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Annotation

According to the author’s observations two mainstreams in the development
of the theory of fuzzy sets can be isolated: the fuzzification of already known
notions and the development of notions which either were originated in the
frame of the theory of fuzzy sets or are tightly related to the theory. Many
approaches and notions in topology, algebra, financial calculus and other
fields were generalized by using fuzzy sets. Under the second mainstream we
can mention such notions as the extension principle, a t-norm, a possibility
distribution and others.
The goal of the thesis is to contribute to the both mainstreams. The fol-
lowing task is completed in the thesis: the theory of fuzzy matrices and the
theory of generalized aggregation operators are developed and possible prac-
tical applications of the obtained results are outlined.
Years over years fuzzy sets community comes with a plenty of new and in-
teresting results in the theory of fuzzy sets. Introduction of new and bright
results is the complimentary but not easy task. This contribution has al-
ready interested at least one scientist from the community, i.e. the scientific
supervisor of the thesis, thus the author considers that its development was
not useless.

MSC: 15A09, 65G30, 94D05, 03E72, 91B99, 62P20, 62P99

Key words and phrases: Interval matrix, interval inverse matrix, fuzzy
matrix, fuzzy inverse matrix, system of interval linear equations, system of
fuzzy linear equations, fuzzy input-output model, aggregation operator, gen-
eralized aggregation operator, pointwise extension, t-norm, T -extension.
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1 Introduction

Processing of inexact data is one of the challenging problems for modern engi-
neers and practitioners in different areas. Since Kolmogorov had introduced
the axiomatic of the modern probability theory in 1933 and even before it
was the main tool used by scientists. But the apparatus of probability theory
can not treat all kinds of vagueness, thus the necessity of a new approach
was obvious.
At the beginning of the 20th century philosophers actively discussed impos-
sibility of putting real processes or objects into the strict frames based on
the principles of bivalent logic. Provided intensive and fruitful work in the
20th century in the circles of philosophers and mathematicians the prompt
emergency of the theory of fuzzy sets was obvious. And it was crystallized
in Zadeh’s pioneering paper [40] in 1965 where foundations of the theory of
fuzzy sets were presented. Two years later in 1967 Goguen ([8]) put the basis
for the theory of L-fuzzy sets thus extending the theory proposed by Zadeh.
Since these historical publications the era of the theory of fuzzy sets started
([6]). In the last forty five years many contributions have developed the the-
ory of fuzzy sets to the impressive theory with the extensive list of notions,
tools, theoretical results and the broad area of applications. The author in
the thesis had contributed to the development of the theory of fuzzy sets.
In order to reach the goal the following task was defined in the thesis: to
develop the theory of fuzzy matrices and the theory of generalized ag-
gregation operators and to outline possible applications of the obtained
results.
Results provided in the thesis can be divided into two mainstreams: gener-
alization of classical mathematical notions by means of fuzzy sets and con-
tribution to the integral part of the fuzzy sets theory.
This work provides the main results presented in the thesis. The structure is
the following: we recall the basic notions and results of the fuzzy set theory
in the next chapter; the third chapter provides the main results on theory
of fuzzy matrices; and the last chapter is devoted to the development of the
theory of generalized aggregation operators.
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2 Preliminaries

We flash results of the theory of fuzzy set in this chapter. Mainly the source
[35] from the bibliography list is cited, but other sources, e.g. [6, 19] can also
be used.

Definition 1 ([35]) A mapping M : X → [0, 1] is called a fuzzy subset of
the set X or simply a fuzzy set.

The set of all fuzzy subsets of X will be denoted F (X).
Let a fuzzy set M be given, if we fix α ∈ [0, 1] then:

Definition 2 ([35]) Mα = {x : M(x) ≥ α} is called an α-cut of the fuzzy
set M .

Definition 3 ([35]) Mα = {x : M(x) > α} is called a strict α-cut of the
fuzzy set M .

Extension principle is one of the ways how to extend known results to more
general cases, and in particular to fuzzy sets.

Definition 4 ([35]) Let a mapping ϕ : X × Y → Z be given, then the
mapping ϕ̃ : F (X)× F (Y )→ F (Z) defined by the formula

ϕ̃(M,N)(z) = sup{min(M(x), N(y))|x ∈ X, y ∈ Y, ϕ(x, y) = z},

where M ∈ F (X), N ∈ F (Y ),
is called the extension of the function ϕ(x, y) to the sets F (X), F (Y ).

Any arithmetic operation can be extended to the operation on fuzzy sets of
real numbers.
Further we observe different properties of fuzzy sets, which play an important
role in the work:

Definition 5 ([35]) A mapping f : X → R is upper semicontinuous, if for
all t ∈ R the set {x|f(x) ≥ t} is closed.

Fuzzy quantities form a special class of fuzzy sets:

Definition 6 ([35]) A convex, upper semicontinuous fuzzy set M : R →
[0, 1] with bounded α-cuts for all α > 0 is called a fuzzy quantity.

The class of all fuzzy quantities will be denoted FQ(R).
Fuzzy intervals (FI(R)) and fuzzy numbers (FN(R)) are subclasses of fuzzy
quantities:
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Definition 7 ([35]) A fuzzy quantity P is called a fuzzy interval if ∃I =
[a, b] ⊆ (−∞,+∞) : P (x) = 1⇔ x ∈ I. Interval I is called the vertex of P .

Definition 8 ([35]) Fuzzy quantity P is called a fuzzy number if ∃!x ∈ R :
P (x) = 1. Point x is called the vertex of P .

The notion of a t-norm is fundamental in different areas of fuzzy sets theory,
and it plays an important role in our study. Detailed information on t-norms
can be found e.g. in [15, 35]:

Definition 9 ([35]) A mapping T : [0, 1]× [0, 1]→ [0, 1] is called a t-norm
provided that:
(1) T (x, y) = T (y, x) - symmetry
(2) T (T (x, y), z) = T (x, T (y, z)) - associativity
(3) x1 ≤ x2 ⇒ T (x1, y) ≤ T (x2, y)) - monotonicity
(4) T (x, 1) = x.

Examples of t-norms:
Min t-norm:

TM(x, y) = min(x, y)

Drastic t-norm:

TW (x, y) =

{
min(x, y), if max(x, y) = 1
0, otherwise

Product t-norm:
TP (x, y) = x · y

Lukasiewicz t-norm:

TL(x, y) = max{x+ y − 1, 0}.
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3 The theory of fuzzy matrices: theoretical

foundations and practical applications

We set out the theory of fuzzy matrices in this chapter. First we define a
fuzzy matrix and operations with fuzzy matrices. Later we introduce the
notion of the fuzzy inverse, which is based on the notion of the inverse of
an interval matrix ([26, 27, 30]). Afterwards we focus on calculation of the
fuzzy inverse in special cases and its estimation. We conclude the chapter by
practical applications.

3.1 Fuzzy matrix: basic notions

We define a fuzzy matrix and operations with fuzzy matrices in this section.

Definition 10 A matrix AF = (Aij)m×n, where Aij ∀i, j is a fuzzy number
is called a fuzzy matrix.

The set of all fuzzy matrices is denoted M.
We introduce definitions of lower and upper dominants of a fuzzy matrix:

Definition 11 AU
F is an upper dominant of AF , if Aij(x) ≤ AUij(x), ∀x ∈

R, ∀i, j ∈ 1, n.

Definition 12 AL
F is a lower dominant of AF , if Aij(x) ≥ ALij(x), ∀x ∈

R, ∀i, j ∈ 1, n.

Operations with fuzzy matrices are defined similarly like in the crisp case.
Operations with fuzzy numbers (elements of fuzzy matrices) are extension of
classical operations via TM .
The sum of fuzzy matrices AF = (Aij)m×n, BF = (Bij)m×n is a fuzzy matrix

CF = AF + BF ,

where CF = (Cij)m×n = (Aij +Bij)m×n.
Multiplication of a fuzzy matrix AF = (Aij)m×n with a fuzzy number C is a
fuzzy matrix

BF = CAF ,

where BF = (Bij)m×n = (CAij)m×n.
Multiplication of two fuzzy matrices AF = (Aij)m×n, BF = (Bij)n×l is a
fuzzy matrix:

CF = AFBF ,

where CF = (Cij)m×l = (
n∑
k=1

AikBkj)m×l.
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Proposition 3.1 The set M is closed w.r.t. fuzzy matrices addition, multi-
plication and multiplication with C ∈ FN(R).

3.2 Fuzzy inverse matrix

3.2.1 The inverse matrix of an interval matrix

We build the fuzzy inverse from special interval matrices. Necessary notions
and results on the inverse of an interval matrix can be found in [18], [26],
[27] and [30]. Work on interval arithmetic [23] will make reading easier.
Matrix AI is called an interval matrix if its elements are closed intervals:

AI = [A,A],

where A,A are correspondingly the matrix of lower bounds and the matrix
of upper bounds.
AI is called regular if all A ∈ AI are non-singular. For each regular interval
matrix we define the inverse matrix as the narrowest interval matrix, which
contains all inverse matrices: (AI)

−1 = {A−1 : A ∈ AI}.
We calculate the inverse of an interval matrix by means of algorithm proposed
by J.Rohn ([27], [30]). The essence of the algorithm is the following: calculate
inverse matrices of all special type 22n−1 vertex matrices. Then take minimum
and maximum of each element, thus constructing intervals. Elements of these
special type vertex matrices are elements of A and A.

3.2.2 The inverse matrix of a fuzzy matrix

Let’s consider a square fuzzy matrix AF = (Aij)n×n. If one fixes an arbitrary
α ∈ (0; 1] then AαF =

([
(a)αij, (a)αij

])
n×n , is an interval matrix, whose elements

are the corresponding α-cuts of the elements Aij. When α = 0 we take the
closure of the strict α-cut of Aij, ∀i, j in the role of elements of A0

F , thus
obtaining an interval matrix.
We calculate inverse matrices of interval matrices AαF and thus we get the
spectrum of interval matrices:

B0
F , B

α1
F , ..., B

αn
F , ...B1

F ,

where Bα
F = (AαF )−1 and its ij element is [(b)αij; (b)αij)].

We say that fuzzy matrix AF is regular, if for all α ∈ [0, 1] interval matrix
AαF is regular.
Inverse matrix of a regular fuzzy matrix is defined in the following way:
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Definition 13 A matrix BF = (Bij)n×n with its elements Bij : R → [0, 1]
defined in the following way:

Bij(x) = max{α : x ∈ [(b)αij; (b)αij]} ∀x ∈ R

is called the inverse matrix of a regular fuzzy matrix AF = (Aij)n×n.

BF is fuzzy matrix and further we observe its calculation, estimation and
practical applications.

3.2.3 Calculation of the fuzzy inverse in special cases and estima-
tion of the fuzzy inverse

It is shown in the work that in the case of 2 × 2 fuzzy matrix AF with the
same sign pattern elements (all positive or all negative) only 2 inverse ma-
trices need to be calculated on each α-cut.
Calculation of the fuzzy inverse is simplified also in the case when AF is an
M-fuzzy matrix. A fuzzy matrix AF is called an M-fuzzy matrix if ∀A ∈ A0

F

is an M-matrix. Characterization and properties of M-matrices can be found
e.g. in [1]. Similarly like previously only 2 inverse matrices need to be cal-
culated (in this case the inverses of the matrix of lower and upper bonds).
Estimation of the fuzzy inverse is reasonable when calculation of the fuzzy
inverse is time consuming and the estimation is sufficient for practical pur-
poses.
We conduct the construction in the following way: first we build estimation
(upper and lower) for the inverse of interval matrices AαF , α ∈ [0, 1); after
that by means of special construction we build the fuzzy inverse.
The following lemma is proven in the work:

Lemma 3.2 Let AI = ([aij, aij])n×n be an arbitrary regular interval matrix

and BI = ([bij, bij])n×n be its inverse matrix, then for [bij, bij] the following
estimations hold:

[bij, bij] ⊆
[
a−1ij − 2

∆n−1
2

∆
, a−1ij + 2

∆n−1
2

∆

]⋂[
a−1ij − 2

∆n−1
2

∆
, a−1ij + 2

∆n−1
2

∆

]
,

where
A−1 = (a−1ij )n×n, A

−1
= (a−1ij )n×n,

∆n−1
2 is estimation from lemma 2.11 (proven in the work), which is based on

(n− 1)-dimensional matrix, ∆ = mink=1,...,22n−1(| detAk|).

We use the fact that A−1, A
−1 ∈ BI and we get the following estimation:

[bij, bij] ⊇ [min{(aij)−1, (aij)−1},max{(aij)−1, (aij)−1}]. (1)

We provide the construction here:
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Construction 1 We have an arbitrary fuzzy matrix AF and corresponding
set of interval matrices:

A0
F , ...,A

α
F = [Aα, A

α
] = ([aαij, a

α
ij])n×n, ...,A

1
F .

According to lemma 3.2 for an arbitrary element of interval matrix (Aα
F )−1 =

Bα
F = ([bαij, b

α

ij])n×n α ∈ [0, 1) the following estimation holds:

[bαij, b
α

ij] ⊆
[
(aαij)

−1 − 2
∆n−1

2

∆
, (aαij)

−1 + 2
∆n−1

2

∆

]⋂
⋂[

(aαij)
−1 − 2

∆n−1
2

∆
, (aαij)

−1 + 2
∆n−1

2

∆

]
, (2)

where
(Aα)−1 = ((aαij)

−1)n×n, (A
α
)−1 = ((aαij)

−1)n×n,

∆n−1
2 is estimation from lemma 2.11, which is based on n − 1-dimensional

matrix, ∆ = mink=1,...,22n−1(| detAk|) and Ak are vertex matrices of interval
matrix Aα

F .
When α = 1 elements of the crisp matrix B1

F = (b1ij)n×n are evaluated by
means of corresponding elements of the crisp matrix:

(A1
F )−1 = ((a1ij)

−1)n×n (3)

We denote Iα, α ∈ [0, 1] interval, which includes [bαij, b
α

ij] according to formu-
las (2) and (3).
For all x ∈ R we assign the set of indices Nx in the following way:

α ∈ Nx ⇔ x ∈ Iα (4)

The upper dominant BU
F = (BU

ij )n×n of the fuzzy inverse matrix BF =
(Bij)n×n is defined in the following way:

BU
ij (x) = max

α∈Nx
α, ∀i, j = 1, ..., n. (5)

Obviously Bij(x) ≤ BU
ij (x) ∀x ∀i, j = 1, ..., n and we finish construction here.

We build the lower dominant of the fuzzy inverse using formula (1) and the
above construction.
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3.3 Applications of the fuzzy inverse

We show practical applications of fuzzy inverse in this section. First we
observe the estimation of the solution of the system of fuzzy linear equations
(hereinafter SFLE), later we show some economical applications. More on
SFLE and its solutions can be found e.g. in [7], [25], [33],[38].
The system of equations

AFx = cF , (6)

where AF is an n × n a fuzzy matrix and cF is a one-column fuzzy matrix
we call SFLE.
We introduce the notion of fuzzy approximate solution (AFS):

Definition 14 A fuzzy vector

x = A−1F cF = BF cF

is AFS of (6).

Elements of x are fuzzy numbers and it can be shown using definition of A−1F .
If A−1F is not given, we can use the upper dominant of it.
It is shown in the work that AFS is the upper dominant of the fuzzy solutions
which coincide with the special type interval solutions. More on coincidence
of fuzzy and interval solutions can be found in [20], [27],[28], [29].
Using AFS we can find approximate solutions for some economical problems.
Let’s the input-output model ([22]) in the fuzzy environment be given. Input-
output analysis in the uncertain environment( [13], [14], [31] un [2]):

(E − AF )XF = YF , (7)

where E is the identity matrix.
The model (7) is used to solve the two main problems in planning:
(P1) to find a gross output x which yields a given net output y
(P2) to find a net output y corresponding to a given gross output x.
According to the definition of AFS it and its upper dominant are the esti-
mations of the solution of (P1).
Similar approach we use for the estimation of fuzzy economic multipliers
([22],[24]). The mathematical model is the following:

M = (L−1)
′
(1, 1, ..., 1), (8)

where L is the matrix of interrelations, which characterize the economical
environment. When L is a fuzzy matrix, the calculation of fuzzy multiplier
is related to calculation of the fuzzy inverse.
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3.4 Concluding remarks on fuzzy matrices

The notion of the fuzzy inverse is central in this chapter because it has the
largest practical value. As the first priority directions for further study we
outline the following:

• development of simpler algorithms for calculation of the fuzzy inverse

• development of algorithms for more accurate estimation of the fuzzy
inverse.

Also it is interesting to know what happens with the fuzzy inverse if oper-
ations with fuzzy matrices are defined by means of some other t-norm, not
only TM .
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4 Generalized aggregation: theoretical foun-

dations and practical applications

The second chapter of the work is dealing with generalized aggregation. We
briefly provide important results here.
We develop further the notion introduced by Takači in [36], although other
interesting concepts (e.g. [21, 32, 39]) can be found in literature.
Term ”generalized” refers to the generalized input and output of aggregation
operators (hereinafter agops), i.e. generalized aggregation operators (here-
inafter gagops) aggregate fuzzy sets. We consider two construction methods
of gagop and namely pointwise extension and T -extension.
At first we provide fundamental results on agops, then we consider γ-agops
and later we focus on generalized aggregation. We conclude the chapter
outlining practical applications of gagops and showing directions for future
research.

4.1 Fundamentals on aggregation operators

We provide the basics on aggregation operators ([3, 4, 15]).

Definition 15 ([3]) A mapping A : ∪n∈N[0, 1]n → [0, 1] is an agop on the
unit interval if for every n ∈ N the following conditions hold:
(A1) A(0, ..., 0) = 0
(A2) A(1, ..., 1) = 1
(A3) (∀i = 1, n) (xi ≤ yi)⇒ A(x1, x2, ..., xn) ≤ A(y1, y2, ..., yn)

Conditions (A1) and (A2) are called boundary conditions, condition (A3)
resembles the monotonicity property of A.
In general, the number of the input values to be aggregated is unknown,
and therefore an agop can be presented as a family A = (A(n))n∈N, where
A(n) = A|[0,1]n . Operators A(n) and A(m) for different n and m need not be
related. We use convention A(1)(x) = x ∀x ∈ [0, 1].
Problem of aggregation is very broad in general, and we use the following two
restrictions in the work: the number of input values is finite and I = [0, 1] is
the set of inputs and outputs. If the second restriction is a matter of rescaling
then the first divides the global aggregation into two parts, i.e aggregation
of finite number of inputs and aggregation of infinite number of inputs. But
even with a such restriction the problem of aggregation is still very general.
The following mappings are agops in the sense of definition 15:

Π(x1, ..., xn) =
n∏
i=1

xi,
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M(x1, ..., xn) =
1

n

n∑
i=1

xi,

max(x1, ..., xn) = max(x1, ..., xn),

min(x1, ..., xn) = min(x1, ..., xn),

PF (x1, ..., xn) = x1, PL(x1, ..., xn) = xn.

Further we consider properties of agops.

Definition 16 ([3]) An element x ∈ [0, 1] is called an A-idempotent element
whenever A(n)(x, ..., x) = x,∀n ∈ N. A is called an idempotent agop if each
x ∈ [0, 1] is an idempotent element of A.

Definition 17 ([3]) An agop A : ∪n∈N[0, 1]n → [0, 1] is called a continuous
agop if for all n ∈ N the operators A(n) : [0, 1]n → [0, 1] are continuous, that
is, if

∀x1, ..., xn ∈ [0, 1],∀(x1j)j∈N, ..., (xnj)j∈N ∈ [0, 1]N : lim
j→∞

xij = xi

for i = 1, ..., n then

lim
j→∞

A(n)(x1j, ..., xnj) = A(n)(x1, ..., xn).

Definition 18 ([3]) An agop A : ∪n∈N[0, 1]n → [0, 1] is called a symmetric
agop if

∀n ∈ N,∀x1, ..., xn ∈ [0, 1] : A(x1, ..., xn) = A(xπ(1), ..., xπ(n))

for all permutations π = (π(1), ..., π(n)) of (1, ..., n).

Definition 19 ([3]) An agop A : ∪n∈N[0, 1]n → [0, 1] is associative if

∀n,m ∈ N,∀x1, ..., xn, y1, ..., ym ∈ [0, 1] :

A(x1, ..., xn, y1, ..., ym) = A(A(x1, ..., xn), A(y1, ..., ym))

Definition 20 ([3]) An agop A : ∪n∈N[0, 1]n → [0, 1] is bisymmetric if

∀n,m ∈ N,∀x11, ..., xmn ∈ [0, 1] :

A(mn)(x11, ..., xmn) = A(m)(A(n)(x11, ..., x1n), ..., A(n)(xm1, ..., xmn)) =

= A(n)(A(m)(x11, ..., xm1), ..., A(m)(x1n, ..., xmn))

15



Definition 21 ([3]) An element e ∈ [0, 1] is called a neutral element of A
if ∀n ∈ N,∀x1, ..., xn,∈ [0, 1] if xi = e for some i ∈ {1, ..., n} then

A(x1, ..., xn) = A(x1, ..., xi−1, xi+1, ..., xn)

Definition 22 ([3]) An element a ∈ [0, 1] is called an absorbing element of
A if

∀n ∈ N,∀x1, ..., xn,∈ [0, 1] : a ∈ {x1, ..., xn} ⇒ A(x1, ..., xn) = a

Definition 23 ([3]) An agop A : ∪n∈N[0, 1]n → [0, 1] is said to be:
(1) shift-invariant if

∀n ∈ N,∀b ∈ (0, 1),∀x1, ..., xn ∈ [0, 1− b] :

A(x1 + b, ..., xn + b) = A(x1, ..., xn) + b

(2) homogeneous if

∀n ∈ N,∀b ∈ (0, 1),∀x1, ..., xn ∈ [0, 1] :

A(bx1, ..., bxn) = bA(x1, ..., xn)

(3) linear if it homogeneous and shift-invariant
(4) additive if

∀n ∈ N,∀x1, ..., xn, y1, ..., yn ∈ [0, 1] such that x1 + y1, ..., xn + yn ∈ [0, 1] :

A(x1 + y1, ..., xn + yn) = A(x1, ..., xn) + A(y1, ..., yn)

More on agops and their definitions can be found e.g. in [3].

4.2 New class of aggregation operators: γ-agops

This section is devoted to γ-agops, which are a generalization of the class of
agops in some sense. Let γ ∈ [0, 1] and ϕγ : [0, 1]→ {0}∪ [γ, 1] be defined in
the following way:

ϕγ(x) =

{
0, if x < γ,
x, if x ≥ γ

Definition 24 A : ∪n∈N[0, 1]n → [0, 1] is an γ-agop on the unit interval if
the following conditions hold:
(A1) A(0, ..., 0) = 0
(A2) A(1, ..., 1) = 1
(Aγ) (∀i = 1, n, γ ∈ [0, 1]) (ϕγ(xi) ≤ ϕγ(yi))⇒ A(x1, ...xn) ≤ A(y1, ..., yn)
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If γ = 0 then ϕ0(x) = x and (Aγ) is equal to (A3) (definition 15).
We show in the work that each γ-agop is an agop as well.

Example 4.1 An agop

A2(x1, ..., xn) = min(w1x1, ..., wnxn),

where

wi =

{
0, if xi < γ,
1, if xi ≥ γ

is γ-agop as well.

Let’s introduce relation ≡ϕγ on [0, 1]n in the following way:

(x1, ..., xn) ≡ϕγ (y1, ..., yn)⇔

⇔ (ϕγ(x1), ..., ϕγ(xn)) = (ϕγ(y1), ..., ϕγ(yn)). (9)

Relation ≡ϕγ is reflexive, symmetric, transitive and thus it is an equivalence
relation.
We will denote equivalence classes Xk, k = 1, 2, ....

Proposition 4.2 If (x1, ..., xn), (y1, ..., yn) ∈ Xk, A is γ-agop then A(x1, ..., xn) =
A(y1, .., yn)

γ - agops have the following properties:

• γ-agops ∀γ > 0 are not idempotent;

• γ-agops ∀γ > 0 are not shift-invariant, are not homogeneous and thus
are not linear;

• if Aγ, γ ∈ (0, 1] is a γ-agop and a is its absorbing element then a = 0
or a > γ.

Regardless lack of important properties γ-agops are usefull in the frame of a
generalized aggregation, what we show further.

4.3 Order relations

Generalized aggregation is considered in the frame of an order relation. In
this section we summarize order relations considered further in the work.
Vertical order relation ⊆αF1

:

Definition 25 Let α ∈ [0, 1], P,Q ∈ F (R)

P ⊆αF1 Q⇔ (∀x ∈ R)(P (x) ≥ α⇒ P (x) ≤ Q(x)).
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The greatest element w.r.t. ⊆αF1 is defined in the following way:

1̃(x) = 1,∀x ∈ R. (10)

Let
Θ = {0̃(x)|0̃(x) ≤ α, ∀x ∈ R}. (11)

Capital Θ denotes the class of elements, where 0̃(x) = 0,∀x ∈ R is the least.
Provided the essence of the parameter α (it ”ignores” value if it is less than
α) we consider all elements of Θ to be equivalent. Further speaking about
boundary condition of a generalized agop (w.r.t.⊆αF1

) we require that ∀n ∈ N
n-ary aggregation of arbitrary elements from this class should be equal to an
element from this class, then we say that the boundary condition is satisfied.
Further we call Θ the class of minimal elements.
Horizontal order relation ⊆αF2

:

Definition 26 Let α ∈ (0, 1], P,Q ∈ F ([a, b])

P ⊆αF2
Q⇔ P

α ≤ Qα,

where

Pα = {x : P (x) ≥ α}, minPα = Pα, maxPα = P
α

Qα = {x : Q(x) ≥ α}, minQα = Qα, maxQα = Q
α
.

The classes

Θ = {0̃(x)|0̃(x) = 1, if x = a and 0̃(x) < α if x ∈ (a, b]},

Σ = {1̃(x)|1̃(x) = 1, if x = b and 1̃(x) < α if x ∈ [a, b)}
we will call correspondingly the class of minimal and maximal elements. The
least element is defined in the following way:

0̃(x) =

{
1, if x = a
0, otherwise

but the greatest element does not exist.
The necessity of the whole class instead of just one the least (or the greatest)
element is motivated by the essence of parameter α. Further in the context of
generalized aggregation (w.r.t.⊆αF2

) we require that ∀n ∈ N n-ary aggregation
of an arbitrary element from the class of minimal (maximal) elements is
equal to an arbitrary element from the same class, if this holds we say that
boundary condition is satisfied.

Remark 1 Relations ⊆αF1
and ⊆αF2

are transitive and asymmetric.
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4.4 Auxiliary results

Continous t-norms play an important role in the work. Following theorems
4.3, 4.4 and 4.5 are proven in the work for an arbitrary continous t-norm,
and they are generalization of the results in [35] pp. 75-77.

Theorem 4.3 If ◦ : R×R→ R is a continuous operation, T is a continuous
t-norm and P,Q ∈ F (R) are upper semicontinuous fuzzy sets with bounded
α-cuts ∀α > 0 then for all z ∈ R, z = x ◦ y ∃x0, y0 ∈ R such that z = x0 ◦ y0
and (P ◦Q)(z) = T (P (x0), Q(y0)).

Theorem 4.4 If ◦ : R×R→ R is a continuous operation, T is a continuous
t-norm and P,Q ∈ F (R) are upper semicontinuous fuzzy sets with bounded
α-cuts ∀α > 0 then

(P ◦Q)T (α,β) = Pα ◦Qβ.

Theorem 4.5 If ◦ : R×R→ R is a continuous operation, T is a continuous
t-norm and P,Q ∈ FQ(R) then P ◦Q ∈ FQ(R).

4.5 Generalized aggregation: introduction

Let ≺ be some order relation on F (R) with the least element 0̃ ∈ F (R) and
the greatest element 1̃ ∈ F (R).

Definition 27 [36] A mapping Ã : ∪n∈NF (R)n → F (R) is called a general-
ized aggregation operator w.r.t. the order relation ≺, if for every n ∈ N the
following conditions hold:
(Ã1) Ã(0̃, ..., 0̃) = 0̃
(Ã2) Ã(1̃, ..., 1̃) = 1̃
(Ã3) (∀i = 1, n) (Pi ≺ Qi)⇒ Ã(P1, ..., Pn) ≺ Ã(Q1, ..., Qn),
where P1, ..., Pn, Q1, ..., Qn ∈ F (R).

We use convention Ã(1)(P (x)) = P (x) for all P (x) ∈ F (R).
Inputs of gagops are upper semicontinuous fuzzy sets with bounded α-cuts,
α > 0, therefore further in the work F (R) denotes the class of fuzzy sets
with the mentioned characteristics. Sets FQ(R), F I(R), FN(R), FTI(R)
and FTN(R) denote correspondingly the set of fuzzy quantities, the set
of fuzzy intervals, the set of fuzzy numbers, the set of fuzzy trapezoidal in-
tervals and the set of fuzzy triangular numbers.
Properties of a gagop are defined in the same way like in the case of agop,
but with the adoption to the fuzzy inputs. Operations with fuzzy sets (e.g.
in the case of shift-invariance property) are performed via extension principle
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and using an arbitrary continuous t-norm.
We have shown in the paper that if a gagop has the neutral (or absorbing)
element then it is unique.

4.6 Pointwise extension

We start study on a pointwise extension.

Ã : ∪n∈NF (R)n → F (R)

is a pointwise extension of an arbitrary agop A provided that:

∀x ∈ R Ã(P1, ..., Pn)(x) = A(P1(x), ..., Pn(x)). (12)

Output is a fuzzy set with a bounded α-cuts, α > 0, because we have finite
number of input values. If we lose upper semicontinuity of an output value
(e.g. in the case of not continuous agop A) we use the special construction,
which helps us to restore upper semicontinuity. Thus we say that the result
of aggregation will always belong to F (R).
Pointwise extension does not preserve the convexity of input values. Thus
taking FQ(R), FI(R) or FN(R) in the role of the set of input values we can
not expect that in all cases the output value belongs to the same class.
Pointwise extension is a gagop w.r.t. ⊆αF1

. Also pointwise extension of a
γ-agop respects ⊆αF1

:

Theorem 4.6 If Ã is a pointwise extension of a γ-agop A, and γ > α, then
it is a gagop w.r.t. order relation ⊆αF1.

Speaking about an arbitrary agop (not γ-agop) idempotence is essential:

Theorem 4.7 If Ã is a pointwise extension of an idempotent agop A, then
it is a gagop w.r.t. order relation ⊆αF1.

γ-agops are not idempotent, but property (Aγ) substitutes the idempotence.
A pointwise extension does not respect ⊆αF2 (for γ-agops we have the same
result). Inconsistency arises from the fact that Ã is defined on y axis, but
⊆αF2 acts on x axis.
We have shown the following properties of a pointwise extension in the work:

Proposition 4.8 Let Ã be a pointwise extension of A, then the following
assertions hold:
(1) if A is symmetric then Ã is symmetric,
(2) if A is associative then Ã is associative,
(3) if A is bisymmetric then Ã is bisymmetric,
(4) if A is idempotent then Ã is idempotent.
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Proposition 4.9 If Ã is a pointwise extension of A, a and e are correspond-
ingly absorbing and neutral elements of A, then the following assertions hold:
(1) R(x) = a, ∀x ∈ R is the absorbing element of Ã,
(2) E(x) = e, ∀x ∈ R is the neutral element of Ã.

Proposition 4.10 Let Ã : ∪n∈NF (R)n → F (R) be the pointwise extension
of A = max and T is an arbitrary continuous t-norm, then Ã is a shift-
invariant gagop.

The assertion of proposition 4.10 holds for an arbitrary continuous operation,
thus Ã ir homogeneous and linear in the case A = max.

4.7 T - extension

We study a T -extension of an arbitrary agop in this section. We will denote
a T -extension Â. Let T be an arbitrary continuous t-norm, then

Â(P1, ..., Pn)(x) = sup{T (P1(x1), ..., Pn(xn))|

(x1, ..., xn) ∈ Rn : A(x1, ..., xn) = x} (13)

is called a T -extension of an agop A.
We consider agops defined on the unit interval, and thus further F ([0, 1]) (the

set of input values of Â) contains upper semicontinuous fuzzy sets defined on
[0, 1].
T -extension preserves convexity of input values, uniqueness of vertex and
straight lines in special cases. Therefore Â can be defined on FQ([0, 1]),
F I([0, 1]), FN([0, 1]) and in special cases on FTI([0, 1]) and FTN([0, 1]).
T -extension is a gagop w.r.t. order relations defined previously:

Theorem 4.11 An arbitrary T -extension Â : ∪n∈NF ([0, 1])n → F ([0, 1]) of
an arbitrary continuous agop A is a gagop w.r.t. ⊆αF1

.

Theorem 4.12 An arbitrary T -extension Â : ∪n∈NF ([0, 1])n → F ([0, 1]) of
an arbitrary continuous agop A is a gagop w.r.t. ⊆αF2

.

Now we consider properties of a T -extension. If A is a continuous agop, then
Â preserves symmetry, associativity and bisymmetry of A.

Proposition 4.13 If A is a continuous and symmetric agop then

Â : ∪n∈NF ([0, 1])n → F ([0, 1])

is a symmetric gagop.
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Proposition 4.14 If A is a continuous and associative agop then

Â : ∪n∈NF ([0, 1])n → F ([0, 1])

is an associative gagop.

Proposition 4.15 If A is a continuous and bisymmetric agop then

Â : ∪n∈NF ([0, 1])n → F ([0, 1])

is a bisymmetric gagop.

In a general case Â is not idempotent, and convexity of the input values is
crucial:

Proposition 4.16 If Â : ∪n∈NFQ([0, 1])n → FQ([0, 1]) is TM -extension of
an arbitrary continuous, idempotent agop A then it is an idempotent gagop.

TM is the only idempotent t-norm, and it can be shown that assertion of
proposition 4.16 does not hold for other t-norms.
Neutral and absorbing elements are special type fuzzy sets:

Proposition 4.17 Let Â : ∪n∈NF ([0, 1])n → F ([0, 1]) be an arbitrary T -
extension of a continuous agop A, and e be the neutral element of A, then

E(x) =

{
1, if x = e
0, if x 6= e

is the neutral element of Â.

Proposition 4.18 Let Â : ∪n∈NF ([0, 1])n → F ([0, 1]) be an arbitrary T -
extension of a continuous agop A, then

R(x) = 0 ∀x ∈ [0, 1]

is the absorbing element of Â.

Neutral element of Â is a real number, and absorbing element is equal to 0 in
each point. Both elements are not classical representative of the set of fuzzy
elements.
When we speak about shift-invariance of Â we assume that all necessary
operations are defined (see definition 23). We denote T1 the t-norm which is
used to extend the addition operation, and correspondingly T2 - the t-norm
used to extend the agop A. Both T1 and T2 are continuous. In general T -
extension is not shift-invariant, but the following results characterize Â from
the prospective of this property.
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Proposition 4.19 If T1 = T2 = TM , A is a continuous shift-invariant agop
defined by means of operations of addition and multiplication with c ∈ R,
then

Â : ∪n∈NFTN([0, 1])n → FTN([0, 1])

is a shift-invariant gagop.

Proposition 4.20 If T1 = T2 = T is an arbitrary t-norm, A is a continuous,
additive agop, B is a crisp interval and Â : ∪n∈NF ([0, 1])n → F ([0, 1]), then

Â(P1, ..., Pn) +B = Â(P1 +B, ..., Pn +B).

Proposition 4.21 If T1 = T2 = T is an arbitrary t-norm, A is a continuous
and additive agop, Â : ∪n∈NFQ([0, 1])n → FQ([0, 1]) is an idempotent gagop

then Â is a shift-invariant gagop.

We have noted before that only TM ensures idempotence of Â, thus the as-
sertion of proposition 4.21 holds only in the case when T1 = T2 = TM .

4.8 Outline of practical applications of gagops

Areas of practical applications of gagops can be the same like of agops: deci-
sion making and multi-attributes classification ([21]), classification problems
based on interacting criteria ([9, 10]), application in intelligent systems ([32])
and other.
If properties of objects or criteria are represented in the form of fuzzy sets in
the above mention areas, then gagops can be used.
Aggregation of fuzzy relations ([5, 11]) and fuzzy cognitive maps ([16, 17, 37])
are another areas, where gagops can be applied.

4.9 Concluding remarks on generalized aggregation

Opulence of generalized aggregation with new results and urgency of practical
applications make this theory charming for us for further development. The
following directions for the further research can be outlined:

• other properties of generalized agops (apart from those considered in
the work),

• other construction methods of generalized agops.
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The notion of T -extension can be generalized if we substitute the t-norm
with an arbitrary agop A∗:

Â(P1, ..., Pn)(x) = sup{A∗(P1(x1), ..., Pn(xn)) : A(x1, ..., xn) = x}.

A∗-extension and γ-agop (which is not studied in great details in the work)
are another areas for further study.
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