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Abstract

In this thesis we investigate several unconventional models of
finite automata and algorithms.

We start with more conventional types of automata and prove
differentiation results for the descriptional complexity classes of two-
way probabilistic and alternating finite automata.

Then we introduce ultrametric finite automata which use p-adic
numbers as amplitudes describing the branching process of the com-
putation. We show that they can be more succinct than determinis-
tic automata and show that adding an extra head to an ultrametric
automaton increases its computing power. We also examine the size
complexity of all the above-mentioned automata for the counting
problem.

Finally, we examine two-way frequency finite automata and show
their relationship with automata with linearly-bounded counters.

In the second part we study the properties of the computations
when the requirements for the algorithms are changed in two differ-
ent ways.

First, we investigate the query complexity of functions if the
algorithms are allowed to make branchings into multiple computa-
tional paths with p-adic amplitudes, therefore obtaining so-called
ultrametric query algorithms.

Secondly, we generalize the notion of frequency computation by
requiring some structure for the correct outputs.
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Introduction

Relevance of the Thesis

Typically computer is viewed as a deterministic machine. However scientists
have also extensively studied other models of computation. Some of them are
based on nondeterminism and alternation, some of them are intended to be
physically realizable or are inspired by natural processes. Such examples in-
clude randomized and quantum computing, cellular automata, DNA computing
and neural networks. However others are just a mathematically elegant formal
systems that describe a process which can be viewed as a computation (lambda
calculus, Markov algorithms, Wang tiles, etc.).

There is no globally accepted definition of what type of computation should
be considered unconventional. For example the notion of nondeterminism is
so widely used in computer science that practically nobody would consider it
unconventional. However, as noted by Arora and Barak in their textbook “Com-
putational Complexity: A Modern Approach”: “One should note that, unlike
standard Turing machines, nondeterministic Turing machines are not intended
to model any physically realizable computation device.” [2, p. 42] Nevertheless,
despite its physical nonrealizability the nondeterministic Turing machine is un-
doubtedly a very useful concept and in fact one of central in computational
complexity theory. Therefore, we can see that the physical realizability of a
model of computation is not a determining indicator of conventionality.

Also it is not uncommon in mathematics that a new concept or result is
not readily applicable at the time of its discovery, but may find its use several
centuries later. As a classical example, it is highly unlikely that the ancient
Greek mathematicians when thinking about prime numbers could have imagined
their use in cryptography more than 2000 years later. Sometimes results in one
field have unexpected applications in other fields. For example, the methods of
quantum computing have in many occasions turned out useful to prove classical
results in fields that have nothing to do with quantum computing (see [15] for
a survey).

Therefore it is not impossible that unconventional models of computation,
however unimaginable as physical devices, can later turn out useful in unex-
pected ways.

Subject and Goals of the Research

Different degrees of unconventionality are possible. Unconventional computa-
tion can be mildly unconventional by simply considering a computation in a
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setting that is not usually (conventionally) considered, or it might be highly
unconventional by introducing some novel, almost unimaginable type of com-
putation.

The goal of the thesis was to examine different unconventional computational
models and prove new, previously unknown properties about them. A large part
of the thesis is devoted to unconventional finite automata. The thesis focuses
on three unconventional types of computation – probabilistic, ultrametric, and
frequency. We consider several models of computation with varying degrees of
unconventionality, namely:

• probabilistic and alternating two-way finite automata,

• ultrametric finite automata and query algorithms,

• frequency finite automata and structured frequency algorithms.

Arguably the most conventional computation type considered in this thesis
is the two-way finite automata. Traditionally finite automata have been consid-
ered in one-way setting and with focus on the languages that can be recognized.
Indeed, if one cares only about the class of languages recognizable by finite
automata then there is no need to consider nondeterministic or alternating au-
tomata or two-way versions of them because all of those models can recognize
exactly the same class of languages – the class of regular languages. However
the situation changes remarkably if we are interested in the state complexity of
the automata.

As noted by Kapoutsis, a rich and meaningful complexity theory arises when
one considers the size complexity of two-way finite automata. It is quite sim-
ilar to the Turing machine time and space complexity theory and contains all
the standard features of a complexity theory such as complexity classes, reduc-
tions, complete problems and even alternating hierarchy. Moreover, the con-
nection to Turing machine complexity theory is not just conceptual – some re-
sults about polynomial-size deterministic and nondeterministic automata would
directly translate to space-bounded Turing machine complexity theory, specif-

ically the L
?
= NL question. For an overview of this two-way finite automata

size complexity theory, see, for example, [31, 32, 40]. In this thesis we prove a
relationship between the two of the least conventional types of automata in this
theory, namely the alternating and probabilistic automata.

For every prime number p the p-adic numbers are a completion of the field
of rational numbers with respect to the p-adic metric, in the same way as real
numbers are a completion of rational numbers with respect to the usual met-
ric. A theorem by Ostrowski shows that every non-trivial absolute value on
the rational numbers is equivalent to either the usual real absolute value or
a p-adic absolute value. Therefore p-adic numbers can be considered as one
of two possible natural extensions of the field of rational numbers (the other
one being usual real numbers). p-adic numbers have been used in various ways
by theoretical physicists in attempts to understand the nature of fundamental
physics. However, the use of p-adic numbers in computational models is a rela-
tively new concept recently introduced by Freivalds. In ultrametric computation
p-adic numbers are used to describe the branching of a computation. In this
way the p-adic numbers have been used to define ultrametric automata, ultra-
metric Turing machines, ultrametric query algorithms, and ultrametric learning
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algorithms. The ultrametric computations, unlike deterministic, randomized or
even quantum computations, are not meant to be realizable as physical devices,
at least we are not aware of a practical way to implement them. Nevertheless,
they are equally interesting as an abstract computational model. In this thesis
we define ultrametric finite automata and consider various properties that arise
out of their definition. Additionally we introduce the model of ultrametric query
algorithms which is similar to probabilistic and quantum query algorithms. We
prove results about ultrametric query complexity of Boolean functions.

Frequency computation is a notion that was introduced in 1960 by G. Rose.
A frequency algorithm (m,n)-computes a function f if given any n distinct
inputs x1, . . . , xn it produces n outputs y1, . . . , yn for which at least m of the
equations yi = f(xi) hold, i.e., the algorithm is required to output the correct
answer on at least m of n different inputs. While for some this notion might
already seem rather unconventional by itself, we modify it in two different ways
therefore imparting an additional degree of unconventionality. The first way
involves finite automata. While frequency finite automata have already been
considered earlier, they have been considered only in the setting of one-way au-
tomaton which simultaneously reads a symbol from each of the input words. We
introduce two-way frequency finite automata – a model which has not been con-
sidered earlier in the literature. We show their relationship with finite automata
with linearly bounded counters and the complexity class LOGSPACE.

The other modification is changing the definition of frequency computation
by requiring some structure for the correct answers therefore obtaining the so-
called structured frequency computation. It is also a new model which has not
been considered previously. In this setting we examine which structures allow
the computing of recursive sets and which – nonrecursive. We also investigate
graph frequency computation where the size of the structures is limited to 2 so
they can be represented as the edges of a graph.

The Structure of the Thesis and Research Ques-
tions

The research questions, proposed hypotheses and proven theorems differ from
chapter to chapter, however most of them try to compare unconventional com-
putation models with other better known models.

The thesis contains six chapters divided into two parts. Each chapter is
devoted to one unconventional computation model. Part I considers finite au-
tomata.

In the first chapter we consider two-way probabilistic and alternating au-
tomata which are the most conventional computation type considered in this
thesis. In this chapter we do not define new computation models, but instead
work in a theoretical framework introduced by Sakoda and Sipser and further
developed by Kapoutsis, Královič and others. We shortly describe the complex-
ity theory of two-way automata and give definitions for two-way probabilistic
and alternating finite automata and the corresponding complexity classes. Then
we prove the main result of the chapter – show a language that can be recognized
with a linear-size one-way alternating automaton, but cannot be recognized with
any polynomial-size probabilistic two-way automaton. This is a previously un-
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known, novel result and it shows that the corresponding complexity classes 2P2

and 2A are not equal.
In the second chapter we consider ultrametric finite automata. We describe

the p-adic numbers and give definitions for ultrametric finite automata and in-
vestigate their properties. We show that with a regulated ultrametric automaton
only regular languages can be recognized and we give a bound on the number
of states for an equivalent deterministic automaton. We show that for some
languages ultrametric automata can be smaller than deterministic automata.
We also compare different definitions for ultrametric automata. In the second
part of the chapter we consider multi-head ultrametric automata. We show that
ultrametric one-way automata can recognize languages not recognizable by any
k-head nondeterministic automata. For two-way automata we prove that adding
an extra head to the automaton increases the class of recognizable languages.

In the third chapter we focus on counting with finite automata by examin-
ing how many states are needed for different models of automata to recognize
the language Cn = {1n}. At first we list known results about deterministic,
nondeterministic and alternating finite automata, and then proceed to prove
new results about probabilistic and ultrametric finite automata. We show an
optimal 3-state one-way probabilistic automaton. We show how to construct a
constant-sized two-way probabilistic automaton with the number of states not
depending on the required probability for the correct answer. We also show an
optimal 2-state ultrametric automaton.

In the fourth chapter we consider two-way frequency automata. We intro-
duce their definition and show that with frequency (m,n) it is possible to recog-
nize any language recognizable with a two-way automaton with n−m linearly
bounded counters. We also show that any language from the class LOGSPACE
can be recognized by some frequency automaton.

Part II is devoted to unconventional algorithms. In the fifth chapter we
introduce a new type of algorithms – ultrametric query algorithms which use
p-adic numbers to describe the branching of an algorithm. We show results
about the ultrametric query complexity. We show that the exact ultrametric
query complexity is at most the polynomial degree of a Boolean function. For
several functions we show ultrametric query algorithms with complexity 1.

In the sixth chapter we introduce structured frequency computation. We
prove that with overlapping structures only recursive sets can be recognized
and show that the size of overlapping structures is at least

√
n. We also show

how to construct structures which nearly achieves this bound by using projective
planes. In the second part of the chapter we consider the special case of graph
structures and categorize which graphs allow only computation of recursive sets.

In conclusion we list some open problems and further research directions in
each of the considered topics.

Description of the Methodology

As usual in mathematical and theoretical computer science papers, the used
methods are mainly proofs of mathematical statements (theorems). Different
proof methods are used, ranging from simple to relatively sophisticated. Worth
mentioning is Theorem 6.20 whose proof is computer-assisted. An exhaustive
search was used to examine all 7-vertex rooted trees and all possible ways to
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distribute their non-root vertices into pairs.
We also introduce new computation models with precise mathematical def-

initions. In this way we define ultrametric finite automata, frequency finite
automata, ultrametric query algorithms, and structured frequency computa-
tion.

Approbation of the Results

The results of this thesis are published in 7 publications of which 4 are indexed
in Elsevier Scopus and 3 in Thomson Reuters Web of Science.

1. Kaspars Balodis, Jānis Iraids, Rūsiņš Freivalds.
Structured Frequency Algorithms.
Proceedings of TAMC 2015, Lecture Notes in Computer Science, vol. 9076,
pp. 1–12, 2015. (indexed in Scopus and Web of Science)
Approximate contribution of the author: 60-80%

2. Rihards Krǐslauks, Kaspars Balodis.
On the Hierarchy Classes of Finite Ultrametric Automata.
Proceedings of SOFSEM 2015: Theory and Practice of Computer Science,
Lecture Notes in Computer Science, vol. 8939, pp. 314–326, 2015. (in-
dexed in Scopus and Web of Science)
Approximate contribution of the author: 25-50%

3. Kaspars Balodis.
Counting with Probabilistic and Ultrametric Finite Automata.
Computing with New Resources: Essays Dedicated to Jozef Gruska on the
Occasion of His 80th Birthday, Lecture Notes in Computer Science, vol.
8808, pp. 1–14, 2014. (indexed in Scopus and Web of Science)
Approximate contribution of the author: 100%

4. Kārlis Jēriņš, Kaspars Balodis, Rihards Krǐslauks, Krist̄ıne C̄ıpola, Rūsiņš
Freivalds.
Ultrametric query algorithms.
Proceedings of SOFSEM 2014: Theory and Practice of Computer Science,
Volume II: Student Research Forum, pp. 21–29, ISBN 978-80-8152-085-3,
2014.
Approximate contribution of the author: 15-25%

5. Kaspars Balodis.
One Alternation Can Be More Powerful Than Randomization in Small
and Fast Two-Way Finite Automata.
Proceedings of FCT 2013, Lecture Notes in Computer Science, vol. 8070,
pp. 40–47, 2013. (indexed in Scopus)
Approximate contribution of the author: 100%

6. Kaspars Balodis, Anda Beriņa, Krist̄ıne C̄ıpola, Maksims Dimitrijevs,
Jānis Iraids, Kārlis Jēriņš, Vladimirs Kacs, Jānis Kalējs, Rihards Krǐs-
lauks, Kārlis Lukstiņš, Reinholds Raumanis, Natālija Somova, Irina
Ščeguļnaja, Anna Vanaga, Rūsiņš Freivalds.
On the State Complexity of Ultrametric Finite Automata.
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Proceedings of SOFSEM 2013: Theory and Practice of Computer Science,
Volume II: Student Research Forum, pp. 1–9, ISBN 978-80-87136-15-7,
2013.
Approximate contribution of the author: 40-50%

7. Kaspars Balodis, Anda Beriņa, Gleb Borovitsky, Rūsiņš Freivalds, Ginta
Garkāje, Vladimirs Kacs, Jānis Kalējs, Ilja Kucevalovs, Jānis Ročāns,
Madars Virza.
Probabilistic and Frequency Finite-State Transducers.
Proceedings of SOFSEM 2012: Theory and Practice of Computer Science,
Volume II: Student Research Forum, pp. 1–12, ISBN 978-80-87136-13-3,
2012.
Approximate contribution of the author: 40-50%

The author has presented the results of the thesis in the following confer-
ences:

1. SOFSEM 2015 (41st International Conference on Current Trends in The-
ory and Practice of Computer Science), Pec pod Sněžkou, Czech Republic,
2015.
Presentation: On the Hierarchy Classes of Finite Ultrametric Automata.

2. Joint Estonian-Latvian Theory Days, Ratnieki, Latvia, 2014.
Presentation: Structured Frequency Algorithms.

3. Latvijas Universitātes 72. konference, R̄ıga, Latvia, 2014.
Presentation: Par divvirzienu gal̄ıgiem automātiem.

4. SOFSEM 2014 (40th International Conference on Current Trends in The-
ory and Practice of Computer Science), Nový Smokovec, High Tatras,
Slovakia, 2014.
Poster presentation: Ultrametric query algorithms.

5. FCT 2013 (19th International Symposium on Fundamentals of Computa-
tion Theory), Liverpool, United Kingdom, 2013.
Presentation: One Alternation Can Be More Powerful Than Randomiza-
tion in Small and Fast Two-Way Finite Automata.

6. SOFSEM 2013 (39th International Conference on Current Trends in The-
ory and Practice of Computer Science), Špindler̊uv Mlýn, Czech Republic,
2013.
Poster presentations: On the State Complexity of Ultrametric Finite Au-
tomata and Ultrametric Turing Machines with Limited Reversal Complex-
ity.

7. Latvijas Universitātes 70. konference, R̄ıga, Latvia, 2012.
Presentation: Par gal̄ıgiem automātiem uz bezgal̄ıgas lentas.

8. SOFSEM 2012 (38th International Conference on Current Trends in The-
ory and Practice of Computer Science), Špindler̊uv Mlýn, Czech Republic,
2012.
Poster presentation: Probabilistic and Frequency Finite-State Transduc-
ers.
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Overview of Part I

This part of the thesis is devoted to finite automata. Starting with more con-
ventional types of automata, in Chapter 1 we work in a theoretical framework
of two-way finite automata complexity theory introduced by Sakoda and Sipser
and developed by Kapoutsis and others. We differentiate the complexity classes
of families of languages recognized by polynomial-size alternating and proba-
bilistic families of automata.

In Chapter 2 we introduce ultrametric finite automata and show that they
can be more concise than their classical counterparts. We also show a hierarchy
of languages recognized by multi-head ultrametric finite automata. In Chapter 3
the state complexity is compared for different types of automata for the counting
problem, i.e., the problem of recognizing the one-word unary language Ln =
{1n}. In Chapter 4 we introduce two-way frequency finite automata and prove
their relationship with automata with linearly-bounded counters.
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Chapter 1

Classical Automata

In this chapter we work in a theoretical framework of state complexity of two-
way finite automata introduced by Sakoda and Sipser and developed by Kapout-
sis. Two-way finite automata are considered with the focus on the increase of the
number of states for recognizing a language family L = (L1, L2, L3, . . . ). Special
interest is given to whether this increase can be bounded by a polynomial.

As the main result we show a family of languages which can be recognized
by a family of linear-size one-way alternating automata (making only 1 alter-
nation), but for every family of two-way bounded-error probabilistic automata
which work in a polynomial time the increase of the number of states is super-
polynomial.

The chapter is organized as follows. In Section 1.1 we give an introduction
and definitions. In Section 1.2 we introduce the aforementioned two-way finite
automata complexity theory. In Section 1.3 we present the main result. In
Section 1.4 we show some results in the opposite direction, and we end the
chapter by giving some short conclusions in Section 1.5.

1.1 Introduction and Definitions

Finite automata is a well-known model of computation and has many prac-
tical applications in computer science, including string processing algorithms,
programming languages, network protocols, and others.

On a theoretical level, finite automata represent a basic model of computer
with a finite memory.

We use more or less standard definitions for the finite automata [56]. We
give the definition of a more general two-way alternating finite automaton and
the nondeterministic and deterministic automata (and the one-way versions)
can be derived by adding restrictions to the transition function. Following [24]
we define it as follows:

Definition 1.1. A two-way alternating finite automaton (2AFA) is a tuple
M = (Q∃, Q∀,Σ, δ, q0, F ), where

Q∃ and Q∀ are finite sets of existential and universal states, respectively,
with Q∃ ∩Q∀ = ∅ and Q = Q∃ ∪Q∀,

Σ is the input alphabet,

18
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δ : Q×(Σ∪{`,a})→ 2Q×{L,N,R} is the transition function, where `,a /∈ Σ
are the left and right endmarkers, and L, N, R denote the head movement,

q0 ∈ Q is the starting state, and

F ⊆ Q is the set of accepting states (also called final states).

The input word w is presented to the automaton enclosed by the endmarkers
as ` w a. The machine starts in the state q0 with the input head positioned
on the first symbol of w. In each step M reads an input symbol, changes
its state, and moves the input head one position to the left, right, or keeps
it stationary, depending on whether δ returns L, R, or N , respectively. The
automaton is neither allowed to move the head to the left while reading `, nor
allowed to move the head to the right while reading a. The only exception is
a transition from a to an accepting state and moving the head to the right.
An individual computation path is considered as accepting if it falls off to the
right of the endmarker a in an accepting state. If a computation path reaches
a configuration from which δ admits no valid transition then it is considered
rejecting. Similarly computation paths that lead to infinite loop are considered
rejecting as well.

The global rules for accepting are defined as is usual for alternating devices:
if, at the given moment, the function δ admits to execute several transitions, the
machine (i) nondeterministically chooses one of them, if it is in an existential
state, but (ii) follows, in parallel, all possible computation paths, if the current
state is universal. By nondeterminism of (i), there may exist several different
computations for the same input. By (ii), the computation forks into parallel
processes. The input is accepted, if the nondeterministically chosen compu-
tation, starting in q0 at the beginning of the input word, forms an accepting
computation subtree of parallel branches, embedded in the full tree of all pos-
sible computation paths, such that all branches in the subtree halt in accepting
states.

The automaton M is said to be one-way (1AFA) if its input head motions
are restricted to R and N . For one-way machines, we usually do not embed
the input between endmarkers, but we require the machine to halt in accepting
states for all accepting computations after reading the entire input.

An alternation is a computation step in which the automaton switches from
a state q ∈ Q∃ to a state q′ ∈ Q∀ or from a state q ∈ Q∀ to a state q′ ∈ Q∃.

A nondeterministic automaton (2NFA) is a special case of 2AFA M =
(Q∃, Q∀,Σ, δ, q0, F ) for which Q∀ = ∅. A deterministic automaton (2DFA) is
a special case of 2NFA for which the transition function δ assigns at most one
successor state and movement direction for each state and input symbol. Sim-
ilarly the automata are one-way (1NFA and 1DFA, respectively) if their input
head motions are restricted to R and N .

Probabilistic (one-way) finite automata (1PFAs) were introduced by Rabin
in [53]. Again, we start with a more general two-way definition:

Definition 1.2. A two-way probabilistic finite automaton (2PFA) is a tuple
A = (Q,Σ, δ, q0, F ) where

Q is the finite set of states,

Σ is the input alphabet,
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δ : Q × (Σ ∪ {`,a}) × Q × {L,N,R} → P is the probabilistic transition
function, `,a /∈ Σ are the left and right endmarkers, respectively, and
L, N, R denote the head movement, and P ⊆ [0, 1] is the set of allowed
probabilities,

q0 : Q→ P is the starting distribution, and

F ⊆ Q is the set of accepting states.

For 2PFAs the transition function δ : Q× (Σ ∪ {`,a})×Q×{L,N,R} → P
assigns for each possible transition the probability of making this transition and
q0 : Q→ P shows the starting probability distribution.

If P = Q ∩ [0, 1], where Q is the set of rational numbers, then we call the
automaton rational. If P = {0, 1

2 , 1}, then we call the automaton coin-flipping.
The 2PFA M is said to be one-way (1PFA) if its input head motions are

restricted to R and N .
To have a meaningful acceptance condition, we allow the automaton to “fall

off” the right endmarker a into any state q and say that the current run accepts
the word if q ∈ F and rejects otherwise. Infinite loops are also considered
rejecting. Let A(x) denote the probability that a PFA A accepts the word
x. We say that a PFA A recognizes language L with cutpoint λ ∈ [0, 1] if
∀x ∈ L A(x) > λ and ∀x /∈ L A(x) < λ. We say that a PFA A recognizes
language L with an isolated cutpoint λ ∈ [0, 1] if there exists δ > 0 (called
isolation radius) such that ∀x ∈ L A(x) > λ+ δ and ∀x /∈ L A(x) < λ− δ. The
PFAs with isolated cutpoint are called P2FAs.

1.2 Complexity Theory

The increase in complexity when going from a deterministic to a nondetermin-
istic model has been an important topic in computer science. Most notorious
of the kind is the question about the time complexity of Turing machines, i.e.,

P
?
= NP question.
Recently there has been some increased interest in descriptional complexity,

particularly in the field of size complexity of two-way finite automata (2FAs). It
originated in a question raised by Sakoda and Sipser in 1978 about the increase
in the number of states for a two-way deterministic finite automaton (2DFA) to
simulate a one-way or two-way nondeterministic automaton (1NFA or 2NFA)
[55]. It was conjectured that the increase is not polynomial. Moreover, it is
believed that 2n states are necessary in the worst case for a 2DFA to simulate
an n-state 1NFA. However, the best known separation is only Ω(n2) (and it is
achieved by a unary language [12]).

Sakoda and Sipser introduced an elegant theoretical framework for describ-
ing the complexity classes of families of languages recognized by families of small
(polynomial-size) two-way deterministic and nondeterministic finite automata.
In recent papers [31, 32] Kapoutsis has extended the framework to include al-
ternating, probabilistic and other classes, as well as systematized the research
in the size complexity theory of two-way finite automata (or Minicomplexity –
a term coined in [32]). He showed that a rich complexity theory emerges with
all the standard features of a complexity theory including complexity classes,
reductions, completeness, etc., which mimics the complexity theory of time- or
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space-bounded Turing machines (see Fig. 1.1). The central question of this the-

ory is the Sakoda-Sipser conjecture, which corresponds to the P
?
= NP question

for Turing machines and time, or to the L
?
= NL question for Turing machines

and space.
It is also been known for a long time that answering the Sakoda-Sipser

conjecture in the negative using only polynomially long instances would imply
that L 6= NL [8].

Following this framework, instead of individual languages and finite au-
tomata we consider families of languages and families of finite automata. Anal-
ogous to the time bound of Turing machines depending on the input size is the
state-size bound for 2FAs depending on the index of the language.

A simplification is to consider promise problems instead of languages. It
allows to give more emphasis to the core of the problem instead of technicalities,
for example because it is not necessary for the automata to check if the input is
in the correct form and reject ill-formated words, thereby allowing the automata
to be simpler and more elegant. However, this is just for convenience – all of our
results stay the same also if we consider languages instead of promise problems.

Definition 1.3. A (promise) problem over Σ is a pair L = (L, L̃) of disjoint
subsets of Σ∗. Every w ∈ L ∪ L̃ is an instance of L: positive, if w ∈ L; or
negative, if w ∈ L̃. To solve L is to accept all w ∈ L but no w ∈ L̃.

We call L′ = (L′, L̃′) a subproblem of L = (L, L̃) if L′ ⊆ L and L̃′ ⊆ L̃.
The complement of a problem L = (L, L̃) is the problem ¬L = (L̃, L). The

complement of a family of problems (Lh)h≥1 is the family (¬Lh)h≥1.
A problem L over Σ is regular if there exists a regular language R ⊆ Σ∗ such

that L is a subproblem of (R,Σ∗ \R).
A family of automata (Mh)h≥1 solves a family of problems (Lh)h≥1 if for

each h ≥ 1 the automaton Mh solves Lh.
The automata are called small if there is a polynomial p such that for each

h the automaton Mh has at most p(h) states.

2D is the class of families of problems solvable by a family of small 2DFAs:

2D =
{

(Lh)h≥1

∣∣∣there exist 2DFAs (Mh)h≥1 and polynomial p such that
Mh solves Lh with at most p(h) states, for all h

}
2N is the class of families of problems solvable by a family of small 2NFAs

and co-2N is the class of families of problems whose complements are solvable
by a family of small 2NFAs. Analogous classes for one-way automata are 1D,
1N and co-1N.

Therefore the above mentioned problem about 2DFAs and 2NFAs can be

reformulated as 2D
?
= 2N.

Definition 1.4.

2A =
{

(Lh)h≥1

∣∣∣there exist 2AFAs (Mh)h≥1 and polynomial p such that
Mh solves Lh using at most p(h) states for all h

}
For all k ≥ 1:

2Σk =

{
(Lh)h≥1

∣∣∣∣there exist 2AFAs (Mh)h≥1 and polynomial p such that
Mh solves Lh starting in an existential state and using

at most k − 1 alternations and p(h) states for all h

}
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Figure 1.1: 2FA complexity theory (b) and its similarity to time-bounded
Turing machine complexity theory (a). A bold line C − C ′ means C = C ′;
a simple line from C upwards to C ′ means C ⊆ C ′; an arrow C → C ′ means
C ( C ′; a dotted arrow C 99K C ′ means C + C ′. Image by C. A. Kapoutsis [31].
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2Πk =

{
(Lh)h≥1

∣∣∣∣there exist 2AFAs (Mh)h≥1 and polynomial p such that
Mh solves Lh starting in an universal state and using
at most k − 1 alternations and p(h) states for all h

}
1Σk and 1Πk denote the corresponding classes for one-way automata.

Recently it was proved in [24] that the alternating hierarchy of 2AFAs does
not collapse – for each k ≥ 2 both 2Σk−1 and 2Πk−1 are proper subsets of 1Σk
and 1Πk (and thus also of 2Σk and 2Πk) (as it was proved after the overview in
[31], it is not depicted in Fig. 1.1).

We say that a 2PFA M solves a problem L = (L, L̃) if for each w ∈ L the
probability of M accepting w is > 1

2 and for each w ∈ L̃ the probability of M
accepting w is < 1

2 .
If the difference between the probabilities of M accepting positive and neg-

ative instances of L are significant in the length of the input word, i.e., there
exists a polynomial r such that for each w ∈ L the probability of M accept-
ing w is ≥ 1

2 + 1
r(|w|) and for each w ∈ L̃ the probability of M accepting w is

≤ 1
2−

1
r(|w|) , then we say thatM accepts L with bounded error and isolated cut-

point with isolation radius 1
r(|w|) . We call such automaton 2P2FA. For a family

of problems (Lh)h≥1 to be solved with bounded error we require the isolation
radius to be significant in h as well.

We say that a 2PFA M is fast if there exists a polynomial p such that for
each word w ∈ Σ∗ the expected running time ofM is upper-bounded by p(|w|).

The corresponding complexity class of problems solvable by a family of small
and fast rational 2P2FAs is 2P2.

Definition 1.5.

2P2 =

{
(Lh)h≥1

∣∣∣∣ there exist rational 2P2FAs (Mh)h≥1 and polynomials p, q, r such that

Mh solves Lh with isolation radius 1
r(h,n)

using at most p(h) states and

q(h, n) steps on average, for all h and all n and all n-long instances

}
The corresponding class for one-way automata is 1P2.
We also define two classes for less restricted types of 2PFAs. The complexity

class for unrestricted runtime is 2P2X. If we drop the requirement for the cut-
point to be isolated then the corresponding complexity class is 2P. However now
we explicitly have to ask for all the families to contain only regular problems.

Definition 1.6.

2P2X =

{
(Lh)h≥1

∣∣∣∣there exist rational 2P2FAs (Mh)h≥1 and polynomials p, r such that

Mh solves Lh with isolation radius 1
r(h,n)

using at most p(h) states,

for all h and all n and all n-long instances, and each Lh is regular

}

2P =

{
(Lh)h≥1

∣∣∣∣ there exist rational 2PFAs (Mh)h≥1 and polynomials p, q such that
Mh solves Lh using at most p(h) states and q(h, n) steps on average,
for all h and all n and all n-long instances, and each Lh is regular

}
Again, the corresponding class for one-way automata is 1P.

1.3 Alternation over Randomization

Randomness has always been an important concept in computer science. It is a
long standing question in which settings randomization adds power to compu-
tation. The most fundamental open question of this kind is whether the class
BPP of languages recognized in polynomial time by bounded-error probabilistic
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Turing machines is equal to the class P of languages recognized in polynomial
time by deterministic Turing machines.

In the finite automata setting, some results are known that show the advan-
tage of probabilistic automata over some classes of non-randomized automata.
It started with Freivalds’ surprising result that a 2P2FA can recognize a non-
regular language L = {0n1n | n ≥ 1} [18]. Later Greenberg and Weiss showed
[25] that an expected runtime of 2Ω(n) is needed for any 2P2FA recognizing
this language, and Dwork and Stockmeyer proved [16] that a superpolynomial
expected runtime is needed for a 2P2FA to recognize any non-regular language,
and when restricted to a polynomial runtime the class of languages recognized
by 2P2FAs is the class of regular languages. However, they also showed that

polynomial-time 2P2FA can be more succinct than any 2NFA. O
(
log2n
loglogn

)
states

are sufficient for a polynomial-time 2P2FA to recognize language Ln = {1n},
but any 2NFA requires at least n states. Kapoutsis et al. showed [33] that for
any n ≥ 2 there exists a language that is recognized by an O(n2)-state sweep-
ing Las Vegas automata but needs 2Ω(n) states for any sweeping deterministic
automaton. In [61] a family of languages is shown that can be recognized by a
2P2FA with a constant number of states (the automata differ only in the transi-
tion probabilities), but for any equivalent 2NFA the necessary number of states
grows without a bound.

It seems that the results of this section of the thesis are ones of the few
showing advantage in the opposite direction – that a class of non-randomized
finite automata can be more powerful than a class of probabilistic finite au-
tomata. Namely, we show two families of problems, one which is solvable by a
family of 1AFAs (Ah)h≥1 of size 2h+3 starting in an existential state and using
1 alternation and another one solvable by a family of 1AFAs (A′h)h≥1 of size
2h+ 3 starting in a universal state and using 1 alternation. We show that that
for neither of the problems does there exist a family of small and fast 2P2FAs
or small 2NFAs solving them or their complements. Therefore, in the terms of
two-way finite automata complexity theory, neither 1Σ2 nor 1Π2 is contained in
2P2, 2N or co-2N . We should note that the results about 2N and co-2N also
follow from the more general result of [24] showing that the entire alternating
hierarchy does not collapse.

Definition 1.7. Let f(x1, · · · , xn) be a Boolean function and (y11 ∧ y12 ∧ · · · ∧
y1l1)∨(y21∧y22∧· · ·∧y2l2)∨· · ·∨(ym1∧ym2∧· · ·∧ymlm) its disjunctive normal
form (DNF) where m is the number of clauses, li (1 ≤ i ≤ m) is the number of
literals in the i-th clause, and each yij (1 ≤ i ≤ m, 1 ≤ j ≤ li) is either xk or
xk for some 1 ≤ k ≤ n. Assume that each variable appears in a clause no more
than once and there are no more than 2n clauses.

Then we call [Z11Z12 · · · Z1n][Z21Z22 · · · Z2n]· · · [Zm1Zm2 · · · Zmn] a
DNF-encoding of f where

Zik =


x if xk appears in the i-th clause as xk

x̄ if xk appears in the i-th clause as xk

- if xk does not appear in the i-th clause.

Denote by DECDNF the function that maps a DNF-encoding to its function.

For example, a DNF-encoding of f(x1, x2, x3, x4, x5) = (x1 ∧ x2 ∧ x4 ∧ x5)∨
(x1 ∧x3)∨ (x2 ∧x4 ∧x5) is [xx̄-xx][x-x--][-x̄-xx̄]. Note that there might be



CHAPTER 1. CLASSICAL AUTOMATA 25

many DNF-encodings of the same function, but a DNF-encoding unambiguously
defines a function.

Next we define a promise problem over Σ = {[, ], x, x̄, -, ., 0, 1} with the
following intuitive meaning: given a DNF and an assignment for its variables,
check that the value of the DNF under this assignment is 1.

Definition 1.8. evaluate-dnf-functionh =
({F.x1 . . . xh | ∃f : DECDNF (F ) = f ∧ ∀i xi ∈ {0, 1} ∧ f(x1, . . . , xh) = 1},
{F.x1 . . . xh | ∃f : DECDNF (F ) = f ∧ ∀i xi ∈ {0, 1} ∧ f(x1, . . . , xh) = 0})

evaluate-dnf-function = (evaluate-dnf-functionh)h≥1

∃ ∀ ·

xh xh−1 . . . x1

xh xh−1 . . . x1

[,],x,x̄,-,0,1 x,x̄,- [,],x,x̄,-,.,0,1

[ ]

x

x̄

x,x̄,-,0,1 x,x̄,-,0,1 x,x̄,-,0,1

1
0

x,x̄,-,0,1 x,x̄,-,0,1 x,x̄,-,0,1

[,],.[,],. [,],.

[,],.[,],. [,],.

x,x̄,-

x,x̄,-

Figure 1.2: One-way alternating automaton Ah with 2h + 3 states solving
evaluate-dnf-functionh. Double arrow shows the starting state. State ∃ is
existential and all other states are universal. Double circled state is accepting.

Theorem 1.9. There exists a family of 1AFAs (Ah)h≥1 with 2h+ 3 states that
solves the problem evaluate-dnf-function starting in an existential state
and using 1 alternation.

Proof. See the automaton Ah in Fig. 1.2. After a careful examination it should
be evident that Ah solves evaluate-dnf-functionh. It starts by reading in
each clause of the DNF and “saving” it in a configuration in an existential
branch of computation. If the clause contains xi (or xi), it is stored in the state
xi (or xi respectively). Reading subsequent clauses leaves the previously saved
clauses intact as the configuration for each subsequent clause makes exactly h
shifts and therefore one full rotation through states x1, . . . , xh and x1, . . . , xh
returning to the original configuration.

A high-level description of how the automaton works would be as follows: in
the formula part of the word it nondeterministically guesses which clause in the
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DNF is true and universally all the variables appearing in this clause must have
agreeing values (i.e., 1 for xk and 0 for xk), which are checked in the assignment
part.

By the construction of the automaton, it starts in an existential state and
on no input can it make more than 1 alternation.

Now we consider a similar problem based on the conjunctive normal form
(CNF).

Definition 1.10. Let f(x1, · · · , xn) be a Boolean function and (y11∨y12∨· · ·∨
y1l1) ∧ (y21 ∨ y22 ∨ · · · ∨ y2l2) ∧ · · · ∧ (ym1 ∨ ym2 ∨ · · · ∨ ymlm) its conjunctive
normal form where m is the number of clauses, li (1 ≤ i ≤ m) is the number of
literals in the i-th clause, and each yij (1 ≤ i ≤ m, 1 ≤ j ≤ li) is either xk or
xk for some 1 ≤ k ≤ n. Assume that each variable appears in a clause no more
than once and there are no more than 2n clauses.

Then we call [Z11Z12 · · · Z1n][Z21Z22 · · · Z2n]· · · [Zm1Zm2 · · · Zmn] a
CNF-encoding of f where

Zik =


x if xk appears in the i-th clause as xk

x̄ if xk appears in the i-th clause as xk

- if xk does not appear in the i-th clause.

Denote by DECCNF the function that maps a CNF-encoding to its function.

Definition 1.11. evaluate-cnf-functionh =
({F.x1 . . . xh | ∃f : DECCNF (F ) = f ∧ ∀i xi ∈ {0, 1} ∧ f(x1, . . . , xh) = 1},
{F.x1 . . . xh | ∃f : DECCNF (F ) = f ∧ ∀i xi ∈ {0, 1} ∧ f(x1, . . . , xh) = 0})

evaluate-cnf-function = (evaluate-cnf-functionh)h≥1

Theorem 1.12. There exists a family of 1AFAs (A′h)h≥1 with 2h + 3 states
that solves the problem evaluate-cnf-function starting in a universal state
and using 1 alternation.

Proof. See the automaton A′h in Fig. 1.3. The automaton is very similar to
the one for evaluate-dnf-functionh with a different behavior in the states
∀ and ∃. Therefore each clause of the CNF is now “saved” in a configuration in
a universal branch of computation.

Again, a high-level description of the automaton is as follows: in the formula
part of the word it universally for every clause in the CNF nondeterministically
guesses which literal is true in this clause, and then verifies these guesses in the
assignment part.

The automaton A′h starts in a universal state and on no input can it make
more than 1 alternation.
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∀

∃

·

xh xh−1 . . . x1

xh xh−1 . . . x1

[,],x,x̄,-,0,1

x,x̄,-

[,],x,x̄,-,.,0,1

[

.

x
x̄ x,x̄,-,0,1 x,x̄,-,0,1 x,x̄,-,0,1

1
0

x,x̄,-,0,1 x,x̄,-,0,1 x,x̄,-,0,1

[,],.[,],. [,],.

[,],.[,],. [,],.

x,x̄,-

x,x̄,-

Figure 1.3: One-way alternating automaton A′h with 2h + 3 states solving
evaluate-cnf-functionh. Double arrow shows the starting state. State ∀ is
universal and all other states are existential. Double circled state is accepting.

Theorem 1.13. There exists no family of 2NFAs of fast 2P2FAs that solves
evaluate-dnf-function or evaluate-cnf-function with a polynomial
number of states.

To prove this theorem we will need two additional lemmas. The first one is
about restricting the probability set of a 2PFA without significantly changing
the isolation radius.

Lemma 1.14. If there exists a k-state 2PFA M that solves L = (L, L̃) with
isolation radius δ(n) and with the expected runtime bounded by t for any x ∈
L ∪ L̃, then for every ε > 0 there exists a k-state 2PFA M′ that solves L with
isolation radius δ(n)− ε such that M′ uses transition probabilities from a set P
with |P | ≤ 3kt

ε + 1.

Proof. The automatonM′ is constructed by substituting all transition probabil-
ities inM by rounding down to the closest number in P =

{
0, 1

b ,
2
b , . . . ,

b−1
b , 1

}
for some b (and distributing the remaining probability to an arbitrary state so
that the sum of all probabilities for every transition is 1). In each step the prob-
ability of the automaton taking a different transition because of this rounding
is ≤ 3k

b (at most 1
b for each state and head movement direction). Therefore

the total probability to make a different transition on any word x is ≤ 3kt
b . By

choosing b = 3kt
ε the probability of the automatonM′ making such error is ≤ ε

therefore the isolation radius for M′ is at least δ(n)− ε.

The second lemma essentially shows that adding some fixed prefix and suffix
to every word does not help 2P2FAs and 2NFAs to recognize the language.
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Lemma 1.15. Assume problems L = (L, L̃) and L′ = (L′, L̃′) over Σ are such
that there exist u, v ∈ Σ∗ such that for all x ∈ Σ∗:

x ∈ L′ ⇒ uxv ∈ L,

x ∈ L̃′ ⇒ uxv ∈ L̃.

If there exists a k-state 2NFA or 2P2FAM solving L, then there also exists a
(k+1)-state NFA or 2P2FAM′, respectively, solving L′. Moreover, for any x the
acceptance probability and expected running time of M′ on x is the acceptance
probability and at most the expected running time of M on uxv, respectively.

Proof. We can transform a 2NFA M solving L into a 2NFA M′ solving L′ by
altering its transition function δ to δ′ so that the automaton treats the string
`u as one symbol ` and similarly the string va as a. That is, for every state q
calculate the set of states Q`q in which the automaton can leave `u, given that

it entered `u from the right side in state q, and set δ′(q,`) = Q`q × {R}. Also

for every state q calculate the set of states Qaq in which the automaton can leave

va to the left side and the set of accepting states Faq in which the automaton
falls off to the right side of a, given that it entered va from the left side in state
q, and set δ′(q,a) =

(
Qaq × {L}

)
∪
(
Faq × {R}

)
. A new starting state is added

to M′ with transitions to all the states in which M can leave `u when started
in the starting state on the first symbol of u. Therefore M′ on `xa will work
exactly as M on `uxva (considering strings `u and va as symbols ` and a).

The same idea is applicable to make from the 2P2FA M a new 2P2FA M′:
now for every two states q, q′ we set δ′(q,`, q′, R) to the probability ofM leaving
`u in the state q′, given that M entered `u from the right side in the state q.
If there is a positive probability p to enter an infinite loop when entering `u
from the right side in the state q, then δ′(q,`, qstop, N) is set to p where qstop is
a new special state for which δ′(qstop,`, qstop, N) = 1.

The new starting distribution of M′ is set to the probability distribution of
possible leaving states, given that the automaton M was started in its starting
distribution on the first symbol of u.

For every two states q, q′ δ′(q,a, q′, L) is set to the probability ofM leaving
va to the left side in the state q′, given thatM entered va from the left side in
the state q. δ′(q,a, qstop, N) is set to the probability of M entering an infinite
loop after entering va from the left side in the state q. δ′(q,a, q′, R) is set to
the probability ofM falling off the right endmarker in q′ after entering va from
the left side in the state q.

The probability for the automaton M′ to accept ` x a is exactly the same
as for the automaton M to accept ` uxv a and the expected runtime has not
increased.

Proof of Theorem 1.13. We will prove that, if the general evaluation problem
could be solved by a small 2NFA (resp., small and fast 2P2FA), then every
explicit evaluation problem would be solved by a small 2NFA (resp., a small
2P2FA with only exponentially fine distributions), contradicting the fact that
the number of such problems is exponentially larger than the number of such
automata.

For convenience we define some additional families of problems.
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Definition 1.16. For any h-variable Boolean function f and for any DNF-
encoding F of f , we define the problem evaluate-explicit-dnf-functionF =
({F.x1 . . . xh | ∀i xi ∈ {0, 1} ∧ f(x1, . . . , xh) = 1},
{F.x1 . . . xh | ∀i xi ∈ {0, 1} ∧ f(x1, . . . , xh) = 0})

We define the problem evaluate-explicit-cnf-functionF analogously
for any h-variable Boolean function f and for any CNF-encoding F of f .

It is easy to see that evaluate-explicit-dnf-functionF and evaluate-
explicit-cnf-functionF are subproblems of evaluate-dnf-functionh
and evaluate-cnf-functionh, respectively, where h is the number of
arguments of the function encoded by F and therefore any automaton
solving evaluate-dnf-functionh or evaluate-cnf-functionh also
solves evaluate-explicit-dnf-functionF or evaluate-explicit-cnf-
functionF , respectively.

Next, for every Boolean function f we define a similar problem, with the
difference that the input word does not contain the encoding of the Boolean
function.

Definition 1.17. evaluate-functionf =
({x1 . . . xh | ∀i xi ∈ {0, 1} ∧ f(x1, . . . , xh) = 1},
{x1 . . . xh | ∀i xi ∈ {0, 1} ∧ f(x1, . . . , xh) = 0})

The difference between evaluate-explicit-dnf-functionF , evaluate-
explicit-cnf-functionF and evaluate-functionf is that in the former two
every word is in the form `F.xa with some fixed F , but in the latter it is simply
`xa. In both cases the automaton must accept the words for which f(x) = 1
and not accept the words for which f(x) = 0 where f is the function encoded
by F .

From Lemma 1.15 it follows that if there exists a k-state 2NFA or 2P2FAM
that solves evaluate-explicit-dnf-functionF (resp., evaluate-explicit-
cnf-functionF ), then there exists a (k + 1)-state 2NFA or 2P2FA M′, re-
spectively, that solves evaluate-functionf where f = DECDNF (F ) (resp.,
f = DECCNF (F )).

However, a remark about the running time of the 2P2FA is necessary. Al-
though the running time of the 2P2FA has not increased, the input words in
evaluate-functionf have become much shorter than in evaluate-explicit-
dnf-functionF and evaluate-explicit-cnf-functionF .

The length of an encoding and the length of the words in evaluate-
explicit-dnf-functionF or evaluate-explicit-cnf-functionF are
bounded by O(h2h), therefore if the expected running time ofM is polynomial
in the length of the input word, then the expected running time of M′ is
bounded by 2O(h).

A similar remark is needed about the isolation radius of the 2P2FA. If the
isolation radius ofM was bounded by 1

r(h,n) for some polynomial r then forM′

it is bounded by 1
r(h,O(h2h))

which is 1
2O(h) .

So far we have proved that, if there exists a k-state 2NFA or fast 2P2FA solv-
ing evaluate-dnf-functionh or evaluate-cnf-functionh, then for each
Boolean function f on h variables there exists a k-state 2NFA or (k + 1)-state
2P2FA with the expected running time bounded by 2O(h) and isolation radius
bounded by 1

2O(h) , respectively, solving evaluate-functionf .
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Using Lemma 1.14 we can transform the resulting 2P2FA so that its tran-
sition function uses only probabilities from an appropriately sized set P with
|P | = 2poly(h) where by poly(h) we denote hO(1).

Note that there are 22h different Boolean functions on h variables and each
automaton can solve evaluate-functionf for at most one Boolean function f .
Next, we proceed to count the number of automata with no more than poly(h)
states.

There are at most 23·(|Σ|+2)·k2 · k · 2k different 2NFAs with no more than k
states: for every two states, input alphabet symbol (or endmarker) and head
movement direction there is a possibility to either have or not have such transi-
tion and k possibilities for the starting state and 2k possibilities for the different
sets of accepting states. For any k which is polynomial in h this is 2poly(h)

which for large enough h is less than the number of Boolean functions on h
variables, therefore there exists a Boolean function which cannot be evaluated
by a polynomial-size 2NFA.

If a 2PFA has all transition and starting distribution probabilities from a set
P , then there are at most |P |3·(|Σ|+2)·k2 · |P |k · 2k such automata with no more
than k states: for every two states, input alphabet symbol (or endmarker) and
head movement direction the transition function assigns a probability from P
of making this transition and |P |k possibilities for the starting distribution and
2k possibilities for the set of accepting states. If |P | = 2poly(h), then for any
k = poly(h) the number of automata is also 2poly(h) which for large enough h is
less than the number of Boolean functions on h variables. Therefore there exists
a Boolean function which cannot be evaluated by a polynomial-size 2P2FA using
probabilities from some P with |P | = 2poly(h).

So there exists no 2NFA or fast 2P2FA with a polynomial number of states
solving evaluate-dnf-function or evaluate-cnf-function.

Therefore we have shown that the problems evaluate-dnf-function and
evaluate-cnf-function are in 1Σ2 and 1Π2, respectively, but not in 2P2 or
2N . Also it is easy to see that the complement of evaluate-functionf is
evaluate-functiong for g(x1, · · · , xh) = ¬f(x1, · · · , xh) therefore it follows
that neither of these problems are in co-2N .

Corollary 1.18. Neither 1Σ2 nor 1Π2 is contained in 2N ∪ co-2N ∪ 2P2.

1.4 Randomization over Alternation

In this section we show that if we relax the requirements for the 2PFAs, namely
either the requirement for the 2PFA to be fast or to have at least polynomially
decreasing isolation radius, then for any size bound there exists a family of
problems not solvable by a family of 2AFAs of this size bound but solvable by
a family of constant-sized 2PFAs.

Definition 1.19. For all h ≥ 0 we define counth = ({1h}, {1n | n 6= h})

Theorem 1.20. For any h ≥ 0 there exists a rational 4-state 1P2FA which
solves counth.
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Proof. Consider the following automaton Ah = ({a, b, c, d}, {1},Mh, (1 −
γ, 0, 0, γ), {b, d}) with the transition matrix

Mn =


1− ε1 ε1 0 0

0 1− ε2 ε2 0
0 0 1 0
0 0 0 1


where ε1, ε2 and γ depend on h (see Fig. 1.4).

a b c d
1− γ γε1 ε2

1− ε1 1− ε2 1 1

Figure 1.4: 4-state 1P2FA solving counth. Double arrows show the starting
probability distribution. Double circled states are accepting.

We will show that it is possible to choose ε1, ε2 so that the acceptance
probability is the highest on the word 1h. Let ε1 = ε2. Assuming that γ = 0,
the probability of accepting 1m is given by

(1− ε1)m−1ε1m

The derivative w.r.t. m of this quantity is

(1− ε1)m−1ε1(1 +m ln (1− ε1))

Solving it to be equal to 0 when m = h gives ε1 = 1− e−1/h.
Therefore by setting ε1 = ε2 = 1−e−1/h we get an automaton which has the

maximal probability of acceptance on the word 1h and the acceptance prob-
ability decreases as the length of the word increases or decreases. We can
approximate this value by close enough rational number to obtain a rational
automaton.

For h ≥ 2 this maximal probability is less than 1
2 . We can shift the accep-

tance cutpoint to 1
2 by making the automaton accept every word with some fixed

probability, i.e., by setting an appropriate γ. For h < 2 it is straightforward to
construct a deterministic automaton accepting counth.

Note that, although as h increases the difference between the probabilities of
the automaton Ah to accept 1h and 1h+1 (or 1h and 1h−1) decreases, for every
fixed h there exist δ > 0 such that the word 1h is accepted with probability
greater than 1

2 + δ and the probability to accept any other word is less than
1
2 − δ, i.e. for every fixed automaton the cutpoint is isolated.

Theorem 1.21. For any constant δ < 1
2 there exists a constant k such that for

any n ≥ 0 there exists a coin-flipping k-state 2P2FA which solves counth with
isolation radius δ.

Proof. Let equal = ({0n1n}, {0n1m | n 6= m}). In [18] Freivalds proved that
for any δ < 1

2 there exists a coin-flipping 2P2FA P which solves equal with
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an isolated cutpoint with isolation radius δ. For every h > 0 let equal-to-h
= ({0h1h}, {0h1m | h 6= m}) (i.e., for every equal-to-h the h is fixed and the
language contains exactly one word). It is easy to see that equal-to-h is a
subproblem of equal therefore P also solves equal-to-h.

Furthermore for each h the problems L = equal-to-h, L′ = counth and
the word u = 0h satisfy the conditions of Lemma 1.15 and the automaton P
solving equal-to-h can be transformed to an automaton P ′h solving counth
by adding one extra state. Therefore the number of states of P ′h depends only
on the value of δ.

Theorem 1.22. For any k there exists m such that no 2AFA with k states can
solve countm.

Proof. Easily, as there is only a finite number of k-state 2AFAs and any 2AFA
can solve countm for at most one m.

Given any size bound one can construct a family of problems (countf(h))h≥1

which admits no family of 2AFAs of this size bound solving it by choosing a
fast enough growing f . However by Theorems 1.20 and 1.21 for this family of
problems there exists a family of 1P2FAs solving it (with superpolynomially de-
creasing isolation radius) or a family of 2P2FAs solving it (with superpolynomial
expected runtime).

Corollary 1.23. Neither 1P nor 2P2X is contained in 2A or in any other class
of families of problems solvable by a family of size-bounded 2AFAs.

1.5 Conclusions

We have shown two examples of families of languages which are in 1Σ2 or 1Π2,
respectively, but not in 2N , co-2N and 2P2.

In the proof of Theorem 1.13 we used the fact that there exist hard Boolean
functions (such that require superpolynomial number of states to evaluate them)
for 2PFAs that use only probabilities from a set P with |P | = 2poly(h). We
conjecture that there exist hard Boolean functions for the class of all rational
2PFAs as well. This would imply that the examined problems evaluate-dnf-
function and evaluate-cnf-function besides not being in the class 2P2,
would also not be in 2P and 2P2X leading to a result of incomparability between
the classes 2A and 2P ∪ 2P2X. However, this transition from a rather large set
of probabilities P to all rational probabilities seems to make the task of proving
the existence of a hard function for 2PFA unexpectedly hard as one cannot use
the counting argument anymore (there are infinitely many rational 2PFAs with
k states). Some new methods might be needed for proving this conjecture.

From our results we know that the class 2A is not contained in 2P2, but it is
not known if 2P2 is contained in 2A or are they incomparable. For some larger
classes, namely 2P and 2P2X, we showed that that they are not contained in
2A, however we did not manage to do this for 2P2.



Chapter 2

Ultrametric Automata

In this chapter we define ultrametric finite automata which are based on p-adic
numbers and explore various properties that arise from this definition. We also
show some examples where ultrametric finite automata are more powerful or
require a smaller number of states than equivalent deterministic finite automata.

The chapter is organized as follows. In Section 2.1 we give some general
introduction and motivation for the computational model. In Section 2.2 we
give some brief introduction to p-adic numbers. In Section 2.3 we define the
ultrametric finite automata, prove some important properties about them, and
justify the design choices in the definition which differ from the way how ultra-
metric automata were originally defined. In Section 2.4 we prove that one-way
one-head ultrametric finite automaton is more powerful than k-head nondeter-
ministic finite automaton for any k, and finally, in Section 2.5 we prove that
for two-way multi-head ultrametric finite automata the power of the automaton
grows as the number of heads increase. The last two sections represent results
from a joint work with Rihards Krǐslauks.

2.1 Introduction

Pascal and Fermat believed that every event of indeterminism can be described
by a real number between 0 and 1 called probability. Quantum physics intro-
duced a description in terms of complex numbers called amplitude of probabilities
and later in terms of probabilistic combinations of amplitudes most conveniently
described by density matrices.

String theory [59], chemistry [39] and molecular biology [14, 36] have intro-
duced p-adic numbers to describe measures of indeterminism.

There were no difficulties to implement probabilistic automata and algo-
rithms practically. Quantum computation has made a considerable theoretical
progress but practical implementation has met considerable difficulties. How-
ever, prototypes of quantum computers exist, some quantum algorithms are
implemented on these prototypes, quantum cryptography is already practically
used. Some people are skeptical concerning practicality of the initial spectac-
ular promises of quantum computation but nobody can deny the existence of
quantum computation.

We consider a new type of indeterministic algorithms called ultrametric algo-

33
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rithms. They are very similar to probabilistic algorithms but while probabilistic
algorithms use real numbers r with 0 ≤ r ≤ 1 as parameters, ultrametric algo-
rithms use p-adic numbers. Slightly simplifying the description of the definitions
one can say that ultrametric algorithms are the same probabilistic algorithms,
only the interpretation of the probabilities is different.

Our choice of p-adic numbers instead of real numbers is not quite arbitrary.
In 1916 Alexander Ostrowski proved that any non-trivial absolute value on the
rational numbers Q is equivalent to either the usual real absolute value or a p-
adic absolute value. This result shows that using p-adic numbers is not merely
one of many possibilities to generalize the definition of deterministic algorithms
but rather the only remaining possibility not yet explored.

Moreover, Helmut Hasse’s local-global principle states that certain types of
equations have a rational solution if and only if they have a solution in the real
numbers and in the p-adic numbers for each prime p.

For every prime number p there exists a different notion of absolute value
in the set of rational numbers. These absolute values are traditionally called
ultrametric. Absolute values are needed to consider distances among objects.
We are used to rational and irrational numbers as measures for distances, and
there is a psychological difficulty to imagine that something else can be used
instead of irrational numbers. However, there is an important feature that
distinguishes p-adic numbers from real numbers. Real numbers (both rational
and irrational) are linearly ordered. p-adic numbers cannot be linearly ordered.
This is why valuations of p-adic numbers are considered.

The situation is similar in Quantum Computation. Quantum amplitudes
are complex numbers which also cannot be linearly ordered. The counterpart of
valuation for quantum algorithms is measurement translating a complex number
a + bi into a real number a2 + b2. Valuations of p-adic numbers are rational
numbers.

Ultrametric finite automata and ultrametric Turing machines were first in-
troduced by Freivalds [20]. This has been followed by several papers where
various aspects of them are studied in depth. Balodis et al. [7] have studied the
descriptional complexity of ultrametric automata. They showed that ultramet-
ric automata can achieve an exponential advantage in terms of the number of
states required when compared to equivalent deterministic automata. Krǐslauks
et al. [41] have studied the reversal complexity of ultrametric Turing machines.

Ultrametric machines are similar to probabilistic machines, the difference
being that it is not necessary for amplitudes (which are the equivalent of prob-
abilities in probabilistic automata) to be in the range between 0 and 1. Instead
p-adic numbers are used. We should note that in [58] a similar generalization of
probabilistic automata was introduced, where ”probabilities” can be arbitrary
real numbers, and the acceptance condition is whether the probability to be in
an accepting state is greater than a given threshold, furthermore it was shown
that this generalization is in fact equivalent to probabilistic automata. However,
unlike in these generalized probabilistic machines, the definition of ultrametric
machines uses the concept of a p-adic norm.
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2.2 p-adic Numbers

In describing the notion of p-adic numbers we follow the introductory text by
David A. Madore [46].

Let p be an arbitrary prime number. A p-adic digit is a natural number
between 0 and p − 1 (inclusive). A p-adic integer is by definition a sequence
(ai)i∈N of p-adic digits. We write this conventionally as

· · · ai · · · a2a1a0

(that is, the ai are written from right to left).
If n is a natural number, and

n = ak−1ak−2 · · · a1a0

is its p-adic representation (in other words n =
∑k−1
i=0 aip

i with each ai a p-adic
digit) then we identify n with the p-adic integer (ai) with ai = 0 if i ≥ k. This
means that natural numbers coincide with p-adic integers with a finite number
of nonzero digits. Also note that 0 is the p-adic integer all of whose digits are 0,
and that 1 is the p-adic integer all of whose digits are 0 except the right-most
one which is 1. If α = (ai) and β = (bi) are two p-adic integers, we will now
define their sum. To this purpose, we define by induction a sequence (ci) of
p-adic digits and a sequence (εi) of elements of {0, 1} (the ”carries”) as follows:

• ε0 is 0.

• ci is ai + bi + εi or ai + bi + εi − p according as which of these two is a
p-adic digit. In the former case, εi+1 = 0 and in the latter, εi+1 = 1.

Under those circumstances, we let α + β = (ci) and we call α + β the sum
of α and β. Note that the rules described above are exactly the rules used for
adding natural numbers in base p. In particular, if α and β turn out to be
natural numbers, then their sum as a p-adic integer is no different from their
sum as a natural number. Addition is therefore associative and commutative.
Similarly, subtraction and multiplication of p-adic integers is done exactly the
same as with natural numbers in base p.

Division of p-adics, however, cannot always be performed. For example, 1
p

has no meaning as a p-adic integer - that is, the equation pα = 1 has no solution
- since multiplying a p-adic integer by p always gives a p-adic integer ending in
0. There is nothing really surprising here: 1

p cannot be performed in the integers
either. However, what is mildly surprising is that division by p is essentially
the only division which cannot be performed in the p-adic integers. This is
one of the reasons why the notion of p-adic integers is generalized and p-adic
numbers are introduced. They are formal sequences of p-adic digits such that
the sequence is infinite in the left-hand direction but finite in the right-hand
direction. The notion of p-adic dot is introduced. The field of p-adic numbers
is denoted by Qp.

For example, with p = 7 we show that the number α = · · · 333334 is the
number corresponding to 1

2 by adding it to itself:

· · · 333334
· · · 333334

· · · 000001
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Thus, in the 7-adic numbers, 1
2 is an integer. And so are 1

3 (· · · 44445), 1
4

(· · · 1515152), 1
5 (· · · 541254125413), 1

6 (· · · 55556), 1
8 (· · · 0606061), and so on.

But 1
7 , 1

14 and so on, are not 7-adic integers. They are expressed as follows.

· · · 0000.1
· · · 0000.01

It is important to notice that p-adic numbers that are not p-adic integers and
irrational real numbers are incompatible. It is known that no p-adic number cor-
responds to π or e and there is a continuum of p-adic numbers not corresponding
to any real number. Also for some p there exists a number corresponding to

√
2

and for some p there does not exist such number. Moreover, if p1 6= p2 then
p1-adic and p2-adic numbers are incompatible.

However, p-adic numbers is not merely a generalization of rational numbers.
They are very special because of the notion of absolute value of numbers.

A function d : X ×X → R≥0 where X is a non-empty set is called a metric
iff it satisfies the following conditions:

1. d(x, y) = 0 iff x = y,

2. d(x, y) = d(y, x),

3. d(x, y) ≤ d(x, z) + d(z, y) for all z ∈ X.

If the third property can be replaced by its stronger variant – the strong tri-
angle inequality d(x, y) ≤ max {d(x, z), d(z, y)} – the norm is called ultrametric.
Otherwise, it is called Archimedean.

If the set X is equipped with the addition and multiplication operations (and
forms a vector space), then a notion of norm can be introduced. The metric
function is used to find the distances among the elements of a set. The distance
of a given element to zero d(x, 0) is called the norm or absolute value of the
element and is denoted by ‖x‖.

The norm of an element satisfies the following properties:

1. ‖x‖ = 0 if and only if x = 0,

2. ‖x ∗ y‖ = ‖x‖ ∗ ‖y‖,

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (the triangle inequality).

Definition 2.1. Let p be any prime number. For any nonzero integer a, let
the p-adic ordinal (or valuation) of a, denoted ordpa, be the highest power of p
which divides a, i.e., the greatest m such that a ≡ 0 (mod pm). For any rational
number x = a/b, denote ordpx to be ordpa− ordpb. Additionally, ordpx =∞ if
and only if x = 0.

For example, the 7-adic valuation of 7 is 1. That of 14 is also 1, as are those
of 21, 28, 35, 42 or 56. The 7-adic valuation of 49, on the other hand, is 2, as
is that of 98. And the 7-adic valuation of 343 is 3. The 2-adic valuation of an
integer is 0 iff it is odd, it is at least 1 iff it is even, at least 2 iff the integer is
multiple by 4, and so on. The 7-adic valuation of 1

7 is -1, and so are those of 3
7 ,

1
14 , 5

56 . The 7-adic valuation of 1
2 or 8

3 is 0. The 7-adic valuation of 7
3 or 14

5 is
1. The 7-adic valuation of 48

49 is -2.
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Definition 2.2. Let p be any prime number. For arbitrary rational number α,
its p-norm is:

‖α‖p =

{
1

pordpα
, if α 6= 0;

0, if α = 0.

Equivalently, one can define the p-norm of a rational number α =

±2α23α35α57α7 · · · where αi ∈ Z as ‖α‖p =

{
p−αp , if α 6= 0

0, if α = 0.

For example, ‖p‖p = 1
p , ‖1‖p = 1, ‖2p‖p = 1

p (if p is odd), and ‖ 1
p2 ‖ = p2.

The valuation of a p-adic number (ai) can equivalently be defined as the
greatest i0 such that ai = 0 for all i < i0. Sometimes it will be very convenient
to use this definition. Hence a p-adic integer is exactly a p-adic number with
non negative valuation. It is not hard to check that this definition coincides
with the aforementioned one for integers, hence for rationals. Note that the
p-adic absolute value of a p-adic number is a real number (and in fact rational).

p-adic numbers are discussed in more detail in [46]. The use of p-adics in
other sciences can be seen in [39, 14].

2.3 p-adic Automata

The notion of p-adic numbers is widely used in mathematics but not so much
in Computer Science. The aim of this section is to show that the notion of
ultrametric automata is somehow natural.

In mathematics, a stochastic matrix is a matrix used to describe the tran-
sitions of a Markov chain. A right stochastic matrix is a square matrix each of
whose rows consists of nonnegative real numbers, with each row summing to
1. A stochastic vector is a vector whose elements consist of nonnegative real
numbers which sum to 1. The finite probabilistic automaton is defined as an ex-
tension of a non-deterministic finite automaton (Q,Σ, δ, q0, F ), with the initial
state q0 replaced by a stochastic vector giving the probability of the automaton
being in a given initial state, and with stochastic matrices corresponding to each
symbol in the input alphabet describing the state transition probabilities. It is
important to note that if A is the stochastic matrix corresponding to the input
symbol a and B is the stochastic matrix corresponding to the input symbol
b, then the product AB describes the state transition probabilities when the
automaton reads the input word ab. Additionally, the probabilistic automaton
has a threshold λ being a real number between 0 and 1. If the probabilistic
automaton has only one final state then the input word x is said to be accepted
if after reading x the probability of the final state has a probability exceeding
λ. If there are several final states, the word x is said to be accepted if the total
of probabilities of the final states exceeds λ.

Ultrametric automata (introduced by Freivalds in [20]) are defined exactly in
the same way as probabilistic automata, only the parameters called probabilities
of transition from one state to another one are real numbers between 0 and 1
in probabilistic automata, and they are p-adic numbers called amplitudes in the
ultrametric automata. At the beginning of the work, the states of the automaton
get initial amplitudes being p-adic numbers. When reading the current symbol of
the input word, the automaton changes the amplitudes of all the states according
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to the transition matrix corresponding to this input symbol. After reading the
input word, the measurement is performed, and the amplitudes of all the states
are transformed into the p-valuations of these amplitudes. The valuations are
real numbers and it is possible to compare whether or not the valuation exceed
the threshold λ.

Paavo Turakainen considered various generalizations of finite probabilistic
automata in 1969 and proved that there is no need to demand in cases of proba-
bilistic branchings that total of probabilities for all possible continuations equal
1 [58]. He defined generalized probabilistic finite automata where the ”probabil-
ities” can be arbitrary real numbers, and that languages recognizable by these
generalized probabilistic finite automata are the same as for ordinary probabilis-
tic finite automata. Hence we also allow usage of all possible p-adic numbers in
p-ultrametric machines.

Definition 2.3. A one-way one-head p-ultrametric finite automaton (1UpFA(1)
or simply 1UpFA or UpFA) is a sextuple 〈Q,Σ, q0, δ, QA, QR〉 where

Q is a finite set – the set of states,

Σ is a finite set – input alphabet,

q0 : Q→ Qp is the initial amplitude distribution,

δ : Σ×Q×Q→ Qp is the transition function,

QA, QR ⊆ Q are the sets of accepting and rejecting states, respectively.

The automaton works as follows. At every timestep each of its states has
an associated p-adic number called its amplitude. The automaton starts with
the initial amplitude distribution sε = q0. Then it proceeds by processing input
word’s w = w1 . . . wn symbols one by one. The amplitude distribution after
processing the i-th symbol of the word w is denoted as sw1...wi : Q → Qp, with
the amplitude in the state q defined as

sw1...wi(q) =
∑
q′∈Q

sw1...wi−1
(q′) · δ (wi, q

′, q)

for every q ∈ Q. After the n-th symbol, the final amplitude distribution sw1...wn

is obtained. If the sum of the p-norms of final amplitudes over the accepting
states is greater than the sum of final amplitudes over the rejecting states, i.e.
if ∑

q∈QA

‖sw(q)‖p >
∑
q∈QR

‖sw(q)‖p

then the word w is said to be accepted, otherwise – rejected.

It is sometimes useful to describe a state of the automaton as an |Q|-dimensi-
onal row vector s and the transition function as a set of |Σ| matrices {Aσ}
(σ ∈ Σ) with (Aσ)q′,q = δ(σ, q′, q). Then the state after reading the word
σ1σ2 . . . σn is simply q0 ·Mσ1 ·Mσ2 · . . . ·Mσn .

Definition 2.4. We say that a UpFA recognizes language L ⊆ Σ∗ if any word
w ∈ Σ∗ is accepted if and only if w ∈ L.

It is easy to construct a UpFA that recognizes a nonregular language.
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Theorem 2.5. For every prime p there exists a UpFA recognizing L = {w ∈
{0, 1}∗ | w contains more 0s than 1s}

Proof. The automaton is shown in Fig. 2.1. For every a ∈ {0, 1} in the input
word w the amplitude in state ca is multiplied by p−1 therefore making the
norm of this amplitude p times greater as ‖pk‖p = p−k. If after processing the
whole word w the amplitude in state c0 is greater than the amplitude in the
state c1 then the word is accepted, otherwise—rejected.

c0 c1
1 1

0/p−1, 1/1 0/1, 1/p−1

Figure 2.1: UpFA recognizing L = {0m1n | m < n}. The double circled state
is accepting and the zigzagged state is rejecting. The double arrows show the
starting amplitude distribution. Other arrows show the transitions. Label a/γ
on arrow from q to r means that δ(a, q, r) = γ.

To limit the focus on regular languages, we introduce the notion of a regu-
lated UpFA.

Definition 2.6. If for UpFA M = 〈Q,Σ, s0, δ, QA, QR〉 all transition amplitudes
in δ are p-adic integers and there exist constants d1, d2 ∈ Z such that on any
word w ∈ Σ∗ in any state q ∈ Q either the amplitude sw(q) in state q after
reading word w is equal to 0 or p−d2 ≤ ‖sw(q)‖p ≤ p−d1 then we call the
automaton regulated (or more specifically – (d1, d2)-regulated).

A regulated UpFA can recognize only a regular language. Moreover, we can
prove an upper bound on the number of states needed for a DFA recognizing
the same language.

Theorem 2.7. If a k-state (d1, d2)-regulated UpFA M = 〈Q,Σ, s0, δ, QA, QR〉
recognizes a language L, then there exists a DFA with 2k(d2−d1+1) log2 p states
recognizing L.

Proof. Recall from the definition of p-adic norm that for a p-adic number γ =
(γi)i≥m the norm ‖γ‖p = p−j where j is the index of the rightmost nonzero
digit of γ.

Now let us consider an arbitrary amplitude γ = sw(q) in some state q ∈ Q
after having read some word w ∈ Σ∗. As the automation is (d1, d2)-regulated,
all the digits of γ with index smaller than d1 must be 0s, otherwise the norm
‖γ‖p would be greater that p−d1 . If γ 6= 0 then at least one of the digits from
d1 to d2 must be non-zero, otherwise ‖γ‖p would be less than p−d2 . Therefore
the digits with indexes from d1 to d2 unambiguously define the norm of the
amplitude ‖γ‖p .

As all the transition amplitudes are p-adic integers, a higher-indexed digit
of an amplitude does not influence a lower-indexed digit of any successor ampli-
tude. As in the amplitude of a state all the digits with indexes less than d1 are
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0s and all the digits with indexes greater than d2 do not influence the norm, a
state can have only a finite number of essentially different amplitudes, namely
pd2−d1+1. Hence a configuration of an automaton can be described with one of(
pd2−d2+1

)k
= 2k(d2−d1+1) log2 p states of a DFA.

Theorem 2.8. If a k-state UpFA M = 〈Q,Σ, s0, δ, QA, QR〉 recognizes a lan-
guage L with the property that on no word w the equality

∑
q∈QA ‖sw(q)‖p =∑

q∈QR ‖sw(q)‖p holds, then there exists a k-state UpFA M ′ recognizing the

complement language L̄.

Proof. Let M ′ = 〈Q,Σ, s0, δ, QR, QA〉. By swapping the sets QA and QR the
inequality

∑
q∈QA ‖sw(q)‖p >

∑
q∈QR ‖sw(q)‖p in the acceptance condition of

the automaton M ′ holds iff it did not hold for automaton M , therefore making
automaton M ′ accept the complement of the language of the automaton M .

Theorem 2.9. If a (d1, d2)-regulated k-state UpFA recognizes a language L,
then there is a (d1, d2 + 1)-regulated k + 1-state UpFA that recognizes L with
the property that there is no word w for which the equality

∑
q∈QA ‖sw(q)‖p =∑

q∈QR ‖sw(q)‖p holds.

Proof. As the automaton is (d1, d2)-regulated, if the sums
∑
q∈QA ‖sw(q)‖p and∑

q∈QR ‖sw(q)‖p are not equal, then they differ by at least p−d2 . We can add
to the automaton a new isolated rejecting state qε which at every step con-
tains amplitude pd2+1 therefore its norm is p−d2−1 (see Fig. 2.2). Therefore it
does not change the acceptance or rejectance of any word, but makes the sums∑
q∈QA ‖sw(q)‖p and

∑
q∈QR ‖sw(q)‖p different on every word.

qε
pd2+1

a ∈ Σ / 1

Figure 2.2: A rejecting state with a constant amplitude pd2+1 in every step.

From Theorem 2.8 and Theorem 2.9 follows the next corollary:

Corollary 2.10. If a (d1, d2)-regulated k-state UpFA recognizes a language L,
then there exists a (d1, d2 +1)-regulated (k+1)-state UpFA recognizing the com-
plement language L̄.

We now give an easy example of a language that shows a gap between the
state complexity of deterministic and ultrametric automata.

Let w = (w1, . . . , wm) ∈ {0, 1, . . . , k − 1}m. We consider two operations:

a) a cyclic shift: fk,ma (w1, w2, . . . , wm) = (wm, w1, w2, . . . , wm−1).

b) increasing the first element: fk,mb (w1, w2, . . . , wm) = ((w1 + 1) mod
k,w2, . . . , wm).
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Let x ∈ {a, b}n. We define fk,mx1x2...xn (w) = fk,mxn
(
· · · fk,mx2

(
fk,mx1

(w)
)
· · ·
)
.

We consider the following language

Lk,m =
{
x ∈ {a, b}∗

∣∣fk,mx (0m) = 0m
}

Theorem 2.11. Every deterministic finite automaton recognizing Lk,m needs
at least km states.

Proof. For every words x1, x2 ∈ {a, b}∗ such that fk,mx1
(0m) 6= fk,mx2

(0m) the
automaton cannot remember words x1, x2 in the same state because there exists
a suffix x′ ∈ {a, b}∗ such that fk,mx1x′

(0m) = 0m, but fk,mx2x′
(0m) 6= 0m and therefore

x1x
′ ∈ Lk,m, but x2x

′ /∈ Lk,m. Therefore the automaton needs at least km

states.

Theorem 2.12. For every prime p there is a regulated UpFA recognizing Lk,m
with (k + 1) ·m− 1 states.

Proof. The automaton has k ·m states wsi where i ∈ {1, . . . ,m}, s ∈ {0, . . . , k−
1}. w0

i are starting states with amplitude 1 and they are also the accepting
states.

The automaton is constructed in such way that after reading x the automa-
ton has amplitude 1 in the state wsi if fk,mx (0m)i = s and amplitude 0 in all
other wti (t 6= s).

Additionally the automaton has m − 1 rejecting states r1, . . . , rm−1 which
at every step have amplitude 1. Therefore

∑
q∈QR ‖sw(q)‖p = m− 1.

If the sum of the norms of the amplitudes in the accepting states is m then
the word is accepted, otherwise rejected. See Fig. 2.3.
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w0
1 w0

2 w0
3

. . . w0
m

a a a a

a

b b b

1 1 1 1

w1
1 w1

2 w1
3

. . . w1
m

a a a a

a

b b b

wk−1
1 wk−1

2 wk−1
3

. . . wk−1
m

a a a a

a

b b b

...

b

b

b

b

r1 r2 r3 . . . rm−1
1 1 1 1

a,b a,b a,b a,b

Figure 2.3: UpFA with (k + 1) ·m− 1 states recognizing Lk,m. Double circled
states are accepting and zigzagged states are rejecting. Double arrows show the
starting amplitude distribution. Other arrows show transitions on symbols a
and b. All transitions have amplitude 1.

We can do even better if we take advantage of the ultrametric properties of
the automaton.

Theorem 2.13. For every prime p > m there is a UpFA recognizing Lp,m with
m+ 1 states.

Proof. The automaton has m rejecting states wi where i ∈ {1, . . . ,m} and an
accepting starting state qa which has always amplitude 1. The automaton is
constructed in such way that after reading word x the state wi contains an
amplitude divisible by p iff fk,mx (0m)i = 0. Therefore, if x ∈ L the sum of
the norms of the amplitudes in the rejecting states

∑
q∈QR ‖sw(q)‖p is at most

m · p−1 < 1. Otherwise that sum is at least 1.
See Fig. 2.4.
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w1 w2 w3 . . . wm

qa

a a a a

b a

1

b b b b

a,b

Figure 2.4: UpFA with m+ 1 states recognizing Lk,m. The double circled state
is accepting and zigzagged states are rejecting. The double arrow shows the
starting amplitude distribution. Other arrows show transitions on symbols a
and b. All transitions have amplitude 1.

Now we will compare our definition with the original definition that first
appeared in [7]. Initially p-ultrametric finite automata were defined as follows
(we will call them threshold automata).

Definition 2.14. A finite p-ultrametric threshold automaton (UpFTA) is a
sextuple 〈Q,Σ, s0, δ, F,Λ〉, where

Q is a finite set – the set of states,

Σ is a finite set, ($ /∈ Σ) – the input alphabet,

q0 : Q→ Qp is the initial amplitude distribution,

δ : (Σ ∪ {$})×Q×Q→ Qp is the transition function,

F ⊆ Q is the set of final states,

Λ = (λ, �) is the acceptance condition where λ ∈ R is the acceptance
threshold and � ∈ {≤,≥}.

The automaton works in the same way as UpFA with the difference that after
the last symbol of the input word w, in the same way as the input symbols, the
end marker $ is processed obtaining the final amplitude distribution sw$. If the
sum of the p-norms of final amplitudes over final states is at least (or at most)
the threshold, i.e., if

∑
q∈F ‖sw$(q)‖p �λ, then the word w is said to be accepted,

otherwise – rejected.
A state of UpFTA is called regulated if there exist constants ρ, c such that for

every input word the p-norm of amplitude γ of this state is either 0 or bounded by
0 < ρ− c < ‖γ‖p < ρ+ c. A UpFTA is called regulated if all the p-adic numbers
in its initial distribution q0 and transition function δ are p-adic integers and all
of its states are regulated.

This definition differs from the way we earlier defined UpFA in Def. 2.3
in two aspects. First is the use of endmarker, and second is the acceptance
condition.

As the next theorem shows, the use of endmarker is not needed, as we can
construct an equivalent UpFTA without endmarker by increasing the number
of states at most twice:
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Theorem 2.15. For every UpFTA M = (Q,Σ, q0, δ, F,Λ) there exists a UpFTA
M ′ = (Q′,Σ, q′0, δ

′, F ′,Λ) with |Q| + |F | states such that for every word w:∑
q∈F ‖sw$(q)‖p =

∑
q∈F ′ ‖s′w(q)‖p, where s and s′ are the amplitude distribu-

tions of UpFTAs M and M ′, respectively.

Proof. The automaton M ′ is constructed by making a copy q′ of each final state
q ∈ F . We define the set of states to be Q′ = Q ∪ {q′ | q ∈ F}. The set of final
states of M ′ now contain only the copied final states: F ′ = {q′ | q ∈ F}.

The transition function δ′ coincides with δ when only states q ∈ Q are in-
volved, i.e. ∀a ∈ Σ ∀q1, q2 ∈ Q δ(a, q1, q2) = δ′(a, q1, q2). However for each
final state q′ ∈ F ′ the transition is defined as to simulate reading the cur-
rent symbol and the endmarker, i.e., ∀a ∈ Σ ∀q1 ∈ Q ∀q ∈ F δ′(a, q1, q

′) =∑
q2∈Q δ(a, q1, q2) · δ($, q2, q). From the final states q′ ∈ F ′ there are no outgo-

ing transitions: ∀a ∈ Σ ∀q′ ∈ F ′∀q2 ∈ Q′δ′(a, q′, q2) = 0.
Similarly we modify the initial distribution: ∀q ∈ Q q′0(q) = q0(q), ∀q′ ∈

F ′ q′0(q′) =
∑
q1∈Q q0(q1) · δ($, q1, q).

Therefore for the automaton M ′ the amplitudes in the states q ∈ Q after
some word w ∈ Σ∗ coincide with the respective amplitudes in the automaton M :
∀w ∈ Σ∗ ∀q ∈ Q s′w(q) = sw(q), but the amplitude in the states q′ ∈ F ′ coincide
with the respective amplitudes in M that would happen if the endmarker $
would be read: ∀w ∈ Σ∗ ∀q′ ∈ F ′ s′w(q′) = sw$(q).

In the next theorem we prove that UpFAs are as expressive as UpFTAs if
the threshold can be approximated by a number which can be written in base-p
with a finite number of digits.

Theorem 2.16. If a language L is recognized (without endmarker) by a UpFTA

M = (Q,Σ, q0, δ, F, (λ, �)) such that there exists λ′ =
∑b
i=a li · pi such that

∀w ∈ Σ∗
∑
q∈F ‖sw(q)‖p � λ ⇔

∑
q∈F ‖sw(q)‖p�̃λ′ (where ≤̃ is < and ≥̃ is >)

then there exists a UpFA M ′ with |Q|+
∑b
i=a li states which recognizes L.

Proof. Let l =
∑b
i=a li. If � is ≥ then M is modified to a UpFA M ′ by setting

QA = F and adding l rejecting states r1, . . . , rl so that on any word w ∈ Σ∗∑l
i=1 ‖sw(ri)‖p = λ′. Therefore a word w is accepted if

∑
q∈QA ‖sw(q)‖p > λ′

which coincides with the assumption in the formulation of the theorem.
If � is ≤ then M is modified similarly by setting QR = F and adding l

accepting states r1, . . . , rl so that on any word w ∈ Σ∗
∑l
i=1 ‖sw(ri)‖p = λ′.

Now a word w is accepted if
∑
q∈QR ‖sw(q)‖p < λ′ which again matches the

formulation of the theorem.
The states r1, . . . , rl are constructed so that for each a ≤ i ≤ b there are li

states with a starting amplitude p−i. The transitions transform state rj to rj
with amplitude 1. This ensures that on every w ∈ Σ∗

∑l
i=1 ‖sw(ri)‖p = λ′.

As the next theorem shows, we can always apply the previous theorem to a
regulated UpFTA as the required conditions hold.

Theorem 2.17. If a language L is recognized by a regulated UpFTA

M = (Q,Σ, q0, δ, F, (λ, �)) then there exists λ′ =
∑b
i=a li · pi such that

∀w ∈ Σ∗
∑
q∈F ‖sw(q)‖p � λ⇔

∑
q∈F ‖sw(q)‖p�̃λ′.



CHAPTER 2. ULTRAMETRIC AUTOMATA 45

Proof. As the automaton is regulated, for every state the norm of its amplitude
can take only a finite number of different values. Therefore the sum of the
norms of all final states can also take only a finite number of different values.
Therefore there is a gap between λ and the closest number to λ which does not
satisfy the acceptance condition.

2.4 One-Way Multi-Head Automata

In this section we prove that for every k there is a language that can be recog-
nized by a one-head ultrametric finite automaton and cannot be recognized by
any k-head non-deterministic finite automaton.

We define one-way non-deterministic (or deterministic) finite automaton as
a special case of a more general two-way k-head non-deterministic finite au-
tomaton. The two-way setting will be considered in the next section.

A two-way k-head non-deterministic finite automaton consists of an input
tape containing the input word on which the heads of the automaton can move
freely in both directions, not crossing the endmarkers. The tape is read-only.
We use the standard definition for the two-way k-head non-deterministic finite
automaton:

Definition 2.18 ([28]). A two-way non-deterministic k-head finite automaton
(2NFA(k)) is a sextuple 〈Q,Σ, k, q0, δ, F 〉, where

Q is a finite set – the set of states,

Σ is a finite set (., / /∈ Σ) – the input alphabet (. and / are the left and
right endmarkers, respectively),

k ≥ 1 is the number of heads,

q0 ∈ Q is the starting state,

δ : Q × (Σ ∪ {., /})k → 2Q×{−1,0,1}k is the partial transition function.
Whenever (q′, (d1, . . . , dk)) ∈ δ (q, (a1, . . . , ak)) is defined, then di ∈ {0, 1}
if ai = ., and di ∈ {−1, 0} if ai = /, for 1 ≤ i ≤ k,

F ⊆ Q is the set of accepting states.

At the beginning of work, a 2NFA(k) has all of its heads placed on the left
endmarker. A configuration of a 2NFA(k) in some moment in time t ≥ 0 is
a 3-tuple ct = (w, q, p) where w is the input word, q ∈ Q is the current state

and p = (p1, . . . , pk) ∈ {0, . . . , |w|+ 1}k gives the current head positions. The
initial configuration for input w is set to (w, q0, (0, . . . , 0)). The automaton
ends its work when the transition function δ is not defined for the current
configuration. A transition from one configuration to the next is denoted by
`. A transition (w, q, (p1, . . . , pk)) ` (w, q′, (p1 + d1, . . . , pk + dk)) is valid iff
(q′, (d1, . . . , dk)) ∈ δ (q, (ap1 , . . . apk)) where w = a1a2 . . . an is the input word
and a0 = . and an+1 = /. The reflexive transitive closure of ` is denoted by `∗.

A 2NFA(k) accepts a word w iff there exists a sequence of configurations that
results in automaton stopping in an accepting state if the input tape contains
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.w/. The language L(M) accepted by M consists of those and only those words
that are accepted by M . More precisely,

L(M) = {w ∈ Σ∗| (w, q0, (0, . . . , 0)) `∗ (w, q, (p1, . . . , pk)) , q ∈ F,
and M halts in (w, q, (p1, . . . , pk))} .

If for any state and k-tuple of symbols the transition function δ is either unde-
fined or singleton, then the automaton is said to be deterministic (2DFA(k)). If
the heads of the automaton never move left, then the automaton is defined to
be one-way. Nondeterministic and deterministic one-way k-head automata are
denoted by 1NFA(k) and 1DFA(k), respectively.

Strict hierarchies of classes have been shown for both one-way multi-head
deterministic and nondeterministic automata with regard to the head count of
the automata [28, 62]. In 1978, Yao and Rivest [62] used the language

L′k =
{
w1$w2$ . . . $w2k

∣∣wi ∈ {a, b}∗ ∧ wi = w2k+1−i for all 1 ≤ i ≤ k
}

to prove the separation of the class of languages that can be recognized by a
1DFA(k) from the class that can be recognized by a 1DFA(k + 1).

We will consider a similar language, Lk.

Theorem 2.19. For every k ≥ 1 ∈ N, there exists a language Lk such that:

(1) for every prime p there exists a 1UpFA(1) that recognizes Lk,

(2) Lk cannot be recognized by any 1NFA(k).

Proof. Let n =
(
k
2

)
+ 1. The sought language is

Lk = {w11w21 . . . 1w2n|wi ∈ {0m|m ≥ 1} ∧ wi = w2n−i+1} .

We will now prove that Lk satisfies the points of our theorem.
(1) We show that for an arbitrary language Lk, a 1UpFA(1) can be built

for every prime number p. The automaton starts in n different starting states
q1,1,1, q1,2,1, . . . , q1,n,1 with amplitude 1. Each of these states begins a compu-
tational path that is intended to accumulate amplitude in one of n different
rejecting states q2n,1,2, q2n,2,2, . . . , q2n,n,2. Every branch contains two kinds of
states—states of the 1st group qi,j,1 are responsible for generating amplitudes,
and states of the 2nd group qi,j,2 are intended for amplitude accumulation,
i ∈ [1, 2n] , j ∈ [1, n].

If 0 is read from the input and the automaton is in one of the 1st group
states qi,j,1, where i ≤ n, then the amplitude of the state remains the same and
with amplitude 1 the automaton goes to a 2nd group state, qi,j,2. By doing so,
the state’s accumulated amplitude is added to qi,j,2. If 0 is read in a 2nd group
state qi,j,2, the state’s amplitude remains the same. If 1 is read in a 1st group
state qi,j,1, where i < n, then the automaton with amplitude j + 1 transitions
to qi+1,j,1, thereby transitioning there with amplitude (j + 1) · |qi+1,j,1| (by |qi|,
we denote the amplitude of the state qi). In contrast, if 0 is read in the 1st
group state qi,j,1, where i > n, the amplitude of the state remains unchanged
and the transition to qi,j,2 is made with amplitude −1. If 1 is read in the 1st
group state qi,j,1, where i ≥ n, the transition to qi+1,j,1 is made with amplitude
−(j + 1). If 1 is read in a 2nd group state, a transition is made from qi,j,1 to
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qi+1,j,1, with amplitude 1. The exception is the last column of states, q2n,j,1

and q2n,j,2, which are responsible for reading in the last block of the word. In
this case, the transition if 1 is read is not defined. A schematic representation
of the described automaton is presented in Fig. 2.5.

As a result, if a word 0a110a210a31 . . . 10a2n was read, then each of the re-
jecting states q2n,j,2 has accumulated an amplitude equal to

a1+a2·(j+1)+a3·(j+1)2+· · ·+an·(j+1)n−1−an+1·(j+1)n−1−an+2·(j+1)n−2−· · ·−a2n,

which is equal to 0 if the word belongs to the language; i.e. if

a1 = a2n ∧ a2 = a2n−1 ∧ . . . ∧ an = an+1.

It follows that a word is in Lk iff the following equations hold:

a1 + a2 · 2 + a3 · 22 + · · ·+ an · 2n−1 − an+1 · 2n−1 − an+2 · 2n−2 − · · · − a2n = 0

a1 + a2 · 3 + a3 · 32 + · · ·+ an · 3n−1 − an+1 · 3n−1 − an+2 · 3n−2 − · · · − a2n = 0

a1 + a2 · 4 + a3 · 42 + · · ·+ an · 4n−1 − an+1 · 4n−1 − an+2 · 4n−2 − · · · − a2n = 0

· · ·
a1 + a2 · (n+ 1) + a3 · (n+ 1)2 + · · ·+ an · (n+ 1)n−1 − an+1 · (n+ 1)n−1

−an+2 · (n+ 1)n−2 − · · · − a2n = 0

rewriting

(a1 − a2n) + 2 · (a2 − a2n−1) + 22 · (a3 − a2n−2) + · · ·+ 2n−1 · (an − an+1) = 0

(a1 − a2n) + 3 · (a2 − a2n−1) + 32 · (a3 − a2n−2) + · · ·+ 3n−1 · (an − an+1) = 0

(a1 − a2n) + 4 · (a2 − a2n−1) + 42 · (a3 − a2n−2) + · · ·+ 4n−1 · (an − an+1) = 0

· · ·
(a1 − a2n) + (n+ 1) · (a2 − a2n−1) + (n+ 1)2 · (a3 − a2n−2) + · · ·

+(n+ 1)n−1 · (an − an+1) = 0

We see that the coefficients of the system form a Vandermonde matrix.
Therefore, its determinant is non-zero, and since the given system is homoge-
neous, only the trivial solution exists.

However, if the word does not belong to Lk, then no more than 4 lines can
hold true. However, even in this case at least one line will exist that is not equal
to 0. Otherwise the system would have a nontrivial solution. Therefore, a word
belongs to Lk iff the sum of the final amplitude norms of the rejecting states is
greater than 0.

There is an additional set of states a1, . . . , a2n which accumulate a small (in
terms of its norm) amplitude in an accepting state a2n therefore making the
automaton accept the language Lk.

(2) Proven by Freivalds [17], a proof for a similar language can also be found
in [62]. The idea of this proof relies on the fact that any two heads that have
been used to compare a pair cannot be used to compare another pair. This
implies that if the number of block pairs in a word n is greater than the number
of pairs of heads

(
k
2

)
, then the language cannot be recognized with k heads.
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q1,1,1 q2,1,1 . . . qn,1,1 qn+1,1,1 qn+2,1,1 . . . q2n,1,1

q1,1,2 q2,1,2 . . . qn,1,2 qn+1,1,2 qn+2,1,2 . . . q2n,1,2

1 1/2 1/2 1/2 1/1 1/ 1
2

1/ 1
2

1/ 1
2

0/1 0/1 0/1 0/1 0/1 0/1

0/1 0/1 0/1 0/−1 0/−1 0/−1

1/1 1/1 1/1 1/1 1/1 1/1 1/1

0/1 0/1 0/1 0/1 0/1 0/1

q1,2,1 q2,2,1 . . . qn,2,1 qn+1,2,1 qn+2,2,1 . . . q2n,2,1

q1,2,2 q2,2,2 . . . qn,2,2 qn+1,2,2 qn+2,2,2 . . . q2n,2,2

1 1/3 1/3 1/3 1/1 1/ 1
3

1/ 1
3

1/ 1
3

0/1 0/1 0/1 0/1 0/1 0/1

0/1 0/1 0/1 0/−1 0/−1 0/−1

1/1 1/1 1/1 1/1 1/1 1/1 1/1

0/1 0/1 0/1 0/1 0/1 0/1

q1,n,1 q2,n,1 . . . qn,n,1 qn+1,n,1 qn+2,n,1 . . . q2n,n,1

q1,n,2 q2,n,2 . . . qn,n,2 qn+1,n,2 qn+2,n,2 . . . q2n,n,2

1
1/n+1

1/n+1 1/n+1
1/1 1/ 1

n+1 1/ 1
n+1

1/ 1
n+1

0/1 0/1 0/1 0/1 0/1 0/1

0/1 0/1 0/1 0/−1 0/−1 0/−1

1/1 1/1 1/1 1/1 1/1 1/1 1/1

0/1 0/1 0/1 0/1 0/1 0/1

. . .

a1 a2 . . . an an+1 an+2 . . . a2n

0/p 0/p 0/p 0/p 0/p 0/p

1/p 1/p 1/p 1/p 1/p 1/p 1/p1

Figure 2.5: UpFA recognizing 0n10m10h1 · · · 10h10m10n. The double-circled
state is accepting and the zigzagged states are rejecting. Double arrows show
the starting amplitude distribution. Other arrows show the transitions. Label
a/γ on arrow from q to r means that δ(a, q, r) = γ.
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2.5 Two-Way Multi-Head Automata

Ultrametric two-way multi-head automata are defined by generalizing the defini-
tion of ultrametric one-head one-way automata in a natural way. The definition
of multi-head automata due to Holzer et al. [28] is used as well.

Definition 2.20. A finite k-head two-way p-ultrametric automaton (2UpFA(k))
is a septuple 〈Q,Σ, k, s0, δ, QA, QR〉 where

Q is a finite set of states,

Σ is a finite set (., / /∈ Σ)—the input alphabet (. and / are the left and
right endmarkers, respectively),

k ≥ 1 is the number of heads,

q0 : Q→ Qp is the initial distribution of amplitudes,

δ : Q × (Σ ∪ {., /})k × Q × {−1, 0, 1}k → Qp is the partial transition
function. Whenever δ (q, (a1, . . . , ak), q′, (d1, . . . , dk)) is defined and not
equal to 0, then di ∈ {0, 1} if ai = ., and di ∈ {−1, 0} if ai = /, for
1 ≤ i ≤ k,

QA, QR ⊆ Q are the sets of accepting and rejecting states, respectively.

2UpFA(k) works in a similar way as 1UpFA, with the exception that the
automaton now has k heads that can move freely, as in a 2NFA(k). In contrast
to 1UpFA, amplitudes are now given for a pair consisting of the positions of
the heads and a state. The amplitude of the state y ∈ Q with heads in posi-
tions (p1, . . . , pk) ∈ {0, . . . , |w|+ 1}k on the word w = a1 . . . an after the i-th
operation is given by

si(y, (p1, . . . , pk)) =
∑

x∈Q,p′1,...,p
′
k∈{0,1,...,n+1}:

δ
(
x,
(
ap′1

,...,ap′
k

)
,y,(p1−p′1,...,pk−p

′
k)

)
is defined

si−1 (x, (p′1, . . . , p
′
k)) · δ

(
x,
(
ap′1 , . . . , ap′k

)
, y, (p1 − p′1, . . . , pk − p′k)

)

Similarly as before, the acceptance of a word is determined by comparing
the final amplitude p-norm sum of the accepting and rejecting states. That is,
the word is accepted iff

∑
x∈QA

∥∥∥∥∥∥∥∥
∑
i∈N,

(p1,...,pk)∈Fi(x)

si(x, (p1, . . . , pk))

∥∥∥∥∥∥∥∥
p

>
∑
x∈QR

∥∥∥∥∥∥∥∥
∑
i∈N,

(p1,...,pk)∈Fi(x)

si(x, (p1, . . . , pk))

∥∥∥∥∥∥∥∥
p

where (p1, . . . , pk) ∈ Fi(x) iff the automaton with some amplitude halts in the
i-th step in the state x with the heads in positions p1, . . . , pk.

The class of languages recognized by 2UpFA(k) is denoted L (2UpFA(k)).
Ultrametric Turing machines are defined to be used as a device to assist in

proving results regarding multi-head automata classes. We modify the definition
for Turing machine by Hopcroft and Ullman [30].

Definition 2.21. A p-ultrametric Turing machine with k work tapes (UpTM(k)
or simply UpTM) is an octuple M = 〈Q,Σ, b,Γ, q0, δ, QA, QR〉 where:
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Q is a nonempty set of states,

Σ is a nonempty set—the input alphabet,

b /∈ Σ is the “empty” symbol,

Γ ⊇ Σ ∪ {b} is the working alphabet,

q0 : Q→ Qp is the initial amplitude distribution,

δ : Q × Γk × Q × (Γ× {−1, 0, 1})k → Qp is a partially-defined transition
function where −1 denotes moving the head to the left, 1 denotes mov-
ing the head to the right, 0 denotes not moving the head, and Qp is the
amplitude of the transition,

QA, QR ⊆ Q are the sets of accepting and rejecting states, respectively.

The class of languages recognized by a UpTM is denoted L (UpTM).
Similarly, as with ultrametric multi-head automata, the machine with a given

amplitude is in one of its possible configurations. However, now the configura-
tion consists of the state of the finite control, the position of the k heads, and
the contents of all k tapes. The amplitude with which the machine is in one of
its configurations in the i-th step is computed analogously as in the case with
ultrametric multi-head automata. The criteria for acceptance are analogous to
those of ultrametric multi-head automata.

Ultrametric multi-register automata are also used as an intermediate device
for proofs.

Definition 2.22. A finite p-ultrametric k register automaton (also referred to
as a machine ) (2UpRA(k)) consists of a p-ultrametric finite control and k
registers that can hold natural numbers. The automaton begins with the input
number in the first register with the specified starting amplitude distribution in

some of its states . A predicate
?
= 0 and the operations +1 or −1 can be applied

to a register. Each of the transitions of the finite control can have a predicate
or an operation associated with it that is triggered when the transition is made.
Acceptance criteria are analogous to those of ultrametric automata.

In the following we will show how to simulate an ultrametric multi-head
automaton by an ultrametric Turing machine. The techniques used here are
similar to the techniques used by Macarie [45] for probabilistic automata.

Without loss of generality, we can assume that the simulated automaton
has at most 2 transitions from each state and input symbol. We will show
how to construct a p-ultrametric 2-tape Turing machine that, having received
the description of a k-head p-ultrametric automaton as an input, will accept
exactly the same words as the automaton. We will consider only automata
recognizing unary languages, and we will show how to encode the description of
the automaton as a word in the form 12n , n ∈ N. Furthermore, we will require
that the amplitudes of the simulated automaton are p-constructible sets.

Definition 2.23. A set S of p-adic numbers is p-constructible if there exists
a p-ultrametric Turing machine that, having received a description of a number
x ∈ S as an input, reaches a marked state qu with amplitude x.
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A 2UpFA(k) can be described with a binary sequence denoting, in turn: the
number of states, the number of heads, the transitions between the states, and
their respective amplitudes.

The simulation is performed as follows: The 2UpFA(k) A with transitions
from a p-constructible set is simulated by a UpTM(2) T . T receives the de-
scription of A in unary alphabet as a word in the form 12n , n ∈ N. T starts
by reading the input word and deterministically (making transitions with am-
plitude 1) writes n in binary on the second tape, where n is the description of
the automaton A. Additionally, a space of size O(k · logm) is reserved (where
m is the length of the input word on which the automaton must be simulated)
for k counters denoting the positions of the heads of the automaton A. From
this point forward, only the second tape will be used (we will refer to it as the
work tape).

While processing the input word, the automaton A can be in different con-
figurations in parallel with different amplitudes. If A is in a configuration with
an amplitude a, T will simulate it by being in a configuration in which the
content of the work tape corresponds to the respective configuration of A with
the same amplitude a.

To show that T can simulate A in such a way, we must show that every
transition of A can be realized by T . If A has a transition from q1 to q2 with
an amplitude a1, and from q1 to q3 with an amplitude a2, then T being in a
configuration corresponding to q1 can make transitions to configurations corre-
sponding to q2 and q3 with amplitudes a1 and a2, respectively. This simulation
is accomplished by T branching into two branches, and in both of them writ-
ing on a special place on the tape d1 or d2, respectively, with an amplitude 1,
where d1 and d2 are the descriptions of the transitions and the amplitudes a1

and a2, respectively. This is done deterministically with amplitude 1. Next,
a subroutine is called that transitions to a marked state qu with an amplitude
a1 or a2. (Because all transitions of A are p-constructible, there exists such a
subroutine.) Subsequently, T changes the work tape so that it corresponds to
the respective transition (again, this is done deterministically with amplitude
1). Because the only transition that is accomplished with an amplitude other
than 1 is the transition to the state qu, after this procedure T is in a config-
uration corresponding to q2 with amplitude a1, and in a configuration q3 with
amplitude a2.

Monien [49] has proven that for finite deterministic and nondeterministic
automata, the language class that can be recognized using k heads is a proper
subclass to the class of languages that can be recognized if k + 1 heads are
allowed. Using similar methods, Macarie [45] has proven the same for finite
probabilistic automata. We prove here that the same holds for finite ultrametric
automata.

Definition 2.24. By Ĉ, we denote the subset of a language class
C containing only the words in the form 12n , n ∈ N, more precisely
Ĉ =

{
L ∈ C|∀x ∈ L ∃n ∈ N : x = 12n

}
Theorem 2.25. For every natural number k and prime p:

̂L (2UpFA(k)) $ ̂L (UpTM).

Proof. We will construct a special p-ultrametric Turing machine with 2 tapes
and log-space space complexity called T . We will show that its recognized



CHAPTER 2. ULTRAMETRIC AUTOMATA 52

language cannot be recognized by a p-ultrametric automata with k heads for
any k.

Similarly as in the previous section, we will construct T so that it simulates
a 2UpFA(k) A given in its input. The input word on which A will be simulated
will be the input of T , i.e. the description of A.

More precisely, T 1st tape contains 1m,m ∈ N, T checks whether the word
is in the form 12n , n ∈ N (if not, the word is rejected), and by taking up to
O(log(n)) space, writes n’s binary representation on the 2nd tape (we will refer
to it as the work tape ). It then checks whether n’s binary representation is
syntactically a valid 2UpFA(k); if not, the word is rejected. Then, T designates
a space on the work tape to be used for k counters that will be used to rep-
resent A’s head positions. Since the counter values can be in {0, . . . , 2n + 1},
O(k · log(2n)) ∼ O(k · n) space is required. All previous actions are performed
deterministically. Next, T is run on the input string similarly as it is shown in
the previous section. (The head of the first tape is not used anymore; instead, a
check is performed to determine whether or not the counters corresponding to
head positions are inside word boundaries.) Consequently, T is with respective
amplitudes in all of the possible configurations of A after processing the word.
Afterwards, T checks whether the contents of the work tape suggest that A is
in an accepting state, and halts in a rejecting state if A would have accepted
the word; T halts in an accepting state if A would have rejected the word.
Therefore, T yields the opposite result to that of A with the same amplitudes.

Let us consider the language L(T ) recognized by T . We can see that for every
2UpFA(k) denoted by J , there exists a word w such that it is either in L(T )
but not in L(J ), or it is in L(J ) but not in L(T ); namely, J ’s specification.

Similarly, as in [45] and [49], in the following proofs we will use the function

fk :
{

12n |n ∈ N
}
→
{

12n |n ∈ N
}

, where fk(12n) = 12k·n .
When fk is applied to a language, we refer to the following function: fk(L) =

{fk(x)|x ∈ L}.

Lemma 2.26. For every language L ∈ ̂L (UpTM) that is recognized by a 2-
tape UpTM in logarithmic space, there exists a natural number u such that:

fu(L) ∈ ̂L (2UpFA(3)).

Proof. We will show how a UpTM denoted by T that recognizes L can be trans-
formed into a UpTM called T ′, which can then be replaced by a p-ultrametric 3
register machine. From this, it easily follows that there exists a 2UpFA(3) that
recognizes a “stretched” variant of L, where stretching is done by fu.

We will construct T ′ so that it simulates T . T ′ will hold the following
information on its work tape:

• the binary information of the input word,

• T head position on the 1st tape (we will call it the input tape),

• T 2nd tape contents (we will call it the work tape) (requires O(logn)
space),

• T head position on the work tape.
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The simulation of T on T ′’s work tape is less complicated than in the case of
ultrametric automata, since T ′ can use the original finite control of T , and the
transitions are not required to be simulated on the tape. To simulate T , T ′ uses
only the work tape.

We can see that given T ′, a corresponding p-ultrametric 3 register machine
can be constructed. If the input is of the form 12n , then the register machine
starts with n in the first register and with 0 in the remaining registers. The
contents of the work tape of T ′ can be simulated by manipulating the registers
of the first two stored sub-words, v and hrev, and by using the third as an
auxiliary register. To do this, we use operations “add 1” and “divide by 2”,
which can be carried out by using the auxiliary register.

Since a position of a multi-head automaton directly corresponds to a number
in a register, and the simulated Turing machine has log-space space complexity,
a 3 register machine can be replaced with a p-ultrametric 3 head automaton.
However, since its heads cannot cross word boundaries and therefore cannot
simulate arbitrarily large numbers, the input words must be sufficiently long.
This is achieved by selecting a large enough u.

Lemma 2.27. For all languages L ∈ ̂L (UpTM) and all u, v ≥ 1, u, v ∈ N:

fu(L) ∈ ̂L (2UpFA(v))⇒ L ∈ ̂L (2UpFA(u · v)).

Proof. Let the 2UpFA(v) in the premise be A and the 2UpFA(u · v) in the
conclusion—A′.

Consider the operation of A on a word fu(l), l = 12n ∈ L, n ∈ N. The posi-
tion of each of v heads of A can be described with an integer hi ∈ [0, 2u·n − 1].
hi can be written in base 2n with u digits. As the position of each head of
A′ can be described with a digit in base 2n, each head of A can be simulated
with u heads of A′. As each movement of a head of A corresponds to move-
ment of heads of A′, the respective transitions can be accomplished with equal
amplitudes, and the accepting amplitudes of the words remain the same.

Note that this simulation is performed analogously as for deterministic au-
tomata in [49] and for probabilistic automata in [45].

Lemma 2.28. For every language L ∈ ̂L (UpTM) and every u > v > 1, u, v ∈
N:

fu+1(L) ∈ ̂L (2UpFA(v))⇒ fu(L) ∈ ̂L (2UpFA(v + 1)).

Proof. Let the 2UpFA(v) in the premise be A and the 2UpFA(v + 1) in the
conclusion—A′.

Consider the operation of A on a word fu+1(l), l = 12n ∈ L, n ∈ N.
The position of each of v heads of A on the input word can be described

with an integer hi ∈
[
0, 2(u+1)·n + 1

]
.

We will simulate the position hi in the automaton A′ with a head gi and an
additional number xi ∈ [0, 2n], so that hi = gi + xi · 2u·n. It is evident that the
values in the necessary interval can be denoted this way:

2u·n + (2n − 1) · 2u·n = 2u·n · (1 + (2n − 1)) = 2u·n+n = 2(u+1)·n.

All v numbers xi are coded with the (v + 1)-th head of A′, similarly to [49].
This can be accomplished if sufficient space exists on the tape of A′, specifically
if (2n)v < 2u·n, which holds as v < u.
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Again, as each movement of a head of A corresponds to the movement of
heads of A′, the respective transitions can be accomplished with equal ampli-
tudes, and the accepting amplitudes of the words remain the same.

The result concerning the superiority of a k + 1 head over k heads follows
from the previous lemmas and Theorem 2.25.

Theorem 2.29. For all k ≥ 2 ∈ N:

̂L (2UpFA(k)) ( ̂L (2UpFA(k + 1)).

Proof. We prove from the contrary by showing that if there exists such h ≥ 2

that ̂L (2UpFA(h)) = ̂L (2UpFA(h+ 1)), it implies ̂L (2UpFA(h · (h+ 1))) =
̂L (UpTM), which contradicts 2.25.

Take L ∈ ̂L (UpTM) for some prime p. Lemma 2.26 implies that there exists

m ∈ N such that fm(L) ∈ ̂L (2UpFA(3)). Consequently, fm(L) ∈ ̂L (2UpFA(h)).

Lemma 2.28 implies that if m > h + 1, then fm−1(L) ∈ ̂L (2UpFA(h+ 1)) =
̂L (2UpFA(h)). Reduce m by 1 and repeat until we get fm(L) ∈ ̂L (2UpFA(h))

and m = h + 1. Lemma 2.27 implies that if fm(L) ∈ ̂L (2UpFA(h)), then

L ∈ ̂L (2UpFA(h ·m)) = ̂L (2UpFA(h · (h+ 1))). Contradiction with Theorem
2.25.

Corollary 2.30. L (2UpFA(k)) ( L (2UpFA(k + 1)) .



Chapter 3

Counting with Automata

In this chapter, we investigate the descriptional complexity advantages for prob-
abilistic and ultrametric automata compared with deterministic, nondeterminis-
tic and alternating automata. We limit our focus to unary languages containing
exactly one word. We say that an automaton counts to n if it recognizes the
one-word language Cn = {1n}. We show that probabilistic and ultrametric au-
tomata for the counting problem can be very succinct, requiring only a constant
number of states in many models.

In Section 3.1 we summarize the known results about counting with non-
probabilistic (deterministic, nondeterministic and alternating) automata. In
Section 3.2 we show probabilistic automata for counting in different settings
(one-way, two-way, bounded-error, with probability 1 − ε). In Section 3.3 we
show an optimal regulated ultrametric automaton for counting.

3.1 Finite Automata

In this section we show known results about deterministic, nondeterministic and
alternating automata for counting. For self-containment purposes the simple
proofs or the proof ideas are also provided.

Definition 3.1. Cn = {1n}.
Cn is the language which corresponds to the problem countn defined in

Chapter 1. It is trivial to construct a 1DFA for counting.

Theorem 3.2. For each n there exists a 1DFA with n+1 states that recognizes
Cn.

Proof. Consider the automaton An = ({0, 1, . . . , n}, {1}, δn, 0, {n}) (see Fig.
3.1) where δn(i, 1) = i + 1 for all 0 ≤ i < n and undefined for i = n. It is easy
to see that it indeed accepts the language Cn.

0 1 2 3 . . . n

Figure 3.1: 1DFA with n + 1 states recognizing Cn. Double arrow shows the
starting state. The double-circled state is final.

55
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It is known that n+ 1 is also the necessary number of states even for 1NFA.

Theorem 3.3 ([43]). n+1 states are necessary for recognizing Cn with a 1NFA.

Proof. Assume that there are fewer than n+ 1 states for a 1NFA A recognizing
Cn. An accepting run on w = 1n must visit at least one state more than once;
therefore, it contains a cycle. It therefore follows that more than one word is
accepted by A.

However, alternating automata can count to n with fewer states.
In [44], Leiss proved that any deterministic n-state automaton has an equiv-

alent alternating automaton with dlog ne states. Therefore, as noted in [43],
Theorem 3.2 immediately implies the following theorem:

Theorem 3.4. For each n, there exists a 1AFA with dlog ne states that recog-
nizes Cn.

A 1AFA is called one-switch if it cannot move from an existential state to
a universal state. Thus, a one-switch 1AFA alternates between the branching
modes at most once.

In [10], Birget proved the following theorem:

Theorem 3.5 ([10]). For each n there exists a one-switch 1AFA that recognizes
Cn with O(log2 n/ log log n) states.

Proof. Consider the automaton in Fig. 3.2. The concept behind this automaton
is to count the remainder modulo of each of the first k primes p1, p2, . . . , pk such
that p1 · p2 · . . . · pk ≥ n. The first part of the automaton (states aij) accepts the
word 1m iff ∀1 ≤ i ≤ k m ≡ n (mod pi). By the Chinese Remainder Theorem,
the unique number less than p1 ·p2 · . . . ·pk that satisfies this property is n itself.

The second part of the automaton (states bij) does the opposite – it rejects
the subwords whose length is m such that ∀1 ≤ i ≤ k m ≡ n (mod pi). This
part is being run on every proper suffix of the input word.

Therefore, the automaton accepts exactly those words w = 1m for which
∀1 ≤ i ≤ k m ≡ n (mod pi) and no proper suffix of w has this property.
Therefore, the only word that is accepted is 1n.

It is known that the sum of the first k primes is
∑k
i=1 pi = 1

2k
2 ln k +

o(k2 ln k) and the product of the first k primes is
∏k
i=1 pi = e(1+o(1))k ln k (see

for example [6]). From this basis, one can derive that the described automaton
has O(log2 n/ log log n) states.
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∀1

a1
1 a1

0

a2
1 a2

2 a2
0

...

ak1 ak2 ak3 . . . ak0

∀2

∃

b10 b11

b22 b20 b21

...

bk2 bk3 bk4 . . . bk1

Figure 3.2: 1AFA recognizing Cn. The final states in the first set of cycles are
exactly those aij for which n ≡ j (mod pi). State bij is final iff aij is not. States
∀1 and ∀2 are universal; all others states are existential.

3.2 Probabilistic Automata

We show that 3 states are necessary and sufficient to count to n with a 1PFA
with an isolated cutpoint.

Theorem 3.6. For each n, there exists a 1PFA that recognizes Cn with 3 states
with an isolated cutpoint.

Proof. Consider the following automaton An = ({1, 2, 3}, {1},Mn, (1, 0, 0), {2})
with the transition matrix

Mn =

1− ε1 ε1 0
0 1− ε2 ε2

0 0 1


where ε1 and ε2 depend on n (see Fig. 3.3).
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a b c
ε1 ε2

1− ε1 1− ε2 1

Figure 3.3: 1PFA with 3 states recognizing Cn. The double arrow shows the
starting state (with probability 1). The double-circled state is final.

This is the same automaton as in Theorem 1.20 with the exception that the
state which shifted the threshold to 1

2 is dropped (we now allow an arbitrary
cutpoint λ instead of 1

2 ). As already shown in Theorem 1.20, by setting ε1 =

ε2 = 1 − e−1/n, we get an automaton that has the maximal probability of
acceptance on the word 1n, and the acceptance probability decreases as the
length of the word increases or decreases.

Again, note that although as n increases the difference between the proba-
bilities of the automaton An to accept 1n and 1n+1 (or 1n and 1n−1) decreases,
for every n there exist λ and δ > 0 such that the word 1n is accepted with
probability greater than λ+ δ, and the probability to accept any other word is
less than λ− δ, i.e. the cutpoint is isolated.

An example plot of the acceptance probability of words 1x with ε1 = ε2 =
1− e−

1
200 is shown in Fig. 3.4.

200 400 600 800 1000
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Figure 3.4: The probability of accepting 1x with ε1 = ε2 = 1− e−
1

200 .

Theorem 3.7. If n > 1 then any 1PFA that recognizes Cn has at least 3 states.

Proof. Assume there exists a 1PFA with 2 states recognizing Cn for n > 1.
Exactly one of the states must be final; otherwise, either all or none of the
words would be accepted. Without loss of generality, assume that the first state
is the non-final state and the second state is the final state. Let

M1 =

(
1− p p
m 1−m

)
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be the transition matrix of the automaton.

M2
1 =

(
1− p(2−m− p) p(2−m− p)
m(2−m− p) 1−m(2−m− p)

)

If the automaton is in a probability distribution

(
a

1− a

)
then after reading

two symbols (twice applying M1), the probability distribution becomes(
m(2−m− p) + a(m+ p− 1)2

1−m(2−m− p)− a(m+ p− 1)2

)
Notice that for every a ∈ [0, 1] the probability of being in a final state changes
monotonically after every two symbols read; therefore, the automaton cannot
recognize Cn for n > 1.

Notice that although each individual automaton An from Theorem 3.6 has
an isolated cutpoint, the isolation radius decreases as n increases.

In [19], Freivalds showed how to construct a series of 1PFAs for recognizing
Cn with a constant isolation radius.

Theorem 3.8 ([19]). For each n, there exists a 1PFA with O(log2 n/ log log n)
states that recognizes Cn with probability 3

5 .

Proof. The automaton is similar to the 1AFA from the proof of Thm. 3.5.
However, now the rejection of long words is performed by a probabilistic clock
rather than an alternating behavior. The automaton is defined as follows:

An = ({b, a1
0, . . . , a

k
pk−1}, 1, δ, (0,

1

k
, 0, . . . , 0,

1

k
, 0, . . . , 0, . . . ,

1

k
, 0, . . . , 0),

{a1
n mod p1 , . . . , a

k
n mod pk

})

with pi states ai0, . . . , a
i
pi−1 for each of the first k primes p1, . . . , pk (the value

of k is to be determined later). The states ai0, . . . , a
i
pi−1 form a cycle, which

counts the remainder modulo pi. State aij is final iff n ≡ j (mod pi). The

starting probability distribution of the automaton is 1
k in each of the states

a1
0, a

2
0, . . . , a

k
0 (see Fig. 3.5).

From every state there is a transition with probability 1− ε to the state b.
By the Chinese Remainder Theorem, if p1 < p2 < . . . < pk are the first k

primes and p1 · p2 · . . . · pl ≥ n, then ∀n′ < p1 · p2 · . . . · pl if n′ 6= n at most l− 1
of the following congruences are satisfied:

n′ ≡ n (mod p1)

n′ ≡ n (mod p2)

. . .

n′ ≡ n (mod pk)

Let l be the minimal number such that p1 · p2 · . . . · pl ≥ 2n.
Choose k = 3l.
Therefore, any word with length n′ < 2n ≤ p1 · p2 · . . . · pl will be accepted

with probability at most l−1
k < l

3l = 1
3 . Words with length n will be accepted
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with probability 1 − E(n) where E(n) is the probability to be in state b after
reading a word of length n. By the sum of geometric series, E(n) = ε+ (1− ε) ·
ε+(1−ε)2 ·ε+ · · ·+(1−ε)n−1 ·ε =

∑n−1
i=0 ε · (1− ε)i = ε 1−(1−ε)n

1−(1−ε) = 1−(1−ε)n.

Words of length n′ ≥ 2n will be accepted with probability at most 1− E(2n).

b

a1
0 a1

1

a2
0 a2

1 a2
2

a3
0 a3

1 a3
2 a3

3 a3
4

...

ak0 ak1 ak2 . . . akpk−1

1/k

1/k

1/k

1/k

ε

. . .

1

Figure 3.5: 1PFA recognizing Cn. The accepting states in each cycle are exactly
those that correspond to n mod pi For purposes of clarity, the transitions from
each state to state b with probability ε are not drawn. All of the unlabeled
transitions have probability 1− ε.

By choosing ε = 1 − n
√

3
5 we get 1 − E(n) = 3

5 and 1 − E(2n) = 9
25 < 2

5 .

Therefore, 1n is accepted with probability 3
5 , and every other word is accepted

with probability < 2
5 .

As the next theorem shows, for the two-way probabilistic finite automata,
even a constant number of states suffices to recognize Cn with a fixed probability.

Theorem 3.9. There exists a constant c such that for every ε > 0 and for each
n there exists a 2PFA that recognizes Cn with c states with probability 1− ε.

Proof. In [18], Freivalds showed for every ε > 0 how to construct a 2PFA with
cε states that recognizes the language Equal = {0n1n | n ≥ 1} with probability
1− ε. Yakaryılmaz and Say in [61] showed an improved construction where the
number of states for the 2PFA does not depend on ε.

Lemma 1.15 from Chapter 1 shows that if languages L,L′ ∈ S∗ are such
that there exists u ∈ S∗ such that ∀x ∈ S∗(x ∈ L′ ⇔ ux ∈ L) then a 2PFA A
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recognizing L can be modified into a 2PFA A′ recognizing L′ with the number
of states increasing by 1.

One can see that for Cn and Equal, there exists u (namely u = 0n) such
that ∀x ∈ {1}∗ (x ∈ Cn ⇔ ux ∈ Equal). We can therefore use Lemma 1.15
to construct an automaton with 1 extra state and then restrict it to a smaller
alphabet {1} to obtain an automaton recognizing Cn.

3.3 Ultrametric Automata

In this section we show an optimal UpFA for counting. Surprisingly only 2 states
are enough for a regulated UpFA to be able to count to n.

Theorem 3.10. For each n and each prime p there exists a regulated UpFA
that recognizes Cn with 2 states.

Proof. Consider the automaton An = ({a, b}, {1}, ((p− 1)pn, 1), {δ1}, {a}, {b})
(see Fig. 3.6) where

δ1 =

(
1 1
0 p

)
The accepting state a at every step has amplitude (p − 1)pn which gives

norm ‖(p−1)pn‖p = p−n. The amplitude of the rejecting state b is made of two
components—one which originated from its starting amplitude distribution (1)
and other which “flows” from the state a. In each step the current amplitude of
b is multiplied by p which in its p-adic representation means moving every digit
one position to left. Once the digit 1 from the starting distribution has moved
to position n (this happens on the word 1n) where the amplitudes from a are
positioned they both “collide” making a large decrease in the norm of the state
b. This happens exactly because (p−1)+(p−1)p+(p−1)p2+· · ·+(p−1)pk+1 =
pk+1. However on the next (and each subsequent) step the amplitudes flowing
from a determine the norm of the amplitude in state b.

See for example how the amplitudes and norms for states a and b change on
different words w with p = 7 and n = 5:

w sw(a) ‖sw(a)‖p sw(b) ‖sw(b)‖p
ε . . . 0600000 7−5 . . . 000000000000001 1
1 . . . 0600000 7−5 . . . 000000000600010 7−1

11 . . . 0600000 7−5 . . . 000000006600100 7−2

111 . . . 0600000 7−5 . . . 000000066601000 7−3

1111 . . . 0600000 7−5 . . . 000000666610000 7−4

11111 . . . 0600000 7−5 . . . 000010000000000 7−10

111111 . . . 0600000 7−5 . . . 000100000600000 7−5

1111111 . . . 0600000 7−5 . . . 001000006600000 7−5

11111111 . . . 0600000 7−5 . . . 010000066600000 7−5

Table 3.1: The norms and amplitudes of the states of automaton An on different
words w.

Therefore the word w = 1n is the only one on which ‖sw(a)‖p > ‖sw(b)‖p.
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The maximal norm of the state b is 1 (on the empty word ε), and the
minimum norm is p−2n (on the word 1n) therefore the automaton is regulated.

a

b

(p− 1)pn

1

1

p

1

Figure 3.6: Regulated UpFA with 2 states recognizing Cn. The double circled
state is accepting and the zigzagged state is rejecting. Double arrows show the
starting amplitude distribution. Edges show the transitions on symbol 1 with
labels indicating the transition amplitude.

The next theorem shows that this result is optimal and 2 states are needed
even for non-regulated UpFA.

Theorem 3.11. If n > 0 then any UpFA that recognizes Cn has at least 2
states.

Proof. Assume there exists a UpFA with 1 state a that recognizes Cn. Let
α = δ(1, a, a) be the coefficient that is multiplied to the amplitude of state a for
every symbol of the input word. The final amplitude after processing word 1m

in the state a is q0(a) · αm.
Assume α is a p-adic integer. If its rightmost p−adic digit is 0, then mul-

tiplying any p-adic number (except 0) by α decreases the norm. If α is not a
p-adic integer (it has some non-zero digits to the right of the p-adic comma),
then multiplication with α increases the norm. If α is a p-adic integer whose
rightmost p-adic digit is not 0, then multiplication with α does not change the
norm.

Therefore, as the length of the word increases, the norm increases or de-
creases monotonically or does not change, which eliminates the possibility to
recognize Cn for n > 0.



Chapter 4

Frequency Finite Automata

In this chapter we define and explore two-way frequency finite automata. Fre-
quency finite automata have already been considered earlier in one-way setting.
We show that the two-way version exhibits a different behavior and show the
relationship between two-way frequency finite automata and automata with lin-
early bounded counters.

The chapter is organized as follows. In Section 4.1 we give a quick intro-
duction to the frequency computation. In Section 4.2 we define the two-way
frequency finite automata and in Section 4.3 we prove results about them and
their relationship to automata with linearly bounded counters and finally, prove
that any language from LOGSPACE can be (m,n)-recognized by a two-way
frequency finite automaton with arbitrary high m

n .

4.1 Introduction

The notion of frequency computation was introduced by G. Rose [54]. For nat-
ural numbers m,n (1 ≤ m ≤ n) a function f : N → N is (m,n)-computable iff
there is a total recursive function T : Nn → Nn such that if T (x1, x2, . . . , xn) =
(y1, y2, . . . , yn) for pairwise distinct x1, x2, . . . , xn then at least m of the equa-
tions f(x1) = y1, f(x2) = y2, . . . , f(xn) = yn hold. If the function is of type
f : N→ {0, 1} then we speak of a special case of (m,n)-computable sets.

In his survey McNaughton [47] cited a natural question by Myhill, for which
values of m,n the (m,n)-computable functions are recursive. It was answered
by in 1963 by Trakhtenbrot [57] by showing that a (m,n)-computable function
f is recursive iff 2m > n. In particular there are uncountably many (1, 2)-
computable functions (and sets).

For the case when 2m ≤ n and 2m′ ≤ n′ Degtev [13] showed some spe-
cial cases where (m,n)-computable sets are different from (m′, n′)-computable
sets. Later Kummer and Stephan [42] showed that for any (m,n) 6= (m′, n′)
with 2m ≤ n and 2m′ ≤ n′ the classes of (m,n)-computable sets and (m′, n′)-
computable sets are different.

A natural approach to further explore the frequency computation is to
add some restrictions on the resources (time, space) of the frequency algo-
rithm. Polynomial-time frequency computations were considered by Kummer
and Stephan [42] and later by Hinrichs and Wechsung [27].
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Restricting the computation to a deterministic finite automaton gives rise
to the notion of regular frequency computation. Frequency computation with
a deterministic finite automaton was studied by Kinber [37], and subsequently
by Austinat et al. [4, 3, 5]. It turns out that for finite automata the analog
of Trakhtenbrot’s theorem holds – with frequency (m,n) with 2m > n only
regular languages can be recognized, and there exist uncountably many (1, 2)-
computable languages. Freivalds et al. [22] examined the state complexity of
frequency finite automata.

All of the previously mentioned research on frequency finite automata consid-
ered one-way deterministic finite automaton which in each step simultaneously
reads exactly one symbol from every input tape (and the shorter input words are
padded with a special symbol $ to make all input words of the same length). In
this chapter we introduce and examine two-way finite automata which can move
their heads asynchronously on the input tapes. Although classical two-way fi-
nite deterministic automata can only recognize regular languages, it turns out
that for frequency computation for any n > 0 even with the frequency (n−1, n)
a larger class of languages can be (n− 1, n)-recognized.

4.2 Definitions

Definition 4.1. For natural numbers m,n (1 ≤ m ≤ n) a two-way (m,n)-
frequency finite automaton ((m,n)-2FFA) is a tuple A = (Q,Σ, δ, q0, F ), where

Q is the finite set of states,

Σ is the input alphabet,

δ : Q× (Σ ∪ {`,a})n → Q× {L,N,R}n is the transition function, where
`,a /∈ Σ are the left and right endmarkers, respectively,

q0 ∈ Q is the starting state, and

F : Q→ {0, 1}n is the acceptance function.

The automaton has n input tapes and n two-way heads – one for each tape.
It can move the heads asynchronously on the input tapes (but the heads must
stay within the words boundaries).

The n input words enclosed with the endmarkers are placed on the n tapes
of the automaton. The automaton is started in the starting state q0 with all its
heads on the first letters of all input words. At each step the transition function
δ is applied.

If q is the current state of the automaton and a1, . . . , an are the symbols
under its heads, and δ(q, (a1, . . . , an)) = (q′, (d1, . . . , dn)) then the next state is
q′ and for each 1 ≤ i ≤ n the i-th head is moved to the left, stays in the same
position or is moved to the right, if di is L, N or R, respectively. If ai = ` or
ai = a then di ∈ {N,R} or di ∈ {L,N}, respectively, with the exception that if
for all 1 ≤ i ≤ n the ai = a the automaton is allowed to make a transition with
di = R for all 1 ≤ i ≤ n, in which case we say that the automaton has stopped
in state q′ and given an output F (q′).

Therefore the output of the automaton on input words x1, . . . , xn is
F (δ∗(q0, (`x1a, . . . ,`xna))) where δ∗ is the natural extension of δ to words.
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We say that a language L ⊆ Σ∗ is recognized by an (m,n)-2FFA A if for
every n distinct input words x1, . . . , xn ∈ Σ∗ the automaton A when started
on x1, . . . , xn gives an output (y1, . . . , yn) ∈ {0, 1}n such that at least m of the
following hold:

y1 = 1 ⇔ x1 ∈ L
y2 = 1 ⇔ x2 ∈ L

...

yn = 1 ⇔ xn ∈ L

It should be noted that it is possible for an (m,n)-2FFA to recognize more
than 1 language.

Definition 4.2. For an automaton class X we define L (X ) as the class of
languages recognizable by some automaton from the class X :

L (X ) = {L | ∃A ∈ X A recognizes L}

Definition 4.3. REG = L (1DFA)

4.3 Results

As the next theorem shows, with the maximal frequency (n, n) only regular
languages can be recognized.

Theorem 4.4. L ((n, n)-2FFA) = L ((1, 1)-2FFA) = REG

Proof. We will show that it is possible to build a (1, 1)-2FFA, say A1, which
utilizes the fact that the language can be recognized by an (n, n)-2FFA, say A,
therefore L ((1, 1)-2FFA) ⊇ L ((n, n)-2FFA). Let w1, . . . , wn−1 ∈ Σ∗ be some
fixed words. A1 when given an input x can simulate the computation of A
on n − 1 fixed inputs w1, . . . , wn−1 and x as the n-th input and give the same
output as A’s n-th output. As the words w1, . . . , wn−1 are fixed, they can be
built in the states of A1 and therefore do not give any advantage to A when
recognizing L. See Figure 4.1 for a schematic representation.

Also if there is a (1, 1)-2FFA that recognizes L, then it is possible to build
an (n, n)-2FFA recognizing L which applies the (1, 1)-algorithm to each of the
tapes separately, therefore L ((n, n)-2FFA) ⊇ L ((1, 1)-2FFA).

As (1, 1)-2FFA is essentially a 2DFA, it follows that L ((n, n)-2FFA) =
L ((1, 1)-2FFA) = L (2DFA) = REG.



CHAPTER 4. FREQUENCY FINITE AUTOMATA 66

w1

w2

...

wn−1

x

y1

y2

...

yn−1

y

A

A1

Figure 4.1: A schematic representation of (1, 1)-2FFA A1 which simulates
(n, n)-2FFA A.

It turns out that with m < n the (m,n)-2FFAs are related to finite automata
with linearly bounded counters.

Definition 4.5. For any k ≥ 1, a two-way deterministic k-counter automaton
(2CA(k)) is a 2DFA equipped with k counters. The values of the counters can be
incremented and decreased by 1 and checked for 0. The values of the counters
are strictly non-negative, i.e. the counter cannot be decreased if the counter
already contains 0.

If the value of the counter never exceeds the length of the input then we call
the counter linearly bounded. We denote an automaton with k linearly bounded
counters by 2BCA(k).

If a language can be recognized with a 2BCA(k) then for any n > k it can
be recognized with an (n− k, n)-2FFA.

Theorem 4.6. For n > k:

L ((n− k, n)-2FFA) ⊇ L (2BCA(k))

Proof. The idea of the proof is that the (n − k, n)-2FFA can determine which
are the k longest words of the n input words and then use them as linearly
bounded counters when recognizing each of the n− k other words.

In the beginning the automaton sweeps over the input words to determine
k longest words (if there are more than k such words (i.e., some of the words
are of equal length), it chooses the first k). Then it processes each of the n− k
shortest words separately, one by one, using the chosen k longest words as
counters. For each word used as a counter, the automaton positions its head on
the left endmarker `, representing the counter value 0. Increasing the counter
is implemented by moving the head one position to the right, and decreasing
– one position to the left (if the symbol under the head is not `). Checking
for zero can be done by checking if the symbol under the head is `. As the
counters are linearly bounded, the length of the longest words suffices to store
the appropriate value of the counter when using them for each of the shorter
words.
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It is well known that an automaton with even 2 unbounded counters can
already simulate universal computation of a Turing machine [48]. However the
situation with linearly bounded counters is very different.

It can be easily seen that a deterministic multi-head automaton with k + 1
heads can simulate a 2BCA(k) by using the positions of k heads to store the
values of the counters. For the other direction, it was proved in [52] that for
special class of languages, called bounded languages (see the definition below),
a 2BCA(k) can recognize the same languages as deterministic automaton with
k + 1 heads.

Definition 4.7. A language L ⊆ Σ∗ is bounded if L ⊆ a∗1a∗2 . . . a∗m for distinct
symbols a1, a2, . . . , am ∈ Σ.

Therefore a 2BCA(1) for languages over a unary alphabet are equivalent to
an automaton with 2 heads. An alternative representation is by the automata
over two-dimensional input tape (picture walking automata) recognizing squares
of size n× n for different n. Such automata (in one representation or another)
are studied in [51, 34, 35, 9] and others. It has been proven that such automata
can recognize some highly non-trivial languages.

Corollary 4.8. For any n > 1 the languages{
12m | m ≥ 0

}
,{

122m | m ≥ 0
}

,{
142m

2

| m ≥ 0
}

,{
111p | p is a prime

}
,{

0m1m
2 | m ≥ 0

}
,{

0m12m | m ≥ 0
}

can be recognized by an (n− 1, n)-2FFA.

An open question is whether an (n−k, n)-2FFA can recognize any language
that cannot be recognized by k linearly bounded counters. The following theo-
rem provides a sufficient condition for it.

Theorem 4.9.

(L (2BCA(k + 1)) \ L (2BCA(k))) ∩ L ((1, k + 1)-2FFA) 6= ∅ ⇒
∀n>k L ((n− k, n)-2FFA) ) L (2BCA(k))

Proof. We will show that if there is a language L such that:

(a) L is recognizable by a 2BCA(k + 1),

(b) L is not recognizable by a 2BCA(k), and

(c) L is recognizable by a (1, k + 1)-2FFA,

then:
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(i) for every n > k, L is recognizable by an (n− k, n)-2FFA

(ii) L is not recognizable by a 2BCA(k).

The (ii) part of the conclusion actually is also the assumption (b), therefore we
only have to show (i) that L is recognizable by an (n− k, n)-2FFA.

The idea is again simple. The (n− k, n)-2FFA uses the k + 1 longest words
as counters to determine whether the n−k−1 shortest words belong to L (as L
can be recognized with k+ 1 linearly bounded counters by the assumption (a)),
similarly as in the proof of Theorem 4.6. When the membership of the n−k−1
shortest words are determined, the automaton on the k + 1 longest words that
were used as counters applies the (1, k + 1)-recognizing algorithm (from the
assumption (c)). Therefore the automaton correctly (n−k, n)-recognizes L.

Let LOGSPACE = DSPACE(log n) be the class of languages recognizable
by a deterministic Turing machine in space O(log n). It is known that automata
with linearly bounded counters characterize LOGSPACE, i.e. LOGSPACE =⋃
k>1 L (2BCA(k)) (see [29] for the observation of this equality).

Corollary 4.10.

∀L ∈ LOGSPACE ∃k ∀n > k L ∈ L ((n− k, n)-2FFA)

This result shows that the frequency expressed as a fraction m
n does not

describe the power of (m,n)-computability because for any L ∈ LOGSPACE
this fraction can be made arbitrary close to 1. In this case the number of
allowed errors n−m seems to be more appropriate indicator of the capabilities
of (m,n)-computability.



Part II

Unconventional Algorithms

69



Overview of Part II

In this part we perturbate the definition of an algorithm in two different ways
and inspect the properties of the resulting unconventional types of computa-
tions.

In Chapter 5 we introduce ultrametric query algorithms which use p-adic
numbers to describe the branching of a query algorithm. We investigate the
respective complexity measure – ultrametric query complexity. We show that
unrestricted ultrametric query algorithms are very powerful, for some functions
requiring only 1 query. We also show that the exact ultrametric query complex-
ity of a Boolean function is at most its polynomial degree, which means that it
is at most 2 times larger than the exact quantum query complexity.

In Chapter 6 we generalize the notion of frequency computation to structured
frequency computation. For the classical frequency computation an important
threshold was 1

2 – if the frequency m
n ≤

1
2 then a continuum of sets can be

(m,n)-computed, but with m
n > 1

2 the (m,n)-computable sets are exactly the
recursive sets. For the structured frequency computation we show a somewhat

similar threshold of
√
n
n –we show a structure S of size O(

√
n) such that only

recursive sets can be S-computed, and show that any overlapping structure (a
condition that implies that only recursive sets can be S-computed) has size at
least

√
n. We also examine the graph frequency computation in which the size

of the structure is fixed to 2 and therefore conveniently described by the edges
of a graph.
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Chapter 5

Ultrametric Query
Algorithms

In this chapter we introduce ultrametric query algorithms and prove some results
about ultrametric query complexity. The notion of ultrametric query algorithms
is based on p-adic numbers. The p-adics were also used in Chapter 2 to define
ultrametric automata.

The chapter is organized as follows. In Section 5.1 we give some introduction
to query algorithms and query complexity. In Section 5.2 we define ultrametric
query algorithms, and in Section 5.3 we prove results about them.

5.1 Query Algorithms

Conventionally the query algorithm model considers a Boolean function f :
{0, 1}n → {0, 1} with the values of its arguments x1, x2, . . . , xn locked in a black
box. The definition of the function is known, but the values of the arguments
are unknown. Queries can be made to access the values of arguments in the
black box, with each query returning the value of one argument. The task of the
algorithm is to compute the result of f(x1, x2, . . . , xn) by making as few queries
as possible. Each query can be dependent on the results of previous queries.

Deterministic query algorithms can be represented by binary decision trees.
For each query there are exactly 2 branches that represent the next actions
carried out by the algorithm depending on whether the queried variable was 0
or 1. The complexity of an algorithm is equal to the greatest number of queries
made to compute the result of the function on arbitrary input data (the depth of
the decision tree). The deterministic query complexity of a function f (denoted
by D(f)) is defined as the minimum complexity of an algorithm over all possible
algorithms which compute f .

Randomized query algorithms on the other hand are not necessarily binary.
Each query can be followed by an arbitrary number of branches each carried
out with a probability between 0 and 1 with the sum of probabilities for each
result of the query being equal to 1. On each input x the randomized decision
tree outputs 0 or 1 with certain probability. We say that randomized decision
tree computes f with bounded-error if its output equals f(x) with probability
at least 2

3 for all x ∈ {0, 1}n, and the tree computes f exactly if its output
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equals f(x) with probability 1 for all x ∈ {0, 1}n. R2(f) denotes the maximum
number of queries made by an optimal randomized decision tree that computes f
with bounded-error [11]. R0(f) denotes the expected number of queries (on the
worst-case input) made by an optimal randomized decision tree that computes
f exactly.

In quantum query complexity the variables are allowed to be queried in su-
perposition. The basis states of an algorithm are |i, b, z〉. A query of the input
is a unitary transformation O which maps a state |i, b, z〉 to |i, b ⊕ xi, z〉. A
T -query quantum decision tree corresponds to a sequence of unitary transfor-
mations U0, O, U1, O, U2, O, . . . , O, UT−1, O, UT where U0, U1, . . . , UT are fixed
unitary transformations that do not depend on x. The output is obtained by
measuring the final state and outputting the rightmost bit of the observed basis
state. We say that a quantum decision tree computes f with bounded-error
if the output equals f(x) with probability at least 2

3 , for all x ∈ {0, 1}n. The
tree computes f exactly if the output equals f(x) with probability 1, for all
x ∈ {0, 1}n. QE(f) denotes the number of queries of an optimal quantum de-
cision tree that computes f exactly, and Q2(f) is the number of queries of an
optimal quantum decision tree that computes f with bounded-error [11].

5.2 p-ultrametric Query Algorithms

The definition of p-ultrametric query algorithms is based on the definition of
probabilistic query algorithms in which probabilities are replaced with rational
number amplitudes. The amplitude of a state is computed similarly to proba-
bility to reach the state in a probabilistic algorithm - when the algorithm transi-
tions from state A to B, the amplitude of state A is multiplied by the transition’s
amplitude, and the result is used as the amplitude of state B. If B has multiple
incoming transitions, multiplication is performed on each state/transition pair
separately and the results are added together to form the amplitude of B. The
algorithm also has one or more end states, with no outgoing transitions. The
result of the algorithm is computed by computing the p-norm of the amplitudes
of the end states. The algorithm returns a result 0 or 1 depending on whether
the p-norm exceeds a previously defined threshold value.

The algorithm model obtained this way is in many ways similar to the model
of quantum query algorithms since amplitudes in both models are treated like-
wise [1] [60]. Also the complexity of a p-ultrametric query algorithm is defined
similarly as the maximum number of consequent queries over all branches.

A p-ultrametric algorithm is described by a directed acyclic graph (DAG).
There is exactly one vertex (root) which has no incoming edges. The nodes
with no outgoing edges are leafs and they are the final (accepting) states of the
algorithm. The inner nodes can be of two types—ones which query the input
variables and others which do not.

Definition 5.1 ([21]). The total amplitude of the root is defined to be 1. Fur-
thermore, let v be a node at depth d in the DAG, let α be its total amplitude, and
let β1, . . . , βk be the amplitudes corresponding to the outgoing edges e1, . . . , ek
of v. Let v1, . . . , vk be the nodes where the edges e1, . . . , ek point to. Then the
total amplitude of vl, l ∈ {1, . . . , k}, is defined as follows.

1. If the indegree of vl is one, then its total amplitude is αβl.
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2. If the indegree of vl is larger than one, i.e., if two or more computation
paths are joined, say m paths, then let α, γ2, . . . , γm be the corresponding
total amplitudes of the predecessors of vl and let βl, δ2, . . . , δm be the am-
plitudes of the incoming edges The total amplitude of the node vl is then
defined to be αβl + δ2γ2 + · · ·+ δmγm.

At the end of the algorithm the norms of the amplitudes in the final states
are summed to obtain a value which is then compared with the threshold value.

Let L be the set of leaves of the DAG representing the p-ultrametric query al-
gorithm and let α(v) denote the total amplitude of a state v. Then if

∑
v∈L ‖v‖p

exceeds the threshold λ then the algorithm outputs 1, otherwise 0. We say that
an algorithm A computes a function f : {0, 1}n → {0, 1} if on every input
x ∈ {0, 1}n its output coincides with the value of the function on this input.

A special case of p-ultrametric query algorithms are the algorithm for which
the DAG contains exactly one leaf.

Definition 5.2. We say that a p-ultrametric query algorithm is one-endpoint
if it has exactly one accepting state.

Note that if all the transition amplitudes of a p-ultrametric query algorithm
are p-adic integers then the amplitudes at any state are p-adic integers as well.
Therefore, if such algorithm is one-endpoint then the norm of the final state is
always between 0 and 1 (inclusive), similarly as the probability in quantum and
probabilistic query algorithms.

Definition 5.3. We say that a p-ultrametric query algorithm is exact if for
every input the sum of norms of the final amplitudes is either 0 or 1.

The p-ultrametric query complexity (denoted by Up(f)) of a function f is the
complexity of an optimal p-ultrametric query algorithm which computes f . The
exact p-ultrametric query complexity (denoted by Up,E(f)) of a function f is the
complexity of an optimal p-ultrametric query algorithm which exactly computes
f . We denote the corresponding complexities for one-endpoint algorithms by
U1
p (f) and U1

p,E(f). Of course, for every p and f it holds that Up(f) ≤ Up,E(f) ≤
U1
p,E(f) and Up(f) ≤ U1

p (f).
The algorithms described in this chapter are depicted using the following

notation. A circle represents a state of the algorithm. If one or more variables
are queried by the algorithm at this state, they are indicated in the circle. A
double-circled state represents an end state of the algorithm. Lines represent
transitions between states with the labels representing the transition amplitudes.
If a transition is made only for some specific values of the queried variables, it
is specified in the label.

5.3 Results

Ultrametric realizations of query algorithms for different Boolean functions show
a dramatic decrease in complexity when compared to corresponding determin-
istic query algorithms.

It is known that any Boolean function can be represented by a multilinear
real polynomial and this representation is unique for any Boolean function.
Let deg(f) be the degree of the unique multilinear polynomial representing the
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Boolean function f . The degree is polynomially related to the query complexity
measures (when considering total Boolean functions). It is known that deg(f) ≤
D(f) ≤ 2deg(f)4 and also deg(f) ≤ 2QE(f) [50, 11].

The next theorem shows that U1
p,E(f) ≤ deg(f):

Theorem 5.4. For every function f with deg(f) = k, for every prime p there
exists a one-endpoint exact p-ultrametric query algorithm computing the function
f with complexity k.

Proof. It is easy to see that the coefficients of the polynomial representation of a
Boolean function are always integers. The algorithms makes a branch for every
term in the polynomial with an amplitude that corresponds to the coefficient
of this term. In that branch it queries all the variables in the term and if they
are all equal to 1 then makes a transition to the final state. It follows that the
final state contains amplitude 1 if f(x) = 1 and 0 otherwise. As for any p it
holds that ‖0‖p = 0 and ‖1‖p = 1, the algorithm exactly computes the function
f .

Corollary 5.5. U1
p,E(f) ≤ 2QE(f)

However for some functions we can do even better. For example let us
consider the n-ary XOR function which computes the parity of n bits (let us
denote it by XORn). It is known that deg(XORn) = n and quantumly XOR of
n bits can be exactly calculated with

⌈
n
2

⌉
queries, i.e., QE(XORn) =

⌈
n
2

⌉
. Most

notably a quantum query algorithm can exactly compute the binary XOR2 with
just 1 query. We show that for any n there exists a 2-ultrametric algorithm with
complexity 1 which computes XORn.

Theorem 5.6. For every n there exists a one-endpoint 2-ultrametric query
algorithm with complexity 1 for XORn.

Proof. The algorithm splits into n branches with amplitude 1 and in each of
them queries one variable. If the value of the queried variable xi is equal to 1,
this amplitude goes to the final state. If XORn(x) = 1 then the rightmost digit
in the 2-adic representation of the amplitude in final state is 1 and therefore the
norm is equal to 1. Otherwise the rightmost digit is 0 and the norm is less or
equal to 1

2 . Therefore the threshold value can be chosen to be between 1
2 and 1.

The algorithm is depicted in Fig. 5.1.
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Figure 5.1: 2-ultrametric query algorithm for XORn.

The 2-ultrametric algorithm for XORn hints for a more general way of
constructing 2-ultrametric algorithms with a small complexity.

Let us denote by deg2(f) the binary polynomial degree of function f , i.e.,
the minimal degree of a polynomial p(x) such that p(x) ≡ f(x) (mod 2).

Theorem 5.7. For every function f with deg2(f) = k, there exists a one-
endpoint 2-ultrametric query algorithm with complexity k for the function f .

Proof. The algorithm is similar to the algorithm for the representing polynomial
with the difference that now at the final state the amplitude is not equal to the
function value but merely congruent to it modulo 2. It is easy to see that the
coefficients of the binary polynomial representation of a Boolean function are
also integers. The algorithms makes a branch for every term in the polynomial
with an amplitude that corresponds to the coefficient of this term. In that
branch it queries all the variables in the term and if they are all equal to 1 then
makes a transition to the final state. It follows that the final state contains
amplitude α with α ≡ 0 (mod 2) if f(x) = 1 and α ≡ 1 (mod 2) otherwise.

For any α ≡ 0 (mod 2) it holds that ‖α‖2 ≤ 1
2 and for any α ≡ 1 (mod 2),

‖α‖2 = 1. Therefore setting the threshold to a value between 1
2 and 1 makes

the algorithm compute function f .

However, for some functions we can do even better that that. For example if
we consider the n-ary OR function (ORn) it can be shown that the deterministic
query complexity of this function is n and quantum query complexity of this
function is O(

√
n). However, for every p > n a corresponding one-endpoint

exact p-ultrametric query algorithm can be constructed with complexity equal
to 1:

Theorem 5.8. For every prime p > n there exists a one-endpoint exact p-
ultrametric query algorithm with complexity 1 for ORn.
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Figure 5.2: p-ultrametric query algorithm for ORn.

Proof. The algorithm splits into n branches with amplitude 1 and in each of
them queries one variable. If the value of the queried variable xi is equal to 1,
this amplitude goes to the final state.

If ORn(x) = 1 then the final state contains amplitude α which can be
represented by a natural number k with 1 ≤ k < p, therefore ‖α‖p = 1. If
ORn(x) = 0 then the final state contains amplitude 0 and ‖0‖p = 0. Therefore,
the algorithm exactly computes ORn

The algorithm is depicted in Fig. 5.2. Note that the DAG of the algorithm
looks exactly the same as the DAG of the algorithm for XORn. The only
difference is the choice of the parameter p and the threshold value.

An interesting class of functions are those for which there exist p-ultrametric
query algorithms with a small complexity for a specific p.

Let us consider the following function. Denote by x = xnxn−1 . . . x1 the num-
ber x1 +2x2 +22x3 + · · ·+2n−1xn whose binary representation is xnxn−1 . . . x1.
The function is defined as follows:

NDIVn,p(x) =

{
0, if the number xnxn−1 . . . x1 is divisible by p

1, otherwise

Theorem 5.9. For any n and any prime p there exists a one-endpoint p-
ultrametric query algorithm with complexity 1 that computes NDIVn,p.

Proof. The algorithm splits into n branches with amplitudes 20, 21, 22, . . . , 2n−1

and in each of them queries one variable. If the value of the queried variable xi
is equal to 1, this amplitude goes to the final state. Therefore the amplitude in
the final state equals x = x1 + 2x2 + 22x3 + · · ·+ 2n−1xn. If it not divisible by
p then the norm of the amplitude is equal to 1, otherwise the norm is at most
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Figure 5.3: p-ultrametric query algorithm for NDIVn,p.

1
p . Therefore a threshold value between 1

p and 1 gives a p-ultrametric query
algorithm that computes NDIVn,p. The algorithm is depicted in Fig. 5.3.



Chapter 6

Structured Frequency
Algorithms

In this chapter we introduce the notion of structured frequency algorithms by
modifying the original definition given by G. Rose in 1960 [54].

The chapter is organized as follows. In Section 6.1 we give an introduction
and define the structured frequency computation. In Section 6.2 we show that
by using a structure defined by a projective plane we can require only O(

√
n)

answers to be correct and still be able to compute only recursive sets – a coun-
terpart to the Trakhtenbrot’s result about frequency m

n > 1
2 . In Section 6.3 we

consider structures defined by graphs.
The results of this chapter are a joint work in cooperation with Jānis Iraids

and Rūsiņš Freivalds.

6.1 Introduction and Definitions

See the introduction of Chapter 4 for an overview of frequency computation.
The original definition of frequency (m,n)-computation allows any m of the n
outputs to be correct. We generalize the notion of frequency computation by
demanding that from some fixed set of subsets of outputs at least 1 subset has
only correct answers. Therefore the original frequency (m,n)-computation is
a special case where a set containing every subset of size m is taken as the
structure.

By N = {0, 1, 2, . . . } we denote the set of nonnegative integers and B =
{0, 1}. [n] = {0, 1, 2, . . . , n− 1}. We use |X| to denote the cardinality of a set
X.

Let A ⊆ N be a set. By χA : N → B we denote the characteristic function
of A:

χA (x) =

{
1, if x ∈ A
0, if x /∈ A

We say that a function f is recursive if there is an algorithm (Turing machine)
that computes f . If χA is a total recursive function then we call the set A
recursive.

78
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Definition 6.1. A set A is (m,n)-computable iff there is a total recursive
function f which assigns to all distinct inputs x1, x2, . . . , xn a binary vector
(y1, y2, . . . , yn) such that at least m of the equations χA(x1) = y1, χA(x2) =
y2, . . . , χA(xn) = yn hold.

By a structure of a finite set K we call a set of K’s subsets S ⊆ 2K .
We assume that the elements of K are ordered under some fixed ordering

φ : K → [n] where n = |K|.

Definition 6.2. A set A is (S,K)-computable (or computable with a struc-
ture S) iff there is a total recursive function f which assigns to all distinct
inputs x1, x2, . . . , xn a binary vector (y1, y2, . . . , yn) such that ∃B ∈ S ∀b ∈
B χA(xφ(b)) = yφ(b)

It can be seen that (m,n)-computability is a special case of (S,K)-
computability by taking S to be the set of all subsets of K of size m.

6.2 Projective Plane Frequency Computation

In finite geometry, the Fano plane (named after Gino Fano) is the finite projec-
tive plane of order 2, having the smallest possible number of points and lines.
This plane has 7 points and 7 lines with 3 points on every line and 3 lines
through every point. Every two points are on a unique line and every two lines
intersect in a unique point. See Fig. 6.1.

1

2

3

45

6

7

Figure 6.1: The Fano Plane

We consider the first example of a structured frequency computability using
the Fano plane.

Definition 6.3. A set A is Fano-computable iff there exists a total recursive
function f : N7 → B7 which assigns to all 7-tuples (x1, x2, . . . , x7) ∈ N7 of
distinct inputs a binary vector {y1, y2, . . . , y7} such that

(y1 = χA(x1) ∧ y2 = χA(x2) ∧ y4 = χA(x4))∨

∨(y2 = χA(x2) ∧ y3 = χA(x3) ∧ y5 = χA(x5))∨

∨(y3 = χA(x3) ∧ y4 = χA(x4) ∧ y6 = χA(x6))∨

∨(y4 = χA(x4) ∧ y5 = χA(x5) ∧ y7 = χA(x7))∨
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∨(y5 = χA(x5) ∧ y6 = χA(x6) ∧ y1 = χA(x1))∨

∨(y6 = χA(x6) ∧ y7 = χA(x7) ∧ y2 = χA(x2))∨

∨(y7 = χA(x7) ∧ y1 = χA(x1) ∧ y3 = χA(x3))

It can be seen that the required fraction of correct answers for Fano-
computability is 3

7 < 1
2 . Contrary to the (m,n)-computability however only

recursive sets are Fano-computable.

Theorem 6.4. A set A is Fano-computable iff it is recursive.

The proof of this theorem is a special case of Theorem 6.8 below.
We want to explore further how much smaller can we get this fraction, i.e.,

for how small fraction of the inputs can we require the algorithm to give the
correct answers so that the computed set can still only be recursive? Recall,
that for “unstructured” frequency computations the answer is 1

2 – if m
n ≤

1
2

then a continuum of sets can be (m,n)-computed even with a finite automaton,
but if m

n > 1
2 then every (m,n)-computable set is recursive. Surprisingly for

the structured frequency computation we can get this fraction close to
√
n
n as n

tends to infinity by extending the Fano-computability example.
Of course, it is possible “cheat”, for example, by requiring that the algorithm

on every input (x1, x2, . . . , xn) outputs (y1, y2, . . . , yn) such that y1 = χA (x1)
and have no requirements for the other yi’s therefore attaining even a fraction
of 1

n while every such computable set A is recursive (as on the first input the
algorithm always has to output the correct answer). However we would like
to avoid such cases because if we only look at the first input x1 the fraction
of correct answers there is 1

1 which is the maximal possible. To avoid such
“cheating” we introduce the notion of size consistency.

Definition 6.5. By the size of a structure S ⊆ 2K we denote the size of the
smallest subset - minA∈S |A|. We call the structure size consistent iff ¬∃K ′ ⊆
K minA′∈S

|A′∩K′|
|K′| > minA∈S

|A|
|K|

The size consistency means that there is no smaller subset K ′ ⊆ K such
that the minimal subset A′ ∈ S (respective to K ′) contains a larger fraction
of elements of K ′ than the minimal subset A ∈ S does for K. Therefore this
excludes the unwanted cases mentioned earlier.

Now we introduce a new type of structures for which we prove that the
computed set is guaranteed to be recursive.

Definition 6.6. We call a structure S ⊆ 2K overlapping iff ∀A,B ∈ S A∩B 6=
∅.

Theorem 6.7. For any set K of size n = q2 + q + 1 where q is a prime power
there exists a size consistent overlapping structure of size q + 1.

Proof. The reader might already be familiar with the concept of finite projective
geometry. A finite projective plane is a finite set of points P and lines L ⊆ 2P ,
such that

A1) For any two distinct points, there is exactly one line containing these
points.
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A2) For any two distinct lines, there is exactly one point common to these
lines.

A3) There exist four points, no three of which are on a line.

For all q ≥ 2 these axioms imply

B1) Each line contains exactly q + 1 points.

B2) Each point is on exactly q + 1 lines.

B3) There are exactly q2 + q + 1 points in the projective plane.

It is known, that if q is a prime power there exists a finite projective plane
denoted by PG(2, q) with |L| = |P | = q2 + q + 1 based on the finite field Fq
with q elements. For a more detailed overview see, for example, [26].

Note, that S = PG(2, q) is an overlapping structure with the points P
playing the role of K and the lines L playing the role of S. For PG(2, q):
|K| = |P | = q2 + q + 1 and all the lines contain exactly q + 1 points. From A2)
it follows that the lines of PG(2, q) indeed make an overlapping structure.

To show that the projective plane S = PG(2, q) is a size consistent structure,
it is sufficient to count

∑
A∈S |A ∩K ′|.; For any integer m : 0 < m < n, if we

consider a subset K ′ of size n − m, from B2) follows that
∑
A∈S |A ∩K ′| =

(q + 1)n− (q + 1)m. By the pigeonhole principle, there exists a subset A, such

that |A ∩ K ′| ≤ (q+1)n−(q+1)m
n = (q+1)(n−m)

n . Therefore minA′∈S
|A′∩K′|
|K′| ≤

(q+1)(n−m)
n(n−m) = q+1

n .

Theorem 6.8. If A is computable with an overlapping structure then A is
recursive.

The proof goes along the same lines of the proof of B.A.Trakhtenbrot for
frequency m

n > 1
2 [57, 23]. However, this result is more general.

Proof. We will use infinite binary trees whose vertices correspond to binary
strings. The root corresponds to the empty string and for every other vertex
v the corresponding string s(v) is the string of its parent vertex concatenated
with a 0 or 1 depending on which child is v:

s(v) =

{
s(vp)0, if v is the left child of vp

s(vp)1, if v is the right child of vp

We will use v(x) to denote the x-th (0-based) symbol of s(v). dom(v) = [|s(v)|]
Therefore an infinite branch B = B0B1B2 . . . defines a set whose characteristic
function χB(x) is given by B(x) = limn→∞Bn(x). We use the same name for
the set as for the branch.

Let f : Nn → Bn be the function that (S,K)-computes A with |K| = n and
some overlapping structure S ⊆ 2K .

Consider a tree T which contains all σ ∈ {0, 1}∗ satisfying the property
that for all distinct x1, . . . , xn ∈ dom(σ) there exists P ∈ S such that
(σ(x1), . . . , σ(xn)) coincides with f (x1, . . . , xn) in positions P .

T contains A as an infinite branch because f (S,K)-computes A.
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Assume that another infinite branch B in T differs from A in n positions
x1, x2, . . . , xn. Then (B(x1), B(x2), . . . , B(xn)) coincides with f(x1, x2, . . . , xn)
in some positions P1 ∈ S. But (A(x1), A(x2), . . . , A(xn)) also coincides with
f(x1, x2, . . . , xn) in some positions P2 ∈ S. As ∀P1, P2 ∈ S P1 ∩ P2 6= ∅ there
is an xi such that A(xi) = B(xi) contradicting the assumption that A and B
differs in x1, x2, . . . , xn. Therefore every infinite branch of T differs from A in
at most n− 1 positions.

Let B be an infinite branch that differs from A in maximum number of
positions and let D be the finite set on which A and B differs. B is also an
infinite branch in the subtree

T ′ = {σ ∈ T | ∀x ∈ dom(σ) ∩D σ(x) = B(x)}

Assume that C is another infinite branch in T ′. Let x be such that B(x) 6= C(x).
From the definition of T ′ follows that x /∈ D. But then C and A differ on D∪{x}
thus contradicting the choice of B as an infinite branch that differs from A in
maximum number of positions. Therefore B is the only infinite branch in T ′.

For any vertex v the procedure of deciding whether v is in T ′ is recursive.
The following algorithm computes B(x) for any x:

Search for the first t > x such that all σ ∈ T ′ ∩ {0, 1}t take only a
unique value y = σ(x) at x. Output this y as the value of B(x).

The returned value cannot be different from B(x) as T ′ has at every length
t > x a string σ with σ(x) = B(x). If the algorithm wouldn’t terminate for
some x then for every t > x there would be σ with σ(x) 6= B(x) and there
would be an infinite subtree T ′′ = {σ ∈ T ′ | x ∈ dom(σ)→ σ(x) 6= B(x)}. By
König’s Lemma this subtree would contain an infinite branch C different from
B contradicting the fact that B is the only infinite branch of T ′.

Therefore B is recursive and as A differs from B in a finite set of positions
A is also recursive.

The following theorem shows that for overlapping structures the fraction
obtained by the finite planes is close to the best possible.

Theorem 6.9. Every size consistent overlapping structure S ⊆ 2K has size at
least

√
n where n = |K|.

Proof. If S is size consistent, ∀K ′ ⊆ K minA′∈S
|A′∩K′|
|K′| ≤ minA∈S

|A|
|K| . In

particular, take K ′ equal to a set of minimal size in S. Then

|K ′|
|K|

= min
A∈S

|A|
|K|
≥ min
A′∈S

|A′ ∩K ′|
|K ′|

≥ 1

|K ′|
,

where the second inequality follows from the fact that S is overlapping, hence
even K ′ has at least one element common with any other set from S. The
size of the structure S is equal to the size of the smallest set in it – |K ′| and
|K ′|2 ≥ |K| = n. Therefore the size of the structure is at least

√
n.

6.3 Graph Frequency Computation

If we consider structures with the sizes of all subsets equal to some k ≥ 1, the
first interesting case is with k = 2 (with k = 1 either there are some inputs
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for which the outputs are not taken into account or it is the same as (1, n)-
computability). A convenient and well-known way to represent such structures
is using graphs.

Definition 6.10. We call a structure S ⊆ 2K a graph structure iff ∀A ∈
S |A| = 2. For a graph G = (V,E) by saying that a set A is G-computable we
mean that A is (E, V )-computable.

A natural question arises – for which graphs G are the G-computable sets
recursive?

For some graphs G it is very easy to show that only recursive sets are G-
computable.

Proposition 6.11. If the graph G is either a triangle (C3) or a star graph (Sk)
then every G-computable set is recursive.

Proof. The internal vertex of a star graph Sk is involved in every edge therefore
on the input corresponding to this vertex the algorithm must always output the
correct answer (on this vertex the algorithm (1, 1)-computes the set).

For a triangle graph C3 if an algorithm C3-computes a set A then it also
(2, 3)-computes A.

The following theorem shows a sufficient condition for a graph G to allow
computability of non-recursive sets.

Theorem 6.12. If a graph G contains as a subgraph a cycle of length 4 (C4)
or two vertex-disjoint paths of length 3 (2P3) then there is a continuum of G-
computable sets, namely, every (1, 2)-computable set is also G-computable.

Proof. Assume there is an algorithm A1 that (1, 2)-computes a set A. For a
graph G that contains a cycle of length 4 - {(1, 2), (2, 3), (3, 4), (4, 1)} for some
vertices 1, 2, 3, 4 (see Fig. 6.2) consider the following algorithm – on inputs x1

and x3 output the values (y1, y3) = A1(x1, x3) and on inputs x2 and x4 output
the values (y2, y4) = A1(x2, x4). At least one of the outputs y1 and y3 is correct
and at least one of the outputs y2 and y4 is correct, therefore on at least one of
the pairs of inputs {(1, 2), (2, 3), (3, 4), (4, 1)} the outputs are correct.

Similarly for a graph G containing two vertex-distinct paths of length 3 -
{(1, 2), (2, 3), (4, 5), (5, 6)} for some vertices 1, 2, 3, 4, 5, 6. Now the algorithm is
to use A1 on pairs of inputs – (x1, x3), (x4, x6) and (x2, x5). In this case also
there exists at least one pair of correct outputs corresponding to an edge of
G.

1

2 3

4 1

2

3 4

5

6

Figure 6.2: Continuum implying subgraphs. Dashed lines show on which pairs
of vertices (inputs) to apply the (1, 2)-algorithm.

As shown by the following corollaries Theorem 6.12 discards many graphs
as the potential candidates for a structure that allows only recursive functions.



CHAPTER 6. STRUCTURED FREQUENCY ALGORITHMS 84

Corollary 6.13. If G contains more than one connected component of size ≥ 3
then every (1, 2)-computable set is also G-computable.

Corollary 6.14. If G contains as a subgraph a cycle of length other than 3 or
5 then every (1, 2)-computable set is also G-computable.

The following two theorems show that graph structures two pairs ( ) and
three pairs ( ) differ very much.

First we will need some lemmas. Let H be the 4-vertex graph with vertices
1, 2, 3, 4 and edges (1, 2), (3, 4) (i.e, the graph ).

Lemma 6.15. If M is a Turing machine with 4 inputs and 4 outputs H-
computes two distinct total functions f(x) and g(x) such that there exist d0

and d1 with properties d0 6= d1, f(d0) 6= g(d0) and f(d1) 6= g(d1) then there
exists an algorithmic procedure computing all the values of the functions f and
g with at most one exception.

Proof. With no restriction to generality, we can assume that d0 = 0 and d1 = 1.
We start with considering (x1 = 0, x2 = 2, x3 = 1, x4 = 3). Since f(0) 6= g(0)

and f(1) 6= g(1) but the two functions f and g are computed correctly, the
values y1, y2 are to be correct values of one of these functions, and y3, y4 are
to be correct values of the other function. If y1 = f(0) then y2 = f(2), y3 =
g(1), y4 = g(3). If y1 = g(0) then y2 = g(2), y3 = f(1), y4 = f(3).

Next, we consider (x1 = 0, x2 = 1, x3 = 2, x4 = 3). Three cases are possible.
First, if y1 = f(0), y2 = f(1) then y3 = g(2), y4 = g(3). Second, if y1 =
g(0), y2 = g(1) then y3 = f(2), y4 = f(3). Third, if neither y1 = f(0), y2 = f(1)
nor y1 = g(0), y2 = g(1) then y3 = f(2) = g(2) and y4 = f(3) = g(3).

In any of these cases we have found either both f(2) and g(2), or both f(3)
and g(3). Denote by a ∈ {2, 3} the value of x such that we have not yet found
both f(a) and g(a). Then we go on considering the 4-tuples (x1 = 0, x2 =
a, x3 = 1, x4 = 4) and (x1 = 0, x2 = 1, x3 = a, x4 = 4). This way, gradually
we get all the values of the functions f and g l values of with at most one
exception.

Lemma 6.16. If a Turing machine M with 4 inputs and 4 outputs is not
correctly H-computing some total recursive function f(x) then this property of M
can be discovered considering only a finite number of 4-tuples (x1, x2, x3, x4) ∈
N4.

Proof. By the definition, the machine M produces some result on arbitrary
4-tuple (x1, x2, x3, x4) ∈ N4. Since all such 4-tuples can be algorithmically
enumerated, either a contradiction is found after a finite number of steps, or no
contradiction is ever found and the function f is computed correctly.

Lemma 6.17. If α ∈ {0, 1}n is a finite binary word and if a Turing machine
M with 4 inputs and 4 outputs is not correctly H-computing any total function
f(x) with values f(0) = α(0), f(1) = α(1), . . . , f(n − 1) = α(n − 1), then this
property of M can be discovered considering only a finite number of 4-tuples
(x1, x2, x3, x4) ∈ N4.

Proof. We consider an infinite binary tree representing all infinite binary se-
quences. If α ∈ {0, 1}n is a prefix of a function that is not correctly H -computed
by M , then, by Lemma 6.16, this can be discovered considering only a finite
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number of 4-tuples (x1, x2, x3, x4) ∈ N4. In our infinite binary tree we make a
cut corresponding to this prefix α. By formulation of our Lemma, these cuts
leave no infinite binary path in the tree. By König’s lemma [38], every tree
that contains infinitely many vertices, each having finite degree, has at least
one infinite simple path. Hence after all the cuts in our infinite binary tree,
there remain only a finite number of vertices.

Now we consider a tree T of all the total functions H -computed by M . (Since
we consider only functions N → {0, 1}, all the vertices of this tree have finite
degree.) By Lemma 6.15, every function g(x) correctly H -computed by the
machine M differs from f(x) at most for one value of x.

Lemma 6.18. If a Turing machine M with 4 inputs and 4 outputs H-computes
at least one total nonrecursive function f(x), then the tree T either contains
only a finite number of functions or T has only one accumulation point.

Proof. Accumulation point of the tree T is an infinite path P such that for every
prefix π of the path P there exists an infinite path Q distinct from P but also
having the prefix π. Had there been two distinct accumulation points P and
Q in T, there would be two functions f(x) and g(x) and values d0 and d1 with
properties d0 6= d1, f(d0) 6= g(d0) and f(d1) 6= g(d1). However, then, by Lemma
6.15, all the functions H -computed by M would be recursive.

Theorem 6.19. If a Turing machine M with 4 inputs and 4 outputs correctly
H-computes a total function then this function is recursive.

Proof. Consider a tree T of all the total functions H -computed by M . If T
contains only a finite number of functions then for each of these functions there
is a prefix π which is not not a prefix of any other total function H -computed by
M . If T has only one accumulation point then, by the construction of the tree T
described in the proof of Lemma 6.17, we gradually construct initial fragments
of T. Since T has exactly one accumulation point, the accumulation point is
always the path with the maximum other functions branching off this initial
fragment of the path. Hence this path can be algorithmically constructed, and
the function is recursive.

Theorem 6.20. If a graph G contains as a subgraph three vertex-disjoint paths
of length 2 (3P2) then there is a continuum of G-computable sets.

(Computer-assisted) Proof. Consider a complete infinite binary tree T whose
vertices are labeled with nonnegative integers. The root is labeled with 0. For
each vertex labeled x its right child is labeled 2x+ 1 and its left child is labeled
2x + 2. Therefore T contains all numbers in N. If we fix an infinite branch B
in T , it defines the set LB = {x | x ∈ B}.

We will show that if G contains as a subgraph 3P2 then there is an algorithm
which G-computes any set LB , irrespective of which branch B is chosen. As
there is a continuum different ways to choose a branch B, it will follow that
there is a continuum of G-computable sets.

As a side note, we should note that this is also the way how to prove that
there is a continuum of (1, 2)-computable sets. The algorithm (1, 2)-computing
LB is the following:
On inputs (x1, x2):
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• if there is a branch which goes through both x1 and x2, then output (1, 0),
if x1 < x2, and (0, 1), if x1 > x2

• otherwise, output (0, 0)

It can be checked that no matter how the branch B is chosen, at least one
of these outputs will be correct.

If, instead of (1, 2)-computing, we consider computing with a graph with 3
pairs of connected vertices, the idea of the proof is the same, only now we have
to deal with a larger number of different possibilities for the input instances. A
single input instance can be represented as a 7-vertex rooted tree I in which all
vertices except the root are divided into three pairs. The root of I represents
a vertex prepended to the root of T and the 3 pairs of vertices represent the 3
pairs of inputs for the algorithm. For any vertices x1, x2 if x1 is a descendant
of x2 in T then x1 is also a descendant of x2 in I. See Fig. 6.3 for an example
instance.

r

x3

x2

x1

x6

x5

x4

0

1

0

0

0

0

Figure 6.3: An example instance. The tree shows relationships between the
inputs in the tree T . The dashed lines show how the inputs are distributed into
pairs. The attached output labels yi ∈ {0, 1} show one possible assignment such
that no matter how a branch B is chosen, there exists a pair for which both
outputs are correct.

To correctly solve an instance I means to assign outputs yi ∈ {0, 1} to all
non-root vertices so that, no matter which branch B is chosen, on at least one
pair both outputs will be correct.

It was checked with a computer program that for each possible instance I
there exists an assignment that solves it.

The pseudocode of the program:

for all 7-vertex trees T do
for all possible divisions of T into root and 3 pairs of vertices do

if there exists no assingment such that, no matter which branch B is
chosen, there exists a pair with both correct outputs then

return fail
end if

end for
end for
return success
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6.4 Conclusions and Open Problems

We have introduced a new model of computability by extending the previously
known frequency (m,n)-computability. We have shown some structures which
lead to computability of only recursive sets and some structures which allow
a continuum of computable sets. However, we are still far from a complete
characterization of all structures.

Some open problems are:

• Are there any size consistent non-overlapping structures of size less than√
n that allow only computability of recursive sets? If so then what is the

smallest possible fraction of correct answers attainable?

• For graph frequency computation obtain a complete classification of all
graphs G and classes of G-computable sets.

• What other types of structures are interesting and worth considering and
what classes of sets are computable with them?



Conclusion

In this thesis we have considered several types of unconventional finite automata,
ranging from two-way probabilistic and alternating finite automata to ultramet-
ric and frequency finite automata. We have also examined two types of uncon-
ventional computation – ultrametric query algorithms and structured frequency
computation. In all considered areas we have compared how the unconventional
models relate to classical models. Although there are many new results in this
thesis, there are still a lot of connections to be found.

In the two-way finite automata size complexity theory we have shown a pre-
viously unknown relation between alternating and probabilistic automata. More
specifically that there is a family of languages that is recognizable by a family of
polynomial-size alternating automata, but for every family of fast probabilistic
bounded-error two-way automata the sizes of the automata grow superpolyno-
mially. Although in the literature there are several results showing advantages
of probabilistic models of automata over non-probabilistic models of automata,
this seems to be one of very rare examples where a class of non-probabilistic
automata are shown to be more powerful than a class of probabilistic automata.
It seems that the result could be strengthened to include also probabilistic au-
tomata that can work superpolynomial time or have non-isolated cutpoint, but
it seems hard to prove it with the current techniques, therefore some new ap-
proach might be needed.

We have introduced the ultrametric finite automata. We think that for
these the most perspective model is the regulated ultrametric automata as they
can recognize exactly the regular languages and a bound on the complexity of
simulating them with deterministic automata is given. It would be interesting
to find some connections of how they relate to alternating and nondeterministic
automata.

We have considered all of the above-mentioned types of automata for the
counting problem. Most importantly we have shown optimal constant-size prob-
abilistic and ultrametric regulated automata. However it is still open, if we
require the two-way probabilistic automaton to be fast and have the error prob-
ability bounded by a constant, can it do any better than one-way automaton,
i.e., have less than O(log2 n/ log log n) states.

We have introduced the two-way frequency finite automata. We have
shown that any language recognizable with two-way automaton with k
linearly bounded counters is (n − k, n)-recognizable by a two-way frequency
finite automaton. This relation shows that many nontrivial languages are
(n − 1, n)-recognizable. However, it is an open question whether there are
any other languages (n − k, n)-recognizable by a frequency automaton. We
have shown a sufficient condition for it. We also have shown that for any
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language L ∈ LOGSPACE there exists k such that for any n > k L can be
(n− k, n)-recognized by a two-way frequency finite automaton.

Based on the p-adic numbers we have defined ultrametric query algorithms
and ultrametric query complexity similar to probabilistic and quantum query
complexity. However, the unrestricted ultrametric query model seems to be too
powerful because such functions as ORn and XORn can be computed with just
1 query and the complexity never exceeds the polynomial degree of the function.
Therefore one should try to find a natural restriction for the model that for some
functions gives more interesting query complexity bounds such as O(log n) and
O(
√
n). One could also try to devise some lower bound technique and explore

what functions are hard for ultrametric query algorithms.
We have introduced the notion of structured frequency algorithms by mod-

ifying the definition of frequency computation. Based on finite planes we have
shown a structure of size O(

√
n) that allows only recognition of recursive sets

and shown that using overlapping structures this size cannot be decreased. It
is an open question whether there are some other (non-overlapping) structures
of smaller size that allow only recognition of recursive sets.
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[7] K. Balodis, A. Beriņa, K. C̄ıpola, M. Dimitrijevs, J. Iraids, K. Jēriņš,
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