4'-B-2,3,3',4-TetraCB (mono-bromo PXBs 

105), 4'-B-2,3',4,5-TetraCB (mono-bromo PXB 118) and 4'-B-2,3,3',4,5-PentaCB (mono-bromo 

PXB 156)) were   analyzed  in twenty six of fifty eight samples (in 45% of all eel samples). The 

selection of the analytes of interest was based on the availability of reliable analytical standards and 

typical distribution and toxicity of corresponding PCB congeners (e.g. typical predominance of 

absolute concentrations of PCBs 118, 105 and 156 in fish samples and the highest toxicity of PCB 

126 within the DL-PCB group). The most prominent congeners among the analyzed PXBs were 

mono-ortho PXB 118 and PXB 105 found in every analyzed sample in the ranges of 0.07 – 3.18 pg 

g-1 f.w. and 0.03 – 0.77 pg g-1 f.w., respectively  followed by the mono-ortho substituted  PXB 156 

which was present in 58% of samples and showed concentrations from 0.04 to 0.30 pg g-1 f.w. A 

similar congener pattern following the order PXB 118 > PXB 105 > PXB 156 was observed in 

freshwater fish in a European study of foods in the UK showing the concentrations for the latter 

congeners of 3.4, 1.3 and 0.28 pg g-1 f.w., respectively [74]. Out of the three investigated non-ortho 

PXBs, only mono-brominated PXB 126 congener occurred in eels examined, while di-brominated 

and tri-brominated PXBs 126 were absent in all of the investigated samples. Mono-bromo PXB 126 

was presented in 92% of samples in the concentration range of 0.01 to 0.05 pg g-1 f.w. which is 

consistent with results for freshwater fish from the UK where the latter component was observed at 

the level of 0.07 pg g-1 f.w. [74]. Despite the fact that usually congeners containing a single 

substituted bromine atom (mono-bromo congeners) are presented in food and biota samples [184], a 

Japanese study showed unexpectedly high concentrations of tri-brominated 3',4',5-TriB-3,4-DiCB 

(tri-bromo PXB 126) (up to 10 pg g-1 f.w.) in fish samples with unclear source of contamination 

[73].  

Despite the extensive clean-up and fractionation procedures used for selective isolation of 

compounds of interest, it was not possible to identify some high intensity peaks that occurred on the 

SIR chromatograms of relevant m/z traces corresponding to the analyzed brominated or mixed 

bromo/chloro-substituted contaminants for which quality control criteria for positive identification 

(isotope ratio window ±15%) were fulfilled. This observation could reflect on the presence of 

potentially significant concentrations of unknown PBDD/Fs, PXBs and PXDD/Fs with different 

substitution patterns than those congeners included in this study.  Figure 3.14 shows an example of 

an intensive peak of the unknown compound on the representative SIR chromatogram of eel sample 

for the m/z traces corresponding to TBDD congeners. 



 79 

 
Fig. 3.14. Representative SIR chromatogram of eel sample for the m/z traces corresponding to 

TBDD congeners (it should be noted however, in this example, that the peak may correspond to a non-

2,3,7,8-substituted PBDD, of undefined toxicity) 

 

Currently there are very few data available on the PBDD/Fs, PXBs and PXDD/Fs content in 

aquatic biota; nevertheless these isolated references show that brominated and mixed 

brominated/chlorinated congeners occur to a lower extent in samples, in comparison to their 

chlorinated analogs. In the absence of established TEFs for PBDD/Fs, PXBs and PXDD/Fs, values 

for chlorinated analogues (WHO2005-TEFs) have been used as suggested for PBDD/Fs [67], and 

although some REP values have been reported for PXDD/F and PXB compounds, they do not cover 

the higher mixed halogenated compounds measured in this work, so chlorinated analogue TEFs 

have also been used for these compounds. Thus the calculated TEQs obtained, provide only for a 

rough estimate of the potential toxicity presented by these contaminants.  Using this approach, 

analyzed samples showed PBDD/F-TEQ (UB) concentrations in the range of 0.02 – 0.14 pg g-1 

f.w., with an average of 0.05 pg g-1 f.w. Tentative TEQ values obtained for selected PXBs and 

PXDD/Fs were on average of 0.01 and 0.08 pg g-1 f.w., respectively.  A comparison of the TEQ 

values shows that the brominated and mixed halogenated TEQ values are considerably lower 

compared to those obtained for PCDD/Fs and DL-PCBs. This estimation on the UB basis, indicates 

that these minor contaminants could contribute from 3% to 5%, to the total-WHO2005-TEQ value 

with an average of 3%. With respect to TEQ levels provided by the presence of PCDD/Fs and DL-

PCBs and taking into account the established ML levels for these groups of compounds, generally 

the contribution of PBDD/Fs is small, but nevertheless these data are of great importance in terms 

of providing of more complete information on the contamination status of the examined objects. 

The complete contribution of PXDD/F and PXB TEQ is currently unquantifiable, as unlike the 

PCDD/Fs and PCBs, it is not possible to quantify all toxicologically significant congeners at the 

present. Thus, as observed elsewhere [66] the current data form only a limited part of the total 



 80 

potential toxicity from PXDD/Fs and PXBs. Nonetheless, the detection of these contaminants in 

inland lakes is an important complement to the observations made on occurrence of PXDDs in 

marine creatures [185] from the Baltic Sea. 

PBDEs. Taking into account the recent EU recommendation on the monitoring of BFRs in 

food products [186], data on the occurrence of PBDEs in Latvian eels are of great relevance. The 

total concentrations of ∑PBDE (Annex 11) ranged from 0.28 to 27 ng g-1 f.w., with an average of 4.2 

ng g-1 f.w. The obtained congener pattern with domination of tetra-, and penta-brominated BDEs is 

typical for aquatic biota from the Baltic region found in other studies [130,131] and for eels from 

other European countries [187]. PBDEs 47, 49 and 100 were the dominant congeners and 

contributed 79% on average to ∑PBDE. Correlation of the ∑PBDE with concentrations of tetra-, and 

penta-brominated congeners (correlation of PBDE 47 with total PBDE sum was R2 = 0.97 on 

average) most likely reflects the source of contamination as the widely used and recently banned 

commercial “penta-BDE” formulation (in which the latter congeners are predominant [26]. The 

more highly brominated PBDEs (e.g. octa-, nona-, and deca-brominated BDEs) were present in 

significantly lower concentrations. Despite the widespread usage of “octa-BDE” formulation 

(consisting mainly of octa- and nona-brominated congeners) and “deca-BDE” formulation (the 

main component is PBDE 209), the average contribution of these PBDE congeners to the ∑PBDE 

was less than 2% and was in accordance with the fact that highly brominated congeners are 

characterized by the low uptake potential by aquatic biota and are more susceptible to metabolic 

transformation, compared to congeners with low degree of bromine substitution [157,158,160]. A 

similar distribution for highly brominated congeners was observed in other studies for different fish 

species and particularly for eels [162,188]. Generally, comparable levels of PBDEs were obtained 

in our study in context of overall European occurrence for this type of recently used BFRs 

[176,187]. Nevertheless, some studies showed extremely high contamination levels in industrialized 

areas, for example in the Belgian study, levels of PBDEs collected in 2006, in highly contaminated 

areas near textile factories, were up to 790 ng g-1 f.w. [189]. 

HBCDs. Taking into account the diet of eels ("scavenger" fish) and the typically high fat 

content, elevated contamination levels of POPs are often encountered in such species 

[164,174,180]. Bioaccumulation of HBCD was confirmed in all analyzed eel samples. The total-

HBCD concentrations within the samples ranged from 210 to 600 pg g-1 f.w, with an average of 300 

pg g-1 f.w. The biological parameters of the analyzed fishes, concentrations of individual HBCD 

diastereomers, and the total-HBCD for all analyzed samples are outlined in Annex 8. As for 

salmons, the diastereomer pattern typical for aquatic biota was observed in all samples with the 

strongly pronounced domination of α-HBCD over β- and γ-HBCDs (up to 95% of the total-HBCD) 
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[163]. Generally, the concentrations determined in this study were significantly lower in 

comparison to those detected in eel samples analyzed in the majority of earlier studies 

[164,180,190]. Some studies indicate strong difference between the HBCD concentrations obtained 

for eel samples collected from nearby areas. For example, the HBCD concentration in samples 

collected in the highly polluted south-west region in Netherlands was up to magnitude higher in 

comparison with the samples collected in relatively remote areas or upstream of the production 

regions for which total levels of HBCD between 100 and 1000 pg g-1 were observed [112]. The 

relatively low HBCD contamination levels detected in eel samples collected in Latvia seem to be 

logical, since there are no BFR production factories or plastics processing facilities, which could 

cause an intensive emission of HBCD into the environment. 
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CONCLUSIONS 

1. The developed analytical method presented in this study capable of the simultaneous 

determination of seven groups of priority POPs including PBDD/Fs, PCDD/Fs, PXDD/Fs, 

PBDEs, PCBs, PXBs, and HBCDs by applying a multistage clean-up and fractionation 

procedure and detection with GC-HRMS and UHPLC-Orbitrap-HRMS ensures a reliable 

detection of these contaminants at toxicologically significant levels. 

2. We propose an extensive fractionation procedure involving a series of column chromatography 

steps with Florisil, dual layered activated carbon, and basic alumina, which provides more 

complete removal of non-planar interferants such as PBDEs and PCBs from the fractions 

containing PBDD/Fs and PXDD/Fs, thus significantly increasing the selectivity of the method 

for these compounds and resulting in a better recovery rates for planar compounds. 

3. For the first time, a new rapid and reliable UHPLC-Orbitrap-HRMS based methodology was 

developed for the determination of HBCD diastereoisomers in fish matrices. This method 

provides a fast chromatographic separation, good selectivity, pg g−1 quantification levels, a wide 

range of linearity and acceptable precision, and it could be used as an effective tool to obtain 

detailed information on the HBCD diastereomer content in fish samples. 

4. A comparative evaluation of the analytical performance of UHPLC-Orbitrap-HRMS technique 

versus UHPLC-TOF-HRMS and conventional UHPLC-QqQ-MS/MS systems revealed a good 

agreement between the studied approaches in terms of recovery, repeatability, and intermediate 

precision. No statistically significant differences were found for α-, β-, γ-, and total-HBCD 

concentrations obtained in the analysis of real samples with the examined LC-MS systems 

indicating that the newly proposed Orbitrap-HRMS technique produces adequate and similar 

results on HBCD content in fish samples, compared to conventional approaches. 

5. Most of the analyzed Baltic wild salmon samples (75% of all samples) are highly contaminated 

with POPs above the MLs according to Commission Regulation No. (EC) 1259/2011 for 

PCDD/DFs and DL-PCBs, while freshwater fish, particularly eels, which due to its diet are 

proposed as a bioindicator for the environmental pollution, are far less contaminated with POPs, 

exceeding the MLs for PCDD/Fs and DL-PCBs in 9% of the analyzed samples. 

6. The distribution of PBDE congeners in fish samples with dominance of PBDE 47, 49, 99, and 

100 clearly reflects the bioaccumulation of these compounds from the recent usage of 

commercial PBDE mixtures. 

7. For the first time, the universal presence of a number of PBDD/F, PXDD/F, and PXB congeners 

was confirmed in almost all fish samples obtained from the Baltic Sea and Latvian lakes. 

Although the DL-toxicity arising from the latter POP groups is low (1 – 5%) compared to the 
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chlorinated analogs, these data are of great importance in terms of providing of more complete 

information on the contamination status of the examined objects. 
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ANNEXES 
Annex 1 

Mass descriptors used for measurement of PBDEs using GC-HRMS 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PBDEs Unlabeled 
congener m/z 

Ion Isotope ratio 13C12 – labeled 
congener m/z 

Ion Isotope ratio 

Di-BDE 
325.8942 M+ 

0.51 
337.9344 M+ 

0.51 
327.8921 [M+2]+ 339.9324 [M+2]+ 

Tri-BDE 
405.8027 [M+2]+ 

1.03 
417.8429 [M+2]+ 

1.03 
407.8002 [M+4]+ 419.8409 [M+4]+ 

Tetra-BDE 
483.7132 [M+2]+ 

0.70 
497.7514 [M+4]+ 

1.54 
485.7111 [M+4]+ 499.7493 [M+6]+ 

Penta-BDE 
563.6216 [M+4]+ 

1.03 
575.6619 [M+4]+ 

1.03 
565.6196 [M+6]+ 577.6598 [M+6]+ 

Hexa-BDE 
641.5322 [M+4]+ 

0.77 
655.5704 [M+6]+ 

1.37 
643.5302 [M+6]+ 657.5683 [M+8]+ 

Hepta-BDE 
721.4406 [M+6]+ 

1.03 
733.4809 [M+6]+ 

1.03 
723.4386 [M+8]+ 735.4788 [M+8]+ 

Octa-BDE 
639.5165 [M-2Br+4]+ 

0.77 
651.5567 [M-2Br+4]+ 

0.77 
641.5144 [M-2Br+6]+ 653.5547 [M-2Br+6]+ 

Nona-BDE 
719.4250 [M-2Br+6]+ 

1.03 
731.4652 [M-2Br+6]+ 

1.03 
721.4229 [M-2Br+8]+ 733.4632 [M-2Br+8]+ 

Deca-BDE 
797.3355 [M-2Br+6]+ 

0.82 
809.3757 [M-2Br+6]+ 

0.82 799.3334 [M-2Br+8]+ 811.3737 [M-2Br+8]+ 
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Annex 2 
Mass descriptors used for measurement of PBDD/Fs using GC-HRMS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

PBDD/Fs Unlabeled 
congener m/z 

Ion Isotope ratio 13C12 – labeled 
congener m/z 

Ion Isotope ratio 

Tetra-BDF 
483.6955 [M+4]+ 

1.54 
495.7357 [M+4]+ 

1.54 
485.6934 [M+6]+ 497.7337 [M+6]+ 

Penta-BDF 
561.6060 [M+4]+ 

1.03 
573.6462 [M+4]+ 

1.03 
563.6039 [M+6]+ 575.6442 [M+6]+ 

Hexa-BDF 
639.5165 [M+4]+ 

0.77 
651.5567 [M+4]+ 

0.77 
641.5144 [M+6]+ 653.5547 [M+6]+ 

Hepta-BDF 
719.4250 [M+6]+ 

1.03 
731.4652 [M+6]+ 

1.03 
721.4229 [M+8]+ 733.4632 [M+8]+ 

Octa-BDF 
797.3355 [M+6]+ 

0.82 
809.3757 [M+6]+ 

0.82 
799.3334 [M+8]+ 811.3737 [M+8]+ 

Tetra-BDD 
499.6904 [M+4]+ 

1.54 
511.7306 [M+4]+ 

1.54 
501.6883 [M+6]+ 513.7286 [M+6]+ 

Penta-BDD 
577.6009 [M+4]+ 

1.03 
589.6411 [M+4]+ 

1.03 
579.5988 [M+6]+ 591.6391 [M+6]+ 

Hexa-BDD 
657.5094 [M+6]+ 

1.37 
669.5496 [M+6]+ 

1.37 
659.5073 [M+8]+ 671.5476 [M+8]+ 

Hepta-BDD 
735.4199 [M+6]+ 

1.03 
747.4601 [M+6]+ 

1.03 737.4178 [M+8]+ 749.4581 [M+8]+ 

Octa-BDD 
813.3304 [M+6]+ 

0.82 
825.3706 [M+6]+ 

0.82 815.3283 [M+8]+ 827.3686 [M+8]+ 
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Annex 3 
Mass descriptors used for measurement of PXDD/Fs and PXBs using GC-HRMS 

 

 

 

 

 

 

 

 

PXDD/Fs 
PXBs 

Unlabeled 
congener m/z 

Ion Isotope ratio 13C12 – labeled 
congener m/z 

Ion Isotope ratio 

Br1Cl3DF 
349.8491 [M+2]+ 

1.54 
- - 

- 
351.8461 [M+4]+ - - 

Br1Cl3DD 
365.8440 [M+2]+ 

1.54 
- - 

- 
367.8410 [M+4]+ - - 

Br2Cl2DD 
409.7935 [M+2]+ 

1.12 
421.8337 [M+2]+ 

1.12 
411.7905 [M+4]+ 423.8308 [M+4]+ 

Br1Cl4DF 
383.8092 [M+2]+ 

1.20 
- - 

- 
385.8071 [M+4]+ - - 

Br1Cl4DD 
399.8041 [M+2]+ 

1.20 
411.8444 [M+2]+ 

1.20 
401.8021 [M+4]+ 413.8423 [M+4]+ 

Br1Cl5DD 
433.7651 [M+2]+ 

0.99 
- - 

- 
435.7631 [M+4]+ - - 

Br1Cl6DD 
467.7262 [M+2]+ 

0.85 
- - 

- 
469.7241 [M+4]+ - - 

Br1Cl7DD 
501.6872 [M+2]+ 

0.74 
- - 

- 
503.6851 [M+4]+ - - 

Br1Cl4B 
369.8299 [M+2]+ 

1.34 
381.8701 [M+2]+ 

1.34 
371.8279 [M+4]+ 383.8681 [M+4]+ 

Br2Cl3B 
413.7793 [M+2]+ 

1.03 
- - 

- 
415.7783 [M+4]+ - - 

Br3Cl2B 
457.7297 [M+2]+ 

0.76 
- - 

- 
459.7277 [M+4]+ - - 

Br1Cl5B 
403.7909 [M+2]+ 

1.03 
415.8312 [M+2]+ 

1.03 
405.7889 [M+4]+ 417.8292 [M+4]+ 



 104 

 
 
 

Annex 4 
Concentrations of PCDD/Fs and HBCDs in Baltic wild salmon samples calculated on f.w. basis 
 

Sample Nr. 74505-1 74505-2 74505-3 74505-4 74505-5 74505-6 74505-7 74505-8 74505-9 74505-10 74505-11 74505-12 
Sex* 

F M F M F F M M M F M F 
Length, cm 74 57 59 63 83 83 71 65 56 81 58 84 
Age, years 2 1 2 1 2 2 1 1 1 2 1 2 
Weight, kg 4.4 2.5 3.5 3.0 5.8 5.8 3.8 3.6 2.0 5.3 2.6 5.6 
Place of sampling Daugava 

 River 
Daugava 

 River 
Daugava 

 River 
Daugava 

 River 
Daugava  

River 
Daugava  

River 
Daugava 

River 
Daugava  

River 
Daugava 

 River 
Daugava  

River 
Daugava  

River 
Daugava  

River 
Fat content, g/100 g of sample 2.4 3.5 7.9 6.3 2.9 6.1 3.5 5.8 5.3 5.5 4.8 5.2 

PCDD/Fs (pg g-1)                         
2,3,7,8-TetraCDF 9.34 7.30 8.98 5.01 6.39 9.79 8.23 5.63 4.99 8.83 4.58 7.92 
1,2,3,7,8-PentaCDF 0.51 0.60 0.78 0.61 0.71 1.00 1.02 0.57 0.49 0.65 0.44 0.97 
2,3,4,7,8-PentaCDF 4.74 4.66 6.29 4.02 4.96 6.03 5.78 3.50 3.20 5.20 3.26 5.67 
1,2,3,4,7,8-HexaCDF 0.07 0.07 0.10 0.08 0.08 0.13 0.13 0.08 0.06 0.09 0.06 0.14 
1,2,3,6,7,8-HexaCDF 0.12 0.13 0.16 0.13 0.14 0.22 0.23 0.13 0.09 0.14 0.10 0.22 
2,3,4,6,7,8-HexaCDF 0.12 0.13 0.17 0.12 0.14 0.19 0.18 0.11 0.07 0.15 0.10 0.18 
1,2,3,7,8,9-HexaCDF 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
1,2,3,4,6,7,8-HeptaCDF 0.07 0.06 0.05 0.03 0.05 0.08 0.05 0.05 0.03 0.07 0.04 0.09 
1,2,3,4,7,8,9-HeptaCDF 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
OctaCDF 0.04 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.01 0.03 0.02 0.03 
2,3,7,8-TetraCDD 0.34 0.36 0.44 0.28 0.37 0.55 0.46 0.28 0.32 0.42 0.23 0.47 
12378-PentaCDD 0.57 0.56 0.74 0.58 0.69 0.89 0.83 0.48 0.43 0.69 0.42 0.83 
1,2,3,4,7,8-HexaCDD 0.02 0.01 0.03 0.03 0.03 0.05 0.04 0.02 0.03 0.03 0.02 0.05 
1,2,3,6,7,8-HexaCDD 0.30 0.26 0.34 0.22 0.23 0.32 0.31 0.20 0.09 0.25 0.18 0.31 
1,2,3,7,8,9-HexaCDD 0.04 0.02 0.03 0.02 0.02 0.03 0.03 0.02 0.01 0.03 0.02 0.04 
1,2,3,4,6,7,8-HeptaCDD 0.03 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.01 0.03 
OctaCDD 0.05 0.04 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 

WHO2005-PCDD/F-TEQ (LB) 3.35 3.13 4.07 2.64 3.27 4.36 3.97 2.45 2.25 3.64 2.15 3.91 
WHO2005-PCDD/F-TEQ (UB) 3.35 3.13 4.07 2.64 3.27 4.36 3.97 2.45 2.25 3.64 2.15 3.91 

HBCDs (pg g-1)             
α-HBCD 720 900 870 970 1630 1800 1750 770 360 950 860 1700 
β-HBCD <10.0 <10.0 50.0 60.0 40.0 110 110 50.0 <10.0 40.0 50.0 80.0 
γ-HBCD 20.0 30.0 40.0 30.0 70.0 80.0 70.0 40.0 20.0 50.0 150 80.0 

Total-HBCD (LB) 750 940 960 1060 1740 1990 1930 860 390 1040 1060 1860 
Total-HBCD (UB) 740 930 960 1060 1740 1990 1930 860 390 1040 1060 1860 

 
* - F – female; M – male. 
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Annex 4 continues 
 

Sample Nr. 74505-13 74505-14 74505-15 79050-1 79050-2 79050-3 79050-4 79050-5 79050-6 79050-7 79050-8 79050-9 79050-10 
Sex* 

F F M M F M F M M M F F M 
Length, cm 86 78 69 62 76 77 81 76 93 78 83 83 68 
Age, years 3 3 1 1 2 2 3 2 3 2 3 3 2 
Weight, kg 7.1 6.6 3.5 3.5 5.1 6.3 6.4 5.8 11.3 6.5 6.2 10.2 5.0 
Place of sampling Daugava  

River 
Daugava 

 River 
Daugava  

River 
Venta  
River 

Venta 
 River 

Venta  
River 

Venta  
River 

Venta  
River 

Venta  
River 

Venta  
River 

Venta  
River 

Venta  
River 

Venta  
River 

Fat content, g/100 g of sample 8.2 4.3 5.8 5.7 4.8 6.2 3.6 5.6 6.1 8.2 4.8 12.0 7.1 

PCDD/Fs (pg g-1)                           
2,3,7,8-TetraCDF 11.3 8.07 5.30 6.23 7.04 13.2 7.31 9.69 9.97 11.8 7.25 12.8 9.19 
1,2,3,7,8-PentaCDF 1.41 1.01 0.41 0.59 0.69 1.56 0.82 0.90 1.20 1.42 0.81 1.50 1.15 
2,3,4,7,8-PentaCDF 8.44 6.83 3.19 4.01 5.03 8.53 4.67 6.49 6.48 7.25 4.32 7.94 7.13 
1,2,3,4,7,8-HexaCDF 0.19 0.13 0.04 0.07 0.08 0.22 0.10 0.12 0.17 0.22 0.13 0.24 0.15 
1,2,3,6,7,8-HexaCDF 0.31 0.23 0.08 0.12 0.13 0.33 0.15 0.20 0.27 0.34 0.18 0.33 0.26 
2,3,4,6,7,8-HexaCDF 0.28 0.19 0.08 0.11 0.12 0.26 0.13 0.17 0.22 0.26 0.17 0.28 0.22 
1,2,3,7,8,9-HexaCDF 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
1,2,3,4,6,7,8-HeptaCDF 0.05 0.07 0.04 0.05 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.06 0.07 
1,2,3,4,7,8,9-HeptaCDF 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
OctaCDF 0.02 0.03 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.01 0.03 
2,3,7,8-TetraCDD 0.63 0.50 0.23 0.30 0.38 0.73 0.43 0.46 0.58 0.66 0.36 0.67 0.57 
12378-PentaCDD 1.19 0.96 0.37 0.56 0.66 1.31 0.68 0.86 0.99 1.13 0.68 1.19 1.06 
1,2,3,4,7,8-HexaCDD 0.06 0.05 0.02 0.03 0.03 0.07 0.03 0.03 0.05 0.07 0.04 0.07 0.05 
1,2,3,6,7,8-HexaCDD 0.44 0.33 0.15 0.23 0.24 0.48 0.22 0.34 0.40 0.44 0.28 0.46 0.41 
1,2,3,7,8,9-HexaCDD 0.04 0.03 0.02 0.02 0.02 0.05 0.02 0.03 0.03 0.05 0.03 0.05 0.03 
1,2,3,4,6,7,8-HeptaCDD 0.03 0.03 0.01 0.02 0.02 0.05 0.02 0.02 0.03 0.04 0.02 0.04 0.03 
OctaCDD 0.04 0.04 0.03 0.03 0.04 0.04 0.04 0.03 0.04 0.05 0.02 0.04 0.04 

WHO2005-PCDD/F-TEQ (LB) 5.67 4.45 2.14 2.77 3.33 6.11 3.34 4.35 4.66 5.32 3.17 5.71 4.83 
WHO2005-PCDD/F-TEQ (UB) 5.67 4.45 2.14 2.77 3.33 6.11 3.34 4.35 4.66 5.32 3.17 5.71 4.83 

HBCDs (pg g-1)              
α-HBCD 3670 2060 620 990 1170 2580 1500 1520 2000 1700 830 2720 1840 
β-HBCD <10.0 70.0 30.0 <10.0 60.0 180 <10. 0 60.0 160 110 50.0 180 80.0 
γ-HBCD 150 80.0 30.0 40.0 50.0 120 80.0 60.0 90.0 90.0 50.0 140 70.0 

Total-HBCD (LB) 3830 2210 680 1040 1280 2880 1590 1640 2250 1900 930 3040 1990 
Total-HBCD (UB) 3820 2210 680 1030 1280 2880 1580 1640 2250 1900 930 3040 1990 

 
* - F – female; M – male. 
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Annex 5 
Concentrations of PBDD/Fs and PXDD/Fs in Baltic wild salmon samples calculated on f.w. basis 
 

Sample Nr. 74505-1 74505-2 74505-3 74505-4 74505-5 74505-6 74505-7 74505-8 74505-9 74505-10 74505-11 74505-12 
Sex* F M F M F F M M M F M F 
Length, cm 74 57 59 63 83 83 71 65 56 81 58 84 
Age, years 2 1 2 1 2 2 1 1 1 2 1 2 
Weight, kg 4.4 2.5 3.5 3.0 5.8 5.8 3.8 3.6 2.0 5.3 2.6 5.6 
Place of sampling Daugava 

 River 
Daugava 

 River 
Daugava 

 River 
Daugava 

 River 
Daugava  

River 
Daugava  

River 
Daugava 

River 
Daugava  

River 
Daugava 

 River 
Daugava  

River 
Daugava  

River 
Daugava  

River 
Fat content, g/100 g of sample 2.4 3.5 7.9 6.3 2.9 6.1 3.5 5.8 5.3 5.5 4.8 5.2 

PBDD/Fs (pg g-1)                         
2,3,7,8-TetraBDF 0.92 0.42 0.29 0.45 0.29 0.28 0.65 0.63 0.47 0.34 0.39 0.71 
2,4,6,8-TetraBDF 0.05 0.01 0.01 0.01 0.01 0.02 0.01 0.04 0.01 0.01 <0.01 0.02 
1,2,3,7,8-PentaBDF <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
2,3,4,7,8-PentaBDF 0.02 0.02 <0.01 0.01 0.01 <0.01 <0.01 0.01 <0.004 <0.01 0.01 0.01 
1,2,3,4,7,8-HexaBDF 0.10 0.13 0.09 0.09 0.09 0.06 0.09 0.10 0.08 0.03 0.10 0.09 
1,2,3,4,6,7,8-HeptaBDF 0.90 1.36 0.69 0.81 0.67 0.78 1.05 1.12 0.68 0.27 0.91 1.06 
OctaBDF 1.06 1.39 0.75 0.84 0.74 0.75 1.12 1.06 0.81 <0.39 1.21 2.09 
2,3,7,8-TetraBDD 0.01 0.003 0.004 <0.003 <0.004 <0.004 <0.003 0.01 <0.003 <0.01 <0.01 <0.004 
1,2,3,7,8-PentaBDD <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
1,2,3,4,7,8/1,2,3,6,7,8-HexaBDD 0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
1,2,3,7,8,9-HexaBDD <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 <0.01 0.01 <0.01 
1,2,3,4,6,7,8-HeptaBDD 0.07 0.07 0.04 0.06 0.05 0.05 0.05 0.06 0.05 0.05 0.04 0.04 
OctaBDD <0.10 <0.07 <0.06 <0.10 <0.07 <0.08 <0.07 <0.06 <0.07 <0.25 <0.08 <0.07 

WHO2005-PBDD/F-TEQ (LB) 0.13 0.08 0.05 0.07 0.05 0.04 0.09 0.10 0.06 0.04 0.06 0.09 
WHO2005-PBDD/F-TEQ (UB) 0.14 0.09 0.06 0.08 0.06 0.06 0.10 0.11 0.08 0.06 0.08 0.11 

PXDD/Fs (pg g-1)                         
3-Br-2,7,8-TriClDF 0.02 0.02 0.03 0.03 0.04 0.05 0.05 0.02 0.02 0.03 0.02 0.04 
2-Br-3,7,8-TriClDD <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
2,3-DiBr-7,8-DiClDD <0.004 <0.01 <0.003 <0.01 <0.01 <0.004 <0.01 <0.01 <0.002 <0.01 <0.003 <0.01 
1-Br-2,3,7,8-TetraClDF <0.004 <0.004 <0.002 <0.004 <0.004 <0.01 <0.01 <0.002 <0.004 <0.01 <0.003 <0.004 
1-Br-2,3,7,8-TetraClDD <0.004 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.004 <0.01 
2-Br-1,3,7,8-TetraClDD <0.004 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.004 <0.01 
2-Br-3,6,7,8,9-PentaClDD <0.004 <0.003 <0.002 <0.003 <0.003 <0.002 <0.002 <0.002 <0.003 <0.003 <0.002 <0.002 
1-Br-2,3,6,7,8,9-HexaClDD <0.01 <0.01 <0.004 <0.003 <0.004 <0.003 <0.004 <0.004 <0.01 <0.004 <0.003 <0.003 
1-Br-2,3,4,6,7,8,9-HeptaClDD <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

WHO2005-PXDD/F-TEQ (LB) 0.002 0.002 0.003 0.003 0.004 0.005 0.01 0.002 0.002 0.003 0.002 0.004 
WHO2005-PXDD/F-TEQ (UB) 0.02 0.03 0.02 0.04 0.03 0.03 0.03 0.03 0.02 0.03 0.02 0.03 

 
* - F – female; M – male. 
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Annex 5 continues 
 

Sample Nr. 74505-13 74505-14 74505-15 79050-1 79050-2 79050-3 79050-4 79050-5 79050-6 79050-7 79050-8 79050-9 79050-10 
Sex* F F M M F M F M M M F F M 
Length, cm 86 78 69 62 76 77 81 76 93 78 83 83 68 
Age, years 3 3 1 1 2 2 3 2 3 2 3 3 2 
Weight, kg 7.1 6.6 3.5 3.5 5.1 6.3 6.4 5.8 11.3 6.5 6.2 10.2 5.0 
Place of sampling Daugava  

River 
Daugava 

 River 
Daugava  

River 
Venta  
River 

Venta 
 River 

Venta  
River 

Venta  
River 

Venta  
River 

Venta  
River 

Venta  
River 

Venta  
River 

Venta  
River 

Venta  
River 

Fat content, g/100 g of sample 8.2 4.3 5.8 5.7 4.8 6.2 3.6 5.6 6.1 8.2 4.8 12.0 7.1 

PBDD/Fs (pg g-1)                           
2,3,7,8-TetraBDF 0.49 0.60 0.42 0.16 0.29 0.22 0.33 0.22 0.17 0.26 0.28 0.56 0.36 
2,4,6,8-TetraBDF 0.02 0.01 0.01 0.004 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
1,2,3,7,8-PentaBDF <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
2,3,4,7,8-PentaBDF 0.01 0.01 0.01 <0.01 0.01 <0.01 0.01 0.01 <0.01 0.01 0.01 <0.01 0.01 
1,2,3,4,7,8-HexaBDF 0.06 0.07 0.05 0.03 0.09 0.05 0.12 0.08 0.03 0.08 0.08 0.05 0.09 
1,2,3,4,6,7,8-HeptaBDF 0.69 0.82 0.66 0.32 0.93 0.44 1.03 0.65 0.40 0.59 0.63 0.44 1.01 
OctaBDF 0.87 0.94 0.76 <1.06 0.91 0.47 1.10 0.68 0.32 0.59 0.70 0.38 1.05 
2,3,7,8-TetraBDD <0.004 <0.01 <0.003 <0.002 <0.01 <0.01 <0.003 <0.002 <0.004 <0.01 <0.004 <0.003 <0.003 
1,2,3,7,8-PentaBDD <0.01 <0.004 <0.003 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.004 <0.01 <0.01 
1,2,3,4,7,8/1,2,3,6,7,8-HexaBDD <0.01 <0.003 <0.01 <0.01 <0.01 0.02 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
1,2,3,7,8,9-HexaBDD <0.01 <0.003 <0.004 0.01 0.02 <0.01 <0.01 <0.02 <0.01 <0.01 <0.01 <0.01 <0.01 
1,2,3,4,6,7,8-HeptaBDD 0.03 0.04 0.03 0.06 0.05 0.05 0.05 0.04 0.06 0.05 0.04 0.05 0.03 
OctaBDD <0.12 <0.06 <0.07 <0.47 <0.12 <0.21 <0.09 <0.08 <0.11 <0.14 <0.08 <0.09 <0.17 

WHO2005-PBDD/F-TEQ (LB) 0.07 0.08 0.06 0.02 0.05 0.03 0.06 0.04 0.03 0.04 0.04 0.07 0.06 
WHO2005-PBDD/F-TEQ (UB) 0.08 0.09 0.06 0.04 0.07 0.05 0.07 0.05 0.04 0.06 0.05 0.08 0.07 

PXDD/Fs (pg g-1)                           
3-Br-2,7,8-TriClDF 0.06 0.04 0.02 0.03 0.03 0.08 0.05 0.04 0.06 0.07 0.03 0.07 0.06 
2-Br-3,7,8-TriClDD <0.01 <0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
2,3-DiBr-7,8-DiClDD <0.002 <0.01 <0.01 <0.00 <0.001 <0.004 <0.002 <0.01 <0.01 <0.002 <0.002 <0.004 <0.01 
1-Br-2,3,7,8-TetraClDF <0.01 <0.004 <0.004 <0.01 <0.003 <0.004 <0.003 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
1-Br-2,3,7,8-TetraClDD <0.01 <0.004 <0.01 <0.004 <0.01 <0.01 <0.004 <0.01 <0.01 <0.01 <0.003 <0.01 <0.01 
2-Br-1,3,7,8-TetraClDD <0.01 <0.004 <0.01 <0.004 <0.01 <0.01 <0.004 <0.01 <0.01 <0.01 <0.003 <0.01 <0.01 
2-Br-3,6,7,8,9-PentaClDD <0.002 <0.001 <0.003 <0.003 <0.003 <0.003 <0.002 <0.003 <0.002 <0.002 <0.001 <0.003 <0.002 
1-Br-2,3,6,7,8,9-HexaClDD <0.004 <0.003 <0.003 <0.004 <0.004 <0.003 <0.004 <0.004 <0.01 <0.003 <0.004 <0.003 <0.01 
1-Br-2,3,4,6,7,8,9-HeptaClDD <0.01 <0.01 <0.01 <0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 

WHO2005-PXDD/F-TEQ (LB) 0.01 0.004 0.002 0.003 0.003 0.01 0.005 0.004 0.01 0.01 0.003 0.01 0.01 
WHO2005-PXDD/F-TEQ (UB) 0.03 0.03 0.03 0.02 0.03 0.03 0.02 0.03 0.04 0.03 0.02 0.03 0.04 

 
* - F – female; M – male. 
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Annex 6 
Concentrations of DL-PCBs and NDL-PCBs in Baltic wild salmon samples calculated on f.w. basis 

Sample Nr. 74505-1 74505-2 74505-3 74505-4 74505-5 74505-6 74505-7 74505-8 74505-9 74505-10 74505-11 74505-12 
Sex* F M F M F F M M M F M F 
Length, cm 74 57 59 63 83 83 71 65 56 81 58 84 
Age, years 2 1 2 1 2 2 1 1 1 2 1 2 
Weight, kg 4.4 2.5 3.5 3.0 5.8 5.8 3.8 3.6 2.0 5.3 2.6 5.6 
Place of sampling Daugava 

 River 
Daugava 

 River 
Daugava 

 River 
Daugava 

 River 
Daugava  

River 
Daugava  

River 
Daugava 

River 
Daugava  

River 
Daugava 

 River 
Daugava  

River 
Daugava  

River 
Daugava  

River 
Fat content, g/100 g of sample 2.4 3.5 7.9 6.3 2.9 6.1 3.5 5.8 5.3 5.5 4.8 5.2 

DL-PCBs (pg g-1)                         
2',3,4,4',5-PentaCB (#123) 440 323 396 250 310 364 336 201 174 336 214 286 
2,3',4,4',5-PentaCB (#118) 9110 8200 9750 4880 6390 7990 6450 4820 3900 8320 4600 6500 
2,3,4,4',5-PentaCB (#114) 205 116 178 94.7 127 149 133 89.7 70.1 157 78.9 153 
2,3,3,'4,4'-PentaCB (#105) 4030 3280 3820 1730 2250 2820 2410 1780 1250 3240 1770 2260 
2,3',4,4',5,5'-HexaCB (#167) 659 491 587 354 464 604 456 335 284 566 314 488 
2,3,3',4,4',5-HexaCB (#156) 1330 1080 1240 663 885 1060 918 632 510 1150 615 883 
2,3,3',4,4',5'-HexaCB (#157) 363 283 327 173 232 290 249 167 141 294 164 239 
2,3,3',4,4',5,5'-HeptaCB (#189) 104 98.6 113 69.8 103 118 92.4 61.8 54.9 115 60.1 99 
3,4,4',5-TetraCB (#81) 4.95 1.98 2.61 1.90 2.80 5.31 2.92 1.87 1.98 3.77 1.54 3.84 
3,3,’4,4'-TetraCB (#77) 157 139 153 87.9 92.6 142 134 91.2 57.9 155 81.7 120 
3,3',4,4',5-PentaCB (#126) 37.0 38.7 42.7 29.5 36.3 51.8 47.3 27.8 20.2 42.7 24.5 45.3 
3,3',4,4',5,5'-HexaCB (#169) 7.48 8.74 10.6 7.69 10.0 12.5 11.5 6.63 5.44 10.1 5.97 11.4 

WHO2005-PCB-TEQ (LB) 4.43 4.56 5.10 3.44 4.26 5.97 5.42 3.24 2.39 5.01 2.88 5.21 
WHO2005-PCB-TEQ (UB) 4.43 4.56 5.10 3.44 4.26 5.97 5.42 3.24 2.39 5.01 2.88 5.21 

NDL-PCBs (ng g-1)                         
2,2',5-TriCB (#18) 0.10 0.15 0.27 0.23 0.14 0.23 0.37 0.19 0.22 0.25 0.20 0.20 
2,2,4'-TriCB (#28) 1.19 1.07 1.53 1.04 0.89 1.40 1.54 0.94 0.92 1.46 0.94 1.22 
2',3,4-TriCB (#33) 0.11 0.12 0.18 0.14 0.07 0.14 0.22 0.13 0.11 0.12 0.11 0.11 
2,2',4,4'-TetraCB (#47) 0.49 0.45 0.53 0.32 0.36 0.49 0.48 0.32 0.27 0.52 0.32 0.48 
2,2',4,5'-TetraCB (#49) 0.85 0.67 0.78 0.53 0.52 0.83 0.68 0.50 0.37 0.82 0.49 0.68 
2,2',4,6'-TetraCB (#51) 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.01 
2,2',5,5'-TetraCB (#52) 1.46 1.27 1.54 1.08 1.14 1.70 1.50 1.02 0.78 1.62 0.99 1.59 
2,3,4,4'-TetraCB (#60) 0.52 0.53 0.66 0.37 0.38 0.50 0.44 0.37 0.27 0.53 0.32 0.40 
2,3',4,4'-TetraCB (#66) 1.16 1.48 1.71 0.81 0.96 1.02 0.88 0.80 0.66 1.21 0.81 0.87 
2,4,4',5-TetraCB (#74) 0.85 0.87 1.05 0.57 0.65 0.81 0.67 0.57 0.38 0.85 0.51 0.64 
2,2',4,4',5-PentaCB (#99) 3.45 3.00 3.50 1.68 2.13 2.59 1.97 1.78 1.45 2.90 1.74 2.00 
2,2',4,5,5'-PentaCB (#101) 4.88 5.01 5.57 3.24 3.99 4.96 4.08 3.30 1.94 4.83 3.06 3.98 
2,3,3',4',6-PentaCB (#110) 4.28 4.15 4.73 2.42 2.80 3.37 3.18 2.48 1.90 3.83 2.50 2.92 
2,2',3,4,4',5'-HexaCB (#138) 10.8 9.94 12.9 7.13 10.1 11.9 18.2 7.19 5.20 10.4 7.04 9.09 
2,2',4,4',5,5'-HexaCB (#153) 12.0 15.1 19.5 10.4 14.3 16.3 16.7 10.6 8.05 15.9 10.1 13.8 
2,2',3,4,4',5,5'-HeptaCB (#180) 5.27 5.45 6.12 3.46 4.93 5.81 4.56 3.06 2.93 5.71 2.96 4.63 

∑PCB (LB) 47.5 49.2 60.5 33.5 43.3 52.1 55.4 33.3 25.4 51.0 32.1 42.6 
∑PCB (UB) 47.5 49.2 60.5 33.5 43.3 52.1 55.4 33.3 25.4 51.0 32.1 42.6 

* - F – female; M – male. 



 109 

Annex 6 continues  
Sample Nr. 74505-13 74505-14 74505-15 79050-1 79050-2 79050-3 79050-4 79050-5 79050-6 79050-7 79050-8 79050-9 79050-10 
Sex* F F M M F M F M M M F F M 
Length, cm 86 78 69 62 76 77 81 76 93 78 83 83 68 
Age, years 3 3 1 1 2 2 3 2 3 2 3 3 2 
Weight, kg 7.1 6.6 3.5 3.5 5.1 6.3 6.4 5.8 11.3 6.5 6.2 10.2 5.0 
Place of sampling Daugava  

River 
Daugava 

 River 
Daugava  

River 
Venta  
River 

Venta 
 River 

Venta  
River 

Venta  
River 

Venta  
River 

Venta  
River 

Venta  
River 

Venta  
River 

Venta  
River 

Venta  
River 

Fat content, g/100 g of sample 8.2 4.3 5.8 5.7 4.8 6.2 3.6 5.6 6.1 8.2 4.8 12.0 7.1 

DL-PCBs (pg g-1)                           
2',3,4,4',5-PentaCB (#123) 427 379 219 293 363 510 307 385 410 436 240 415 429 
2,3',4,4',5-PentaCB (#118) 9230 7300 5350 6210 7080 1100 5870 9110 7730 9370 5320 8410 9500 
2,3,4,4',5-PentaCB (#114) 223 160 103 129 145 244 109 171 164 203 118 196 176 
2,3,3,'4,4'-PentaCB (#105) 3280 2570 2110 2350 2520 3920 1970 3460 2770 3300 1910 2970 3490 
2,3',4,4',5,5'-HexaCB (#167) 723 547 327 402 480 764 465 619 598 740 417 658 684 
2,3,3',4,4',5-HexaCB (#156) 1340 1040 681 815 920 1430 823 1257 1070 1280 735 1190 1330 
2,3,3',4,4',5'-HexaCB (#157) 347 267 179 216 245 386 213 329 282 337 195 312 340 
2,3,3',4,4',5,5'-HeptaCB (#189) 139 122 57.3 78.5 91.4 141 92 125 113 129 79.7 131 135 
3,4,4',5-TetraCB (#81) 4.42 2.64 1.65 1.95 2.68 5.27 3.11 3.53 3.69 5.42 3.82 6.59 3.43 
3,3,’4,4'-TetraCB (#77) 171 109 96.2 99.1 109 188 101 144 143 187 96.8 169 135 
3,3',4,4',5-PentaCB (#126) 65.6 48.1 24.0 31.0 36.5 74.1 40.1 49.5 55.0 69.6 35.6 63.9 57.8 
3,3',4,4',5,5'-HexaCB (#169) 16.8 14.1 5.13 7.91 9.57 17.5 9.69 12.8 13.7 14.2 8.35 14.8 14.5 

WHO2005-PCB-TEQ (LB) 7.55 5.62 2.83 3.67 4.31 8.48 4.60 5.81 6.32 7.88 4.10 7.28 6.71 
WHO2005-PCB-TEQ (UB) 7.55 5.62 2.83 3.67 4.31 8.48 4.60 5.81 6.32 7.88 4.10 7.28 6.71 

NDL-PCBs (ng g-1)                           
2,2',5-TriCB (#18) 0.39 0.21 0.21 0.22 0.30 0.34 0.20 0.25 0.37 0.45 0.19 0.34 0.27 
2,2,4'-TriCB (#28) 1.96 1.24 0.94 1.16 1.21 1.96 0.95 1.52 1.51 1.85 0.98 1.82 1.61 
2',3,4-TriCB (#33) 0.24 0.11 0.11 0.12 0.13 0.19 0.09 0.13 0.17 0.23 0.09 0.15 0.17 
2,2',4,4'-TetraCB (#47) 0.66 0.50 0.32 0.40 0.40 0.75 0.34 0.57 0.52 0.50 0.37 0.64 0.57 
2,2',4,5'-TetraCB (#49) 1.01 0.71 0.49 0.56 0.53 1.09 0.53 0.91 0.82 1.09 0.58 1.03 0.88 
2,2',4,6'-TetraCB (#51) 0.02 0.01 0.01 0.01 0.01 0.03 0.01 0.02 0.02 0.03 0.01 0.02 0.02 
2,2',5,5'-TetraCB (#52) 2.21 1.62 0.97 0.99 1.30 2.43 1.11 1.80 1.91 2.12 1.18 2.12 1.82 
2,3,4,4'-TetraCB (#60) 0.62 0.47 0.37 0.42 0.37 0.70 0.33 0.55 0.41 0.53 0.32 0.56 0.68 
2,3',4,4'-TetraCB (#66) 1.50 1.13 0.85 1.13 0.96 1.68 0.64 1.40 1.14 1.06 0.76 1.24 1.76 
2,4,4',5-TetraCB (#74) 0.99 0.78 0.58 0.70 0.58 1.15 0.55 0.93 0.77 0.89 0.52 0.92 1.15 
2,2',4,4',5-PentaCB (#99) 3.11 2.47 1.98 2.14 1.87 3.53 1.74 3.18 2.11 2.65 1.80 2.83 3.60 
2,2',4,5,5'-PentaCB (#101) 6.17 4.92 3.26 3.66 2.98 6.86 3.59 5.64 3.99 5.37 3.40 5.59 6.84 
2,3,3',4',6-PentaCB (#110) 4.59 3.51 2.91 2.94 2.80 5.45 2.53 4.36 3.54 4.40 2.47 3.96 5.09 
2,2',3,4,4',5'-HexaCB (#138) 15.4 11.2 7.71 8.43 9.08 13.4 8.45 12.4 10.4 13.4 8.62 12.1 13.9 
2,2',4,4',5,5'-HexaCB (#153) 18.8 15.2 9.74 12.1 9.64 17.0 11.0 15.9 10.8 14.4 12.1 16.2 18.4 
2,2',3,4,4',5,5'-HeptaCB (#180) 6.82 5.66 3.24 4.15 3.86 6.63 4.41 6.41 4.80 5.35 3.91 7.21 6.56 

∑PCB (LB) 64.5 49.8 33.7 39.2 36.0 63.2 36.4 56.0 43.3 54.3 37.3 56.8 63.3 
∑PCB (UB) 64.5 49.8 33.7 39.2 36.0 63.2 36.4 56.0 43.3 54.3 37.3 56.8 63.3 

* - F – female; M – male. 
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Annex 7 
Concentrations of PBDEs in Baltic wild salmon samples calculated on f.w. basis 

Sample Nr. 74505-1 74505-2 74505-3 74505-4 74505-5 74505-6 74505-7 74505-8 74505-9 74505-10 74505-11 74505-12 
Sex* F M F M F F M M M F M F 
Length, cm 74 57 59 63 83 83 71 65 56 81 58 84 
Age, years 2 1 2 1 2 2 1 1 1 2 1 2 
Weight, kg 4.4 2.5 3.5 3.0 5.8 5.8 3.8 3.6 2.0 5.3 2.6 5.6 
Place of sampling Daugava 

 River 
Daugava 

 River 
Daugava 

 River 
Daugava 

 River 
Daugava  

River 
Daugava  

River 
Daugava 

River 
Daugava  

River 
Daugava 

 River 
Daugava  

River 
Daugava  

River 
Daugava  

River 
Fat content, g/100 g of sample 2.4 3.5 7.9 6.3 2.9 6.1 3.5 5.8 5.3 5.5 4.8 5.2 

PBDEs (ng g-1)             
2,4-DiBDE (#7) 0.001 0.001 0.001 0.001 0.0004 0.001 0.001 0.001 0.0003 0.001 0.0003 0.001 
4,4-DiBDE (#15) 0.001 0.001 0.002 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.001 0.001 
2,2',4-TriBDE (#17) 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.02 0.01 0.02 0.01 0.03 
2,4,4'-TriBDE (#28) 0.03 0.06 0.05 0.04 0.04 0.06 0.07 0.03 0.02 0.05 0.02 0.05 
2,2',4,4'-TetraBDE (#47) 0.89 1.19 1.15 0.84 1.12 1.41 1.41 0.83 0.47 1.14 0.47 1.31 
2,2',4,5'-TetraBDE (#49) 0.28 0.40 0.43 0.38 0.40 0.58 0.80 0.37 0.15 0.39 0.15 0.54 
2,3',4,4'-TetraBDE (#66) 0.03 0.04 0.05 0.05 0.06 0.08 0.08 0.04 0.02 0.05 0.02 0.08 
2,3',4',6-TetraBDE (#71) <0.0001 <0.0003 <0.0002 <0.0002 <0.0003 <0.0002 <0.0003 <0.0002 <0.0002 <0.0002 <0.0002 <0.0001 
3,3',4,4'-TetraBDE (#77) 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.02 
2,2',3,4,4'-PentaBDE (#85) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.003 0.01 0.004 0.01 
2,2',4,4',5-PentaBDE (#99) 0.14 0.16 0.17 0.17 0.20 0.30 0.32 0.15 0.12 0.20 0.13 0.28 
2,2',4,4',6-PentaBDE (#100) 0.26 0.30 0.32 0.20 0.35 0.43 0.25 0.24 0.14 0.34 0.21 0.37 
2,3',4,4',6-PentaBDE (#119) 0.06 0.06 0.06 0.06 0.08 0.13 0.10 0.06 0.03 0.08 0.05 0.11 
3,3',4,4',5-PentaBDE (#126) <0.0001 <0.0002 0.001 0.001 0.001 0.0004 0.0003 0.0002 0.0001 0.0002 <0.0003 0.0003 
2,2',3,4,4',5'-HexaBDE (#138) 0.0004 0.0002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.0003 0.0004 
2,2',4,4',5,5'-HexaBDE (#153) 0.06 0.05 0.06 0.06 0.08 0.12 0.10 0.05 0.02 0.08 0.04 0.11 
2,2',4,4',5,6'-HexaBDE (#154) 0.18 0.16 0.18 0.18 0.24 0.36 0.26 0.15 0.10 0.25 0.12 0.31 
2,2',4,4',6,6'-HexaBDE (#155) 0.07 0.08 0.10 0.08 0.12 0.15 0.11 0.07 0.03 0.11 0.05 0.13 
2,3,4,4',5,6-HexaBDE (#166) 0.0002 <0.0002 0.001 0.001 0.001 <0.001 <0.0003 <0.0004 0.0002 0.0004 <0.0002 <0.0003 
2,2',3,4,4',5,6'-HeptaBDE (#181) 0.001 0.0004 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 
2,2',3,4,4',5',6-HeptaBDE (#183) 0.003 0.002 0.003 0.003 0.003 0.004 0.004 0.002 0.002 0.002 0.003 0.01 
2,3,3',4,4',5,6-HeptaBDE (#190) 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 
2,2',3,4,4',5,5',6-OctaBDE (#203) 0.01 0.01 0.004 0.01 0.004 0.01 0.004 0.01 0.004 0.002 0.01 0.01 
2,3,3',4,4',5,5',6-OctaBDE (#205) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.003 0.01 0.01 
2,2',3,3',4,4',5,5',6-NonaBDE (#206) 0.01 0.01 0.01 0.01 0.004 0.003 0.01 0.004 0.01 0.004 0.01 0.01 
2,2',3,3',4,4',5,6,6'-NonaBDE (#207) 0.04 0.04 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.01 0.04 0.04 
2,2',3,3',4,4',5,5',6,6'-DecaBDE (#209) 0.31 0.18 0.10 0.28 0.17 0.14 0.18 0.15 0.16 0.13 0.20 0.45 

∑PBDE (UB) 2.39 2.77 2.75 2.43 2.95 3.86 3.78 2.21 1.34 2.88 1.54 3.87 
∑PBDE (LB) 2.39 2.77 2.75 2.43 2.95 3.86 3.78 2.21 1.34 2.88 1.54 3.87 

 
* - F – female; M – male. 
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Annex 7 continues 
 

Sample Nr. 74505-13 74505-14 74505-15 79050-1 79050-2 79050-3 79050-4 79050-5 79050-6 79050-7 79050-8 79050-9 79050-10 
Sex* F F M M F M F M M M F F M 
Length, cm 86 78 69 62 76 77 81 76 93 78 83 83 68 
Age, years 3 3 1 1 2 2 3 2 3 2 3 3 2 
Weight, kg 7.1 6.6 3.5 3.5 5.1 6.3 6.4 5.8 11.3 6.5 6.2 10.2 5.0 
Place of sampling Daugava  

River 
Daugava 

 River 
Daugava  

River 
Venta  
River 

Venta 
 River 

Venta  
River 

Venta  
River 

Venta  
River 

Venta  
River 

Venta  
River 

Venta  
River 

Venta  
River 

Venta  
River 

Fat content, g/100 g of sample 8.2 4.3 5.8 5.7 4.8 6.2 3.6 5.6 6.1 8.2 4.8 12.0 7.1 

PBDEs (ng g-1)              
2,4-DiBDE (#7) 0.001 0.0004 0.0004 0.001 <0.0001 0.001 0.001 0.001 <0.00003 <0.0001 0.001 0.001 0.001 
4,4-DiBDE (#15) 0.002 0.001 0.001 0.001 <0.00004 0.004 0.003 0.002 0.003 0.01 0.001 0.002 0.002 
2,2',4-TriBDE (#17) 0.04 0.03 0.01 0.02 0.01 0.04 0.02 0.03 0.03 0.03 0.02 0.03 0.03 
2,4,4'-TriBDE (#28) 0.08 0.06 0.03 0.04 0.05 0.10 0.05 0.06 0.08 0.11 0.03 0.07 0.08 
2,2',4,4'-TetraBDE (#47) 1.79 1.51 0.65 0.92 1.10 2.14 1.21 1.47 1.62 2.08 0.98 1.67 1.70 
2,2',4,5'-TetraBDE (#49) 0.75 0.57 0.26 0.34 0.49 0.90 0.44 0.51 0.66 0.94 0.37 0.67 0.69 
2,3',4,4'-TetraBDE (#66) 0.11 0.10 0.03 0.04 0.05 0.14 0.07 0.08 0.09 0.13 0.05 0.09 0.10 
2,3',4',6-TetraBDE (#71) <0.0003 <0.0002 <0.0001 <0.0002 <0.0001 <0.0001 <0.0004 <0.0002 <0.0001 <0.0002 <0.0002 <0.0002 <0.0001 
3,3',4,4'-TetraBDE (#77) 0.02 0.02 0.01 0.01 0.01 0.03 0.02 0.01 0.02 0.03 0.01 0.02 0.02 
2,2',3,4,4'-PentaBDE (#85) 0.02 0.01 0.003 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.02 0.01 
2,2',4,4',5-PentaBDE (#99) 0.41 0.28 0.10 0.16 0.20 0.48 0.29 0.26 0.39 0.51 0.20 0.36 0.36 
2,2',4,4',6-PentaBDE (#100) 0.53 0.39 0.16 0.24 0.37 0.74 0.34 0.46 0.48 0.59 0.31 0.39 0.49 
2,3',4,4',6-PentaBDE (#119) 0.15 0.11 0.04 0.06 0.08 0.18 0.10 0.10 0.13 0.17 0.09 0.15 0.13 
3,3',4,4',5-PentaBDE (#126) <0.001 <0.0002 <0.0001 <0.0003 <0.0002 <0.0002 <0.0002 <0.0003 <0.0003 <0.0003 <0.0001 0.0002 <0.0002 
2,2',3,4,4',5'-HexaBDE (#138) 0.0004 <0.0003 0.0003 0.0002 0.0002 <0.0003 <0.0003 <0.0003 <0.0003 <0.0004 <0.0002 <0.0002 <0.0003 
2,2',4,4',5,5'-HexaBDE (#153) 0.15 0.10 0.03 0.06 0.07 0.14 0.10 0.09 0.13 0.15 0.08 0.15 0.12 
2,2',4,4',5,6'-HexaBDE (#154) 0.39 0.29 0.10 0.17 0.21 0.36 0.26 0.27 0.33 0.40 0.22 0.42 0.33 
2,2',4,4',6,6'-HexaBDE (#155) 0.17 0.13 0.04 0.08 0.10 0.16 0.11 0.12 0.15 0.17 0.09 0.17 0.15 
2,3,4,4',5,6-HexaBDE (#166) <0.0003 <0.0004 <0.0002 <0.0002 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.001 <0.0002 <0.0002 <0.0003 
2,2',3,4,4',5,6'-HeptaBDE (#181) 0.001 0.001 0.001 <0.0002 0.0004 <0.0003 0.0004 0.0003 0.0002 0.001 <0.0003 0.0002 0.001 
2,2',3,4,4',5',6-HeptaBDE (#183) 0.004 0.004 0.002 0.001 0.002 0.002 0.003 0.002 0.002 0.003 0.002 0.003 0.003 
2,3,3',4,4',5,6-HeptaBDE (#190) 0.001 0.001 0.001 <0.0002 0.001 <0.0004 0.001 0.001 0.0003 <0.0004 0.0004 <0.001 0.001 
2,2',3,4,4',5,5',6-OctaBDE (#203) 0.004 0.01 0.003 0.001 0.003 0.002 0.004 0.004 0.001 0.003 0.003 0.002 0.003 
2,3,3',4,4',5,5',6-OctaBDE (#205) 0.01 0.01 0.004 0.002 0.004 0.003 0.01 0.004 0.002 0.004 0.004 0.002 0.01 
2,2',3,3',4,4',5,5',6-NonaBDE (#206) 0.003 0.001 0.003 0.002 0.004 0.001 0.002 0.002 0.003 0.003 0.002 0.002 0.003 
2,2',3,3',4,4',5,6,6'-NonaBDE (#207) 0.02 0.03 0.02 0.01 0.03 0.01 0.03 0.02 0.01 0.02 0.02 0.01 0.03 
2,2',3,3',4,4',5,5',6,6'-DecaBDE (#209) 0.18 0.28 0.16 0.08 0.15 0.11 0.16 0.11 0.07 0.11 0.13 0.09 0.20 

∑PBDE (UB) 4.85 3.93 1.65 2.22 2.94 5.56 3.22 3.60 4.20 5.47 2.62 4.34 4.45 
∑PBDE (LB) 4.85 3.93 1.65 2.22 2.94 5.56 3.22 3.60 4.20 5.47 2.62 4.34 4.44 

 
* - F – female; M – male. 
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Annex 8 
Concentrations of PCDD/Fs and HBCDs in eel samples calculated on f.w. basis 
 

Sample Nr. 1/14 2/14 3/14 4/14 5/14 6/14 7/14 8/14 9/14 12/14 13/14 14/14 15/14 
Length, cm 81 83 95 78 74 82 76 88 76 70 78 85 71 
Weight, kg 1.0 1.1 1.6 0.8 0.8 1.1 0.8 1.0 0.9 0.6 0.8 1.0 0.5 
Place of sampling Aluksnes Aluksnes Aluksnes Aluksnes Aluksnes Aluksnes Aluksnes Aluksnes Aluksnes Usmas Usmas Usmas Usmas 
 Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake 
Fat content, g/100 g of sample 28.8 20.3 29.1 23.8 28 26.6 35.3 21.2 24.4 21.2 22.0 26.9 21.8 

PCDD/Fs (pg g-1)                           
2,3,7,8-TetraCDF 0.04 0.03 0.05 0.02 0.03 0.04 0.05 0.01 0.04 0.24 0.05 0.05 0.30 
1,2,3,7,8-PentaCDF 0.02 0.02 <0.01 0.01 0.02 0.04 0.03 0.01 0.01 0.11 <0.01 0.04 0.09 
2,3,4,7,8-PentaCDF 0.44 0.53 0.71 0.28 0.63 0.51 0.63 0.50 0.45 0.91 0.71 <0.01 0.97 
1,2,3,4,7,8-HexaCDF 0.06 0.08 0.10 0.06 0.11 0.08 0.09 0.11 0.06 0.50 0.10 0.18 0.41 
1,2,3,6,7,8-HexaCDF 0.06 0.09 0.09 0.06 0.11 0.07 0.10 0.11 0.06 0.41 0.09 0.17 0.39 
2,3,4,6,7,8-HexaCDF 0.06 0.08 0.10 0.05 0.11 0.08 0.10 0.12 0.07 0.31 0.10 0.15 0.29 
1,2,3,7,8,9-HexaCDF 0.01 0.01 <0.01 0.01 0.01 0.05 0.02 0.01 0.01 0.06 <0.01 0.01 0.05 
1,2,3,4,6,7,8-HeptaCDF 0.03 0.04 0.04 0.04 0.05 0.05 0.04 0.06 0.05 0.24 0.04 0.06 0.18 
1,2,3,4,7,8,9-HeptaCDF <0.01 0.01 <0.01 0.01 0.01 0.04 0.02 0.01 0.01 0.01 0.01 <0.01 0.01 
OctaCDF 0.01 0.01 0.02 0.02 0.01 0.06 0.02 0.03 0.03 0.14 0.02 0.05 0.12 
2,3,7,8-TetraCDD 0.10 0.09 0.17 0.17 0.11 0.13 0.11 0.13 0.09 0.31 0.17 0.14 0.20 
12378-PentaCDD 0.15 0.18 0.27 0.13 0.23 0.22 0.19 0.27 0.15 0.80 0.27 0.43 0.64 
1,2,3,4,7,8-HexaCDD 0.03 0.03 0.06 0.03 0.05 0.05 0.04 0.06 0.03 0.56 0.06 0.08 0.43 
1,2,3,6,7,8-HexaCDD 0.12 0.12 0.19 0.10 0.17 0.12 0.12 0.20 0.11 2.76 0.19 0.34 1.75 
1,2,3,7,8,9-HexaCDD 0.02 0.03 0.05 0.02 0.04 0.05 0.04 0.05 0.03 0.15 0.05 0.05 0.12 
1,2,3,4,6,7,8-HeptaCDD 0.04 0.05 0.07 0.05 0.07 0.07 0.06 0.09 0.04 0.47 0.07 0.09 0.35 
OctaCDD 0.09 0.08 0.14 0.06 0.06 0.13 0.08 0.09 0.06 0.23 0.14 0.10 0.20 

WHO2005-PCDD/F-TEQ (LB) 0.42 0.48 0.71 0.42 0.59 0.56 0.55 0.62 0.42 1.89 0.71 0.68 1.52 
WHO2005-PCDD/F-TEQ (UB) 0.42 0.48 0.71 0.42 0.59 0.56 0.55 0.62 0.42 1.89 0.71 0.68 1.52 
WHO1998-PCDD/F-TEQ (UB) 0.51 0.58 0.86 0.48 0.72 0.66 0.67 0.72 0.51 2.07 0.86 0.68 1.71 

HBCDs (pg g-1)              
α-HBCD NA NA NA NA NA NA NA NA NA NA NA NA NA 
β-HBCD NA NA NA NA NA NA NA NA NA NA NA NA NA 
γ-HBCD NA NA NA NA NA NA NA NA NA NA NA NA NA 

Total-HBCD (LB) NA NA NA NA NA NA NA NA NA NA NA NA NA 
Total-HBCD (UB) NA NA NA NA NA NA NA NA NA NA NA NA NA 

 
NA - not analyzed 
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Annex 8 continues 
Sample Nr. 16/14 17/14 18/14 19/14 20/14 21/14 22/14 23/14 24/14 25/14 26/14 27/14 28/14 29/14 30/14 
Length, cm 68 64 71 53 68 58 84 96 86 84 99 93 90 89 84 
Weight, kg 0.5 0.4 0.5 0.2 0.5 0.3 1.0 1.9 1.1 0.9 1.5 1.4 1.2 1.3 1.0 
Place of sampling Usmas Usmas Usmas Usmas Usmas Usmas Sivers Sivers Sivers Sivers Sivers Sivers Sivers Sivers Sivers 
 Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake 
Fat content, g/100 g of sample 24.3 21.9 22.1 27.6 24.0 22.4 25.2 26.8 23.9 26.0 22.9 23.8 25.5 25.9 27.1 

PCDD/Fs (pg g-1)                               
2,3,7,8-TetraCDF 0.02 0.03 0.01 0.26 0.02 0.03 0.89 0.27 0.73 0.23 0.35 0.38 0.35 0.16 0.25 
1,2,3,7,8-PentaCDF 0.01 0.02 0.01 0.10 0.02 0.02 0.31 0.10 0.73 0.08 0.15 0.08 <0.04 0.08 0.10 
2,3,4,7,8-PentaCDF 0.70 0.74 0.85 0.61 0.49 0.29 0.93 0.81 1.23 0.81 0.92 0.67 0.89 2.02 0.59 
1,2,3,4,7,8-HexaCDF 0.38 0.20 0.35 0.16 0.26 0.10 0.31 0.18 0.59 0.16 0.20 0.15 0.18 0.25 0.16 
1,2,3,6,7,8-HexaCDF 0.34 0.19 0.32 0.16 0.22 0.10 0.37 0.18 0.60 0.14 0.20 0.15 0.16 0.25 0.17 
2,3,4,6,7,8-HexaCDF 0.22 0.25 0.30 0.19 0.28 0.11 0.30 0.19 0.56 0.13 0.19 0.15 0.17 0.26 0.17 
1,2,3,7,8,9-HexaCDF 0.01 0.02 0.01 0.04 0.02 0.01 0.17 0.08 0.33 0.04 0.10 0.04 0.04 0.04 0.08 
1,2,3,4,6,7,8-HeptaCDF 0.19 0.11 0.14 0.11 0.14 0.06 0.30 0.10 0.43 0.07 0.12 0.07 0.08 0.08 0.13 
1,2,3,4,7,8,9-HeptaCDF 0.02 0.02 0.02 <0.01 0.02 0.01 <0.03 <0.01 <0.05 <0.01 0.01 <0.01 <0.01 0.01 <0.01 
OctaCDF 0.03 0.02 0.02 0.12 0.02 0.03 0.50 0.12 0.99 0.08 0.22 0.11 0.16 0.09 0.16 
2,3,7,8-TetraCDD 0.09 0.07 0.10 0.12 0.05 0.04 0.30 0.20 0.62 <0.07 0.21 0.10 0.43 0.26 0.15 
12378-PentaCDD 0.66 0.35 0.60 0.26 0.25 0.11 0.56 0.38 0.53 0.28 0.37 0.32 0.08 0.61 0.29 
1,2,3,4,7,8-HexaCDD 0.43 0.09 0.30 0.11 0.10 0.04 0.40 0.11 0.88 0.11 0.15 0.09 0.19 0.12 0.12 
1,2,3,6,7,8-HexaCDD 2.17 0.36 1.46 0.28 0.46 0.14 0.91 0.23 1.50 0.33 0.32 0.26 0.36 0.48 0.26 
1,2,3,7,8,9-HexaCDD 0.08 0.07 0.11 0.10 0.12 0.04 0.35 0.11 0.65 0.07 0.14 0.08 0.09 0.09 0.11 
1,2,3,4,6,7,8-HeptaCDD 0.38 0.12 0.29 0.13 0.21 0.21 0.34 0.12 0.60 0.12 0.15 0.11 0.14 0.11 0.14 
OctaCDD 0.13 0.12 0.14 0.14 0.14 0.10 0.48 0.17 1.14 0.14 0.23 0.15 0.14 0.11 0.18 

WHO2005-PCDD/F-TEQ (LB) 1.33 0.76 1.24 0.70 0.60 0.29 1.52 0.97 2.14 0.65 1.03 0.76 0.94 1.65 0.76 
WHO2005-PCDD/F-TEQ (UB) 1.33 0.76 1.24 0.70 0.60 0.29 1.52 0.97 2.14 0.72 1.03 0.76 0.94 1.65 0.76 
WHO1998-PCDD/F-TEQ (UB) 1.47 0.91 1.41 0.82 0.70 0.35 1.71 1.13 2.40 0.88 1.22 0.89 1.12 2.06 0.88 

HBCDs (pg g-1)                
α-HBCD NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
β-HBCD NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
γ-HBCD NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

Total-HBCD (LB) NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
Total-HBCD (UB) NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

 
NA - not analyzed 
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Annex 8 continues 
Sample Nr. 31/14 32/14 33/14 34/14 35/14 36/14 37/14 38/14 39/14 40/14 41/14 42/14 43/14 1 2 
Length, cm 89 93 72 82 75 94 101 95 94 92 95 83 83 55 50 
Weight, kg 1.1 1.3 0.6 0.9 0.6 1.6 1.8 1.6 1.4 1.5 1.3 0.9 1.0 0.8 1.0 
Place of sampling Sivers Sivers Liepajas Liepajas Liepajas Kisezers Kisezers Kisezers Kisezers Kisezers Liepajas Liepajas Liepajas Usmas Usmas 
 Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake 
Fat content, g/100 g of sample 23.0 25.5 28.9 41.3 33.2 37.0 36.9 34.7 27.2 32.2 27.2 32.1 34.2 24.4 20.6 

PCDD/Fs (pg g-1)                               
2,3,7,8-TetraCDF <0.08 <0.29 0.23 0.63 0.36 0.33 0.58 0.28 0.50 0.61 0.68 0.26 0.49 0.05 0.03 
1,2,3,7,8-PentaCDF 0.06 0.04 0.05 0.18 0.06 0.07 0.16 0.06 0.07 0.16 0.09 0.05 0.07 0.03 0.03 
2,3,4,7,8-PentaCDF 0.78 1.20 1.57 3.68 0.87 1.03 1.57 1.97 1.63 1.36 1.35 1.69 1.59 1.00 0.56 
1,2,3,4,7,8-HexaCDF 0.16 0.15 0.38 0.30 0.46 0.16 0.31 0.23 0.14 0.19 0.17 0.28 0.17 0.21 0.10 
1,2,3,6,7,8-HexaCDF 0.17 0.16 0.20 0.25 0.21 0.15 0.32 0.17 0.14 0.17 0.14 0.23 0.12 0.21 0.11 
2,3,4,6,7,8-HexaCDF 0.18 0.15 0.18 0.22 0.15 0.17 0.31 0.18 0.15 0.16 0.12 0.21 0.14 0.20 0.07 
1,2,3,7,8,9-HexaCDF 0.05 0.02 0.06 0.04 <0.01 0.04 0.12 0.02 <0.02 0.07 0.03 0.01 <0.01 <0.01 <0.01 
1,2,3,4,6,7,8-HeptaCDF 0.08 0.05 0.07 0.13 0.09 0.09 0.20 0.07 0.06 0.10 0.05 0.09 0.04 0.13 0.07 
1,2,3,4,7,8,9-HeptaCDF <0.01 <0.01 0.01 0.01 <0.02 0.01 <0.03 <0.01 <0.01 0.01 <0.01 0.01 <0.01 <0.03 <0.02 
OctaCDF 0.11 0.31 0.10 0.08 0.10 0.09 0.28 0.08 0.06 0.17 0.07 0.04 0.03 0.04 0.02 
2,3,7,8-TetraCDD 0.11 0.30 0.17 0.55 1.00 0.24 0.67 0.37 0.41 0.43 0.47 0.85 1.29 0.10 0.06 
12378-PentaCDD 0.36 0.48 0.46 0.87 0.45 0.32 0.41 0.47 0.32 0.43 0.44 0.54 0.58 0.31 0.21 
1,2,3,4,7,8-HexaCDD 0.09 0.09 0.15 0.13 0.09 0.09 0.24 0.11 0.06 0.12 0.06 0.10 0.07 0.09 0.05 
1,2,3,6,7,8-HexaCDD 0.24 0.26 0.33 0.39 0.30 0.26 0.44 0.38 0.24 0.25 0.19 0.32 0.22 0.31 0.17 
1,2,3,7,8,9-HexaCDD 0.08 0.07 0.11 0.10 0.06 0.07 0.20 0.07 <0.02 0.12 0.06 0.09 0.08 0.07 0.03 
1,2,3,4,6,7,8-HeptaCDD 0.11 0.08 0.18 0.10 0.17 0.10 0.20 0.11 0.09 0.13 0.10 0.16 0.10 0.12 0.08 
OctaCDD 0.14 0.52 0.33 0.13 0.53 0.16 0.39 0.19 0.14 0.21 0.13 0.13 0.21 0.10 0.08 

WHO2005-PCDD/F-TEQ (LB) 0.80 1.24 1.27 2.74 1.87 1.01 1.82 1.57 1.34 1.44 1.47 2.05 2.48 0.83 0.50 
WHO2005-PCDD/F-TEQ (UB) 0.81 1.27 1.27 2.74 1.88 1.01 1.82 1.57 1.35 1.44 1.47 2.05 2.48 0.83 0.50 
WHO1998-PCDD/F-TEQ (UB) 0.97 1.51 1.58 3.48 2.05 1.21 2.13 1.97 1.68 1.72 1.74 2.39 2.80 1.03 0.61 

HBCDs (pg g-1)                
α-HBCD NA NA NA NA NA NA NA NA NA NA NA NA NA 168 188 
β-HBCD NA NA NA NA NA NA NA NA NA NA NA NA NA 60.0 34.8 
γ-HBCD NA NA NA NA NA NA NA NA NA NA NA NA NA 18.0 17.2 

Total-HBCD (LB) NA NA NA NA NA NA NA NA NA NA NA NA NA 246 240 
Total-HBCD (UB) NA NA NA NA NA NA NA NA NA NA NA NA NA 246 240 

 
NA - not analyzed 
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Annex 8 continues 
Sample Nr. 3 4 5 6 7 8 1a 2a 3a 4a 5a 6a 7a 8a 9a 
Length, cm 55 67 55 55 55 50 87 40 77 81 79 75 39 42 42 
Weight, kg 0.9 1.7 0.9 1.1 0.9 0.9 1.2 0.1 0.9 1.0 0.9 0.9 1.0 0.1 0.1 
Place of sampling Usmas Usmas Usmas Usmas Usmas Usmas Usmas Usmas Usmas Usmas Usmas Usmas Usmas Usmas Usmas 
 Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake 
Fat content, g/100 g of sample 26.0 29.4 22.8 24.4 24.2 23.7 21.2 31.5 29.2 30.0 28.0 23.1 30.1 35.2 31.7 

PCDD/Fs (pg g-1)                               
2,3,7,8-TetraCDF 0.04 0.10 0.05 0.08 0.04 0.06 0.05 0.05 0.03 <0.03 0.04 0.02 0.02 0.04 0.04 
1,2,3,7,8-PentaCDF 0.02 0.05 <0.01 0.05 0.03 0.04 0.03 0.05 0.02 <0.02 0.03 0.02 0.02 0.02 0.02 
2,3,4,7,8-PentaCDF 0.69 1.42 0.88 1.27 1.26 1.80 1.08 2.35 1.82 1.32 1.32 1.50 0.68 1.38 0.56 
1,2,3,4,7,8-HexaCDF 0.12 0.37 0.23 0.41 0.29 0.33 0.21 0.95 0.30 0.37 0.28 0.37 0.38 0.58 0.07 
1,2,3,6,7,8-HexaCDF 0.13 0.34 0.19 0.44 0.28 0.29 0.17 0.89 0.31 0.33 0.23 0.33 0.33 0.54 0.07 
2,3,4,6,7,8-HexaCDF 0.12 0.33 0.20 0.36 0.24 0.29 0.14 0.80 0.29 0.34 0.26 0.35 0.40 0.51 0.08 
1,2,3,7,8,9-HexaCDF <0.01 <0.01 0.23 0.32 <0.01 <0.01 0.01 0.03 0.01 <0.02 0.02 0.01 0.01 0.02 0.01 
1,2,3,4,6,7,8-HeptaCDF 0.08 0.12 0.10 0.12 0.10 0.12 0.05 0.37 0.11 0.20 0.10 0.12 0.20 0.29 0.05 
1,2,3,4,7,8,9-HeptaCDF <0.05 <0.02 <0.03 <0.03 <0.03 <0.02 0.01 0.03 0.02 0.04 0.01 0.02 0.03 0.02 0.004 
OctaCDF 0.04 0.03 0.03 0.02 0.02 0.03 0.01 0.06 <0.01 0.05 0.03 0.02 0.03 0.02 0.02 
2,3,7,8-TetraCDD 0.08 0.18 0.09 0.14 0.14 0.17 0.10 0.22 0.16 0.12 0.14 0.13 0.06 0.14 0.14 
12378-PentaCDD 0.37 0.52 0.43 0.50 0.66 0.73 0.32 1.31 0.56 0.64 0.51 0.51 0.27 0.78 0.22 
1,2,3,4,7,8-HexaCDD 0.07 0.08 0.10 0.15 0.13 0.14 0.07 0.76 0.11 0.14 0.14 0.13 0.13 0.38 0.04 
1,2,3,6,7,8-HexaCDD 0.22 0.53 0.37 0.34 0.63 0.66 0.29 2.89 0.52 0.55 0.48 0.62 0.58 1.36 0.10 
1,2,3,7,8,9-HexaCDD 0.05 0.10 0.06 <0.08 0.06 0.09 0.04 0.40 0.06 0.10 0.10 0.09 0.17 0.20 0.02 
1,2,3,4,6,7,8-HeptaCDD 0.09 0.15 0.14 0.14 0.14 0.14 0.14 1.02 0.13 0.39 0.15 0.18 0.33 0.52 0.05 
OctaCDD 0.12 0.09 0.11 0.11 0.11 0.11 0.06 0.32 0.08 0.19 0.09 0.13 0.16 0.22 0.07 

WHO2005-PCDD/F-TEQ (LB) 0.73 1.31 0.93 1.23 1.35 1.63 0.84 2.93 1.43 1.34 1.20 1.29 0.74 1.71 0.58 
WHO2005-PCDD/F-TEQ (UB) 0.74 1.31 0.93 1.24 1.35 1.63 0.84 2.93 1.43 1.35 1.20 1.29 0.74 1.71 0.58 
WHO1998-PCDD/F-TEQ (UB) 0.87 1.59 1.11 1.50 1.60 1.99 1.06 3.40 1.79 1.61 1.46 1.59 0.87 1.98 0.69 

HBCDs (pg g-1)                
α-HBCD 168 168 188 269 360 562 NA NA NA NA NA NA NA NA NA 
β-HBCD 64.0 35.0 30.0 34.8 <13.0 22.0 NA NA NA NA NA NA NA NA NA 
γ-HBCD 24.0 21.0 13.2 16.0 12.0 12.8 NA NA NA NA NA NA NA NA NA 

Total-HBCD (LB) 256 224 231 320 372 597 NA NA NA NA NA NA NA NA NA 
Total-HBCD (UB) 256 224 231 320 385 597 NA NA NA NA NA NA NA NA NA 

 
NA - not analyzed 
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Annex 9 

Concentrations of PBDD/Fs, PXDD/Fs and PXBs in eel samples calculated on f.w. basis 
Sample Nr. 1/14 2/14 3/14 4/14 5/14 6/14 7/14 8/14 9/14 12/14 13/14 14/14 15/14 
Length, cm 81 83 95 78 74 82 76 88 76 70 78 85 71 
Weight, kg 1.0 1.1 1.6 0.8 0.8 1.1 0.8 1.0 0.9 0.6 0.8 1.0 0.5 
Place of sampling Aluksnes Aluksnes Aluksnes Aluksnes Aluksnes Aluksnes Aluksnes Aluksnes Aluksnes Usmas Usmas Usmas Usmas 
 Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake 
Fat content, g/100 g of sample 28.8 20.3 29.1 23.8 28 26.6 35.3 21.2 24.4 21.2 22.0 26.9 21.8 

PBDD/Fs (pg g-1)                           
2,3,7,8-TetraBDF <0.01 <0.02 <0.01 0.02 0.02 <0.02 0.03 0.02 <0.01 <0.01 0.02 0.03 <0.004 
1,2,3,7,8-PentaBDF <0.02 0.06 <0.01 <0.01 <0.02 <0.04 <0.01 <0.02 <0.01 <0.01 <0.02 <0.01 <0.01 
2,3,4,7,8-PentaBDF <0.02 <0.03 <0.01 0.02 <0.02 <0.04 <0.01 <0.02 <0.01 <0.01 <0.02 0.03 <0.01 
1,2,3,4,7,8-HexaBDF <0.08 <0.14 <0.08 0.04 <0.08 <0.09 <0.05 <0.05 <0.05 <0.03 0.10 0.13 <0.04 
1,2,3,4,6,7,8-HeptaBDF 0.28 0.36 0.17 0.18 0.24 0.27 0.46 0.18 0.11 0.07 0.32 0.41 0.05 
2,3,7,8-TetraBDD <0.01 <0.01 <0.004 <0.002 <0.004 <0.02 <0.004 <0.01 <0.004 <0.003 <0.004 <0.004 <0.003 
1,2,3,7,8-PentaBDD <0.02 <0.02 <0.01 <0.01 <0.02 <0.05 <0.02 <0.02 <0.01 <0.02 <0.02 <0.02 <0.01 
1,2,3,4,7,8/1,2,3,6,7,8-HexaBDD <0.07 <0.08 <0.04 <0.02 <0.04 <0.10 <0.05 <0.06 <0.04 <0.04 <0.03 <0.02 <0.02 
1,2,3,7,8,9-HexaBDD <0.04 <0.05 <0.03 <0.02 <0.03 <0.06 <0.03 <0.04 <0.02 <0.03 <0.02 <0.01 <0.02 
WHO2005-PBDD/F-TEQ (LB) 0.003 0.01 0.002 0.01 0.004 0.003 0.01 0.003 0.001 0.001 0.02 0.03 0.001 
WHO2005-PBDD/F-TEQ (UB) 0.06 0.07 0.04 0.03 0.05 0.10 0.05 0.05 0.03 0.04 0.05 0.06 0.03 

PXDD/Fs (pg g-1)                           
3-Br-2,7,8-TriClDF <0.03 <0.04 <0.01 <0.01 <0.01 <0.02 <0.01 <0.01 <0.01 <0.002 <0.01 <0.02 <0.004 
2-Br-3,7,8-TriClDD <0.07 <0.18 <0.01 <0.02 <0.04 <0.07 <0.04 <0.03 <0.02 <0.01 <0.02 <0.004 <0.01 
2,3-DiBr-7,8-DiClDD <0.03 <0.06 <0.01 <0.01 <0.01 <0.02 <0.01 <0.01 <0.01 <0.05 <0.01 <0.02 <0.06 
1-Br-2,3,7,8-TetraClDF <0.06 <0.06 <0.01 <0.01 <0.01 <0.04 <0.01 <0.01 <0.01 <0.003 <0.01 <0.03 <0.01 
1-Br-2,3,7,8-TetraClDD <0.03 <0.07 <0.01 <0.01 <0.01 <0.03 <0.02 <0.01 <0.01 <0.003 <0.02 <0.03 <0.01 
2-Br-1,3,7,8-TetraClDD <0.03 <0.06 <0.01 <0.01 <0.01 <0.03 <0.02 <0.01 <0.004 <0.003 <0.01 <0.03 <0.004 
2-Br-3,6,7,8,9-PentaClDD <0.02 <0.04 <0.003 <0.003 <0.01 <0.02 <0.01 <0.01 <0.003 <0.002 <0.004 0.01 <0.003 
1-Br-2,3,6,7,8,9-HexaClDD <0.08 <0.18 <0.01 <0.02 <0.03 <0.06 <0.03 <0.02 <0.01 <0.01 <0.02 <0.05 <0.01 
1-Br-2,3,4,6,7,8,9-HeptaClDD <0.14 <0.15 <0.02 <0.04 <0.05 <0.05 <0.03 <0.02 <0.02 <0.01 <0.03 <0.04 <0.02 

WHO2005-PXDD/F-TEQ (LB) ND ND ND ND ND ND ND ND ND ND ND 0.001 ND 
WHO2005-PXDD/F-TEQ (UB) 0.16 0.39 0.04 0.04 0.08 0.15 0.08 0.05 0.03 0.07 0.06 0.13 0.08 

PXBs (pg g-1)                           
4'-Br-2,3',4,5-Cl-XB (#118 mono-Br) 0.22 0.16 0.43 NA 0.29 0.32 0.23 0.41 0.32 NA 0.30 0.34 NA 
4'-Br-2,3,3',4-Cl-XB (#105 mono-Br) 0.08 0.05 0.14 NA 0.09 0.11 0.09 0.15 0.13 NA 0.12 0.15 NA 
4'-Br-2,3,3',4,5-Cl-XB (#156 mono-Br) 0.09 0.05 0.12 NA 0.06 0.08 <0.06 0.11 0.06 NA 0.13 0.13 NA 
4'-Br-3,3',4,5-Cl-XB (#126 mono-Br) 0.01 0.02 0.02 NA <0.01 0.02 0.02 <0.01 0.02 NA 0.01 0.02 NA 
3,4-Br-3',4',5'-Cl-XB (#126 di-Br) <0.004 <0.01 <0.01 NA <0.01 <0.01 <0.01 <0.01 <0.04 NA <0.01 <0.004 NA 
3',4',5-Br-3,4-Cl-XB (#126 tri-Br) <0.03 <0.06 <0.03 NA <0.03 <0.04 <0.05 <0.04 <0.04 NA <0.04 <0.03 NA 

WHO2005-PXB-TEQ (LB) 0.001 0.002 0.002 NA 0.00001 0.002 0.002 0.00002 0.002 NA 0.001 0.002 NA 
WHO2005-PXB-TEQ (UB) 0.004 0.01 0.01  NA 0.01 0.01 0.01 0.01 0.01 NA  0.01 0.01 NA  

ND - not detected since none of the analyzed congeners show the levels above the LOQ 
NA - not analyzed 
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Annex 9 continues 

Sample Nr. 16/14 17/14 18/14 19/14 20/14 21/14 22/14 23/14 24/14 25/14 26/14 27/14 28/14 29/14 30/14 
Length, cm 68 64 71 53 68 58 84 96 86 84 99 93 90 89 84 
Weight, kg 0.5 0.4 0.5 0.2 0.5 0.3 1.0 1.9 1.1 0.9 1.5 1.4 1.2 1.3 1.0 
Place of sampling Usmas Usmas Usmas Usmas Usmas Usmas Sivers Sivers Sivers Sivers Sivers Sivers Sivers Sivers Sivers 
 Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake 
Fat content, g/100 g of sample 24.3 21.9 22.1 27.6 24.0 22.4 25.2 26.8 23.9 26.0 22.9 23.8 25.5 25.9 27.1 

PBDD/Fs (pg g-1)                               
2,3,7,8-TetraBDF 0.02 0.02 0.02 <0.02 <0.01 0.03 0.05 0.10 <0.01 <0.01 0.25 <0.01 <0.01 <0.01 0.14 
1,2,3,7,8-PentaBDF <0.02 <0.01 0.03 <0.02 <0.01 <0.02 0.02 <0.02 <0.02 <0.02 <0.05 <0.01 <0.01 <0.01 <0.01 
2,3,4,7,8-PentaBDF 0.02 <0.01 <0.01 <0.02 <0.01 0.03 <0.01 <0.02 <0.02 <0.02 <0.04 <0.01 <0.01 <0.01 <0.01 
1,2,3,4,7,8-HexaBDF 0.20 <0.02 <0.06 <0.09 <0.06 0.14 <0.04 <0.11 <0.11 <0.08 <0.07 <0.07 <0.07 <0.02 <0.07 
1,2,3,4,6,7,8-HeptaBDF 1.05 0.16 0.22 0.16 0.31 0.84 0.12 0.21 0.03 0.11 0.17 0.09 0.16 0.05 0.06 
2,3,7,8-TetraBDD <0.01 <0.004 <0.003 <0.004 <0.01 0.01 <0.004 <0.004 <0.01 <0.01 <0.004 <0.002 <0.002 <0.07 <0.002 
1,2,3,7,8-PentaBDD <0.01 <0.01 <0.02 <0.05 <0.02 <0.02 <0.01 <0.01 <0.02 <0.02 <0.05 <0.01 <0.01 <0.02 <0.01 
1,2,3,4,7,8/1,2,3,6,7,8-HexaBDD <0.04 <0.02 <0.05 <0.07 <0.06 <0.03 <0.03 <0.03 <0.06 <0.03 <0.07 <0.05 <0.05 <0.04 <0.05 
1,2,3,7,8,9-HexaBDD <0.02 <0.01 <0.03 <0.04 <0.04 <0.02 <0.02 <0.02 <0.04 <0.02 <0.04 <0.03 <0.03 <0.02 <0.03 
WHO2005-PBDD/F-TEQ (LB) 0.04 0.004 0.01 0.002 0.003 0.04 0.01 0.01 0.0003 0.001 0.03 0.001 0.002 0.001 0.01 
WHO2005-PBDD/F-TEQ (UB) 0.06 0.02 0.04 0.09 0.05 0.06 0.04 0.05 0.06 0.04 0.12 0.04 0.04 0.10 0.05 

PXDD/Fs (pg g-1)                               
3-Br-2,7,8-TriClDF <0.01 0.01 <0.004 <0.01 <0.01 <0.01 <0.02 <0.004 <0.003 <0.003 <0.003 <0.01 <0.003 <0.003 <0.01 
2-Br-3,7,8-TriClDD <0.01 <0.01 <0.01 <0.01 <0.03 <0.03 <0.03 <0.01 <0.01 <0.01 <0.01 <0.03 <0.01 <0.01 <0.01 
2,3-DiBr-7,8-DiClDD <0.01 <0.01 <0.01 <0.08 <0.01 <0.02 <0.11 <0.05 <0.05 <0.05 <0.05 <0.12 <0.03 <0.08 <0.07 
1-Br-2,3,7,8-TetraClDF <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.04 <0.003 <0.004 <0.003 <0.004 <0.03 <0.01 <0.004 <0.01 
1-Br-2,3,7,8-TetraClDD <0.01 <0.01 <0.01 <0.02 <0.01 <0.01 <0.04 <0.01 <0.01 <0.01 <0.01 <0.04 <0.004 <0.01 <0.01 
2-Br-1,3,7,8-TetraClDD <0.01 <0.01 <0.01 <0.02 <0.01 <0.01 <0.03 <0.004 <0.01 <0.01 <0.004 <0.04 <0.003 <0.01 <0.01 
2-Br-3,6,7,8,9-PentaClDD 0.02 <0.04 0.01 <0.003 <0.004 <0.01 <0.01 <0.002 <0.002 <0.002 <0.002 <0.01 <0.002 <0.002 <0.004 
1-Br-2,3,6,7,8,9-HexaClDD <0.01 <0.02 <0.02 <0.01 <0.03 <0.03 <0.02 <0.01 <0.01 <0.01 <0.02 <0.03 <0.01 <0.01 <0.02 
1-Br-2,3,4,6,7,8,9-HeptaClDD <0.03 <0.02 <0.03 <0.03 <0.04 <0.04 <0.06 <0.02 <0.03 <0.02 <0.01 <0.05 <0.02 <0.01 <0.03 

WHO2005-PXDD/F-TEQ (LB) 0.002 0.001 0.001 ND ND ND ND ND ND ND ND ND ND ND ND 
WHO2005-PXDD/F-TEQ (UB) 0.04 0.04 0.05 0.13 0.06 0.06 0.21 0.07 0.07 0.08 0.07 0.23 0.05 0.10 0.11 

PXBs (pg g-1)                               
4'-Br-2,3',4,5-Cl-XB (#118 mono-Br) NA NA 0.15 NA 0.18 0.07 NA 0.66 NA NA 0.47 0.37 NA NA 0.23 
4'-Br-2,3,3',4-Cl-XB (#105 mono-Br) NA NA 0.07 NA 0.08 0.03 NA 0.27 NA NA 0.21 0.16 NA NA 0.10 
4'-Br-2,3,3',4,5-Cl-XB (#156 mono-Br) NA NA 0.08 NA <0.05 <0.04 NA <0.18 NA NA <0.28 0.10 NA NA <0.11 
4'-Br-3,3',4,5-Cl-XB (#126 mono-Br) NA NA 0.01 NA 0.01 0.01 NA 0.05 NA NA 0.03 0.01 NA NA 0.02 
3,4-Br-3',4',5'-Cl-XB (#126 di-Br) NA NA <0.01 NA <0.01 <0.003 NA <0.02 NA NA <0.02 <0.01 NA NA <0.01 
3',4',5-Br-3,4-Cl-XB (#126 tri-Br) NA NA <0.04 NA <0.04 <0.02 NA <0.05 NA NA <0.08 <0.02 NA NA <0.02 

WHO2005-PXB-TEQ (LB) NA NA 0.001 NA 0.001 0.001 NA 0.002 NA NA 0.001 0.001 NA NA 0.002 
WHO2005-PXB-TEQ (UB) NA NA 0.01  NA 0.01 0.003 NA  0.01 NA NA 0.01 0.004 NA NA 0.004 

ND - not detected since none of the analyzed congeners show the levels above the LOQ 
NA - not analyzed 
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Annex 9 continues 
Sample Nr. 31/14 32/14 33/14 34/14 35/14 36/14 37/14 38/14 39/14 40/14 41/14 42/14 43/14 1 2 
Length, cm 89 93 72 82 75 94 101 95 94 92 95 83 83 55 50 
Weight, kg 1.1 1.3 0.6 0.9 0.6 1.6 1.8 1.6 1.4 1.5 1.3 0.9 1.0 0.8 1.0 
Place of sampling Sivers Sivers Liepajas Liepajas Liepajas Kisezers Kisezers Kisezers Kisezers Kisezers Liepajas Liepajas Liepajas Usmas Usmas 
 Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake 
Fat content, g/100 g of sample 23.0 25.5 28.9 41.3 33.2 37.0 36.9 34.7 27.2 32.2 27.2 32.1 34.2 24.4 20.6 

PBDD/Fs (pg g-1)                               
2,3,7,8-TetraBDF 0.07 <0.01 <0.01 <0.01 <0.01 0.17 0.12 <0.01 <0.01 <0.05 <0.02 0.21 <0.01 0.02 0.03 
1,2,3,7,8-PentaBDF <0.01 <0.01 <0.05 <0.01 <0.01 <0.01 0.02 <0.01 <0.02 <0.01 <0.02 <0.01 <0.01 <0.01 0.02 
2,3,4,7,8-PentaBDF <0.01 0.02 <0.04 <0.01 <0.01 <0.01 <0.02 <0.01 <0.02 0.02 <0.02 <0.01 <0.01 <0.01 <0.01 
1,2,3,4,7,8-HexaBDF <0.03 <0.03 <0.07 0.14 <0.07 <0.03 <0.09 <0.03 <0.07 <0.05 <0.09 <0.05 <0.07 <0.05 0.12 
1,2,3,4,6,7,8-HeptaBDF 0.09 0.19 0.13 0.28 0.26 0.22 0.20 0.15 0.13 0.09 0.14 0.16 0.12 0.13 0.08 
2,3,7,8-TetraBDD <0.003 <0.004 <0.002 <0.003 <0.002 <0.004 <0.004 <0.003 <0.01 <0.09 <0.01 <0.09 <0.002 <0.002 0.01 
1,2,3,7,8-PentaBDD 0.04 <0.01 <0.01 <0.02 <0.01 <0.01 <0.01 <0.01 <0.03 <0.02 <0.03 <0.01 <0.01 <0.01 <0.02 
1,2,3,4,7,8/1,2,3,6,7,8-HexaBDD <0.03 0.05 <0.05 <0.02 <0.05 <0.03 <0.03 <0.08 <0.06 <0.05 <0.09 <0.05 <0.07 <0.03 <0.04 
1,2,3,7,8,9-HexaBDD <0.02 <0.02 0.05 <0.01 <0.03 <0.02 <0.02 <0.05 <0.04 <0.03 0.14 <0.03 <0.04 <0.02 <0.03 
WHO2005-PBDD/F-TEQ (LB) 0.04 0.01 0.01 0.02 0.003 0.02 0.01 0.002 0.001 0.01 0.02 0.02 0.001 0.003 0.02 
WHO2005-PBDD/F-TEQ (UB) 0.06 0.03 0.05 0.04 0.04 0.05 0.05 0.04 0.06 0.13 0.08 0.14 0.04 0.03 0.05 

PXDD/Fs (pg g-1)                               
3-Br-2,7,8-TriClDF <0.002 <0.01 <0.003 <0.002 <0.01 <0.003 <0.01 <0.003 <0.004 <0.002 0.01 <0.003 <0.003 <0.003 0.01 
2-Br-3,7,8-TriClDD <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.03 <0.01 <0.02 <0.01 <0.02 <0.01 <0.01 <0.01 <0.01 
2,3-DiBr-7,8-DiClDD <0.02 <0.04 <0.05 <0.09 <0.12 <0.07 <0.08 <0.04 <0.06 <0.08 <0.13 <0.03 <0.08 <0.003 <0.003 
1-Br-2,3,7,8-TetraClDF <0.004 <0.01 <0.004 <0.01 <0.01 <0.01 <0.01 <0.002 <0.004 <0.003 <0.01 <0.01 <0.04 <0.004 0.01 
1-Br-2,3,7,8-TetraClDD <0.003 <0.02 <0.01 <0.004 <0.01 <0.004 <0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.004 <0.01 
2-Br-1,3,7,8-TetraClDD <0.003 <0.01 <0.004 <0.004 <0.01 <0.003 <0.02 <0.01 <0.01 <0.01 <0.01 <0.004 <0.004 <0.003 <0.01 
2-Br-3,6,7,8,9-PentaClDD <0.002 <0.003 <0.002 <0.002 <0.003 <0.002 <0.01 <0.003 <0.003 <0.002 <0.01 <0.002 <0.003 <0.002 0.01 
1-Br-2,3,6,7,8,9-HexaClDD <0.01 <0.02 <0.01 <0.01 <0.01 <0.01 <0.02 <0.01 <0.01 <0.01 <0.02 <0.01 <0.01 <0.02 <0.01 
1-Br-2,3,4,6,7,8,9-HeptaClDD <0.01 <0.02 <0.02 <0.02 <0.02 <0.02 <0.05 <0.01 <0.02 <0.01 <0.02 <0.01 <0.02 <0.02 <0.02 

WHO2005-PXDD/F-TEQ (LB) ND ND ND ND ND ND ND ND ND ND 0.001 ND ND ND 0.002 
WHO2005-PXDD/F-TEQ (UB) 0.04 0.08 0.07 0.11 0.15 0.08 0.15 0.07 0.09 0.10 0.17 0.05 0.10 0.02 0.02 

PXBs (pg g-1)                               
4'-Br-2,3',4,5-Cl-XB (#118 mono-Br) NA NA 0.58 NA 3.18 NA NA NA NA 0.87 0.84 1.45 NA NA NA 
4'-Br-2,3,3',4-Cl-XB (#105 mono-Br) NA NA 0.22 NA 0.77 NA NA NA NA 0.26 0.24 0.52 NA NA NA 
4'-Br-2,3,3',4,5-Cl-XB (#156 mono-Br) NA NA <0.16 NA <0.30 NA NA NA NA <0.21 <0.11 <0.26 NA NA NA 
4'-Br-3,3',4,5-Cl-XB (#126 mono-Br) NA NA 0.03 NA 0.01 NA NA NA NA 0.02 0.02 0.03 NA NA NA 
3,4-Br-3',4',5'-Cl-XB (#126 di-Br) NA NA <0.01 NA <0.01 NA NA NA NA <0.01 <0.01 <0.01 NA NA NA 
3',4',5-Br-3,4-Cl-XB (#126 tri-Br) NA NA <0.02 NA <0.01 NA NA NA NA <0.02 <0.01 <0.02 NA NA NA 

WHO2005-PXB-TEQ (LB) NA NA 0.003 NA 0.001 NA NA NA NA 0.002 0.002 0.003 NA NA NA 
WHO2005-PXB-TEQ (UB) NA NA 0.01  NA 0.003 NA NA NA NA 0.01 0.003 0.01 NA NA NA 

ND - not detected since none of the analyzed congeners show the levels above the LOQ 
NA - not analyzed 
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Annex 9 continues 
Sample Nr. 3 4 5 6 7 8 1a 2a 3a 4a 5a 6a 7a 8a 9a 
Length, cm 55 67 55 55 55 50 87 40 77 81 79 75 39 42 42 
Weight, kg 0.9 1.7 0.9 1.1 0.9 0.9 1.2 0.1 0.9 1.0 0.9 0.9 1.0 0.1 0.1 
Place of sampling Usmas Usmas Usmas Usmas Usmas Usmas Usmas Usmas Usmas Usmas Usmas Usmas Usmas Usmas Usmas 
 Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake 
Fat content, g/100 g of sample 26.0 29.4 22.8 24.4 24.2 23.7 21.2 31.5 29.2 30.0 28.0 23.1 30.1 35.2 31.7 

PBDD/Fs (pg g-1)                               
2,3,7,8-TetraBDF 0.03 0.02 0.04 <0.01 0.02 <0.004 0.03 0.03 <0.01 <0.02 0.03 0.03 0.03 0.02 <0.01 
1,2,3,7,8-PentaBDF <0.01 <0.02 <0.01 <0.01 <0.01 <0.01 <0.02 <0.01 <0.02 <0.02 <0.05 0.02 <0.02 <0.02 <0.01 
2,3,4,7,8-PentaBDF <0.01 <0.02 0.03 <0.01 <0.01 <0.01 0.02 <0.01 <0.02 <0.02 <0.04 <0.01 <0.02 0.02 <0.01 
1,2,3,4,7,8-HexaBDF 0.10 <0.04 0.08 0.10 <0.04 <0.03 <0.06 0.06 <0.08 <0.09 <0.07 <0.07 <0.07 <0.11 <0.03 
1,2,3,4,6,7,8-HeptaBDF 0.43 0.15 0.33 0.45 0.21 0.23 0.52 0.24 0.28 0.58 0.15 0.11 0.20 0.37 0.15 
2,3,7,8-TetraBDD <0.003 <0.002 <0.003 <0.002 0.01 <0.003 <0.01 <0.004 <0.01 <0.01 <0.004 <0.002 <0.01 <0.01 <0.004 
1,2,3,7,8-PentaBDD <0.02 <0.02 <0.01 <0.01 <0.01 <0.01 <0.02 <0.01 <0.01 <0.03 <0.05 <0.01 <0.03 <0.02 <0.01 
1,2,3,4,7,8/1,2,3,6,7,8-HexaBDD <0.02 <0.03 <0.02 <0.03 <0.03 <0.02 <0.03 <0.03 <0.08 <0.09 <0.07 <0.05 <0.06 <0.06 <0.03 
1,2,3,7,8,9-HexaBDD <0.01 <0.02 <0.02 <0.02 <0.02 <0.01 <0.02 <0.02 <0.05 <0.06 <0.04 <0.03 <0.04 <0.04 <0.02 
WHO2005-PBDD/F-TEQ (LB) 0.02 0.003 0.02 0.01 0.01 0.002 0.01 0.01 0.003 0.01 0.01 0.01 0.01 0.01 0.001 
WHO2005-PBDD/F-TEQ (UB) 0.04 0.04 0.04 0.04 0.04 0.02 0.05 0.04 0.05 0.08 0.09 0.04 0.06 0.06 0.03 

PXDD/Fs (pg g-1)                               
3-Br-2,7,8-TriClDF <0.01 <0.004 <0.003 0.004 0.01 0.003 0.01 <0.01 <0.01 <0.03 <0.01 <0.01 <0.004 <0.004 <0.01 
2-Br-3,7,8-TriClDD <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 <0.01 <0.04 <0.05 <0.02 <0.02 <0.01 <0.01 <0.02 
2,3-DiBr-7,8-DiClDD <0.01 <0.01 <0.003 <0.003 <0.01 <0.01 <0.004 <0.01 <0.01 <0.01 <0.004 <0.004 <0.004 <0.01 <0.01 
1-Br-2,3,7,8-TetraClDF <0.02 <0.003 <0.01 <0.01 <0.01 <0.004 <0.01 <0.01 <0.01 <0.06 <0.01 <0.01 <0.01 <0.01 <0.01 
1-Br-2,3,7,8-TetraClDD <0.02 <0.01 <0.003 <0.01 <0.01 <0.004 <0.01 <0.01 <0.02 <0.10 <0.01 <0.01 <0.01 <0.01 <0.01 
2-Br-1,3,7,8-TetraClDD <0.02 <0.01 <0.003 <0.04 <0.01 <0.003 <0.01 <0.01 <0.02 <0.09 <0.01 <0.01 <0.01 <0.01 <0.01 
2-Br-3,6,7,8,9-PentaClDD <0.01 <0.002 <0.001 <0.002 <0.003 <0.003 <0.003 <0.002 <0.01 <0.03 <0.01 <0.01 <0.003 0.01 <0.004 
1-Br-2,3,6,7,8,9-HexaClDD <0.03 <0.01 <0.01 <0.01 <0.01 <0.01 <0.02 <0.01 <0.01 <0.06 <0.04 <0.01 <0.01 <0.02 <0.02 
1-Br-2,3,4,6,7,8,9-HeptaClDD <0.04 <0.02 <0.02 <0.01 <0.02 <0.01 <0.03 <0.03 <0.02 <0.07 <0.03 <0.02 <0.02 <0.03 <0.02 

WHO2005-PXDD/F-TEQ (LB) ND ND ND 0.0004 0.001 0.0003 0.001 ND ND ND ND ND ND 0.001 ND 
WHO2005-PXDD/F-TEQ (UB) 0.06 0.04 0.02 0.02 0.03 0.02 0.03 0.03 0.09 0.25 0.04 0.05 0.02 0.03 0.05 

PXBs (pg g-1)                               
4'-Br-2,3',4,5-Cl-XB (#118 mono-Br) NA 0.31 NA NA 0.43 0.56 0.20 NA NA NA NA NA NA NA NA 
4'-Br-2,3,3',4-Cl-XB (#105 mono-Br) NA 0.15 NA NA 0.18 0.22 0.10 NA NA NA NA NA NA NA NA 
4'-Br-2,3,3',4,5-Cl-XB (#156 mono-Br) NA 0.10 NA NA 0.18 0.24 0.08 NA NA NA NA NA NA NA NA 
4'-Br-3,3',4,5-Cl-XB (#126 mono-Br) NA 0.03 NA NA 0.02 0.03 0.02 NA NA NA NA NA NA NA NA 
3,4-Br-3',4',5'-Cl-XB (#126 di-Br) NA <0.004 NA NA <0.01 <0.01 <0.004 NA NA NA NA NA NA NA NA 
3',4',5-Br-3,4-Cl-XB (#126 tri-Br) NA <0.03 NA NA <0.03 <0.03 <0.03 NA NA NA NA NA NA NA NA 

WHO2005-PXB-TEQ (LB) NA 0.003 NA NA 0.002 0.003 0.002 NA NA NA NA NA NA NA NA 
WHO2005-PXB-TEQ (UB) NA 0.01 NA NA 0.01 0.01 0.01 NA NA NA NA NA NA NA NA 

ND - not detected since none of the analyzed congeners show the levels above the LOQ 
NA - not analyzed 
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 Annex 10 
Concentrations of DL-PCBs and NDL-PCBs in eel samples calculated on f.w. basis 

Sample Nr. 1/14 2/14 3/14 4/14 5/14 6/14 7/14 8/14 9/14 12/14 13/14 14/14 15/14 
Length, cm 81 83 95 78 74 82 76 88 76 70 78 85 71 
Weight, kg 1.0 1.1 1.6 0.8 0.8 1.1 0.8 1.0 0.9 0.6 0.8 1.0 0.5 
Place of sampling Aluksnes Aluksnes Aluksnes Aluksnes Aluksnes Aluksnes Aluksnes Aluksnes Aluksnes Usmas Usmas Usmas Usmas 
 Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake 
Fat content, g/100 g of sample 28.8 20.3 29.1 23.8 28.0 26.6 35.3 21.2 24.4 21.2 22.0 26.9 21.8 

DL-PCBs (pg g-1)                           
2',3,4,4',5-PentaCB (#123) 141 87.9 240 188 169 145 82.7 170 124 146 31.4 76.0 78.2 
2,3',4,4',5-PentaCB (#118) 6150 4990 7180 6620 6520 6570 4880 6830 6100 8030 3670 3660 4430 
2,3,4,4',5-PentaCB (#114) 202 134 379 388 236 230 149 315 232 182 104 116 102 
2,3,3,'4,4'-PentaCB (#105) 2580 1840 4490 4410 2850 2980 1750 3960 3140 2430 1350 1500 1480 
2,3',4,4',5,5'-HexaCB (#167) 486 318 931 695 568 535 321 769 543 387 444 433 267 
2,3,3',4,4',5-HexaCB (#156) 1010 655 1740 1530 1150 1090 645 1580 1150 777 844 848 608 
2,3,3',4,4',5'-HexaCB (#157) 203 141 351 304 240 227 137 318 236 143 158 162 119 
2,3,3',4,4',5,5'-HeptaCB (#189) 58.5 34.7 99.3 67.9 70.6 61.6 36.6 100 60.9 91.8 121 102 75.7 
3,4,4',5-TetraCB (#81) 0.51 0.27 0.55 0.14 0.23 0.45 0.40 <0.04 0.31 0.11 0.10 0.17 0.10 
3,3,’4,4'-TetraCB (#77) 2.01 0.99 2.38 1.01 1.23 2.13 1.85 0.97 1.87 0.62 0.54 0.88 0.71 
3,3',4,4',5-PentaCB (#126) 35.1 26.7 47.1 25.8 39.1 38.2 26.7 46.7 36.8 11.5 18.9 23.3 11.6 
3,3',4,4',5,5'-HexaCB (#169) 3.17 2.62 4.67 2.35 3.99 3.19 2.46 5.29 3.38 7.08 8.86 7.00 6.13 

WHO2005-PCB-TEQ (LB) 3.93 2.99 5.31 3.07 4.39 4.27 2.99 5.25 4.13 1.73 2.36 2.75 1.56 
WHO2005-PCB-TEQ (UB) 3.93 2.99 5.31 3.07 4.39 4.27 2.99 5.25 4.13 1.73 2.36 2.75 1.56 
WHO1998-PCB-TEQ (UB) 5.14 3.86 7.20 4.85 5.73 5.61 3.84 6.95 5.47 2.85 3.05 3.50 2.24 

NDL-PCBs (ng g-1)                           
2,2',5-TriCB (#18) <0.0002 0.01 0.03 0.01 0.04 0.09 0.06 0.03 0.03 0.02 0.03 0.03 0.04 
2,2,4'-TriCB (#28) 0.50 0.33 0.76 0.52 0.48 0.76 0.59 0.48 0.48 0.43 0.76 0.27 0.58 
2',3,4-TriCB (#33) 0.02 0.00 0.02 <0.0001 0.02 0.08 0.04 0.02 0.01 0.01 0.02 0.02 0.03 
2,2',4,4'-TetraCB (#47) 0.58 0.26 0.58 0.85 0.38 0.47 0.31 0.59 0.38 0.98 0.58 0.19 0.49 
2,2',4,5'-TetraCB (#49) 0.08 0.02 0.07 0.15 0.05 0.11 0.06 0.05 0.04 0.25 0.07 0.04 0.10 
2,2',4,6'-TetraCB (#51) 0.003 0.003 0.002 0.002 0.002 0.01 0.004 0.002 0.002 0.003 0.002 0.001 0.01 
2,2',5,5'-TetraCB (#52) 1.43 0.60 1.25 1.98 1.13 1.37 0.82 1.46 0.83 1.41 1.25 0.52 1.05 
2,3,4,4'-TetraCB (#60) 0.19 0.15 0.35 0.42 0.22 0.26 0.17 0.29 0.23 0.22 0.35 0.15 0.23 
2,3',4,4'-TetraCB (#66) 0.70 0.77 1.84 1.78 0.46 1.25 0.83 1.27 0.89 1.26 1.84 0.25 0.76 
2,4,4',5-TetraCB (#74) 0.74 0.59 1.41 1.56 0.86 0.97 0.66 1.13 0.85 0.77 1.41 0.36 0.53 
2,2',4,4',5-PentaCB (#99) 4.62 3.40 7.25 7.12 4.79 5.43 3.35 7.16 4.98 4.33 7.25 1.81 2.12 
2,2',4,5,5'-PentaCB (#101) 2.13 1.39 4.50 3.15 3.29 2.79 2.37 4.37 1.97 1.94 4.50 1.24 1.14 
2,3,3',4',6-PentaCB (#110) 3.99 2.76 5.63 5.25 4.34 4.67 2.84 5.72 4.14 2.97 5.63 2.33 2.25 
2,2',3,4,4',5'-HexaCB (#138) 9.38 6.70 14.2 10.5 8.95 9.96 6.49 10.7 9.59 9.32 14.2 7.97 6.32 
2,2',4,4',5,5'-HexaCB (#153) 8.23 6.96 12.0 8.53 9.30 9.84 5.55 9.93 8.34 10.7 12.0 7.48 7.92 
2,2',3,4,4',5,5'-HeptaCB (#180) 7.24 3.02 8.00 7.35 7.21 3.37 2.83 9.28 6.10 3.65 8.00 11.4 2.90 

∑PCB (UB) 39.8 27.0 58.0 49.1 41.5 41.4 27.0 52.4 38.8 38.3 58.0 34.1 26.5 
∑PCB (LB) 39.8 27.0 58.0 49.1 41.5 41.4 27.0 52.4 38.8 38.3 58.0 34.1 26.5 



 121 

 
 

Annex 10 continues 
Sample Nr. 16/14 17/14 18/14 19/14 20/14 21/14 22/14 23/14 24/14 25/14 26/14 27/14 28/14 29/14 30/14 
Length, cm 68 64 71 53 68 58 84 96 86 84 99 93 90 89 84 
Weight, kg 0.5 0.4 0.5 0.2 0.5 0.3 1.0 1.9 1.1 0.9 1.5 1.4 1.2 1.3 1.0 
Place of sampling Usmas Usmas Usmas Usmas Usmas Usmas Sivers Sivers Sivers Sivers Sivers Sivers Sivers Sivers Sivers 
 Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake 
Fat content, g/100 g of sample 24.3 21.9 22.1 27.6 24.0 22.4 25.2 26.8 23.9 26.0 22.9 23.8 25.5 25.9 27.1 

DL-PCBs (pg g-1)                               
2',3,4,4',5-PentaCB (#123) 36.9 27.8 26.4 54.1 29.0 12.2 34.0 50.3 19.0 56.4 52.8 86.1 34.1 161 66.6 
2,3',4,4',5-PentaCB (#118) 2180 1840 2060 2920 1970 924 2050 3340 1630 3220 3010 5480 2130 7820 3870 
2,3,4,4',5-PentaCB (#114) 66.2 47.4 57.3 51.8 47.9 26.8 50.7 78.8 43.2 78.4 67.7 124 50.7 182 94.7 
2,3,3,'4,4'-PentaCB (#105) 830 775 770 843 779 376 645 1120 457 988 965 1710 681 2370 1250 
2,3',4,4',5,5'-HexaCB (#167) 262 170 235 239 146 57.6 133 193 123 192 179 342 125 474 222 
2,3,3',4,4',5-HexaCB (#156) 508 345 485 474 306 132 263 398 221 400 371 696 252 967 476 
2,3,3',4,4',5'-HexaCB (#157) 79.7 77.2 85.5 77.7 65.1 27.1 48.5 82.4 35.0 77.2 75.2 144 50.1 190 98.8 
2,3,3',4,4',5,5'-HeptaCB (#189) 93.1 40.6 73.8 43.3 30.5 10.5 35.7 40.7 37.5 46.3 40.6 76.7 29.1 119 48.6 
3,4,4',5-TetraCB (#81) <0.04 0.08 0.09 0.16 0.07 0.14 0.11 0.17 0.11 0.21 0.23 0.12 0.20 0.13 0.17 
3,3,’4,4'-TetraCB (#77) 0.49 0.55 0.49 0.84 0.66 0.77 0.70 0.88 0.68 0.82 1.24 0.69 1.01 0.70 0.96 
3,3',4,4',5-PentaCB (#126) 14.3 11.2 16.4 8.63 10.2 4.69 9.64 16.5 6.59 16.2 15.3 22.5 10.9 40.1 17.8 
3,3',4,4',5,5'-HexaCB (#169) 7.25 4.48 6.26 2.39 4.16 1.40 3.77 4.20 3.40 4.45 4.21 6.69 3.14 10.8 5.10 

WHO2005-PCB-TEQ (LB) 1.77 1.35 1.94 1.08 1.24 0.56 1.17 1.94 0.84 1.90 1.80 2.71 1.28 4.70 2.12 
WHO2005-PCB-TEQ (UB) 1.77 1.35 1.94 1.08 1.24 0.56 1.17 1.94 0.84 1.90 1.80 2.71 1.28 4.70 2.12 
WHO1998-PCB-TEQ (UB) 2.15 1.66 2.31 1.58 1.55 0.71 1.46 2.43 1.06 2.37 2.24 3.54 1.58 5.84 2.69 

NDL-PCBs (ng g-1)                               
2,2',5-TriCB (#18) <0.0001 0.01 0.01 0.05 0.05 0.04 0.04 0.05 0.03 0.03 0.11 0.03 0.04 0.02 0.04 
2,2,4'-TriCB (#28) 0.19 0.12 0.22 0.29 0.31 0.25 0.32 0.47 0.33 0.38 0.52 0.36 0.39 0.79 0.40 
2',3,4-TriCB (#33) <0.0001 <0.00002 <0.0001 0.04 0.03 0.02 0.04 0.05 0.03 0.02 0.09 0.03 0.03 0.02 0.05 
2,2',4,4'-TetraCB (#47) 0.19 0.12 0.16 0.16 0.17 0.09 0.19 0.25 0.18 0.22 0.19 0.28 0.20 0.54 0.26 
2,2',4,5'-TetraCB (#49) 0.02 0.01 0.04 0.06 0.04 0.05 0.04 0.07 0.08 0.04 0.10 0.04 0.06 0.04 0.07 
2,2',4,6'-TetraCB (#51) 0.003 0.003 0.002 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.01 0.01 0.01 0.003 0.01 
2,2',5,5'-TetraCB (#52) 0.46 0.22 0.37 0.65 0.60 0.32 0.48 0.65 0.59 0.60 0.80 0.67 0.58 1.64 0.81 
2,3,4,4'-TetraCB (#60) 0.11 0.08 0.10 0.10 0.11 0.06 0.10 0.13 0.08 0.13 0.13 0.17 0.11 0.33 0.14 
2,3',4,4'-TetraCB (#66) 0.33 0.12 0.37 0.25 0.33 0.18 0.28 0.42 0.23 0.43 0.33 0.35 0.38 1.00 0.49 
2,4,4',5-TetraCB (#74) 0.27 0.19 0.26 0.23 0.26 0.14 0.26 0.33 0.21 0.36 0.34 0.46 0.28 0.87 0.38 
2,2',4,4',5-PentaCB (#99) 1.25 0.72 1.12 1.02 0.99 0.49 0.99 1.40 0.83 1.47 1.35 2.21 1.03 3.59 1.75 
2,2',4,5,5'-PentaCB (#101) 0.86 0.42 0.73 1.11 0.75 0.35 0.48 0.67 0.79 0.91 0.86 1.31 1.07 2.51 1.38 
2,3,3',4',6-PentaCB (#110) 1.39 1.15 1.26 1.75 1.07 0.51 1.00 1.16 0.80 1.49 1.46 2.31 1.11 3.89 1.85 
2,2',3,4,4',5'-HexaCB (#138) 5.38 3.60 3.86 5.20 3.02 1.33 2.67 3.86 2.21 3.92 3.63 7.15 2.55 9.73 4.61 
2,2',4,4',5,5'-HexaCB (#153) 5.37 3.76 3.67 6.13 3.04 1.41 3.30 4.86 2.87 4.86 4.85 9.11 3.53 12.6 5.92 
2,2',3,4,4',5,5'-HeptaCB (#180) 5.82 3.93 6.40 1.95 1.96 1.12 1.24 1.52 1.24 1.72 1.56 3.11 1.14 4.60 1.92 

∑PCB (UB) 21.6 14.4 18.6 19.0 12.7 6.37 11.4 15.9 10.5 16.6 16.3 27.6 12.5 42.2 20.1 
∑PCB (LB) 21.6 14.4 18.6 19.0 12.7 6.37 11.4 15.9 10.5 16.6 16.3 27.6 12.5 42.2 20.1 
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Annex 10 continues 
Sample Nr. 31/14 32/14 33/14 34/14 35/14 36/14 37/14 38/14 39/14 40/14 41/14 42/14 43/14 1 2 
Length, cm 89 93 72 82 75 94 101 95 94 92 95 83 83 55 50 
Weight, kg 1.1 1.3 0.6 0.9 0.6 1.6 1.8 1.6 1.4 1.5 1.3 0.9 1.0 0.8 1.0 
Place of sampling Sivers Sivers Liepajas Liepajas Liepajas Kisezers Kisezers Kisezers Kisezers Kisezers Liepajas Liepajas Liepajas Usmas Usmas 
 Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake 
Fat content, g/100 g of sample 23.0 25.5 28.9 41.3 33.2 37.0 36.9 34.7 27.2 32.2 27.2 32.1 34.2 24.4 20.6 

DL-PCBs (pg g-1)                               
2',3,4,4',5-PentaCB (#123) 78.8 37.5 78.1 819 2100 271 420 611 463 519 372 781 659 49.2 35.3 
2,3',4,4',5-PentaCB (#118) 3740 2470 4470 27300 39300 11500 17000 21500 20100 22800 28500 34800 26400 2280 1710 
2,3,4,4',5-PentaCB (#114) 88.2 58.9 96.0 1480 3540 232 409 430 388 494 581 983 747 56.3 41.4 
2,3,3,'4,4'-PentaCB (#105) 1250 859 1090 17300 30500 3860 5770 7630 6300 7560 8920 14400 10400 839 610 
2,3',4,4',5,5'-HexaCB (#167) 224 133 330 2770 4650 617 797 1320 1020 1200 1270 2140 1610 151 158 
2,3,3',4,4',5-HexaCB (#156) 472 283 639 7260 10500 1150 1730 2480 1950 2280 2440 3980 3010 310 314 
2,3,3',4,4',5'-HexaCB (#157) 98.2 59.2 137 1760 2220 289 388 613 464 558 601 966 713 65.1 58.6 
2,3,3',4,4',5,5'-HeptaCB (#189) 49.8 28.2 74.3 360 269 70.1 84.6 151 104 113 103 179 135 36.7 43.4 
3,4,4',5-TetraCB (#81) 0.22 0.14 0.50 2.24 1.21 0.66 1.49 0.87 2.05 1.07 1.48 2.72 2.35 0.22 0.11 
3,3,’4,4'-TetraCB (#77) 1.04 0.98 2.82 18.9 11.9 3.83 9.48 4.59 14.1 11.7 7.82 13.0 13.5 0.62 0.34 
3,3',4,4',5-PentaCB (#126) 20.2 14.6 23.6 109 81.1 25.5 44.0 49.8 42.7 79.9 50.1 86.9 64.6 12.4 9.71 
3,3',4,4',5,5'-HexaCB (#169) 4.79 3.78 5.95 13.9 4.72 3.81 4.25 5.29 3.74 4.84 4.14 7.06 5.26 3.38 2.97 

WHO2005-PCB-TEQ (LB) 2.35 1.69 2.75 13.1 11.0 3.21 5.33 6.18 5.31 9.20 6.42 10.7 7.93 1.45 1.15 
WHO2005-PCB-TEQ (UB) 2.35 1.69 2.75 13.1 11.0 3.21 5.33 6.18 5.31 9.20 6.42 10.7 7.93 1.45 1.15 
WHO1998-PCB-TEQ (UB) 2.92 2.03 3.44 20.9 23.6 5.00 8.04 9.79 8.42 12.8 10.7 26.8 12.5 1.81 1.45 

NDL-PCBs (ng g-1)                               
2,2',5-TriCB (#18) 0.04 0.04 0.10 0.08 0.22 0.07 0.12 0.05 0.09 0.10 0.06 0.15 0.05 0.01 0.01 
2,2,4'-TriCB (#28) 0.36 0.41 1.14 8.82 6.05 2.13 2.74 4.32 4.44 5.10 5.11 8.59 6.27 0.31 0.13 
2',3,4-TriCB (#33) 0.03 0.05 0.08 0.06 0.15 0.05 0.11 0.03 0.06 0.07 0.06 0.15 0.04 0.01 0.003 
2,2',4,4'-TetraCB (#47) 0.23 0.20 0.64 8.60 24.0 1.21 1.66 2.72 2.17 2.47 4.13 6.70 4.69 0.18 0.09 
2,2',4,5'-TetraCB (#49) 0.04 0.06 0.23 1.39 6.65 0.33 1.20 0.95 1.26 1.03 0.71 0.76 1.20 0.05 0.01 
2,2',4,6'-TetraCB (#51) 0.004 0.01 0.01 0.01 0.07 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.002 0.001 
2,2',5,5'-TetraCB (#52) 0.68 0.60 1.71 14.6 27.0 4.27 7.81 10.7 7.74 9.28 7.44 10.9 7.70 0.49 0.20 
2,3,4,4'-TetraCB (#60) 0.14 0.11 0.31 3.69 3.02 0.61 0.76 1.22 1.10 1.36 1.56 2.52 1.76 0.12 0.07 
2,3',4,4'-TetraCB (#66) 0.40 0.39 1.08 12.5 21.8 2.15 3.38 4.68 4.14 3.73 4.71 9.23 7.12 0.44 0.25 
2,4,4',5-TetraCB (#74) 0.38 0.29 0.70 8.52 13.7 1.40 1.97 2.70 2.35 3.03 3.98 6.46 4.59 0.30 0.17 
2,2',4,4',5-PentaCB (#99) 1.59 1.08 2.00 20.5 36.6 6.23 9.80 13.8 10.1 12.4 14.9 23.4 17.0 1.07 0.75 
2,2',4,5,5'-PentaCB (#101) 1.32 0.96 1.94 14.8 27.4 4.38 10.5 13.4 10.5 12.4 3.76 12.3 10.8 1.35 0.50 
2,3,3',4',6-PentaCB (#110) 1.79 1.24 2.76 18.0 26.5 7.32 10.3 15.6 11.3 14.4 10.4 15.5 12.9 1.37 0.83 
2,2',3,4,4',5'-HexaCB (#138) 4.90 2.66 7.24 37.1 56.9 13.3 19.7 26.7 23.0 28.1 26.5 38.1 28.7 3.50 3.32 
2,2',4,4',5,5'-HexaCB (#153) 5.87 3.40 10.9 31.6 41.9 16.6 22.2 26.2 25.7 27.9 28.2 34.8 26.8 4.65 4.40 
2,2',3,4,4',5,5'-HeptaCB (#180) 2.09 0.99 5.53 22.8 28.1 3.96 5.27 9.37 6.78 8.17 6.69 12.4 11.1 1.58 2.08 

∑PCB (UB) 19.9 12.5 36.4 203 320 64.0 97.5 132 111 130 118 182 141 15.4 12.8 
∑PCB (LB) 19.9 12.5 36.4 203 320 64.0 97.5 132 111 130 118 182 141 15.4 12.8 
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Annex 10 continues 
Sample Nr. 3 4 5 6 7 8 1a 2a 3a 4a 5a 6a 7a 8a 9a 
Length, cm 55 67 55 55 55 50 87 40 77 81 79 75 39 42 42 
Weight, kg 0.9 1.7 0.9 1.1 0.9 0.9 1.2 0.1 0.9 1.0 0.9 0.9 1.0 0.1 0.1 
Place of sampling Usmas Usmas Usmas Usmas Usmas Usmas Usmas Usmas Usmas Usmas Usmas Usmas Usmas Usmas Usmas 
 Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake 
Fat content, g/100 g of sample 26.0 29.4 22.8 24.4 24.2 23.7 21.2 31.5 29.2 30.0 28.0 23.1 30.1 35.2 31.7 

DL-PCBs (pg g-1)                               
2',3,4,4',5-PentaCB (#123) 45.6 58.7 56.8 99.9 91.5 117 39.4 63.9 63.8 88.2 54.2 74.5 76.3 39.8 206 
2,3',4,4',5-PentaCB (#118) 2570 3150 3560 4830 6100 7190 2280 4400 4090 5570 2600 4790 8650 2980 8810 
2,3,4,4',5-PentaCB (#114) 55.8 73.3 84.8 116 142 174 69.6 137 103 153 75.1 136 321 91.0 285 
2,3,3,'4,4'-PentaCB (#105) 945 1120 1230 1680 2040 2380 972 1940 1600 2070 1030 1870 4230 1130 3710 
2,3',4,4',5,5'-HexaCB (#167) 217 243 307 457 641 761 224 324 447 671 280 531 702 231 682 
2,3,3',4,4',5-HexaCB (#156) 412 532 641 918 1260 1490 453 746 885 1190 558 1070 1640 487 1360 
2,3,3',4,4',5'-HexaCB (#157) 81.6 107 125 175 241 287 92.4 148 176 216 108 212 329 87.3 280 
2,3,3',4,4',5,5'-HeptaCB (#189) 55.3 65.7 80.9 112 167 194 58.1 85.7 118 160 75.8 137 135 57.0 76.2 
3,4,4',5-TetraCB (#81) <0.22 0.49 <0.29 0.33 <0.25 0.36 0.26 0.21 0.22 <0.06 0.12 0.10 0.10 0.17 0.54 
3,3,’4,4'-TetraCB (#77) 0.60 0.93 0.42 1.07 0.31 0.65 1.02 0.77 0.47 0.58 0.71 0.45 0.75 0.66 1.74 
3,3',4,4',5-PentaCB (#126) 12.2 18.5 17.2 23.7 31.2 38.2 17.3 25.5 27.8 25.0 16.2 25.9 23.4 18.8 46.0 
3,3',4,4',5,5'-HexaCB (#169) 4.03 5.00 5.80 7.86 11.9 13.8 4.37 7.91 8.38 9.20 5.85 9.20 7.89 5.47 3.78 

WHO2005-PCB-TEQ (LB) 1.47 2.16 2.08 2.85 3.80 4.62 1.99 3.02 3.26 3.08 1.94 3.13 3.06 2.20 5.18 
WHO2005-PCB-TEQ (UB) 1.47 2.16 2.08 2.85 3.80 4.62 1.99 3.02 3.26 3.08 1.94 3.13 3.06 2.20 5.18 
WHO1998-PCB-TEQ (UB) 1.89 2.69 2.70 3.73 4.90 5.93 2.42 3.79 4.04 4.17 2.43 4.09 4.88 2.69 6.89 

NDL-PCBs (ng g-1)                               
2,2',5-TriCB (#18) 0.01 0.02 0.02 0.02 0.03 0.02 0.01 0.01 0.02 0.02 0.02 0.01 0.01 0.01 <0.0001 
2,2,4'-TriCB (#28) 0.19 0.49 0.21 0.30 0.24 0.34 0.27 0.27 0.23 0.26 0.26 0.18 0.23 0.30 0.57 
2',3,4-TriCB (#33) 0.01 0.01 0.01 0.01 0.01 0.01 0.02 <0.0001 0.01 0.002 0.02 <0.0001 <0.0001 <0.0001 <0.0001 
2,2',4,4'-TetraCB (#47) 0.14 0.19 0.13 0.16 0.18 0.21 0.25 0.37 0.30 0.37 0.38 0.31 0.28 0.29 0.43 
2,2',4,5'-TetraCB (#49) 0.02 0.06 0.02 0.03 0.02 0.03 0.08 0.10 0.05 0.05 0.07 0.02 0.03 0.06 0.04 
2,2',4,6'-TetraCB (#51) 0.002 0.002 0.001 0.001 0.001 0.001 0.01 0.003 0.01 0.01 0.01 0.01 0.001 0.004 0.002 
2,2',5,5'-TetraCB (#52) 0.36 0.48 0.32 0.42 0.47 0.61 0.86 1.03 0.74 1.07 0.63 0.83 0.63 0.73 1.12 
2,3,4,4'-TetraCB (#60) 0.10 0.14 0.12 0.17 0.18 0.21 0.10 0.17 0.16 0.20 0.13 0.17 0.20 0.14 0.30 
2,3',4,4'-TetraCB (#66) 0.30 0.47 0.28 0.48 0.48 0.60 0.21 0.49 0.18 0.48 0.41 0.30 0.62 0.42 1.42 
2,4,4',5-TetraCB (#74) 0.22 0.34 0.32 0.41 0.42 0.49 0.24 0.49 0.41 0.49 0.31 0.40 0.59 0.38 1.11 
2,2',4,4',5-PentaCB (#99) 1.01 1.25 1.25 1.71 2.27 2.65 1.68 3.44 2.94 4.28 2.24 3.65 3.78 2.28 6.31 
2,2',4,5,5'-PentaCB (#101) 1.10 1.18 1.06 1.08 1.27 2.41 1.39 2.99 2.24 3.33 1.18 1.38 1.08 1.89 3.16 
2,3,3',4',6-PentaCB (#110) 1.38 1.25 1.59 2.13 2.85 3.26 2.06 3.69 4.00 5.33 2.65 4.12 2.82 2.15 5.35 
2,2',3,4,4',5'-HexaCB (#138) 4.77 5.27 6.40 9.03 13.5 16.5 6.81 9.54 13.2 18.7 8.55 15.2 12.2 6.44 14.4 
2,2',4,4',5,5'-HexaCB (#153) 6.13 7.00 7.95 12.5 18.0 22.0 8.10 9.86 14.6 16.9 10.3 14.9 11.7 6.92 13.2 
2,2',3,4,4',5,5'-HeptaCB (#180) 2.67 2.95 3.82 5.61 8.16 10.2 4.80 3.54 6.81 9.09 4.04 7.36 6.65 2.32 3.77 

∑PCB (UB) 18.4 21.1 23.5 34.1 48.0 59.5 26.9 36.0 45.9 60.6 31.2 48.8 40.8 24.4 51.3 
∑PCB (LB) 18.4 21.1 23.5 34.1 48.0 59.5 26.9 36.0 45.9 60.6 31.2 48.8 40.8 24.4 51.3 
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Annex 11 
Concentrations of PBDEs in eel samples calculated on f.w. basis 

Sample Nr. 1/14 2/14 3/14 4/14 5/14 6/14 7/14 8/14 9/14 12/14 13/14 14/14 
Length, cm 81 83 95 78 74 82 76 88 76 70 78 85 
Weight, kg 1.0 1.1 1.6 0.8 0.8 1.1 0.8 1.0 0.9 0.6 0.8 1.0 
Place of sampling Aluksnes Aluksnes Aluksnes Aluksnes Aluksnes Aluksnes Aluksnes Aluksnes Aluksnes Usmas Usmas Usmas 
 Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake 
Fat content, g/100 g of sample 28.8 20.3 29.1 23.8 28 26.6 35.3 21.2 24.4 21.2 22.0 26.9 

PBDEs (ng g-1)                         
2,4-DiBDE (#7) <0.0001 <0.0001 <0.002 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.00004 <0.001 <0.0001 <0.0001 
4,4-DiBDE (#15) <0.0001 <0.00004 <0.001 <0.00003 <0.0001 <0.0001 <0.00004 <0.00004 <0.00002 0.01 <0.0001 <0.00004 
2,2',4-TriBDE (#17) 0.001 0.001 0.001 0.0004 0.002 0.002 0.002 0.002 0.001 0.02 0.001 0.001 
2,4,4'-TriBDE (#28) 0.004 0.004 0.01 0.004 0.01 0.01 0.004 0.010 0.004 0.04 0.004 0.01 
2,2',4,4'-TetraBDE (#47) 0.48 0.38 0.88 0.51 0.58 0.56 0.39 0.69 0.60 2.39 0.50 0.69 
2,2',4,5'-TetraBDE (#49) 0.16 0.10 0.20 0.08 0.15 0.15 0.12 0.17 0.17 1.06 0.15 0.22 
2,3',4,4'-TetraBDE (#66) 0.01 0.004 0.004 0.010 0.02 0.01 0.01 0.02 0.01 0.05 0.01 0.01 
2,3',4',6-TetraBDE (#71) <0.0001 <0.0001 0.02 <0.0001 <0.0002 <0.0001 <0.0001 <0.0002 0.02 <0.002 <0.0001 <0.0001 
3,3',4,4'-TetraBDE (#77) 0.001 0.0004 0.001 <0.0001 0.001 0.001 0.001 0.001 0.002 0.004 0.0004 0.001 
2,2',3,4,4'-PentaBDE (#85) 0.002 0.002 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.04 0.003 0.003 
2,2',4,4',5-PentaBDE (#99) 0.003 0.004 0.002 0.01 0.01 0.004 0.01 0.003 0.01 0.04 0.003 0.02 
2,2',4,4',6-PentaBDE (#100) 0.08 0.06 0.19 0.09 0.12 0.12 0.06 0.15 0.19 0.70 0.20 0.18 
2,3',4,4',6-PentaBDE (#119) 0.02 0.02 0.04 0.02 0.04 0.04 0.02 0.04 0.03 0.14 0.03 0.04 
3,3',4,4',5-PentaBDE (#126) <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0001 <0.0002 <0.0002 <0.0002 <0.002 <0.0002 <0.0003 
2,2',3,4,4',5'-HexaBDE (#138) <0.0002 <0.0002 <0.0002 <0.0002 0.0004 <0.0004 <0.0003 <0.0003 <0.0002 <0.002 <0.001 <0.0003 
2,2',4,4',5,5'-HexaBDE (#153) 0.02 0.02 0.03 0.02 0.04 0.04 0.03 0.05 0.03 0.23 0.03 0.05 
2,2',4,4',5,6'-HexaBDE (#154) 0.10 0.07 0.11 0.07 0.12 0.13 0.07 0.14 0.12 0.75 0.09 0.17 
2,2',4,4',6,6'-HexaBDE (#155) 0.02 0.02 0.03 0.01 0.02 0.02 0.01 0.02 0.02 0.24 0.03 0.03 
2,3,4,4',5,6-HexaBDE (#166) <0.0002 <0.0003 <0.0002 <0.0003 <0.0003 <0.0004 <0.0003 <0.0003 <0.0002 <0.003 <0.001 <0.0003 
2,2',3,4,4',5,6'-HeptaBDE (#181) <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0001 <0.0001 <0.0002 <0.0004 <0.01 <0.001 <0.0003 
2,2',3,4,4',5',6-HeptaBDE (#183) 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.001 0.001 0.02 0.001 0.001 
2,3,3',4,4',5,6-HeptaBDE (#190) <0.0002 <0.0003 <0.0002 <0.0003 <0.0004 <0.0002 <0.0002 <0.0002 <0.001 <0.01 <0.001 <0.0004 
2,2',3,4,4',5,5',6-OctaBDE (#203) 0.004 0.003 0.003 <0.01 0.003 <0.0004 0.002 <0.001 <0.01 <0.01 <0.01 0.004 
2,3,3',4,4',5,5',6-OctaBDE (#205) <0.004 <0.003 <0.004 <0.01 <0.004 <0.001 <0.003 <0.001 <0.01 <0.01 <0.01 <0.01 
2,2',3,3',4,4',5,5',6-NonaBDE (#206) <0.001 <0.001 <0.0004 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 <0.001 <0.001 <0.001 
2,2',3,3',4,4',5,6,6'-NonaBDE (#207) 0.001 0.002 0.0003 0.01 0.001 0.002 0.001 0.001 0.003 0.01 0.002 0.002 
2,2',3,3',4,4',5,5',6,6'-DecaBDE (#209) 0.04 0.04 0.01 0.09 0.03 0.03 0.038 0.01 <0.01 0.07 0.05 0.05 

∑PBDE (UB) 0.96 0.72 1.55 0.95 1.16 1.12 0.777 1.30 1.26 5.88 1.12 1.48 
∑PBDE (LB) 0.95 0.71 1.54 0.93 1.16 1.12 0.772 1.30 1.22 5.82 1.11 1.47 
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Annex 11 continues 
Sample Nr. 16/14 17/14 18/14 19/14 20/14 21/14 22/14 23/14 24/14 25/14 26/14 27/14 
Length, cm 68 64 71 53 68 58 84 96 86 84 99 93 
Weight, kg 0.5 0.4 0.5 0.2 0.5 0.3 1.0 1.9 1.1 0.9 1.5 1.4 
Place of sampling Usmas Usmas Usmas Usmas Usmas Usmas Sivers Sivers Sivers Sivers Sivers Sivers 
 Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake 
Fat content, g/100 g of sample 24.3 21.9 22.1 27.6 24.0 22.4 25.2 26.8 23.9 26.0 22.9 23.8 

PBDEs (ng g-1)                         
2,4-DiBDE (#7) <0.0001 <0.0001 <0.0001 <0.0004 <0.0001 <0.0001 <0.0004 <0.0004 <0.001 <0.001 <0.0004 <0.001 
4,4-DiBDE (#15) <0.00004 <0.00003 <0.00004 0.002 <0.0001 <0.0001 0.004 0.01 0.01 0.01 0.01 0.002 
2,2',4-TriBDE (#17) 0.001 0.0004 0.0003 0.01 0.001 0.001 0.03 0.04 0.03 0.04 0.04 0.04 
2,4,4'-TriBDE (#28) 0.01 0.002 0.01 0.02 0.003 0.002 0.02 0.06 0.04 0.04 0.04 0.02 
2,2',4,4'-TetraBDE (#47) 0.31 0.24 0.32 2.26 0.25 0.14 1.28 2.78 1.00 2.55 2.12 3.36 
2,2',4,5'-TetraBDE (#49) 0.13 0.07 0.13 0.46 0.09 0.03 0.42 0.62 0.49 1.08 0.83 1.02 
2,3',4,4'-TetraBDE (#66) 0.01 0.002 0.003 0.02 0.01 0.003 0.04 0.08 0.04 0.08 0.03 0.02 
2,3',4',6-TetraBDE (#71) <0.0002 <0.0002 <0.0002 <0.002 <0.0001 <0.0001 <0.001 <0.001 <0.001 <0.002 <0.001 <0.001 
3,3',4,4'-TetraBDE (#77) 0.001 <0.0001 <0.0001 <0.001 0.001 0.0003 0.01 <0.02 0.003 0.01 0.004 0.001 
2,2',3,4,4'-PentaBDE (#85) 0.01 0.002 0.004 0.01 0.001 0.0002 <0.002 0.01 0.01 0.003 0.004 0.01 
2,2',4,4',5-PentaBDE (#99) 0.01 0.004 0.003 0.03 0.01 0.01 0.01 0.01 0.004 0.01 0.01 0.01 
2,2',4,4',6-PentaBDE (#100) 0.11 0.08 0.08 0.47 0.09 0.02 0.09 0.07 0.03 0.13 0.03 0.07 
2,3',4,4',6-PentaBDE (#119) 0.03 0.01 0.02 0.06 0.01 0.004 0.03 0.02 0.01 0.04 0.01 0.01 
3,3',4,4',5-PentaBDE (#126) <0.0003 <0.0002 <0.0003 <0.001 <0.0002 <0.0001 <0.001 <0.003 <0.001 <0.002 <0.002 <0.001 
2,2',3,4,4',5'-HexaBDE (#138) <0.0003 0.0003 <0.0003 <0.002 <0.0003 <0.0002 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
2,2',4,4',5,5'-HexaBDE (#153) 0.06 0.02 0.03 0.11 0.01 0.01 0.10 0.13 0.11 0.16 0.11 0.17 
2,2',4,4',5,6'-HexaBDE (#154) 0.19 0.05 0.12 0.24 0.04 0.01 0.30 0.41 0.51 0.52 0.43 0.66 
2,2',4,4',6,6'-HexaBDE (#155) 0.05 0.01 0.04 0.07 0.01 0.002 0.10 0.11 0.20 0.10 0.11 0.15 
2,3,4,4',5,6-HexaBDE (#166) <0.0004 <0.0003 <0.0004 <0.002 <0.0004 <0.0002 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
2,2',3,4,4',5,6'-HeptaBDE (#181) <0.0003 <0.0002 <0.0004 <0.01 <0.0003 <0.0001 <0.003 <0.004 <0.003 <0.004 <0.01 <0.01 
2,2',3,4,4',5',6-HeptaBDE (#183) 0.01 0.001 0.003 0.01 0.001 0.001 0.02 0.02 0.03 <0.003 0.01 0.01 
2,3,3',4,4',5,6-HeptaBDE (#190) <0.001 <0.0003 <0.001 <0.02 <0.001 <0.0002 <0.004 <0.01 <0.004 <0.01 <0.01 <0.01 
2,2',3,4,4',5,5',6-OctaBDE (#203) 0.01 0.01 0.003 <0.01 <0.004 0.01 <0.004 <0.003 <0.01 <0.01 <0.01 <0.004 
2,3,3',4,4',5,5',6-OctaBDE (#205) <0.01 <0.01 <0.004 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
2,2',3,3',4,4',5,5',6-NonaBDE (#206) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
2,2',3,3',4,4',5,6,6'-NonaBDE (#207) 0.003 0.002 0.002 0.01 0.002 0.002 0.01 0.01 0.01 0.01 0.01 0.004 
2,2',3,3',4,4',5,5',6,6'-DecaBDE (#209) 0.02 0.02 0.05 0.11 0.04 0.04 0.08 0.10 0.08 0.07 0.12 0.06 

∑PBDE (UB) 0.96 0.53 0.81 3.96 0.58 0.28 2.55 4.51 2.65 4.89 3.97 5.66 
∑PBDE (LB) 0.95 0.52 0.80 3.90 0.56 0.27 2.52 4.48 2.61 4.85 3.92 5.61 
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Annex 11 continues., 
Sample Nr. 31/14 32/14 33/14 34/14 35/14 36/14 37/14 38/14 39/14 40/14 41/14 42/14 
Length, cm 89 93 72 82 75 94 101 95 94 92 95 83 
Weight, kg 1.1 1.3 0.6 0.9 0.6 1.6 1.8 1.6 1.4 1.5 1.3 0.9 
Place of sampling Sivers Sivers Liepajas Liepajas Liepajas Kisezers Kisezers Kisezers Kisezers Kisezers Liepajas Liepajas 
 Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake 
Fat content, g/100 g of sample 23.0 25.5 28.9 41.3 33.2 37.0 36.9 34.7 27.2 32.2 27.2 32.1 

PBDEs (ng g-1)                         
2,4-DiBDE (#7) <0.0002 <0.0003 <0.001 <0.001 <0.0004 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.0001 
4,4-DiBDE (#15) 0.003 0.01 0.02 0.03 0.004 0.02 0.06 0.07 0.06 0.10 0.01 0.002 
2,2',4-TriBDE (#17) 0.03 0.03 0.04 0.09 0.03 0.04 0.05 0.07 0.05 0.05 0.02 0.01 
2,4,4'-TriBDE (#28) 0.05 0.03 0.20 0.19 0.02 0.05 0.31 0.36 0.43 0.43 0.05 0.01 
2,2',4,4'-TetraBDE (#47) 2.40 1.67 11.5 15.2 1.28 4.13 5.25 13.8 12.8 14.6 2.46 0.78 
2,2',4,5'-TetraBDE (#49) 0.81 0.63 1.69 2.61 0.42 1.13 0.76 1.31 0.90 1.36 0.47 0.22 
2,3',4,4'-TetraBDE (#66) 0.04 0.05 0.15 0.36 0.04 0.04 0.13 0.17 0.14 0.19 0.03 0.01 
2,3',4',6-TetraBDE (#71) <0.001 <0.001 <0.002 <0.002 <0.001 <0.001 <0.002 <0.003 <0.002 <0.002 <0.001 <0.0001 
3,3',4,4'-TetraBDE (#77) 0.004 0.01 0.01 0.01 0.01 0.01 <0.002 <0.002 <0.002 <0.002 <0.001 0.001 
2,2',3,4,4'-PentaBDE (#85) 0.02 0.01 0.02 0.16 <0.002 0.05 0.03 0.03 0.03 0.04 0.02 0.01 
2,2',4,4',5-PentaBDE (#99) 0.03 0.02 0.08 0.58 0.01 0.13 0.34 0.45 0.61 0.32 0.08 0.02 
2,2',4,4',6-PentaBDE (#100) 0.55 0.31 0.23 3.71 0.09 0.81 0.86 1.66 1.55 1.80 0.56 0.22 
2,3',4,4',6-PentaBDE (#119) 0.14 0.10 0.03 0.34 0.03 0.15 0.11 0.130 0.15 0.12 0.08 0.04 
3,3',4,4',5-PentaBDE (#126) <0.001 <0.001 <0.004 <0.01 <0.001 <0.01 <0.01 <0.004 <0.003 <0.01 <0.002 <0.001 
2,2',3,4,4',5'-HexaBDE (#138) <0.001 <0.002 <0.02 <0.002 <0.01 <0.002 <0.001 <0.002 <0.002 <0.002 <0.001 <0.0003 
2,2',4,4',5,5'-HexaBDE (#153) 0.15 0.11 0.44 0.82 0.10 0.29 0.26 0.33 0.36 0.32 0.14 0.05 
2,2',4,4',5,6'-HexaBDE (#154) 0.44 0.28 1.00 1.67 0.30 0.74 0.41 0.50 0.68 0.69 0.38 0.14 
2,2',4,4',6,6'-HexaBDE (#155) 0.08 0.06 0.34 0.69 0.10 0.25 0.10 0.11 0.15 0.18 0.12 0.05 
2,3,4,4',5,6-HexaBDE (#166) <0.001 <0.002 <0.02 <0.002 <0.01 <0.002 0.002 <0.002 <0.003 <0.002 <0.001 <0.0003 
2,2',3,4,4',5,6'-HeptaBDE (#181) <0.003 <0.001 <0.01 <0.01 <0.003 <0.01 0.01 <0.02 <0.02 <0.01 <0.004 <0.001 
2,2',3,4,4',5',6-HeptaBDE (#183) 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 <0.001 
2,3,3',4,4',5,6-HeptaBDE (#190) <0.004 <0.002 <0.02 0.02 <0.004 <0.01 <0.02 <0.02 <0.03 <0.01 <0.01 <0.001 
2,2',3,4,4',5,5',6-OctaBDE (#203) <0.004 0.002 <0.01 0.004 <0.01 0.003 <0.01 <0.01 <0.01 <0.01 0.002 <0.01 
2,3,3',4,4',5,5',6-OctaBDE (#205) <0.01 <0.01 <0.01 <0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
2,2',3,3',4,4',5,5',6-NonaBDE (#206) <0.001 <0.001 <0.002 <0.002 <0.003 <0.002 <0.002 <0.003 <0.001 <0.003 <0.001 <0.0004 
2,2',3,3',4,4',5,6,6'-NonaBDE (#207) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.001 
2,2',3,3',4,4',5,5',6,6'-DecaBDE (#209) 0.06 0.08 0.10 0.19 0.14 0.12 0.14 0.12 0.09 0.08 0.08 0.02 

∑PBDE (UB) 4.84 3.43 16.0 26.7 2.64 8.04 8.88 19.2 18.1 20.3 4.55 1.58 
∑PBDE (LB) 4.82 3.41 15.9 26.7 2.59 7.99 8.83 19.1 18.0 20.3 4.52 1.56 
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Annex 11 continues 
Sample Nr. 3 4 5 6 7 8 1a 2a 3a 4a 5a 6a 
Length, cm 55 67 55 55 55 50 87 40 77 81 79 75 
Weight, kg 0.9 1.7 0.9 1.1 0.9 0.9 1.2 0.1 0.9 1.0 0.9 0.9 
Place of sampling Usmas Usmas Usmas Usmas Usmas Usmas Usmas Usmas Usmas Usmas Usmas Usmas 
 Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake 
Fat content, g/100 g of sample 26.0 29.4 22.8 24.4 24.2 23.7 21.2 31.5 29.2 30.0 28.0 23.1 

PBDEs (ng g-1)                         
2,4-DiBDE (#7) <0.0001 <0.00003 <0.00003 <0.0001 <0.00003 <0.00003 <0.0001 <0.00003 <0.00003 <0.00003 <0.00004 <0.00003 
4,4-DiBDE (#15) <0.00004 0.001 0.0002 <0.00004 <0.00002 <0.00001 <0.00004 0.0002 <0.00001 <0.00002 0.0001 <0.00001 
2,2',4-TriBDE (#17) 0.002 0.003 0.001 0.001 0.002 0.003 0.0003 0.002 0.001 0.002 0.004 0.0004 
2,4,4'-TriBDE (#28) 0.004 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.004 
2,2',4,4'-TetraBDE (#47) 0.34 0.66 0.53 0.79 0.77 1.14 0.47 0.38 0.84 0.79 0.50 0.72 
2,2',4,5'-TetraBDE (#49) 0.14 0.20 0.20 0.26 0.31 0.49 0.15 0.17 0.33 0.32 0.18 0.29 
2,3',4,4'-TetraBDE (#66) 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.00 0.00 0.01 0.004 
2,3',4',6-TetraBDE (#71) <0.0001 <0.0001 <0.0002 <0.0002 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
3,3',4,4'-TetraBDE (#77) 0.001 0.002 0.001 0.0001 0.001 0.001 <0.0001 0.001 <0.0001 0.0002 0.0003 <0.0001 
2,2',3,4,4'-PentaBDE (#85) 0.002 0.01 0.003 0.003 0.01 0.01 0.002 0.003 0.01 0.01 0.004 0.01 
2,2',4,4',5-PentaBDE (#99) 0.01 0.03 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.004 0.01 0.01 
2,2',4,4',6-PentaBDE (#100) 0.10 0.13 0.20 0.33 0.30 0.43 0.10 0.12 0.23 0.34 0.14 0.32 
2,3',4,4',6-PentaBDE (#119) 0.02 0.03 0.03 0.04 0.06 0.07 0.02 0.03 0.05 0.03 0.02 0.04 
3,3',4,4',5-PentaBDE (#126) <0.0003 <0.0003 <0.0001 <0.0001 <0.0002 <0.0003 <0.0004 <0.0001 <0.0002 <0.0004 <0.0003 <0.0002 
2,2',3,4,4',5'-HexaBDE (#138) <0.0002 <0.0002 <0.0004 <0.0002 <0.0001 <0.0001 <0.0003 <0.001 <0.0001 <0.0002 0.0003 <0.0002 
2,2',4,4',5,5'-HexaBDE (#153) 0.03 0.05 0.04 0.04 0.08 0.07 0.04 0.03 0.07 0.03 0.03 0.04 
2,2',4,4',5,6'-HexaBDE (#154) 0.11 0.13 0.08 0.16 0.24 0.29 0.10 0.13 0.21 0.20 0.10 0.19 
2,2',4,4',6,6'-HexaBDE (#155) 0.02 0.02 0.03 0.03 0.02 0.04 0.01 0.04 0.02 0.03 <0.00003 0.02 
2,3,4,4',5,6-HexaBDE (#166) <0.0002 <0.0002 <0.0004 <0.0002 <0.0002 <0.0001 <0.0003 <0.001 <0.0001 <0.0002 <0.0001 <0.0002 
2,2',3,4,4',5,6'-HeptaBDE (#181) <0.0004 <0.001 <0.001 <0.001 <0.001 <0.0004 <0.0002 <0.002 <0.001 <0.001 <0.0004 <0.0004 
2,2',3,4,4',5',6-HeptaBDE (#183) 0.001 0.01 0.001 0.002 0.003 0.001 0.002 0.01 0.001 0.001 0.001 0.001 
2,3,3',4,4',5,6-HeptaBDE (#190) <0.001 <0.002 <0.002 <0.001 <0.002 <0.001 <0.0002 <0.002 <0.001 <0.001 <0.001 <0.001 
2,2',3,4,4',5,5',6-OctaBDE (#203) <0.001 <0.001 <0.004 <0.004 <0.001 <0.001 0.004 <0.004 <0.001 <0.002 <0.001 <0.001 
2,3,3',4,4',5,5',6-OctaBDE (#205) <0.001 <0.001 <0.01 <0.01 <0.001 <0.001 <0.004 <0.01 <0.001 <0.003 <0.001 <0.001 
2,2',3,3',4,4',5,5',6-NonaBDE (#206) 0.0003 <0.0001 <0.001 <0.001 <0.0001 <0.0001 <0.001 <0.0002 <0.0002 <0.0001 <0.0002 <0.0002 
2,2',3,3',4,4',5,6,6'-NonaBDE (#207) 0.001 0.001 <0.001 0.001 0.0003 0.001 0.002 0.001 0.0004 0.001 0.0002 0.0003 
2,2',3,3',4,4',5,5',6,6'-DecaBDE (#209) 0.02 0.01 0.04 0.02 0.01 0.01 0.05 0.01 0.01 0.01 0.01 0.01 

∑PBDE (UB) 0.81 1.33 1.19 1.72 1.85 2.60 0.97 0.95 1.78 1.79 1.00 1.66 
∑PBDE (LB) 0.81 1.32 1.17 1.70 1.84 2.59 0.97 0.94 1.77 1.78 1.00 1.66 
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Annex 11 continues 

Sample Nr. 15/14 28/14 29/14 30/14 43/14 1 2 7a 8a 9a 
Length, cm 71 90 89 84 83 55 50 39 42 42 
Weight, kg 0.5 1.2 1.3 1.0 1.0 0.8 1.0 1.0 0.1 0.1 
Place of sampling Usmas Sivers Sivers Sivers Liepajas Usmas Usmas Usmas Usmas Usmas 
 Lake Lake Lake Lake Lake Lake Lake Lake Lake Lake 
Fat content, g/100 g of sample 21.8 25.5 25.9 27.1 34.2 24.4 20.6 30.1 35.2 31.7 

PBDEs (ng g-1)                     
2,4-DiBDE (#7) <0.001 <0.001 <0.0004 <0.0004 <0.001 <0.0001 0.0001 <0.00004 <0.00002 <0.00004 
4,4-DiBDE (#15) 0.01 0.01 0.01 0.01 0.02 0.00002 <0.00001 <0.00003 <0.00001 <0.00003 
2,2',4-TriBDE (#17) 0.02 0.04 0.11 0.04 0.04 0.002 0.001 0.002 0.002 0.003 
2,4,4'-TriBDE (#28) 0.04 0.05 0.06 0.04 0.05 0.01 0.01 0.01 0.01 0.01 
2,2',4,4'-TetraBDE (#47) 2.39 1.92 7.44 2.39 4.13 0.42 0.52 0.55 0.37 0.67 
2,2',4,5'-TetraBDE (#49) 1.06 0.60 3.34 0.90 1.13 0.15 0.20 0.07 0.15 0.22 
2,3',4,4'-TetraBDE (#66) 0.05 0.06 0.27 0.06 0.04 0.01 0.01 0.01 0.01 0.01 
2,3',4',6-TetraBDE (#71) <0.002 <0.002 <0.003 <0.002 <0.001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0002 
3,3',4,4'-TetraBDE (#77) 0.004 0.01 0.01 0.01 0.01 0.001 0.0003 0.001 0.0004 0.002 
2,2',3,4,4'-PentaBDE (#85) 0.04 0.004 0.07 0.004 0.05 0.001 0.003 0.001 0.003 0.003 
2,2',4,4',5-PentaBDE (#99) 0.04 0.01 0.05 0.01 0.13 0.01 0.01 0.01 0.004 0.01 
2,2',4,4',6-PentaBDE (#100) 0.70 0.09 1.64 0.33 0.81 0.11 0.12 0.33 0.08 0.16 
2,3',4,4',6-PentaBDE (#119) 0.14 0.02 0.49 0.09 0.15 0.02 0.02 0.02 0.02 0.05 
3,3',4,4',5-PentaBDE (#126) <0.002 <0.001 <0.003 <0.003 <0.01 <0.0002 <0.0001 <0.0001 <0.0002 <0.0002 
2,2',3,4,4',5'-HexaBDE (#138) <0.002 <0.02 <0.001 <0.003 <0.002 <0.0002 <0.0001 <0.0003 <0.0002 <0.0002 
2,2',4,4',5,5'-HexaBDE (#153) 0.23 0.08 0.65 0.13 0.29 0.03 0.02 0.03 0.03 0.04 
2,2',4,4',5,6'-HexaBDE (#154) 0.75 0.34 1.97 0.38 0.74 0.07 0.11 0.05 0.07 0.15 
2,2',4,4',6,6'-HexaBDE (#155) 0.24 0.09 0.30 0.07 0.25 0.01 0.02 0.01 0.01 0.02 
2,3,4,4',5,6-HexaBDE (#166) <0.003 <0.02 <0.002 <0.003 <0.002 <0.0003 <0.0001 <0.0003 <0.0002 <0.0002 
2,2',3,4,4',5,6'-HeptaBDE (#181) <0.01 <0.01 <0.01 <0.003 <0.01 <0.001 <0.001 <0.0004 <0.001 <0.0003 
2,2',3,4,4',5',6-HeptaBDE (#183) 0.02 0.01 0.02 0.01 0.01 0.002 0.001 0.002 0.01 0.001 
2,3,3',4,4',5,6-HeptaBDE (#190) <0.01 <0.01 <0.01 <0.004 <0.01 <0.001 <0.001 <0.001 <0.002 <0.001 
2,2',3,4,4',5,5',6-OctaBDE (#203) <0.004 <0.01 <0.003 <0.003 <0.01 <0.004 <0.004 <0.001 <0.001 <0.003 
2,3,3',4,4',5,5',6-OctaBDE (#205) <0.01 <0.01 <0.004 <0.004 <0.01 <0.01 <0.01 <0.001 <0.001 <0.004 
2,2',3,3',4,4',5,5',6-NonaBDE (#206) <0.002 <0.002 <0.001 0.0002 <0.002 <0.0002 <0.0002 <0.0002 <0.0002 <0.001 
2,2',3,3',4,4',5,6,6'-NonaBDE (#207) 0.01 0.01 0.004 0.01 0.01 0.001 0.001 0.001 0.001 0.0003 
2,2',3,3',4,4',5,5',6,6'-DecaBDE (#209) 0.11 0.11 0.07 0.08 0.09 0.01 0.01 0.01 0.01 0.01 

∑PBDE (UB) 5.91 3.51 16.6 4.58 7.99 0.86 1.07 1.10 0.78 1.36 
∑PBDE (LB) 5.86 3.43 16.5 4.55 7.95 0.85 1.06 1.10 0.77 1.35 
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