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Abstract

The thesis deals with the special constructions of general aggregation operators,

which are based on an equivalence relation. A need for such operators acting on fuzzy

sets could arise dealing with particular decision making problems, multi-objective opti-

mization and other problems, where it is important to take into account an equivalence

relation between the objects of aggregation. But previously existed constructions of a

general aggregation operator don’t provide this possibility.

Initially, the general aggregation operator based on an equivalence relation has ap-

peared in our research while we had been studying a choice of optimal solution for

bilevel linear programming problems. We have suggested the construction of an ag-

gregation of the lower level objectives taking into account a crisp equivalence relation

generated by the upper level objective. This allowed us to obtain the tool, which helps

to analyse bilevel linear programming problem’s solving parameters in order to choose

the optimal solution.

We generalize this concept by involving a fuzzy equivalence relation instead of a

crisp one. As a result, we consider upper and lower general aggregation operators based

on a fuzzy equivalence relation. These constructions provide upper and lower approx-

imations of the pointwise and t-norm extension of an ordinary aggregation operator.

We consider different properties of these operators, including its connection with exten-

sional fuzzy sets. We demonstrate with a numerical example possible applications of

these constructions in decision making. Another part is devoted to the case, when inputs

are in the form of fuzzy real numbers.

Finally, we describe approximate systems induced by upper and lower general ag-

gregation operators, considering the lattice of all general aggregation operators and the

lattice of all fuzzy equivalence relations. It provides a generalized view on the suggested

constructions and allows to use approximate system tools for further research.

Key words and phrases: Aggregation operator, general aggregation operator, fuzzy

equivalence relation, extensional fuzzy set, upper and lower approximate operators, ap-

proximate system
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Anotācija

Promocijas darbs veltı̄ts vispārinātā agregācijas operatora speciālai konstrukcijai,

kas balstı̄ta uz ekvivalences attiecı̄bas. Nepieciešamı̄ba pēc šāda operatora var rasties,

meklējot risinājumu konkrētajam lēmumu pien, emšanas uzdevumam, vairāku mērk, a

funkciju optimizācijas uzdevumam un citām problēmām, kad ir svarı̄gi n, emt vērā ek-

vivalences attiecı̄bu starp agregācijas objektiem.

Sākotnēji uz ekvivalences attiecı̄bas balstı̄ts vispārinātais agregācijas operators

darbā tiek lietots pētot optimālā atrisinājuma izvēli divu lı̄men,u lineārās pro-

grammēšanas uzdevumos. Tiek piedāvāta apakšējā lı̄men, a mērk, a funkciju agregācijas

konstrukcija, kas n, em vērā striktu ekvivalences attiecı̄bu, g‘enerētu ar augšējā lı̄men, a

mērk, a funkcijas palı̄dzı̄bu. Tas l,auj iegūt rı̄ku, ar kuru var analizēt divu lı̄men,u lineārās

programmēšanas uzdevuma parametrus, lai izvēlētos optimālo atrisinājumu.

Tālāk šı̄ koncepcija tiek vispārināta, ieviešot nestriktu ekvivalences attiecı̄bu striktās

attiecı̄bas vietā. Rezultātā tiek iegūts apakšējais un augšējais vispārinātais agregācijas

operators, kas balstās uz nestriktas ekvivalences attiecı̄bas. Šı̄ konstrukcija nodrošina

augšējo un apakšējo aproksimāciju parastā agregācijas operatora punktveida un t-

turpinājumam. Tiek pētı̄tas šo operatoru ı̄pašı̄bas. Ar skaitlisku piemēru tiek parādı̄ts šı̄s

konstrukcijas iespējamais pielietojums lēmumu pien, emšanā. Atsevišk, a nodal,a veltı̄ta

gadı̄jumam, kad ieejas lielumi ir nestrikto reālo skaitl,u formā.

Visbeidzot, tiek aprakstı̄ta augšējā un apakšējā vispārinātā agregācijas operatora in-

ducēta aproksimatı̄vā sistēma, aplūkojot visu vispārināto agregācijas operatoru un visu

nestrikto ekvivalences attiecı̄bu režg‘us. Tas dod vispārı̄go skatı̄jumu uz izstrādātajām

konstrukcijām un l,auj izmantot aproksimatı̄vo sistēmu rı̄kus tālākajos pētı̄jumos.

Atslēgas vārdi un frāzes: agregācijas operators, vispārinātais agregācijas operators,

nestrikta ekvivalences attiecı̄ba, ekstensionālās nestriktas kopas, augšējais un apakšējais

aproksimatı̄vie operatori, aproksimatı̄vā sistēma
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Introduction

Aggregation is the process of combining several numerical values into a single repre-

sentative value. For example, aggregations are widely used in pattern recognition and

image processing, researches on neural networks, decision making theory as well as

many other applied fields of physics and natural sciences. As the widely used examples

of aggregation operators we could mention arithmetic and geometric mean, minimum

and maximum operators, t-norms and others (see, e.g., [4, 7, 14]). Aggregation oper-

ators have been widely used during all the history of physics, probability theory and

statistics, economics and finance. Since 1980’s aggregation operators have become a

substantive research field due to rapid development of computer technology. Numerous

papers and books have been published on both theoretical investigations and applica-

tions of aggregation operators. Mathematically aggregation operator is a function that

maps multiple inputs from a set into a single output from the same set, which somehow

characterizes these inputs. A problem of choosing the right class of aggregation oper-

ators for a particular problem is a difficult task itself. The choice could depend on the

properties of inputs as well as the properties of aggregation operators. In many cases

one should construct an appropriate aggregation operator with the required properties.

Our thesis deals with a concept of aggregation of fuzzy sets. One of the facts, which

significantly restricts the use of theoretical mathematics in modelling, researches and

forecasting in real-world problems, is that theoretical mathematics traditionally deals

with two-valued logics, and therefore is based on alternative nature of a set: each element

either belongs to the set or does not belong. However, in real-world processes typically

are situations, when some set of objects has vague boundaries: some object could be a

member of the set with some degree. In order to deal with this shortcoming and to allow

to develop theoretical mathematics in the direction, which is more suitable for modelling

real-world processes, professor Lotfi A. Zadeh of the University of California, Berkley

introduced the concept of a fuzzy set.

The development of the fuzzy set theory started in 1965, when the paper entitled
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"Fuzzy Sets" w as published in journal Information and control. This publication serves

as a foundation of the development of new mathematical theory. In his paper Zadeh

extended the classical notion on Cantor set, allowing the membership function to take

values not only 0 and 1, but any value from interval [0,1]. Such sets are called "fuzzy".

In 1968 J.A. Goguen [13] developed and improved the ideas of Zadeh by introducing

the notion of L-fuzzy set. He allowed the membership function to take value not only

on internal [0,1], but on general lattice L. The geographical spread of investigations

on many-valued mathematical structures is very wide. A lot of countries has special-

ized institutes and laboratories, which are involved in this subject (USA, Spain, Czech

Republic, Slovakia, Poland, Germany, Austria, South Korea, South Africa and others).

It is worth to particularly mention Japan, where in the 1980-s were established two

large specialized institutes, where fundamental researches in theoretical mathematics of

many-valued structures have been performed in collaboration with industrial companies

(Honda, Kawasaki Steel, Toshiba, Nissan Motors, Canon and others). A lot of laborato-

ries are financed by big enterprises form the outside of Japan, among them are Bosch,

Zeiss, Siemens, Audi and Volkswagen. In Europe many investigations in this area deals

with the problems of artificial intelligence, information theory, pattern recognition and

image analysis, big data and others [38].

The notion of a general aggregation operator acting on fuzzy structures was intro-

duced by A. Takači in [36]. He defined an aggregation operator acting on fuzzy sets and

investigated pointwise and min-extensions of aggregation operator with respect to dif-

ferent orderings between fuzzy sets.Later the research group at the University of Latvia

started investigations in this area. J. Lebedinska in her works (see, e.g., [23, 24]) de-

veloped the concept of general aggregation operator. She considered different construc-

tions of a general aggregation operator, investigated behaviour of this operator acting on

different types of fuzzy sets and also explored various properties. Another view on ag-

gregation of fuzzy relations was provided by O. Grigorenko [15, 16] by using the idea of

t-norm extension of aggregation operator. Recently, Z. Takač proposed an aggregation

operator acting on fuzzy truth values [37] and investigated it’s properties. Non of the

authors has considered aggregation operators where an equivalence between the objects

is taken into account. For example, the need for such constructions could arise dealing

with particular decision making problems, multi-objective optimization and other.

In the thesis we define and develop the concept of general aggregation operators with

respect to an equivalence relation both in crisp and fuzzy cases. First, we study general

7



aggregation operators based on a crisp equivalence relation. The idea is to aggregate

fuzzy sets in accordance with classes of equivalence generated by this crisp equivalence

relation. Initially, the need for such operator raised while we were investigating how to

assess an optimal solution of a bilevel linear programming problem. The fuzzy solution

approach to this problem led to the need of aggregating membership functions of the

lower level objectives taking into account the satisfactory level of the upper level ob-

jective. In the thesis we generalize this concept by involving fuzzy equivalence relation

instead of a crisp one. We consider two operators as upper and lower approximations

of a general aggregation operator and study its properties. Taking into account that

fuzzy equivalence relations represent the fuzzification of equivalence relations and ex-

tensional fuzzy subsets play the role of fuzzy equivalence classes, we consider the upper

and lower general aggregation operators in the context of extensional fuzzy sets. It is

important that the results of upper and lower general aggregation operators correspond-

ing to a fuzzy equivalence are extensional with respect to this relation. In some cases

while aggregating extensional fuzzy sets it could be necessary to obtain as a result an

extensional fuzzy set as well, but an ordinary general aggregation does not ensure this

property. We describe also upper and lower approximations of the t-norm extension of

an ordinary aggregation operator. Finally, the constructions of upper and lower general

aggregation operators allow us to describe an approximate system induced by these op-

erators (see, e.g., [11, 17, 34, 35]). Among the most important examples of approximate

systems are approximate systems induced by fuzzy equivalence relations. These approx-

imate systems are related to fuzzy rough sets (see, e.g., [10, 28, 39]). The constructed

approximate systems allow to perform research on connection between these areas.

Goal and objectives
The main goal of the thesis is to develop the theory of aggregation operators acting

on fuzzy sets by constructing an aggregation operator involving an equivalence relation

between objectives.

The tasks of the thesis are:

1. to describe a construction scheme of an aggregation operator acting on fuzzy sets,

which takes into account an equivalence relation between these fuzzy sets,

2. to apply the proposed construction for analysis of solving parameters of a bilevel

linear programming problem, in order to choose an optimal solution of the prob-

lem and to improve the existing fuzzy algorithm for solving such kind of problems,
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3. to generalize the proposed construction by using a fuzzy equivalence relation and

to investigate properties of the obtained operators,

4. to investigate the case when inputs of general aggregation operators are in the

form of fuzzy real numbers,

5. to construct an approximate system based on upper and lower general aggregation

operators.

Thesis structure
This thesis is structured in the following way. Chapter 1 presents a general overview of

necessary preliminaries. The notion of an aggregation operator is described, several ex-

amples of widely used aggregation operators are given and the most important properties

are defined. The definition of a fuzzy set and some important operators in the context

of fuzzy mathematics are provided. Finally, some basic concepts from the lattice theory

are given.

Chapter 2 is devoted to operators in the case of a crisp equivalence relation. Here we

recall the construction of a general aggregation operator, which aggregates fuzzy sets in

accordance with classes of equivalence generated by a crisp equivalence relation ρ. We

show that all properties of the definition of a general aggregation operator such as the

boundary conditions and the monotonicity hold for the defined operator. We show the

possible application of this construction for the analysis of solving parameters for bilevel

linear programming problems, which was studied in details in [50, 51]. This section is

based on the interactive method of solution of bilevel linear programming problems

introduced by M. Sakawa and I. Nishizaki [32, 33] and involving some parameters for

the upper and lower level objectives. Several important properties of the output of this

aggregation operator are proved. These properties help us in the process of choosing the

solving parameters. In the final section the particular numerical example of such analysis

is provided on the base of a mixed production planning problem. We use numerical

values for the parameters of this problem to describe how the analysis of the solving

parameters could be performed.

In Chapter 3 we give the definition of upper and lower general aggregation oper-

ators, which are based on a fuzzy equivalence relation, and show that these operators

are general aggregation operators themselves. We illustrate by numerical examples how

these constructions operate. We consider properties of upper and lower general aggre-

gation operators derived from the properties of the corresponding ordinary aggregation
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operator. We study different types of monotonicity for these operators. We investigate

the constructions of upper and lower general aggregation operators in the context of ex-

tensional fuzzy sets. These operators are considered as aggregations which take values

in the class of all extensional fuzzy sets, which could be important in some particular

problems. Finally, we consider the constructions of upper and lower general aggregation

operators based on a t-norm extension of an ordinary aggregation operator.

Chapter 4 is devoted to aggregation of fuzzy real numbers. First, we describe a

general aggregation operator which allows us to aggregate such inputs and to preserve

its properties. We also show that upper and lower general aggregation operators preserve

properties of fuzzy real numbers. Finally, we consider the preservation of the form of

initial inputs in the case of fuzzy real numbers by upper and lower general aggregation

operators based on a t-norm extension of an ordinary aggregation operator.

In Chapter 5 we recall the definition of M-approximate system, which provides an

alternative view on the relations between fuzzy sets and rough sets. In the context of

M-approximate systems two lattices L and M play the fundamental role. We provide

the constructions of M-approximate system induced by a fuzzy equivalence relation and

based on upper and lower general aggregation operators. These constructions use the

lattice L of all general aggregation operators and the lattice M of all fuzzy equivalence

relations.

Approbation
The results obtained in the process of thesis writing have been presented at 17 interna-

tional conferences:

• IFSA-EUSFLAT 2015: 16th World Congress of the International Fuzzy Systems

Association (IFSA), 9th Conference of the European Society for Fuzzy Logic and

Technology (EUSFLAT), Gijon, Spain, June 30 - July 3, 2015 [49],

• MMA 2015: 20th International Conference on Mathematical Modelling and Anal-

ysis, Sigulda, Latvia, May 26 - 29, 2015 [A1],

• IPMU 2014: 15th International Conference on Information Processing and Man-

agement of Uncertainty in Knowledge-Based Systems, Montpellier, France, July

15 - 19, 2014 [46],

• FUZZ-IEEE 2014: IEEE International Conference on Fuzzy Systems, Beijing,

China, July 6 - 11, 2014 [47],
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• FSTA 2014: 12th International Conference on Fuzzy Set Theory and Applications,

Liptovsky Jan, Slovakia, January 26 - 31, 2014 [A3],

• EUSFLAT 2013: 8th Conference of the European Society for Fuzzy Logic and

Technology, Milan, Italy, September 11 - 13, 2013 [51],

• AGOP 2013: 7th International Summer School on Aggregation Operators, Pam-

plona, Spain, July 16 - 20, 2013 [50],

• MMA 2013: 18th International Conference on Mathematical Modelling and Anal-

ysis, Tartu, Estonia, May 27 - 30, 2013 [A4],

• EURO 2012: 25th European Conference on Operational Research, Vilnius,

Lithuania, July 8 - 11, 2012 [A5],

• FSTA 2012: 11th International Conference on Fuzzy Set Theory and Applications,

Liptovsky Jan, Slovakia, January 30 - February 3, 2012 [A7],

• EUSFLAT 2011: 7th Conference of the European Society for Fuzzy Logic and

Technology, Aix-les-Bains, France, July 18 - 22, 2011 [45],

• MMA 2011: 16th International Conference on Mathematical Modelling and Anal-

ysis, Sigulda, Latvia, May 26 - 28, 2011. [A8]

• APLIMAT 2011: 10th International Conference International Conference on Ap-

plied Mathematics, Bratislava, Slovakia, February 1 - 4, 2011 [44],

• MMA 2010: 15th International Conference on Mathematical Modelling and Anal-

ysis, Druskininkai, Lithuania, May 26 - 29, 2010 [A9],

• 8th Latvian Mathematical Conference, Valmiera, Latvia, April 9 - 10, 2010 [A10],

• FSTA 2010: 10th International Conference on Fuzzy Set Theory and Applications,

Liptovsky Jan, Slovakia, February 1 - 5, 2010 [A11],

• MMA 2009: 14th International Conference on Mathematical Modelling and Anal-

ysis, Daugavpils, Latvia, May 27 - 30, 2009 [A12],

as well as at 10 domestic conferences:

• 73th Conference of the University of Latvia, Riga, February 26, 2015,
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• 10th Latvian Mathematical Conference, Liepaja, April 10 - 12, 2014 [A2],

• 72th Conference of the University of Latvia, Riga, March 6, 2014,

• 71th Conference of the University of Latvia, Riga, February 28, 2013,

• 9th Latvian Mathematical Conference, Jelgava, March 30 - 31, 2012 [A6],

• 70th Conference of the University of Latvia, Riga, February 23, 2012,

• 69th Conference of the University of Latvia, Riga, March 10, 2011,

• 68th Conference of the University of Latvia, Riga, March 4, 2010,

• 67th Conference of the University of Latvia, Riga, February 11, 2009,

• 7th Latvian Mathematical Conference, Rezekne, April 18 - 19, 2008, [A13].

The results of the research have been presented on the regular seminars Many-valued

structures in algebra, topology and analysis at the University of Latvia and on the 1st

Czech-Latvian Seminar on Advanced Methods in Soft Computing (Trojanovice, Czech

Republic, 2008) [A13].

The main results of the research have been reflected in 8 scientific publications:

• P. Orlovs, S. Asmuss, On some properties of general aggregation operators based

on a fuzzy equivalence relation, Advances in Intelligent Systems Research, Vol.

89, Atlantis Press, 2015, p. 1354 - 1361. (Web of Science, to appear in Scopus)

• P. Orlovs, S. Asmuss, General aggregation operators based on a fuzzy equivalence

relation in the context of approximate systems, Fuzzy Sets and Systems, 2015.

(Scopus, article in press)

• P. Orlovs, S. Asmuss, On extensional fuzzy sets generated by factoraggregation,
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Systems, Series: Communications in Computer and Information Science, Vol.

444(3), Springer, 2014, p. 317 - 326. (Scopus, Web of Science)

• P. Orlovs, S. Asmuss, Upper and lower generalized factoraggregations based on

fuzzy equivalence relation, Proceedings of the 2014 IEEE International Confer-

ence on Fuzzy Systems (FUZZ-IEEE), Beijing, China, 2014, p. 1772 - 1777.

(Scopus, Web of Science)

12
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Chapter 1

Preliminaries

In this chapter we present general definitions and results which are important for our

further considerations. First, we give the definition, main properties and examples of

aggregation operator, which is the basic notion throughout the thesis. These topics were

widely studied in [4, 7, 14]. Second, we provide a brief overview of fuzzy set theory,

while fuzzy sets are the objects, which are involved in aggregation process in our work.

For more fundamental results on fuzzy set theory we refer the reader to [8, 9, 38, 43].

Finally, we recall some basic concepts of the lattice theory (see, e.g., [3, 6, 38]) and

recall the notion of a t-norm operator, which is important both in the context of fuzzy

sets and general aggregation operators (see, e.g., [22, 38]).

1.1 Aggregation operators

Aggregation is the process of combining several numerical values into a single repre-

sentative value. Mathematically aggregation operator is a function that maps multiple

inputs from a set into a single output from this set. In classical the case [4, 7] aggregation

operators are defined on interval [0,1].

Definition 1.1.1. A mapping A :
⋃

n[0,1]n→ [0,1] is called an aggregation operator if

the following conditions hold:

(A1) A(0, . . . ,0) = 0;

(A2) A(1, . . . ,1) = 1;

(A3) for all n ∈ N and for all x1, . . . ,xn,y1, . . . ,yn ∈ [0,1]:

xi ≤ yi, i = 1, . . . ,n =⇒ A(x1, . . . ,xn)≤ A(y1, . . . ,yn).
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Aggregation operators

Conditions (A1) and (A2) are called boundary conditions of A, but (A3) means the

monotonicity of A. One can consider a case, when instead of [0,1] an arbitrary closed

interval [a,b] ⊂ [−∞,+∞] is used. Let us denote by A(n) an aggregation operator of n

arguments: A(n) : [0,1]n→ [0,1].

Now we will refer to some properties of aggregation operators. There are particular

examples of aggregation operators [4, 7] which satisfy some of the properties, but do

not satisfy another.

(1) Symmetry:

∀x1,x2, . . . ,xn ∈ [0,1] ∀π A(x1, . . . ,xn) = A(xπ(1), . . . ,xπ(n)),

where π : N→ N is a permutation and N = {1, . . . ,n}.

(2) Associativity:

∀x1,x2,x3 ∈ [0,1] A(x1,x2,x3) = A(A(x1,x2),x3) = A(x1,A(x2,x3)).

(3) Idempotence:

∀x ∈ [0,1] A(x,x, . . . ,x) = x.

(4) Existence of an absorbent element:

∃a ∈ [0,1] ∀i ∈ 1, . . . ,n ∀x1, . . . ,xi−1,xi+1, . . . ,xn ∈ [0,1]

A(x1, . . . ,xi−1,a,xi+1, . . . ,xn) = a.

Such element a is called an absorbent element (or annihilator) of operator A.

(5) Existence of a neutral element:

∃e ∈ [0,1] ∀i ∈ 1, . . . ,n ∀x1, . . . ,xi−1,xi+1, . . . ,xn ∈ [0,1]

A(x1, . . . ,xi−1,e,xi+1, . . . ,xn) = A(x1, . . . ,xi−1,xi+1, . . . ,xn).

Such element e is called a neutral element of operator A.

(6) Homogeneity with respect to a multiplication with a non-negative number:

∀r ≥ 0, ∀x1,x2, . . . ,xn ∈ [0,1] r · xi ∈ [0,1], i = 1, . . . ,n =⇒

=⇒ A(r · x1, . . . ,r · xn) = r ·A(x1, . . . ,xn).
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(7) Stability for a non-negative linear transformation:

∀r ≥ 0, ∀t,x1,x2, . . . ,xn ∈ [0,1] r · xi + t ∈ [0,1], i = 1, . . . ,n =⇒

=⇒ A(r · x1 + t, . . . ,r · xn + t) = r ·A(x1, . . . ,xn)+ t.

(8) Continuity of an aggregation operator A is ordinary continuity of all n-argument

operators A(n) in the sense of continuity defined for n-argument functions.

Finally, we consider some of the most well-known and important examples of ag-

gregation operators [7]. Arguments of these operators could be taken from any closed

interval of the real line, one should be aware of defining boundary conditions.

1. Arithmetic mean:

AM(x1,x2, . . . ,xn) =
1
n

n

∑
i=1

xi.

2. Weighted average:

Ww1,...,wn(x1,x2, . . . ,xn) =
n

∑
i=1

wi · xi,

where w1, ...,wn ≥ 0 and
n
∑
j=1

w j = 1.

3. Minimum and maximum:

MIN(x1,x2, . . . ,xn) = min{x1,x2, . . . ,xn},

MAX(x1,x2, . . . ,xn) = max{x1,x2, . . . ,xn}.

4. Geometric mean:

AG(x1,x2, . . . ,xn) =

(
n

∏
i=1

xi

) 1
n

, x1, ...,xn ≥ 0.

5. Harmonic mean:

AH(x1,x2, . . . ,xn) =
n

1
x1
+ 1

x2
+ . . .+ 1

xn

, x1, ...,xn > 0.
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6. Operator of addition A+ : Rn→ R:

A+(x1, . . . ,xn) =
n

∑
i=1

xi, x1,x2, . . . ,xn ∈ R,

where R= R∪{−∞,+∞}.

Boundary conditions (A1) and (A2) in this case should be described as follows:

(A1) A+(−∞, . . . ,−∞) =−∞;

(A2) A+(+∞, . . . ,+∞) = +∞.

In order to make this definition correct we agree that −∞ is an absorbent element

of A+:

∀i ∈ 1, . . . ,n ∀x1, . . . ,xi−1,xi+1, . . . ,xn ∈ R

A+(x1, . . . ,xi−1,−∞,xi+1, . . . ,xn) =−∞.

In this case A+(−∞,+∞) =−∞.

In this Chapter we will consider t-norm and t-conorm operators defined on arbitrary

lattice L. The notion of a lattice will also appear later.

1.2 Fuzzy sets

The fuzzy set theory started in 1965, when the paper entitled Fuzzy Sets by L.A. Zadeh

was published in journal Information and Control. This publication serves as a founda-

tion of the development of the new mathematical theory. In his paper Zadeh extended

the classical notion on Cantor set, allowing the membership function to take values not

only 0 and 1, but any value from interval [0,1]. Such sets are called "fuzzy". In 1968 J.A.

Goguen [13] developed and improved the ideas of Zadeh by introducing the notion of

L-set. He allowed the membership function to take values not only on internal [0,1], but

on a general lattice L. The notion of fuzzy set acquired extraordinary interest between

mathematicians, as well as specialists, who applied mathematical ideas, concepts and

results to model various real-world processes. We could mention several areas of ap-

plication of fuzzy sets such as decision making, soft computing, optimization problems,

control theory, pattern recognition, image processing and many others.

Mathematically fuzzy sets could be defined in the following way:
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Definition 1.2.1. A fuzzy set µ in the universe X (a fuzzy subset of X) is defined as a

mapping µ : X → [0,1]. The set of all fuzzy subsets of X is denoted by [0,1]X .

Crisp sets are a special case of fuzzy sets. The membership function of a crisp set takes

values on lattice L = {0,1}. It means that each point x ∈ X could be assigned with

numbers 1 or 0, when this point belongs or does not belong to µ respectively.

Operations on fuzzy sets are defined by using a t-norm T and a t-conorm S [38].

These notions will be described in the next section.

Definition 1.2.2. An intersection of fuzzy sets µ and ν is defined as a fuzzy set µ∩ν such

that

(µ∩ν)(x) = T (µ(x),ν(x)).

Definition 1.2.3. A union µ∪ν of fuzzy sets µ and ν is defined as a fuzzy set µ∪ν such

that

(µ∪ν)(x) = S(µ(x),ν(x)).

A complementary set of a fuzzy set is defined by an involution [38]:

Definition 1.2.4. A function N : [0,1]→ [0,1] is called an order reversing involution if

it satisfies the following conditions for all x,y ∈ [0,1]:

• N(N(x)) = x,

• N(x)≥ N(y) whenever x≤ y.

Definition 1.2.5. A complement of a fuzzy set µ is defined as a fuzzy set µc such that

µc(x) = N(µ(x)).

In case of lattice L = [0,1] a complement of a fuzzy set µ is usually defined as

µc(x) = 1− x.

In fuzzy mathematics the notions of a fuzzy number and a fuzzy interval play an

important role. These are special types of fuzzy sets, which domain is a subset of the

real line. Fuzzy numbers and intervals are widely used both in theoretical researches

and applications. There exist several approaches how to define fuzzy numbers. As an
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example of widely used fuzzy numbers we could mention trapezoidal fuzzy numbers:

µ(x) =



0, x≤ a,
x−a
b−a , a≤ x≤ b,

1, b≤ x≤ c,
x−d
c−d , c≤ x≤ d,

0, d ≤ x,

where a < b≤ c < d. In the case when b = c we obtain a triangular fuzzy number.

In the thesis we consider fuzzy real numbers defined by B. Hutton [18] and then

studied by other authors (see, e.g., [25, 26, 29, 30]).

Definition 1.2.6. A fuzzy real number is defined as a function z : R→ [0,1] such that

(N1) z is non-increasing: x1 ≥ x2 =⇒ z(x1)≤ z(x2) for all x1,x2 ∈ R;

(N2) z is bounded: inf
x∈R

z(x) = 0, sup
x∈R

z(x) = 1;

(N3) z is left semi-continuous: inf
x<x0

z(x) = z(x0) for all x0 ∈ R.

The set of all fuzzy real numbers is called the fuzzy real line and it is denoted by

R([0,1]).

1.3 Lattices and triangular norms

In this section we give an overview of some basic notions of the lattice theory [6, 38].

Definition 1.3.1. A non-empty set L in which a binary relation ≤ is defined, which

satisfies for all a,b,c ∈ L the following properties:

• a≤ a (reflexivity);

• a≤ b and b≤ a =⇒ a = b (antisymmetry);

• a≤ b and b≤ c =⇒ a≤ c (transitivity),

is called a partially ordered set (a poset). A poset could be denoted by (L,≤).

Definition 1.3.2. A poset L (or (L,≤)) is said to be bounded, if
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• there exists an element 1L such that for all a ∈ L it holds a≤ 1L;

• there exists an element 0L such that for all a ∈ L it holds 0L ≤ a.

Elements 1L and 0L are the greatest element of L (or maximum) and the least element of

L (or minimum) respectively.

Definition 1.3.3. An element a∨b ∈ L is called a join of two elements a and b (a,b ∈ L)

if

• a≤ a∨b and b≤ a∨b;

• for all c ∈ L such that a≤ c and b≤ c it holds a∨b≤ c.

Definition 1.3.4. An element a∧b∈ L is called a meet of two elements a and b (a,b∈ L)

if

• a∧b≤ a and a∧b≤ b;

• for all c ∈ L such that c≤ a and c≤ b it holds c≤ a∧b.

It is clear that for each a ∈ L it holds a∧1L = a and a∨0L = a, if such 1L and 0L exist.

Definition 1.3.5. A poset L is called a lattice if for each two elements a,b ∈ L there

exists a meet and a join:

∀a,b ∈ L ∃a∨b ∈ L & ∃a∧b ∈ L.

Definition 1.3.6. A lattice L is called a complete lattice if for each set A = {ai | i ∈ I},
where I is an arbitrary index set, there exists a meet and a join:

∀I ∀A = {ai | i ∈ I} ⊂ L ∃
∨
{ai | i ∈ I} ∈ L & ∃

∧
{ai | i ∈ I} ∈ L.

A join and a meet of a set A = {ai | i ∈ I} are denoted by
∨

A and
∧

A respectively, and

are defined by analogy with Definition 1.3.3. and 1.3.4. A complete lattice L is always

bounded, i.e. there exists the greatest and the least elements:

∨
L = 1L,

∧
L = 0L.

Proposition 1.3.1. In each lattice L for all a,b,c,∈ L it holds

a∧ (b∨ c)≥ (a∧b)∨ (a∧ c).
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Definition 1.3.7. A lattice L is called a distributive lattice if for any a,b,c,∈ L it holds

a∧ (b∨ c) = (a∧b)∨ (a∧ c).

Definition 1.3.8. A lattice L is said to be infinitely distributive, if L is complete and for

all a ∈ L and {bi | i ∈ I} ⊆ L it holds

• a∧ (
∨

i∈I bi) =
∨

i∈I(a∧bi);

• a∨ (
∧

i∈I bi) =
∧

i∈I(a∨bi).

Definition 1.3.9. A lattice L is called a completely distributive if for each set of elements

{a ji | j ∈ J, i ∈ I j} ⊆ L it holds

∧
j∈J

∨
i∈I j

a ji =
∨
f∈F

∧
j∈J

a j f ( j),

where F is the set of choice functions f choosing for each index j ∈ J some f ( j) ∈ I j.

Now we consider the notion of a triangular norm (or a t-norm for short). This notion

(see, e.g., [22, 38]) is fundamental in fuzzy mathematics. By using a t-norm it is possible

to define operations with fuzzy sets [38]. A concept of a t-norm was introduced by K.

Menger in 1942 in order to generalize the triangle inequality from classical metric spaces

to probabilistic metric spaces [22].

Definition 1.3.10. A function T : L×L→ L is called a t-norm if it satisfies the following

conditions for all a,b,c ∈ L:

• T (a,b) = T (b,a) (symmetry);

• T (a,T (b,c)) = T (T (a,b),c) (associativity);

• T (a,b)≤ T (a,c) whenever b≤ c (monotonicity);

• T (a,1L) = a (neutral element).

Now let us consider some important examples of t-norms [22], which will be used later

throughout the thesis.

(1) Minimum t-norm TM, which is defined on an arbitrary lattice L:

TM(x,y) = x∧ y.
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(2) Weak t-norm TW , which is defined on an arbitrary lattice L:

TW (x,y) =

x∧ y, if x∨ y = 1L

0, if x∨ y < 1L.

The next t-norms could be defined only in the case, when lattice L is interval [0,1] or it’s

subset.

(3) Lukasiewicz t-norm TL on lattice L = [0,1]:

TL(x,y) = max{x+ y−1,0}.

(4) Product t-norm TP on lattice L = [0,1]:

TP(x,y) = xy.

Taking into account the associativity, we are able to use a t-norm in the case of n

arguments:

T (x1,x2, . . . ,xn) = T (T (x1,x2, . . . ,xn−1),xn) for all x1,x2, . . . ,xn ∈ L, n≥ 3.

Definition 1.3.11. A t-norm T : L× L→ L is said to be lower semi-continuous if for

each set {xi | i ∈ I} ⊂ L and for each y ∈ L it is satisfied

∨
i∈I

T (xi,y) = T (
∨
i∈I

xi,y).

Definition 1.3.12. A t-norm T : L× L→ L is said to be upper semi-continuous if for

each set {xi | i ∈ I} ⊂ L and for each y ∈ L it is satisfied

∧
i∈I

T (xi,y) = T (
∧
i∈I

xi,y).

Definition 1.3.13. A t-norm T : L×L→ L is said to be continuous if it is both lower

and upper semi-continuous.

Let us also define a dual operator for a t-norm — t-conorm [22, 38]. A t-conorm

always concords with the respective t-norm.

Definition 1.3.14. A function S : L×L→ L is called a triangular conorm (t-conorm for

short) if it satisfies the following conditions for all a,b,c ∈ L:
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• S(a,b) = S(b,a) (symmetry);

• S(a,S(b,c)) = S(S(a,b),c) (associativity);

• S(a,b)≤ S(a,c) whenever b≤ c (monotonicity);

• S(a,0L) = a (neutral element).

Again, by the associativity, we are able to use a t-conorm in the case of n arguments:

S(x1,x2, . . . ,xn) = S(S(x1,x2, . . . ,xn−1),xn) for all x1,x2, . . . ,xn ∈ L, n≥ 2.

The most important examples of t-conorms are

(1) maximum t-conorm SM, which is defined on an arbitrary lattice L:

SM(x,y) = x∨ y,

(2) weak t-conorm SW , which is defined on an arbitrary lattice L:

SW (x,y) =

x∨ y, if x∧ y = 0L

0, if x∨ y < 1L,

(3) Lukasiewicz t-conorm SL on lattice L = [0,1]:

SL(x,y) = min{x+ y,1},

(4) product t-conorm SP on lattice L = [0,1]:

SP(x,y) = x+ y− xy.

Definition 1.3.15. Let T be a left continuous t-norm. The residuum
−→
T of T is defined

for all x,y ∈ [0,1] by

−→
T (x|y) = sup{α ∈ [0,1] | T (α,x)≤ y}.

We recall the following basic properties of the residuum:

(
−→
T 1)

−→
T (x|y) = 1 if and only if x≤ y;

(
−→
T 2)

−→
T (1|y) = y;

(
−→
T 3)

−→
T (0|y) = 1;

(
−→
T 4) if y = 0 and x 6= 0, then

−→
T (x|y) = 0;
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(
−→
T 5) the residuum is a non-increasing function with respect to the first argument and a

non-decreasing function with respect to the second argument:

x1 ≤ x2 =⇒
−→
T (x1|y)≥

−→
T (x2|y);

y1 ≤ y2 =⇒
−→
T (x|y1)≤

−→
T (x|y2);

(
−→
T 6) T (z,x)≤ y⇐⇒ z≤−→T (x|y)

(here x,x1,x2,y,y1,y2,z ∈ [0,1]).

Some important examples are the residua of t-norms TL, TM and TP, which are given

respectively by

−→
T L(x|y) =

 1, x≤ y,

1− x+ y, x > y;

−→
T M(x|y) =

 1, x≤ y,

y, x > y;

−→
T P(x|y) =

 1, x≤ y,

y/x, x > y.
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Chapter 2

General aggregation operator based on
a crisp equivalence relation

This chapter is devoted to a specially constructed general aggregation operator based on

a crisp equivalence relation. Initially, the need for such operator has appeared while we

have been investigating how to assess an optimal solution of bilevel linear programming

problem. The fuzzy solution approach to this problem led to the need of aggregating the

membership functions of the lower level objectives taking into account the satisfactory

level of the upper level objective. The existing construction methods of a general aggre-

gation operator did not provide such opportunity. We suggested another construction of

a general aggregation operator, initially named as factoraggregation, which was based

on a crisp equivalence relation generated by the upper level objective. This allowed to

obtain the tool, which helped us to analyse bilevel linear programming problem’s solv-

ing parameters in order to choose the optimal solution. Later, we came up with a more

general formulation of such construction and investigated it’s aggregational properties.

The results presented in this chapter were published in [50, 51]. Further in our work

we are dealing with the construction of a general aggregation operator based on a fuzzy

equivalence relation, instead of a crisp one.

2.1 General aggregation operator

The notion of general aggregation operator Ã acting on [0,1]X , where [0,1]X is the set

of all fuzzy subsets of a set X , was introduced in 2003 by A. Takači [36]. He defined

an aggregation operator acting on fuzzy sets and investigated the pointwise and min-
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extensions of an aggregation operator with respect to different orderings between fuzzy

sets. J. Lebedinska in her works (see, e.g., [23, 24]) developed the concept of general

aggregation operator. She considered different constructions of a general aggregation

operator, investigated the behaviour of this operator acting on different types of fuzzy

sets and also explored various properties. Another view on aggregation of fuzzy relations

was provided by O. Grigorenko [15, 16] by using the idea of t-norm based extension of

an aggregation operator. Recently, Z. Takač proposed an aggregation operator acting on

fuzzy truth values [37] and investigated it’s properties.

We will start with the definition of a general aggregation operator [36]. We denote

a partial order on [0,1]X by �. The least and the greatest elements of this order are

denoted by 0̃ and 1̃, which are indicators of ∅ and X respectively, i.e.

0̃(x) = 0 and 1̃(x) = 1 for all x ∈ X .

Definition 2.1.1. A mapping Ã :
⋃

n([0,1]X)n→ [0,1]X is called a general aggregation

operator if and only if the following conditions hold:

(Ã1) Ã(0̃, . . . , 0̃) = 0̃;

(Ã2) Ã(1̃, . . . , 1̃) = 1̃;

(Ã3) for all n ∈ N and for all µ1, ...,µn,η1, ...,ηn ∈ [0,1]X :

µ1 � η1, . . . ,µn � ηn =⇒ Ã(µ1, . . . ,µn)� Ã(η1, . . . ,ηn).

We consider the case:

µ� η if and only if µ(x)≤ η(x) for all x ∈ X ,

for µ,η ∈ [0,1]X .

A mapping Ã : ([0,1]X)n→ [0,1]X is called n-ary general aggregation operator. In

the thesis we do not stress out when such aggregation operator is used. There exist

several approaches to construct a general aggregation operator Ã based on an ordinary

aggregation operator A. The simplest one is the pointwise extension of an aggregation

operator A:

Ã(µ1, ...,µn)(x) = A(µ1(x), ...,µn(x)), (2.1)

where µ1, ...,µn ∈ [0,1]X are fuzzy sets and x ∈ X .

A widely used approach to constructing a general aggregation operator Ã is the T -

extension [36], whose idea comes from the classical extension principle and uses a t-
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norm T (see, e.g., [22]):

ÃT (µ1, . . . ,µn)(x) = sup
x=A(x1,...,xn)

T (µ1(x1), . . . ,µn(xn)). (2.2)

Here µ1, . . . ,µn ∈ [0,1]X and x,x1 . . . ,xn ∈ X , where X = [0,1]. As a set X one could take

any closed interval.

2.2 Construction of general aggregation operator based

on a crisp equivalence relation

General aggregation operator Ãρ based on a crisp equivalence relation ρ is a specially

designed construction of a general aggregation operator based on an ordinary aggrega-

tion operator A. Initially, the idea of such construction appeared in the research while

we were exploring an analysis of optimal solution of bilevel linear programming prob-

lems. It seemed important to aggregate the lower level objective functions taking into

account the equivalence relation between them generated by the upper level objective.

In general, such aggregation operator could be used, when it is important to take into

account an equivalence relation between elements of universe X .

The construction of general aggregation operator based on a crisp equivalence rela-

tion is formulated in the following definition:

Definition 2.2.1. Let A : [0,1]n → [0,1] be an aggregation operator and ρ be a crisp

equivalence relation defined on a set X. The general aggregation operators Ãρ is defined

by

Ãρ(µ1, . . . ,µn)(x) = sup
x′∈X :(x′,x)∈ρ

A(µ1(x′), . . . ,µn(x′)), (2.3)

where x ∈ X and µ1, . . . ,µn ∈ [0,1]X .

In the case when crisp equivalence relation is defined in the following way:

ρ0(x,y) =

 1, x = y,

0, otherwise,

we have, that the general aggregation operators based on ρ0 turn into the pointwise

extensions of ordinary aggregation operator.

Let us demonstrate that construction (2.3) gives us a general aggregation operator.

We must show that conditions (Ã1), (Ã2) and (Ã3) are satisfied.
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Proposition 2.2.1. Operator Ãρ (see 2.3) is a general aggregation operator.

Proof. First we prove the boundary conditions:

1)

Ãρ(0̃, . . . , 0̃)(x) = sup
(x′,x)∈ρ

A(0̃(x′), . . . , 0̃(x′)) = A(0, . . . ,0) = 0̃(x),

2)

Ãρ(1̃, . . . , 1̃)(x) = sup
(x′,x)∈ρ

A(1̃(x′), . . . , 1̃(x′)) = A(1, . . . ,1) = 1̃(x).

To prove the monotonicity of Ãρ we use the monotonicity of A:

µi�ηi, i= 1,2, . . . ,n=⇒A(µ1(x′), . . . ,µn(x′))≤A(η1(x′), . . . ,ηn(x′)) for all x′ ∈X =⇒

=⇒ sup
(x′,x)∈ρ

A(µ1(x′), . . . ,µn(x′))≤ sup
(x′,x)∈ρ

A(η1(x′), . . . ,ηn(x′)) for all x ∈ X =⇒

=⇒ Ãρ(µ1, . . . ,µn)� Ãρ(η1, . . . ,ηn).

In our papers [50, 51] the operator Ãρ was named as factoraggregation. The motiva-

tion of using the name factoraggregation for Ãρ is that ρ factorizes X into the classes of

equivalence. Operator Ãρ aggregates fuzzy sets µ1, . . . ,µn ∈ [0,1]X in accordance with

these classes of equivalence. In this construction for evaluation of Ãρ(µ1, . . . ,µn)(x) we

take the supremum of aggregation A of values µ1(x′), . . . ,µn(x′) on the set of all points

x′, which are equivalent to x with respect to ρ, i.e. we consider all elements x′ ∈ X such

that (x′,x) ∈ ρ.

2.3 Bilevel linear programming problem fuzzy solution

approach

The construction of a general aggregation operator based on a crisp equivalence ap-

peared while we were approaching bilevel linear programming problems (BLPP), which

are a special type of multi-objective linear programming problems (MOLP). We observe

BLPP with one objective on the upper level PU with the higher priority in optimization
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than multiple objectives on the lower level PL = (PL
1 ,P

L
2 , ...,P

L
n ):

PU : y0(x) = c01x1 + c02x2 + ...+ c0kxk −→min

PL
1 : y1(x) = c11x1 + c12x2 + ...+ c1kxk −→min

. . .

PL
n : yn(x) = cn1x1 + cn2x2 + ...+ cnkxk −→min

D :

 a j1x1 +a j2x2 + ...+a jkxk ≤ b j, j = 1,m,

xl ≥ 0, l = 1,k,

where k,m,n ∈ N, a jl,b j,cil ∈ R, j = 1,m, l = 1,k, i = 0,n, and x = (x1, ...,xk) ∈ Rk.

We assume that D⊂ Rk is non-empty and bounded, and we consider the case when the

constraint x ∈ D is related to all levels.

As all objectives rarely reach their optimal values in a single point, a compromise

solution should be found. In multi-objective optimization Pareto optimality (see, e.g.,

[21]) is a concept that allows us to characterize an acceptable solution.

Definition 2.3.1. An element x∗ ∈ D is said to be a Pareto optimal solution if and only

if there does not exist another x ∈ D such that yi(x)≤ yi(x∗) for all i = 0,n and y j(x) 6=
y j(x∗) for at least one j.

In 1978 H.J. Zimmermann [42] proposed a fuzzy solution approach for MOLP by

introducing membership functions of the objectives. The membership function char-

acterises the degree of satisfaction for each objective, i.e. it shows how the objective

function is close to it’s optimal value (i.e. to it’s individual minimum). The construction

of the membership function of objective yi is based on the following function:

zi(t) =


1, t < ymin

i ,

t− ymax
i

ymin
i − ymax

i
, ymin

i ≤ t ≤ ymax
i ,

0, t > ymax
i ,

where ymin
i and ymax

i are the individual minimum and the individual maximum of the

objective yi respectively:

ymin
i = min

x∈D
yi(x), ymax

i = max
x∈D

yi(x), i = 0,n.
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We obtain the membership functions of the objectives by denoting

µi(x) = zi(yi(x)), i = 0,n.

Here µ0,µ1, ...,µn : D→ [0,1] are fuzzy subsets of D:

µi ∈ [0,1]D, i = 0,n.

A solution x∗ for the MOLP

y0(x),y1(x), . . . ,yn(x)−→min
x∈D

without any hierarchy could be found by solving the following linear programming prob-

lem:

min(µ0(x),µ1(x), . . . ,µn(x))−→max
x∈D

or, in general:

A(µ0(x),µ1(x), . . . ,µn(x))−→max
x∈D

,

where A is an aggregation operator. However, in case when the objectives are divided

between two levels of hierarchy, the present method does not reflect any priority of the

upper level objective over the lower level.

Considering the case when there is one objective function on the upper level and mul-

tiple objectives on the lower level, we suggest a special aggregation. This aggregation

observes objective functions on the lower level considering the classes of equivalence

generated by the function on the upper level:

Ãµ0(µ1,µ2, ...,µn)(x) = max
µ0(x)=µ0(u)

A(µ1(u),µ2(u), ...,µn(u)),

where

x,u ∈ D, µ0,µ1, ...,µn ∈ [0,1]D.

As one can see, general aggregation operator Ãµ0 is based on equivalence relation

ρµ0:

u ρµ0v⇐⇒ µ0(u) = µ0(v),

which factorizes D into the classes Dα of equivalence:

Dα = {x ∈ D | µ0(x) = α}, α ∈ [0,1].

Operator Ãµ0 aggregates fuzzy sets in accordance with these classes of equivalence.
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2.4 General aggregation operator applied for analysis of

bilevel linear programming problem solving param-

eters

By using membership functions µ0,µ1, ...,µn the multi-objective linear programming

problem can be reduced to the classical linear programming (LPP):

σ−→max
x,σµi(x)≥ σ, i = 0,n, (2.3)

x ∈ D,

which is equivalent to the following problem:

min(µ0(x),µ1(x), . . . ,µn(x))−→max
x∈D

(here we use the additional real variable σ). Let us denote the solution of this LPP by

(x∗,σ∗). In [21] there is described how to verify whether x∗ is Pareto optimal.

For bilevel linear programming problems M. Sakawa and I. Nishizaki [32],[33] pro-

posed the interactive method of solution by involving some parameters for the upper

and lower level objectives. The algorithm specifies an optimal solution x∗∗ for BLPP

according to the chosen values of positive real parameters δ,∆L,∆U , where

µ0(x∗∗)≥ δ,

∆L ≤ ∆ =
min{µ1(x∗∗), ...,µn(x∗∗)}

µ0(x∗∗)
≤ ∆U .

By this method (see [32],[33]) we solve the linear programming problem

σ−→max
x,σ

µ0 ≥ δ,

µi(x)≥ σ, i = 1,n,

x ∈ D,

for a given δ, afterwards we check whether ∆ ∈ [∆L,∆U ] and specify the parameters

again if it is necessary.

31



General aggregation operator applied for analysis of bilevel linear programming
problem solving parameters

Parameter δ describes the minimal satisfactory level for membership function µ0,

but ∆ characterizes the overall balance between the upper and lower levels. Taking into

account that all three parameters are dependent one on another, the problem of the choice

of parameters becomes important. Let us consider the following BLPP.

Example 2.4.1.
PU : y0(x) =−x2 −→min

PL
1 : y1(x) =−3

√
3x1 +3x2 −→min

PL
2 : y2(x) = 3

√
3x1 +3x2 −→min

D :


3
√

3x1 +3x2 ≤ 18
√

3,

−3
√

3x1 +3x2 ≤ 0,

xl ≥ 0, x2 ≥ 0.

Fig. 2.1 shows how parameter δ depends on parameter ∆. On Fig.2.1 we can see, that

if we choose parameter δ = 0.6 and interval [∆L,∆U ] = [0.6,0.7], then a solution of the

problem doesn’t exist. If we first choose interval [∆L,∆U ] = [0.6,0.7], then the maximal

possible value for δ is 0.46. But in case, when the value of δ is 0.6, then the maximal

possible value of ∆ is 0.33.

Figure 2.1: Dependence between δ and ∆ for Example 2.4.1.
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We specify the general construction of aggregation operator Ãµ0 by taking A = min

in order to apply it for the analysis of the parameters of the BLPP solving algorithm:

Ãµ0(µ1,µ2, ...,µn)(x) = max
µ0(x)=µ0(u)

min(µ1(u),µ2(u), ...,µn(u)), (2.4)

where

µ1, ...,µn ∈ [0,1]D, x,u ∈ D.

We rewrite µ as

µ(x) = Ãµ0(µ1,µ2, ...,µn)(x) = z(y0(x)), (2.5)

where z is the function defined on the interval [ymin
0 ,ymax

0 ] as follows: for t ∈ [ymin
0 ,ymax

0 ]

we take x ∈ D such, that t = y0(x), and set z(t) = Ãµ0(µ1,µ2, ...,µn)(x) (it is easy to see,

that this value doesn’t depend on x).

Now we consider two functions: z0 (introduced in previous section) and z (defined

by the result of aggregation). The graphical analysis of these functions (i.e. the graphical

analysis of two lines α = z0(t) and α = z(t) ) helps us to choose parameters ∆L,∆U and

δ correctly.

Let us consider the following example.

Example 2.4.2.
PU : y0(x) = x1− x2 −→min

PL
1 : y1(x) =−0.2x1− x2 −→min

PL
2 : y2(x) = x2 −→min

D :


x2 ≤ 6,

5x1 + x2 ≤ 15,

xl ≥ 0, x2 ≥ 0.

The graphical analysis of the parameters could be performed by Fig. 2.2. The intersec-

tion of lines α = z0(t) and α = z(t) on Fig.2.2 points out the optimal solution x∗ of the

corresponding MOLP problem without any hierarchy between objectives: t∗ = y0(x∗).

In our case we are dealing with BLPP, when objective function y0 is minimized with

the higher priority than objectives y1 and y2. The compromised solution x∗ gives us the

degree of satisfaction of the upper level objective δ = 0.51. But the analysis of Fig. 2.2

allows us to see, that a minor decrease by 0.0224 in the degree of minimization on the
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Figure 2.2: Analysis of solving parameters for Example 2.4.2.

lower level, which is characterized by the result of general aggregation z(t), will give

us a significant increase by 0.1686 in the degree of minimization δ on the upper level.

It means, that we would rather choose point t∗∗ = −3.05 to obtain the optimal solution

x∗∗ for this BLPP, than point t∗, which gives us the solution without priority for the up-

per level objective. The similar graphical analysis could be performed, when we first

choose the values of parameters ∆L and ∆U , which characterize the degree of minimiza-

tion on the lower level, and then we can find out the possible values of the degree of

minimization δ for the upper level objective.

We consider some properties of function z, which is defined above and describes the

output value of general aggregation of the lower level objectives. Function z0 used for

representation of the upper level objective membership function is decreasing on interval

[ymin
0 ,ymax

0 ]. Now we consider properties of function z on interval [ymin
0 ,ymax

0 ].

Theorem 2.4.1. Let t∗ = y0(x∗), where (x∗,σ∗) is the solution of the MOLP

y0(x),y1(x), . . . ,yn(x)−→min
x∈D

without any hierarchy between objectives reduced to the form (2.3). Then the following

holds true:

1. σ∗ = min{z(t∗),z0(t∗)};

2. max
t∈[ymin

0 , t∗]
z(t) = z(t∗);
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3. function z is concave (convex upwards) on interval [ymin
0 ,ymax

0 ],

where z is the function defined by (2.4) – (2.5), ymin
0 = min

x∈D
y0(x), ymax

0 = max
x∈D

y0(x).

Proof. 1. We recall that

σ
∗ = min{µ0(x∗), ...,µn(x∗)}

and consider two cases.

1) If σ∗ = µ0(x∗), then on the one hand

σ
∗ = z0(t∗),

but on the other hand

z0(t∗) = µ0(x∗)≤min{µ1(x∗), ...,µn(x∗)} ≤ max
µ0(x∗)=µ0(u)

min{µ1(u), ...,µn(u)}=

= µ(x∗) = z(t∗),

which means

z0(t∗) = min{z0(t∗), z(t∗)}.

2) Now let us suppose

σ
∗ = min{µ1(x∗), ...,µn(x∗)}< µ0(x∗)

and show that

σ
∗ = µ(x∗) = z(t∗)< z0(t∗).

Considering

σ
∗ < µ(x∗) = max

µ0(x∗)=µ0(u)
min{µ1(u), ...,µn(u)}

and taking into account that σ∗ < µ0(x∗), we got the contradiction since σ∗ is the

solution of MOLP.

2. Let us suppose that there exists

τ ∈ [ymin
0 , t∗[ such that z(τ)> z(t∗)≥ σ

∗.

Then we can find u∗ ∈ D such that

z(τ) = max
z0(τ)=µ0(u)

min{µ1(u), ...,µn(u)}= min{µ1(u∗), ...,µn(u∗)}> σ
∗
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and µ0(u∗) = z0(τ)> σ∗. As a result we got the contradiction since σ∗ is the solution of

MOLP.

3. We have to prove that

z(λt1 +(1−λ)t2)≥ λz(t1)+(1−λ)z(t2)

for all t1, t2 ∈ [ymin
0 ,ymax

0 ] and for all λ ∈ [0,1]. Let us take such x1 and x2 that

t1 = y0(x1), t2 = y0(x2),

z(t1) = min{µ1(x1), ...,µn(x1)}

and

z(t2) = min{µ1(x2), ...,µn(x2)}.

Then

µi(λx1 +(1−λ)x2) = λµi(x1)+(1−λ)µi(x2)≥

≥ λmin{µ1(x1), ...,µn(x1)}+(1−λ)min{µ1(x2), ...,µn(x2)}= λz(t1)+(1−λ)z(t2)

for all i = 1,2, ...,n. Therefore

z(λt1 +(1−λ)t2) = max
µ0(u)=z0(λt1+(1−λ)t2)

min{µ1(u), ...,µn(u)} ≥

≥min{µ1(λx1 +(1−λ)x2), ...,µn(λx1 +(1−λ)x2)} ≥ λz(t1)+(1−λ)z(t2).

Let us illustrate these properties with two examples.

Example 2.4.3.
PU : y0(x) =−3x1− x2 −→min

PL
1 : y1(x) = 3x1−2x2 −→min

PL
2 : y2(x) = x1− x2 −→min

D :



−x1 +3x2 ≤ 21,

x1 +3x2 ≤ 27,

4x1 +3x2 ≤ 45,

3x1 + x2 ≤ 30,

xl ≥ 0, x2 ≥ 0.
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Figure 2.3: Lines α = z0(t) and α = z(t) for Example 2.4.3.

Line α = z(t) on Fig.2.3 is concave and monotony increasing till the intersection

point t∗, where the compromise solution could be found.

Example 2.4.4.
PU : y0(x) = x1− x2 −→min

PL
1 : y1(x) = 3x1−2x2 −→min

PL
2 : y2(x) =−3x1− x2 −→min

D :



−x1 +3x2 ≤ 21,

x1 +3x2 ≤ 27,

4x1 +3x2 ≤ 45,

3x1 + x2 ≤ 30,

xl ≥ 0, x2 ≥ 0.

Line α = z(t) on Fig.2.4 is concave too, but the compromise solution now could be

found in point t∗, which is not the intersection of lines α = z(t) and α = z0(t). And line

α = z(t) is monotony increasing till this point.
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Mixed production planning problem

Figure 2.4: Lines α = z0(t) and α = z(t) for Example 2.4.4.

2.5 Mixed production planning problem

We consider the following modification of the mixed production planning problem de-

scribed by J.C. Figueroa-Garcia et al. in [12]. The goal of the mixed production plan-

ning problem is to determine the most profitable manufacturing plan at the same time

minimizing environmentally dangerous products and the dependence on the outsource

companies:

PU : ∑
j∈NJ

∑
i∈NI

sp ji(xr
ji + xo

ji + xs
ji)− (cpr

jix
r
ji + cpo

jix
o
ji + cps

jix
s
ji)−→max

PL
1 : ∑

j∈NJ

∑
i∈NI

ec ji(xr
ji + xo

ji + xs
ji)−→min

PL
2 : ∑

j∈NJ

∑
i∈NI

w jixs
ji −→min

∑
j∈NJ

rm jir(xr
ji + xo

ji)≤ amir, i ∈ NI, r ∈ NR,

xr
ji,x

o
ji,x

s
ji ≥ 0, xs

ji ≤ as ji, j ∈ NJ, i ∈ NI,
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d(−)
ji ≤ xr

ji + xo
ji + xs

ji ≤ d(+)
ji , j ∈ NJ, i ∈ NI.

Index sets:

set NR = {1,2, ...,R} of all resources r ∈ NR,

set NJ = {1,2, ...,J} of all products j ∈ NJ ,

set NI = {1,2, ..., I} of all periods i ∈ NI .

Decision variables:

xr
ji – quantity of product j to be manufactured in regular time in period i,

xo
ji – quantity of product j to be manufactured in overtime in period i,

xs
ji – quantity of product j to be manufactured by outsourcing in period i.

Parameters:

SP = (sp ji | j ∈ NJ, i ∈ NI), where sp ji is a sell price of product j in period i,

CPr = (cpr
ji | j ∈ NJ, i ∈ NI), where cpr

ji is a product j production cost in the period i

for regular time,

CPo = (cpo
ji | j ∈ NJ, i ∈ NI), where cpo

ji is a product j production cost in the period i

for overtime,

CPs = (cps
ji | j ∈ NJ, i ∈ NI), where cps

ji is a product j production cost in the period i

for outsourcing,

EC =(ec ji | j∈NJ, i∈NI), where ec ji is an evaluation of damage to environment caused

by product j in period i,

W = (w ji | j ∈ NJ, i ∈ NI), where w ji is a weight of outsource product j in period i,

RM = (rm jir | j ∈ NJ, i ∈ NI,r ∈ NR), where rm jir is an amount of the r raw material

units used to manufacture product j in period i,

AM = (amir | r ∈ NR, i ∈ NI), where amir is an availability of the raw material type r in

period i,

AS = (as ji | j ∈ NJ, i ∈ NI), where as ji is a number of available outsourced units of

product j in period i,

D− = (d(−)
ji | j ∈NJ, i ∈NI), where d(−)

ji is a minimum demand of product j in period i,

D+ = (d(+)
ji | j ∈NJ, i ∈NI), where d(+)

ji is a maximum (potential) demand of product j

in period i.

Maximization problem PU is reduced to the minimization problem by taking the

profit function with the minus sign. This numerical example uses the following values

of the parameters:

I = 1, J = 10, R = 5,

AM = (9 ·106,4 ·106,4.5 ·106,3 ·106,5.5 ·106),
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EC = (8,9,5,4,3,7,2,1,6,10).

Table 2.1 contains the values of RM. The values of other parameters are given by Ta-

ble 2.2.

@
@
@
@

j

r
1 2 3 4 5

1 50.47 83.37 90.29 133.27 71.75

2 53.46 79.93 84.88 133.87 55.69

3 106.49 75.30 101.81 113.06 96.03

4 125.26 103.13 94.35 59.82 134.97

5 93.96 120.50 100.36 134.71 78.87

6 137.24 87.68 40.55 110.17 93.26

7 136.14 112.83 67.93 96.40 77.01

8 72.47 53.75 124.05 110.74 99.43

9 56.53 42.53 44.42 66.05 97.82

10 98.72 109.48 56.77 103.07 95.72

Table 2.1: Values of parameters rm jr for the mixed production planning problem

j cpr
j cps

j sp j as j d(+)
j d(−)

j w j

1 255 260 350 1237 8775 3900 0.07

2 165 200 300 1107 7650 3400 0.15

3 160 185 280 1519 6075 2700 0.07

4 105 130 210 2636 7875 1500 0.05

5 205 240 300 1979 6300 3400 0.05

6 175 190 305 1617 7650 4000 0.08

7 160 210 270 1442 5000 1500 0.05

8 225 245 315 1527 6300 4000 0.05

9 53 105 190 2266 4725 1000 0.18

10 74 120 220 2500 8775 2600 0.25

Table 2.2: Values of parameters for the mixed production planning problem

The graphical analysis of lines α = z0(t) and α = z(t) is given by Fig. 2.5. The

intersection of lines α = z0(t) and α = z(t) points out the optimal solution x∗ of the cor-

responding MOLP problem without any hierarchy between objectives: t∗ = y0(x∗). By
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Figure 2.5: Analysis of solving parameters for the mixed production planning problem

setting ∆L = 0.7 and ∆U = 0.8 we can observe that δ should lie in interval [0.765,0.799].

Otherwise if δ > 0.799 then a solution does not exist. The graphical analysis shows that

as the optimal solution of the mixed production planning problem it is natural to take

x∗∗ such that t∗∗ = y0(x∗∗).
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Chapter 3

Upper and lower general aggregation
operators based on a fuzzy equivalence
relation

In the previous chapter we defined and described the construction of a general aggre-

gation operator which was based on a crisp equivalence relation. In the current chapter

we generalize this construction by using a fuzzy equivalence relation instead of a crisp

one. The need for such operators may appear dealing with different problems. For ex-

ample, in decision making if fuzzy sets represent evaluation of some objects provided

by several experts, and at the same time we have a fuzzy equivalence relation between

these objects. In order to obtain the evaluation of some object it is important to take into

account how the experts evaluated equivalent objects. So if we want to aggregate several

experts evaluations for this object taking into account the equivalence relation, it could

be performed by the proposed operators. Using the idea of upper and lower approxima-

tion operators we describe two types of upper and lower general aggregation operators

based on fuzzy equivalence relation. Operators of the first type are considered as upper

and lower approximations of the pointwise extension of an ordinary aggregation opera-

tor. In other case, these operators serve as upper and lower approximations of the t-norm

extension of an ordinary aggregation operator. We consider aggregational properties of

upper and lower general aggregation operators, as well as investigate the connection be-

tween them and extensional fuzzy sets. The results presented in this chapter could be

found in [46, 47, 48].
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3.1 Fuzzy equivalence relation

First, let us describe a particular real-world example where one could use a general

aggregation operator based on a fuzzy equivalence relation. For example, we could

consider an investment firm or a bank, which investigates investment opportunities in

different countries. One of the key components of risk management in such institutions

is a country risk evaluation. Management of the institution approves maximal limits for

risk exposures to be taken in different countries. The evaluation of these risk limits is

usually performed by risk analysts (experts) taking into account economical, financial,

political and social background of the particular countries. It is usually important to

know, which limit was assigned previously to some similar in many aspects country (or

equivalent with some degree). For example, considering Asian region, Japan and North

Korea are equivalent with very low degree (close to 0), while Japan and South Korea

could be considered equivalent with high degree by many factors. Therefore, to obtain

the evaluation of some country for management approval, a risk manager could obtain

the aggregated result, taking into account the evaluation for equivalent with high degree

countries, by using upper and lower general aggregation operators.

Let us recall the definition of a fuzzy equivalence relation. Fuzzy equivalence rela-

tions were introduced in 1971 by L.A. Zadeh [41] for the strongest t-norm TM and later

were developed and applied by several authors in more general cases.

Definition 3.1.1. Let T be a t-norm and E be a fuzzy relation on a set X, i.e. E is a fuzzy

subset of X ×X. A fuzzy relation E is called a T -fuzzy equivalence relation if and only

if for all x,y,z ∈ X it holds

(E1) E(x,x) = 1 (reflexivity);

(E2) E(x,y) = E(y,x) (symmetry);

(E3) T (E(x,y),E(y,z))≤ E(x,z) (T -transitivity).

Dealing with fuzzy equivalence relations usually extensional fuzzy sets attract an

additional attention. These sets correspond to the fuzzification of classical classes of

equivalence, they play the role of fuzzy equivalence classes altogether with their inter-

sections and unions.

Definition 3.1.2. Let T be a t-norm and E be a T -fuzzy equivalence relation on a set X.

A fuzzy subset µ ∈ [0,1]X is called extensional with respect to E if

T (E(x,y),µ(y))≤ µ(x) for all x,y ∈ X .

Extensional fuzzy subsets have been widely studied in the literature [5, 19, 20, 27].
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3.2 Constructions of upper and lower general aggrega-

tion operators

The constructions of upper and lower general aggregation operators are provided in the

following definition:

Definition 3.2.1. Let A : [0,1]n→ [0,1] be an aggregation operator, T be a left continu-

ous t-norm,
−→
T be the residuum of T and E be a T -fuzzy equivalence relation defined on

a set X. The upper and lower general aggregation operators ÃE,T and ÃE,
−→
T are defined

respectively by

ÃE,T (µ1, . . . ,µn)(x) = sup
x′∈X

T (E(x,x′),A(µ1(x′), . . . ,µn(x′))), (3.1)

ÃE,
−→
T (µ1, . . . ,µn)(x) = inf

x′∈X

−→
T (E(x,x′)|A(µ1(x′), . . . ,µn(x′))), (3.2)

where x ∈ X and µ1, . . . ,µn ∈ [0,1]X .

Further, in Proposition 3.2.1 we will prove that operators ÃE,T and ÃE,
−→
T actually are

general aggregation operators.

Now we will demonstrate how such constructions could be used in applications. We

consider the following problem. Let X be the set of all countries in the world or in some

particular region. Let µi(x), where µi : X → [0,1], be normalized evaluation of country’s

x ∈ X risk level by the i-th expert (country is considered as more risky if the evaluation

is closer to 1). As ordinary aggregation operator A one could take the arithmetic mean or

the weighted arithmetic mean aggregation operators. It is important to define appropriate

fuzzy equivalence relation E : X ×X → [0,1] between the objects of X , which could be

a complex problem itself.

We want to obtain an assessment of the risk level of some country by taking arith-

metic mean of the experts evaluations of other countries taking into account fuzzy equiv-

alence relation between these countries and to compare it with ordinary arithmetic mean

operator.

Let us consider the discrete universe which consists of 8 countries from some region:

X = {x1,x2,x3,x4,x5,x6,x7,x8}

and the following TM-fuzzy (TM is the minimum t-norm) equivalence relation E between
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these countries, given in a matrix form:

E =



1 0.9 0.8 0.8 0.8 0.7 0.1 0.1

0.9 1 0.8 0.8 0.8 0.7 0.1 0.1

0.8 0.8 1 0.8 0.8 0.7 0.1 0.1

0.8 0.8 0.8 1 0.8 0.7 0.1 0.1

0.8 0.8 0.8 0.8 1 0.7 0.1 0.1

0.7 0.7 0.7 0.7 0.7 1 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.1 1 0.9

0.1 0.1 0.1 0.1 0.1 0.1 0.9 1


.

Suppose, we have evaluations of the risk level for each country given by 5 experts,

expressed in the form of fuzzy sets µi : X → [0,1], i = 1, . . . ,5:

µ1 =



1

0.9

0.8

0.6

1

0.6

0

0.9


, µ2 =



0.8

0.8

0.7

0.8

0.4

0.1

0.1

0.8


, µ3 =



1

0.6

0.7

0.6

0.6

0.5

0.1

0.9


, µ4 =



0.9

1

0.9

0.8

0.6

0.7

0

0.8


, µ5 =



0.7

0.5

0.7

0.6

0.6

0.6

0.1

0.7


.

First, we calculate the arithmetic mean, thus obtaining the aggregated evaluation:

AV G(µ1,µ2,µ3,µ4,µ5)(x) = AV G(µ1(x),µ2(x),µ3(x),µ4(x),µ5(x)).

Then we apply the upper general aggregation operator in order to obtain the upper ap-

proximation of AV G taking into account equivalence relation E. This result will give us

the most conservative assessment of risk levels for each country, which is the goal of a

risk manager. Let us take the strongest t-norm T = TM:

ÃE,TM(µ1,µ2,µ3,µ4,µ5)(x)=max
x′∈X

TM(E(x,x′),AV G(µ1(x′),µ2(x′),µ3(x′),µ4(x′),µ5(x′))).
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As a result we obtain the following fuzzy sets in a vector form:

AV G =



0.88

0.76

0.76

0.68

0.64

0.50

0.06

0.82


, ÃE,TM =



0.88

0.88

0.80

0.80

0.80

0.70

0.82

0.82


.

As one can see, the risk level assessments for most of the countries is more con-

servative. For example, the average risk level for country x7 is 0.06, while the upper

approximation taking into account the equivalence relation give us more conservative

result 0.82, because this country is equivalent with high degree to the much more risky

country x8. Depending on the problem specifics and the construction of T -fuzzy equiv-

alence relation E one could choose different t-norms T and aggregation operators A,

which will influence the result.

Now let us show that constructions (3.1) and (3.2) give us general aggregation oper-

ators. We must show that conditions (Ã1), (Ã2) and (Ã3) are satisfied.

Proposition 3.2.1. Operators ÃE,T and ÃE,
−→
T (see (3.1) and (3.2)) are general aggrega-

tion operators.

Proof. First we consider the boundary conditions:

(Ã1):

ÃE,T (0̃, . . . , 0̃)(x) = sup
x′∈X

T (E(x,x′),A(0̃(x′), . . . , 0̃(x′))) =

= sup
x∈X

T (E(x,x′),A(0, . . . ,0)) = sup
x′∈X

T (E(x,x′),0) = 0̃(x);

ÃE,
−→
T (0̃, . . . , 0̃)(x) = inf

x′∈X

−→
T (E(x,x′)|A(0̃(x′), . . . , 0̃(x′))) =

= inf
x′∈X

−→
T (E(x,x′)|A(0, . . . ,0)) = inf

x′∈X

−→
T (E(x,x′)|0) = 0̃(x);

(Ã2):

ÃE,T (1̃, . . . , 1̃)(x) = sup
x′∈X

T (E(x,x′),A(1̃(x′), . . . , 1̃(x′))) =

= sup
x′∈X

T (E(x,x′),A(1, . . . ,1)) = sup
x′∈X

T (E(x,x′),1) = sup
x′∈X

E(x,x′) = 1̃(x);
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ÃE,
−→
T (1̃, . . . , 1̃)(x) = inf

x′∈X

−→
T (E(x,x′)|A(1̃(x′), . . . , 1̃(x′))) =

= inf
x′∈X

−→
T (E(x,x′)|A(1, . . . ,1)) = inf

x′∈X

−→
T (E(x,x′)|1) = 1̃(x).

(Ã3): To prove the monotonicity of ÃE,T and ÃE,
−→
T we use the monotonicity of A and T ,

and the basic properties of
−→
T :

µi � ηi, i = 1, ...,n =⇒ A(µ1(x′), ...,µn(x′))≤ A(η1(x′), ...,ηn(x′)) =⇒

=⇒ T (E(x,x′),A(µ1(x′), ...,µn(x′)))≤ T (E(x,x′),A(η1(x′), ...,ηn(x′))) =⇒

=⇒ sup
x′∈X

T (E(x,x′),A(µ1(x′), . . . ,µn(x′)))≤

≤ sup
x′∈X

T (E(x,x′),A(η1(x′), . . . ,ηn(x′))) =⇒

=⇒ ÃE,T (µ1, . . . ,µn)� ÃE,T (η1, . . . ,ηn);

µi � ηi, i = 1, ...,n =⇒ A(µ1(x′), ...,µn(x′))≤ A(η1(x′), ...,ηn(x′)) =⇒

=⇒−→T (E(x,x′)|A(µ1(x′), ...,µn(x′)))≤
−→
T (E(x,x′)|A(η1(x′), ...,ηn(x′))) =⇒

=⇒ inf
x′∈X

−→
T (E(x,x′)|A(µ1(x′), . . . ,µn(x′)))≤

≤ inf
x′∈X

−→
T (E(x,x′)|A(η1(x′), . . . ,ηn(x′))) =⇒

=⇒ ÃE,
−→
T (µ1, . . . ,µn)� ÃE,

−→
T (η1, . . . ,ηn).

We could consider (3.1) and (3.2) as upper and lower approximations of a general

aggregation operator Ã, which is the pointwise extension of an ordinary aggregation

operator A. It is clear, that for all µ1, . . . ,µn ∈ [0,1]X it holds

ÃE,
−→
T (µ1, . . . ,µn)≤ Ã(µ1, . . . ,µn)≤ ÃE,T (µ1, . . . ,µn).

Indeed, for all x ∈ X

ÃE,
−→
T (µ1, . . . ,µn)(x) = inf

x′∈X

−→
T (E(x,x′)|A(µ1(x′), . . . ,µn(x′)))≤

≤−→T (E(x,x)|A(µ1(x′), . . . ,µn(x′))) = A(µ1(x), . . . ,µn(x)) =

= T (E(x,x),A(µ1(x), . . . ,µn(x)))≤ sup
x′∈X

T (E(x,x′),A(µ1(x′), . . . ,µn(x′))) =

= ÃE,T (µ1, . . . ,µn)(x).
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Let ρ be a crisp equivalence relation defined on a set X . We take E = Eρ, where

Eρ(x,y) =

 1, (x,y) ∈ ρ,

0, (x,y) /∈ ρ,

and for an ordinary aggregation operator A and for any t-norm T obtain ÃEρ,T and ÃEρ,
−→
T ,

which does not depend on T :

ÃEρ,T (µ1, . . . ,µn)(x) = sup
x′∈X :(x′,x)∈ρ

A(µ1(x′), . . . ,µn(x′)),

ÃEρ,
−→
T (µ1, . . . ,µn)(x) = inf

x′∈X :(x′,x)∈ρ

A(µ1(x′), . . . ,µn(x′)).

It is easy to see that ÃEρ,T = Ãρ. In the case when crisp equivalence relation is defined

in the following way:

ρ0(x,y) =

 1, x = y,

0, otherwise,

we have, that both upper and lower general aggregation operators based on Eρ0 turn into

the pointwise extension of ordinary aggregation operator.

Now let us consider the following construction in compare with (3.1):

ÃE,B(µ1, . . . ,µn)(x) = sup
x′∈X

B(E(x,x′),A(µ1(x′), . . . ,µn(x′))), x ∈ X , µ1, . . . ,µn ∈ [0,1]X ,

where A and B are aggregation operators, E is a T -fuzzy equivalence relation.

Dealing with such construction, it is natural to state the following problem: what

properties aggregation operator B should fulfil in order to operator ÃE,B represent an

upper general aggregation operator (3.1). It is clear that if B = T , then ÃE,B is the upper

general aggregation operator. But if the symmetry of a t-norm is omitted, we obtain the

necessary result if the following properties of B hold:

B(α,0) = 0 for all α ∈ [0,1].

Similar considerations could be obtained by studying operator ÃE,C in compare with

(3.2):

ÃE,C(µ1, . . . ,µn)(x) = inf
x′∈X

C(E(x,x′),A(µ1(x′), . . . ,µn(x′))), x ∈ X , µ1, . . . ,µn ∈ [0,1]X ,

where C is some aggregation operator. In this case it is enough to demand that the

following properties are fulfilled:
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1) C(1,0) = 0;

2) C(α,1) = 1 for all α ∈ [0,1].

While
−→
T is not an aggregation operator, it is also possible to weaken the monotonic-

ity condition for C and to demand only the monotonicity of C with respect to the second

argument. With the conditions described above operators ÃE,B and ÃE,C provide upper

and lower approximations of a general aggregation operator Ã.

Now we illustrate the upper and lower general aggregation operators ÃE,T and ÃE,
−→
T

with some particular examples.

Example 3.2.1. Numerical inputs here are taken from [27]. Let us consider the discrete

universe

X = {x1,x2,x3,x4,x5}

and the following TM-fuzzy (TM is the minimum t-norm) equivalence relation E, given in

a matrix form:

E =



1 0.9 0.7 0.4 0.2

0.9 1 0.7 0.4 0.2

0.7 0.7 1 0.4 0.2

0.4 0.4 0.4 1 0.2

0.2 0.2 0.2 0.2 1


.

Of course, this equivalence relation is also TL-transitive and TP-transitive, i.e. transitive

with respect to the Lukasiewicz t-norm TL and the product t-norm TP respectively. Re-

lation E has a noteworthy feature: elements x4 and x5 are equivalent to other elements

with relatively lower degree, than elements x1, x2 and x3. We illustrate that this fact has

significant impact on the result of general aggregations.

Let us take the following fuzzy subsets of X :

µ1 =



0.9

0.5

0.6

0.8

0.3


, µ2 =



0.2

0.0

0.2

0.6

0.9


, µ3 =



0.7

0.5

0.1

0.8

0.6


, µ4 =



0.1

0.9

0.2

0.8

0.5


.

Now we consider the minimum aggregation operator A = MIN and obtain the following

upper general aggregation operator:

ÃE,T (µ1,µ2,µ3,µ4)(x) = max
x′∈X

T (E(x,x′),min(µ1(x′),µ2(x′),µ3(x′),µ4(x′))).
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Taking T = TL, T = TM and T = TP we obtain as results fuzzy subsets µTL , µTM and µTP

respectively:

µTL =



0.1

0.0

0.1

0.6

0.3


, µTM =



0.4

0.4

0.4

0.6

0.3


, µTP =



0.24

0.24

0.24

0.6

0.3


.

First, let us note, that result µT at points x4 and x5 does not depend on the choice

of the t-norm. It could be explained with low degrees of equivalence for these points

with respect to other elements. Therefore the result of ÃE,T is not effected by these other

elements. Second, the values of µT at points x1, x2 and x3 depend on each other, since

the degree of equivalence between any two of these points is relatively high, and at the

same time the results of ordinary aggregation of µ1(x), µ2(x), µ3(x) and µ4(x) at these

points are relatively small.

Taking the arithmetic mean aggregation operator A = AV G as an ordinary aggrega-

tion operator, we obtain the following upper general aggregation operator:

ÃE,T (µ1,µ2,µ3,µ4)(x) = max
x′∈X

T (E(x,x′),AV G(µ1(x′),µ2(x′),µ3(x′),µ4(x′))).

Taking T = TL, T = TM and T = TP we obtain as results the following fuzzy subsets:

µTL =



0.475

0.475

0.275

0.750

0.575


, µTM =



0.475

0.475

0.475

0.750

0.575


, µTP =



0.475

0.475

0.333

0.750

0.575


.

Here again, one can see, that result µT at points x4 and x5 does not depend on the

choice of the t-norm and is not effected by other points x1, x2 and x3. The values of the

upper general aggregation at points x1 and x2 depend on each other because of the high

equivalence degree between these two elements. The dependence of the value of µT at

point x3 on the values at points x1 and x2 is effected by the choice of the t-norm.

Similarly, we will calculate several results for the following lower general aggrega-

tion operator:

ÃE,
−→
T (µ1,µ2,µ3,µ4)(x) = min

x′∈X

−→
T (E(x,x′)|AV G(µ1(x′),µ2(x′),µ3(x′),µ4(x′))).
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As results of aggregation ÃE,
−→
T for T = TL, T = TM and T = TP we obtain the fuzzy

subsets µ−→T L
, µ−→T M

and µ−→T P
respectively:

µ−→T L
=



0.475

0.475

0.275

0.750

0.575


, µ−→T M

=



0.275

0.275

0.275

0.275

0.575


, µ−→T P

=



0.393

0.393

0.275

0.688

0.575


.

In this case the low degree of equivalence has major impact only at point x5. The result

of the lower general aggregation ÃE,
−→
T at point x4 now is also effected by other elements

x1, x2 and x3, while changing the t-norm.

3.3 Properties derived from an ordinary aggregation

operator

In this section we describe some of the most important properties of upper and lower

general aggregation operators ÃE,T and ÃE,
−→
T derived from the properties of ordinary

aggregation operator A (see [4, 7, 14]). These properties were studied in [49].

Symmetry. Let π : N → N be a permutation, where N = {1, ...,n}. If for all elements

t1, ..., tn ∈ [0,1] the following property holds:

A(t1, . . . , tn) = A(tπ(1), . . . , tπ(n)),

then the following equalities

ÃE,T (µ1, . . . ,µn) = ÃE,T (µπ(1), . . . ,µπ(n)),

ÃE,
−→
T (µ1, . . . ,µn) = ÃE,

−→
T (µπ(1), . . . ,µπ(n))

hold for all µ1, . . . ,µn ∈ [0,1]X .

Associativity. The associativity of A in general is not preserved by upper and lower

general aggregation operators ÃE,T and ÃE,
−→
T . Let us provide an example to illustrate

this fact.

For simplicity we consider the discrete two-point universe X , and we use a vector

form for fuzzy sets and a matrix form for T -fuzzy equivalence relation. Let us take
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TL-fuzzy equivalence relation (TL is Lukasiewicz t-norm)

E =

(
1 0.7

0.7 1

)

and fuzzy sets µ1,µ2 and µ3:

µ1 =

(
0.4

0.2

)
, µ2 =

(
0.3

0.7

)
, µ3 =

(
0.1

0.9

)
.

We obtain the following results for the upper general aggregation operator:

AṼ GE,TL(AṼ GE,TL(µ1,µ2),µ3) =

(
0.375

0.675

)
,

AṼ GE,TL(µ1,AṼ GE,TL(µ2,µ3)) =

(
0.45

0.50

)
,

and the following results for the lower general aggregation operator:

AṼ GE,
−→
T L

(AṼ GE,
−→
T L

(µ1,µ2),µ3) =

(
0.225

0.525

)
,

AṼ GE,
−→
T L

(µ1,AṼ GE,
−→
T L

(µ2,µ3)) =

(
0.30

0.35

)
,

where A = AV G is the ordinary arithmetic mean aggregation operator. As one can see,

the associativity does not hold in both cases.

Now we will look at the existence of absorbent, neutral and idempotent elements.

Absorbent element. Let Mab be the set of all absorbent elements (or annihilators) of

ordinary aggregation operator A, i.e. for all d ∈ Mab ⊂ [0,1], for all i ∈ {1, . . . ,n} and

for all t1, . . . , ti−1, ti+1, . . . , tn ∈ [0,1]

A(t1, . . . , ti−1,d, ti+1, . . . , tn) = d.

Then any fuzzy set d̃ ∈ [0,1]X , such that d̃ is extensional with respect to E and d̃(x)∈Mab

for all x ∈ X , is an absorbent element of ÃE,T and ÃE,
−→
T . Indeed, for all i ∈ {1, . . . ,n}

and for all µ1, . . . ,µi−1,µi+1, . . . ,µn ∈ [0,1]X we have

ÃE,T (µ1, . . . ,µi−1, d̃,µi+1, . . . ,µn)(x) =

= sup
x′∈X

T (E(x,x′),A(µ1(x′), ...,µi−1(x′), d̃(x′),µi+1(x′), ...,µn(x′))) =
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= sup
x′∈X

T (E(x,x′), d̃(x′)) = d̃(x),

ÃE,
−→
T (µ1, . . . ,µi−1, d̃,µi+1, . . . ,µn)(x) =

= inf
x′∈X

−→
T (E(x,x′)|A(µ1(x′), ...,µi−1(x′), d̃(x′),µi+1(x′), ...,µn(x′))) =

= inf
x′∈X

−→
T (E(x,x′)|d̃(x′)) = d̃(x).

Neutral element. Let Mne be a set of all neutral elements of ordinary aggregation

operator A, i.e. for all e ∈ Mne ⊂ [0,1], for all i ∈ {1, ...,n} and for all elements

t1, ..., ti−1, ti+1, ..., tn ∈ [0,1]

A(t1, . . . , ti−1,e, ti+1, . . . , tn) = A(t1, . . . , ti−1, ti+1, . . . , tn).

Then any fuzzy set ẽ∈ [0,1]X , such that ẽ is extensional with respect to E and ẽ(x)∈Mne

for all x ∈ X , is a neutral element of ÃE,T and ÃE,
−→
T . Indeed, for all i ∈ {1, . . . ,n} and

for all µ1, . . . ,µi−1,µi+1, . . . ,µn ∈ [0,1]X we have

ÃE,T (µ1, . . . ,µi−1, ẽ,µi+1, . . . ,µn) =

= sup
x′∈X

T (E(x,x′),A(µ1(x′), . . . ,µi−1(x′), ẽ(x′),µi+1(x′), . . . ,µn(x′))) =

= sup
x′∈X

T (E(x,x′),A(µ1(x′), . . . ,µi−1(x′),µi+1(x′), . . . ,µn(x′))) =

= ÃE,T (µ1, . . . ,µi−1,µi+1, . . . ,µn),

ÃE,
−→
T (µ1, . . . ,µi−1, ẽ,µi+1, . . . ,µn) =

= inf
x′∈X

−→
T (E(x,x′)|A(µ1(x′), . . . ,µi−1(x′), ẽ(x′),µi+1(x′), . . . ,µn(x′))) =

= inf
x′∈X

−→
T (E(x,x′)|A(µ1(x′), . . . ,µi−1(x′),µi+1(x′), . . . ,µn(x′))) =

= ÃE,
−→
T (µ1, . . . ,µi−1,µi+1, . . . ,µn).

Idempotent element. Let Mid be a set of all idempotent elements of ordinary aggrega-

tion operator A, i.e. for all t ∈Mid ⊂ [0,1]

A(t, . . . , t) = t.

Then any fuzzy set µ∈ [0,1]X , such that µ is extensional with respect to E and µ(x)∈Mid

for all x ∈ X , is an idempotent element of ÃE,T and ÃE,
−→
T . Indeed, we have

ÃE,T (µ, . . . ,µ)(x) = sup
x′∈X

T (E(x,x′),A(µ(x′), . . . ,µ(x′))) = sup
x′∈X

T (E(x,x′),µ(x′)) = µ(x),
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and analogously

ÃE,
−→
T (µ, . . . ,µ)(x)= inf

x′∈X

−→
T (E(x,x′)|A(µ(x′), . . . ,µ(x′)))= inf

x′∈X

−→
T (E(x,x′)|µ(x′))= µ(x).

Now we will illustrate the properties mentioned above for some particular ordinary ag-

gregation operators A.

A = min. Taking A = min we will obtain symmetric aggregation operators ÃE,T and

ÃE,
−→
T with neutral element ẽ = 1̃ and absorbent element d̃ = 0̃. In this case all exten-

sional fuzzy sets with respect to E are idempotent elements for these operators.

A = max. Taking A = max we obtain operators ÃE,T and ÃE,
−→
T with similar properties

to the case, when A = min with a remark, that neutral and absorbent elements are ẽ = 0̃

and d̃ = 1̃ respectively.

E = Eρ In the case of crisp equivalence relation ρ general aggregation operators ÃEρ,T

and ÃEρ,
−→
T inherit such properties of ordinary aggregation operator A as symmetry, as-

sociativity, existence of absorbent, neutral and idempotent elements. Let us note that in

this case fuzzy set µ is extensional with respect to Eρ if for all x,y ∈ X it holds

µ(x) = µ(y)⇐⇒ (x,y) ∈ ρ.

3.4 Different types of monotonicity for upper and lower

general aggregation operators

In this section we look at the monotonicity of upper and lower general aggregation op-

erators ÃE,T and ÃE,
−→
T with respect to ordinary aggregation operator A, t-norm T and

T -fuzzy equivalence relation E. The monotonicity with respect to inputs is ensured by

property (Ã3).

In order to consider the monotonicity with respect to ordinary aggregation operator

A, we define that

A1 ≤ A2⇐⇒ A1(t1, . . . , tn)≤ A2(t1, . . . , tn) for all t1, . . . , tn ∈ [0,1].

We also define that

Ã1
E,T ≤ Ã2

E,T ⇐⇒ Ã1
E,T (µ1, . . . ,µn)≤ Ã2

E,T (µ1, . . . ,µn) for all µ1, . . . ,µn ∈ [0,1]X ,

54



Different types of monotonicity for upper and lower general aggregation operators

Ã1
E,
−→
T
≤ Ã2

E,
−→
T
⇐⇒ Ã1

E,
−→
T
(µ1, . . . ,µn)≤ Ã2

E,
−→
T
(µ1, . . . ,µn) for all µ1, . . . ,µn ∈ [0,1]X .

We obtain that, if it holds A1 ≤ A2, then Ã1
E,T ≤ Ã2

E,T and Ã1
E,
−→
T
≤ Ã2

E,
−→
T

.

Now we consider the monotonicity of upper and lower general aggregation operators

ÃE,T and ÃE,
−→
T with respect to a left-continuous t-norm T . It is easy to show, that if

T1 ≤ T2, then ÃE,T1 ≤ ÃE,T2 and AE,
−→
T 1
≥ ÃE,

−→
T 2

.

To study the monotonicity of ÃE,T and ÃE,
−→
T with respect to a T -fuzzy equivalence

relation E, we consider the inequality between fuzzy equivalence relations defined by:

E1 ≤ E2⇐⇒ E1(x,y)≤ E2(x,y) for all x,y ∈ X .

Taking into account the monotonicity of T , we obtain that if E1 ≤ E2, then for all x ∈ X

it holds

ÃE1,T (µ1, . . . ,µn)(x) = sup
x′∈X

T (E1(x,x′),A(µ1(x′), . . . ,µn(x′)))≤

≤ sup
x′∈X

T (E2(x,x′),A(µ1(x′), . . . ,µn(x′))) = ÃE2,T (µ1, . . . ,µn)(x).

It is true that if E1 ≤ E2, then for all x ∈ X it holds

ÃE1,
−→
T (µ1, . . . ,µn)(x) = inf

x′∈X

−→
T (E1(x,x′)|A(µ1(x′), . . . ,µn(x′)))≥

≥ inf
x′∈X

−→
T (E2(x,x′)|A(µ1(x′), . . . ,µn(x′))) = ÃE2,

−→
T (µ1, . . . ,µn)(x).

In some cases it is important to observe T -fuzzy equivalence relation E on some

particular α-levels, α ∈ [0,1]. For example, dealing with lower general aggregation

operator, elements with low degrees of equivalence have major impact on the output of

aggregation and we could obtain a distorted result. In such case it is reasonable to use

T -fuzzy equivalence relation E only above some α-level, in that way ignoring elements

with lower degrees of equivalence. We can consider T -fuzzy equivalence relation Eα:

Eα(x,y) =

 E(x,y), E(x,y)≥ α,

0, E(x,y)< α,

or crisp equivalence relation Eα
ρ :

Eα
ρ (x,y) =

 1, E(x,y)≥ α,

0, E(x,y)< α.
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For both cases the following implications hold:

α1 ≤ α2 =⇒ Eα1 ≥ Eα2 ,

α1 ≤ α2 =⇒ Eα1
ρ ≥ Eα2

ρ

for all α1,α2 ∈ [0,1]. Thereby if Eα1 ≥ Eα2 , then ÃEα1 ,T ≥ ÃEα2 ,T and ÃEα1 ,
−→
T ≤ ÃEα2 ,

−→
T ,

as well as if Eα1
ρ ≥ Eα2

ρ , then ÃE
α1
ρ ,T ≥ ÃE

α2
ρ ,T and ÃE

α1
ρ ,
−→
T ≤ ÃE

α2
ρ ,
−→
T .

As we will see later, the properties described in this section are important, when we

are dealing with approximate systems, based on upper and lower general aggregation

operators.

3.5 Upper and lower general aggregation operators and

extensional fuzzy sets

In this section we describe some important results regarding the connection between up-

per and lower general aggregation operators and extensional fuzzy sets. This connection

was studied in [46]. We recall two approximation operators φE and ψE , which appear

in a natural way in the theory of fuzzy rough sets (see, e.g., [10], [28], [39]). Fuzzy sets

φE(µ) and ψE(µ) were introduced to provide upper and lower approximation of a fuzzy

set µ with respect to fuzzy equivalence relation E.

Definition 3.5.1. Let T be a left-continuous t-norm and E be a T -fuzzy equivalence

relation on a set X. The maps φE : [0,1]X → [0,1]X and ψE : [0,1]X → [0,1]X are defined

by

φE(µ)(x) = sup
y∈X

T (E(x,y),µ(y)),

ψE(µ)(x) = inf
y∈X

−→
T (E(x,y)|µ(y)),

for all x ∈ X and for all µ ∈ [0,1]X , where
−→
T is the residuum of T .

It is known that for all µ ∈ [0,1]X fuzzy sets φE(µ) and ψE(µ) are extensional with

respect to E. Let us note that we always obtain extensional fuzzy sets as results of the

upper and lower general aggregation operators.

Proposition 3.5.1. Let T be a left-continuous t-norm,
−→
T be a corresponding residuum,

E be a T -fuzzy equivalence relation on a set X. Let ÃE,T and ÃE,
−→
T be general aggrega-

tion operators defined by (3.1) and (3.2) respectively. Then fuzzy sets ÃE,T (µ1, . . . ,µn)

and ÃE,
−→
T (µ1, . . . ,µn) are extensional with respect to E for all µ1, ...,µn ∈ [0,1]X .
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Aggregating extensional fuzzy sets it could be necessary to obtain as a result an

extensional fuzzy set as well. It could be effectively done by the upper and lower general

aggregation operators, while an arbitrary general aggregation does not provide us this

advantage. It is easy to show that by taking an arbitrary aggregation of extensional fuzzy

sets we will not necessary obtain an extensional fuzzy set. If we take the following TM-

fuzzy equivalence relation E and fuzzy sets µa and µb, which are extensional with respect

to E:

E =

(
1 0.7

0.7 1

)
, µa =

(
0.7

0.8

)
, µb =

(
0.2

0.2

)
,

and apply the arithmetic mean aggregation operator AV G to µa and µb, then the result

µ = AV G(µa,µb) =

(
0.45

0.5

)

is not extensional fuzzy set with respect to E.

It is important that results of the upper and lower general aggregation operators are

extensional with respect to E even in the case, when aggregated fuzzy sets are not ex-

tensional.

We consider the class of all general aggregations operators, which take values in the

set of all extensional fuzzy sets. We will show that operators ÃE,T and ÃE,
−→
T in this

class of operators provide us with the best upper and lower approximations of a general

aggregation operator Ã.

We will denote by XE the set of all extensional fuzzy subsets of X with respect to a

T -fuzzy equivalence relation E. We will show that

1) for any general aggregation operator Ãl : ([0,1]X)n→ XE

Ãl ≤ Ã =⇒ Ãl ≤ ÃE,
−→
T ,

2) for any general aggregation operator Ãu : ([0,1]X)n→ XE

Ãu ≥ Ã =⇒ Ãu ≥ ÃE,T .

1) To prove, that

Ãl(µ1, . . . ,µn)≤ ÃE,
−→
T (µ1, . . . ,µn) for all µ1, . . . ,µn ∈ [0,1]X ,

we take into account that for all x,x′ ∈ X it holds

T (E(x,x′), Ãl(µ1, . . . ,µn)(x))≤ Ãl(µ1, . . . ,µn)(x′),
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which is equivalent to

Ãl(µ1, . . . ,µn)(x)≤
−→
T (E(x,x′)|Ãl(µ1, . . . ,µn)(x′)).

Therefore

Ãl(µ1, . . . ,µn)(x)≤ inf
x′∈X

−→
T (E(x,x′)|Ãl(µ1, . . . ,µn)(x′))≤

≤ inf
x′∈X

−→
T (E(x,x′)|Ã(µ1, . . . ,µn)(x′)) = ÃE,

−→
T (µ1, . . . ,µn)(x).

2) We will show, that

Ãu(µ1, . . . ,µn)≥ ÃE,T (µ1, . . . ,µn) for all µ1, . . . ,µn ∈ [0,1]X .

For all x,x′ ∈ X it holds

T (E(x,x′), Ãu(µ1, . . . ,µn)(x′))≤ Ãu(µ1, . . . ,µn)(x),

and thus

Ãu(µ1, . . . ,µn)(x)≥ sup
x′∈X

T (E(x,x′), Ãu(µ1, . . . ,µn)(x′))≥

≥ sup
x′∈X

T (E(x,x′), Ã(µ1, . . . ,µn)(x′)) = ÃE,T (µ1, . . . ,µn)(x).

And now we will propose a method to approximate an arbitrary fuzzy set by an

extensional one. The approximations φE(µ) and ψE(µ) in general are not the best

approximations of µ by extensional fuzzy subsets. It is important to understand how

φE(µ) and ψE(µ) should be aggregated to obtain an aggregation with good approxima-

tive properties. In [27] the authors provided and compared two methods for the case of

Archimedean t-norms: one is by taking the weighted quasi-arithmetic mean of φE(µ)

and ψE(µ) and another by taking powers with respect to a t-norm of lower approxima-

tion ψ(µ). Unfortunately, the proposed methods could not be applied in the case when

t-norm T does not satisfy the required restriction.

Our approach is to apply to φE(µ) and ψE(µ) the upper general aggregation oper-

ator based on fuzzy equivalence relation E, thus obtaining an approximation of µ by

extensional fuzzy subset

ÃE,T (φE(µ),ψE(µ)).

As ordinary aggregation operator A one should take an aggregation operator, which sat-

isfies the property of internality (or compensation) (see e.g. [14]). In the case when

A = MAX we obtain the upper approximation:

ÃE,TM(φE(µ),ψE(µ))(x) = φE(µ).

58



Upper and lower general aggregation operators and extensional fuzzy sets

By analogy, in the case when A = MIN we obtain the lower approximation:

ÃE,TM(φE(µ),ψE(µ))(x) = ψE(µ).

Now we will illustrate our approach with several examples. Let us consider E and

fuzzy sets µ1,µ2,µ3,µ4 from the previous Section 3.2. (see Example 3.2.1.) In the case

of finite X for evaluation of the error of approximation we use the Euclidean distance

between original fuzzy set µ ∈ [0,1]X and the result of upper general aggregation opera-

tor:

dT (A,µ) = ‖µ− ÃE,T (φE(µ),ψE(µ))‖.

For example, by taking T = TM and A = AV G and applying the corresponding up-

per general aggregation operator ÃE,TM(φE(µ),ψE(µ)), we obtain the approximations of

fuzzy sets µ1,µ2,µ3,µ4, and then evaluate dTM(AV G,µi) and compare with dTM(MAX ,µi),

dTM(MIN,µi) for different i:

dTM(MAX ,µ1) = 0.4123, dTM(MIN,µ1) = 0.4123, dTM(AV G,µ1) = 0.3000,

dTM(MAX ,µ2) = 0.4899, dTM(MIN,µ2) = 1.1180, dTM(AV G,µ2) = 0.6344,

dTM(MAX ,µ3) = 0.6325, dTM(MIN,µ3) = 1.1225, dTM(AV G,µ3) = 0.6124,

dTM(MAX ,µ4) = 0.9434, dTM(MIN,µ4) = 1.1402, dTM(AV G,µ4) = 0.7566.

The approximation by upper general aggregation operator of φE(µ) and ψE(µ) for some

initial fuzzy sets provides better results than upper and lower approximations and could

be improved by involving weights into averaging operator. The problem of choosing

optimal weights remains beyond the frames of this work.

Next we take T = TL and A = MAX , A = MIN, A = AV G, and evaluate the approxi-

mation errors:

dTL(MAX ,µ1) = 0.3000, dTL(MIN,µ1) = 0.3000, dTL(AV G,µ1) = 0.2121,

dTL(MAX ,µ2) = 0.1000, dTL(MIN,µ2) = 0.1414, dTL(AV G,µ2) = 0.0866,

dTL(MAX ,µ3) = 0.3162, dTL(MIN,µ3) = 0.3317, dTL(AV G,µ3) = 0.2179,

dTL(MAX ,µ4) = 0.8062, dTL(MIN,µ4) = 0.7071, dTL(AV G,µ4) = 0.5362.

As one can see, the smallest errors for all the given sets are obtained for the aggregation

A = AV G, and these results are comparable with the approximations obtained in [27].
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Our approach has been tested for one particular fuzzy equivalence relation E and for

four fuzzy subsets of the discrete universe. A deeper analysis should be performed to

make a conclusion on approximative properties of upper general aggregation operator

depending on the choice of ordinary aggregation operator A.

3.6 Upper and lower general aggregation operators

based on a t-norm extension of ordinary aggregation

operator

Operators (3.1) and (3.2) give upper and lower approximations of a general aggregation

operator Ã, which is the pointwise extension of an ordinary aggregation operator A. In

this section we will define upper and lower approximations of the T -extension ÃT of

ordinary aggregation operator A:

ÃT (µ1, . . . ,µn)(x) = sup
x=A(x1,...,xn)

T (µ1(x1), . . . ,µn(xn)),

here x,x1, . . . ,xn ∈ [0,1] and µ1, . . . ,µn ∈ [0,1][0,1]. By the associativity of a t-norm here

we consider T as n-ary operator.

Definition 3.6.1. Let A : [0,1]n → [0,1] be an aggregation operator, which takes all

values from [0,1], T be a left continuous t-norm,
−→
T be the residuum of T , and E be a

T -fuzzy equivalence relation defined on [0,1]. The upper and lower general aggregation

operators ÃT
E,T and ÃT

E,
−→
T

are defined respectively by

ÃT
E,T (µ1, . . . ,µn)(x) = sup

x′=A(x1,...,xn)

T (E(x,x′),T (µ1(x1), . . . ,µn(xn))), (3.3)

ÃT
E,
−→
T
(µ1, . . . ,µn)(x) = inf

x′=A(x1,...,xn)

−→
T (E(x,x′)|T (µ1(x1), . . . ,µn(xn))), (3.4)

where x,x′,x1, . . . ,xn ∈ [0,1] and µ1, . . . ,µn ∈ [0,1][0,1].

Further, in Proposition 3.6.1 we will prove that operators ÃT
E,T and ÃT

E,
−→
T

actually are

general aggregation operators.

We consider such constructions taking into account that operator (3.3) based on crisp

equivalence relation Eρ0 turns into the T -extension of ordinary aggregation operator A.

While usually aggregation operators could be defined on the whole real line R, it is

also possible to modify the previous definition for the extended version of aggregation

operator A : Rn→ R, where R= R∪{−∞,+∞}.
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Let us demonstrate that constructions (3.3) and (3.4) give us general aggregation

operators. We must show that conditions (Ã1), (Ã2) and (Ã3) are satisfied.

Proposition 3.6.1. Operators ÃT
E,T and ÃT

E,
−→
T

(see (3.3),(3.4)) are general aggregation

operators.

Proof. First we consider the boundary conditions:

(Ã1):

ÃT
E,T (0̃, . . . , 0̃)(x) = sup

x′=A(x1,...,xn)

T (E(x,x′),T (0̃(x1), . . . , 0̃(xn))) =

= sup
x′=A(x1,...,xn)

T (E(x,x′),0) = 0 = 0̃(x);

ÃT
E,
−→
T
(0̃, . . . , 0̃)(x) = inf

x′=A(x1,...,xn)

−→
T (E(x,x′)|T (0̃(x1), . . . , 0̃(xn))) =

= inf
x′=A(x1,...,xn)

−→
T (E(x,x′)|0) = 0 = 0̃(x);

(Ã2):

ÃT
E,T (1̃, . . . , 1̃)(x) = sup

x′=A(x1,...,xn)

T (E(x,x′),T (1̃(x1), . . . , 1̃(xn))) =

= sup
x′=A(x1,...,xn)

T (E(x,x′),1) = sup
x′=A(x1,...,xn)

E(x,x′) = 1 = 1̃(x);

ÃT
E,
−→
T
(1̃, . . . , 1̃)(x) = inf

x′=A(x1,...,xn)

−→
T (E(x,x′)|T (1̃(x1), . . . , 1̃(xn))) =

= inf
x′=A(x1,...,xn)

−→
T (E(x,x′)|1) = 1 = 1̃(x).

(Ã3): To prove the monotonicity of ÃT
E,T and ÃT

E,
−→
T

we use the monotonicity of T and

the basic properties of
−→
T :

µi � ηi, i = 1, ...,n =⇒ T (µ1(x1), ...,µn(xn))≤ T (η1(x1), ...,ηn(xn)) =⇒

=⇒ T (E(x,x′),T (µ1(x1), ...,µn(xn)))≤ T (E(x,x′),T (η1(x1), ...,ηn(xn))) =⇒

=⇒ sup
x′=A(x1,...,xn)

T (E(x,x′),T (µ1(x1), . . . ,µn(xn)))≤

≤ sup
x′=A(x1,...,xn)

T (E(x,x′),T (η1(x1), . . . ,ηn(xn))) =⇒

=⇒ ÃT
E,T (µ1, . . . ,µn)� ÃT

E,T (η1, . . . ,ηn);

µi � ηi, i = 1, ...,n =⇒ T (µ1(x1), ...,µn(xn))≤ T (η1(x1), ...,ηn(xn)) =⇒

=⇒−→T (E(x,x′)|T (µ1(x1), ...,µn(xn)))≤
−→
T (E(x,x′)|T (η1(xn), ...,ηn(xn))) =⇒
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=⇒ inf
x′=A(x1,...,xn)

−→
T (E(x,x′)|T (µ1(x1), . . . ,µn(xn)))≤

≤ inf
x′=A(x1,...,xn)

−→
T (E(x,x′)|T (η1(x1), . . . ,ηn(xn))) =⇒

=⇒ ÃT
E,
−→
T
(µ1, . . . ,µn)� ÃT

E,
−→
T
(η1, . . . ,ηn).

Upper and lower operators ÃT
E,T and ÃT

E,
−→
T

are respectively upper and lower approxi-

mations for the T -extension ÃT of an ordinary aggregation operator A. Indeed, it is easy

to show that for all µ1, . . . ,µn ∈ [0,1][0,1]

ÃT
E,
−→
T
(µ1, . . . ,µn)≤ ÃT (µ1, . . . ,µn)≤ ÃT

E,T (µ1, . . . ,µn).
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Chapter 4

Aggregation of fuzzy real numbers

In the previous chapters we considered general aggregation operators acting on arbi-

trary fuzzy sets, but in real-world applications usually specific types of fuzzy sets are

used. For example, dealing with various problems, fuzzy numbers have a wide range

of applications. There exist different ways how define a fuzzy number – e.g. triangular,

trapezoidal fuzzy numbers and other. Previously constructed general aggregation oper-

ators do not preserve the shape of such numbers in general. In this chapter we consider

how these operators act on fuzzy real numbers in the sense of Hutton. Such numbers

also have wide possibilities of applications (see, e.g., [1, 2, 31]). Here we investigate

the problem of preservation of the shape of fuzzy numbers in the sense of Hutton in an

aggregation process. For the main results presented in this chapter we refer the reader to

[44, 48].

4.1 General aggregation of fuzzy real numbers

The fuzzy real numbers were first defined by B. Hutton [18] and then studied thoroughly

in a series of papers (see, e.g., [25, 26, 29, 30]). Further we will use the notion fuzzy real

numbers for fuzzy real numbers in the sense of Hutton (see Definition 1.2.8.).

We consider general aggregation operator ÃT defined by using the T -extension of an

ordinary aggregation operator A (see formula (2.2)). We assume that A : Rn → R is a

continuous aggregation operator and T is a continuous t-norm. Let us also assume that

A takes real values if all the arguments are real numbers, i.e. A(Rn) = R.

We analyse the result of aggregation

ÃT (z1, . . . ,zn)(x) = sup
x=A(x1,...,xn)

T (z1(x1), . . . ,zn(xn)), (4.1)
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where z1,z2, . . . ,zn ∈R([0,1]), x,x1,x2, . . . ,xn ∈R. Here we assume that all z∈R([0,1])
are defined as z : R→ [0,1], additionally assuming that z(−∞) = 1 and z(+∞) = 0. The

inequality for fuzzy real numbers is used in the following sense:

z1 ≤ z2⇐⇒ z1(x)≤ z2(x) for all x ∈ R.

Now we will show that by using ÃT we get a fuzzy real number as the result .

Theorem 4.1.1. Let A : Rn→R be a continuous aggregation operator such as A(Rn) =

R, T be a continuous t-norm. Then ÃT (z1, . . . ,zn) ∈ R([0,1]) (see formula (4.1)) for all

z1, . . . ,zn ∈ R([0,1]).

Proof. We denote z = ÃT (z1, . . . ,zn). We must check properties (N1) – (N3) for z.

(N1): We should prove that for all x1,x2 ∈ R

x1 ≤ x2 =⇒ z(x1)≥ z(x2).

Let us fix arbitrary t1, . . . , tn such that x2 = A(t1, ..., tn). Taking into account the boundary

conditions and continuity of A, we obtain that

∃(τ1, . . . ,τn) ∈
n

∏
i=1

[−∞, ti] : A(τ1, ...,τn) = x1.

Taking into account that zi(τi)≥ zi(ti) for τi ≤ ti, i = 1, . . . ,n, we obtain

T (z1(τ1), . . . ,zn(τn))≥ T (z1(t1), . . . ,zn(tn)),

z(x1) = sup
x1=A(u1,...,un)

T (z1(u1), . . . ,zn(un))≥ T (z1(t1), . . . ,zn(tn)),

z(x1)≥ sup
x2=A(t1,...,tn)

T (z1(t1), . . . ,zn(tn)) = z(x2).

(N2): First, we show that sup
x∈R

z(x) = 1:

sup
x∈R

sup
x=A(x1,...,xn)

T (z1(x1), . . . ,zn(xn))≥ sup
m∈N

T (z1(−m), . . . ,zn(−m)) =

= lim
m→+∞

T (z1(−m), . . . ,zn(−m)) = T (z1(−∞), . . . ,z1(−∞)) = T (1, . . . ,1) = 1.

Second, we show that inf
x∈R

z(x) = 0. Taking into account, that inf
x∈R

z(x) = lim
x→+∞

z(x), we

need to prove that

lim
x→+∞

sup
x=A(x1,...,xn)

T (z1(x1), . . . ,zn(xn)) = 0.
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It is easy to see that

A(x1, . . . ,xn)→+∞ =⇒max{x1, . . . ,xn}→+∞.

Indeed, if this implication does not hold, then

∃p ∈ R : ∀q ∈ R ∃x1, . . . ,xn ∈ R : A(x1, . . . ,xn)> q & max{x1, . . . ,xn} ≤ p,

which leads to a contradiction, because

∀x1, . . . ,xn ∈ (−∞, p] : A(x1, . . . ,xn)≤ A(p, . . . , p) ∈ R.

Now we need to show that

max{x1, . . . ,xn}→+∞ =⇒ T (z1(x1), . . . ,zn(xn))→ 0.

Let us take arbitrary ε > 0. Then there exists t ∈ R such that for all i = 1, . . . ,n it holds:

xi > t =⇒ z(xi)< ε.

Therefore

max{x1, . . . ,xn}> t =⇒min{z1(x1), . . . ,zn(xn)}< ε =⇒ T (z1(x1), . . . ,zn(xn))< ε.

Let us also show, that z(−∞) = 1 and z(+∞) = 0. The equality A(x1, ...,xn) = +∞

implies that there exists such i ∈ {1, . . . ,n} that xi =+∞. Then

sup
+∞=A(x1,...,xi−1,+∞,xi−1,...,xn)

T (z1(x1), . . . ,zi−1(xi−1),zi(+∞),zi+1(xi+1), . . . ,zn(xn)) = 0,

which implies z(+∞) = 0. For z(−∞) we have:

z(−∞)= sup
−∞=A(x1,...,xn)

T (z1(x1, . . . ,zn(xn))≥ T (z1(−∞), . . . ,zn(−∞))= T (1, . . . ,1)= 1.

(N3): Let us consider z(x0−0) = inf
x<x0

z(x) for x0 ∈R. If z(x0−0) = 0, then the equality

z(x0− 0) = z(x0) is obvious. Let us consider the case, when z(x0− 0) > 0. We will

show, that for all δ > 0 it is true that z(x0) ≥ z(x0− 0)− δ. Thus we will show, that

z(x0−0) = z(x0). It is enough to consider δ < z(x0−0).

Let us take xm = x0− 1
m , m ∈ N. Since

z(xm) = sup
xm=A(t1,...,tn)

T (z1(t1), . . . ,zn(tn)),
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there exists such tm = (tm
1 , . . . , t

m
n ) ∈ Rn that xm = A(tm

1 , . . . , t
m
n ) and

T (z1(tm
1 ), . . . ,zn(tm

n ))> z(xm)−δ≥ z(x0−0)−δ.

One could find such subsequence (tmk)k∈N that there exists lim
k→∞

tmk
i ∈ R for all i =

1, ...,n. Let us denote t0
i = lim

k→∞
tmk
i , i = 1, ...n. Let us define new sequences (τk

i )k∈N:

τ
k
i = min{tmk

i , t0
i }, k ∈ N, i = 1, ...,n.

Then τk
i ≤ tmk

i for all k ∈ N, and lim
k→∞

τk
i = t0

i , i = 1, ...,n. Therefore

T (z1(τ
k
1), . . . ,zn(τ

k
n))≥ T (z1(t

mk
1 ), . . . ,zn(tmk

n ))≥ z(x0−0)−δ.

Taking into account that x0 = A(t0
1 , . . . , t

0
n), we have

z(x0)≥ T (z1(t0
1), . . . ,zn(t0

n)) = lim
k→∞

T (z1(τ
k
1), . . . ,zn(τ

k
n))≥ z(x0−0)−δ.

Later we will use Theorem 4.1.1 for the proofs of Theorem 4.3.1 and Theorem 4.3.2.

4.2 Upper and lower general aggregation operators act-

ing on fuzzy real numbers

In order to show that the upper and lower general aggregation operators acting on fuzzy

real numbers give us a fuzzy real number as the result, we specify the additional restric-

tions on equivalence relation E. We assume that fuzzy equivalence relation E could be

represented by using a non-increasing function

φ : [0,+∞)→ [0,1] (4.2)

with the following properties:

1) φ(0) = 1;

2) there exists such h > 0 that φ(h) = 0;

3) function φ is consistent with t-norm T in the following sense: for all α,β > 0 it

holds

T (φ(α),φ(β))≤ φ(α+β).
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We assume that

E(x,x′) =


φ(|x− x′|), if x,x′ ∈ R,

1, if x = x′ and x,x′ ∈ R, (4.3)

0, otherwise.

Let us take an ordinary aggregation operator A : [0,1]n → [0,1]. We analyse the

results of the following aggregations:

ÃE,T (z1, . . . ,zn)(x) = sup
x′∈R

T (E(x,x′),A(z1(x′), . . . ,zn(x′))), (4.4)

ÃE,
−→
T (z1, . . . ,zn)(x) = inf

x′∈R

−→
T (E(x,x′)|A(z1(x′), . . . ,zn(x′))), (4.5)

where x ∈ R and z1, . . . ,zn ∈ R([0,1]).

Theorem 4.2.1. Let A : [0,1]n → [0,1] be a continuous aggregation operator, T be a

continuous t-norm, and E be the T -fuzzy equivalence relation defined on R by a con-

tinuous function φ (see (4.2)) according to (4.3). Then ÃE,T (z1, . . . ,zn) ∈ R([0,1]) (see

formula (4.4)) for all z1, . . . ,zn ∈ R([0,1]).

Proof. Let us denote z = ÃE,T (z1, . . . ,zn). We have

z(x) = sup
x′∈R

T (E(x,x′),A(z1(x′), . . . ,zn(x′))) =

= sup
t∈R

T (φ(|t|),A(z1(x+ t), . . . ,zn(x+ t))) for x ∈ R.

It holds, that z(−∞) = 1 and z(+∞) = 0:

z(−∞) = sup
x′∈R

T (E(−∞,x′),A(z1(x′), . . . ,zn(x′)))≥

≥ T (E(−∞,−∞),A(z1(−∞), . . . ,zn(−∞))) = T (1,A(1, . . . ,1)) = 1;

z(+∞) = sup
x′∈R

T (E(+∞,x′),A(z1(x′), . . . ,zn(x′))) = 0,

because

a) x′ 6=+∞ =⇒ T (E(+∞,x′),A(z1(x′), . . . ,zn(x′))) = T (0,A(z1(x′), . . . ,zn(x′))) = 0,

b) x′ =+∞ =⇒ T (E(+∞,+∞),A(z1(+∞), . . . ,zn(+∞))) = T (1,A(0, . . . ,0)) = 0.

(N1): If x1 ≤ x2, then

z(x1) = sup
t∈R

T (φ(|t|),A(z1(x1 + t), . . . ,zn(x1 + t)))≥
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≥ sup
t∈R

T (φ(|t|),A(z1(x2 + t), . . . ,zn(x2 + t))) = z(x2).

(N2): It is easy to see that

sup
x∈R

z(x) = sup
x∈R

sup
t∈R

T (φ(|t|),A(z1(x+ t), . . . ,zn(x+ t)))≥

≥ sup
x∈R

A(z1(x), . . . ,zn(x)) = 1.

It is easy to see that for all x ∈ R it holds

z(x) = sup
t∈R

T (φ(|t|),A(z1(x+ t), . . . ,zn(x+ t)))≤

≤ sup
t∈R

T (φ(|t|),A(z1(x−h), . . . ,zn(x−h)))≤ A(z1(x−h), . . . ,zn(x−h)).

Therefore

inf
x∈R

z(x)≤ inf
x∈R

A(z1(x−h), . . . ,zn(x−h)) = 0.

(N3): Let us consider z(x0−0) = inf
x<x0

z(x) for x0 ∈R. If z(x0−0) = 0, then the equality

z(x0− 0) = z(x0) is obvious. Let us consider the case, when z(x0− 0) > 0. We will

show, that for all δ > 0 it is true that z(x0) ≥ z(x0− 0)− δ. Thus we will show, that

z(x0−0) = z(x0). It is enough to consider δ < z(x0−0).

Let us take xm = x0− 1
m , m ∈ N. Since

z(xm) = sup
t∈R

T (φ(|t|),A(z1(xm + t), . . . ,zn(xm + t))) =

= sup
t≥0

T (φ(t),A(z1(xm− t), . . . ,zn(xm− t))),

there exists such tm ∈ [0,h] that

T (φ(tm),A(z1(xm− tm), . . . ,zn(xm− tm)))> z(xm)−δ≥ z(x0−0)−δ.

For sequence (tm)m∈N one can find a convergent subsequence (tmk)k∈N. Let us denote

t0 = lim
k→∞

tmk . Let us form another sequence (τk)k∈N by taking τk = max{tmk , t0} for all

k ∈ N. We have lim
k→∞

τk = t0 and

x0−
1

mk
− τk ≤ xmk− tmk and x0−

1
mk
− τk ≤ x0− t0 for all k ∈ N.

Therefore

T (φ(tmk),A(z1(x0−
1

mk
− τk), . . . ,zn(x0−

1
mk
− τk)))≥

≥ T (φ(tmk),A(z1(xmk− tmk), . . . ,zn(xmk− tmk)))≥ z(x0−0)−δ.
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Hence

z(x0)≥ T (φ(t0),A(z1(x0− t0), . . . ,zn(x0− t0))) =

= lim
k→∞

T (φ(tmk),A(z1(x0−
1

mk
− τk), . . . ,zn(x0−

1
mk
− τk)))≥ z(x0−0)−δ.

A result of lower general aggregation operator ÃE,
−→
T also fulfils properties of inputs

in the form of fuzzy real numbers.

Theorem 4.2.2. Let A : [0,1]n → [0,1] be a continuous aggregation operator, T be a

continuous t-norm, and E be the T -fuzzy equivalence relation defined on R by function

φ (see (4.2)) according to (4.3). Then ÃE,
−→
T (z1, . . . ,zn)∈R([0,1]) (see formula (4.5)) for

all z1, . . . ,zn ∈ R([0,1]).

Proof. Let us denote z = ÃE,
−→
T (z1, . . . ,zn). It holds

z(x) = inf
x′∈R

−→
T (E(x,x′)|A(z1(x′), . . . ,zn(x′))) =

= inf
t∈R

−→
T (φ(|t|)|A(z1(x+ t), . . . ,zn(x+ t))) for x ∈ R.

It holds, that z(+∞) = 0 and z(−∞) = 1:

z(+∞) = inf
x′∈R

−→
T (E(+∞,x′)|A(z1(x′), . . . ,zn(x′)))≤

≤−→T (E(+∞,+∞)|A(z1(+∞), . . . ,zn(+∞))) = A(0, . . . ,0) = 0;

z(−∞) = inf
x′∈R

−→
T (E(−∞,x′)|A(z1(x′), . . . ,zn(x′))) = 1,

because

a) x′ 6=−∞ =⇒−→T (E(−∞,x′)|A(z1(x′), . . . ,zn(x′))) =
−→
T (0|A(z1(x′), . . . ,zn(x′))) = 1,

b) x′ =−∞ =⇒−→T (E(−∞,−∞)|A(z1(−∞), . . . ,zn(−∞))) =
−→
T (1|A(1, . . . ,1)) = 1.

(N1): If x1 ≤ x2, then

z(x1) = inf
t∈R

−→
T (φ(|t|)|A(z1(x1 + t), . . . ,zn(x1 + t)))≥

≥ inf
t∈R

−→
T (φ(|t|)|A(z1(x2 + t), . . . ,zn(x2 + t))) = z(x2)

(N2): It is easy to see that

inf
x∈R

z(x) = inf
x∈R

inf
t∈R

−→
T (φ(|t|)|A(z1(x+ t), . . . ,zn(x+ t)))≤
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≤ inf
x∈R

−→
T (1|A(z1(x), . . . ,zn(x))) = inf

x∈R
A(z1(x), . . . ,zn(x)) = 0.

Taking into account that for all x ∈ R it holds

z(x) = inf
|t|≤h

−→
T (φ(|t|)|A(z1(x+ t), . . . ,zn(x+ t)))≥

≥−→T (1|A(z1(x+h), . . . ,zn(x+h))) = A(z1(x+h), . . . ,zn(x+h)),

we obtain

sup
x∈R

z(x)≥ sup
x∈R

A(z1(x+h), . . . ,zn(x+h)) = 1.

(N3):

inf
x<x0

z(x) = inf
x<x0

inf
t∈R

−→
T (φ(|t|)|A(z1(x+ t), . . . ,zn(x+ t))) =

= inf
t∈R

inf
x<x0

−→
T (φ(|t|)|A(z1(x+ t), . . . ,zn(x+ t))) =

= inf
t∈R

−→
T (φ(|t|)|A(z1(x0 + t), . . . ,zn(x0 + t))) = z(x0).

4.3 Upper and lower general aggregation operators

based on a t-norm extension and acting on fuzzy real

numbers

In this subsection we consider the case when inputs of operators ÃT
E,T and ÃT

E,
−→
T

are

fuzzy real numbers. We check whether these operators give us as the result a fuzzy

real number as well. Here we take a continuous ordinary aggregation operator A, which

acts on the extended real line, i.e. A : Rn→ R. We analyse the results of the following

aggregations:

ÃT
E,T (z1, . . . ,zn)(x) = sup

x′=A(x1,...,xn)

T (E(x,x′),T (z1(x1), . . . ,zn(xn))), (4.6)

ÃT
E,
−→
T
(z1, . . . ,zn)(x) = inf

x′=A(x1,...,xn)

−→
T (E(x,x′)|T (z1(x1), . . . ,zn(xn))), (4.7)

where x,x′,x1, . . . ,xn ∈ R and z1, . . . ,zn ∈ R([0,1]).
First, we will show that operator ÃT

E,T preserves properties of inputs in the form of

fuzzy real numbers.
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Theorem 4.3.1. Let A : Rn → R be a continuous aggregation operator such that

A(Rn) = R, T be a continuous t-norm, and E be the T -fuzzy equivalence relation de-

fined on R by a continuous function φ (see formula (4.2)) according to (4.3). Then

ÃT
E,T (z1, . . . ,zn) ∈ R([0,1]) (see formula (4.6)) for all z1, . . . ,zn ∈ R([0,1]).

Proof. Let us denote z = ÃT
E,T (z1, . . . ,zn). Taking into account the assumptions regard-

ing fuzzy equivalence relation E provided in subsection 4.2, we obtain that

z(x) = sup
x+t=A(x1,...,xn)

T (φ(|t|),T (z1(x1), . . . ,zn(xn))) for x ∈ R.

It holds, that z(−∞) = 1 and z(+∞) = 0:

z(−∞) = sup
x′=A(x1,...,xn)

T (E(−∞,x′),T (z1(x1), . . . ,zn(xn)))≥

≥ T (E(−∞,−∞),T (z1(−∞), . . . ,zn(−∞))) = T (1,T (1, . . . ,1)) = 1;

z(+∞) = sup
x′=A(x1,...,xn)

T (E(+∞,x′),T (z1(x1), . . . ,zn(xn))) = 0,

because

a) x′ 6=+∞ =⇒ T (E(+∞,x′),T (z1(x1), . . . ,zn(xn))) = T (0,T (z1(x1), . . . ,zn(xn))) = 0,

b) if x′ = +∞ and A(x1, . . . ,xn) = x′, then there exists i ∈ {1, . . . ,n} such that xi = +∞,

and we obtain

T (E(+∞,+∞),T (z1(x1), . . . ,zi−1(xi−1),z(+∞),zi+1(xi+1), . . . ,zn(xn))) =

= T (1,T (z1(x1), . . . ,zi−1(xi−1),0,zi+1(xi+1), . . . ,zn(xn)))) = 0.

(N1): We need to prove that for x,y ∈ R, such that x≤ y, it holds

sup
x+t=A(x1,...,xn)

T (φ(|t|),T (z1(x1), . . . ,zn(xn)))≥

≥ sup
y+t=A(y1,...,yn)

T (φ(|t|),T (z1(y1), . . . ,zn(yn))).

The proof is based on the fact that for all t ∈ R and y1, . . . ,yn ∈ R such that y+ t =

A(y1, . . . ,yn) by the continuity and boundary conditions of A we could find such values

x1, . . . ,xn ∈ R, that x1 ≤ y1, . . . ,xn ≤ yn and A(x1, . . . ,xn) = x+ t. Then

T (φ(|t|),T (z1(x1), . . . ,zn(xn)))≥ T (φ(|t|),T (z1(y1), . . . ,zn(yn))).

By this the inequality is proved.
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(N2): In order to show that inf
x∈R

z(x) = 0 and sup
x∈R

z(x) = 1 we use the fact that

ÃT (z1, . . . ,zn) ∈ R([0,1]) (see Theorem 4.1.1). Let us denote η = ÃT (z1, . . . ,zn).

For all x ∈ R it holds

z(x) = sup
x+t=A(x1,...,xn)

T (φ(|t|),T (z1(x1), . . . ,zn(xn)))≤

≤ sup
x+t=A(x1,...,xn), |t|≤h

T (z1(x1), . . . ,zn(xn)) =

= sup
x−h≤y≤x+h

sup
y=A(x1,...,xn)

T (z1(x1), . . . ,zn(xn)) = sup
x−h≤y≤x+h

η(y) = η(x−h).

Thus inf
x∈R

z(x)≤ inf
x∈R

η(x−h) = 0.

Now, taking into account that ÃT ≤ ÃT
E,T , we obtain

sup
x∈R

z(x) = sup
x∈R

ÃT
E,T (z1, . . . ,zn)(x)≥ sup

x∈R
ÃT (z1, . . . ,zn)(x) = sup

x∈R
η(x) = 1.

(N3): Let us consider z(x0−0) = inf
x<x0

z(x) for x0 ∈R. If z(x0−0) = 0, then the equality

z(x0− 0) = z(x0) is obvious. Let us consider the case, when z(x0− 0) > 0. We will

show, that for all δ > 0 it is true that z(x0) ≥ z(x0− 0)− δ. Thus we will show, that

z(x0−0) = z(x0). It is enough to consider δ < z(x0−0).

Let us take xm = x0− 1
m , m ∈ N. Since

z(xm) = sup
xm+τ=A(t1,...,tn)

T (φ(|τ|),T (z1(t1), . . . ,zn(tn))),

there exist such τm ∈ [−h,h] and tm = (tm
1 , . . . , t

m
n ) ∈R

n that xm+τm = A(tm
1 , . . . , t

m
n ) and

T (φ(|τm|),T (z1(tm
1 ), . . . ,zn(tm

n )))> z(xm)−δ≥ z(x0−0)−δ.

One could find such subsequences (τmk)k∈N and (tmk)k∈N that there exist lim
k→∞

τi
mk
∈R

and lim
k→∞

tmk
i ∈ R for all i = 1, ...,n. Let us denote τ0 = lim

k→∞
τmk and t0

i = lim
k→∞

tmk
i , i =

1, ...,n. Let us define new sequences (τk
i )k∈N:

τ
k
i = min{tmk

i , t0
i }, k ∈ N, i = 1, ...,n.

Then τk
i ≤ tmk

i for all k ∈ N, and lim
k→∞

τk
i = t0

i , i = 1, ...,n. Therefore

T (φ(|τmk |),T (z1(τ
k
1), . . . ,zn(τ

k
n)))≥

≥ T (φ(|τmk |),T (z1(t
mk
1 ), . . . ,zn(tmk

n )))≥ z(x0−0)−δ.
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Taking into account that x0 + τ0 = A(t0
1 , . . . , t

0
n), we obtain

z(x0)≥ T (φ(|τ0|),T (z1(t0
1), . . . ,zn(t0

n))) =

= lim
k→∞

T (φ(|τmk |),T (z1(τ
k
1), . . . ,zn(τ

k
n)))≥ z(x0−0)−δ.

For the result z = ÃT
E,
−→
T
(z1, . . . ,zn) (see formula (4.7)) the properties of fuzzy real

numbers could be proved analogously to the previous case, except the boundary condi-

tion sup
x∈R

z(x) = 1. In order to this property be fulfilled, ordinary aggregation operator A

should satisfy some additional strong conditions, which are not necessary hold in gen-

eral. For example, the following condition is sufficient:

if A(x1, . . . ,xn)→−∞, then max{x1, . . . ,xn}→−∞. (4.8)

Theorem 4.3.2. Let A : Rn→ R be a continuous aggregation operator such that (4.8)

is true and A(Rn) = R, T be a continuous t-norm, and E be the T -fuzzy equivalence

relation defined on R by a continuous function φ (see (4.2)) according to (4.3). Then

ÃT
E,
−→
T
(z1, . . . ,zn) ∈ R([0,1]) (see formula (4.7)) for all z1, . . . ,zn ∈ R([0,1]).

Proof. Let us denote z = ÃT
E,
−→
T
(z1, . . . ,zn). Taking into account the assumptions regard-

ing fuzzy equivalence relation E provided in subsection 4.2, we obtain that

z(x) = inf
x+t=A(x1,...,xn)

−→
T (φ(|t|)|T (z1(x1), . . . ,zn(xn))) for x ∈ R.

It holds, that z(+∞) = 0 and z(−∞) = 1:

z(+∞) = inf
x′=A(x1,...,xn)

−→
T (E(+∞,x′)|T (z1(x1), . . . ,zn(xn)))≤

≤−→T (1|T (z1(+∞), . . . ,zn(+∞))) =
−→
T (1|T (0, . . . ,0)) = 0;

z(−∞) = inf
x′=A(x1,...,xn)

−→
T (E(−∞,x′)|T (z1(x1), . . . ,zn(xn))) = 1,

because

a) x′ 6=−∞ =⇒−→T (E(−∞,x′)|T (z1(x1), . . . ,zn(xn))) =
−→
T (0|T (z1(x1), . . . ,zn(xn))) = 1,

b) if x′ =−∞ and A(x1, . . . ,xn) = x′, then

−→
T (E(−∞,x′)|T (z1(x1), . . . ,zn(xn))) =

−→
T (1|T (1, . . . ,1) = 1.
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(N1): We need to prove that for x,y ∈ R, such that x≤ y, it holds

inf
x+t=A(x1,...,xn)

−→
T (φ(|t|)|T (z1(x1), . . . ,zn(xn)))≥

≥ inf
y+t=A(y1,...,yn)

−→
T (φ(|t|)|T (z1(y1), . . . ,zn(yn))).

The proof is based on the fact that for all t ∈ R and x1, . . . ,xn ∈ R such that x+ t =

A(x1, . . . ,xn) by the continuity and boundary conditions of A we could find such values

y1, . . . ,yn ∈ R, that x1 ≤ y1, . . . ,xn ≤ yn and A(y1, . . . ,yn) = y+ t. Then

−→
T (φ(|t|)|T (z1(x1), . . . ,zn(xn)))≥

−→
T (φ(|t|)|T (z1(y1), . . . ,zn(yn))).

By this the inequality is proved.

(N2): In order to show that inf
x∈R

z(x) = 0 and sup
x∈R

z(x) = 1 we use the fact that

ÃT (z1, . . . ,zn) ∈R([0,1]) (see Theorem 4.1.1). Let us denote η = ÃT (z1, . . . ,zn). Taking

into account, that ÃT
E,
−→
T
≤ ÃT , we obtain

inf
x∈R

z(x) = inf
x∈R

ÃT
E,
−→
T
(z1, . . . ,zn)(x)≤ inf

x∈R
ÃT (z1, . . . ,zn)(x) = inf

x∈R
η(x) = 0.

For all x ∈ R it holds

z(x) = inf
x+t=A(x1,...,xn)

−→
T (φ(|t|)|T (z1(x1), . . . ,zn(xn)))≥

≥ inf
x+t=A(x1,...,xn), |t|≤h

T (z1(x1), . . . ,zn(xn))≥ inf
A(x1,...,xn)≤x+h

T (z1(x1), . . . ,zn(xn)).

Taking into account, that sup
x∈R

z(x) = lim
x→−∞

z(x), we obtain

A(x1, . . . ,xn)≤ x+h and x→−∞ =⇒ A(x1, . . . ,xn)→−∞ =⇒

=⇒max{x1, . . . ,xn}→−∞ =⇒ zi(xi)→ 1 for all i = 1, . . . ,n =⇒

=⇒ T (z1(x1), . . . ,zn(xn))→ 1.

And finally, we have sup
x∈R

z(x) = 1.

(N3): Let us consider z(x0− 0) = inf
x<x0

z(x) for x0 ∈ R. We will show, that z(x0− 0) =

z(x0), where

z(x0) = inf
x0+t=A(x1,...,xn)

−→
T (φ(|t|)|T (z1(x1), . . . ,zn(xn))).

We will prove that for arbitrary t0 ∈R and x0
1, . . . ,x

0
n ∈R such that x0+t0 = A(x0

1, . . . ,x
0
n)

it holds

z(x0−0)≤−→T (φ(|t0|)|T (z1(x0
1), . . . ,zn(x0

n))).
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By this the equality z(x0−0) = z(x0) will be proved.

If t0 < 0, then we take x̃ = x0 + t0, t̃ = 0 and obtain

z(x0−0) = inf
x<x0

inf
x+t=A(x1,...,xn)

−→
T (φ(|t|)|T (z1(x1), . . . ,zn(xn)))≤

≤−→T (φ(|t̃|)|T (z1(x0
1), . . . ,zn(x0

n)))≤
−→
T (φ(|t0|)|T (z1(x0

1), . . . ,zn(x0
n))).

If t0 ≥ 0, then we consider two sequences: x̃m = x0− 1
m and t̃m = t0 + 1

m , m ∈ N. We

obtain

z(x0−0)≤ inf
m∈N

−→
T (φ(|t̃m|)|T (z1(x0

1), . . . ,zn(x0
n))) =

−→
T (φ(|t0|)|T (z1(x0

1), . . . ,zn(x0
n))).
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Chapter 5

Approximate systems induced by upper
and lower general aggregation
operators

In Chapter 3 we described upper and lower general aggregation operators which provide

upper and lower approximations of the pointwise extension of an ordinary aggregation

operator. The presence of two approximate operators led us to the idea of constructing

an approximate system induced by these operators. The construction of such system

allows us to generalize the concept of approximation of general aggregation operators

and to perform research in connection with other theories like rough sets, fuzzy rough

sets and other. The results presented in this chapter could be found in [48].

5.1 M-approximate systems

The concept of an M-approximate system was first introduced by A. Shostak in [34] and

further studied in [11, 17, 35]. This concept provides an alternative view on the relations

between fuzzy sets, fuzzy topological systems, rough sets, and fuzzy rough sets. This

tool gives a framework allowing to generalize these theories.

In the context of M-approximate systems two lattices play the fundamental role. The

first one is an infinitely distributive complete lattice L = (L,≤,∧,∨). The bottom and

the top elements of L are denoted by 0L and 1L, respectively. The second lattice is

denoted by M and is assumed to be complete. The bottom and the top elements of M
are denoted by 0M and 1M, respectively.

76



Construction of •-approximate system using upper and lower general aggregation
operators

Definition 5.1.1. An upper M-approximate operator on L is defined as a mapping

u : L×M→ L such that

(1u) u(0L,α) = 0L for all α ∈M;

(2u) a≤ u(a,α) for all a ∈ L and for all α ∈M;

(3u) u(a∨b,α) = u(a,α)∨u(b,α ) for all a,b ∈ L and for all α ∈M;

(4u) u(u(a,α),α) = u(a,α) for all a ∈ L and for all α ∈M;

(5u) α≤ β, α,β ∈M=⇒ u(a,α)≤ u(a,β) for all a ∈ L;

(6u) if 0M 6= 1M, then u(a,0M) = a for all a ∈ L.

Definition 5.1.2. A lower M-approximate operator on L is a mapping l : L×M→ L
such that

(1l) l(1L,α) = 1L for all α ∈M;

(2l) a≥ l(a,α) for all a ∈ L and for all α ∈M;

(3l) l(a∧b,α) = l(a,α)∧ l(b,α) for all a,b ∈ L and for all α ∈M;

(4l) l(l(a,α),α) = l(a,α) for all a ∈ L and for all α ∈M;

(5l) α≤ β, α,β ∈M=⇒ l(a,α)≥ l(a,β) for all a ∈ L;

(6l) if 0M 6= 1M, then l(a,0M) = a for all a ∈ L.

Definition 5.1.3. A triple (L,u, l), where u : L×M→ L and l : L×M→ L are upper

and lower M-approximate operators on L, is called an M-approximate system.

5.2 Construction of •-approximate system using upper

and lower general aggregation operators

There are several works where some particular constructions of M-approximate systems

are presented (see, e.g., [17, 35]). In some constructions the one-point lattice M denoted

by • is used (in this case 0M = 1M) (see, e.g., [35]). We consider the construction of

approximate system in the case of one-point lattice M.

Let us have a given set X . We take lattice L as the lattice of all general aggregation

operators:

L= {Ã :
⋃
n
([0,1]X)n→ [0,1]X | Ã is a general aggregation operator}. (5.1)

The inequality ≤L on L is defined as follows: for all µ1, . . . ,µn ∈ [0,1]X

Ã1(µ1, . . . ,µn)≤L Ã2(µ1, . . . ,µn)⇐⇒
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⇐⇒ Ã1(µ1, . . . ,µn)(x)≤ Ã2(µ1, . . . ,µn)(x), x ∈ X .

For the supremum Ã1∨L Ã2 and infimum Ã1∧L Ã2 of two elements Ã1, Ã2 ∈ L we have

the following formulae for all µ1, . . . ,µn ∈ [0,1]X and x ∈ X :

(Ã1∨L Ã2)(µ1, . . . ,µn)(x) = Ã1(µ1, . . . ,µn)(x)∨ Ã2(µ1, . . . ,µn)(x),

(Ã1∧L Ã2)(µ1, . . . ,µn)(x) = Ã1(µ1, . . . ,µn)(x)∧ Ã2(µ1, . . . ,µn)(x).

The top and the bottom elements 1L and 0L respectively are

1L(µ1, . . . ,µn) =

1̃, ∃i ∈ {1, . . . ,n} µi 6= 0̃,

0̃, µ1 = . . .= µn = 0̃,

and

0L(µ1, . . . ,µn) =

0̃, ∃i ∈ {1, . . . ,n} µi 6= 1̃,

1̃, µ1 = . . .= µn = 1̃.

It is easy to see, that L is infinitely distributive lattice.

Let us have a left-continuous t-norm T , the corresponding residuum
−→
T , and a T -

fuzzy equivalence relation E. We define operators u : L→ L and l : L→ L as follows:

(u(Ã))(µ1, . . . ,µn)(x) = sup
x′∈X

T (E(x,x′), Ã(µ1, . . . ,µn)(x′)), (5.2)

(l(Ã))(µ1, . . . ,µn)(x) = inf
x′∈X

−→
T (E(x,x′)|Ã(µ1, . . . ,µn)(x′)). (5.3)

Theorem 5.2.1. Let L be a lattice defined by (5.1), M be a one-point lattice, u : L→ L
and l : L→ L be operators defined by (5.2) and (5.3) respectively. Then (L,u, l) is a

•-approximate system.

Proof. We should show that properties (1u)− (4u) and (1l)− (4l) hold:

(1u) We show that (u(0L))(µ1, . . . ,µn) = 0L(µ1, . . . ,µn) for all µ1, . . . ,µn ∈ [0,1]X . If

there exists i ∈ {1, . . . ,n} such that µi 6= 1̃, then for all x ∈ X it holds

(u(0L))(µ1, . . . ,µn)(x) = sup
x′∈X

T (E(x,x′), 0̃(x′)) = 0̃(x).

If µi = 1̃ for all i ∈ {1, . . . ,n}, then for all x ∈ X it holds

(u(0L))(µ1, . . . ,µn)(x) = sup
x′∈X

T (E(x,x′), 1̃(x′)) = 1̃(x).
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(2u) We prove that Ã ≤ u(Ã) for all Ã ∈ L. For all µ1, . . . ,µn ∈ [0,1]X and for all x ∈ X

we have

(u(Ã))(µ1, . . . ,µn)(x) = sup
x′∈X

T (E(x,x′), Ã(µ1, . . . ,µn)(x′))≥

≥ T (E(x,x), Ã(µ1, . . . ,µn)(x)) = Ã(µ1, . . . ,µn)(x).

(3u) We show that u(Ã1∨L Ã2) = u(Ã1)∨L u(Ã2) for all Ã1, Ã2 ∈ L. For all x ∈ X and

for all µ1, . . . ,µn ∈ [0,1]X it holds

(u(Ã1∨L Ã2))(µ1, . . . ,µn)(x) = sup
x′∈X

T (E(x,x′),(Ã1∨L Ã2)(µ1, . . . ,µn)(x′)) =

= sup
x′∈X

[T (E(x,x′), Ã1(µ1, . . . ,µn)(x′))∨T (E(x,x′), Ã2(µ1, . . . ,µn)(x′))] =

= sup
x′∈X

T (E(x,x′), Ã1(µ1, . . . ,µn)(x′))∨ sup
x′∈X

T (E(x,x′), Ã2(µ1, . . . ,µn)(x′)) =

= (u(Ã1))(µ1, . . . ,µn)(x)∨ (u(Ã2))(µ1, . . . ,µn)(x).

(4u) It is necessary to show that u(u(Ã)) = u(Ã) for all Ã ∈ L. In order to prove this

property, we will show that inequalities u(u(Ã)) ≤ u(Ã) and u(u(Ã)) ≥ u(Ã) hold. The

second inequality holds by property (2u). Let us prove that for all µ1, . . . ,µn ∈ [0,1]X

and for all x ∈ X

(u(u(Ã)))(µ1, . . . ,µn)(x)≤ (u(Ã))(µ1, . . . ,µn)(x).

Taking into account, that the result of applying u is an extensional fuzzy sets, we obtain

(u(u(Ã)))(µ1, . . . ,µn)(x) =

= sup
x′∈X

T (E(x,x′),(u(Ã))(µ1, . . . ,µn)(x′))≤ (u(Ã))(µ1, . . . ,µn)(x)

for all µ1, . . . ,µn ∈ [0,1]X and for all x ∈ X .

(1l) We show that (l(1L))(µ1, . . . ,µn) = 1L(µ1, . . . ,µn) for all µ1, . . . ,µn ∈ [0,1]X . If there

exists i ∈ {1, . . . ,n} such that µi 6= 0̃, then for all x ∈ X it holds

(l(1L))(µ1, . . . ,µn)(x) = inf
x′∈X

−→
T (E(x,x′)|1̃(x′)) = 1̃(x).

If µi = 0̃ for all i ∈ {1, . . . ,n}, then for all x ∈ X it holds

(u(1L))(µ1, . . . ,µn)(x) = inf
x′∈X

−→
T (E(x,x′)|0̃(x′)) = 0̃(x).
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(2l) We show that Ã ≥ l(Ã) for all Ã ∈ L. For all µ1, . . . ,µn ∈ [0,1]X and for all x ∈ X

we have

(l(Ã))(µ1, . . . ,µn)(x) = inf
x′∈X

−→
T (E(x,x′)|Ã(µ1, . . . ,µn)(x′))≤

≤−→T (E(x,x)|Ã(µ1, . . . ,µn)(x)) = Ã(µ1, . . . ,µn)(x).

(3l) We prove that l(Ã1∧ Ã2) = l(A1)∧ l(Ã2) for all Ã1, Ã2 ∈ L. For all x ∈ X and for all

µ1, . . . ,µn ∈ [0,1]X it holds

(l(Ã1∧L Ã2))(µ1, . . . ,µn)(x) = inf
x′∈X

−→
T (E(x,x′)|(Ã1∧L Ã2)(µ1, . . . ,µn)(x′)) =

= inf
x′∈X

[
−→
T (E(x,x′)|Ã1(µ1, . . . ,µn)(x′))∧

−→
T (E(x,x′)|Ã2(µ1, . . . ,µn)(x′))] =

= inf
x′∈X

−→
T (E(x,x′)|Ã1(µ1, . . . ,µn)(x′))∧ inf

x′∈X

−→
T (E(x,x′)|Ã2(µ1, . . . ,µn)(x′)) =

= (l(Ã1))(µ1, . . . ,µn)(x)∧ (l(Ã2))(µ1, . . . ,µn)(x).

(4l) We show that l(l(Ã)) = l(Ã) for all Ã ∈ L. In order to prove this property, we will

show that inequalities l(l(Ã))≤ l(Ã) and l(l(Ã))≥ l(Ã) hold. The first inequality holds

by property (2l). Let us prove that for all µ1, . . . ,µn ∈ [0,1]X and for all x ∈ X

(l(l(Ã)))(µ1, . . . ,µn)(x)≥ (l(Ã))(µ1, . . . ,µn)(x).

By the definitions we have

(l(l(Ã)))(µ1, . . . ,µn)(x) = inf
x′∈X

−→
T (E(x,x′)|(l(Ã))(µ1, . . . ,µn)(x′)) and

−→
T (E(x,x′)|(l(Ã))(µ1, . . . ,µn)(x′)) =

= sup{α ∈ [0,1] | T (α,E(x,x′))≤ (l(Ã))(µ1, . . . ,µn)(x′)}.

Taking α = (l(Ã))(µ1, . . . ,µn)(x), we obtain

T ((l(Ã))(µ1, . . . ,µn)(x),E(x,x′))≤ (l(Ã))(µ1, . . . ,µn)(x′)},

which holds for all x,x′ ∈ X by the fact, that (l(Ã))(µ1, . . . ,µn) is an extensional fuzzy

set with respect to E. It means that for all x,x′ ∈ X

−→
T (E(x,x′)|(l(Ã))(µ1, . . . ,µn)(x′))≥ (l(Ã))(µ1, . . . ,µn)(x)

and thus

inf
x′∈X

−→
T (E(x,x′)|(l(Ã))(µ1, . . . ,µn)(x′))≥ (l(Ã))(µ1, . . . ,µn)(x).
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5.3 Construction of M-approximate system using upper

and lower general aggregation operators

Let us have a given set X and a left-continuous t-norm T . In order to construct this exam-

ple of M-approximate system, we take lattice M as the lattice of all T -fuzzy equivalence

relations:

M= {E : X×X → [0,1] | E is a T-fuzzy equivalence relation}. (5.4)

We consider the inequality ≤M on M defined as follows:

E1 ≤M E2⇐⇒ E1(x,y)≤ E2(x,y) for all x,y ∈ X .

For the supremum Ẽ1∨ME2 and infimum E1∧ME2 of two elements E1,E2 ∈M we have

the following formulae for all x,y ∈ X :

(E1∨ME2)(x,y)=
∧
{E(x,y) |E is a T-fuzzy equiv. rel. such that E ≥M E1 & E ≥M E2},

(E1∧M E2)(x,y) = E1(x,y)∧E2(x,y).

The top and the bottom elements 1M and 0M respectively are

1M(x,y) = 1 and

0M(x,y) =

0, x 6= y,

1, x = y,

for all x,y ∈ X . It is easy to see, that M is complete lattice.

Approximation operators u : L×M→ L and l : L×M→ L in this case are defined as

follows:

(u(Ã,E))(µ1, . . . ,µn)(x) = sup
x′∈X

T (E(x,x′), Ã(µ1, . . . ,µn)(x′)), (5.5)

(l(Ã,E))(µ1, . . . ,µn)(x) = inf
x′∈X

−→
T (E(x,x′)|Ã(µ1, . . . ,µn)(x′)). (5.6)

Theorem 5.3.1. Let L be a lattice defined by (5.1), M be a lattice defined by (5.4),

u : L×M→ L and l : L×M→ L be operators defined by (5.5) and (5.6) respectively.

Then (L,u, l) is an M-approximate system.
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Proof. One could prove properties (1u)− (4u) and (1l)− (4l) analogously to the Theo-

rem 5.2.1. Now we will show that properties (5u)− (6u) and (5l)− (6l) hold.

(5u) We prove that for all E1,E2 ∈M

E1 ≤ E2 =⇒ u(Ã,E1)≤ u(Ã,E2) for all Ã ∈ L.

The following holds for all µ1, . . . ,µn ∈ [0,1]X and for all x ∈ X :

E1(x,x′)≤ E2(x,x′), x′ ∈ X =⇒

=⇒ sup
x′∈X

T (E1(x,x′), Ã(µ1, . . . ,µn)(x′))≤ sup
x′∈X

T (E2(x,x′), Ã(µ1, . . . ,µn)(x′)) =⇒

=⇒ (u(Ã,E1))(µ1, . . . ,µn)(x)≤ (u(Ã,E2))(µ1, . . . ,µn)(x).

(6u) Now we show, that u(Ã,0M) = Ã for all Ã ∈ L. For all µ1, . . . ,µn ∈ [0,1]X and for

all x ∈ X it holds:

(u(Ã,0M))(µ1, . . . ,µn)(x) = sup
x′∈X

T (0M(x,x′), Ã(µ1, . . . ,µn)(x′)) = Ã(µ1, . . . ,µn)(x).

(5l) We show that for all E1,E2 ∈M

E1 ≤ E2 =⇒ l(Ã,E1)≥ l(Ã,E2) for all Ã ∈ L.

The following holds for all µ1, . . . ,µn ∈ [0,1]X and for all x ∈ X :

E1(x,x′)≤ E2(x,x′), x′ ∈ X =⇒

=⇒ inf
x′∈X

−→
T (E1(x,x′)|Ã(µ1, . . . ,µn)(x′))≥ inf

x′∈X

−→
T (E2(x,x′)|Ã(µ1, . . . ,µn)(x′)) =⇒

=⇒ (l(Ã,E1))(µ1, . . . ,µn)(x)≥ (l(Ã,E2))(µ1, . . . ,µn)(x).

(6l) And finally, we prove that l(Ã,0M) = Ã for all Ã ∈ L. For all µ1, . . . ,µn ∈ [0,1]X

and for all x ∈ X it holds:

(l(Ã,0M))(µ1, . . . ,µn)(x) = inf
x′∈X

−→
T (0M(x,x′)|Ã(µ1, . . . ,µn)(x′)) = Ã(µ1, . . . ,µn)(x).

In this section we described approximate systems using upper and lower general ag-

gregation operators. A different construction of approximate systems for aggregation

operators could be obtained, when we specify properties of general aggregation opera-

tors and thus describe another lattice L.
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Conclusions

The research presented in the thesis shows, that suggested constructions of general ag-

gregation operators are consistent within the theory of aggregation functions. In our

work we have obtained the following results:

• an aggregation operator acting on fuzzy sets, which takes into account an equiva-

lence relation between these fuzzy sets, has been constructed and has been applied

for analysis of solving parameters, in order to choose optimal solution of bilevel

linear programming problems;

• a construction of general aggregation operators based on a fuzzy equivalence re-

lation has been described and the properties of these operators have been investi-

gated;

• the case when inputs of the general aggregation operators are in the form of fuzzy

real numbers has been studied;

• an approximate system based on upper and lower general aggregation operators

has been constructed.

I believe that the overall goal of the thesis has been achieved. This research is rele-

vant since it deals with aggregation of fuzzy structures, which arises in different research

areas. Some of the possible applications have been provided in the thesis. The proposed

constructions could potentially contribute to theoretical investigations in the areas of

aggregation functions and fuzzy mathematics. The research presented in the theses is

considered as completed work, however, it could be continued in several directions. For

example, one could consider the case, when instead of the ordinary fuzzy sets L-sets are

used, where L is an arbitrary lattice. Also, different relations between the objects, other

than equivalence relation, could be involved in the proposed constructions.
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