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Abstract 

A subject of this thesis work is the excitation energy transfer and ionization 

processes in optically excited alkali gases. In this work ionization processes and radiative 

resonance energy transfer in atomic vapours are theoretically investigated. Several 

theoretical methods are developed in order to describe complicated atom-atom collision 

processes, photoionization, photodissociation and associative ionization processes in 

excited alkali gases.  

In atomic vapours when atoms are colliding usually a short-lived quasi-molecular 

system is produced. For exact quantum chemical approaches to the analysis of this quasi-

molecular system already a precise calculation of a single potential surface of a system as 

simple as triatomic is a challenge, not to talk about processes in which several potential 

surfaces are involved. Such calculations require complicated computational procedures, 

which are extremely demanding in terms of computer resources and susceptible to errors. 

Therefore the chances to achieve reliable results using only the exact quantum chemical 

approaches are questionable. This is especially true when one of the partners of the 

atomic  encounter is in a highly excited state, or when the collision complex appears in a 

highly excited state during the encounter. Under such conditions one has to deal with 

multiple surface crossings and overlapping dynamic resonances. They induce chaos-like 

instabilities in the evolution of trajectories of weakly bound electrons or atoms, 

eventually leading to ionisation or fragmentation. Such chaotic processes can be 

described by the stochastic theory. One of the tasks of this thesis is theoretical 

description of the stochastic phenomena in atomic collisions and assessment of the 

applicability of the kinetic Fokker-Planck-like diffusion equations for the 

description of the evolution of collision complexes within a dense spectrum of energy 

states. The obtained results demonstrate the complexity of ionization processes following 

excitation of atomic Rydberg states, and indicate the path along which ionization of more 

complex systems involving molecules can be studied both experimentally and 

theoretically. The stochastic theory was developed in collaboration with prof. N. 

Bezuglov from St. Petersburg State University, Russia. It treats the ionization as 

excitation of Rydberg electrons to the continuum by the electric dipole field generated by 

exchange interaction within the quasi-molecular ion.  
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In the stochastic theory, redistribution of the population prior to ionization over a range of 

Rydberg states due to non-adiabatic processes in overlapping multiple level crossings of 

quasi-molecular Rydberg states is described in terms of stochastic diffusion of electrons. 

This diffusion process in the Rydberg energy spectrum is analyzed using a Fokker-Planck 

type equation. In this work we are making the first attempt to take into account the 

stochastic motion of Rydberg electron and apply this model to describe several atomic 

collision processes. Collisions leading to the formation of atomic (Penning ionization - 

PI) or molecular ions (associative ionization - AI) have been studied. The stochastic 

processes are expected to become increasingly important in low temperature systems with 

reduced collision velocities and increased collision times, like an ensemble of ultracold 

atoms in a magneto-optical trap (MOT). Other important motivation to develop stochastic 

theory is the quest for active control of chemical processes.  

The second problem addressed in this thesis work is related to photoionization and 

photo transition processes in sodium atom. This part of thesis deals with obtaining atomic 

data that are needed for various scientific studies. Of particular interest was the prediction 

of radiative lifetimes of excited atomic energy states. Ocscillator strengths and transition 

probabilities to discrete atomic levels and to continuum states are often needed in 

contemporary atomic physics experiments. This was the main motivation of this part of 

the thesis work. Studies of literature showed that the existing transition probability data 

of alkali atoms is limited to relatively low excited states, whereas for Rydberg states they 

were usually extracted by using in part oversimplified estimates. The second task of the 

present work was to calculate phototransition probabilities of Na(3p3/2) atoms to the 

high Rydberg states and to the ionization continuum. To achieve this task we used the 

model potential method, which has been already successfully exploited by other authors 

in seventies and eighties of the last century. The parameters of the potentials used in our 

work were adjusted to reproduce the experimental energy eigenvalues. The effects of 

further small interaction terms on the valence electron were also taken into account.  

The third task of the thesis work is the investigation of the radiation trapping 

in optically excited gases in complicated gas cell geometries and calculation of 

radiation trapping factors in elliptical gas cells. For this purpose we construct 

analytical solution of Biberman-Holstein radiation trapping equation using a new 
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semiclassical approach for multi-dimensional semiclassical quantization laws called 

geometrical quantization technique (GQT). If the absorbing medium is sufficiently 

optically thick, the radiation in it will undergo several reabsorption and reemission events 

before escaping from the medium. Radiation trapping in an atomic vapour can influence 

many spectroscopic experiments. For example, radiation trapping plays an important role 

in photodissociation experiment in supersonic Na/Na2 beam analyzed in this thesis. 

Radiation trapping influences alo velocity distribution of photodissociation fragments and 

because of that also the rate constants of the reactions. In 1947 Holstein and Biberman 

independently proposed a Boltzmann-type integro-differential equation describing this 

phenomenon, and this equation remains the starting point of most of the radiation 

trapping models. In our study we interpret the basic integro-differential trapping equation 

as a generalized wave equation for an associated hypothetical quasiparticle. Some 

modifications of the multi-dimensional semiclassical quantization laws (GQT) allowed us 

to determine analytically the trapping factors for all practically occurring line-shapes, all 

opacities, and all modes in a large variety of practically important types of  1D, 2D and 

3D vapour cell geometries, for which the separation of spatial variables is possible. An 

important point is that there are no geometrical (and topological) differences between 

GQT for the Biberman-Holstein trapping equation and conventional semiclassical 

billiard-like theories because of the similarity in the trajectories (straight lines within the 

cell, connecting reflection points on the walls).  

The next – fourth – task of the promotion work is related to the investigation 

of a photodissociation of sodium molecules Na2(X1Σg
+, υ")  in supersonic Na/Na2 

beam and calculations of cross sections for photodissociation of sodium molecules 

Na2(X1Σg
+, υ") by λPD = 458 nm radiation from an Ar+ ion laser, required for the 

interpretation of an imaging experiment with this photodissociation process. It was 

assumed that the electronic wavefunction can instantaneously adjust as the molecular 

bonds stretch, break, and finally form the free toms. This implicit assumption known as 

the electronically adiabatic or the Born-Oppenheimer approximation was used by us in a 

simple two-state model. Exact knowledge of the photodissociation cross sections allows 

calibration and testing of experimental set-up. Such testing method can be used also for 

other spectroscopic experiments. 
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Introduction 
 

The alkali metal vapour plays an important role in the modern spectroscopy as a 

test media for new experimental methods and theoretical approaches. At the same time an 

alkali atom vapour serves also as a media which allows to implement advanced 

technological solutions. For example, the most sensitive magnetometers currently are 

using rubidium vapour as a main ingredient.  

When an interaction of alkali vapours with laser radiation is analyzed, one can not 

neglect ionization processes, radiation transfer and stochastic dynamics in optically 

excited alkali gases.  

Collisional processes involving Rydberg atoms and ions are of interest both as a 

fundamental problem of modern atomic physics and theory of atomic collisions and also 

for numerous applications to spectroscopy, kinetics of high and low temperature plasmas 

and gases, and astrophysics. Atom in Rydberg state consist of a single excited electron 

(Rydberg electron) far removed from atomic core while the remaining electrons “screen” 

the nuclear charge. Thus the Rydberg electron moves essentially in a Coulomb field 

created by the core. An electron in highly-excited orbit is very weakly bound to the core. 

The energy gap between the adjacent excited states varies as n-3 and for atoms in Rydberg 

states is very small. Therefore, such atoms are influenced extremely strongly even by a 

weak external perturbation. Under the action of electromagnetic fields or interaction with 

other atomic particles, Rydberg electron may easily make a transition to other highly 

excited states or may be separated from the core resulting to the ionisation of the Rydberg 

atom. Numerous studies [29, 79] of the time evolution of a Rydberg electron moving in a 

Coulomb potential under the action of a variable field using quasi-classical description 

were made. These studies revealed that Rydberg electron motion perturbed by this field 

in the region of highly excited bound states exhibits transition from regular behaviour to 

chaos as the external fields are increased. As a result of this sensitivity to the external 

field, the observed behaviour of physical system that exhibit chaos appears to be random, 

even though the model of the system is 'deterministic' in the sense that it is well defined 

and contains no random parameters. The highly excited hydrogen atom in a 

monochromatic field is one of the simplest real non-linear quantum system with 

stochastic behaviour. The theory of stochastic drift of a Coulomb electron in a microwave 
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field was developed in the works [29, 30, 31]. In this thesis several methods borrowed 

from these works were adopted to describe stochastic behaviour of the Rydberg atom in 

the collisions with the ground state atom in an associative ionization process.  

Another important type of energy transfer in vapour cells and plasma is a process 

when atoms and ions efficiently absorb their own resonance radiation. A photon emitted 

by an atom within vapour cell will be absorbed and reemitted repeatedly by other atoms 

before it will escape from the vapour cell. This effect is known as a radiation trapping. 

The radiation trapping effect is most relevant in spectroscopic experiments where 

optically thick media are used. Radiation trapping is important in areas as diverse as 

stellar atmosphere physics [5], plasmas physics, luminescence of atomic vapours [6], 

optical phenomena in the terrestrial atmosphere, molecular luminescence [7], and cold 

atom physics [8]. It plays an important role wherever resonant light interaction with 

atomic vapours occur, whether in spectroscopy, gas lasers, atomic line filters used in 

optical information transmission, luminescent solar concentrators. Although the most 

important commercial application where radiation trapping plays an important role are 

fluorescent lamps. In these lamps the radiation trapping lengthens the effective lifetime of 

emission as viewed from outside the lamp. The control of this trapping is therefore an 

important design consideration for low pressure lamps. Electrodeless gas discharge lamps 

are finding increasing use in lighting applications due to their increased lifetime. In 

spectroscopic measurements radiation trapping process can influence obtained values of 

the cross sections, lifetimes and other spectroscopic parameters. The emission and 

reabsorption process is fundamental to the formation of stellar lines, where it is called 

radiation transfer. Dark lines in the stellar spectrum observed by Fraunhofer at the early 

years of spectroscopy resulted from radiation transfer processes. Dense clouds of cold, 

trapped atoms are also influenced by radiation trapping [8]. The radiation trapping 

process can be described by the integro-differential Holstein-Biberman equation [9]. 

Molisch and Oehry [6] have provided a detailed discussion of research on radiation 

trapping.  

 Laser excitations of atoms, ions and molecules, absorption and emission processes 

in vapour cells are usual in modern spectroscopy and plasma physics. Several parameters 

are commonly used to describe the strength of atomic and molecular transitions. The 
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Einstein A and B coefficients, f values (also called “oscillator strengths”), photoionization 

cross-sections and transition dipole moments are some of the parameters that characterize 

the “strength” of the transition. Optical transition probabilities (Einstein coefficients A) 

between discrete states and photoionization cross sections are needed for the investigation 

of the kinetics of excitation, ionization and recombination processes in low-temperature 

plasmas. Photoinization cross sections, transition probabilities and oscillator strengths for 

transitions involving high excited electronic states of atoms and ions are often used in 

astrophysical applications, stellar atmospheres and plasmas (discharges, laser media and 

flames). Alkali atoms as quasi-one-electron systems have proven to be an important and 

interesting testing ground for theoretical descriptions of the optical transition processes, 

both for ab inito theories and semiempirical calculations.  

 One of the simplest photochemical processes is photodissociation, i.e. interaction 

of a molecule with light, leading to the breaking of a chemical bond.  In photodissociation 

process one selectively excites single vibrational excited state of the molecule. 

Absorption of the photon in the diatomic molecule leads to the photo fragmentation via 

metastable molecular state into two separate atoms. This metastable molecular state 

correlates with the atomic states of both atoms. After the photodissociation in the 

spectrum of photofragments atomic spectral lines can be observed. Photodissociation 

process of alkali dimmers are extensively studied in laser spectroscopy experiments. 

Correlation between the parent molecule's quantum state and the photofragments 

quantum states distribution permits a detailed description of the excited state potential 

energy surface and frequently provides information about interactions with other 

electronic states. Photodissociation reactions of small molecules are not only interesting 

from the viewpoint of fundamental science, but also have a strong influence on 

atmospheric and astrophysical processes as example photodissociation regions in the 

interstellar medium. 

Atomic units ħ=me=e=1 are used throughout this promotion work, unless specified 

otherwise. 
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To solve several of the problems of laser spectroscopy that were mentioned above, 

in the framework of the present promotion work the following four tasks have been set: 

1. Development of new theoretical model of ionizing collisions in alkali gases 

involving Rydberg atoms by taking into account redistribution of population over a 

range of Rydberg states prior to ionization, which is caused by non-adiabatic 

processes in overlapping multiple level crossings of quasi-molecular Rydberg states. 

In addition to the stochastic treatment accounting for the process of l-mixing of 

Rydberg states at large internuclear distances and twisting of the collision 

trajectories on attractive potentials. Apply this model to calculate the associative 

ionization rates for Na**(nl) + Na(3s) → Na2
+ + e   collisions. 

2. Investigation of photoabsorption from the Na(3p3/2) state by using model potential 

method. Calculation of the Einstein coefficients and ionization cross sections for 

Na(3p3/2) atoms. Testing of the accuracy of the calculations, with a variety of model 

potentials and parameter sets of these potentials. 

3. Solving the Biberman-Holstein equation describing radiation trapping in an atomic 

vapour by the novel analytical method called geometric quantization technique. The 

treatment is based on considering the integral trapping equation as a wave equation 

for an associated quasiparticle with a complicated form of its dispersion law. The 

latter is determined by the spectral properties of the vapour medium. Provement the 

applicability of geometric quantization technique in more complicated geometries, 

like elliptical cylinders, and prolate and oblate ellipsoids. 

4. Theoretical investigation of the photodissociation process Na2(X1Σg
+, υ",J") + 

hν458nm → Na2
*(B1Πu) → Na*(3p) + Na(3s) within the framework of the Born-

Oppenheimer approximation. Calculation of the cross sections for the 

photodissociation of sodium molecule Na2(X1Σg
+, υ") by λPD = 458 nm radiation 

from an Ar+ ion laser for various possible initial vibrational levels  υ". Such data 

were required for interpretation of an imaging experiment with the same 

photodissociation process. 
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1. Ionization of  Rydberg diatomic quasimolecular complex formed by 

collisions of alkali atoms 

1.1. Introduction 

Excitation of Rydberg states in atomic gases is inevitably accompanied by 

spontaneous ionization due to collisions with the surrounding parent atoms. Three types 

of atom-atom collision ionization processes can be identified: 

A* + B* →  A+ + B−, ion pair formation 

    A+ + B + e, Penning ionization – (PI) 

    AB+ + e. associative ionization – (AI) 

Ion pair formation takes place in collision of two excited atoms, A* and B* due to non-

adiabatic transitions between covalent (AB**) and ionic (A+B−) terms at large internuclear 

distances. Penning (PI) and associative (AI) ionization result from autoionization of 

quasimolecular continuum states (AB**) at small internuclear distances. 

In this work we consider AI and PI processes, in which an  alkali atom A in the 

ground state collides with a Rydberg atom A**(nl):  

      
In the AI process the colliding atoms form a molecular bond, which is stabilized by the 

emission of Rydberg electron. Depending from relative collision energy of the colliding 

A**(nl) + A system, we can identify in the reaction (1) two distinct channels, AI and PI 

(see also eq. (6)). The only limitation to energy of collisions (i.e., velocity) that lead to AI 

ore PI is enforced by the condition that lifetimes of the involved Rydberg states must be 

larger than the time in which the two colliding atoms reach the (small) internuclear 

distances, at which covalent molecular Rydberg states cross the state of the molecular 

ion. This excludes from the group of associatively ionizing media gases cooled to 

ultracold temperatures, at which collision times exceed the lifetimes of Rydberg states 

[13].  

The main processes leading to the formation of A+ ions in experiments involving 

A**(nl) + A collisions are Penning ionization and photoionization by blackbody radiation 

A**(nl) + A  
A2

+  + e;  (AJ) 
 
A+ +A + e,  (PJ) 

(1) 
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(BBR) [publ2]. BBR is always present in experiments. The blackbody radiation photons 

can penetrate into the reaction zone from, e.g, a hot atomic beam source (oven). BBR 

induces also transitions between neighbouring Rydberg states and shortens the effective 

lifetimes [14]. The A2
+ ions can be created only by the associative ionization. AI 

possesses the smallest threshold energy among the ionization processes. Most 

experiments on AI collisions of Rydberg atoms in alkali gases, which are of interest for 

the present study, have been performed by Weiner (see, e.g., the review by Weiner et al 

1990 [3]); the results of other studies are reviewed by Klucharev 1993 [15]. These studies 

consider associative ionization rates as a function of principal quantum number n under 

various experimental conditions (thermal gases, single and crossed atomic beams). The 

first successful theoretical descriptions of the collision processes (1) was developed by 

Duman and Shmatov 1980 [16], Janev and Mihajlov 1980 [17], and Mihajlov and Janev 

1981 [18] and is known as the linear DSMJ model (Duman-Shmatov-Mihajlov-Janev). In 

this approach,  the inelastic processes in the colliding system A**(nl) + A are the result of  

dipole interaction between the excited Rydberg electron and the quasimolecular 

subsystem A+ + A. The DSMJ model uses the adiabatic approximation and classical 

description of motion of the colliding nuclei.  

The linear DSMJ model uses incorrect assumptions and integration procedures  in 

order to obtain simple analytic formulae. The linear DSMJ model was corrected by 

Weiner et al 1986 [19] by taking into account the order and limits of successive 

integrations (strong non-linearity of dipole-dipole interaction). Nevertheless, predictions 

of this model often strongly deviate from the experimental data [3, 4].  
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Fig. 1. Schematic illustration of the mechanism of A**(n0 l) + A collison process. (a) Quasi-molecular 
potentials involved in the ionization process. (b) Illustration of Brownian-like migration of the 
population through multiple level crossings of quasi-molecular Rydberg states.  
 

The observed disagreement can be attributed to the fact that the DSMJ model ignores an 

important feature in the dynamics of collisions with Rydberg atoms. Namely, it ignores 

the fact that the colliding pair of atoms coming in along a covalent highly excited 

molecular potential will pass through numerous crossings with other covalent state of 

Rydberg series before it will reach the ionic state (see fig. 1.a). Exchange interaction 

within the A+ + A quasi-molecular ion splits the electronic states of gerade and ungerade 

symmetry by ∆(R). In fig. 1.a the initial covalent Λu state crosses the ionic 2Σg
+ state at 

the internuclear distance R = Rn, becoming autoionizing for R ≤ Rn, while |En0| denotes 

the binding energy of Rydberg electron in the initial n0 state.  

In the reality the path by which the population coming in along the initial state (i) 

reaches the final state (f) in the ionization continuum may be very complicated. Due to 

nonadiabatic diffusion of Rydberg electron this path resembles a kind of random walk of 

a Brownian particle in the energy spectrum of Rydberg states (fig. 1.b). Due to this 

process, the population can migrate from the initial state Λu
(i) to another state Λu

(f) by the 
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time it reaches the ionic potential 2Σg
+. As a result, the effective internuclear distance of 

the effective crossing point Ri with the ionic curve is different from the point Rn assumed 

by the DSMJ model. 

 The situation is further complicated by the fact that for high Rydberg states the 

neighboring zones of non-adiabatic transitions between covalent Rydberg states overlap. 

The latter makes it impossible to treat the collision process as a sequence of separate 

Landau-Zener non-adaibatic transitions redistributing the population flow in the initial 

state i over a number of final states f. Instead, the process may be considered in terms of 

stochastic migration of Rydberg electron in the energy spectrum of Rydberg quasi-

molecule by applying the elements of chaos theory [20].  

The present study is an effort to develop an alternative to Landau-Zener 

treaty allowing a reliable theoretical description of ionizing collisions involving 

Rydberg atoms. This needs performing essential modifications of the non-linear 

DSMJ model, which can be listed as follows:  

1) account for the influence of twisting effect [21] on the efficiency of AI channel 

We consider an additional potential barrier caused by the centrifugal part of 

the effective potential at large internuclear distances; 

2) we account for passage of the colliding complex through a zone of multiple 

overlapping level crossings by treating the dynamics using the stochastic 

theory [20,22,publ1] as described in this work; 

3) in this approach we take into account the process of l-mixing of Rydberg 

states at large internuclear distances [23]. 

In this work stochastic theory was developed and applied to alkali atom (Rb, Na) 

collisions [publ1, publ3, publ4].  This is an original theory that has not yet been used by 

other authors to describe collisional ionization processes. 

 
1.2. Non-linear DSMJ model 

The main simplication that allows the probability of the reaction (1) to be described 

analytically exploits the possibility to restrict the analysis to the range of internuclear 

distances R, in which the highly excited RE electron is common for both colliding nuclei. 

At such distances a quasi-molecular ion  A2
+ is formed  (fig. 2). Charge exchange 
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between both nuclei of the A+ + A of the quasi-molecular ion A2
+ causes inner-shell 

electron localization changes from one nucleus to another. Such oscillating dipole 

generates a quasi-monochromatic electromagnetic field, which can  induce a dipole 

transition of the Rydberg electron to the continuum.  

 
Fig. 2. a) Ground state atom A collides with a Rydberg atom A**(n0 l). b) A short lived molecular state 
in which the RE enl becomes commom for both nuclei, is formed during the collision. Both atomic ions 
of the quasi-molecular complex  A2

+ exchange with the inner valence electron e1 to produce a variable 
dipole moment d

r
, which oscillates at the exchange interaction frequency ∆(R). (c) Interaction of the 

weakly bound RE with the internal diplole electric field causes its detachment from the quasi-molecular 
ion.  

 
The assumption that motion of the Rydberg electron is decoupled from the motion 

of heavy particles allows the approximation of energies of the colliding A**(nl) + A 

system by the potentials of A2
+ ion by subtracting from them the binding energy |En| = 

1/(2neff
2) of the Rydberg electron (fig. 1.a). The effective quantum number neff relates to 

the principal quantum number n via the quantum defect µl: neff = n - µl.  
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The potentials Vu
+(R) and Vg

+(R) of the molecular ion A2
+ (corresponding to the 

repulsive 2Σu
+ and the attractive 2Σg

+ potentials, respectively, see fig. 1.a, are described by 

the asymptotic equation [18, 24, 25]:  





 ∆±−=+ )(

2
1)( 4, R

R
RV gu

α .       (2) 

Here, the signs "+" and "–" corresponds to the potentials Vu
+ and Vg

+, respectively, α is 

the polarizability of the colliding atom A in the ground-state, and ∆(R)= Vu
+ - Vg

+ (see fig 

1.a) is the exchange interaction energy. It can be described by an analytical form [18, 24, 

25]: 

)exp()( 1)2( RBRR γγ −=∆ − ,       (3) 

Parameters B and γ are determined by the asymptotic properties of wave function of the 

inner electron in the field of the atomic ion A+. The corresponding potentials of the A2
** 

quasi-molecule are obtained from Eq. (2) as Vu = Vu
+ - |En| and Vg = Vg

+ − |En|. Exchange 

interaction within the molecular ion is equal to the binding energy of Rydberg electron at 

the critical internuclear distance Rn: 

22
1)(
eff

nn n
ER ==∆ .        (4) 

Ionization occurs if system reaches the internuclear distance R<Rn, where the energy 

associated with the oscillating dipole ħω(R)= ∆(R) exceeds the binding energy |En| of the 

Rydberg electron.  

The incoming potential Vu acquires the autoionization width [17, 18] 

( ) πωσω 8)()()( 32 RRcRRW ph= ,      (5) 

where σph(ω(R)) is the photoionization cross section of Rydberg atom, and c is the speed 

of light. 

The collison process can branch into associative and Penning ionization channels 

(1).  Depending from the relative kinetic energy E=E(R→∞) of the colliding nuclei, the 

closest possible internuclear distances that can be reached by the colliding nuclei are 

different. PI or AI processes were restricted to different ranges of internuclear distances:  





⇒<
⇒≥

,ionization eassociativ
;ionization Penning

0

1

RR
RR

      (6) 
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where R1 and R0 are defined by: 

 E = ∆(R1)    and   




≤=
>=

.if,
;if,

0

10

nn

n

EERR
E ER R

  

The cross section AIσ  of the AI process is determined by the ionization probability PAI. 

For a given initial collision energy E, the cross section is obtained by integrating the 

probability over the range of those impact parameters ρ,  which allow the colliding nuclei 

to reach the internuclear distance R0 [19]:  

∫=
max

0

),(2)(
ρ

ρρρπσ dEPE AIAI .        (7) 

The probability PAI depends on the given initial molecular potential Vu(R), the distance-

dependent collision velocity υr(R), and the autoionization width W(R). This dependence 

for PAI  was derived in our work [publ3]: 
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where g = ½ is the statistical factor describing the probability that the colliding system 

will evolve along the repulsive potential Vu  to the turning point Rm  . The quantity µ  is 

the reduced mass of both colliding atoms, and θ(x) is the Heaviside function with the 

properties: 
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If E1<En, then probability of Penning ionization becomes PPI=0 and the total probability 

P0 =PAI+PPE   becomes equal to the probability of AI: 
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The linear DSMJ model uses only the linear part of this equation. The largest possible 

impact parameter ρmax, for which the AI is still possible, is the one for which  R0 

coincides with the turning point Rm, i.e when R0 satisfies the condition ( ) 00 =Rrυ . 

Finally, if the temperature T can be defined, the collision rate is given by: 

∫
∞









=

min

),(2)(
2/1

E
AIAI dETEfEEk

µ
σ .      (10) 

where f(E,T) is the collision energy distribution for each particular experiment. The lower 

integration limit is the collision energy required to reach R0: 

Emin= max[Vu(R0) +|En|, 0].    

The energy Emin=0  is chosen if Vu(R0) < 0 (attractive potential) and that means that the 

nuclei can reach the internuclear distance R0 at  small initial energies Emin → 0.  

For nl states of alkali atoms with l≥2, the l-mixing process should be taken into 

account and formula (10) must be modificed. For these l-states the l-mixing cross 

sections are close to geometrical cross sections of Rydberg atoms, and therefore l-mixing 

is stronger for l≥2 states than for  nS states. The processes of l-mixing typically proceed 

at large internuclear distances Rmix ≈ <r>n = 3n2
eff/2 [23]. Here <r>n is the mean value of 

Rydberg electron distance from nuclei at  neff>>l. At the same time, the typical 

internuclear distances, at which the collisional ionization of Na atom takes place, are only 

about 10-15 a.u. Therefore it is reasonable to assume that a complete l-mixing has taken 

place by the time when the colliding atoms have reached the ionizing internuclear 

distances. Hence, the total rate constant should be calculated by summing the 

contributions kAI(n,l') of individual l'-states: 

∑
−

=′

′+′=
1

0
2 ),()12(1)(

n

l
AI

total
AI lnkl

n
nk .      (11) 

 
1.3. Collision velocity distributions 

In experiments the reaction rate constants (10) and not the cross sections are 

measured (see for example [3, 15]). In order to compare our theoretical model with 

experimental results we must to know the collision energy or velocity  distribution (fig. 
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3). The energy distribution f(E,T) relates with the velocity distribution as 

),(),( 11 TFTEf cc υυµ −−= .  
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Fig.3. Relative collision velocity distribution of Na atoms in (a) thermal  sodium vapours in a gas cell at 
T=600K, (b) two orthogonally crossed effusive beams of sources, at Tef =600K, (c) single effusive beam 
with source at temperature Tef =600K.  

 
In a gas cell at temperature T, this distribution is given by the Maxwell function (fig. 3.a): 
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where µυ Ec 2=  is the collisional velocity. For two crossed effusive atomic beams 

with sources at temperature Tef  the distribution is given by (fig. 3.b): 
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The distribution for head-tail collisions within a single effusive beam is given by (fig. 

3.c): 
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We can rewrite the distribution function in a more general form depending from the beam 

parameter λ: 




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
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µυ
λ

µ
υυ

λ

λλ ,     

where Γ is the gamma function. For λ =0 and λ =5 this distribution )()(
cF υλ  coincides 

with the single-beam and cross-beam distributions, respectively.  

As can be seen from fig. 3, the distribution function for single-beam collision is 

strongly different from those for crossed beams and vapour cell (see fig. 3, curve c and 

curves b, and a). In the case of single-beam collisions the main contribution to the 

integral (10) is due to collisions at small velocities. Therefore, in this case λ =0, and 

twisting effect must be taken into account. Due to twisting effect, at sufficiently large 

impact parameters the colliding atoms cannot overcome the potential barrier built by 

centrifugal forces at large internuclear distances. At small impact parameters, in contrast, 

the atoms easily pass over the (low) barrier. For a given collision energy E, the critical 

value of impact parameter ρ = ρtwist, for which the radial velocity of the colliding atoms 

turns to zero on the top of the effective potential 224 /)2/()( RERRU eff ρα +−=  (see fig. 

4), can be obtained from the equation system  


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r

r

ρ

ρ

 →  ρtwist = (2α / E)1/4   

The potential barrier limits the range of impact parameters that can bring atoms A** and A 

to distances as small as Rn. 
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Fig. 4. Passage of the A** + A colliding system over the potential barrier of the effective potential Ueff, 
created by centrifugal forces.  

 
1.4. The theory of Rydberg electron migration 

As mentioned in sect. 1.2.  (see also fig. 2), the  electric dipole field, which is 

generated by the quasi-molecular ion A2
+ and which oscillates at the frequency ∆(R)/ħ, causes 

a strong coupling of Rydberg electron (RE) to the internal dipole of the ionic core of the 

quasi-molecule A**(nl) + A. Ionization of RE by this dipole electric field occurs as soon 

as the colliding nuclei reach the threshold distance Rn. Non-adiabatic transitions at 

multiple level-crossings lead to changes of the effective threshold distance Ri of the 

ionization (fig. 1), which can become larger than the threshold distance Rn. The 

conventional Landau-Zener approximation, which assumes that all crossings are isolated 

from each other, breaks down for Rydberg states due to their characteristically high 

densities of energy levels. An alternative approach to the treatment of multiple level 

crossings was proposed by the authors of [26, 20, 22], who explored the applicability of 

the concept of dynamic chaos [27, 28] to the description of dynamics of RE.  

From the point of view of nonlinear mechanics, each level crossing corresponds to 

a dynamic resonance experienced by the Rydberg electron driven by the internal dipole 

electric field [26]. Some overtones k nω (where k is an integer) of the frequency 

*31/n nω = , with which the RE moves on its Kepler orbit, can coincide with the charge 

transfer frequency within the A2
+ core:  
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kωn= ∆(R).  

If the perturbation of Rydberg electron by internal dipole electric field is sufficiently 

strong, then the resonances between the neighbouring energy levels overlap. Such overlap 

in accordance with Chirikov’s criterion results in the onset of global chaos [27] in the 

classical motion of RE.  

 
1.4.1. Diffusion equation 

 
Importantly, the onset of global dynamic chaos exhibits the distinct features of a 

threshold process on the intensity Iint of the internal dipole electric field. The RE motion 

perturbed by this field in the region of highly excited bound states with effective quantum 

numbers n*>NChaos (see eq. (23) below) becomes unstable: the stochastic layers are 

combined into a stochastic “sea”. In this case, the RE evolution acquires properties 

characteristic of the so-called K-systems, i.e., strongly locally unstable Hamiltonian 

systems with intense trajectory mixing in phase space and with rapid uncoupling of 

correlations between angular dynamic variables. The chaotic motion of Rydberg electron 

under such conditions may be described with a kinetic equation and its solution yields a 

time dependent distribution f(neff, t) of population over Rydberg states. Under the 

conditions assumed by the adiabatic approximation (the accuracy and limitations of this 

approximation are analysed in [publ2]), electronic motion adiabatically adjusts to the 

comparatively slow variation of nuclear configuration in the course of the collision. In 

that case, we can use the theory of stochastic drift of a Coulomb electron in a microwave 

field [29, 30, 31] to describe the population distribution f(neff,t) within the region Ωchaos in 

the neff-space, where the motion of Rydberg electron is chaotic. Kinetic description time 

evolution of the Rydberg electron in the reaction (1) can be described using a Fokker-

Planck type equation, as suggested in [20]: 

j
n

tnf
t eff

eff ∂
∂

=
∂
∂ ),( ;       (15) 

eff

eff
eff n

tnf
tRnDj

∂

∂
=

),(
))(,( .       (16) 

Here, j is the diffusion flux and D is the diffusion coefficient. For hydrogen atoms: 
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)(~),( 3 RDnRnD effeff = ;  [ ]23/23/82 )(18.11)(023.0)(~ LRRRRD ∆+∆= . (17) 

Formula (17) was derived by assuming a uniform RE distribution over Zeeman sublevels 

m = -l,....,l. The parameter L is equal to the quasi-classical orbital angular momentum, L = 

l + 0.5. The time dependence of R(t) is determined in the same way as in the DSMJ 

model (see eq. (3)) Therefore, the diffusion coefficient  is a time-dependent variable. The 

authors of [22] generalize the relation (17), applying the Kepler map technique [32] by 

accounting the quantum defect, which introduces new features into the pattern of chaos 

onset.  
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24
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lc DLRRD ω
π

ω ;       (18) 

ω = ∆(R), Lc = l + 0.5 + ∆l/2; 
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D l µµ

ππµπω ;   (19) 

x = (ωLc
3/2)2/3. 

The dependence of  )(ωlD∆  over ∆(R) is expressed in terms of the standard Airy function µ∆Φ  

and its first derivative [29]: 
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∆++=Φ ∫ ,3cos1
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3

     (20) 

The behavior of )(~ RD can change significantly different for states with different angular 

momenta l because of difference of the quantumdefects, ∆µ = µl+∆l − µl, between  l and l + ∆l 

Rydberg series. Equations (18)-(20) were derived using the dipole matrix element between 

bound states nl and n'l' with En'  = En ± ω represented in the semi-classical form [33].  For 

hydrogen-like levels with 0lµ = , the relation (18) becomes equal to eq. (17). The 

autoionization width W(R) of the incoming repulsive 2Σu
+ potential curve (5) can also be 

calculated using a similar approach. The obtained result is: 
3)(~)( effnRWRW = ;         (21) 
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1.4.2. Boundary conditions 

For the stochastic instabilities to develop it is necessary that the intensity Iint of the 

internal dipole electric field exceeds some certain critical value. This value corresponds 

to the interval of binding energies of Rydberg electrons, within which the dynamic 

resonances overlap, i.e. the stochastic layers are combined into a stochastic “sea” The 

standard mapping [27,28,32] and the Chirikov’s criteria [22] for the onset of global chaos 

allowed the determination of region Nchaos(R) < neff < Nauto(R) in the energy space (ε=-1/(2 

n2
eff)), within which the diffusion of Rydberg can occur via that stochastic “sea”. The 

lower boundary value neff =Nchaos(R) is determined from the Chirikov’s criteria [22] as: 

)(~212

1
=)(5

RD
RNchaos

ππω
,       (23) 

The region of low –lying states (neff <Nchaos(R))  is characterized  by large energy spacing 

between the neighboring levels, such that the diffusions process in this region is 

forbidden. Random walk over neff  can not penetrate into the region neff <Nchaos(R). Hence  

neff =Nchaos(R) specifies the position of a reflecting “wall”, beyond which the diffusion 

flow is not possible: j(neff=Nchaos) = 0. The channel of ionization is open for highly excited 

states with neff > Nauto(R) for which the frequency of the internal electric dipole field  

ħω(R) = ∆(R) > 221 effn : 

)(2
1)(

R
RNn autoeff ω

=>                      (24) 

Beyond Nauto(R), the Rydberg level ionizes at the rate W(R). This ionization process can 

be described by the  DSMJ model (eq. (8)). 
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1.4.3. Effective collision and diffusion times 

It is useful to introduce the effective time )(~ Rt . This allows one to make a 

substitution of a form )(~~ RDdttd = (see eq. (18)). Dividing both sides of eq. (15) by 

)(~ RD , we can modify it to the form: 
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eff ,    (25) 

where 3)( effeffstat nnD =  is the stationary diffusion coefficient.  The effective collision 

time along a classical trajectory )()( tR u  of the nuclei moving on the potential Vu with the 

radial velocity υr is: 
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The effective collision time )(~ Rt  within the zone of regular motion neff,0 < Nchaos(R) 

becomes equal zero because there is no diffusion in this region. 

It is possible to introduce the effective diffusion time, τdiff(R), which is the time 

needed for Rydberg electron to migrate from the initial state neff,0 to the autoionization 

boundary Nauto(R). Due to the fact that there are no level crossings in the autoionization 

zone  neff > Nauto(R)  (see fig. 1), no population diffusion occurs in this region and 

0)( 0, == autoeffdiff Nnτ . The additional condition 0)( 0,0, =∂=∂ effautoeffdiff nNnτ  takes 

into account the reflection of the diffusive population flux in Rydberg states from the 

boundary with zone of regular motion neff <Nchaos(R), and it represents the above 

mentioned boundary condition  j(neff=Nchaos) = 0. In [publ3], the following expression for 

the effective diffusion time τdiff(R) is derived: 

( )
)(2

)(
5.4)( 2

0,

2
0,

RNn

RNn
R

autoeff

autoeff
diff

−
=τ .      (26) 

Our calculation method is based on the comparison of the effective collision time 

and the effective diffusion time. If )(~ Rt  > τdiff(R), the collision time is sufficiently long 

to allow the population to diffuse and to reach the autoionization boundary Nauto(Ri) at the 

distance Ri(ρ, E) (see fig. 1): 



 

 26

)()(~
idiffi RRt τ= .        (27) 

The probability ( , )AIP Eρ  of AI reaction can now be found using eq. (8) and replacing 

the crossing point Rn with Ri(ρ,E), which corresponds to neff,i(ρ,E)=Nauto(Ri).  The AI rate 

constant can be found from eq. (10) by using the cross section ( )AI Eσ  given by eq. (7) .  

 
Fig. 5. Experimental and theoretical Na**(nl) + Na AI rate constants. (a) Na**(nP) states: crossed beam 
experiment [34]; (b) Na**(nP) states: – single beam experiment [19]; (c) Na**(nD) states: single beam 
conditions [19]; (d) Na**(nS) states: single beam conditions [19]; solid curves – stochastic theory; 
broken curves - DSMJ model. 

 
Fig. 6. Recalculated  Rate constants of AI in Na**(nS, nD) + Na sub-thermal collisions in a collimated 
effusive beam from source at Tef = 635 K (see discussion in the text). (a) circles - experiment, nS states 
[publ2]; full curve - stochastic model, broken curve - DSMJ model. (b) squares - experiment, nD states 
[publ2]; full curve – stochastic model; broken curve - DSMJ model. 
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Fig. 7. Rate constants of AI in Na**(nP) + Na collisions in a single effusive beam from source at Tef = 
700 K: circles – experiment [35]; full curve - stochastic model with collimation parameter λ = 1.3; 
broken curve - stochastic model with λ = 0; chain curve - DSMJ model with λ = 1.3; double dotted 
chain curve – DSMJ model with  λ = 0. 

 
1.5. Associative rate constants for Na**(nS,P,D) states 

The above theory of collisional ionization was used to calculate the AI rate 

constants AIk  for the conditions of available experimental studies. Stochastic theory 

works well in the case of thermal collisions in crossed beams, and the same can be 

expected under vapour cell conditions. Fig. 5 shows the experimental results on AIk  

measured for Na**(nS,P,D) states in the crossed beam experiment [34] (fig 5.a) and in the 

single beam experiment [19] (fig. 5.b,c,d), as compared with our calculations. In fig. 6 

and 6 our theoretical data is compared with the experimental data of [publ2] and [35], 

respectively. Note, that the single beam data of [19] is relative, and the authors obtained 

absolute scaling by joining these data with the absolute crossed beam results of [34]. This 

procedure is not well justified and can cause systematic errors. In the experiments of [34] 

effusive beams at temperature of 600 K were used, whereas the experiments of [19] were 

performed at 1000 K.  

In the crossed beam experiment [34] the  Na2
+ ions are produced not only due to the 

collisions of Na**(nl) and Na(3S) atoms belonging to different beams, but also due to 

collisions of atoms belonging to the same beam. Hence the measured rate constant exp
AIk  is 

a sum of  crossed beam ( cb
AIk ) and single beam ( b

AIk ) rate constants: exp cb b
AI AI AI AIk k k kΣ= = + . 
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The dashed line on fig. 6.a shows the neff dependence of the total rate constant AIkΣ  

calculated using the non-linear DSMJ model. One can see that at low effective quantum 

numbers neff < 15 the stochastic model is in better agreement with experimental data than  

the DSMJ model. The results of the stochastic theory and the DSMJ model practically 

coincide for neff >20. A significant disagreement between the experiment and the theory  

for nS states in a single beam is observed (fig. 5.d). At the same time,  rate constants for 

nD in single beam   collisions are larger than those for nS states (fig. 6). This allows us to 

presume that the disagreement is caused by incorrect determination of the absolute 

experimental rate constant values in [19].   

Experiments with nS and nD states of Na are reported in [publ2]. In this paper, the 

collisional and thermal ionization of sodium nS and nD Rydberg atoms with n =8–20 has 

been studied using single effusive atomic beam at the source temperature T=635 K. 

Number density n3S of the ground-state Na(3S) atoms in the beam was  calculated from 

the geometry of the effusive beam and Nesmeyanov’s formula [36].  In fig. 6, the 

corrected AI rate constants of paper [publ2] are shown. The correction is made using the 

alternative formula of Browning and Potter [37], which gives approximately two times 

higher density n3S for the same temperature, and we believe it is more accurate. Good 

agreement of absolute values, but significant disagreement in shapes  between the 

experimental data and the stochastic model is observed. Since the experiment utilized a 

well collimated effusive beam, the velocity distribution in atomic beam is close to a beam 

with parameter λ=0 (14), which was used in the calculations. In addition, the effect of 

population redistribution by BBR for the nS and nD states (fig. 6) was taken into account 

quantitatively as described in [publ3]. For single beam, the main contribution to the AI 

rate constants is due to collisions of low velocities (fig. 3). One of the possible reasons 

for such disagreement in shapes is that the present stochastic model may be inapplicable 

for slow collisions. For slow collisions, the kinetic energy of the colliding pair is lower 

than the energy separation between adjacent Rydberg states: ∆En =1/neff
3. For example, 

for the effusive single beam used in [publ2] the collision energy is smaller the energy 

separation of  Rydberg states with neff >15, but in the cross beam experiment [34] it is 

true for neff>7. The stochastic changes in the quantum state of the Rydberg electron lead 

to changes in forces acting on the colliding nuclei, and they may noticeably  affect  
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trajectories of the nuclei if the collisions are sufficiently slow. Such randomization of 

nuclear motion was disregarded in the present calculations. Therefore, instead of using 

Newton equations for neff <15 (fig. 6), one should rather treat the nuclear motion in close 

connection with the dynamics of Rydberg electron and describe the action of random 

forces on the colliding nuclei using Langevin-type equations. 

In fig. 7, the data of the single beam experiment [35] at Tef = 700 K is shown. If the 

rate constant (10) is calculated using the velocity distribution function (14) with λ = 0, 

the theoretical rate constants do not agree with the experimental results. If, however, the 

calculations are done with λ = 1.3, which corresponds to poor collimation (as was the 

case in the experiment), then a better agreement with the experiment is obtained.  

 
1.6. Conclusion 

The main result of papers [publ1, publ3, publ4] is the demonstration that the motion 

of a highly excited valence electron in the short-lived quasi-molecular system produced 

by colliding atoms is stochastized. Essential improvement of the DSMJ model describing 

ionization in collisions with Rydberg atoms and ground-state atoms was achieved. The 

approach developed in this thesis work includes the stochastic description of motion of 

Rydberg electron  during the collision process. A good agreement was found between the 

results of the stochastic theory and the experiments in the case of associative ionization in 

Na**(nP) + Na collisions at thermal collision energies. It was shown that the stochastic 

model and the DSMJ model converge at large n, but at low n the stochastic model yields 

a substantially better agreement with the experimental data than the DSMJ model. The 

choice of the collision velocity distribution  is also shown to be important. In the 

experiments in single effusive beams centrifugal twisting effect must be taken into 

account to describe the motion of nuclei at low velocities. Effects of collisional l-mixing 

and BBR-induced transitions as well as the spontaneous mixing of Rydberg states were 

taken into account, and the conditions ensuring the validity of the adiabatic 

approximation  in the stochastic and DSMJ models were found. This presented analysis 

allowed to us determine the range of the effective quantum numbers neff, for which both 

models can be applied. The theory must be further developed to account for slow atomic 

collisions, in which randomization of the nuclear motion can become important. 
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2. Photoexcitation of Na(3p3/2) to high Rydberg states and  
photoionization 
 
2.1. Introduction 

Spontaneous Einstein coefficients from high lying states or  transition probabilities 

to high lying states and photoionization cross sections are not unambiguously established 

even for such well known element as sodium, when it concerns the uncertainties of the 

calculated or experimental values.  

In order to calculate transition probabilities and photoionization cross sections, one 

has to calculate the corresponding transition dipole moments. In the case of alkali atoms 

it is done by solving the Schrödinger equation for the valence electron in the field of 

nucleus and the core electrons. In the early works, like Bates-Damgaard [38], authors 

used quantum defect theory, also known as Coulomb approximation (CA), which 

neglects the contribution of small radius (outside the core) and is valid for neff >l+1, 

where neff and l are the effective principal quantum number and the angular momentum 

quantum number,  respectively. 

For the Li, Na, K, Rb, and Cs atoms dipole transition probabilities, oscillator 

strengths and lifetimes derived from a numerical Coulomb approximation have been 

investigated in [39] for states with  n≤12, l≤4. In this approximation, the wave functions 

are obtained numerically by direct inward integration of Schrödinger equation starting 

with correct asymptotic boundary conditions. The integration is terminated at a certain 

small distance rcut, so that the wave function is normalized to unity and the obtained 

expectation value <r> agrees with the Hydrogenic formula for neff.  

In seventies of the last century, further step towards improvement of the quality of 

calculations beyond the CA was made by accounting for the  electron-core penetration, 

the local electron exchange interaction potential, and in some works also for spin-orbit 

interaction [40, 41, 42, 43, 44, 45]. 

A number of authors [46,47,33,32] suggested to use the quasi-classical 

approximation for calculations of dipole matrix elements.  As it is shown in [publ1], the 

agreement with the more sophisticated full quantum-mechanical calculations for Rb, Na, 
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H (nS, nP, nD states) by Aymar [48] and  quasi-classical approximation [33] are in the 

range of 10-20%.  

For the line strengths calculations of the Na(3p-3s) transition, the ab inito methods 

have been used in nineties. To calculate the line strength, Guet et al. [49] used many-

body perturbation theory (MBPT). To obtain the same quantity, Salomson at al [50] 

applied the coupled-cluster approach including single and double excitations (CCSD). 

The best agreement with the recent experimental results can be achieved using the 

multiconfiguration Hartree-Fock calculation with an approximate treatment of core-core 

polarization (MCHF-CCP)  [51] and the large scale multiconfiguration Hartree-Fock and 

configuration interaction (MCHF –CI) calculation of Jönsson at al [52].  

The reason we calculated the above mentioned quantities is that the optical 

excitation of Rydberg states and photoionization of atoms are often used in contemporary 

atomic physics experiments. Rydberg states in the molecular beam experiments involving 

Na atoms [11] are generated by laser excitation from the readily populated 3p3/2 state of 

Na. In accordance with the experimental needs like those in experiment [11], the 

following tasks have been set for this part of thesis work: 

1) To obtain Na 3p3/2←ns1/2, nd5/2, nd3/2 transition probabilities for principal 

quantum numbers up to n=50 and photoionization cross sections from 

Na(3p3/2) to continuum. 

2) To test, with a variety of model potentials and parameter sets of these 

potentials, the accuracy of our calculations of transition probabilities and 

ionization cross sections, and to compare the obtained Na lifetimes, transition 

probabilities and photoionization cross sections with the available 

experimental and theoretical data. To show that a simple model potential 

method regarding electron-core penetration and the local electron exchange 

interaction give reliable excitation and ionization cross sections with the  

accuracy of 5%. 
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2.2. Model potential 

Dipole  transition probabilities between the initial jln 00  and final nlj  atomic states 

are proportional to square of the dipole transition matrix element ( ) 2

000 nljrDjln . To 

calculate these matrix elements, we need to know wavefunctions of the initial and final 

atomic states. In our study, the wavefunctions were calculated using Schrödinger 

equation with one-electron model potential method described bellow.  

The one-electron model potential method assumes that the valence electron of the 

Na atom moves in the potential of core electrons and the nucleus. Using the one-electron 

model potential, the Schrödinger equation in atomic units is  

( ) nlmnlmnlm ErV ΦΦ =





 +∇− 2

2
1 ,      (28) 

where V(r) is the potential for the valence electron and Enlm denotes the eigenvalues. The 

wavefunctions Φnlm can be separated in radial Pnl(r) and angular Ylm(θ,φ) parts: 

( ) ( ) ( )ϕθϕθΦ ,1,, lmnlnlm YrP
r

r = . 

Equation (28) for the radial functions Pnl(r) was is integrated numerically using the 

Numerov method [53]. The potential V(r) consists of three terms:  

( ) ( ) ( ) ( )rVrVrVrV exchcpc ++= ,      (29) 

where Vc(r) is the coulomb potential of unperturbed Na+ ion, Vcp(r) is the part of the total 

potential related to the core polarization, and Vexch(r) is the exchange potential. The 

coulomb potential Vc(r) was determined from the Hartree-Fock (HF) calculation of Na+ 

radial charge density distribution. It has been brought into the following analytical form: 

( ) ( )( ) ∑∑
==

−−− +−+−−=
2

0

2

1
00

341101

k

k
ki

i

rrr
c rCeeCeC

rr
rV iηηη .   (30) 

The fitting parameters C0, Cki and ηi were obtained in [publ5]. For the Na+ ion the 

numerical values of these parameters are given in table 1. 
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C01= -8.7378391 C11= -80.399335 C21= -161.543600 

C02= -50.416327 C12 = 17.6504939 C22= -21.2109560 

C0 =  -0.732368 η1 = 33.56251 η2 = 4.8411970 

η3 =  11.201713 η4 =  4.6234710  

Table 1. Parameters of the coulomb potential Vc(r) 

The second term in eq. (29), Vcp(r), is a correction term that accounts for polarization of 

the core electron cloud by the valence electron, i.e., it takes into account changes in the 

Na+ charge distribution induced by the valence electron. The iterative perturbation 

procedure described by Bottcher [54] has been employed to obtain a semi-empirical 

model potentials of the form [40]:  

( )







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


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
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−−−=
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4 exp1
2

exp1
2 cc

d
cp r

r
rr

r
r

rV λα
   (31) 

Here αd is the static dipole polarizability of the core. For Na+, αd=0.9947, rc =1.00, 

λ=6.9273. Outside the core distribution, this potential behaves like -1/r4 due to the 

induced dipole and like -1/r6 due to the induced quadrupole and the dynamic 

polarizability. The divergence disappears for a core of finite size and is usually handled 

by a cut-off function. This form was used by Weisheit [40] to calculate the ground-state 

photoionization cross sections and oscillator strengths for Na, Rb, Cs, K, and later for 

alkali lifetime calculations by Theodosiou [44]. The cut-off radius rc is usually chosen by 

matching the calculated and measured energies of the outer electron. For l = 0, 1, the 

values of rc turn out to be close to the values recommended in ref. [40]. An alternative 

form of the core polarization potential is [55]: 

( )
22

4 exp1
2 



















−−−=

c

d
cp r

r
r

rV α .                                                                      (31a) 

The potentials (31) and (31a) differ mainly  at small radii. For r/rc<<1, the potential (31) 

approaches zero, whereas (31a) turns to a constant value. 

In paper [56] an ab inito approach to construct appropriate core polarization 

potentials using configuration interaction Pauli-Fock (CIPF) calculations is described, 

which incorporates relativistic and many electron effects. Numerical core polarization 
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potential has been derived in [56]  applying variation principle for the total energy of the 

atom written with the second order correlational corrections. 

The third term of eq. (29) is accounting for the local electron exchange potential 

[54, 40], and it can be expressed as 

( ) ( ) 







−+=

c
exch r

rrccrV exp10 .    

The parameters rc,  c0, and c1 are chosen such as to adjust the individual eigenvalues of 

eq. (28) to the corresponding experimental energy value given in [57]. In our study we 

used the following numerical values of these parameters given in ref [40]: c0=0.38514, 

c1=-0.10506. 

 

2.3. Transition probabilities and transition dipole moments 

The transition probability for spontaneous emission in atomic units  is [58]: 

( ) ( ) ( ) 2

000
33

0
000 )12(3

4 nljrDjlnE
j

nljjlnA ∆
+

=→ α ,   (32) 

where α is the fine structure constant and the transition energy is ∆E=E0-E. The dipole 

matrix element can be written as: 

( ) ( )( ) ( ) ( )2
0000

2
00

0

2

000 ;,max
1

2/1
1212 nljjlnRll

lj
jl

jjnljrDjln

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



++=  (33) 

 

The 6-j-symbol 








∗∗∗
∗∗∗  accounts for the result of integration over angular coordinates. 

To determine the transition probability it is necessary to calculate the radial transition 

dipole moment 

( ) ( ) ( ) ( )∫
∞

=
0

000 000
; rPrDrdrPnljjlnR jlnnlj .     (34) 

The central task here is to determine the radial wavefunctions Pnjl(r) from the radial 

Schrödinger equation.  
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In zero-order approximation the dipole moment operator is D(0)(r)=r. To calculate 

the transition probability more precisely, one has to account for the core polarization. The 

dipole moment operator for the potential (31) then becomes [59, 40]: 

( ) ( )



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
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and for the potential (31a) [55]: 
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The transition dipole moments calculated with dipole moment operators D(0)(r) and 

D(1)(r)  differ from each other by ca 2%.  

In order to deal with high values of n, it is useful to remember that, according to 

quantum-defect theory, for sufficiently large n the energy of the Rydberg states may be 

expressed in terms of quantum defects µl  as  

( ) 2

2
1 −−−= ln µε . 

With this relation, an energy-normalised transition moment can be defined for ε < 0 as  

( ) 2/3
000

21
000

2
000

2 )2)(;(/);();( −− −== εεεε nljjlnRdndnljjlnRljjlnR             

This energy-normalised transition moment connects smoothly with the continuum 

transition moment function. The calculated transition moments of  Na(3p3/2) for Rydberg 

and continuum states with potential (31) and operator (35) are cast by least squares fitting 

into the analytical expression: 

( )∑
=

−≈
3

1

exp
i

iiAR εαε           (a.u) 0.070.014- ≤≤ ε     (35) 

with parameters Ai and αi as given in table 2. The transition moments are shown in fig. 8.  

Calculated transition probabilities for spontaneous emission with formula (32) from 

levels with n ≤ 50 to the Na(3p3/2) state are given in [publ5], together with other 

theoretical values for the lowest transitions. 
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Fig. 8. Transition dipole moments of  Na(3p3/2) for Rydberg and continuum states. The vertical line 
separates the region where discrete moments are calculated from bound states from the region where 
the continuum formula is used. 

 

 3p3/2→ ε d    3p3/2→ ε s   

A1 5.02081 α1 18.4638 A1 2.25476 α1 6.7440 

A2 0.80447 α2 55.7103 A2 1.06396 α2 29.8329 

A3 -0.00026 α3 370.3704 A3 0.01312 α3 88.2613 

Table 2: Parameters for transition dipole moments of  Na(3p3/2), eq. (36). 

 

2.4. Photoionization cross sections  

In this thesis [publ5] we applied the approach described above to study theoretically 

process of photoionization for the reaction Na(3p3/2) + γ → Na+ + e−(εs,εd). In this 

process the valence electron of sodium atom absorbs a photon with energy, which 

exceeds the photoionization threshold energy of 3.029 (eV) by photoelectron energy ε>0. 

As the result, a sodium ion and a photoelectron  with energy ε are formed. The total 

photoionization cross section is a sum of partial cross sections of photoionization from 

(l0=1, j0=3/2) into s states (l=0, j=1/2) and d states (l=2, j=3/2, 5/2) [58]: 
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( )[ ] ( )∑+
∆=∆
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0
εαπσ ,    

where ∆E=ε-E(3p3/2) is the exciting photon energy in atomic units and a0
2  is squared  

Bohr radius. The transition dipole operator D(r) can be taken as (35) or (35a). The radial 

part of the transition dipole moment Rε(n0l0j0;ε,l,j) is defined by eq. (34), and it can be 

calculated with energy-normalized continuum wavefunction.  

Fig. 9 shows the photoionization cross sections for Na(3p3/2) as a plot of electron 

energy obtained using semi-empirical model potentials of the form (31). For comparison, 

the cross sections obtained in earlier theoretical and experimental studies [60, 61, 43, 62, 

63, 64] are shown. The most cited theoretical works from seventies among them,  [64] 

and [42], used a semi-empirical model potential. In those studies, the optimal potential 

parameters were  determined by minimizing the root-mean-square deviation between 

observed and calculated energies of selected levels. The photoionization cross sections 

calculated in our study agree with those of [42] within the graphical scanning uncertainty 

because the photoionization cross sections are only available in graphical representation. 

Therefore they are not separately shown in fig. 9. The  calculation of [64] differs from the 

present results by ca 5 - 7 % (see fig. 9).  In our study, the parameter set of the model 

potential of the initial state was obtained according to the experimental value of the 

energy of the 3p3/2 state given in [57]. For the potentials of continuum states the 

parameters were obtained by energy matching for states with n>15. The agreement 

between our photoionization cross sections and the cross sections obtained by the 

configuration interaction Pauli-Fock calculation with core potential approximation [63] is 

less satisfactory. The photoionization cross sections of [63] are by 8% higher than those 

of the present work.  

The first experimental determination of the photoionization cross sections was 

based on electron–ion recombination data and has been reported in [60]. Photoionization 

cross sections obtained in the present study agree with the experimental results of [60] 

within 1 % near the ionization threshold, but difference increases up to 10-15%, when 

photoelectron energy increases above 1 eV. In the sodium beam experiment [43], the 

partial photoionization cross sections σ3p→s and σ3p→d to the continuum s and d states 

were measured separately using two appropriately polarised light sources. These 
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measurements were done over the photoelectron energy  range 0 ≤ ε ≤ 0.37 eV with an 

estimated accuracy of 5-10%. The results of the present calculation agree within 5% with 

the latter experiment. In [62], the photoionization cross sections were measured using 

monochromatised synchrotron radiation ionising Na(3p3/2) over the range 0 ≤ ε ≤ 2.1 eV 

with an estimated accuracy of 25%. The curve representing these data is considerably 

steeper than curve obtained in our studie (see fig 9.).  At ε > 1.6 eV the curve of [62] 

exhibits an increase in the cross section. This is due to photoionization of the 3s electrons 

of ground-state Na atoms. 
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Fig. 9. Photoionization cross-sections σ(ε) for the Na(3p3/2) atom over the photoelectron energy range 
0-2.0 eV. [a]: Hartree Fock calculation with semi-empirical core polarization potential and local 
exchange potential (Publ5); [b]: configuration interaction tecnique with Pauli-Fock atomic orbitals and 
core polarization potential [63]; [c]: Parametric central potential [64];  [d]: laser ionization experiment 
[43]; [e]: ionization with monochromatized synchotron radiation [62]; [f]: cross-sections from electron-
ion recombination data [60]; [g]: saturated ionization with pulsed laser [61];  

 

2.5. Conclusion 

In this thesis, probabilities for phototransition of Na(3p3/2) atoms have been 

calculated using the model potential method with local potential approximation in the 

form  (31, 31a). Parameters of the model potentials were adjusted to reproduce 
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experimental energy eigenvalues [57]. From tests with a variety of parameter sets we 

estimate that the resulting transition probabilities to lower excited states vary in 

comparision with reliable experimental and theoretical data in the range of  2-3%. This 

accuracy is also assumed for the photoionization cross sections for ε<0.5 eV. Relative 

uncertainty may grow ε>0.5 eV up to 4-6% due the decrease of photoionization cross 

sections at higher energies.  The calculated Na 3p3/2←ns1/2, nd5/2, nd3/2 transition 

probabilities are tabulated up to n=50 and lifetimes are compared with available 

experimental data. Earlier calculations with energy-adjusted model potentials are 

validated. The photoionization cross sections from the 3p3/2 state are presented in the 

form of an analytical formula. The results obtained using the quasi-classical 

approximation were of poorer accuracy  20-30% as compared to the model potential 

method. We can conclude that the model potential method is useful for obtaining reliable 

theoretical data. 
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3. Semiclassical treatment of radiation trapping in spatially nonuniform 
media  

 
3.1. Introduction. 

If a gas consist of many atoms of the same kind, then a photon emitted by an atom 

within such optically thick medium will be absorbed and reemitted repeatedly by other 

atoms before it will escape from the medium. This process is know as radiation trapping 

[65]. Radiation traping plays an important role in various physical processes. As an 

example radiative energy transfer in planet atmospheres can be mentioned. Radiation 

trapping in an atomic vapour can influence many spectroscopic experiments. Radiation 

trapping is described by the rate equation for the excited-state atom density in the vapour 

cell called Biberman-Holstein equation (eq. 37) [9]. The overview of various methods 

allowing the solution of Biberman-Holstein equation can be found in [9]. All traditional 

methods, which find analytical solutions of radiation trapping equations, deal with simple 

model situations as  one-dimensional geometries, spatially uniform media, high optical 

thicknesses and so on. The best of numerical methods, which can be used to solve the 

trapping equations for arbitrary cell geometries, is the numerical Monte-Carlo method 

[66]. Implementation of this method  is computationally demanding. It requires powerful 

computers and long computation times particularly at high opacity. The authors of paper  

[67] introduced new method called the geometric quantization technique (GQT). This is a 

general analytical approach for solving the Biberman-Holstein equation. GQT was 

applied to the solution of one-dimensional [67], and two- and three-dimensional problems 

[10]. Efficiency and advantages of this method become more pronounced, when more 

complex problems are considered, for example radiation trapping in elliptical cells. 

 Task of this work was to prove the applicability of GQT method in more 

complicated geometries, like elliptical cylinders, and prolate and oblate ellipsoids. The 

method also had to be compared with numerical Monte-Carlo calculations. Finally, 

ready-to-use recipes for computation of the radiation trapping factors in elliptical cells 

had to be provided.  

 
 



 

 41

3.2. Biberman-Holstein equation 

An atom in a dense vapour may be excited by externally applied radiation plus the 

fluorescence from other excited atoms within the vapour, and it will decay by 

spontaneous emission. This is expressed by the Holstein–Biberman equation for excited-

state atom density n r t*( , )r
:  

∫
Ω

′−′++ ),(*)(),(*)]([-),(=),(* 3
2121 trnrrGrdAtrnrWAtrS

dt
trdn rrrrrrr

r

 (37) 

∂ρ
ρ∂

πρ
ρ )(

4
1-=)( 2

TGG         (38) 

T C k v exp k k v dvn( =ρ ρ) ( ) ( ( ))−
−∞

∞

∫ 0       (39) 

ρ = − ′
r rr r  

Here Ω is the gas volume, confined atomic vapour. ),( trS r is the excitation rate due to 

externally applied radiation, A21   - Einstein coefficients for spontaneous decay, W – non-

radiative quenching rate, )( rrG ′−
rr  - probability that a photon that is emitted at point r ′r  

is absorbed at point  
rr , after it has travelled the distance rr ′−=

rrr
ρ . The function G 

depends on the spectral profiles of  absorption (Lorentz, Doppler or Voigt cases).  T(ρ) is 

the probability that a photon will pass distance ρ  without absorption, and Cn is the 

normalization constant: 

C k v dvn =
−∞

∞

∫1 ( )  .        (40) 

The Biberman-Holstein equation assumes following assumptions: 

1. We deal with a two-level atom. 

2. The density of ground state atoms is assumed to be much larger than the excited-state 

density. It means that we may neglect the change of the ground-state density profile 

during radiation transport and the effects of stimulated emission from the upper level. 

3. There is no photon reflection at the cell surface; every photon which reaches the cell 

surface escapes or is fully absorbed. When this condition is violated, we should 
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change the kernel function of radiation transport to include the effect of photons 

reflected at the wall.  

4. Neglect the flight time of photons. This assumption is acceptable in any nonrelativistic 

system.  

5. Spatial diffusion of atoms is negligible 

6. The frequency of a re-emitted photon is assumed to be completely independent of that 

of the absorbed photon. This is called complete frequency redistribution. Frequency 

distribution of the reemision ϕ(ν)  and absorption k(ν) profiles are proportional to each 

other: ϕ(ν)= Cn k(ν)  

We consider a given initial spatial distribution at the time t=0. At times t>0 no external 

excitation (i.e., radiation) sources are presented ( 0),( =trS r ). Fourier solutions to Eq. 

(37) are of the form: 

)()(),( 21
*

j
j

jj gtAexprtrn ∑ −=
rr ψα

     
(41) 

where )(rj
rψ   are the normalized eigenmodes, 

j
j g

1
=λ  are the corresponding 

eigenvalues of the Biberman-Holstein equation (37), jα  are expansion coefficients of the 

initial distribution of excited state population over eigenmodes. Parameters called 

trapping factors jg  give the number of reemission processes that a photon in the jth  

mode undergoes before leaving the cell. The effective lifetime of the fundamental mode 

is: 

21

0
0 A

g
=τ ,         (42) 

Lifetime of the jth mode decreases with increasing mode number 

(τ τ τ τ0 1 2 3> > > >......).  Therefore, the solution of the equation (37)  can be 

qualitatvely characterized using the fundamental mode. Hence, the first task to find the 

trapping factor 0g , i.e., the lifetime of the fundamental mode 0τ . 

 
 

 



 

 43

3.3. Geometric Quantization Technique 

The main difficulty in analytical treatment of eq. (37) arises due to presence of far-

wing photons, and they exist in all practically occurring line shapes. The far-wing 

photons are those with frequencies  corresponding to the wings of the given absorption 

k(ν) profile. Because of these photons, the mean free path of spacial diffusion of photons 

becomes infinite [9], such that many conventional numerical calculation schemes become 

inadequate. On the other hand, the more universal Monte Carlo method requires long 

computation times. Therefore it is of interest to develop simple and sufficiently universal 

analytical approaches.  

In present work we propose a novel GQT approache [67], which allows us to find 

the eigenfunctions of eq. (37). One can write the Biberman-Holstein equation (37) in the 

form: 

),()(),()ˆˆ(
),( **

21

*

trnrWtrnGIA
dt

trdn rrr
r

+−= ,    (43) 

where symbol $G  denotes the integral operator of G(ρ) in eq. (37) and $I  is the identity 

operator.  The eigenfunctions )(rj
rψ  of eq. (43) can be found by solving it together with 

eq. (41). It can be show that )(rj
rψ  obeys the following equation: 

)()()()ˆˆ()( 2121 rrWrGIArA jjjj
rrrr ψψψλ +−= .    (44) 

The main idea in the application of GQT to radiation trapping is to write the trapping 

equation (44) in the same form as a steady-state wave equation for some “quasiparticle” 

[67]. This steady-state wave equation contains the following Hamiltonian H associated 

with eq. (44) [66]: 

H p r A V p W r( , ) ~ ) ( )r r r r
= +21 ( ,       (45) 

where 

∫
∞

∞−

⋅ )()(exp-1=)(~ 3 rGprirdpV rrrr
.      (46) 



 

 44

For a gas contained in an infinite space  Ω=Ω∞ under the conditions when there is no 

quenching (i.e., W=0),  the eigenfunctions of operator $ $I G−  are planar waves 

)(exp pri rr
⋅ . 

)(exp)(~)]()()[(exp)(exp)ˆˆ( 33 pripVrrGrrprirdpriGI rrrrrrrrrrr
⋅=′−−′−⋅′′=⋅− ∫

∞

∞−

δ . 

These planar waves with the wave vector 
rp   describe the waves associated with a free 

quasi-particle. The corresponding eigenvalues λp V p= ~ )( r  are obtained by Fourier 

transform of the kernel functionδ 3 -G, where δ 3  is the Dirac’s δ function. Using the 

system of units with h=1, one can interpret the wave vector 
rp cm( )−1  as the momentum 

of quasi-particle, while the trapping rate constant (i.e., inverted lifetime) is interpreted as 

its kinetic energy: 

τ − =1
21A V p~( )r .        (47) 

The quenching rate W r( )r  can be interpreted as the potential energy of the quasiparticle 

[68, 69]. From the wave-particle dualism we can conclude that equation (44) describes a 

quasi-particle associated with the Hamiltonian H (45), which is imprisoned in the vapour 

cell of the shape described by Ω. The absence of atoms outside the cell means that there 

is an infinite potential jump  ∆W=∞ at the cell surface. In addition we assume that there is 

no photon reflection at the cell surface. This implies a boundary condition that the quasi-

particle is elastically reflected from surface ∂Ω confining the volume Ω of the absorbing 

medium. If the quenching within the absorbing volume Ω can be neglected (i.e., W=0), 

then the problem of finding the trapping factors gj reduces to the determination of the 

quantized energy spectrum of  quasi-particle with the Hamiltonian H p r A V p( , ) ~ )r r r
= 21 ( . 

In order to solve this problem, we involve additional  modifications of the semiclassical 

approach, which are known also as the ”short–wavelength approximation’’ in optics. In 

this approximation we deal with a typical quantum billiard-like problem and consider of 

the quasiparticle trajectories as straight lines (fig. 10).  Using the Fourier transform for 

kernel δ 3 -G the kinetic energy  A V p21
~( )r  of the quasi-particle can be expressed by 

spectral absoption coefficients of the given atomic transition [70]: 
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As can be seen, )( pV r
 is subject to a rather complicated dispersion law, which leads to 

generation of photons at frequencies corresponding to far wings of the spectral line 

profiles.  

 
Fig. 10. Illustration of the multidimensional quantization rules. The dashed lines in (a) give the wave-
fronts produced by reflections from the boundary of the absorbing medium. The billiard-like trajectory 
in (b) appears for radial motion of the quasi-particle in a finite cylinder or in a 2D rectangular box. In 
(c), the reflection of quasi-particle reflection from a plane potential wall is shown. 

 
3.4. Quantisation Rules 

The quasiparticle moves along a classical trajectory {
rp (t ), 

rr (t)}. If   quenching is 

negligible (W=0), then the motion equation can be written as: 
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According to the above equations, the quasiparticle travels along a straight line  equations 

and condition (W=0)  quasiparticle travels along a straight line ( pr =const) within the 

volume Ω, until it reaches the boundary ∂Ω. From this boundary the quasi-particle is 

elastically reflected back into the volume Ω and continues motion along a straight path 

(see fig. 10). The dotted lines in fig. 10.a represents  sections of  wave-front surfaces 

associated with the semiclassical wave function of the quasiparticle. After several 
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reflections, the initial wave-front transforms into itself (point A1 in fig 10.a). From the 

semi-classical point of view, the search for the  solutions of  wave equation (44) with the 

Hamiltonian H (45) is equivalent to defining resonance conditions for the quasiparticle. 

In other words, solution of the problem is equivalent to finding standing-wave solutions 

for the wavefunction. We can now apply Bohr–Sommerfeld semiclassical quantization 

rules [71]. It implies that phase change of the wave along arbitrary closed path Γr must be 

an integer multiplie of  2π: 

∑ =∆−
)(

22
r

rir jSI ππ ,       ∫
Γ

≡
r

rdrpIr
rr )(

2
1
π

,   jr=0,1,2…   (49) 

The above equations mean that  the wave front evolves until it recovers its initial 

position. The path Γ corresponds to the trajectory: Γ=A0 B1 U B1B2  U B2 B3  U B3A1  U 

A1A0  (see fig. 10.a). Boundaries ∂Ω are associated with repulsive potential energy, which 

leads to phase jumps iS∆  along rΓ  that must be taken into account.  The resonance 

condition (49) for an arbitrary closed path can be reduced to finite number m of equations 

(49). These correspond to  for m topology-independent cycles, where m is the dimension 

of the cell j={j1  ….jm}. For a 3-dimensional gass cell m=3 (e.g., sphere, ellipsoid, 

cylinder, parallelepiped and all other 3D vapour cell geometries ). From the quantisation 

rules (49) one can calculate the momentum 
rp j( )

 of the wave mode )(rj
rψ , from which, 

in turn, the kinetic energy )(~ )(
21

jpVA r
 of the quasiparticle can be determined using eq. 

(48). Eigenvalues jλ  and trapping factors jg  can then be found as: 

)(~1 )( j
j

j

pV
g

== λ         (50) 

3.5. Boundary phase jumps of the quasiparticle   

The infinite potential jump  ∆W=∞ at the vapour cell surface ∂Ω causes phase jump 

∆S  in the de Broglie wave of the quasi-particle, which is reflected from the wall. This 

phase jump can be written as 
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( )~ ( ) ~ ( )V V p sink η η θ= +2 2 2 ,            θpcospz =    

 

The value of phase jump ∆S depends on the angle θ, at which the wave is reflected (fig. 

10.c).  The above equation was derived for the half-space in [67] (e.g., the coordinate 

space with 0≥z  or 0≤z and infinite planar potential wall at z=0). We can use this result 

also for other geometries. For the half-space 0≥z  (fig. 10.c), eq. (44) describes 

eigenfunction Ψp(z) for a quasiparticle with the momentum pr .  This eigenfunction 

consists of the incoming wave, exp(-ipzz), and the reflected wave, exp(ipzz-i∆S). In other 

words, the asymptotic behavior (z>>0) of the solution of eq. (44) can be found in the 

form of a standing wave:   

Ψp(z)≈C[exp(-ipzz)+ exp(ipzz-i∆S)]=
~C cos(pzz-∆S/2),     (52) 

where the phase jump ∆S is the same as in eq. (51). The layer, within which the 

‘interaction’ between the quasi-particle and the boundary of the medium must be taken 

into account (from physical point of view, this layer corresponds to some transition zone, 

where the proceeses of photon escaping from the vapour cell are compensated by the 

photons outgoing from the cell optically deep layers), is given by the interaction length 

∆Lint [10]: 
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∆

+
∆

≈∆  

Hence, the interaction length defines the layer adjacent to the potential wall (i.e., the cell 

boundary), in which the formation of the standing wave takes place, so that for z>∆Lint  

the quasiparticle may be considered as a free particle and eq. (52) can be employed. The 

interaction length increases when the quasi-particle moves along the potential wall. If 

pz< pr , then the length of the path of quasi-particle through the boundary zone ∆Lint is 

intLp
p

z
∆








r

. For the reflection angle θ=π/2, the value of 
zp

pr
 →∞, i.e., the motion of 

quasi-particle is confined within the boundary zone. In that case, the phase jump becomes 

maximal: ∆Smax=π.  
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For the quantization rules to be valid, the lenght ∆Lint must be smaller than the 

characteristic distance between two reflections : ∆Lint<L, where L is the geometrical size 

of the cell. The value of ∆Lint is the largest for the fundamental mode [10]. The phase 

jump (51) depends from the absorption coefficient k0 and the absorption lineshape. From 

the quantum uncertainty relation pL=1 it follows that the non-dimensional ratio  k0/p= k0L 

corresponds to opacity of the vapour cell  k0L.  

If the cell is elliptical, then the quasi-particle is reflected from the vapour cell walls 

at different angles, which leads to different phase jumps ∆S. This situation is considered 

in [10] using the Percival semiclassical variation method in determining the quasiparticle 

trajectory. It is shown [10] that ∆S must be averaged along the reflecting boundary ∂Ω. In 

elliptical coordinates (η, ξ) averaging of ∆S  along the surface ∂Ω(η η= ) leads to the 

mean phase jump value: 
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        (53) 

For various geometries (sphere, ellipsoid) an additional phase shift is possible due 

to other reasons of the semiclassical approach to be breaking down. It may be resulted, 

for instance, because of occuring the caustic surface for the quasi-particle trajectories. 

The caustics correspond to turning points of the motion of quasi-particle in the space of 

generalized spatial variables. Usually, those variables are determined via a set of 

trajectories, which are creating the new (generalized) coordinate lines. Actually, one need 

to proceed along the trajectory provided he works under generalized variables. The latter 

results in appearing of effective (centrifugal) additional potentials in the equation of 

motion of the quasiparticle. The caustics correspond to the situation when the 

quasiparticle is reflected from the effective potential barrier. The corresponding phase 

jump on the caustic is given by [80] : 

∆Scau=π/2         (54)                                 

Note, that the above equation (54) ignores the barrier effect. The barrier effects can not be 

always neglected. For example, they generally must be taken into account in elliptical cell 



 

 49

geometries (see, for instance [21]) except for the fundamental mode, for which they 

vanish [10].  

 
3.6. Parallelepiped with sides of  length Hx  Hy  Hz 

At first one must solve the eigenvalue problem (44) and find the trapping factors gj 

entering Eq (41). In order to do so, we will use the Bohr-Sommerfeld quantization rules 

(49). Note, that we deal mainly with cell geometries allowing the separation of variables  

(integrable systems). It means that different  spatial variables can be considered as 

independent. Let us consider some examples. Motion of a quasi-particle inside the 3D 

parallelepiped with sides of  length Hx  Hy  Hz can be decomposed in three independent 

motions along each of the  x,y,z coordinates. The integral in eq. (49) is calculated along 

closed cycles ΓI, which are parallel to the coordinate axes. The cycle  Γx is shown in (fig. 

10.b). The phase jumps occures only on the parallelepiped surfaces, and they can be 

determined from eq (51). The quantization rules (49) lead to a nonlinear system of three 

equations: 

( )2 2 22 2H p S p p p ji i i i i= − +∆ , ) π        

p p p px y z
2 2 2 2= + + ,               

I=x,y,z         

The solution of this system yields the momentum field rp p p pi
x y z0 = { , , } . When the 

momentum field is known trapping factors gj can be found from eq. (50). 

 
3.7. Examples of elliptical geometries 

Let us consider the following types of ellipsoidal cavities with semi-axes R> and 

R<: 

x
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                                    prolate ellipsoid. 
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Like in the case of 3D parallelepiped, also in the elliptical cells it is possible to separate 

the spatial variables. For ellipsoid and elliptical cylinder it is convenient to use the  

elliptical coordinates. The first step is to apply the Bohr-Sommerfeld quantization rules 

(49) rewritten for the elliptical coordinate system. As mentioned above, in elliptical cells 

the reflection of the quasi-from the boundary occurs at different angles, which leads to 

different values of ∆S. Hence, the value ∆S must be averaged along the reflecting surface 

∂Ω. For calculations we used in eq. (49) the average phase jump given by eq. (53), and 

the phase jump on the caustic given by eq. (54). Our computation of the trapping factors 

gj is based on an iterative procedure. A practical recipe for calculation of the trapping 

factors gj can be found in ref. [10]. Fig. 11 and 12 show the g0 factors for the fundamental 

mode calculated using GQT for the case of a prolate ellipsoidal cell filled with a 

homogeneous absorbing medium. 
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Fig. 11. Trapping factors g0 for the fundamental mode for a prolate ellipsoid  at the opacity k0L = 
k0R<=1. The values of g0 obtained by GQT (solid lines) are shown as a function of the semi-axes ratio 
µ=R>/R<. Dashed lines show the results of numerical calculations by  Monte Carlo method. The 
calculation have been performed  for Lorentz and Doppler spectral line profiles.  

 
 
 

                              a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                 b) 
 
 
 
 
 
 
 

 
 
Fig. 12. Trapping factor g0 for a prolate ellipsoid  as a function of  vapour cell opacity k0L= k0 R<  for 
the fundamental mode.  (a) and (b) represent calculations for Doppler and Lorenz lineshapes, 
respectively. The solid and dashed lines corresppond to results obtained by GQT and Monte Carlo 
methods, respectively.  The semi-axes ratio is fixed to µ=R>/R< =2. 

0 20 40 60 80 100
0

50

100

150

200

g0  

k0R<

 

1 2 3 4 5 

1,4 

1,5 

1,6 

1,7 

1,8 

1,9 

g0 

µ

L 

D 

0 20 40 60 80 100
0

2

4

6

8

10

12

14

g0
 

k0R<



 

 52

 
As one can see, the results of GQT calculations for prolate ellipsoid agree with the 

results of Monte Carlo calculations to within a 5% difference in the case of fundamental 

mode.  Agreement between both calculations is somewhat poorer in the case of oblate 

ellipsoid, but it is still better than 10%. For all higher order modes the accuracy of the 

determination of trapping factors gj by GQT is better than 0.5%. Since we find a good 

agreement between the Monte Carlo and GQT calculations in the case of elliptical cell 

geometries, it is reasonable to assume that the average phase jump given by eq. (53) is 

valid for cells with more complicated geometries. 

 
3.8. Conclusion 

We have demonstrated that GQT is a useful instrument allowing the solution of 

classical radiation trapping problems. GQT provides analytical description for various 

geometries of the absorbing media. The results obtained by GQT were compared with the 

results of Monte-Carlo calculations. From this comparison we conclude that the accuracy 

of the calculation of the trapping factor of the fundamental mode, g0 , is about 5%, while 

for higher modes it is better than 0.5%. The advantage of the GQT method is obvious: the 

run time of Monte Carlo simulations quickly increases and becomes prohibitive as the 

opacities increased. In contrast GQT requires only very small numerical efforts. The 

second important advantage of GQT is that it allows a simple and efficient treatment of 

radiation trapping in geometries, which are unaccessible to other analytical and semi-

analytical methods.  In present work, we have shown that GQT can be successfully 

applied to radiation trapping problems in 2D and 3D vapour cells [10, 67, publ6]. We 

have also provided the formulation and solutions of radiation trapping problem in 

elliptical geometries of the absorbing medium, which are generally more complicated, 

because the reflection angle of the qusi-particle varies strongly with the position of the 

reflection point on the cell surface.  
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4. Photodissociation of Na2 molecules 

4.1. Introduction 

Photodissociation process is an elementary chemical reaction of type: 

AB + hν → AB* → A + B*       (55) 

In the photodissociation, a photon with frequency ν excites the molecule AB to a 

continuum state AB*, from where it dissociates into two separate fragments A and B*.  

Within the framework of Born-Oppenheimer approximation, the theoretical description 

of  the direct photodissociation processes assumes that the  electronic state excited by 

photon absorption is described by a potential energy surface, which is repulsive along the 

dissociation coordinate. This situation is represented in fig. 13. for the dissociation of a 

diatomic molecule. The strength of an electronic transition corresponding to the 

absorption of a photon is proportional to [8]: 
2

)()()(∫ RRRdR dgdg χµχ ,      (56) 

where gχ and dχ  are the vibrational eigenfunctions of the initial (bound) and final 

(dissociative) states, respectively, and gdµ  is the matrix element of  the electronic dipole 

moment operator for the electronic transition g→d. The continuum eigenfunction dχ  is 

to be evaluated for the total molecular energy Ed. From the energy conservation we obtain  

Ed = Eg + hν , where Eg is the initial rovibrational energy of the molecule in the ground 

electronic state.  In the dissociative state, the eigenfunctions have a maximum near the 

classical turning point and then, for larger R they become oscillating functions. Therefore 

the value of the integral  (56) is largely determined by the behavior of  eigenfunctions in 

the region of the inner turning point (provided that eigenfunction of the initial state is not 

be negligibly small in this region). 

Our task was to calculate cross sections for the photodissociation of sodium 

molecule Na2(X1Σg
+, υ") by λPD = 458 nm radiation from an Ar+ ion laser for various 

possible initial vibrational levels  υ" [publ7]. Such data were required for interpretation of 

an imaging experiment with the same photodissociation process.  



 

 54

Photodissociation cross sections are proportional to the square of transition matrix 

element between the initial and final molecular eigenstates. Our task is thus essentially 

reduced finding the vibrational eigenfunctions of the initial (bound) and final 

(dissociative) states.  

 
Fig. 13. Potential energy curves and wavefunctions for direct photodissociation. For the electronically 
excited state, eigenfunctions for continuum states at 3 different energies are shown. For the ground 
state, eigenfunctions of the two lowest vibrational levels are shown.  

 

4.2. Experiment of Na2(X1Σg
+) photodissociation process  

Photodissociation of state selected sodium molecules, Na2(X1Σg
+, υ") + hν → 

Na2*(B1Πu) → Na*(3p3/2) + Na(3s1/2) has been recently studied theoretically and 

experimentally at Kaiserslautern university using a novel "field-free" ion imaging 
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technique [publ7].  The experiment uses a supersonic Na/Na2 beam in a combination with 

the stimulated Raman adiabatic passage (STIRAP) technique [73] to prepare Na2 

molecules in selected rovibronic levels of the electronic ground state X1Σg
+. The 

molecules in levels υ" ≥ 10 are photodissociated into Na(3p3/2) and Na(3s1/2) atomic 

fragments by the λPD = 458 nm radiation from an Ar+ ion laser via the B1Πu state.  The 

excited Na*(3p3/2)  photofragments were photoionized or excited to high Rydberg states 

(λPI = 408 nm ) and registered by an ion imaging detector. The measured images showed 

not only the expected relatively fast photodissociation fragments, but also efficient 

formation of slow Na(3p3/2) atoms. Fast and slow refer to the atomic velocity relative to 

the centre-of-mass of the dissociating molecule. Experimental ratio of the numbers of 

slow and fast photofragments is 0.16 and 0.22 for the dissociation of Na2 from initial 

vibrational levels υ" = 17 and υ" = 23, respectively. Mechanism of the formation of slow 

Na(3p3/2) atoms can be explained as consequence of radiation trapping on atomic 

resonance transitions. Fast Na(3p3/2) atoms produced in the direct photodissociation 

process are surrounded by slow Na(3s1/2) atoms in the ground state from the primary 

Na/Na2 beam. Those slow Na(3s1/2) atoms are excited to the 3p3/2 state via absorption of 

photons, which are emitted by the fast Na(3p3/2) photofragments. Such mechanism is 

feasible, because the spontaneous lifetime of the 3p3/2 state is much shorter than the 

average time the photofragments need to escape from the primary particle beam. Most of 

the excited photofragments are therefore expected to emit a photon while surrounded by 

the Na(3s1/2) atoms. This process could be well described in terms of the radiation 

trapping phenomenon. 

 
4.3. Theory of Na2(X1Σg

+) photodissociation process  

In the calculation of Na2(X1Σg
+, υ"J") photodissociation by the 458 nm photons of 

Ar+ ion laser we assume that the fragmentation occurs exclusively via the B1Πu state. The 

molecules are thus excited from a rovibronic level with energy E(υ"J") in the electronic 

ground state into a dissociative state with energy ε = E(υ"J") + hνAr+ of the B1Πu state. In 

the Born-Oppenheimer approximation, wavefunction of the initial and final molecular 

states can be separated into electronic and nuclear parts:  
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nuc
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11 ,, MJMJ ggg ′′′′′′ΣΧΣΧ=′′′′′′ΣΧ +++ υυ ; 
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el

11 ,BB,B MJMJ uuu ′′ΠΠ=′′Π +++ εε , 

where M is the projection of the nuclear angular momentum J onto the laboratory z-axis. 

The cross section of the photofragmentation depends on the frequency of the 

photodissociating photon and square of the transition moment [74, 75]. For linearly 

polarized light and isotropic distribution of the molecular axis in the initial state it can be 

written as:  
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Here, c is the speed of light, where J,BJ, 11 ′Π→′′ΣΧ +
ug

ξ  is the sum of squares of the angular 

part of transition moment over the magnetic quantum numbers M [76, 77] described by 3-

j-symbol: 

∑
+

−=
′′′′Π→′′ΣΧ 








−

′′′
+′+′′==+

J

J

2
2

JJJ,BJ, 110
J1J

)1J2)(1J2(
3
1

11

M

rotR
ug

ξ  

This expression takes into account that for lineary plolarized light ∆M=0.  The radial part 

of the matrix element can be written as: 

( ) ( ) ( )dRRRRR
ugug B J,Jv,J,BJv, 1111 ′Π′′′′ΣΧ′Π→′′′′ΣΧ ∫= ++ εε χµχ .    (57) 

The values for the transition dipole moments 
el

11 B∑ ΠΣΧ= +
uig qeµ  (where e is the 

electron charge and qi are the electronic coordinates) and the potential curves were taken 

from [12]. The authors of [12] used the combined valence configuration interaction and 

the core polarization potential method to obtain potential curves and electronic dipole 

moment  functions µ as a function of internuclear distance R. In this study, the radial 

wavefunctions ( )R
g Jv,1 ′′′′ΣΧ +χ  and ( )R

uB J,1 ′Π εχ  in eq. (57) were integrated numerically 

using the Numerov method [53]. The resulting photodissociation cross sections for the 

vibrational level range of interest are given in fig. 14. In the calculations we have also 

checked for possible contribution of the fragmentation of molecules into Na(3p1/2) and 

Na(3s1/2) atoms via the A1Σu
+ state. These calculations showed that for the 458.06 nm 

photons this fragmentation channel is by several orders of magnitude less efficient than 
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the fragmentation via the B1Πu electronic state and can be safely considered as negligible. 

Note, that besides the A1Σu
+ and B1Πu states there are no other singlet ungerade states in 

the considered energy range, so that the B1Πu state is the sole dissociation gateway.  
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Fig. 14. Cross sections for photofragmentation of Na2 (X1Σg

+, υ", J"=9) molecules by 458 nm photons 
via the B1Πu state. For levels υ" ≤ 9 the energy ε = E(υ"J") + hνAr+ is not sufficient to overcome the 
potential barrier of the B1Πu state, the maximum of which lies 46 meV above the 3p3/2 + 3s1/2 
dissociation asymptote [78]. In the experiment, no detectable photofragment signals were registered for 
photodissociation from the υ"=9, J"=9 level.  

 

4.4. Conclusion 
In this thesis work [publ7] we have performed theoretical studies of the 

photodissociation process Na2(X1Σg
+, υ",J") + hν458nm → Na2

*(B1Πu) → Na*(3p) + Na(3s) 

within the framework of Born-Oppenheimer approximation. The energy balance showed 

that for levels υ" ≤ 9 the energy of photon with wavelength 458 nm  is not sufficient to 

overcome the potential barrier of the B1Πu state. Therefore, the photodissociation cross 

sections were calculated beginning from the υ"=9, J"=9 level up to υ"=30.  We proved 

that Na2(X1Σg
+) photodissociation with 458 nm photons can proceed only via the B1Πu 

state. In our calculations, we used more realistic transition dipole moment µ(R), which 

depends on the internuclear distance R. Such approach yields more accurate results than 

those obtained using the Franc-Condon approximation, which is frequently involved due 

to its simplicity.   
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5. Summary 

According to the tasks set for the present promotion work, the following results were 

obtained: 

 

• Investigation of stochastic phenomena occurring during the passage of the colliding 

A** + A complex through the zone of multiple overlapping level crossings [publ1, 

publ3, publ4] were caried out. Based of this investigation, an essential improvement of 

the DSMJ model (Duman-Shmatov-Mihajlov-Janev) was achieved, which includes 

the stochastic description of Rydberg electron  motion during the collision [publ3]. In 

addition, effects of collisional l-mixing, twisting effect, and blackbody radiation 

(BBR) and spontaneous decay induced mixing of Rydberg states were taken into 

account. Our theoretical results were compared with the associative ionization rate 

constants of crossed-beam experiments with sodium atoms in  nP states with n=5–15 

[34] and single-beam experiments with Na atoms in nS, nP, nD states [19, 35, publ2]. 

We used our developed approach to calculate the associative ionization rate constants 

in Na** + Na collisions, and it was shown that the stochastic model yields a 

substantially better agreement with the experimental data than the DSMJ model, 

which was formerly traditionally used for the analysis of  ionization processes of type 

(1) [publ3].   

• General analytical approach was developed for the solution of Biberman-Holstein 

radiation trapping equation [10, 67, publ6]. Our geometric quantization technique 

(GQT) introduces a quasi-particle and uses quantization rules in order to solve 

Biberman-Holstein radiation trapping equation in form of  a wave equation. In this 

thesis we extended our method to 3-dimensional vapour cells. In the first step, we 

have computed the phase shift that a quasi-particle suffers upon reflection from the 

cell surface by a certain angle θ. The angles of incidence of the incoming rays (quasi-

particles) vary with the position on the cell surface. Because of this variation the 

averaged phase shift was introduced (52). We calculated radiation trapping factors g0 

for  complicated geometries of vapour cells, including elliptical cylinders, prolate and 

oblate ellipsoids. A comparision the results of much more demanding numerical 
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Monte-Carlo calculations showed that the accuracy of our calculations is about 5%. 

The GQT technique enables the solution of a large range of practical problems of 

radiation trapping with very little numerical effort. It is more general than other 

available analytical methods. In this thesis we give a simple and ready-to-use recipe 

for the computation of trapping factors in plane-parallel slabs, finite cylinders, 

spheres, and elliptical cells. 

• Model potential method was used to obtain Na 3p3/2←(ns1/2, nd5/2, nd3/2) transition 

probabilities for Rydberg states with n≤50 and photoionization cross sections of 

Na(3p3/2) atoms to the continuum [publ5]. Wave functions were calculated 

numerically  by solving the Schrodinger equation for the valence electron of Na atom. 

For this purpose, the potential for Na valence electron was derived as. Coulomb 

potential of the unperturbed Na+ ion (Eq. (31)). The core polarization effect was also 

taken into account. Core polarization affects the calculations of transition matrix 

elements in the way that it changes the wave functions and the dipole transition 

operator. In our calculations we used the exchange potential and the parametric core 

polarization potentials of Na given by Weisheit [40] and Meyer [55]. Tests with 

various parameter sets of those potentials allowed us to estimate the accuracy of our 

method. Lifetimes, transition probabilities, and photoionization cross sections 

obtained in this thesis were compared with the available experimental data and with 

other theoretical calculations. We believe that model potential method with 

parametric core polarization potential can be made quantitatively reliable if one or 

more parameters of this parametric potential, are chosen as empirical parameters by 

fitting them to the experimental binding energies of the valence electron. The 

estimated accuracy of our results is better than 5%. The dipole transition moments for 

the discrete states and the continuum are also presented in a form of analytical 

expression.  

• Theoretical study of the photodissociation process Na2(X1Σg
+, υ",J") + hν458nm → 

Na2
*(B1Πu) → Na*(3p) + Na(3s) within the framework of the Born-Oppenheimer 

approximation was performed [publ7]. In this study, the Na2 molecules are excited 

from a rovibronic level (υ",J") in the electronic ground state X1Σg
+ to the dissociation 

continuum of the B1Πu state by polarized light with wavelength λPD=458 nm from an 
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Ar+ ion laser. The radial wave functions of the vibronic states of the electronic ground 

state X1Σg
+ and continuum wave  functions of the final state B1Πu were calculated 

numerically by solving the Schrodinger equation. The photodissociation cross 

sections were calculated as a function of the initial ground state vibrational level υ". 

We showed that Na2(X1Σg
+) photodissociation by 458 nm photons can proceed only 

via the B1Πu state, while the fragmentation via the A1Σu
+ state can be considered as 

negligible.  
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