
UNIVERSITY OF LATVIA
I n s t i t u t e o f M a t h e m a t i c s a n d C o m p u t e r S c i e n c e

EDGARS CELMS

TRANSFORMATION LANGUAGE MOLA AND
ITS APPLICATION

Summary of Doctoral Thesis

Advisor:
Professor, Dr. habil. sc. comp.

AUDRIS KALNIŅŠ

R i g a - 2007

 EC_Kopsavilkums_eng.doc

The thesis was elaborated with support of ESF
(European Social Fund)

Advisor:

Professor, Dr. habil. sc. comp. Audris Kalniņš
University of Latvia

Referees:

Professor, Dr. sc. comp. Jānis Bičevskis
University of Latvia

 Assoc. Professor, Dr. sc. ing. Mārīte Kirikova
 Riga Technical University

 Dr. sc. comp. Uģis Sarkans
 European Bioinformatics Institute (Cambridge, United Kingdom)

The defence of the thesis will take place in an open session of the Council for Promotion
in Computer Science, the University of Latvia, in the Institute of Mathematics and
Computer Science, the University of Latvia (Room 413, Raiņa bulv. 29, Rīga), on 11.
September 2007.

The thesis (collection of works) and its summary are available at the Library of the
University (Kalpaka bulv. 4, Rīga) .

Head of the Council Jānis Bārzdiņš

 2

Contents

Relevance of the thesis and the achieved results ...4
General description of the thesis ..6
1 Metamodeling and model-driven software development9

1.1 Metamodeling, metamodels, and models...9
1.2 Model-driven software development ...11
1.3 Model transformation languages..13

2 Editor definition language and generic modeling tool....................................15
2.1 Editor definition language and the prototype of the generic modeling tool 15
2.2 Generic modeling tool..18

3 Model transformation language MOLA and its application methodology ..23
3.1 Model transformation language MOLA ..23
3.2 Usage methodology of MOLA language and efficiency of the pattern
matching...26

4 Implementation of MOLA language and application of the language..........29
5 Conclusions...31
6 References...32

6.1 Author’s publications in reviewed international conference materials........32
6.2 Other publications of the author in reviewed international conference
materials (directly non-related to the topic of the thesis) ..32
6.3 Other sources used in thesis...33

7 Annex ..35
7.1 Author’s reports on thesis results in international scientific conferences or
seminars ...35
7.2 Publications included in thesis and personal contribution by the author of
thesis ..35

 3

 EC_Kopsavilkums_eng.doc 4

Relevance of the thesis and the achieved results

Relevance of the thesis:
In recent years, it is typical in specific problem areas, to use specialized modeling
languages – domain specific languages [16] (DSL – Domain Specific Language).
DSLs are created specifically to solve problems in a particular domain and is not
intended to be able to solve problems outside of it. Development of support tools for
such languages is a labor-consuming process. One of the methods to improve the
developing process of DSL tools is to create generic metamodel based tool
development platforms, which would ensure convenient and fast development of the
corresponding tools. A part of the thesis research has been devoted to the issues of
development of such generic metamodel based tools.

Another area, to which the research of the thesis has been devoted, is related to model
transformation languages. Model transformation languages have become to be an
important part of the non-trivial computer software development process. Nowadays
in the developing of computer systems ever more often various metamodels and
correspondent models are used. They are taking an increasingly important position in
software development. Such development method is referred to as model-driven
software development (MDSD) [17, 18]. It is a rapidly developing technology, which
is used ever more often for designing different types of software. It must be noted that
frequently MDSD approach in software development is based on various DSL
languages, with assistance of which the corresponding models are formed. The basic
idea in application of MDSD approach in software development is use of models,
which can be transformed from one design phase to another by means of
corresponding model transformations. Therefore very crucial are the instruments with
which such model transformations can be executed – model transformation languages.
In practice, it has been proven that neither the traditional programming or modeling
languages are sufficiently appropriate for those requirements. In order to implement
the ideas of MDSD in practice, a special type of language is necessary. The language
MOLA, developed within the framework of the thesis, is exactly that kind of
language, which can be conveniently applied to MDSD tasks. It must be noted that
regardless of research performed during several years on model transformation
languages, the world leading organization in establishment of standards in modeling
sphere (OMG[19]) has not yet developed a standard for model transformation
language.

The most recent research shows that transformation languages are conveniently
applicable in DSL tool building. It must be noted that the transformation language
MOLA developed within the framework of the thesis is a typical example of a DSL
language.

The main results of the work:

 A generic metamodel based modeling tool has been developed – actually, it
is a fully metamodel based modeling tool building platform. The main
advantage and feature of the tool is that there are no predefined (integrated)
modeling methodologies. In order to initiate modeling, the tool must at first be
“filled up” with metamodel and additional information describing the desired

 EC_Kopsavilkums_eng.doc 5

modeling language and the corresponding technology for work with models.
Using this modeling tool building platform a modeling tool of industrial
quality supporting specific methodology can be created, using a relatively
small effort. It must be stressed that this tool has been successfully used also
in further research and by using this tool, an editor of the model
transformation language MOLA was developed.

 Model transformation language MOLA has been developed – a graphical
model transformation language, which has already been tested in practice and
is conveniently applicable and very suitable language for MDSD tasks.

 MOLA Tool has been developed – it is a combination of various components
ensuring all necessary services in order to apply the transformations written in
MOLA language for MDSD tasks. The tool ensures such services as
transformation writing, compilation, execution, data import and export from/to
commercial modeling tools.

It must be noted that the achieved outcome is the result of team work. The author
of the thesis has contributed significantly to the work and has actively been
participating in all research areas, which are related to the achieved results. The
personal contribution of the author is specified in the following sections of the
summary and in the annex.

 EC_Kopsavilkums_eng.doc 6

General description of the thesis

The Ph.D. thesis “Transformation language MOLA and its application” has been
elaborated during the time period from year 2001 until year 2007 at the Department of
Physics and Mathematics of the University of Latvia and in the Institute of
Mathematics and Computer Science (IMCS) under supervision of professor Audris
Kalniņš. This work carries on the IMCS traditions of tool building and language
development, which had been initiated already in year 1986. The main contents of the
thesis is reflected in 13 publications [1-13] and presented in 12 international conferences.
The thesis is formed as a set of thematically related papers about various aspects
related to metamodel based modeling tool building and model transformation
languages.

The subject of the research – development of generic metamodel based modeling
tools and model transformation languages.

The goals of the research – to develop and implement in practice a generic
metamodel based modeling tool, as well as to develop and experimentally test a
model transformation language, which could be used in MDSD tasks.

Research stages – the results of the thesis form a closed research cycle, beginning
with the research yielding one of the result of the thesis – generic modeling tool (the
tool was later applied in development of model transformation language MOLA) and
ending with research on transformation language MOLA and its implementation and
application to MDSD tasks. The research is summarized in a thematic order (it
conforms also to the chronological sequence of research):

 The first research stage – from year 2000 until year 2004. The research and
results of this stage are described in Chapter 2 of the summary and in
corresponding publications [1-5]. The main result of this stage is the developed
generic metamodel based modeling tool, which in many aspects during that
time was unique and superior over other tools, which were built for similar goals.
The second significant result was the acquired comprehension and knowledge
about model transformations. The research results achieved during this time
period were the main idea resource for further development of model
transformation language MOLA and for related research. The author of the thesis
has actively been participating in all research during this time period, beginning
with year 2001. The author's contribution in general constitutes over 40% of all
performed research during this research stage.

 The second research stage – from year 2003 until year 2006. The research and

results of this research stage are described in Chapter 3 of the summary and in
the corresponding publications [5-10]. The most important research result is the
developed model transformation language MOLA. It must be noted that the
research in this area are being carried on and currently the next version of the
language is being developed. An important research result was also the
performed efficiency evaluation of MOLA language pattern matching. The
author of the thesis has been actively participating in all research that was

 EC_Kopsavilkums_eng.doc 7

performed during this time period and the personal contribution of the author
constitutes over 50% from all of the performed research during this research
period. It must be noted that the solutions developed during these research later
had a very significant practical importance for efficient implementation of
MOLA language.

 The third research stage – from year 2005 until year 2007. The research and

results of this stage are described in Chapter 4 of the summary and in
corresponding publications [11-13]. The main research result is the developed
MOLA Tool. The author has been actively participating in all research that was
performed during this time period and the personal contribution of the author in
overall constitutes over 30% from all of the performed research during this
period. It must be noted that the research in this area is being carried on
intensively and currently the next version of MOLA Tool is under development.

The theoretical and practical significance of the research
The main results of the research of the thesis are reflected in 13 publications [1-13].
The most significant results have been reported in important international scientific
conferences in the research area. The author of the thesis has presented the results in
seven of them. The author has also given demonstration of the MOLA Tool during the
tool demonstration section of the international conference (“European Conference on
Model Driven Architecture – Foundations and Applications (ECMDA-FA)”) [20].

An evident proof of the practical importance of the research results is the application
of the developed model transformation language MOLA in various projects.
Following are listed the most interesting projects:

 EU’s Sixth Framework Program (FP6) project – ReDSeeDS (Requirements-
Driven Software Development System) [21]. In the ReDSeeDS project, the
MOLA language is used as an instrument for definition and implementation of
transformations.

 Currently at IMCS, a new generation metamodel and model transformation-
based tool framework [22] is being developed, within which the model
transformations are built in MOLA language.

 A master course “MDA and model transformations” has been elaborated and
introduced in the master studies of Computer Science at the University of
Latvia. MOLA language has been widely used both in students’ practical
works and in description of the basic principles of model-driven software
development.

The following chapters of the summary contain short description of the most
significant results and basic problem settings, which in the corresponding publications
are described in more detail:

 In the first chapter, a general description is provided about the basic development
principles of model-driven software and about the key terms, thus supplying the
reader with the basic knowledge that is required for better understanding of the
research performed by the author and about the significance of the achieved
results.

 From the second to the fourth chapter, a summarized description is provided
about the research performed and results achieved.

 EC_Kopsavilkums_eng.doc 8

 In the conclusion, a synoptic summary of the research results and shortly
described further research directions are given.

 In the annex, listed are those international scientific conferences, in which the
author has presented the achieved research results, and the personal contribution
of the author is specified for each of the publications included in the thesis.

 EC_Kopsavilkums_eng.doc 9

1 Metamodeling and model-driven software
development

Nowadays when developing non-trivial computer software, during the development
process, ever more often various metamodels and corresponding models are applied.
They take an ever more important role in software development. During the system
development process these models are subjected to various transformations
(modifications). However in order to describe the transformations, the transformation
languages are used. Such development method is called model driven software
development (MDSD) [17, 18]. In the chapter, a general overview is provided about
this area of computer science and application thereof in system development, as well
as about the main terms of the sector, thus ensuring the reader with the basic
knowledge required for better understanding of further chapters.

1.1 Metamodeling, metamodels, and models

The concept of “model” in computer software development is considered a theoretical
construction displaying a specific fragment of the world. A model is a set of
interconnected objects, which displays a certain idea. Physically the model usually is
a graphical image, in which according to established rules various graphical
elements are formed and placed. It must be noted that the graphical representation of a
model is not a mandatory requirement in model construction. The model can also be
in textual format.

As it has been mentioned above, the models are formed in strict accordance to
established modeling rules. What establishes these rules? Generally speaking, it can
be said that each model is created in compliance with regulations that are established
by a certain higher level model - a metamodel. A metamodel can be perceived as a
general schema or language syntax, according to which models are formed. For
instance, one metamodel can be used for illustrating the organizational structure of an
enterprise, and another – for description of an information system. In each of the
above mentioned cases, the metamodel establishes the rules, according to which the
models can be built, or to express it with other words – models would be the instances
of some metamodel. For instance, by using a metamodel displaying the organizational
structure of an enterprise, each enterprise can create an individual model, following
this one common metamodel. For various enterprises these models will turn out
different, but they will be unified by a common metamodel and by certain common
rules. In a broader understanding, a model can be any type of formalized
(understandable for the computer) artifact, which appears during the development
process and the structure of the model can be described with a metamodel.

Metamodel is also called the model of the models. Respectively, the metamodel is the
model itself, which has been formed in compliance with a certain higher level
metamodel (meta-metamodel). Each specific metamodel and its corresponding models
define two metamodeling abstraction levels. Theoretically, it can be talked about

 EC_Kopsavilkums_eng.doc 10

arbitrary number of metamodeling levels, where each of the upcoming levels is the
meta-level of the previous level. In practice, usually only four abstraction levels are
used: M0 – model instance level, M1 – model level, M2 – metamodel level, and M3 –
meta-metamodel level.

Currently the most frequently used metamodeling standard is by OMG[19] elaborated
MOF[23] (Meta-Object Facility) standard, which establishes four abstraction levels
(see Figure 1.1). The current MOF version right now is 2.0 [24], and soon it is
planned to complete the work with version 2.1, however it is expected that it will not
particularly change MOF applicability in practice.

Figure 1.1 OMG meta-level hierarchy example (Figure from [27])

In practice, numerous models are described in either of the versions of the modeling
language UML[25, 26, 27, 28, 29] (i.e., conforming to the UML metamodel, which in
turn is defined in MOF). It must be marked that the models can be described also in
other languages, including any of object-oriented (OO) programming languages (the
abstract syntax of a specific OO programming also corresponds to the meta-model).

Several typical model examples:

 UML activity diagram – business process model.
 Set of UML use case and activity diagrams – specification of system

requirements.

 EC_Kopsavilkums_eng.doc 11

 Set of UML class diagrams – system analysis model.
 UML class diagrams, where J2EE stereotypes are used – design model.
 Java program (written in abstract syntax).
 J2EE program (components + descriptors), also in abstract syntax.
 Workflow definition in either of the defining languages (for instance, BPMN

language [30]).
 Formal schema of Web pages (without “decorations”).

1.2 Model-driven software development

At the end of the nineties and during the first part of this decade, a situation had
formed that the necessary experience had been accumulated, in order to implement
new paradigm and new principles in software development. Such technologies and
knowledge was acquired as metamodeling, operations with models, application of
UML diagrams in software development, various component development
environments (EJB, .NET, CORBA), and object-oriented software languages.
However it all together had not rendered the expected effect in software development
and a significant efficiency leap had not been achieved.

In year 2000, OMG initiated a new project – Model Driven Architecture (MDA [31,
32]). Specific results appeared only during the second half of year 2001, when OMG
published the first version of MDA Guide [33], where the basic ideas and applications
of MDA were described. The main idea was that in development of non-trivial
systems various meta-modeling primitives should be systematically used. Important
was the finding that in practice the models are not appropriately used, their potential is
not exploited, and that the models possess various roles during the system
development process. Since that moment, MDA and issues related to it have been
rapidly developing and even today the development pace has not decreased.

It is interesting that intuitively similar ideas had been used by many in daily practice,
but there were no successful attempts to formalize, arrange, and elaborate a
methodology of how to use it consequently in software system development.

MDA implemented the model role concept in the system development process. Three
types of models were offered:

 Platform Independent model – PIM, it is a model where platform-specific
elements do not appear. It describes the system, but does not show details of
its use of its platform.

 Platform Specific Model – PSM, is a model where PIM described matters are
combined with specific concepts of a specific platform (for instance, EJB,
.NET, WebServices, CORBA).

 Computation Independent Model – CIM, it is the conceptual or business
model of the system. It must be noted that if a CIM model is used in software
development process, then it is more in a role of a documentation component
and not as a formal document “understandable to the computer”.

 EC_Kopsavilkums_eng.doc 12

Another important formalism, which was implemented in MDA approach, is model
transformations. Model transformation is a process that has a very significant role in
model driven software development. During the development process, one model
needs to be modified into another according to a certain given method, by transferring
and incorporating all of the necessary information to the other model. The
transformation process itself involves modification of a certain model (source model)
or metamodel (source metamodel) into a different model (target model) or metamodel
(target metamodel). The most common case that the developers most frequently
operate with is the model transformations. It means – to take a certain model of a
fixed metamodel (source metamodel) and to transform it into a model of a different
(or the same) fixed metamodel (target metamodel) (see Figure 1.2). It must be noted
that also transformations of the metamodels are not unusual and are a frequently
exploited option in practice.

Figure 1.2 Transformation application schema

In the course of time, various approaches have been developed on how the models and
corresponding transformations are used in software development. In the classic OMG
approach, MDA application is designed in such manner that it consists of one
platform independent model and of one or more platform specific models, and
complete realization thereof in each of the platforms that the application developer
has chosen to support. In addition, during the application development process
transformations are applied which are part to the development process. It must be
noted that in MDA approach it is considered that the only OMG offered
metamodeling instruments are used (MOF, UML).

In the model driven software development (MSDS) it is looked at from a broader
perspective. In the MDSD approach, there is no “firm” involvement with MOF and
UML, and numerous (of course, formalized) metamodeling instruments can be used.
It must be noted that in specific problem sectors, a widespread practice is to use

 EC_Kopsavilkums_eng.doc 13

specialized graphical modeling languages – domain specific languages [16] (DSL),
which usually are very different from UML.

Another significant difference in MDSD approach, in comparison to MDA, is
connected to the model application. In the MDSD approach, the source and target
models are any two consecutive models that are used during the development process.
The meaning of PIM and PSM in fact is a relative and it is dependent only on the
specific level of abstraction, from which it is perceived. For instance, even such a
specific model as Java program, if written in its abstract syntax, can be both as a PSM
model and as a PIM model. Such Java program could be in a role of PSM model for
design class diagrams and in a role of PIM model for a specific development
environment platform, which in turn is a PSM model for the above mentioned Java
program. The subject matter is only the logical model chain during the development
process. It must be added that MDA is only one of the variants of MDSD application.

At the end of the chapter, I would like to emphasize the most characteristic features of
the model driven software development approach:

 The metamodels and the corresponding models are the main artifacts of
software development. It is a new paradigm in software development – a new
method of developing systems. By such development of computer systems,
“elevation” to another abstraction level occurs (operations with metamodels
and models).

 Use of transformations. By applying the MDSD approach, it is necessary to
formally define the transformations; in addition, the transformations are not a
part of the model, but instead they are a part of the development process.

1.3 Model transformation languages

As mentioned in the previous chapter, by using a model driven development
approach, one model must be transformed (modified) into another according to a
specific given method, by transferring and incorporating all of the necessary
information to the other model. It must be added that such model transformations can
be both manual (used before MDSD) and automatic - transformations performed with
formal transformation assistance (in case of MDSD approach). However in order to
define the transformation processes, a model transformation language is required. The
model transformation language is a programming language, which is provided for
describing model transforming processes. A program that is written in either of the
model transformation languages in the most typical case would receive a model of a
certain metamodel as the input data, and would return a model of another (or the
same) metamodel as the data output (see Figure 1.2).

Thus, in order to implement the MDSD ideas in practice, a special kind of language
provided specifically for these purposes – the model transformation language – was
necessary. In practice, it proved that neither of the existing programming or modeling
languages was sufficiently suitable to those requirements that were necessary in
model transformations, and in April of 2002, OMG announced a request for proposal
(RFP) to the standard of such language – QVT (Queries/Views/Transformations [34]).

 EC_Kopsavilkums_eng.doc 14

The model transformation languages are a fundamentally new language class. The
main requirements, to which the model transformation languages must conform, are
as follows:

 They must service the arbitrary models of metamodels (within understanding
of OMG only those conforming to MOF metamodels).

 They must process the source models and produce the target models (must be
able to describe and execute the transformations between the models, which
conform to specific metamodels).

 They must be metamodel based, respectively, like the transformation program,
which is written in either of the transformation languages, is to be perceived as
a model that conforms to the metamodel of the given transformation language.

 They can be either graphical or in textual format.
 They must be “easily” understandable both for people and for computers

(must be declarative as much as possible).
 There must be a corresponding tool support in order to conveniently create,

alter, and execute these transformations.

Various projects on language standard were submitted, which during the course of
time did not develop any further or were combined and only one standard project
remained – MOF QVT[35], in development of which 16 institutions were
participating, including IBM, Sun, and four universities. This project unites multiple
initial projects. In March of 2005, the standard language was supposed to be complete
according to the plan, however at this moment (year 2007) it is still only in the
planning stage and is delivered to the OMG platform task committee (PTC) for
development of the final version [35].

Simultaneously a range of other model transformation languages not related directly
to the OMG request for proposal were developed – MOLA[6-13], Lx[36], GReAT[37,
38], UMLX[39], ATL[40, 41], TRL[42], Tefkat[43], AGG[44], MTF[45],
ATOM[46], VMTS[47], BOTL[48], YATL[49], Fujaba[50], VIATRA2[51],
RubyTL[52], ALAN[53], MT[54], and other. It is interesting that still now new model
transformation languages are developed and the existing ones – improved. Amongst
the above mentioned languages, there are both graphical and textual languages.
Particularly must be mentioned the graphical model transformation language MOLA,
development of which is a part of the research results performed by the author within
the framework of the thesis. A short description of the research performed in this area
and description of the MOLA language is provided in Chapter 3 of the summary.

 EC_Kopsavilkums_eng.doc 15

2 Editor definition language and generic modeling
tool

In this chapter, the results of the first research stage of the thesis (year 2000 until year
2004) are reviewed, which are summarized in five publications [1,2,3,4,5] and
presented in four international conferences. The author has actively been participating
in all research during this research period, beginning with year 2001.

2.1 Editor definition language and the prototype of the generic
modeling tool

During this time period, research was started, which lead to the development of the
model transformation language – MOLA. When initiating the research, the problem
sector was diagram processing tools. In practice, there was a necessity for flexible
diagrammatic editor, which would be based on a specific metamodel [57]. As a result
of the research, a methodology and tools were developed for defining such
diagrammatic editors and a generic metamodel based modeling tool prototype for
supporting this methodology was built. Below listed are the main elements of the
developed tool prototype:

 Logical metamodel – definition of the logical structure of the diagram
objects, by using UML class diagrams. The logical metamodel in our current
terminology would be referred to as the domain metamodel. It describes
concepts of a certain problem region, as well as relations between them.

 Editor Definition Language (EdDL) – a language, with assistance of which
the graphical representation of objects and the editor behavior (dynamics) is
defined. With the assistance of this language, the following components and
features of the editor can be described: graphical representation of the logical
elements, use of subdiagrams, various promptings, navigations facilities
between the diagrams, symbol palette, and other less important features.

 Annotation compiler (EdDL parser).
 Editor engine – software, which provides editor runtime operations.
 Graphical diagramming engine (GDE) – software that implements diagram

drawing, automatic placement, and other functionality related to graphical
object manipulation.

The greatest contribution of the author in this research stage is development of EdDL
basic constructions and the annotation compiler and editor engine designed and
implemented by the author himself.

In order to build an editor, it was necessary to perform several interrelated tool
definition stages (see Figure 2.2):

 At first, a metamodel was formed (or more precisely – its view for one
diagram) as a UML class diagram.

 EC_Kopsavilkums_eng.doc 16

Activity Name
value

Description
compartment
Position = 2

Activity
Description
value Activity box

Shape = Round rectangle
Colour = (215,255,255)

Navigation

Performer
compartment

Position = 3
Tag = Performer
Separator = before

Icon
Def = ...
Position = 1

Event category
value

Category
compartment
Position = 2

Business
 Event

Event name
value

Triggering line
Colour = (0,0,255)
Style = dashed

Event box
Shape = arrow
Colour = (255,255,255)

E-name
compartment
Position=1

Box

A-name
compartment
Position=1

Compartment

Line

Dependency line
start = predecessor
end = successor
end-shape = arrow

Message
 name

value
Dependency

Business Activity

Prompting

Performer
value

M-name
compartment

Position= Middle

Number of instances
value

Position name
value Position

Diagram

Business activity
diagram

Cost per hour
value

started by

trigger of1

0..1

has
attribute
 1 0..1

has
attribute

 1
 1

has
attribute

has
attribute 1

 1

display

has
attribute
 1

 0..1

predecessor

from

 1

*

has
attribute successor

to

 1

 *

performed
 by

is
performer

*

0..1

contains

is in

 *

 *

has attribute
 1

 0..1

has attribute
 1 1 has attribute

 1
 0..1

refines

refined
by

 0..1

 1 is
in

contains

 *

 1

Figure 2.1 With EdDL annotated logical metamodel

 Next, the metamodel was supplemented with the necessary specification of the

graphical representation, using EdDL constructions. Respectively, the
metamodel was annotated (see Figure 2.1). In the figure, some of the offered
EdDL language elements can be viewed. The fundamental idea was to add the
presentation level elements into the metamodel, for instance, such as Box,
Line, Compartment, Diagram, and more, in whose corresponding sub-
classes all of the information of the graphical element presentation of the
specific diagrammatic tool was stored. However, the presentation elements
thereafter were “connected” with the corresponding domain classes, by
applying the mapping associations. For instance, for the class of Business
Activity it is determined that the instances are to be displayed in a form of
boxes (the attached subclass Activity Box of the class Box) with the
corresponding default dimensions and color. In addition, it can be seen that
this class contains a range of attributes (in the presentation level terms –
compartments), which are also correspondingly annotated. The consequences

 EC_Kopsavilkums_eng.doc 17

of such compartment annotation were that it was beneficial to create a slightly
“bizarre” class diagram, in which the domain class compartments are not
displayed in the same class. It must be remarked that this and a range of other
inconveniences were eliminated in result of the following research, when
presentations and domain metamodels were separated from each other.

 The following step for construction a diagrammatic editor is a compilation of

the annotated metamodel. It is implemented by annotation compiler (EdDL
parser), which transforms the annotated metamodel into its internal format,
which is “understood” by the editor engine. The runtime component – editor
engine interprets this internal format and the end user “receives” a completely
finished diagrammatic editor (see Figure 2.3).

{ }

{

For every
diagram
type

Editor
Definition

Modeling
tool

EdDL for one editor
(metamodel fragment +
presentation classes)
 (using Class editor)

EdDL
Parser

Editor Engine

Internal format
of EdDL

External functions

Graphical layer - GDE

Repository
Concatenated
Internal format

(for a set of editors)

diagram

Figure 2.2 The key elements of the generic metamodel based modeling tool prototype

Figure 2.3 Generated editor in action

 EC_Kopsavilkums_eng.doc 18

It must be added that a range of tools, which solved similar problems, had already
been developed. The main difference from the IMCS developed generic modeling tool
prototype was that they typically were constructed as completed editor sets with vast
possibilities of configuration. They could be applied only to a previously defined
problem domain. Whereas the IMCS developed tool was more universal. It was based
on the logical metamodel and on the relatively independent definition language
EdDL, which provided with an opportunity to use the tool for a wide range of the
graphical editors. Some of the most interesting tools of the time, which claimed a
similar problem space, were:

 Metaedit, developer MetaCase Consulting [58]
 KOGGE, developer University of Koblenz [59]
 Toolbuilder, developer Lincoln Software [60]
 DOME, developer Honeywell [61]
 Moses, developer ETH Zurich [62]

2.2 Generic modeling tool

Upon initially acquired research results about EdDL and its application in
development of diagrammatic editors, a conviction was growing about opportunities
and ideas appeared about how this language could be expanded and improved in order
to use it in a wider context. The problem research area was development of generic
modeling tools. A more detailed attention was paid specifically to the area of business
process modeling tools, about which IMCS had already accumulated vast experience.

The situation that had established in the area of modeling tools at that moment was
such that none of the available tools was satisfying all of the requirements in the
specific sector, for which it was provided. Each of the tools had advantages and
disadvantages. Situation was especially difficult in use of domain specific languages
[16] (DSL) in enterprises. Each of such languages was unique in a way and differed
from other. Even in such a relatively stable sector as UML there were problems with
tool application. Typically – in large enterprises, the UML tools required various
specific additions, which could not be implemented, by using the expansion services
offered by the existing tools.

There are various options of how to solve the above mentioned problems in the
modeling tool area:

 A tool can be developed individually for each of the modeling methods.
 An attempt to develop utmost generic modeling tool could be performed, in

order to satisfy as large of a spectrum of modeling methods as possible.
 It can be attempted to develop a completely metamodel based generic tool

development platform, where there would not be any integrated previously
defined modeling methods. Moreover, by using such platform, it would be
possible to create quickly and at low costs the necessary sets of tools.

By researching these problems and according to the previous experience, which was
acquired during development of a generic modeling tool prototype, it was concluded
that the most reasonable and also the most interesting problem solution would be
development of a generic tool development platform. The requirements were

 EC_Kopsavilkums_eng.doc 19

established, which should be satisfied by such tool development platform. Below
listed are the main requirements:

 The tool must be completely metamodel based. It would mean that the tool
does not have any predefined (integrated) modeling methodologies. In order to
begin modeling, the tool must be at first "filled up" with the metamodel and
the additional information, which would describe the desired modeling
methodology.

 The tool must support various modeling notations, by using a common domain
metamodel. It means that the user can create a model in one notation and
afterwards operate with it in a different notation (the idea never got completely
implemented – the significance of transformations and use thereof had not yet
been conceived).

 The tool must ensure universal metamodel based editing options. It means
that following only the information existent in the metamodel, the tool should
offer the users coherent domain data editing options.

As a result of the research, a methodology and various components (a platform) was
developed for development of such generic modeling tools – a generic metamodel
based modeling tool (Exigen Business Modeler). Below listed are the main
components of the developed platform:

 Domain metamodel. It defines the modeling ideas (concepts), their attributes
(data), and relations amongst them (see bottom part of Figure 2.3).

Core

Class presentation

Class domain

Association
Name
description
Source role name
Target role name
Source multiplicity
Target multiplicity

Class diagram
Name

Line Box

Diagram

Anchor Core
Note

Association line Class symbol Presentation Class
diagram

CLASS
Name

Attribute
Name
Visibility
Type

Class occurrence
Note

Text

ends at
is target*

1

has note
for1

*

has attribute
attribute of0..1

*

starts from
is source*

1
is in

contains class
*

*is in
contains
association*

1

has note
to1
*

contains line

is in

1

*

contains box

is in

1

* refined by
refines
*

0..1

to
end of*

1

from
start of*

1

contains anchor

is in

1

*

contains note

is in

1

*

links
linked*

1

is in

contains
note

*

0..1

is of
defines

*

0..1

CL
map

Map

0..1

0..1

CL
map

Map

0..1

0..1

CL map

Map

0..1

0..1

Note
map

Map

0..1

*

Figure 2.3 A fragment of an extended metamodel example (for a simplified class diagram)

 EC_Kopsavilkums_eng.doc 20

 Extended metamodel. It consists of two important parts – metamodel presentation

part and metamodel core part (see Figure 2.3). The extended metamodel classes are
connected with the corresponding domain metamodel classes, using mapping
associations.

 Diagram annotation definition (mapping definition) and its runtime interpretation
service. The service ensures an option to describe the manner of logical elements
(modeling concepts) being displayed as diagram elements (mapping), as well as
defines the tool’s behavior for operations with diagrams (see Figure 2.4). This
component of the platform played a special role within the context of the upcoming
research, which were connected with model transformation language MOLA. It is
the most important part of the diagram definition in a generic tool. With the
mappings it is defined how the logical (domain) elements are displayed as diagram
elements. The mapping syntax (see Figure 2.4) is defined with mapping types
(patterns). The mapping type contains references to the metamodel classes and
associations, which is a "closely related" to the pattern concept, which was later
utilized in MOLA language. However the mapping semantics is dependent on the
corresponding mapping type and it establishes the semantic operations to be
performed with diagram alterations. In modern understanding, these activities were
programmatically hard-coded transformations. However within the context of
MOLA language it would be the actions to be performed according to the rule,
which contains the given MOLA language pattern. In publication [4], it is
described in detail, how to define the formal semantics of the mapping by using
OCL [63] language. Respectively, to each mapping type a corresponding OCL
expression can be defined. Up to limited extent, the tool also ensured the
possibility to supplement the existing mapping types with additional OCL
expressions.

Box Mapping 1OToc

Class
Name

Presentation
Class diagram

Class diagram
Name

Class occurrence

Class symbol
contains box

is in 1
 *

is in
contains
class

 *
 *

CL map

Map

 0..1

 0..1

CL map

Map

 0..1

 0..1

is of
defines *
 0..1

Figure 2.4 Mapping Example (1OToc mapping)

 The definition and interpreting service of the graphical style of the diagram
elements.

 Tree model engine – flexible definition and interpretation of a metamodel based
tree model. In definition of the model tree, a range of options are used, with
combination of which it is possible to define practically any coherent model tree
structure. The most frequently used parts in defining a model tree are:
o Fixed tree elements – used to form a fixed basic structure of the model tree.
o Object elements – during tree runtime interpretation (implementation), they

are “filled up” with the corresponding metamodel class instances.
o Reference elements – used for definition of recursive tree elements.
o The selection criteria for the object elements – one of the “most powerful”

tree definition characteristics. It allows setting specific, similar to OCL

 EC_Kopsavilkums_eng.doc 21

selection criteria that are based on the metamodel associations and class
attribute values.

o Definition facilities of pop-up menus – ensures the option to create user
defined menus for the tree model elements.

 Generic property editor engine – ensures definition and interpretation of
metamodel based domain data. By using the domain's metamodel class
information (attributes and their types, associations with other classes,
cardinalities, etc.), the generic editor generates the dialogue windows (editors),
with assistance of which it is possible to perform domain data editing. Various
heuristics are applied in editor production, which had proven their usefulness
during the upcoming years. For instance, one of them is – with composition type
associations attached class instance set is displayed in the editor as included tabular
editors. Of course, this was not sufficient to implement all of the necessary non-
standard cases. According to the current understanding, they should be
implemented by using model transformations, however there were no such
facilities available at that time. Nevertheless, there was an option to configure the
generated generic editors and in most cases thus the editor quality equivalent to the
property editors of commercial modeling tools could be acquired. The MOLA
language editor is constructed exactly in such way – by using the configured and
partially also the non-configured generic metamodel based property editors (see
Figure 2.5).

 Generic table editor engine – ensures tabular editor definition and interpretation
of metamodel based domain data. It was implemented by applying similar
principles as with generic property editors. Its key value is the offered option to
review all instances of a certain metamodel class along with the corresponding
attributes. During the course of time, this option proved to be a very useful as the
default instance browser.

The most significant contribution of the author in this research stage is the development
of the basic principles of the generic metamodel based modeling tool architecture, as
well as the investment of the author in developing the basic principles of the diagram
annotation definition (mapping) and the generic modeling tool manager, model tree
engine, generic property editor engine, and generic table editor engine all of them
are designed and implemented by the author himself.

The developed generic metamodel based tool was not the only available tool of that
kind. According to the functionality, the closest counterparts were Metaedit+[64],
GME[65] and ATOM3[66]. The tool developed by IMCS was more universal, more
flexible, and with a broader range of various definition options of modeling
technology. In the developed tool, a mapping type library is included, which ensures
mapping of domain elements in corresponding diagrams. By using the tool, it has
been proved that the selected set of mapping types is practically sufficient in order to
create a very vast family of modeling tools. However in functionally similar tools, the
mapping definition options are very poor. Only the very basic mapping facilities are
included in them, for instance, one specific domain element displayed as one
presentation (diagram) element. It must be added that in some tools, addition of
mapping types is available, by programming in one of the traditional programming
languages, for instance, C++ language in GME tool. However it can be performed
using inconvenient and labor-consuming low level programming. The fact must be

 EC_Kopsavilkums_eng.doc 22

stressed that in the tool developed within framework of the thesis, in comparison with
similar tools, a practically applicable graphical editor can be created in a very short
time period. For instance, creation of a practically usable UML class editor would not
require more than three days of work.

In conclusion, a short summary about this research time period:

 Experience and knowledge was accumulated on how should and, of course,
how should not the universal tools be constructed.

 A new generic modeling tool (Exigen Business Modeler) was constructed,
which is still actively being used for various experiments in IMCS research
projects. It must be noted that the editor of model transformation language
MOLA was also implemented, by using this tool (see Figure 2.5).

 Mapping, pattern, and transformation concepts were implemented:
o Mapping definition – a pattern concept, something very “closely

related” to the pattern concept, which was later used in MOLA
language.

o Mapping implementation – hard-coded transformations. In MOLA
language context, these would be the actions to be performed
according to the rule, in which the given pattern is included.

 Very important – the achieved results stimulated to think within the context
of MDA and MDSD ideas. Knowledge and skills were acquired on how to use
the model transformations in tool development, as well as understanding was
discovered on what the transformation language should be in order to use it
conveniently; also, the transformation significance and its place in software
development was conceived. It must be marked that the research results
acquired during this stage were a significant source of ideas and inspiration for
further research on model transformation language MOLA.

Figure 2.5 Example of operations of the generic modeling tool (MOLA language editor).

 EC_Kopsavilkums_eng.doc 23

3 Model transformation language MOLA and its
application methodology

In this chapter, the results of the second research stage (year 2003 – year 2006) of the
thesis are reviewed, which are summarized in five publications [6,7,8,9,10] and
presented in five international conferences. The author has actively been participating
in all activities related to this research stage.

Research about the model transformation language MOLA was a logical continuation
of the activities, which were related to the development of universal modeling tools.
As it has already been mentioned, the MOLA language editor was built, by using the
generic metamodel based modeling tool (see Figure 2.5) developed during the
previous research stage.

3.1 Model transformation language MOLA

The experience accumulated during the research of the previous years, the acquired
results, and the ideas expressed in OMG’s MDA [33] initiative had provided with
comprehension and knowledge on how to use model transformations. The
significance and role of transformations in software development was realized.
Understanding was conceived on what the model transformation language should look
like in order to be conveniently usable in model driven software development
(MDSD).

When designing the MOLA language developed within framework of the thesis, the
main goals were:

 To create a language in which the transformations could be defined as
conveniently as possible.

 The transformations should be “easily” understandable (readable) both for the
user and for the computer.

 The language should be easily implementable. In addition, later it turned out to
be a very important aspect of the language.

The developed MOLA language is a unique graphical model transformation language.
Those language elements that also graphically are easily conceivable are displayed
graphically. Widely used in the language is pattern application, which is combined
with simple iterative control structures, which are adopted from the traditional
structural programming. OO elements are also introduced in the language having
certain sense in the given context. For instance, such classic OO programming ideas
as inheritance and polymorphism are also supported.

Each MOLA program defines one transformation and it consists of a metamodel and
MOLA transformation. Metamodel in MOLA language is understood as a class
diagram, where included are the parts of source metamodel and target metamodel, and
mapping association (see Figure 3.1). In general situation, the source and target

 EC_Kopsavilkums_eng.doc 24

metamodel sections can also coincide. MOLA transformation is one or more MOLA
procedures (diagrams), of which one is the main.

Source Metamodel
(simplified UML)

Target Metamodel
(simplified SQL)

Attribute Classifier Association

PrimitiveDataType Class

Column
type : String

Table ForeignKey

Key

ModelElement
name : String
kind : String[0..1]

Rel_ModelElement
name : String
kind : String[0..1]

Package
name : String

Database
name : String

ow ner
1 foreignKey

*
ow ner

1column

*

column

* foreignKey

*
ow ner1

key
0..1

column*

belongsTo
0..1

ow ner1

attribute
*

type
1typed

*
1

#forkeyForAssoc 0..1

forw ard*

source 1

reverse*

destination 1

referredBy*

refersTo
1

1

#attributeToColumn *

1

#keyForClass 0..1
#colOfFcol

1#fcolForKcol
*

package
0..1 element

*

1

#classToTable 0..1

base
0..1 element

*

1

#packageToDB
0..1

Ieejas metamodelis
(Source Metamodel)

Attēlojuma associācijas
(Mapping Associations)

Rezultāta metamodelis
(Target Metamodel)

Figure 3.1 Source and target metamodel example

Further, a short description about some of the most frequently used MOLA language
basic constructions is given (see also Figure 3.2). MOLA transformation program is a
sequence of graphical instructions, which are connected with arrows. One of the most
frequently used instruction types is foreach loop. The foreach loop contains the
loop head statement and the loop variable. The loops can also be included in each
other. Another very important language construction is rules. It must be added that the
loop head is a specific case of the rule. The rule is the pattern, which is combined with
actions. Patterns hold a special significance in MOLA language – they establish the
instance group, with which certain activities are going to be performed. In MOLA
language, a pattern is a fragment of the metamodel, in which each of the class
(pattern) elements has a name and in which each class may appear several times with
a certain specific role (similar as in the UML communication diagrams the role name
is added to the class). The elements are defined in instance notation and they reference
to the corresponding metamodel class. The elements can be interconnected with links,
which conform to the corresponding metamodel associations. The class elements may
have also constraints, which are defined in a very limited OCL subset. It must be
stressed that loops, rules, patterns, and corresponding actions to be performed with the
instances, are displayed graphically.

 EC_Kopsavilkums_eng.doc 25

Target metamodel

Source metamodel

MOLA Diagram example

parameter

attribute
assignment

foreach loop

link creation

Metamodel fragment

loophead

end symbol

start symbol

variable

Instance creation

pattern link

loop variable

pattern element
- reference

pattern element

call statement

variable constraint

text statement

control flow

external call

Figure 3.2 MOLA language elements

In order to obtain better understanding of the basic principles of MOLA language
construction, it is essential to lay out the general semantics of the language execution:

 MOLA program receives the source model – a group of instances/links, which
conforms to the source metamodel.

 The MOLA program creates the target model as a result of the transformation
– a group of instances/links, which conforms to the target metamodel.

 Execution of the transformation is initiated with the starting symbol of the
main program.

 Call statements call for the corresponding MOLA procedures (subprograms).
It must be added that the calls can also be recursive.

 Statement implementation is successive – the loop is executed consecutively
for each of the valid loop variable instances.

Further, provided is a more detailed description about the MOLA transformation
fragment displayed in Figure 3.2. The image shows a metamodel fragment and a some
MOLA procedure. The most interesting section of the procedure is the foreach
loop. Construction of the given loop would be executed with all of those Property
instances that have a link (the link conforms to the association with the role name
type (see the upper right corner of the metamodel fragment in Figure 3.2)) with a
PrimitiveType instance and a link with such Class instance @cl, which has
been received as a parameter when calling this procedure. However this Class

 EC_Kopsavilkums_eng.doc 26

instance (@cl) must be connected to a certain RDBTable instance. In addition, it
must be considered that the corresponding Property instance must satisfy a
constraint that its attribute’s persistent value is true. If all of the above
mentioned constraints are satisfied, the action part of the rule is executed. In this case,
an instance of RDBColumn class is created (displayed as a box with a red interrupted
frame) and this newly-created instance is connected with the corresponding instances
of Property and RDBTable classes (dotted red lines). Upon that another MOLA
procedure is called – SetColumnType with the corresponding parameters. After
execution of SetColumnType, the next valid Property class instance is sought.

As mentioned in Chapter 1.3, MOLA language is not the only model transformation
language. Most of the in Chapter 1.3 mentioned languages (for instance, MOF
QVT[35], MOLA, and many other) sooner or later became practically complete for
traditional model transformation tasks (practically complete here means – tasks can
adequately be implemented with programs in the given transformation language). The
biggest difference between the languages is that of how easy it is to write and read
information contained therein. It has been proven in practice, that MOLA language, in
comparison with other languages, possesses high level of expression and readability.
Reasonably created transformations in MOLA language are practically self-
documenting and it is easy to understand what activities are performed. Work with
students has proved that MOLA language can be quickly learned and that it is an
easily perceivable transformation language. It is practically enough to have two
academic lectures for the students to be able to write wholesome transformations in
MOLA language. Amongst the rest of the transformation languages, the most similar
with the MOLA language according to the language style are UMLX[39], AGG[44],
and the graphical part of the MOF QVT[35] language. However each of these
languages has some significant disadvantages. For instance, neither of them have a
well-solved language control structure, besides there are relatively weak and
inconvenient pattern support solutions. It must be added that a significant
disadvantage of many model transformation languages is also an insufficient support
of the corresponding tools, resulting in encumbered practical use of such languages.
However for the MOLA language it is developed strong tool support (see Chapter 4).

3.2 Usage methodology of MOLA language and efficiency of the
pattern matching

This research was performed simultaneously with the development of MOLA
language itself. Already from the very beginning, when designing the MOLA
language, it was important to consider also efficient implementation of the language,
in order to avoid unforeseen problems during later implementation of the language
and in application of the language in real MDSD tasks.

As a result of the research, the pattern matching efficiency in MOLA language was
examined. Those properties of MOLA language syntax and semantics were separated,
which could significantly affect the implementation efficiency of the MOLA
transformations.

 EC_Kopsavilkums_eng.doc 27

In order to evaluate the pattern matching efficiency, a hypothetical MOLA language
virtual machine was developed. The virtual machine was developed as a group of
simple functions, which would ensure simple activities with the repository. Below are
the functions of the virtual machine and a detailed description of the meaning is given
for some of them:

 getPatternRoot() – returns the root element (loop variable) of the
pattern.

 getPatternElement(int i) – returns the “i” pattern element.
 getNext(metaClass mcl) – the function returns he next class mcl

instance. In case if there are no more instances to returns then the null
constant.

 getNextByLink(association assoc, instance
sourceInst, metaclass mcl) – most frequently used pattern
matching function. The function consecutively returns he class mcl instances,
which can be reached from the fixed instance sourceInst, by “walking
around” the links that conform to the association assoc. In case if there are
no more instances to returns then the null constant. This function also has
the initialization function initializeGetNextByLink with identical
parameters.

 Other less important functions of the virtual machine:
o eval(instance inst, oclExpression expr),
o checkLink(instance sourceInst, instance

targInst, association assoc),
o getNextFromSet(metaClass mcl, set instSet),
o getNextByLink(association assoc, instance

sourceInst, metaclass mcl),
o getNextByLinkFromSet(association assoc,

instance sourceInst, metaclass mcl, set
instSet),

o and several other initialization functions.

An algorithm was developed, which implemented pattern matching. Algorithm was
developed, by using the facilities of the hypothetical virtual machine and by observing
the language programming features. The “good style” was elaborated and offered on
how programming in MOLA language should be performed in order to the pattern
matching algorithm to operate efficiently. Some of the basic principles of the “good
style” were: using metamodel associations with cardinality 0..1 or 1 in the
corresponding direction (away from the loop variable) and using reference elements
reasonably both in the included loops, as well as where the association cardinalities
are not 0..1 or 1 in the corresponding direction. The estimation of the developed
pattern matching algorithm was evaluated as O(n), where n is the size of the source
model (number of class instances). The estimation was acquired by conditions that the
offered style is used in the MOLA language and that the task in fact is possible to be
solved algorithmically in linear time.

Certainly, in a general situation the pattern matching can require a search through a
potentially large number of elements. It could occur if MOLA program is created
unreasonably or some task must be objectively implemented, wherein the

 EC_Kopsavilkums_eng.doc 28

programming principles of the offered style cannot be observed. In such
understanding, the MOLA language is similar to traditional generic programming
languages, wherein a task could be algorithmically implemented with various
methods.

The most significant contribution of the author in this research stage is the development
of solutions, which are related to such MOLA language aspects as development of basic
constructions, pattern matching efficiency, and implementation of OO
programming elements into MOLA language (for instance, such classical OO
programming ideas as inheritance and polymorphism are supported in the language).
Extensive contribution by the author has been made in development of the hypothetical
virtual machine of the MOLA language.

 EC_Kopsavilkums_eng.doc 29

4 Implementation of MOLA language and application
of the language

In this chapter, the results of the third research stage (year 2004 – year 2007) of the
thesis are reviewed, which are summarized in three publications [11, 12, 13] and
presented in three international conferences. The author has been actively
participating in all of the activities related to this research stage. The MOLA Tool
(developed as a result of the research performed during this stage) was demonstrated
also in the tool demonstration session [20] of an important international conference
(“European Conference on Model Driven Architecture – Foundations and
Applications (ECMDA-FA)”).

In order to use the developed language conveniently in model transformation tasks,
efficient implementation of language and corresponding tool support is required. The
main goal of the research of this stage was to develop a set of tools, with which it
would be possible to create MOLA language transformations and implement them.
The main practical result of the research is the developed MOLA Tool. The MOLA
Tool consists of several important components (see Figure 4.1):

 MOLA TDE – MOLA transformation definition environment.
 MOLA TEE – MOLA transformation execution environment.
 MOLA Eclipse Plug-in.

Generic Modeling Framework (GMF)
(M1 level)

MOLA transformation

execution

Models
(PIM, PSM)

R
ep

os
ito

ry
 (r

el
at

io
na

l D
B

)

MOLA VM

Metamodels

MOLA Transformation
Definition

(MOLA program)

MOLA
Transformation

Definition
Environment
(MOLA TDE)

Autonomous MOLA
Transformation

Execution
Environment
(MOLA TEE)

Generic Modeling Framework (GMF)
(M2 level)

MOLA
Compiler

MOLA
MM editor

MOLA
Diagram editor

Generic Modeling Framework (GMF)
(M2 level)

MOLA
Compiler

MOLA
MM editor

MOLA
Diagram editor

ModelEditor
Diagrammatic /Model tree based

Eclipse based
Modeling Tool

(e.g., IBM Rational RSA)
XMI Import/Export Eclipse plug-in

Models in XMI
(PIM, PSM)

MOLA
Transformation

Execution
Environment

as plug-in
Figure 4.1 Implementation schema of the MOLA Tool

MOLA TDE ensures editor set for operations with metamodels and MOLA language
programs and MOLA language compiler. As the base of MOLA TDE, the generic
modeling tool was used. Various other additional services were ensured in the

 EC_Kopsavilkums_eng.doc 30

environment, for instance, import/export in xml format of separate procedures of
MOLA language, which ensures simultaneous work with one MOLA transformation
project.

The main component of MOLA TEE is MOLA language virtual machine. Its
function is to ensure execution of transformations. Due to the fact that in a role of
runtime repository is the relation data base, it is very natural and convenient to
implement the MOLA language pattern matching as SQL language queries.

MOLA Eclipse plug-in.
In order to apply MOLA language in practice for real MDSD tasks, facilities allowing
to use MOLA from the different development tools (wherein model-driven software
development was performed) had to be implemented. Therefore intensive research
was performed during this time period on how to use MOLA language as a plug-in in
other modeling tools. As a result of the research, several components were developed,
which ensure execution of transformations written in MOLA language in the
modeling tools, which are based on the Eclipse platform [67], for instance, a tool of
IBM company Rational Software Architect [68]. The most interesting of the
developed components was the component, which ensures generic UML 2.0 XMI
[69] import/export. It ensures data import/export between the MOLA language
execution environment and such modeling tool environment, which supports the
above mentioned XMI standard.

During this time period, research was performed also on how MOLA language could
be applied in typical MDSD tasks. The corresponding transformations developed in
MOLA language were built and demonstrated. For instance, in demonstration of
MOLA Tool [20] it was demonstrated, how it is automatically feasible with assistance
of MOLA language transformations to quickly and conveniently modify (transform)
models developed in IBM RSA tool into each other. Specific demonstration was on
how from the UML project class diagram it is feasible to automatically obtain a model
usable for Hibernate platform [70]. It is a classical PIM and PSM model application
in the model-driven software development.

The most significant contribution by the author in this research period is:

 The MOLA language plug-in designed and developed by the author to be used
with IBM modeling tool Rational Software Architect. It ensures execution of
transformations written in MOLA language within the given tool.

 The generic UML 2.0 XMI import/export component designed and developed
by the author.

 The import/export service in MOLA Tool designed and developed by the
author. It ensures import/export of MOLA procedure export, which is an
important service in development of large transformation projects, when several
persons participate in project development.

 EC_Kopsavilkums_eng.doc 31

5 Conclusions

The thesis involves research on development of generic metamodel based modeling
tools and on model transformation languages. The goals set forth in the thesis have
been completed in full. Below shortly listed are the results of the research:

 Generic modeling tool prototype has been designed and implemented – it
must be noted that the prototype is practically not being used anymore. The
prototype and the editor definition language (EdDL) used in it provided
confidence and ideas about the role and significance of model transformations
in tool development.

 Generic metamodel based modeling tool has been designed and
implemented – the tool has particularly well proven itself in practice and it is
still actively being used in various experiments in IMCS research projects. By
using this tool, the editor of the model transformation language MOLA was
also developed.

 Model transformation language MOLA has been developed – a unique
graphical model transformation language. It has already been tested and
successfully applied in international scientific projects, as well as in
student training at the master studies in Computer Science at the University
of Latvia.

 MOLA Tool has been designed and implemented – it ensures all of the
necessary services in order to apply transformations written in MOLA
language to model transformation tasks.

 Model transformation MOLA language home page has been developed [71].

It must be emphasized that the research related to transformation languages is being
intensively carried on. The most interesting project, in which the author of the thesis
is actively involved, is development of the new versions of MOLA language and
MOLA Tool:

 Currently at the IMCS, a new generation metamodel and model transformation
based tool framework [22] is being developed, wherein the model
transformations are built in the existing version of MOLA language. In this
framework, also the next version of MOLA Tool is being built. Respectively,
the next MOLA language version is implemented using the existing version of
MOLA language, by applying so-called „bootstrapping” [72] method.

 The most interesting research topic related to the next MOLA language
version is the research on how in MOLA language such OO programming
concepts as templates (templates in C++ language or generics in Java
language) could be introduced.

 EC_Kopsavilkums_eng.doc 32

6 References
6.1 Author’s publications in reviewed international conference

materials
1. A. Kalnins, K. Podnieks, A. Zarins, E. Celms , J. Barzdins. Editor definition language and its

implementation. - Lecture Notes in Computer Science, Springer, v. 2244, 2001, pp.530-537.
2. A. Kalnins, J. Barzdins, E. Celms et al. The first step towards generic modeling tool. -

Proceedings of the Fifth International Baltic Conference on Databases and Information Systems,
Tallin, 2002, v.2, pp.167-180.

3. L. Lace, E. Celms, A. Kalnins. Diagram definition facilities in a generic modeling tool. -
Proceedings of International Conference on Modelling and Simulation of Business systems,
Vilnius, 2003, pp.220-224.

4. E. Celms, A. Kalnins, L. Lace. Diagram definition facilities based on metamodel mappings. -
Proceedings of the 3rd OOPSLA (Workshop on Domain-Specific Modeling) , University of
Jyvaskyla, 2003, pp.23-32.

5. Celms E. Generic Data Representation by Table in Metamodel Based Modelling Tool.
Scientific proceedings of University of Latvia, Computer Science and Information Technologies,
Automation of Information Processing, vol. 669, Riga, Latvia, April 2004, pp. 53-61.

6. A. Kalnins, J. Barzdins, E. Celms. Model Transformation Language MOLA. - Lecture Notes in
Computer Science, Springer, v. 3599, 2005. Model Driven Architecture: European MDA
Workshops: Foundations and Applications, MDAFA 2003 and MDAFA 2004, Twente, The
Netherlands, June 26-27, 2003 and Linkoping, Sweden, June 10-11, 2004. Revised Selected
Papers, pp. 62-76.

7. A. Kalnins, J. Barzdins, E. Celms. Basics of Model Transformation Language MOLA. -
ECOOP 2004 (Workshop on Model Transformation and execution in the context of MDA) ,
Oslo, Norway, June 14-18, 2004, p. 6.

8. A. Kalnins, J. Barzdins, E. Celms. Model Transformation Language MOLA: Extended
Patterns. - Databases and Information Systems, Selected papers from the 6th International Baltic
Conference DB&IS’2004, IOS Press, FAIA (Frontiers in Artificial Intelligence and
Applications), vol. 118, 2005, pp. 169-184.

9. A. Kalnins, J. Barzdins, E. Celms. MOLA Language: Methodology Sketch. - Proceedings of
EWMDA-2, Canterbury, England, September 7-8, 2004, pp.194-203.

10. A. Kalnins, J. Barzdins, E. Celms. Efficiency Problems in MOLA Implementation. 19th
International Conference, OOPSLA’2004 (Workshop "Best Practices for Model-Driven Software
Development") , Vancouver, Canada, October 2004, p. 14.

11. A. Kalnins, E. Celms, A. Sostaks. Tool support for MOLA. Fourth International Conference on
Generative Programming and Component Engineering (GPCE'05). Proceedings of the Workshop
on Graph and Model Transformation (GraMoT) , Tallinn, Estonia, September 2005, pp. 162-173.

12. A. Kalnins, E. Celms, A. Sostaks. Model Transformation Approach Based on MOLA.
ACM/IEEE 8th International Conference on Model Driven Engineering Languages and Systems
(MoDELS/UML '2005). (MoDELS/UML'05 Workshop: Model Transformations in Practice
(MTIP)) , Montego Bay, Jamaica, October 2-7, 2005, p. 25.

13. A. Kalnins, E. Celms, A. Sostaks. Simple and Efficient Implementation of Pattern Matching in
MOLA Tool. Proceedings of the 7th International Baltic Conference on Databases and
Information Systems (Baltic DB&IS’2006). , Vilnius, Lithuania, July 3-6, 2006, pp. 159-167.

6.2 Other publications of the author in reviewed international
conference materials (directly non-related to the topic of the
thesis)

14. A. Kalnins, J. Barzdins, E. Celms. UML Business Modeling Profile. - Proceedings of ISD’2004,
Vilnius, Lithuania, September 9-11, 2004, pp.182-194.

15. J.Viksna, E.Celms, M.Opmanis, K.Podnieks, P.Rucevskis, A.Zarins, A.Barrett, S.Guha Neogi,
M.Krestyaninova, M.McCarthy, A.Brazma, U.Sarkans. PASSIM - an open source software
system for managing information in biomedical studies. BMC Bioinformatics, vol. 8:52, 2007.

 EC_Kopsavilkums_eng.doc 33

6.3 Other sources used in thesis
16. Domain-specific language, DSL.

Internet – http://en.wikipedia.org/wiki/ Domain-specific_programming_language
17. Stahl Thomas, Volter Markus. Model-Driven Software Development. John Wiley & Sons, Ltd.,

2006.
18. Jorn Bettin. Model-Driven Software Development: An emerging paradigm for industrialized

software asset development. 2004. Internet – http://www.softmetaware.com/mdsd-and-isad.pdf.
19. Object Management Group (OMG). Internet – http://www.omg.org
20. Tool session of the “European Conference on Model Driven Architecture - Foundations and

Applications (ECMDA-FA)”, November 7-10th, 2005, Nuernberg, Germany.
21. ReDSeeDS (Requirements-Driven Software Development System).

Internet – http://www.redseeds.eu
22. A. Kalnins, J. Barzdins. MDA Support by Transformation Based Tool. Proceedings of First

International Workshop MoRSe 2006, Warsaw, Poland, October 2006, pp. 21-24.
23. Object Management Group. Meta Object Facility (MOF). Internet – http://www.omg.org/mof
24. Object Management Group. Meta Object Facility Core Specification, version 2.0, 2006.

Internet – http://www.omg.org/docs/formal/06-01-01.pdf
25. Booch G., Jackobson I., Rumbaugh J. The Unified Modeling Language. Reference Manual,

Addison-Wesley, 1999..
26. Object Management Group. Unified Modeling Language: Superstructure. Version 2.0 (Final

Adopted Specification), 2005. Internet – http://www.omg.org/docs/formal/05-07-04.pdf
27. Object Management Group. Unified Modeling Language: Infrastructure. Version 2.0 (Final

Adopted Specification), 2005. Internet – http://www.omg.org/docs/formal/05-07-05.pdf
28. Object Management Group. Unified Modeling Language: Superstructure. Version 2.1.1, 2007.

Internet – http://www.omg.org/docs/formal/07-02-05.pdf
29. Object Management Group. Unified Modeling Language: Infrastructure. Version 2.1.1, 2007.

Internet – http://www.omg.org/docs/formal/07-02-06.pdf
30. Object Management Group. Business Process Modeling Notation (BPMN), Final Adopted

Specification, OMG, 2006. Internet – http://www.omg.org/docs/dtch/06-02-01.pdf
31. Object Management Group. Model Driven Architecture (MDA).

Internet – http://www.omg.org/mda
32. Kleppe A., Warmer J., Bast W. MDA Explained. The model driven architecture: practice and

promise. Addison-Wesley, 2003.
33. Object Management Group. MDA Guide Version 1.0.1.

Internet– http://www.omg.org/docs/omg/03-06-01.pdf
34. Object Management Group. Request for Proposal: MOF 2.0 Query / Views / Transformations,

2002. Internet – http://www.omg.org/docs/ad/02-04-10.pdf
35. Object Management Group. QVT – Query/View/Transformation Specification. (Final Adopted

Specification), 2005. Internet – www.omg.org/docs/ptc/05-11-01.pdf
36. IMCS (LUMII). The Base Transformation Language L0, 2007.

Internet – http://l0.mii.lu.lv/L0_plus_CurrVers_2_4.pdf
37. Agrawal A., Karsai G, Shi F. Graph Transformations on Domain-Specific Models. Technical

report, Institute for Software Integrated Systems, Vanderbilt University, ISIS-03-403, 2003
38. Vanderbilt University. GReAT. Internet – http://repo.isis.vanderbilt.edu/tools/get_tool?GReAT
39. Willink E.D. A concrete UML-based graphical transformation syntax - The UML to RDBMS

example in UMLX. Workshop on Metamodelling for MDA, University of York, England, 24-25
November, 2003.

40. Bezivin J., Dupe G., Jouault F., et al. First experiments with the ATL model transformation
language: Transforming XSLT into XQuery. 2nd OOPSLA Workshop on Generative
Techniques in Context of MDA, Anaheim, California, 2003.

41. Institut national de recherche en informatique et en automatique (INRIA). ATL : Atlas
Transformation Language. Internet – http://www.sciences.univ-nantes.fr/lina/atl

42. Simple Transformation Rule Language (TRL). Internet – http://modfact.lip6.fr/qvtP.html
43. DSTC. Tefkat: The EMF Transformation Engine.Online documentation.

Internet – http://www.dstc.edu.au/tefkat
44. TU Berlin, TFS. The Attributed Graph Grammar System (AGG).

Internet – http://tfs.cs.tu-berlin.de/agg

 EC_Kopsavilkums_eng.doc 34

45. IBM. Model Transformation Framework (MTF).
Internet – http://www.alphaworks.ibm.com/tech/mtf

46. McGill University, Modelling, Simulation and Design Lab. ATOM.
Internet – http://atom3.cs.mcgill.ca

47. Budapest University of Technology and Economics, Department of Automation and Applied
Informatics. Visual Modeling and Transformation System (VMTS).
Internet – http://avalon.aut.bme.hu/~tihamer/research/vmts

48. Institut fur Informatik der Technischen Universitat Munchen, Peter Braun, Frank Marschall. The
Bidirectional Object Oriented Transformation Language (BOTL).
Internet – http://wwwbib.informatik.tu-muenchen.de/infberichte/2003/TUM-I0307.pdf

49. Octavian Patrascoiu. Yet Another Transformation Language (YATL). Proceedings of the 1st
European MDA Workshop, MDA-IA, pages 83-90. University of Twente, the Nederlands,
January 2004. Internet – http://www.cs.kent.ac.uk/pubs/2004/1829

50. Universitat Paderborn, Institut fur Informatik. Fujaba.
Internet – http://wwwcs.uni-paderborn.de/cs/fujaba/documents/user/manuals/FujabaDoc.pdf

51. Budapest University of Technology and Economics, GMT subproject. Visual Automated Model
Transformations (VIATRA2).
Internet – http://dev.eclipse.org/viewcvs/indextech.cgi/gmt-home/subprojects/VIATRA2/index.html

52. Jesus Sanchez Cuadrado, Jesus Garcia Molina, Marcos Menarguez Tortosa. RubyTL: A
Practical, Extensible Transformation Language. Model Driven Architecture - Foundations and
Applications, Second European Conference, ECMDA-FA 2006, Bilbao, Spain, July 10-13, 2006.
LNCS 4066, Springer 2006.

53. Kleppe, A. Towards general purpose high level software languages. Model Driven Architecture
- Foundations and Applications (A. Hartman and D. Kreische, eds.), vol. 3748 of LNCS,
Springer-Verlag, Nov. 2005.

54. Laurence Tratt. The MT model transformation language. Technical report TR-05-02,
Department of Computer Science, King's College London, May 2005.

55. Joint revised submission by Compuware Corporation, SUN Microsystems, … (OMG Document
ad/2003-08-07). XMOF Queries, Views and Transformations on Models using MOF, OCL and
Patterns, 2003. Internet – http://www.omg.org/docs/ad/03-08-07.pdf

56. Compuware. OptimalJ (Model-driven development for java).
Internet – http://www.compuware.com/products/optimalj/

57. EU ESPRIT project, Application Development for the Distributed Enterprise (ADDE).
Internet – http://www.fast.de/ADDE

58. Smolander, K., Martiin, P., Lyytinen, K., Tahvanainen, V-P. Metaedit – a flexible graphical
environment for methodology modelling. Springer-Verlag, 1991.

59. Ebert, J., Suttenbach, R., Uhe, I. Meta-CASE in Practice: a Case for KOGGE. Proceedings of
the 9th International Conference, CAiSE'97, Barcelona, Catalonia, Spain , 1997, pp.203-216.

60. Lincoln Software Ltd. IPSYS Toolbuilder Manual, Version. 2.1, 1996.
61. Honeywell Inc. The Domain Modeling Environment (DOME), Users Guide.

Internet – http://www.htc.honeywell.com/dome
62. ETH Zurich, TIK. The Moses project. Internet – http://www.tik.ee.ethz.ch/~moses
63. Object Management Group. OCL 2.0 Specification, Version 2.0, 2006.

Internet – http://www.omg.org/docs/formal/06-05-01.pdf
64. MetaCase. MetaEdit+ resources. Internet – http://www.metacase.com/papers/index.html
65. Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason IV, C., Nordstrom, G.,

Sprinkle, J., Volgyesi, P. The Generic Modeling Environment (GME). Workshop on Intelligent
Signal Processing, Budapest, Hungary, May 17, 2001.

66. de Lara, J,, Vangheluwe, H., Alfonseca, M. Meta-Modelling and Graph Grammars for Multi-
Paradigm Modelling in AToM3. Software and Systems Modeling (SoSyM), Volume 3, Number
3, August 2004, pp. 194-209.

67. Eclipse. Internet – http://www.eclipse.org
68. IBM. Rational Software Architect (RSA).

Internet – http://www-306.ibm.com/software/awdtools/architect/swarchitect/index.html
69. Object Management Group. MOF 2.0/XMI Mapping Specification, v2.1, 2005.

Internet – http://www.omg.org/docs/formal/05-09-01.pdf
70. Hibernate. Internet – http://www.hibernate.org
71. IMCS (LUMII). MOLA home page. Internet – http://mola.mii.lu.lv
72. Bootstrapping. Internet – http://en.wikipedia.org/wiki/Bootstrapping_%28computing%29

 EC_Kopsavilkums_eng.doc 35

7 Annex

7.1 Author’s reports on thesis results in international scientific
conferences or seminars

1. L. Lace, E. Celms, A. Kalnins. Diagram definition facilities in a generic modeling tool. -

International Conference on Modelling and Simulation of Business systems, Vilnius, 2003, pp.220-
224.

2. A. Kalnins, J. Barzdins, E. Celms. Model Transformation Language MOLA. - Model Driven
Architecture: European MDA Workshop: Foundations and Applications, MDAFA 2004, Linkoping,
Sweden, June 10-11, 2004.

3. A. Kalnins, J. Barzdins, E. Celms. Basics of Model Transformation Language MOLA. - ECOOP
2004 (Workshop on Model Transformation and execution in the context of MDA) , Oslo, Norway,
June 14-18, 2004.

4. A. Kalnins, J. Barzdins, E. Celms. Model Transformation Language MOLA: Extended Patterns. -
Databases and Information Systems, 6th International Baltic Conference DB&IS’2004, Riga,
Latvia, 2004.

5. A. Kalnins, J. Barzdins, E. Celms. Efficiency Problems in MOLA Implementation. 19th
International Conference, OOPSLA’2004 (Workshop "Best Practices for Model-Driven Software
Development") , Vancouver, Canada, October 2004.

6. A. Kalnins, E. Celms, A. Sostaks. Tool support for MOLA. Fourth International Conference on
Generative Programming and Component Engineering (GPCE'05). Workshop on Graph and Model
Transformation (GraMoT) , Tallinn, Estonia, September 2005.

7. A. Kalnins, E. Celms, A. Sostaks. Model Transformation Approach Based on MOLA. ACM/IEEE
8th International Conference on Model Driven Engineering Languages and Systems
(MoDELS/UML '2005). (MoDELS/UML'05 Workshop: Model Transformations in Practice
(MTIP)) , Montego Bay, Jamaica, October 2-7, 2005.

7.2 Publications included in thesis and personal contribution by
the author of thesis

Authors Publication Contribution
by the thesis
author from

the total
research
volume

Description of contribution by
the thesis author

A. Kalniņš,
K. Podnieks,
A. Zariņš,
E. Celms,
J. Bārzdiņš.

Editor definition
language and its
implementation. -
Lecture Notes in
Computer Science,
Springer, v. 2244, 2001,
pp.530-537.

30% • Participation in idea
elaboration

• Development of basic
constructions of EdDL
language

• Designing and development
of annotation compiler and
editor engine

A. Kalniņš,
J. Bārzdiņš,
E. Celms,

The first step towards
generic modeling tool. -
Proceedings of the Fifth

30% • Participation in idea
elaboration

• Development of basic

 EC_Kopsavilkums_eng.doc 36

L. Lāce,
M. Opmanis,
K. Podnieks,
A. Zariņš.

International Baltic
Conference on
Databases and
Information Systems,
Tallin, 2002, v.2,
pp.167-180.

architectural principles of
the generic metamodel
based modeling tool

• Designing and
implementation of the
generic modeling tool
dispatcher

• Designing and
implementation of the
model tree engine

L. Lāce,
E. Celms,
A. Kalniņš.

Diagram definition
facilities in a generic
modeling tool. -
Proceedings of
International Conference
on Modelling and
Simulation of Business
systems, Vilnius, 2003,
pp.220-224.

40% • Participation in idea
elaboration

• Development of the basic
principles of diagram
annotation definition
(mapping)

• Diagram annotation support
in generic metamodel based
modeling tool

E. Celms,
A. Kalniņš,
L. Lāce.

Diagram definition
facilities based on
metamodel mappings. -
Proceedings of the 3rd
OOPSLA (Workshop on
Domain-Specific
Modeling) , University
of Jyvaskyla, 2003,
pp.23-32.

50% • Participation in idea
elaboration

• Elaboration of basic
principles of mapping types

• Development of mapping
type library

E. Celms Generic Data
Representation by Table
in Metamodel Based
Modelling Tool.
Scientific proceedings of
University of Latvia,
Computer Science and
Information
Technologies,
Automation of
Information Processing,
vol. 669, Riga, Latvia,
April 2004, pp. 53-61.

100% • Participation in idea
elaboration

• Designing and
implementation of the
generic table editor engine

• Designing and
implementation of the
generic property editor
engine

A. Kalniņš,
J. Bārzdiņš,
E. Celms.

Model Transformation
Language MOLA. -
Lecture Notes in
Computer Science,
Springer, v. 3599, 2005.
Model Driven
Architecture: European
MDA Workshops:

40% • Participation in idea
elaboration

• Development of the basic
constructions of the model
transformation language
MOLA

 EC_Kopsavilkums_eng.doc 37

Foundations and
Applications, MDAFA
2003 and MDAFA
2004, Twente, The
Netherlands, June 26-27,
2003 and Linkoping,
Sweden, June 10-11,
2004. Revised Selected
Papers, pp. 62-76.

A. Kalniņš,
J. Bārzdiņš,
E. Celms.

Basics of Model
Transformation
Language MOLA. -
ECOOP 2004
(Workshop on Model
Transformation and
execution in the context
of MDA) , Oslo,
Norway, June 14-18,
2004, p. 6.

60% • Participation in idea
elaboration

• Introduction of OO
programming elements into
the MOLA language

A. Kalniņš,
J. Bārzdiņš,
E. Celms.

Model Transformation
Language MOLA:
Extended Patterns. -
Databases and
Information Systems,
Selected papers from the
6th International Baltic
Conference
DB&IS’2004, IOS
Press, FAIA (Frontiers
in Artificial Intelligence
and Applications), vol.
118, 2005, pp. 169-184.

60% • Participation in idea
elaboration

• Development of the basic
principles for extended
patterns

A. Kalniņš,
J. Bārzdiņš,
E. Celms.

MOLA Language:
Methodology Sketch. -
Proceedings of
EWMDA-2, Canterbury,
England, September 7-8,
2004, pp.194-203.

60% • Participation in idea
elaboration

• Elaboration of methodology
for transformation
programming for MOLA
language

A. Kalniņš,
J. Bārzdiņš,
E. Celms.

Efficiency Problems in
MOLA Implementation.
19th International
Conference,
OOPSLA’2004
(Workshop "Best
Practices for Model-
Driven Software
Development") ,
Vancouver, Canada,

80%

• Participation in idea
elaboration

• Development of the
hypothetical virtual machine
of MOLA language

• Evaluations of pattern
matching efficiency for
MOLA language

• Elaboration of basic

 EC_Kopsavilkums_eng.doc 38

October 2004, p. 14. principles of language
application, which ensure
convenient implementation
of the language

A. Kalniņš,
E. Celms,
A. Šostaks.

Tool support for
MOLA. Fourth
International Conference
on Generative
Programming and
Component Engineering
(GPCE'05). Proceedings
of the Workshop on
Graph and Model
Transformation
(GraMoT) , Tallinn,
Estonia, September
2005, pp. 162-173.

50% • Participation in idea
elaboration

• Elaboration of basic
principles of MOLA Tool
architecture

• Development and
implementation of basic
principles of generic UML
2.0 XMI import/export

• Designing and development
of the MOLA Tool Eclipse
plug-in

A. Kalniņš,
E. Celms,
A. Šostaks.

Model Transformation
Approach Based on
MOLA. ACM/IEEE 8th
International Conference
on Model Driven
Engineering Languages
and Systems
(MoDELS/UML '2005).
(MoDELS/UML'05
Workshop: Model
Transformations in
Practice (MTIP)) ,
Montego Bay, Jamaica,
October 2-7, 2005, p.
25.

40% • Participation in idea
elaboration

• Development of basic
principles of recursion
application for MOLA
language

A. Kalniņš,
E. Celms,
A. Šostaks.

Simple and Efficient
Implementation of
Pattern Matching in
MOLA Tool.
Proceedings of the 7th
International Baltic
Conference on
Databases and
Information Systems
(Baltic DB&IS’2006). ,
Vilnius, Lithuania, July
3-6, 2006, pp. 159-167.

20% • Participation in idea
elaboration

• Designing and elaboration
of import/export services in
MOLA Tool

	Relevance of the thesis and the achieved results
	General description of the thesis
	1 Metamodeling and model-driven software development
	1.1 Metamodeling, metamodels, and models
	1.2 Model-driven software development
	1.3 Model transformation languages

	2 Editor definition language and generic modeling tool
	2.1 Editor definition language and the prototype of the generic modeling tool
	2.2 Generic modeling tool

	3 Model transformation language MOLA and its application methodology
	3.1 Model transformation language MOLA
	3.2 Usage methodology of MOLA language and efficiency of the pattern matching

	4 Implementation of MOLA language and application of the language
	5 Conclusions
	6 References
	6.1 Author’s publications in reviewed international conference materials
	6.2 Other publications of the author in reviewed international conference materials (directly non-related to the topic of the thesis)
	6.3 Other sources used in thesis

	7 Annex
	7.1 Author’s reports on thesis results in international scientific conferences or seminars
	7.2 Publications included in thesis and personal contribution by the author of thesis

