
LATVIJAS UNIVERSITATE
DATORIKAS FAKULTATE

RĪKU KOPA LATVIEŠU VALODAS SEMANTIKAS
ANALĪZEI

PROMOCIJAS DARBS
datorzinātn̦u doktora (Dr. sc. comp.) zinātniskā grāda iegūšanai

Nozare: datorzinātne
Apakšnozare: datoru un sistēmu programmatūra

Autors: Pēteris Paikens
Vadı̄tājs: Dr. comp. sci. prof. Guntis Bārzdin̦š

RIGA, 2017

Promocijas darbs izstrādāts LU Matemātikas un Informātikas Institūtā no 2011. gada lı̄dz
2017. gadam.

Darbs ir izstrādāts ar Eiropas Sociālā Fonda atbalstu projektā “Atbalsts doktora studijām
Latvijas Universitātē”.

Darba forma: publikāciju kopa Datorzinātnē, apakšnozarē Datoru un sistēmu programma-
tūra.

Vadı̄tājs: Dr. comp. sci. prof. Guntis Bārzdin̦š

Recenzenti:

Promocijas darba aizstāvēšana notiks Latvijas Universitātes Datorzinātnes nozares pro-
mocijas padomes atklātā sēdē , Latvijas Universitātes Matemātikas un In-
formātikas Institūtā (Rı̄ga, Rain̦a bulv. 29, telpa).

Ar promocijas darbu un tā kopsavilkumu var iepazı̄ties Latvijas Universitātes bibliotēkā
(Kalpaka bulv. 4, Rı̄ga).

Promocijas padomes priekšsēdētājs: Jānis Bārzdin̦š

Anotācija

Promocijas darba pētı̄juma priekšmets ir automātiskas teksta analı̄zes metodes, apskatot
visus dabiskās valodas apstrādes lı̄men̦us, kas nepieciešami teksta semantiskai analı̄zei,
ı̄paši pievēršoties risinājumiem, kuri trūka latviešu valodas teksta analı̄zei. Darbs ir izstrā-
dāts 5 gadu laikā LU MII 4 pētı̄jumu projektu un 2 valsts pētı̄jumu programmu ietvaros.

Darbā tiek aprakstı̄tas autora realizētās metodes latviešu valodas nosaukto entitāšu
atpazı̄šanai un piesaistei reālijām. Zināšanu formālās reprezentācijas vajadzı̄bām ir izvei-
dota FrameNet ontolog̒ija personu un organizāciju datu un attiecı̄bu modelēšanai.

Darbā ir piedāvāts un realizēts latviešu valodas morfolog̒iskās struktūras formāls
modelis ar plašu pārklājumu, kas ir piemērots patvalı̦̄ga teksta analı̄zei. Darbā ir apskatı̄tas
autora realizētās metodes latviešu valodas morfosintaktiskajai analı̄zei un realizēts neiro-
nu tı̄klu risinājums daudznozı̄mı̄bas novēršanai. Izstrādātais modelis ir aprobēts praksē
vairākos projektos un dabiskās valodas rı̄ku izstrādē.

Tāpat darbā ir piedāvāta un realizēta arhitektūra informācijas izguves rı̄ku kopai. Pē-
tı̄to metožu praktiskai aprobācijai darba gaitā ir izveidots informācijas izguves un zināša-
nu bāzes aizpildes sistēmas prototips faktu izguvei no latviešu valodas zin̦u tekstiem. Sis
prototips ir aprobēts zin̦u ag̒entūrā LETA latviešu valodai, kā arı̄ rezultāti ir novērtēti kon-
tekstā ar labakajiem anglu̦ valodas teksta analı̄zes rezultātiem.

Abstract

This work contains reasearch results on algorithms, resources and tools required for
semantic text analysis, with a particular focus on illing in the gaps required for semantic
analysis of Latvian language. This work has been developed during the last 5 years in Uni-
versity of Latvia Institute of Mathematics and Computer Science in 4 research projects and
2 state research programmes.

Thisworkdescribesmethodsdevelopedby the author for Latviannamedentity recog-
nition and linking with real world entities. A FrameNet ontology has been developed for
formal knowledge representation and modeling person and organization attributes and
relations.

A formal model of Latvian morphology is proposed and implemented in this work,
adapted for wide coverage text analysis. This work covers methods for morphosyntactic
tagging of Latviandevelopedby author, introducing aneural network solution for resolving
ambiguity. The developed morphology model is approbated in multiple research projects
and natural language tools.

As a part of this work, an architecture for an information extraction system and an
entity-centric knowledge base is proposed and implemented, integrating the researched
methods. This concept is validated on a prototype system for biographic data extraction
from Latvian newswire data in news agency LETA and evaluated in context with best re-
sults in shared task competions for English knowledge base population.

Rı̄ku kopa latviešu valodas semantikas analı̄zei Pēteris Paikens

Promocijas darbā iekļautās autora zinātniskās publikācijas

recenzētos žurnālos un starptautisku konferenču materiālos

Darbā aprakstı̄to pētı̄jumu rezultāti ir publicēti 14 recenzētos starptautisku konfer-
enču rakstos, no kuriem septin̦i ir iekla̦uti SCOPUS vai Thomson Reuters ISIWeb of Science
datubāzēs:

1. Paikens, P. (2007). Lexicon-based morphological analysis of Latvian language.

In Proceedings of 3rd Baltic Conference on Human Language Technologies (HLT 2007).

2. Paikens, P. and Grūzı̄tis, N. (2012). An implementation of a Latvian resource

grammar in Grammatical Framework. In Eighth international conference on Lan-

guage Resources and Evaluation (LREC 2012) (Web of Science).

3. Gruzitis, N., Paikens, P., and Barzdins, G. (2012). FrameNet resource grammar

library for GF. In Controlled Natural Language, lpp. 121–137. Springer Berlin Hei-
delberg (SCOPUS, Web of Science).

4. Paikens, P., Auzin̦a, I., Garkāje, G., and Paegle, M. (2012). Towards named entity

annotation of Latvian National Library corpus. In Baltic HLT, lpp. 169–175 (SCO-
PUS, Web of Science).

5. Pretkalnin̦a, L., Paikens, P., Grūzı̄tis, N., Rituma, L., and Spektors, A. (2012). Making

historical Latvian texts more intelligible to contemporary readers. In Proceed-

ings of the workshop “Adaptation of Language Resources and Tools for Processing Cul-

tural Heritage Objects” at the Eight International Conference on Language Resources

and Evaluation (LREC’12).

6. Paikens, P. (2013). Automātiskas morfoloģiskas anotācijas izmantojums. In
Vārds un tā pētīšanas aspekti 2013.

7. Paikens, P., Rituma, L., and Pretkalnin̦a, L. (2013). Morphological analysis with

limited resources: Latvian example. In Proceedings of the 19th Nordic Confer-

ence of Computational Linguistics (NODALIDA2013)NEALTProceedings Series 16, lpp.
267–278, Oslo.

8. Znotin̦š, A. and Paikens, P. (2014). Coreference resolution for Latvian. In Pro-

ceedings of LREC 2014, Ninth International Conference on Language Resources and

Rı̄ku kopa latviešu valodas semantikas analı̄zei Pēteris Paikens

Evaluation (Web of Science).

9. Bārzdin̦š, G., Goško, D., Rituma, L., andPaikens, P. (2014). UsingC5.0andexhaustive
search for boosting frame-semantic parsing accuracy. In Proceedings of LREC

2014, Ninth International Conference on Language Resources and Evaluation (Web of
Science).

10. Paikens, P. (2014). Latvian newswire information extraction system and entity

knowledgebase. InHumanLanguageTechnologies – theBaltic Perspective (SCOPUS,
Web of Science).

11. Bārzdin̦š, G., Paikens, P., Goško, D. (2015). Riga: from FrameNet to Semantic

Frames with C6.0 Rules. In Proceedings of the 9th International Workshop on Se-

mantic Evaluation (SemEval).

12. Spektors, A., Auzina, I., Dargis, R., Gruzitis, N., Paikens, P., Pretkalnina, L., Rituma, L.,
Saulite, B. (2016). Tezaurs.lv: the Largest Open Lexical Database for Latvian In
Proceedings of the 10th International Conference on Language Resources and Evalua-

tion (LREC).

13. Paikens, P. (2016). DeepNeural LearningApproaches for LatvianMorphological

Tagging. In Proceedings of Human Language Technologies – the Baltic Perspective

(SCOPUS, Web of Science).

14. Paikens, P., Barzdins, G., Mendes, A., Ferreira, D., Broscheit, S., Almeida, M. S. C., Mi-
randa, S., Nogueira, D., Balage, P., andMartins, A. F. T. (2016). SUMMAat TAC knowl-

edge base population task 2016. In Proceedings of the Ninth Text Analysis Confer-

ence (TAC 2016).

Promocijas	darba	autora	personiskais	ieguldījums	
	
Autori	 Publikācija	 Ieguldī-

jums	(%)	
Ieguldījuma	apraksts	

P.	Paikens	 Lexicon-based	morphological	
analysis	of	Latvian	language	

100	 Idejas	izstrāde	un	aprakstītās	
sistēmas	praktiskā	realizācija.	

P.	Paikens	
N.	Grūzītis	

An	implementation	of	a	
Latvian	resource	grammar	in	
Grammatical	Framework	

60	 Piedalīšanās	idejas	izstrādē,	
aprakstītā	risinājuma	
praktiskā	realizācija.	

N.	Grūzītis	
P.	Paikens	
G.	Bārzdiņš	

FrameNet	resource	grammar	
library	for	GF	

40	 Piedalīšanās	idejas	izstrādē,	
daļa	no	eksperimentālās	
realizācijas.	

P.	Paikens	
I.	Auziņa	
G.	Garkāje	
M.	Paegle	

Towards	named	entity	
annotation	of	Latvian	
National	Library	corpus	

50	 Piedalīšanās	koncepcijas	un	
anotēšanas	standarta	
veidošanā,	automātiskās	
tagošanas	rīku	pētījumi	un	
realizācija,	eksperimentālais	
novērtējums.	

L.	Pretkalniņa	
P.	Paikens	
N.	Grūzītis	
L.	Rituma	
A.	Spektors	

Making	historical	Latvian	
texts	more	intelligible	to	
contemporary	readers	

30	 Piedalīšanās	koncepcijas	
sagatavošanā,	daļa	no	
praktiskās	sistēmas	izstrādes.	

P.	Paikens	 Automātiskas	morfoloģiskas	
anotācijas	izmantojums	

100	 Idejas	izstrāde	un	apraksta	
sagatavošana.	

P.	Paikens	
L.	Rituma	
L.	Pretkalniņa	

Morphological	analysis	with	
limited	resources:	Latvian	
example	

70	 Koncepcijas	izstrāde,	
tagošanas	rīku	pētījumi	un	
realizācija,	eksperimenti	un	
analīze.	

A.	Znotiņš	
P.	Paikens	

Coreference	resolution	for	
Latvian	

30	 Piedalīšanās	ideju	izstrādē,	
praktiskajā	realizācijā	un	
publikācijas	sagatavošanā.		

G.	Bārzdiņš	
D.	Goško	
L.	Rituma	
P.	Paikens	

Using	C5.0	and	exhaustive	
search	for	boosting	frame-
semantic	parsing	accuracy	

40	 Piedalīšanās	ideju	izstrādē,	
daļa	no	praktiskās	realizācijas,	
sistēmas	eksperimentālais	
novērtējums	un	analīze.	

P.	Paikens	 Latvian	newswire	information	
extraction	system	and	entity	
knowledge	base	

100	 Koncepcijas	izstrāde,	sistēmas	
praktiskā	realizācija	un	
apraksta	sagatavošana.	

G.	Bārzdiņš	
P.	Paikens	
D.	Goško	

Riga:	from	FrameNet	to	
Semantic	Frames	with	C6.0	
Rules	

40	 Piedalīšanās	ideju	izstrādē,	
daļa	no	praktiskās	realizācijas,	
dalība	eksperimentos	un	
analīzē.	

A.	Spektors	
I.	Auziņa	
R.	Darģis	
N.	Grūzītis	
P.	Paikens	
L.	Pretkalniņa	
L.	Rituma	
B.	Saulīte	

Tezaurs.lv:	the	Largest	Open	
Lexical	Database	for	Latvian	

25	 Piedalīšanās	ideju	izstrādē,	
dalība	sistēmas	praktiskajā	
realizācijā	un	publikācijas		
sagatavošanā.	

P.	Paikens	 Deep	Neural	Learning	
Approaches	for	Latvian	
Morphological	Tagging	

100	 Idejas	izstrāde,	aprakstītās	
sistēmas	praktiskā	realizācija	
un	eksperimentālais	
novērtējums.	

P.	Paikens	
G.	Bārzdiņš	
A.	Mendes	
D.	Ferreira	
S.	Broscheit	
M.	Almeida	
S.	Miranda	
D.	Nogueira	
P.	Balage	
A.	Martins	

SUMMA	at	TAC	knowledge	
base	population	task	2016	

25	 Piedalīšanās	koncepcijas	
izstrādē,	praktiskā	realizācija	
un	eksperimentālais	
novērtējums	daļai	no	
aprakstītās	sistēmas,	dalība	
publikācijas	sagatavošanā.	

	
	 	

Līdzautoru	piekrišana	publikāciju	izmantošanai	promocijas	darbā	
	
Ar	šo	tiek	apliecināts,	ka	augstāk	minēto	publikāciju	līdzautori	piekrīt	
publikāciju	iekļaušanai	Pētera	Paikena	promocijas	darbā.	
	
	 	 	 	 	 	 __________________	 (N.	Grūzītis)	 	

	 	 	 	 	 	 __________________	 (G.	Bārzdiņš)	

	 	 	 	 	 	 __________________	 (I.	Auziņa)	 	

	 	 	 	 	 	 __________________	 (G.	Garkāje)		

	 	 	 	 	 	 __________________	 (M.	Paegle)	 	

	 	 	 	 	 	 __________________	 (L.	Pretkalniņa)	

	 	 	 	 	 	 __________________	 (L.	Rituma)	 	

	 	 	 	 	 	 __________________	 (A.	Spektors)	

	 	 	 	 	 	 __________________	 (A.	Znotiņš)	 	

	 	 	 	 	 	 __________________	 (D.	Goško)	 	

	 	 	 	 	 	 __________________	 (R.	Darģis)	 	

	 	 	 	 	 	 __________________	 (B.	Saulīte)	 	

	 	

	

PUBLIKĀCIJA I

Lexicon-based morphological analysis of Latvian language

Proceedings of 3rd Baltic Conference on Human Language Technologies (HLT 2007), 2007.

LEXICON-BASED MORPHOLOGICAL ANALYSIS
OF LATVIAN LANGUAGE

Pēteris Paikens
University of Latvia, Institute of Mathematics and Computer Science (Riga, Latvia)

Abstract
This paper describes a practical solution for lexicon-based morphological analysis of Latvian
language. As it is a flexive language, the core of this system is an implementation of word
inflection based on a stem and its properties as listed in the lexicon. The main advantage of the
described solution over similar implementations is augmenting the lexicon with methods for word
derivation from related word stems, significantly increasing the recognition rate. The
implemented system is able to provide full morphological detail for 96 % words of unrestricted
Latvian language texts, even when using a rather limited lexicon of 25,000 word stems. For
remaining unknown words, the system is extended with heuristics for recognising proper names,
and determining verb and noun flexive forms based on ending, allowing a good quality guess for
the linguistic properties of words that are not included in the lexicon. Such wide coverage allows
the solution to be used in other linguistic tools as a transparent and robust layer for analysing
word properties.

Keywords: morphology, part of speech, tagging, dictionary.

1. Introduction
For flexive languages, like Latvian language, morphological analysis and/or stemming
often is the first required step in any text analysis process. However, there is a lack of
publicly available morphological analysis tools for Latvian language, and most
linguistic solutions and research – for example, current semantic projects in University
of Latvia (Bārzdiņš et al 2007a) tend to use custom dictionaries to match exact word
forms (instead of word stems) with the required information. Such approaches work
acceptably within the domain covered by the dictionary, but for analysis of unrestricted
corpora there will always be significant portion of words that are not included in the
dictionary.

This paper describes a currently developed system that aims to provide a robust
and extensible solution for morphological analysis for unrestricted corpora, in order to
have an available solution to facilitate further analysis of Latvian language.

2. Solutions used currently
Most research purposes seem to use hard-coded dictionaries for the first steps of
analysis, disregarding morphology entirely. Often the main reason for this is adaptation
of tools originally designed for analysis of English language corpora, which don’t

support flexive word forms, and treat all variations of a single stem as entirely separate
words. This hampers linguistic analysis, but is often accepted due to technological
difficulties. Availability of morphological tools for Latvian language might relieve this
issue, and facilitate easy testing of other computational linguistics tasks on various
corpora.

An interesting approach was seen (Krūze-Krauze 1998) that attempts to generate
all possible words by defining formal grammar rules that govern the ways how different
morphemes may combine together to make a single word. However, the system
currently is in a dead-end, reaching an unmaintainable size of rules and special cases,
and still fails to recognize a large portion of words, especially words adopted from other
languages such as Greek or English.

There have also been a number of previous attempts of morphological analysis as
well, with similar methods as described in the following section, but without much
success, as the achieved coverage tends to be good enough for handmade research
corpora, but is not acceptable for unrestricted text analysis. The current development
attempts to include the experience of these previous attempts, especially in various
heuristics for handling exceptional cases.

3. Lexicon-based analysis
In Latvian language, most word classes – nouns, verbs and adjectives – are flexive,
consisting of an (almost) unchanging stem, and an ending that specifies various
grammatical properties of the word. The exact endings vary depending on the basic
stem, but almost all words in Latvian language can be split in a limited number (23 for
the current implementation) of groups where every word form can be generated
automatically. There are some irregular words, though (for example, “būt” – “to be”),
but their number is rather limited, so they can be included manually in the lexicon.

Morphological analysis can be done by using this database of the endings in
order to generate all possible variations where the ending is equal to the last letters of
the analysable word, and looking up the remaining letters within the available dictionary
of stems for a possible match. See Figure 1 for the workflow process. A major issue
here is the stem changes that sometimes happen (Ceplīte et al 1991) in various word
forms. This is analysed with a custom heuristics that lists all the cases occurring in
literary Latvian language.

Ambiguity in this part of analysis is unavoidable, as there are many words in
Latvian language where the part of speech details can be determined only in syntactic
context. For example, word “roku” (given as an example in Figure 1) can be a word
form of “roks” (“rock music”; masculine noun), various word forms in different cases
of “roka” (“hand”; feminine nound), or a form of “rakt” (“to dig”; verb).

Thus the core data of the system is a dictionary of lexical units, containing word
stems grouped in morphological types, and any information about these word stems that
should be passed on in the results. As the goal of the system is to provide foundation for
further syntactic and semantic analysis, a major focus is to provide extensibility for
lexicon data, allowing the users to amplify the lexicon with any additional data relevant
for the problem at hand. Current uses for additional information include verb transitivity
information for the main lexicon, and semantic ontology groupings for a small research
lexicon.

“roku”
(hand)

-u

Noun, fem.acc.
(give a hand)

Noun, fem.gen.
(hand lotion)

verb, 1st person
(I dig a hole)

adjective, acc.
(ungrammatical)

nouns, 4th declination verbs, 1st conjugationadjectives
Lexicon

stem in
lexicon

stem in
lexicon

stem in
lexicon

stem not in
lexicon -
excluded

• Syntactic information from structure
• Semantic details provided in lexicon
• Feature descriptions or AVM’s for a HPSG
• Multiple possibilities for further disambiguation

Corpus markup
(with manual disambiguation)

Sentence analysis
(parsing, translation, etc)

Figure 1 – Workflow of analysis process

4. Extending the lexicon
Of course, such analysis methods are limited by the extent of the dictionary used. This
problem is further complicated by the fact that digitally available dictionaries in Latvian
language are comparatively small. This research used a lexicon of approximately 27,000
word stems, based on an electronic version of an inverse dictionary (Soida, 1970).
Initial analysis has showed that such a lexicon can cover 85–90% of unrestricted text1.
This ratio is quite low and clearly not enough for practical purposes even with larger
dictionaries. This has always been an issue for previous such developments, and was
usually tackled by targeting a specific domain of text, and manually adapting the
dictionary for that target domain.

However, analysis of missed words in these corpora (see Table 1) shows that
most of them are in some way derived from other words that are included in our
lexicon. This can be expected, as new words in Latvian language, as many others, often
are formed by extending already existing words with similar meaning, or metaphorically
using these words in a different meaning.

1 Novels „Plāns ledus” and „Sofijas pasaule” („Sophie’s world”) were used as

test corpora for this and other statistics.

Table 1 – Words not found in lexicon
Derivation via prefix 63%
Derivation via infix 2%
Compound nouns 2%
Proper nouns 5%
Reflexive verbs 11%
Not related to words in lexicon 15%
Erroneous words 2%

These derivation types can be all automatically analysed by attempting to match

the word to stems in the existing lexicon. There is a rather small number of prefixes and
infixes used in Latvian language, and it is computationally easy to try them all. Not all
of these usages are valid, so this cannot be used for spell-checking type of solutions, but
in the case when a new word is encountered in a corpus, and it matches some other in
the lexicon with a derivation rule, we can be reasonably sure that we have encountered a
correct (but new) word, and the appropriate part of speech information can be extracted.

On the other hand, if additional information is expected from the lexicon – for
example, the inclusion of word senses in some ontology – then it is not safe to include
this information. The derived words usually are related in meaning, but the nature of
this relation may vary greatly, in some cases the relation is only metaphorical. Newly
found words can then be used to enhance the lexicon, but this would require at least
some review and approval for all non-morphological information.

5. Treatment of unrecognised words
The final part of this application, which gets used if the previous methods have failed to
relate the word to some entry in our lexicon, is a heuristic for part-of-speech tagging
based on the last letters of the analysable word.

A core part of the initial morphological analysis system is an exhaustive list of
all endings for flexive word classes, linked with the morphological and part-of-speech
information that each ending can represent. This list can also be used without looking at
the lexicon – this will yield a lot of ambiguous possibilities, but still this process can
usually exclude the majority of variations. For example, gender of the noun can usually
be determined in this way, but several possibilities for number and case may remain.
Many word forms in Latvian language can be uniquely identified in this way (Nau
1998), for example, verb participle forms. Comparison of the results with annotated
corpus (Levāne 2001) shows that the generated variants always include the proper
tagging – several mismatches were found in the comparison, but they were all found to
be errors in the manual tagging.

For cases with more ambiguity, frequency distribution tables are used to
determine the most likely word forms, or, alternatively, all possibilities are included,
and ambiguity resolution can be left to the syntax part of analysis, since it is very likely
that the specific form can be determined from grammatical requirements of
case/number/gender agreement.

6. Technical implementation
The main consideration in the technical implementation has been compatibility with
various other tools that may be used together with this morphological module. There are

two independent workflows implemented. One way of interaction is a batch-annotation
mode, where a corpus is transformed into an XML file with the (ambiguous)
morphological analysis results appended to each word. The other way is an online
analysis service, which can be repeatedly queried for analysis of particular words, and
can be accessed by other applications.

Current implementation is done in Java, with an interface that can be called from
Prolog applications. Analysis performance is about 16,000 words per second on a
standard desktop PC.

The lexicon and all other data are stored in XML files. For corpus tagging
currently a custom XML format is used, but work is underway to use Tiger-XML
formats everywhere to improve interoperability with different tools used in
computational linguistics for other languages.

8. Evaluation and further developments
Current status of this development is stable enough to use it as a transparent layer of
unrestricted text corpus analysis, extracting morphological and part-of-speech
information for nearly all words within it. Increasing lexicon size will help decrease
ambiguity of this analysis, but is not absolutely necessary. Using a modestly sized
lexicon of 27,000 word stems and the abovementioned word derivation rules, 96 % of
words in test corpora can be fully analysed, and for the remaining 4 % words all the
part-of-speech possibilities are provided – which usually include two or three
possibilities for grammatical case of the word.

Current usage of the system includes University of Latvia projects in semantic
ontology (Bārzdiņš et al 2007b), and in corpora extraction from the Internet (Džeriņš et
al 2007). The solution is considered to be publicly available for any research purposes
upon contacting the author.

Details of all these tasks, naturally, can be developed further for improved
results. In particular, further developments would include the following tasks:

• Adapting existing solutions for entity name recognition in order to treat
proper nouns in a more precise way. This issue is common for many
other languages, so solutions designed for English could be used.

• Changing the XML formats used to match Tiger-XML is underway.
• Support for morphological analysis of transliterated text2, to improve

coverage for corpora extracted from Internet. There are solutions that
attempt to transform words from transliterated to proper form, but they
are naturally ambiguous, and this ambiguity resolution can be improved
if the morphological analysis is done directly on transliterated text.

• There are some ways of word derivation that occur less frequently and
are not yet included – diminutive forms would be a good candidate for
inclusion, as such forms occur in the language, but tend to be excluded
from dictionaries.

2 Spelling of text with exclusively latin characters, i.e. spelling zaķīši as zakjiishi,

which is occasionally encountered on websites, blogs and Internet discussion forums.

12. References
Bārzdiņš, Guntis; Grūzītis, Normunds; Nešpore, Gunta; Saulīte, Baiba 2007a.

Dependency-Based Hybrid Model of Syntactic Analysis for the Languages with
a Rather Free Word Order. In: Nivre, J.; Kaalep, H.; Muischnek, K.; Koit, M.
(eds.) NODALIDA 2007 conference proceedings. Tartu: University of Tartu.

Bārzdiņš, Guntis; Grūzītis, Normunds; Levāne-Petrova, Kristīne; Nešpore, Gunta;
Saulīte, Baiba 2007b. A deep discourse representation structure for theme-rheme
and anaphora resolution. In: Human Language Technologies 2007 conference
proceedings.

Ceplīte, Brigita; Ceplītis, Laimdots 1991. Latviešu valodas praktiskā gramatika. Rīga:
Zvaigzne.

Džeriņš, Jānis; Džonsons, Kristaps 2007. Harvesting national language text corpora
from the Web. In: Human Language Technologies 2007 conference proceedings.

Krūze-Krauze, Baiba 1998. Datorizēta latviešu valodas morfēmiski morfoloģiskā
analīze. Rīga: Latvijas Universitāte.

Levāne, Kristīne 2001. Paula Bankovska romāna ”Plāns ledus” pirmās nodaļas
morfoloģiskā anotēšana un statistiskā analīze. Rīga: Latvijas Universitāte.

Nau, Nicole 1998. Latvian. Newcastle: LINCOM Europa.
Soida, Emīlija; Kļaviņa, Sarma 1970. Latviešu valodas inversā vārdnīca. Rīga: LVU.

PĒTERIS PAIKENS is a junior researcher of Institute of Mathematics and
Computer Science, University of Latvia. He received his bachelor degree in
computer science at University of Latvia. His research interests include corpus
analysis, syntax analysis for Latvian language and formal grammar development.
E-mail: PeterisP@gmail.com.

PUBLIKĀCIJA II

An implementation of a Latvian resource grammar in Grammatical

Framework

Eighth international conference on Language Resources and Evaluation (LREC 2012), 2012.

An implementation of a Latvian resource grammar in Grammatical Framework
Pēteris Paikens, Normunds Grūzītis

Institute of Mathematics and Computer Science, University of Latvia
Raina blvd. 29, Riga, LV-1459, Latvia

E-mail: peterisp@ailab.lv, normundsg@ailab.lv

Abstract

This paper describes an open-source Latvian resource grammar implemented in Grammatical Framework (GF), a programming
language for multilingual grammar applications. GF differentiates between concrete grammars and abstract grammars: translation
among concrete languages is provided via abstract syntax trees. Thus the same concrete grammar is effectively used for both
language analysis and language generation. Furthermore, GF differentiates between general-purpose resource grammars and
domain-specific application grammars that are built on top of the resource grammars. The GF resource grammar library (RGL)
currently supports more than 20 languages that implement a common API. Latvian is the 13th official European Union language that
is made available in the RGL. We briefly describe the grammatical features of Latvian and illustrate how they are handled in the
multilingual framework of GF. We also illustrate some application areas of the Latvian resource grammar, and briefly discuss the
limitations of the RGL and potential long-term improvements using frame semantics.

Keywords: computational grammar, language generation, Grammatical Framework

1. Introduction
The long-term research behind this paper is aimed at
semantic parsing of Latvian and natural language
generation in Latvian. While our former focus has been
on developing language resources and tools that can be
primarily used for language analysis, in this paper, we
describe a recent open-source implementation of a
Latvian resource grammar that can be effectively used
for both language analysis and language generation. We
have implemented this resource grammar in Gram-
matical Framework (GF), a toolkit and formalism for
rapid development of multilingual grammar applications
(Ranta, 2011).
Latvian is an Indo-European language, a member of the
Baltic language group, one of the official EU languages.
In terms of speakers, it is a relatively small language
(about 1.5 million native speakers and about 0.5 million
non-native speakers). It uses a Latin-based alphabet that
in almost all cases provides a one-to-one mapping
between letters and phonemes. The general grammatical
characteristic of Latvian is that it is a highly inflective
language with a relatively free word order.
Large annotated language resources, such as treebanks
and parallel corpora of various domains that would
facilitate statistical parsing and generation, are scarce for
Latvian – reusability of the developed computational
grammars across general and domain-specific use-cases
and across languages is very important.
A fairly successful attempt developing a robust, wide
coverage partial parser of Latvian has been in lines with
the dependency grammar approach (Bārzdiņš et al., 2007;
Pretkalniņa et al., 2011). Other computational grammars
of Latvian have been crafted for the needs of various
machine translation systems (Skadiņa et al., 2007;
Greitāne, 1997) and grammar checking tools (Deksne &
Skadiņš, 2011). However, there has been no general-
purpose wide-coverage computational grammar available
for generating Latvian sentences.

Although dependency-based grammars allow for robust
and effective parsing they lack the potential of language
generation. This is the strength of phrase structure
grammars, e.g. categorial grammars that link the surface
structure with the underlying semantic representation.
Among other features, GF essentially is an effective
implementation of the categorial grammar approach.

2. Grammatical Framework
GF facilitates reusability by splitting the grammar
development in two levels:

1. a general purpose resource grammar that covers
a wide range of morphological features and
syntactic structures,

2. and domain specific application grammars
defining semantic structures and the subset of
natural language that is used within a particular
domain.

This allows developing and testing of the morphological
and syntactic complexity once, which can be afterwards
reused in multiple domains and in different usage
scenarios without in-depth knowledge about the par-
ticular language and without the need to implement a
large list of nuanced exceptional cases. The use-cases are
ranging from controlled languages (e.g. dialogue systems
and interfaces to formal languages) to domain-specific
machine translation applications (e.g. speech-to-speech
travel assistants).
GF differentiates not only between general-purpose
resource grammars and domain-specific application
grammars, but also between abstract syntax and concrete
syntax. The abstract syntax captures the semantically
relevant structure of language, defining grammatical
categories and functions for building trees (Ranta, 2011).
Concrete syntax defines the linearization of the abstract
tree structures at the surface level. Translation among
languages (concrete grammars) is provided via abstract
syntax trees.
Note that in the GF grammar development there is no

concept of a language pair or a translation direction. Also
there is no common semantic interlingua. Instead there
are many application- and domain-specific interlinguas,
and the concrete syntax can be built (but not necessarily)
on top of the common resource grammar API.
The GF resource grammar library (Ranta, 2009), or RGL
for short, currently supports more than 20 languages1
that implement the common API. Latvian is among 13
(out of 23) official EU languages that are supported.
The common API specifies about 60 hierarchical gram-
matical categories and nearly 500 syntactic construction
functions (including structural words and parameters
used in the abstract trees)2. The large number of func-
tions is still manageable from the application grammar
developer perspective: due to extensive overloading,
most of the functions are arranged in about 35 overload
groups. Apart from the syntactic functions, there are also
about 15 groups of lexical construction functions (the
exact number of overloaded paradigms varies among
languages; see Table 1 for a simplified example).

3. Morphology
Morphology plays an important part in grammatical
analysis of Latvian, as there are many3 inflected word-
forms possible for each lemma: about 10 noun/pronoun
forms, about 40 verb forms (excluding about 160
participle forms whose syntactic function is that of
adjectives), and more than 100 adjective forms. Still, a
lot of analytical wordforms are also used (e.g. analytical
verb forms and prepositional phrases).
We have developed a GF morphology module for the
full Latvian language by transforming and improving a
previously developed morphological analyzer (Paikens,
2007) to the GF language, taking into account the
language generation aspects. In particular, we have
implemented a set of functions that detail the lemma-
tization and palatalization that occurs in Latvian, and an
exhaustive list of word ending tables used in each
paradigm. In the result, the Latvian GF morphology
module and the analyzer by Paikens (2007) are quite
different from the application point of a view. The latter
one is designed as a highly robust analyzer for maximum
coverage of an unrestricted text and is not appropriate for
the generation needs as it suffers from overgeneration.
However, the GF module is designed for high precision
within a known lexical domain.
In Table 1, a simplified inflectional paradigm for Latvian
nouns of the 5th declension is given along with the
corresponding tiny fragment from the abstract grammar.
A similar approach has been used for implementing
morphology in GF for other inflective languages, e.g.
Russian4 (Khegai, 2006).
All the possible wordforms (linearizations) of a particu-

1 http://www.grammaticalframework.org/lib/doc/status.html
2 http://www.grammaticalframework.org/lib/doc/synopsis.html
3 If compared to analytical languages like English or Scandi-
navian languages.
4 In terms of grammar, the Slavic language group is the closest
branch to the Baltic language group.

lar Latvian noun are given in Table 2 along with possible
linearizations of the corresponding English noun.
Note that in the public API, the specific internal func-
tions (operations) that deal with the lexical paradigms are
hidden by overloaded functions (e.g. mkN in the case of
nouns).

Common abstract grammar: categories
cat	 N	 ;	

Latvian resource grammar: the morphology module
param
	 	 Number	 =	 Sg	 |	 Pl	 ;	
	 	 Gender	 =	 Masc	 |	 Fem	 ;	
	 	 Case	 =	 Nom	 |	 Gen	 |	 Dat	 |	 Acc	 |	 Loc	 ;	
	 	 Declension	 =	 D1	 |	 D2	 |	 D3	 |	 D4	 |	 D5	 |	 ...	 ;	

oper
	 	 Noun	 :	 Type	 =	 {	
	 	 	 	 s	 :	 Number	 =>	 Case	 =>	 Str	 ;	
	 	 	 	 g	 :	 Gender	
	 	 }	 ;	

	 	 mkNoun	 :	 Str	 -‐>	 Noun	 =	 \lemma	 -‐>	
	 	 	 	 let	 decl	 :	 Declension	 =	 case	 lemma	 of	 {	
	 	 	 	 	 	 ...	
	 	 	 	 	 	 s	 +	 "e"	 =>	 D5	 ;	 -‐-‐	 usually	
	 	 	 	 	 	 ...	
	 	 	 	 }	 in	 mkNoun_Decl	 lemma	 decl	 ;	

	 	 mkNoun_Decl	 :	 Str	 -‐>	 Declension	 -‐>	 Noun	 =	
	 	 	 	 \lemma,decl	 -‐>	 case	 decl	 of	 {	
	 	 	 	 	 	 ...	
	 	 	 	 	 	 D5	 =>	 mkNoun_D5	 lemma	 ;	
	 	 	 	 	 	 ...
	 	 	 	 }	 ;	

	 	 mkNoun_D5	 :	 Str	 -‐>	 Noun	 =	 \lemma	 -‐>	
	 	 	 	 let	 stem	 :	 Str	 =	 cutStem	 lemma	
	 	 	 	 in	 {	
	 	 	 	 	 	 s	 =	 table	 {	
	 	 	 	 	 	 	 	 Sg	 =>	 table	 {	
	 	 	 	 	 	 	 	 	 	 Nom	 =>	 stem	 +	 "e"	 ;	
	 	 	 	 	 	 	 	 	 	 Gen	 =>	 stem	 +	 "es"	 ;	
	 	 	 	 	 	 	 	 	 	 Dat	 =>	 stem	 +	 "ei"	 ;	
	 	 	 	 	 	 	 	 	 	 Acc	 =>	 stem	 +	 "i"	 ;	
	 	 	 	 	 	 	 	 	 	 Loc	 =>	 stem	 +	 "ē"	
	 	 	 	 	 	 	 	 }	 ;	
	 	 	 	 	 	 	 	 Pl	 =>	 table	 {	
	 	 	 	 	 	 	 	 	 	 Nom	 =>	 stem	 +	 "es"	 ;	
	 	 	 	 	 	 	 	 	 	 Gen	 =>	 palatalize	 stem	 +	 "u"	 ;	
	 	 	 	 	 	 	 	 	 	 Dat	 =>	 stem	 +	 "ēm"	 ;	
	 	 	 	 	 	 	 	 	 	 Acc	 =>	 stem	 +	 "es"	 ;	
	 	 	 	 	 	 	 	 	 	 Loc	 =>	 stem	 +	 "ēs"	
	 	 	 	 	 	 	 	 }	
	 	 	 	 	 	 }	 ;	
	 	 	 	 	 	 g	 =	 Fem	
	 	 	 	 }	 ;	

Latvian resource grammar: API
oper	 mkN	 =	 overload	 {	
	 	 mkN	 :	 (s	 :	 Str)	 -‐>	 N	 =	 \n	 -‐>	 lin	 N	 (mkNoun	 n)	 ;	
	 	 mkN	 :	 (s	 :	 Str)	 -‐>	 Declension	 -‐>	 N	 =	 \n,d	 -‐>	
	 	 	 	 lin	 N	 (mkNoun_Decl	 n	 d)	 ;	
}	 ;	

Table 1: A simplified fragment of RGL.

Domain-specific lexicon: abstract
fun	 sun_N	 :	 N	 ;
Domain-specific lexicon: Latvian
lin	 sun_N	 =	 mkN	 “saule”	 ;	

Domain-specific lexicon: English
lin	 sun_N	 =	 mkN	 “sun”	 ;	

Parsing into the abstract categories
>>	 parse	 -‐lang=Lav	 “sauļu”	
sun_N

>>	 parse	 -‐lang=Eng	 “suns'”	
sun_N

Generating the full inflectional paradigms
>>	 linearize	 -‐lang=Lav	 -‐table	 sun_N	
s	 Sg	 Nom	 :	 saule	
s	 Sg	 Gen	 :	 saules	
s	 Sg	 Dat	 :	 saulei	
s	 Sg	 Acc	 :	 sauli	
s	 Sg	 Loc	 :	 saulē	
s	 Pl	 Nom	 :	 saules	
s	 Pl	 Gen	 :	 sauļu	
s	 Pl	 Dat	 :	 saulēm
s	 Pl	 Acc	 :	 saules	
s	 Pl	 Loc	 :	 saulēs	

>>	 linearize	 -‐lang=Eng	 -‐table	 sun_N	
s	 Sg	 Nom	 :	 sun	
s	 Sg	 Gen	 :	 sun's	
s	 Sg	 Acc	 :	 sun	
s	 Pl	 Nom	 :	 suns
s	 Pl	 Gen	 :	 suns'	
s	 Pl	 Acc	 :	 sun

Table 2: A sample domain lexicon (a part of an
application grammar): its definition and usage.

4. Syntax
We have implemented grammar rules for all the common
phrase structures in the conventional style of categorial
grammars, basically: noun phrases with agreement rules
for adjectives and other modifiers, adjective phrases, and
verb phrases with the relevant complements. On one
hand, the implemented rules cover only the most
common (neutral) ways of expressing these phrases (in
terms of word order), excluding several alternative word
orderings that are occasionally used for special emphasis
(e.g. to indicate the given vs. new information) or for
poetic reasons. On the other hand, the grammar includes
syntactic construction rules for a full range of dependent
clauses and participle clauses used in Latvian language,
thus ensuring a wide coverage for generating natural,
complex sentences.
In essence, this approach models a subset of the full
natural language which relies on rich lexical information
about words in a specific domain and on a grammatically
correct standard language, gaining high precision while
accepting a lower recall rate if analyzing an unrestricted
text. From the language generation point of a view, the
design goal is that it should be possible to express every
valid structure in the most common way, i.e., in the

natural/neutral word order – but not necessarily in all the
possible word orderings, as there is no well-defined
model (for Latvian) for the exact semantic nuances
transferred by alternative word order in a more or less
unrestricted text5.

4.1 Clauses
We treat clauses as elements that specify actions – a verb
with its arguments – but leaves unspecified the way in
which the actions are described. Traditional Latvian
linguistics describes clauses in terms of moods and
tenses. There are infinitive, indicative, relative6, debitive7
and imperative moods, as well as few subtypes of some
of them and several types of participles. The relative and
debitive moods are Latvian-specific and are used to
express the reported speech and necessity or requirement
accordingly.
In general, every action can be expressed in any of these
moods by using different synthetic verb forms. In the
case of a perfect tense, analytical verb forms are used.
We have implemented the full set of mood, tense and
polarity combinations used in Latvian language, some
examples of which are illustrated in Table 3.

Parameters Example Translation
Indicative	
Present

zāle ir zaļa grass is green

Indicative	
Past

zāle bija zaļa grass was green

Indicative	
Anterior
Present

zāle ir bijusi zaļa grass has been
green

Relative	
Simultaneous	
Present	

zāle esot zaļa [one says that]
grass is green	

Debitive	
Simultaneous	
Present	

zālei jābūt zaļai grass has to be
green

Conditional	
Simultaneous	

zāle būtu zaļa grass would be
green

Relative	
Anterior
Negated	

zāle neesot bijusi
zaļa

[one says that]
grass has not been
green

Table 3: Examples of mood, tense and polarity variation
in Latvian.

The basic abstract (language-independent) syntax used in
GF RGL is based on a narrow view of tenses (present,
past, future and conditional). This limits the easily
(synthetically) available variety in generation of Latvian
sentences. In a standard resource grammar, at the
sentence level, the verb phrases are used in the indicative
mood, however, keeping the other types of moods
integrated allows us to reuse the same verb phrase

5 Although, in the case of a highly controlled Latvian, there is a
deterministic model defined by Grūzītis (2010).
6 http://www.isocat.org/datcat/DC-3836
7 http://www.isocat.org/datcat/DC-3835

constructing functions in application grammars that need
the additional means of expression. This helps also when
translating specific (structural) verbs such as ‘must’,
‘might’ or ‘said’ – in a proper translation to Latvian it is
often necessary to modify the mood of the dependent
clause governed by these verbs instead of including the
literal translation of these verbs.
The API interface provided by the resource grammar is
as follows:

1. Function mkCl (make clause), parameterised by
the subject, core verb and any appropriate com-
plements. For example, “mkCl	 John_N	 give_V2	
key_N	 Mary_N” generates clauses that corre-
spond to all combinations of tense and polarity
for using in different kinds of sentences: “John
gives a key to Mary”, “John has not given a key
to Mary”, “will John give a key to Mary” etc.

2. Functions to apply such clauses – parameterised
by tense, anteriority and polarity. For example,
by applying “mkS	 pastTense	 simultaneousAnt	
positivePol” to the previously defined clause
the specific declarative sentence “John gave a
key to Mary” is generated.

3. Helper functions for building incomplete
clauses that may be needed to form questions,
imperative sentences or subclauses.

This structure enforces a clean separation between the
actual predicate that is described, and the way in which it
is described in a narrative. For example, an application
may need to refer to the same action multiple times: first,
(hypothetically) to request a confirmation from a user,
and afterwards to refer to it as a completed action,
requiring a completely different syntactic structure.
In the practical development of user interfaces in Latvian
this is almost always done in an unsophisticated way,
using simple declarative sentences where the correct
wordform can be built easily by regular expressions or
similar methods. This results in sentence structures that
look clumsy to users, because humans would commonly
use a more complicated structure with subclauses.
Such a resource grammar allows applications to express
a particular clause once in a standardised way, and then
use it in various forms or combine it in complex sentence
structures without dealing with the rather complex rules
of inflection, agreement and structural changes when
using it as a subclause.

4.2. Verb phrases
The agreement rules for complements of multi-argument
verbs are implemented by specifying the syntactic
valences of each verb – the case or preposition that the
relevant complement must or may have.
This presents a challenge for implementing a practical
system for Latvian in relatively unrestricted language
domains with large lexicons, as currently there is no
publicly available syntactic valence dictionary for
Latvian, and thus all such verbs would need to be

defined manually instead of importing them from some
database of verbs with appropriate morpho-syntactic
information. However, if (application) grammar users
define syntactic valences of verbs that are appropriate to
the specific domain, it gives an opportunity to specify (at
the same time) also semantic valences, so that the role of
each complement can be obtained from the case (or
preposition) used, allowing to integrate the grammar
with frame semantics, e.g. with the data of FrameNet
(Fillmore et al., 2003), or to map the verb valences to
domain-specific predicate parameters.
In any case, this lexical information is necessary to
ensure correct analysis or synthesis, as verb complement
roles (both syntactic and semantic) are mainly defined by
their case or preposition. In Table 4 we illustrate this
valence mapping of semantic and syntactic roles for
three related verbs.

(a) saņemt (to receive):
Sem. role Latvian English
Recipient	 Nominative Subject	
Theme	 Accusative Object-‐1
Donor	 “no”	 ++	 Genitive	 “from”	 ++	 Object-‐2	
Mērija saņem atslēgu no Jāņa – Mary receives a key from John

(b) vajadzēt (to need):
Sem. role Latvian English
Recipient	 Dative Subject	
Theme Accusative Object-‐1	
Donor	 “no”	 ++	 Genitive	 “from”	 ++	 Object-‐2	
Mērijai vajag atslēgu no Jāņa – Mary needs a key from John

(c) dot (to give):
Sem. role Latvian English
Donor Nominative Subject	
Theme	 Accusative Object-‐1	
Recipient	 Dative “to”	 ++	 Object-‐2	
Jānis dod atslēgu Marijai – John gives a key to Mary

Table 4: Syntactic and semantic role mappings

Note that the examples given in Table 4 correspond to
the neutral word order, but the other possible orderings
that preserve the same morphological features are also
valid in Latvian: “Mērija no Jāņa saņem atslēgu”, “no
Jāņa atslēgu Mērija saņem” etc. They convey virtually
the same meaning, but the information structure (topic
and focus) is different, affecting the further discourse
analysis (Grūzītis, 2010).
The syntactic information specific to each of the (a), (b)
and (c) verbs in Table 4 is necessary both to choose the
proper complement wordform in language generation,
and to determine the subject while parsing a sentence.
This also means that in the case of verbs that are
classified as three-place verbs some complements can be
(and often are 8) omitted while still keeping clear
valences.

8 Preliminary corpus analysis of Latvian verb valences
indicates that in about 30% cases one or multiple frame
elements are omitted.

This property is relevant to other languages as well9, and
the current GF approach of classifying verbs according
to the number of arguments is not sufficient in the long
term, especially in the multilingual environment where
the syntactic realization of the same verb (concept) can
be different across languages.

4.3 Noun and adjective phrases
Noun and adjective phrases are implemented in a
straightforward manner as it is typical for inflective
languages – the phrase constituent relations are
determined from agreement of morphological features.
The treatment of determiners is somewhat interesting:
definite and indefinite articles are not used in Latvian,
and, in general, there is no difference between definite
and indefinite noun phrases (at the surface level). A noun
phrase might include an indefinite or demonstrative
pronoun, or an adjective that have distinct definite and
indefinite forms, however, the given and new
information is often indicated implicitly – by rather
systematic changes in the neutral word order (Grūzītis,
2010). These formal features can be exploited to ensure
the proper translation in a multilingual application. In
this regard, the definiteness property is tracked in noun
phrases in order to determine the agreement between a
noun and an adjective or a participle.
In Latvian, an attribute of a noun can be easily trans-
formed into a (comma-delimited) attributive subclause or
vice versa (in most cases). The resource grammar
includes full support for deep nesting of such subclauses
as they are typically used, for example, in legal texts.

5. Applications
GF has been used for a logic-based Latvian-English
application grammar even before the Latvian resource
grammar was available, creating a prototype for
authoring and verbalizing OWL ontologies in controlled
Latvian via Attempto Controlled English and its readily
available infrastructure (Grūzītis & Bārzdiņš, 2011;
Fuchs et al., 2008). Now it is possible to extend this
research on the basis of the resource grammar library and
on the basis of the work by Angelov & Ranta (2010).
However, the provided resource grammar is suitable also
for significantly less controlled applications if the inter-
pretation is left to the user, e.g. for tourist phrasebooks as
demonstrated by Ranta et al. (2012).
Language generation facilities can be used to easily
construct grammatically correct and natural sentences (or
even a text) in various end-user interfaces: from simple
use-cases like proper handling of named entities up to
automatic verbalization of database query results or in
hybrid machine translation systems (see the deliverables
of the MOLTO project10 for an example).
It should be emphasised that the limitations that are
imposed by the RGL API are present only if we want to
exploit the readily available multilingual parsing and

9 For example, Khegai (2006) mentions similar issues.
10 http://www.molto-project.eu/

generation facilities. For single-language applications it
is possible to extend the resource grammar without
preserving full compatibility with the shared API. For
instance, the current system could be adapted for parsing
texts in a weakly controlled language, e.g. legal docu-
ments. Furthermore, Angelov (2011) has demonstrated
the potential of the current GF resource grammar library
in statistical partial parsing of unrestricted texts.
Our future work is aimed at adaptation of the Latvian
resource grammar and at creation of a reusable Latvian
GF lexicon in order to enable semantic parsing of
multi-domain texts. I.e., we are aiming at integration of
the current approach with the frame semantics approach
so that the semantic valences of a verb would be taken
into account11. However, this would require significant
modifications not only in the Latvian resource grammar,
but also in the abstract syntax and to the current
principles of building GF lexicons.

6. Conclusion
We have implemented a computational grammar for
Latvian that works equally well for parsing and language
generation. It is available as an open-source distribution
in the GF release 3.3.3 and is available for download
from the GF source code repository or as a part of binary
packages 12 . Compiled GF application grammars are
suitable for inclusion in third-party applications on
various platforms.
For the developers of GF RGL modules for other
languages, it may be interesting to note the discrepancies
between the current resource grammar API and its
implementation for Latvian. While the morphological
layer is completely language-dependent, the sharing of
common syntactic structures to some extent limits the
resource grammar development and applicability in order
to ensure the compatibility (transferability) among the
languages. Our impression is that the current lan-
guage-independent API is still rather biased towards
peculiarities of English, and that it may be worthwhile to
summarize the issues for all language implementations to
identify the common limitations.
While we lack the knowledge to summarize the situation
for all languages supported by the RGL, our experiments
with Latvian-English-Russian parallel grammars suggest
that development of accurate robust multilingual systems
will eventually require including additional details in the
abstract syntax layer of the RGL. Notably, we would
recommend to replace the ‘n-place’ verb classification
with more structured valence data, and to extend the
common tense and mood system.

Acknowledgements
This work has been supported by the European Regional
Development Fund under the project No. 2011/0009/

11 There is an ongoing work developing a valence dictionary
for the most frequently used verbs in Latvian (Nešpore &
Saulīte, 2012).
12 http://www.grammaticalframework.org/

2DP/2.1.1.1.0/10/APIA/VIAA/112. The authors would
like to thank Aarne Ranta for his helpful hints on the
implementation details, and the anonymous reviewers for
their suggestions on how to improve this paper.

References
Angelov, K. (2011). The Mechanics of the Grammatical

Framework. PhD Thesis. Chalmers University of
Technology and University of Gothenburg.

Angelov, K., Ranta, A. (2010). Implementing controlled
languages in GF. In N.E. Fuchs (Ed.), Controlled
Natural Language (CNL 2009), Lecture Notes in
Computer Science, Vol. 5972, Springer, pp. 82–101

Bārzdiņš, G., Grūzītis, N., Nešpore, G., Saulīte, B. (2007).
Dependency-Based Hybrid Model of Syntactic Analy-
sis for the Languages with a Rather Free Word Order.
In Proceedings of the 16th Nordic Conference on
Computational Linguistics (NODALIDA 2007), Tartu,
pp. 13–20

Deksne, D., Skadiņš, R. (2011). CFG Based Grammar
Checker for Latvian. In Proceedings of the 18th
Nordic Conference on Computational Linguistics
(NODALIDA 2011), Riga, pp. 275–278

Fillmore, C.J., Johnson, C.R., Petruck, M.R.L. (2003).
Background to FrameNet. International Journal of
Lexicography, 16, pp. 235–250

Fuchs N.E., Kaljurand K., Kuhn T. (2008). Attempto
Controlled English for Knowledge Representation. In
Proceedings of the 4th International Reasoning Web
Summer School, Lecture Notes in Computer Science,
Vol. 5224, Springer, pp. 104–124

Greitāne, I. (1997). Mašīntulkošanas sistēma LATRA
(The Machine Translation System LATRA). Proceed-
ings of the Latvian Academy of Sciences, Section A, 51
(3/4), pp. 1–6

Grūzītis, N., Bārzdiņš, G. (2011). Towards a More Natural
Multilingual Controlled Language Interface to OWL.
In Proceedings of the 9th International Conference on
Computational Semantics (IWCS 2011), Oxford, pp.
335–339

Grūzītis, N. (2010). Word Order Based Analysis of
Given and New Information in Controlled Synthetic
Languages. In Proceedings of the Workshop on the
Multilingual Semantic Web (at WWW 2010), Raleigh,
CEUR Workshop Proceedings, Vol. 571, pp. 29–34

Khegai, J. (2006). GF parallel resource grammars and
Russian. In Proceedings of the Joint Conference of the
International Committee on Computational Linguistics
and the Association for Computational Linguistics
(COLING/ACL 2006), Sydney, pp. 475–482

Nešpore, G., Saulīte, B. (2012). Verbu valences apraksta
iespējas latviešu valodā. In Valoda: nozīme un forma.
Teorija un metodoloģija latviešu valodniecībā, Rīga:
LU Akadēmiskais apgāds (to appear)

Paikens, P. (2007). Lexicon-Based Morphological
Analysis of Latvian Language. In Proceedings of the
3rd Baltic Conference on Human Language
Technologies (Baltic HLT 2007), Kaunas, pp. 235–240

Pretkalniņa, L., Nešpore, G., Levāne-Petrova, K., Sau-

līte, B. (2011). A Prague Markup Language Profile for
the SemTi-Kamols Grammar Model. In Proceedings
of the 18th Nordic Conference on Computational
Linguistics (NODALIDA 2011), Riga, pp. 303–306

Ranta, A., Enache, R., Détrez, G. (2012). Controlled
Language for Everyday Use: the MOLTO Phrasebook.
In N.E. Fuchs, M. Rosner (Eds.), Proceedings of the
2nd Workshop on Controlled Natural Language (CNL
2010), Lecture Notes in Computer Science, Vol. 7175,
Springer (to appear)

Ranta, A. (2011). Grammatical Framework: Program-
ming with Multilingual Grammars. Stanford: CSLI
Publications

Ranta, A. (2009). The GF Resource Grammar Library.
Linguistic Issues in Language Technology, 2 (2)

Skadiņa, I., Skadiņš, R., Deksne, D., Gornostaja, T.
English/Russian-Latvian Machine Translation System.
In Proceedings of the 3rd Baltic Conference on Human
Language Technologies (Baltic HLT 2007), Kaunas,
pp. 287–295

PUBLIKĀCIJA III

FrameNet resource grammar library for GF

Controlled Natural Language, lpp. 121–137. Springer Berlin Heidelberg, 2012.

T. Kuhn and N.E. Fuchs (Eds.): CNL 2012, LNCS 7427, pp. 121–137, 2012.
© Springer-Verlag Berlin Heidelberg 2012

FrameNet Resource Grammar Library for GF

Normunds Gruzitis, Peteris Paikens, and Guntis Barzdins

Institute of Mathematics and Computer Science, University of Latvia
Raina blvd. 29, Riga, LV-1459, Latvia

{normunds.gruzitis,peteris.paikens,guntis.barzdins}@lumii.lv

Abstract. In this paper we present an ongoing research investigating the possi-
bility and potential of integrating frame semantics, particularly FrameNet, in the
Grammatical Framework (GF) application grammar development. An important
component of GF is its Resource Grammar Library (RGL) that encapsulates the
low-level linguistic knowledge about morphology and syntax of currently more
than 20 languages facilitating rapid development of multilingual applications.
In the ideal case, porting a GF application grammar to a new language would
only require introducing the domain lexicon – translation equivalents that
are interlinked via common abstract terms. While it is possible for a highly
restricted CNL, developing and porting a less restricted CNL requires above
average linguistic knowledge about the particular language, and above average
GF experience. Specifying a lexicon is mostly straightforward in the case of
nouns (incl. multi-word units), however, verbs are the most complex category
(in terms of both inflectional paradigms and argument structure), and adding
them to a GF application grammar is not a straightforward task. In this paper we
are focusing on verbs, investigating the possibility of creating a multilingual
FrameNet-based GF library. We propose an extension to the current RGL, al-
lowing GF application developers to define clauses on the semantic level, thus
leaving the language-specific syntactic mapping to this extension. We demon-
strate our approach by reengineering the MOLTO Phrasebook application
grammar.

Keywords: controlled natural language, frame semantics, FrameNet, multilin-
guality, Grammatical Framework.

1 Introduction

Controlled natural languages (CNL) can be divided into two general types according
to the formalist or the naturalist approach [1]. The formalist approach supports a de-
terministic, bidirectional mapping of CNL to a formal language like first-order logic
(FOL) or, more commonly, to description logic, namely OWL (Web Ontology Lan-
guage) [2], allowing the integration with existing tools for reasoning, consistency
checking and model building. Although logic-based CNL provides a seemingly in-
formal high-level means for knowledge representation, essentially it is still a formal
language that is just as expressive as the corresponding formalism, and whose inter-
pretation is deterministic (predictable). In contrast, in the naturalist approach possible

122 N. Gruzitis, P. Paikens, and G. Barzdins

ambiguities are decreased but not excluded, thus allowing for a wider coverage of NL
and more informal applications, such as semantically precise machine translation
within a CNL.

In other words, there are CNLs that have an underlying logic-based formalism de-
fining the semantics of a text (e.g. Attempto Controlled English [3]), and there are
CNLs that do not have an underlying logic-based formalism (e.g. MOLTO Phrase-
book [4] for multilingual translation of touristic phrases). In the first case, the seman-
tics of CNL statements is interpreted by both a human and a formal-logic reasoning
machine. In the second case, the interpreter is primarily a human and possibly a do-
main-specific application that uses CNL, for example, for information retrieval from a
predefined domain-specific database.

Grammatical Framework (GF) [5] is a categorial grammar formalism and a toolkit
for programming multilingual grammar applications. It is similar to definite clause
grammars (DCG) in Prolog in that both support parsing and synthesis using the same
(categorical) grammar definition. Besides the grammar formalism itself, an important
part of GF is its Resource Grammar Library (RGL) [6] that encapsulates the low-level
linguistic knowledge about morphology and syntax of currently more than 20 lan-
guages (the number is constantly growing). RGL facilitates rapid development and
porting of application grammars in many parallel languages: all GF resource gram-
mars implement the same syntactic interlingua (API) enabling automatic translation
among languages via the abstract syntax trees. In particular, it has been shown that
GF is a convenient framework for rapid and flexible implementation of multilingual
CNLs – both those rooted in a formal language like the FOL-based Attempto Con-
trolled English [7] and those rooted in a relatively informal language like standard
touristic phrases [4].

In the ideal case, porting a GF application grammar to a new language or domain
would only require introducing the domain lexicon – translation equivalents that are
interlinked via common abstract terms. While it is possible for a highly restricted
CNL, e.g. for authoring and verbalizing OWL ontologies (as implemented, for exam-
ple, in [8]), developing and porting a less restricted CNL requires more linguistic
knowledge about the particular language, and more experience in GF (particularly, in
using RGL). Specifying a lexicon of nouns (incl. multi-word units) is mostly straight-
forward, however, specifying the lexicon of verbs is typically the most complex task
in terms of both inflectional paradigms and argument structure, and may require
specifying the whole clause (as in Phrasebook). Thus adding verbs to a GF applica-
tion grammar’s lexicon in a foreign language (or for a novice or less resourced GF
developer even in his mother tongue) might not be a straightforward task and might
present a stumbling block for potential GF multilingual application developers. There-
fore in this paper we are focusing on verbs, investigating the possibility of creating a
multilingual FrameNet-based GF resource grammar library.

The rest of the paper is organized as follows. In Section 2 we briefly re-capture
the relevant architectural principles of FrameNet. In Section 3 we similarly re-capture
some relevant GF application grammar development principles, demonstrating the
current approach with a detailed example. Section 4 modifies the previous example,
describing our solution for integrating FrameNet into GF application grammars.
Finally we conclude with a brief discussion on the potential and benefits of the pro-
posed FrameNet library for seamless multilingual CNL development.

 FrameNet Resource Grammar Library for GF 123

2 FrameNet

FrameNet [9] is a lexicographic database that describes word meanings based on the
principles of frame semantics. The central idea of frame semantics is that word mean-
ings must be described in relation to semantic frames [10]. Therefore, the frame and
the lexical unit are the key components of FrameNet. A lexical unit in FrameNet
terms is the combination of a lemma with a specific meaning – each separate meaning
of a word represents a new lexical unit. In FrameNet, each lexical unit is related to a
semantic frame that it is said to evoke a frame (see Figure 1 and Figure 2).

The semantic frame describes a certain situation and the participants of that situa-
tion that are likely to be mentioned in the sentences where the evoking lexical unit
(referred to as frame target) appears. The semantic roles played by these participating
entities are called frame elements (FE). FrameNet makes a differentiation between
core frame elements and peripheral frame elements. In general, frame elements that
are necessarily realized are core elements. Peripheral elements represent more general
information such as time, manner, place, and purpose and are less specific to the
frame. Nevertheless all FrameNet frame elements are local to individual frames. This
avoids the commitment to a small set of universal roles, whose specification has
turned out to be controversial in the past [11]. In order to account for actual similari-
ties between frame elements in different frames FrameNet includes also a rich set of
frame to frame and FE to FE relations.

Residence
This frame has to do with people (the Residents)
residing in Locations, sometimes with a Co-resident.

C
or

e
FE

s Co_resident
A person or group of people that the Resident is
staying with or among.

Location The place in which somebody resides.

Resident The individual(s) that reside at the Location.

Lexical units
camp.v, dwell.v, inhabit.v, live.v, lodge.v, occupy.v,
reside.v, room.v, squat.v, stay.v

Fig. 1. A sample FrameNet frame (only core frame elements shown)

The frame descriptions are coarse-grained and generalize over lexical variation.
Therefore lexeme-specific information is contained within lexical unit entries that are
more fine-grained and contain a definition of the lexical unit, the syntactic realizations
of each frame element and the valence patterns. A sense of a lemma (word meaning)
can evoke a frame, and thus form a lexical unit for this frame, if this sense is syntacti-
cally able to realize the core frame elements that instantiate a conceptually necessary
component of a frame [12].

In Figure 2, a simplified (summarized) lexical entry of ‘to live’ (Residence) is
given: information on non-core FEs is excluded (the rest is summed up); for each
valence model only the most frequent realization pattern is given; valence models that
contain multiple FEs of the same type are excluded; valence models that have ap-

124 N. Gruzitis, P. Paikens, and G. Barzdins

peared in the corpus only once are excluded; prepositional phrase patterns (PP) are
not distinguished by particular prepositions.

FE Total Pattern

Co_resident 14 PP.Dep (86%)
Location 131 PP.Dep (81%)
Resident 143 NP.Ext (90%)

(a)

Total Patterns

98 Location Resident

71% PP.Dep NP.Ext
7 Co_resident Resident

86% PP.Dep NP.Ext
7 Co_resident Location Resident

86% PP.Dep PP.Dep NP.Ext
(b)

Fig. 2. A simplified lexical entry Residence.live. (a) Core FEs and their most frequent
syntactic patterns in the FrameNet corpus. (b) Most frequent valence models of core FEs.

Our central point of interest in this paper is the multilingual dimension of Frame-
Net. A number of projects have investigated the use of English FrameNet frames for
other languages, such as German (SALSA project [13]), Spanish [14], Japanese [15],
and lately also for Thai, Chinese, Italian, French, Bulgarian, Hebrew [16]. A funda-
mental assumption of these projects is that English FrameNet frames can be largely
re-used for the semantic analysis of other languages. This assumption rests on the
nature of frames as coarse-grained semantic classes which refer to prototypical situa-
tions – to the extent that these situations agree across languages, frames should be
applicable cross-linguistically. Also Boas [17] suggests the use of semantic frames as
interlingual representation for multilingual lexicons.

While FrameNet multilinguality is clearly a very attractive assumption, its empiri-
cal validation comes primarily from the German SALSA project, which has found
that the vast majority of English FrameNet frames can be directly applied to the
analysis of German – a language that is typologically close to English. Meanwhile,
some frames have turned out not to be fully interlingual and three main cross-lingual
divergence types were found:

1. Ontological distinctions between similar frame elements.
2. Missing frame elements.
3. Differences in lexical realization patterns (e.g. German ‘fahren’ does not distin-

guish between Operate_vehicle and Ride_vehicle frames).

Nevertheless this empirical evidence shows that most of FrameNet frames indeed are
language independent and therefore provide an opportunity for use as a multilingual
coarse-grained lexicon in GF, as described in Section 4. Although FrameNet
addresses all parts-of-speech, its strength and focus is on verbs for which the best
coverage is provided. This is largely because while noun-phrase multi-word units are
extensively “invented” to denote nominal concepts (especially in technical domains),
phrasal verbs are more fixed, commonly reused (across domains) and are often cap-
tured in dictionaries of standard language. Since the advantage of valence structures is

 FrameNet Resource Grammar Library for GF 125

more obvious for verbs, in this paper we consider only FrameNet frames with verbal
frame evoking lexical entries.

3 GF Application Grammar Development: The Current
Approach

GF facilitates reusability by splitting the grammar development in two levels:

1. A general-purpose resource grammar covers a wide range of morphological
paradigms and syntactic structures and as such is highly ambiguous. GF pro-
vides a Resource Grammar Library (RGL) [6] implementing a common API for
more than 20 languages.

2. Domain specific application grammars reuse the RGL, defining semantic struc-
tures and the subset of natural language (syntax and lexicon) that is used within
a particular CNL. Application grammars reduce or even eliminate ambiguities.

Development of a resource grammar requires in-depth GF knowledge and in-depth
linguistic knowledge about the particular language. Once a resource grammar is pro-
vided, application grammars are built on top of it significantly reducing the linguistic
knowledge prerequisites (a non-linguist native or fluent speaker should be sufficient),
as well as he or she can be less experienced with GF.

GF differentiates not only between general-purpose resource grammars and do-
main-specific application grammars, but also between abstract syntax and concrete
syntax. The abstract syntax captures the semantically relevant structure of a CNL,
defining grammatical categories and functions for building abstract syntax trees [5].
The concrete syntax defines the linearization of the CNL abstract syntax trees at the
surface level for each language. Translation among languages (concrete syntaxes) is
provided via abstract syntax1.

We will describe the current approach to the RGL-based GF application grammar
development using the MOLTO Phrasebook application [4] for multilingual transla-
tion of touristic phrases as an example. Phrasebook is a CNL implemented in 15
languages and is aimed to be usable by anyone without prior training. It has 42 cate-
gories and 290 functions. The number of phrases it can generate is infinite, but on a
reasonable level of tree depth 3, Phrasebook has nearly 500,000 abstract syntax
trees [4]. We will consider only a small subset of the Phrasebook grammar – catego-
ries (cat) and functions or constructors (fun) that are used to build the abstract syn-
tax trees for the following sample sentences, and to generate these sentences from the
corresponding abstract trees2 as given in Figure 3.

In the next section we will modify the English implementation of the Phrasebook
grammar by means of the proposed FrameNet-based resource grammar, acquiring a

1 Note that in GF there is no concept of a language pair or a translation direction. Also there is

no common semantic interlingua. Instead there are many application specific (i.e., CNL and
domain specific) interlinguas.

2 The provided abstract syntax trees are slightly simplified regarding the pronouns – their
gender, number and politeness features – to avoid multiple variants.

126 N. Gruzitis, P. Paikens, and G. Barzdins

simpler English Phrasebook (PhrasebookEng) implementation as the result, while
preserving the same functionality. However, we will not make any changes neither in
the Phrasebook functor (the common incomplete concrete syntax), nor in the abstract
syntax, i.e., we will not impose any special requirements on application grammar
design.

English sentences Phrasebook abstract syntax

I like this pizza. PSentence (SProp (PropAction (ALike I (This Pizza))))

I live in Belgium. PSentence (SProp (PropAction (ALive I Belgium)))

I love you. PSentence (SProp (PropAction (ALove I You)))

I want a good
pizza.

PSentence (SProp (PropAction (AWant I (OneObj

 (ObjIndef (SuchKind (PropQuality Good) Pizza))))))

I want to go to a
museum.

PSentence (SProp (PropAction (AWantGo I

 (APlace Museum))))

Fig. 3. Sample Phrasebook sentences along with their abstract syntax trees

The abstract syntax of Phrasebook that represents the syntactic and semantic model
of the above phrases is given in Figure 4.

cat
 Action ; -- proposition about a Person, e.g. "I love you"
 Phrase ; -- complete phrase, e.g. "I love you."
 Country ; -- e.g. "Belgium"
 Item ; -- single entity, e.g. "this pizza"
 Kind ; -- kind of an item, e.g. "pizza"
 Object ; -- e.g. "a good pizza"
 Person ; -- agent wanting or doing something, e.g. "I"
 Place ; -- location, e.g. "a museum"
 PlaceKind ; -- kind of location, e.g. "museum"
 Property ; -- basic property of an item, e.g. "good"

fun
 Belgium : Country ;
 Good : Property ;
 Museum : PlaceKind ;
 Pizza : Kind ;

 ALike : Person -> Item -> Action ; -- Action(Person, Item)
 ALive : Person -> Country -> Action ;
 ALove : Person -> Person -> Action ;
 AWant : Person -> Object -> Action ;
 AWantGo : Person -> Place -> Action ;

Fig. 4. A fragment of Phrasebook abstract syntax (semantic model)

 FrameNet Resource Grammar Library for GF 127

A fragment of the incomplete concrete syntax (aka functor) of Phrasebook is given
in Figure 5. This is a technical intermediate layer between the abstract syntax and its
implementation in concrete syntaxes. It defines language-independent syntactic cate-
gories and structures (e.g. PSentence, SProp, PropAction) that are common to all
(or most) languages. Thus the concrete syntax of a particular language has to specify
only language-dependent structures and the lexicon (e.g. AWant, Good, Pizza).

Note that the functor defines the mapping between the application-specific abstract
syntax categories and the categories of the Resource Grammar Library. For instance,
Country, Item and Object syntactically are realized as noun phrases (category NP
in RGL). In Figure 5, there are also three Phrasebook categories that are not directly
mapped to RGL categories (Person, Place and PlaceKind). Instead, they are de-
fined as application-specific categories NPPerson, NPPlace and CNPlace that are
specified as record types whose fields (e.g. name, at, to) are of RGL types.

lincat -- category linearization types
 Phrase = Text ;
 Action = Cl ;
 Country, Item, Object = NP ;
 Person = NPPerson ;
 Place = NPPlace ;
 Kind = CN ;
 PlaceKind = CNPlace ;
 Property = A ;

oper -- operations - functions in concrete syntax
 NPPerson : Type = {name : NP ; isPron : Bool ; poss : Quant} ;
 NPPlace : Type = {name : NP ; pos : Adv ; dir : Adv} ;
 CNPlace : Type = {name : CN ; pos : Prep ; dir : Prep} ;

 mkNPPerson : Pron -> NPPerson = \pron ->
 {name = mkNP pron ; isPron = True ; poss = mkQuant pron} ;

 mkCNPlace : CN -> Prep -> Prep -> CNPlace = \cn,prep1,prep2 ->
 {name = cn ; pos = prep1 ; dir = prep2} ;

 mkNPPlace : Det -> CNPlace -> NPPlace = \det,place ->
 let name : NP = mkNP det place.name in {
 name = name ;
 pos = mkAdv place.pos name ; -- place - position
 dir = mkAdv place.dir name -- place - direction
 } ;

Fig. 5. A fragment of Phrasebook incomplete concrete syntax (functor): common structures. To
make the code more intelligible to readers unfamiliar with GF, it has been slightly modified.

The predication patterns (Action) with verbs at the centre are perhaps the most
complex functions in Phrasebook (from the implementation point of view). Note that
these actions are of type Cl (clause): this will be the gluing point for the integration of
the FrameNet-based resource library (see Section 4). The linguistic (English) realiza-
tion of the semantic model is specified by the concrete syntax (given in Figure 6),

128 N. Gruzitis, P. Paikens, and G. Barzdins

which tells how abstract syntax trees are linearized (lin) into English strings. The
same rules are also used for parsing.

lin -- function linearization rules

 Belgium = mkNP (mkPN "Belgium") ;

 Good = LexiconEng.good_A ;

 Museum = mkPlaceKind "museum" "at" ;

 Pizza = mkCN (mkN "pizza") ;

 ALike pers item = mkCl pers.name (mkV2 (mkV "like")) item ;

 ALive pers country = mkCl pers.name (mkVP (mkVP (mkV "live"))

 (mkAdv SyntaxEng.in_Prep country)) ;

 ALove pers1 pers2 =
 mkCl pers1.name (mkV2 (mkV "love")) pers2.name ;

 AWant pers obj = mkCl pers.name (mkV2 (mkV "want")) obj ;

 AWantGo pers place = mkCl pers.name SyntaxEng.want_VV

 (mkVP (mkVP IrregEng.go_V) place.dir) ;

oper

 mkPlaceKind : Str -> Str -> CNPlace = \name,prep_pos ->

 mkCNPlace (mkCN (mkN name)) (mkPrep prep_pos) SyntaxEng.to_Prep ;

Fig. 6. A fragment of Phrasebook concrete syntax for English

Verbs, in general, are at the centre of a sentence, both syntactically and semanti-
cally. They have the most complex inflectional paradigms (at least in inflective lan-
guages). The syntactic and semantic valence of a verb is defined via its argument and
modifier structure. This inevitably requires solid linguistic knowledge.

RGL differentiates among V (intransitive), V2 (transitive) and V3 (ditransitive)
verbs, as well as some more specific types of verbs with syntactically fixed argument
structure. The syntactic valence patterns for the predefined verb types are fixed when
defining a verb in the application lexicon; these patterns do not depend on the argu-
ment (i.e. the case or preposition of the argument does not depend on a particular NP).
Other valences are specified while constructing a verb phrase – as adverbial modifiers
(Adv); their syntactic patterns are specified by the application developer for each tar-
get language, depending on the semantic role of the argument and syntactic properties
of the language.

If compared to nouns, there are much less verbs and they are more ambiguous (see
WordNet statistics3, for example), thus verbs are also more reusable linguistic units
than nouns. This suggests that a reusable lexicon of verbs would be helpful for GF
application developers. However, this requires not only a dictionary, but also addi-
tional information about the basic syntactic valences for the direct and indirect ob-
jects. Even more helpful would be a multilingual resource grammar of verb valences.

There is a small, limited multilingual lexicon provided by the RGL, but it does not
provide systematic means for scaling and expanding beyond the V-, V2- and V3-like

3 http://wordnet.princeton.edu/wordnet/man/wnstats.7WN.html

 FrameNet Resource Grammar Library for GF 129

valences. The basic lexicon also does not support polysemous verbs – valences often
are different for various meanings of the same verb, and vice versa.

An impression of the syntactic coverage of the GF Resource Grammar Library can
be obtained from its API documentation4. Figure 7 illustrates some of the constructors
for clauses, verb phrases, noun phrases, common nouns, and adverbial modifiers that
are referred in Figure 5 and Figure 6. For instance, Figure 7 illustrates that a clause
can be built from a subject noun phrase with a verb and appropriate arguments. In
general, a clause can be built from a subject noun phrase and a verb phrase.

Function Type Example

mkCl NP -> VP -> Cl she always sleeps
mkCl NP -> V2 -> NP -> Cl she loves him
mkCl NP -> VV -> VP -> Cl she wants to sleep
mkVP VP -> Adv -> VP to sleep here

mkNP Det -> CN -> NP the old man
mkNP PN -> NP Paris
mkNP Pron -> NP we
mkCN N -> CN house
mkAdv Prep -> NP -> Adv in the house

Fig. 7. A fragment of the Resource Grammar API documentation

In order to use the proposed FrameNet library (in addition to the Resource Gram-
mar API), the application grammar developer will have to consult the FrameNet API
as presented in the next section.

4 Our FrameNet-Based Approach

The current split of functionality between the application and the common libraries
expects applications to define the domain specific knowledge in all languages by
using specific verbs and defining their syntactic valences in each target language.

Our proposal is to raise the abstraction level for the common GF clause construc-
tion API from the current syntactic definition to a more semantic one. As we dis-
cussed in Section 2, the research on frame semantics suggests that an exhaustive
cross-domain linguistic model of semantic frames and roles is possible, and it has
been implemented for multiple languages. We believe that it is possible and reason-
able to facilitate the development of multilingual application grammars in GF by
referencing a common API of semantic frames that provide language-specific lineari-
zation for whole clauses or verb phrases (VP), and can optionally provide a default
choice of a lexical unit that evokes the frame and default syntactic valence patterns.

In particular, we envision a resource grammar library that is built on top of the cur-
rent RGL offering each of the FrameNet’s semantic frames as a function that builds a

4 http://www.grammaticalframework.org/lib/doc/synopsis.html

130 N. Gruzitis, P. Paikens, and G. Barzdins

clause from given parameters: fillers of the core elements of that frame, and an
optional list of elements filling the peripheral roles. The FrameNet API would be
implemented semi-automatically by generating GF code from FrameNet data provid-
ing a set of overloaded functions for each frame – mapping the frame (its elements) to
the default or specific syntactic realization (linearization). Our observation is that, in
the current approach to GF application development, a miniature ad-hoc ‘framenet’ is
actually implemented for each application. Moreover, it is often ‘reused’ in a copy-
paste-edit manner from previous applications or from concrete syntaxes of other lan-
guages that implement the same application. We would like to promote systematic
means for reusing this language-specific knowledge via common language-
independent frames.

The following simplified assumptions underlie the default behaviour of our ap-
proach (the default behaviour can be overridden for specific syntactic patterns and
lexical units – see systematic “exceptions” illustrated below):

1. For each frame element there is a typical syntactic pattern that is used in most
cases – independently of the verb that evokes the frame. I.e., both semantic and
syntactic valences can be defined at the frame level.

1.1. There is a common syntactic realization of a frame (a clause or a verb
phrase) that is reused by most verbs that evoke the frame.

2. It is possible to specify a default lexical unit (the most general and/or the most
frequently used verb) that evokes the frame, so that it can be used in the lineari-
zation (translation) of the frame, if no specific verb is provided.

3. In the CNL settings, it is often sufficient that only core semantic valences (core
frame elements according to FrameNet) are available.

These assumptions, of course, do not hold in general, but they help us to keep the
presentation of our approach simpler. Even then we cannot fully isolate the applica-
tion developer from providing some language-specific features. For example, the
Phrasebook application in English (and similarly in Russian) needs to distinguish
between locations that are “at place” or “in place” – the preposition does not depend
on the frame and not even on the specific verb, but on the particular noun (the filler of
a frame element). In contrast to the highly analytical English, in many languages it
might be necessary to customize the realization of the whole clause, depending on the
verb. For example, in Latvian (and similarly in Russian, Italian and German) there are
verbs (systematic “exceptions”) that instead of the subject in the nominative case and
the object in the accusative case require the subject in the dative case and the object in
the nominative case5 (see Figure 8). In the actual implementation of the FrameNet
RGL, such agreement variations have to be handled by alternative verb-specific
clauses implemented in the frame functions.

5 Here we use the term ‘case’ in a broad sense: in Italian, for example, there are no cases for

nouns; cases are expressed by prepositions, pronouns and implicitly by word order.

 FrameNet Resource Grammar Library for GF 131

 LOVE LIKE

English I[NOM] love pizza[ACC] I[NOM] like pizza[ACC]

German Ich[NOM] liebe Pizza[ACC]
Ich[NOM] mag Pizza[ACC]
Mir[DAT] gefällt Pizza[NOM]

Italian Io[NOM] amo la pizza[ACC] A me[DAT] piace la pizza[NOM]
Latvian Es[NOM] mīlu picu[ACC] Man[DAT] patīk pica[NOM]
Russian Я[NOM] люблю пиццу[ACC] Мне[DAT] нравится пицца[NOM]

Fig. 8. Verb-specific realization of the frame elements Experiencer and Content in different
languages. All these verbs belong to the Experiencer_focus frame.

As in the case of the syntactic RGL, the proposed semantic resource grammars of
the FrameNet library will also be ambiguous as such: the same verb can evoke differ-
ent frames, and the same frame might be evoked by contradicting verbs (e.g. both ‘to
love’ and ‘to hate’ evoke the same Experiencer_focus frame). However, the intui-
tion is that the developer of a domain-specific CNL will reduce or eliminate the se-
mantic ambiguity by avoiding ambiguous mappings between lexical units and frames,
by specifying concrete verb lexemes instead of relying on the default ones etc. – ana-
logically as it is currently done at the syntactic level.

To illustrate the use of the FrameNet API, we provide a sample re-implementation
of some clause-building functions from the MOLTO Phrasebook application (see
Figure 9) in contrast to the current PhrasebookEng implementation of the same
functions as shown earlier in Figure 6.

Before:
ALike pers item = mkCl pers.name (mkV2 (mkV "like")) item ;

ALive pers country = mkCl pers.name (mkVP (mkVP (mkV "live"))

 (mkAdv SyntaxEng.in_Prep country)) ;

ALove pers1 pers2 =
 mkCl pers1.name (mkV2 (mkV "love")) pers2.name ;

AWant pers obj = mkCl pers.name (mkV2 (mkV "want")) obj ;

AWantGo pers place = mkCl pers.name SyntaxEng.want_VV

 (mkVP (mkVP IrregEng.go_V) place.dir) ;

After:
ALike pers item =
 Experiencer_focus (mkV "like") pers.name item NIL NIL ;

ALive pers country = Residence pers.name NIL country ;

ALove pers1 pers2 =
 Experiencer_focus (mkV "love") pers1.name pers2.name NIL NIL ;

AWant pers obj = Possession (mkV "want") pers.name obj ;

AWantGo pers place =
 Desiring pers.name (Motion_VP IrregEng.go_V NIL place.name) ;

Fig. 9. Changes to the PhrasebookEng syntax using the proposed FrameNet API

132 N. Gruzitis, P. Paikens, and G. Barzdins

As seen in Figure 9, the application grammar developer still has to provide the do-
main-specific knowledge that the application requires, and some simple constructors
of the GF RGL are still used, but the code is more intelligible and ‘flat’ – it is not
specified how the parameters (frame elements) are glued together to build up verb
phrases and clauses6. The proposed API refers to the semantic roles only: if the user
specifies, for example, the resident of the Residence frame (ALive action in
Phrasebook), the FrameNet library maps it to the relevant syntactic role (subject in
this case). Thus the verb and clause building part of application grammars such as
Phrasebook is in essence reduced to mapping domain-specific concepts to the appro-
priate general FrameNet frames, and to specifying the omitted core frame elements, if
any (NIL7).

In multilingual applications, there is a general issue of selecting lexical units –
translation equivalents. For example, for the Residence frame, there are many pos-
sible verbs that describe the same situation with various semantic nuances (e.g. ‘to
camp’, ‘to dwell’, ‘to live’, ‘to stay’; see Figure 1). If these differences are relevant to
the application domain, then a particular lexical unit can be explicitly specified. If the
differences are not considered important for a particular use-case or concept, the pre-
ferred lexical unit for the chosen frame can be omitted, resulting in a robust system
that would use a default verb (e.g. ‘to live’) when generating a text, and that would
allow all frame-relevant verbs in parsing.

An advantage of this approach is the ability to build robust multilingual CNL ap-
plications without expertise in all covered languages. The benefit of using GF is that it
would be possible to port such applications to other languages without going into
details of their grammars – as they are already implemented in the common RGL.
Furthermore, it is possible to omit the details about how the semantic roles are
mapped to syntactic elements, as the same semantic element may be expressed by
different syntactic means when translating the same clause to another language.

The API of the proposed FrameNet RGL is illustrated in Figure 10 (similarly as the
API of GF RGL in Figure 7). The function names match the FrameNet frame names,
thus the API can be automatically documented by FrameNet data providing defini-
tions and examples for each frame (function) and each frame element (argument of
the function).

Although currently we have handcrafted the code of the sample FrameNet library,
we have done it systematically using the actual FrameNet data that is well structured
and includes statistics from a FrameNet-annotated corpus. This has given confidence
that FrameNet data can be used to automatically generate both the abstract syntax of
the FrameNet API and its implementation for English and other languages using the
current GF RGL syntactic categories and constructors, and properly addressing verb-
specific valence patterns.

6 Note that the implementation of the AWantGo function is not ‘flat’ – there are nested frames.

I.e., it might be necessary to specify the semantic tree structure, but not the syntactic
structure.

7 We have not specified the implementation of NIL arguments yet, but this is only a technical
mater.

 FrameNet Resource Grammar Library for GF 133

We have performed some initial experiments on automatic GF code generation
from FrameNet data, but the development of a more elaborated convertor is pending.
Nevertheless, there are only about 1000 frames in FrameNet, therefore the generated
code can also be manually debugged and improved afterwards.

Function/Frame Type Mapping to FEs

Residence

V -> NP -> PP -> Adv -> Cl
Resident Co_resident
 Location

V -> NP -> NIL -> Adv -> Cl

 NP -> NIL -> NP -> Cl

Possession
V -> NP -> NP -> Cl

Owner Possession
 NP -> NP -> Cl

Desiring
VV -> NP -> VP -> Cl

Experiencer Event
 NP -> VP -> Cl

Motion
V -> NP -> NP -> NP -> Cl Theme Source

Goal NP -> NP -> NP -> Cl

Motion_VP

V -> NP -> NP -> VP

Source Goal
V -> NIL -> NP -> VP

 NP -> NP -> VP
 Adv -> Adv -> VP

Experiencer_focus

V -> NP -> NP -> VP -> NP -> Cl
Experiencer Content
 Event Topic

V -> NP -> NP -> NIL -> NIL -> Cl

 NP -> NP -> NIL -> NIL -> Cl

Fig. 10. A simplified fragment of the proposed FrameNet API. The Desiring frame has actu-
ally four core elements, and Motion – seven. Also all the possible combinations of NP, PP,
Adv and NIL argument types are not included. Note that the Motion_VP is a special case of
Motion – generated for use as a nested frame (as the VP object of a VV verb).

The manually generated code for several FrameNet frames, as shown in Figure 11,
implements the features in a very similar manner as the Phrasebook application
shown earlier in Figure 6 – which is to be expected, as it needs to realize similar syn-
tactic structures with the same GF resources. However, a major difference is that this
code would be reusable for multiple applications, and it could cover larger domains in
a scalable way.

There are still some technical issues that need to be addressed, such as a more con-
venient way for specifying omitted core frame elements, but we believe that these are
minor challenges. A particular concern is common peripheral semantic roles such as
Time, Place and Manner that are encountered in nearly all frames (if they are not
among the core roles for that frame). Again, the current Resource Grammar API deals
with them on a syntactic level – providing means to attach various adverbial modifi-
ers. We propose adding them as a (possibly empty) list of peripheral parameters, al-
lowing the language-specific API implementation to handle the word order changes as
needed.

134 N. Gruzitis, P. Paikens, and G. Barzdins

-- Residence : NP -> NIL -> NP -> Cl

Residence resident NIL location = Residence (mkV "live") resident NIL

 (mkAdv SyntaxEng.in_Prep location) ;

-- Residence : V -> NP -> NIL -> Adv -> Cl
Residence verb resident NIL location =

 mkCl resident (mkVP (mkV "live") location) ;

-- Residence : V -> NP -> PP -> Adv -> Cl
Residence verb resident co_resident location = mkCl resident
 (mkVP (mkVP (mkV2 verb co_resident.prep) co_resident.np) location) ;

-- Possession : V -> NP -> NP -> Cl
Possession verb owner possession =
 mkCl owner (mkVP (mkV2 verb) possession) ;

-- Desiring : NP -> VP -> Cl
Desiring experiencer event =

 Desiring SyntaxEng.want_VV experiencer event ;

-- Desiring : VV -> NP -> VP -> Cl
Desiring verb experiencer event = mkCl experiencer verb event ;

-- Motion : V -> NP -> NP -> NP -> Cl
Motion verb theme source goal = mkCl theme (Motion_VP verb source goal) ;

-- Motion_VP : NP -> NP -> VP
Motion_VP source goal = Motion_VP (mkV "move") source goal ;

-- Motion_VP : V -> NP -> NP -> VP
Motion_VP verb source goal = mkVP (

 (mkVP (mkVP verb) (mkAdv SyntaxEng.from_Prep source))
 (mkAdv SyntaxEng.to_Prep goal)) ;

-- Motion_VP : V -> NIL -> NP -> VP
Motion_VP verb NIL goal =
 mkVP (mkVP verb) (mkAdv SyntaxEng.to_Prep goal) ;

-- Experiencer_focus : V -> NP -> NP -> NIL -> NIL -> Cl
Experiencer_focus verb experiencer content NIL NIL =

 mkCl experiencer (mkV2 verb) content ;

Fig. 11. English implementation of the proposed FrameNet API (a simplified fragment). PP
extends the RGL set of categories; its linearization type is {prep : Prep ; np : NP}.

5 Discussion and Future Work

Currently the GF toolset provides a reusable syntactic framework for the development
of multilingual domain-specific CNLs. When one acquires a solid understanding of

 FrameNet Resource Grammar Library for GF 135

the RGL structure and design principles, and gets used to the RGL-based application
grammar design patterns, it is a rather rapid development to provide a concrete syntax
for a language he or she knows well8. However, the process still might not be straight-
forward, especially when porting a third-party application, as it might not be enough
to look at the code of e.g. English implementation to (immediately) understand the
intended meaning of a specific abstract word or clause to provide an appropriate
translation. In addition, different application grammars that cover related domains
will more or less overlap, so that the same structures are re-implemented for each
application.

In the current approach, GF application grammar developers essentially provide a
miniature domain-specific framenet for each application. We make a case for basing
application development on a common, reusable semantic framework, and argue that
it is reasonably possible to develop such a framework by leveraging the existing Fra-
meNet data. Working on the semantic level requires specific knowledge and training
as well9, but the resulting systems are more generic and easier to reuse across lan-
guages and across applications and domains.

The proposed approach is aimed to lower the entrance barrier of the GF application
grammar development by moving it from the language-specific syntactic level to-
wards the language-independent semantic level. The long-term goal is to facilitate the
development of multilingual applications by providing robust means for automatic
alignment of translation equivalents (particularly verbs), and by reducing syntactic
and lexical ambiguities that appear in the parsing and generation of less restricted
CNLs. GF has been chosen as an advanced and well-resourced framework for this
purpose, but the proposed general principle could be applied also to other grammar
formalisms.

The main limitations of the proposed approach to some extent are related to the
limitations of FrameNet, particularly its coverage (in terms of lexical units). Further-
more, the coverage might differ among languages. The list of the lexical units for
each frame could be extended via WordNet, as it has been shown by Johansson and
Nugues [18], however then we would have to fall back to the frame-specific (vs. verb-
specific) valence patterns. Another limitation is that even the most frequently used
verb-specific valence patterns might not be appropriate in specific cases.

Although we have tested our proposal only on the English FrameNet data and Eng-
lish Phrasebook grammar, considering other languages only theoretically, we believe
that in overall this would ease the multilingual GF application development, and that
the limitations can be overcome by using the RGL syntactic structures directly where
necessary. By relying on the default syntactic realization and the default lexical units,
one can quickly obtain the first working version of a multilingual aplication for fur-
ther testing and tuning. In fact, the default behaviour can be specified already in the

8 The experience of the MOLTO team shows that adding a new language to Phrasebook takes

1.5 days on average.
9 GF developers would have to explore and consult the docummentation of FrameNet data

(https://framenet.icsi.berkeley.edu/fndrupal/framenet_data)
while designing or porting an application grammar.

136 N. Gruzitis, P. Paikens, and G. Barzdins

functor that defines the common language-independent structures of an application
grammar.

Apart from the development of the GF code generation facility from FrameNet
data and apart from a wider evaluation taking into account both more languages and
more applications, future work is also to investigate the possibilities for semi-
automatic multilinguality by choosing the most appropriate lexical units automati-
cally, and by aligning lexical units (translation equivalents) among different
languages.

An additional direction for future work is the application of this semantic layer to
relatively unrestricted natural language – in line with the naturalist approach [1].
Angelov [19] has demonstrated the potential of the current GF Resource Grammar
Library in statistical parsing of unrestricted texts (using weights extracted from a
treebank). FrameNet data would provide additional means in disambiguation and
would provide mapping of parse results to semantic categories. Also Barzdins [20]
has addressed bridging the gap between the CNL and full natural language through
use of FrameNet on the discourse level. Integration with frame semantics thus pro-
vides additional means towards semantic parsing of less controlled text.

Acknowledgments. This work has been supported by the European Regional Devel-
opment Fund under the project No. 2011/0009/2DP/2.1.1.1.0/10/APIA/VIAA/112.
The authors would like to thank the reviewers for the detailed comments and con-
structive criticism.

References

1. Clark, P., Murray, W.R., Harrison, P., Thompson, J.: Naturalness vs. Predictability: A Key
Debate in Controlled Languages. In: Fuchs, N.E. (ed.) CNL 2009. LNCS, vol. 5972, pp.
65–81. Springer, Heidelberg (2010)

2. Schwitter, R., Kaljurand, K., Cregan, A., Dolbear, C., Hart, G.: A Comparison of three
Controlled Natural Languages for OWL 1.1. In: Proceedings of the 4th International
Workshop on OWL Experiences and Directions (OWLED), CEUR, vol. 496 (2008)

3. Fuchs, N.E., Kaljurand, K., Kuhn, T.: Attempto Controlled English for Knowledge Repre-
sentation. In: Baroglio, C., Bonatti, P.A., Małuszyński, J., Marchiori, M., Polleres, A.,
Schaffert, S. (eds.) Reasoning Web 2008. LNCS, vol. 5224, pp. 104–124. Springer, Hei-
delberg (2008)

4. Ranta, A., Enache, R., Détrez, G.: Controlled Language for Everyday Use: The MOLTO
Phrasebook. In: Rosner, M., Fuchs, N.E. (eds.) CNL 2010. LNCS (LNAI), vol. 7175, pp.
115–136. Springer, Heidelberg (2012)

5. Ranta, A.: Grammatical Framework: Programming with Multilingual Grammars. CSLI
Publications, Stanford (2011)

6. Ranta, A.: The GF Resource Grammar Library. Linguistic Issues in Language Technolo-
gy 2(2) (2009)

7. Angelov, K., Ranta, A.: Implementing Controlled Languages in GF. In: Fuchs, N.E. (ed.)
CNL 2009. LNCS, vol. 5972, pp. 82–101. Springer, Heidelberg (2010)

 FrameNet Resource Grammar Library for GF 137

8. Gruzitis, N., Barzdins, G.: Towards a More Natural Multilingual Controlled Language In-
terface to OWL. In: Proceedings of the 9th International Conference on Computational
Semantics (IWCS), Oxford, pp. 335–339 (2011)

9. Baker, C.F., Fillmore, C.J., Lowe, J.B.: The Berkeley FrameNet project. In: Proceedings of
the COLING-ACL, Montreal, pp. 86–90 (1998)

10. Fillmore, C.J., Johnson, C.R., Petruck, M.R.L.: Background to FrameNet. International
Journal of Lexicography 16(3), 235–250 (2003)

11. Burchardt, A., Erk, K., Frank, A., Kowalski, A., Pado, S., Pinkal, M.: Using FrameNet for
the semantic analysis of German: Annotation, representation, and automation. In: Boas,
H.C. (ed.) Multilingual FrameNets in Computational Lexicography: Methods and Applica-
tions, pp. 209–244. Mouton de Gruyter, Berlin (2009)

12. Ruppenhofer, J., Ellsworth, M., Petruck, M.R.L., Johnson, C.R., Scheffczyk, J.: FrameNet
II: Extended Theory and Practice (2010)

13. Burchardt, A., Erk, K., Frank, A., Kowalski, A., Pado, S., Pinkal, M.: The SALSA corpus:
a German corpus resource for lexical semantics. In: Proceedings of the 5th International
Conference on Language Resources and Evaluation (2006)

14. Subirats, C.: Spanish FrameNet: A frame-semantic analysis of the Spanish lexicon. In:
Boas, H.C. (ed.) Multilingual FrameNets in Computational Lexicography: Methods and
Applications. Mouton de Gruyter, Berlin (2009)

15. Kyoko, O., Fujii, S., Ishizaki, S., Ohori, T., Saito, H., Suzuki, R.: The Japanese FrameNet
Project: an Introduction. In: Proceedings of the Workshop on Building Lexical Resources
from Semantically Annotated Corpora (at LREC), Lisbon, pp. 9–11 (2004)

16. Leenoi, D., Jumpathong, S., Porkaew, P., Supnithi, T.: Thai FrameNet Construction and
Tools. International Journal on Asian Language Processing 21(2), 71–82 (2011)

17. Boas, H.C.: Semantic frames as interlingual representations for multilingual lexical data-
bases. International Journal of Lexicography 18(4), 445–478 (2005)

18. Johansson, R., Nugues, P.: Using WordNet to Extend FrameNet Coverage. In: Proceedings
of the Workshop on Building Frame Semantics Resources for Scandinavian and Baltic
Languages (at NODALIDA), Tartu, pp. 27–30 (2007)

19. Angelov, K.: The Mechanics of the Grammatical Framework. PhD Thesis, Chalmers Uni-
versity of Technology and University of Gothenburg (2011)

20. Barzdins, G.: When FrameNet meets a Controlled Natural Language. In: Proceedings of
the 18th Nordic Conference on Computational Linguistics (NODALIDA), Riga, pp. 2–5
(2011)

PUBLIKĀCIJA IV

Towards named entity annotation of Latvian National Library corpus

Baltic HLT, lpp. 169–175, 2012.

Towards named entity annotation of

Latvian National Library corpus

Peteris PAIKENS
1
, Ilze AUZINA, Ginta GARKAJE and Madara PAEGLE

 University of Latvia, Institute of Mathematics and Computer Science

Abstract. The paper describes a work in progress of building a catalogue of

named entities – people, places and organizations – based on a recently digitized
large (4.5 billion tokens) Latvian corpus. The authors propose an annotation

standard for markup of named entities within Latvian corpus, according to which a

representative set of documents (150 000 words) are manually annotated. This
corpus is used for training and evaluation of an automated named entity

recognition system based on Stanford CRF classifier, achieving an F-score of up to
81%. The named entities indexed within the Latvian National Library corpus and

the annnotated documents are publicly available for linguistic and historical

research online.

Keywords. Named entity recognition, NER, Latvian, corpus indexing

Introduction

Recent digitizing of National Library of Latvia archives[1] has provided a valuable

potential resource for researchers. In order to enable effective analysis and research, we

aim to create a comprehensive catalogue of named entities mentioned in this corpus. It

contains 240.000 books and newspapers (approx. 4.5 billion tokens) starting from 18
th

century up to year 2008, with a particular focus on Latvian publications of 1920’ies and

1930’ies. The corpus also includes a number of locally printed historical works in

German, Russian and other languages, but the majority (70%) of the data is in Latvian,

making it the largest curently available Latvian corpus.

The digitized data (scanned images and OCR results) is publicly available
2
 and

searchable. However, we consider common full-text indexing systems as not sufficient

for enabling analysis of this corpus to the full extent. Linguistic analysis needs to take

into account the morphological complexity of Latvian language, and in historical

research the proper name spelling in documents would differ from searcher

expectations due to historical reforms in Latvian orthography, morphology and also the

large number OCR mistakes present in the digitized documents. Recognizing and

properly indexing the named entities would provide a unique, valuable publicly

available resource for Latvian historical, sociological and linguistic research.

This paper describes current efforts and results in augmenting the raw text corpus

by automated tagging of morphological and named entity information, and offering the

analysis results as publicly available online services for further research.

1
 Corresponding Author.

2
 www.periodika.lv

1. Tools for automated annotation of Latvian corpora

The large volume of this corpus means that any manual processing of documents is not

feasible, and we needed to develop technologies to enable automated analysis of these

documents. The current pipeline for document processing is structured as follows:

 Pre-processing of digitalised documents – extracting text and metadata from

OCR results, and structuring them into subcorpora according to publication

date, document type and language;

 Morphological analysis and disambiguation;

 Named entity recognition and classification;

 Identification of names that may refer to the same entity, including

transliteration of historical documents to modern spelling, and partial

correction of OCR mistakes;

 Indexing the text corpus morphological and named entity information in an

online search engine.

A large part of these language software tools weren’t readily available for Latvian

and needed to be developed for this project. For example, automated transliteration of

historic Latvian orthography is a separate research problem, described in [2], and

integrating this solution was a required part for analysis of earlier parts of the corpus.

Performance was also a crucial factor for all the tools, requiring specific care and

parallelization of software to achieve reasonable processing time for the corpus data –

660 Gb of annotated text.

The most significant new tool development for this purpose was an automated

Latvian language named entity analysis system. Named entity recognition for Latvian

is a relatively new research topic, with a single recently developed NER system

TildeNER[3]. However, although this system is published as part of ACCURAT

project, it was not practically usable, as it relies on proprietary language processing

components and training data that isn’t publicly available. It is also designed for

analysing contemporary electronic documents, and there are significant differences in

historical Latvian language and text domain, so in any case new training and tuning of

the model would bre required. For these reasons we decided to develop a separate

named entity classifier, learning from their experience but using domain-adapted

training data and features as described in further chapters.

For the remaining parts of linguistic analysis we were able to adapt previously

available tools with some modifications – SemTi Kamols morphological analyzer [4]

and Bonito/Manatee corpus indexing system [5].

2. Named entity annotation standard

Our chosen taxonomy consists of 7 main types of named entities (person, location,

organization, facility, event, product and time) and 21 subtypes of these groups. We

have chosen not to annotate amounts – numerals and measurements in this corpus.

Many types are further specified using subtypes (illustrated in Table 1) to add semantic

precision to the manually annotated data, as it was considered relatively easy to specify

more information while annotating and it provides extra options for using this data in

further research.

Table 1. Named entity types and subtypes

Type Subtypes

PERSON pers.hum pers.imag pers.anim
LOCATION loc.geo loc.gsp loc.addr loc.other

ORGANIZATION org.gov org.pol org.game org.com org.other

FACILITY
PRODUCT prod.vehicle prod.brand prod.art prod.printing prod.award

TIME time.date time.other

EVENT

The types and subtypes are based on commonly used categories of named entities

elsewhere, essentially a subset of Sekine’s extended named entity hierarchy [6], but

adjusting for our corpus (mainly newspapers and literature fiction) and expected use

cases, including historical research.

The main difficulties that occurred in mark-up process are: 1) detecting the

boundaries of named entities, 2) selecting the correct category type (subtype) in cases

of ambiguity, as some named entities can seem to fall under two or more classes.

There are some named entities where it becomes difficult to find the right category,

for example, if using a coarse-grained classification system such as MUC-7, then for

some frequently occurring cases (universities, hospitals, etc) it is unclear if it should be

annotated as an organization or location – it can depend on sentence semantic context.

Our annotation guidelines prescribe to mark such cases with a separate ‘facility’ type as

suggested by [6]. To deal with ambiguity the subtype other is defined for all types and

used when it is not clear from the text which type or subtype to use, instead of

subjectively (or randomly) choosing a category.

In an approach similar to [7], to show the structure of extended named entities in

cases where parts of name are valid proper names independently (mainly in case of

facilities, organizations and events), we are using a hierarchical annotation. For

example, Paula Stradiņa klīniskā universitātes slimnīca ‘Pauls Stradins Clinical

University Hospital’, is annotated as type facility, spanning the whole expression, and

also includes an entity of type pers.hum, which spans the first name Paula and second

name Stradiņa (name of the hospital’s founder). This approach is very convenient to

show extended named entities such as events, organizations and facilities that are very

common in our corpus, especially the Soviet newspapers that traditionally use extended

names for various entities.

Figure 1. Example of a complex named entity.

 event

loc.gsp org.pol

LPSR Komunistiskās partijas kongress

While appositives are often used to provide auxiliary information for named

entities, we are not annotating them as a part of those entities. For example, in the

phrase skolotājs Jānis Kalniņš ‘teacher Jānis Kalniņš’ only the proper name is marked

as a named entity. In cases where appositions carry vital information about the entity,

for example, the phrase Latvijas prezidents Kārlis Ulmanis ‘president of Latvia Kārlis

Ulmanis’ we would still mark only the name Kārlis Ulmanis as the entity, expecting to

recover the appositions (titles, professions, etc) afterwards from the corpus if necessary.

Prepositions also are not included into the structure of named entities unless they

are component of time.data or time.other, for example, no 2012. gada janvāra līdz

decembrim ‘from the 2012 January till December’;

3. Named entity recognition system

We have developed and are currently tuning and improving a named entity

recognition machine learning system suitable for analysis of Latvian texts starting from

mid-19th century, based upon the Stanford NER conditional random field (CRF)

classifier [8] and the findings of TildeNER research in applying the Stanford NER

system to Latvian language as published in [3].

For the training and testing the named entity recognition we have manually

annotated an 150.000 word corpus of books and newspapers of different representative

time periods, shown in Table 2. To facilitate fast annotation of this training corpus, we

have developed an online annotation tool based on PHP and jQuery. The annotation

process is based on mouse 'painting' the entities within sentence with a unique color for

each role, and storing the results in a custom XML markup format suitable for the

hierarchical annotation.

The training corpus is annotated according to the standard described in chapter 2,

with a hierarchical annotation of overlapping named entities. However, automated

annotation of such detailed classification is impractical with CRF methods, as the

analysis time and space requirements grow rapidly with increased number of

classification classes. Currently used classifier is trained by leaving only the outer,

‘parent’ named entities in case of nested names, and the full hierarchical tagging is still

in development, as described in chapter 5.

Table 2. Manually annotated named entity corpus

Year Type Title Size (words)

1861 Newspaper Latviešu Avīzes 5 224
1863 Book Tahiti salas ļaudis 5 612

1882 Newspaper Arājs 10 346

1918 Newspaper Baltijas Ziņas 19 152
1928 Magazine Atpūta 12 354

1934 Book Madonas vadonis tūristiem 2 471

1935 Newspaper Mūzikas Apskats 13 129
1942 Newspaper Sendergruppe Ostland 8 234

1957 Newspaper Cīņa 15 568

1966 Book Krusttēvs Oskars : atmiņas 11 505
1988 Newspaper Padomju jaunatne 15 181

1988 Book Kārlis Ulmanis 5 724

1999 Magazine Zīlīte 2 460
2005 Book Ugāles baznīca 5 206

2007 Magazine Dadzis 18 791

In addition to common, language independent features provided by the Stanford

NER system, we have extended the feature set to include morphological information

(lemma, part of speech, and tags with information of gender, number, case and person)

and an extensive gazetteer of place and person names.

We have also developed an online database system to manage the names identified

in authoritative external sources
3
 or by the automated named entity recognition in the

corpus. This allows us to define a reference set of entities with links to both

authoritative definitions and also to all their mentions in corpus, providing a base for

further research on semantic relations between these entities. The system also allows

users to specify related names, synonyms and pseudonyms, so that searching or

analysis of such entities would identify all the relevant names. For some domains, such

as pseudonyms of Latvian authors or historical changes of street names, this data is

available in a structured form in the authoritative data sources and the links between

names can be created automatically.

For documents in other languages (mainly German and Russian), we are using an

off-shelf version of the Stanford NER system, but afterwards we are merging the

results (links to documents where entities are mentioned) with the Latvian entity names

by using the library authoritative data, which includes the alternative spellings of

historical names in German and Russian.

4. Named entity recognition results and evaluation

Preliminary evaluation of the named entity analysis system was performed on two

documents (historical novel Kārlis Ulmanis and newspaper Zīlīte) excluded from the

training corpus. Accuracy was counted on the entity level, treating as correct only those

entities with matching categories and exactly same borders as the human annotator. For

evaluation purposes a three category classification (person, location, organization) was

used to cover the most important entity classes and to be comparable with TildeNER

system findings in [3].

We observe a significant difference in recognition quality between the two test

documents. Our hypothesis from reviewing the annotated documents is that this

difference is caused by two separate issues – the worse OCR quality of newspaper text,

and the domain differences. These differences depending on document type

(newspapers vs. books) seem to apply for the whole corpus. However, further research

would be needed to objectively determine the reasons of such differences.

The system accuracy, illustrated in Table 3, is reasonably good when compared to

TildeNER system reported F-measure scores of 60-68%, although this is not an exact

comparison as the measurements were done on different sets of test data. We attribute

the improved performance of our classifier to the larger amount of training data that we

have been able to manually annotate. As both systems use same core principles and

similar feature sets, there seem to be options for improvements to both systems by

reusing and combining data and research where possible.

Table 3. Named entity recognition evaluation

Document Precision Recall F-measure

Kārlis Ulmanis (book) 85.1 % 79.0 % 81.9 %

Zīlīte (newspaper) 75.4 % 63.5 % 68.9 %

3
 National Library authoritative data, Latvian geospatial information database and Wikipedia

We also performed a cursory manual review of automatically annotated documents

from various periods for which we did not have a matching human annotation.

Evaluation of the mistakes indicates that the most difficult part is the detection of

organizations, due to the large number of cases where organization names start with a

person or location name. Determination of organization name borders also is a bigger

problem than borders for other named entities.

An initial hypothesis was that the oldest part of corpus (up to 1930’ies) would

require a separate named entity classifier due to the historical changes in spelling rules.

However, our experiments showed that splitting of training data for these periods

results in worse accuracy than using all annotated data together. This allows us to

perform the spelling changes after the main processing to merge names such as

Wahzija and Vācija (Germany) into a single entity.

5. Conclusions and further work

We have developed a named entity recognition system for Latvian language with a

competitive accuracy, and provided an online index of named entities found within a

large historical corpus, linking them to authoritative databases of people and

organizations.

This is also now by far the largest publicly available
4
 morphologically annotated

Latvian language corpus. The corpus size – 4.5 billion tokens – is rather large for a

relatively small language as Latvian, and the adapted Bonito/Manatee corpus indexing

engine enables efficient lexicographical analysis of word usage in this corpus.

Ongoing work includes further development of the named entity analysis system,

using bootstrapping of newly identified named entities to extend the gazetteer used by

named entity classifier, as recommended by [3] to improve the NER accuracy.

Processing and indexing of the whole corpus data is scheduled to be completed by

September 2012, at which point the named entity data would be publicly available at

the web site of National Library of Latvia.

The main use case for the resulting named entity catalogue is to provide a publicly

accessible service that would facilitate the use of National Library digitized corpus for

all kinds of research.

Additional use cases and topics for further work include developing this resource

into a semantic database of historic and current people and organizations in Latvia,

using it together with the text corpus as a source for information extraction about

named entity relations.

6. Acknowledgements

The preparation of this paper and development of the software systems has been

supported by the European Regional Development Fund under the projects nr.

2DP/2.1.1.2.0/10/APIA/VIAA/011 and LNB/2011/33/ERAF. The authors would like to

thank the National Library of Latvia for providing their corpus for analysis.

4
 Some restrictions apply – summarized data, concordances and limited length citations are available

everywhere, but full text of some books and newspapers is available only on Latvian library network and for

academic purposes due to copyright restrictions.

References

[1] A. Zogla, J. Skilters, Digitalization of Historical Texts at the National Library of Latvia. Human

Language Technologies – The Baltic Perspective (Baltic HLT 2010), Frontiers in Artificial Intelligence

and Applications (2010), 177–184.
[2] L. Pretkalniņa, P. Paikens, N. Grūzītis, L. Rituma, A. Spektors, Making Historical Latvian Texts More

Intelligible to Contemporary Readers. Proceedings of the workshop “Adaptation of Language

Resources and Tools for Processing Cultural Heritage Objects” the Eight International Conference on

Language Resources and Evaluation (LREC'12).

[3] M. Pinnis, Latvian and Lithuanian Named Entity Recognition with TildeNER. Proceedings of the Eight

International Conference on Language Resources and Evaluation (LREC'12).
[4] P. Paikens, Lexicon-Based Morphological Analysis of Latvian Language. Proceedings of the 3rd Baltic

Conference on Human Language Technologies (Baltic HLT 2007), Kaunas, 235–240.

[5] P. Rychlý, Manatee/Bonito - A Modular Corpus Manager. 1st Workshop on Recent Advances in Slavonic
Natural Language Processing (2007), 65-70.

[6] S. Sekine, K. Sudo, C. Nobata, Extended named entity hierarchy. Proceedings of the Third International

Conference on Language Resources and Evaluation (2002).
[7] A. Savary, J. Waszczuk, A. Przepiórkowski, Towards the Annotation of Named Entities in the National

Corpus of Polish. Proceedings of the Seventh International Conference on Language Resources and

Evaluation (LREC'10), 3622–3629.
[8] J.R. Finkel, T. Grenager, C. Manning, Incorporating Non-local Information into Information Extraction

Systems by Gibbs Sampling. Proceedings of the 43nd Annual Meeting of the Association for

Computational Linguistics (ACL 2005), 363-370.

PUBLIKĀCIJA V

Making historical Latvian texts more intelligible to contemporary

readers

Proceedings of the workshop “Adaptation of Language Resources and Tools for Processing

Cultural Heritage Objects” at the Eight International Conference on Language Resources and

Evaluation (LREC 2012), 2012

Making Historical Latvian Texts More Intelligible to Contemporary Readers
Lauma Pretkalniņa, Pēteris Paikens, Normunds Grūzītis, Laura Rituma, Andrejs Spektors

Institute of Mathematics and Computer Science, University of Latvia
Raiņa blvd. 29, LV-1459, Riga, Latvia

E-mail: lauma@ailab.lv, peteris@ailab.lv, normundsg@ailab.lv, laura@ailab.lv, aspekt@ailab.lv

Abstract

In this paper we describe an ongoing work developing a system (a set of web-services) for transliterating the Gothic-based Fraktur
script of historical Latvian to the Latin-based script of contemporary Latvian. Currently the system consists of two main components:
a generic transliteration engine that can be customized with alternative sets of rules, and a wide coverage explanatory dictionary of
Latvian. The transliteration service also deals with correction of typical OCR errors and uses a morphological analyzer of
contemporary Latvian to acquire lemmas – potential headwords in the dictionary. The system is being developed for the National
Library of Latvia in order to support advanced reading aids in the web-interfaces of their digital collections.

1. Introduction
In 2010, a mass digitalization of books and periodicals
published from the 18th century to the year 2008 was
started at the National Library of Latvia (Zogla and
Skilters, 2010). This has created a valuable language
resource that needs to be properly processed in order to
achieve its full potential and accessibility to a wide
audience, especially in the case of historical texts.
A fundamental issue in a massive digitalization of his-
torical texts is the optical character recognition (OCR)
accuracy that affects all the further processing steps. The
experience of Tanner et al. (2009) shows that only about
70–80% of correctly recognized words can be expected
in the case of the 19th century English newspapers. The
actual OCR accuracy achieved in the digitalization of
the National Library of Latvia (NLL) corpus has not
been systematically evaluated yet1, however, in the case
of historical Latvian, at least two more obstacles have to
be taken into account: the Gothic-based Fraktur script
(that differs from the Fraktur used in historical German)
in contrast to the Latin-based script that is used nowa-
days, and the inconsistent use of graphemes over time.
During the first half of the 20th century, the Latvian
orthography has undergone major changes and has
acquired its current form only in 19572. The Fraktur
script used in texts printed as late as 1936 is not familiar
to most readers of contemporary generation. Moreover,
the same phonemes are often represented by different
graphemes, even among different publishers of the same
period. The Latvian lexicon, of course, has also changed
over time, and many words are not widely used and
known anymore.
This makes a substantial obstacle in the accessibility of
Latvian cultural heritage, as almost all pre-1940 printed
texts currently are not accessible to contemporary read-
ers in an easily intelligible form.
In this paper we describe a recently developed system
for transliterating and explaining tokens (on a user re-
quest) in various types of historical Latvian texts.

1 The expected accuracy is about 80% at the letter level.
2 http://en.wikipedia.org/wiki/Latvian_language#Orthography

In the following chapters, we first give a brief intro-
duction to the evolution of the Latvian orthography, and
then we describe the design and implementation of the
system that aims to eliminate the accessibility issues (to
a certain extent). We also illustrate some use-cases that
hopefully will facilitate the use of the Latvian cultural
heritage.

2. Latvian orthography
The first printed works in Latvian appeared in the 16th
century. Until the 18th century the spelling was highly
inconsistent, differing for each printed work. Since the
18th century a set of relatively stable principles has
emerged, based on the German orthography adapted to
represent the Latvian phonetic features (Ozols, 1965).
In 1870-ies, with the rise of national identity, there were
first activities to develop a new orthography that would
be more appropriate to describe the sounds used in
Latvian: long vowels, diphthongs, affricates, fricatives
and palatalized consonants (Paegle, 2001). This goes
hand in hand with the slow migration from the Fraktur
script to the Latin script. The ultimate result of these
efforts was an alphabet that in almost all cases has a
convenient one-to-one mapping between letters and
phonemes, and is almost the same as the modern Latvian
alphabet that consists of 33 letters. However, the
adoption of these changes was slow and inconsistent,
and both scripts were used in parallel for a prolonged
time (Paegle, 2008). From around 1923, Latvian books
are mostly printed in the Latin script, but many
newspapers still kept using the Fraktur script until late
1930-ies due to investments in the printing equipment.
There were additional changes introduced in the modern
orthography in 1950-ies, eliminating the use of graph-
emes ‘ch’ and ‘ŗ’, and changing the spelling of many
foreign words to imitate their pronunciation in Russian.
This once again resulted in decades of parallel ortho-
graphies: texts printed in USSR use the new spelling
while texts published in exile resist these changes.
This presents a great challenge, as the major orthog-
raphic changes have occurred relatively late and, thus, a
huge proportion of Latvian printed texts have been
published in obsolete orthographies. Furthermore, the

available linguistic resources and tools, such as
dictionaries and morphological analyzers, do not support
the historical Latvian orthography.
Figure 1 illustrates some of the issues that have to be
faced in the processing pipeline if one would semi-auto-
matically convert a text in Fraktur into the modern
Latvian orthography. It should be mentioned that, in the
scope of this project, OCR is provided by a custom edi-
tion of ABBYY FineReader (Zogla and Skilters, 2010).

The original facsimile (the old Fraktur orthography):

The actual result of OCR:
Sauktà nelika us sewi ilgi gaidît: ja mahte
bij tik sajuhsminata par atnestām dahroanàm, tad
tàm roajadseja buht ļoti skaistam un wehrtigam.
The expected OCR result (Latin script, old orthography):
Sauktā nelika uz sewi ilgi gaidīt: ja mahte
bij tik sajuhsminata par atnestām dahwanām, tad
tām wajadzeja buht ļoti skaistam un wehrtigam.
Transliteration into the modern orthography:
Sauktā nelika uz sevi ilgi gaidīt: ja māte
bija tik sajūsmināta par atnestām dāvanām, tad
tām vajadzēja būt ļoti skaistām un vērtīgām.

Figure 1: A sample sentence in the historical Latvian
orthography and its counterpart in the modern

orthography along with intermediate representations.

3. Transliteration engine
We have developed a rule-based engine for performing
transliterations and correcting common OCR errors. In
this chapter we describe the engine assuming that rules
defining the transliteration and error correction are
already provided.
To satisfy the user interface requirements3, the engine is
designed to process a single token at a time. The
workflow can be described as follows:

• The input data is a single word (in general, an
inflected form).

• Find all transliteration rules that might be
applied to the given word and apply them in all
the possible combinations (thus acquiring po-
tentially exponential amount of variants).

• Find the potential lemmas for the transliteration
variants using a morphological analyzer of the
contemporary language (Paikens, 2007).

• Verify the obtained lemmas against large,
authoritative wordlists containing valid Latvian
words (in the modern orthography) of various
domains and styles, as well as of regional and
historical lexicons.

• Assign a credibility level to each of the
proposed variants according to the translitera-

3 The system will provide back-end services for reading aids
(in a form of pop-up menus) in the web-interfaces of the NLL
digital collections.

tion and validation results. In an optional step,
the transliteration variants (both wordforms and
lemmas) can be ranked according to their
frequency in a text corpus.

Note that the contextual disambiguation of the final
variants (if more than one) is left to the reader.
Below we shall describe most significant parts of the
workflow in more depth.

3.1 Types of transliteration rules
Our transliteration engine uses two types of rules:
obligatory and optional. The obligatory rules describe
reliable patterns (usually for the standard transliteration,
but also for common OCR error correction) that are
always applied to the given word, assuming that in
practice they will produce mistakes only in rare cases.
When this set of rules is applied to a target string, only
one replacement string is returned (except cases when a
target string is a substring4 of another target string; see
Figure 2: ‘tsch’ vs. ‘sch’).
The optional rules describe less reliable patterns (usually
for OCR correction, but also for transliteration) that
should be applied often, but not always. I.e., the optional
rules produce additional variants apart from the imposed
ones (by the obligatory rules). When a set of optional
rules is applied, it is allowed to return more than one
replacement string for a given target string.
All rules are applied “simultaneously”, and the same
target string can be matched by both types of rules (e.g.
a standard transliteration rule is that the letter ‘w’ is
replaced by ‘v’, however, the Fraktur letter ‘m’ is often
mistakenly recognized as ‘w’).
Figure 2 illustrates various rules of both types (some of
them are applied to acquire the final transliteration in
Figure 1). Note that OCR errors are corrected directly
into the modern orthography (e.g. ‘ro’ is transformed
into ‘v’ instead of ‘w’).

<rules>
	 	 <obligatory>	
	 	 	 	 <str	 find="à"	 replace="ā"/>	
	 	 	 	 <str	 find="ah"	 replace="ā"/>	
	 	 	 	 <str	 find="w"	 replace="v"/>	
	 	 	 	 <str	 find="tsch"	 replace="č"/>	
	 	 	 	 <str	 find="sch"	 replace="š"/>	
	 	 	 	 <str	 find="ees"	 replace="ies"	 match="end"/>	
	 	 </obligatory>
	 	 <optional>	
	 	 	 	 <str	 find="ro"	 replace="v"/>	
	 	 	 	 <str	 find="a"	 replace="ā"/>	
	 	 	 	 <str	 find="l"	 sensitive="yes">	
	 	 	 	 	 	 <replace>I</replace>	
	 	 	 	 	 	 <replace>J</replace>	
	 	 	 	 </str>	
	 	 </optional>	
</rules>	

Figure 2: A set of sample transliteration rules.

4 The longest substring not necessarily is the preferable one.

For any rule it is possible to add additional requirements
that it is applied only if the target string matches the
beginning or the end of a word, or an entire word, and/or
that the rule is case-sensitive.
Transliteration rules are provided to the engine via an
external configuration file. The current implementation
of the engine allows providing several alternative rule
sets. An appropriate set of rules can be chosen auto-
matically, based on the document’s metadata, e.g.
typeface, publication year and type (a book or a news-
paper). For the NLL corpus, currently two separate rule
sets are being used: one tailored for texts in the Fraktur
typeface printed after year 1880, and the other – for texts
in the Latin typeface starting from the first item until the
transition to the modern spelling in 1930-ies. A work in
progress is to develop a set of rules for earlier Fraktur
texts of 1750–1880. In future, the rule sets can be easily
specialized if it will be experimentally verified that it
would be advantageous to remove (or add) some trans-
formation rules, for example, when processing docu-
ments of 1920-ies.

3.2 Applying transliteration rules
When the transliteration engine is started, each set of
rules is loaded into the memory and is stored in a hash
map using the target strings as keys. This gives us the
ability to access all the possible replacements for a given
target string in effectively constant time5.
Transformations are performed with the help of dynamic
programming and memorization. Each token is proces-
sed by moving the cursor character by character from
the beginning to the end. In each position we check if
characters to the left from the cursor correspond to some
target string. In an additional data structure we keep all
transformation variants for the first character, for the
first two characters, for the first three characters etc. The
transformation variants for the first i characters are
formed as follows (consult Figure 3 for an example):

• For every rule whose target string matches the
characters from the k-th position till the i-th
position, a transformation variant (for the i-th
step) is formed by concatenating each transfor-
mation variant from the k-th step with the rule’s
replacement string.

• From each transformation variant in length i-1
form a transformation variant in length i by
adding the i-th character from the original
token if there is no obligatory rule with a target
string matching the last character(s) to the left
from the cursor.

When the cursor reaches the end of the string, the
obtained transformation variants are sorted in two
categories: “more trusted” variants that are produced by
the obligatory rules only, and “less trusted” variants that
are produced also by the optional rules.
In Figure 3, it appears that “dāroanām” is a more trusted

5 This is important for the future use-cases where the service
will provide probabilistic full-text transliteration.

variant than “dāvanām”, although actually it is vice
versa. The false positive variant is eliminated in the next
processing step, while the other one is kept (see
Section 3.3).

Input: dahroanàm
Step 1: d Step 5: dāro, dāv
Step 2: da, dā Step 6: dāroa, dāva, dāroā, dāvā
Step 3: dā, dā Step 7: dāroan, dāvan, dāroān, dāvān
Step 4: dār Step 8: dāroanā, dāvanā, dāroānā, dāvānā
Output (Step 9): dāroanām, dāvanām, dāroānām, dāvānām
Figure 3: Sample application of transliteration rules. The
input comes from Fig. 1 (line 2, token 6). Consult Fig. 2
for the rules applied (producing the underlined strings).

To speed up the transliteration, it is possible for user to
instruct the engine not to use the optional rules for the
current token.

3.3 Verifying transliteration variants
If transliteration is performed in the way it is described
in the previous section, it produces plenty of nonsense
alternatives. Thus we need a technique to estimate which
of the provided results is more credible. One such
estimate is implicitly given by the differentiation
between obligatory and optional rules.
Another way to deal with this problem is to obtain a
large list of known valid words and check the
transliteration variants against it. Typically these would
be lists of headwords from various dictionaries, however,
due to the rich morphological complexity of Latvian,
word lists, in general, are not very usable in a straight-
forward manner, but we can use a morphological
analyzer to obtain the potential lemmas for the acquired
transformation variants.
The exploited analyzer (Paikens, 2007) is based on a
modern and rather modest lexicon (~60 000 lexemes) –
although a lot of frequently used words are the same in
both modern and historical Latvian, there is still a large
portion of words out of vocabulary. Therefore we use a
suffix-based guessing feature of the analyzer to extend
its coverage when the lexicon-based analysis fails.
Transliteration variants whose lemmas are found in a list
of known words are considered more credible. Currently
we use wordlists from two large Latvian on-line
dictionaries: one that primarily covers the modern
lexicon (~190 000 words, including regional words and
proper names), and one that covers the historical lexicon
(>100 000 words, manually transliterated in the modern
orthography). To extend the support for proper names
(surnames and toponyms), we also use the Onomastica-
Copernicus lexicon6.
In the whole transliteration process we end up with six
general credibility groups for the transliteration variants:

1. Only the obligatory rules have been applied;
lemmatization has been done without guessing;

6 http://catalog.elra.info/product_info.php?products_id=437

the lemma is found in a dictionary.
2. Only the obligatory rules have been applied;

lemmatization has been done by guessing; the
lemma is found in a dictionary.

3. At least one optional rule has been applied;
lemmatization has been done without guessing;
the lemma is found in a dictionary.

4. At least one optional rule has been applied;
lemmatization has been done by guessing; the
lemma is found in a dictionary.

5. Only the obligatory rules have been applied;
the lemma could not be verified by a dictionary.

6. At least one optional rule has been applied; the
lemma could not be verified by a dictionary.

For instance, if we take the variants from Figure 3,
“dāroanām” is not found in the morphological lexicon
and by guessing it might be lemmatized as “dāroana”
(noun) or “dāroant” (verb) – none of these nonsense
words can be found in a dictionary. However, “dāvanām”
is both recognized by the morphological lexicon as
“dāvana” (‘gift’) and is found in a dictionary. A sample
of full output data that is returned by the transliteration
and lemmatization service is given in Figure 4.

<translit	 input="dahroanàm">	
	 	 <group	 opt_rules="no"	 guess="no"	 dict="yes"/>	
	 	 <group	 opt_rules="no"	 guess="yes"	 dict="yes"/>	
	 	 <group	 opt_rules="yes"	 guess="no"	 dict="yes">	
	 	 	 	 <variant	 wordform="dāvanām">	
	 	 	 	 	 	 <lemma	 form="dāvana">	
	 	 	 	 	 	 	 	 <dict	 id="MEV"/>
	 	 	 	 	 	 	 	 <dict	 id="SV"/>	
	 	 	 	 	 	 </lemma>	
	 	 	 	 </variant>
	 	 </group>
	 	 <group	 opt_rules="yes"	 guess="yes"	 dict="yes">	
	 	 	 	 <variant	 wordform="dāvānām">
	 	 	 	 	 	 <lemma	 form="dāvāna">	
	 	 	 	 	 	 	 	 <dict	 id="MEV"/>	
	 	 	 	 	 	 </lemma>	
	 	 	 	 </variant>	
	 	 </group>	
	 	 <group	 opt_rules="no"	 dict="no">	
	 	 	 	 <variant	 wordform="dāroanām"/>	
	 	 </group>	
	 	 <group	 opt_rules="yes"	 dict="no">	
	 	 	 	 <variant	 wordform="dāroānām"/>	
	 	 </group>	
</translit>	

Figure 4: Sample output data returned by the
transliteration and lemmatization service.

Usually each of these groups contain more than one
variant, thus it would be convenient to sort them in a
more relevant order, e.g. by exploiting wordform
frequency information from a text corpus. For instance,
“dāvāna” (in Figure 4) is a specific orthographic form of
“dāvana”; it is not used in modern Latvian and is rarely

used even in historical texts.
First, a reasonable solution (at the front-end) would be
that variants that are verified by a dictionary are given to
the end-user before other variants – such approach is
justified by our preliminary evaluation (see Section 4).
The verified variants that are found in a large on-line
dictionary (tagged by ‘SV’ in Figure 4) can be further
passed to the dictionary service to get an explanation for
the possible meanings of the word (see Section 5).
Second, a pragmatic trade-off would be that lemmas that
are obtained by applying the optional rules and are not
found in any dictionary are not included in the final
output to avoid overloading end-users with too many
irrelevant options (again, see Section 4).

3.4 Alternative sets of transliteration rules
Linguists distinguish several general groups in which
Latvian historical texts can be arranged according to the
orthography used.
In the current architecture, the transliteration service
receives a single wordform per request along with two
metadata parameters: publication year and typeface
(Fraktur or Latin). Publication type (a book or a news-
paper) could be added if necessary.
Taking into account the general groups and the provided
metadata, for each case there should be a specific,
handcrafted set of transliteration and OCR correction
rules. The metadata theoretically could be used for
automatic selection of a rule set. However, in practice it
cannot be guaranteed (considering an isolated wordform)
that the selection is the most appropriate one, if all the
parameters overlap between two groups (due to the fact
that several historical orthography variants were used in
parallel for a prolonged time, and changes were rather
gradual). There is also an objective issue caused by the
uniform OCR configuration that has been used for all
texts in the mass-digitalization despite the orthographic
variations. In the result, all potential rule sets would
have to extensively deal with OCR errors overgenerating
transliteration variants in order to improve recall.
Therefore we have defined only two general rule sets:
one for the Fraktur script, and one for the early Latin
script (see Section 3.1 for more detail).
Theoretically, there are at least two (parallel) scenarios
how this issue could be addressed in future. First, a
specific OCR configuration (a FineReader training file)
could be adjusted for each text group, running the OCR
process again and enclosing configuration IDs in the
metadata. To a large extent, this could be done
automatically, involving manual confirmation in the
borderline cases. However, our experiments with Fine-
Reader 11 show that this would not give a significant
improvement7 and would not scale well over different
facsimiles of the same group, i.e., it would not be
cost-effective. Second, a larger text fragment could be
passed along with the target wordform, so that it would

7 For a book (1926) fragment, the accuracy in both cases is
about 95% at the letter level and about 75% at the word level.

be possible to detect specific orthographic features by
frequency analysis of letter-level n-grams and by
analyzing the spelling of common function words. This
would allow choosing an optimal set of transformation
rules to ensure an optimal error correction and
transliteration8. More tailored sets of rules should also
decrease the amount of nonsense transliteration variants.

3.5 Disambiguation – a future task
The transliteration system, as described above, results in
multiple options for possible modern spellings of a
given wordform. While this is a usable approach in
interactive use-cases for which the system has been
initially designed, other applications that require full-text
transliteration most likely require automatic disambigua-
tion as well, receiving a single, most probable variant for
each wordform.
A naive probability ranking could be obtained by
comparing the variants against a word frequency table
obtained from a modern text corpus of a matching genre
(i.e., newspapers, fiction etc.), according to the metadata
of the analyzed text. A more reasonable approach would
be exploitation of a POS tagger of modern Latvian9 to
eliminate part-of-speech categories that are contextually
unlikely possible. In addition, a word-level n-gram
model of modern Latvian could be used, but there might
be a lot of rarely used or out-of-vocabulary words,
particularly in the case of the NLL newspaper corpus
that includes a large number of proper names. The
problem of transliteration can be also seen as a problem
of machine translation between very similar languages.
Statistical phrase-based techniques could be applied,
similarly as it has been done for multilingual named
entity transliteration (Finch & Sumita, 2009), however,
it would require a parallel corpus.

4. Evaluation
The performance of each transformation rule set can be
estimated by comparing an automatic transliteration of a
historical text with a manually verified transliteration of
the same text. We have identified several historical
books that have been reprinted in the modern ortho-
graphy with minor grammatical or lexical changes to the
language. We have semi-automatically aligned several
book chapters, and we have also manually transliterated
several pages from newspapers of various time periods
to obtain a small, but a rather representative tuning and
test corpus (see Figure 5).
For the current target application – a reading aid for
historical texts – we have evaluated the performance of
the multi-option transliteration, attempting to minimize
the number of variants that are returned while maxi-
mizing the accuracy rate – that the known correct variant
is among the returned ones.

8 This would even allow distinguishing more specific rule sets
than it is possible by relying only on the (extended) metadata.
9 e.g., http://valoda.ailab.lv/ws/tagger/ or the one developed by
Pinnis and Goba (2011).

Year Title Type Tokens
1861 Latviešu avīzes newspaper, early Fraktur 1025

4308* 1888 Lāčplēsis book, early Latin
917
2880* 1913 Mērnieku laiki book, Fraktur
5438

1918 Baltijas ziņas newspaper, Fraktur 1001
Figure 5: A parallel corpus used for tuning (*) and

evaluation of transliteration rules.

The tuning corpus identified a number of additional his-
torical spelling variations, and several systematic OCR
mistakes that can be corrected with transliteration rules.
Figure 6 shows the final performance on the tuning
corpus. The results clearly show the importance of the
dictionary-based verification and that it would not be
reasonable to overload the end-users with the over-
generating variants that are acquired by optional rules
and that are not verified by a dictionary (no_dict,
opt_rules). The other credibility groups give 97%
accuracy on the tuning corpus with 2.77 variants per
token.

Credibility group Accuracy Variants
dict, no_opt_rules, no_guess 55.6 % 0.63
dict, no_opt_rules, guess	 6.1 % 0.14
dict, opt_rules, no_guess 31.1 % 0.73
dict, opt_rules, guess 3.7 % 1.00
no_dict, no_opt_rules 0.5 % 0.27
no_dict, opt_rules	 1.4 % 30.61
No variant produced: 1.6 % 0

Figure 6: Evaluation on the tuning corpus: an average
number of variants and accuracy (contains the correct

variant) per credibility group (consult Section 3.3).

These results also indicate a ceiling for the possible
accuracy of this method at around 98%, no matter how
well the transliteration rules are improved. Manual
review of unrecognised words shows that around 1% of
words have been irreparably damaged by OCR, and
around 1% of words are unique and out of vocabulary:
foreign words, rare proper names etc., where many
equally likely transliteration options would be possible.
Note that lemmatization by guessing has been necessary
“only” in about 10% cases – the common word lexicons
of historical and modern Latvian highly overlap.
In the evaluation we are counting only exact spelling
matches (including diacritics), and we are counting only
word tokens (excluding numbers, punctuation etc.). The
evaluation of transliteration accuracy for various texts is
shown in Figure 7.

Year Type Accuracy Variants
1861 newspaper, Fraktur 87.7 % 3.12
1888 book, Latin 96.7 % 2.45
1913 book, Fraktur 96.6 % 3.19
1918 newspaper, Fraktur 88.8 % 2.81

Figure 7: Evaluation on the test corpus.

We have observed that the OCR mistakes in the NLL
corpus can be tackled by the same means as orthography
changes, significantly improving the output quality:
from around 75% word-level accuracy in the source
texts (books) to around 88% (for newspapers) and 97%
(for books) after transliteration. The correlation between
font-face changes and orthography developments, as
well as the possibility to match the transformation
results against a large lexicon allows tackling both
problems simultaneously.
However, as the evaluation shows a significant accuracy
difference between book and newspaper content, we
have analyzed the structure of all identified errors. The
errors have been grouped as unrepaired OCR mistakes,
unrepaired lexical or spelling differences in the histori-
cal language, and errors in transliteration rules, as shown
in Figure 8. This indicates that the technique is vulner-
able to scanning quality (as the Baltijas ziņas facsimile
is of a comparatively low quality), and that there is still
a future work to be done in improving the lexical change
repair rules for the 1860-ies and earlier texts.

Error type Latviešu avīzes Baltijas ziņas
OCR mistakes 28 (23.5%) 83 (74.1%)
Lexical differences 83 (69.8%) 12 (10.7%)
Malfunctioning rules 8 (6.7%) 13 (11.6%)
Other 0 4 (3.6%)
Total 119 112

Figure 8: Error analysis.

5. Dictionary service
On a user request, an unknown word (lemmatized in the
modern orthography by the transliteration service) is
passed to a dictionary service that is based on a large
on-line dictionary of Latvian10. The dictionary contains
nearly 200 000 entries that are compiled from the
Dictionary of the Standard Latvian Language11 and more
than 180 other sources. It covers common-sense words,
foreign words, regional and dialect words, and toponyms
(contemporary and historical names of regions, towns
and villages in Latvia). Explanations include synonyms,
collocations, phraseologies and historical senses.

<dict	 id="SV">	
	 	 <entry	 src="KV">	
	 	 	 	 <word>	
	 	 	 	 	 	 <lemma>dāterēt</lemma>	
	 	 	 	 	 	 <gram>apv.</gram>	
	 	 	 	 </word>	
	 	 	 	 <sense>	
	 	 	 	 	 	 <def>Ātri	 un	 neskaidri	 runāt.</def>	
	 	 	 	 </sense>	
	 	 </entry>	
</dict>	

Figure 9: An entry returned by the dictionary service.

10 http://www.tezaurs.lv/sv/
11 Latviešu literārās valodas vārdnīca. Vol. 1–8. Riga: Zinātne,
1972–1996 (>64 000 entries).

A simple entry returned by the dictionary service is
given in Figure 9. It gives a meaning of a rarely used
historical regional word for which even Google returns
no hits (as of 2012-04-01).

6. Use-cases
The initial and primary goal is to integrate these services
in the interactive user interface of an on-line digital
library of historical periodicals12, allowing users to get
hints on what a selected utterance of a (historical) word
means.
A future goal is to facilitate extraction and cataloguing
of named entities in historical corpora. For this purpose,
the transliteration engine will be integrated in a named
entity recognition system that is currently being
developed 13. It will be used while indexing person
names and other named entities mentioned in texts by
mapping these names to their modern spelling. This will
allow searching for proper names regardless of how they
might be spelled in the historical documents.

7. Conclusion
We have designed and implemented a set of services
that facilitate the accessibility of historical Latvian texts
to contemporary readers. These services will be used to
improve the accessibility of historical documents in the
digital archives of the National Library of Latvia – a
sizeable corpus containing about 4 million pages14.
Our preliminary evaluation shows that the rule-based
approach with dictionary verification works well even
with a single rule set for all Fraktur texts, returning 2.89
variants in average with a possibility of 92.45% that the
correct one is among them. Period-specific tuning of
transliteration rules can raise the accuracy up to 96.5%
for both books and newspapers.
A future task is to provide an automatic (statistical)
context-sensitive disambiguation among these variants.
It has to be noted that the system is designed to be
generic and extensible for other transliteration needs by
specifying appropriate sets of lexical transformation
rules. While currently it is aimed to be used for analysis
of historical texts, future work could address the
transliteration of modern texts in cases where different
spelling is systematically used. For instance, transliter-
ation to the standard language is necessary in the case of
user-generated web content (comments, tweets etc.)
where various transliteration approaches for non-ASCII
characters have often been used in Latvian due to the
technical incompatibilities and inconvenience of various
systems or interfaces.

Acknowledgments
The preparation of this paper has been supported by the
European Regional Development Fund under the project

12 http://www.periodika.lv/
13 Unpublished work, expected to be ready by the end of 2012.
14 It is expected that a working demo of these reading aids will
be available in May 2012.

No. 2DP/2.1.1.2.0/10/APIA/VIAA/011. The authors
would like to thank Artūrs Žogla from the National
Library of Latvia and the anonymous reviewers for their
comments.

References
Finch, A., Sumita, E. (2009). Transliteration by Bidirec-

tional Statistical Machine Translation. In Proceedings
of the 2009 Named Entities Workshop (NEWS), Suntec,
pp. 52–56

Ozols, A. (1965). Veclatviešu rakstu valoda. Riga:
Liesma

Paegle, Dz. (2001). Latviešu valodas mācībgrāmatu
paaudzes. Otrā paaudze 1907–1922. In Teorija un
prakse. Riga: Zvaigzne ABC, pp. 39–47.

Paegle, Dz. (2008). Pareizrakstības jautājumu kārtošana
Latvijas brīvvalsts pirmajos gados (1918–1922). In
Baltu filoloģija XVII, Acta Universitatis Latviensis,
pp. 89–102

Paikens, P. (2007). Lexicon-Based Morphological
Analysis of Latvian Language. In Proceedings of the
3rd Baltic Conference on Human Language Tech-
nologies (Baltic HLT 2007), Kaunas, pp. 235–240

Pinnis, M., Goba, K. (2011). Maximum Entropy Model
for Disambiguation of Rich Morphological Tags. In
Proceedings of the 2nd Workshop on Systems and
Frameworks for Computational Morphology, Com-
munications in Computer and Information Science,
Vol. 100, Springer, pp. 14–22

Tanner, S., Muñoz, T., Ros, P.H. (2009). Measuring
Mass Text Digitization Quality and Usefulness:
Lessons Learned from Assessing the OCR Accuracy
of the British Library's 19th Century Online News-
paper Archive. D-Lib Magazine, 15(7/8)

Zogla, A., Skilters, J. (2010). Digitalization of Historical
Texts at the National Library of Latvia. In I. Skadiņa,
A. Vasiļjevs (Eds.), Human Language Technologies –
The Baltic Perspective (Baltic HLT 2010), Frontiers in
Artificial Intelligence and Applications, Vol. 219, IOS
Press, pp. 177–184

PUBLIKĀCIJA VI

Automātiskas morfoloģiskas anotācijas izmantojums

Vārds un tā pētīšanas aspekti, 2013.

Pēteris Paikens (LU Matemātikas un informātikas institūts)

AUTOMĀTISKAS MORFOLOĢISKĀS ANOTĀCIJAS IZMANTOJUMS

Raksts apskata lietojumus teksta morfoloģiskajai anotācijai – tā

papildināšanai ar vārdu morfosintaktisko īpašību marķējumu, sīkāk apskatot

iespējas, kas kļūst pieejamas tad, ja morfoloģisko marķēšanu neveic manuāli,

bet gan automātiski ar valodas tehnoloģiju palīdzību. Šādas anotēšanas gaitā tiek

identificētas vārdu pamatformas, kā arī norādītas vārdformas īpašības

(piemēram, locījums) un galvenās leksiskās īpašības, kas raksturo pašu vārdu un

ir kopīgas visām tā vārdformām, piemēram, deklinācija, atgriezeniskums u.c.

Homoformu gadījumā, ja vārdformai izolēti būtu iespējami vairāki anotācijas

varianti, anotēšanas gaitā tiek izvēlēta pareizā vārda pamatforma un īpašības

atbilstoši tā kontekstam teikumā. Rakstā apskatīti arī pieejamie šādi anotēti

valodas korpusi – datorizētai analīzei pieejami apjomīgi tekstu kopumi (VPSV

2007, 196) un to lietojumi.

Morfoloģiskās anotēšanas metodes un to ierobežojumi

Kvalitatīvākos morfoloģiski anotētos resursus veido kvalificēti

valodnieki, manuāli veidojot katras vārdformas anotāciju. Protams, jebkurā

apjomīgā manuālā darbā tiek pieļautas kļūdas, tāpēc laba anotēšanas prakse

prasa divu anotētāju piesaisti katra teksta caurskatīšanā, kas ļauj izlabot

neuzmanības kļūdas un pamanīt iespējamās neskaidrības anotēšanas principos.

Tomēr šāda metode ir ļoti darbietilpīga pat ar rīkiem, kas pēc iespējas atvieglo

cilvēka darbu. Latvijas Universitātes Matemātikas un Informātikas Institūtā

(turpmāk LU MII) jau daudzus gadus regulāri notiek šāda korpusa

papildināšana, sākot ar Kristīnes Levānes-Petrovas aprakstītajiem principiem

(Levāne, Spektors 2000), bet joprojām šādi anotēti ir tikai ap 50 000

vārdlietojumu.

Tā kā vairumam lietojumu ir nepieciešams būtiski lielāks korpusa apjoms,

praksē daudziem mērķiem tiek lietoti automātiski anotēti korpusi. Morfoloģisko

anotāciju var veidot automātiski, balstoties uz latviešu valodas morfoloģijas

likumsakarībām un atbilstošu vārdnīcu, piemēram, ar autora agrāk aprakstītajām

metodēm (Paikens 2007). Taču ir jāņem vērā, ka latviešu valoda ir morfoloģiski

daudznozīmīga un tādēļ līdz šim pieejamos automātiski anotētajos korpusos

daļai vārdu tika norādīti vairāki analīzes varianti. Korpusa analīze rāda, ka 50-

55% vārdlietojumu nav viennozīmīga morfosintaktiskā interpretācija, apskatot

tos bez teikuma konteksta (Paikens, Rituma, Pretkalniņa 2013). Piemēram, kā

apraksta Kristīne Levāne-Petrova, Līdzsvarotajā mūsdienu latviešu valodas

tekstu korpusā vārdu sniegs atradīs gan kā vīriešu dzimtes vienskaitļa 1.

deklinācijas lietvārdu nominatīvā, gan arī kā darbības vārda nākotnes formu

(Levāne-Petrova 2011).

Jaunums latviešu valodas korpusu veidošanā ir iespēja veikt automātisku

daudznozīmības risināšanu
1
 ar autora aprakstītajām mašīnmācīšanās metodēm

(Paikens, Rituma, Pretkalniņa 2013). Līdzīgi risinājumi ir iepriekš veidoti arī

uzņēmumā Tilde (Pinnis, Goba 2011), taču tie nav publiski pieejami. Šīs

metodes ļauj datoram izvēlēties ticamāko variantu atbilstoši vārdlietojuma

kontekstam teikumā, mācoties no cilvēka anotētajiem paraugdatiem. Attiecīgi

tas ļauj rīkam nevis tikai veikt analīzi, palīdzot marķēšanu veikt cilvēkam, bet

arī veikt galīgo marķēšanu tās pārbaudes un korekcijas. Šādas anotācijas

precizitāte šobrīd ir ap 94%, kas ir būtiski zemāka nekā cilvēka veiktajai

anotācijai, tomēr ir pietiekami augsta daudzām praktiskām vajadzībām. Šīs

metodes galvenā priekšrocība ir iespēja anotēt lielus korpusus, kas ir mērāmi

miljonos vai pat miljardos vārdlietojumu, kā arī pētījumos lietot ne tikai iepriekš

sagatavotus korpusus, bet apskatīt arī „pēc pieprasījuma” sagatavotus datus –

piemēram, jaunākās ziņas vai šauras nozares dokumentus.

Padziļināts anotācijas līmenis būtu korpusa sintaktiskā anotācija, kas

iekļautu arī informāciju par vārdu saistāmību. Šādus korpusus veiksmīgi lieto

citu valodu pētīšanā, piemēram, Annas Teilores (Ann Taylor) aprakstītais Penn

Treebank korpusa lietojums angļu valodai (Taylor, Marcus, Santorini 2003) vai

čehu valodas Prague Dependency Treebank
2
. LU MII pētnieces Laura Rituma

un Lauma Pretkalniņa bija uzsākušas šāda korpusa veidošanu latviešu valodai,

manuāli anotējot korpusu ar sintakses kokiem (Pretkalniņa, Rituma 2012), taču

šādi ir iespējams izveidot tikai ļoti ierobežota apjoma korpusu dažu tūkstošu

teikumu apjomā. LU MII šobrīd notiek darbs pie automātiskas sintaktiskās

anotācijas rīku izstrādes (Pretkalniņa, Rituma 2013) ar mērķi darīt pieejamus
3

arī liela apjoma sintaktiski anotētus korpusus. Tas ļaus tiešākā veidā meklēt

korpusā dažādu sintaktisko konstrukciju realizācijas.

Korpusa lietojums valodas izpētē

Kā jau agrāk aprakstījusi K. Levāne-Petrova, korpusu var labi lietot

gramatikas un leksikas izpētē, kā arī valodas apguvē un tulkošanā (Levāne-

Petrova 2011). Šajā rakstā vēlētos uzsvērt atšķirības starp iespējām, kuras paver

dziļāk anotēti un/vai lielāki korpusi un ilustrēt piemērus pētnieciskām

problēmām, kurās var palīdzēt šie resursi.

Pirmkārt, digitāli korpusi (arī neanotēti) ir svarīgs resurss leksikas izpētē.

Apskatot kāda vārda lietojumus korpusā, var iegūt pilnīgu priekšstatu par

dažādajiem veidiem un apkaimēm, kādās vārds izpaužas. Korpuss kalpo par

apliecinājumu tam, kuras vārda nozīmes praksē tiek lietotas, kā arī var kalpot kā

avots šo nozīmju klāsta noskaidrošanai – piemēram, kā Pedersenas aprakstītajā

pieredzē dāņu valodas leksikogrāfijā (Pedersen 2012). Protams, secinājuma

pamatotība ir atkarīga no korpusa apjoma – līdzsvarots korpuss vairāku miljonu

vārdlietojumu apjomā raksturos tikai tipiskos valodas līdzekļus, savukārt – ja

1
 Automātiskās anotēšanas modulis pieejams https://github.com/PeterisP/LVTagger

2
 Aprakstīts http://ufal.mff.cuni.cz/pdt2.0/

3
 Jaunumi tiks publicēti www.korpuss.lv

korpuss aptver lielāko daļu no visiem kādā laika periodā iespiestiem tekstiem

(kā, piemēram, Latvijas Nacionālās Bibliotēkas digitalizētie dati), var uzskatīt,

ka tajā atrodamie piemēri pilnībā raksturo tā laika literāro valodu un korpusā

neesošās konstrukcijas tobrīd valodā nelieto.

Otrkārt, piemēru atlase kāda konkrēta vārda vai vārdlietojuma apkaimei

tiek lietota gramatikas jautājumu izpētē – atlasot un kvalitatīvi analizējot

piemēros redzamās sintaktiskās saites. Šāda meklēšana būtu precīzāka un ērtāka

sintaktiski anotētā korpusā, bet kamēr tāds nav pieejams, arī morfoloģiski

anotētā korpusā var meklēt un atlasīt paraugus morfosintaktiskajiem šabloniem

neatkarīgi no lietotā vārda – piemēram, atlasīt un tālāk pētīt visus teikumus,

kuros ir lietots teikuma priekšmets datīvā.

Tāpat arī ilustratīvu valodas paraugu vai piemēru atlasei pētījumiem un

teorētiskiem aprakstiem ir ieteicams lietot šādus korpusus. Tas nodrošina

piemērus, kas atspoguļo faktisko valodas lietojumu, savukārt intuitīva piemēru

veidošana reizēm noved pie ‘mākslīgu’ konstrukciju piemēriem, kas šķiet ticami

taču praksē tomēr gandrīz netiek lietoti, kā arī rada risku ignorēt valodā

sastopamas konstrukcijas, kas neatbilst pētnieka individuālajai intuīcijai par

tipisku vai vēlamu lietojumu.

Vēl šādi anotētu tekstu var izmantot datorlingvistikas rīku izstrādē (LU

MII mākslīgā intelekta laboratorijā vai citur). Korekta vārdu un locījumu

noteikšana ir priekšnosacījums gan teikumu sintaktiskai analīzei, gan arī

specializētiem rīkiem – piemēram, organizāciju nosaukumu noteikšanai, runas

atpazīšanas modeļu izstrādei vai automatizētai teksta semantikas analīzei. Tāpat

arī mašīntulkošanas statistisko metožu precizitāti būtiski uzlabo t.s. faktorēto

statistisko modeļu lietošana, papildinot tulkojumu paraugdatus ar morfoloģisko

anotāciju (Skadiņa, Virza, Pretkalniņa 2012).

Kvantitatīva valodas analīze

Liela apjoma morfoloģiski anotēti korpusi paver iespējas arī dziļākai

kvantitatīvai valodas izpētei. Ja apskatāmā parādība vai vārds korpusā parādās

dažus desmitus reižu, tad to vislabāk ir analizēt kvalitatīvi, apskatot visus

piemērus. Savukārt, ja ir pieejami tūkstošiem un vairāk paraugu, tad ir iespējams

kvantitatīvi analizēt to lietojumu valodā, kas var dot informāciju, kuru nevar

viegli iegūt kvalitatīvā analīzē.

Pirmkārt, šādos korpusos var veikt korekti kvantitatīvu novērtējumu vārdu

lietojuma biežumam. Ja kādā korpusā vārds A ir lietots piecas reizes, bet tā

sinonīms B – vienu reizi, tad to var izraisīt arī viena autora vai runātāja valodas

specifika; taču ja lielākā korpusā vārds A ir lietots 500 reizes un vārds B – 100

reizes, tad tas jau ir statistiski uzticams rādītājs šo vārdu lietojuma biežumam.

Otrkārt, ja pētāmo parādību var definēt kvantitatīvi – piemēram, to, kādos

kontekstos atšķiras vārdu vispārīgs un vispārējs lietošana – tad tas paver

iespējas ar salīdzinoši nelielu laika patēriņu papildināt šādus pētījumus ar

apskatāmās parādības lietojuma atšķirībām dažādos žanros un laika periodos. Ja

meklēšanas metodes ļauj ātri iegūt skaitlisku apkopojumu no specifiska tekstu

korpusa, tad šādus apkopojumus var iegūt arī no atsevišķiem, šaurākiem

apakškorpusiem. Šāda analīze ļauj pētniekam izdarīt objektīvus secinājumus par

atšķirīgo un kopīgo šajos valodas lietojumos dažādās runātāju grupās un par

valodas izmaiņām laika gaitā.

Treškārt, vārdu apkaimes kvantitatīva analīze ļauj papildus biežākajai

apkaimei identificēt arī specifiskāko apkaimi – saistītos vārdus, kas parādās

gandrīz tikai šādā apkaimē un tādējādi raksturo vārdu labāk par tā biežāko

apkaimi. Šāda rakstura pētījumi tiek plaši veikti citām valodām, bet latviešu

valodai šāda analīze pagaidām praktiski nenotiek. Leksikogrāfijā šos pētījumus

uzsāka Patriks Henks (Patrick Hanks), analizējot angļu valodu un izmatojot

korpusa zināšanas objektīvākai vārdnīcu veidošanai (Hanks, Church 1989).

Tālāk pētījumu metodoloģiju un izmantošanu ir būtiski attīstījis Ādams Kilgarifs

(Adam Kilgarriff), un viņa vadībā veidotais Sketch Engine rīks (Kilgarriff,

Rychly, Smrz, Tugwell 2004) šobrīd ir citām valodām plašāk lietotais korpusa

rīku komplekts šādai analīzei. Ņemot vērā tā lietojuma aktualitāti, LU MII 2014.

gadā ir plānots projekts šo rīku adaptācijai latviešu valodai.

Vārdu ‘skices’ jeb specifiskā apkaime

Par vārda specifisko apkaimi var saukt tos vārdus, kas apkaimē parādās

proporcionāli biežāk, nekā ārpus tās. Tādējādi var identificēt vārdiem īpaši

raksturīgos saistītos vārdus, arī tad, ja tie ir salīdzinoši reti. Piemēram, korpusā

verba vajadzēt apkaimē vārds naudiņa ir sastopams daudz retāk nekā laiks vai

palīdzība, taču atšķirībā no tiem naudiņa praktiski neparādās citu verbu

kontekstā, un verbu raksturo daudz specifiskāk.

Sākotnēji šādu apkaimi definēja atbilstoši vārdu kolokācijām – vārdiem,

kas tekstā atrodas tuvu (Hanks, Church 1989). Tomēr šāda pieeja identificē arī

daudz neatbilstošu vārdu tīri vārdu tuvuma sakritības dēļ. Morfoloģiski anotētu

korpusu lietošana ļauj vārda apkaimi meklēt atbilstoši morfosintaktiskiem

šabloniem, precīzāk identificējot saistītos vārdus un nošķirot tos pēc lomas –

piemēram, analizējot verbam tipiskos teikuma priekšmetus atsevišķi no

papildinātājiem.

Būtisks lietojums šādiem specifiskās apkaimes mērījumiem ir apkaimes

salīdzināšana starp līdzīgiem vārdiem vai līdzīgiem korpusiem. Piemēram, tas

ļauj automātiski identificēt apkaimes, kurās vārdu vispārīgs un vispārējs

lietojums sakrīt un kurās tiek lietots tikai viens no variantiem. Tāpat arī šis

paņēmiens ļauj identificēt vārdus un to apkaimes, kas ir raksturīgas specifiski

kādai valodas apakškopai – piemēram, portugāļu valodas pētījumos šādi var

identificēti vārdus, kuru lietojums atšķiras Eiropā un Brazīlijā lietotajai

portugāļu valodai (Kilgarriff, Pomikálek, Jakubíček, Whitelock 2012).

Šobrīd latviešu valodai ir pieejami rīki un korpusi, kas ļauj šādus

pētījumus veikt, ja ir pētnieciska interese ieguldīt laiku šādas analīzes veikšanai;

taču pagaidām dziļāki pētījumi vēl nav veikti.

Pieejamie anotētie korpusi

LU MII šobrīd galvenokārt tiek lietoti turpmāk uzskaitītie latviešu valodas

korpusi, kuriem ir veikta morfosintaktiskā anotācija. Daļa no šiem resursiem nav

publiski autortiesību ierobežojumu dēļ, bet ir pieejami pētniecības mērķiem,

sazinoties ar LU MII mākslīgā intelekta laboratoriju.

1. Līdzsvarotais mūsdienu latviešu valodas korpuss

Vispārīgiem lietojumiem ieteicams ir šis korpuss, kurš ir pieejams vietnē

www.korpuss.lv. Tajā šobrīd ir ap 4 miljoni vārdlietojumu un tas ir

morfoloģiski anotēts. Tā kā korpusa saturs ir līdzsvarots, tad to var

uzskatīt par reprezentatīvu mūsdienu valodas paraugu (Levāne-Petrova

2012).

2. Morfoloģiski anotēts paraugkorpuss

LU MII iekšienē morfoloģijas rīku veidošanai un kvalitātes novērtēšanai

tiek lietots ap 50 000 vārdlietojumu liels korpuss ar divu anotētāju

pārbaudītu marķējumu.

3. Sintaktiski anotēts paraugkorpuss

LU MII tiek veidots arī sintaktiski anotēts korpuss (treebank). Šobrīd tas

satur ap 45 000 vārdlietojumu (3300 teikumu), taču rīki tā publiskai

apskatei un meklēšanai vēl ir izstrādes stadijā.

4. Lietuviešu-latviešu-lietuviešu paralēlo tekstu korpuss (LiLa)

Latvijas un Lietuvas pārrobežu sadarbības programmas 2007.– 2013. gadā

atbalstītā projekta „Humanitārās izglītības pētniecības infrastruktūras

izveide Austrumlatvijā, Lietuvā” (HipiLatLit) ietvaros ir izstrādāts

Lietuviešu-latviešu-lietuviešu paralēlo tekstu korpuss 8 miljonu

vārdlietojumu apjomā, kas ir pieejams vietnē www.korpuss.lv.

5. Latvijas Nacionālās bibliotēkas digitalizēto tekstu korpuss

Vietnē http://korpuss.lndb.lv/ ir pieejami LNB digitalizētie teksti, kas

ietver periodiku un grāmatas no 19. gs. līdz mūsdienām. Plaši pārstāvēti ir

visi periodi, ar īpašu uzsvaru uz 1918.–1940. gadiem. Šis ir lielākais

pieejamais latviešu valodas digitālais korpuss – kopumā virs 3 miljardiem

vārdlietojumu. Šis korpuss arī ir morfoloģiski anotēts, taču tajā ir daudz

dokumentu skanēšanas un digitalizācijas kļūdu. Tā kā vecākā korpusa

daļa nav rakstīta mūsdienu ortogrāfijā, šiem dokumentiem morfoloģiskās

anotācijas izmantošana ir stipri ierobežota, taču to var lietot PSRS laika

dokumentu izpētei.

6. Tīmekļa tekstu korpuss (‘Web as Corpus’)

LU MII vārdu apkaimes analīzē tiek lietots arī ap 70 miljonu

vārdlietojumu liels tīmekļa datu izvilkums. Apjoma dēļ tas ir piemērotāks

kvantitatatīvai analīzei nekā līdzsvarotais korpuss, taču tajā ir daudz

vairāk neformālas un kļūdainas valodas.

Ilustratīvas vaicājumu iespējas

Noslēgumam ir iekļauti paraugi tipiskiem vaicājumiem informācijai, kādu

var iegūt no morfoloģiski anotēta korpusa un kas var būt noderīga valodas

izpētē. Lietotāja saskarnes detaļas nav norādītas, jo tās ir atkarīgas no konkrētā

korpusa meklēšanas programmatūras – bet šie piemēri ilustrē pētījumiem

pieejamās iespējas, parādot to, kāda rakstura informāciju var ātri un efektīvi

iegūt no esošajiem resursiem.

1. Vārdformas apkaime

Meklējot konkrētu vārdformu, var iegūt piemērus no korpusa.
principiāls līderis, kurš apliecinājis uzticību valstij gan kaujas laukā, gan valsts dienestā.

vienlaikus ar akciju apķīlāšanu par labu valstij Stokholmas arbitrāžas tiesā iesniedza pretprasību

profesionālim, un to mums, vecākiem, un arī valstij, kurā šiem skolotājiem uzticēts mācīt jauno

2. Vārda apkaime – meklējot pēc tā pamatformas

Morfoloģiski anotētā korpusā vārdiem ir identificētas pamatformas, kas

ļauj meklēt visas vārdformas vienuviet.
spīdekļi starp viņiem tagad saskaitāmi uz rokas pirkstiem: Arturs Karnišovs, Šarūns Jasikevičs

un mazāku civilo lidaparātu, un teroristu rokās bija kritis vēl viens no tiem.

pirkstus vairs nevarēju pakustināt, aptinu ap roku kaprona striķi un tā turējos, domādams,ka

3. Vārdu raksturojošā apkaime pēc morfoloģiskā šablona (piem. apzīmētāji)

Norādot ierobežojumus blakus vārdu morfoloģiskajam marķējumam (šajā

gadījumā īpašības vārda un lietvārda saskaņojumu), var atrast saistītos

vārdus.
Autorei Laimai Muktupāvelai ir brīvas rokas interpretēt Emīlijas Benjamiņas dzīvi,

mazinātu aizdomas, ka fondu nauda nenonāk īstajās rokās un līdzekļu sadale notiek aizkulisēs.

No ābeles mātišķajiem zariem uz egles asajām rokām pārvietojas āboli.

4. Sintaktiskās struktūras paraugi

Bieži arī sintaktiskajām struktūrām var izveidot vaicājumus atbilstoši

morfoloģiskajam marķējumam, kā piemērā salīdzinājuma konstrukcijai.
ieviešanas strādā arī tādi savā jomā atzīti uzņēmumi kā Hella , problēmu ir vairāk nekā risinājumu.

vēl lielāks, ja nedarbotos tādi bremzējoši faktori kā inflācija .

izrādīts viens no pirmajiem velosipēdiem - divritenis kā brīnums. BMX divriteni, kuru šobrīd

5. Vārda specifiskā apkaime – tipiskie apzīmētāji

Šajā piemērā atlasīti tipiskākie apzīmētāji vārdam ‘roka’, norādot to

biežumu korpusā.
kreisā 133

labā 352

atplesta 60

kaila 54

palīdzīga 50

6. Vārdu apkaimes salīdzinājums

Apskatītajā piemērā salīdzināts dažu vārdu ‘auto’ un ‘mašīna’ apzīmētāju

lietojums, norādot attiecīgo piemēru skaitu no korpusa. Šādi var viegli

ieraudzīt lietojuma atšķirības, turklāt ir pieejami arī saistāmības

kvantitatīvie rādītāji, kas ļauj izdarīt pamatotus secinājumus arī tad, ja

viens no salīdzināmajiem vārdiem ir sastopams daudz biežāk.
 auto mašīna

smagis/smagā 0 65

skaitļošanas 0 34

ugunsdzēsēju 10 21

kravas 101 133

dienesta 181 19

apvidus 33 3

Protams, precīzos vaicājumus nosaka avotu un pētījuma specifika, taču šie

valodas tehnoloģija lietojumu piemēri demonstrē pieejamās iespējas. Jaunākā

informācija par publiski pieejamiem korpusiem tiks ievietota tīmekļa vietnē

www.korpuss.lv.

Pateicības

Raksts ir sagatavots ERAF projekta 2DP/2.1.1.2.0/10/APIA/VIAA/011

ietvaros un prezentēts ar šī projekta finansiālu atbalstu.

APPLICATIONS OF AUTOMATED MORPHOLOGICAL TAGGING

Summary

Automated morphological tagging allows researchers to better analyze large corpora

in language research. During the last few years Institute of Mathematics and Computer

Science (IMCS) has created tools to effectively perform corpus morphological annotation and

disambiguation, and multiple specific corpora are available for linguistic research.

A particular area of interest is quantitative analysis of word surroundings and

collocational behavior (so called ‘word sketches’) that has proven useful in other languages

but has not yet been attempted for Latvian language.

This paper describes the available tools, resources and corpora, aiming to facilitate

interest in performing further linguistic research. Common use cases of available data are

provided that may be useful in language analysis, including grammar studies and

lexicography.

Atsauces

Hanks, Church 1989 – Hanks, Patrick, Church, Kenneth. Word Association Norms,

Mutual Information, and Lexicography. Proceedings of the 27th Annual Meeting of the

Association for Computational Linguistics, Stroudsburg, USA : Association for

Computational Linguistics, 1989, 76.–83. lpp.

Kilgarriff, Rychly, Smrz, Tugwell 2004 – Kilgarriff, Adam, Rychly, Pavel, Smrz, Pavel,

Tugwell, David.
The Sketch Engine. Proceedings of Euralex, France : Lorient, 2004, 105.–116. lpp.

Kilgarriff, Pomikálek, Jakubíček, Whitelock 2012 – Kilgarriff, Adam, Pomikálek, Jan,

Jakubíček, Miloš, Whitelock, Pete.
Setting up for corpus lexicography. Proceedings of the 15th EURALEX International

Congress, Oslo, Norway : Department of Linguistics and Scandinavian Studies, University of

Oslo, 2012, 606.–612. lpp.

Levāne, Spektors 2000 – Levāne, Kristīne, Spektors, Andrejs. Morphemic Analysis and

Morphological Tagging of Latvian Corpus. Proceedings of the Second International

Conference on Language Resources and Evaluation, vol. 2., Paris : European Language

Resources Association, 2001, 1095.–1098. lpp.

Levāne-Petrova 2011 – Levāne-Petrova, Kristīne. Morfoloģiski marķēta valodas korpusa

izmantošana valodas izpētē. Vārds un tā pētīšanas aspekti: rakstu krājums 15(1). Liepāja :

LiePA, 2011, 187.–193. lpp.

Levāne-Petrova 2012 – Levāne-Petrova, Kristīne. Līdzsvarots mūsdienu latviešu valodas

tekstu korpuss un tā tekstu atlases kritēriji. Baltistica VIII priedas, Viļņa : Vilniaus

universitetas, 2012, 89.–98. lpp.

Paikens 2007 – Paikens, Pēteris. Lexicon-based morphological analysis of Latvian

language. Proceedings of 3rd Baltic Conference on Human Language Technologies (HLT

2007), Vilnius : Vytautas Magnus University, 2007, 235.–240. lpp.

Paikens, Rituma, Pretkalniņa 2013 – Paikens, Pēteris, Rituma, Laura, Pretkalniņa,

Lauma. Morphological analysis with limited resources: Latvian example. Proceedings of

NODALIDA 2013. Oslo : Linköping University Electronic Press, 2013, 267.–277. lpp.

Pedersen 2012 – Pedersen, Bolette Sandford. Lexicography in Language Technology.

Proceedings of the 15th EURALEX International Congress, Oslo, Norway : Department of

Linguistics and Scandinavian Studies, University of Oslo, 2012, 31.–46. lpp.

Pinnis, Goba 2011 – Pinnis, Mārcis, Goba, Kārlis. Maximum Entropy Model for

Disambiguation of Rich Morphological Tags. Systems and Frameworks for Computational

Morphology, Communications in Computer and Information Science, 1, Volume 100, The 2nd

Workshop on Systems and Frameworks for Computational Morphology (SFCM2011),

Heidelberg : Springer, 2011, 14.–22. lpp.

Pretkalniņa, Rituma 2012 – Pretkalniņa, Lauma, Rituma, Laura. Syntactic Issues

Identified Developing the Latvian Treebank. Proceedings of the 5th International Conference

on Human Language Technologies — the Baltic Perspective, Frontiers in Artificial

Intelligence and Applications, Vol. 247, Amsterdam : IOS Press, 2012, 185.–192. lpp.

Pretkalniņa, Rituma 2013 – Pretkalniņa, Lauma, Rituma, Laura. Statistical syntactic

parsing for Latvian. Proceedings of NODALIDA 2013. Oslo, Norvēģija: Linköping University

Electronic Press, 2013, 279.–289. lpp.

Skadiņa, Virza, Pretkalniņa 2012 – Skadiņa, Ingūna, Virza, Madars, Pretkalniņa,

Lauma. Angļu-latviešu statistiskās mašīntulkošanas sistēmas izveide: metodes, resursi un

pirmie rezultāti. Baltistica VIII Priedas. Viļņa, 2012, 155.–168. lpp.

Taylor, Marcus, Santorini 2003 – Taylor, Ann, Marcus, Mitchell, Santorini, Beatrice.
The Penn Treebank: An Overview. Treebanks: Building and Using Parsed Corpora. Springer

Netherlands, 2003, 5.–22. lpp.

VPSV – Valodniecības pamatterminu skaidrojošā vārdnīca. Atbildīgā redaktore V. Skujiņa.

Rīga, 2007.

PUBLIKĀCIJA VII

Morphological analysis with limited resources: Latvian example

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013)

NEALT Proceedings Series 16, lpp. 267–278, Oslo, 2013.

Morphological analysis with limited resources:
Latvian example

Pēteris PAIKENS, Laura RITUMA, Lauma PRETKALNIŅA
University of Latvia, Institute of Mathematics and Computer Science

peteris@ailab.lv, laura@ailab.lv, lauma@ailab.lv

ABSTRACT
We describe an approach for morphological analysis combining a rule-based word level
morphological analyzer with statistical tagging, detailing its application to Latvian
language. Latvian is a highly inflective Indo-European language with a rich
morphology.
The tools described here include an implementation of Latvian inflectional paradigms, a
morphological analysis tool with a guessing module for out-of-vocabulary words, and a
statistical POS/morphology tagger for disambiguation of multiple analysis possibilities.
Currently achieved accuracy with a training set of only ~40 000 words is 97.9% for
part of speech tagging and 93.6% for the full morphological feature tag set, which is
better than any previously publicly available taggers for Latvian.
We also describe the construction and methodology of the necessary linguistic resources
– a morphological dictionary and an annotated morphological corpus, and evaluate the
effect of resource size on analysis accuracy, showing what results can be achieved with
limited linguistic resources.

KEYWORDS : morphology, inflective language, POS tagging, Latvian language,
morphological corpus.

1 Introduction

For inflective languages, where a large part of grammatical meaning is expressed by the
morphological features of words, a wide variety of computational tasks require a way to
perform automated part of speech tagging and morphological analysis. It is needed both
in specialized use cases such as linguistic research, and also in end-user tasks such as
searching within documents or automated spelling correction.
Smaller languages usually have a limited amount of resources and effort available for
developing linguistic resources such as annotated corpora or dictionaries, so it is useful
to explore analysis methods that would work with smaller amount of resources and
allow reusing software tools developed for other, larger languages.
In this paper we describe the construction process of such a toolkit for Latvian
language, integrating word-level morphological analysis based on a formalization of
Latvian inflection paradigms with a statistical tagger to exploit sentence context. We
also provide an evaluation for the effect of resource (annotated corpora and lexicon)
size on analysis accuracy.

2 Latvian Morphology

Latvian is an Indo-European language with around 1.5 million native speakers. It is a
synthetic inflected language with rich morphology somewhat similar to the commonly
analyzed Czech morphology (Hajič, 2000).
Latvian nouns and pronouns have 6 cases in singular and plural in traditional grammar.
Nouns are traditionally divided in 6 declensions with different inflectional paradigms.
Adjectives, numerals and some participles have 6 cases in singular and plural, 2 genders
(masculine and feminine) and separate definite and indefinite forms. In verb
conjugation system are 2 numbers (singular and plural), 3 persons, 3 tenses (present,
future and past, both simple and compound) and 5 moods, as well as multiple types of
participles. Qualitative adjectives and adverbs formed from these adjectives have also
degrees of comparison noted in their word form.
The morphology creates more than 200 verb and participle forms derived from each
verb lexeme, and more than 100 forms for each adjective. Many of the endings are
overlapping, creating homoforms – for example, singular accusative and plural genitive
forms are identical for many words.

2.1 Related Work on Latvian Morphological Analysis
The earliest experiments with automated Latvian morphological analysis have been
performed in 1970s (Drīzule, 1978), implementing noun and adjective analysis. In
1990s, with the advent of personal computers, there have been multiple attempts to
create analysis systems for all parts of speech (Greitāne, 1994; Levāne & Spektors,
2000; Sarkans, 1996, Vasiļjevs, Ķikāne & Skadiņš, 2004) based on linguistic rules for
word endings and morphemes.

Systems currently being used in practice for Latvian morphology include lexicon based
analysis systems (Paikens, 2007; Skadiņa, 2004) – while requiring more computational
and dictionary resources, such systems provide better accuracy than earlier research.
Morphological analysis of Latvian is rather ambiguous – about half of words have
multiple valid interpretations if viewed without context, so disambiguation as analyzed
in this paper is an important open problem. There exists a recently developed
morphological tagger based on Maximum Entropy Model (Pinnis and Goba, 2011), but
it is not available to public1.

3 Development of a Morphologically Annotated Corpus

A morphologically annotated corpus is a key resource for all further work – even for
methods that do not require input from a large corpus, it is crucial to have at least a
small set of verified data that can be used for testing and evaluation.

3.1 Morphological Annotation Standard
The morphological feature annotation standard used for Latvian corpora was initially
(Levāne, 2000) derived from the annotation principles used for other languages in the
MULTEXT-East project (Erjavec, 2004). It is a way to represent word annotation with a
short tag, each character position representing a separate, independent feature. The
meaning of each character position depends on the part of speech (marked in the first
character) in order to keep the tag length short enough for human reading.
For an example, Figure 1 illustrates the morphological feature tag for noun draugam,
the singular dative form of draugs (a friend).

Tagset for
noun

part of
speech

type gender number case declension

 n c m s d 1
 noun common

noun
masculine singular dative first

FIGURE 1 – Example of a morphological tag for noun draugam (‘friend’) ncmsd1
It should be noted that in addition to purely morphological features, the annotation
includes also lexical properties (such as type and declension in Figure 1) necessary for
other research uses of the annotated corpora. The tag element names and values are
matched to the ISOcat standard as recommended by CLARIN project2.
The annotation process starts with generating the possible readings with an automatic
analyzer described in the next section, and then a manual review and entry of missing

1 The tagger is used in company Tilde proprietary tools - the training data and tagger are not available for
other research purposes.
2 http://www.clarin.eu

features. The speed of annotation is around 300 words per hour for a skilled operator
with appropriate software tools.

3.2 Annotated Corpora
There have been multiple efforts on building morphologically annotated corpora of
Latvian. Currently publicly available corpora are shown in Table 1. As noted earlier, the
corpora were developed for projects of varying goals, and there are some differences
between exact annotation standards used.

Corpus Text source / domain Tokens Sentences
Balanced Latvian Balanced Corpus3 50 795 3 940

Legal EU documents4 23 359 1 038
Plāns Ledus A fiction book 16 708 1 314

Latvijas Vēstnesis A newspaper 28 956 2 035

TABLE 1 – Morphologically annotated Latvian corpora.
These corpora have been reviewed by a single annotator only. To ensure adequate data
quality we performed a second annotator review and correction of the balanced corpus
annotation to reduce the number of annotation errors, and serve as a valid ‘gold
standard’ data for analyzer training and evaluation in this paper.

4 Automated Morphological Analysis

Our basic morphological analysis – generation of all possible morphological
interpretations of a word form – is based on an earlier publicly available lexicon-based
morphological analyzer (Paikens, 2007), extending it with additional lexical data. It is
based on matching possible word form endings and the inflectional changes to stems as
described in classical linguistic research, and verifies the stem candidates against a
lexicon marked with declensions and conjugations of common nouns and verbs.
The currently used morphological lexicon has been assembled from multiple sources,
including an electronic version of an inverse dictionary (Soida, 1970), manual review of
the closed word classes and words with irregular inflection, scientific terminology data,
and updates based on . It is not properly balanced – the contents reflect what resources
were available, so coverage may vary depending on the text domain. The lexicon
contains 47 000 lexemes.
Even with such lexicon size, 5-6% of test data is still out of vocabulary. Most of these
words are formed according to Latvian grammatical rules, so it is still reasonable to
deduce morphological properties based on the word ending, and for these cases, a
‘guessing’ system is implemented that generates a large number of possible analysis

3 http://www.korpuss.lv
4 White Paper. Preparation of the Associated Countries of Central and Eastern Europe for Inte-gration into the
Internal Market of the Union.

options. This includes the correct reading for all except some 0.5-1% foreign words or
brand names that are used literally as inflexive nouns, but happen to have an ending
that matches a Latvian flexive form.

5 Statistical Disambiguation Methods

For many languages, pure morphological analysis will have a significant amount of
ambiguity. For Latvian, our current analyzer gives multiple interpretations for 50-55%
of words, with an average of 3.5-3.8 options for ambiguous words, depending on text
domain, and similar amount of ambiguity has been observed in other morphologically
rich languages (Yuret & Türe, 2006). The above ambiguity measurement includes
morphological features – part of speech, case, number, gender, etc., and also lemmas in
case of inflectional homonymity.
We examine two main use cases for disambiguation – choosing the most likely option
for a single token, or selecting the most likely morphological tags for a whole sentence,
looking at words in context. Single token analysis has less data for accurate
disambiguation, but can be used in analysis of incomplete text fragments such as search
queries, and is simpler to implement.

5.1 Baseline - Single Token Disambiguation
If there are multiple valid interpretations, clearly some of them are more frequent than
others – we can intuitively note that some inflective forms may be more commonly
used; or that one of theoretically possible lemmas is a rare, archaic word.
For this scenario, we can count the frequencies in a morphologically disambiguated
corpus for two main features – the inflectional paradigm that generated the option, and
the lexicon entry (if any) of the source lemma. This allows a quick estimation of the
likelihoods, choosing the analysis option with the most likely paradigm and lexeme.
While this method is naturally limited, it provides reasonable results with very tiny
resources, providing us with a baseline to evaluate more complex options described
later.
This is similar to the first stage of a Brill tagger if the surface form was seen in training
corpus, but this heuristic generalizes well also to cases where the exact form was not
seen before.

5.2 Morphological Tagging Within a Sentence
There are two main directions to use sentence context in disambiguation of homoforms
in order to appy the appropriate morphological tags. One approach would be to invoke
syntax rules, such as general syntactic analyzers (e.g. Bārzdiņš, Grūzītis, Nešpore &
Saulīte, 2007 or Deksne & Skadiņš, 2011) that could also be adapted for morphological
disambiguation. On the other hand, it is also possible to obtain these rules directly from
an annotated corpus with machine learning algorithms. Our initial experiments with
available Latvian syntactic analysers gave poor results due to limited syntactic
coverage, driving us to the machine learning direction – although other research (Hajic,

Krbec, Kveton, Oliva & Petkevic, 2001; Hulden & Francom, 2012) suggests that a
hybrid approach may bring further improvements.
Further in description we use our currently best performing solution, a conditional
Markov model (CMM) based morphological tagging module. We have also trained
various other systems, including hidden Markov model (HMM) and conditional random
field (CRF) based classifiers, but we achieved better results with CMM.
The CMM module software is a modified version of the Stanford NLP5 system CMM
classifier implementation (Toutanova, Klein, Manning & Singer, 2003). A major
difference between our solution and the original Stanford POS-tagger is the integration
of the classifier with a rule based morphological analyzer supplying multiple possible
analysis options to the classifier for disambiguation.
The standard approach for other languages (Hulden & Francom, 2012; Toutanova,
Klein, Manning & Singer, 2003; Gahbiche-Braham, Bonneau-Maynard, Lavergne &
Yvon, 2012) is to train a classifier on features directly derived from the word form
string, such as letter n-grams, capitalization features, etc. While this may be effective
for languages with a smaller range of word forms, this is not optimal for
morphologically rich languages, as suggested by research in other languages (Youret &
Türe, 2006). Word form specific features would greatly suffer from feature sparsity, as
even in a huge training corpus many rarer word forms would not be seen at all; and a
large part of word ending inflection rules cannot be adequately captured by letter n-
gram features.
However, this morphological knowledge can be exploited by adding as training features
the results from rule based morphological analysis described in section 4. That gives a
reasonably accurate (contains correct form in 98% cases) list of what tags seem possible
for each word. So in addition to the used classifier training features commonly used for
other languages, we also supply a list of possible part-of-speech and tag options for the
selected word and its closest neighbours. We also provide a ‘recommended’ POS and
tag, calculated as described in section 5.1, which gives ~1% additional boost in
accuracy. This change augments the machine learning of ending (letter n-gram)
relations with morphological features with the linguistic rules in analyser, and allows to
achieve good results with rather small training corpora.

6 Evaluation

6.1 Methodology
We used a morphologically annotated balanced corpus of 50 795 words, using 46 306
of it as training data (5 344 of it for tuning and developing the systems), and a separate
set of 4 489 words for evaluation in this paper. Text content is taken as-is from the
corpus, leaving intact any spelling issues or insertions of foreign words.
Lexical features such as declension, verb modality, semantic grouping, etc. are dis-
carded for both training and evaluation data, as they can be retrieved afterwards from

5 http://nlp.stanford.edu/software/tagger.shtml

the lexicon when the lemma is determined. The following morphological features are
used for evaluation: part of speech, gender, number, case, person, verb mood, and
definiteness for adjectives and participles.

6.2 Rule-based analyzer module evaluation
On our test corpus, the rule-based morphological analysis module includes a correct
analysis option for 98.2% words, incorrect analysis for 1.3% words, and no analysis for
0.5% words (mostly insertions from other languages). Rule-based analysis results are
unambiguous for 46.6% words, and the ambiguous words have on average 3.8 options
each.

6.3 Statistical disambiguation methods
Comparing the results of automatic morphological disambiguation on the evaluation
data set shows a tag accuracy level of 87.0% for baseline single token analysis and
93.6% for the best performing CMM model.
Both methods are suitable for analysis of large text corpora, with single token analysis
being able to analyze approx. 100 000 words per second per core on a 2.8Ghz
processor, and the CMM tagger around 3 000 words per second.
Reviewing the distribution of disambiguation errors by feature category (break-down
shown in Table 2) indicates that the most common error is a combination of number
and case mismatch, confusing singular accusative and plural genitive forms of nouns or
whole noun phrases. These are homoforms for a large portion of Latvian nouns and
adjectives, and both accusative and dative may be syntactically reasonable after a verb,
indicating respectively the object or recipient of the action. We plan to reduce this class
of errors by integration of morphological disambiguation with deeper syntactic analysis
(statistical dependency parsers) that should be able to better resolve such ambiguities.

Part of speech 2.1 %
Gender 3.2 %
Number 4.5 %
Case 7.0 %
Verb mood 1.8 %
Person 0.8 %
Definiteness 1.4 %

TABLE 2 – CMM tagger error rates within feature categories.

6.4 Training data size effect on accuracy
Experiments on running the same disambiguation methods with limited training data,
illustrated in Figure 2, show that the naive single token disambiguation quickly reaches
its limit at around 10 000 words already. The CMM based model would likely provide

better accuracy with additional training data, which is also supported by experiments of
Pinnis and Goba (2011) performed on a training set of 117 000 words, but it already
provides an improvement above the single-token baseline with even very small training
corpus such as 5 000 words.

FIGURE 2 – Effect of corpus size on CMM disambiguation accuracy compared to single-
token baseline

6.5 Effect of Lexicon Size on Accuracy
To evaluate the necessity of a morphological lexicon (a dictionary annotated with
declensions or inflectional paradigms), we performed a series of tests, training and
running the CMM classifier with an artificially reduced lexicon. The minimal dictionary
contains 5 000 lexemes for the closed word classes – pronouns, conjunctions,
prepositions, and irregular verbs, with further experiments measured by randomly
adding nouns and verbs from the full dictionary up to the indicated limit.
The evaluation results shown in Figure 3 indicate that a proper lexicon has a strong
impact in reducing error rate, however, when considering languages or dialects where
large dictionaries are unavailable (such as the Latgalian language closely related to
Latvian), it is not strictly necessary since our experiments show a practically usable
accuracy of 90.6% even with the minimal lexicon.

0 100 500 1 000 2 000 5 000 10 k 20 k 30 k 46 k
Single-token 72.4% 76.9% 82.1% 83.6% 85.0% 86.1% 86.7% 87.0% 87.0% 87.0%
CMM 78.8% 81.5% 87.1% 89.4% 91.6% 92.8% 93.7%

70.0%

75.0%

80.0%

85.0%

90.0%

95.0%

Ta
g a

cc
ur

ac
y

FIGURE 3 – Effect of corpus size on CMM disambiguation accuracy compared to single-
token baseline

7 Conclusion and Outlook

We have developed a freely available morphological analysis and disambiguation
solution for Latvian language. The tools, resources and corpora are publicly available
under an open source licence.
We demonstrate that morphological analysis and disambiguation for languages with
rich morphology can be performed with small amounts of language-specific resources.
In particular, if the inflection rules can be formally defined, then a morphological
tagging module with a useful accuracy of 90% can be trained even with a small
annotated corpus of 10-20 thousand words and a limited dictionary.
We expect to further improve accuracy of the morphological tagger by extending the
training data up to 100 000 words and exploring options for integration with syntactic
parsers.
A future goal is to attempt to apply this methodology for Latgalian language – a
regional language with approx. 165 000 native speakers and very limited digital
resources. We also hope that this experience can inspire linguistic tool development for
other languages with limited size of corpora, noting that a practically useful accuracy
can be obtained with very limited language data.
Acknowledgments
We thank the University of Latvia for the financial support in preparing and presenting
this paper, and the anonymous reviewers for their improvement recommendations.

5 000 10 000 20 000 30 000 40 000 47 330
CMM 90.6% 90.8% 91.3% 91.9% 92.7% 93.7%

90.0%

90.5%

91.0%

91.5%

92.0%

92.5%

93.0%

93.5%

94.0%
Ta

g a
cc

ur
ac

y

References
Bārzdiņš G., Grūzītis N., Nešpore G. and Saulīte B. (2007). Dependency-Based Hybrid
Model of Syntactic Analysis for the Languages with a Rather Free Word Order. In
Proceedings of the 16th Nordic Conference of Computational Linguistics, pages 13–20,
Tartu.
Erjavec, T. (2004). MULTEXT-East Version 3: Multilingual Morphosyntactic
Specifications, Lexicons and Corpora. In Proceedings of the Fourth International
Conference on Language Resources and Evaluation (LREC’2004), pages 1535–1538, Paris.
Deksne, D. and Skadiņš, R. (2011). CFG Based Grammar Checker for Latvian. In
Proceedings of the 18th Nordic Conference of Computational Linguistics NODALIDA 2011,
Riga, Latvia.
Drīzule, V. (1978). Об автоматическом распознавании омонимии флексий
латышского языка [On automated recognition of flexive homonymy in Latvian
language]. In LZA Vēstis 1978, 10, pages 79–87, Rīga, LZA.
Gahbiche-Braham, S., Bonneau-Maynard, H., Lavergne, T. and Yvon, F. (2012). Joint
Segmentation and POS Tagging for Arabic Using a CRF-based Classifier. In Proceedings
of the Eight International Conference on Language Resources and Evaluation (LREC'12),
Istanbul, Turkey.
Greitāne I. (1994). Latviešu valodas lokāmo vārdšķiru locīšanas algoritmi. (Algorithms
for Latvian Form Generation) In LZA Vēstis 1994, 1, pages 32–39, Rīga, LZA.
Hajic, J., Krbec, P., Kveton, P., Oliva, K. and Petkevic, V. (2001). Serial combination of
rules and statistics: A case study in Czech tagging. In Proceedings of the 39th Annual
Meeting on Association for Computational Linguistics, pages 268–275.
Hajič, J. (2000). Morphological Tagging: Data vs. Dictionaries. In: Proceedings of the
6th Applied Natural Language Processing and the 1st NAACL Conference, pages 94-101,
Seatle, Washington, U.S.A.
Hulden, M. and Francom, J. (2012). Boosting statistical tagger accuracy with simple
rule-based grammars. In Proceedings of the Eight International Conference on Language
Resources and Evaluation (LREC'12), Istanbul, Turkey.
Levāne, K. and Spektors A. (2000). Morphemic Analysis and Morphological Tagging of
Latvian Corpus. In Proceedings of the Second International Conference on Language
Resources and Evaluation, vol. 2, pages 1095–1098.
Levāne-Petrova K. (2011). Morfoloģiski marķēta valodas korpusa izmantošana valodas
izpētē. In "Vārds un tā pētīšanas aspekti": Rakstu krājums 15(1), pages 187–193, Liepāja,
LiePA.
Paikens, P. (2007). Lexicon-based morphological analysis of Latvian language. In
Proceedings of 3rd Baltic Conference on Human Language Technologies (HLT 2007), pages
235-240, Kaunas.
Pinnis, M. and Goba, K. (2011). Maximum Entropy Model for Disambiguation of Rich
Morphological Tags. In Systems and Frameworks for Computational Morphology,

Communications in Computer and Information Science, 1, Volume 100, The 2nd Workshop
on Systems and Frameworks for Computational Morphology (SFCM2011), pages 14-22,
Heidelberg, Springer.
Sarkans U. (1996). Morphemic and Morphological Analysis of the Latvian Language.
In Proceedings of the Forth conference on Computational Lexicography and Text Research,
pages 219–225, Budapest
Skadiņa I. (2004). Latviešu valodas morfoloģiskās analīzes sistēma – tās nozīme
teikuma pareizrakstības pārbaudē. In Vārds un tā pētīšanas aspekti 8, pages 282–290,
Liepāja.
Soida, E. and Kļaviņa, S. (1970). Latviešu valodas inversā vārdnīca, Rīga, LVU.
Toutanova K., Klein D., Manning C.D. and Singer Y. (2003). Feature-Rich Part-of-
Speech Tagging with a Cyclic Dependency Network. In Proceedings of HLT-NAACL
2003, pages 252–259.
Vasiļjevs, A., Ķikāne, J. and Skadiņš, R. (2004). Development of HLT for Baltic
languages in widely used applications. In Proceedings of First Baltic Conference „Human
Language Technologies – the Baltic Perspective”, pages 198-202, Riga.
Yuret, D. and Türe F. (2006). Learning morphological disambiguation rules for
Turkish. In Proceedings of the main conference on Human Language Technology
Conference of the North American Chapter of the Association of Computational Linguistics
(HLT-NAACL '06), pages 328-334, Association for Computational Linguistics,
Stroudsburg, PA, USA.

PUBLIKĀCIJA VIII

Coreference resolution for Latvian

Proceedings of LREC 2014, Ninth International Conference on Language Resources and Eval-

uation, 2014.

Abstract— Coreference resolution (CR) is a current problem

in natural language processing (NLP) research and it is a key

task in applications such as question answering, text

summarization and information extraction for which text

understanding is of crucial importance. We describe an

implementation of coreference resolution tools for Latvian

language, developed as a part of a tool chain for newswire text

analysis but usable also as a separate, publicly available module.

LVCoref is a rule based CR system that uses entity centric model

that encourages the sharing of information across all mentions

that point to the same real-world entity.

The system is developed to provide starting ground for further

experiments and generate a reference baseline to be compared

with more advanced rule-based and machine learning based

future coreference resolvers. It now reaches 63.9% F-score for

end-to-end system and 75.8% for coreference module.

This paper describes current efforts to create CR system and

to improve NER performance for Latvian. Task also includes

creation of the corpus of manually annotated coreference

relations.

Index Terms—Coreference resolution, entity centric model,

named entity recognition, natural language processing

I. INTRODUCTION

 OREFERENCE RESOLUTION is the task of grouping all the

mentions of entities1 in a document into coreference

chains2 so that all the mentions in a given chain refer to the

same discourse entity [1]. For example, given text (where

mention borders are marked with square brackets)

[Latvietis1] [Jānis Bērziņš1] ir [jauns zinātnieks1] un [universitātes

profesors1]. [Profesors1] ir veicis nozīmīgus pētījumus

datorlingvistikā kopā ar [profesoru2] [Pēteri Kalniņu2]. [Viņš1] kopā

ar [savu1] [līdzgaitnieku2] [Kalniņu2] uzstāsies konferencē Itālijā.

 [Latvian1] [Jānis Bērziņš1] is a [new scientist1] and [professor at

university1]. The [professor1], together with [professor2] [Pēteris

Kalniņš2], have carried out important research in computer

linguistics. [He1], together with [his1] [associate2] [Kalniņš2], will

speak in the conference in Italy.

the task is to group the mentions so that those referring to the

same entity are placed together into a coreference chain

(represented with same subscripted index).

Latvian is an under-resourced language, with a limited

range of language processing tools and resources, and very

limited earlier research on coreference resolution [2]. We

1
 Entity is an object or group of objects, while mention is the reference to

an entity.
2
 Coreference chain is a set of coreferent mentions and it corresponds to

one entity.

believe that the described system is the first available

implementation of coreference resolution for Latvian

language.

Nowadays most coreference systems use knowledge rich

features that require extra preprocessing. Typically

coreference resolution requires following steps:

 identification of tokens and sentences;

 part of speech tagging;

 parsing;

 named entity recognition;

 mention identification;

 coreference resolution.

While today most state-of-the-art coreference resolvers use

machine learning [3], many coreference relations can be

resolved using relatively simple rules and recent work has

shown that rule based approach can outperform machine

learning models for coreference resolution [4], [5]. In this

paper we have investigated these approaches and describe our

implementation as adapted to Latvian language. In addition,

we describe the changes to existing named entity recognition

solutions aimed at better coreference resolution accuracy.

II. PROPOSED SOLUTION

A. Entity Centric Model

LVCoref uses an entity centric model which allows each

coreference decision to be globally informed by previously
created coreference chains. It allows to use global constraints,

e.g., linking two mentions is not allowed if it creates attribute

disagreement (“Jānis Bērziņš” and “Pēteris Bērziņš” linked

together by a common surname). It also diminishes distance

between potential coreferent mentions if the closest same

entity mention cannot be correctly linked with current mention

based on local features.

Coreference Resolution for Latvian

Artūrs Znotiņš, Pēteris Paikens

University of Latvia, Institute of Mathematics and Computer Science

C

Fig. 1. The architecture of the proposed coreference system

B. System Description

LVCoref base module integrates the other modules

described here, and handles input/output formatting and used

rules according to a configuration file. An evaluation module

uses MMAX [6] format gold coreference links.

The rule module contains available rule sets. These rules are

created by combining features from the feature module.

C. Preprocessing

The coreference resolution ystem relies on morphosyntactic

information produced by the following tools:

The initial step is a statistical morphology tagger which

achieves 97.9% accuracy for part of speech recognition and

93.6% for the full morphological feature tag set [7], [8].

Syntactic parsing is done by a parser [9] based on

Maltparser toolkit [10] and the hybrid dependency-based
annotation model used in the Latvian Treebank [11]. Parser is

based on dependency grammar approach achieving 72%

precision.

In addition, we identify mentions of named entities with a

CRF-based NER tool trained for Latvian that provides

annotation of person names, geographic locations and

organizations, media types, product names currently reaches

76% F-score.

D. Annotated Corpus

Data set was created by manually annotating 6 interviews.

The evaluation data was encoded in MMAX format and

featured 3 layers: the segmentation layer, the markable layer

and the coreference layer.

Corpus was created by annotating 7 mention categories

(person, location, media, organization, product, sum and time).

E. Named Entity Recognition

Before this project, there were two available NER systems

for Latvian: TildeNER [12] and LVTagger [13] both based

upon the Stanford NER condition random field (CRF)

classifier. For the purposes of this research we chose to adapt

LVTagger, extending it with additional training data for

modern news language.

Our chosen taxonomy consists of 7 types of NE (person,
location, organization, product, media, sum and time). Nested

expression are not tagged as separate NE’s, taking in account

the longest NE. E.g., whole phrase “Latvijas Republikas

Finanšu un Veselības ministrijas” (organization) is marked as

one entity without marking “Latvijas Republikas”

(organization) as another entity.

Created corpus (45000 words, 2500 sentences) consists of

manually annotated news articles (table I). The corpus can be

considered rather small when compared to ConLL corpora

which have over 300’000 tokens [14]. While CoNLL corpora

use 4 NE types, LVTagger uses 7 types, which makes the data

much sparser and therefore the NER task harder.

The standard CoNLL metric is used, where the output NE is

considered correct only if its span and type is exactly the same

as the span and type in the gold data.

We have improved gazetteer features for multiword

expressions and we are planning new experiments for using

semantic database of NE’s and frames which is constantly

augmented with data from processed news articles to

automatically extract high quality gazetteers.

Table II lists current results for NER.

F. Identification of entity mentions

To resolve coreferences, one must first detect the mentions

that are going to be linked in coreference chains. Mention

identification finds pronouns, common nouns, and named

mentions. In general, I take into account noun phrases that are

largest possible for their head word, e.g., in phrase “Kultūras

ministrija” (“the Ministry of Culture”) only the whole phrase

“Kultūras ministrija” is marked as a mention and not
“ministrija”. Mentions can be nested, e.g., “[[Latvijas

Nacionālā teātra] direktors]” (“the [director of the [Latvian

National Theatre]]”).

As mentions are marked all recognized named entities and

noun phrases with head word that are listed in gazetteers and

acronyms that were not found by NER.

After that non-mentions, e.g., pleonastic “tas” (“it”) in

phrases like “tas nozīmē” (“it means”), are filtered out.

G. Coreference Module

The method is based on applying rules one at a time from

the highest to lowest priority, thus in deciding whether two

mentions should corefer, system can also consider information

about other mentions that previous steps already joined.

Fig. 2. Automatic coreference annotation with LVCref

TABLE II

NER EVALUATION RESULTS

Entity type P R F1

location 77,6 85,9 81,5

media 87,9 67,4 76,3

organization 71,8 59,9 65,3

person 88,5 88,8 88,6

product 38,9 8,9 14,4

sum 88,8 89,3 89,1

time 84,2 68,5 75,6

totals 78,9 73,6 76,2

TABLE I

NAMED ENTITY ANNOTATED NEWS ARTICLE CORPUS

Entity type Count

location 910

media 63

organization 851

person 512

product 99

sum 245

time 301

1) Exact string match

This rule links two named entity mentions only if they

contain exactly the same text by comparing lemmatized

phrases.

2) Precise constructions

This rule set links two mentions if any of the conditions
below is satisfied:

 Appositive. Standard Haghigi and Klein[5] definition to

detect appositives is used: one mention is dependent on

another, e.g., “[profesors1] [Jānis Bērziņš1]”

(“[professor1] [Jānis Bērziņš1]”) .

 Predicative nominative are in a subject-object relation

being dependent on same verb “būt” (“be”), e.g., “[Jānis

Bērziņš1] ir [pasniedzējs1]” (“[Jānis Bērziņš1] is a

[professor1]”).

 Acronym – mentions are linked if one of them equals the

sequence of upper case characters in the other mention,
e.g., “Ekonomikas ministrija” and “EM”.

3) Strict head match

Two mentions are linked based on naïve matching of their

head words and the second one does not introduce new entity

attributes, e.g., “Latvijas Republikas Augstākā tiesa” (“the

Supreme Court of the Republic of Latvia”) and “the Supreme

Court of Latvia”.

4) Pronoun anaphora

Pronoun antecedents are searched in three previous

sentences using Hobbs’ algorithm [15].

Mention compatibility is based on the information about

their represented coreference chain. Two mentions are
acknowledged as coreferent based on their morphological

features (gender, number, case), syntactic constraints (one

does not dominate another, i-within-i [5]), semantic category

and their represented mention chains shared attributes.

III. RESULTS AND EVALUATION

A. Data Set

Evaluation data came from created coreference corpus using

four annotated interviews. Data statistics are listed in table III.

B. Baseline

As a baseline was chosen simple head match, linking all

mentions with same head. More sophisticated resolution
models have been suggested, but they are rarely compared

with this baseline, admitting that it performs better than

expected. For the MUC-7 test data Soon’s system [16]

outperforms head match only by 5%, while Uryupina’s system

[17] outperforms baseline by 15%.

C. Evaluation

Coreference module and end-to-end system were evaluated

against three well-known coreference resolution metrics:
pairwise, MUC [18] and B3 [19].

MUC is a link based metric which measures how many

predicted and gold mention chains need to be merged to cover

gold and predicted clusters respectively.

B3 is a mention based metric which measures the proportion of

overlap between predicted and gold mention clusters for a

given mention.

The output has the results for each of the three metrics

mentioned earlier, both in terms of precision and recall, as

well as F-score.

Tables IV and V list the performance of coreference

module (with given gold mentions) and end-to-end system.
Coreference module outperforms baseline by 7.4%, but end-

to-end system by 5.4%.

Tables VI and VII illustrate the performance of my system

as 3 rule sets are incrementally added. Each successive rule set

increases system performance by increasing recall and slightly

decreasing precision. With respect to individual contributions,

this analysis highlights two significant performance increases:

exact string match and strict head match. It proves that a large

TABLE IV

EVALUATION RESULTS FOR BASELINE

 Coreference module End-to-end system

F1 P R F1 P R

MUC 71.9 86.9 61.3 54.7 58.0 51.7

B3 71.8 89.6 59.9 69.1 75.2 63.8

PW 61.5 86.8 47.6 51.6 63.0 43.8

 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 68.4 87.8 56.3 58.5 65.4 53.1

TABLE V

 EVALUATION RESULTS FOR SYSTEM

 Coreference module End-to-end system

F1 P R F1 P R

MUC 83.9 88.8 79.5 63.8 67.1 60.8

B3 77.1 87.7 68.7 71.2 76.5 66.6

PW 66.5 86.8 53.8 56.7 69.9 47.7

 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 75.8 87.8 67.3 63.9 71.2 58.4

TABLE VI

 CUMULATIVE PERFORMANCE AS RULE SETS ARE ADDED TO THE END-TO-END SYSTEM

 MUC B
3

PW ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

F1 P R F1 P R F1 P R F1 P R

Exact match 47.1 88.6 32.1 61.2 96.6 44.8 43.0 97.6 27.6 50.4 94.3 34.8

+ Precise construction 49.9 87.7 34.8 62.7 95.9 46.5 43.5 96.9 28.1 52.0 93.5 36.5

+ Strict head match 61.0 70.2 53.9 70.2 81.3 61.8 56.0 78.5 43.5 62.4 76.7 53.1

+ Pronouns 63.8 67.1 60.8 71.2 76.5 66.6 56.7 69.9 47.7 63.9 71.2 58.4

TABLE VII

 CUMULATIVE PERFORMANCE AS RULE SETS ARE ADDED TO THE COREFERENCE MODULE

 MUC B
3

PW ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

F1 P R F1 P R F1 P R F1 P R

Exact match 54.9 92.7 38.9 63.6 97.2 47.3 47.8 98.5 31.6 55.4 96.1 39.3

+ Precise construction 57.8 91.9 42.1 65.4 96.5 49.5 48.8 96.3 32.7 57.3 94.9 41.4

+ Strict head match 74.4 87.7 64.5 73.7 89.6 62.6 61.7 87.7 47.6 69.9 88.3 58.2

+ Pronouns 83.9 88.8 79.5 77.1 87.7 68.7 66.5 86.8 53.8 75.8 87.8 67.3

TABLE III

DATA SET STATISTICS

Number of documents 6

Number of sentences 778

Number of words 13768

Number of mentions 1088

Number of coreference chains 333

Number of singleton mentions 180

The average length of the coreference chain 3.27

percentage of mentions in text are repetitions of previously

mentioned entities based on string similarity. Precise

constructions give only a slight performance increase because

they are relatively infrequent.

D. Error Analysis

To understand the errors in the system, I analyzed two

documents from evaluation set and categorized them into

distinct groups.

Non-anaphoric constructions. Identifying whether noun

phrase is nested mention or part of the stable construction is

not a trivial task, e.g., “Aktieru zāle” is stable construction and

“Aktieru” is non-anaphoric construction.
Indefinite noun phrases. Latvian does not explicitly

distinguish definite and indefinite nouns, so it is unclear if

mention with same head introduces a new entity or refers to a

previous mention, e.g., “Privatizācijas aģentūra” and

“aģentūra”.

Morphological errors. E.g, singular mentions “šuvēja” and

“šuvējas” (“tailor”) are not linked together because of

incorrect grammatical number identification (equal singular

genitive and plural nominative forms).

Syntactic errors make it difficult to find appositive and

predicative nominative constructions.
Pronoun anaphora resolution. Demonstrative pronoun

“tas” (“it”) often refers to event mention, e.g., “plānot” (“to

plan”). This system currently does not mark event mentions,

thus missing all mentions that are verbal phrases.

Another considerable source of errors is caused by

insufficient semantic information, e.g., pronoun “mēs” (“we”)

is used to refer to an organization in an interview.

IV. CONCLUSIONS, APPLICATION AND FURTHER WORK

The presented approach offers a useful yet easy to

implement baseline for further work and is currently the only

available coreference resolution system for Latvian. The

implementation is currently used as a part of a newswire text

analysis and fact extraction system being developed. We also

plan to make an evaluation of the impact of coreference

resolution precision on the precision of final fact extraction by

the end of this year.

The currently achieved precision – 63.9% for the end-to-end

system and 75.8% for coreference module – was satisfactory

for use in our text analysis problem and is comparable with

results recently achieved for linguistically similar languages (

[20], [21] [22]), although their research shows options for

future work in improving accuracy. Morphological, syntactic,

semantic information and entity centric model provide a

noticeable contribution to coreference resolution performance.

Precision of mention identification is one the most

important factors that affects the performance of the end-to-

end coreference system. Error analysis revealed that the main

problems of coreference resolution are related to non-

anaphoric constructions, indefinite noun phrases and pronoun

coreference resolution.

Currently we are planning first machine learning experiments

for coreference resolution and incorporating available

semantic database knowledge (facts about popular entities) to

support high quality gazetteer maintenance for named entity

recognition and to help resolve coreferences using global

semantic information.

REFERENCES

[1] K. van Deemter and R. Kibble, "What is coreference, and what should
coreference annotation be?," in Proceedings of ACL workshop on
Coreference and Its Applications, pp. 90-96, Maryland., 1999.

[2] G. Barzdins, N. Gruzitis, G. Nespore, B. Saulite, I. Auzina and K. Levane-
Petrova, "Multidimensional Ontologies: Integration of Frame Semantics
and Ontological Semantics," in Proceedings of the XIII Euralex
Internacional Congress, Barcelona, 2008.

[3] I. Witten, M. Hall and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, 2011.

[4] H. Lee, Y. Peirsman, A. Chang, N. Chambers, M. Surdeanu and D.
Jurafsky, "Stanford's Multi-Pass Sieve Coreference Resolution System at
the CoNLL-2011 Shared Task.," 2011.

[5] D. Klein and A. Haghighi, "Simple coreference resolution with rich
syntactic and semantic features," 2009.

[6] C. Müller and M. Strube, "Multi-level annotation of linguistic data with
MMAX2.," 2006.

[7] P. Paikens, L. Rituma and L. Pretkalniņa, "Morphological analysis with
limited resources: Latvian example," 2013.

[8] "Latviešu valodas morfololoģisko pazīmju kopa," [Online]. Available:
http://www.semti-kamols.lv/doc_upl/TagSet.pdf. [Accessed 20 02
2013].

[9] L. Rituma and L. Pretkalniņa, "Statistical syntactic parsing for Latvian,"
2013.

[10] A. Lavelli, J. Hall, J. Nilsson and J. Nivre, "MaltParser at the EVALITA 2009
Dependency Parsing Task," 2009.

[11] G. Bārzdiņš, N. Gruzītis, G. Nešpore and B. Saulīte, "Dependency-Based
Hybrid Model of Syntactic Analysis for the Languages with a Rather Free
Word Order.," 2007.

[12] M. Pinnis, "Latvian and Lithuanian Named Entiy Recognition with
TildeNER," in Proceedings of the Eight International Conference on
Language Resources and Evaluation (LREC'12), 2012.

[13] P. Paikens, I. Auziņa, G. Garkāje and M. Paegle, "Towards named entity
annotation of Latvian National Library corpus," 2012.

[14] T. K. Sang, E.F. and F. De Meulder, "Introduction to the CoNLL-2003
shared task: language-independent named entity recognition," in
Proceedings of the seventh conference on Natural language learning at
HLT-NAACL, 2003.

[15] J. R. Hobbs, "Pronoun Resolution," 1976.

[16] W. M. Soon, H. T. Ng and D. C. Y. Lim, "A machine learning approach to
coreference resolution of noun phrases," 2001.

[17] O. Uryupina, "Knowledge Acquisition for Coreference Resolution," 2007.

[18] M. Vilain, J. Burger, J. Aberdeen, D. Connolly and L. Hirschman, "A
model-theoretic coreference scoring scheme," 1995.

[19] A. Bagga and B. Baldwin, "Algorithms for scoring coreference chains.," in
Proceedings of MUC-7 and LREC Workshop, 1998.

[20] G. Iakes, A. Olatz, C. Klara, D. d. I. Arantza and J. Amane, "Automatic
Coreference Annotation in Basque," in 11th International Workshop on
Treebanks and Linguistic Theories, 2012.

[21] M. Kopeć and M. Ogrodniczuk, "Creating a Coreference Resolution
System for Polish," in Proceedings of the Eight International Conference
on Language Resources and Evaluation (LREC'12), Istanbul, 2012.

[22] M. Novák and Z. Žabokrtský, "Resolving Noun Phrase Coreference in
Czech," in 8th Discourse Anaphora and Anaphor Resolution Colloquium,
DAARC 2011, 2011.

[23] Recasens, "SemEval-2010 Task 1: Coreference Resolution in Multiple
Languages," 2010.

PUBLIKĀCIJA IX

Using C5.0 and exhaustive search for boosting frame-semantic

parsing accuracy

Proceedings of LREC 2014, Ninth International Conference on Language Resources and Eval-

uation, 2014.

Using C5.0 and Exhaustive Search for Boosting
Frame-Semantic Parsing Accuracy

Guntis Barzdins, Didzis Gosko, Laura Rituma, Peteris Paikens
Institute of Mathematics and Computer Science, University of Latvia

Rainis Blvd 29, Riga LV-1459, Latvia

E-mail: guntis.barzdins@lumii.lv, didzis.gosko@gmail.com, {laura, peteris}@ailab.lv

Abstract

Frame-semantic parsing is a kind of automatic semantic role labeling performed according to the FrameNet paradigm. The paper
reports a novel approach for boosting frame-semantic parsing accuracy through the use of the C5.0 decision tree classifier, a
commercial version of the popular C4.5 decision tree classifier, and manual rule enhancement. Additionally, the possibility to replace
C5.0 by an exhaustive search based algorithm (nicknamed C6.0) is described, leading to even higher frame-semantic parsing accuracy
at the expense of slightly increased training time. The described approach is particularly efficient for languages with small FrameNet
annotated corpora as it is for Latvian, which is used for illustration. Frame-semantic parsing accuracy achieved for Latvian through the
C6.0 algorithm is on par with the state-of-the-art English frame-semantic parsers. The paper includes also a frame-semantic parsing
use-case for extracting structured information from unstructured newswire texts, sometimes referred to as bridging of the semantic gap.

Keywords: FrameNet, semantic role labelling, information extraction

1. Introduction

Development of FrameNet
1

 resources for various

languages is an ongoing activity (Burchardt at al., 2006;

Leenoi at al., 2011). Much of that effort is aimed at only

mapping the English FrameNet frames into lexical and

syntactic structures of other languages and thus creating a

FrameNet annotated corpora for the target language.

Meanwhile creation of a Latvian FrameNet was

motivated primarily by computational needs of automatic

information extraction from natural language texts

(predominantly newswire articles). The benchmark

methodology for automatic frame-semantic parsing was

set at SemEval-2007 (Baker at al., 2007) and specifically -

by the best performing LTH system (Johansson & Nugues,

2007). Further improvements to the methodology were

implemented in the state-of-art SEMAFOR system (Das

at al., 2014).

In this paper we report a novel approach for boosting

frame-semantic parsing accuracy through the use of the

C5.0 decision tree classifier
2
 (Quinlan, 1993) and manual

rule enhancement. We also describe a possibility to

replace C5.0 by exhaustive search (nicknamed “C6.0”)

leading to even higher frame-semantic parsing accuracy.

This approach is particularly efficient for languages with

small FrameNet annotated corpora as is the case for

Latvian, which is used in this paper for illustration.

2. Latvian FrameNet

Latvian FrameNet originally was created for a practical

information extraction system (described in Section 5)

developed for a national news agency to automatically

extract biographical data about publicly visible persons

and organizations mentioned in the newswire articles. A

1
 http://framenet.icsi.berkeley.edu

2
 C5.0 is a commercial version of C4.5 – a decision tree

classifier popular for data mining applications, available from

http://rulequest.com/see5-info.html

number of design decisions were taken to strengthen the

computational nature of Latvian FrameNet.

First design decision was to preprocess all input texts with

a tokenizer and POS tagger (Paikens at al., 2013), an

unlabeled
3
 dependency parser (Pretkalnina & Rituma,

2013; Pretkalnina et al., 2014), and a NER and

co-reference resolver (Znotins & Paikens, 2014) to

produce extended CoNLL-style annotations prior to any

FrameNet annotation (see Fig.1).

Figure 1: CoNLL style input data for FrameNet tools, a

sentence „Duties began performing current Latvia

ambassador to USA Ojars Kalnins.” preprocessed with

POS, unlabeled dependency, NER, co-reference parsers

Secondly, a novel FrameNet graphical editor
4
 (Fig. 2) was

developed (Brediks, 2013) specifically for annotating

dependency pre-parsed texts illustrated in Fig 1. The key

difference from the legacy phrase-structure grammar

based Berkeley FrameNet annotation tool (Ruppenhofer

at al., 2010) or the Salto FrameNet annotation tool

(Burchardt at al., 2006) is that our tool relies on the

dependency-tree to automatically derive filler phrase

boundaries once the head-word for the frame element (FE)

is selected. This tool was used to create a FrameNet

annotated corpus for Latvian. The corpus currently

3
 Labeled dependency trees are used in Section 4 to improve the

handling of coordination
4
 http://www.ltn.lv/~guntis/FrameMarker.zip

contains almost 5000 sentences from various types of

newswire sources.

Third design decision was to use a reduced number of

frames – although our methodology is applicable to any

number of frames, we have selected just 26 Frames (Being

born, People by age, Death, Personal relationship, Being

named, Residence, Education teaching, People by

vocation, People by origin, Being employed, Hiring,

Employment end, Membership, Change of leadership,

Giving, Intentionally create, Participation, Earnings and

losses, Public procurement, Possession, Lending, Trial,

Attack, Win prize, Statement, Product line) which were of

interest to the national news agency for media monitoring

purposes; this use-case dictated also adding or removal of

some frame elements (arguments) as shown in Fig. 3.

3. Frame-Semantic Parsing

Thanks to above design decisions it was rather

straightforward to adapt the benchmark LTH

frame-semantic parser (Johansson & Nugues, 2007)

approach to Latvian FrameNet. The original LTH

frame-semantic parser uses multiple SVM classifiers to

identify frame targets and frame elements. Besides SVM

we explored various machine learning approaches,

including a log-linear implementation of SEMAFOR
5

system, but the achieved accuracy turned out to be low

due to limited size of available FrameNet annotated

corpora for Latvian. This problem lead to the key

innovation reported in this paper – the C5.0 based manual

boosting of frame-semantic annotation accuracy.

Figure 2: Dependency-tree based FrameNet editor

In terms of classification accuracy C5.0 (C4.5) is

comparable to SVM (Shawkat & Smith, 2006) although

C5.0 is typically used with lesser training data sets than

SVM. Meanwhile the crucial advantage of C5.0 (C4.5) is

5
 Log-linear or perceptron based approaches have significant

drawback (compared to kernelized SVM or C5.0) – besides the

list of basic features they require also “feature templates” to

handle feature vector value patterns. These feature patterns need

to be manually crafted by the domain expert (Das at al., 2014).

Use of C4.5 to automate feature template generation (Fernandes

& Milidi'u, 2012) was seminal to the approach described in this

paper.

that the decision tree classifier generated automatically

from corpus can be output also in the form of human

readable and editable rules like shown below:

Rule 1: (5, lift 585.8)

 PreviousLEMMA = euro (Euro)

 CurrentLEMMA = apgrozījums (turnover)

 -> class YES (Earnings_and_losses) [0.857]

Rule 2: (9/1, lift 559.5)

 CurrentLEMMA = peļņa (profit)

 NextLEMMA = būt (be)

 -> class YES (Earnings_and_losses) [0.818]

Such classification rules can be easily (effort of

approximately 1 hour per frame type) enhanced manually

by a human linguist to significantly boost accuracy of

frame-semantic parser. Typical rule-changes made by

human linguist are adding complete list of month-names,

if “January” is mentioned in the rule, or adding more

professions, if “plumber” appears in the rule, or

discarding some silly rules caused by training data

sparsity. Tables 2. and 3. show the actual boosting effect

achieved. One can observe that manual boosting results in

increased precision (at the expense of slightly reduced

recall in case of frame element recognition). It is crucial to

note that such manual boosting is quite “cheap” compared

to effort required to achieve a similar boost by merely

annotating more training data. To achieve simpler

classification rules to be read and edited by human, we

trained a separate
6
 binary (YES/NO) C5.0 classifier for

identification of each frame target and frame element type.

This is slightly different from the approach taken in LTH

frame-semantic parser, which divides the task into the

following steps:

1) Identifying the words that should be associated with

frames

2) Classifying the frames associated with the word in

(1)

3) Identifying the words that should be associated with

frame elements (arguments)

4) Classifying the frame elements associated with the

words in (3)

In our frame-semantic parser "frame target identification"

refers to steps (1) and (2) jointly, as these are handled by

one binary C5.0 classifier per frame type, which merely

classifies if the current word in the text is (or is not) a

target for this specific frame type. Similarly "frame

element identification" in our case refers to (3) and (4)

jointly and is handled by one binary C5.0 classifier per

frame element type.

In our approach positive examples in the resulting training

datasets are sparse and require considerable tweaking of

C5.0 parameters to produce meaningful rules. We

concluded on the following command-line parameter

settings:

 $./c5.0 -r -m1 -c100 -f <name>

along with associated <name>.costs file heavily

penalizing missed YES-rules: “NO, YES: 100”

6
 Our approach of identifying each frame type separately allows

to scale it linearly from 26 frames in Latvian FrameNet to over

1000 frames in the current English FrameNet 1.5

Figure 3: Latvian FrameNet 26 Frames (blue boxes) and

frame element filler types / NER categories (yellow).

For fully automatic frame target identification mode rules

were cut-off at Laplace ratio 0.1 to avoid target

overgeneration due to manipulated costs file. Frame

targets are identified first and then frame element

candidates are considered only in the radius of 4 words

around the identified frame target word according to the

dependency tree; only one frame element of a kind is

retained for each frame target if C5.0 classifier found

multiple candidates (the closest ones to the target

according to the dependency tree).

 Latvian
FrameNet
data

English
SemEval
'07 data

Exemplar sentences 1682 139439

Frame labels (Frame types) 26 665

Role labels (FE types) 80 720

Sentences in test data 199 120

Table 1: FrameNet data sets used for evaluation

Target identification Precision Recall F1

C5.0 fully automatic
(Latvian FrameNet data)

51.7 39.5 44.8

C5.0 manual boosting
(Latvian FrameNet data)

55.6 43.9 49.1

C6.0 fully automatic
(Latvian FrameNet data)

62.5 46.8 53.5

LTH (English
SemEval’07 data)

66.2 50.6 57.3

SEMAFOR (English
SemEval’07 data)

69.7 54.9 61.4

Table 2: Frame target recognition evaluation results

FE identification Precision Recall F1

C5.0 fully automatic
(Latvian FrameNet data)

54.6 43.8 48.6

C5.0 manual boosting
(Latvian FrameNet data)

59.4 43.3 50.1

C6.0 fully automatic
(Latvian FrameNet data)

61.3 60.7 61.0

LTH (English
SemEval’07 data)

51.6 35.4 42.0

SEMAFOR (English
SemEval’07 data)

58.1 38.8 46.5

Table 3: Frame element recognition evaluation results

Evaluation of our initial results shows that C5.0 decision

tree based approach provides accuracy that is competitive

for Frame-semantic parsing, and can also be conveniently

combined with manually enhanced rules for accuracy

boosting. Comparing Latvian frame-semantic parsing

results to state-of-the-art English frame-semantic parser

accuracies suggests
7
 that C5.0 and smaller size of Latvian

FrameNet contributes positively to frame element

recognition accuracy, while for frame target recognition

corpus size is crucial. It shall be noted that for target

identification English frame-semantic parsers actually use

two additional information sources not available for

Latvian – the list of lexical units known to invoke

particular frame (lexical units are part of English

FrameNet distribution) and WordNet synsets (Fellbaum,

1998).

4. Exhaustive Search (C6.0)

While experimenting with C5.0 as described in the

previous Section, we noted that use of approximate

7

 Evaluation results for English were copied from [4].

Evaluation script used for English is not available online. Our

evaluation script counts only exact head-word matches for frame

targets and for frame elements in correctly identified frames

entropy-based C5.0 is somewhat obsolete for tasks

requiring only binary classifier (e.g. our frame-semantic

parser implementation), because the number of

hypothetical rules recognizing positive exemplars is

merely number-of-positive-exemplars × 2
feature-count

, which

is a tractable number for exhaustive search up to

approximately 20 features (we use 11 features for frame

target identification and 13 features for frame element

identification). It shall be noted that exhaustive search

applies only to the rule learning stage – the runtime

application of the learned rules is very fast.

Additional motivation to replace C5.0 was the costs file,

which had to be manually tweaked to generate rules from

unbalanced training data containing massive amounts of

negative exemplars and very sparse positive exemplars.

Without costs file C5.0 often gave just single default rule

“negative”, which is true for 99.9% of training exemplars.

Few optimizations allowed cutting down the computation

time for exhaustive search below one minute per classifier

for the amount of training data available in Latvian

FrameNet. The resulting exhaustive search based

classifier we nicknamed
8
 in this paper “C6.0” since for

frame-semantic parsing applications it clearly surpasses

the original C5.0 (including also the manually boosted

C5.0 rules) – see the initial C6.0 results in Tables 2. and 3.

Attempts to further manually boost the rules generated by

C6.0 were nearly fruitless and improved accuracy by

statistically insignificant values of less than 1%.

 1 [_, _, _, {peļņa, apgrozījums}, _, _, _, _, _, _, _] 136 31

 2 [_, ng, _, zaudējums, _, _, _, _, _, _, _] 10 0

 3 [_, _, _, {zaudējums, ienākums}, _, nn, _, _, _, _, _] 12 2

 4 [_, _, _, nopelnīt, _, _, _, _, _, x, _] 6 0

 5 [uzņēmums, _, _, _, _, _, _, _, _, vcnpa, _] 2 0

 6 [kompānija, _, _, _, _, v_nia, _, _, _, _, _] 2 0

 7 [',', _, _, ieņēmums, _, _, _, _, _, _, _] 2 0

Figure 4: C6.0 generated target identification rules for

frame Earnings and losses. Shown are counts in the

training corpus for total matches and false positives.

Meanwhile the human-readable, optimal rules generated

by C6.0 (it is actually quite insightful to read these

machine generated rules, see Fig. 4) opened two other

possibilities for boosting the frame-semantic parsing

accuracy:

a. Correcting the frame annotation inconsistencies in

the training corpus.

b. Spotting the missing features preventing C6.0 from

inferring universal rules with high coverage.

Training corpus annotation inconsistencies are

particularly easy to spot in the human-readable frame

target identification rules generated by C6.0, because

these rules substitute for the meaningful lists of lexical

units (word senses, included in the English FrameNet

distribution) known to invoke the particular frame.

8

 C6.0 is not a universal substitute for the much richer

functionality of C5.0 useful in other application domains

Meanwhile frame element identification rules generated

by C6.0 correspond to meaningful lexical entries
9

(containing frame element syntactic realization variations

in the annotated corpora) in English FrameNet

distribution. Tables 4, 5, 6 show the final results after the

spotted annotation inconsistencies (mostly they were

missed frames) were corrected in the extended training

corpus and few missing features were added to the parser.

Fig. 5 shows cross-validation of frame target F1 score

relative to various split of training and test sets. The

evaluation results show that the resulting C6.0 based

Latvian frame-semantic parser performs on par with

state-of-the-art English frame-semantic parsers despite

smaller FrameNet training corpus for Latvian.

 Latvian
FrameNet
data

English
SemEval
'07 data

Exemplar sentences 4079 139439

Frame labels (Frame types) 26 665

Role labels (FE types) 80 720

Sentences in test data 844 120

Table 4: Extended data sets used for evaluation

Target identification Precision Recall F1

C6.0 fully automatic
(Latvian FrameNet data)

63.5 62.7 63.1

LTH (English
SemEval’07 data)

66.2 50.6 57.3

SEMAFOR (English
SemEval’07 data)

69.7 54.9 61.4

Table 5: Frame target recognition final results

FE identification Precision Recall F1

C6.0 fully automatic
(Latvian FrameNet data)

65.9 76.8 70.9

LTH (English
SemEval’07 data)

51.6 35.4 42.0

SEMAFOR (English
SemEval’07 data)

58.1 38.8 46.5

Table 6: Frame element recognition final results

The final list of features used for frame target

identification was:

PLEMMA – previous word lemma

PPOS –previous word morphology tag

PNETYPE – previous word NE type

LEMMA – target word lemma

LEMMA_CLUSTER – target word cluster

POS – target word morphology tag

DEPLABEL – syntax role of the target word

NETYPE – target word NE type

9
 Lexical entries in English FrameNet include also valence

patterns, defining meaningful frame element subsets and their

syntactic realizations observed in the annotated corpora; in our

parser meaningful frame element subsets are hardcoded

NLEMMA – next word lemma

NPOS – next word morphology tag

NNETYPE – next word NE type

The final list of features used for frame element

identification was:

LEMMA – FE headword lemma

LEMMA_CLUSTER – FE headword lemma cluster

POS – FE headword morphology tag

NETYPE – FE headword NE type

DEPLABEL – syntax role of the FE headword

HLEMMA – parent word lemma

HLEMMA_CLUSTER – parent word cluster

HPOS – parent word morphology tag

HNETYPE – parent word NE type

TARGET_TYPE – frame name

TARGET_PATH2D – sequence of 4-direction

moves forming the path in the dependency tree

between FE headword and target word

TARGET_PATH2D_SHORT – the path without

sequential duplicates

TARGET_NEAR – path length above or below 4

Figure 5: Dynamics of frame target F1 score relative to

the number of sentences in the training set versus test set.

The total number of annotated sentences is 4923.

The actual implementation of C6.0 algorithm we have

developed is slightly more sophisticated than pure

relaxation of positive exemplars for exhaustive search of

best rules shown in Fig. 4, as algorithm has to decide

which of the searched rules form the best rule-set without

falling victim to the overfitting/underfitting problem.

Overfitting occurs when rules have too high precision at

the expense of low recall – such rules perform excellent

on the training set, but are not general enough to be useful

for unseen data. Underfitting is the opposite extreme,

where high recall is achieved at the expense of low

precision due to rules being too promiscuous. In C6.0 we

use the same approach as C5.0 to address the

overfitting/underfitting problem through confidence

limits for the binomial distribution or through Laplace

ratio. The best F1 scores we achieved with the default

Laplace ratio (n-m+1)/(n+2) for rule's accuracy

estimation, where n is the number of exemplars covered

by the rule and m shows how many of them are false

positives (n and m are the two numbers shown in Fig. 4 for

every rule). Meanwhile confidence limits for the binomial

distribution gave better recall rates with slight

degradation to precision and overall F1 accuracy.

The actual C6.0 implementation
10

 includes minor

additional fine-tuning options such as tiebreaking strategy

for rules with equal Laplace ratio – preferring the most

relaxed or the most specific rule (default is choosing the

most specific rule) and restricting the maximum number

of features appearing in one rule (default is 5, although 3

gives nearly as good results in the fraction of time). C6.0

also includes sieves to minimize the number of

overlapping rules and to keep only rules covering more

than one exemplar, as fewer rules in the resulting rule-set

tend to improve the overall accuracy on unseen data.

5. Discussion

The ability to achieve high accuracy for frame-semantic

parsing enables streamlining of information extraction

task from natural language texts, such as newswire

articles. The goal of such information extraction

effectively is populating the ontology
11

 shown in Fig.3

(this is OWLGrEd
12

 visualization of the actual OWL

ontology) with instance data retrieved from the text. To do

so, frame-semantic parsing techniques described in this

paper (producing instances for the blue boxes in Fig.3)

need to be combined with Cross Document Coreference

(CDC) techniques (Wick at al., 2013) to automatically

determine which mentions in the text refer to the same

real-world entity (producing disambiguated instances for

the yellow boxes in Fig.3).

We have implemented such integrated information

extraction system and populated it with data from

approximately 1 million newswire articles. From the

practical standpoint it turned out that the bottleneck of the

approach is Named Entity discovery and linking accuracy

– even at estimated 80% CDC accuracy it too often

merged together different real-world entities with similar

names or did not link together alternative spellings for the

same entity (due to frame elements often being a

hierarchy of Named Entities, e.g. “triju Zvaigžņu ordeņa

virsnieks” in Fig. 6), making the overall results unusable.

To mitigate the problem, we deflected to the use of the

predefined Knowledge Base of manually disambiguated

well-known person, organization, location, product, event

names (with their commonly used aliases), which can be

identified in the text more robustly using Named Entity

linking methods similar to DBpedia Spotlight (Daiber at

al., 2013). Of course, this workaround links only frame

elements found in the predefined Knowledge Base,

leaving other frame element fillers unidentified. The

10

 http://c60.ailab.lv
11

 http://www.ltn.lv/~guntis/FrameNetLV.owl
12

 http://owlgred.lumii.lv

unidentified frame element fillers therefore are stored as

simple text strings as they appear in the original sentences

(technically they can be stored in the same Knowledge

Base, only tagged as “unidentified entities”).

From the practical standpoint of information extraction

about persons and organizations from the newswire texts

this has turned out to be the best solution – link only

entities present in the Knowledge Base, but leave all other

frame element fillers identified only by the text strings as

they appear in the source text. This mixed approach

allows for creating a convenient user interface, where

instance data from the Knowledge Base in Fig. 3 is

verbalized using a light version of (Dannells & Gruzitis,

2014) producing simple sentences as illustrated in Fig. 6

which can further be formatted in the familiar Curriculum

Vitae like manner.

Ieva Akuratere bija solista amatā [23]

Ieva Akuratere bija Puķu burves amatā [8]

Ieva Akuratere bija mūziķes un aktrises amatā [5]

Ieva Akuratere bija deputātes amatā Rīgas domē [4]

Ieva Akuratere bija solista amatā Koncertuzvedumā [4]

Ieva Akuratere bija dziedātājas amatā [3]

Ieva Akuratere bija triju Zvaigžņu ordeņa virsnieka amatā Latvijā [3]

Figure 6: Fragment of the automatically generated person

profile (verbalization of Being employed frame). Linked

Named Entities underlined, duplicate counts in brackets.

Although not yet implemented in a practical system, there

is a further refinement possible for the above described

Knowledge Base and information extraction system –

adding the time dimension (in Fig. 3 note that Time is the

dominant frame element present in almost all frames). For

most frames extracted from the newswire texts the time of

their occurrence is either explicitly specified in the text

and can be retrieved by frame-semantic parser as frame

element Time or approximate time can be retrieved from

the metadata of the newswire article publication date.

Having time associated with all extracted frames opens a

possibility (Barzdins, 2011) for structuring the

information extracted from the newswire texts – rather

than having a mix of seemingly contradictory facts in one

Knowledge Base (e.g. “Peter lives in Paris” and “Peter

lives in NewYork”) we can create a whole sequence of

Knowledge Base instances (one per every day of history),

with each instance containing only the facts which were

true on that particular day and thus make these instances

non-contradictory (e.g. “Peter lives in Paris” (in

instances for 2001) and “Peter lives in New York” (in in

instances for 2011)). Inserting frames extracted from the

text by the frame-semantic parser into the proper instance

(or sequence of instances) of the Knowledge Base is not

an easy task (Murray & Singliar, 2012), as some frames

describe an instantaneous event (e.g. frame Attack) while

other frames describe a state which is true over prolonged

period of time (e.g. frame Being employed). Nevertheless,

resolving the time dimension (and for some sorts of tasks

– also spatial dimension) is a vital additional tool for truly

bridging the semantic gap in natural language

understanding, eventually enabled by the accurate

frame-semantic parsing.

Table 7: Target identification F1 scores for some Latvian

FrameNet frames.

To evaluate to what extent the information extraction

approach described in this paper actually bridges the

semantic gap (Ehrig, 2007) between the unstructured

newswire input text and the structured output (Knowledge

Base or ontology in Fig. 3), Table 7 breaks down the target

identification accuracy for various frames. These results

illustrate that target identification accuracy varies widely

between different frame types, meaning that the current

set of features apparently is not sufficient for

identification of the low-scoring frames. Another

explanation for the low-scoring frames might be that the

concept they convey is broader (can be expressed in more

ways) and thus bridging of the semantic gap with high

accuracy for these frames requires a larger training

corpus.

6. Conclusion

The described approach illustrates the possibility of

bootstrapping a state-of-the-art frame-semantic parser for

a new language by merely hand-annotating approximately

5000 sentences with the frames of interest. In our

approach each frame is learned independently, meaning

that the result holds for any number of different frames. It

is interesting to observe that rules for frame target and

frame element identification generated automatically by

C6.0 effectively substitute for the manually crafted lexical

unit entries which are part of the English FrameNet

distribution.

On a more philosophical level, we believe that our

C5.0/C6.0 based approach of statistical learning of human

readable (and human-editable) rules from a corpus

bridges the gap between statistical and rule-based NLP

approaches and likely can be extended to other NLP areas

such as the MaltParser shift-reduce dependency parsing

algorithm (Nivre, et al., 2007), where the SVM classifier

could be replaced by C5.0 or C6.0 to achieve a similar

manual accuracy boosting effect.

Another notable achievement of C6.0 is practical machine

learning by exhaustive search, which is shown to achieve

high accuracy even from a small set of exemplars as

shown in Fig. 5. We suspect that C6.0 is more accurate

than approximate machine learning techniques popular

today, but a thorough comparison with other machine

learning approaches is beyond the scope of this paper.

7. Acknowledgement

The research was partially supported by Latvian

2010.-2014. National Research Program Nr.2

“Development of Innovative Multifunctional Materials,

Signal Processing and Information Technologies for

Competitive Science Intensive Products”, project Nr.5.

We also thank the anonymous reviewers for their

improvement recommendations.

8. References

Baker, C., Ellsworth, M., Erk, K. (2007). SemEval-2007

task 19: Frame semantic structure extraction. In

Proceedings of SemEval-2007: 4th International

Workshop on Semantic Evaluations. Prague, pp. 99–

104.

Barzdins, G. (2011). When FrameNet meets a Controlled

Natural Language. In Proceedings of NODALIDA.

Riga, NEALT Proceedings Series Vol. 11, pp. 2--5.

Brediks, D. (2013). FrameNet Semantic Annotation

Editor with Co-reference Identification, Postgraduate

Thesis in Informatics, University of Latvia.

Burchardt, A., Erk, K., Frank, A., Kowalski, A., Pado, S.,

Pinkal, M. (2006). The SALSA corpus: a German

corpus resource for lexical semantics. In Proceedings

of the 5th International Conference on Language

Resources and Evaluation. Genoa, Italy, p. 6.

Daiber, J., Jakob, M., Hokamp, C., Mendes, P.N. (2013).

Improving efficiency and accuracy in multilingual

entity extraction, In Proceedings of the 9th

International Conference on Semantic Systems. ACM,

pp. 121--124.

Dannells, D., Gruzitis, N. (2014). Extracting a bilingual

semantic grammar from FrameNet-annotated corpora.

In Proceedings of the 9th Language Resources and

Evaluation Conference (LREC). Reykjavik, this

volume.

Das, D., Chen, D., Martins, A.F.T, Schneider, N., Smith,

N.A. (2014). Frame-Semantic Parsing, Computational

Linguistics, 40(1), pp. 9--56.

Ehrig, M. (2007). Ontology Alignment – Bridging the

Semantic Gap. Semantic Web and Beyond, Vol. 4,

Springer.

Fellbaum, C. (1998). WordNet: An Electronic Lexical

Database. MIT Press.

Fernandes, E.R., Milidi´u, R.L. (2012). Entropy guided

feature generation for structured learning of Portuguese

dependency parsing. In Proceedings of the Conference

on Computational Processing of the Portuguese

Language (PROPOR). Lecture Notes in Computer

Science, Vol. 7243, pp. 146--156.

Johansson, R., Nugues, P. (2007). LTH: semantic

structure extraction using nonprojective dependency

trees. In Proceedings of SemEval-2007: 4th

International Workshop on Semantic Evaluations.

Prague, pp. 227--230.

Leenoi, D., Jumpathong, S., Porkaew, P., Supnithi, T.

(2011). Thai FrameNet Construction and Tools,

International Journal on Asian Language Processing,

21(2), pp. 71--82.

Murray, W., Singliar, T. (2012). Spatiotemporal

Extensions to a Controlled Natural Language. In

Proceedings of the 3rd Workshop on Controlled

Natural Language, volume 7427 of LNCS, pp. 61-78.

Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G.,

Kubler, S., Marinov, S., Marsi, E. (2007). MaltParser:

A languageindependent system for data-driven

dependency parsing. Natural Language Engineering,

13(2):95–135.

Paikens, P., Rituma, L., Pretkalniņa, L. (2013).

Morphological analysis with limited resources: Latvian

example. In Proceedings of NODALIDA. Oslo, pp.

267--278.

Pretkalnina, L., Znotins, A., Rituma, L., Gosko, D. (2014).

Dependency parsing representation effects on the

accuracy of semantic applications — an example of an

inflective language. In Proceedings of the 9th

Language Resources and Evaluation Conference

(LREC). Reykjavik, this volume.

Pretkalnina, L., Rituma, L. (2013). Statistical syntactic

parsing for Latvian. In Proceedings of NODALIDA.

Oslo, pp. 279—290.

Quinlan, J.R. (1993). C4.5: Programs for Machine

Learning. Morgan Kaufmann Publishers.

Ruppenhofer, J., Ellsworth, M., Petruck, M.R.L., Johnson,

C.R., Scheffczyk, J. (2010). FrameNet II: Extended

Theory and Practice. Berkeley, CA, USA: International

Computer Science Institute.

Shawkat, A., Smith, K.A. (2006). On learning algorithm

selection for classification. Applied Soft Computing,

6(2), pp. 119--138.

Wick, M., Singh, S., Pandya, H., McCallum, A. (2013). A

Joint Model for Discovering and Linking Entities, In

Proceedings of the 2013 workshop on Automated

knowledge base construction. ACM, pp. 67--72.

Znotins, A., Paikens, P. (2014). Coreference Resolution

for Latvian. In Proceedings of the 9th Language

Resources and Evaluation Conference (LREC).

Reykjavik, this volume.

PUBLIKĀCIJA X

Latvian newswire information extraction system and entity

knowledge base

Proceedings of Human Language Technologies – the Baltic Perspective, 2014.

Latvian Newswire Information Extraction

System and Entity Knowledge Base

Pēteris PAIKENSa,1
a

 University of Latvia, Institute of Mathematics and Computer Science

Abstract. This paper describes an information extraction system designed for

obtaining CV-style structured information about publicly mentioned persons,

organizations and their relations by analyzing newswire archives in the Latvian

language. The described text analysis pipeline consists of morphosyntactic

analysis, NER and coreference resolution, and a semantic role labeling system

based on FrameNet principles. We also implement an entity linking process,

matching the entity mentions in each document to an entity knowledge base that is

initially seeded with authoritative information on relevant people and

organizations. The accuracy of automated frame extraction varies depending on

specifics of each frame type, but the average accuracy currently is 53% F-score for

frame target identification, and 61% for frame element role classification. The

currently targeted volume of text is the total archives of Latvian newspapers,

magazines and news portals, consisting of about 3.5 million articles.

Keywords. information extraction, knowledge base, text summarization

Introduction

Newswire archives contain a huge wealth of information that has been once gathered,

verified and published, but is scattered among many separate articles of unstructured

natural language text. There is a large demand for extracting this knowledge in a

structured and summarized manner, and this is also an important business area for a

number of news broker companies. A particular niche of structured information is the

profiles of important people and companies. For some languages and locations, the

need is well served by open resources such as Wikipedia, but for others, including

Latvia, this coverage is not sufficient and there is a market need for providing such data.

This is currently done by LETA, the largest Latvian news agency, providing profiles of

some 20,000 people and 2,000 organizations. The raw data of news articles is digitized

and well accessible, and current technology supports effective search and retrieval of

relevant documents, but creating and maintaining profile data still is very labor
intensive and requires a significant time investment. This time cost limits the coverage

of such profiles to a fraction of all people mentioned in news, and restricts the

frequency of reviewing and updating those profiles.

As this type of information can be automatically extracted from article text by state

of art information retrieval approaches, a research project was started by University of

Latvia IMCS together with LETA, the largest Latvian news agency, with the goal of

1 Corresponding Author: Pēteris Paikens, University of Latvia, Institute of Mathematics and Computer

Science, Raiņa bulvāris 29, Riga, Latvia, LV-1459; E-mail: peteris@ailab.lv.

researching these methodologies, adapting them to the Latvian language and target

domain, and building a prototype for a pilot project of extracting profile data about

publicly mentioned persons and organizations, as well as their relations, from newswire

archives in Latvian.
The described text analysis system is designed to provide news analysts with ‘fact

candidates’ about such entities, linking to the primary sources of those facts for

clarification – if this can be done with a sufficient accuracy, it allows to summarize

larger amounts of data than is manageable by people using common search techniques.

The structured data of relations between people and organizations can also be used for

journalist analysis of indirect relations, when represented as a graph in tools that allow

to visualize and explore such data. The currently targeted volume of text is the total

archives of Latvian newspapers, magazines and news portals, consisting of about 3.5

million articles.

In the first section, we describe the main research problems encountered, and the

relevant previous research on solving those problems. Section 2 describes the
conceptual and technical architecture of the developed information extraction system.

Section 3 provides details on the representation chosen to model the relevant domain

facts. Section 4 describes the process of linking entity mentions discovered in text to

the appropriate real world entities. Finally, we provide some conclusions and

discussion of future work.

1. Problem Description and Related Work

Information extraction is a currently unsolved problem in computational linguistics,

and an active area of research. While some of the required components are well-

researched, many of them still require improvements to be suitable for practical usage

even for well-resourced languages such as English. The main active research issues are

the actual semantic data extraction phase, the abstract meaning representation model,

and entity linking to the appropriate real world entities.
Implementing information extraction for the Latvian language added extra

challenges in developing or adapting tools for the more general text processing stages.

The morphosyntactic analysis and named entity recognition parts of this system are a

separate problem that is described shortly in the next section, and with more detail in

the cited publications.

1.1. Newswire Information Extraction Task

There are recently started projects for other languages with similar aims – the closest

such project is NEWSREADER[1] that uses a similar methodology for aggregating

notable newswire events, with their current analysis focus on the financial domain of

public companies. While that research is still ongoing and was not published before our

system development was well underway, their approach is very relevant and offers
solutions to potential subtasks, e.g. for scaling the processing[2] if we would want to

analyze the corpora in real time or move to larger corpora than only Latvian newswire.

In addition, there are multiple projects that also attempt information extraction

from newswire corpora, most notably Europe Media Monitor[3], but they target a

different problem scope and the main overlap with this paper is in entity identification.

1.2. Meaning Representation Model

As we need to represent the domain information in a structured manner, the choice of

meaning representation determines both the scope of facts that the system will be able

to describe, as well as the level of detail and nuance that it will attempt to capture from
text. The classic approaches for modeling this data include relational databases and the

linked data approach using Resource Description Framework models.

For the purposes of this system, we have chosen to model the domain knowledge

according to FrameNet principles[4], as described in section 3. The main reason for this

choice was that it is closer to the fact representation as it occurs in natural language

sentences; and the advantages of other approaches can be obtained by further

automated transformations of this data to RDF or specific database formats.

A notable new relevant approach has been recently published – Abstract Meaning

Representation[5], which would potentially be valuable for this use case, but currently

still needs more research and tool development for automated text analysis to this

representation.

1.3. Semantic Role Labeling

The key component of the text analysis system is the step of mapping the identified text

morphosyntactic structure and entities to the semantic representation. We treat the core

part of profile data extraction as a semantic role labeling problem, annotating sentence

tokens with the frame target and frame element information according to the chosen

representation.

The current state of art systems for performing this step, as measured on corpus of

Semeval2007 shared task, are LTH[6] and Semafor[7]. Those algorithms are of general

purpose and can be adapted to a variety of languages, annotation paradigms and text

domains, and were also tested in practice on Latvian data. During our research, we

developed a novel, separately described method[8] based on decision tree learning that

achieves a comparable accuracy, and also gives a possibility for manual rule review
and improvement that is well suited for the properties of this project –preexisting

domain knowledge and small number of frame types that makes manual rule review

feasible.

There is also significant research on extracting such data by fixed sentence patterns

and regular expressions, which we did not consider in depth as such approaches have

limited coverage in languages with variable word order such as Latvian.

1.4. Entity Linking

The relevant sub problem of entity linking is the task of matching named entities

identified in documents to their real-world counterparts, identifying new entities and

resolving ambiguities for multiple people with the same name. A related problem also

is cross-document coreference resolution and event coreference linking, which is not
currently handled but is a topic for future work

Current related research on entity linking includes Wick et al[9], Han et al[10] and

Stoyanov et al[11], based on which we developed an entity linking module tuned for

the needs of this project as described in section 4.

2. System Architecture

The main parts of the system are its text analysis pipeline and the entity knowledge

base. The text analysis pipeline consists of morphosyntactic analysis[12], [13], named

entity and coreference identification[14], and a semantic role labeling system[8]. The
latter two components were implemented for the Latvian language specifically for this

project, and the morphosyntactic and NER layers were adapted for newswire text

domain by creating additional training data and tuning statistical models.

After this document analysis, the entities found in each document are mapped to an

entity-based knowledge base, as shown in Figure 1, and appending the newly identified

facts. Afterwards, the facts identified in each separate document (often duplicates) are

summarized for further applications.

Figure 1. Analysis process flow.

The technical architecture implements each annotation layer as a separate software
module capable of running independently and with multiple concurrent copies, suitable

for batch processing of large corpora. Data interchange between the modules is done

either in columnar tab-delimited format as used in historical CONLL and Semeval

shared tasks or a custom JSON format that includes the entity details and semantic

frame labeling over the original sentences.

3. Fact Representation and Entity Knowledge Base

For the purpose of analyzing biographical data, we have chosen a narrow subset of

English FrameNet – 26 frames – and adapted the frame details for both the Latvian

language and targeted domain.

A key challenge was the actual adaptation of semantic frame models. It was not

straightforward, as the original FrameNet frames significantly vary in granularity, and

domain-specific needs mandated adjustments and additions to the original frames. The
currently proposed ontology, shown in Figure 2, stores the identified semantic frames

as predicates linking together multiple entities, and allows summarizing/merging

multiple frames with identical or overlapping information.

The implementation treats all types of entities as equal, and all information that is

particular only to some entities (e.g., people) is stored as separate types of semantic

frames. Thus, the entities are reduced to their identities and alternative names, the type

and a set of semantic frames that describe this entity and link it to other entities.

Figure 2. Knowledge representation ontology.

4. Entity Linking

We also implement an entity linking process, matching the entity mentions in each

document to an entity knowledge base that is initially seeded with authoritative

information on ~25,000 popularly known people and ~35,000 companies, and source

data on ‘classifiers’ such as locations, professions, etc.

Common practice for larger languages such as English is to link entities to the
identities listed in large public repositories such as Wikipedia or DBpedia, but for

Latvian those resources do not provide a sufficiently high coverage of locally important

people and companies. Thus, an internal authoritative list is used, based on data

previously aggregated in proprietary systems of LETA. The number of entities rapidly

increases by a factor of ten as new, less common entities get added from document

analysis – authoritativeness of such entities is expected to be maintained by manually

reviewing and correcting newly identified entities with a large number of mentions.

The entity knowledge base data is also fed back to the analysis stage in order to

improve named entity classification accuracy by using the previously seen entities.

Entity name ambiguity is resolved by a cross-document coreference technique

loosely based on the entity linking model used by Wick, Singh et al[9]. It is assumed

Employment Scenario

Decis ions

Earning and spending Scenario

Life events

Personal Life Scenario

Creation Scenario

PersonOrOrganization
PrimaryName:string

Alias:string

TimePlaceFrames
Place:string

Being_employed
Compensation:string

Employment_start:dateTime

Employment_end:dateTime

Being_named
Name:string

Type:string

Earnings_and_losses
Earnings:string

Goods:string

Profit:string

Unit:string

Growth:string

Employment_end

Giving
Theme:string

Hiring

Lending
Theme:string

Collateral:string

Units:string

Participation
Event:string

Manner:string

People_by_origin
Ethnicity:string

Origin:string

Personal_relationship
Relationship:string

Possession
Possession2:string

Share:string

Public_procurement
Theme:string

Expected_amount:string

Result:string

Trial
Laiks:string

Person:string

Charges:string

Win_prize
Prize:string

Competition:string

Result:string

Rank:string

Residence
Frquency:string

Attack
Result:string

Circumstances:string

Depictive:string

Reason:string

Manner:string

Weapon:string

Statement
Message:string

Membership
Standing:string

TimeFrames
Time:dateTime

EmploymentFrames
Position:string

Manner:string

Product_line
Brand:string

Products:string

Organization

People_by_age
Age:string People_by_vocation

Vocation:string

Descriptor:string

Person
Being_born

Death
Cause:string

Manner:string

Education_teaching
Subject:string

Qualification:string

Change_of_leadership
Role:string

Result:string

Intentionally_create
Manner:string

Industry:string

Victim

Assailant

Child

Relatives

Entity

Protagonist

Earner

Student

DonorRecipientBorrowerLender

Member

Participant_1

Partner_1 Partner_2 Partners

OwnerInstitutionWinner Candidates

Resident

Speaker

Defendant

Prosecutor

Advokāts

Competitor

Oponent

Organizer

Court

Employer Created_entity InstitutionBodyInstitution

Medium

Group

Person Person Previous_employee Future_employee Employee Candidate New_leader

Person

Creator

Appointer

Appointer

that in case of people sharing identical names, the knowledge base would contain a list

of those namesakes, and disambiguation can be performed amongst them – and if it is

not, then such entities can be flagged for manual review due to conflicting factual data

such as different claimed birth years. Three separate signals are used for classification:
(a) the components of ‘extended names’, taking the extended noun phrase parts from

document mentions, and appositive items from the known frames such as titles or

professions; (b) connected entities – other entities mentioned in the document versus

entities sharing a common fact/frame in the knowledge base; and (c) document level

context according to a bag of words model, which approximately models document

topic –disambiguating an actor and a politician sharing the same name by looking if the

document contains words specific to theatre or political reporting.

The similarities between the entity mentioned in newly analyzed document and

the candidate ‘true’ entities are evaluated with a cosine-similarity metric. Similarity is

measured against news articles previously marked as mentioning that specific person,

or in the minimal data case, against a source ‘CV’ article from which the relevant
properties and context can be extracted.

5. Conclusion

This research shows that information retrieval techniques and natural language

processing tools are sufficiently mature that commercially usable information

extraction systems for specific domains can be implemented using currently published

methodologies and available tools.

The accuracy of automated frame extraction varies depending on specifics of

each frame type, but the average accuracy currently is 53% F-score for frame target

identification, and 61% for frame element role classification[8]. A prototype of this

system has been implemented and at the time of writing this abstract is currently

undergoing pilot testing by analyzing news articles mentioning particular individuals,

and comparing the automatically extracted data with a human analysis of the same
articles. Initial error analysis indicates a strong dependency on the accuracy of initial

analysis layers – mistakes in syntactic analysis or named entity recognition cause those

elements to be misclassified in the semantic analysis as well.

Surprisingly large part of the system is nearly language independent – while

implementing the initial text analysis steps (morphosyntactic structure, entity

processing) required a significant amount of language-specific tools, at the stage of

semantic role labeling the data is processed in the FrameNet representation, which is

domain specific but language neutral. This would enable combining information from

sources in multiple languages, if the entity mapping between languages is adequate,

joining person and company names in different languages, and also ‘classifier’ type

entities such as professions and family relations.
Adapting the existing system to different domains and languages (assuming that

the generic language processing modules are available for the target language) would

initially consist of (a) developing a FrameNet model for the desired information

mapping and (b) annotating a semantic training corpus according to that model

containing approximately 100 examples for each frame.

A specific challenge for Latvian was capturing the notion of semantically similar

words in order to reduce the sparsity effect of training data. The published state of art

systems for other languages gained a accuracy boost of multiple percentage points by

including WordNet lexical data, which is not available for Latvian. This gap was

partially filled by manually developing a number of lists of domain-specific semantic

groups of words (synonym sets of targeted verbs, lists of job titles, etc) and including

them as features for the classifiers.

6. Acknowledgements

This work has been supported by the European Social Fund with the project “Support

for Doctoral Studies at University of Latvia”.

The research leading to these results has received funding from the research

project “Information and Communication Technology Competence Center” of EU

Structural funds, contract nr. L-KC-11-0003, signed between ICT Competence Centre

and Investment and Development Agency of Latvia, Research No. 2.7 “Creation of the

New Information Archive Access Product based on Advanced NLP”.

References

[1] P. Vossen, G. Rigau, L. Serafini, P. Stouten, F. Irving, W. van Hage, NewsReader: Recording History

from Daily News Streams. Proceedings of LREC 2014, Ninth International Conference on Language

Resources and Evaluation (2014).

[2] X. Artola, Z. Beloki, A. Soroa, A Stream Computing Approach Towards Scalable NLP. Proceedings of

LREC 2014, Ninth International Conference on Language Resources and Evaluation (2014).

[3] R. Steinberger, B. Pouliquen, E. van der Goot, An introduction to the Europe Media Monitor family of

applications. Information Access in a Multilingual World - Proceedings of the SIGIR 2009 Workshop

(2009). Boston, 1–8.

[4] J. Ruppenhofer, M. Ellsworth, M.R.L. Petruck, C.R. Johnson, J, Scheffczyk, FrameNet II: Extended

Theory and Practice. Berkeley, International Computer Science Institute, California, USA, 2010.

[5] L. Banarescu, C. Bonial, S. Cai, M. Georgescu, K. Griffitt, U. Hermjakob, K. Knight, P. Koehn, M.

Palmer, and N. Schneider, Abstract Meaning Representation for Sembanking. Proceedings of Linguistic

Annotation Workshop (2013).

[6] R. Johansson, P. Nugues, LTH: semantic structure extraction using non projective dependency trees.

Proceedings of SemEval-2007: 4th International Workshop on Semantic Evaluations (2007) 227–230.

[7] D. Das, D. Chen, A. F. T. Martins, N. Schneider, N. A. Smith, Frame-Semantic Parsing. Computational

Linguistics, vol. 40:1 (2014).

[8] G. Barzdins, D. Gosko, L. Rituma, P. Paikens, (2014). Using C5.0 and Exhaustive Search for Boosting

Frame-Semantic Parsing Accuracy. Proceedings of LREC 2014, Ninth International Conference on

Language Resources and Evaluation (2014).

[9] M. Wick, S. Singh, H. Pandya, A. McCallum, A Joint Model for Discovering and Linking Entities,

Proceedings of the 2013 workshop on Automated knowledge base construction (2013) 67–72.

[10] X. Han, L. Sun, A generative entity-mention model for linking entities with knowledge base. HLT '11

Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human

Language Technologies - Volume 1(2011) 945–954.

[11] V. Stoyanov, J. Mayfield, T. Xu, D. W. Oard, D. Lawrie, T. Oates, T. Finin, A context-aware approach

to entity linking. AKBC-WEKEX '12 Proceedings of the Joint Workshop on Automatic Knowledge Base

Construction and Web-scale Knowledge Extraction (2012) 62–67.

[12] P. Paikens, L. Rituma, L. Pretkalniņa, Morphological analysis with limited resources: Latvian example.

Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA 2013) NEALT

Proceedings Series 16 (2013). Oslo, 267–278.

[13] L. Pretkalnina, L. Rituma, Statistical syntactic parsing for Latvian. Proceedings of the 19th Nordic

Conference of Computational Linguistics (NODALIDA 2013) NEALT Proceedings Series 16 (2013).

Oslo, 279–290.

[14] A. Znotins, P. Paikens, (2014). Coreference Resolution for Latvian. Proceedings of LREC 2014, Ninth

International Conference on Language Resources and Evaluation (2014).

PUBLIKĀCIJA XI

Riga: from FrameNet to Semantic Frames with C6.0 Rules

Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval), 2015.

Riga: from FrameNet to Semantic Frames with C6.0 Rules

Guntis Barzdins, Peteris Paikens, Didzis Gosko
University of Latvia, IMCS

Rainis Blvd. 29, Riga, LV-1459, Latvia
{guntis.barzdins,peteris.paikens,didzis.gosko}@lumii.lv

Abstract

For the purposes of SemEval-2015 Task-18

on the semantic dependency parsing we com-

bined the best-performing closed track ap-

proach from the SemEval-2014 competition

with state-of-the-art techniques for FrameNet

semantic parsing. In the closed track our sys-

tem ranked third for the semantic graph accu-

racy and first for exact labeled match of

complete semantic graphs. These results can

be attributed to the high accuracy of the C6.0

rule-based sense labeler adapted from the

FrameNet parser. To handle large SemEval

training data the C6.0 algorithm was extended

to provide multi-class classification and to use

fast greedy search without significant accura-

cy loss compared to exhaustive search. A

method for improved FrameNet parsing using

semantic graphs is proposed.

1 Introduction

The trend of natural language processing in recent

years is shifting towards multilingual natural lan-

guage understanding based on full-text shallow

semantic parsing (e.g., Banarescu et al., 2013). De-

spite various formalisms proposed, these ap-

proaches are characterized by direct extraction of a

bi-lexical semantic graph rather than a bi-lexical

dependency tree from the surface form of the sen-

tence.

Following the best practice for semantic parsing

established already by the SemEval-2014 Task 8

(Oepen et al., 2014) we modified the best-

performing closed-track system there (Du et al.,

2014) by removing some less essential components

while adding a new component of our own. The

newly added component is the C6.0 rule-based

classifier (Barzdins et al., 2014) used both for

graph parsing and for sense labeling. Sense label-

ing is a novelty of SemEval-2015 Task 18 and was

not present in the previous year competition. Se-

mantic frame is comprised of a complete predica-

tion combined with the sense identifier of its

predicate as shown in Figure 1. Semantic frames

are similar to FrameNet (Fillmore et al., 2003)

frames, except that FrameNet argument labels are

sense-specific – this mismatch can be resolved by

feeding the semantic graph (instead of dependency

tree) through the regular FrameNet parser.

Figure 1. Semantic frame from the PSD corpus.

We participated only in the closed track. Despite

ranking third for the semantic graph accuracy, our

system ranked first for exact labeled match of

complete semantic graphs, and close second for

semantic frame accuracy.

2 Baseline Architecture

For semantic graph parsing we started by imple-

menting a straight-forward baseline architecture

described on the SemEval-2015 Task-18 evalua-

tion page by the task organizers. The baseline ar-

chitecture consists of two components: reduction

of the SDP graphs to trees and training the Mate-

tools dependency parser (Bohnet, 2010) to produce

such trees from the unparsed text. Instead of a de-

structive reduction of the SDP graphs to trees, we

implemented a fully reversible depth-first trans-

formation from the last year best-performing sys-

tem (Du et al., 2014). This simple approach

immediately produced competitive graph parsing

results (Table 1) in line with the best-performing

systems from the last year.

 in domain out of domain

LP LR LF LP LR LF

en.dm 87.34 87.05 87.19 79.95 79.42 79.68

en.pas 90.47 90.03 90.25 85.98 85.48 85.73

en.psd 72.81 71.05 71.92 70.34 67.55 68.92

cs.psd 74.44 71.56 72.97 60.19 57.43 58.78

cz.pas 82.15 81.74 81.94 - - -

Table 1. Baseline architecture labeled scores.

For sense labeling in en.dm and en.psd representa-

tions (a new task not present in the previous

SemEval-2014 competition) we reused a technique

from prior work on FrameNet labeling (Barzdins et

al., 2014) based on C6.0 classifier
1
. For this task

the C6.0 classifier was modified (see Section 3) to

directly produce the multi-class output. By using as

the features values from the form, lemma, POS

columns for the previous, current, and next word,

this approach gave good results on the develop-

ment set: 93.86% accuracy for en.psd representa-

tion and 94.50% accuracy for en.dm

representation. We did not try to improve it any

further and the same baseline approach was used

also for producing senses in the final submitted

parses.

In the submitted parses we carried out the graph

parsing and sense labeling completely inde-

pendently, naively combining both annotations

afterwards. Later experiments have shown that us-

ing graph parsing results as additional features for

sense labeling would improve sense accuracy by

approximately 0.2%.

3 Sense Labeling with C6.0 Rules

C6.0 rule-based classification algorithm (Barzdins

et al., 2014) was inspired by the popular C4.5 deci-

sion-tree classification algorithm (Quinlan, 1993)

1 Available at http://c60.ailab.lv

and has been used in the state-of-the-art FrameNet

parser.

To accommodate the large training data sets

provided in SemEval competition we extended the

original C6.0 algorithm with support for the multi-

class classification and with the fast greedy search

as a replacement for the exhaustive search in the

original C6.0 version.

Given k training examples of the form:

(a11, a12, a13, … a1n, class1)

(a21, a22, a23, … a2n, class2)

…

(ak1, ak2, ak3, … akn, classk)

where features aij and classi are arbitrary character

strings, C6.0 classifier builds a list of rules (illus-

trated in Figure 2) for predicting the class of un-

seen examples. The left side of the rule is a pattern

where any feature position may contain a specific

character string to be matched or an unspecified

value denoted by “_”.

 lemma POS Predicted

sense

p n Laplace

ratio

if(the, DT)then q:i-h-h 227 0 0.996

if(_, CD)then card:i-i-c 147 9 0.937

if(_, DT)then q:i-h-h 336 31 0.913

if(trade, _)then n_of:x-i 13 1 0.875

Figure 2. Classification rules generated by C6.0. Rule

quality is estimated by the Laplace ratio based on posi-

tive p and negative n matching training examples.

The greedy search algorithm for building a mul-

ti-class classifier can be described as follows.

Training data is converted to a pool of classifier

training examples. Each training example is con-

sidered positive for the class it belongs to, and

negative for any other class. A candidate rule is

matched against all positive and negative training

examples relative to its class. The count of

matched positive and negative training examples

allows to calculate rule’s Laplace ratio

(p+1)/(p+n+2), where p is the number of matching

positive training examples and n is the number of

matching negative training examples. The rules

with higher Laplace ratio are better.

For each training example a set of rules correct-

ly classifying this training example is generated by

incrementally adding to the left side of the rule

feature values from this training example. Fast

greedy search one-by-one adds the features in such

order that the resulting rule has the highest possible

Laplace ratio in every feature adding iteration. This

is contrary to the original C6.0 exhaustive search

strategy which tried all feature relaxation combina-

tions instead. The greedy approach eliminates ex-

ponential complexity of C6.0 with respect to

feature count and when tested, yielded as good re-

sults as the exhaustive search on SemEval data.

All generated rules (regardless of the class they

predict) are sorted by the highest Laplace ratio.

The resulting list of rules is a multi-class classifier

which can be considered consisting of multiple

binary classifiers (individual rules). For unseen

examples the class is assigned by the matching rule

with the highest Laplace ratio.

Fig. 2 shows some classification rules for pre-

dicting the sense column value in en.dm training

dataset from two features. The actual production

classifier for sense labeling uses more features

(listed in Section 2) and generates several thousand

rules.

4 Semantic Graph Parsing

We tried three approaches described below to im-

prove the graph parsing results above the baseline.

4.1 Peking and MateTools Graph Parser

The primary approach chosen for semantic graph

parsing is to implement a fully reversible transfor-

mation between the semantic graph and a tree rep-

resentation that encodes the extra information in

edge labels. It allows training a dependency parser

(Bohnet, 2010) on the labeled tree data, and using it

to parse text to structures that can be converted

back to a semantic graph.

For reversible graph to tree transformation we

have implemented the depth-first search transfor-

mation and the auxiliary label system used by last

year’s best-performing Peking system (Du et al,

2014). The auxiliary labels encode:

 A separator to indicate multiple original

edges encoded in this label;

 Ancestor-number indicating that in the

original graph, an edge with this label is

drawn from the dependent to the n-th an-

cestor instead of the direct parent of this

tree edge;

 A reverse-edge symbol to indicate edges

that have reversed direction compared to

the original graph.

For the multi-root sentences that appear in some of

the datasets, we choose the first root (according to

word order in sentence) as the main tree root, and

iteratively link all the other sentence fragments to

the nearest node in the accumulated tree according

to the number of words between them; in case of

ties preferring the leftmost node. When creating

the transformed tree, we also used special labels to

distinguish the secondary root nodes of other

fragments, so that the transformation is reversible

for graphs with multiple root nodes.

After parsing, a tree may contain labels that are

invalid according to the principles of this transfor-

mation – i.e., a reference to the grandparent of a

node that does not have one. In this case, we draw

an edge with the appropriate label to the closest

possible node.

In this approach the cyclic graph structures are

transformed to the different tree branch topologies

depending on the traversal order. Traversal order

thus affects the likelihood of the parser to correctly

reconstruct these cyclic graph structures. To im-

prove cyclic graph structure reconstruction we de-

veloped multiple parser variations for ensemble

voting based on the following traversal orders for

each node:

 Linear distance of linked words, starting

with the closest words and preferring the

left node in case of ties;

 Frequency of the edge labels, prioritizing

the most frequent labels;

In addition, we also applied the same transfor-

mations for sentences with reversed word order to

provide further variation. The resulting parsers

have comparable accuracy, but produce different

mistakes, making them useful for ensemble voting.

Simple ensemble voting improves graph parsing

accuracy over the baseline (Table 2).

 in domain out of domain

LP LR LF LP LR LF

en.dm 88.63 87.12 87.87 81.75 79.61 80.67

en.pas 91.46 90.01 90.73 87.55 85.71 86.62

en.psd 75.25 71.29 73.22 73.28 67.52 70.28

cs.psd 78.66 71.73 75.04 64.27 57.72 60.82

cz.pas 83.10 81.85 82.47 - - -

Table 2. Ensemble method labeled scores.

4.2 C6.0 Rule Based Graph Parser

We also applied our C6.0 rule-based classifier (de-

scribed in Section 3) for semantic graph parsing

through exact dependency phrase matching. Due to

low recall rate it provided only a tiny positive

boost to the final ensemble voting result (Table 4)

despite the high precision of the rules method (Ta-

ble 3). Here we considered only edges of length up

to 4 and C6.0 rules with Laplace ratio above 90%.

Due to low recall we signaled “abstain” vote for

the edges not covered by these rules.

 in domain out of domain

LP LR LF LP LR LF

en.dm 92.80 33.47 49.20 91.84 19.78 32.56

en.pas 92.94 35.53 51.40 92.58 28.07 43.08

en.psd 88.34 18.76 30.94 86.70 11.34 20.05

cs.psd 95.29 16.70 28.42 80.46 8.13 14.77

cz.pas 90.97 22.91 36.60 - - -

Table 3. Labeled scores for the rules method.

4.3 Other parsing approaches

Experiments with transition based parsers (Malt-

Parser/MaltOptimizer) showed approximately 2%

lower accuracy than Mate-tools on the same trans-

formed tree data. This is consistent with findings

made by others during the earlier SemEval-2014

Task-8. We chose not to use those parsers for the

final submission.

5 Final Results

We submitted two runs but report results only for

run-1, because run-2 was discovered to include a

corrupted Mate-tools dataset.

Our final semantic graph and semantic frames

parsing results are shown in Tables 4 and 5. Se-

mantic frames results measure overall sense label-

ing and graph parsing accuracy, which is the

novelty of this year SemEval task.

 in domain out of domain

LP LR LF LP LR LF

en.dm 88.57 87.24 87.90 81.69 79.72 80.69

en.pas 91.50 90.02 90.75 87.56 85.72 86.63

en.psd 75.25 71.52 73.34 73.23 67.71 70.37

cs.psd 78.66 71.84 75.10 64.29 57.83 60.89

cz.pas 83.12 81.84 82.47 - - -

Table 4. Labeled scores for the submitted result.

 in domain out of domain

FP FR FF FP FR FF

en.dm 58.45 57.79 58.12 42.62 41.17 41.88

en.psd 52.48 52.59 52.54 40.60 40.93 40.76

Table 5. Semantic frame scores for the submitted result.

Table 6 shows ranking of averaged SemEval scor-

ing metrics for the best runs of the systems partici-

pating in the closed task. Although we ranked third

for the semantic graph (labeled dependencies) met-

ric, our system ranked close second for semantic

frame accuracy, and first for labeled exact match

of the complete semantic dependency graphs. The-

se results suggest that the C6.0 rule accuracy for

sense labeling and for exact match semantic graph

parsing was able to compensate for slightly lower

overall graph parsing accuracy.

System LF LM PF SF FF

Peking 80.51 21.14 62.64 69.45 48.70

Lisbon 80.42 20.05 63.59 -- --

Riga 78.68 21.84 61.29 73.76 48.33

Minsk 78.18 15.04 56.40 79.40 47.32

Table 6. Ranking of scores averaged over all available

datasets for the best runs of the systems in the closed

track: labeled dependencies (LF), labeled exact match of

the complete semantic dependency graphs (LM), com-

plete predications (PF), sense identification (SF), se-

mantic-frames (FF).

6 Conclusions

Variations of Peking depth-first reversible graph-

to-tree conversion algorithm in combination with

state-of-the-art dependency parser is still a compet-

itive graph parsing approach.

C6.0 rule-based classifier provides competitive

sense labeling accuracy and some improvement

also for graph parsing accuracy.

An ensemble method with “abstain” voting op-

tion for joining outputs of various graph parsing

approaches boosts the results by ironing out the

weaknesses of individual parsers. Required compu-

tational resources are the main limitation here.

Acknowledgments

This work was supported by the Latvian National

research program SOPHIS under grant agreement

Nr.10-4/VPP-4/11. We thank Lauma Pretkalniņa

for the experiments with transition-based parsers.

References

Laura Banarescu, Claire Bonial, Shu Cai, Madalina

Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin

Knight, Philipp Koehn, Martha Palmer, and Nathan

Schneider. 2013. Abstract Meaning Representation

for Sembanking. In: Proc. Linguistic Annotation

Workshop (SIGANN-2013). Association for Compu-

tational Linguistics, pp. 178-186.

Guntis Barzdins, Didzis Gosko, Laura Rituma, and

Peteris Paikens. 2014. Using C5.0 and Exhaustive

Search for Boosting Frame-Semantic Parsing

Accuracy. In: Proceedings of the 9th Language

Resources and Evaluation Conference (LREC), pp.

4476-4482.

Bernd Bohnet. 2010. Very High Accuracy and Fast

Dependency Parsing is not a Contradiction. The 23rd

International Conference on Computational

Linguistics (COLING 2010), Association for

Computational Linguistics, pp. 89-97.

Charles J. Fillmore, Christopher R. Johnson, and

Miriam R.L. Petruck. 2003. Background to

FrameNet. International Journal of Lexicography,

16, pp. 235-250.

John R. Quinlan. 1993. C4.5: Programs for Machine

Learning. Morgan Kaufmann Publishers. 302 p.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,

Daniel Zeman, Dan Flickinger, Jan Hajic, Angelina

Ivanova, and Yi Zhang. 2014. SemEval 2014 Task

8: Broad-Coverage Semantic Dependency Parsing.

Proceedings of the 8th In-ternational Workshop on

Semantic Evaluation (SemEval-2014). Association

for Computational Linguistics, pp. 63-72.

Yantao Du, Fan Zhang, Weiwei Sun, and Xiaojun Wan.

2014. Peking: Profiling Syntactic Tree Parsing

Techniques for Se-mantic Graph Parsing.

Proceedings of the 8th In-ternational Workshop on

Semantic Evaluation (SemEval-2014). Association

for Computational Linguistics, pp. 459-464.

PUBLIKĀCIJA XII

Tezaurs.lv: the Largest Open Lexical Database for Latvian

Proceedings of the 10th International Conference on Language Resources and Evaluation

(LREC), 2016.

Tezaurs.lv: the Largest Open Lexical Database for Latvian

Andrejs Spektors, Ilze Auzina, Roberts Dargis, Normunds Gruzitis,
Peteris Paikens, Lauma Pretkalnina, Laura Rituma, Baiba Saulite

University of Latvia, Institute of Mathematics and Computer Science
Raina blvd 29, Riga, Latvia

name.surname@lumii.lv

Abstract
We describe an extensive and versatile lexical resource for Latvian, an under-resourced Indo-European language, which we call Tezaurs
(Latvian for ‘thesaurus’). It comprises a large explanatory dictionary of more than 250,000 entries that are derived from more than 280
external sources. The dictionary is enriched with phonetic, morphological, semantic and other annotations, as well as augmented by
various language processing tools allowing for the generation of inflectional forms and pronunciation, for on-the-fly selection of corpus
examples, for suggesting synonyms, etc. Tezaurs is available as a public and widely used web application for end-users, as an open data
set for the use in language technology (LT), and as an API – a set of web services for the integration into third-party applications. The
ultimate goal of Tezaurs is to be the central computational lexicon for Latvian, bringing together all Latvian words and frequently used
multi-word units and allowing for the integration of other LT resources and tools.
Keywords: Lexicon, Dictionary, Thesaurus, Morphology, Latvian, API

1 Introduction
Tezaurs,1 a machine-readable lexicon and an online dictio-
nary for Latvian, one of the 24 official EU languages, has
been around for a while. The initial human-oriented version
of this resource was made publicly available in 2009, com-
prising more than 125,000 entries that were consolidated
from around 40 sources: modern and historical dictionar-
ies, mostly available in a printed form. Since then, Tezaurs
has been updated once every three months, and so far it has
grown to more than 250,000 entries referring to more than
280 sources.
Tezaurs has attracted a large end-user base2 and an increas-
ing interest from third-party application developers, how-
ever, this work has not been published before.
The ultimate goal of Tezaurs is to be the central open com-
putational lexicon for Latvian, allowing for the integration
of other resources and tools for language technology (LT).
An analogy can be drawn to SALDO (Borin et al., 2013),
a lexical database for Swedish, the central component in
an integrated infrastructure for computational lexical re-
sources.
The idea, theoretically, is to bring together all the Lat-
vian words and frequent multi-word units, along with their
morpho-syntactic features and meaning, that have been
used in the written texts. A secondary aim is to create and
maintain a reliable source for language users, where they
can verify and learn word forms, senses, and the lexical
and grammatical valency.
For the language users, Tezaurs is already a highly pop-
ular online reference dictionary.3 In addition to the fact
that it is derived and consolidated from existing sources,
Tezaurs provides added value: inflectional tables, phonetic
transcriptions, synonym sets, and corpus examples. All the
data and the accompanying web services are open-source
and open-access.

1http://tezaurs.lv
2Around 195,000 unique visitors (78% returning) over the last

12 months; around 67,500 sessions per month.
3More than 4.5 million page (entry) views per year. (There are

about 2 million Latvian speakers worldwide.)

2 Wordlist
Tezaurs is already a useful LT resource even only as an
extensive authoritative vocabulary with (optionally) addi-
tional attributes for each word: the homonym index, the
part-of-speech (POS) category, the inflectional paradigm,
the phonetic transcription, domains of usage, stylistic
markers and usage restrictions (dialecticism, archaic, col-
loquial, slang, vulgarity, child speech, etc.), as well as ref-
erences to the sources.
The additional features allow for calling the Tezaurs web
services, e.g. to generate a table of possible word forms
based on the lemma and the inflectional paradigm, and
for selecting a sub-vocabulary depending on the particu-
lar use case and application. Tezaurs has already been
used as a source of general-purpose or customized wordlists
in various text analysis pipelines that tend to have con-
flicting requirements on inclusion or exclusion of e.g.
slang, archaisms or specific domains. To mention a few
examples, Tezaurs’ wordlists have been exploited in a
newswire information extraction system (Paikens, 2014), in
the transliteration and correction of OCR errors in histori-
cal texts (Pretkalnina et al., 2012), in an open-source spell
checker, in various word games like Scrabble, and in other
smaller research and commercially oriented applications.
Currently, a list of headwords along with their homonym
indices, part-of-speech categories, inflectional paradigms
and source references is available in the public repository
of Tezaurs open data.4 The remaining word attributes are
under revision.
The wordlist is available also a web service that returns
either the whole wordlist5 or a detailed set of the above
mentioned attributes for a particular word6 along with
homonyms, if any.

3 Morphological Information
The current end-user interface integrates a morphological
web service, an extension of an open-source morpholog-

4https://github.com/LUMII-AILab/Tezaurs
5http://api.tezaurs.lv/v1/words/
6http://api.tezaurs.lv/v1/words/doma

ical analyzer for Latvian (Paikens et al., 2013), as a way
of generating inflection tables for the lexical entries. Con-
sequently, it also supports the inclusion of the Tezaurs
wordlist (or a subset of it) as a lexicon for POS and mor-
phological tagging and for lemmatization.
Although the source dictionaries do not include the mor-
phological information of the headwords, or they include
only a partial information, we can semi-automatically de-
tect the POS category and the inflectional paradigm for
each word. In most cases this can be done automatically,
although quite a few cases have a chance for errors or un-
certainty until the particular word groups are manually re-
viewed.
The main challenge is due to the tradition in the Latvian
lexicography, which typically does not specify the POS cat-
egory (a consequence of a highly inflected language). As of
authors knowledge, the only Latvian dictionary that consis-
tently includes POS tags is the Dictionary of Modern Lat-
vian Language, MLVV.7 MLVV is only now being trans-
formed into a machine-readable form. When this is done, it
will cover about 20% of entries in Tezaurs. Thus, in cases
where the POS category cannot be unambiguously deter-
mined by the formal indications such as the word ending,
the detection of the POS category and the specific inflec-
tional paradigm of that category requires taking the mean-
ing of the word (homonym) into account.
Another challenge is the need for manual reviewing of
entries that include hints for non-standard inflectional
paradigms, particularly in case of archaic and dialectal
words whose inflection might not be aligned with the mod-
ern (standard) grammar, e.g. they can lack some word
forms. Note that Tezaurs includes more than 90,000 di-
alectal and archaic words.
The morphological features of each word form included in
the inflection table (returned by the web service) are only
partially included in the end-user interface. The service
provides the detailed morphological descriptions either in
a form of MULTEXT-East morphosyntactic tags (Erjavec,
2004) or as an ISOcat feature matrix (Windhouwer and
Wright, 2012) which is exemplified in Figure 1. The web
service can be integrated in third-party applications in com-
bination with the features provided by the Tezaurs wordlist
(particularly, the inflectional paradigm).

4 Phonetic Transcription
In most cases, there is a one to one mapping between
graphemes and phonemes in Latvian. Therefore the source
dictionaries typically do not include information about the
pronunciation of headwords, except in rare cases. Such
cases include, for instance, words with contrastive syllable
tones which can change the meaning of orthographically
identical words, e.g. zāle: [zãle] (level tone) ‘hall, large
room’ vs. [zâle] (broken tone) ‘grass, herb’. However, two
specific graphemes – ‘e’ pronounced as ‘e’ or ‘æ’, and ‘o’
pronounced as ‘uo< ’ (as in doma ‘thought’), ‘O’ or ‘O:’ – re-
quire an informed choice to pronounce the word correctly,

7Mūsdienu latviešu valodas vārdnı̄ca. University of Latvia,
Institute of Latvian Language, 2004–2014 [http://tezaurs.
lv/mlvv/]

and the pronunciation may vary across inflectional forms,
even with the same spelling.
Our recent research on Latvian speech processing has re-
sulted in a rule-based system that captures the pronunci-
ation patterns and generates a machine-readable phonetic
transcription for the given isolated word (Auzina et al.,
2014). The system is now accessible as a Tezaurs web ser-
vice8, and it is being integrated in the Tezaurs website and
the data sets (starting with the wordlist). In combination
with a text-to-speech service (Pinnis and Auzina, 2010),
this will make Tezaurs a more useful resource for language
learners.9 The transcription service, however, occasion-
ally makes mistakes in case of the ‘e’ and ‘o’ graphemes.
Again, after processing and integrating the MLVV data, this
issue will be fixed at least for frequently used words.
In future, the morphological service (Section 3) can be
extended by the transcription service to generate inflec-
tional tables that are enriched with the phonetic transcrip-
tions. Note that for verbs the pronunciation of the stem may
change across inflectional forms.

5 Dictionary Entries
Another primary facet of Tezaurs: it is an extensive ex-
planatory online dictionary. An entry generally represents
a partial morphological information of the headword, usage
restrictions (if any), the sense split, multi-word units and id-
ioms, and source references. Homonyms and homographs
(for more than 4,500 words) are given as separate entries
with different indices.
Entries are internally organized by word senses (around
325,000 senses in total; 1.3 senses per headword). Each
sense is explained by a full definition or a synonymous
cross-reference. Morphological and stylistic restrictions
can be specified also at the sense level. Senses often in-
clude embedded micro-entries of multi-word units along
with their usage restrictions and glosses (around 32,000
in total). Some entries embed also idiomatic micro-entries
(more than 11,000 in total) which are related to the whole
entry. Usage examples are generated on-the-fly from a bal-
anced corpus, where possible, as described in Section 7.
An example entry, as presented for the end-user, is given in
Figure 2.
There is a web service available10 that returns the dictionary
entries in the LMF format, the standard interchange format
for lexical resources (Hayashi et al., 2013).

6 Semantic Relations
Last but not least, Tezaurs is an extensive source for syn-
onyms and other related concepts. Currently, we have
put the focus on the synonymy relations which are auto-
matically extracted from the implicit cross-references in
the glosses which in turn follow traditional lexicographic
guidelines. An issue is that although the sense split is obvi-
ous for the outgoing synonym sets (synsets), the incoming

8http://api.tezaurs.lv/v1/transcriptions/
doma?encoding=ipa

9http://api.tezaurs.lv/v1/pronunciations/
doma

10http://api.tezaurs.lv/v1/entries/doma/1

[{

 "lemma" : "doma",

 "grammaticalGender" : "feminine",

 "declension" : "4",

 "partOfSpeech" : "noun",

 "wordForms" : [

 {"wordForm" : "doma", "case" : "nominativeCase", "grammaticalNumber" : "singular"},

 {"wordForm" : "domas", "case" : "genitiveCase", "grammaticalNumber" : "singular"},

 {"wordForm" : "domai", "case" : "dativeCase", "grammaticalNumber" : "singular"},

 {"wordForm" : "domu", "case" : "accusativeCase", "grammaticalNumber" : "singular"},

 {"wordForm" : "domā", "case" : "locativeCase", "grammaticalNumber" : "singular"},

 {"wordForm" : "doma", "case" : "vocativeCase", "grammaticalNumber" : "singular"},

 {"wordForm" : "domas", "case" : "nominativeCase", "grammaticalNumber" : "plural"},

 {"wordForm" : "domu", "case" : "genitiveCase", "grammaticalNumber" : "plural"},

 {"wordForm" : "domām", "case" : "dativeCase", "grammaticalNumber" : "plural"},

 {"wordForm" : "domas", "case" : "accusativeCase", "grammaticalNumber" : "plural"},

 {"wordForm" : "domās", "case" : "locativeCase", "grammaticalNumber" : "plural"},

 {"wordForm" : "domas", "case" : "vocativeCase", "grammaticalNumber" : "plural"}

]

}]

Figure 1: A slightly simplified representation of http://api.tezaurs.lv/v1/inflections/doma?
paradigm=7 (‘thought’).

Senses

Sub-senses

Multi-word
units

Glosses with synonymous
cross-references (links)

Idioms (collapsed)

Sources

Morphological description
and the inflection table

Corpus examples (collapsed)

Figure 2: A slightly simplified end-user presentation of the entry http://tezaurs.lv/#/sv/doma/1 (‘thought’).

sense is usually not specified in the glosses and, in general,
has to be decided heuristically. In the long term, this will
be a motivation to fix the ambiguous glosses manually.
The extracted synsets will be provided as open data along
with the Tezaurs wordlists. We also intend to provide a
corpus-driven list of semantically related words based on
the word2vec approach (Mikolov et al., 2013). This does
not necessarily reveal synonyms, but is interesting for hu-
man exploration and also as a feature for NLP tools.11

11A demo of the already acquired vectors for Latvian is avail-
able at http://api.tezaurs.lv/v1/embeddings/

7 Corpus Examples
Availability of usage examples helps in understanding the
meaning and customary usage of the words, however, ap-
propriate sample sentences have generally not been avail-
able. Many source dictionaries do not include them, and
for those that do, there are various problems that preclude
directly using this data in Tezaurs - copyright issues, out-
dated usage, unavailability of the primary sources.
We currently provide12 usage examples automatically re-
trieved from a balanced text corpus (Levane-Petrova,

12http://api.tezaurs.lv/v1/examples/doma

2012), which provides adequate examples of contemporary
usage for common words. The major issue that we en-
counter is the handling of homographs: morphological tag-
ging and automatic word sense disambiguation helps, but is
not perfect and needs manual review of such results.
While this provides useful results for common words, the
coverage is limited by the size of corpus and for rare words
usage examples are arguably even more important. This
is an active direction of ongoing work to integrate data
available from large unbalanced corpora of varying quality
and/or web searches.

8 Sources
The primary source that has been used to derive the Teza-
urs entries is the Dictionary of Standard Latvian Language,
LLVV.13 Almost 65,000 entries have been derived from
LLVV (more than 25% of all Tezaurs entries).
There are about 20 secondary sources, each of them used
in at least 1% of all entries (in total, around 149,000 en-
tries refer to the secondary sources). The rest is a long tail
of about 260 peripheral sources, each of them used in less
than 1% of all entries; about 62,000 entries in total. Among
them, less than 60 sources are used in 0.1–1.0% of all en-
tries (each); about 55,000 entries in total.

9 Conclusion and Future Tasks
Tezaurs has acquired an important role for the human
consumption (incl. professional translators, students, re-
searchers, terminologists). We have also used this data set
internally in the development of NLP tools, e.g. to extend
the coverage of the POS-tagger (Paikens et al., 2013), to
validate the correction of OCR errors (Pretkalnina et al.,
2012), etc. We are anticipating an interest from researchers
and application developers in the Tezaurs open machine-
readable data and web services. The database attracts more
and more interest from third-party application developers,
both open-source and commercial, e.g. to be integrated in
information retrieval systems, spellcheckers, style check-
ers, language games etc.
Future tasks include separate research problems that can be
addressed based on this work. To mention some of them:

• Integration with a verb valency lexicon for Lat-
vian (Nespore et al., 2012). The mapping of particular
word senses to verb valencies needs to be done manu-
ally, which is feasible for the frequently used verbs.

• Providing corpus-based typical collocation informa-
tion for each word.

• Further development of the semantic relations be-
tween word senses towards a WordNet-like semantic
network.

• Integration with Linked Open Data to allow for word-
sense grounding etc.

• Linking corpus usage examples to specific word
senses by using word embeddings or similar tech-
niques.

13Latviešu literārās valodas vārdnı̄ca. 1.–8. Riga: Zinātne,
1972–1996 [http://tezaurs.lv/llvv/]

Acknowledgements
This work has been partially supported by Latvian State
Research Programmes: Letonika (Project No. 3), NexIT
(Project No. 1) and SOPHIS (Project No. 2).

References
Auzina, I., Pinnis, M., and Dargis, R. (2014). Compari-

son of rule-based and statistical methods for grapheme
to phoneme modelling. In Human Language Technolo-
gies – The Baltic Perspective, volume 268 of Frontiers
in Artificial Intelligence and Applications, pages 57–60.
IOS Press.

Borin, L., Forsberg, M., and Lonngren, L. (2013).
SALDO: a touch of yin to WordNet’s yang. Language
Resources and Evaluation, 47(4):1191–1211.

Erjavec, T. (2004). MULTEXT-East Version 3: Multilin-
gual Morphosyntactic Specifications, Lexicons and Cor-
pora. In Proceedings of the 4th International Conference
on Language Resources and Evaluation (LREC), pages
1535–1538, Lisbon, Portugal.

Hayashi, Y., Monachini, M., Savas, B., Soria, C., and Cal-
zolari, N., (2013). LMF as a foundation for servicized
lexical resources, pages 201–213. Wiley.

Levane-Petrova, K. (2012). The balanced corpus of mod-
ern Latvian and the text selection criteria. Baltistica,
VIII Priedas:89–98.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. (2013). Distributed representations of words
and phrases and their compositionality. In Proceedings
of the 27th Annual Conference on Neural Information
Processing Systems (NIPS).

Nespore, G., Saulite, B., Gruzitis, N., and Garkaje, G.
(2012). Towards a Latvian valency lexicon. In Human
Language Technologies – The Baltic Perspective, volume
247 of Frontiers in Artificial Intelligence and Applica-
tions, pages 154–161. IOS Press.

Paikens, P., Rituma, L., and Pretkalnina, L. (2013). Mor-
phological analysis with limited resources: Latvian ex-
ample. In Proceedings of the 19th Nordic Conference
of Computational Linguistics (NODALIDA), pages 267–
277, Oslo, Norway.

Paikens, P. (2014). Latvian newswire information extrac-
tion system and entity knowledge base. In Human Lan-
guage Technologies – The Baltic Perspective, volume
268 of Frontiers in Artificial Intelligence and Applica-
tions, pages 119–125. IOS Press.

Pinnis, M. and Auzina, I. (2010). Latvian text-to-speech
synthesizer. In Human Language Technologies – The
Baltic Perspective, volume 219 of Frontiers in Artificial
Intelligence and Applications, pages 69–72. IOS Press.

Pretkalnina, L., Paikens, P., Gruzitis, N., Rituma, L., and
Spektors, A. (2012). Making historical Latvian texts
more intelligible to contemporary readers. In Proceed-
ings of the LREC Workshop on Adaptation of Language
Resources and Tools for Processing Cultural Heritage
Objects, Istanbul, Turkey.

Windhouwer, M. and Wright, S. E., (2012). Linking to
Linguistic Data Categories in ISOcat, pages 99–107.
Springer.

PUBLIKĀCIJA XIII

Deep Neural Learning Approaches for Latvian Morphological Tagging

Proceedings of Human Language Technologies – the Baltic Perspective, 2016.

Deep Neural Learning Approaches for

Latvian Morphological Tagging

Pēteris PAIKENS1

University of Latvia, Institute of Mathematics and Computer Science

Abstract. This paper describes ongoing research on improvements of

morphological analysis, disambiguation and POS tagging for the Latvian language.

Authors apply recent advances in sequential tagging with neural networks and word

embeddings calculated from unlabeled corpus to improve morphological tagging

accuracy. These approaches allow to reduce the fine-grained morphological tag

word error rate from 7.9% of earlier best systems to 6.2%, and coarse-grained POS

tag error rate from 3.6% to 2.2%.

Keywords. morphology, tagging, deep learning, neural networks

1. Introduction

Morphological analysis and tagging is a commonly required key stage in most natural

language processing systems, especially for morphologically rich languages such as

Latvian. Currently various morphological taggers are available for Latvian, but their

accuracy lags behind the larger languages such as English. While it’s reasonable to

expect lower accuracy to distinguish between the many tags possible in a

morphologically rich language, even for the coarse part of speech categories the best

previously reported accuracy scores for Latvian have an error rate twice as large as the

state of the art taggers for English – 5% vs 2.5% [1,2].

This is caused in part by the comparably much smaller amount of available

annotated training data. However, recent advances in deep neural network machine

learning have not only shown the potential to improve supervised learning tasks, but also

can learn powerful representations from unlabeled data, e.g. word embeddings [3]
highlighting one possibility to partly cross this accuracy gap.

In this paper we describe the ongoing experiments to apply neural network based

approaches to the task of fine-grained morphological tagging of Latvian text. In addition

to the linguistic resources used in earlier systems – annotated corpora, lexical resources

and output of a rule-based morphological analyzer – we now also augment the system

with additional word embedding data from a large unlabeled corpus [4]. In order to

evaluate these results, we compare the new system with the current state-of-art taggers

publicly available for Latvian.

1 peteris@ailab.lv

2. Problem Description

For the purposes of this task, we attempt to solve the problem of fine-grained

morphological tagging – obtaining a tag that specifies the morphosyntactic properties of

each word, while also evaluating the accuracy of the coarse-grained POS tagging.
We implement the following hypothetical improvements in order to evaluate their

effect on the accuracy of morphological analysis of Latvian:

 Word embedding data, calculated from a large untagged corpus;

 Various neural network approaches – convolutional neural networks,

bidirectional LSTM networks with a CRF layer which has shown excellent

results for English [2] and ‘wide and deep’ structures [5];

 Different representations of morphosyntactic information – including data from

paradigm-based morphological analyzer and replacing the classic approach of

distinct tags with separate sets of output neurons for each morphosyntactic

property, trained together.

3. Related Work and Evaluation Methodology

Current published work on Latvian morphological tagging includes two comparable

taggers. One of baseline systems is a conditional Markov model statistical tagger based

on Stanford CoreNLP system [6] as described in [7], and the other is based on averaged

perceptron as described in [1]. The source code of both these systems is available on

GitHub with a permissive license, and their accuracy is comparable – [1] reports 93.60%

vs 93.67% accuracy scores on the same set of test data.

There is also earlier work that has been used in Tilde proprietary systems [8], but

that is closed source and has been superseded by the newer systems, so it was not

replicated and evaluated in this paper.

Current most relevant related work for tagging methods, achieving best results when

evaluated on standard English datasets, is the research on LSTM-CRF combination [2].
There is an interesting recent implementation [9] that claims even better results, but at

the moment of writing this paper the full details are not yet available.

3.1. Training data

For training and evaluation, we use the current versions of data from the contemporary

balanced corpus of Latvian [10] and the Latvian treebank [11]. The designated split of

data contains 95 012 tokens as the training corpus and 7 293 tokens as development

corpus for tuning and testing the system, and for the work-in-progress evaluations and

comparisons of various strategies. A separate evaluation corpus of 7 020 tokens was set

aside and used at article submission time for the final evaluation and system comparison.

The data is split in these partitions on a per-document basis, as there is significant

intra-document overlap of rare vocabulary and proper nouns, which generally are harder

to analyze, and in sentence-based randomized splitting those words are shared between
training and evaluation data. Because of this effect, document-based split of training and

evaluation data would be a more accurate metric of how the taggers would generalize to

new documents. The sentence-based randomization produces an artificially elevated

metric, because the system has seen the majority of every document during training.

Due to this change in training and testing data, the numeric results are rather different

and not directly comparable with other papers using earlier versions of the same corpus,

so the earlier methods were also re-trained and re-evaluated on the current test set.

3.2. Baseline systems

The new results are compared with the two existing systems described above – Paikens-

2012 and Ņikiforovs-2015. We use the latest version of code as available on GitHub, but

re-train the models on the abovementioned set of training data to ensure a fair

comparison. This test set appears to more difficult in part due to the change from

sentence-based split to document-based split between training and evaluation data and

the numeric results are not directly comparable with earlier papers.

In addition, we also calculate a naïve baseline, obtaining by simply picking the most

frequently seen tag out of the tag candidates supplied by the morphological analyzer.

4. System Architecture

For the purposes of this paper, a large variety of neural network structures were tested

during system development, but limiting all of them to pure neural network architectures
with no post-processing. All experiments shared a common structure of input and output

(evaluation) data and were implemented in Tensorflow for GPU-based machine learning.

For input, we use the following features:

 a one-hot encoding of the word form according to the vocabulary of

training corpus with rare words treated as out of vocabulary;

 pre-calculated word embedding model [4];

 one-hot encodings of suffix letter n-grams up to length of 4;

 an n-hot vector showing which of the possible candidates for

morphosyntactic tags are considered valid for this word, taken from a

morphological analyzer based on lexicon and inflectional paradigms [12].

For output, we considered three different vector encodings – a one-hot vector of the
possible coarse-grained part of speech categories (13 options), a one-hot vector of the

fine-grained morphosyntactic tags (430 options), and an encoding representing each

possible morphological attribute-value pair separately (70 elements); functionally

equivalent to the fine-grained tag as each can be constructed from the other.

The currently best performing system (labeled “Full NN system” in evaluation) is a

combination of various elements with the structure illustrated in Figure 1. It starts with

fully connected neural network layers calculating a compressed representation of the

comparably wide (~5000 units each) word form and suffix encodings, followed by a

drop-out layer to facilitate generalization. This is concatenated together with the other

input vectors and fed to a convolution layer that combines features from neighboring

words to capture the close-range relations. Convolution window size of just 3 words was

found sufficient, as farther relations are captured by a bidirectional layer of long short-
term memory (LSTM) cells as initially proposed by [13], thus encoding both the forward

and backward context. The final classification is done by a logistic function on the output

of LSTM layer (after dropout) combined with the full, wide content of all input features

as suggested by [5]. A concatenation of all three output types is used in training to

minimize the cross-entropy between network output and expected values using Adam

optimizer algorithm [14] and applying standard regularization to network coefficients.

The network converges in 20 epochs in less than 2 hours on a NVidia TitanX GPU based

system.

Figure 1. Network structure.

We also evaluate a minimalistic neural network structure, consisting of the

abovementioned input layers, a single bidirectional LSTM layer with 200 cells, and the

logistic output layer on top of that.

A large variety of other network structures were explored in experiments, but not

exhaustively evaluated to verify and prove the effects of each separate factor.
Nonetheless, the following observations and experience may be useful to the reader.

The choice of output encoding was highly significant. Using only the one-hot

representation of tags (which seems to be the most commonly used approach in literature)

without the separate attribute-value encoding lost about 1 full percentage point of

accuracy.

Deeper network architectures beyond the proposed structure did not improve

accuracy. We performed numerous experiments to explore various depths (up to 12) and

layouts of recurrent and fully connected layers but these yielded the same or lower

accuracy despite a much higher learning time or, in some configurations, performed

significantly worse due to overfitting issues.

From the perspective of accuracy, the initial ReLU (rectified linear unit) layers after
word form and n-gram encoding could better be replaced with a layer over the whole

input vector set, however, they were necessary for performance reasons as the

combination of wide inputs (11000-25000 neurons per word depending on vocabulary

filtering) with larger sizes of further recurrent or convolutional layers result in operations

that are impractical to train even on current top-end GPUs due to memory limitations.

5. Evaluation and Error Analysis

We compare the developed system against the baseline systems described in section 3.2,

re-training them on the same set of updated corpora. The evaluation is shown in Table 1.

In addition, we also consider three limited options:

 A much simpler NN model, consisting of only a single LSTM layer with 200

units between the input and output layers described earlier;

 A system which omits the morphological analyzer information while otherwise

being identical to the full recommended system.

 A system trained without the attribute-value output, using only tag and POS.

Table 1. System evaluation

System Full tag accuracy POS accuracy

Naïve baseline 71.9% 88.6%

Paikens-2012 91.4% 95.1%

Ņikiforovs-2015 92.1% 96.4%

Simple NN model 93.2% 97.6%

No analyzer 92.8% 97.7%

No attribute encoding 92.7% 97.7%

Full NN system 93.8% 97.8%

When run on a dataset with per-sentence split of training and evaluation data, the
same dataset used in earlier experiments [1,7], the full NN system scores 95.4% for the

full tag accuracy and 98.3% for POS accuracy. However, we don’t consider those metrics

as appropriate for evaluation because of issues described in section 3.1.

After performing the evaluation, a classification of errors of the best performing

system on the test set was performed. The most popular errors (repeating 10 times or

more) are shown on Table 2 and the per-feature error rates are shown in Table 3. Words

that are out of vocabulary (with respect to training corpus) were found to have just

slightly lower accuracy than average – 91.1% for full tag and 96.4% for POS.

Table 2. Popular errors

Feature Predicted value Annotated value Number of cases

Number Singular Plural 87

Number Plural Singular 42

Case Genitive Accusative 35

Case Accusative Genitive 33

Gender Feminine Masculine 32

Gender Masculine Feminine 32

Case Genitive Nominative 25

Case Nominative Genitive 20

POS Residual Noun 17

POS Noun Abbreviation 16

Definiteness Definite Indefinite 14

POS Adjective Verb 12

POS Verb Adjective 11

POS Noun Residual 10

POS Residual Abbreviation 10

As in earlier systems, the most popular error is the confusion between singular

accusative and plural genitive, which are homoforms for many nouns and adjectives and

whose disambiguation requires determining the case of a long noun phrase. The tagging

errors for gender are in cases of contextual gender of pronouns and participles, where

determining the ‘correct’ gender requires deciding to which noun this word refers.

The part of speech errors, on the other hand, seem to be caused by problems in
corpus annotation. Names of foreign companies in newswire documents are variously

tagged as inflexive nouns, residuals (foreign words) or abbreviations, causing confusion

in such cases; and words which morphologically are derived from verbs but have

obtained an independent adjective meaning are also inconsistently tagged as either verbs

(participles) or adjectives, and thus show up as tagging errors.

Table 3. Feature error rates

Feature Error rate

(for POS having this feature)

Part of speech 2.2%

Case 4.2%

Number 3.1%

Definiteness 3.0%

Pronoun type 2.3%

Gender 1.8%

Verb mood 0.6%

Residual type 0.4%

6. Conclusions and future work

Current experiments already noticeably outperform the baseline systems, showing that
the approach is viable for improving morphosyntactic analysis of Latvian language,

obtaining a significant increase in accuracy – the 1.7 percentage point improvement in

tag accuracy amounts to a word error rate reduction from 7.9% to 6.2%, solving 20% of

earlier system errors.

As in many use cases the next step in text processing is syntactic parsing, the

dominant types of errors raise a peculiar Catch-22 situation – correct morphological

tagging in these situation requires knowing the correct syntactic interpretation, while

syntactic parsing requires morphological information and in these situations receiving

wrong tags would result also in wrong syntactic dependencies. This suggests that further

improvements in accuracy of morphological tagging might require doing syntactic

parsing at the same time, as done by e.g. SyntaxNet [15].

As future work, it would be interesting to explore possibilities for replacing the
morphological analyzer data with a character-level recurrent neural network, attempting

to learn from unlabeled corpus the information that is currently taken from inflectional

paradigms and lexical resources. Currently the system is usable without the

morphological analyzer data, but suffers a noticeable decrease in tag accuracy.

It is interesting to note the surprisingly large effect of output representation as

separate attributes instead of a list of tags. It may be worth exploring this effect in a more

focused manner and check if it also holds for other morphologically rich languages.

The code and data for the final experimental system is freely available in GitHub at

https://github.com/PeterisP/tf-morphotagger. Additional future work is expected in

packaging this tagger for public use. While the earlier systems were easily distributable

as Java and C# packages respectively, distributing Tensorflow systems to nontechnical
end-users in a convenient way is difficult.

7. Acknowledgements

This research has been supported by Latvian State Research Programme SOPHIS

(Project No. 2).

References

[1] Ņikiforovs, P. Latviešu valodas morfosintaktiskais marķētājs. Bachelor thesis, University of Latvia, 2015.

[2] Huang, Z., Xu, W., Yu, L. Bidirectional LSTM-CRF Models for Sequence Tagging. arXiv preprint

arXiv:1508.01991 [cs.CL], 2015.

[3] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. Distributed representations of words and

phrases and their compositionality. Proceedings of the 27th Annual Conference on Neural Information

Processing Systems (NIPS), 2013.

[4] Znotiņš A. Word Embeddings for Latvian Natural Language Processing Tools. In this volume, 2016.

[5] Cheng, H. T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., ... & Anil, R. Wide & Deep

Learning for Recommender Systems. arXiv preprint arXiv:1606.07792, 2016.

[6] Toutanova K., Klein D., Manning C.D. and Singer Y. Feature-Rich Part-of- Speech Tagging with a Cyclic

Dependency Network. Proceedings of HLT-NAACL (2003), 252–259.

[7] Paikens, P., Rituma, L., and Pretkalnina, L. Morphological analysis with limited resources: Latvian

example. Proceedings of the 19th Nordic Conference of Computational Linguistics (NODALIDA) (2013),

267– 277.

[8] Pinnis, M. and Goba, K. Maximum Entropy Model for Disambiguation of Rich Morphological Tags.

Systems and Frameworks for Computational Morphology, Communications in Computer and

Information Science, 1, Volume 100, The 2nd Workshop on Systems and Frameworks for Computational

Morphology (SFCM2011), Heidelberg, Springer (2011) 14–22.

[9] Choi, J.D. Dynamic Feature Induction: The Last Gist to the State-of-the-Art. Proceedings of the 54th

Annual Meeting of the Association for Computational Linguistics (NAACL'16) 2016.

[10] Levāne-Petrova K. Morfoloģiski marķēta valodas korpusa izmantošana valodas izpētē. "Vārds un tā

pētīšanas aspekti": Rakstu krājums 15(1), Liepāja, LiePA (2011) 187–193.

[11] Pretkalniņa L., Nešpore G., Levāne-Petrova K., and Saulīte B. Towards a Latvian Treebank. Actas del 3

Congreso Internacional de Lingüística de Corpus. Tecnologias de la Información y las Comunicaciones:

Presente y Futuro en el Análisis de Corpus, eds. Candel Mora M.Á., Carrió Pastor M., (2011) 119–127

[12] Paikens, P. Lexicon-based morphological analysis of Latvian language. Proceedings of 3rd Baltic

Conference on Human Language Technologies (HLT 2007), (2007) 235–240.

[13] Graves, A., Mohamed, A., Hinton, G. Speech Recognition with Deep Recurrent Neural Networks. arXiv

preprint arXiv:1303.5778 [cs.NE], 2013.

[14] Kingma, D., & Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

[15] Andor, D., Alberti, C., Weiss, D., Severyn, A., Presta, A., Ganchev, K., ... & Collins, M. Globally

normalized transition-based neural networks. arXiv preprint arXiv:1603.06042, 2016.

PUBLIKĀCIJA XIV

SUMMA at TAC knowledge base population task 2016

Proceedings of the Ninth Text Analysis Conference (TAC 2016), 2016.

SUMMA at TAC Knowledge Base Population Task 2016

Peteris Paikens∗ Guntis Barzdins∗ Afonso Mendes† Daniel Ferreira†
Samuel Broscheit# Mariana S. C. Almeida† Sebastião Miranda† David Nogueira†

Pedro Balage† André F. T. Martins#,†

∗University of Latvia / News agency LETA
†Priberam Labs, Alameda D. Afonso Henriques, 41, 2o, 1000-123 Lisboa, Portugal

#Instituto de Telecomunicações, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
{amm,mla,summa}@priberam.pt, Peteris.Paikens@leta.lv

1 Introduction

Our submission to the NIST TAC-KBP-20161 is an
initial attempt to apply our ongoing research on text
analysis within SUMMA project2 to TAC shared
tasks. The goal of SUMMA is to develop a scalable
and extensible media monitoring platform with an
automatic knowledge base construction and
cross-lingual capabilities, thus having a significant
overlap with TAC-KBP tasks. For this first TAC
participation, our system was only run for the
Entity Discovery and Linking (EDL) and Cold Start
Knowledge Base Population (KBP) tasks as a way
to evaluate our initial system. In the next edition of
TAC-KBP, we expect to participate with a more
mature system.

The paper is organized as follows. Section 2 and
Section 3 describe our contribution to the EDL and
to the Cold Start KBP tracks, respectively.
Experimental results are reported in Section 4, and
Section 5 concludes the paper.

2 Entity Discovery and Linking

2.1 Submissions
Two systems were submitted to the first evaluation
window of the EDL track. The first system,
summa1, is an initial implementation of a language
independent approach. The system is based on an
implementation of SVM-Rank (Herbrich et al.,
2000) trained with “universal” features, namely
features obtained from pre-trained cross-lingual
representations (Ferreira et al., 2016). Despite

1https://tac.nist.gov/2016/KBP/
2http://www.summa-project.eu/

having a cross-lingual framework, due to evaluation
window time constraints we submitted our results
only for English. The second submission, summa2,
is a ruled-based system for English, that evaluates
the impact of several steps into the linking quality.

Since summa2 outperformed summa1 in the first
evaluation window, in the second evaluation
window we focused on an improved version of
summa2, by adding a candidate ranking step based
on nearest-neighbours retrieval and a novel
cross-document coherence step. Ahead, this section
provides a description of our final submission –
summa3.

2.2 Entity Recognition and Labeling

Model and features. For detecting and labeling
mentions, we use the named entity recognizer
(NER) available within TurboParser3 (Martins et
al., 2013). This NER implements a linear sequential
model whose features are based on the Illinois
Entity Tagger (Ratinov and Roth, 2009).

Training data. As training set, we use the whole
TAC-KBP 2015 training data and roughly one third
of the Ontonotes. We use the Ontonotes’ entity
types corresponding to the TAC data (PER, ORG,
FAC, LOC and GPE) plus the NORP type. Later, at
the end of the linking phase, NORP mentions are
assigned a TAC entity type, by mapping the
DBpedia info of the selected entity to the five types
of the task or, for NIL mentions, by setting the
entity type to GPE.

We only focus on named entity mentions (NAM)

3http://www.cs.cmu.edu/˜ark/TurboParser/

mentions, therefore we did not develop a strategy for
detecting nominal (NOM) mentions.

Post-processing. As a post-processing step, we
force to detect mentions that are marked in the text
as being the authors of the articles, and we tag them
with the PRE type.

We also apply a string matching procedure to
capture mentions that were not recognized by the
sequential model. In particular, we extract mentions
with the exact same surface form as those
previously detected in the document. These new
mentions are then tagged with the types of the old
ones, according to a voting procedure that is biased
towards the PER label.

Later, at the end of the linking stage, some of the
entity types are also reassigned in order to promote
label agreement after both the co-reference and the
linking steps (see details in section 2.3).

2.3 Linking System
The mentions detected in Section 2.2 are linked to
database entries according to the strategy described
in Algorithm 1.

Algorithm 1 Linking System
1: Simple string match coreference
2: Candidate generation
3: Candidate rank: NN-search + prior statistics
4: Re-rank (top 8 candidates) accounting for coherence
5: NIL detection
6: Cross-document coherence

Coreference. First, we perform a high-precision
coreference step at the document level, by linking
all the mentions whose surface forms are substrings
of other mentions’ forms. For preserving the
agreement within the coreference clusters, some
entity types are then heuristically reassigned with a
voting strategy.

Candidates generation. For each mention, the
candidates are generated using the less ambiguous
mention (defined as the one with the largest span)
in the corresponding coreference cluster. Then, the
candidates generation itself is performed based on
the probability of an entity given a mention,
pwp wl conll TAC(e|m), computed from statistics of
the anchors in the following datasets: Wikipedia,

Wikilinks4, AIDA-CoNLL20035 and TAC-KBP
training data. In addition to that, and for mentions
with fewer candidates (less than 60), we also
consider as candidates the entities whose titles have
all the words of the query mention.

Candidates rank. Step-3 of Algorithm 1 starts by
ranking the candidates using a nearest-neighbours
(NN) search criterion. To this end, a query feature
vector qi is built for each mention mi from the body
of the source document, considering lemmas, heads
and root words. Then, a similarity search operation
is executed on a search index with the Wikipedia
entities indexed with their corresponding Wikipedia
body and Wikilinks text. Considering cik as the kth

nearest-neighbour candidate of mention mi, this
operation approximately computes ssim(cik,mi),
which is the similarity between qi and cik in the
feature space, using a ranking function based on
Okapi BM25.

Based on the search similarity ssim(cik,mi), we
compute a preliminary ranking score

s0(cik,mi) = ssim(cik,mi) · (1 + swp wl conll(cik)),
(1)

where swp wl conll(cik) is a score related with the
likelihood of candidate cik, computed as follows:

swp wl conll(cik) =k1 · log pWikipedia(cik)

+k2 · log pWikilinks(cik)

+k3 · log pCoNLL-03(cik),

where pWikipedia, pWikilinks and pCoNLL-03 are the
probabilities of candidate cik extracted from the
statistics in Wikipedia, Wikilinks and
AIDA-CoNLL2003 corpora, respectively; and k1,
k2 and k3 are tunable positive parameters.

Finally, based on score s0, step-3 of Algorithm 1
sorts the candidates of each mention using the
following ranking score:

4http://www.iesl.cs.umass.edu/data/
wiki-links

5https://www.mpi-inf.mpg.de/departments/
databases-and-information-systems/
research/yago-naga/aida/downloads/

s1(cik,mi) =s0(cik,mi)

+k4 · pTAC(cik|mi)

+k5 · pTAC(cik|mi) · s0(cik,mi)

+k6 · pwp wl conll(cik|mi)

+k7 · pwp wl conll(cik|mi) · s0(cik,mi),

where cik is the kth candidate of mention mi; k4,
k5, k6 and k7 are real valued positive parameters;
pTAC(cik|mi) is the conditional probability of
candidate cik given its mention mi, computed from
the statistics in the TAC-KBP training dataset; and
pwp wl conll(cik|mi) is the same conditional
probability computed from the concatenation of
Wikipedia, Wikilinks and AIDA-CoNLL2003
corpora.

Re-rank for coherence State-of-the-art methods
for entity linking use coherence models that favor
solutions in which the entities within a same
document are related with each other. The inference
of a fully collective model, however, is NP hard
(Kulkarni et al., 2009), since one must consider all
possible combination of mentions candidates. To
tackle this problem of complexity, prior work
typically relax the general collective formulation
either by using continuous formulations (Kulkarni
et al., 2009) or by identifying sets of mentions or
entities that are somehow involved in a semantic
relation (Hoffart et al., 2011; Ratinov et al., 2011;
Sil et al., 2015; Pan et al., 2015).

In step-4 of Algorithm 1, we focus on the top 8
candidates obtained in step-3 and re-rank them to
favor coherence. In contrast to previous work, our
coherence model resolves each mention
independently. To achieve coherence, the score of a
mention’s candidate is influenced by its coherence
with all the candidates of the other mentions in the
text:

s2(cik,mi) = s1(cik,mi) ·
(
1 +

∑
j 6=i,l

sc(cik, cjl)
)
,

(2)
where sc(sik, cjl) is a score that accounts for the
coherence between the candidate under evaluation
(sik) and the lth candidate of other mention mj

(sjl), and which is given by:

sc(ci,k, cj,l) =

{
1
pij

, cik, cjl share a link
1

2pij
, otherwise,

(3)

where pij is the position of candidate cjl according
to the previous ranking score s1(cjl,mj). This
coherence score was empirically designed to
consider both coherence (as the existence or
absence of a link) and information regarding
previous candidate order.

Our coherence model, in (2), is similar to the
model that was independently proposed by
Globerson et al. (2016).

NIL detection For documents with at least 10
mentions, we accomplish NIL detection by
verifying that a mention has no coherence
(measured as the existence or absence of links) with
any of the other mentions in the text. After that,
some of the NILs are linked to database entries,
depending on the links of other mentions in the
same coreference cluster. This NIL detection is
latter improved in the cross-document coherence
step.

Cross-document coherence Finally, step-6 of
Algorithm 1 builds on top of step-5 to promote a
new type of coherence that works at a corpora level.
The underlying idea of this step is to promote
coherence along the entities that co-occurred (with
the same mention+candidate pair) in different
documents.

Let, for each mention mi, D(mi) be the set of the
entities to which the other mentions in the document
(mj 6=i) link to (according to step-5). For each entity
eik to which the surface of mention mi links to in
the full corpus, let C(eik,mi) be the set of entities
that co-occur in documents where the surface form
of mi connects to eik. We define the cross-document
coherence score as

s3(eik,mi) = J(D(mi), C(eik,mi)), (4)

where J(.) is the Jaccard similarity:

J(A,B) = A ∪ B
A ∩ B

. (5)

Each mention mi is finally linked to the entity, eik∗,
with the highest cross-document coherence score, in
(4).

At the end of the linking system, we map the
DBpedia labels of the selected entities to the five
NER types of the task, and use them to reassign the
types of the corresponding NORP mentions.

2.4 Future Directions

Our EDL system consists of several steps that were
successfully engineered for the task, and whose
parameters can be hand tuned. In the future, we
expect to include machine learning in the EDL
system. This would allow us to automatically learn
the best configuration of parameters and to be able
to easily use and test more features.

In a complementary line of research, we plan to
use and develop new language-independent features
in order to reach a final system which, in line with
our summa1 submission, would be suitable to
process documents in different languages.

We also plan to improve our NER module, which
appears to be an important bottleneck of the final
EDL system.

3 Cold Start KBP

3.1 Motivation and system structure

Our motivation for the Cold Start KBP task was to
test a hypothesis that the slot filling problem can be
solved by general purpose semantic parsers without
specific training data or parser customization. Due
to our earlier experience with semantic parsing with
the Abstract Meaning Representation (Banarescu et
al., 2013) formalism, we apply the top performing
AMR parser that we developed for Semeval-2016
competition (Barzdins and Gosko, 2016) and
attempt to map its output to the slots specified in
Cold Start KB construction task as described in
Algorithm 2.

Algorithm 2 KBP slot filling
1: Preprocessing and sentence extraction
2: AMR parsing with a CAMR parser
3: Entity Detection and Linking system
4: Mapping the AMR concept instances to the EDL en-

tities
5: Mapping the AMR predicates to appropriate slot

fillers

3.2 Submissions
We submitted two runs obtained by an identical
process but differing only in the set of EDL data
used. The summa KB ENG 1 run was obtained by
using the EDL data from submission IBM1, which
we believed to be a state of art EDL result from
other competitors; and we built the
summa KB ENG 2 run from our own team summa2
EDL submission described in section 2.1.

3.3 AMR parsing
AMR parsing is done by a customized version of
the CAMR parser (Wang et al., 2015b; Wang et al.,
2015a) as used in our earlier experiments on the
Semeval challenges. No extra training data or
additional tuning of the AMR layer were used for
this task, as the goal was to evaluate potential
applications of general purpose semantic parsing.
AMR parsing was performed on a
sentence-by-sentence level, with no intra-document
coreference resolution. It was expected that
integrating the EDL system results would link these
references but this did not materialize (especially
for nominal mentions and pronouns), resulting in
significantly lowered accuracy. For future
submissions this would be a key issue that needs a
solution as rather frequently the required answer
was not reached because this lack of
intra-document linking of AMR nodes.

3.4 Entity mapping between AMR and EDL
data

As the AMR annotation results in a very different
set of entities than the EDL guidelines, the entity
mapping is not trivial.

AMR entities The initial set of KBP entities is
populated by the instances of AMR concept classes
listed in Table 1. In most cases these entities are
linked to a particular set of tokens, however that is
not always true - often AMR identifies entities that
have particular role in some predicate, but are not
explicitly mentioned in that part of the sentence and
would require a document level coreference
resolution between AMR graphs of the document
(like multi-sentence AMR construct).

Entity linking Linking of these entities with the
appropriate entities identified by the EDL systems

is currently done based on boundary overlap - an
exact boundary match is not required. In many
cases no appropriate entities are found, so we insert
new entities that were detected in semantic parsing
but were not present in EDL data. Entities from
EDL data that could not be linked to appropriate
nodes in the AMR graphs were not included in the
KBP submission under assumption, that they are
not relevant to the relations in this slot filling task;
therefore the recall measure of entities in the
official scoring is low and reflects only the entities
identified by the AMR parser.

AMR concept class TAC entity type
person PER
country GPE

state GPE
province GPE

city GPE
town GPE

organization ORG
religious-group ORG

company ORG
government-organization ORG

Table 1: AMR entity mapping

3.5 Predicate mapping between AMR and
KBP slots

The actual slot filling is performed by scanning
AMR data for a specific subset of AMR concepts
that ‘trigger’ one of the targeted slot filling sets. For
this set of concepts we developed a heuristic
transformation that scans surrounding nodes of the
semantic graph and maps the identified AMR links
to particular types of knowledge base slots. The
actual mappings are illustrated in Table 6.

As the AMR parser model is generic and not
adapted to the particular needs of TAC KBP slot
filling task, some slots have no corresponding
concepts in AMR data and thus cannot be filled by
this approach. However, the more popular types of
data such as employment and relationships have a
good match between these systems.

It should be noted that the resulting mappings
generally are 1-to-n, as the AMR predicates are
n-ary relations (similar to the annotation concept
used in the Event Nugget track) and can imply

multiple different binary relations because both
relationship directions need to be considered
separately (e.g. the symmetric relationships of
employee and employer) and also because the KBP
slot filling annotation marks otherwise identical
slots differently depending on the entity type.

The transformation process needs to consider
additional information from the whole predicate.
For example, a employment relationship between a
person and a company may result in filling either
the slot org:employees or members or
org:top members employees, and the distinction
can be made by considering the position label of
that AMR predicate. In a similar manner, the
predicate for personal relationships has a field
(ARG2 in the annotation) describing the type of
relation, so it can be transformed to the appropriate
choice of KBP slot.

Certain slots can be filled by considering
relations that in the AMR parse graph are syntactic
predicates as opposed to semantic ones - for
example, the residence slots often are described by
having a country or location entity as possessive
modifier of the person or company.

4 Results

4.1 Entity Discovery and Linking

NER evaluation. This section evaluates the
impact of the NER post-processing step into the
quality of the CRF model, using the TAC-KBP
2015 test set. Table 2 shows two official metrics for
NER6, computed for the output of the base NER
(using a CRF model), after the coreference step of
Section 2.3, and at the end of the linking system.

The mentions that were bootstrapped in the
post-processing of Section 2.2 lead to a
considerable increase (5.4%) of the NER F1 score.
This improvement was mainly (but not only) due to
a strong increase in the recall. NERC measure
suffered a considerable boost due to a better
detection of mentions and a suitable reassignment
of types based on the coreference clusters. This
measure is also improved at the end of the system,
when the NORP tags are reassigned based on the
linking results. Overall, we got a positive impact of

6see (Ji et al., 2015) for details.

more than 5% in both NER measures, validating
our system design options.

NER NERC
CRF model 73.8% 67.9%

+expansion+coreference 79.2% 72.2%
+NORP reassignment 79.2% 73.9%

Table 2: Impact, of NER post-processing steps, in both
NER and NERC F1 scores, using EN and NAM filters.

Step ablation. To evaluate the impact of each
step of Algorithm 1 in the final linking system,
Table 3 reports various metrics (with EN and NAM
filters) at the end of steps 3 4 5 and 6. Each system
step leads to cumulative improvements in the global
measure NERLC, which accounts for mentions
detection, type classification and linking. We also
verify that, for all the measures, the final stage of
the algorithm is the one with the highest F1 value.
For this outcome, we point out the final stage of
cross-document coherence, which has a consistent
positive effect into all of the metrics.

Steps 4 and 5 do not always lead to
improvements, by themselves. In spite of that, we
have experimentally verified that these steps have a
final positive impact, even when a local evaluation
may indicate them to be disadvantageous. One
situation where it is easy to understand this effect,
is the decrease of the NENC F1 score after NIL
detection. This decrease is mainly due to an
increase in the number of the NIL mentions
(lowering the precision), some of which are further
relinked to the correct entity when accounting for
cross-document coherence.

Regarding coreference evaluation, measure
CEAFm suffers a considerable improvement in
step-5, when, after detecting NIL mentions, some
of them are resolved to entities based on the
co-reference clusters. Finally, our cross-document
step is also useful for coreference resolution.

System evaluation. Table 4 evaluates our system
performance on TAC2016 test data, using the
EN-NAM filter. Regarding mention detection,
whose quality is reflected in metrics NER and
NERC, we only scored 8th out of 11 teams.
Despite of starting with this large disadvantage, our
scores increase considerably (improving three

positions in the classification rank) when we
account for the linking quality (see metrics
NERLC, KBIDs and CEAFm). This fact indicates
that we have a high performing linking system. To
validate this intuition, we run our linking step on
top of the mentions detected by the USTC system
(Liu et al., 2016). USTC team achieved the highest
scores in most of the metrics of the shared task,
including those regarding mention detection. From
this comparison (whose results are in the last
columns of Table 4), we conclude that our linking
system is on a pair with the best systems in the
competition.

4.2 Cold Start KBP

The official results of KBP evaluation are shown on
Table 5, ranking at 13th place out of 19 teams. The
low recall rate is rather disappointing, however, the
error analysis indicates that this is largely caused by
faults in the linking process between AMR graph
nodes and EDL entities as discussed in 3.4. On the
other hand, the system achieves good precision, so
with appropriate fixes it could be competitive in the
next iteration of TAC KBP.

5 Conclusions

This paper described the contribution of SUMMA
submissions to the NIST TAC-KBP 2016. In this
first year, we competed in the EDL and cold start
KBP tracks.

Regarding the EDL track, our main submission
was a rule-based system, whose steps were
empirically validated. As main contribution to the
track, we point out our coherence step that treats
each mention independently and the impact of an
original corpora-level coherence score, which
favours agreement between bags-of-entities along a
corpus. We also attempted to submit a language
independent system to the EDL track, but we did
not have time for making a final competitive
submission.

Regarding cold start KBP, we establish a proof of
concept that the KBP slot filling task may be
approached by using general purpose semantic
parsing models. While current results indicate a
number of technical challenges in transformations
between these very different semantic models, this

Basic Intra-Doc. NILL Cross-Doc.
Rank Coherence Detect. Coherence

(step-3) (step-4) (step-5) (step-6)
NERLC 61.1% 62.3% 62.4% 64.7%
NELC 61.6% 61.2% 62.3% 63.9%
NENC 59.8% 65.1% 64.7% 66.7%
KBIDs 68.4% 68.1% 70.4% 70.8%
CEAFm 58.2% 57.3% 69.7% 71.7%

Table 3: Evaluation, on the TAC-KBP 2015 test data, of our system at the end of steps 3, 4, 5 and 6. Each row shows
F1 scores for an official measure (Ji et al., 2015), computed using EN and MAN filters.

Summa3 rank USTC Summa3
(2016) (USTC

mentions)
NER 83.1% 8th 90.6% 90.6%
NERC 76.1% 8th 87.8% 87.8%
NERLC 66.4% 5th 79.2% 79.8%
KBIDs 70.8% 6th 81.1% 81.0%
CEAFm 74.4% 5th 83.2% 83.3%

Table 4: EDL evaluation on TAC-KBP 2016 test data, us-
ing EN-NAM filter. First column: our final system; sec-
ond column: position of our system in the competition;
third column: USTC system; last column: our linking
system using USTC mentions.

Prec Recall F1
LDC MAX 0 hop 45.0% 2.9% 5.5%
LDC MAX ALL 40.0% 2.2% 4.1%

Table 5: Accuracy of the resulting knowledge base
SUMMA2 submission.

approach shows potential and we expect to provide
a significantly improved implementation in the next
issue of TAC KBP.

Acknowledgments

This work was mainly supported by the SUMMA
project – this project has received funding from the
European Union’s Horizon 2020 research and
innovation programme under grant agreement No
688139. This work was also supported by Fundação
para a Ciência e Tecnologia (FCT) through
contracts UID/EEA/50008/2013, GoLocal project
(grant CMUPERI/TIC/0046/2014) and the Latvian
state research programme SOPHIS (Project No. 2).

References
L. Banarescu, C. Bonial, S. Cai, M. Georgescu, K. Grif-
fitt, U. Hermjakob, K. Knight, P. Koehn, M. Palmer, and
N. Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of Linguistic Annotation
Workshop.
G. Barzdins and D. Gosko. 2016. Riga at semeval-2016
task 8: Impact of smatch extensions and character-level
neural translation on amr parsing accuracy. In Proceed-
ings of the 10th International Workshop on Semantic
Evaluation (SemEval).
Daniel Ferreira, André Martins, and Mariana S. C.
Almeida. 2016. Jointly learning to embed and predict
with multiple languages. In Annual Meeting of the Asso-
ciation for Computational Linguistics - ACL, August.
Amir Globerson, Nevena Lazic, Soumen Chakrabarti,
Amarnag Subramanya, Michael Ringgaard, and Fer-
nando Pereira. 2016. Collective entity resolution with
multi-focal attention.
Ralf Herbrich, Thore Graepel, and Klaus Obermayer.
2000. Large margin rank boundaries for ordinal regres-
sion.
Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino,
Hagen Fürstenau, Manfred Pinkal, Marc Spaniol, Bilyana
Taneva, Stefan Thater, and Gerhard Weikum. 2011. Ro-
bust disambiguation of named entities in text. In Pro-
ceedings of the Conference on Empirical Methods in Nat-
ural Language Processing – EMNLP, pages 782–792.
Heng Ji, Joel Nothman, Ben Hachey, and Radu Florian.
2015. Overview of tac-kbp2015 tri-lingual entity discov-
ery and linking. In Text Analysis Conference.
Sayali Kulkarni, Amit Singh, Ganesh Ramakrishnan, and
Soumen Chakrabarti. 2009. Collective annotation of
wikipedia entities in web text. In Proceedings of the 15th

ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 457–466.
Dan Liu, Wei Lin, Shiliang Zhang, Si Wei, and Hui Jiang.
2016. The USTC NELSLIP Systems for Trilingual En-
tity Detection and Linking Tasks at TAC KBP 2016. In
Proc. Text Analysis Conference (TAC2016).
André F. T Martins, Miguel B. Almeida, and Noah A.
Smith. 2013. Turning on the turbo: Fast third-order
non-projective turbo parsers. In Proc. of the Annual
Meeting of the Association for Computational Linguis-
tics.
Xiaoman Pan, Taylor Cassidy, Ulf Hermjakob, Heng Ji,
and Kevin Knight. 2015. Unsupervised entity linking
with abstract meaning representation. In Proceedings
of the 2015 Conference of the North American Chapter
of the Association for Computational Linguistics–Human
Language Technologies.
Lev Ratinov and Dan Roth. 2009. Design challenges
and misconceptions in named entity recognition. In Pro-
ceedings of the Thirteenth Conference on Computational
Natural Language Learning - CoNLL, pages 147–155.
Lev Ratinov, Dan Roth, Doug Downey, and Mike Ander-
son. 2011. Local and global algorithms for disambigua-
tion to wikipedia. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguis-
tics: Human Language Technologies-Volume 1, pages
1375–1384.
Avirup Sil, Georgiana Dinu, and Radu Florian. 2015.
The ibm systems for trilingual entity discovery and link-
ing at tac 2015. In Proc. Text Analysis Conference
(TAC2015).
Chuan Wang, Nianwen Xue, and Sameer Pradhan.
2015a. Boosting transition-based amr parsing with re-
fined actions and auxiliary analyzers. In Proceedings of
the 53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint Con-
ference on Natural Language Processing (Short Papers),
pages 857–862.
Chuan Wang, Nianwen Xue, Sameer Pradhan, and
Sameer Pradhan. 2015b. A transition-based algorithm
for amr parsing. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies, pages 366–375.

AMR concept TAC KBP slot
have-org-role-91 per:title
have-org-role-91 per:employee or member of
have-org-role-91 org:employees or members
have-org-role-91 gpe:employees or members
have-org-role-91 per:top member employee of
have-org-role-91 org:top members employees

leader per:top member employee of
leader org:top members employees
mod per:countries of residence
mod gpe:residents of country
mod per:cities of residence
mod gpe:residents of city
mod per:statesorprovinces of residence
mod gpe:residents of stateorprovince
mod org:countries of headquarters
mod gpe:headquarters in country
mod org:cities of headquarters
mod gpe:headquarters in city
mod org:statesorprovinces of headquarters
mod gpe:headquarters in stateorprovince

have-rel-role-91 per:spouse
have-rel-role-91 per:siblings
have-rel-role-91 per:children
have-rel-role-91 per:parents
have-rel-role-91 per:other family

study-01 per:schools attended
study-01 org:students

shareholder per:holds shares in
shareholder org:holds shares in
shareholder org:shareholders

die-01 per:date of death
die-01 per:city of death
die-01 per:country of death
die-01 per:stateorprovince of death

Table 6: AMR predicate mapping

