

Editor Definition Language and its Implementation

Audris Kalnins, Karlis Podnieks, Andris Zarins, Edgars Celms, Janis Barzdins

Institute of Mathematics and Computer Science,
University of Latvia

Raina bulv. 29, LV-1459, Riga, Latvia
{audris, podnieks, azarins, edgarsc, jbarzdin}@mii.lu.lv

Abstract. Universal graphical editor definition language based on logical
metamodel extended by presentation classes is proposed. Implementation
principles of this language, based on Graphical Diagramming Engine are
described.

1 Introduction

Universal programming languages currently have become more or less stable, the
main effort in this area is oriented towards improving programming environments and
programming methodology. However, the development of specialised programming
languages for specific areas is still going on (most frequently, this type of languages is
no more called programming languages, but specification or definition languages).
One of such specific areas is the definition of graphical editors. The need for various
graphical editors and similar tools based on graphical representation of data increases
all the time, because due to increased computer speeds and size of monitors it is
possible to build graphical representations for wider subject areas. In this paper the
Editor Definition Language (EdDL) for a simple and convenient definition of wide
spectrum of graphical editors is proposed, and the basic implementation principles of
EdDL are described.

Let us mention some earlier research in this area. Perhaps, the first similar
approach has been by Metaedit [1], but its editor definition facilities are fairly limited.
The most flexible definition facilities (and some time ago, also the most popular in
practice) seem to be the Toolbuilder by Lincoln Software. Being a typical meta-CASE
of early nineties, the approach is based on ER model for describing the repository
contents and special extensions to ER notation for defining derived data objects which
are in one-to-one relation to objects in a graphical diagram. The diagram itself is
being defined by means of a frame describing graphical objects in it and the supported
operations. A more academic approach is that proposed by Kogge [2], with a very
flexible, but very complicated and mainly procedural editor definition language.
Another similar approaches are proposed by DOME [8] and Moses [9] projects, with
fairly limited definition languages. Several commercial modelling tools (STP by
Aonix, ARIS by IDS prof. Scheer etc) use a similar approach internally, for easy

customisation of their products, but their definition languages have never been made
explicit.

Our approach in a sense is a further development of the above-mentioned
approaches. We develop the customisation language into a relatively independent
editor definition language (EdDL), which, on the other hand, is sufficiently rich and
easy to use, and, on the other hand, is sufficiently easy to understand. At the same
time it can be implemented efficiently, by means of the universal Editor Engine.
Partly the described approach has been developed within the EU ESPRIT project
ADDE [3], see [4] for a preliminary report.

2 Editor definition language. Basic ideas

The proposed editor definition language consists of two parts:

- the language for defining the logical structure of objects which are to be
represented graphically

- the language for defining the concrete graphical representation of the
selected logical structure.

Message name
value

Dependency

Business
Event

Event name
value

Event category
value

Position
Performer
value

Activity Name
value

Position name
value

Number of
instances

value

Cost per hour
value

Activity Description
value

Business Activity

has attribute
 1

 1

has attribute
 1

 1

has attribute
 1 0..1

successor to
 1

 *

started by
trigger of
1

0..1

predecessor

from 1 *

performed by
is performer

*
0..1

has attribute
 1

 0..1

has attribute 1
 0..1

has attribute
 1 1

has attribute
 1 0..1

has attribute
 1

 0..1

has attribute
 1

 1

Fig. 1. Logical metamodel example

The separation of these two parts is the basis of our approach. For describing the
logical structure there exists a generally adapted notation – by UML class diagrams
[5], which typically is called the logical metamodel in this context. Fig.1 shows a

simple example of a logical metamodel for business activities. Business activities are
assumed to be parts of a larger process. There may be a dependency between business
activities (this dependency may be a message passed from one activity to another, but
also something more general). An activity may be triggered by an (external) business
event. Business activity may have a performer – a position within a company. This
example will be used in the paper to demonstrate the editor definition features. Fig.1
needs one technical remark to be given. Attributes of a class there are extracted as
separate classes, linked via an association with the predefined role name has
attribute to the parent class. This attribute extraction is technically convenient for
defining the presentation language part. Otherwise the logical metamodel is an
arbitrary UML class diagram.

Receive customer:
Business Activity

:Activity Name
value = Define Requirement

:Activity Name
value = Receive customer

Define requirement:
Business Activity

:Event name
value = Application for rental

d1:Dependency

d2:Dependency

Application for rental:
Business Event

:Activity Name
value = Assess Credit

Assess credit:
Business Activity

:Performer
value = Rental clerk

Rental clerk:
Position:Position name

value = Rental clerk

has
attribute

has
attribute

trigger of
started by

predecessor
from

to

successor

predecessor

from

has attribute

has attribute

has attribute

tosuccessor

performed by

is performer

has attribute

Fig. 2. Example of instance diagram

Fig.2 shows an example of an instance diagram (object diagram in UML terms)
corresponding to the logical metamodel in Fig.1. Our goal is to define the
corresponding editor, which in this case could be able to present the instance diagram
as a highly readable graphical diagram in Fig.3 (where the traditional rendering of
dependencies by oriented lines is used). A special remark should be given with

respect to Position. It is not explicitly represented in diagram in Fig. 3, but double-
clicking on the performer name is assumed to navigate to (i.e. to open) a special
editor showing the relevant position (this other editor is not specified here). The
navigation and the prompting (the related action by means of which such a reference
can be easily defined) are integral parts of our editor definition facilities.

Application for rental Receive customer

Define requirement

Assess credit
Performer = Rental clerk

Fig. 3. Business activity diagram example

Roughly speaking, the goal of our definition language is to describe the translation
of pictures like Fig. 2 into equivalent pictures like Fig. 3. So it is a sort of graphics
translation language.

Now let us start a detailed outline of the EdDL. Like any real language, it contains
a lot of details, therefore we will concentrate only on the basic constructs. The
language will be presented as an extension of the logical metamodel adhering to the
UML class diagram notation. Fig.4 demonstrates the use of EdDL for the definition of
the example editor (with some minor details omitted). In this figure rectangles
represent the same classes from the logical metamodel in Fig. 1, but rounded
rectangles represent classes being the proper elements of EdDL. Classes with class
names in bold represent abstract classes, which cannot be modified (they are used
mainly for inheritance). Similarly, bold role names of associations represent the fixed
ones. We remind that the underlined attributes (to be seen in EdDL classes) are class
attributes (the same for all instances) according to UML notation.

The first element added to the logical metamodel is the diagram class (Business
activity diagram), together with standard associations (with the role name contains)
to the contained diagram objects, and as a subclass of the fixed Diagram class. One
more standard association for diagram is the refinement association (refines), which
defines that a Business Activity can be further refined by its own Business activity
diagram (this definition is sufficient for the Editor Engine to enable this service).

Each of the metamodel classes, which must appear as graphical objects in the
diagram, are linked by an unnamed association to its presentation class – a subclass
of standard classes box or line. The presentation class may contain several class
attributes (with predefined names). Thus the presentation class for Business Activity –
the Activity box class says that every business activity must be represented by a
rounded rectangle in a light blue default colour. The Icon representing this graphical
symbol on the editor’s symbol palette (to create a new business activity in a diagram)
is also shown. For presentation classes being lines the situation is similar, but there
may be lines corresponding to associations in the metamodel (Triggering line) or to
classes (Dependency line). The latter case is mostly used for lines having associated

texts in the diagram (corresponding to attributes of the class; here the Message name).
For showing the direction of line (and other similar features) the relevant role names
from the metamodel are referenced in the presentation class (e.g. start=predecessor).

Activity Name
value

Description
compartment
Position = 2

Activity
Description
value Activity box

Shape = Round rectangle
Colour = (215,255,255)

Navigation

Performer
compartment

Position = 3
Tag = Performer
Separator = before

Icon
Def = ...
Position = 1

Event category
value

Category
compartment
Position = 2

Business
 Event

Event name
value

Triggering line
Colour = (0,0,255)
Style = dashed

Event box
Shape = arrow
Colour = (255,255,255)

E-name
compartment
Position=1

Box

A-name
compartment
Position=1

Compartment

Line

Dependency line
start = predecessor
end = successor
end-shape = arrow

Message
 name

value
Dependency

Business Activity

Prompting

Performer
value

M-name
compartment

Position= Middle

Number of instances
value

Position name
value Position

Diagram

Business activity
diagram

Cost per hour
value

started by

trigger of1

0..1

has
attribute
 1 0..1

has
attribute

 1
 1

has
attribute

has
attribute 1

 1

display

has
attribute
 1

 0..1

predecessor

from

 1

*

has
attribute successor

to

 1

 *

performed
 by

is
performer

*

0..1

contains

is in

 *

 *

has attribute
 1

 0..1

has attribute
 1 1 has attribute

 1
 0..1

refines

refined
by

 0..1

 1 is
in

contains

 *

 1

Fig. 4. Business activity diagram editor definition in EdDL

Class attributes are being made visible in diagrams by means of a compartment
presentation class. The most important attribute of a compartment class is the position
– for boxes in the simplest case it means the number of the horizontal slice of the box,
for lines it means the relative positioning (start, middle, end). Compartment class may
contain also style attributes (visible tag ,separator, font etc).

The most interesting element in this EdDL example is the definition of prompting
and navigation. They are both related to the situation when an attribute (i.e. its value)
of a metamodel class (the Performer for Business activity in the example) actually is
determined by an association of this class (a derived attribute in UML terms). Here
the Performer value actually must be equal to the Position name of that Position
instance (if any) which is linked by the association having the role name Performed
by (the fact that a Position must be represented by its Position name is defined by the
display association). Prompting here means the traditional service found in an editor
that a value can be selected from the offered list of values (value of Performer
selected from the list of available Position names), with the automatic generation of
the relevant association instance as a side effect. The navigation means the editor
feature that double-clicking on the Performer field (which presents the Performer
attribute) in a Business activity box automatically invokes some default editor for the
Position (the target of the association). Both Prompting and Navigation are shown in
the EdDL as fixed classes linking the attribute to the relevant association (they may
have also their own attributes specifying, e.g. the prompting constraints). Note that
Position has no presentation class in the example, consequently its instances are not
explicitly visible in the Business activity diagram.

Certainly EdDL contains more features than demonstrated in Fig.4, e.g. various
uniqueness constraints, definitions for attribute "denormalisation", modes of model/
diagram consolidation etc. The EdDL coding shown in Fig. 4 was simplified to make
it more readable. The actual coding used for the commercial version of EdDL is much
more compact, here the metamodel class attributes are defined in the traditional way,
and most of Presentation classes are coded just as UML constraints (properties) inside
a metamodel class. Nevertheless the semantics of this language is just the one briefly
described in the paper. We assert that EdDL is expressive enough to define practically
any types of editor that could be used to build related sets of diagrams in system
modelling area. Namely the inter-diagram relations such as prompting and navigation
are the most complicated ones, and they successfully managed in EdDL. Finally, Fig.
5 shows the defined editor in action.

3 EdDL implementation principles

EdDL has been implemented by means of an interpreter which in this case is
named Editor Engine. When an editor has been defined in EdDL the Editor Engine
acts as the desired graphical editor for the end user. Here only the main principles of
implementation will be discussed. The first issue is the information storage. It is
universally accepted nowadays that the logical metamodel describes directly (or very
close to it) the physical structure of the tool repository. This repository can be an

OODB, a special tool repository (e.g. Enabler [6]) or a relational DB. This is one
more argument why the editor definition should be based on a separately defined
metamodel.

Fig. 5. Editor in action

Fig. 6 shows the general architecture of the EdDL approach. A key aspect is that
Editor Engine (EE) relies on Graphical Diagramming Engine (GDE) for all
diagram drawing related activities. The primitives implemented by GDE - diagram,
box, line, compartment etc. and the supported operations on them are very fit for this
framework.

{ }

{

For every
diagram
type

Editor
Definition

Modeling
tool

EdDL for one editor
(metamodel fragment +
presentation classes)
 (using Class editor)

EdDL
Parser

Editor Engine

Internal format
of EdDL

External functions

Graphical layer - GDE

Repository
Concatenated
Internal format

(for a set of editors)

diagram

Fig. 6. Architecture of EdDL implementation

Thus the interface between EE and GDE is based on very appropriate high level
building blocks, there is no need for low level graphical operations in EE at all. The
GDE itself was developed by IMCS UL initially within the framework of ADDE

project, with a commercial version later on. It is based on very sophisticated graph
drawing algorithms [7].

The general technology of using EdDL for defining a set of editors is quite simple.
For each of the editors its definition on the basis of the relevant metamodel fragment
is built. Then these definitions are parsed and assembled into one set. EE "performs"
this set, behaving as a modelling tool containing the defined set of diagrams. A lot of
tool functionality – “small operations" such as copy-paste and “large operations" such
as load and save are implemented in EE in a standard way and need no special
definitions. Certainly, external modules can be included for some specific operations.

The practical experiments on using EdDL and EE have confirmed the efficiency
and flexibility of approach. The defined editors (like the one in Fig.5) behave as
industrial quality graphical editors. The flexibility has been tested by implementing
full UML 1.3 and various specific business process related extensions to it.

4 Conclusions

The paper presents a brief outline of the graphical editor definition language EdDL
and its implementation. But we can view all this also from a different angle. Actually
a new kind of metamodel concept application for a specific area - editor definition -
has been proposed. However this approach can be significantly more universal, since
it is generally accepted that object model (Class diagram) is a universal means for
describing the logical structure of nearly any system. Thus the same approach of
extending this model by special “presentation” classes could be used, e.g. to define
model dynamics, simulation etc., but this is out of scope for this paper.

References

1. Smolander, K., Martiin, P., Lyytinen, K., Tahvanainen, V-P.: Metaedit – a flexible graphical
environment for methodology modelling. Springer-Verlag (1991)

2. Ebert, J., Suttenbach, R., Uhe, I.: Meta-CASE in Practice: a Case for KOGGE. Proceedings
of the 9th International Conference, CAiSE'97, Barcelona, Catalonia, Spain (1997)

3. ESPRIT project ADDE. http://www.fast.de/ADDE
4. Sarkans, U., Barzdins, J., Kalnins, A., Podnieks, K.: Towards a Metamodel-Based Universal

Graphical Editor. Proceedings of the Third International Baltic Workshop DB&IS, Vol. 1.
University of Latvia, Riga, (1998) 187-197

5. Rumbaugh, J., Booch, G., Jackobson, I.: The Unified Modeling Language Reference
Manual. Addison-Wesley (1999)

6. Enabler Concepts Release 3.0, Softlab GmbH, Munich (1998)
7. Kikusts, P., Rucevskis, P.: Layout Algorithms of Graph-like Diagrams for GRADE-

Windows Graphical Editors. Lecture Notes in Computer science, Vol. 1027. Springer-
Verlag (1996) 361-364

8. DOME Users Guide. http://www.htc.honeywell.com/dome/support.htm
9. Esser, R.: The Moses Project.

http://www.tik.ee.ethz.ch/~moses/MiniConference2000/pdf/Overview.PDF

1

TitleThe First Step Towards Generic Modelling Tool

Audris Kalnins, Janis Barzdins, Edgars Celms, Lelde Lace, Martins Opmanis,
Karlis Podnieks, Andris Zarins
Institute of Mathematics and Computer Science,University of Latvia
Raina bulv. 29, LV-1459, Riga, Latvia
{audris, jbarzdin, Edgars.Celms, lelde, Martins.Opmanis, podnieks, azarins}@mii.lu.lv

Abstract: The foundation of a generic modelling tool is its flexible diagramming
facility. The paper proposes a universal graphical editor definition
language based on logical metamodel extended by presentation
classes. Some more advanced diagram definition facilities such as
patterns and diagram cores are also introduced. Implementation
principles of this language, based on Graphical Diagramming Engine
are briefly described.

Key words: modelling tool, graphical editor, metamodel, editor definition language

1. INTRODUCTION

Why it is not sufficient to use “hard-coded” modelling tools? Let us
consider for example the situation in business modelling . On the one hand
there exist several well-known business modelling languages (IDEF3, ARIS
etc), each with a set of tools supporting it. But there are also Activity
diagrams in UML, whose main role now is to serve business modelling.
There is GRADE BM [1,2] – a specialized language for business modelling
and simulation. Thus for the area of business modelling there is no one best
or most used language or tool, each of them emphasizes its own aspects. For
example GRADE BM presents very convenient facilities for specifying
performers of a task and its triggering conditions. However any new
language feature does not come for free, the language becomes more
complicated for use. Therefore one universal business modelling language
which would support all wishes would become extremely difficult for use in
simple cases. This issue is even more urgent for domain-specific modelling,
where countless special notations are used for separate domains.

Edgars
Note
Completed set by Edgars

2 Audris Kalnins, Janis Barzdins, Edgars Celms, Lelde Lace, Martins
Opmanis, Karlis Podnieks, Andris Zarins

UML for this situation offers one ingenious solution – stereotypes for

adjusting the modelling language to a specific area. In many cases the idea
works perfectly, it is well supported in several tools including GRADE. The
latest version of UML - 1.4 extends the notion of stereotype, by assigning
tagged values to it and grouping stereotypes into profiles (thus actually
extending the metamodel). But currently no tool fully supports it.

In this paper an alternative approach to building flexible modelling
environments is used – the metamodel-based approach where first the
domain metamodel is built. Then the modelling method, notation and tool
support is defined declaratively, by means of a special metamodeling
environment. Since most of modelling notation in any domain now is
diagram based, important part of the approach is the Editor Definition
Language (EdDL) for a simple and convenient definition of wide spectrum
of diagrammatic graphical editors. The paper presents the main ideas and
elements of EdDL, as well as basic implementation principles of it. Another
component of the approach is a facility for the definition of flexible model
content browsing (model tree).

An earlier alternative name for the approach is meta-CASE. Let us
mention the key research in this area. Perhaps, the first similar approach has
been by Metaedit [3], but for a long time its editor definition facilities have
been fairly limited. The latest version named Metaedit+ [4] now can support
definition of most used diagram types, but via very restricted metamodeling
features (non-graphical), the resulting diagrams corresponding to the
simplest concepts of labelled directed graph. The most flexible definition
facilities (and some time ago, also the most popular in practice, but now the
tool is out of market) seem to be offered by the Toolbuilder by Lincoln
Software. Being a typical meta-CASE of early nineties, the approach is
based on ER model for describing the repository contents and on special
extensions to ER notation for defining derived data objects which are in one-
to-one relation to objects in a graphical diagram. The diagram itself is being
defined by means of a frame describing graphical objects in it and the
supported operations. A more academic approach is that proposed by Kogge
[5], with a very flexible, but very complicated and mainly procedural editor
definition language. Other newer similar approaches are proposed by ISIS
GME [6], DOME [7] and Moses [8] projects, with main emphasis for
creating environments for domain-specific modelling in the engineering
world. The richest diagram definition possibilities of them are in GME.
Several commercial modelling tools (STP by Aonix, ARIS by IDS prof.
Scheer etc) use a similar approach internally, for easy customisation of their
products, but their tool definition languages have never been made explicit.

Our approach in a sense is a further development of the above-mentioned
approaches. First, the domain metamodel can be built in a most natural way
independently of the diagram definition elements, which are built later and

TitleThe First Step Towards Generic Modelling Tool 3

mapped to it (earlier approaches typically mix up these concepts). The editor
definition language (EdDL) is, on the one hand, sufficiently rich for fairly
complicated diagrammatic notations (not just simple directed graphs as in
GME), and, on the other hand, is sufficiently easy to understand. It offers
elements of “definition engineering”, thus making its use more convenient.
At the same time it can be implemented efficiently, by means of the
universal Editor Engine, resulting in target modelling environments, which
support diagramming quality better than many “hard-coded” environments.

Partly the described approach has been developed within the EU ESPRIT
project ADDE [9], see [10] for a preliminary report. An earlier version of
this research was presented in [11]. The current paper refines these initia l
ideas and explains the two basic principles of the EdDL language – patterns
and cores – which make it easy usable for definition of complicated diagram
support required by real-life examples. Another innovative element is a
general support for stereotypes.

2. BASIC PRINCIPLES OF EDITOR DEFINITION
LANGUAGE

An editor definition for a new diagram type starts with the description of
the logical structure of the domain objects to be represented graphically by
this diagram. This logical structure is described by a UML class diagram
[12], which typically is called the logical metamodel (or domain
metamodel). Fig.1 shows a simple example of a logical metamodel for
business activities. This example will be used in the paper to demonstrate the
editor definition features.

Activity_Description
value

Dependency

Performer
value

Position_name
value

Activity_Name
value

Number_of_instances
value

Cost_per_hour
value

Message_name
value

Event_category
value

Event_name
value

Business
_Event

Business_
Activity

Position

predecessor

from 1 *
has_attribute
 1

 0..1

has_attribute
 1 0..1

successor to
 1

 *

has_attribute
 1

 1

has_attribute
 1

 1

has_attribute
 1

 1

has_attribute
 1

 1

has_attribute
 1

 0..1

has_attribute
 1

 0..1

has_attribute
 1

 0..1

performed_by
is_performer

*
0..1

started_by trigger_of1
0..1

Figure 1. Logical metamodel example

Fig.2 shows an example of an instance diagram (object diagram in UML
terms) corresponding to the logical metamodel in Fig.1. Our goal is to define

4 Audris Kalnins, Janis Barzdins, Edgars Celms, Lelde Lace, Martins
Opmanis, Karlis Podnieks, Andris Zarins

the corresponding editor, which in this case should be able to present the
instance diagram as a highly readable graphical diagram in Fig.3.

Rental_clerk:
Position

Application_for_rental:
Business_Event

Define_requirement:
Business_Activity

:Activity_Name
value = Assess_Credit

d1:Dependency

Receive_customer:
Business_Activity

:Activity_Name
value = Receive customer

:Activity_Name
value = Define_Requirement

d2:Dependency
Assess_credit:

Business_Activity
:Performer

value = Rental_clerk

:Event_name
value = Application_
for_rental

:Position_name
value = Rental_clerkhas_attribute

has_attribute

tosuccessor

predecessor

from

has_
attribute

has_
attribute

has_attribute

tosuccessor

predecessor

from

has_attribute performed_by
is_performer

trigger_ofstarted_by

Figure 2. Example of instance diagram

A special remark should be given with respect to Position. It is not
explicitly represented in diagram in Fig. 3, but double-clicking on the
performer name is assumed to navigate to (i.e. to open) another editor
showing the relevant position (this editor is not specified here). The
navigation and the prompting (the related action by means of which such a
reference can be easily defined) are integral parts of our editor definition
facilities.

Application for rental Receive customer

Define requirement

Assess credit
Performer = Rental clerk

Figure 3. Business activity diagram example

A diagram definition in EdDL is an extension of the logical metamodel,
strictly adhering to the UML class diagram notation. It should be
emphasized that the logical metamodel itself is never modified during this
process and remains a separate fragment, with only new associations
attached. Fig.4 demonstrates the use of EdDL for the definition of the
example editor. In this figure rectangles represent the classes from the

TitleThe First Step Towards Generic Modelling Tool 5

logical metamodel in Fig. 1, but rounded rectangles represent classes being
the proper elements of EdDL. Classes with class names in bold italic
represent abstract classes, which cannot be modified (they are used mainly
for inheritance), objects with names in bold are the “technical constants”
(with fixed class names). Similarly, bold role names of associations
represent the fixed ones. We remind that the underlined attributes (to be seen
in EdDL classes, with initial values set) are class attributes (the same for all
instances) according to UML notation.

Description_
compartment
Position = 2

Activity_
Description
value

Event_category
value

Category_
compartment
Position = 2

Business
_Event

Triggering_line
Colour = (0,0,255)
Style = dashed

Dependency_line
start = predecessor
end = successor
end-shape = arrow

Dependency

Business_Activity

E-name_
compartment
Position=1

Event_box
Shape = arrow
Colour = (255,255,255)

A-name_
compartment
Position=1

Activity_Name
value Event_name

value
Activity_box

Shape = Round rectangle
Colour = (215,255,255)

Box

Line

Diagram

:Icon
Def = Event
Position = 2

:Icon
Def = Depend
Position = 3

:Icon
Def = Activity
Position = 1

:Icon
Def = Trigger
Position = 4

:Prompting

Performer
value

Performer_
compartment

Position = 3
Tag = Performer
Separator = before

:Navigation

Position_name
value Position

Business_activity_
diagram

Cost_per_hour
value

Number_of_instances
value

Message
_name

value

M-name_
compartment

Position= Middle

Compartment

started_by

trigger_of1

0..1

has_
attribute
 1 0..1

has_
attribute

 1
 1

has_
attribute

has_
attribute 1

 1

display

predecessor

from

 1

*

successor

to

 1

 *

refines

refined_
by

 0..1

 1 is_
in

contains

 *

 1

has_
attribute
 1

 0..1

has_
attribute

performed
_by

is_
performer

*

0..1

has_attribute
 1 1

has_attribute
 1

 0..1

has_attribute
 1

 0..1

contains

is_in

 *

 *

Figure 4. Business activity diagram editor definition in EdDL

Certainly EdDL contains more features than demonstrated in Fig.4, e.g.
various uniqueness constraints, definitions for attribute "denormalisation",
modes of model/ diagram consolidation etc.

6 Audris Kalnins, Janis Barzdins, Edgars Celms, Lelde Lace, Martins
Opmanis, Karlis Podnieks, Andris Zarins

3. A MORE PRACTICAL APPROACH TO

DIAGRAM DEFINITION

The previous section demonstrated the simplest features of EdDL –
diagram definition was performed by adding presentation classes, which
inherited from some fixed abstract classes – box, line etc. This section shows
that more knowledge about the diagram world can be incorporated in the
editor definition by means of introducing diagram patterns – typical
metamodel fragments. A certain combinations of diagram patterns frequently
are used together, so the concept of a diagram core is introduced, from
which specific diagram definitions simply can inherit.

3.1 Patterns in diagram definitions
A pattern in Object-oriented development is a typical construct or

mechanism (see e.g.[14]), which aside from its purely programming content
appears as a standardised fragment of a class diagram, frequently with
predefined associations in it. Use of patterns for diagram definition has a
similar goal. They are typical fragments of a diagram-oriented metamodel
corresponding to typical modelling or diagramming constructs, frequently
supported by certain functionality in modelling tools. Similar to patterns in
OO programming, classes in a diagramming pattern have certain fixed roles
and typically there are some fixed associations.

Core_control_flow

{XOR}{XOR}

Core_start_symbol Core_activity Core_pseudoActivity Core_end

from

start_of

 *

 1

to

end_of

 *

 1

from

start_of

 *

 1

to

end_of

 *

 1

from
 *

 0..1

to

end_of

 *

 1

Figure 5. Process flow pattern

Let us consider an example – the process flow pattern (see Fig. 5). In
any diagram type describing some process – be it UML Activity diagram,
IDEF3 process chart, etc., there are process start symbols (one or more),
there are regular process elements (e.g., activities in UML activity diagram)
and process end symbols. All these symbols are some sorts of boxes. The
process flow, represented by directed lines (of one or several types)
correspond to Core control flow class in fig. 5.

The associations represent the normal relations between lines and boxes,
with cardinalities and the explicit XORs giving the most general validity

TitleThe First Step Towards Generic Modelling Tool 7

constraints for a process diagram. For example, these constraints say that
flow lines cannot enter a start symbol or exit an end symbol. Typically a
process diagram editor functionality is also associated with such a pattern,
e.g. process symbols may be automatically positioned so that flows go from
top to down whenever possible, automatic flow construction from the current
symbol to the symbol built next may be offered etc. Just for defining a
specialised editor functionality the pattern contains the Core pseudoactivity
class (a typical representative of which is fork, join or decision in activity
diagram), which in addition to having a meaning different from the basic
activity element graphically is represented by a “small symbol”.

Another such pattern is refinement pattern, which specifies that
typically in process diagrams some of its elements may be refined by a
diagram of the same type (Fig. 6). Typical editor functionality here is a
support for making a new refinement or attaching existing process as a
refinement. Simple navigation to refinement is also usually supported. These
actions are not just diagram drawing, some semantic consequences for the
model are also typically checked.

Core_activity_diagramCore_activity
refined_by

refines *
 0..1

is_in
contains *

 1

Figure 6. Refinement pattern

One more useful pattern for process diagrams is the object flow pattern
(Fig. 7), saying that there may be another type of diagram elements (objects,
e.g. objects in activity diagrams), which are linked by object flow lines to
basic diagram elements – activities.

Core_object_flow
direction:{in,out}

Core_activity Core_object
object_of_flow

flow 1
 *flow

actor_of_flow 1
 *

Figure 7. Object flow pattern

Patterns for diagram definition can be used in two ways. Firstly, just as
patterns in OO programming, they may serve as manual templates for easy
building of correct metamodels. But other more fundamental use is to
combine them in diagram cores to be considered in the next subsection. In
this case real diagram definitions can simply inherit from patterns, so correct
“standard” associations between classes are obtained automatically.

8 Audris Kalnins, Janis Barzdins, Edgars Celms, Lelde Lace, Martins
Opmanis, Karlis Podnieks, Andris Zarins

For other types of diagrams patterns are available also. So for hierarchy

diagrams (ORG-charts, data structures, function decompositions etc) there
are hierarchy and refinement patterns. Fewer patterns can be defined
actually for the most general diagram type – class (class diagram in UML,
ER-model etc), here the multi-occurrence pattern was found (there may be
several occurrences of a class even in the same diagram, and the editor must
synchronize them).

3.2 Diagram cores
A lot of diagram notations represent something like a process or

flowchart. Actually the example considered in this paper is also of that sort
(though rather simple), certainly the most “important” diagram type of this
sort is UML activity diagram. We will show how the discussed earlier
process patterns typically combine for process-like diagrams. This way the
Activity core will be obtained.

The core is a standard metamodel fragment for representing elements
visible in the diagram. The actual diagram definition for a specific diagram
type is obtained by inheriting from elements of the core. Namely, according
to the graphical syntax of the diagram to be defined, presentation classes are
introduced into the metamodel, and for each a matching core element is
found. This way the important associations, which actually determine the
diagram structure, need not to be rebuilt – they are inherited from core.

Fig. 9 shows the proposed Activity core and is use for defining the same
Business activity diagram considered in section 2.

But at first some comments on the core itself. Since there are several
cores possible – Activity core , Hierarchical core , Class core etc., which
correspond to different diagram types being a specialised varieties of
directed graph, it is reasonable to define a Supercore , corresponding to
concepts of this graph itself (see Fig. 8). This core contains the basic
diagramming concepts mentioned already in section 2. Now they can be
reused in any of specific diagram cores by means of inheritance. We could
include in this core also the fact that lines start from/end at boxes, but if
simply included here it would allow any line start from any box type (to
restrict this we should have to introduce a special type of constraints – this is
the way things are done e.g. in Metaedit+ [4] – thus making the metamodel
significantly less readable, but our approach retains the explicit constraints
for smarter cases). So the Supercore expresses only containment.

DiagramBox Linecontains
is_in 1
 * is_in

contains *
 1

Figure 8. Supercore

TitleThe First Step Towards Generic Modelling Tool 9

The Supercore is visible in the metamodel in Fig. 9 as the top layer of
classes. To make the metamodel in Fig. 9 more readable it is separated into
horizontal layers of classes (each layer having a slightly different style). The
next layer is the Activity core. It combines the elements of the three process
patterns from the previous section, with contains association inherited from
Supercore. By combining patterns we can specify e.g. that only core
activities can be refined but not pseudoactivities.

Box

Dependency
Message_name

Position
Position_name
Cost_per_hour
Number_of_instances

Triggering_line
Colour = (0,0,255)
Style = dashed
IconPosit = 4
Icon = trigger

Line

Core_pseudoActivity Core_end

Business_Activity
name {N}
description

Core_activity

Prompting

Navigation

Business_Event
Event_name
Event_category

Position_occurrence
Position_name{N,1}
Cost_per_hour{2}
Number_of_instances

Core_control_flow

Core_activity_
diagram

Diagram

Business_
activity_
diagram

Dependency_line
end_shape = arrow
IconPosit = 3
Icon = depend
Message_name{middle}

Business_Activity_occurrence
Shape = Round rectangle
Colour = (215,255,255)
IconPosit = 1
Icon = activity
name {N,1}
description{2}
performer{3,derived(performed_by,
Position_name),Navig,Tag =
Performer,Separator = before}

Event_occurrence
Shape = arrow
Colour = (255,255,255)
IconPosit = 2
Icon = event
Event_name{N,1}
Event_category{2}

Core_start_symbol

predecessor

from

 1

*

includes is_part_of 0..1 *

contains
is_in 1
 *

to

end_of

 *

 1

from

start_of

 *

 1

successor

to

 1

 *

started_by

trigger_of 10..1

performed
byis

performer

*

0..1

from

start_of

 *

 1 refined_by

refines

 *

 0..1

is_in contains

 *

 1

Figure 9. Process core and example of its usage

The next layer is the Business activity diagram definition itself (the
presentation classes). It is pretty similar to that in Fig. 4 but not exactly
equal. The first difference is purely technical. Since in most practical
metamodels attributes are shown inside classes – as it is required by the
MOF standard [15], we have switched back to this classical form. But this in
turn requires dropping the notation of a compartment as a separate
presentation class. Instead, the elements of the diagram definition – the

10 Audris Kalnins, Janis Barzdins, Edgars Celms, Lelde Lace, Martins
Opmanis, Karlis Podnieks, Andris Zarins

presentation classes – now contain compartments as attributes (as the second
group of attributes, the first group defines the presentation style as before).
The attribute name is the compartment name, the properties (in braces)
specify the compartment presentation options. Among these options the
number specifies the compartment position, N specifies that the
compartment plays the role of a visible object name, other options are
defined as tagged values, just as in Fig.4. The second difference is that
contains associations now are at presentation class level (they are inherited
from the Supercore) – namely the graphical objects are parts of diagrams but
not domain objects.

The next layer is the logical metamodel, the same as in Fig. 4, but again
with attributes inside classes. Unnamed associations (shown by bold lines)
define the mapping from these real objects to the corresponding
presentation objects in the diagram definition. But a slightly more general
meaning can be given to this mapping. The instances of presentation classes
are also real objects – boxes visible in diagram instances – the objects
manipulated directly by the graphical editor (here – the business activity
editor). But the classes of the logical metamodel are the domain model
elements in the background (maintained by the modelling tool in the
repository). To emphasize this fact, some presentation classes are renamed
occurrences. In the default mapping (assumed here) one real object has one
occurrence in a diagram. But mapping associations can be given explicit
cardinalities saying e.g. that one Business activity can appear as a box
several times in diagrams. The mapping of logical objects to presentation
objects requires that their associations also have to be mapped. This derived
mapping is shown in Fig. 9 via dashed lines (with a note symbol in between
if this is a groupwise mapping).

This generalized concept of mapping permits to define several
alternative graphical representations for the same fragment of the logical
metamodel, which can be automatically kept synchronous by the modelling
tool. You simply have to define the corresponding diagrams and define
mappings from the domain metamodel fragment to all of them. This feature
is a significant improvement when compared to the existing Meta-CASE
environments such as Metaedit+[4] or GME[6], where the presentation
classes coincide with domain metamodel fragment and this metamodel can
not be freely defined.

We conclude the description of EdDL with a note on stereotypes. The
example shows the styles of diagram elements (style attributes of
presentation classes) strictly defined in diagram definition. But a user
stereotype concept can be added to EdDL to make this definition more
flexible. User stereotype is a named alternative style definition for a
presentation class (possibly with a separate icon in the palette). Thus actually

TitleThe First Step Towards Generic Modelling Tool 11

a simplified (1.3 level) UML stereotype concept is implemented, but for any
diagram type, not just UML. Via this feature the modelling notation can
have “lightweight” extensions during the modelling process (freely
combined with the “heavyweight” extensions done during the diagram
definition).

4. IMPLEMENTATION PRINCIPLES

 The core of the implementation is the Editor Engine – an interpreter
directly interpreting EdDL. When an editor has been defined in EdDL the
Editor Engine acts as the desired graphical editor for the end user. Here only
the main principles of implementation will be discussed.

}For every
diagram
type

Modeling
tool {

Editor
Definition{

Concatenated_
Internal_format

(for a set of editors)

Internal_format_
of_EdDL

EdDL_for_one_editor
(metamodel fragment +
presentation classes)
 (using Class editor)

Editor_Engine
Generic_

modelling_
framework

EdDL_
Parser

Repository

Graphical_layer_-_GDE

External_functions

diagram

Figure 10. Architecture of EdDL implementation

Fig. 10 shows the general architecture of the EdDL approach. A key
aspect is that Editor Engine (EE) relies on Graphical Diagramming Engine
(GDE) for all diagram drawing related activities. The primitives
implemented by GDE - diagram, box, line, compartment etc. and the
supported operations on them are very fit for this framework.

Thus the interface between EE and GDE is based on very appropriate
high level building blocks, there is no need for low level graphical
operations in EE at all. The GDE itself was developed by IMCS UL initially
within the framework of ADDE project, with a commercial version later on.
It is based on very sophisticated graph drawing algorithms [13].

The general technology of using EdDL for defining a set of editors is
quite simple. For each diagram type in the modelling methodology the
corresponding editor definition is built on the basis of the relevant domain
metamodel fragment and using an appropriate diagram core from the core
library. Then these definitions are parsed and assembled into one set. EE

12 Audris Kalnins, Janis Barzdins, Edgars Celms, Lelde Lace, Martins
Opmanis, Karlis Podnieks, Andris Zarins

"performs" this set, behaving as a modelling tool containing the defined set
of diagrams. A lot of tool functionality, e.g., “small operations" such as
copy-paste are implemented in EE in a standard way and need no special
definitions. Certainly, external modules can also be included for some
domain-specific operations.

Figure 11. Editor in action

Actually EE runs under the guidance of the Generic modelling
framework (GMF), which directly manages the repository and incorporates
also other non-diagrammatic generic editors. It is universally accepted
nowadays that the logical metamodel describes directly (or very close to it)
the physical structure of the tool repository. According to this principle all
data-related operations within GMF are metamodel based, various repository
formats such as OODB, a special tool repository, a relational DB or even a
file in XML format are supported in a uniform way. All model-level
operations such as load and save are also automatically supported by the
framework. But the most important feature of this framework is the
possibility to define a flexible model content browsing – via rich model
tree definition facilities, based on the same metamodel.

A very brief schema for defining a model tree is the following. An
arbitrary tree starting with a root node and consisting of two kinds of nodes :
constant nodes (representing some fixed text) and object nodes
(representing instances of one class contained in the model) is defined. Then
during the usage of this tree an object node is replaced by the set of nodes
corresponding to all these instances. But the most non-trivial feature of this
approach is the definition of selection rules for object nodes. For any object
node a selection rule can be specified, saying which of the possible instances
actually must appear in the tree. To be short, a selection rule is a Boolean
expression on link conditions (specifying that a certain sequence of
metamodel associations must link the given node to a node higher in the

TitleThe First Step Towards Generic Modelling Tool 13

tree) and attribute value conditions . The actual expression language can
contain some more details (including simple existential quantifiers), but even
the mentioned features permit to define nearly any reasonable “treeview” on
the model contents. Recursive tree definitions are also supported. The
definition facilities permit also to define action lists (edit, new, delete etc.)
for any node, thus e.g. all the links between the model tree and diagram
editors are supported automatically by the framework. The left pane in Fig.
11 shows one of the possible model trees for the Business activity modelling,
defined via the described facilities.

The first commercial version of Generic Modelling Framework has been
implemented. The flexibility of the approach has been tested by
implementing full UML 1.3 (except sequence diagrams) and various specific
business process notations. The implementation has a special feature that e.g.
the same business process may be alternatively presented as a UML Activity
diagram or IDEF3 process chart. The defined editor sets (like the one in
Fig.11) have reached the industrial quality of typical modelling tools, with
all the required user support.

5. CONCLUSIONS

The practical experiments have demonstrated that the above described
metamodel-based graphical editor implementation method is realistic and
can reach an industrial quality. However this approach can be made
significantly more universal, since it is generally accepted that a metamodel
(class diagram) can be used for describing the logical structure of nearly any
system. Thus the same approach of extending this model by special
“presentation” classes could be used, e.g. to define dynamic semantics of the
model, its simulation etc., but this is out of scope for this paper.

References
[1] Kalnins, A., Barzdins, J., Podnieks, K., Zarins, A. et al. Business Modeling Language

GRAPES-BM and Related CASE Tools. Proceedings of the Second Baltic DB&IS'96,
Institute of Cybernetics, Tallinn, 1996, pp.3-16

[2] Advanced Business and System Modeling Tools, http://www.gradetools.com/
[3] Smolander, K., Martiin, P., Lyytinen, K., Tahvanainen, V-P.: Metaedit – a flexible

graphical environment for methodology modelling. Springer-Verlag, 1991.
[4] MetaEdit+: Technical Summary. http://www.metacase.com/papers/index.html
[5] Ebert, J., Suttenbach, R., Uhe, I.: Meta-CASE in Practice: a Case for KOGGE.

Proceedings of the 9th International Conference, CAiSE'97, Barcelona, Catalonia, Spain ,
1997, pp.203-216

14 Audris Kalnins, Janis Barzdins, Edgars Celms, Lelde Lace, Martins
Opmanis, Karlis Podnieks, Andris Zarins

[6] Ledeczi A., Maroti M., Bakay A., Karsai G., Garrett J., Thomason IV C., Nordstrom

G., Sprinkle J., Volgyesi P.: The Generic Modeling Environment, Workshop on Intelligent
Signal Processing, Budapest, Hungary, May 17, 2001

[7] DOME Users Guide. http://www.htc.honeywell.com/dome/support.htm
[8] Esser, R.: The Moses Project.

http://www.tik.ee.ethz.ch/~moses/MiniConference2000/pdf/Overview.PDF
[9] ESPRIT project ADDE. http://www.fast.de/ADDE
[10] Sarkans, U., Barzdins, J., Kalnins, A., Podnieks, K.: Towards a Metamodel-Based

Universal Graphical Editor. Proceedings of the Third International Baltic Workshop DB&IS,
Vol. 1. University of Latvia, Riga, (1998) 187-197

[11] Kalnins, A., Podnieks, K., Zarins, A., Celms, E., Barzdins, J. Editor Definition
Language and its Implementation. Proceedings of the 4th International Conference
"Perspectives of System Informatics" , Novosibirsk, 2001, pp.278-281

[12] Rumbaugh, J., Booch, G., Jackobson, I.: The Unified Modeling Language Reference
Manual. Addison-Wesley (1999)

[13] Kikusts, P., Rucevskis, P.: Layout Algorithms of Graph-like Diagrams for GRADE-
Windows Graphical Editors. Lecture Notes in Computer science, Vol. 1027. Springer-Verlag,
1996 pp.361-364

[14] Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design Patterns. Addison-Wesley,
1995.

[15] Meta Object Facility (MOF) Specification, OMG, 2001 (http://www.omg.org)

DIAGRAM DEFINITION FACILITIES IN A GENERIC MODELING TOOL

Lelde Lace, Edgars Celms, Audris Kalnins

{Lelde.Lace, Edgars.Celms, Audris.Kalnins}@mii.lu.lv

The foundation of a generic modeling tool is its flexible diagramming facility. The paper proposes a
new method for declarative specification of such facility. The proposed method permits to build up several
diagrammatic presentations from one domain. The main principles of the proposed method such as mapping,
presentation metamodel and some other details of the method are explained.

1 Introduction
Today there are a lot of modeling tools on the market. Modeling tools are designed to provide all what

is necessary to support major areas of modeling, including business process modeling, object-oriented and
component modeling with UML [1], relational data modeling, and structured analysis and design, etc. Why it is
not sufficient to use “hard-coded” modeling tools? Let us consider for example the situation in business
modeling. On the one hand there exist several well-known business-modeling languages (IDEF3 [2], ARIS [3]
etc), each with a set of tools supporting it. But there are also Activity diagrams in UML, whose main role now is
to serve business modeling. There is also GRADE BM [4] – a specialized language for business modeling and
simulation. Thus for the area of business modeling there is no one best or most used language or tool, each of
them emphasizes its own aspects. The problem with flexible modeling environment is even more urgent for
domain-specific modeling, where countless special notations are used for separate domains.

There are probably several ways to solve such problem. You can develop a modeling tool specially for
any specific modeling method but this way can be very time and cost consuming. You can make a tool, as
universal as possible to support all needs but in practice such a universal tool is difficult for use in simple cases.
An alternative way is a completely metamodel-based generic modeling tool (previously called metaCASE). Such
a tool has no built-in modeling methodology. It has to be filled up with a specific metamodel and additional
information to start modeling something.

Such approaches (metamodel-based) are proposed by ISIS GME [5], DOME [6] and Moses [7]
projects. Several commercial modeling tools (STP by Aonix, ARIS by IDS prof. Scheer etc) use a similar
approach internally, for easy customization of their products, but their tool definition languages have never been
made explicit. Perhaps the richest diagram definition possibilities of them are in GME. According to the GME
method the configuration is accomplished through metamodels specifying the modeling paradigm (modeling
language) of the target domain. The modeling paradigm contains all the syntactic (defined by UML class
diagram), semantic (defined by MCL – a subset of OCL, with some specific extensions), and presentation
information regarding the domain. The presentation information is specified by assigning to the domain classes
and relationships some special predefined kinds of stereotypes (e.g. <<model>>, <<atom>>, <<connection>>,
etc.). In that way the domain classes are mapped to GME modeling objects. This means that the domain
metamodel is modified during the specification process and there is no possibility to define various presentation
notations for the same domain (for example, UML Sequence and Collaboration diagrams). Perhaps this method
is sufficient for creating environments for domain-specific modeling in the engineering world but it is not good
enough for the generic diagrammatical modeling environment.

The approach explained in this paper is in a sense a further development of the above-mentioned
approaches. In our approach at first the domain metamodel of the modeling area is built independently of the
diagram definition elements, which are built later and mapped to it. It should be emphasized that the domain
metamodel itself is never modified during this process and remains a separate fragment, with only new
associations attached.

2 Use of metamodels for editor definition
What does it mean to define an editor for a new diagram type? The result should have the same

functionality as a “hard-coded” editor that would be made for this type of diagram. The result also has to
conform to the modeling paradigm of this diagram. The paradigm consists of syntactic, semantic, presentation
and interpretation specifications. The main goal of our approach is to solve the following problem – to enable
building of several diagrammatic presentations from one domain (for instance, UML Sequence and
Collaboration diagrams). Our approach has the following basic principles. First, Graphical Diagramming Engine
is built as a separate component. Second, the domain metamodel is extended with other parts. Third, a new
concept of Mapping (from one part of metamodel to another) is introduced, with its own syntax and semantics.
Our approach is described in detail in following chapters.

 2

2.1 Graphical Diagramming Engine
We use a separate component – Graphical Diagramming Engine (GDE) – to support graphical

functionality of diagrams. This component is based upon complicated graph drawing algorithms [8]. This way
we separate the graphical functionality of diagram building, which is not domain content related. With such an
approach it is easy to add a new graphical functionality and to enforce more sophisticated graph building
algorithms.

Line

Diagram

Box

contains boxis in
1

*

refined by
refines

*

0..1

contains line

is in

1

* from
start of*

1

to
end of*

1

Figure 1. Interface metamodel of Graphical Diagramming Engine

The interface of GDE (see Fig. 1) supports creating a new and opening an existing diagram and allows
performing some simple operations with diagram elements (add, delete, move, etc.). GDE supports automatic
graph-drawing layouts of a diagram and enables graphical style modification of diagram elements. GDE
maintains also the storage of graphical information on diagram elements – position, shape and color, etc.

2.2 Domain metamodel
An editor definition for a new diagram type starts with the description of the logical structure of the

domain objects to be represented graphically by this diagram. This logical structure is described by a UML class
diagram, which typically is called the domain metamodel.

Class occurrenceAssociation
Name

Note
Text

Attribute
Name

Class Diagram

Class
Name

*

has
attribute

0..1
*

* starts from
*

1

ends at
*

1
is of*
1

has note
1

*
*

Figure 2. Class diagram metamodel

Figure 2 shows a simple example of such a domain metamodel for UML class diagram. This example will
be used in the paper to demonstrate the editor definition features. We have intentionally simplified the domain
metamodel (with respect to OMG standard) in order to make the explanation of our method easier to understand.

2.3 Parts of metamodel
It was already mentioned that our approach requires extension of the domain metamodel. The structure

of the extended metamodel is shown in Figure 3. The Domain metamodel is a separate part. Two new parts are
introduced. The Core metamodel corresponds to the Graphical Engine metamodel. The Presentation metamodel
allows keeping the logical information on diagram graphical structure in the metamodel and corresponds to the
specification of diagram presentation. There is only one Core in a metamodel but each diagram type has its own
Presentation metamodel. Relations of Core and Presentation metamodels are described in chapter 2.4. Each
Presentation metamodel is related with the corresponding Domain metamodel – this link is built based on
diagram notation and dealt with in detail in section 2.5.

Presentation part
Diagram type

Domain part
Diagram type

Core

Extended matamodel

1..*
1

1
1..*

*1 *

Figure 3. The structure of extended metamodel

2.4 Presentation part of Metamodel
Let’s look at the parts attached to the domain metamodel. They provide realization of the specification of

diagram presentation. The diagram notation determines which domain classes have to be represented in a
diagram of this type. Every such class has to be represented in the Presentation part by its own Presentation
class. The full logical information has to be kept in the metamodel (which boxes and lines are contained in the
specific diagram and how they are interconnected). Since the basic connection information is common to

 3

different diagram types, it is reasonable to define Core, which corresponds to the concept of an oriented graph.
Core Note and Anchor are added to the Core because note symbols are contained in all diagram types.

Core

Class presentation

Anchor

Diagram

BoxLine Core Note

Class symbol Class DiagramAssociation line

has note
to1

*

contains line

is in

1

*
contains box

is in

1

*
links

linked*
1

contains note

is in

1

*

contains anchor

is in
1

*refined by
refines
*

0..1

to
end of*

1

from
start of*

1

Figure 4. Presentation part of extended metamodel

The metamodel extensions - Core and Presentation parts of UML class diagram are shown in Figure 4.
The abstract classes of Core (Diagram, Box, Line) are used as superclasses of Presentation Metamodel classes.
By inheritance presentation metamodel classes gain their role in the world of diagrams. It can be seen that three
Presentation classes are introduced – Class Diagram, Class symbol and Association line. Notice that Core Note
and Anchor classes are taken from the Core. From now on presentation classes are shown as rounded rectangles.

Presentation metamodel is the only place to define graphical representation constraints of a specific
diagram, if required by the diagram notation. But if it is necessary to build several diagrammatic representations
of the same domain metamodel, each diagram requires its own Presentation metamodel.

2.5 Extended metamodel

Class presentation

Class domain

Association
Name

Attribute
Name

Class symbol

Class Diagram

Note
Text

Anchor Core Note

Class
Name

Class occurrence

Association line

D Class diagram

ends at
is target*

1

has note
to1
*

has note
for1

*

has attribute
attribute of0..1

*

starts from
is source*

1

contains anchor

is in1
* links

linked*
1

contains line

is in

1

* contains boxis in
1

*

contains note

is in

1

*from
start of*

1
to

end of*
1

is of
defines

*
0..1

CL map

Map

0..1

0..1

Note
map

Map

0..1

*

CL
map

Map

0..1

0..1

is in

contains note

*

0..1

is in
contains class
*

*
is in

contains association

*

1

CL
map

Map

0..1

0..1

Figure 5. Extended metamodel

Figure 5 contains the complete extended metamodel. Core is omitted only for the ease of perception,
and the inherited associations are drawn directly into the Presentation part. Core Note and Anchor classes with
the respective associations are put into the Presentation part. The Domain metamodel is in the lowest part of the
picture. In this and the following figures rectangles represent classes from the domain metamodel. The modeling
paradigm defines which domain classes have to be shown in a diagram. In chapter 2.4 we have built
corresponding presentation class for each such domain class. There are special associations called Mapping
links (bold in the figure) drawn now, which connect presentation classes to the respective domain classes.

3 Diagram definition facilities
The basic ideas of our metamodel-based editor definition facilities have already been outlined in [9].

The most important part of Editor Definition is the Diagram Definition Language. This language specifies the
graphical notation and editing functionality of the diagram type to be defined. In doing this it references
appropriate elements of the metamodel.

The extended metamodel already contains some information on graphical presentation of the diagram.
The Metamodel Presentation part contains Presentation classes. And there are the Mapping links to the Domain
classes. But a Mapping link only describes the fact that instances of the given class must be shown in a diagram.
The diagram changes during editing cause the following actions: class instances of the Presentation part have to
change in accordance with the logical structure of the diagram, class instances of the Domain part have to change
in accordance with the diagram notation, and both of these changes have to be mutually correct. Relation
patterns between the Domain and Presentation parts of the metamodel are defined by the diagram notation. To
support these patterns we have introduced Mappings of different types. Mappings are an important part of
diagram definition.

 4

3.1 Mapping
Let us explain what is meant by the concept of Mapping in our approach. A Mapping has a syntax and

semantics. The syntax is defined by mapping type. A Mapping contains references to metamodel classes and
associations (they have to correspond to the required type). The Mapping semantics (also dependent on the type)
describes which actions take place with instances of metamodel elements (described by mapping syntax) when
diagram is modified. Specific consolidation conditions also correspond to a mapping type. We have made a
library of standard mapping types that allows to realize notations of most of popular diagrams. Let us explain
some simplest mapping types used in our example.

3.2 Examples of simplest Mapping types
First some notations used in Figures 6 and 7: syntax components of a mapping are denoted by bold

(boxes and lines), presentation classes are denoted by rounded rectangles, domain classes denoted by rectangles.
Since a mapping is a component of the diagram definition, it can contain only references to the metamodel
classes.

The diagram notation in our example demands that a Class symbol may be drawn in every diagram for
either a new or existing Class. Class symbols can be connected with the Association lines and a Note may be
added to a Class symbol. There are also domain changes corresponding to each of those actions.

Box Mapping 1OT Box Mapping 1OToc

Class occurrence

Class symbolClass Diagram Class Diagram

D Class diagram D Class diagramClass

Core Note

Note

contains box
is in 1
*

is of
defines *
0..1

contains note
is in 1
*

is in
contains note*

0..1 is in
contains
class

*
*

Note map
Map
0..1

*
CL map

Map
0..1

0..1
CL map

Map
0..1

0..1
CL map

Map
0..1

0..1

Figure 6. Box Mapping examples

The simplest type of box Mapping is 1OT that corresponds to the situation where one presentation class
is mapped to one domain class. In Figure 7 to the left there is the Mapping for notes. The syntax part of the
Mapping contains Core Note class (from Presentation part), Note class (from Domain part) and the Mapping link
connecting both classes. To support correct incorporation into the diagram, the Mapping includes links to
presentation and domain diagrams. Let’s explain the semantics of this mapping. When a new note is created, the
following actions take place: an instance of the class Core Note located in the Presentation metamodel is created.
This instance is connected by is_in link to the relevant diagram instance. An instance of the Note class is created;
Mapping link Map is created. Fact that a diagram contains a note must be kept in the Domain part also. So, the
relevant instance of the domain diagram must be found. It can be found by using the Mapping link of the
presentation diagram. Now we can draw the link between Note instance and D_Class_Diagram instance.

Box mapping type 1Otoc enables the occurrence situation, which differs from 1OT by the possibility to
create an occurrence of an existing Class instance or a new Class instance together with the occurrence. In the
case of an existing class the domain metamodel link (is_of) to the class instance is added. In the case of a new
class both the instance and the link are created.

Presentation parts of both mapping types are syntactically equivalent. The structure of the metamodel
Presentation part implies that Presentation parts of all box-mapping types are syntactically equivalent.

Line Mapping 1OTLine Mapping 1LT

Association line Class symbolClass symbol

Class occurence Association Class occurrenceClass occurrence

Class symbol Anchor Core Note

Note

has note
to1

* links
linked*

1
from

start of *
1

to
end of*

1

starts from
is source *
1for

has note *
*

ends at
is target*

1
CL map

Map
0..1

0..1
Note map

Map
0..1

*
CL map

Map
0..1

0..1
CL map

Map
0..1

0..1
CL map

Map
0..1

0..1

Figure 7. Line Mapping Examples

In line examples (Figure 7) is_in links are omitted, they are created the same way as in the case of
boxes. Line formation is interesting in that it implicitly uses box Mappings. This is necessary to find the “domain
endpoints” for a line at the instance level. Therefore each mapping type has one “main” Mapping link (in general
Mappings may contain several Mapping links).

There is a box1 where the line starts, a box2 where the line ends and the line itself if any line is to be
drawn. Relevant object instances in the domain part can be found using the existing mappings for box1 and
box2. Next actions depend on the Mapping type. If the line Mapping type is 1LT (the case of Anchor), the link
has_note is created which interconnects these object instances at the domain level. If the line is represented in
the domain by a class (Association line), then the class (Association) instance is created and it is connected to
the relevant domain object instances (Class occurrences) via the links defined by the Mapping.

Presentation parts of all line Mapping types are syntactically equivalent. Therefore, the Presentation
part of the Mapping will be called the Mapping source. Each type of Mapping has a syntactically different target
part. Mapping target part consists of the Mapping link and the relevant Domain classes and associations.

 5

3.3 Diagram definition
The mapping concept introduced in the previous section permits to define a separate diagram element.

The complete information about a specific diagram is contained in the diagram definition. A diagram definition
is specified by means of the Diagram Definition Language. The diagram definition for the specific diagram type
is built using the diagram configuration tool.

Diagram definition
*Presentation Diagram
*Diagram Mapping link
*Domain Diagram

Line Constraint In

Line Constraint Out

Compartment
Definition

Palette

Box Definition
*Presentation Box
*Presentation Is In link

Consolidation
Definition

Line Constraint

Compartment
Definition

Default StyleDefault Style
Box Mapping target

Mapping Type

Line Definition
*Presentation Line
*Presentation Start link
*Presentation End link
*Presentation Is In link

Line Mapping target
Mapping Type

Palette element
Icon
*Default Style

1
1

*

*

*
*

*

1..*

*

1..*

*

11

*

Figure 8. Structure of diagram definition

The structure of a diagram definition is shown in Figure 8. References to the metamodel classes in this
figure are denoted by *Name. A specific Diagram definition contains references to the extended metamodel
classes (in our example *Presentation diagram=*Class diagram and *Domain diagram=*D class diagram).
Metamodel classes have to conform to the required type, for instance the Presentation diagram has to be a
subclass of the Diagram. The Diagram definition may contain several Box and Line definitions, which are
related to the corresponding Presentation classes. Each Box (Line) definition has the appropriate mapping type.
Box (Line) definition contains the Mapping source as an attribute. But the Mapping target is represented by a
separate class, because it can have a different structure for each mapping type.

Each Box (Line) definition normally has one Default Style. The Default Style contains all the necessary
graphical style information (to be used by the Graphical Engine) to display a box. The element of the palette
contains pointer to the Default Style. If required by the Presentation specification, it is possible to build several
Default Styles for the same Presentation Class, with a separate palette element for each style.

The Compartment definition is based on the metamodel, it is defined as a navigation expression. For
instance, in our example the name of the class can be found this way: ”Class_symbol.map.class_occurrence.
is_of.Class.Name”. More complex compartment definition patterns are also possible.

4 Conclusions
The described modeling tool definition method is powerful enough to define complete UML notation

(including alternative presentations of interactions as UML Sequence and Collaboration diagrams). In addition,
processes can be presented both as UML Activity diagrams and GRADE BM Process diagrams. The described
Mapping library is sufficient to define diagrams of any reasonable type, but in case of necessity this library can
be easy extended to more complicated Mapping types. The described method allows also an efficient
implementation (in the sense of run-time necessary to build the diagrams from real amounts of data) and the
practical experiments have demonstrated that the tools which use the above described definition method can
reach an industrial quality.

References
[1] Rumbaugh, J., Booch, G., Jackobson, I. The Unified Modeling Language Reference Manual, Addison-Wesley (1999).
[2] Mayer, R., Menzel, C., Painter, M. IDEF3 Process Description Capture Method Report,

http://www.idef.com/Downloads/pdf/Idef3_fn.pdf, Knowledge Based Systems Inc (1995).
[3] Scheer, A.-W. ARIS Business Process Modeling, 3rd edn. Springer-Verlag, Berlin Heidelberg New York (2000).
[4] Barzdins, J., Tenteris, J., Vilums, E. Business Modeling Language GRAPES-BM (Version 4.0) and its Application,

Dati, Riga (1998).
[5] Ledeczi A., Maroti M., Bakay A., Karsai G., Garrett J., Thomason IV C., Nordstrom G., Sprinkle J., Volgyesi P. The

Generic Modeling Environment, Workshop on Intelligent Signal Processing, Budapest, Hungary, May 17, 2001.
[6] DOME Users Guide, http://www.htc.honeywell.com/dome/support.htm.
[7] Esser, R. The Moses Project, http://www.tik.ee.ethz.ch/~moses/MiniConference2000/pdf/Overview.PDF.
[8] Kikusts, P., Rucevskis, P. Layout Algorithms of Graph-like Diagrams for GRADE-Windows Graphical Editors,

Lecture Notes in Computer science, Vol. 1027. Springer-Verlag, 1996, pp.361-364.
[9] Kalnins,A., Barzdins,J., Celms, E., Lace, L., Opmanis, M., Podnieks, K., Zarins, A. The First Step Towards Generic

Modelling Tool, Proceedings of Baltic DB&IS 2002, Tallinn, 2002, v. 2, pp. 167-180.

DIAGRAM DEFINITION FACILITIES BASED ON METAMODEL
MAPPINGS

Edgars Celms, Audris Kalnins, Lelde Lace

University of Latvia, IMCS, Riga, Latvia
{ Edgars.Celms, Audris.Kalnins, Lelde.Lace }@mii.lu.lv

The paper proposes a new technique for diagram definition in a generic modeling tool,
which permits to build several diagrammatic presentations for one domain. The main idea of the
proposed method is a mapping from presentation to domain part of a metamodel. The paper
describes the semantics of mappings, using a fragment of UML activity diagram as a definition
example. In conclusion suggestions are given how the approach could be applied in MDA context.

 Introduction
Besides the traditional modeling tools built for a specific modeling notation such as

object modeling in UML, business modeling etc. there is a significant niche for generic
modeling tools where any modeling notation can be supported without programming in the
traditional sense. Typically the modeling notation (language) in generic modeling tools is
specified by means of a metamodel, which is then augmented by a tool specific annotation,
markup etc, to define the actual tool functionality. The main application area for generic
modeling tools is domain-specific visual languages for various industry domains. The current
key players in this area are ISIS GME [1], DOME [2], MetaEdit [3] etc, which have gained
certain maturity now.

The classical graphical modeling by means of sets of related diagrams can also be
considered to be a domain-specific area, especially the business modeling, where there is no
one leading modeling language, but a number of quite similar competing notations. UML
with its Activity diagrams is just one of the possible notations there. Therefore the generic
modeling approach is valid also for the domain of business modeling. This domain poses
some specific requirements for the tool, the most important one being the necessity to
represent the same domain concepts via several graphic notations simultaneously. The paper
discusses the Generic Modeling Tool (GMT), developed by University of Latvia together
with Exigen company, built especially for the abovementioned purpose. Namely the
requirement for access to the same model data via several graphical notations demands a
number of specific solutions for defining the relations between diagrams and domain
metamodel (the diagram definition language), which can not be so easily accomplished in the
well-known metamodel-based tools [1,2,3]. For example, there it is practically impossible to
have some domain object represented as a symbol in one notation and as a line in another.

The main such idea is the mapping between the parts of the metamodel – the domain
and the presentation part (the latter ones may be several). Some preliminary presentation of
the approach has been given in [4,5], but this paper concentrates on precise definition of the
mapping semantics, using UML and OCL. Though developed completely independently, the
style of the semantics definition bears some similarity to the more theoretical paper [6],
where the concept of set-theoretical relation between metamodel parts is used.

It should be noted that the requirement for alternative graphical notations is present in
the UML itself (including the version 2.0) – interactions can be shown both as sequence and
collaboration diagrams, there are alternative forms of showing action performers in activity
diagrams. The paper will demonstrate the mapping idea on a small fragment of UML 2.0
activity diagram metamodel [7], finally showing how the same model data could be presented
as ARIS eEPC [8] diagrams – the most popular business process notation.

Today the hottest area in UML related modeling is MDA [9]. The paper concludes
with some suggestions, how the proposed approach can be used for this goal too.

 Structuring of metamodels
Strictly speaking, a metamodel for a modeling notation such as UML describes only the

domain concepts – the abstract syntax in other terms. But any modeling tool must manipulate
also the elements of the diagrammatic presentation – the concrete graphical syntax. UML
documents [7] does not specify that part of the metamodel, a very generic description of the
presentation part is given in [10], however with another goal in mind – defining an easy
interchange format for graphics. Therefore as a rule modeling tools internally use another
presentation metamodel, and so it is in our approach. Similarly to [10], we assume a diagram
to be a directed graph consisting of nodes (boxes) and edges (lines). The presentation
metamodel is also the only natural place, where various constraints on diagram building can
be easily specified.

In our approach any metamodel is built according to MOF standards – it is a class
diagram using the syntax features permitted by MOF. The elements of a metamodel may be
grouped into packages, so we can speak of domain and presentation packages. Fig. 1 shows
the domain package for the UML 2.0 activity diagram (actually a small fragment of the
original one in [7], but sufficient for demonstrating the ideas). It should be reminded, that the
Activity class plays the role of the “domain diagram” – its instances correspond to instances
of visible activity diagrams.

ControlFlow
name:String
guard:String

Activity

CallBehaviorActionBehavior
name:String

owner

edge

 1

 *
target

incoming
 1

 *

source
outgoing 1

 *

owner

action

 1

 *
behavior

 *
 1

Figure 1. Domain package for UML activity diagram

To reflect the fact that any diagram is a graph, a special DiagramCore package is
introduced which defines the general properties of a graph. Any specific presentation package
inherits these properties from the core and may add some specific features required by the
graphic syntax (actually the DiagramCore is more than a graph – it supports element nesting
etc., but we omit this for simplicity). The DiagramCore elements also contain attributes
characterizing their geometrical properties, but we ignore them here. Fig. 2 shows the
DiagramCore package together with the presentation package for activity diagram.

DiagramCore

ActivityPresentation

ControlFlowLine

Box

ActionSymbol

Line

ActivityDiagram

Diagramoutgoing
start *

 1

diagram line 1 *

diagram

symbol 1
 *

incoming end * 1

Figure 2. Diagram core and Activity presentation packages

Similarly, for any diagrammatic notation there is one domain package and one or more
presentation packages, all of which inherit their essential properties from the DiagramCore.
In a sense, it is an extension of the original domain metamodel, but with the domain packages
left unmodified. The only elements, which will be added to the domain part of the

metamodel, will be some new associations – mapping associations, which are the basis of our
approach and which will be discussed in the next sections.

One more consequence of the DiagramCore is that we can use a separate component –
Graphical Diagramming Engine (GDE) – to support the graphical functionality of
diagrams. This component is based upon complicated graph drawing algorithms [11] and
implements all tool features, which can be expressed in terms of extended directed graphs.
This way we isolate the pure graphical functionality of diagram building. GDE supports
creating a new and opening an existing diagram and allows to perform all graphical
operations with diagram elements (add, delete, move, etc.). GDE supports also automatic
high quality layouts of a diagram and enables style modification of diagram elements.

 General principles of mapping
The domain and presentation parts of the metamodel for a modeling notation must be

linked together to define the real modeling functionality. In most cases, a class in the domain
part corresponds to a class in the presentation part, but these correspondences may be also
more complicated. The main facility for defining a relation between the domain and
presentation parts of the metamodel is mapping.

In the simplest case, the mapping consists of a class in the presentation package, the
corresponding class in the domain package and an association connecting them. It expresses
the fact that as soon as there is a presentation class instance (e.g., action symbol) there must
also be the corresponding domain class instance (CallBehaviorAction) and vice versa, and
they must be linked by the association instance (link). Typical association multiplicities are 1
– 1 (for one graphical notation). The associations (called mapping associations), navigable
to both ends, form the base for efficient data management in the Generic Modeling Tool.

However, there is more semantics related to a mapping. Thus, the action symbol must
be in the diagram, which is mapped to the activity containing the action. Even more
complicated rules constrain mappings for lines, where natural conditions tie a line mapping to
its end box mappings. Thus, mappings form hierarchical structures, corresponding to basic
diagrammatic constructs or patterns. Each such pattern corresponds to a mapping type in our
approach. Some basic mapping types will be discussed in the next section. Each of these
mapping types will have its syntax – the involved metamodel elements, and semantics –
what constraints must be true for the mapping to be in place (or in other words, what must be
done, if one of the mapping ends has changed).

The mapping semantics is based on the hierarchy of mapped elements. There is one
common principle in this semantics, so called scaffolding principle, explained in Fig. 3. The
scaffolding principle specifies how mappings must be consistent with the element hierarchy
on both ends. The explanation of the principle to a certain degree reminds the relation
principle in [6], but is simpler.

A B

AContainer BContainerACforBC
BCforAC 0..1

 0..1

AforB
BforA 0..1
 0..1

owner
contents

 1
 * contents

owner

 *

 1

Figure 3. Scaffolding principle for mappings

Let A and B be classes in the presentation and domain packages respectively, involved
in a mapping, and let AContainer and BContainer be their corresponding owners in the
hierarchy (typically, a diagram and its domain equivalent), also having their own mapping.

Both mapping associations are displayed bold. These elements are assumed to be really
present in the metamodel. Fig. 3 actually represents a general scaffolding schema.

In a totally correct model the mapping association multiplicities must be 1 – 1 (we
consider here the one-one case, the one-to-many case is a completely different pattern).
However, for an in-process model (being modified by the tool) some mapping instances may
be temporary missing, therefore multiplicities in the schema are set to 0..1.

According to the principle, the following two constraints given by OCL expressions
must always hold for the scaffolding schema involving the abovementioned mappings:

Context A inv:
BforA->notEmpty() implies owner.BCforAC = BforA.owner

and
Context B inv:
AforB->notEmpty() implies owner.ACforBC = AforB.owner

These constraints express the fact that A to B mapping is consistent with the
corresponding container mapping – e.g., a symbol maps to an action in the right “domain
diagram”.

The most important condition for this schema is the local completeness for one
container (diagram), which can be expressed by the following OCL constraint:

Context AContainer inv:
contents -> forAll (a | a.BforA->notEmpty()) and
BCforAC->notEmpty() and
BCforAC.contents -> forAll (b | b.AforB->notEmpty())

The constraint says that for this container all its elements are mapped (consistently with
the container mapping) and, in addition, are mapped to all elements of the partner (domain)
container – the mapping is complete both ways for the given container. Mapping for any
diagram type will try to maintain its local completeness for the current diagram instance.

The scaffolding principle is the base for all mapping types to be discussed in the next
section.

 Mapping types for the activity diagram example
 Now the mapping types to be used for the activity diagram example can be defined.

The base for all other mappings is the diagram mapping – a special singleton mapping.
Fig.4 shows the diagram mapping for activity diagrams. It says that each activity diagram
instance must correspond to an Activity class instance, having a consequence that creating a
diagram in the tool must invoke a new Activity instance creation.

ActivityDiagram Activity
diagram

mappedActivity 0..1
 0..1

Figure 4. Diagram mapping

 The simplest non-trivial mapping type is for a kind of diagram symbols to be mapped
to a domain metamodel class. In our simplified activity diagram example there is only one
symbol kind – ActivitySymbol, which must be mapped to the CallBehaviorAction in the
domain. This mapping type will be named 1OT (symbol to 1 Object Type).

Each mapping type defines its mapping schema, based on the scaffolding principle. The
mapping schema contains a number of metamodel elements both from presentation and
domain packages – the mapping syntax, which must be substituted by concrete metamodel
elements when concrete mapping is defined. The mapping semantics is, firstly, inherited
from the scaffolding principle (its constraints), and more constraints can be added for a
mapping type definition. But a concrete mapping, as a rule, adds no OCL constraints
(however, there is such a possibility in the modeling tool), so concrete diagram definitions

typically requires no explicit use of OCL and constraints inherited from mapping types can be
implemented in a more efficient way by the modeling tool.

Fig. 5 shows the mapping schema for the mapping type 1OT. The mapping syntax (list
of parameters) contains the classes Diagram and Symbol, which must be located in the
metamodel presentation package, and the classes DomainDiagram and DomainElement,
which must be in the domain package. The two associations (Diagram to Symbol and
DomainDiagram to DomainElement) are also part of the syntax and must be found in the
metamodel. The mapping association for diagrams must already be defined. But the mapping
association for the Symbol (actually, for its real counterpart in the metamodel) must be
specially created before a concrete mapping is defined.

Symbol DomainElement

DomainDiagramDiagram

diagram
symbol

 1
 *

owner
element

 1
 *

symbol
mappedSymbol 0..1

 0..1

diagram
mappedDiagram 0..1

 0..1

Figure 5. 1OT Mapping schema

The mapping type 1OT adds no new constraints to those inherited from scaffolding
schema. Let us remind, that it requires also the local completeness condition to be true for a
mapping to be complete. In practice, these constraints imply that creating a new symbol in a
diagram means also the creation of the domain element – thus the “operational semantics”
required by the tool is also defined by the mapping type.

There is also a variation of the mapping type 1OT named 1OTD (Object Type with
Definition), which adds one more class in the domain, linked by an association to the
DomainElement), this additional class serves as a common “definition” for the domain
elements. Namely the variation 1OTD is used for the activity example – see the concrete
action mapping in Fig. 6, with Behavior in the role of the definition (the association
refinement is explained below). Associations inherited from the DiagramCore here (and in
the next figure) are shown directly between the presentation classes.

ActivitySymbol

Activity

CallBehaviorAction

Behavior
name:String

ActivityDiagram

diagram
symbol

 1
 *

owner

action

 1

 *

diagram
mappedActivity 0..1

 0..1

symbol
mappedAction 0..1

 0..1

refinement

refinedSymbol

 0..1

 * behavior

 *

 1

Figure 6. Action mapping according to 1OTD

We will demonstrate one more extension of the type 1OT – 1OTR (1OT with
refinement). An action referencing another Activity (not a simple Behavior) implies that the
corresponding ActionSymbol must be displayed as refined (with the rake icon in it) and must
support hyperlinking to the appropriate diagram. Due to restricted space the definition of
1OTR is not given, just its application is shown in the same Fig. 6. This extension requires
new OCL constraints, which here will be demonstrated directly in the application (not in the
schema definition, as it in fact is). The idea is that we select an association in the presentation
package (with the role refinement), which makes the ActionSymbol to be refined. This
association should be paired to an association in the domain between the relevant classes, in
this situation the same behavior association may be used, in case if it leads to another Activity
(as a subclass of Behavior). The same refinement association also enables hyperlinking to the
appropriate diagram. 1OTR schema requires the following additional OCL constraints (here
shown in the concrete context of Fig. 6)

Context ActionSymbol inv:
refinement->notEmpty() implies (mappedAction.behavior.oclIsTypeOf(Activity) and
 refinement= mappedAction.behavior.diagram)

The next essential mapping type is for lines in diagram, which correspond to classes in
the domain. This mapping type is named L1OT. To save the space, we again do not present
separately its schema, but show its application for defining control flows in activity diagram.
The basis again is the scaffolding schema, but a similar principle here has to be applied
directly in a specific context, in order to specify that line ends (the boxes to which the line is
attached) are mapped accordingly. Fig. 7 shows this definition.

Activity

CallBehaviorActionActionSymbol

ControlFlowLine

ActivityDiagram

ControlFlow
name:String
guard:String

diagram
symbol

 1
 *

target

incoming

 1

 *

source

outgoing

 1

 *

end

incoming

 1

 *

start

outgoing

 1

 *

owner

action

 1

 *

owner

edge

 1

 *

diagram

line

 1

 *

diagram
mappedActivity 0..1

 0..1

symbol
mappedAction 0..1

 0..1

line
mappedFlow 0..1

 0..1

Figure 7. Control flow Line Mapping

A direct application of the scaffolding schema here links the line mapping to the
diagram mapping, with the corresponding constraints inherited. But the action mapping is
repeated here to specify the line ends. In this simple example there is only one symbol type,
but if a control flow could be drawn between different symbol types (as it is in real activity
diagrams), all these mappings had to be present in the definition. However, this is required
only for the semantics definition, in real diagram definition facility only the relevant pairs of
symbol types are to be listed (and also the relevant association roles in the domain), the
corresponding OCL constraints are inherited from the L1OT schema (here shown only as its
application in Fig. 7). The additional OCL constraints express the fact that both the line start
and end boxes are mapped to domain elements, which serve as a source and target
respectively for the domain image of the line. The constraints are the following:

Context ControlFlowLine inv:
start=mappedFlow.source.symbol and
end= mappedFlow.target.symbol

Here the assumption is made that start leads to the “geometrical” start box of the line.
The described mapping types are sufficient for defining this simplified activity

diagram. But certainly our environment has more mapping types, which cover all the typical
diagramming patterns (the mapping type library contains about 20 such mappings). All of
them can be defined in a way similar to those presented in this paper – their syntax as
mapping schemas and semantics as OCL constraints.

 Diagram definition facilities in GMT
Mappings between the domain and presentation packages of the metamodel form the

basis for diagram definition in our GMT approach. To define a diagram type, mappings for
the diagram itself and all its elements – boxes and lines must be defined. To define a mapping
in GMT environment, one has to select the appropriate mapping type from the library and to
specify all the required syntax elements – appropriate metamodel classes and associations.
The semantics of each mapping type is predefined in GMT (in the way presented in this
paper), therefore there is no need for explicit OCL in normal cases. Certainly, for each
mapping a lot of technical details may be specified – one or more default styles for diagram

elements, corresponding icons in the palette etc. For lines an important aspect is to specify,
between which pairs of box types they may be drawn. Normally it is just a list of type pairs.
But it is also one of the places where explicit OCL may be of use, in order to specify context
dependent constraints, especially on multiplicities, present in some modeling notations. These
constraints typically are defined in the presentation package. Some other diagram integrity
constraints expressible in OCL are also available. A special case of line mapping is that
mapped to a “pseudoline” – box nesting, available in our core and used e.g., for nested states
in UML statecharts.

Yet another aspect is how the model data – attributes of domain classes and contents of
subordinate classes (e.g., class operations) are mapped to graphical text slots of diagram
symbols (lines) – compartments. For each compartment an OCL-style “navigation
expression” points to the domain attribute, which supplies that value. For example, in the
case of mapping 1OT this expression contains just the role name of the mapping link and the
attribute name. More than one data supplier expression can be used for complex
compartments, and navigation expressions yielding a set of values are used for “list
compartments”, such as class attributes or operations in UML. The way how the actual string
in a complex compartment is composed from the selected data values is specified by means
of a “pattern” - a simple regular grammar. Certainly, the definition component in GMT
always prompts the most typical values for compartment definitions, so in simple cases
nearly everything is provided automatically.

When the appropriate diagram definitions are supplied, GMT acts as a commercial
modeling tool for the given notation, with all typical services enabled.

 Alternative diagrammatic representations
One interesting aspect of GMT is the possibility to have different graphical

representations for the same domain data. This is accomplished by defining more than one
mapping (including a diagram and all of its elements) for a domain diagram, such as Activity.
Then all of these mappings are active simultaneously, and all the representations can be used
to view or edit the model data. Which views are really visible, is defined via the model
browser (tree) specifications – a topic out of scope for this paper. When the model (domain)
data are modified through one of the diagram views, the alternative ones have to be
automatically updated also – this process is called consolidation in GMT. Since the
mappings actually are bidirectional (due to symmetrical constraints in the scaffolding
schema), the updates of diagram elements when domain elements change in general are
straightforward. In some special cases OCL preconditions for consolidation may be used. But
certainly all this assumes the existence of a “domain diagram” (Activity, StateMachine,
Interaction etc), which determines what really must be inside one graphical diagram. Though
some other patterns (mapping types) in GMT permit a situation such as for UML class
diagrams where no “domain diagram” exists, alternative representations require such one.

To give some insight into alternative graphical representations, we will sketch briefly,
how our simple activity domain could be represented via simplified ARIS eEPC [8] diagrams
(see example in Fig.10). Here we assume that a (mandatory) named event symbol (hexagon)
between two function (=action) symbols actually represents a named control flow (possibly
with a guard). The event could be treated also as an object flow in activity notation, but then
eEPC had no control flows at all and the alternative mapping would be nearly the same as
that for activity diagram with object flows, having only different presentation classes. Fig. 8
shows the set of mappings between a simplified eEPC diagram presentation package and the
same activity domain (with DiagramCore in the leftmost column). We remind that mapping
associations are displayed bold in the picture.

Diagram

Box

eEPCdiagram Activity

FunctionSymbol

Line

EventSymbol

Behavior
name:String

InEventLine

OutEventLine

CallBehaviorAction

ControlFlow
name:String
guard:String

ediagram
mappedActivity 0..1

 0..1

diagram

symbol

 1

 *

end

incoming

 1

 *outgoing

start

 *

 1

diagram

line

 1

 *

behavior

 *

 1

linestart
startMap *

 1

owner

action

 1

 *

linestart

startMap

 *

 1

fSymbol

mappedAction

 0..1

 0..1

source

outgoing

 1

 *

target

incoming

 1

 *

owner

edge

 1

 *

event

mappedFlow

 0..1

 0..1

Figure 8. ARIS eEPC Mapping to activity domain

It can be seen, that the eEPC function symbol is mapped in a normal way (as for
activity diagram) to CallBehaviorAction, using the mapping type 1OTD. The event symbol is
mapped to ControlFlow (which was mapped to a line in activity diagram!) – the mapping
type is 1OT. The attributes of ControlFlow – name and guard are combined into the event
name compartment. Both lines types in eEPC (from function to event and vice versa) have a
new mapping type L1LT – each of them actually corresponds to a domain association, but not
a class. This type of mapping is based on so-called startMap – a specially built association to
the domain class, where the desired association starts, with the required association role
specified as a constraint (e.g., target from ControlFlow for the inEventLine). It should be
noted that L1LT–mapped lines can have no texts – there is no place for data in the domain.

Receive Order

Fill Order Ship Order

Close Order

Order Filled

[order
accepted]

[order rejected]

Order
shipped

Figure 9. Activity diagram example

Thus the alternative mapping of the activity domain has been defined (certainly, the
mapping details are visible only in the real GMT definition component). The consequences
for GMT are the following – if we draw an activity diagram (in Fig.9), then the equivalent
eEPC diagram (in Fig. 10) is drawn automatically via the consolidation process mentioned
above. The activity diagram is clearly a fragment of the real notation – only the elements
defined in Fig. 1 and 2 are used.

Order accepted Fill Order Order Filled

Ship Order

Order shipped Close Order

Receive Order

Order rejected

Figure 10. Equivalent ARIS eEPC diagram example

Alternative mappings for the same domain, provided in GMT, can be extended to
complete UML 2.0 activity diagram (actually, its business modeling subset, full domain is
much richer than that meaningful for ARIS) and complete ARIS eEPC diagram. In most
cases the mappings are quite similar (the same domain concept is represented by boxes in
both notations, e.g., flow join symbol and AND-rule). The non-trivial cases are when a box is
used in one notation and line in another – besides the one explained in Fig. 8 a similar
problem is for performer notation.

In general, when a domain for one modeling notation is found to be usable (from the
semantics point of view) for another one, the building of alternative mapping can be started.
It is done by drawing a candidate mapping association from a presentation class to the
domain class, which most naturally corresponds to this presentation class and contains the
main data to be shown in the symbol. Then, looking at adjacent domain classes, which may
also contain relevant data or determine the connections, the appropriate mapping type from
the library is found (there may be cases, when one presentation class maps to a structure of 2
or 3 domain classes). And conversely, two presentation classes may map to the same domain
class (the “derived” mapping types are also provided). For lines, the possibility for L1LT
mapping (as in Fig. 8) must also be checked, as well as “pseudoline” (box nesting) case. All
this determines the supported variations between both notations – what is one symbol in one
notation, can be several ones in another, a box may become a line and vice versa, but there
must be some “local correspondence” anyway. Currently there is no formal procedure for
deciding whether an alternative mapping can be built, it is a subject for future research.
Simply, in all practical situations we have succeeded – it is more a question of the mapping
library completeness. And, certainly, the main question – whether two modeling notations are
semantically equivalent and in principle can have a common domain – is completely out of
scope for this formal approach.

It should be noted that a price has to be paid for the universality of our approach – even
in simple cases where no alternative representations of a domain are planned, two sets of
classes – for domain and presentation are required by the basic technology. To avoid this
excessive metamodel complexity for simple notations, a special “identity mapping” – domain
and presentation classes coincide – is also provided in GMT.

 Conclusions
The described method of diagram definition by mappings from presentation to

domain packages is powerful enough to define the complete UML notation, including
alternative presentations of interactions as UML sequence and collaboration diagrams. In
addition, processes can be presented both as UML activity diagrams and traditional business
process notations, such as ARIS eEPC diagrams. The approach has been tested in the GMT
environment, yielding a modeling tool of industrial quality, including the efficiency for large-
scale models. The alternative notations were really used for business modeling purposes,
where different members of a team were provided their favorite notation. The mapping
library occurred to be sufficient for diagrams of all reasonable types.

However, the approach is applicable also to a completely different area of modeling –
that of MDA [9]. There series of models, typically called PIM (platform independent model)
and PSM (platform specific model) are built, in order to provide a model transformation
based path from requirements to system code. A typical example of a fragment of such path
could be the transition from a UML class diagram for persistent data of a system (in the role
of PIM) to SQL-based Data model (or ER model) in the role of PSM. Since not only the
forward path is important in practice, but also the reverse one, it is reasonable to consider
them as two representations of common domain data. Then classes correspond to tables,
associations to relations based on foreign/primary keys and so on, each presentation showing

only the relevant aspects of the common domain. This example can completely be covered by
the proposed approach and has been tested within GMT. However, some other MDA
applications require true transformations of models at the domain level. We expect that the
proposed metamodel mapping principles can be applied in this completely new context too.

References
[1] Ledeczi A., Maroti M., Bakay A., Karsai G., Garrett J., Thomason IV C., Nordstrom

G., Sprinkle J., Volgyesi P. The Generic Modeling Environment, Workshop on
Intelligent Signal Processing, Budapest, Hungary, May 17, 2001.

[2] DOME Users Guide, http://www.htc.honeywell.com/dome/support.htm
[3] MetaEdit resources, http://www.metacase.com/papers/index.html
[4] Kalnins A., Barzdins J., Celms E., Lace L., Opmanis M., Podnieks K., Zarins A. The

First Step Towards Generic Modelling Tool, Proceedings of Baltic DB&IS 2002,
Tallinn, 2002, v. 2, pp. 167-180.

[5] Lace L., Celms E., Kalnins A. Diagram definition facilities in a generic modeling tool,
Proceedings of International Conference Modelling and Simulation of Business
systems, Vilnius, 2003, pp. 220-224.

[6] Akehurst D. H, Kent S. A Relational Approach to Defining Transformations in a
Metamodel. In J.-M. Jezequel, H. Hussmann, S. Cook (Eds.), Lecture Notes in
Computer science, Vol. 2460. Springer, 2002, pp.243-258.

[7] Unified Modeling Language: Superstructure (version 2.0),
http://www.omg.org/docs/ptc/03-08-02.pdf

[8] Scheer, A.-W. ARIS Business Process Modeling, 3rd edn. Springer-Verlag, Berlin
Heidelberg New York (2000).

[9] MDA Guide Version 1.0.1, http://www.omg.org/docs/omg/03-06-01.pdf
[10] UML 2.0 Diagram Interchange, http://www.omg.org/docs/ad/03-02-07.pdf
[11] Kikusts, P., Rucevskis, P. Layout Algorithms of Graph-like Diagrams for GRADE-

Windows Graphical Editors, Lecture Notes in Computer science, Vol. 1027. Springer-
Verlag, 1996, pp.361-364.

Generic Data Representation by Table in Metamodel

Based Modelling Tool

Edgars Celms
Institute of Mathematics and Computer Science,

University of Latvia

Raina bulv. 29, LV-1459, Riga, Latvia

Edgars.Celms@mii.lu.lv

Abstract: The foundation of a metamodel based modelling tool is its flexible facility to declaratively

define the modelling method, notation and tool support. One of the problems for such
tools is a generic data representation by table. The paper proposes a method for
declarative definition of a table based on the logical metamodel. The most interesting
aspect of this definition is the specification of element selection criterion. Some practical
examples of table specification by the described method are also explained.

Keywords: modelling tool, generic table editor, metamodel, editor definition

1. Introduction

Today there are a lot of modelling tools on the market. Modelling tools are

designed to provide all what is necessary to support major areas of modelling,

including business process modelling, object-oriented and component modelling with

UML[1], relational data modelling, and structured analysis and design, etc. Why it is

not sufficient to use “hard-coded” modelling tools? Let us consider, for example, the

situation in business modelling. On the one hand there exist several well-known

business modelling languages (IDEF3[2], ARIS[3] etc.), each with a set of tools

supporting it. But there are also Activity diagrams in UML, whose main role now is to

serve business modelling. There is GRADE BM [4] – a specialized language for

business modelling and simulation. Thus for the area of business modelling there is no

one best or most used language or tool, each of them emphasizes its own aspects. For

example, GRADE BM presents very convenient facilities for specifying performers of

a task and its triggering conditions. However any new language feature does not come

for free, the language becomes more complicated for use. Therefore one universal

business modelling language, which would support all wishes, would become

extremely difficult for use in simple cases. UML for this situation offers one

ingenious solution – stereotypes for adjusting the modelling language to a specific

area. In many cases the idea works perfectly, it is well supported in several tools

including GRADE. The latest version of UML - 1.4 extends the notion of stereotype,

by assigning tagged values to it and grouping stereotypes into profiles (thus actually

extending the metamodel). But currently no tool fully supports it and already new

version of UML – 2.0 is coming with significant changes, particularly in the area of

Activity diagrams.

The problem with flexible modelling environment is even more urgent for

domain-specific modelling, where countless special notations are used for separate

domains.

There are probably several ways to solve such problem.

You can develop a modelling tool specially for any specific modelling method

but this way can be very time and cost consuming.

You can make a tool as universal as possible to support all needs. For

example, there is ARIS tool by IDS prof. Scheer, whose "home notation" is the ARIS

BM language. But it supports also the UML notation with Activity diagrams, as well

as numerous modifications of the main process notation via eEPC (office processes,

industrial processes etc). In general, ARIS tool can be characterised to be extremely

"wide", with about 110 different types of diagrams, and frequently having about 100

different symbol types per diagram (most, in fact, are predefined stereotypes of the

basic ones). At the same time, there are practically no facilities for defining new

stereotypes. In practice such a universal tool is difficult for use in simple cases.

An alternative way is a completely metamodel based generic modelling tool

(previously called metaCASE). Such a tool has no built-in modelling methodology. It

has to be filled up with specific metamodel and additional information to start

modelling something.

2. Metamodel Based Modelling Tool

In this paper some aspects of the metamodel based approach to building

flexible modelling environments are explained. The metamodel concept has become

popular in recent years especially due to the principle used in UML definition [1].

What is a metamodel in a metamodel based modelling tool? To put it in short, a

metamodel is a class diagram containing all modelling concepts, their attributes and

their relationships. A metamodel based tool has no built-in modelling methodology. It

has to be filled up with specific metamodel and additional information to start

modelling something.

An earlier alternative name for the approach is metaCASE. Let me mention

the key research in this area. Perhaps, the first similar approach has been made by

Metaedit [5], but for a long time its editor definition facilities have been fairly limited.

The latest version named Metaedit+ now can support definition of most used diagram

types, but via very restricted metamodelling features (non-graphical), the resulting

diagrams corresponding to the simplest concept of labelled directed graph. The most

flexible definition facilities (and some time ago, also the most popular in practice, but

now the tool is out of market) seem to be offered by the Toolbuilder by Lincoln

Software. Being a typical metaCASE of early nineties, the approach is based on ER

model for describing the repository contents and on special extensions to ER notation

for defining derived data objects which are in one-to-one relation to objects in a

graphical diagram. A more academic approach is that proposed by Kogge [6], with a

very flexible, but very complicated and mainly procedural editor definition language.

Other newer similar approaches are proposed by ISIS GME [7], DOME [8] and

Moses [9] projects, with main emphasis for creating environments for domain-

specific modelling in the engineering world. The richest editor definition possibilities

of them are in GME. Several commercial modelling tools (ARIS by IDS prof. Scheer,

System Architect by Popkin Software[10], etc.) use a similar approach internally, for

easy customisation of their products, but their tool definition languages have never

been made explicit.

The approach explained in this paper is in a sense a further development of the

above mentioned approaches. In this approach at first the domain metamodel of the

modelling area (logical metamodel) is built. Then the modelling method, notation and

tool support are defined declaratively, by means of a special metamodelling

environment. These activities require also extension of the metamodel (adding some

presentation classes), but it is not relevant to the purposes of this paper.

A very significant part of the tool support in metamodel based modelling tools

is flexible data representation facilities. There are some main principles how data can

be represented in modelling tools:

– Diagrammatic,

– Hierarchical (e.g. “tree views”),

– Data dictionaries,

– Tables,

– Object editors.

Obviously the most popular data representation form (modelling notation) in

any domain now is diagram based. Therefore very important part of the metamodel

based approach is the Editor Definition Language (EdDL) for a simple and convenient

definition of wide spectrum of diagrammatic graphical editors [11, 12]. Nevertheless

not all information is convenient to represent by diagrams. There is also necessity to

have a possibility in metamodel based modelling tools to define such facilities as

flexible model content browsing and flexible definition of an editor for a single

metamodel class instance. Perhaps one of the most undervalued data representation

manner in modelling tools today is data representation by table. For example, in

Rational Rose [13] UML tool, in real size models it is complicate to browse through

packages and classes in the model tree. Frequently a package contains more than ten

class diagrams with ten to thirty classes in each. That leads to a situation where there

are hundreds of classes at one tree level and it isn’t easy to find the right one. It would

be reasonable to represent such uniform information not in hierarchical (tree) form but

in some easily configurable tabular form. Some tools (System Architect) have

something like tables but with a very restricted functionality (reports only). More or

less usable in practice tables are implemented in GRADE tool but they are “hard-

coded”.

Although all of the data representations principles mentioned here are

interesting problems in relation to metamodel based modelling tools, but this is out of

scope for this paper to explain all of them. The paper introduces a method for

declarative definition of a table, based on the logical metamodel.

Partly the described approach has been developed within the EU ESPRIT

project ADDE [14], see [15] for a preliminary report.

3. Generic Data Representation by Table

The foundation of a metamodel based modelling tool is its flexible facility to

define declaratively the modelling method, notation and tool support. One of the

problems for such tools is a generic data representation by table.

 The paper proposes a method for table editor definition based on the logical

metamodel. Certainly, the logical metamodel for the selected modelling method

should be defined before we start defining any of the editors used for the tool. This

logical structure is described by a UML class diagram [1]. Fig.1 shows an example of

a logical metamodel for UML class diagram (here the UML class metamodel is

described by a UML class diagram). This example will be used in the paper to

demonstrate the table editor definition features.

Operation
name
visibility

Tag definition
name
tag type

TaggedValue
data value

Package
name
description

Dependency
assoc name
description

Generalization
assoc name
description
properties

N-aryAssociation
assoc name
description
properties

AssociationEnd
role name
multiplicity
ordering
visibility

BinaryAssociation
assoc name
name direction
properties
description
role name
multiplicity
aggregation
ordering
is navigable
visibility
targ role name
targ multiplicity
targ aggregation
targ ordering
targ is navigable
targ visibility
source
properties
targ properties

Attribute
name
visibility
initial value
multiplicity
ordering

Stereotype
name
description
base class
user stereotype name

ClassRelation

Class
name
properties
description
is abstract

depend
 target

has
depend
 target

*

0..1

depends

has
dependent

0..1

*

owns class

owned
 by

1

*

owns relation
owned by

1

*

has stereotype

stereotype of class

** has operation
operation of
0..1

*

has stereotype
stereotype of operation *
0..1

stereotype of attribute
has stereotype0..1

*

corresponds to
used to define *
1

has stereotype

stereotype
 of gener

*

0..1

source
from class0..1

*

target
to class0..1

*

is assoc class
has assoc class0..1

*

has stereotype

sterotype
 of
assoc *
0..1

part of

contains p

*

0..1

has child

is
subclass

*

0..1

has
tagged
 value

tagged value of

0..1

*

has
attribute

attribute
 of
0..1

*

has parent

is
superclass

*

0..1

is part of
contains *
0..1

has stereotype

stereotype
 of assoc
 end

*

0..1

associated
 by

connected to

0..1

*

has stereotype

stereotype
 of dep

*

0..1

containedcontains

*

0..1

Figure 1. Logical metamodel example (fragment)

A table editor definition for a new table starts with the selection of the domain

objects to be represented by the table. It should be emphasized that the logical

metamodel itself is never modified during this process. Our goal is to define the

corresponding table editor, which in this case should be able to present the selected

set of metamodel class instances in a tabular form. For example, Fig.2 shows a table,

which represents all instances of Class in some model. Classes are grouped by the

association owned_by (“Is in Package” column in the table) and ordered by the Name

attribute.

Figure 2. Class table example

Definition of a table consists essentially of two sections: how and what data

should be represented. How – it means to define such things as:

- Table columns properties – the user should be allowed to define which

columns are visible in the table (based on the metamodel elements). For

example, the Class table in Fig.2 is configured to show three columns, which

correspond to two attributes (name and description) and one association

(owned_by) of the class Class in the metamodel. Other attributes and

associations of the Class are not visible in this table. The user should be also

able to define for each column in the table such properties as column title,

column edit mode (either it is allowed to do in-place editing or some “native”

object editor should be invoked), column ordering and grouping (by which

column(s) table is ordered or grouped), etc.

- Prompting/display form for associations – it is a very important feature to

make table more usable for end users. For example, the association column

owned_by for the table in Fig.2 is defined to be shown as the value of the

attribute name of Package. In other words, it is the facility to define the text

assembly rules for columns, which correspond to associations in the

metamodel. The user can define the text to display as a concatenation of

segments, each consisting of a constant prefix, a variable part and a constant

suffix. Each variable part is defined as the object attribute value located at the

end of the chain defined by associations (for example, Class.owned_by.name).

Association chain may be empty, or it must start at the metamodel class

corresponding to the objects in the table. Attribute must belong to the

metamodel class at the end object of the associations chain.

- Navigation facilities for objects, attributes and associations – what to do in

response to user activities. For example, what to do on single or double mouse

click on some object attribute or association.

- Popup menu configuration – when defining popup menus for table objects

the user should be allowed to define menu items at least for the following

actions: create a new object (for example, “New Class”), delete the object

represented in the table, open an object viewer/editor (“Properties…”), copy

and paste, execute any other program, etc.

The above described facilities for table definition allow the user to define

nearly any reasonable table form for practical use.

The second part of the definition of the table is used to specify what data

should be represented by the table. The specification of the element selection criterion

(selection rule) is the most non-trivial and the most interesting aspect of the table

definition. A selection rule can be specified, saying which of the possible instances

actually must appear in the table. To be short, a selection rule is a Boolean expression

(AND, OR, NOT) on link conditions (specifying that a certain sequence of metamodel

associations must link the given object to another object) and attribute value

conditions (defined by an association chain, attribute at its end and a fixed attribute

value). The actual expression language contains some more details (including simple

existential quantifiers).

Examine one more example of the table. Let’s assume that we need to define a

table, which contains Stereotypes of Classes, which are contained in one concrete

Package and these Stereotypes don’t have Tag_definition (see Fig.1). There are

languages where it is possible to define selections or assertions of such kind. Such

languages, for example, are Object Query Language (OQL[16]), which is used for

querying an Object Database or Object Constraint Language (OCL[1]), which is used

in the UML to specify the well-formedness rules of the metaclasses comprising the

UML metamodel. In OQL and OCL the above mentioned selection criterion can be

written as (where the concrete Package is given by the parameter curr_package):

 In OQL: select st from Stereotype st

 where curr_package in st.stereotype_of_class.owned_by

 andthen is_undefined(st.contains)

 In OCL: self.stereotype_of_class.owned_by->exists(pck:Package |

 pck = curr_ package) and self.contains->IsEmpty()

However in practice both these languages are difficult to use for declarative

definition of the tables. OQL is a very powerful and extensive language. OCL is a

very concise and rather complicate to use language and it is not intended for querying

but for specifying static constraints in a metamodel. In order to use OQL or OCL you

need to know precise semantics of the languages.

Let’s say, that the paper proposes a method to specify selection rule for table,

which is a “reasonable subset” of OQL or OCL with a graphical realization (see

Fig.3). “Reasonable subset” in this case means – such a subset, which is sufficient for

practical use and allows also an efficient implementation.

Figure 3. Selection criterion definition example

The definition of the selection rule is done by tree. The tree is some view

(fragment) of the metamodel where the root node corresponds to the metamodel class

for which we want to define the table (in our example the Stereotype class). The every

next level of the tree contains nodes (classes), which are linked in the metamodel with

associations to the parent node (class) in tree. Fig.3 gives an example of such a tree

where the above mentioned selection criterion is defined. The tree row marked by the

red "minus" sign means that there might not be a link to a Tag_definition instance.

In other words, according to this approach it is possible in an easy, usable

manner to compose textual selection expression, which is based on metamodel

elements. We can also specify some additional constraints for attribute values for

classes.

It should be emphasized, that unlike to OQL or OCL in the proposed method it

is not important to “know” such technical issues as cardinalities of associations or

kind of collections (bag, set, list in OQL or bag, set, sequence in OCL). Therefore the

proposed method is easy to use in practice. The practical experiments have

demonstrated that the described metamodel based table definition method has a

realistic implementation and can reach an industrial quality of the defined editors.

4. Conclusions

The approach to table definition described in this paper permits to define

nearly any reasonable table for practical use and the described method allows also an

efficient implementation (in the sense of run-time necessary to build the tables from

real amounts of data). The practical experiments have demonstrated that the table

editors obtained by the described definition method can reach an industrial quality.

However this approach can be made significantly more universal and applicable not

only to tables but also for other similar data representations, since it is generally

accepted that a metamodel (class diagram) can be used for describing the logical

structure of nearly any system.

References
[1] Rumbaugh, J., Booch, G., Jackobson, I.: The Unified Modeling Language Reference Manual.

Addison-Wesley (1999)

[2] Mayer, R., Menzel, C., Painter, M.: IDEF3 Process Description Capture Method Report

http://www.idef.com/Downloads/pdf/Idef3_fn.pdf, Knowledge Based Systems Inc (1995)

[3] Scheer, A.-W.: ARIS Business Process Modeling. 3rd edn. Springer-Verlag, Berlin

Heidelberg New York (2000)

[4] Barzdins, J., Tenteris, J., Vilums, E.: Business Modeling Language GRAPES-BM (Version

4.0) and its Application. Dati, Riga (1998)

[5] Smolander, K., Martiin, P., Lyytinen, K., Tahvanainen, V-P.: Metaedit – a flexible graphical

environment for methodology modelling. Springer-Verlag (1991)

[6] Ebert, J., Suttenbach, R., Uhe, I.: Meta-CASE in Practice: a Case for KOGGE. Proceedings of

the 9th International Conference, CAiSE'97, Barcelona, Catalonia, Spain (1997)

[7] Ledeczi A., Maroti M., Bakay A., Karsai G., Garrett J., Thomason IV C., Nordstrom G.,

Sprinkle J., Volgyesi P.: The Generic Modeling Environment. Workshop on Intelligent Signal

Processing, Budapest, Hungary, May 17, 2001 (available in PDF at

http://www.isis.vanderbilt.edu)

[8] DOME Users Guide. http://www.htc.honeywell.com/dome/support.htm

[9] Esser, R.: The Moses Project.

http://www.tik.ee.ethz.ch/~moses/MiniConference2000/pdf/Overview.PDF

[10] Popkin Software: System Architect. http://www.popkin.com/products/system_architect.htm

[11] Audris Kalnins, Janis Barzdins, Edgars Celms, Lelde Lace, Martins Opmanis, Karlis

Podnieks, Andris Zarins.: The First Step Towards Generic Modelling Tool. Proceedings of

Baltic DB&IS 2002, Tallinn, 2002, v. 2, pp. 167-180.

[12] Audris Kalnins, Karlis Podnieks, Andris Zarins, Edgars Celms, Janis Barzdins.: Editor

Definition Language and its Implementation. Proceedings of the 4th International Conference

“Perspectives of System Informatics”, Novosibirsk, 2001, LNCS, v.2244, pp. 530 – 537

[13] Quatrani, T.: Visual Modeling with Rational Rose 2002 and UML. 3rd edn. Addison Wesley

Professional, Boston (2002)

[14] ESPRIT project ADDE. http://www.fast.de/ADDE

[15] Sarkans, U., Barzdins, J., Kalnins, A., Podnieks, K.: Towards a Metamodel-Based Universal

Graphical Editor. Proceedings of the Third International Baltic Workshop DB&IS, Vol. 1.

University of Latvia, Riga, (1998) 187-197

[16] Cattel, R.G.G., Barry, D.: The Object Database Standard: ODMG 3.0. Morgan Kaufmann

(2000)

Model Transformation Language MOLA

Audris Kalnins, Janis Barzdins, Edgars Celms

University of Latvia, IMCS, 29 Raina boulevard, Riga, Latvia
{Audris.Kalnins, Janis.Barzdins, Edgars.Celms}@mii.lu.lv

Abstract. The paper describes a new graphical model transformation language
MOLA. The basic idea of MOLA is to merge traditional structured program-
ming as a control structure with pattern-based transformation rules. The key
language element is a graphical loop concept. The main goal of MOLA is to de-
scribe model transformations in a natural and easy readable way.

1 Introduction

The Model Driven Architecture (MDA) initiative treats models as proper artifacts
during software development process and model-to-model transformations as a proper
part of this process. Therefore there is a growing need for model transformation lan-
guages and tools that would be highly acceptable by users. Though model transforma-
tions would be built by a relatively small community of advanced users, the prerequi-
site for broad acceptance of transformations by system developers is their easy read-
ability and customizability.

Model transformation languages to a great degree are a new type of languages
when compared to design and programming languages. The only sound assumption
here is that all models in the MDA process (either UML-based models or other)
should be based on metamodels conforming to MOF 2.0 standards.

The need for standardization in the area of model transformation languages led to
the MOF 2.0 Query/Views/Transformations (QVT) request for Proposals (RFP)[1]
from OMG.

To a great degree the success of the MDA initiative and of QVT in particular will
depend on the availability of a concrete syntax for model-to-model transformations
that is able to express non-trivial transformations in a clear and compact format that
would be useful for industrial production of business software [2].

QVT submissions by several consortiums have been made [3, 4, 5], but all of them
are far from a final version of a model transformation language. Currently the pro-
posal most likely to be accepted seems [3] – actually a merge of several initial pro-
posals. Several serious proposals for transformation languages have been provided
outside the OMG activities. The most interesting and complete of them seem to be
UMLX [6] and GReAT [7]. Some interesting transformation language proposals use
only textual syntax, e.g., [15].

According to our view, and many others [2], model transformations should be de-
fined graphically, but should combine the graphical form with text where appropriate.
Graphical forms of transformations have the advantage of being able to represent

mappings between patterns in source and target models in a direct way. This is the
motivation behind visual languages such as UMLX, GReAT and the others proposed
in the QVT submissions. Unfortunately, the currently proposed visual notations make
it quite difficult to understand a transformation.

The common setting for all transformation languages is such that the model to be
transformed (source model) is supplied as a set of class and association instances
conforming to the source metamodel. The result of transformation is the target
model - the set of instances conforming to the target metamodel. Therefore the
transformation has to operate on instance sets specified by a class diagram (actually,
the subset of class notation, which is supported by MOF).

Approaches that use graphical notation of model transformations draw on the theo-
retical work on graph transformations. Hence it follows that most of these transforma-
tion languages define transformations as sets of related rules. Each rule has a pattern
and action part, where the pattern has to been found (matched) in the existing instance
set and the actions specify the modifications related to the matched subset of in-
stances. This schema is used in all of the abovementioned graphical transformation
languages. Languages really differ in the strength of pattern definition mechanisms
and control structures governing the execution order of rules [8].

It should be mentioned that an early pioneer in the area (well before the MDA era)
is the PROGRES language [9]. This semi-graphical language offered pattern-based
graph rewrite rules applicable to “models” described by schemas (actually, metamod-
els). The execution of rules is governed by the traditional structured control constructs
– sequence, branch and loop, though in the form of Dijkstra’s guarded commands.

The current MDA-related graphical transformation languages – UMLX and
GReAT use relatively sophisticated pattern definition mechanisms with cardinality
specifications (slightly more elaborated in GReAT). The control structure in UMLX
is completely based on recursive invocations of rules. The control structure of GReAT
is based on hierarchical dataflow-like diagrams, where the only missing control struc-
ture is an explicit notation for loops (loops are hidden in patterns). The proposal [3]
also offers elaborated patterns, which are combined with a good support for recursive
control structures. Since the PROGRES project is now inactive, there currently is no
transformation language based on traditional control structures.

This paper proposes a new transformation language MOLA (MOdel transforma-
tion LAnguage). The prime goal of MOLA is to provide an easy readable graphical
transformation language by combining traditional structured programming in a
graphical form (a sort of “structured flowcharts”) with rules based on relatively sim-
ple patterns. This goal is achieved by introducing a natural graphical loop concept,
augmented by an explicit loop variable. The loop elements can easily be combined
with rule patterns. Other structured control elements are introduced in a similar way.
In the result, most of typical model transformation algorithms, which are inherently
more iterative than recursive, can be specified in a natural way. The paper demon-
strates this on the traditional MDA class-to-database transformation example and on
the statechart flattening example – an especially convincing one. Some extensions of
MOLA are also sketched.

2 Basic constructs of MOLA

This section presents a brief overview of basic constructs of MOLA. The MOLA lan-
guage is a procedural graphical language, with control structures taken from tradi-
tional structured programming. The elements specific to model transformations can
easily be combined with traditional language elements such as assignment statements.
A program in MOLA is sequence of graphical statements, linked by dashed arrows:

A statement can be an assignment or a rule – an elementary instance transforma-

tion statement, however the most used statement type in MOLA is a loop. There are
two types of loops, which will be depicted in the following way:

(the first type) or (the second type).
A loop body always contains one or more sequences of graphical statements. Each

body sequence starts with a loop head statement declaring the loop variable for this
sequence. In MOLA the loop variable represents an instance of the given class. In
order to distinguish it from other class instances defining its context, the loop variable

is shown with a bold frame:
c:Class

. The loop head statement, besides the
loop variable, typically contains also instance selection conditions, which constrain
the environment of a valid loop variable instance. The UML object (instance specifi-
cation) notation is used both for the loop variable and its environment description – it
expresses the fact that any valid instance from the instance set of the given class in the
source model must be used as a loop variable value during the loop execution.

The semantics of both types of loops differ in the following way. A type one loop
is executed once for each valid instance from the instance set – but the instance set
itself may be modified (extended) during the loop execution. The type two loop con-
tinues execution while there is at least one valid variable instance in the instance set
(consequently, the same loop variable instance may be processed several times). In an
analogy to some existing set and list processing languages, it is natural to call type
one loops FOREACH loops and type two loops - WHILE loops in MOLA.

Another important statement type is the rule – the specification of an elementary
instance transformation. A rule contains the pattern specification – a set of elements
representing class instances and association instances (links), built in accordance with
the metamodel. In addition, the rule contains the action specification – what new class
instances are to be built, what associations (links) drawn, what instances are to be
deleted, what attributes are to be assigned value etc. Its semantics is obvious – locate
a pattern instance in the source model and perform the specified actions. When a rule
has to be applied – it is determined by the loop whose body contains the rule. A rule
can be combined with the loop head – a loop head can also contain actions, which are
performed for each valid loop variable instance.

All MOLA statements, except loops, are graphically enclosed in grey rounded rec-

tangles: .

Further, more precise definitions of MOLA syntax and semantics will be given on
toy examples.

Let us assume that a toy metamodel visible in Fig.1 is used.
A

attrA1:Integer
attrA2:String

B
attrB:String

W
attrW:String

roleA

roleB 0..1
 *

roleA

roleW

 0..1 *

Fig.1. Metamodel for the toy example

 Then a MOLA program, which sets the attribute attrA1 to 1 for those instances of the
class A that are linked to at least one instance of class B, is shown in Fig. 2. The loop
(FOREACH type) contains two statements – the loop head and a trivial rule which
sets the value of attribute attrA1 in the loop variable. First, some comments on the
loop head statement. The selection condition consisting of an instance of B linked by
the only available association (roleB) to the loop variable (a:A) requires that at least
one such instance of B must exist for a given instance of A to be a valid loop variable
instance. We want to emphasize that an association with no constraints attached in
the loop head (or in a rule pattern) always means – there exists at least one instance
(link) of such an association. The loop head in MOLA is also a kind of pattern.

The second statement in the loop references the same instance of A – the loop
variable, this is shown by prefixing the instance name by the @ character.

a1: A
attrA1 := 0

@a1: A
attrA1 := attrA1+1

b: B

a: A b: B

@a: A
attrA1 :=1

roleB

roleB

Fig.2. Program finding A’s linked to a B Fig.3. Program counting B’s linked to an A

The second program example (in Fig.3) finds how many instances of B are linked to
each instance of A.
This example demonstrates a natural use of nested loops. The outer loop (with the
loop variable a:A) is executed for every instance of A. The loop head sets also the
initial value of the attribute attrA1. The nested loop, which is executed for those in-
stances of B which are linked to the current A, performs the counting.

The next more complicated task is to build an instance of W for each B which is
linked to an A, link it by an association (roleW) to the A and assign to its string pa-
rameter (attrW) the concatenation of string parameters in the corresponding instances
of A and B. Fig. 4 shows the corresponding MOLA program.

The same nested loops as in the previous example are used. But here the inner loop
head is also a rule with more complicated action – building an instance of W, linking
it to the current loop variable instance of the outer loop and setting the required value
of attrW.

a1: A

@a1: A

b: B
: W
attrW :=@a1.attrA2+b.attrB

roleB

#resultW

roleA

roleW

Fig.4. Program building W for each B

The new elements – instances and links are shown with dotted lines (and in red color)
in MOLA. The expression for attrW references the attribute values from other in-
stances – they are qualified by the corresponding instance names. The association
linking the instance of W to the instance of B is a special one – it is the so called
mapping association (which actually should also be specified in the metamodel).
Mapping associations are typically used in MDA-related transformations for setting
the context of next subordinate transformations and for tracing instances between
models (therefore they normally link elements from different metamodels). Role
names of mapping associations are prefixed by the # character in MOLA.

Two more MOLA constructs should be explained here. The first one is the NOT
constraint on associations in patterns – both in loop heads and ordinary rules. It ex-
presses the negation of the condition specified by the association – there must be no
instance with specified properties linked by the given link. Fig. 5 shows an example
where an instance of W is built for those A which have no B attached.

b: Ba: A

: W

a: A
{attrA2="persistent"}

: WroleB
{NOT}

roleA
roleW

roleA
roleW

Fig.5. NOT constraint Fig.6. Attribute constraint

Another one is attribute constraints. Fig. 6 shows an example where an instance of W
is built for those A where the attribute attrA2 has the specified value. The Boolean
expression in braces in general uses OCL syntax (in addition, it may contain also ex-
plicit qualified references to other instances in the pattern).

There are some more elements of MOLA which are not used in the examples of
this paper and therefore will not be explained in detail. Besides the attributes in the
source metamodel, instances may have “temporary” computed attributes which can be
used as variables for storing values during the computation. These temporary attrib-
utes are also defined in the metamodel. Similarly, there may be temporary associa-

tions. There is also one more control structure – an equivalent of the if-then-else (or
case) statement. There is also a subprogram concept in MOLA and the subprogram
call statement, where the parameters can be references to instances used in the calling
program (typically, to loop variables) or simple values. The called subprogram has
access to the source model and can add or modify elements in the target model.

3 UML Class Model to Relational Model Example in MOLA

Further description of MOLA will be given on the basis of the “standard benchmark
example” for model transformation languages – the UML class model to relational
database model transformation example. This example has been used for most of
model transformation language proposals (see e.g., [3, 4, 6, 10]). However, no two
papers use exactly the same specification of the example. Here we have chosen the
version used by A. Kleppe and J. Warmer in their MDA book [10].

 The source is a simplified class diagram built according to the metamodel in Fig. 7
(it is a small subset of the actual UML metamodel). Any class which is present in the
source model has to be transformed into a database table. Any class attribute has to be
converted into a table column. Attribute types are assumed to be simple data types –
the problem of “flattening” the class-typed attributes is not considered in this version.
We assume here that type names in class diagram and SQL coincide (in reality it is
not exactly so!).

Classifier
name:String

TypedElement
name:String

Association

Feature
visibility:VisibilityKind

DataType Class

AttributeAssociationEnd
lower:LowerBound
upper:UpperBound
composition:Boolean

typed
type *
 1

 association
 end 1
2

 class
 feature 1

 *

otherEnd 0..1

Fig.7. Simplified class metamodel

Each converted table has an “artificial” primary key column with the type integer.
The treatment of associations is quite realistic. One-one or one-to-many associations
result into a foreign key and a column for it in the appropriate table (for one-one – at
both ends). A many-to-many association is converted into a special table consisting
only of foreign key columns (and having no primary key). Each foreign key refer-
ences the corresponding primary key.

We should remind that according to UML semantics, in the metamodel the type as-
sociation from an Association End leads the Class at that end, but class association –
to Class at the opposite end.

The resulting database description must correspond to a simplified SQL metamodel
given in Fig. 8.

Table
name:String

Column
name:String
nullable:Boolean

SQLDataType
name:String

Key
name:String

ForeignKey
name:String

 key

 column

 0..1

 1..*

primary

 1

 0..1

 type
 1

 table
 column 1

 *

referencedKey

 *

 1

 table

foreign

 1

 *

 column

foreign

 1..*

 *

Fig.8. Simplified relational database metamodel

The metamodels and transformation specification are exactly as in [10] except that
some inconsistencies and elements unused in the given task are removed.

More formally, in MOLA the source and target metamodels (Fig. 7 and 8) are
combined into one common metamodel, where mapping associations can also be
specified. We do not present this combined metamodel here, role names of mapping
associations can be deduced from MOLA diagrams (Fig. 9 and 10).

cl: Class

@cl: Class t: Table
name:=cl.name

k: Key
name:=@cl.name+"ID"

int: SQLDataType
{name="integer"}

col: Column
name :=@cl.name+"ID"
nullable :=false

at: Attribute

@cl: Class

dt: DataType

t: Table

col: Column
name :=at.name
nullable :=true

: SQLDataType
{name=dt.name}

type

#tableForCl

feature

#tableForCl

#keyColForCl

primary

#keyForCl

type

table
column

type

#colForAttr

table

column

Fig.9. Class to database transformation (part 1)

Fig. 9 and 10 show the complete transformation program in MOLA. The part 1 (Fig.
9) implements the required class-to-table transformations, but the part 2 – the trans-
formation of associations into foreign keys and appropriate columns.

as: Association e1: AssociationEnd
{upper=1}

e: AssociationEnd
{upper=1}

@as: Association endCl: Class pk: Key

othEndCl: Class

int: SQLDataType
{name="integer"}

tb: Table

fk: ForeignKey
name :=e.name

fkCol: Column
name :=e.name
nullable :=false

e1: AssociationEnd
{upper=1}

astb: Table
name :=as.name

as: Association

@as: Association

e: AssociationEnd

t: Table

endCl: Class pk: Key

fk: ForeignKey
name :=e.name

fkCol: Column
name :=e.name
nullable :=false

int: SQLDataType
{name="integer"}

type

end

#tableForCl

association
#keyForCl

class

association

type

#tableForAssoc

type #keyForClass
referencedKey

table

column

foreign

column

end
{NOT}

#tableForAssoc

table
column

foreigntable

#colForEnd

#fkForEnd foreign

column

foreign
table

#colForEnd
type

#fkForEnd

referencedKey

Fig.10. Class to database transformation (part 2)

A complete program in MOLA starts with the UML start symbol and ends with end
symbol. In between there are statements connected by arrows; in the given program –
three top-level loops (one for class instances and two for associations). All loops are
of FOREACH type.

Now some more detailed comments for this program. The first loop is executed
once for each class in the source set and during each loop execution the corresponding
database elements – the table, the primary key and the column for it are built. The

mapping association #tableForCl is used in the condition for the inner loop – to en-
sure that the correct Table instance is taken. This loop is executed once for each at-
tribute and builds a column for each one. Here it is assumed that SQL data types (as
instances of the corresponding class) are pre-built and the appropriate one can always
be selected.

The second and third loops in totality are executed for each association instance –
the second loop for those instances that have multiplicity 0..1 or 1..1 at least at one
end and the third one for those which are many-to-many. This is achieved by adding
mutually exclusive selection conditions to both loop variable definitions. These con-
ditions are given in a graphical form. The first one uses the already mentioned in sec-
tion 2 fact that an association in a condition (pattern) requires the existence of the
given instance. The other condition uses the {NOT} constraint attached to the
association – no such instance can exist. Then both loops have an inner loop - for both
ends (even in the first case there may be two “one-ends”). Both inner loops use map-
ping associations built by previous rules (#keyForCl, #tableForCl) in their conditions.
The type for “foreign columns” is integer – as well as that for “primary columns”.

An alternative form of control structure for processing associations could be one
loop with an if-then-else statement in the body (Fig. 11).

.

as:Association

@as:Association

e1:AssociationEnd
{upper=1}

e1:AssociationEnd
{upper=1}

@as:Association

 end end {NOT}

Fig.11. Loop with an if-then-else statement

One more alternative representation could be to make the Fig. 10 a transformation of
its own (e.g., TransformAssociations) and add the call statement TransformAssocia-
tions (this time without parameters) to the bottom of Fig. 9. In our case there is no
great need in this since the whole transformation example actually fits in one A4
page. However, the subprogram mechanism in MOLA permits to define arbitrarily
complicated transformations by well-proven methods of structural programming.

4 Statechart Flattening Example

This section presents another example – the flattening of a UML statechart. This ex-
ample was first used in [7] to demonstrate the GReAT transformation language. Due
to space limits, we use a version where the statechart can contain only composite
states with one region (OR-states in terms of [7]). Composite states may contain any

type of states, with an arbitrary nesting level. Such a statechart must be transformed
into an equivalent “flat” statechart (which contains only simple states). The informal
flattening algorithm is well known (most probably, formulated by D. Harel [11]). A
version of this example with much simplified problem statement is present also in [3].

The simplified metamodel of the “full” (hierarchical) statechart is depicted in Fig.
12. There are some constraints to the metamodel specifying what is a valid statechart.
There are “normal” transitions for which the event name is nonempty and “special”
ones with empty event. These empty transitions have a special role for state structur-
ing. Each composite state must contain exactly one initial state (an instance of Init)
and may have several final states. There must be exactly one empty transition from
the initial state of a composite state (leading to the “default” internal state). The same
way, there must be exactly one empty transition from the composite state itself - the
default exit. This exit is used when a contained final state is reached. Otherwise, tran-
sitions may freely cross composite state boundaries and all other transitions must be
named. Named transitions from a composite state have a special meaning (the “inter-
rupting” events), they actually mean an equally named transition from any contained
“normal” state – not initial or final. This is the most used semantics of composite
states (there are also some variations).

SimpleState Init FinCompositeState

State
name:String

Transition
event: String [0..1]

in
dst *
 1

out
src *
 1

container

contents

 0..1

 1..*

Fig.12. Metamodel of hierarchical statechart

All states have names – but those for initial and final states actually are not used.
Names are unique only within a composite state (it acts as a namespace) and at the top
level.

The traditional flattening algorithm is formulated in a recursive way. Take a top-
most composite state (i.e., one not contained in another composite state). There are
three ways how transitions related to this state must be modified:

1. Transitions entering the composite state itself must be redirected to the state to
which the empty transition from its initial state leads.

2. Transitions leading to a final state of this composite state must be redirected to
the state to which the empty transition from the composite state leads.

3. Named transitions from the composite state must be converted into a set of
equally named transitions from all its “normal” states (with the same destina-
tion)

Then the name of the composite state must be prefixed to all its contained normal
states and the composite state must be removed (together with its initial and final
states and involved empty transitions). All this must be repeated until only simple
states (and top level initial/final ones) remain.

A simple analysis of this algorithm shows that the redirection of transitions may be
done independently of the composite state removal – you can apply the three redirec-
tion rules until all transitions start/end at simple states (or top initial/final). The set of
simple states is not modified during the process – only their names are modified.

Namely this modified algorithm is implemented in the MOLA program in Fig. 13.
It contains two top-level loops – the first one performs the transition redirection and
the second – the removal of composite states.

Both top-level loops are WHILE-type – especially, in the first loop a transition
may be processed several times until its source and destination states reach their final
position. A closer analysis shows that the second loop actually could be of
FOREACH type, but the original algorithm suggests WHILE.

The program performs a model update – source and target metamodels coincide,
simply, some metaclasses cannot have instances in the target model. Mapping
associations are not used in this example.

The first loop contains three loop head statements – all specify the instance
t:Transition as a loop variable, but with different selection conditions. According to
the semantics of MOLA, any Transition instance satisfying one of the conditions (one
at a time!) is taken and the corresponding rule is applied (note that the conditions are
not mutually exclusive). All this is performed until none of the conditions applies –
then all transitions have their final positions. The first two rules contain a dashed line
– the association (link) removal symbol. The link is used in the selection condition,
but then removed by the rule. The third path through the loop contains the instance
removal symbol.

Namely the use of several lop heads per loop is a strength of MOLA – this way
inherently recursive algorithms can be implemented by loops.

The second loop – the removal of composite states also has a recursive nature to a
certain degree – it implements the so-called transitive closure with respect to finding
the deepest constituents (simple states) and computing their names accordingly to the
path of descent.

It shows that transitive closure can be implemented in MOLA in a natural way
(even the FOREACH loop could be used for this). The other constructs in this loop
are “traditional” – except, may be, the fact that several instances may be deleted by a
rule in MOLA.

c: CompositeState

ds: State

t: Transition
{event->notEmpty()}

@t: Transition

: Compos iteState

ss: State

t: Transit ion
{event->notEmpty()}

nt: Trans ition
{event->isEmpty()}

: Init

ds: State

ss: State

: Fin

: Compos iteState

nt: Trans ition
{event->isEmpty()}

ds: State

t: Transition
{event->notEmpty()}

ss: State

@ds: State

@c: CompositeState

: Transition
event:=t.event

ctr: Trans ition
{event->isEmpty()}

@tc: CompositeState

@tc: CompositeState

: Init
intr: Transition
{event->isEmpty()}

tc: CompositeState
name

c: CompositeState

@tc: CompositeState

f: Fin

@f: Fin

@tc: CompositeState

@tc: CompositeState

: State
name:=@tc.name+"-"+name

dst

contents
srcsrc

dst

contents

src

src

dst

contents

src

contents
src

container
{NOT}

contents

contents

contents

dst

contents

src

dst

dst

dst

src

dst

Fig.13. Statechart flattening

5 Extended Patterns in MOLA

The rule in the previous example for computing the name of a state contained in a
composite state to be removed actually is the simplest case of a typical transformation
paradigm – the transitive closure. Experiments show that transitive closure in all cases
can be implemented in MOLA. However, not always it is so straightforward as in Fig.
13, sometimes temporary associations and attributes and nested loops are required for
this task. A typical example is the class to database transformation as specified in [3,
6], where the “flattening” of class-typed attributes must be performed – if the type of
an attribute is a class, the attributes of this class must be processed and so on. If an
attribute with a primitive data type is found in this process, a column with this type is
added to the table corresponding to the original (“root”) class. The name of the col-
umn is the concatenation of all attribute names along the path from the root class to
the attribute. It is easy to see that all such paths must be traversed.

Since the transitive closure is a typical paradigm in MDA-related tasks, an exten-
sion of MOLA has been developed for a natural description of this and similar tasks.
This extension uses a more powerful – the looping pattern, by which computation of
any transitive closure can be implemented in one rule. This feature has been described
in details in [12], here we present only the above-mentioned example with some com-
ments.

Fig.14 shows one statement in extended MOLA which is both a FOREACH loop
over Class instances and a rule with an extended pattern. In contrast to patterns in
basic MOLA, this pattern matches to unlimited number of instances in the source
model. Most of the associations in this pattern are directed (using the UML navigabil-
ity mark). The semantics of this pattern is best to be understood in a procedural way.
Starting from a valid instance of loop variable (selected by the undirected part of the
pattern – one association), a temporary instance tree is being built, following the di-
rected associations.

a2.type.oclIsTypeOf(
PrimitiveDataType)

a:Attribute
?prefix :=cl.?prefix+name+'-'

t:PrimitiveDataType

tb:Tablecl:Class
?prefix :="c-"

a2:Attribute
?prefix :=c2.?prefix+name

c2:Class
?prefix := PRED.?prefix

col:Column
name := a2.?prefix
type :=t.name

:SQLDataType
{name=t.name}

type
{OPT}

type

#tableForCl

 feature {ALL}

#colForAttr

 1

 1

 table

 column

type
 feature {ALL}

type {OPT}

Fig.14. Transitive closure by extended pattern

Associations in this pattern use two new qualifiers – ALL and OPT. The first one
says the instance tree has to contain all possible valid links of this kind (a fan-out oc-
curs), but the second one – that the link is not mandatory for the source instance to be
included in the tree (an association without qualifier is mandatory in MOLA). The
white square icons in c2 and a2 specify that for these pattern elements instance copies
are built in the tree (but not the original source model instances used) – it is easy to
see that in order to obtain all paths from the root class to primitively-typed attributes
namely such copying is required. Another new pattern syntax element is the UML
multiobject notation for some elements – to emphasize that a fan-out occurs at these
places during the pattern match. The looping part of the pattern – the elements c2 and
a2 actually are traversed as many times during the matching (tree building) process as
there are valid candidates in the source model. The rule uses the temporary attribute
?prefix (with the type String), whose scope is only this rule. The values of this attrib-
ute are computed during the building of the match tree (for each of its node) – it is
easy to see that the expressions follow the building process (the special PRED quali-
fier means any predecessor). For this extended pattern the building action also gener-
ates many instances of Column – one for each instance of a2 in the tree (it is a copy!)
which satisfies the building condition in OCL.

Extended patterns have more applications, however their strength most clearly ap-
pears on complicated transitive closures like the one in Fig. 14.

6 Conclusions

MOLA has been tested on most of MDA-related examples – besides the ones in the
paper, the class to Enterprise Java transformation from [10], the complete UML state-
chart flattening, business process to BPEL transformation and others. In all cases, a
natural representation of the informal algorithms has been achieved, using mainly the
MOLA loop feature. This provides convincing arguments for a practical functional
completeness of the language for various model to model transformations in MDA
area. Though it depends on readers’ mindset, the “structured flowchart” style in
MOLA seems to be more readable and also frequently more compact than the pure
recursive style used e.g., in [6]. Though recursive calls are supported in MOLA, this
is not the intended style in this language. For some more complicated transformation
steps the extended MOLA patterns briefly sketched in section 5 fit in well.

The implementation of MOLA in a model transformation tool also seems not to be
difficult. The patterns in basic MOLA are quite simple and don’t require sophisticated
matching algorithms. Due to the structured procedural style the implementation is
expected to be quite efficient. All this makes MOLA a good candidate for practically
usable model transformation language.

Initial experiments with MOLA have been performed by means of the modeling
tool GRADE [13, 14], in the development of which authors have participated. A sepa-
rate MOLA tool is currently in development. A graphical editor for MOLA has al-
ready been developed, the pictures for this paper have been obtained by this editor. A
MOLA execution system is also close to completion.

References

1. OMG: Request For Proposal: MOF 2.0/QVT. OMG Document ad/2002-04-10,
http://www.omg.org/cgi-bin/doc?ad/2002-04-10

2. Bettin J. Ideas for a Concrete Visual Syntax for Model-to-Model Transformations. Proceed-
ings of the 18th International Conference, OOPSLA’2003, Workshop on Generative Tech-
niques in the context of Model Driven Architecture, Anaheim, California, USA, October
2003.

3. QVT-Merge Group. MOF 2.0 Query/Views/Transformations RFP, Revised submission,
version 1.0. OMG Document ad/2004-04-01, http://www.omg.org/cgi-bin/doc?ad/2004-04-
01

4. Compuware, SUN. MOF 2.0 Query/Views/Transformations RFP, Revised Submission.
OMG Document ad/2003-08-07, http://www.omg.org/cgi-bin/doc?ad/2003-08-07

5. Interactive Objects Software GmbH, Project Technology, Inc. MOF 2.0
Query/Views/Transformations RFP, Revised Submission. OMG Document ad/2003-08-11,
http://www.omg.org/cgi-bin/doc?ad/2003-08-11

6. Willink E.D. A concrete UML-based graphical transformation syntax - The UML to
RDBMS example in UMLX. Workshop on Metamodelling for MDA, University of York,
England, 24-25 November 2003.

7. Agrawal A., Karsai G, Shi F. Graph Transformations on Domain-Specific Models. Technical
report, Institute for Software Integrated Systems, Vanderbilt University, ISIS-03-403, No-
vember 2003.

8. Czarnecki K., Helsen S. Classification of Model Transformation Approaches. Proceedings of
the 18th International Conference, OOPSLA’2003, Workshop on Generative Techniques in
the context of Model Driven Architecture, Anaheim, California, USA, October 2003.

9. Bardohl R., Minas M., Schürr A., Taentzer G.: Application of Graph Transformation to Vis-
ual Languages. G. Rozenberg (ed.): Handbook on Graph Grammars: Applications, Vol. 2,
Singapore, World Scientific, 1998.

10. Kleppe A., Warmer J., Bast W. MDA Explained. The model driven architecture: practice
and promise. Addison-Wesley, 2003.

11. Harel D. Statecharts: a Visual Formalism for Complex Systems. Sci. Comput. Program. Vol
8, pp. 231-274, 1987.

12. Kalnins A., Barzdins J., Celms E. Model Transformation Language MOLA: Extended Pat-
terns. To be published in proceedings of Baltic DB&IS 2004, Riga, Latvia, June 2004.

13. Kalnins A., Barzdins J., et al. Business Modeling Language GRAPES-BM and Related
CASE Tools. Proceedings of Baltic DB&IS'96, Institute of Cybernetics, Tallinn, 1996.

14. GRADE tools. http://www.gradetools.com
15. Bézivin J., Dupé G., Jouault F., et al. First experiments with the ATL model transformation

language: Transforming XSLT into XQuery. 2nd OOPSLA Workshop on Generative Tech-
niques in Context of MDA, Anaheim, California, 2003.

Basics of Model Transformation Language MOLA

Audris Kalnins, Janis Barzdins, Edgars Celms

University of Latvia, IMCS, 29 Raina boulevard, Riga, Latvia
{Audris.Kalnins, Janis.Barzdins, Edgars.Celms}@mii.lu.lv

Abstract. The paper offers basic elements of a new graphical model transformation language MOLA.
The language combines the traditional structured programming with pattern-based transformation rules,
the key element being a natural loop construct. The prime goal of MOLA is to provide a natural and
highly readable representation of model transformation algorithms.

1 Introduction

The success of model driven development to a great degree depends on the availability of
appropriate languages and tools for model transformations. It is quite improbable that model
driven development could be reduced to one step model-to-code techniques. More likely, in
most domains a sequence of models will be required between which there will be many
transformations, which at least should be partially automated.
Therefore practical model-to-model transformation languages are of prime importance.
Currently in this area there are responses to OMG QVT RFP[1] by several consortiums
[2,3,4] and some “standalone” proposals [5,6], including the recent book on MDA[7]. Still
the problem seems to be far from adequate solution.
It is a popular view, also strongly supported by us, that the main problem is “the availability
of a concrete syntax for model-to-model transformations that is able to express non-trivial
transformations in a clear and compact format” [8]. Since now it is universally accepted that
all the involved models will be based on metamodels in MOF format, the problem is to
define practically usable transformation language for transforming instance sets conforming
to source metamodel to respective sets conforming to target metamodel. According to our
view, and many others [8], this kind of model transformations should be defined graphically,
but combining the graphical form with text where appropriate. Form OMG QVT submissions
only [2] and [3] use graphical form to a certain degree, but the most well-known graphical
transformation languages are UMLX [5] and GreAT[6].
From the logical point of view, transformation languages in most cases consist of
transformation rules and control structures governing their application [9]. Transformation
rules, in turn, consist of pattern and action part (or LHS and RHS). Desirably, all this should
be expressed in a unified diagrammatic form. The remaining space of variation is – how
complicated the patterns are, what control structures are used. UMLX is based mainly on
recursive calls as a control structure. GreAT uses patterns of approximately the same
complexity, but the control structure is based on hierarchical dataflow-like diagrams, where
the only missing control structure is an explicit notation for loops (loops are hidden in
patterns). Thus there currently is no transformation language based on traditional control
structures.
The paper proposes a new transformation language MOLA (MOdel transformation
LAnguage). The prime goal of MOLA is to provide an easy readable graphical
transformation language by combining the traditional structured programming in a graphical
form (a sort of “structured flowcharts”) with pattern-based rules. This goal is achieved by
introducing a natural graphical loop concept, augmented by an explicit loop variable. The
loop elements can easily be combined with rule patterns. Other structured control elements

are introduced in a similar way. In the result, most of typical model transformation
algorithms, which are inherently more iterative than recursive, can be specified in a natural
way. The paper demonstrates this on the traditional class-to-database transformation
example.

2 Basic Principles of MOLA

The MOLA is a natural combination of traditional structured programming languages and
pattern-based model transformation rules – both in a graphical form.
A MOLA program is used to transform a source model satisfying the source metamodel to
the required target model, corresponding to the target metamodel. Both models actually
are treated as class and association instance sets satisfying the relevant metamodel.
MOLA control structure is fairly traditional – a program in MOLA is a sequence of
statements. A statement is a graphical area, delimited by a rectangle – in most cases, a gray
rounded rectangle. The statement sequence is shown by dashed arrows. A MOLA program
actually is a sort of a “structured flowchart”.
The simplest kind of statement is a rule, which performs an elementary transformation of
instances. A rule contains a pattern – a set of elements representing class and association
instances, built in accordance with the source metamodel. Pattern elements can have attribute
constraints (OCL expressions). A rule has also the action specification – new class instances
to be built, instances to be deleted, association instances (links) to be built or deleted and the
modified attribute values (as assignments). Both for the pattern and action part the UML
object (instance specification) notation is used. The semantics is standard – locate a pattern
instance in the source model and apply the actions.
The most important statement type in MOLA is the loop. Graphically a loop is a rectangular
frame, containing a sequence of statements. This sequence starts with a special loop head
statement. The loop head is also a pattern, but with one element – the loop variable
highlighted (by a bold frame). A loop variable represents an arbitrary element of the given
class. The semantics of a loop is natural – perform the loop for any loop variable instance
which satisfies the conditions specified by the pattern.
Actually there are two types of loops in MOLA, differing in semantics details. The first type
(denoted by a simple frame) is executed once for each valid loop variable instance, therefore
it is called FOREACH loop. The second one (denoted by a 3-d frame) is executed while
there is at least one loop variable instance satisfying the pattern conditions – it is called the
WHILE loop. The second type of loop may be executed several times for the same instance.
A loop head may contain also actions (actually it is also a rule), thus the whole loop body
may consist of one statement. In other cases, a loop body may contain several statement
sequences each having a loop body (typically - with same loop variable). An alternative way
is to use one common loop head and the branch construct – several frames started by pattern
statements as conditions. Loops can be nested to any depth.
The loop is the basic and the most used statement kind in MOLA, which really makes typical
model transformation programs look so natural.
Certainly, to scale up for arbitrary complex transformations, MOLA has the subprogram
concept. One more statement type is the subprogram call, where the parameters can be
references to instances used in the calling program (typically, to loop variables) or simple
values. The called subprogram has access to the source model and can add or modify
elements in the target model.
We conclude this brief overview by some more comments on patterns (both in loop heads
and rules). Class and association instances (possibly containing attribute constraints) in the
pattern are meant to be mapped directly to the source model – there must be a match for each

pattern element. However, only for loop variables (in loop heads) it is essential to find all
possible matches. The other instances have more the “exists” semantics – there must be such
an instance. To increase the expressibility, a NOT constraint can be added to a pattern
association – there can be no link leading to the specified kind of class instance.

3 MOLA on an Example

Due to a very limited space the further details of the MOLA language will be given on one
example. The example is the traditional one for model transformation languages – transform
a class diagram to database definition. From the many versions of the example [2,3,5,7] the
one used in [7] is chosen.
Fig. 1 shows both the source metamodel – a simplified UML class diagram and the target
metamodel – a simplified SQL metamodel.

DataType
Class

Attribute

Feature
visibility:VisibilityKind

ForeignKey
name:String

AssociationEnd
lower:LowerBound
upper:UpperBound
composition:Boolean

SQLDataType
name:String

Column
name:String
nullable:Boolean

Table
name:String

Association

Classifier
name:String

TypedElement
name:String

Key
name:String

 class
 feature

 1
 *

 type
 1

referencedKey

 *

 1
otherEnd 0..1

 table

foreign

 1

 *

 table
 column 1

 *

 association

 end

 1
2

typed
type *
 1

primary

 1

 0..1 key

 column

 0..1

 1..* column

foreign

 1..*

 *

Fig. 1 Source and target metamodels of the example

According to [7], each class in the source model has to be transformed into a database table,
with class attributes becoming table columns. All attributes are assumed to have a simple
data type and here it is assumed (a sort of simplification!) that UML and SQL data types
coincide. Each table must have an “artificial” primary key column with the type integer.
One-one or one-to-many associations result into a foreign key and a column for it in the
appropriate table (for one-one – at both ends). A many-to-many association is converted into
a special table consisting only of foreign key columns (and having no primary key). Each
foreign key references the corresponding primary key.
The transformation will be performed in two steps – first, the classes will be transformed into
tables and attributes into columns, then the associations will be converted into foreign keys
and columns supporting them. Fig. 2 depicts the first step and Fig. 3 - the second one. The
first step contains one FOREACH loop, but the second – two loops of the same type.
The top-level loop in Fig. 2 is executed for each Class instance, since the trivial pattern has
no conditions. The next statement is a rule building the Table, its primary Key and the
Column for the selected Class instance. To show that namely the same instance selected by
the loop head is used here, the reference notation is used – the instance name (cl) is prefixed
by the @ character. The action part of the rule builds new class instances for Table, Key and
Column and the corresponding association instances linking them. The new elements –

instances and links are shown with dotted lines (and in red color) in MOLA. The
associations #tableForCl, #keyForCl, #keyColForCl are special ones – they are the so-called
mapping associations, which are not specified in any of the metamodels (their names start
with the # character). These associations link instances corresponding to different
metamodels and typically are used in MDA-related transformations for setting the context
for next subordinate transformations (e.g., #tableForCl will be used in the next statement)
and for tracing instances between models (e.g., to record which Table from which Class
actually has been generated). The attribute assignments for new instances use an OCL-like
syntax for expressions, with qualifications by instance names. The expression in braces for
the SQLDataType instance is an example of attribute constraint – here we assume that class
instances for SQL data types are pre-built and have to be found.

at:Attribute

dt:DataType

int:SQLDataType
{name="integer"}

:SQLDataType
{name=dt.name}

t:Table

col:Column
name:=at.name
nullable:=true

 cl:Class

@cl:Class

pkCol:Column
name:=@cl.name+"ID"
nullable:=false

pk:Key
name:=@cl.name+"ID"

t:Table
name:=@cl.name

@cl:Class

 type

 feature

type

 table
 column

 type

 column

 table

primary

primary
 column

#tableForCl

#colForAttr

#keyColForCl

#keyForCl

#tableForCl

Fig. 2 The first step of the transformation

The next statement in Fig. 2 is a nested loop which is executed for each Attribute instance of
the current Class. Its pattern references the #tableForCl mapping association, built by the
previous statement and the loop head is combined with building actions.
The second step in Fig. 3 consists of two loops. They in totality are executed for each
association instance – the first loop for those instances that have multiplicity 0..1 or 1..1 at
least at one end and the second one for those which are many-to-many. This is achieved by
adding mutually exclusive selection conditions to both loop variable definitions. These
conditions are given in a graphical form. The first one uses the already mentioned in section
2 fact that an association in a condition (pattern) requires the existence of the given instance.

The other condition uses the {NOT} constraint attached to the association – no such instance
can exist. Then both loops have an inner loop - for both ends (even in the first case there may
be two “one-ends”). Both inner loops use mapping associations built by previous rules
(#keyForCl, #tableForCl) in their conditions. The type of “foreign columns” is integer – as
well as that for “primary columns”. Alternatively, one loop on Association containing two
branches using the above mentioned conditions for selection could be used.

fk:ForeignKey
name:=e.name

fk:ForeignKey
name:=e.name

pk:KeyendCl:Class

e:AssociationEnd
{upper=1}

fkCol:Column
name:=e.name
nullable:=false

othEndCl:Class t:Table

int:SQLDataType
{name="integer"}

pk:KeyendCl:Class

t:Table

fkCol:Column
name:=e.name
nullable:=false

int:SQLDataType
{name="integer"}

e:AssociationEnd

e1:AssociationEnd
{upper=1}

e1:AssociationEnd
{upper=1}

@as:Association

@as:Association

as:Association

as:Association astb:Table
name:=as.name

 class

 type

 type

end

end

 end

foreign

 column

 type

referencedKey

 column
 table

 table

foreign

referencedKey

foreign

 column

 type

 table
foreign

 column
 table

#keyForCl

#fkForEnd

#colForEnd

#tableForCl

 end {NOT}
#tableForAssoc

#fkForEnd

#keyForCl

#tableForAssoc

#colForEnd

Fig. 3 The second step of the transformation

The example has demonstrated all the main constructs of MOLA and their typical usage. To
complete the graphical syntax, deletion of elements is denoted by dashed lines. There are
also some less frequently used constructs in MOLA, such as temporary attributes and
associations, which permit to implement complicated computations, but there is not enough
space to cover them.

4. Conclusions

Authors hope that the given example is a convincing proof of transformation program
readability in MOLA. At least for “graphics-minded” readers it can be understood much
easier than its OCL-based equivalent in [7].
The language has been tested on most of MDA related standard examples – e.g., class to
Enterprise Java in [7], UML statechart flattening from [6]. In all cases a natural
representation of the informal algorithms has been achieved, using mainly the MOLA loop
feature. An especially adequate representation for the statechart flattening task has been
obtained. Though the original algorithm is recursive to certain degree, the use of WHILE
loop with several loop heads (not demonstrated in this paper) permits a natural iterative
description of it. This provides convincing arguments for a practical functional completeness
of the language for various model to model transformations in model driven development
area. Though it depends on readers’ mindset, the “structured flowchart” style in MOLA
seems to be more readable and also more compact than the pure recursive style used e.g., in
[5]. Though recursive calls are supported in MOLA, this is not the intended style in this
language. There is one special kind model transformation tasks based on so-called transitive
closure pattern (required e.g., for the [2,5] version of class to database transformation).
Though this pattern is completely implementable in MOLA, a more direct description of it is
available in the extended MOLA (see [10]).
The implementation of MOLA in a model transformation tool also seems not to be difficult.
The patterns in MOLA are quite simple and don’t require sophisticated matching algorithms.
Due to the structured procedural style the implementation is expected to be quite efficient.
All this makes MOLA a good candidate for practically usable model transformation
language.

References.
[1] OMG: Request For Proposal: MOF 2.0/QVT. OMG Document ad/2002-04-10,

http://www.omg.org/cgi-bin/doc?ad/2002-04-10
[2] QVT-Merge Group. MOF 2.0 Query/Views/Transformations RFP, Revised submission, version 1.0.

OMG Document ad/2004-04-01, http://www.omg.org/cgi-bin/doc?ad/2004-04-01
[3] Compuware, SUN. MOF 2.0 Query/Views/Transformations RFP, Revised Submission. OMG

Document ad/2003-08-07, http://www.omg.org/cgi-bin/doc?ad/2003-08-07
[4] Interactive Objects Software GmbH, Project Technology, Inc. MOF 2.0

Query/Views/Transformations RFP, Revised Submission. OMG Document ad/2003-08-11,
http://www.omg.org/cgi-bin/doc?ad/2003-08-11

[5] E.D.Willink. A concrete UML-based graphical transformation syntax - The UML to RDBMS
example in UMLX. Workshop on Metamodelling for MDA, University of York, England, 24-25
November 2003.

[6] Agrawal A., Karsai G, Shi F. Graph Transformations on Domain-Specific Models. Technical report,
Institute for Software Integrated Systems, Vanderbilt University, ISIS-03-403, November 2003.

[7] Kleppe A., Warmer J., Bast W. MDA Explained. The model driven architecture: practice and
promise. Addison-Wesley, 2003.

[8] Bettin J. Ideas for a Concrete Visual Syntax for Model-to-Model Transformations. Proceedings of
the 18th International Conference, OOPSLA’2003, Workshop on Generative Techniques in the
context of Model Driven Architecture, Anaheim, California, USA, October 2003.

[9] Czarnecki K., Helsen S. Classification of Model Transformation Approaches. Proceedings of the
18th International Conference, OOPSLA’2003, Workshop on Generative Techniques in the context
of Model Driven Architecture, Anaheim, California, USA, October 2003.

[10] Kalnins A., Barzdins J., Celms E. Model Transformation Language MOLA: Extended Patterns. To
be published in proceedings of Baltic DB&IS 2004, Riga, Latvia, June 2004.

Model Transformation Language MOLA: Extended
Patterns

Audris Kalnins, Janis Barzdins, Edgars Celms

University of Latvia, IMCS
29 Raina boulevard, Riga, Latvia

{Audris.Kalnins, Edgars.Celms}@mii.lu.lv

Abstract. The paper describes a new graphical transformation language
MOLA for MDA-related model transformations. Transformations in MOLA
are described by combining traditional control structures, especially loops,
with pattern-based transformation rules. Besides an overview of the basic
MOLA, the paper describes an extension of MOLA – powerful patterns,
which may include transitive closure. The paper shows how the usage of these
patterns simplifies control structures for typical MDA tasks.

Keywords. Model transformations, MDA, patterns

1. Introduction

The increased use of modeling techniques nowadays requires effective support
for model transformations. Perhaps, one of the most actual areas in software
engineering today is the Model Driven Architecture (MDA) [1]. MDA is a software
development approach in which models are the primary artifacts. According to the
MDA, the different types of models are defined (most usually in UML [2,3]
notation), mapping between models and towards different targets is formalized, and
guidelines are automated, in order to improve efficiency and guarantee that the
process of the transformation between models is properly followed. Model-to-model
transformation is therefore a key technology for MDA. While the current Object
Management Group (OMG) standards such as the Meta Object Facility (MOF) [4]
and the UML provide a well-established foundation for defining different types of
models, no such well-established foundation exists for transformations between
them. The need for standardization in this area led to the MOF 2.0
Query/Views/Transformations (QVT) request for Proposals (RFP)[5] from OMG.

To a great degree the success of the MDA initiative and of QVT in particular will
depend on the availability of a concrete syntax for model-to-model transformations
that is able to express non-trivial transformations in a clear and compact format that
would be useful for industrial production of business software [6].

The submissions by several consortiums have been already made, e.g. [7, 8, 9],
and it is somewhat surprisingly, that only a few of them use a natural graphical
representation of their language. Currently none of them has reached the status of a
complete model transformation language. Several proposals for transformation

languages have been provided outside the OMG activities. The most interesting and
complete of them seem to be UMLX [10] and GReAT [11].

According to our view, and many others [6], model transformations should be
defined graphically, but combining the graphical form with text where appropriate.
Graphical forms of transformations have the advantage of being able to represent
mappings between patterns in source and target models in a direct way. This is the
motivation behind visual languages such as UMLX, GReAT and the others proposed
in the QVT submissions. Unfortunately, the currently proposed visual notations do
not provide easy readable descriptions of model transformations.

The common setting for all transformation languages is such that the model to be
transformed – the source model is supplied as set of class and association instances
conforming to the source metamodel. The result of transformation is the set of
instances conforming to the target metamodel – the target model. Therefore the
transformation has to operate with instance sets specified by a class diagram
(actually, the subset of class notation, which is supported by MOF).

Approaches that use graphical notation of model transformations draw on the
theoretical work on graph transformations. Hence it follows that most of these
transformation languages define transformations as sets of related rules. Each rule
consists of a pattern and action part, where the pattern has to been found (matched)
in the existing instance set and the actions specify the modifications related to the
matched subset of instances. This schema is used in all of abovementioned graphical
transformation languages. Languages really differ in the strength of pattern
definition mechanisms and control structures governing the execution order of rules.

The most detailed pattern definition is in the GReAT language. There it is
possible to match a set of instances to one element of the pattern (variable
cardinality patterns). However, the patterns are still limited in depth but this is
compensated by a very elaborated rule control structure specified graphically by
dataflow-like diagrams. UMLX has a similar but slightly weaker pattern mechanism.
The control structure is completely based on recursive invocations of rules. In the
proposal by QvT-Partners [7] graphical patterns are combined with extensive use of
textual constraints. The control structure is based on recursive invocation of rules. In
the DSTC/IBM/CBOP proposal [12] (now merged with [7]) patterns are specified in
a textual (Prolog-like) form, the most interesting feature of this language is the
possibility to include a transitive closure in patterns.

This paper proposes a new graphical transformation language MOLA (Model
Transformation Language). The main design goal for MOLA has been to make the
transformation definitions natural and easy readable, by relying on simple iterative
(non-recursive) control structures, based on traditional structured programming. In
addition, as far as it improves readability, the intention was to make each rule more
powerful. In particular, this requires the strengthening of pattern mechanism. The
MOLA project actually consists of two parts – the basic and extended MOLA. The
basic MOLA uses simple patterns and more relies on control structures – it has a
more procedural style. The main element there is a graphical loop concept, which
can easily be combined with a transformation rule. The main new feature of the
extended MOLA is the possibility to define looping patterns of “unlimited depth” (in
addition to variable cardinality), thus incorporating the mechanism of transitive
closure in patterns. In the result, very simple control structure – a sequence of simple
loops then is sufficient for many transformation jobs. Certainly, such a pattern

definition requires an adequate definition of the matching procedure, which is also
described in the paper. High execution efficiency for the procedure is guaranteed in
the typical case when the pattern cardinalities are adapted to the metamodel
multiplicities, to which the instance set conforms (the “uniqueness principle” is
observed). Patterns in MOLA are defined as directed graphs, to enable the required
control over the matching procedure – also a new feature for pattern definition. As a
consequence of larger and more powerful patterns, a typical step of a transformation
frequently can be described by one rule. This natural non-recursive style of
transformation definitions in MOLA has been tested on several real MDA jobs, at
the same time using the features of MOLA to keep each rule not too complicated
(namely the right balance there ensures the human readability of transformations).
As far as we know, the extended MOLA is the only graphical transformation
language, which supports transitive closure in patterns. The ideas for pattern
definition in MOLA have been partially inspired by the authors’ previous experience
in defining mappings for generic modeling tools based on metamodels [13].

 This paper describes the basic elements of MOLA. The main emphasis is on the
extended pattern concept. Language description is based on a typical MDA example
(used also in [7, 8, 10, 14]) – transformation of a simplified class diagram into a
database definition. Section 2 describes the general structure of MOLA, section 3 -
the example. Section 4 describes the basic MOLA – rules with simple patterns and
the new concept of loop. The complete pattern mechanism in extended MOLA,
including cardinality constraints, looping patterns and the corresponding matching
procedure is described in section 5.

2. Overview of language elements in MOLA.

The MOLA language is a natural combination of pattern-based model
transformation rules with control structures from traditional structured
programming, both specified in a graphical form.

MOLA is meant for transforming models built according to one metamodel – the
source metamodel (SMM) to models conforming to another metamodel – the
target metamodel (TMM). In a special case, SMM and TMM may coincide. Both
the source and target models actually are treated as instance sets of the
corresponding metamodel classes and associations.

A transformation definition in MOLA consists of the both metamodels and the
transformation program. A transformation program in MOLA is a sequence of
statements. A statement is a graphical area, delimited by a rectangle – in most
cases, a gray rounded rectangle. The statement sequence is shown by dashed arrows.
The program starts with the UML start symbol and ends with an end symbol.

 The simplest kind of statement is a rule, which performs an elementary
transformation of instances. A rule contains a pattern – a set of elements
representing class and association instances, built in accordance with the source
metamodel. Pattern elements can have attribute constraints (OCL expressions).
The pattern specifies what kind of instance group must be found in the source
model, to which the rule must be applied. A rule has also an action specification –
new class instances to be built, instances to be deleted, association instances (links)

to be built or deleted and the modified attribute values (as assignments). Both for the
pattern and action part the UML object (instance specification) notation is used.

The most important statement type in MOLA is the loop. Graphically a loop is a
rectangular frame, containing a sequence of statements. This sequence starts with a
special loop head statement. The loop head is also a pattern, but with one element –
the loop variable highlighted (by a bold frame). Informally a loop variable
represents an arbitrary instance of the given class, which satisfies the conditions
specified by the pattern. Actually there are two types of loops in MOLA, differing in
semantics details. The first type (denoted by a simple frame) is executed once for
each valid loop variable instance, therefore it is called FOREACH loop. Mainly this
type of loop will be used in the paper. The second type (denoted by a 3-d frame) is
executed while there is at least one loop variable instance satisfying the pattern
conditions – it is called the WHILE loop. Loops can be nested to any depth. A loop
head can contain actions – it is also a rule. Such a combined statement will be
widely used in the examples of this paper.

Other control structures in MOLA are the branch construct – several frames
started by pattern statements as conditions and the subprogram concept together
with the subprogram call, where the parameters can contain references to instances
used in the calling program. However, these control structures actually will not be
used in the paper – the aim of this paper is to demonstrate how extended patterns in
MOLA allow to use a very simple control structure – a sequence of simple loops.

Section 4 discusses in detail the syntax and semantics of basic MOLA on an
example. Then the extended patterns are introduced – the section 5 describes the
extended MOLA.

 The general execution schema in MOLA is simple – when a source model is
supplied, statements are applied to it in the specified order. A statement is always
applied to the whole instance set which is being gradually transformed by the rule
actions. The potential execution efficiency is ensured by the corresponding features
of the pattern language, where it is easy to specify that only “useful” pattern matches
occur.

During the transformation process one more optional metamodel – the
intermediate metamodel (IMM) may be used. IMM contains both SMM and TMM
as a subsets, and additional elements – classes, attributes and associations necessary
for performing the transformation. There is a special kind of additional associations
– mapping associations which in fact are present in every transformation. These
associations physically implement the mapping from the elements of source model
to target elements, therefore they link classes from SMM to the corresponding
classes in TMM. See more on the role of mapping associations in 4.2. Namely due
to a large set of mapping associations it is recommended to use IMM for non-trivial
transformations (it is also permitted in MOLA to define mapping associations “on
the fly” – directly in rules, if IMM is not used). Another important elements of IMM
are computed attributes – “temporary” attributes added to classes of IMM for
storing intermediate values. There may be several kinds of computed attributes, the
most used here are the rule-local ones. Names of rule-local attributes start with “?”
in the IMM, see more on them in 5.2. Non-local temporary attributes (with the scope
of several statements) can be also defined/created and destroyed by special
statements.

3 Example - the class model to relational model transformation

The paper will be based on a typical MDA example, considered also in [7, 8, 10,
14] – the transformation of a simplified class diagram into a semantically equivalent
relational database definition. For all the different versions of the example the one in
[7] is used here. This version permits to demonstrate the easy definition of transitive
closure in extended MOLA. The SMM for this task is shown in Fig.1.

CL-MM

AssociationAttribute

PrimitiveDataType

Class

Classifier

ModelElement
name:string
kind:string

reverse

destination

*

1

forward

source

*

1

owner

attribute

0..1

*

typed

type*

1

Figure 1. Source metamodel for simplified class diagram.

All elements can have a name. The metaattribute kind is applicable to metaclasses
Class and Attribute, only a Class where its value is “persistent” must be transformed
into a database Table, the value of kind equal to “primary” determines that an
Attribute actually is a part of a primary key (all other values of kind are irrelevant).
The type of an Attribute can be either a PrimitiveDataType, or another Class. Fig.2
shows the TMM - a simplified relational database definition metamodel.

DB-MMModelElement
name:string
kind:string

Table Key

Column
type:string

ForeignKey

owner
key1

0..1

ownercolumn 1
*

belongsTo

column

0..1

*

foreignKey
column

*
*

owner

foreignKey

1

* referedBy

refersTo

*

1

Figure 2. Target metamodel for database definition.

A Table consists of Columns, and it can have a (primary) Key, which contains
some of the Columns. The ForeignKey for a Table always refers to a Key of another
Table.

The informal transformation algorithm is quite straightforward. For each
persistent class a table and its key must be built. The primitive-typed attributes of
this class become columns of the table (with the same name and type name). The
columns which correspond to primitive-typed attributes of primary kind become
parts of the key. In addition, for class-typed attributes, the primitive attributes of the
target class are also transformed to columns of the table for the original class (as
“indirect attributes”), and this process of finding indirect attributes is continued
down until no more indirect attributes can be found (so-called class flattening – a
transitive closure-like process). A column for an indirect attribute has a compound
name – the concatenation of all attribute names down to the primitive one. An
association is converted into a foreign key for the source class (table), and this
foreign key refers to the key for the destination class. In addition, new columns are
added to the source table (and to the foreign key) – one (equally named and typed)
for each column of the corresponding key. The problem of ordering the columns in
keys is ignored in the example. Association multiplicities also are not used in this
simplified example – only the association direction matters. It should be noted that
the processing of indirect attributes and associations is independent – it may be done
in any order.

IMM

Attribute
?prefix :String

Classifier

ForeignKey

ModelElement
name:String
kind:String

Association

Column
PrimitiveDataType

Key

Class
?prefix :String

Table

typed
type *

 1

owner

 attribute

 0..1

 *

#colForAttribute

 1

 0..1

owner foreignKey 1
 *

forward

source

 *

 1

#forKeyForAssoc

 1

 0..1 column

owner

 *

 1
refersTo

referredBy 1
 *

reverse

destination

 *

 1

owner
 key 1
 0..1

#tableForClass

 1

 0..1
#keyForClass

 1

 0..1

 column

 foreignKey

 *

 *

 column

belongsTo

 *

 0..1

#fcolForKcol
 1 *

Figure 3. Intermediate metamodel for the transformation.

The one remaining element to be described is the IMM – see Fig.3. In addition to
a copy of SMM and a copy of TMM (the classes of TMM are in a darker color), it
contains mapping associations from source to target elements, e.g., from Class to
Table. These mapping associations will be used in rules in sections 4 and 5, they
have the # character prefixed to role names and are in red color in Fig.3. IMM
contains also a computed attribute prefix of rule-local kind (names of rule-local
attributes start with “?” in MOLA), it will be used in section 5.2.

4. Structure of simple loops and rules

As it was stated, both loops and rules rely on patterns in MOLA. In this section
the structure of simplest patterns will be described in detail. These patterns, for
which only a fixed-size match is possible, have a very simple matching algorithm.
The patterns in this section actually are weaker than those described in [10, 11], the
goal of this section is just to demonstrate the general principles of MOLA in a very
simple case. Non-trivial patterns of MOLA will be described in section 5.

4.1. Basic patterns

A pattern in MOLA specifies the instance set which can be matched to it. From a
syntax point of view, it is similar to UML 2.0 collaborations or structured classifiers.
The main element of a pattern is a source metamodel class, specified in UML
instance notation. Each element has an optional instance name and the class
name, the same class may be used several times in a pattern. In totality, they must
be unique within a pattern. Each element matches to an appropriate instance of that
class. Since a typical use of pattern in MOLA is in a loop head, we start with this
case. There one pattern element – the loop head (a bold one) has a special meaning.
All other elements of the pattern are used to specify, namely which instances of this
class in the source model can be used as loop variable instances. The other pattern
elements (which may correspond also to target metamodel classes) also must match
to an appropriate instance – they specify the context of a loop variable.

In addition to elements, a pattern contains pattern associations – selected
metamodel associations between the used classes and attribute constraints – OCL
constraints specified within elements (in braces). The specified association instances
must exist between the matched model instances and the attribute constraints must
evaluate to true. Pattern associations can have also a {NOT} constraint – this means
that no specified instance can be linked to the “main match” by the given link.

Thus a pattern in a loop head specifies which instances of the given class in the
source model qualify as valid instances for the loop variable. The other pattern
elements have the “exists” semantics – there must be (or must not be) an appropriate
instance in the selected match, but there is no need to find all possible matches for
them.

The loop variable in a pattern in fact plays the role of its root – the match is
started from it.

Fig.4 shows the simplest pattern consisting just of the loop variable. This pattern
says that an instance of Class in the source model (i.e., the instance set
corresponding to the class diagram to be transformed into a database definition)
matches to this pattern, if its kind has the value “persistent” (kind – a string-typed
attribute of Class).

cl:Class
{kind = "persistent"}

Figure 4. Simplest pattern example.

Fig. 5 shows a more non-trivial pattern, involving several elements and
associations. In this pattern only these instances of Attribute qualify as a loop
variable instances, which have an owner link to a Class instance, which in turn has a
#tableForClass link to a Table instance, and also have a type link to a
PrimitiveDataType instance. The Table class is from the target metamodel, and the
#tableForClass is a mapping association – this means that these instances have to be
already built by previous statements. Pattern associations typically specify only one
of the role names – that leading away from the root.

cl:Class

a:Attribute

tb:Table

t:PrimitiveDataType

#tableForClass
owner

type

Figure 5. Associations in a pattern.

The simple patterns described so far do not require a more formal match
definition. However, for extended patterns in section 5 such a definition will be
used.

Here one principle of a good programming style in MOLA should be given. To
achieve a high execution efficiency, pattern associations leading away from the loop
variable (the pattern root) should have the 0..1 multiplicity at this end in the
corresponding metamodel. This means that we test the existence of one possible
instance. In addition, in the case of existence, the match is unique then and we can
reference this instance for various purposes, e.g., to use its attribute values in a
deterministic way. Actually, all examples in the paper use this principle. For other
multiplicities the extended patterns in section 5 serve well.

Patterns can use also the reference notation – an element whose name is prefixed
by the @ character – this means that an already selected instance (by a previous
statement, typically a loop head) must be used. This way patterns can be structured –
similarly as, e.g., in [11]. See an example in Fig. 8.

4.2. Actions of the rule, complete rule examples

Pattern matching is only one part of the rule application. Another one is to
perform the actions specified in the rule (on the basis of the current match). These
actions modify the current instance set – typically, the target model. The following
actions can be specified in a rule:

- building new class instances
- building new association instances (connecting new as well as existing

instances)
- changing the attribute values – both for new and existing class instances
- deleting instances

The action specification (the “RHS part”) of a statement has a structure similar
to the pattern. It also consists of elements to build (in the instance notation) and

associations linking the new elements between themselves or to the pattern
elements. Syntactically the action part is distinguishable by dotted lines and the line
color – it is in red. Actions can also specify the deletion of an existing element
(matched by the pattern) – this is shown by dashed lines.

The most typical action is the building of a new class instance. Building of class
instance in MOLA is always accompanied by building of one special association –
the mapping association, which in the rule must be linked to a pattern element (e.g.,
an association with the role name #tableForClass is linked to cl:Class in Fig.6). The
role name of this association is specified in the intermediate metamodel (here –
Fig.3) if that exists, but anyway its name must be prefixed by the # character. At the
instance level it means that one instance of the new class is built and linked by the
mapping association to the existing instance of the corresponding pattern element.

One goal of the mapping association is to serve for matching in the patterns of
next rules. It is very typical in MDA model transformations that the transformation
of a “higher level” element – package, class etc. determines how its subordinates –
classes, attributes etc. must be transformed. The mapping association is namely the
element linking such subordinate rules and ensuring their consistency. In addition,
the mapping association reifies physically the mapping between the source and
target model (and serves for tracing), hence such a name is used for this concept in
MOLA. In our simple patterns, the cardinality of the mapping association is 1 – 1,
but in more advanced patterns of MOLA it may have cardinality 1 – 1..* (and serve
for determining the instance set of the new class which must be built).

The remaining action element is the assignment of attribute values (done by
Pascal-like assignment statements). For an attribute to be set the new value is
defined by an OCL style expression, which can contain one extension – attributes
from pattern elements may be referenced, just by prefixing them with the instance
name. The semantics is straightforward – take the attribute value from the existing
instance matched to the element. The attribute assignments can be done for the
“new” instances, but attributes of existing instances (in the pattern elements) can
also be modified this way.

Fig.6 shows a complete example of a statement in MOLA. This is the first
statement in the program for building the database definition from a class diagram.

tb:Table
name := cl.name

k :Key
name := "k"+cl.name

cl:Class
{kind = "persistent"} #tableForClass

#keyForClass

owner

 key

Figure 6. Simple statement in MOLA.

This statement is a FOREACH loop consisting of its loop head only, this loop
head is also a rule which builds new instances. It does the first job in the
transformation process – builds instances of both Table and Key for any Class

instance whose kind has the value persistent. The name attribute in each of the new
instances is set to the specified value – to the name value in the matched Class
instance. In addition, the two mapping associations are built, as well as an
association instance with the roles key – owner between the new instances.

Fig. 7 shows the next two statements of the transformation program – both
FOREACH loops too. The first one builds columns corresponding to primitive-
typed attributes of persistent classes from the source model. Its pattern (discussed in
section 4.1) selects the appropriate table in the target model (built by the previous
statement) and the rule associates the new column to it.

col:Column
name := "c-"+a.name
type := t.name

col:Column

k :Key

cl:Class tb:Table

a:Attribute

a:Attribute
{kind = "primary"}

cl:Class tb:Table

t:PrimitiveDataType

owner

owner
 key

owner

 column

belongsTo

 column

#colForAttribute

#tableForClass
owner

type

#colForAttribute

#tableForClass

Figure 7. Statements transforming primitive attributes to columns and associating key columns.

The other statement in Fig.7 has the intention to attach the belongsTo association
to each Column which corresponds to an Attribute with kind = primary (the other
end of the association must be the Key for the relevant Table).

One more task to be done is to process associations in the source model. Fig.8
shows the corresponding program statement – a nested FOREACH loop. The top
level loop builds the foreign key for each association in source model and associates
it to the relevant primary key (built by the first statement). The nested loop builds a
new column (in the table corresponding to the source class) corresponding to each
column in the referred primary key. The pattern of this loop uses three references to
instances selected in the top loop – all prefixed by the @ character. We remind that
this means that namely these referenced instances must be used in any match for the
subordinate pattern. Thus there is no need to repeat the corresponding selection
conditions in the nested loop – its pattern becomes simple.

Certainly, the building of columns for a foreign key could be done by a separate
independent loop, but then its pattern would be more complicated. In general, a
certain “breadth first programming style” – each action a separate top level loop –

is in most cases usable for typical MDA jobs. But sometimes nested loops help to
structure complicated patterns.

@fk:ForeignKey

fcol:Column
name := kcol.name
type := kcol.type

fk:ForeignKey
name := "f-"+as.name

@dstc:Key

src:Class srct:Table

dstk:Keydst:Class

@srct:Table

as:Association

kcol:Column

#tableForClass

#fcolForKcol

#forKeyForAssoc

destination
referedBy

refersTo

#keyForClass

 column
owner

 column
 foreignKey

owner

 foreignKey

source

 key

Fig. 8 Statement processing source model associations.

The remaining task – flattening class-typed attributes can also be implemented in
the basic MOLA described so far. However, since the flattening is a true transitive
closure task, and in its most complicated form – find all possible paths in the source
model from a class to its indirect primitively-typed attributes and compute a name
along each of the paths, it requires creating copies of attribute instances, building
temporary associations and attributes and using depth three loops. In other words,
the standard algorithm for building all paths in a graph has to be implemented. An
alternative more readable solution is to use extended patterns to be considered in the
next section.

5. Extended patterns

The patterns considered so far have one limiting property – only one instance can
be matched to an element. Since this is too restrictive for some tasks in real
transformations, especially those related to transitive closure, various ways to extend
the pattern notation will be considered in this section. First, patterns with cardinality
constraints will be considered – they may have unlimited number of instances
associated with one pattern element, but the matching depth is still limited. An
efficient match building procedure for this case is defined in a completely different
way – as a stepwise algorithm on a graph. The efficiency of this procedure is

guaranteed if uniqueness principle is observed – pattern cardinalities match to the
metamodel multiplicities. Finally, the looping patterns with unlimited matching
depth are introduced – namely these patterns are more powerful than those in [10,
11] and permit to perform nontrivial actions, including transitive closure, in one
rule.

5.1. Cardinality constraints for navigation associations

In section 4 the simplest case was considered where each pattern element was
matched to a single instance and each association to a single association instance
linking the matched class instances. In order to have larger fragments of the instance
set mapped to the pattern, with several instances associated to one pattern element
(what is really required by transformation rules), the extended MOLA uses
cardinality constraints attached to pattern associations (actually something similar
is used also in [10, 11]). In addition, the associations with cardinality constraints are
treated as directed graph edges – using the UML navigability notation.

One of the constraints - ALL. It is used when the association has * or 1..*
multiplicity at the appropriate end in the metamodel. It corresponds to * in UML –
take all what you can, but nothing bad, if none. Another constraint is OPT. It is used
with associations having 0..1 multiplicity at the appropriate end and means – take
the instance if it exists, but the pattern does not fail if none exists. Actually OPT is a
decorative version of ALL for the 0..1 case – to improve the readability. And we
remind that empty cardinality constraint actually means just one. NOT also can be
used as a cardinality constraint – there is none. In fact, there are constraints in
MOLA which correspond to all possible UML multiplicities, but currently we don’t
need the other.

Now, more precisely, what is a valid extended MOLA pattern. Here we consider
only the case when the pattern is used as a loop head. Then there is a loop variable,
which serves as a pattern root. The pattern consists of two parts, having the loop
variable as the sole common node. The first part, which uses undirected
associations (and no additional cardinality constraints), is the same as before. It
expresses (as before) the conditions for selecting valid instances for the loop
variable. The other – the extension part uses directed associations and cardinality
constraints and is used for matching to a set of instances. It must be a directed
acyclic graph (DAG) starting from the loop variable as a root (a more complicated
case with loops is considered in the next section). This part can be built by taking
classes from the metamodel (in fact, IMM), converting them to pattern elements
(adding instance names) and adding metamodel associations as directed edges. The
extension part must be distinguishable by associations – if several edges with the
same role name leave a node, they must lead to different classes (this requirement is
essential for having an efficient match procedure, a weaker version of this restriction
will be given in 5.2). The next step is to add appropriate cardinality constraints to
the navigable ends of associations – ALL if the multiplicity in the metamodel is *
or 1..* and OPT or nothing (one) if multiplicity is 0..1 or 1. When cardinality
constraints are set this way, we say that the “uniqueness principle” is observed (the
pattern fits to the metamodel). The pattern in Fig. 9 obviously satisfies the
uniqueness principle – ALL is at the attribute end of the association from Class

(where the multiplicity in IMM is *), all other multiplicities are 0..1. To emphasize
the fact that we expect many instances of Attribute to be matched, a decorative
element in the pattern – the multiobject notation (from UML collaborations) can be
used for the Attribute element.

We make here also one assumption – the extension part edges leaving the root
node have the constraint ALL or OPT (the extension part should express an
unlimited, but optional at the same time part of the match).

Let us consider an example for the usage of ALL constraint in an extended
pattern – the first statement from Fig.7 but defined in an alternative way – in Fig.9.

tb:Table

t:PrimitiveDataType

a:Attribute col:Column
name := "c-"+a.name
type := t.name

cl:Class

owner
 column

#tableForClass

#colForAttribute 1
 1

 attribute ALL

type

Figure 9. Rule with cardinality constraint.

The loop variable accepts as valid those instances of Class, for which a Table has
been built. Now, when the loop is executed for a valid instance of the loop variable,
the following new action is performed. For the extension part of the pattern
(containing the elements a:Attribute and t:PrimitiveDataType) a temporary instance
DAG is built containing all matches for the given root instance. For the given
example this DAG is very simple – all those Attribute instances for the given Class
instance (root), which are linked to a PrimitiveDataType instance, together with the
corresponding association instances (attribute and type). The result is indeed a
DAG, but not a tree, because a PrimitiveDataType instance can be used for several
Attribute instances. Here the original instances from the source model are used as
nodes for the DAG (we can assume that the nodes and edges of the DAG are
highlighted, e.g., by “coloring” them green), but in some cases node copies are built
– see section 5.2.

When the instance DAG is built, the rule actions are performed. Here a Column
instance is built for each Attribute instance in the DAG (i.e., an instance associated
to the element a:Attribute). This is specified by the mapping association
(#colForAttribute) which now has an explicit multiplicity 1-1. Then the DAG is
discarded (the highlighting is removed).

Now we will define the match building for an arbitrary pattern. The most natural
way is to use a procedural match definition. We treat the pattern (its extension
part) as a DAG from the root and build the instance DAG starting from its root – the
current loop variable instance. Valid instance nodes are added to it layer by layer, in
strict accordance with the pattern – so that each instance node can be assigned to a
pattern node at that layer and the edges also match. Here the number of layers is
fixed (determined by the pattern). Cardinality constraints must be taken into account
– if the constraint is ALL, it doesn’t matter how many edges exit a node in the

current layer, but for the default constraint (just one) there must be the
corresponding edge to a node in the next layer. If that edge is not found, the node
must be removed from the current layer as invalid. The pattern edges with ALL
constraint actually generate fan-out cases in the instance DAG.

The formal definition of the matching procedure (generating a complete valid
match – the instance DAG) is the following:

1. mark the current instance of the loop variable as the only instance in the
layer one of the instance DAG and associate it to the pattern root.

2. take a node in the current layer of the instance DAG. For each directed
association leaving the pattern node, to which the instance node is
associated, find all association instances from the current node and select
those where the target instance satisfies the corresponding attribute
constraint; add this “filtered neighborhood” to the next layer. Repeat this
for all nodes in the layer. If a node in the next layer has been reached twice,
mark it only once (the path history is not important in this mode).

3. assign instances in the next layer to the corresponding elements in the
pattern (it can be done uniquely due to the required distinguishability by
associations).

4. check cardinalities – for each node in the current layer and for each
navigation association (which has the default cardinality constraint - i.e.,
“just 1”) from the associated pattern node check whether there is an
instance of this association. If there is none, remove the instance node from
the current layer, and recheck the previous layers (for layer one it cannot
occur due to our assumption). ALL and OPT constraints require no check.

5. repeat steps 2, 3, 4 for each layer of the pattern
The semantics of ALL guarantees that always the maximal match is selected – no

subset of a match can be a valid match. Even more, for a given root the procedure
result is deterministic – it is due to the “uniqueness principle” for the pattern, that
from several possible instances all are selected, and one instance must be selected
from possible one. Namely this would permit also an efficient match implementation
in MOLA.

5.2. Looping patterns

In this section we introduce the final elements of extended patterns in MOLA.
First, we permit patterns to have directed loops in the extension part when a pattern
is built on the basis of a metamodel fragment. This extension is essential for
defining a transitive closure in a pattern. Features will also be provided for
defining a closure involving all possible paths.

The requirement introduced in 5.1 that the extension part must be
distinguishable by associations is still in place. This requirement is sufficient for
the example in Fig. 10 and many similar ones. A weaker restriction – the K-
distinguishability – sufficient for any reasonable MDA task will be considered at the
end of section (however, it makes the matching procedure more complicated).

Certainly, the uniqueness principle from 5.1 must be observed when assigning
cardinality constraints to pattern edges – violating this principle would lead to a
much more complicated and inefficient matching procedure.

Though a pattern now may have loops, the instance graph for it will be required
to be a DAG anyway. From the theoretical point of view, we may be interested in
finding instance-level loops via patterns, but no MDA related job was found where it
makes sense. Therefore loops at the instance level will be simply forbidden by the
matching procedure.

One more remark refers to nodes of the instance DAG. In 5.1 a simple case was
considered where the original model nodes were used (just highlighted). But this
implies that the path history cannot be stored in the instance DAG – if a node is
reachable via two or more paths, data from the path cannot be stored in the node.
The only way for storing this data is to make copies of the original instances and
store them in the DAG. In an extended MOLA statement it can be specified which
pattern nodes must be copied (such a node is marked by a square icon) during the
building of the DAG (it makes sense only for the looping nodes). The temporary
copies in the DAG are related to their originals and “inherit” all attributes and
association instances from them. When the statement completes, the temporary
copies are discarded. Copying selected pattern nodes is the easiest way to implement
transitive closures where all paths from a node must be traversed – as the one in Fig.
10.

The same matching procedure from the previous section is usable, but with the
following extensions:

- step 2. New instance which is already present in the DAG on the path (from
the root to the current instance) is not added to the next layer – a safeguard
against infinite loops. If the target instance corresponds to a pattern element
in the “copy list”, make a copy of the instance and of the relevant
associations, relate the copy to the original.

- step 5. Repeat steps 2, 3, 4 until no instances are placed in the next layer
(the repetition is no longer limited by the number of layers in the pattern
due to possible loops)

A typical use of a looping pattern is for performing a transitive closure along a
metamodel association. Transitive closure is directly supported in the textual
languages [12, 14], but no other graphical pattern languages [7, 10, 11] support it.

Fig.10 shows an example of a looping pattern. It is the last statement in the class
to database transformation program and performs a recursive “flattening” of the
class diagram – adding indirect attributes (columns) to a class (table), whose direct
attributes have another class as a type. In this example actually a transitive closure
on the attribute association is performed. The only loop in the pattern is formed by
the type association from a2. The type edge can lead either to t or to c2, the situation
is distinguishable because they are of different classes. Both of the edges have the
OPT cardinality constraint. During the pattern match, just one of these possible
continuations will occur (because an Attribute always must have a type). If no type
leads back to a c2, then looping along this path is finished. If all the looping is
finished, a large instance tree (it is indeed a tree due to instance copying, except the
“terminal” instances of t) with the root Class as a root and certain number of
Attribute instances as leaves is built as the result of the match. The tree represents all
possible paths via indirect attributes from the given class instance - due to the
copying of c2 and a2 two paths never join. The leaves have a primitive type – they
will be used for columns. However, it should be noted that both leave and non-leave

Attribute instances are assigned to a2 – they must be sorted out to find leaves only.
This tree represents graphically the transitive closure of the attribute association.

a2.type.oclIsTypeOf(
PrimitiveDataType)

a:Attribute
?prefix :=cl.?prefix+name+'-'

t:PrimitiveDataType

col:Column
name := a2.?prefix
type :=t.name

tb:Tablecl:Class
?prefix :="c-"

a2:Attribute
?prefix :=c2.?prefix+name

c2:Class
?prefix := PRED.?prefixtype

{OPT}

type {OPT}

 attribute {ALL}

type

 attribute {ALL}

 table

 column

#tableForClass

#colForAttribute

 1

 1

Figure 10. Rule with looping pattern.

Looping patterns typically involve complicated assignments to computed
attributes of metamodel classes.

There are several kinds of computed attributes in MOLA, differing in their scope.
Here the most used attributes are statement-local attributes, their scope being
actions within one statement execution (here – one iteration of the loop, during
which the extended match is built). Their values are discarded after the loop iteration
is complete. Their main use is for finding various qualified or compound names,
typically appearing in MDA tasks.

If the intermediate metamodel is used (here – Fig. 3), rule-local attributes are
defined in it for all relevant classes, their names start with “?”. Their computation
is performed immediately after the pattern match – when the instance DAG is
complete. Rule-local attributes are computed in the same order as the match itself
was built – starting from the root and moving away from it. If the instance DAG
contains copies, these attributes are located in copies – not in the original instances.
The assignment statement for a computable attribute in its expression part can
contain the value of this attribute in the predecessor node and any values of normal
(source) attributes in the current node (these are unqualified). The attribute value
from the predecessor node can be qualified either by its instance name or by a
PRED keyword. The use of PRED is required in cases when a node may have
several nodes as predecessors – due to loops in patterns. Each node in the path must
have the corresponding assignment statement, otherwise the attribute computation is
terminated there. Several attributes may be computed simultaneously in a rule.

The example in Fig.10 contains assignments for the single computed attribute –
?prefix, which is contained in Attribute and Class. The computation starts in the

root, where the constant value – the string “c-“ is assigned. When the value is
propagated through an Attribute, the value of its name and the constant “-“ is
concatenated to it. The propagation through the Class node does not change the
value. It is easy to see, that in the result the value of ?prefix for each leaf of the
match tree is the concatenation of all Attribute names along that path, separated by
“-“ and prefixed by “c-“ – namely the value specified in this task as a Column name
for indirect attributes. The obtained values are used namely for this purpose – they
are used in the assignment for the name of the new Column instance. A Column is
built only for those instances assigned to a2 which are of primitive type (are leaves
in the tree) – this is specified by the OCL constraint at the mapping association.

Fig. 10 completes the example transformation program in extended MOLA – the
complete transformation consists of Fig. 6, 7, 8 and 10.

We conclude the section with a weaker restriction for patterns, than the
distinguishability by associations. Namely, if in a pattern an association with the
same role name can lead to several nodes, these nodes must be K-distinguishable –
their neighborhood of order <=K (in the sense of directed graphs) must contain
mutually exclusive elements – different local constraints, different mandatory (just
one) associations, mandatory associations leading to different classes etc. The
distinguishability by associations can be considered to be 0-distinguishability.

For most MDA examples – e.g., more complicated versions of the example in this
paper, and many similar ones, typically K is 1 or 2. In order to use patterns with K-
distinguishable elements, a look-ahead (in the instance set, but along the pattern
edges) not longer than K has to be included in the matching step 3.

6. Conclusions

The paper describes the basic principles of the graphical model transformation
language MOLA. There are two innovative elements in MOLA. One is natural
combination of simple control structures with pattern based rules. The other one is
the powerful pattern mechanism supporting variable cardinality and looping
patterns, thus enabling transitive closure in patterns and simplifying even more the
control structure of the language. The complete language MOLA is tested on several
real world MDA examples, such as converting statecharts to FSM and realistic
class-to-database transformation including class inheritance, transformation of
business process models to workflows etc. The results show that in most cases more
compact and readable rule definitions have been obtained, when compared to e.g.,
pure recursive style in [10]. The extended patterns permit to strike a right balance
between complexity of rules and control structures governing them, thus providing
the required transformation readability. Simple recursions, typical e.g., to statechart
flattening job, can be specified in a readable way using the WHILE loop in basic
MOLA.

The extended patterns, though more complicated than patterns of basic MOLA,
are defined in a way to permit also an efficient implementation.

Acknowledgements

Authors of the paper are grateful for valuable discussions and comments provided
by their colleagues at the IMCS Modeling and Model Transformations seminar. This
research was partially funded by Science Council of Latvia under the project Nr.02
0002.

References

[1] OMG: MDA Guide Version 1.0.1, http://www.omg.org/docs/omg/03-06-01.pdf
[2] OMG: Unified Modeling Language: Superstructure. Version 2.0 (Final Adopted

Specification). http://www.omg.org/cgi-bin/doc?ptc/2003-08-02 (2003)
[3] Booch G., Jackobson I., Rumbaugh J. The Unified Modeling Language. Reference

Manual, Addison-Wesley, 1999.
[4] OMG: Meta Object Facility (MOF) Specification. Version 1.4. http://www.omg.org/cgi-

bin/doc?formal/2002-04-03
[5] OMG: Request For Proposal: MOF 2.0/QVT. OMG Document ad/2002-04-10,

http://www.omg.org/cgi-bin/doc?ad/2002-04-10
[6] Bettin J. Ideas for a Concrete Visual Syntax for Model-to-Model Transformations.

Proceedings of the 18th International Conference, OOPSLA’2003, Workshop on
Generative Techniques in the context of Model Driven Architecture, Anaheim, California,
USA, October 2003.

[7] QVT-Merge Group. MOF 2.0 Query/Views/Transformations RFP, Revised submission,
version 1.0. OMG Document ad/2004-04-01, http://www.omg.org/cgi-bin/doc?ad/2004-
04-01

[8] Compuware, SUN. MOF 2.0 Query/Views/Transformations RFP, Revised Submission.
OMG Document ad/2003-08-07, http://www.omg.org/cgi-bin/doc?ad/2003-08-07

[9] Interactive Objects Software GmbH, Project Technology, Inc. MOF 2.0
Query/Views/Transformations RFP, Revised Submission. OMG Document ad/2003-08-11,
http://www.omg.org/cgi-bin/doc?ad/2003-08-11

[10] Willink E., A concrete UML-based graphical transformation syntax - The UML to
RDBMS example in UMLX. Workshop on Metamodelling for MDA, University of York,
England, 24-25 November 2003.

[11] Agrawal A., Karsai G, Shi F. Graph Transformations on Domain-Specific Models.
Technical report, Institute for Software Integrated Systems, Vanderbilt University, ISIS-
03-403, November 2003.

[12] DSTC/IBM/CBOP. MOF Query/Views/Transformations RFP, Second Revised
Submission. OMG Document ad/2004-01-06, http://www.omg.org/cgi-bin/doc?ad/2004-
01-06

[13] Celms E., Kalnins A., Lace L. Diagram definition facilities based on metamodel
mappings. Proceedings of the 18th International Conference, OOPSLA’2003, Workshop
on Domain-Specific Modeling, Anaheim, California, USA, October 2003, pp. 23-32.

[14] Kleppe A., Warmer J., Bast W. MDA Explained. The model driven architecture: practice
and promise. Addison-Wesley, 2003.

MOLA Language: Methodology Sketch

Audris Kalnins, Janis Barzdins, Edgars Celms

University of Latvia, IMCS, 29 Raina boulevard,
Riga, Latvia

{Audris.Kalnins, Janis.Barzdins, Edgars.Celms}@mii.lu.lv

Abstract. The paper demonstrates the MOLA transformation program building
methodology on an example. The example shows how to obtain self-
documenting model transformation programs in MOLA by means of standard-
ized comments. The proper usage of loops in MOLA is also discussed.

1. Introduction

There is no doubt that model transformation languages and tools are the key technol-
ogy elements for MDA. Due to OMG initiatives, currently there are several proposals
for model transformation languages, both as responses to OMG QVT RFP [1,2] or
“independent” ones [3,4]. Among the independent languages there is also the MOLA
language proposed by the authors of this paper [5,6]. Each of the proposed languages
has its strengths and weaknesses, there is no clear adoption of any of the languages in
the MDA community yet. The main distinguishing feature of MOLA is a natural
combination of traditional structured programming in a graphical form with pattern-
based rules. Especially, the rich loop concepts in MOLA enable the iterative style for
transformation definitions, while most of other languages rely on recursion. A more
detailed comparison of MOLA to other MDA languages is provided in [5,6].

Transformation languages have two essential requirements. On the one hand, trans-
formations should be easy to write – to implement the intended algorithms in an ade-
quate manner. On the other hand, transformations should be easy readable by much
broader user community – those wanting to apply a transformation to their models in
a safe and controllable manner. Transformation readability has been one of the design
goals of MOLA.

The only way to evaluate different languages is to compare them on generally ac-
cepted benchmark examples. Since transformation development actually is a com-
pletely new domain, there are no proven methodologies and design patterns, as there
are in more classical domains.

The goal of this paper is to analyze the MOLA language from the above-mentioned
perspectives. Using one of the standard benchmark examples - Class to Relational
Database transformation, it will be shown how the readability can be achieved in
MOLA, including also standardized comments. Transformation design methodology
will also be sketched, especially the proper use of loops. Certainly, the paper does not
claim to provide a methodology for MOLA-based system design, just some advices
how the model transformations themselves should be programmed in MOLA.

2. Brief Overview of MOLA

This section gives a very brief overview of the MOLA language. A more complete
description of MOLA is to be found in [5,6]. Authors also hope that the example in
section 4 will help significantly to understand the language.

A MOLA program, as any other transformation program, transforms an instance of
source metamodel into an instance of target metamodel. These metamodels are
specified by means of UML class diagrams (MOF compliant).

More formally, source and target metamodels are part of a transformation program
in MOLA. But the main part of MOLA program is one or more MOLA diagrams (one
of which is the main). A MOLA diagram is a sequence of graphical statements,
linked by arrows. It starts with a UML start symbol and ends with an end symbol.

The most used statement type is the loop statement – a bold-lined rectangle. Each
loop statement has a loop head – a special statement (grey rounded rectangle) con-
taining the loop variable and the pattern – a graphical condition defining which in-
stances of the loop variable must be used for iterations. The pattern contains elements
– rectangles containing instance_name:class_name – the traditional UML
instance notation, where the class is a metamodel class. The loop variable is also a
special kind of element, it is distinguished by having a bold-lined rectangle. In addi-
tion, a pattern contains metamodel associations – a pattern actually corresponds to a
metamodel fragment (but the same class may be referenced several times). Pattern
elements may have attribute constraints – OCL expressions. Associations can have
cardinality constraints (e.g., NOT). The semantics of this loop statement (called the
FOREACH loop) is natural – the loop is executed once for each instance of the loop
variable, where the condition is true – the pattern elements can be matched to existing
instances and attribute constraints are true on these instances. There is also another
kind of loop – WHILE loop, which is denoted by a 3-d frame and continues execu-
tion while a valid loop variable instance can be found (it may have also several loop
heads). Loops may be nested to any depth. The loop variable (and other element in-
stances) from an upper level loop can be referenced by means of a reference symbol
– the element with @ prefixed to its name.

Another widely used statement in MOLA is rule (also a grey rounded rectangle) –
a statement consisting of pattern and actions. These actions can be building actions –
an element or association to be built (denoted by red dotted lines) and delete actions
(denoted by dashed lines). In addition, an attribute value of an element (new or exist-
ing) can be set by means of attribute assignments. A rule is executed once – typi-
cally in a loop body (then once for each iteration). A rule may be combined with a
loop head, in other words, actions may be added to a loop head, thus frequently the
whole loop consists of one such combined statement.

To call a subprogram, a call statement is used (possibly, with parameters - in-
stances in the same reference notation). A subprogram, in turn, may have one or more
input parameters. The same loop statement notation can be used to denote control
branching – with a guard statement instead of loop head.

In this paper an additional MOLA element – standardized comments are intro-
duced. These comments are text boxes associated to a MOLA diagram (its start sym-
bol) and its statements. Comments can contain any text, but references to loop vari-
ables are shown in bold, and references to other elements – in italic. The comment for

the whole diagram is intended to describe its informal pre- and post-conditions. The
comments to separate statements are meant to describe their goal in an informal way.

Our goal is to make a MOLA program self-documenting, i.e., so easy readable that
any one can ascertain that a MOLA program actually performs the intended transfor-
mation. Our experience shows that a well-written MOLA program with such com-
ments is self-documenting really and we hope that the example in section 4 confirms
this.

3. The Benchmark Example

The most popular transformation benchmark example – transformation of UML class
model to relational database is used here. There are several versions of this example
originally proposed by OMG – nearly each paper uses its own version. We use here
the version from the QVT-P proposal [1].

The source metamodel is a significantly simplified fragment of the UML class dia-
gram metamodel, it is visible in the upper part of Fig. 1. The target metamodel is a
simplified relational database metamodel, it is given in the lower part of Fig.1. Next,
the precise informal specification of the transformation task will be given (since there
are some minor deviations from [1] due to some inconsistencies in it).

Any persistent Class (with kind=“persistent”) must be transformed into a database
Table. In addition, a (primary) key is built for this table. Attributes of the class, which
have a primitive data type, must be transformed into columns of the corresponding
table (we assume here that types in UML and SQL coincide). Attributes whose type is
a class, must be “drilled-down”: primitively-typed attributes of this new class are
added as columns to the table for the original class. Class-typed attributes are proc-
essed as before. The process is repeated until no new columns can be added to the
table for the original class. In other words, a transitive closure is performed, which
finds all “indirect” attributes of the class. The added columns have compound names
consisting of all attribute names along the path. One special issue must be reminded
here: several attributes of a class may have the same class as a type, in this case the
added columns are duplicated for each of them (they have unique names!). In other
words, any path leading to a primitively-typed attribute results into a separate column.

For primitive-typed “direct” attributes of a persistent class with kind=”primary”,
the corresponding columns are included in the relevant (primary) key. An association
(with multiplicities ignored, but direction taken into account) is transformed into a
foreign key for the “source end” table. The same table is extended with columns cor-
responding to columns of the (primary) key at the target end. For both “primary” and
“foreign” columns their kind is set accordingly.

4. MOLA Solution

4.1. Building the Workspace Metamodel

The first step in building a MOLA program (transformation) is to define the work-
space metamodel (see Fig.1). This metamodel includes both the source metamodel

(light yellow classes – the upper part) and the target metamodel (dark yellow classes
– the lower part). Both metamodels are taken from the problem domain without modi-
fications – they describe the corresponding input data (source model) and the result
(target model) of the transformation.

Target Metamodel
(simplified SQL)

Source Metamodel
(simplified UML)

ClassPrimitiveDataType

Rel_ModelElement
name : String
kind : String

Table

AttrCopy
name : String

Column
type : String

ForeignKey

Key

Classif ier AssociationAttribute

ModelElement
name : String
kind : String

attrCopy

*

ow ner

1

orig

1

copy *

ow ner
1 foreignKey

*

1

#classToTable 0..1

ow ner
1column

*

column

* foreignKey

*
1#fcolForKcol

*

#keyForClass

ow ner1

key
0..1

column*

belongsTo
0..1

referrredBy*

refersTo
1

ow ner1

attribute
*

type
1typed

*
1

#forkeyForAssoc 0..1

forw ard*

source 1

reverse*

destination 1
1

#attributeToColumn *

Fig. 1. The workspace metamodel

However, some elements typically are added to the workspace metamodel. First,
there are mapping associations – associations linking classes in the source and target
metamodels (red lines in Fig.1). They serve two different purposes – on the one hand,
they document relations between the corresponding source and target elements of the
transformation (e.g., Class and Table, Attribute and Column, etc.) and thus enable the
traceability at the instance level (which Table was obtained from which Class). On
the other hand, they have a technical role in MOLA – after being built by one rule,
they frequently are used in patterns of subsequent rules. It is recommended in MOLA
to start the role names of mapping associations with “#”.

Another possible metamodel extensions are temporary classes – AttrCopy in the
example and temporary associations (associations linking AttrCopy to base classes of
the metamodel, all temporary elements are in green color in the example). This tem-
porary class will be used to store copies of an attribute – indirect attributes. Tempo-
rary elements serve as a “workspace” for transformations, they have instances only
during the transformation execution, and they are not supplied at input and are dis-
carded at output. Base metamodel classes may have also temporary attributes added
(attributes which have value only during the transformation execution) – this example
does not use them.

4.2. MOLA Program Implementing the Transformation

The transformation is specified in MOLA by means of one main diagram (Fig. 2) and
four subprograms (subdiagrams) – Fig. 3 to 6. The implemented transformation corre-
sponds to its informal specification in a quite straightforward manner. The specifica-
tion requires to perform a transitive closure – to find all indirect attributes of a class,
and with duplicates included (therefore attribute copying is required). We use an idea
that each instance of indirect attribute actually is a path in the “instance graph” from
the “root class” to an attribute. The iterative algorithm (Fig. 3) for finding all indirect
attributes of a class is inspired by the well known algorithm for finding all paths from
a node.

All diagrams (Fig. 2 to 6) are annotated by standardized comments and, we hope,
will require no other explanations.

AssociationsToFore

c: Class
{kind="persisten

CreateAttributeCopie

BuildTablesColumns(

DeleteCopies(

Fig. 2. The main diagram of
This is the main MOLA program for transformation of classes to
relational database tables
ignKeys()

t"}

s(@c:Class)

@c:Class)

)

The main part of the program consists of one
FOREACH loop over Class instances. For
each persistent Class three consecutive ac-
tions specified as MOLA subprograms are
performed in this loop.

This subprogram builds all indirect attributes
of the Class, and stores them as copies -
instances of the temporary class AttrCopy.

This subprogram builds a Table and a Key
for the Class. For each indirect primitive-
typed attribute of the Class a Column is built
in the Table. Direct “primary” columns are
associated to the Key.

This subprogram deletes all instances of
AttrCopy.

This independent subprogram builds For-
eign keys for associations between persis-
tent Classes and Columns for Foreign Keys.

 the transformation

@c:Class

@c: Class

a: Attribute ac: AttrCopy
name:=a.name

atc: AttrCopy @c: Class

a1: Attribute

c2: Class

a2: Attribute

@c: Class@atc: AttrCopy

atcn: AttrCopy
name:=@atc.name+"-"+a2.name

attrCopy
orig

copy

attrCopy

attribute

type

orig

attrCopy

attrCopy
orig

copy

attribute

This loop builds the basis for the next
loop. Namely, each direct Attribute of
the Class is “copied” as an AttrCopy.

Fig. 3. Subprogram CreateAttributeCopies
This loop builds all indirect attrib-
utes of the Class and stores each as
an instance of AttrCopy (which in a
sense represents the path used to
reach it). Each iteration generates all
direct successors of the current indi-
rect attribute (atc). The list for itera-
tion is expanded continuously by the
nested loop (this is in accordance to
FOREACH loop semantics in
MOLA), until no more attributes can
be reached.
This MOLA subprogram receives the current Class
instance as a parameter and builds all indirect attributes
for this Class. Each indirect attribute is stored as an
instance of AttrCopy, and the name in this instance
contains the required concatenation of Attribute names
along the path, corresponding to this indirect attribute.
The nested loop builds new indirect
attribute atcn for each Attribute,
which is directly reachable from the
current indirect attribute
(@atc:AttrCopy). The new instance
is automatically added to the itera-
tion list for the main loop.

@c:Class

@c: Class

ac: AttrCopy

at: Attribute

tp: PrimitiveDataType

a: Attribute
{kind="primary"}

@c: Class

@t:

@c: Class

#classToT

attrCopy

orig

#attributeToC

type

#keyForClass

#

attribute

#classToTabl

#attribu

#classToTab

o

Fig. 4. Subprogram BuildTable

ac: AttrCopy

Fig. 5. Subprogram DeleteCop
The Class instance is supplied as a parameter also to this sub-
program, which builds a Table and a Key for it, and a Column
for each its primitive-typed indirect attribute. Columns for di-
rect primary Attributes of the Class are associated to the Key.
@t: Table

col: Column
name:=ac.name
type:=tp.name

col: Column
kind :=a.kind

@k: Key

Table

t: Table
name:=@c.name

k: Key
name:=@c.name

able

olumn

ow ner

column

keyForClass

column

belongsTo

e

teToColumn

le

w ner

sColumns

@ac: AttrCopy

This rule builds a Table and a
Key for the Class instance.

This loop for each indirect attrib-
ute (instance of AttrCopy),
which corresponds to an Attribute
with a Primitive DataType, builds
a Column for the relevant Table.
The name and the type of the
Column are set to the correspond-
ing values.

ies
For primary Attributes of
the Class (only the direct
ones), the corresponding
Columns are linked as part of
the Key for the Class. Note
that only Columns from the
current Table are relevant.

This subprogram deletes
all instances of AttrCopy.

kcol: Column

fcol:
nam
type
kind

@fk: ForeignKey@dstk: Key

as: Association fk: Fo
name

dst: Clas s

src: Clas s

#forkeyForAssoc

c

destination

#keyForClass

#fcolForKcol

belongsTo

column

foreignKey

refer

source
foreignK

#classToTable

-

Fig. 6. Subprogram AssociationsToForeignKeys

5. Some Remarks on MOLA Metho

Using the previous example as a basis, som
sign methodology in MOLA will be provide

Firstly, in MOLA, like most model transfo
should be used. Namely, the most coarse-gra
case, Classes) must be processed first. Onl
built for transforming them (e.g., #classToT
mations of contained elements (Attributes) o
is no need to repeat higher-level constraints

Since the main “processing element” in M
of prime importance. Typical algorithm step
A do …” and FOREACH loops (the loops
plement these steps. Besides being a natur
loops are easier to use, because their semant
element …” and there is no need for mark
cases, the possible infinite loop problem is
stances of the class (all loops in Fig. 2, 4, 5
can have its instance set replenished dynam
This subprogram builds Foreign keys for as
sociations between persistent Classes and
Columns for Foreign Keys.
 Column
e :=kcol.name
 :=kc ol.type
:="foreign"

@srct: Table

reignKey
 :="fk"+as.name

dstk: Key

srct: Table

olumn
ow ner

sTo
referrredBy

ey
ow ner

For each Association
from a persistent class to
a persistent one a For-
eign Key is built. It is
linked to the Table cor-
responding to the source
Class, and to the Key,
corresponding to the
target Class.

For each Column
(kcol) of the target Key,
a new Column of the
same name and type is
built (fcol) and linked to
the source Table.

dology

e elements of transformation program de-
d.
rmation languages, a top-down approach

ined elements of the source model (in our
y in this way, the mapping associations
able) can be used in patterns for transfor-
r related ones (Associations). Thus, there
(e.g., {kind=”persistent”}) at lower level.
OLA is loop, a correct design of loops is
s frequently contain statements “for each
used in section 4) should be used to im-
al formalization of the step, FOREACH
ics already includes “iterate once for each
ing instances already processed. In most
also eliminated due to a finite set of in-
, 6). However, MOLA FOREACH loop
ically (the second loop in Fig.3), in this

case additional considerations should be used (during the building of indirect attrib-
utes we assume that no class is used as the type of its own indirect attribute). On the
contrary, WHILE loops should be used for steps which are a mix of iteration and re-
cursion (such as the moving of transition ends during the flattening of a UML state-
chart in [5]), there the use of several loop heads per loop enables a natural and com-
pact at the same time formalization for this kind of algorithm step.

Yet another important design element in MOLA is the selection of loop variables
so that patterns in loop heads do not become complicated. Especially, for nested loops
the deepest repeating element must be used. Use of referenced elements from upper
level loops helps to simplify patterns in nested loops (see the nested loop in Fig. 6).

Actually, there are more design hints in MOLA and eventually “GOF-style design
patterns” could be defined, but this is a topic of another paper.

And finally, nearly any non-standard transformation element can be described in
MOLA using low-level facilities such as temporary classes and associations.

 6. Conclusions

We have shown that by selecting an appropriate design style, the transformation pro-
gramming in MOLA is relatively simple, as it is demonstrated by the complete exam-
ple in section 4.

By adding standardized comments (even quite short ones, as in section 4), the
readability of MOLA programs really reaches the level of self-documenting – one of
main goals for the design of MOLA.

The implementation of MOLA is expected not to be very complicated due to rela-
tively simple constructs in it. The implementation efficiency is also expected to be
high enough – if the programming guidelines from section 5 and some more natural
assumptions are observed, typical pattern matching problems of graph transforma-
tions are avoidable in MOLA.

References

1. QVT-Merge Group. MOF 2.0 QVT RFP, Revised submission, version 1.0. OMG Document
ad/2004-04-01, http://www.omg.org/cgi-bin/doc?ad/2004-04-01

2. Compuware, SUN. MOF 2.0 Query/Views/Transformations RFP, Revised Submission.
OMG Document ad/2003-08-07, http://www.omg.org/cgi-bin/doc?ad/2003-08-07

3. Willink E.D. A concrete UML-based graphical transformation syntax - The UML to
RDBMS example in UMLX. Workshop on Metamodelling for MDA, University of York,
England, 24-25 November 2003

4. Agrawal A., Karsai G, Shi F. Graph Transformations on Domain-Specific Models. Technical
report, Institute for Software Integrated Systems, Vanderbilt University, ISIS-03-403, 2003

5. Kalnins A., Barzdins J., Celms E. Model Transformation Language MOLA. Proceedings of
MDAFA 2004, University of Linkoping, Sweden, 2004, pp.14-28. (see also
http://melnais.mii.lu.lv/audris/MOLA_MDAFA.pdf)

6. Kalnins A., Barzdins J., Celms E. Basics of Model Transformation Language MOLA. Pro-
ceedings of WMDD 2004, Oslo, 2004,
http://heim.ifi.uio.no/~janoa/wmdd2004/papers/kalnis.pdf

Efficiency Problems in MOLA Implementation
Audris Kalnins, Janis Barzdins, Edgars Celms

University of Latvia, IMCS, 29 Raina boulevard,
Riga, Latvia

{Audris.Kalnins, Janis.Barzdins, Edgars.Celms}@mii.lu.lv

Abstract. Efficiency of pattern matching for MOLA model transformation language is analyzed in the
paper. A virtual machine and pattern matching procedure based on it is proposed, which takes into
account the specific requirements for efficient pattern matching in MOLA. On the basis of a typical
MDA example it is shown that the proposed solution is optimal and the conclusions are generalized to
typical MOLA programs.

1. Introduction
Model transformation languages are the main logical support for model driven
software development (MDSD). Due to OMG initiatives, currently there are several
proposals for model transformation languages, both as responses to OMG QVT RFP
[1,2] or “independent” ones [3,4,5]. Among the independent languages there is also
the MOLA language proposed by the authors of this paper [6,7,8]. The main
distinguishing feature of MOLA is a natural combination of traditional structured
programming in a graphical form, especially, the rich loop concepts with pattern-
based rules.

A model transformation is applied to a source model – an instance set
corresponding to the source metamodel and produces target model, corresponding to
the target metamodel. The source model can be treated as an instance graph for the
source metamodel – it consists of typed nodes – instances of metamodel classes and
edges – links corresponding to metamodel associations.

Model transformation languages – be they textual or graphical – contain rules
based on pattern matching and control structures which govern the execution order of
rules. It should be noted that facilities for defining pattern matching are quite similar
from the semantics point of view for most of model transformation languages,
including MOLA. Since pattern matching is performed in the source instance graph,
which can be of quite substantial size, problems typical to graph transformation
languages may appear, especially those of pattern matching efficiency. These
problems e.g., for the graph transformation language Progress are discussed in [9].
The proposed solution there is an appropriate programming style.

What refers to model transformation languages, the most thorough efficiency
analysis has been done for GReAT language ([4], and especially, [10]). The main
result there is that pattern matching can be made sufficiently efficient by passing
already matched nodes from one pattern to another ("pivoting" and reusing).
Certainly, this result relies significantly on the specific control structures (data flows,
input and output ports) and semantics of GReAT.

In this paper we try to solve the pattern matching problem for MOLA, relying on
its specific control structures – loops. MOLA loops contain loop variables – pattern
elements which must be matched to all possible relevant nodes in the source graph. At
the same time the other pattern elements, according to MOLA semantics, must just
have any one feasible match. There is also an observation (discussed in the paper to
some detail) that in a correctly built MOLA program the match of any pattern element
tends to be deterministic – thus typically leading to a simplified backtracking during
the match. Another important fact is that nested loops in MOLA contain references to

already matched elements in upper level loops. All this has led to the necessity to
build a specific matching procedure for MOLA, which could be optimal namely in
these circumstances. The paper proposes such a procedure, which in turn is based on a
virtual machine for accessing source model elements and the MOLA program itself.
In order to ascertain that the proposed solution is indeed efficient for MOLA, a typical
benchmark example – class-to-relational database transformation (a MOLA program
for which was proposed already in [8]) is analyzed from the complexity point of view.
It is shown that both the program and the proposed MOLA implementation is optimal
for this example – the number of virtual machine operations (which themselves are
simple) is the best possible – proportional to the source model size.

The main conclusion of the paper is that the example reveals a typical situation for
MOLA and there are no efficiency problems expectable if adequate programming
style and adequate pattern matching is used. Thus the proposed matching procedure
and the sketch of virtual machine indeed can serve as the basis for MOLA
implementation.

Sections 3 and 4 of the paper describe the virtual machine and the pattern
matching respectively. The example program is provided in section 5 and its
performance analysis in section 6.

2. Brief Overview of MOLA
This section provides a very brief overview of MOLA syntax and semantics. A more
complete description of MOLA language is given in [6,7].

A MOLA program, as any other transformation program, transforms an instance
of source metamodel into an instance of target metamodel. These metamodels are
specified by means of UML class diagrams (MOF compliant).

More formally, the combined source and target metamodel is part of a
transformation program in MOLA. To avoid any confusion, classes in this combined
metamodel will be called metaclasses in the paper. But the main part of MOLA
program is one or more MOLA diagrams (one of which is the main). A MOLA
diagram is a sequence of graphical statements, linked by arrows. It starts with a UML
start symbol and ends with an end symbol.

The most used statement type is the loop statement – a bold-lined rectangle. Each
loop statement has a loop head – a special statement (grey rounded rectangle)
containing the loop variable and the pattern – a graphical condition defining which
instances of the loop variable must be used for iterations. The pattern contains
elements – rectangles containing instance_name:class_name – the traditional UML
instance notation, where the class is a metaclass. The loop variable is also a special
kind of element, it is distinguished by having a bold-lined rectangle. In addition, a
pattern contains metamodel associations – a pattern actually corresponds to a
metamodel fragment (but the same class may be referenced several times). Pattern
elements may have attribute constraints – OCL expressions. Associations can have
cardinality constraints (e.g., NOT). The semantics of this loop statement (called the
FOREACH loop) is natural – the loop is executed once for each instance of the loop
variable, where the condition is true – the pattern elements can be matched to existing
instances and attribute constraints are true on these instances. The valid instance set
for the loop variable may be replenished during the loop execution – these additional
instances are also used for iterations, but certainly, each instance only once. There is
also another kind of loop – WHILE loop, which is denoted by a 3-d frame and
continues execution while a valid loop variable instance can be found (it may have
also several loop heads). Loops may be nested to any depth. The loop variable (and

other element instances) from an upper level loop can be referenced by means of
reference symbol – the element with @ prefixed to its name.

Another widely used statement in MOLA is rule (also a grey rounded rectangle) –
a statement consisting of pattern and actions. These actions can be building actions –
an element or association to be built (denoted by red dotted lines) and delete actions
(denoted by dashed lines). In addition, an attribute value of an element (new or
existing) can be set by means of attribute assignments. A rule is executed once –
typically in a loop body (then once for each iteration). A rule may be combined with a
loop head, in other words, actions may be added to a loop head, thus frequently the
whole loop consists of one such combined statement.

To call a subprogram, a call statement is used (possibly, with parameters -
instances in the same reference notation). A subprogram, in turn, may have one or
more input parameters. The same loop statement notation can be used to denote
control branching – with a guard statement instead of loop head.

3. Basic Principles of MOLA Implementation
A detailed description of MOLA implementation is quite lengthy (the same way as
implementation of any model transformation language) and is not the goal of this
paper. Here we will provide only some elements of this implementation – those which
are necessary to convince that an efficient implementation of MOLA is possible. As
for any of the transformation languages, the most difficult part is the implementation
of pattern matching. In turn, the most critical use of patterns in MOLA is within loop
statements, therefore we will concentrate on the implementation of loop statements,
mainly the FOREACH loop – the most used one. The implementation of all other
MOLA statements is relatively straightforward, and no special efficiency gains can be
obtained there, therefore we hope the reader will believe that complete MOLA can be
implemented in the way sketched here.

To implement a transformation language, some sort of model/metamodel
repository is required. In this paper we assume that such a repository is available – it
can be a properly defined SQL database or a special repository based on hash tables.
All we will need from this repository here is that some natural queries (to be
described later) can be executed in a "nearly-constant" time with respect to the size of
the model data. Certainly, a proper design of such repository for MOLA is not trivial
(compare, e.g., to [11]) and could be a topic of another paper.

We assume that the same repository contains also the MOLA program to be
executed. Again, the exact format for the program storage will not be provided, except
for some sketch of the pattern storage – the most used part. Some queries for
retrieving the program elements will also be described. In totality, all the queries
mentioned here form a virtual machine for MOLA execution. Certainly, this virtual
machine must contain more functionality (e.g., for creating or updating model
elements), but we hope that the reader will believe that the sketch of the machine
provided in the paper can be properly extended, while preserving the requirements for
efficiency to be described later. The rest of the section will be devoted to the sketch of
the MOLA virtual machine.

We start with the pattern storage and queries for it. Since a MOLA pattern – a
slightly modified fragment of a UML class diagram – actually is an undirected graph,
it could be stored in a quite straightforward way. However, in order to simplify the
description of pattern matching algorithm used for MOLA, we will use another
representation, also based on graph theory. Thus, we assume that an “optimizing
compiler” is available for MOLA, which builds this representation.

Fig. 1 presents a typical MOLA pattern in a FOREACH loop (actually part of Fig. 7).

srct: Table

as: Association

dst: Class dstk: Key

src: Class #classToTable
source

destination

#keyForClass

Fig. 1. Pattern example

When viewed from the loop variable (the node as: Association), it can be treated
as a directed rooted tree with two branches. We want to code this tree as an ordered
list of edges/nodes, in a depth-first manner, starting with the root. The list for the
example will contain 5 elements:

- the root node as: Association
- association source leading to src: Class
- association #classToTable leading to srct: Table
- association destination leading to dst: Class
- association #keyForClass leading to dstk: Key

The described order will be especially fit for matching the pattern to the instance set:
we start with the root (an instance of the metaclass Association), then proceed via the
link source to an instance of Class etc.

When the pattern is not a tree (as in the schematic example in Fig. 2), the compiler
selects a spanning tree from the root and codes it as already shown. The basic part of
the pattern code from Fig.2 could be the following: A, (A,rb,B), (B,rc,C), (B,rd,D),
(A,re,E). The edges not in the tree will be coded by a special sublist at relevant nodes,
so that each such edge goes “backwards” in the main list. For example, the following
sublist of edges is attached to the node E: (E,sc,C), (E,sd,D) in Fig. 2. The selected
coding reduces the checking of the existence of relevant “crosslinks” to a simple
additional constraint during the pattern matching.

a: A

e: E

b: B

d: D

c: C

rb

re sd

rd

rc

sc

Fig. 2. Another pattern example

To put it more formally, the pattern code is the list Pattern, where each element is
a structure consisting of:

assoc – the association
sourceIndex – index of the source node in the list
metaClass – the metaclass instance of which is sought
constraint – the local OCL constraint on attributes of the metaclass
crossList – the sublist of “crosslinks”
instanceSet – a pointer to a “restriction set”, necessary at runtime for nested loops.

The virtual machine must contain one main operation for patterns:
getPatternElement(int i) .

The root element (the loop variable) is coded as the 0-th element of list (with less
fields filled), and is available via

getPatternRoot() .
Some more data are generated by the compiler for reference elements of the

pattern, they will be explained in the next section.
Now the operations of the virtual machine for querying “model elements” –

instances of metaclasses and associations in the repository are described. As it was
already mentioned, the repository contains the current model to be processed –
instances of metaclasses and links – instances of associations. Thus the model actually
is also a graph – a graph of instances and links. We assume that the repository also
supports a “list-like” behavior – you can query specified kind of instances and get
them one by one – an SQL cursor-like behavior. All operations are assumed to be
“static” – they remember the previous calls. The simplest required virtual machine
operation is

getNext(metaClass mcl).
This operation returns the next instance of metaclass mcl upon each call (it does

not matter how many instances of this operation are used in the program for the
virtual machine). The null constant is returned when there are no more instances.

The operation most used for implementing pattern matching is
getNextByLink(association assoc, instance sourceInst, metaclass mcl).

This operation returns one by one the instances of metaclass mcl, which can be
reached by links corresponding to assoc from the fixed instance sourceInst. Null is
returned in case of absence. There is also an initialization for it, with similar
parameters

initializeGetNextByLink(association assoc, instance sourceInst, metaclass mcl)
Two more auxiliary operations are:

eval(instance inst, oclExpression expr) – evaluate a local constraint on attributes
checkLink(instance sourceInst, instance targInst, association assoc) – check whether a
link of required type is between these instances.

These operations are sufficient for programming the pattern matching for top-level
FOREACH loops. There is no doubt that at least for an SQL–based repository they
are of "nearly-constant" complexity with respect to the repository size (i.e., growing
much slower than the repository size).

Two similar more special operations are required for nested loops (using
references):

getNextFromSet(metaClass mcl, set instSet) and
getNextByLinkFromSet(association assoc, instance sourceInst, metaclass mcl,

set instSet) .
These operations actually provide relevant instances from the specified set.

Corresponding initializations are also available.
This completes the description of virtual machine, used for pattern matching.

4. Pattern Matching in MOLA
A Java-style pseudocode is provided for the main part of the implementation schema -
the pattern matching. Pattern matching is required for all kinds of MOLA statements,
but here we consider only the most used and also the most sensitive from the
performance point of view statement – the FOREACH loop. Besides some well-
known Java-like constructs, the pseudocode will contain only calls to MOLA virtual
machine operations, defined above. The specific requirements for matching, outlined
already in the introduction, are all taken into account in matching procedure design.

The matching procedure uses a runtime list BoundInstances, with the same length
as the Pattern, which contains metaclass instances matched to the corresponding
pattern elements. The 0-th element of it contains the current instance of the loop
variable (the root).

We start with the simplest case – a top-level loop (having no parameters). Then all
instances of the loop variable metaclass must be browsed and for each such instance
the pattern must be matched. If a valid match (according to MOLA semantics, any of
them, e.g., the first, if, in fact, there exists more than one) is found, the actions of the
iteration are performed, using the matched instances.

The main idea is quite simple. We try to advance along the Pattern list, by finding
on each step an instance of the metaclass required by the current Pattern element. An
appropriate instance is sought, using the already known source instance and browsing
instances reachable from it via links of the specified type (Pattern[i].assoc). If an
instance is found which satisfies constraints, it is stored in BoundInstances and we
advance to the i+1st pattern element. If no valid instance is found this way, we
backtrack to the previous pattern element in the list – select a new instance for it. It
should be noted that the specified backtracking strategy is not optimal – it is chosen to
simplify the pseudocode and its complexity evaluations for "good cases". For
example, if a pattern element has no crosslinks, we could backtrack to the pattern
element with index equal to the current sourceIndex. However, these optimizations
are not essential for our performance evaluations, since actually only a trivial
backtracking is typically used in MOLA. If backtracking reaches the loop variable
(root), we start a new pattern matching for a new instance of it.

lv = getPatternRoot();
while (lv_inst = getNext(lv.metaClass)) // browse instances of the loop variable
{
 if (!eval(lv_inst, lv.constraint)) // if the eval operation returns false (constraint fails)
 continue; // then start next iteration
 BoundInstances[0] = lv_inst; // store the current loop variable instance
 failed = false; // failed is a boolean tag signaling match exhaustion
 mustInitialize = true; // getNextByLink must be initialized – a new context is started
 i = 1; // start matching
 while (i < Pattern.Size)
 {
 pattern_element = getPatternElement(i);
 if (mustInitialize) // initialize local search if it is not backtracking
 initializeGetNextByLink(pattern_element.assoc,
 BoundInstances[pattern_element.sourceIndex],
 pattern_element.metaClass);
 curr_inst = null;
 while (curr_inst = getNextByLink(pattern_element.assoc,
 BoundInstances[pattern_element.sourceIndex],
 pattern_element.metaClass)) // take current candidate instance
 {
 if (validate(curr_inst, pattern_element)) // validate is a subprocedure checking
 break; // the local constraint and existence of crosslinks
 }
 if (!curr_inst) // curr_inst not found, i.e., equal to null, local search is exhausted
 {
 if (i = = 1) { failed = true; break; } // no more backtracking possible, select
 // new root instance
 else { i = i-1; mustInitialize = false; continue; } // backtracking must be

 // performed!
 }

BoundInstances[i] = curr_inst; // successful match step
i = i+1; // advance to the next step
mustInitialize = true;

 }
 if (!failed) // match successful, BoundInstances contain the result
 executeRule();
}

It is not difficult to ascertain that the described procedure indeed implements the
matching algorithm outlined in the beginning. What refers to the subprocedure
validate, it is easy to see that it can be implemented directly using eval and checkLink
operations, the number of required steps depends only on the pattern element size.

Nested loops typically contain references to elements in upper level loops. From
the point of view of a nested loop, all references have fixed instances during the
match, so we will call them fixed elements in this section. In principle the same
matching procedure could be used for nested loops, with fixed elements playing the
role of additional constraints. But this approach is too suboptimal, requiring excessive
searches proportional to the model size. Therefore we propose a more optimal
approach, where the search space is limited on the basis of fixed elements. For this
purpose restriction paths, leading from fixed elements to the root in the pattern are
also built by the compiler.

Additional preparatory pass is added to the matching procedure. During this pass
for each path the sets of feasible instances are built. For fixed elements themselves
the set consists of just one instance, but for subsequent path nodes the set is
determined by the pattern association (i.e., by links corresponding to this association).
Finally, a set for root is also found. If two paths have a common node in the pattern,
then set intersection is taken at this node. For example, the root is common to all
paths, so at least there the intersection will be taken. To implement this principle, sets
must be kept separate from paths, therefore the sets are attached to the corresponding
elements of Pattern (via instanceSet). The described set building algorithm can be
implemented easily, using the list of restriction paths. The same getNextByLink
operation is used to retrieve instances to be placed in sets. Certainly, some obvious
operations for adding an element to a set and building a set intersection are also
necessary. Since the total size of the sets built in this process will be limited by a
constant in our performance evaluations (see section 6), there is no need to elaborate
more on this set building.

Now a procedure very similar to the one described above can be used for pattern
matching (and yield the required performance). The only difference is that
getNextFromSet is used instead of getNext and getNextByLinkFromSet instead of
getNextByLink (and the corresponding initialyzer is replaced too). These operations
select instances only from their set argument. The sets for instance selection
(including the root) are those found in the preparatory pass. If a pattern element has
no instance set attached (it is not on a restriction path), getNextByLinkFromSet
behaves the same way as its simple counterpart getNextByLink. Thus for those pattern
elements, where fixed elements restrict the search space, the restricted search is used,
while for others the full search is applied, as in the previous case. The analysis in the
next section shows that the proposed principle for building restriction sets is indeed
optimal – in some cases the exact required instance set is obtained.

5. Example
The same Class-to-Relational DB example from [8] is used to evaluate the
performance of the proposed MOLA implementation. Here we repeat only a very
short description of the transformation, a complete description is to be found in [8],
the specification originally comes from [1].

Any persistent Class (with kind=“persistent”) must be transformed into a
database Table. In addition, a (primary) key is built for this table. Attributes of the
class, which have a primitive data type, must be transformed into columns of the
corresponding table. Attributes whose type is a class, must be transitively “drilled-
down”: primitively-typed attributes of the new class are added as columns to the table
for the original class. For primitive-typed “direct” attributes of a persistent class with
kind=”primary”, the corresponding columns are included in the relevant (primary)
key. An association (with multiplicities ignored, but direction taken into account) is
transformed into a foreign key for the “source end” table. The same table is extended
with columns corresponding to columns of the (primary) key at the target end.
Fig. 3 presents the combined metamodel: the upper part is the source – a simplified
UML class diagram metamodel, the lower part is the target – a simplified relational
database metamodel. In-between are temporary elements. Fig. 4 to 8 present the
transformation as MOLA programs, Fig.4 shows the main program, which invokes
the subprograms. All programs actually are simple or nested FOREACH loops. The
temporary metaclass AttrCopy is used to implement the transitive closure (Fig.5).

Target Metamodel
(simplified SQL)

Source Metamodel
(simplified UML)

ClassPrimitiveDataType

Rel_ModelElement
name : String
kind : String

Table

AttrCopy
name : String

Column
type : String

ForeignKey

Key

Classif ier AssociationAttribute

ModelElement
name : String
kind : String

attrCopy

*

ow ner

1

orig

1

copy *

ow ner
1 foreignKey

*
ow ner

1column

*
column

* foreignKey

*
1#fcolForKcol

*

ow ner1

key
0..1

column*

belongsTo
0..1

referrredBy*

refersTo
1

type
1typed

*
1

#forkeyForAssoc 0..1

forw ard*

source 1

reverse*

destination 1
1

#attributeToColumn *

1

#classToTable 0..1

1

#keyForClass 0..1

ow ner1

attribute
*

Fig. 3. Combined Metamodel

AssociationsToForeignKeys()

c: Class
{kind="persistent"}

CreateAttributeCopies(@c:Class)

BuildTablesColumns(@c:Class)

DeleteCopies()

@c: Class

a: Attribute ac: AttrCopy
name:=a.name

@c:Class

atc: AttrCopy @c: Class

a1: Attribute

c2: Class

a2: Attribute

@atc: AttrCopy

atcn: AttrCopy
name:=@atc.name+"-"+a2.name

@c: Class

attrCopy
orig

copy

attrCopy

attribute

type

orig

attrCopy

attrCopy
orig

copy

attribute

Fig. 4. Main Program Fig. 5. Subprogram CreateAttributeCopies

@c:Class

@t: Table

@c: Class @k: Key

a: Attribute
{kind="primary"}

col: Column
kind :=a.kind

@t: Table

tp: PrimitiveDataType

at: Attribute

col: Column
name:=ac.name
type:=tp.name

ac: AttrCopy

@c: Class

@c: Class

t: Table
name:=@c.name

k: Key
name:=@c.name

#classToTable

#classToTable

attribute

orig

attrCopy

ow ner

#keyForClass

#attributeToColumn

column

belongsTo

type

#attributeToColumn

ow ner

column

#keyForClass

#classToTable

kcol: Column fcol: Column
name :=kcol.name
type :=kcol.type
kind :="foreign"

@srct: Table@fk: ForeignKey@dstk: Key

as: Association

fk: ForeignKey
name :=" fk"+as.name

dstk: Keydst: Clas s

srct: Tablesrc: Class

belongsTo

destination

source

#keyForClass

refersTo

referrredBy

#forkeyForAssoc

foreignKey
ow ner

#classToTable

column
ow ner

column

foreignKey

#fcolForKcol

Fig. 6. Subprogram BuildTablesColumns Fig. 7. Subprogram AssociationsToForeignKeys

ac: AttrCopy @ac: AttrCopy

Fig. 8. Subprogram DeleteCopies

6. Performance evaluation for the example
Aside from being a standard benchmark for MDA languages, the example is very
appropriate for performance evaluation. For example, the procedure in Fig. 5 actually
has the loop depth 3, which could lead to a bad performance.

We start with one general observation on MOLA programs, which is true for the
example and also for all MOLA programs built so far. A pattern in a correct MOLA
program is typically built so that any nondeterministic choice is excluded during the
pattern match. More precisely, each pattern element (except for the loop variable) can

be matched to 0 or 1 instance (if 0, the pattern fails for the given instance of loop
variable). This can be achieved by syntactic means, e.g., by selecting associations
with multiplicity 1 in the appropriate direction. Or some semantic considerations
specific to the example may be used. For nested loops such unambiguous matching
typically is achieved by proper use of references to elements of upper level loops.
During the analysis of the example the specific reason for each loop will be shown.

The common principle, which will be applied to analysis of all loops, is that no
proper backtracking occurs in the situation described above. Namely, either one
instance can be matched to a pattern element or there is no instance at all and the
pattern fails. The pattern matching procedure proposed in the previous section is
specially built so that only a constant "overhead" can occur in this situation. More
precisely, if a pattern element cannot be matched, the procedure has just to backtrack
formally (without finding any new match) over all preceding elements in the pattern
list.

To start with performance evaluation for the example, some reasonable
assumptions about the source models (class models built according to the metamodel
in Fig.3) must be made. We assume that all instance level multiplicities (number of
the specified links per instance) are bounded by some fixed constant, while the size
of the source model (instance set) may grow unboundedly. For example, it means that
if we have n classes (i.e., instances of the metaclass Class), then we can have at most
c1*n instances of Attribute and c2*n instances of Association in the source model. In
other words, the instance graph has bounded degrees for all types of edges. The
described transformation includes a transitive closure, and even for the
abovementioned assumptions the target model (or instance set) could have unlimited
cardinalities. More precisely, there could be an unlimited number of Columns per
Table. Since this is untypical in practice, we assume this number also bounded by a
constant.

The "units", in which the number of required steps for a MOLA procedure will be
measured, are the calls to virtual machine operations (actually those dealing with
instances, not MOLA code).

The simplest case for performance evaluation is top-level FOREACH loops (not
using any references). There are two such loops in the example – the main one in
Fig.4 and the top loop over Associations in Fig.7. The main loop over Class in Fig.4
is obviously executed for each Class instance, i.e., n times, creating a proper iteration
(subprogram invocation) for persistent instances – we assume that it is also O(n)
times. Our performance measure – virtual machine calls is obviously the same since
actually there is no pattern in this loop.

The top loop in Fig.7 is more interesting since it has a pattern – reproduced also in
Fig.1. If we had to evaluate the number of steps in matching this pattern without any
special considerations, we would obtain O(n5) – there are five elements in the pattern
all having corresponding instance sets of size O(n). Fortunately, the pattern is a very
correct one for our evaluations – the no-backtracking principle applies in the simplest
way, since all pattern associations have multiplicities 1 or 0..1 in the required
direction (away from the root) in the metamodel (see Fig.3). Thus, an Association has
exactly 1 source Class, a Class has 0 or 1 #classToTable link to Table etc. According
to the constant overhead in matching procedure described above, this yields an
estimate O(n) for pattern matching in this FOREACH loop. The real number of
iterations (executions of the nested loop) can also be evaluated as O(n) according to
our assumptions – since persistent Classes have Tables and Keys.

Now some general comments on pattern matching evaluation for nested loops,
containing references. Patterns in such loops contain elements of two kinds. Elements,
which are on restriction paths (paths linking a reference to a loop variable, see section
4), can be matched to instances from feasible instance sets, built according to the
principles described in section 4. Since these sets are built, starting from one instance
(the reference) and the size of the next set is limited by the number of specified links
from instances of the previous set, the size of any instance set is also limited by a
constant in our case. This implies that there is no need for precise evaluation for this
kind of pattern elements, if we want to obtain just order-of-magnitude type results. By
the way, this implies also that the given kind of loop is iterated no more than constant
number of times on each invocation. Certainly, we have to check whether the loop
variable is indeed reachable by a restriction path. Pattern elements not on restriction
paths should be evaluated according to the same no-backtracking principle as above –
the general matching procedure is used for them.

We start with the evaluation for MOLA subprogram in Fig.5 – it has loop nesting
depth 3 (it is invoked in the main loop). Fortunately, all pattern elements (including
loop variables) in all FOREACH loops in this procedure are on restriction paths. For
example, in the first loop only Attributes of the given Class may be iterated. Similar
situation is for the next loop, both at upper level and the nested loop (there the
restriction path is longer, but actually the number of Attribute instances per loop
invocation is limited by the original constant c1, the other sets have size 1). According
to the general evaluation principles for nested loops described above, we can conclude
that the total complexity evaluation for this subprogram is just a constant (for one
invocation). However, we must be careful in one respect. The second loop (upper
level) is a self-replenishing one, the instances of AttrCopy are generated within the
nested loop (a typical situation for transitive closure). Therefore we must be sure that
the total number of AttrCopy instances per Class is also limited by a constant (only in
this case our general principles are applicable). This is not a MOLA evaluation
problem, it is more the domain problem. Since any primitive-typed AttrCopy
generates a Column (see Fig.6) and we have assumed a constant limit for Columns per
Table, it is natural to assume also a similar limit for AttrCopy (which makes our
conclusions completely valid).

A more interesting situation is for BuildTablesColumns subprogram in Fig.6,
where patterns contain both kinds of elements. The first statement of this subprogram
is a simple rule (executed once), the only fact to be noticed is that elements of a rule
(Table and Key) may be used as references in subsequent statements. The second
statement is a loop, where the loop variable (AttrCopy) is on a restriction path, but
two other elements are restricted by metamodel multiplicities. This in totality again
yields a constant evaluation. The third statement is a loop, where the loop variable
(Attribute) is on two restriction paths – from Class and Table. The general evaluation
principle applies in a standard way, but it is interesting to note that the set intersection
from two paths supply the exactly desired instance set for Attribute, which in turn
ensures matching uniqueness for Column (by semantic considerations, not by
multiplicities). The program would be incorrect if the uniqueness were not achieved.

The remaining loops (the nested one in Fig.7 and the one in Fig.8) obviously
satisfy the general evaluation principle and have a constant evaluation. Thus all nested
loops in the program do have a constant evaluation for pattern matching, and the total
estimate for the whole program evidently is O(n) – both for pattern matching and
any other kind of operations. In other words, the implementation is optimal for the
example (with respect to the measures used).

7. Conclusions
We have demonstrated on one example, how reasonable programming style and
appropriate implementation of pattern matching together yield a very efficient
performance. Any of pitfalls of pattern matching, typical to graph rewriting languages
[10], are automatically avoided in MOLA for this example.

In the conclusion we want to generalize and comment this situation more broadly.
Firstly, it is the completely deterministic control structure of MOLA – sequence, the
two types of loops and branching, which forces us to use a "deterministic" approach
to programming in MOLA. The only non-determinism is that no one is interested in
the order, in which valid instances of a loop variable are processed (even concurrent
processing could be used).

Consequently, in a typical MOLA program, where patterns have no redundant
elements, we expect a deterministic match for pattern elements. To achieve this, good
programming style for MOLA patterns should be used. The elements of this style
are: use metamodel associations with multiplicity 1 in the appropriate direction (away
from loop variable), appropriate semantic considerations (the nested loop in Fig.6,
statechart flattening example – Fig.13 in [6]) or sufficient references in nested loops
(Fig.5,6,7). The matching determinism is especially important if we have some
additional use of the pattern element (and typically it is so) – we reference it in a
nested loop, use its attributes, use it as a base for instance creation etc. If several
"useful" instances of a metaclass correspond to a pattern element, then most probably
actually all of them must be processed in the same way. In MOLA this should be
implemented by one more nested loop using the metaclass as the loop variable and
references to elements in the previous loop for specifying the context.

If the described means ensuring deterministic match are used in a MOLA
transformation program, then its performance can be evaluated in a way similar to the
example in section 6. Such an analysis has been performed for all MOLA examples
built so far, and in all cases the evaluation showed results similar to that in the paper –
there was no loss with respect to the natural complexity of the implemented
transformation algorithm. For many MDA-related transformations the estimate O(n)
with respect to data size is typical, but there are also more complicated ones.

Thus a correct transformation program in MOLA becomes efficient at the same
time. There is no special need to bother on program efficiency – just concentrate on
correctness and natural use of MOLA constructs. Certainly, an appropriate
implementation of MOLA must be used – the one that takes the described above
feature into account. A possible implementation of pattern matching has been
sketched in section 4. The matching procedure may have more optimizations – the
one described here is sufficiently "rough", but it would have no great effect in typical
case, when no proper backtracking occurs. Some heuristics specially oriented towards
"typical trivial backtracking" could also be added. For example, if an instance is
found by getNextByLink, the association multiplicity is 1 (this fact can be marked by
the compiler) and another instance is required, immediate backtracking (to the deepest
feasible level) could be done. However, only constant improvements can be achieved
this way.

All the abovementioned suggests that an efficient and at the same time relatively
simple implementation of MOLA is possible. The implementation schema for pattern
matching sketched in this paper can be used as the basis for such implementation. By
the way, this suggests that an implementation based on an interpreter for MOLA
virtual machine is quite feasible from the performance point of view.

References
[1] QVT-Merge Group. MOF 2.0 QVT RFP, Revised submission, version 1.0. OMG Document

ad/2004-04-01, http://www.omg.org/cgi-bin/doc?ad/2004-04-01
[2] Compuware, SUN. MOF 2.0 Query/Views/Transformations RFP, Revised Submission. OMG

Document ad/2003-08-07, http://www.omg.org/cgi-bin/doc?ad/2003-08-07
[3] Willink E.D. A concrete UML-based graphical transformation syntax - The UML to RDBMS

example in UMLX. Workshop on Metamodelling for MDA, University of York, England, 24-25
November 2003

[4] Agrawal A., Karsai G, Shi F. Graph Transformations on Domain-Specific Models. Technical
report, Institute for Software Integrated Systems, Vanderbilt University, ISIS-03-403, 2003

[5] Bézivin J., Dupé G., Jouault F., et al. First experiments with the ATL model transformation
language: Transforming XSLT into XQuery. 2nd OOPSLA Workshop on Generative Techniques in
Context of MDA, Anaheim, California, 2003.

[6] Kalnins A., Barzdins J., Celms E. Model Transformation Language MOLA. Proceedings of
MDAFA 2004, University of Linkoping, Sweden, 2004, pp.14-28. (see also
http://melnais.mii.lu.lv/audris/MOLA_MDAFA.pdf)

[7] Kalnins A., Barzdins J., Celms E. Basics of Model Transformation Language MOLA. Proceedings
of WMDD 2004, Oslo, 2004, http://heim.ifi.uio.no/~janoa/wmdd2004/papers/kalnis.pdf

[8] Kalnins A., Barzdins J., Celms E. MOLA Language: Methodology Sketch. To be published in
proceedings of EWMDA-2, Canterbury, England, 2004. (see also
http://melnais.mii.lu.lv/audris/EWMDA_MOLA2.pdf)

[9] A. Schürr. PROGRES for Beginners. Technical Report, Lehrstuhl für Informatik III, RWTH
Aachen, Germany.

[10] Vizhanyo A., Agrawal A., Shi F. Towards Generation of High-performance Transformations.
Generative Programming and Component Engineering, (accepted), Vancouver, Canada, 2004.

[11] Magyari E., Bakay A., Lang A., Paka T., Vizhanyo A., Agrawal A., Karsai G. UDM: An
Infrastructure for Implementing Domain-Specific Modeling Languages. The 3rd OOPSLA
Workshop on Domain-Specific Modeling, OOPSLA 2003, Anaheim, California, 2003.

Tool support for MOLA

Audris Kalnins 1, Edgars Celms 2,3, Agris Sostaks 4

IMCS
University of Latvia

Riga, Latvia

Abstract

The paper describes the MOLA Tool, which supports the model transformation
language MOLA. MOLA Tool consists of two parts: MOLA definition environment
and MOLA execution environment. MOLA definition environment is based on the
GMF (Generic Modeling Framework) and contains graphical editors for metamodels
and MOLA diagrams, as well as the MOLA compiler. The main component of
MOLA execution environment is a MOLA virtual machine, which performs model
transformations, using an SQL database as a repository. The execution environment
may be used as a plug-in for Eclipse based modeling tools (e.g., IBM Rational RSA).
The current status of the tool is truly academic.

Key words: Model transformations, MDD, MOLA, MOLA tool.

1 Introduction

Practical use of Model Driven Development (MDD) for building systems is im-
possible without appropriate tools. Principles of MDA and MDD are known
for quite a time and several model transformation languages, including the
emerging OMG standard (QVT-Merge) [15] have got certain publicity. How-
ever, there are very few truly MDD tools available. At the time of writing,
the available commercial tools supporting MDD (OptimalJ[14], ArcStyler[2],
Objecteering[13] and other) do it well for specific kinds of PSM (frequently,
J2EE) and specific design methodologies, but modifying the used default
model transformations is as hard as extending traditional modeling tools -
in most cases conventional OOP languages are used to define transformations.
On the other hand, the experimental model transformation tools - ATL[3],

1 Email: Audris.Kalnins@mii.lu.lv
2 Email: Edgars.Celms@mii.lu.lv
3 supported partially by ESF
4 Email: agree@os.lv

c©2005 Published by Elsevier Science B. V.

Kalnins, Celms and Sostaks

MTF[12], Tefkat[16], etc. which are mainly Eclipse EMF based and use var-
ious (mainly textual) transformation languages, are not well linked with the
model providers - the modeling tools.

In this paper the academic MOLA tool, which is being developed at the
University of Latvia and supports the graphical model transformation lan-
guage MOLA [7], is described. The goal of the design has been to have a
simple implementation, which nevertheless would be practically usable in the
MDD context. The structure and main principles of the tool are described,
and also its links with modeling tools. In a more detailed way, it is shown how
MOLA execution environment can be linked to Eclipse EMF based modeling
tools. This is illustrated by a case study - an application of MDD principles
to IS design based on Hibernate framework.

2 Brief Description of MOLA

The MOLA tool is based on the MOLA model transformation language, devel-
oped at the University of Latvia, IMCS [7,8,9,10]. MOLA is a graphical proce-
dural transformation language. Its main distinguishing features are advanced
graphical pattern definitions and control structures taken from the traditional
structural programming. To facilitate the understanding, we briefly remind
the main concepts of MOLA.

Like most of the model transformation languages, MOLA is based on
source and target metamodels, which describe the source and target mod-
els respectively. The used metamodeling language is EMOF [11](with some
slight restrictions). In MOLA source and target metamodels are combined in
one class diagram, but packages may be used for structuring. The source and
target may coincide. Special mapping associations linking the correspond-
ing classes in source and target metamodels may be added to the metamodel.
Their role is similar to relations in other transformation languages - for struc-
turing the transformation and documenting the transformation traceability.

The transformation itself is defined by one or more MOLA diagrams
(see examples in Fig. 6 and 7). A MOLA diagram is a sequence of graphical
statements, linked by arrows. The most used statement in a MOLA diagram
is the FOREACH loop - a bold-lined rectangle. A loop has a loop head (a
grey rounded rectangle), which contains the loop variable (bolded element)
- a class, instances of which the loop has to iterate through. In addition,
the loop head contains a pattern, which specifies namely which of the in-
stances qualify for the given loop. A pattern is a metamodel fragment, but in
instance notation - element name:class name, therefore classes may be re-
peated. Links just correspond to metamodel associations. A pattern element
may contain an attribute-based constraint - an expression in OCL subset. The
semantics of loop is quite natural - the loop must be executed for all instances
of the loop variable for which there exist instances of other pattern elements
satisfying their constraints and linked by the specified links (pure existence

2

Kalnins, Celms and Sostaks

semantics). Loops may be nested, the instance of the loop variable (and other
elements) matched in the parent loop may be referenced in the nested loop by
the reference notation - the element name prefixed by @ character.

Another kind of graphical statements is the rule (a grey rounded rectangle
too), which also contains a pattern but without loop variable. A rule typically
contains actions - element or association building (red dotted lines) and dele-
tion (dashed lines). A rule is executed once in its control path (if the pattern
matches) or not at all - thus it plays the role of an if-statement too. A loop
head may also contain actions. MOLA subprograms are invoked by the call
statement (possibly with parameters).

One year experience of using MOLA (mainly in academic environment -
from undergraduate to PhD students) has confirmed its ease of learning and
high readability of defined transformations - especially when compared to the
current QVT-Merge proposal [15].

Actually, quite a few graphical model transformation languages are now in
use - besides the graphical form of QVT-Merge, Fujaba Story diagrams (SDM)
[6] and the GME-based GReAT notation [1] is used. The pattern definition
facilities are approximately of the same strength in all these approaches, in-
cluding MOLA. There are differences in defining the rule control structure,
the Fujaba approach is the closest one to MOLA, but is less structured, while
GReAT is more based on data flows. Actually we don’t mention here the graph
transformation languages, which have slightly different goals. A more com-
prehensive comparison of MOLA to other languages has been already given
in [7].

3 The Architecture of MOLA Tool

The current version of MOLA tool has been developed with mainly academic
goals - to test the MOLA usability, teach the use of MDD for software system
development and perform some real life experiments. This has influenced some
of the design requirements, though with easy usability as one of the goals and
sufficient efficiency the tool has confirmed its potential as an industrial tool
too.

Like most of the model transformation tools, the MOLA tool has two parts
- the Transformation Definition Environment (TDE) and the Trans-
formation Execution Environment (TEE). Both these environments have
a common repository for storing the transformation, metamodels and models
(in the runtime format). Fig. 1 shows the general architecture of the tool.

The definition environment is related to the metamodel level - M2 in the
MOF classification. Its intended users are methodology experts who provide
the metamodels and define the transformations for development steps which
can be automated. Since MOLA is a graphical language, TDE is a set of
graphical editors, built on the basis of GMF [4] - a generic metamodel based
modeling framework, developed by University of Latvia, IMCS together with

3

Kalnins, Celms and Sostaks

the Exigen company.

The execution environment (related to M1 level) is intended for use by
system developers, who according to the selected MDD methodology perform
the automated development steps and obtain the relevant target models. Cur-
rently two forms of TEE are available. The form closer to an industrial use
is an Eclipse plug-in, which can be used as a transformation plug-in for UML
2.0 modeling tools, including the commercial IBM Rational tool RSA. This
use is described in more details in section 5 and demonstrated on a case study.
Another form is a more experimental one. It is based on GMF as a generic
modeling environment and is intended for various domain specific modeling
and design notations. It is described more closely in section 6.

Fig. 1 shows both the components of the MOLA tool (rounded rectangles)
and the used data objects (rectangles). Besides the traditional class diagram
notation, arrows represent the possible data flows. Data objects in MOLA
runtime repository are annotated as tables because it is SQL based.

Figure 1. MOLA Tool environment architecture.

4

Kalnins, Celms and Sostaks

Now some more comments on the MOLA TDE. It contains graphical edi-
tors for class diagrams (EMOF level) and MOLA diagrams. Both the source
and target metamodels are shown in the same class diagram, together with
possible mapping associations. A transformation is typically described by sev-
eral MOLA diagrams, one of which is the main. Since the graphical editors
are implemented on the basis of GMF, they have professional diagramming
quality, including automatic layout of elements. In addition to editors, TDE
contains the MOLA compiler which performs the syntax check and converts
both the combined metamodel and MOLA diagrams from the GMF repository
format to the MOLA runtime repository format. Fig. 2 shows a screenshot of
MOLA TDE, with both metamodel and MOLA diagram editors open.

Figure 2. Screenshot of the MOLA TDE.

4 MOLA Virtual Machine and Repository

The core of the MOLA TEE is MOLA Virtual Machine (VM) - an interpreter
performing the model transformation. Certainly, it is closely linked to the
MOLA repository, whose main function is to ensure the efficiency of MOLA
VM. The most crucial factor in implementing MOLA VM is the implementa-
tion of pattern matching - the most “expensive” part in any transformation
implementation.

Model transformation tools [3,12,16] typically are implemented on meta-

5

Kalnins, Celms and Sostaks

model based repositories such as Eclipse EMF. Such an implementation typ-
ically uses low level repository operations for pattern matching and is more
compiler than interpreter. Authors of this paper have shown [10] that a very
efficient MOLA implementation is possible this way. However, for this aca-
demic implementation of MOLA another goal was set - the implementation
must be as simple as possible, but still usable on examples of reasonable size,
e.g., to transform a model containing several hundred classes.

Therefore another solution was adopted - to use an SQL database as a
repository. The key rationale for this solution has been that a complete MOLA
pattern match operation can be implemented by one SQL Select statement. In
addition, this Select statement can be generated very easily from the MOLA
pattern definition also stored in SQL tables in an appropriate way by the
MOLA compiler. Thus MOLA VM would be quite close to a pure interpreter
and therefore simple. The implementation of other MOLA elements is not so
sensitive to repository format because it is a fairly classic implementation of
traditional control structures. Namely these principles are used for MOLA
VM implementation in this version of MOLA tool.

The only problem which remained to be solved was efficiency. The query
generated from a MOLA pattern is quite untypical for standard SQL databases
- it is a “self-join” of two tables (representing class and association instances
in the model) as many times as there are elements and links in the pattern.
Not all database engines occurred to process such joins satisfactorily. Since
the desire was to build the MOLA tool as open source based as possible, the
first candidate was MySQL. However, it occurred that for large patterns the
performance was not satisfactory - the query optimization itself used by the
MySQL engine was too lengthy for this type of queries. Another candidate
was the free version Microsoft SQL - the MSDE engine. It performed quite
efficiently for patterns occurring in reasonable MOLA programs and quite
large example models. This way the stated goals for both simple and efficient
MOLA VM were reached.

5 MOLA Transformation Execution Environment as an
Eclipse plug-in

The MOLA TEE besides the MOLA VM must contain components for fetching
the source models to be transformed and passing the transformation results.
In a typical MDD scenario there must be also a modeling environment where
the source models are prepared and the obtained target models are processed
further. In the approach where MOLA transformations are used as plug-
ins for Eclipse EMF namely this scenario is assumed. The environment was
selected due its popularity as a model transformation testbed and because
there is a publicly available UML 2.0 metamodel [17] for this environment.
The MOLA TEE in this case, in addition to MOLA VM, contains XMI import
component, XMI export component and a simple Eclipse plug-in (see the lower

6

Kalnins, Celms and Sostaks

layer of TEE in Fig. 1). The XMI import component currently supports a
reasonable subset of UML 2.0 metamodel (in its EMF version). The XMI
export component also supports a subset of UML 2.0, but in addition some
other metamodels available in EMF are supported (e.g., the SQL database
definition metamodel). The plug-in currently is very simple - it is used just
to activate the TEE and select the source and target XMI location and the
required MOLA transformation. The source model must be exported by the
Eclipse modeling tool export facility and the generated target model imported
by the import facility.

Currently this schema has been tested with the only professional Eclipse
EMF based modeling tool truly supporting UML 2.0 - IBM Rational RSA. As
soon as more Eclipse based modeling tools support the UML 2.0 metamodel,
the same plug-in would be applicable to them. At the time of writing, there is
no true transformation plug-in for RSA (the embedded RSA transformation
extension facilities require coding in Java), so the developed plug-in could
present also some practical interest. Certainly, a more user friendly solution
would be to acquire the relevant source model directly via Eclipse API and
pass the result this way too, but this solution is much more complicated and
more tied up to a specific modeling tool.

The proposed solution seems to be practically usable for various MDD style
development scenarios. Section 7 contains one such case study - a scenario
where the Hibernate persistence framework is used. Since MOLA is well suited
for model-to-model transformations, but not so well for model-to-code, the
built-in code generation facilities of RSA (or other modeling tool) are used for
this purpose.

6 Standalone MOLA Transformation Execution Envi-
ronment

Another possibility to have a usable transformation execution environment is
to tie the MOLA VM up to a generic modeling environment where an arbitrary
graphical modeling notation can be supported. Since the GMF environment
[4] is such one, another MOLA TEE has been based on it. Truly speaking,
Eclipse+EMF+GEF [5] is also such an environment, but the development
there requires much more effort. The MOLA TEE version based on GMF is
meant for various experiments in applying MDD and model transformations
to domain-specific notations, including non-UML ones. The top layer of TEE
in Fig. 1 shows the corresponding components. In GMF it is possible to de-
fine the graphical presentation of a domain model as a sort of transformation
(though not very universal, see more in [4]), therefore for many modeling nota-
tions usable graphical editors can be defined without proper programming at
all. In any case, Eclipse EMF style model browsers/editors, but more flexible
ones, can be built very easily with GMF. Universal metamodel-controlled ex-
port and import components from/to GMF repository have been built. This

7

Kalnins, Celms and Sostaks

task has not been so hard since the GMF repository is functionally close to
EMOF. The relevant MOLA transformation can be invoked directly from this
environment (MOLA VM is used as a GMF plug-in).

Several such experiments have been performed. In one case, a UML activ-
ity diagram profile (a complicated one and represented graphically) meant for
defining workflows in UML was implemented in GMF, and a transformation
to a specific workflow notation was defined in MOLA. GMF has a special fea-
ture of generating readable diagrams automatically, therefore in many cases
the transformed target model can be automatically presented as a diagram.

Another GMF based experiment has been in converting a special profile
of class diagrams to OWL notation for ontology definitions.

7 Case Study: Use of MOLA Tool for Building an IS
within Hibernate Framework

In this section we show how the Eclipse plug-in form of MOLA tool could
be used for MDD style development of information systems in Java within
the Hibernate persistence framework. This framework provides a “classical”
object-relational mapping between Java classes and database tables, permit-
ting a developer to access instances of such classes (actually stored in a data-
base) as if they were true Java objects. The modeling tool where the models
are built is assumed to be IBM Rational RSA. Just one nontrivial step in the
methodology is illustrated. We assume that a PIM - an IS domain model in
the form of a standard UML 2.0 class diagram has been built (see a small
example in Fig. 3).

Figure 3. UML class diagram with stereotypes in RSA (PIM model).
Some of the classes must be persistent - stored in a relational database as

tables. The standard Hibernate mapping is assumed for these classes, which
requires “standard” Java getters and setters to be added for the persistent at-
tributes and association ends of a class, with other attributes and operations
unmodified. In addition, for each such mapping the Hibernate mapping de-

8

Kalnins, Celms and Sostaks

scriptor (an XML file) must be built. Thus the task is to build a PSM model
consisting of three parts - the augmented UML classes, database schema def-
inition and Hibernate mapping descriptors.

Figure 4. Part of class diagram for Hibernate framework in RSA(PSM model).
In order to specify adequately the logical design decisions at the PIM level,

a custom profile (HibernateProfile) is required. This profile should contain
the stereotypes persistent (both for classes and properties, representing ei-
ther attributes or association ends), PK - for attributes (properties), FK - for
association ends (properties) and inhPK - for defining Hibernate-style storing
of persistent subclasses. If these stereotypes are appropriately applied to the
PIM model, then the three-part PSM can be generated automatically by a
MOLA transformation - for each persistent class a table will be defined (con-
taining persistent attributes and associations), getters/setters will be added
to the class and the Hibernate descriptor will be defined. Fig. 3 shows these
stereotypes applied (RSA does not visualize stereotypes for association ends).
All classes there are assumed to be persistent, but not all attributes. Classes
in a PIM normally should contain also business operations, we don’t show
them for brevity. We assume also that primary keys consist of one column
(Hibernate uses a complicated mapping for complex keys).

Figure 5. Data model visualization in RSA (PSM model).
Fig. 4 shows the first component of the result - the updated class diagram

(fragment). Getters and setters are added where appropriate, but custom
stereotypes are removed - RSA does not use them for code generation.

Fig. 5 shows the second component of the result - the database schema.

9

Kalnins, Celms and Sostaks

The model is built according to the EMF SQL metamodel, but RSA data
model visualization feature is used to show the schema as a diagram.

Finally, Fig. 6 and 7 show the part of the MOLA transformation - the
main program and SQL table building.

Figure 6. MOLA transformation program (main).
The metamodels are not shown due to lack of space. The source meta-

model is the standard UML 2.0 metamodel. However, in EMF a special coding
(not the OMG standard, but eCore defined via the EAnnotation metaclass)
is used for applied stereotypes. Namely this coding is used in transforma-
tions - in UML 2.0 the applied stereotypes show up as instances in the model,
therefore model transformations must treat them as instances of special tem-
porary metaclasses (note the MOLA pattern for finding a persistent class in
the FOREACH loop of Fig. 6). The AddGettersSetters transformation (not
shown here) uses the same UML metamodel as a target - it is an update trans-
formation, which simply attaches new Operation instances to existing Class

instances. The BuildRDBTable program (Fig. 7) builds a table for the class
and then performs a loop, which builds a column (including its type and key
constraints) for each persistent property. The target metamodel for this pro-
gram is the SQL metamodel in EMF, but for BuildHibernateMapping - the
metamodel obtained from the Hibernate XML schema definition. Actually in
MOLA all these metamodels appear as a common class diagram, but packages
are used to separate them. The same packages are used to guide the MOLA
tool XMI exporter component - in this case several separate XMI files must
be generated, but for Hibernate mapping a non-XMI XML coding is required.

10

Kalnins, Celms and Sostaks

Figure 7. MOLA transformation program (BuildRDBTable).

8 Conclusions

The structure and some use cases of the experimental academic MOLA tool
have been described in the paper. The existing experience of using the tool
has shown that the adopted solutions are appropriate and MOLA transforma-
tions fit in well both in the traditional UML based MDD style development
and in domain specific modeling. Certainly, the practical tool usability has to
be improved, especially the links with the modeling tools. One more issue to
be solved is the “round-tripping”, because in MDD setting the target mod-
els are also sometimes updated manually. MOLA transformations have no
“native reversibility”, but it is clear that for typical MDD tasks reverse trans-
formations are easy to build, using either mapping associations (in standalone
environment) or special annotations (in EMF environment). Yet another task
is to build a MOLA transformation library for typical MDD use cases.

11

Kalnins, Celms and Sostaks

References

[1] Agrawal A., G. Karsai, F. Shi. “Graph Transformations on Domain-
Specific Models”. Technical report, Institute for Software Integrated Systems,
Vanderbilt University, ISIS-03-403, 2003

[2] ArcStyler. URL: http://www.interactive-objects.com/

[3] ATL. URL: http://www.sciences.univ-nantes.fr/lina/atl/

[4] Celms E., A. Kalnins, L. Lace. “Diagram definition facilities based on
metamodel mappings”. Proceedings of the 18th International Conference,
OOPSLA’2003 (Workshop on Domain-Specific Modeling), Anaheim, California,
USA, October 2003, pp. 23-32.

[5] Eclipse GEF. URL: http://www.eclipse.org/gef/

[6] Fujaba User Documentation. URL:
http://wwwcs.uni-paderborn.de/cs/fujaba/documents/user/manuals/
FujabaDoc.pdf

[7] Kalnins A., J. Barzdins, E. Celms. “Model Transformation Language MOLA”.
Proceedings of MDAFA 2004 (Model-Driven Architecture: Foundations and
Applications 2004), Linkoeping, Sweden, June 10-11, 2004. pp.14-28.

[8] Kalnins A., J. Barzdins, E. Celms. “Basics of Model Transformation Language
MOLA”. ECOOP 2004 (Workshop on Model Transformation and execution in
the context of MDA), Oslo, Norway, June 14-18, 2004.
URL: http://heim.ifi.uio.no/ janoa/wmdd2004/papers/

[9] Kalnins A., J. Barzdins, E. Celms. “MOLA Language: Methodology Sketch”.
Proceedings of EWMDA-2, Canterbury, England, 2004. pp.194-203.

[10] Kalnins A., J. Barzdins, E. Celms. “Efficiency Problems in MOLA
Implementation”.
19th International Conference, OOPSLA’2004 (Workshop “Best Practices for
Model-Driven Software Development”), Vancouver, Canada, October 2004.
URL: http://www.softmetaware.com/oopsla2004/mdsd-workshop.html

[11] MOF 2.0 Core Final Adopted Specification.
URL: http://www.omg.org/docs/ptc/03-10-04.pdf

[12] MTF. URL: http://www.alphaworks.ibm.com/tech/mtf

[13] Objecteering. URL: http://www.objecteering.com/

[14] OptimalJ. URL: http://www.compuware.com/products/optimalj/

[15] QVT-Merge. URL: http://www.omg.org/docs/ad/05-03-02.pdf

[16] Tefkat. URL:
http://www.dstc.edu.au/Research/Projects/Pegamento/tefkat/

[17] UML 2.0 Eclipse EMF. URL: http://www.eclipse.org/uml2/

12

http://www.interactive-objects.com/
http://www.sciences.univ-nantes.fr/lina/atl/
http://www.eclipse.org/gef/
http://wwwcs.uni-paderborn.de/cs/fujaba/documents/user/manuals/FujabaDoc.pdf
http://wwwcs.uni-paderborn.de/cs/fujaba/documents/user/manuals/FujabaDoc.pdf
http://heim.ifi.uio.no/~janoa/wmdd2004/papers/
http://www.softmetaware.com/oopsla2004/mdsd-workshop.html
http://www.omg.org/docs/ptc/03-10-04.pdf
http://www.alphaworks.ibm.com/tech/mtf
http://www.objecteering.com/
http://www.compuware.com/products/optimalj/
http://www.omg.org/docs/ad/05-03-02.pdf
http://www.dstc.edu.au/Research/Projects/Pegamento/tefkat/
http://www.eclipse.org/uml2/

Model Transformation Approach Based on MOLA

Audris Kalnins, Edgars Celms1, Agris Sostaks

University of Latvia, IMCS, 29 Raina boulevard, Riga, Latvia
{Audris.Kalnins, Edgars.Celms}@mii.lu.lv, agree@os.lv

Abstract. This paper provides a solution to the mandatory transformation
example specified in MOLA – a graphical model transformation language
developed at the University of Latvia. The solution is validated by executing it
via the MOLA execution environment on several examples. In addition, a
solution to one of the optional examples – determinization of a non-
deterministic automaton is provided.

1 Introduction

The idea of model transformations as the main support for model driven software
development is already gaining some maturity now. First and foremost, it appears in
the area of model transformation languages. The emerging OMG standard model
transformation language, QVT-Merge [1], most probably will reach its final shape at
the end of this year. But while waiting for this, various independent model
transformation languages gain their maturity too. Most of the languages use some sort
of the pattern concept (to be matched in the source model) and rules controlling the
application of patterns.

According to a very rough grouping, model transformation languages can be
divided into textual and graphical languages. The QVT-Merge language fits into both
groups since it has both textual and graphical form. Textual languages such as
ATL[2], MTF[3], Tefkat[4], MT[5] and many other, though very different in details,
typically use recursion as the main control structure.

Graphical transformation languages are significantly less in number. Besides QVT-
Merge, Fujaba Story diagrams (SDM) [6] and GME-based GReAT [7] notation
should be mentioned. The MOLA transformation language, which is the topic of this
paper is namely in this category. In addition, graph transformation languages (such as
AGG [8]), though originally built for different goal, actually have similar
characteristics. It should be noted, that many characteristics of the graphical
languages are somewhat similar too.

 An unbiased comparison of qualities of transformation languages is not so easy to
obtain, because there are so many different subjective viewpoints. Therefore this
workshop, where very precisely defined requirements for a mandatory transformation
example are given in its CFP [9], could provide the first such impartial comparison.

1 supported partially by ESF (European Social Fund), project 2004/0001/VPD1/ESF/PIAA/04/NP/3.2.3.1/0001/0063

This paper presents a solution to this transformation task specified in MOLA – a
graphical language developed at the University of Latvia, IMCS. Though the
description of the same transformation in graphical languages is longer than in textual
ones, authors consider the provided solution to be optimal from the readability and
clarity point of view (though this is subjective too). The solution is validated on test
models, by executing it via the MOLA tool. The paper describes how a problem
specific modeling environment (for building test models) linked to the MOLA
execution environment can be built using GMF – a generic modeling framework also
developed at the University of Latvia (unfortunately, a name clash has occurred – an
Eclipse project also named GMF [10] has been recently started).

Sections 2 and 3 provide a brief introduction to MOLA and its tools. The section 4
presents the solution of the mandatory transformation example, but section 5 – its
validation via MOLA tool. Section 6 provides MOLA solution for one of the optional
examples – the determinization of a non-deterministic automaton.

2 Brief Description of MOLA Language

The MOLA model transformation language has been developed at the University of
Latvia, IMCS [11,12,13,14], the most complete description is given in [11]. MOLA is
a graphical procedural transformation language. Its main distinguishing features are
advanced graphical pattern definitions and control structures taken from the
traditional structural programming. In this section we briefly remind the main
concepts of MOLA. Later on in the examples sections example diagrams will be
annotated by comments, which will allow easily to follow the notation.

Like most of the model transformation languages, MOLA is based on source and
target metamodels, which describe the source and target models respectively. The
used metamodeling language is EMOF [15] (with some slight restrictions). In MOLA
source and target metamodels are combined in one class diagram, but packages may
be used for structuring. The source and target metamodels may coincide. Special
mapping associations linking the corresponding classes in source and target
metamodels may be added to the metamodel. Their role is similar to relations in other
transformation languages – for structuring the transformation and documenting the
transformation traceability. If necessary, temporary classes and/or associations for
storing intermediate data may be added.

The transformation itself is defined by one or more MOLA diagrams. A MOLA
diagram is a sequence of graphical statements, linked by arrows. The most used
statement in a MOLA diagram is the FOREACH loop – a bold-lined
rectangle(). A loop has a loop head (a grey rounded rectangle -),

which contains the loop variable (a bolded element – e.g., at:Attribute) – a class,
instances of which the loop has to iterate through. In addition, the loop head contains
a pattern, which specifies namely which of the instances qualify for the given loop.
A pattern is a metamodel fragment, but in instance notation – it contains elements,

e.g., cl:Class , therefore classes may be repeated. Pattern links just correspond to
metamodel associations. A pattern element may contain a constraint – an expression

in OCL subset, which must be true for an instance to qualify. The semantics of loop is
quite natural – the loop must be executed for all instances of the loop variable for
which there exist instances of other pattern elements satisfying their constraints and
linked by the specified links (pure existence semantics). Loops may be nested, the
instance of the loop variable (and other elements) matched in the parent loop may be
referenced in the nested loop by the reference notation – the element name prefixed
by @ character. Besides the FOREACH loop, there is also the less used WHILE loop

(), which is executed while there is at least one instance of loop variable
for which the pattern matches, i.e., the same instance may be processed several times.

Another kind of graphical statement is the rule (a grey rounded rectangle too),
which also contains a pattern but without loop variable. A rule typically contains
actions – element or association building (red dotted lines) and deletion (dashed
lines). A rule is executed once in its control path (if the pattern matches) or not at all –
thus it plays the role of an if-statement too. A loop head may also contain actions.
MOLA subprograms are invoked by the call statement (possibly with parameters),
recursive calls are permitted. The parameters may be references to elements or
primitive values.

One year experimental usage of MOLA, mostly in academic environment, has
suggested few extensions with respect to the original definition of MOLA in [11].
Firstly, the use of NOT constraint in patterns has been clarified and extended. A

MOLA element in a pattern may have the NOT constraint, e.g.,
 {NOT}

at:Attribute . The
meaning is that the whole pattern matches, if there is no instance of the given class,
which satisfies the local OCL constraint (if any) and has the specified links with the
other ("positive") elements of the pattern. In addition, there may be a NOT constraint
on a pattern link (no such link may exist between the matched instances) and a NOT-
region – a rectangle containing several pattern elements (then there may be no
properly linked match for the whole subpattern). Since the last two cases are not used
in this paper, we present no more details of semantics for them.

Other extensions are related to control flows – now there are graphical equivalents
for most of structured control constructs of modern programming languages. A rule
may have two exits – one unmarked and the other one marked {ELSE} (any of them
may be absent). If the rule pattern matches (and the rule actions are performed), the
unmarked exit is taken. Otherwise, the ELSE exit is taken. If the required exit is
absent, there is a default transition – if inside a loop body, then to the next iteration
("implicit continue"), if at the top level of a MOLA program, then it means the
program end ("implicit return"). Thus a true if-then-else construct is provided.
Branched control flows may merge again, but it is forbidden to build a "proper goto"
– to branch backwards. Elements matched in a rule may be referenced only in its
"positive path". In the context of a loop, some more options are available. A flow may
reach the loop rectangle from inside – it means an "explicit continue". A flow may
also cross the loop border – this is an "explicit break" (or "explicit return", if the
target is an end symbol). In any case, no backward loops are permitted this way.

3 MOLA support tools

 A MOLA tool supporting the MOLA transformation language has been built at the
University of Latvia (see the first report on it in [16]). MOLA tool has two parts – the
Transformation Definition Environment (TDE) and the Transformation
Execution Environment (TEE). Both environments use a common runtime
repository, which currently is a relational database. There transformations,
metamodels and models all are stored.

The definition environment (TDE) is at the metamodel level (M2 in the MOF
classification). Since MOLA is a graphical language, TDE is a set of graphical
editors, built on the basis of GMF [17] – a generic metamodel based modeling
framework, developed by University of Latvia, IMCS together with the Exigen
company. It contains graphical editors for class diagrams (EMOF level) and MOLA
diagrams. Both the source and target metamodels currently are shown in the same
class diagram, together with possible mapping associations. A transformation is
typically described by several MOLA diagrams, one of which is the main. In addition
to editors, TDE contains the MOLA compiler which performs the syntax check and
converts both the combined metamodel and MOLA diagrams from the GMF
repository format to the MOLA runtime repository format. All MOLA examples in
this paper have been taken from the MOLA TDE.

MOLA TEE is based on the MOLA Virtual Machine (VM) – an interpreter
performing the model transformation, with instance data kept in the runtime
repository (RDB). MOLA VM performs MOLA statements by converting them to
SQL queries. It should be noted, that the most complicated element of MOLA – a
pattern in a loop head or rule can be converted to a single SQL query. Thus the given
implementation of MOLA is sufficiently simple (see more details in [16]). At the
same time the experience with MOLA tool shows that it is also efficient enough –
models with hundreds of instances may be transformed in seconds, if an appropriate
RDB is used for the repository (currently – MSDE [19], the free version of MS SQL).

There are several ways how a complete MOLA TEE can be built because it must
have close links with the supplier/consumer of models – a modeling environment.
One of the ways is to use MOLA TEE as a plug-in for a modeling tool, with model
data being exchanged in XMI format. It is sufficiently easy in the case of Eclipse and
EMF [18] based tools. In [16] it is described in sufficient detail, how MOLA TEE can
be used as a plug-in for the commercial IBM Rational modeling tool RSA. It should
be noted that this approach requires at least one of the models (source or target) to be
in standard UML 2.0.

Another approach, which is more relevant to the goals of this paper, is to use a
generic modeling environment where an arbitrary graphical modeling notation can be
supported. Since the GMF environment [17] fulfills these requirements, a reasonable
solution is to link MOLA TEE to this environment. In GMF it is possible to define the
graphical presentation of a domain model as a sort of transformation (though not very
universal, see more in [17]), therefore for many modeling notations usable graphical
editors can be defined without proper programming at all. In addition, Eclipse EMF
style model tree browsers/editors, but more flexible ones (e.g., with several instances
combined in one tree node), can be built very easily with GMF. Thus a readable
visual representation of a model (source or target) can be obtained. This approach is

adequate for domain specific notations, including non-UML ones, where frequently
standard editing facilities simply are not available. Since the examples of this paper
are in this category, namely such an approach is used. It should be noted that a
somewhat similar approach is used for GReAT transformation language, combined
with the generic GME modeling environment [7].

To apply the approach, two visual editors (diagrammatic or model tree based) must
be defined in GMF for the source and target models respectively (if the source and
target is different). They are based on the same metamodels which are used to define
the model transformation in MOLA. Currently these metamodels must be ported
manually to the GMF environment (GMF metamodels are in a slight variation of
EMOF notation), but in the near future an automatic support will be provided. Then
the editor definitions must be provided (e.g., which "domain metamodel pattern"
maps to a presentation class, which pattern maps to a tree node etc., see more in [17]).
The GMF-based MOLA TEE contains universal metamodel-controlled instance
export and import components from/to GMF repository. The relevant MOLA
transformation can be invoked directly from the GMF environment (MOLA VM is
used as a GMF plug-in). The general schema of GMF based MOLA TEE is shown in
Fig. 1.

The outlined here approach will be demonstrated in section 5 for the mandatory
example – both tree-form and diagrammatic editors for source and target models will
be shown. The convenient graphical facilities for building source models are used to
test the correctness of defined MOLA transformations (see more in section 5).

Generic Modeling Framework (GMF)
(M1 level)

MOLA transformation
execution

Models
(PIM, PSM)

R
ep

os
ito

ry
 (r

el
at

io
na

l D
B

)

MOLA VM

Metamodels

MOLA Transformation
Definition

(MOLA program)

MOLA Transformation
Definition Environment

(MOLA TDE)

MOLA Transformation
Execution Environment

(MOLA TEE)

Generic Modeling Framework (GMF)
(M2 level)

MOLA
Compiler

MOLA
MM editor

MOLA
Diagram editor

Generic Modeling Framework (GMF)
(M2 level)

MOLA
Compiler

MOLA
MM editor

MOLA
Diagram editor

ModelEditor
Diagrammatic /Model tree based

Fig. 1. MOLA tool schema.

4 The mandatory example in MOLA

In this section we provide the MOLA solution for the mandatory model
transformation example. The example is taken literally as specified in the workshop
call for papers (CFP) [9]. However, the lately added to FAQ comment that subclasses
of persistent classes do not add new elements to the primary key is not used – we
permit primary attributes to be merged up to the persistent class. All diagrams of the
proposed MOLA solution are shown in Fig. 2 – 12.

4.1 Metamodel of the example

Fig. 2 shows the metamodel of the example. In MOLA source and target metamodels
(if different) must be combined in one class diagram. The upper region in Fig. 2 is the
source metamodel (simplified UML) and the lower one is the target (simplified SQL).
The regions are just graphical comments. All black associations are the original ones.

Source Metamodel (simplified UML)

Target Metamodel
(simplified SQL)Table

name : String

Classifier
name : String

Attribute
name : String
is_primary : Boolean PrimitiveDataType

Column
type : String
name : String

FKey
temp_name_pref ix : String[0..1]

Association
name : String

Class
is_persistent : Boolean

type
1

typed *

forw ard*

src 1

inherForw ard*

inherSrc *inherOw ner *

inherAttr*

ow ner
1

attrs*

0..1

mergedAttr
*

child* parent0..1

*

megedSrc 0..1

reverse*

dest 1

*

references
1

1

#classToTable 0..1

1

#attributeToColumn *

cols* foreignKey0..1

0..1

pkey * ow ner1

cols

*

ow ner1

fkeys
*

Fig. 2. The combined source and target metamodel in MOLA.

MOLA uses a slightly simplified EMOF syntax for metamodels. Association
multiplicities must be explicit in MOLA, therefore the default ones have been added.
Some role names for non-navigable ends also have been added (they are not
mandatory for transformations, but ease the instance management in MOLA
environment).

Associations in colors other than black have a special meaning in MOLA. The
green ones are temporary – they are not present in the source model, but built by
MOLA programs to store some intermediate relations. They are not also included in
the resulting model. The red ones are the mapping associations, typically they link
classes in source metamodel to target ones. They are built by MOLA programs, and
their role is similar to relations, e.g., in QVT-Merge language – to transfer the results
of high level transformations to subordinated ones and to facilitate the definition of
inverse transformations (they are retained in the resulting model).

Fig. 2 contains two intermediate relations between Class and Attribute and
between Class and Association – they are used to relate all (transitively)
inherited elements (according to the standard UML semantics) and all "transitively

merged-up" elements – as specified by the example requirements. See the section 4.2
and 4.3, how their use makes the transformations more readable. There are also two
mapping associations – from Class to Table and from Attribute to Column.
They serve as a "backbone" for defining the correspondence between the source and
target models, e.g., it is very convenient to find easy, whether a table for a class has
been built and namely which. A temporary attribute temp_name_prefix is also
added to Fkey class (certainly, with multiplicity 0..1) – to store a temporary string.
Actually, the role of all these additional metamodel elements is clearly visible when
transformations themselves are discussed, and normally they are added "on the fly"
during the transformation program design.

 4.2 The main program of transformation

Now the transformation itself as a set of MOLA programs is being described. We start
with the description of the main program, where the main principles of the proposed
solution can be seen. Fig. 3 shows the main MOLA program.

c: Class
{is_persistent=true}

t: Table
name:=@c.nameTransCloseInheritance()

c: Class t: Table

assoc: Association@c: Class

ProcessAssociation(@assoc:Association,@t:Table,"")

attr: Attribute@c: Class

ProcessAttribute(@attr:Attribute,@t:Table,"")

CompleteForeignKeys()

#classToTable

mergedAttr

megedSrc

#classToTable

Fig. 3. The main MOLA program of the transformation.

We start with some comments on the transformation algorithm. Inheritance-related
items 6 and 7 of the requirements specification [9], together with the specified
precondition on inheritance (persistent classes are topmost parents), suggest that it
would be convenient to process transitively the inheritance as the first step. More

precisely, for non-persistent classes the traditional UML inheritance semantics must
be applied, while for persistent classes the "transitive merge up" semantics must be
used. The results of this transitive closure for a non-persistent class can be stored by
means of temporary associations inherAttr (to all inherited attributes – including
the direct ones) or inherSrc (to exiting associations), and
mergedAttr/mergedSrc for persistent classes respectively. Namely this
inheritance processing is performed in the subprogram
TransCloseInheritance. In all the follow-up activities the appropriate
temporary associations are used instead of the original ones (attrs or src). It
should be noted that many "classical" UML tools (including Rose by IBM Rational)
process the inheritance namely this way – you can always see all inherited
attributes/associations of a class directly.

Now the comments on the MOLA program are given. We remind that MOLA
control flows have some similarity to UML activity diagram – the same Start/End
symbols are used. After the subprogram call for inheritance processing, the first
FOREACH loop starts. This loop builds an equally named table for each persistent
class – note the simple pattern consisting only of the loop variable (c:Class) itself
(with the attribute constraint expressing the persistence). An assignment expression in
MOLA can contain attributes from all elements in the same loop head (or rule),
prefixed by the element name. In addition to the Table instance, an instance of the
mapping association is also built.

The next loop actually again iterates over all persistent classes, but it has a
different pattern – formally, loop over all Class instances which have a link to a
Table instance (which is the same since such a link and instance have been built in
the previous loop). The reason why we use the other pattern now is that we want to
reference both the class (@c:Class) and its table (@t:Table) in the loop body.
And in turn, we couldn’t insert all the actions in this loop body into the first loop – we
want to build also foreign keys (in the nested subprograms), which reference another
table, and during the first loop it could happen that the target table is not yet built.

The body of this loop does the main job in the whole transformation. At the top
level, it consists of two nested loops – for each merged up Attribute (i.e., having
the temporary mergedAttr link to the current Class instance) invoke the
ProcessAttribute subprogram with appropriate parameters and for each merged
up exiting Association invoke the ProcessAssociation. Namely, the use of
mergedAttr and mergedSrc links (built by the TransCloseInheritance
subprogram) ensures the fulfilment of item 7 in the requirements specification – "the
resultant table should contain the merged columns from all of its subclasses". The
subprograms ProcessAttribute and ProcessAssociation are recursive –
they invoke themselves (indirectly), thus implementing the recursive definition of
names for target columns (and the recursive drill-down as such). The third (string)
parameter of these subprograms is the currently cumulated up name prefix – for the
top level invocation it is just empty string. The second parameter is the Table
instance to which the generated Column (if any) or FKey must be attached. These
subprograms actually implement rules 2, 3, 4, 5 of the requirements specification [9].

When the main job is done, there still remains something to do – foreign keys have
no columns. The reason, why we couldn't fill them up "on the fly" again is – an FK

must have columns corresponding to all columns of the referenced PK, and that PK
could yet be undefined. So a separate subprogram CompleteForeignKeys
completes the job.

4.3 The principal subprograms of the transformation

In this section we analyze the principal subprograms of the transformation:
ProcessAttribute, ProcessAssociation, BuildColumn,
BuildForeignKey and ProcessNonPersistent, which jointly perform the
recursive drill-down of attributes and associations for a class. We start with the
ProcessAttribute (Fig. 4). It has three parameters – the attribute to be
processed, the table to which to add the result and the cumulated name prefix (string).

@attr: Attribute tp: PrimitiveDataType

@attr: Attribute cp: Class
{is_persistent=true}

BuildColumn(@attr:Attribute,@t:Table,@namePref)

BuildForeignKey(@cp:Class,@t:Table,@namePref+@attr.name+"_")

@attr : Attribute
[1]

@t : Table
[2]

@namePref : String
[3]

@attr: Attribute cnp: Class
{is_persistent=false}

ProcessNonPersistent(@cnp:Class,@t:Table,@namePref+@attr.name+"_")

type

type

type

{ELSE}

{ELSE}

Fig. 4. ProcessAttribute subprogram.

This relatively straightforward subprogram implements items 3, 4 and 5 of the
specification [9], by invoking the relevant subprograms. It contains no loops, but only
rules. The first rule acts as a precondition for the item 3 – "an attribute has a primitive
data type", therefore its unmarked (positive) exit leads to BuildColumn with
appropriate parameters. If the pattern fails (the attribute's type is not primitive) the
ELSE exit is taken. Similar graphical if-then-else constructs implement the other two
cases (build foreign key if the type is a persistent class, invoke recursive processing of
a non-persistent class). In both these cases the name prefix is prolonged – current
attribute name added to it.

The ProcessAssociation subprogram (Fig. 5) is quite similar, except that
only two cases are possible (there is no direct column generation from an association).

@assoc: Association cp: Class
{is_persistent=true}

BuildForeignKey(@cp:Class,@t:Table,@namePref+@assoc.name+"_")

ProcessNonPersistent(@cnp:Class,@t:Table,@namePref+@assoc.name+"_")

@nam ePref : String
[3]

@t : Table
[2]

@assoc : Association
[1]

@assoc: Association cnp: Class
{is_persistent=false}

dest
{ELSE}

dest

Fig. 5. ProcessAssociation subprogram.

The BuildColumn (Fig. 6) subprogram is also quite simple, it contains only rules
for building instances (the ELSE exit of the first rule is semantically impossible; if the
pattern does not match for the second rule the default program end is used).

tp: PrimitiveDataType

@t: Table
col: Column
name:=@namePref+@attr.name
type:=tp.name

@attr: Attribute

@t : Table
[2]

@attr : Attribute
[1]

@nam ePref : String
[3]

@col: Column @t: Table@attr: Attribute
{is_primary=true}

type

#attributeToColumn

cols

pkey

Fig. 6. BuildColumn subprogram.

In addition to building a column (using both the prefix and the current attribute), a
primary attribute enforces the column to be included into the PK list.

Similarly, the BuildForeignKey subprogram (Fig. 7) contains a rule for
building a foreign key, together with its reference to the target (note that the required
dt:Table instance now exists for sure).

dt: Table

fk: FKey
temp_name_pref ix :=@namePref

@t: Table@cl: Class

@nam ePref : String
[3]

@t : Table
[2]

@cl : Class
[1]

#classToTable references

fkeys

Fig. 7. BuildForeignKey subprogram.

The final subprogram in this set is ProcessNonPersistent (Fig.8), which
completes the recursion (item 2 in the requirements [9]) for a non-persistent class (by
processing all its inherited attributes and exiting associations).

attrN: Attribute
@cnp: Class

ProcessAttribute(@attrN:Attribute,@t:Table,@namePref)

@t : Table
[2]

@cnp : Class
[1]

@namePref : String
[3]

assoc: Association
@cnp: Class

ProcessAssociation(@assoc:Association,@t:Table,@namePref)

inherAttr

inherSrc

Fig. 8. ProcessNonPersistent subprogram.

4.4 Other subprograms of the transformation

We start with the TransCloseInheritance subprogram (Fig. 9), which was
already mentioned in 4.2. Its role is extremely simple – for non-persistent classes

perform ProcessInheritance, but for persistent – ProcessMerge (it was
already explained in 4.2, why the specification implies such division). Both these
subprograms process parent links recursively, therefore the "initial calls" to them
have both parameters set to reference the current class (a class attribute is also an
inherited attribute and so on). Alternatively, there could be one loop iterating over all
classes, but with an if-then-else in the body.

ProcessInheritance(@cl:Class,@cl:Class)

cl: Class
{is_persistent=false}

ProcessMerge(@cl:Class,@cl:Class)

cl: Class
{is_persistent=true}

Fig. 9. TransCloseInheritance subprogram.

Subprograms performing the real transitive closure – ProcessInheritance (Fig.
10) and ProcessMerge (Fig. 11) are very similar – the former iterates up via
parent link, the latter – down. However, the difference in closure semantics implies
some difference in programs. For inheritance, an attribute must not be inherited if
there already is an (inherited) attribute with the same name. This fact is expressed by
(the only one in the whole example) NOT constraint in the attr:Atribute pattern
element – the instance of attrsup:Attribute doesn't match, if there is an
instance of Attribute linked via inherAttr to the same Class and having a
name equal to attrsup name.

Since the "up" multiplicity of parent is 0..1, there is no loop involving the
recursive call, but just an if-then-else branch.

@cl: Class @supcl: Class

attrsup: Attribute

{NOT}
attr: A ttribute
{name=attrsup.name}

ProcessInheritance(@cl:Class,@supsupcl:Class)

assoc: Association @supcl: Class@cl: Class

@supcl: Class supsupcl: Class

@supcl : Class
[2]

@cl : Class
[1]

attrs

inherAttr

parent
{ELSE}

src

inherAttr

inherSrc

Fig. 10. ProcessInheritance subprogram.

@cl : Class
[1]

@subcl : Class
[2]

@subcl: Classattr: Attribute@cl: Class

assooc: Association@cl: Class @subcl: Class

@subcl: Class subsubcl: Class

ProcessMerge(@cl:Class,@subsubcl:Class)

parent

attrs

src

mergedAttr

megedSrc

Fig. 11. ProcessMerge subprogram.

The ProcesMerge subprogram is simpler – there is no overriding in the merge
definition. On the other hand, the "down" multiplicity of the parent link is *,
therefore the recursive call is within a loop.

Finally, the CompleteForeignKeys subprogram does a simple job – it runs
through all foreign keys and for each builds a set of columns (one for each column of
the relevant primary key), using the name prefix, temporarily stored in FKey by the
BuildForeignKey subprogram. Then the temporary attribute is cleared.

ow nt: Table ref t: Tablefk: FKey

@ow nt: Table

fcol: Column
name :=@ fk.temp_name_pref ix
+kcol.name
type :=kc ol.type

kcol: Column@ref t: Table

@fk: FKey

@fk: FKey
temp_name_pref ix :=""

fkeys referenc es

pkey

cols cols

Fig. 12. CompleteForeignKeys subprogram.

This completes the mandatory example in MOLA.

4.5 Analysis of the example implementation

Certainly, the same way there is no one absolutely best implementation of OrderEntry
subsystem for MySales, there is no absolutely best implementation of a
transformation. Any analysis is subjective to a degree.

Authors themselves consider this implementation of the mandatory example a very
nice application of MOLA. It seems to be very readable and clear (readability is
subjective too!), no missing feature of the MOLA language has been found. It seems
also that a certain optimum has been reached between the use of graphical patterns in
loops and rules and purely programmatic constructs (sometimes one can replace
another). It should be noted that only relatively recently the role of Recursive Call
pattern in MOLA has been fully estimated. Though recursive calls have been
permitted from the beginning, early examples of MOLA [11,14] all try to use only
pure iteration for a very similar "drill-down" transformation, which makes the

implementation more clumsy. It should be noted, that recursive calls could be used
even more deeply – inherited (or merged) attributes or associations could be
recursively found each time they are needed for the drill-down, but this was
considered to be an overuse of recursion reducing the clarity. Namely therefore the
temporary associations completely separating the processing of inheritance and drill-
down were introduced. The recently introduced true if-then-else construct also makes
the transformation behavior description clearer.

It is nearly impossible to compare textual transformation languages (textual QVT-
Merge, ATL, MTL et al) to MOLA – simply each style has its proponents. The
textual definitions are, certainly, much shorter but we consider them significantly less
readable and consequently, more error prone. It should be noted that this example was
intentionally completed without the use of MOLA TEE, using only manual "code
inspections". Then it was subjected to proper testing via MOLA TEE, and only one
error was found. Taking into account that published textual transformation examples
contain bugs frequently enough it seems that more sizeable transformation definitions
in MOLA pay off.

A more fair would be comparison to other graphical transformation languages
(graphical QVT-Merge, FUJABA SDM, GReAT). Authors have not performed any
direct comparisons due to unavailability of respective environments for these
languages. Some indirect comparison could be made only to the graphical QVT-
Merge, where the latest proposal document [1] contains a unidirectional
transformation example, similar to this workshop example (but having some
significant differences). An equivalent functionality seems to be definable more
compactly in QVT-Merge than in MOLA. But since the only control structure in
QVT-Merge governing rules actually is a recursive call (via the Where and When
constructs), this notation seems to be much harder to read and understand. This fact
was confirmed to a certain degree via experiments involving master students in CS.

So it is up to users to decide which transformation definition facilities are better.

5 Use of MOLA TEE for the example

When a transformation is defined in MOLA (using the MOLA TDE) it can be
compiled to check its syntax. However, a proper transformation validation can be
done only using source model test examples within the MOLA TEE. Only the GMF-
based version (see section 3) can be used for the example, since its metamodel is not
part of the standard UML. As it was outlined in section 3, some visual facilities for
building source models and viewing the transformed target models must be defined in
GMF.

Initially the MOLA metamodel (combined) must be ported into the GMF
metamodeling facility. In the case of the simple metamodel for the example (Fig.2)
this could be done without any complexities (namely to facilitate the porting some
role names were already added to the metamodel).

At first the simplest way of instance visualization – via customized model trees
will be demonstrated. This approach is similar to the generated from a (meta) model
tree and editor set in Eclipse EMF [18], but is significantly more flexible. For
example, we can chose to represent a Class instance as a node, which shows the

name, persistence and possible parent (the latter ones with keyword style separators to
distinguish, which of the values are present). Then we can specify that child nodes of
this node correspond to Attribute instances of the class (i.e., accessible via
attrs link), each node showing the name, type and "primarity". Additional node
type can be defined for associations, containing name plus source and target class
names. Primitive types also must be shown as nodes. In addition, customized object
dialogs can be defined for the main metaclasses (here Class and Association,
with attributes as elements inside the Class dialog). GMF has also default object
dialogs (like property editors in EMF), but they can be not so convenient for use. Fig.
13 shows the example tree in GMF (according to the abovementioned definitions),
which corresponds to the input example – Fig. 3 from the workshop CFP. Parent is
empty everywhere since there is no inheritance in this example (there is no way to
remove the separator if the value is empty).

Fig. 13. Input example in GMF.

Similarly, tree nodes for the target model must be defined. Here the sole top level
node should be Table, showing the name. It has two types of children – columns and
foreign keys. Column nodes display name, type and whether part of PK. For both
table and column nodes it can be shown from which source model elements they were
generated (via the mapping associations), visually separated by ":<-" string – this is
an element of explicit traceability. For foreign key nodes the referenced table may be
shown, with included columns as children nodes.

Now it remains to export the instance data (source model) from GMF repository to
MOLA runtime repository, start the selected transformation and import back the
transformed model to the GMF repository. All these actions have been added as
standard services to GMF. Fig. 14 shows what was obtained from the source model in
Fig. 13.

Fig. 14. Transformation results in GMF (obtained from data in Fig. 13).

It can be easily verified, that the results do comply with the Fig. 4 in the CFP [9]
(columns which are not PK show the empty ",PK for " separator, columns which
are not direct maps of source model attributes, show empty ":<-" string). Namely this
way the sole transformation error was detected – the underscore symbol in names
initially was placed wrongly.

Certainly, to validate the defined transformation to a certain degree, much more
test examples would be needed, e.g., inheritance is not tested at all. Larger examples
can be built via this visualization for sure, but we want to demonstrate briefly the
other possibility in GMF – present models as custom diagrams. Both the source and
target metamodels of the example satisfy "GMF diagramming" requirements, only a
special metaclass (representing a "domain diagram") must be added to each. This
requires also one "technical subprogram" to be added to the transformation end – the
domain diagram instance must also be built automatically. All these "scaffolding
activities" in no way affect the original models or transformation. Fig. 15 shows the
source model represented as a slightly non-standard class diagram – according to the
assumed metamodel. Additional metaattributes (is_persistent, is_primary)
are displayed as tagged values. Definition of this diagram-style presentation is more
complicated, it must be specified, e.g., that Class maps to an auxiliary metamodel
element ClassSymbol, which in turn has a rectangular shape and contains three
text compartments one of which (for attributes) is a list compartment. Thus a sort of
model transformation (domain to presentation) actually is defined in GMF, more
details can be found in [17]. The definition result is a "normal" graphical editor for
this variation of class diagrams, with standard facilities to be found in diagramming
tools. The example in Fig. 15 (built via this editor) is a slightly adapted advanced case
study (Fig. 5 in CFP), which was not meant to be used for the strict transformation
rules of the mandatory example (therefore the results will be slightly unexpected).
The adaptation had to be done to satisfy the preconditions on class models.
Nevertheless it is a good test for the transformation – many "use cases" can be
observed on it.

DocRef
Pers is t: false

XREF
Pers is t: true
no : Integer

Telephone
Pers is t: false
office : String
private : String

Document
Pers is t: true
title : String
num ber : Integer PK:true
author : String

OfflineDoc
Pers is t: false
archive : String

OnlineDoc
Pers is t: false
form at : String
contents : Blob

ProdRef
Pers is t: false

ProdGroup
Pers is t: true
nam e : String
id : Integer PK:true

Product
Pers is t: true
nam e : String
num ber : Integer PK:true

Employee
Pers is t: false
shortnam e : String

Customer
Pers is t: false
com pany : String

User
Pers is t: true
nam e : String PK:true
login : String PK:true

m as ter

referencedBy

phone

respons ible

referenceDoc

group

m anager

referenceProd

Fig. 15. Complicated input example as a GMF class diagram.

Transformation results frequently also can be displayed as a diagram, in this case an
"RDBdiagram" (somewhat similar to Fig. 6 in CFP [9]) is defined. Tables are
presented as rectangles showing columns in a list compartment, separate
compartments present members of PK and the reference for each of the FKs. The
columns included in an FK are shown as a list attached to the line representing this
FK (unfortunately, FKs have no names in this transformation). When the
transformation is run on the example and the transformed instances imported back
into GMF, the diagram itself is displayed automatically via the GMF auto-layout
facility.

Fig. 16 shows the result of transformation when applied to the model in Fig. 15. It
can be noted that only persistent classes result into tables, but inheritance and drill-
down generate a lot of new columns – according to the transformation specification.
No transformation program errors were detected in this test, which can be considered
as an exhaustive enough (though authors have not tried to apply any formal testing
completeness criteria). The only conclusion is that in practice more sophisticated
transformations from class models to RDB should be used.

Product
group_id : Integer
num ber : Integer
nam e : String
group_m anager_login : String
group_m anager_nam e : String
PK: num ber
FK to ProdGroup

ProdGroup
m anager_phone_private : String
m anager_phone_office : String
m anager_shortnam e : String
nam e : String
id : Integer
m anager_nam e : String
m anager_login : String
PK: id,m anager_nam e,m anager_
login

XREF
referenceDoc_num ber : Integer
referenceDoc_m as ter_num ber : Integer
referenceProd_num ber : Integer
referencedBy_num ber : Integer
referencedBy_m aster_num ber : Integer
no : Integer
FK to Product
FK to Docum ent
FK to Docum ent

User
shortnam e : String
com pany : String
nam e : String
login : String
phone_office : String
phone_private : String
PK: nam e,login

Document
m aster_respons ible_nam e : String
m as ter_respons ible_login : String
respons ible_nam e : String
respons ible_login : String
author : String
m as ter_title : String
m as ter_num ber : Integer
m as ter_author : String
m as ter_archive : String
title : String
num ber : Integer
form at : String
contents : Blob
archive : String
PK: m aster_num ber,num ber
FK to User
FK to User

group_id,group_manager_name,
group_manager_login

master_responsible_name,
master_responsible_login

responsible_name,
responsible_login

referenceDoc_number,
referenceDoc_master_number

referencedBy_number,
referencedBy_master_
number

referenceProd_number

Fig. 16. The transformation result as an RDB diagram.

6 The optional example – nondeterministic FSM to deterministic

In this section we briefly describe one more example – the transformation of a
nondeterministic automaton (FSM) to a deterministic one. Automata are assumed to
be language recognizers (no output), a nondeterministic one can have many initial
states and many final states, a string belongs to the language if there is a path from an
initial to a final state marked by this string (empty or lambda moves are not included).
Thus a simplest possible definition is assumed. For deterministic automaton the
standard language recognizer definition is used. Automata are defined as sets
consisting of state, event (=input alphabet element) and transition instances. The
classical determinization algorithm is implemented – explore the state powerset (set
of all subsets) space, by starting from the "initial set" and trying to expand the
reachable set of statesets by applying transitions for all possible events and analyzing

whether a new stateset has been reached by the given event (or it is a copy of existing
one). When nothing more can be reached, the reached powerset elements are coded as
new states of the deterministic FSM, and new transitions are defined accordingly, as
well as the initial state and final states.

Fig. 17 shows the metamodel (source = target), with the StateSet class used
during the algorithm run. Fig. 18 – 22 show the main MOLA program and
subprograms implementing the abovementioned algorithm. Some of the subprograms
use additional MOLA elements not used in the main example.

Transition

Counter
currId : Integer

Event
name : String

StateSet
name : String
size : Integer

State
name : String
isInit : Boolean
isFinal : Boolean

SetTransition

out
*src

1
trans*

event 1

setTrans

event
container *

element*

src
1 out

*

dst
1 in

*

dst
1

in*

Fig. 17. Metamodel of automatons.

FindInitialSet()

ev: Event

destset: StateSet
name:="temp"

BuildDestSet(@ev:Event,@set:Stateset,@destset:StateSet)

IdentifySet(@ev:event,@set:StateSet@destset:StateSet)

set: StateSet

BuildDetFSM()

Fig. 18. Main MOLA program for the determinization.

st: State
{isInit=true}

@inset: StateSet

inset: StateSet
name:="Initial"

cnt: Counter
currId := 1

container

Fig. 19. Subprogram FindInitialSet.

@destset : StateSet
[3]

@ev : Event
[1]

@srcset : StateSet
[2]

trans: Transition

@ev: Event
@destset: StateSetdstst: State

@srcst: State

srcst: State @srcset: StateSetelement

src

event
dst element

Fig. 20. Subprogram BuildDestSet.

The next subprogram IdentifySet uses more complicated OCL expressions in
constraints – subexpressions of the form element_name.role_name, which
denote an instance set (if the multiplicity is *) and elementary OCL operations on sets
(here – the set equality). Two special control constructs – explicit continue (flow to
the loop border) and return (flow to end symbol) are used in the first loop.

@res: Counter
currId:=currId+1

@srcset : StateSet
[2]

@ev : Event
[1]

@tem pset : StateSet
[3]

set: StateSet
{name<>"temp"}

@set: StateSet
@tempset: StateSet
{self .element = @set.element}

settr: SetTransition

@ev: Event

@set: StateSet

@tempset: StateSet

@srcset: StateSet

settr: SetTransition

@ev: Event@srcset: StateSet

@tempset: StateSet
name:="State"+toString(@cnt.currId)

cnt: Counter

{ELSE}

src event

dst

src

event

dst

Fig. 21. Subprogram IdentifySet.

The subprogram BuildDetFSM also uses OCL set operations in constraints –
notEmpty and the quantifier exists.

dstset: StateSettransit: SetTransitionsrcset: StateSet

dstst: State
{name=dstset.name}new trans: Transition

srcst: State
{name=srcset.name}

stset: StateSet new state: State
name := stset.name

@new state: State
isInit :=true

@stset: StateSet
{self .element->notEmpty() and
self .element->exists (st | st.isFinal=true)}

@stset: StateSet
{name="Initial"}

@new state: State
isFinal :=true

{ELSE}

dst

src

{ELSE}

src

dst

Fig. 22. Subprogram BuildDetFSM.

Authors consider this example also a right balance between the textual and graphical
style of transformation specifications. Namely to make the example maximally
readable, explicit sets defined via associations from an instance and OCL set
operations are used in patterns. Certainly, the example could be specified "100%
graphically", using nested loops, but this seems not to be the best choice. The
extended use of OCL is not yet implemented in MOLA VM, therefore the example
has not been validated in MOLA TEE.

6 Conclusions

The description of the implementation of the mandatory transformation example in
MOLA (in section 4) provides, according to the authors' view, a good style of a
graphical transformation definition. The increased size of the solution is compensated
by a better readability, which in turn ensures that less effort for the transformation

development is required and it is less error prone. The latter fact to a certain degree
has been confirmed by a controlled experiment – developing the transformation and
only then testing it. The MOLA execution environment, based on GMF, also occurred
to be very fit for building test models and executing the transformation on them. Thus
the practical transformation validation, using the facilities to build/view models in a
graphical form, appeared to be completely satisfactory. The optional example, in turn,
demonstrates that graphical pattern definition facilities should not be overused – they
can naturally be combined with the use of OCL in MOLA element constraints.

Certainly, there are more problems in practical transformation development. First,
the transformation composition is more the tool than language issue – in MOLA
environment, for sure, it is possible to apply consecutively several transformations
while the model data are in the runtime repository (certainly, if the metamodels are
consistent to this). Bidirectional or incremental transformations certainly don't come
for free in MOLA because it is an outspokenly procedural language. Reverse or
incremental transformations must be developed specially with the goal in mind, but
some experiments show that MOLA pattern features are powerful enough to
implement the relevant source-target relations easily. It is especially easy if the
mapping associations are used adequately for the direct transformation, e.g., it can be
easily detected in the example that a new Table has been added to the target model
which has no link to its Class. To sum up, the MOLA language seems to meet all
the main transformation technology requirements, certainly, the existing MOLA tool
will be extended to meet all the aspects of practical usability.

References

[1] QVT-Merge. URL: http://www.omg.org/docs/ad/05-03-02.pdf
[2] ATL. URL: http://www.sciences.univ-nantes.fr/lina/atl/
[3] MTF. URL: http://www.alphaworks.ibm.com/tech/mtf
[4] Tefkat. URL: http://www.dstc.edu.au/Research/Projects/Pegamento/tefkat/
[5] Tratt L. “The MT model transformation language”. Technical report TR-05-02, Department

of Computer Science, King's College London, May 2005.
[6] Fujaba User Documentation.

URL: http://wwwcs.uni-paderborn.de/cs/fujaba/documents/user/manuals/FujabaDoc.pdf
[7] Agrawal A., Karsai G, Shi F. “Graph Transformations on Domain-Specific Models”.

Technical report, Institute for Software Integrated Systems, Vanderbilt University, ISIS-03-
403, 2003

[8] The Attributed Graph Grammar System (AGG). URL: http://tfs.cs.tu-berlin.de/agg/
[9] Model Transformations in Practice Workshop. Call for papers (CFP).

URL: http://sosym.dcs.kcl.ac.uk/events/mtip/long_cfp.pdf
[10] Graphical Modeling Framework (GMF, Eclipse technology subproject).

URL: http://www.eclipse.org/gmf/
[11] A. Kalnins, J. Barzdins, E. Celms. “Model Transformation Language MOLA”.

Proceedings of MDAFA 2004 (Model-Driven Architecture: Foundations and Applications
2004), Linkoeping, Sweden, June 10-11, 2004. pp.14-28.

[12] Kalnins A., Barzdins J., Celms E. “Model Transformation Language MOLA: Extended
Patterns”. Selected papers from the 6th International Baltic Conference DB&IS’2004, IOS
Press, FAIA vol. 118, 2005, pp. 169-184.

[13] A. Kalnins, J. Barzdins, E. Celms. “Basics of Model Transformation Language MOLA”.
ECOOP 2004 (Workshop on Model Transformation and execution in the context of MDA),
Oslo, Norway, June 14-18, 2004. URL: http://heim.ifi.uio.no/~janoa/wmdd2004/papers/

[14] A. Kalnins, J. Barzdins, E. Celms. “MOLA Language: Methodology Sketch”. Proceedings
of EWMDA-2, Canterbury, England, 2004. pp.194-203.

[15] MOF 2.0 Core Final Adopted Specification.
URL: http://www.omg.org/docs/ptc/03-10-04.pdf

[16] A. Kalnins, E. Celms, A. Sostaks. “Tool support for MOLA”. (Preliminary version).
GPCE'05. Paper accepted to the workshop on Graph and Model Transformation (GraMoT),
Tallinn, Estonia, September 2005

[17] E. Celms, A. Kalnins, L. Lace. “Diagram definition facilities based on metamodel
mappings”. Proceedings of the 18th International Conference, OOPSLA’2003 (Workshop
on Domain-Specific Modeling), Anaheim, California, USA, October 2003, pp. 23-32.

[18] UML 2.0 Eclipse EMF. URL: http://www.eclipse.org/uml2/
[19] Microsoft SQL Server 2000 Desktop Engine (MSDE 2000).

URL: http://www.microsoft.com/sql/msde/default.asp

Simple and Efficient Implementation of Pattern
Matching in MOLA Tool

Audris Kalnins, Edgars Celms, Agris Sostaks
University of Latvia, IMCS

 29 Raina boulevard, Riga, Latvia
{Audris.Kalnins, Edgars.Celms}@mii.lu.lv, agree@os.lv

Abstract - One of crucial problems for model transformation
implementations is an efficient implementation of pattern
matching. The paper addresses this problem for MOLA Tool
implementing the model transformation language MOLA.
Another goal has been to keep the implementation as simple as
possible. The paper presents one possible solution to the
combined problem where an SQL database with fixed schema is
used as the MOLA runtime repository. A natural coding is
selected where a MOLA pattern match can be mapped to a
single non-standard self-join SQL query. The paper shows that a
sufficient matching efficiency can be obtained this way. The
generated queries are analyzed from the table join order point of
view and it is shown that the default query optimization for the
MySQL database can find an order close to optimal. This
analysis and performed experiments are used to conclude that at
this moment MySQL is the most fit for MOLA implementation
among "free" relational databases. In addition, benchmark tests
based on a simple natural model transformation problem are
used to estimate efficiency of the selected implementation
architecture and to compare MOLA Tool to the popular graph
transformation tool AGG. Benchmark tests confirm the
efficiency of the current MOLA Tool implementation and
applicability of MOLA language to MDD-specific tasks.

I. INTRODUCTION

Nearly all of model transformation languages use the
pattern matching as the main functional element for defining
how the source model components must be transformed to the
target model. So does the transformation language MOLA
analyzed in this paper. When a transformation language is
implemented, the implementation of pattern matching
typically is the most demanding component to implement and
also the key factor determining the implementation efficiency.

This issue has been analyzed theoretically in various
contexts. For MOLA, authors of this paper have already
shown that a very efficient pattern matching implementation
is possible in principle [1], however this implementation
would require significant effort to build and therefore is
appropriate only for an industrial tool. For other
transformation languages, the most thorough analysis has
been performed for the GReAT language [2].

In this paper, the problem appears in another setting. An
academic model transformation tool supporting MOLA has
been built using limited resources, and for this tool both
simple and sufficiently efficient implementation has been
required.

Another related problem is the choice of runtime
repository, since the pattern matching is very intimately
related to repository access mechanisms. A standard choice,
used in most academic model transformation tools [3,4,5] and
some industrial ones [6,7] too, is a metamodel based
repository, such as Eclipse EMF [8], MDR [9] or similar
ones. These repositories typically have a low level universal
API for retrieving class instances. This solution would make
the implementation of pattern matching and other language
features significantly more complicated.

Several possible solutions for these two related problems in
the context of MOLA tool have been analyzed. The final
decision, which is described in this paper, occurred to be
rather non-typical for model transformation tools – the best
kind of repository would be a relational database with fixed
schema – tables coding the metamodel and model in the most
natural way. The central idea of this implementation is that a
MOLA pattern match operation can be implemented by a
single SQL query. And this query is easy to generate from the
pattern definition.

 The only remaining problem is whether such a rather non-
standard query (using multiple self-joins) can be processed
efficiently by database engines. Analysis in the paper shows
that not all engines perform efficiently enough, but there are
freely available ones which can do this, currently the best one
is MySQL. These results are in concordance with other papers
analyzing usability of SQL for pattern matching [10,11]
(however, a completely different database structure is used
there and the experiment setting is also different).

The paper describes the solution used in MOLA tool. After
a brief reminder of MOLA language and an overview of the
MOLA tool architecture, the core of the tool – the MOLA
virtual machine (VM) is defined (section 5). The most
appropriate database structure and the mapping of a pattern to
an SQL query are described in detail in section 6. Section 7
analyzes the performance issues of generated queries,
especially the table join order. Section 8 contains a
benchmark test, which compares the transformation of
simplified UML class diagram to simplified OWL diagram
implemented both in MOLA Tool and the popular graph
transformation tool AGG [12] on various model sizes. The
results confirm the efficiency of MOLA implementation and
its practical usability.

II. WHAT IS MOLA

MOLA is a graphical model transformation language
developed at the University of Latvia [1,13,14,15,16,17,18].
Its main distinguishing feature is the use of simple procedural
control structures governing the order in which pattern
matching rules are applied to the source model. Due to the
large number of papers on MOLA language (the most
important ones are [13,15,16,18]) we do not repeat the
language description in this paper. In addition, there is a web
site http://mola.mii.lu.lv/ devoted to MOLA where all these
papers and a formal description of MOLA are available. Just
to clarify the terminology, we very briefly remind here the
main elements of MOLA.

Source and target metamodels are combined in one class
diagram, where the added mapping associations link the
corresponding classes in source and target metamodels, these
associations are used for traceability and transformation
structuring.

The MOLA transformation program consists of one or
more MOLA diagrams (one of which is the main). A MOLA
diagram is a sequence of graphical statements, linked by
arrows. The most used statement type is the loop statement –
a bold-lined rectangle. Each loop statement has a loop head –
a special statement (grey rounded rectangle) containing the
loop variable and the pattern – a graphical condition
defining which instances of the loop variable must be used for
iterations. The pattern contains elements – rectangles
containing instance_name:class_name – the
traditional UML instance notation. Elements specify instances
of which classes must be matched. The loop variable is also a
special kind of element, it is distinguished by having a bold-
lined rectangle. In addition, the pattern contains links
(metamodel associations) – a pattern actually corresponds to a
metamodel fragment. Pattern elements may have attribute
constraints – simple OCL expressions. The semantics of this
loop statement (called the FOREACH loop) is natural – the
loop is executed once for each instance of the loop variable,
where the condition is true – the pattern elements can be
matched to existing instances, attribute constraints are true on
these instances and required links are present. Loops may be
nested to any depth. There are two types of FOREACH loop
– fixed (the scope of matched class instances does not change
– pattern matching is performed only once) and not fixed (the
scope of matched instances can change and pattern matching
must be performed after each iteration to see changes in the
appropriate instance scope). The loop variable (and other
element instances) from an upper level loop can be referenced
by means of the reference symbol – an element with @
prefixed to its name. There is also the WHILE loop in
MOLA, which is less used and not analyzed in this paper.
Another important statement in MOLA is rule (also a grey
rounded rectangle) – a statement consisting of pattern and
actions. These actions can be element or association building
actions (denoted by red dotted lines) and delete actions
(denoted by dashed lines). An attribute value of an element
can be set by means of attribute assignments. A rule is
executed once (or not at all if pattern fails) – thus it plays the

role of if-statement too. A subprogram is called by means of a
call statement (possibly, with parameters – element
references). An example of MOLA program is given in
section 8.

III. PRECISE SEMANTICS OF PATTERNS IN MOLA

The general semantics of pattern matching is quite similar
in all pattern-based transformation (QVT) languages,
including the emerging OMG standard [19], nevertheless
there are some specific features in any language. A pattern
specifies instances of which metaclasses must be selected,
how they must be linked by association instances and what
attribute-based constraints for the instances must be satisfied.
Certainly, there may be several occurrences of the same
metaclass in a pattern, then instances must be matched
accordingly. A match for a pattern is a set of source model
elements – instances of metamodel classes and associations,
each of which is associated to the corresponding pattern
element and satisfies constraints in the pattern.

The subtleties in pattern matching for different QVT
languages lie in the fact which matches must be found. In
MOLA patterns are used for loop heads and rules. For a
FOREACH-loop head all matches must be found which
contain distinct instances of the loop variable. For all other
pattern elements it is irrelevant namely which of the valid
instances is selected (in some other QVT languages the
semantics is more complicated here). In other words, there is
an implicit existential quantifier placed on all elements,
except the loop variable (and the reference elements for
which the choice is already fixed). Another subtlety for (not
fixed) loops in MOLA is that the source instance set from
which distinct instances of the loop variable are selected may
be replenished during the loop execution. For rules only one
valid match is required (any of them if there are several), or
the fact that there is none. It must be mentioned (see [1] for
more details), that in a semantically correct MOLA program
typically there is no much indeterminism during the pattern
match – these seemingly "free" pattern elements actually are
uniquely determined by the selected loop variable instance.
Another positive aspect of match semantics in MOLA is that
it facilitates match efficiency – not all instance combinations
must be searched.

These simplest kinds of patterns are called positive
patterns. Another kind of patterns in MOLA are the negative
ones, which contain the NOT constraint on some class
elements (as it is in [19], earlier MOLA versions [13,14] had
NOT constraints only on pattern links). An element with NOT
constraint expresses the fact that there must be no instance of
the given class satisfying the attribute constraints and linked
by the specified associations to the other (positive) pattern
elements. An association linking two negative elements in a
pattern is considered senseless in MOLA. Though sufficient
for most transformations, these syntax features for patterns
are not formally complete – an arbitrary universal quantifier
on properties of an instance set cannot be expressed this way.
Therefore one more element – the NOT-region (a rectangle
with NOT tag containing some other pattern elements) must

be introduced. A NOT-region expresses the fact that there
must be no instance set for the pattern elements inside the
region, which satisfy the "inside" conditions and are linked by
associations crossing the region border to other positive
elements. NOT-regions may be nested, but no association
may link two NOT-regions. Since NOT-regions are not
frequently used, the current implementation does not support
them.

IV. MOLA IMPLEMENTATION OVERVIEW

The current version of MOLA tool has been developed
with mainly academic goals – to test the MOLA usability,
teach the use of MDD for software system development and
perform some real life experiments. This has influenced some
of the design requirements, though with easy usability as one
of the goals and sufficient efficiency the tool has confirmed
its potential as an industrial tool too.

Similarly to many MDD environments, MOLA
environment consists of two major parts: MOLA
Transformation Definition Environment (TDE) and
Transformation Execution Environment (TEE). TDE is
completely related to the metalevel M2 according to MOF
terminology, while TEE is at M1 level. TDE is used by expert
users, which define new model transformations in MOLA for
the adopted MDD technology or modify the existing ones
from a transformation library to better suit the needs of a
specific project. TEE is intended for mass usage by software
developers applying the chosen MDD technology and
transforming their models from one step to another. One of
versions of TEE is a MOLA plug-in for the UML tool RSA.

The main component of MOLA TEE is the MOLA
Virtual machine (VM) (interpreter), which actually performs
the transformation of the source model to the target model.

A more detailed overview of MOLA environment
architecture is given in [20].

V. BASIC PRINCIPLES OF MOLA VIRTUAL MACHINE

As it was already mentioned in the introduction, the goal of
this research is to provide a simple and sufficiently efficient
implementation of MOLA. The key factor in reaching this
goal is an appropriate implementation of MOLA VM, since
the implementation cost and efficiency of all the service
components is nearly the same for all considered solutions to
MOLA VM. And in turn, a crucial point of MOLA VM
implementation is an appropriate repository and execution
environment for pattern matching. This is due to the fact that
the implementation of control structures and executable
actions in MOLA (due to their procedural nature) is very
straightforward in all cases. It should be noted that the choice
of repository and execution environment are closely linked
ones, thus the rest of the paper actually will be devoted to
these issues.

Typically model transformation languages are implemented
on metamodel based repositories, the most typical of which is
Eclipse EMF [8]. Several experimental model transformation
tools have been built using EMF as a repository [3,4,5]. The
EMF API in Java provides the most basic actions for building

a pattern matcher. Netbeans MDR [9] has somewhat similar
characteristics and is used in [6].

The authors of this paper have already shown [1] that a
very efficient MOLA pattern matching implementation is
possible on such a basis. However, the available low level
operations in these APIs (even lower level than analyzed in
[1]) make the implementation sufficiently complicated.
Therefore another solution was considered – to a what degree
an SQL database can be used as a repository for pattern
matching. On the one hand, the repository structure must
match closely enough to EMOF [21] – similarly as EMF
does. On the other hand, the desire was to use the powerful
capabilities of SQL Select for a simple high level
implementation of pattern matching. Such a solution was
found, which is described in the next section. The only
remaining concern was performance issues – whether the
query optimization in SQL databases can at least be not very
far from the optimal performance described in [1].

VI. IMPLEMENTING PATTERNS BY NATURAL SQL QUERIES

MOLA VM operates with models – MOF level M1.
However, for each model element its metaclass must be
known – for pattern matching or any other MOLA action.
Therefore MOLA VM has to know the complete metamodel
(M2 level) for the transformation. The metamodeling
facilities in MOLA are approximately those of EMOF[21].
The most natural way is to store the metamodel in tables
which correspond to EMOF metamodel classes. However,
due to efficiency reasons, the “plain old class metamodel”
containing Classes, Associations and Attributes (but not
Properties as association ends) occurred to be more
convenient to be coded by the corresponding SQL tables (see
the left column of Fig. 1). It can be easily seen, that in fact it
is equivalent to EMOF, therefore MOLA compiler can easily
store the metamodel in these tables. In addition, there are
tables for identifying metamodels and models themselves.

The storage of model elements – instances of metamodel
classes, associations and attributes is completely
straightforward in the corresponding three tables (see the right
column of Fig. 1). The MOLA program is also naturally
stored in tables according to the MOLA metamodel, but since
we here are mainly concerned with pattern matching, this
coding is not so important for the paper. The only fact to be
mentioned here is that the MOLA compiler for each program
element (loop, rule, pattern class element, pattern link etc.)
generates a unique identifier. This fixed database schema is
much easier to implement than the metamodel-specific one
used in [10].

Now we will show how a MOLA pattern can be naturally
mapped to an SQL Select statement. The idea is that each
class element in the pattern corresponds to an occurrence of
the table class_inst (actually an alias of it) in the From
clause. Similarly, each pattern link corresponds to an alias of
the asoc_inst table in the From clause. Then the Where
clause is formed. Firstly, each pattern element (i.e., the
corresponding alias of class_inst) must mandatory have
the specified class, i.e., its meta_class_id column must

have the given value (metamodel elements are fixed during
MOLA execution). Similarly it is for links (association
instances) in the pattern. A more non-trivial part of the
Where clause must specify that each link does link the

relevant instances, i.e., src_class_inst_id is equal to
the class_inst_id of the corresponding (association
source) alias of class_inst, similarly for the
trg_class_inst_id. For reference elements
(@p:Package in Fig. 2) it must be specified, that their
class_inst_id has the given value (reference elements
always correspond to a fixed instance in MOLA). The most
complicated part in the Where clause are the attribute

constraints, which already are Boolean expressions. However,
the simple attribute names used in MOLA constraints must be

substituted by additional aliases of attr_inst in the From
clause, in addition, the transformed expression must be added
to the Where clause. Currently all MOLA expressions have
direct counterparts in SQL.

Fig. 2 illustrates the generation of an SQL query from a
pattern. The pattern is a very simple one – a FOREACH loop
head containing the loop variable (of type Class, with a
constraint) and a reference (to the instance of Package)
linked by the package link. Lines illustrate the described
above mapping graphically, the color coding (or levels of
gray in the black-and-white version) shows which parts of the
query were obtained from one pattern element. The alias
names are generated from the pattern element identifiers built

by the MOLA compiler and therefore are unreadable.

 Meta_model

PK meta_model_id

name
Meta_class

PK meta_class_id
PK meta_model_id

name
isAbstract
isSource
isTarget
parent_meta_class_id

Meta_association

PK meta_association_id
PK meta_model_id

source_meta_class_id
target_meta_class_id
source_role_name
target_role_name
source_cardinality
target_cardinality
isInherited

Meta_attribute

PK meta_model_id
PK meta_attribute_id

meta_class_id
name
type
cardinality
isInherited

Model

PK model_id

meta_model_id
Class_instance

PK class_instance_id
PK model_id

meta_class_id
Association_instance

PK association_instance_id
PK model_id

meta_association_id
source_class_instance_id
target_class_instance_idAttribute_instance

PK attribute_instance_id
PK model_id

meta_attribute_id
class_instance_id
value

Fig. 1. SQL Tables for storing metamodels and models.

SELECT cli20000014820.class_inst_id

class_inst cli20000014820,

eta_class_id=2000000006 AND
cli20000014820.class_inst_id

=cli20000014820.class_inst_id

,
cli20000022250.class_inst_id

FROM class_inst cli20000022250 ,
attr_inst ai_250 , asoc_inst asi20000022290

WHERE cli20000014820.m
ai_250.class_inst_id= AND
ai_250.meta_attr_id=25 AND ai_250.value='persistent' AND
cli20000022250.class_inst_id=2000000004 AND
asi20000022290.meta_asoc_id=0000000018 AND
asi20000022290.src_class_inst_id=cli20000022250.class_inst_id
AND
asi20000022290.trg_class_inst_id

Fig. 2. Generation of an SQL query from a pattern.

The result of the query (a virtual table) is defined in such a
way that each row represents (identifiers of) class instances
forming a valid match.

Now it can be easily seen, that the built SQL query indeed
expresses the pattern match semantics, which for the given
example asserts that instances of the metaclass Class must
be sought, which have the link package to the fixed
instance of Package and which have the given value of the
attribute kind. Since the pattern is inside a FOREACH-loop,
all such instances (all matches returned by the query in this
simple case) must be processed. A similar argument applies to
any MOLA pattern. To cope with the fact that MOLA loops
which are not fixed can replenish the instance set used for the
match, actually for loop patterns the query is re-executed after
each iteration, with instances of the loop variable already used
being fixed in a special list. For MOLA loops which are fixed
for loop patterns the query is executed only once, because all
matches are returned by the built SQL query.

Thus the simplicity of the pattern mapping to SQL query
has been shown, it remains to show that this SQL Select can
easily be built by the MOLA VM (actually it is a sort of "JIT-
compiling"). It is being done in several steps. First, the class
elements of the pattern are picked up and for each of them an
element in the Select list and in the From list (the table
class_inst with a new alias) is added, with the MOLA
compiler-generated unique element identifier used as the alias
name. In addition, a term in the Where condition is added,
which specifies that the instance must be of the relevant class
(or that the instance is the given one for reference elements).
Then in a similar manner each link of the pattern is processed.
Here the term added to the Where part is more complicated,
it has to state both that the link's association is the relevant
one and that the endpoints are the corresponding class
instances. The latter fact is easily to state due to the fact that
the MOLA compiler has documented this via references to
the relevant element identifiers and namely these identifiers
are used as aliases for the element selection. Then pattern
constraints are processed, each adding to the From part (the
required attribute instance) and to the Where part (the
expression itself). Currently simple OCL expressions having a
direct counterpart in SQL and some simple OCL set
expressions are supported, but this repertoire will be
extended.

Finally, some remarks on the negative patterns. A negative
part can be added as a NOT EXISTS subquery to the Where
condition. In the case of a NOT-element, the subquery has
just one alias of the class_inst in the From list plus
aliases for the links connecting the element with the positive
part of the pattern. The Where part of the subquery is
generated similarly as for positive patterns. If the negative
part is a NOT-region, all elements of this region (plus
connecting links) are placed in the subquery.

VII. DATABASE PERFORMANCE ISSUES

In this section we analyze the performance of the generated
queries in several databases, which are relevant for MOLA

tool. A query generated from a pattern is somewhat special in
the sense that it is a so-called self-join – aliases of the tables
class_inst and asoc_inst are repeated in the From
clause as many times as there are elements and links in the
pattern respectively. Large self-join queries are non-typical
for standard database applications and therefore may be
processed by some engines not so optimally.

The first natural choice for an experimental tool was the
open source database MySQL, currently the version 5.0.12.
The first intuitive performance evaluations were also
encouraging, but it was clear that a more thorough analysis of
query optimization is required.

Since the authors have shown [1] that pattern matching in
MOLA can be performed very efficiently as a sequence of
small queries on a reasonable model repository (and the
database schema described in this paper is such), it is clear
that potentially the generated "large" queries can also be
executed efficiently. Since the performance of a join type
SQL query is mostly dependent on the join order of tables in
WHERE part [22], the right order in which the tables in a
complicated self-join are joined must be found that is
equivalent to the sequence of small queries.

Let us explain the situation in detail on an example (Fig. 3).
This example is a fragment of the MOLA transformation
transforming a class model to OWL notation [23] (used as a
benchmark in section 8), namely, the FOREACH loop head is
shown, which generates an OWL object property for each
UML association instance (for classes the corresponding
OWL Classes are already built). It was shown in [1], that for
simple cases such as in Fig. 3, the optimal order is to start
from the loop variable (the element
as:BinaryAssociation, all instances of which must be
tested anyway), and to proceed along the paths leading away
from the loop variable. In the example there are two such
paths – one leading via the link targetEnd to
objEnd:Property and further, and another one starting
with the link sourceEnd. Even without seeing the

metamodel, it is clear that in a valid class model this is an

1

2
3

4
5

6

7

8
9

10
11

12

13

Fig. 3. Optimal pattern matching order.

optimal order – a UML binary association has just one
targetEnd (i.e., just one row in the table asoc_inst,
where the join condition is true), which in turn is followed by
just one objEnd (one row in class_inst)and so on. Fig.
3 illustrates this order by numeric tags.

Certainly, there are other optimal orders – any of the paths
could be traversed first, and the paths can be traversed
"intermittently". Similar easy-to-be-explained optimal join
orders exist for more complicated patterns, where paths may
have "cross-links" and where reference (fixed) elements exist
(see more in [1]).

The generated query corresponding to this pattern is shown
in Fig. 4.

Fig. 4. Generated query example.
Further, it was to be found, how close the MySQL query

execution plans are to an optimum, and at what expenses such
a plan is found. Fortunately, MySQL has the Explain
statement [24], which reveals some details of the execution
plan. Fig. 5 shows the join order of query shown in Fig. 4,
exposed by the Explain statement. Actually, two
experiments are merged there – one with order tags in squares
has been performed on a small source model (29 rows in
class_inst, 39 rows in asoc_inst). Another one has
been performed on a large source model (725 rows in
class_inst, 975 rows in asoc_inst), the join order
(where different from the first one) is shown in circles. For

the large model the join order is equivalent to the optimal one,
only another starting point has been selected, and paths are
traversed intermittently. For the small one the deviation is
larger, but also not critical.

However, if the number of elements and links in a pattern
is increased, the query execution time also increases. The
query (discussed above) having a pattern with 7 elements and
6 links executes in 200ms on a model with 3000 class
instances and 4000 links, a query with 8 elements and 7 links
in 600 ms on the same model, 9 elements and 8 links in
3200ms, but 10 elements and 9 links in 43000ms that is a
significant jump. There are only few papers on MySQL
optimization [25,26], and they do not explain the optimization
of the specific self-join queries used in MOLA pattern
matching. Another observation should be mentioned – the
Explain statement [24] execution itself requires nearly as
much time as the query execution, so we can assert that
MySQL query optimization in case of large self-join queries
is not optimal – it itself is too time consuming. Thus we have
to rely on our "black box" experiments, which say that
MySQL optimization is acceptable when there are limits on
the pattern size (no more than 8 elements), but the query
execution time increases too much for larger patterns, to make
sense in using this RDBMS for pattern matching.

ELECT cli20000020780.class_inst_id , cli20000020970.class_inst_id ,
cli20000021040.class_inst_id , cli20000021110.class_inst_id ,
cli20000021180.class_inst_id , cli20000021260.class_inst_id ,
cli20000021330.class_inst_id
ROM class_inst cli20000020780 , class_inst cli20000020970 , class_inst cli20000021040 ,
class_inst cli20000021110 , class_inst cli20000021180 , class_inst cli20000021260 ,
class_inst cli20000021330 , asoc_inst asi20000021080 , asoc_inst asi20000021150 ,
asoc_inst asi20000021300 , asoc_inst asi20000021400 , asoc_inst asi20000021700 ,
asoc_inst asi20000021760
WHERE cli20000020780.meta_class_id=2000001847 AND
cli20000020780.meta_model_id=0000000000 AND cli20000020780.model_id=0 AND
cli20000020970.meta_class_id=2000001790 AND
cli20000020970.meta_model_id=0000000000 AND cli20000020970.model_id=0 AND
cli20000021040.meta_class_id=2000001721 AND
cli20000021040.meta_model_id=0000000000 AND cli20000021040.model_id=0 AND
cli20000021110.meta_class_id=2000001723 AND
cli20000021110.meta_model_id=0000000000 AND cli20000021110.model_id=0 AND
cli20000021180.meta_class_id=2000001790 AND
cli20000021180.meta_model_id=0000000000 AND cli20000021180.model_id=0 AND
cli20000021260.meta_class_id=2000001721 AND
cli20000021260.meta_model_id=0000000000 AND cli20000021260.model_id=0 AND
cli20000021330.meta_class_id=2000001723 AND
cli20000021330.meta_model_id=0000000000 AND cli20000021330.model_id=0 AND
asi20000021080.meta_asoc_id=2000001835 AND
asi20000021080.meta_model_id=0000000000 AND
asi20000021080.src_class_inst_id=cli20000021040.class_inst_id AND
asi20000021080.trg_class_inst_id=cli20000020970.class_inst_id AND
asi20000021080.model_id=0 AND asi20000021150.meta_asoc_id=2000001725 AND
asi20000021150.meta_model_id=0000000000 AND
asi20000021150.src_class_inst_id=cli20000021040.class_inst_id AND
asi20000021150.trg_class_inst_id=cli20000021110.class_inst_id AND
asi20000021150.model_id=0 AND asi20000021300.meta_asoc_id=2000001835 AND
asi20000021300.meta_model_id=0000000000 AND
asi20000021300.src_class_inst_id=cli20000021260.class_inst_id AND
asi20000021300.trg_class_inst_id=cli20000021180.class_inst_id AND
asi20000021300.model_id=0 AND asi20000021400.meta_asoc_id=2000001725 AND
asi20000021400.meta_model_id=0000000000 AND
asi20000021400.src_class_inst_id=cli20000021260.class_inst_id AND
asi20000021400.trg_class_inst_id=cli20000021330.class_inst_id AND
asi20000021400.model_id=0 AND asi20000021700.meta_asoc_id=2000001858 AND
asi20000021700.meta_model_id=0000000000 AND
asi20000021700.src_class_inst_id=cli20000020780.class_inst_id AND
asi20000021700.trg_class_inst_id=cli20000020970.class_inst_id AND
asi20000021700.model_id=0 AND asi20000021760.meta_asoc_id=2000001852 AND
asi20000021760.meta_model_id=0000000000 AND
asi20000021760.src_class_inst_id=cli20000020780.class_inst_id AND
asi20000021760.trg_class_inst_id=cli20000021180.class_inst_id AND
asi20000021760.model_id=0

Thus the current version of MySQL can be used for MOLA
runtime repository, but with restrictions on MOLA
transformation patterns. The hope is for versions to come (the
current version performs better than those tested earlier), but
next versions could only raise the limit for pattern size – not
remove this restriction completely.

Due to the mentioned above problem other alternatives
were sought. Possible alternatives are MSDE 2000 [27] – the
free "small" version of MS SQL 2000 server, PostgreSQL
[28] – another popular open source RDBMS, MSSQL Server
2005 Express [29] - – the free "small" version of MS SQL
2005 server. Similar performance experiments on large
queries have been performed with these engines too. Single
pattern query execution times for these alternatives were
significantly better (Microsoft products) or similar

12

11

13

5
6

7
8

9

4
3

1
2

10

11

12

13

Fig. 5. MySQL query plan (table join order).

(PostgreSQL). The join order was nearly optimal. It can be
concluded from available references [30] that both MS SQL
and MSDE use instance data for query optimization in a more
sophisticated way. However, experiments show that execution
of a complete transformation is much slower than by using
MySQL. MySQL was faster by an order of magnitude. It
seems that MSDE 2000 and MSSQL Server 2005 Express
engines have major problems with completing large
sequences of SQL queries, because of built-in features such as
workload governor [31] in MSDE 2000, that decreases the
server performance.

Thus, MySQL is a satisfactory implementation for MOLA
runtime repository if the pattern size does not exceed 8-9
elements (actually, only the “free” pattern elements count –
those which are class elements, but not references or
parameters, in Fig. 5 all pattern elements are free). The
existing experience of using MOLA tool on some nearly real
life examples has confirmed this. The transformation
execution times in these examples testify that apparently
close-to-optimal join order was used by MySQL in most
cases. Nearly all patterns in these examples were below the
size limit. In practice it is also possible to bypass the limit by
decomposing a pattern into several smaller ones (actually,
even without sacrificing the transformation readability).

An alternative approach would be to enforce the optimal
join order manually, since MySQL has such possibilities.
Unfortunately, these features are vendor-specific extensions
of SQL. In addition, finding of this order during query
generation is a significant part of implementing the pattern
via "small queries" and therefore much more complicated.

VIII. BENCHMARK RESULTS

The previous section demonstrated that usage of MySQL
database server as model repository and pattern matching
engine has proven to be sufficient. To estimate MOLA Tool

performance the experiments have been done.
A simple task and appropriate model transformation tool

for comparison have been chosen. The choice - AGG[12] is a
popular graph transformation language, that uses pattern
constructs similar to MOLA, only explicit NAC’s (negative
application conditions) must be added. AGG rules have no
explicit control structures, but in simple cases MOLA control
structures can be adequately emulated by AGG rule layering.
AGG has already been used for benchmark testing [10], thus
allowing us to ensure certain correctness of the experiment.
The transformation was executed on both MOLA Tool and
AGG for models of various size and complete execution
times were measured. Both MOLA Tool and AGG were used
with configurations recommended by developers.

Classifier

Type

Class

TypedElement

RDFSClass

DataType

RDFProperty

NamedElement
name : String[0..1]

BinaryAssociation

OWLDatatypeProperty

RDFSResource
namespace : String
localName : String
uri : String

OWLObjectProperty
symetric : Boolean
transitive : Boolean

RDFSDatatypeOWLClass

Property

RDFDomainProperty
0..*RDFdomain

0..*

typedElement
type
0..1

reverse 0..1 targetEnd
1

RDFRangeProperty
0..*RDFrange0..*

0..1

#obj_prop_For_Assoc 0..1

forw ard
0..1 sourceEnd

1

class0..1

ow nedAttribute
*

0..1

#dtForAttr0..1

0..1

#ow lClassForCl 0..1

Fig. 6. Metamodels of UML Class Diagram and OWL Diagram.

The example transforms simplified UML class diagram to
simplified OWL diagram. Metamodels are shown in Fig. 6.

The transformation creates an OWLClass instance for
every Class instance and OWLDataTypeProperty for every
Property which is an owned attribute of the Class. This task is
done using nested loops. The first fixed foreach loop iterates
through all Class instances and the nested fixed foreach loop
iterates through appropriate Property instances. The third
fixed foreach loop creates OWLDataTypeProperty for each

BinaryAssociation (Fig. 7). Though this transformation is
very simple it is a typical representative of MDD tasks where
frequently a model has to be transformed to a semantically
equivalent one in another notation.

The transformation was executed on a hyper-threaded Intel
Pentium4 3GHz, 1 GB RAM Windows XP workstation. No
additional performance tuning was done to MySQL database
server or operating system configuration. Identical models of
various sizes were prepared for MOLA Tool and AGG. The
first column of Table 1 contains model data size N – the
number of class instances in the model. Second and third
columns contain complete transformation time for MOLA
and AGG measured in seconds.

Both MOLA Tool and AGG showed sufficient
performance on models with size below N=175. MOLA Tool
execution time grows nearly linearly up to model size
N=3500, but starts to grow faster above this value. Thus the
current MOLA Tool implementation performs well in this
range, but real examples could be also larger – there are
ontologies containing more than 5000 OWL Classes. Real
transformations are also more complicated. AGG has
problems similar to MOLA Tool, but both tools are usable for
tasks they are designed for.

The main relational database engine feature, which enables
fast search is table indexing [30]. The MOLA Tool uses table
indexes in the most appropriate way, apparently this ensures
the nearly linear time growth for queries.

The reason for faster complete transformation time growth
for large N lies in the fact that the model size grows while
transformation is being executed.

Fig. 7. Transformation UML Class Diagram to OWL Diagram

TABLE I.
BENCHMARK RESULTS.

 Transformation ExecutionTime (s)
Model size (N) MOLA AGG

42 1 4

56 1 6

70 2 9

84 3 14
175 5 62

400 10 334

1050 19 8280

1750 36

3500 65

17500 1781

A proportional to N number of insert and update operations

must be done in this MOLA program and each operation time
grows due to the need of refreshing indexes (but indexes are
crucial for fast pattern matching). A similar problem is the
main reason for AGG slowdown, even to a larger degree, as it
is shown in [10]. For real MDD tasks it is typical that a new
model must be built of size proportional to the source model.
Thus not only the pattern match time influences the
performance, but still it seems to be the key factor.

IX. CONCLUSIONS

In the paper the main principles and solutions used in the
MOLA virtual machine have been described. It is shown that
both simple and sufficiently efficient implementation of
pattern matching via SQL queries has been built. Thus this is
a viable solution at least for an experimental tool (what
MOLA tool currently is). Several model transformations
supporting real MDD style development (automated use of
Hibernate persistence framework in Java – a plug-in for the
RSA tool, conversion of UML activity diagrams to BPMN
notation and other) have been built and tested on examples of
realistic size. In none of these examples the “natural” pattern
size in MOLA programs exceeded 8 – the critical value up to
which the given MOLA implementation is efficient. These
experiments and benchmark tests described in the paper have
shown that the implemented MOLA VM performs
satisfactorily and MOLA is a suitable transformation
language for typical MDD tasks – transforming a UML model
to another one closer to the system implementation. However,
for an industrial usage of MOLA a special in-memory
repository and a compiler/interpreter that implements the
principles described in [1] could be required. The main reason
could be the desire to get rid of any limits on pattern size; also
the general performance for large models is expected to be
better.

Certainly, these results obtained for MOLA
implementation have value also for other transformation
languages, where the pattern match semantics is similar.

REFERENCES

[1] A. Kalnins, J. Barzdins, E. Celms. “Efficiency Problems in MOLA
Implementation”. 19th International Conference, OOPSLA’2004
(Workshop “Best Practices for Model-Driven Software
Development”), Vancouver, Canada, October 2004.
URL:http://www.softmetaware.com/oopsla2004/mdsd-
workshop.html

[2] Agrawal A., Karsai G, Shi F. “Graph Transformations on Domain-
Specific Models”. Technical report, Institute for Software Integrated
Systems, Vanderbilt University, ISIS-03-403, 2003

[3] ATL. URL: http://www.sciences.univ-nantes.fr/lina/atl/
[4] Tefkat.URL:

http://www.dstc.edu.au/Research/Projects/Pegamento/tefkat/
[5] MTF. URL: http://www.alphaworks.ibm.com/tech/mtf
[6] ArcStyler. URL: http://www.interactive-objects.com/
[7] AndroMDA http://www.andromda.org/
[8] UML 2.0 Eclipse EMF. URL: http://www.eclipse.org/uml2/
[9] Metadata Repository (MDR). URL: http://mdr.netbeans.org/
[10] G. Varro, A. Schurr, D. Varro “Benchmarking for Graph

Transformation” Proceedings of IEEE Symposium on Visual
Languages and Human-Centric Computing 2005 (VL/HCC 05),
Dallas, Texas, USA, September 2005, IEEE Press, pp 79-88.

[11] G. Varro, K. Friedl, D. Varro “Graph Transformations in Relational
Databases” Proceedings of GraBaTs 2004: International Workshop
on Graph Based Tools, Rome, Italy, 2004, Elsevier.

[12] AGG - The Attributed Graph Grammar System. URL: http://tfs.cs.tu-
berlin.de/agg/

[13] A.Kalnins, J. Barzdins, E.Celms. "Model Transformation Language
MOLA." - LNCS, Springer, v. 3599, 2005. Model Driven
Architecture: European MDA Workshops: Foundations and
Applications, MDAFA 2003 and MDAFA 2004, Twente, The

Netherlands, June 26-27, 2003 and Linkoping, Sweden, June 10-11,
2004. Rev. Sel. Papers, pp. 62-76.

[14] Kalnins A., Barzdins J., Celms E. “Model Transformation Language
MOLA: Extended Patterns”. Selected papers from the 6th
International Baltic Conference DB&IS’2004, IOS Press, FAIA vol.
118, 2005, pp. 169-184.

[15] A. Kalnins, J. Barzdins, E. Celms. “Basics of Model Transformation
Language MOLA”. ECOOP 2004 (Workshop on Model
Transformation and execution in the context of MDA), Oslo,
Norway, June 14-18, 2004. URL:
http://heim.ifi.uio.no/~janoa/wmdd2004/papers/

[16] A. Kalnins, J. Barzdins, E. Celms. “MOLA Language: Methodology
Sketch”. Proceedings of EWMDA-2, Canterbury, England, 2004.
pp.194-203.

[17] E. Celms, A. Kalnins, L. Lace. “Diagram definition facilities based
on metamodel mappings”. Proceedings of the 18th International
Conference, OOPSLA’2003 (Workshop on Domain-Specific
Modeling), Anaheim, California, USA, October 2003, pp. 23-32.

[18] A. Kalnins, E. Celms, A. Sostaks. „Model Transformation Approach
Based on MOLA”. ACM/IEEE 8th International Conference on
Model Driven Engineering Languages and Systems (MoDELS/UML
'2005). (MoDELS/UML'05 Workshop: Model Transformations in
Practice (MTIP)) , Montego Bay, Jamaica, October 2 -7, 2005, p. 25.

[19] OMG, MOF 2.0 Query/View/Transformation Specification. URL:
http://www.omg.org/docs/ptc/05-10-02.pdf

[20] A.Kalnins, E.Celms, A.Sostaks, “Tool support for MOLA”, Fourth
International Conference on Generative Programming and
Component Engineering (GPCE'05), Proceedings of the Workshop
on Graph and Model Transformation (GraMoT), Tallinn, Estonia,
September 2005, pp. 162-173 (preliminary version).

[21] OMG, Meta Object Facility (MOF) Core Specification. URL:
http://www.omg.org/docs/formal/06-01-01.pdf

[22] C. J. Date, “An Introduction to Database Systems”, Chapter 17,
Optimisation, Addison-Wesley, 7th Edition, 2000

[23] W3C. “Web Ontology Language (OWL)”. URL:
http://www.w3.org/2004/OWL/

[24] MySQL Reference Manual. URL:
http://dev.mysql.com/doc/mysql/en/index.html

[25] T. Katchaounov. “An Overview of the MySQL 5.0 Query
Optimizer”. The MySQL Users Conference, 2005.
URL:http://conferences.oreillynet.com/presentations/mysql05/timour
_update.pdf

[26] P. Dubois. “MySQL”, Chapter 4, Query Optimization. Sams, 3rd
Edition, 2005.

[27] Microsoft SQL Server 2000 Desktop Engine (MSDE 2000).
URL: http://www.microsoft.com/sql/msde/default.asp

[28] PostgreSQL - Open Source Database Server. URL:
http://www.postgresql.org/

[29] Microsoft SQL Server 2005 Express Edition
URL: http://www.microsoft.com/sql/editions/express/default.mspx

[30] R. Elmasri, S. Navathe. “Fundamentals of Database Systems”,
Chapter 18, Query Processing and Optimisation, Addison-Wesley,
3rd Edition, 2000.

[31] The SQL Server 2000 Workload Governor. URL:
http://msdn.microsoft.com/library/default.asp?url=/library/enus/archi
tec/8_ar_sa2_0ciq.asp

	1. Editor Definition Language and its Implementation
	2. The First Step Towards Generic Modelling Tool
	3. DIAGRAM DEFINITION FACILITIES IN A GENERIC MODELING TOOL
	4. DIAGRAM DEFINITION FACILITIES BASED ON METAMODEL MAPPINGS
	5. Generic Data Representation by Table in Metamodel Based Modelling Tool
	6. Model Transformation Language MOLA
	7. Basics of Model Transformation Language MOLA
	8. Model Transformation Language MOLA: Extended Patterns
	9. MOLA Language: Methodology Sketch
	10. Efficiency Problems in MOLA Implementation
	11. Tool support for MOLA
	12. Model Transformation Approach Based on MOLA
	13. Simple and Efficient Implementation of Pattern Matching in MOLA Tool

