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Introduction 
The present thesis concerns an azimuthal body force driven swirling flow and its 

stability. Controllable and stable rotating flows are needed in crystal growth 
technologies, where the motion of melt significantly influences the quality of grown 
crystals. 

A rotating magnetic field induces a swirling flow of melt that usually has the 
conductivity of liquid metals. This artificial flow has a number of advantages in 
comparison to the natural buoyant one. However, there are too few possibilities to 
control and, thus, optimize the base flow. Besides, the swirling flow is unstable in 
most possible practical applications. My investigations were focused on two 
superimposed control tools: the steady axial magnetic field and imposed rotation of 
crucible. The investigations showed that both actions have a common promising 
feature to control the magnitude of induced flow and to stabilize it. A specific goal of 
the steady magnetic field application is a possibility to manipulate the pattern of 
secondary vortices of the meridional flow, which actually is of the most practical 
importance. The imposed rotation, in its turn, allows to change the direction of 
meridional recirculation, that otherwise is always fixed. The effect of the imposed 
rotation is similar to that of a steady field. So, essentially the same effect can be 
achieved by an energetically much lower cost. 

The boundary layers of two types appear in magnetohydrodynamic and rotating 
flows. Horizontal rotating layers and magnetohydrodynamic Hartmann layers usually 
control the core flow. Much wider boundary layers appear near side wall. All these 
layers are subject of famous problems. The topic of the thesis introduces a close 
connection to these problems. At the same time, certain specific circumstances, as a 
rule, do not allow a straightforward use of the existing results. The main original 
theoretical results include the order of magnitude estimates illustrating the force 
balance in the rotating horizontal magnetohydrodynamic layer, an approximate 
analytical solution of a curved magnetohydrodynamic side layer, an approximate 
analytical solution of an almost rigidly rotating body force driven vertical layer, a 
simple and effective method to predict and optimize the shape of solidification 
interface, etc. I used different methods including scaling analysis, analytical solutions 
of indicative simplified cases, numerical axially symmetric simulation and 
experiment. Analogies to the related problems were extensively used. 

The thesis consists of five chapters as independent contributions with their own 
abstracts, introducing and concluding sections. Since the models and governing 
equations are the same or similar for different flows considered, a certain overlapping 
occurs. The first chapter gives a review of a rotating field alone driven flow and 
related magnetohydrodynamic and rotating boundary layers. Chapter II deals with the 
stability of magnetic body force driven flow in a cylindrical vessel of variable length. 
A flow due to superimposed rotating and steady magnetic field is considered in the 
third chapter. The fourth chapter deals with a magnetic body force driven swirling 
flow in a rotating cylinder. Chapter V proceeds with the heat transfer as well as 
solidification interface controlled by the above artificial flows. 
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Chapter I 

Magnetically driven swirling flow and related 
magnetohydrodynamic and rotating boundary layers 

The current chapter presents a review of an azimuthal body force driven flow due to a rotating magnetic 
field in a cylinder. Besides, it deals with magnetohydrodynamic and rotating boundary layers related to 
those in such flow under superimposed steady axial magnetic field or rotation of the vessel. These 
boundary layers control the base flow and its stability. The present study shows that both superimposed 
actions may improve characteristics of the rotating magnetic field driven flow applied in crystal growth. 

1. Introduction 

The motion of melt plays an important role crucially affecting the quality of grown 
crystals. On the other hand, the flow conditions are not always certain and may turn 
out even contradictory. For example, a strong stirring reduces the large scale non-
uniformity of dopant distribution. At the same time it is accompanied by an oscillating 
or even turbulent flow that increases microsegregation. So, more possibilities to 
control either the magnitude, pattern or stability of flow provide more possibilities to 
optimize each particular growth process. The current paper deals with a review of a 
body force driven axially symmetric swirling flow that is known to improve growth 
conditions in the melt. Besides, I made a review of boundary layer problems related to 
the previous one under the influence of superimposed control tools such as the steady 
axial magnetic field and imposed rotation of crucible. 

A swirling flow of conducting liquid can be enforced by the azimuthal body force 
due to a magnetic field rotating in a plane perpendicular to the axis of symmetry. This 
artificial flow has several advantages if compared to the natural buoyant one (Priede 
1993): 

(i) elimination of asymmetry; 
(ii) reduction of radial segregation; 
(iii) control of heat transfer, hence, the solidification interface shape; 
(iv) stabilization of motion. 

To introduce the basics of problem and main previous results, I briefly reviewed a 
rotating magnetic field (RMF) driven flow in §2 (Other reviews by Gelfgat & Priede 
1995, Davidson 1992). 

Under the crystal growth conditions the RMF alone driven flow, however, has a 
fixed structure with too few possibilities for optimization. Different imposed actions 
such as the steady axial magnetic field (Grants, Priede & Gelfgat 1996) or the rotation 
of crucible (Priede 1993,1994) may significantly widen these possibilities. Notice that 
the boundary layers that occur surrounding the inviscid core greatly determine both 
the base flow and its stability. Similar layers appear in other famous and well-studied 
problems. I reviewed these boundary layers with an eye to the original problem. 

In case of an imposed strong steady magnetic field (SMF) the boundary layers of 
two types appear near the normal and tangential to the field walls. These boundary 
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layers are subject of classic magnetohydrodynamics (MHD). I examined them in §3. 
Several reviews of MHD flows under strong field are given by, e.g., Hunt & Shercliff 
(1971), Sterl (1990), Walker (1985). 

Contrary to the SMF inducing additional body force, the imposed rotation alters the 
boundary conditions for angular velocity. The swirling flow in a layer between the 
crucible bottom and liquid bulk essentially controls the flow in the whole volume. 
This layer is described by the so-called one disk problem on the liquid bulk rotating 
above the differently rotating disk (Priede 1993, 1994). I reviewed this problem in §4. 
Other reviews by Zandbergen & Dijkstra (1987) and Lingwood (1997) were 
extensively used. Similarly to the flow in a strong SMF a much thicker boundary layer 
appears at the side wall under almost rigid rotation. It is a passive layer with no 
influence on the core. However, the thickness of this layer may become comparable to 
the crucible radius, so influencing all the flow. 

The comparison of magnetohydrodynamic and rotating flow boundary layers is 
given in conclusions (§5) as well as the enumeration of main remaining questions, 
which make a body of the tasks for the current thesis paper. 

2. Review on flow driven by a rotating magnetic field 

Ал indicative example of rotating magnetic field ( R M F ) is the electric motor. It 
induces a magnetic field rotating in the plane perpendicular to the axis of symmetry. 
Similarly to the rotation of rotor, the swirling flow of conducting liquid is driven by 
R M F . The stirring due to R M F can be used, e.g., in the metallurgical applications 
(Davidson & Hunt 1987) and semiconductor crystal growth (see, review by Gelfgat 
and Priede 1995). Besides a certain practical aspect, the R M F driven flow turned out 
to be an attractive theoretical problem. 

2.1 Body force 

Consider magnetic field vector Bo rotating around the axis of cylindrical vessel 
with a constant angular velocity coo. The alternating magnetic field induces a purely 
axial alternating e.m.f. B0xG>0xr (Gelfgat, Priede & Sorkin 1991, Priede 1993). Since 
the fluid is electrically conducting, an oscillating current jo appears. Interacting with 
R M F itself, it gives rise to an oscillating body force joxBo with a frequency 2coo and 
averaged value in the direction of R M F rotation. 

2.2 Basic model and governing equations 

The basic magnetic body force model considers the low frequency and induction of 
R M F . If G>O/?O2|J.O"<3 (u is magnetic permeability and a is conductivity of liquid; RQ is 
vessel's radius), then the skin-effect can be ignored. In an infinitely long cylinder (or 
one truncated by perfectly conducting endwalls) the time-averaged azimuthal body 
force is Fe°°(r)=0.5Bo2o40or (Sneyd 1971, Davidson 1992). The average force Fe(/%z) 
acting on a truncated cylinder is determined by the electric boundary conditions only 
(Priede 1993). Trombetta et al. (1997) obtained the expression: 

F 0 = B 0 aco 0 

r * Roller/RQ)  

2 K=L(XK

2-1)/,(¾.*) 

sinh 
z + 0 . 5 / 

0 
• sinh 

0 . 5 / 

*0 

sinh(A.£ / / R Q ) 
(1) 

6 



for insulating end-walls. Axial coordinate z is measured from the mid-height of a 
cylinder of length L and radius Ro; Iv(x) is the Bessel function of the first kind and Xk 
are the roots of lv'(x)=0. 

Small induction of RMF implies negligible induced angular velocity of liquid if 
compared to that of the magnetic field rotation (Q«cc>o)- On the one hand, it allows to 
ignore the oscillating part of body force since the amplitude of induced velocity 
oscillations scales as Q7Q~Q/u)o (Davidson & Hunt 1987). On the other hand, the 
induced swirl does not influence the RMF generated body force, if Priede 
(1993) showed that the condition is satisfied if R e ( 0 » H a e

4 , where Re(0=(cooZ,2/v) is 
the Reynolds number based on the field rotation frequency but Ha* =(o-p/v)1/2BoZ is 
Hartmann number of RMF; v is viscosity and p is density of liquid. The characteristic 
value of Re f f l under usual crystal growth conditions is more than 10 6, but Hae does not 
exceed 0( 10). 

Let us consider a laminar, incompressible axially symmetric flow. Researchers 
(e.g., Langlois 1987) traditionally use the vorticity-stream function formulation of 
Navier-Stokes equation. I believe that a modified form analogous to von Kārmān 
similarity variables is more convenient. Let us introduce the functions Q, H and W as 
rQ=ve, 0.5r2H=i|/, rW=w, where w is vorticity w=(Vxv, ее), and \\i is stream function 
(v r , v z)=l/r(-diļ//dz, dyldr). Hence, wz=H+0.5rdUJdr, \r=-0.5rdWdz. Then, the 
dimensionless* Navier-Stokes equation and the definition of both W and H yield the 
following set: 

dQ I T 5 Q rfdHdQ dH dti) dH л 5 2 Q 3 dQ d2Q „ л ч п л  — + Н — + - Q = —— + + — r - + Te/(r,z) (2) 
dt dz 2\дг dz dz drJ dz Qr

2 r dr fa2 

5W l T 5W rfdHdW dH dQ2 d 2W 3 5W a 2 W n ļ + H—— + - — — — — - — — = — r - + — — + — — (.J) 
dt dz 2\dr dz dz dr J dz fy1 r dr g z

2 

3 ! H + 2 5 H + ^ + 2 w - 0 (4) 
dr2 r dr dz2 

Magnetic forcing is described by a source term ТеДг^), where the magnetic Taylor 
number Te=(QfZ 2/v) 2 is based on angular velocity of forcing Qf=(0.5aa>o/p)1/2Bo 
(Davidson 1992), but the force distribution is described by Jlr^)-Fo(r^)/'Fe°°(r). 
Notice, that the present definition of Qf differs from the referred one by a constant 
factor. 

Ignoring the radial dependence of the functions above in neighborhood of the axis, 
we receive well-known similarity equations supplemented by a forcing term: 

— + H Q ' - H ' Q = Q"+T , (5) 
dt 

— + HH"' + 2(f i 2 ) ' = H<4>, (6) 
dt 

The dimensionless parameter T further referred as the Taylor number of forcing 
can be associated with a certain effective value of source ТеДг^) according to the 

+ Vessel's height L and diffusion time v=L2/v has been used as characteristic values. 
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conditions below. Both Те and T coincide in case when liquid layer bounds with very 
thick or perfectly conducting end-walls. 

2.3 Force balance in a truncated cylinder and core angular velocity 

Consider an inertia dominated rotating flow due to RMF. Any axial non-uniformity 
of the angular velocity is accompanied by a centrifugal force drop that evokes a 
meridional flow smoothing angular velocity profile. Therefore, the flow tends to the 
solid body rotation (e.g., Davidson 1992, Priede 1993 experimentally confirmed by 
Short & Davidson 1994). The angular velocity falls to zero at the end-walls giving rise 
to radial inflow there. It passes through the liquid bulk producing the Coriolis force, 
which balances the magnetic forcing in the steady state. An inviscid core is 
surrounded by the boundary layers with a relative thickness proportional to the square 
root of Ekman number E=V/(QQL ), where Qo is core angular velocity (e.g., Greenspan 
1968). Due to continuity returning meridional flow and, hence, Coriolis force in these 
layers is much larger than that in the core. Consequently, the magnetic forcing can be 
neglected in the boundary layer that results in a classic problem on fluid rotating 
above a rigid surface first solved by Bodewadt (1940). 

Since the core rotates as a solid body, the core radial flow should adjust to the 
driving force distribution to provide proper balancing Coriolis force. On the other 
hand, the boundary layer flow near end-walls is determined only by the constant core 
angular velocity. Thus, the main flow characteristics are determined by the single 
parameter. Consequently, the source term Te/(/*,z) can be often substituted by a 
constant "effective value" T=TeMMo, where MIMQ is ratio of an actual driving torque 
to the one acting on a corresponding piece of infinite cylinder (cf, Davidson 1992, 
Ungarish 1997). Notice that T can be expressed by the total magnetic torque M as 
J=(2ML4)/(mRo2v2), where m is mass of liquid. 

Applying a selfsimilar approach and Bodewadt's solution, Davidson (1992) 
obtained the core angular velocity QQ=V/L 0.52T . Grants (1997) numerically 
investigated the flow in an elongated vessel depending on the aspect ratio 
l/8<R=Ro/L<l and he obtained the characteristic angular velocity Q 0 =v/Z 2 0.52T 2 / 3 /? I / 2 

in this range. 

2.4 Unsteady flow, stability and turbulence 

A strong coupling between the azimuthal swirl and secondary recirculation 
provides an environment for inertial waves. Inviscid oscillations in uniformly rotating 
flow has been investigated by Davidson (1989). It was found here that the 
characteristic oscillation period is T ~ Q O _ i or x~i?o/voln(vo/(Qo^o)) for small and large 
(voT»i?o) amplitude oscillations, respectively (vo is characteristic velocity of poloidal 
flow). A transient flow during spin-up taking into account viscous boundary layers has 
been recently investigated by Ungarish (1997). He found out that 99% of steady-state 
swirl is achieved at time /«1.7(Qov) - I / 2 . 

The analogy to the Taylor-Couette instability in a flow with an inner cylinder 
rotating was employed from very first papers in the field of RMF driven flow (Moffat 
1965). Thus, main results on this topic worth mentioning. A dimensionless critical 

1/9 

speed Re7=Qi?ic/v(2c/(i?i+/?2)) «42 does not essentially depend on annulus length 
(Cole 1976). Here R\ and i?2 are radii of inner and outer cylinders, but с is distance 
between them. Notice that the stability criterion of the Taylor-Couette flow is 
analogous to the Gōtler criterion Ge=Re^(6/i?o) «6 (Tillman 1967) for a flow at spin 
down. The Reynolds number defined here as Re#=QKo2/v, but 8, is momentum 
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thickness of side layer. An experimental stability investigation of such flow in a vessel 
of aspect ratio LIRQ=\%.1 was done by Mathis & Neitzel (1985). They reported their 
results being in a good agreement with those by Euteneuer (1972) who used a vessel 
of aspect ratio L/RQ=4. So, the effect of endwalls was found small or at least constant 
in the given range of aspect ratios. The numerical simulation of RMF driven flow, 
however, demonstrated that the decreasing of vessel's length delayed the onset of 2D 
instability (e.g., Gelfgat et al. 1991, Priede 1993, Barz et al. 1997) in comparison to 
an axially unbounded case investigated by Richardson (1974). It agrees qualitatively 
with the Gōtler criterion, since the decreasing of vessel's height increases the 
meridional flow that reduces the steady boundary layer thickness. The critical 
Reynolds number (based on maximum azimuthal velocity) Re=140 deduced from 
Richardson's results, agrees closely with the theoretical limit of global stability in 
flow at spin-down Re=141 (Neitzel 1982). According to Greenspan & Howard (1963), 
a related swirling flow during spin-up is determined by diffusion if Z//?o>4Re1 / 2. So, 
Richardson's results are expected to be applicable for aspect ratios LIRQ>5Q. Grants 
(1997) numerically investigated a 2D instability in RMF driven flow depending on the 
aspect ratio. He found that the critical Reynolds number based on maximum azimuthal 
velocity and vessels height Re=FeZ,/v«2500 was approximately constant in the range 
of aspect ratios \<LIRQ<% that agrees with the results by Martin Witkowski (private 
communication). 

Volz & Mazurk (1996) experimentally investigated stabilizing action of RMF on 
liquid heated below. They observed that at certain critical forcing flow came unstable 
even in the limits of zero temperature difference. Critical value T c «2.3xl0 6 deduced 
from their contribution for aspect ratio (Z/i?n)«2 agrees rather well with the 
corresponding numerical one found by Barz et al. (1997). Notice that sensors were 
placed on the side wall, so the obtained onset corresponds to the Taylor-Gotler type 
instability of side layer. 

More forcing applied rises turbulence, which violates the force balance reinforcing 
swirl at the axis of turbulent flow (Davidson 1992). He obtained "5/9"-law for 
maximum angular velocity Qo«2T5/9(Z//?o) 1 1 / 1 8 near the side wall. The theoretical 
explanations were shown in a good agreement with the experimental results by 
Robinson (1973) in a wide range of parameter T. 

2.5 Control tools 

The fixed pattern of the base flow as well as the oscillating velocity field is 
shortcoming in crystal growth technologies. Thus, additional means are needed to 
influence the base flow and to increase stability. 

First, the flow can be influenced by the driving body force distribution. The 
arrangement of RMF allows to reinforce forcing near the side wall by a high 
frequency field as well as a field of higher order of symmetry (Abricka, Gelfgat and 
Krumins 1995, 1996, 1997). However, the role of force distribution decreases due to 
smoothing by meridional flow as flow velocities increase. Therefore, this means of 
control is restricted to small volumes. 

Two cores counter-rotating and separated by a turbulent free shear layer can be 
obtained by opposite switching of two axially displaced RMF inductors. Such flows 
are suitable if intense stirring is needed (Abricka et al. 1995). 

An additional driving magnetic body force can be applied to force meridional flow. 
AC current surrounding the cylinder with a conducting fluid induces currents within 
it. The induced current flows in the direction opposite to that in the winding. Parallel 
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opposite currents push each other back generating a radial inflow in front of the 
winding. The flow is somehow analogous to the buoyant one. However, it allows a 
much higher intensity and controllability of the stirring. AC field driven flows are 
marked by large amplitude oscillations (Gelfgat & Gorbunov 1994). 

In this paper I focused on another two control tools, namely, the superimposed 
steady axial magnetic field (Grants et al. 1996) and the rotation of crucible (Priede 
1993, 1994). 

3. Review on MHD boundary layers 

Steady magnetic field (SMF) is a standard means to suppress the oscillations of 
conducting liquid flow. Besides, SMF interferes the body force balance (Hunt & 
Shercliff 1971) providing a possibility to control the base flow due to RMF as well 
(Grants et al. 1996). 

A moving conducting liquid in the steady magnetic field induces e.m.f. vxB. Its 
rotational part induces electric currents with density j . Their interaction with the 
steady magnetic field itself produces an e.m. body Lorentz force jxB. In our case, two 
more parts of body force oscillating with the frequency of RMF appear; they are 
generated due to the interaction of SMF induced currents with RMF jxBo, and vice 
versa, joxB. 

Suppose the frequency of RMF is high enough to neglect the oscillating part of 
Lorentz force. The steady body force due to SMF is definitely flow determined. It has 
radial and azimuthal compounds since the imposed SMF is purely axial. The radial 
force is fr=jeB. From the Ohm's law it follows that JQ=-ovrB. The azimuthal force is 
fe=-jrB. The intensity of induced magnetic field #"is more convenient than the current 
itself Vx#"= j . It yields the azimthal force ferdMņldzB. A curl of Ohm's law introduces 
following link between !H$ and the velocity: 

The boundary conditions for % are determined by the continuity of tangential 
electric field and normal current. Suppose walls are thin that the tangential current 
density is constant along their depth. Then the boundary condition for is 
d#e/dn=(o7o-n)#e/An o n the end walls and д/дг(гЩ= (o7a t )(r#e)/A x on the side wall 
(Shercliff 1956). 

Consider a strong SMF, when inertia vanishes. Then the dimensionless t equations 
(2) and (7) take the following form: 

3.1 Model and equations 

Atfe= -oBdve/dz (7) 

(8) 

д2Ф ЗдФ д2Ф дП 
(9) 

— i i - i 

dr r dr dz dz 

with characteristic density of induced current a(Z,/v)B. 
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where Ф=%/г; Ha=(o7(pv)) l / 2LB is the Hartmann number. The boundary conditions 
for Ф are а пЭФ/&±Ф=0, (z=±l/2) and оц5/ег(Фг 2)+Фг 2=0, (r=Ro/L=R) on the end and 
side walls, respectively; an=<yL/(onAn) and а т =а1/ (а т Л т ) denote the corresponding 
relative wall conductances. 

The problem essentially differs from the one of a fully developed (2D) flow in duct 
only with curvature terms ~3/r, non-uniform force distribution flrj) and electric 
boundary conditions on the side wall, where the curvature term appears as well. In the 
presence of the considered strong field the flow split up into several regions (Hunt & 
Stewartson 1965): 

(i) core; 
(ii) (9(Ha _ 1) normal to the field layer controlling the core velocity, called the 

Hartmann layer; 
(iii) 0(Ha~ 1 / 2 ) side layer with possibly its own velocity scale near a parallel to field 

wall; 
(iv) corner 0 ( H a - 1 ) x 0 ( H a _ l / 2 ) , essentially the intersection of normal and side 

layers; 
(v) inner corner (9(Ha _ 1 )x0(Ha _ 1 ) , a part of the previous corner near side wall. 

3.2 Core flow and Hartmann layer 

A related classic MHD boundary layer problem in a rectangular duct is traditionally 
formulated for a constant driving pressure gradient. Suppose the force distribution is 
not essential in our case and the source of motion can be substituted by a certain 
"effective" value T. Consider a region far from parallel-to-field walls, where functions 
depend only on the height. Then дФ/dz in (8) can be integrated from (9) yielding 

( О } 
Q " + T - H a 2 Q. — = 0 , (10) 

V 2 a n + U 
where the bar sign denotes the averaging over the height of layer (Grants et al. 1996) 
Asymptotic solution for core velocity is a constant 

J I _ 0.5 + « 
H a 2 a n + H a - 1 

determined by the solution in the boundary layer. Three asymptotic cases of wall 
conductivity can be introduced: 

(i) insulating, a n « H a _ 1 ; (Q 0 =0.5THa _ 1 ); 
(ii) perfectly conducting, a n » l ; (Qo=THa~2) and 
(iii) poorly conducting, H a _ 1 « a n « l ; (Qo=THa _ 1 an _ 1 ). 

The boundary layers near the end-walls have exponential form Q=Qo(l-e~^), 
Č=Ha(0.5±z); the plus sign corresponds to the lower and minus sign to the upper 
boundary layer. Equivalent forms of the solution are given by, e.g., Hartmann (1937) 
for insulating ends; Branover & Tsinober (1970) for arbitrary wall conductance. Now 
an axial non-uniformity of the core angular velocity due to ignored axial force 
distribution can be estimated. Integrating (9), it follows that an angular velocity drop 
is АО.=0(дФ/дг), which, in turn, can be estimated from (8) as дФ/<Эг=0(Т/На2). 
Comparing to the core velocity itself (11), one can deduce that the force distribution is 
significant only for well conducting walls, when it actually becomes uniform. 
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3.3 Side layer 

In their review Hunt & Shercliff (1971) examined all four cases with opposite walls 
either insulating or perfectly conducting. The case with a perfect normal and non­
conducting side wall was the most surprising. Hunt (1965) found an analytical 
solution for perfect ends and an arbitrary conducting side wall in a form of expansion 

00 00 
Л(7,г)= £A„(/7)sin(a.„z),and gfjj,z)= £«„(»7)С08(Л.иг) (12) 

n=0 n=0 

where A.„=(2«+l)7T, «=0,1,2.... and ņ is stretched side layer coordinate (factor Ha 1 / 2 ) . 
He obtained the following asymptotic velocity expressions (written out here in our 
terms): 

Q ~ T ] T ^ ^ - c o s ( X „ z ) e " K ' ' ' 7 s i n ( K , J r / ) and (13) 
„ = 0HaA.„ 

Q ~ Т^^^сов(кп2)\1-е-к^(сов(кпц)-5т(кпц))\ (14) 
„ = 0 H a Xn ^ > 

near an insulating and perfectly conducting side wall, respectively; к„=(0.5Х„)1 / 2. One 
can deduce that (13) has O(Ha) times higher velocity scale than the core (11) and the 
velocity profile has a spatially oscillating character with the reversals of velocity sign. 
Another limiting case (14) with all perfect walls, in its turn, has the velocity of the 
same order as that of the core. The velocity profile also has spatial oscillations but 
never changes the sign. Similar solutions are received by Uflyand (1961) and Chang & 
Lundgren (1961). Branover & Gelfgat (1968) and Alty (1971) performed 
corresponding experiments. 

The case of non-conducting walls has been first solved by Shercliff (1953). The 
same solution was also received by, e.g., Williams (1963), Chang & Lundgren (1961) 
and Hunt (1965) using different methods. Shercliff (1953) obtained a selfsimilar 
solution exhibiting the boundary layers with a parabolically changing thickness and 
monotically rising profiles of no particular novelty. Corresponding confirmatory 
experiments have been carried out by Branover & Gelfgat (1968). 

Hunt (1965) obtained a solution for case with insulating ends and an arbitrary 
conducting side-wall. It follows from his results that conductivity of side wall does not 
significantly change the profile of side layer. The case with insulating ends and a 
perfect side has a special practical interest in MHD devices. It was investigated by 
Grinberg (1961, 1962) as well. For corresponding experiments see Baylis (1964) and 
Alty (1971). 

3.4 Stability 

Branover & Tsinober (1970) reported (with a reference to Lock 1955) the onset of 
linear instability of Hartmann layer at a very high Reynolds number Res c r «5xl0 4 

based on the layer's height. It coincides with the results of Priede (private 
communication). However, the experimental results summarized by Branover & 
Tsinober reveal instability and transition to turbulence at much lower (in 200 times) 
Reynolds numbers. Experimental investigations on the stability of flow within 
rectangular ducts yielded a laminar flow for Re<130Ha and a turbulent one at 
Re>215Ha (Branover and Tsinober 1970). Their conclusions were based on the 
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experimental data with Reynolds number below some 2x10 . The numerical 
investigations by Grants (1997) showed that an imposed strong steady field allowed to 
obtain a stable rotating flow with Re=0(Ha 3 / 2 ) , (O(Re)<10 4). 

4. Review on hydrodynamic boundary layers in rotating flows 

We saw in §2 that the core of RMF alone driven flow tended to solid body rotation. 
Its angular and radial velocities couple via the force balance in the core. On the other 
hand, steady values of these characteristics are coupled via the steady solution of the 
boundary layer problem (e.g., Bodewadt's solution for a vessel in rest). Contrary to the 
imposed steady magnetic field, which interferes the force balance in the bulk, the 
imposed rotation modifies the boundary conditions of the boundary layer problem. 
The condition of force balance in the core requires a fixed product of core angular and 
radial velocities. Thus, one can be expressed from another, yielding famous, the so-
called, one-disk problem (Priede 1993, 1994). It deals with a steady self-similar flow 
uniformly rotating in infinity above a differently rotating laterally unbounded disk. 
This problem was examined by different methods starting with rigorous provements 
of existence and uniqueness and ending with numerical solutions. Some indicative 
particular cases of this flow are: 

(i) Von Kārmān (1921) flow due to the rotating disk in the resting liquid solved by 
Cohran(1934); 

(ii) Bodewadt (1940) flow due to rotating liquid over the disk in rest; 
(iii) Ekman flow due to almost equally rotating disk and fluid (Rogers and Lance 

1960). The only parameter determining the flow traditionally is velocity ratio .s=Qf/Qd 
or a=Q<j/Of, where Qd and Qf are angular velocities of disk and liquid bulk, 
respectively. Thus, 5=0, cr=0 and s-»l correspond to von Kārmān, Bodewat and 
Ekman boundary layers, respectively. 

4.1 One disk problem 

Consider an unbounded flow uniformly rotating with angular velocity Qf above the 
disk rotating with angular velocity Qd. According to von Kārmān similarity principle, 
the velocity field compounds are given by 

vr=rQf'(x), vQ=rūg(x), v z = - 2 ( v Q ) 1 / 2 / W , (15) 
1 /9 

where x=z(Q/v) , but Q is a characteristic angular velocity, e.g., Qd. Then the 
incompressible, laminar stationary Navier-Stokes equations take the following form 
(Zandbergen & Dijkstra 1987): 

f"' + 2ff" = f ' 2 + s 2 - g 2 , (16) 

g"+2fg' = 2f'g, (17) 
with boundary conditions 

ff=0,g=\,x=0 and / _ » o , g - w , x - > o o (18) 

4.2 Existence and uniqueness 

The existence of a solution for s=0 has been proved by McLeod (1969). The 
solution has monotone angular and axial velocity, in agreement with the Cohran's 
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(1934) numerical solution. A more general class of equations was considered by Lan 
(1971). His proof of the existence for 5=0 was different from that of McLeod. 

McLeod (1971) proved the theorem that guaranteed the existence of a solution for 
5>0. Uniqueness of the solution considered, which has the fixed sign of angular 
velocity, has not been proved, although the numerical results hint to this. A direct 
consequence of the McLeods theorem is the uniqueness of trivial solution for 5=1 and 
the absence of solution for 5 = - 1 . Besides, solution does not exist in a certain range of 
negative s (Evans 1969). An important rigorous result concerns the asymptotic 
behavior at infinity. McLeod (1969) showed that the solution must have a specific 
asymptotic behavior as the distance to the disk grows. 

4.3 Expansions 

Traditionally the solution is expressed in power series in the vicinity of the disk 
and "sewed" with an asymptotic solution at infinity (e.g., Schlihting 1979). Rogers 
and Lance (1960) linearized the solution about the state at infinity. The obtained 
expression of the asymptotic solution essentially depends on three real parameters, 
namely, axial velocity at infinity and a complex constant. 

Another method of expansion is to linearize the flow over the full range of x about 
the state of almost solid rotation. It produces power series in powers of 5 - 1 . The first 
term of the expansion (Rogers & Lance 1960) describes the so-called Ekman layer of, 
probably, the most practical importance in our problem: 

gi=cosxe~x, /i=0.5(l-(sinx+cosx)<f*)). (19) 

In an axially bounded volume the relative (to the axial lenghtscale L) thickness of this 
layer is 0(Em), where E=v/(|Qd|£2) is the Ekman number. Since the trivial solution is 
fo=0 for 5 = 1 , the sign of axial velocity depends on the sign of ( 5 - 1 ) i.e., the sign of 
differential rotation of the disk. An estimate of the radius of convergence of expansion 
yields a singularity developing at 5=-0.16 (Zandbergen & Dijkstra 1987 with a 
reference to van Hulzen 1980). 

Priede (1993, 1994) has solved the problem expanding the solution in a form of 
double sum of complex exponentials. Substituting in the equations he received a 
recurrence formula expressing all coefficients from three real parameters, namely 
axial velocity at infinity and a complex constant that is the first non-diagonal 
coefficient of angular velocity expansion. These parameters were found as the root of 
a set of three non-linear equations expressing the boundary conditions on the disk 
(18). 

4.4 Numerical solutions 

Traditionally the numerical solution is obtained by shooting technique from or 
towards the disk (Rogers & Lance 1960, Evans 1969). Besides, finite difference 
technique and asymptotic behavior to reduce x-range has been employed as referred by 
Zandbergen and Dijkstra (1987). Numerical solution disappears at 5=—0.161. 
Zandbergen and Dijkstra (1977) designed a special method to clarify the solution as s 
approaches a critical value from above and obtained two branches. The second branch 
merges to the first one at scr=—0.16054 and continues up to 5=0.0745, where a third 
branch appears. In a subsequent paper Dijkstra & Zandbergen (1978) showed an 
infinity of the solution branches oscillating around 5=0. These branches are marked by 
the occurrence of basic inviscid solutions or a chain of such solutions. 
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4.5 Unsteady solutions and stability 

There may be several types of instabilities depending on the type of perturbation. 
The first is an instability of basic similarity solution against truly 3D perturbations. 
The second is an instability with respect to self-similar perturbations. It implies an 
assumption that an unsteady flow is constrained to (15). Another type of instability 
may appear due to an unstable force balance in the bulk of liquid. The flow due to a 
rotating magnetic field in a rotating vessel provides an example of such instability. 
The closure of meridional flow at infinity (i.e. core) provides the Coriolis force 
balancing the magnetic one. Let us consider a quasi-solid perturbation virtually 
increasing the core angular velocity. The instability takes place if the Coriolis force 
increases too, giving rise to further growth of perturbation. Such instability is first 
considered by Priede (1993, 1994). He examined the dependence between steady core 
radial and angular velocities instead of dynamic terms. Notice that different types of 
instability stand in certain "hierarchy". It worth nothing to investigate 3D instability if 
the solution is unstable with respect to the self-similar or even "quasi-solid" core 
perturbation. 

An unsteady selfsimilar flow was investigated numerically by Bodonyi (1978). He 
recovered a limit-cycle character of unsteady solution at cr=-0.1, but beyond 0 = - 0 . 1 5 
the calculation diverged. Bodonyi & Ng (1984) considered the stability problem for 
o<0. They obtained a continuum spectrum of stable modes and a discrete spectrum 
rising the instability of Bodewadt type solution below the critical value acr—Q.03. 
Besides, they concluded all higher branches near 5=0 to be linearly unstable. 

3D instabilities of rotating boundary layers were being studied both theoretically 
and experimentally during several decades. The review of these studies as well as 
recent investigations recovering the absolute instability are presented by Lingwood 
(1995, 1996, 1997). An inviscid crossflow instability of the Ekman flow occurs at 
Re5=125 observed experimentally by Faller (1963). It agrees closely with Lilly's 
(1966) and Lingwood's (1997) calculations that yields Re5=115 and 116, 
correspondingly. The flow has a second unstable mode that is stable in inviscid limit 
and has a lower critical Reynolds number Reg=56 (Lilly 1966, Melander 1983). The 
Reynolds number is defined here as Re§=Ave//v; Ave is local differential azimuthal 
velocity, / is characteristic boundary layer thickness /=(v/Qd) • Lingwood (1997) 
concluded the absolute instability occurring at a higher Reynolds number Re6=198 to 
be far more dangerous and responsible for the transition to turbulence. Her theoretical 
results agree with an experimentally observed transition at Re6«200 (Faller and Keylor 
1966, Owen, Pincombe & Rogers 1985). 

The Bodewadt type layer occurs in the original flow with the vessel in rest. 
Lingwood (1997) calculated the onset of absolute instability of the Bodewadt flow at 
Reg=21.6, which agrees with the experimental results by Savas (1987). He determined 
the critical local Reynolds number to be about 25. 

According to Lingwood's (1997) calculations, the imposed counter-rotation has a 
more stabilizing action on horizontal layers than co-rotation does. 

4.6 Side layer at almost rigid rotation 

Stewartson (1957) investigated the flow in a rotating cylinder driven by small 
differential rotation of the side wall. The problem is similar to our case. A constant 
over the height angular velocity distribution appears. Stewartson found out that the 
main flow fitted simple exponential boundary layer of 0 (E 1 / 4 ) thickness near the side 
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wall, at which the meridional flow had discontinuity smoothed out by a more 
complicated inner 0 ( E I / 3 ) layer. It led to correction of 0 (E 1 / 6 ) for the angular velocity. 

A variety of vertical layers appear in a more complicated geometry. Stewartson 
(1966) investigated an almost rigid flow in a volume between two concentric rotating 
spheres and found two more types of vertical layers of (^(E2 7 5) and бКЕ 2 7 7) thickness. 

4.7 Reviews on von Kārmān swirling flows 

Reviews on certain aspects of the problem under consideration are given by 
McLeod (1975), Parter (1982), van Wijngaarden (1985), Langlois (1985), Brady & 
Durlofsky (1986), Zandbergen and Dijkstra (1987), Lingwood (1997) 

5. Conclusions and tasks for the current investigation 

This chapter presents a review on the azimuthal body force driven swirling flow as 
well as on related rotating and magnetohydrodynamic boundary layers. This wide 
scope was truncated to fit practical aspects in the crystal growth technologies, where 
controllable axially symmetric and stable flows are needed. It is well-known that the 
azimuthal body force, e.g., due to a rotating magnetic field induces a swirling-
recirculating flow. Its characteristics are greatly controlled by the boundary layers of 
different type occurring on both the flat endwalls and curved sidewall. As follows 
from various contributions, the rotating magnetic field driven flow has a number of 
advantages. However, sole rotating field does not provide enough options to guide the 
flow. Besides, a certain stabilizing action of RMF on a buoyancy driven flow is 
limited by different instabilities of the swirling flow itself. So, additional control tools 
are needed. In this chapter I refer to the investigations showing how similar flows are 
controlled by magnetohydrodynamic or rotating boundary layers. 

It can be concluded that the action of a strong steady magnetic field is similar to the 
one due to rapid imposed rotation. Such rapid rotation of the vessel results in an 
almost rigid flow with 0(EU2) Ekman layers and 0 (E 1 / 4 ) Stewartson layer on the 
endwalls and sidewall, respectively. Comparing to magnetohydrodynamic layers one 
can see the Hartmann number corresponding to an inverse Ekman number to the one 
half power. 

Certain differences arise due to different ways how both imposed tools handle the 
core velocity. So, the steady magnetic field determines the core velocity via induced 
currents making the electric properties of rigid boundaries of primary importance. 
Notice that even a relatively small conductivity of semiconductor crystals may play an 
important role. SMF induced currents provide a magnetic transport mechanism 
smoothening the velocity profile. If endwalls are conducting, then a part of RMF 
produced angular momentum is delivered to them magnetically. In case of insulating 
ends, the whole produced momentum is carried away by the shear exactly in the way, 
which takes place in case of imposed rotation. Thus, we can expect similar 
characteristic angular velocity scalings both in a flow under a strong SMF with 
insulating walls and in an almost rigidly rotating flow. 

Another essential difference takes place in the side layer, where MHD flow has the 
angular velocity drop in the axial direction, which leads to another source of 
meridional recirculation. The side layer of almost rigidly rotating flow, in its turn, has 
a constant along the height angular velocity profile and a more complicated inner 
layer. Contrary to the rotating flow, MHD sidelayer may have its own velocity scale. 
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Both imposed tools are expected to have stabilizing action. However, only the 
results for stability of rotating horizontal layers on the endwalls can be directly applied 
in our case. Summarizing the above, a possibility to control characteristics of the 
mean flow as well as to increase its stability by the considered control tools can be 
expected. However, a number of questions remain unclear. Let us enumerate main of 
them as a body of tasks for the present thesis paper. They fall into three groups 
depending on the type of flow they concern: 

(i) Sole rotating magnetic field driven flow 
1) Effect of vessel's length on the thickness of steady side layer; 
2) Connection to related side layer stability problems; 
3) Limits to shear dominated and turbulent flows; 
4) Comparison to experiment in the range of moderate Reynolds numbers. 

(ii) Rotating and steady axial magnetic field driven flow 
1) Role of driving force distribution at a strong SMF; 
2) Boundary layer solution near curved side wall; 
3) Meridional flow in the side layer; 
4) Stability of flow at a strong SMF; 
5) Comparison to experiment in order to: 

a) verify theoretical results; 
b) find the limit of laminar numerical model. 

(iii) Rotating magnetic field driven flow in a rotating cylinder 
1) Numerical verifying of the results of similarity solution: 

a) meridional velocity direction change; 
b) control of characteristic velocities; 
c) multiple solutions; 

2) Numerical investigation of the flow in the range of absent similarity 
solution; 

3) Role of force distribution at almost rigid rotation; 
4) Side layer solution for almost rigid rotation; 
5) Stability of force balance in the core; 

Besides the answers to these questions, I set a task to summarize the results on flows 
of the mentioned types from the point of view of practical application in crystal 
growth. 
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Chapter II 

Stability of a swirling flow driven by a rotating 
magnetic field 

In this chapter, stability of swirling flow driven by a rotating magnetic field is investigated. The 
magnetic field is assumed to be weak and rotating at low frequency. First, it is shown by using various 
approaches that the self-similar solution is stable. Second, Taylor-GOtler instability occurring at the 
side wall is investigated numerically. Onset of the instability is found to be determined by the Reynolds 
number based on the height of cylindrical vessel. This holds also for strongly elongated vessels. 
Stability criterion based on the thickness of the side boundary layer is close to that for the 
corresponding Taylor-Couette instability. Three dimensional instability in the Bodewadt boundary 
layers at the end walls is expected to set in first for vessels with radius to height ratio < 3 . 

1. Introduction 

Rotating magnetic field (RMF) represents a powerful tool to control the flow of 
semiconductor melt in various crystal growth processes enabling production of 
crystals of improved quality (Priede 1993, Gelfgat & Priede 1995). The requirements 
to the melt flow are often contradicting. On the one hand, the flow is to be strong 
enough to sustain sufficient stirring necessary for homogeneity of the melt. On the 
other hand, strong mixing can cause undesirable flow instabilities and even 
turbulence. In order to ensure an optimal control, it is of primary importance to know 
under what conditions the flow may become unstable and what kind of instabilities 
can occur. It is the aim of the present chapter to investigate the stability of flow driven 
by a rotating magnetic field. 

It is well known that behavior of the flow can crucially change with its 
characteristic velocity depending on the strength of the driving force. So initially 
steady flow can turn into oscillating one when forcing by rotating magnetic field 
exceeds certain critical threshold (Gelfgat, Priede & Sorkin 1991). At the same time, 
the RMF caused oscillations turned out to be less intense than those due to buoyancy 
(Dold & Benz 1995, Fischer et al. 1997). 

Flow driven by RMF is similar to the well-studied spin-down flow occurring when 
rotating container with liquid is suddenly stopped. In this case, Taylor-Gotler 
instability occurs at the side wall when momentum boundary layer there reaches a 
certain critical thickness defined according to so-called Gōtler criterion (Tillmann 
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1967) by Ge=Re/?(8//?o) « 6, where Re/? is the Reynolds number based on the radius 
of vessel RQ, but 5, is the thickness of momentum boundary layer. This stability 
criterion has been confirmed by experiment of Mathis & Neitzel (1985) carried out in 
the vessel of aspect ratio LIRQ=\%.1. The results of this experimental are in a good 
agreement with the findings of Euteneuer (1972) for vessel of aspect ratio LIRQ=A. The 
effect of end walls seems to be insignificant for the above mentioned range of aspect 
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ratios. However, the onset took place only at Re«>351 while the theoretical limit of 
global stability in flow at spin-down was Rey?=141 (Neitzel 1982). 

The stability of RMF driven flow in an infinite cylinder was first theoretically 
investigated by Richardson (1974). A critical Reynolds number Re/rT40 (based on 
maximum azimuthal velocity) following from his results is close to the global stability 
limit found by Neitzel. According to Greenspan & Howard (1963), a swirling spin-up 
flow is dominated by viscosity if L/Ro>4Reia. So, Robinson's results are expected to 
be applicable for aspect ratios L/Ro>50. A numerical simulation of RMF-driven flow 
(Gelfgat et al. 1991, Priede 1993, Barz et ей. 1997) demonstrated that reduction of 
height of the vessel increases the stability of axisymmetric disturbances. This is in a 
qualitative agreement with Gōtler's criterion: the shorter the vessel, the stronger 
meridional flow, and respectively, the thinner the boundary layer at the side wall. So 
far, most investigators have used critical forcing to define instability threshold. 
However, this choice is not very advantageous since the critical parameter directly 
related to the forcing involves the linear size to the forth power and thus it strongly 
depends on the aspect ratio. In the present study, it was found that a numerical 2D 
solution loses its stability at a fixed Reynolds number based on maximum azimuthal 
velocity V and vessel's length Re=FL/v«2300 in a wide range of aspect ratios 
l<Z/i?o<10. To link this parameter to forcing, the characteristic velocity of a steady 
flow was determined as a function of aspect ratio (§4). The extrapolation of our 
numerical results intersect with Richardson's result for infinite cylinder at aspect ratio 
LIR&*\6. 

Stabilizing action of RMF on the liquid heated from the below was experimentally 
investigated by Volz & Mazurk (1996). They observed that at certain critical forcing 
the flow became unstable even without any imposed heating. The critical value 
following from their results for the aspect ratio (Z,//?o)«2 agrees well with the 
corresponding one numerically found by Barz et al. (1997). 

Boundary layers at the end walls might be unstable with respect to 3D disturbances 
when the local Reynolds number Re6= ve5 Iv based on the characteristic thickness of 
the boundary layer 8 *=(v/Q) 1 / 2 exceeds same critical threshold. Such instabilities have 
been analyzed by Lingwood (1997) who predicted an absolute instability of a 
Bodewadt boundary layer at Reg=21.6. This is in a good agreement with experimental 
results of Savas (1987) who found the critical Reynolds number Reg«25. Comparing 
this value to that of side layer instability, it follows that the 3D instability at end walls 
sets in first for aspect ratio LIRQ < 3. 

Strong enough forcing can lead to the development of turbulent flow considered by 
Davidson (1992) who obtained a "5/9"-law for angular velocity of such a flow. This 
prediction was shown to be in a good agreement with experimental results of 
Robinson (1973) for a wide range of applied forcing. Comparison of our numerical 
results with Davidson's prediction and recent experimental results reveals that a 
laminar model may be valid surprisingly far beyond the onset of instability. 

This chapter is organized as follows. Section 2 introduces the governing equations. 
The stability of self-similar solution is discussed in §3. Section 4 presents the results 
of numerical 2D investigation of base flow and its stability. Section 5 proceeds with 
the discussion of the results. 
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2. Problem definition 

Consider a uniform magnetic field Bo rotating at low frequency in a plane 
perpendicular to the axis of vessel filled with a conducting liquid. The electric 
currents induced by RMF interacting with this field produce a purely azimuthal body 
force. If the end walls of the vessel are well conducting, which is assumed to be the 
case here, the produced driving force is the same as that in infinite cylinder 
Fe=0.5racooBo2- In addition, the induction of rotating field is assumed to be small so 
that its effect on the instability threshold may be neglected. After choosing height of 
the vessel L and viscous diffusion time т = L /v as characteristic length and time 
scales, respectively, Navier-Stokes equation leads to the following set of 
dimensionless equations governing an axisymmetric flow driven by RMF: 

8П ,,ЗП rfdHdū ВНдПЛ dH BZQ 3 дП 8ZQ. „ п л 

+ Н + — Q = —— + + —— + Т> КЧ 
dt dz 2 V dr dz dz dr J dz Qr1 r dr fa1 

a w „ 5 W rfdHdW dHdV/Л dQ2 ō 2 W 3 dW d 2 W 
+ H + - = — r - + + — — , \A) dt dz 2\dr dz dz dr J dz dr2 r &r dz2 

d2U 3 5H ō 2 H ___ Л П Л 

where velocity components of the flow are expressed as follows: 

v e =rQ, vz=K+0.5rdH/8r, vr=-0.5dH/dz; (4) 

\ļ/=0.5r2H is the meridional stream function, w=rW is the corresponding vorticity. 
Taylor number T=(QfZ,2/v)2 characterizes magnitude of the forcing, where 
Qf=(0.5CT(Oo/p)l/2Bo (cf, Davidson 1992). The introduced variables are closely related 
to the von Karman similarity ones for a self-similar swirling flow in radially 
unbounded plane layer. In this case, functions Q, H and W are invariant in the radial 
direction and the above equations take the following simple form 

— + H Q ' - H ' Q = Q" + T (5) 
dt 

^ + HH"' + 2 (Q 2 ) ' = H ( 4 ) (6) 

3. Stability of self-similar flow 

Before turning to the full stability problem, it is instructive to consider first its self-
similar approximation. Results obtained on such very simplified model can give 
useful insight into much complicated solution of the whole problem. 

The stability of self-similar flow with respect to self-similar disturbances was 
investigated by making use of Galerkin's spectral method. Gradual increase of the 
number of base functions up to 120 resulted in the sharply increasing critical Taylor 
number. So no actual instability of the self-similar flow was found. This agrees with 
the conclusion of Bodonyi & Ng (1984) about the stability of Bodewadt boundary 
layer with respect to self-similar perturbations. 
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Such a self-similar stability of the core region of the flow, where magnetic driving 
force is balanced by Coriolis force, can be proven by the following energetic 
arguments. Consider a small self-similar perturbation g{z,t) and h(z,t) of the core 
region rotating with a uniform angular velocity Qo(^)=pT 2 / 3 in the presence of 
meridional recirculation with vertical velocity Ho(z)=-p _ 1 T l / 3 z (p=0.516), (Davidson 
1992, Ungarish 1997). Substituting perturbed solution sought as 
Q(z,0=pT2 /3(l+g(z)exp(CT0), H(z,0=p _ 1T 1 / 3(-z+/i(z)exp(o7)) into Eqs. (5) and (6), we 
obtain the following eigenvalue problem defining the temporal growth rate a: 

eg = g" + p-]T2,3(zg' + h'-g) (7) 

с /Г= Л ( 4 ) -4p 3 Tg ' + p - 1 T 1 / 3 z / i ' " (8) 

Upon multiplying Eqs. (7) and (8) by g(z) and h(z), respectively, and then taking 
integral of booth equations over the depth of the layer and requiring the perturbations 
g(z), h(z) and h'{z) to vanish at z = ±1/2 we obtain: 

05 05 0.5 0.5 

\gg"dz = - \(g')2dz < 0 , jgg'zdz = -0.5 \g2dz < 0 
- 0 . 5 - 0 . 5 -0 .5 - 0 . 5 

05 0.5 0.5 0.5 0.5 

jhh{4)dz = j(h")2dz > 0, J hh"'zdz = - \hh"dz + 0.5 \{h')2dz>0 
-05 -05 - 0 . 5 -0 .5 -0 .5 

The sign of a remaining integral 
05 0.5 

jgh'dz = - \g'hdz = I 
-05 -0 .5 

does not influence the sign of cr. Indeed, solving a set 

a - - A + p _ 1 T 1 / 3 7 

ст = - 5 - р 3 Т / 

where A and В are definitely positive constants, we found сг=-(Л+5р _ 4 Т - 4 / 3 )х 
(1+P~ 4 T _ 4 / 3 ) _ 1 <0 proving stability of the core flow against such self-similar 
perturbations. This conclusion is confirmed also by the numerical solution of Eqs. (5, 
6) exhibiting only decaying oscillations at the spin-up of self-similar flow. Stability of 
the boundary layer flow over a disk at rest is also in agreement with numerical results 
of Bodonyi (1978). 

4. Numerical results for axially symmetric flow 

As originally noted by Moffat (1965), flow driven by RMF in cylindrical container 
close its side wall is similar to Cuette-Taylor flow between two coaxial differentially 
rotating cylinders when the outer one is kept at rest. Such a flow is prone to a Taylor-
Gōrtler type instability. In order to investigate this instability, we performed numerical 
simulation of axisymmetric flow. We used the exponential finite difference scheme 
obtained by the control volume integral identity technique (Gelfgat et al 1991, Priede 
1993). The integration over time was performed by the Peaceman-Rachford 
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alternating direction scheme. We refer to a corresponding code developed by J. Priede 
as RTfield. Besides, FLUENTpackage was used as an alternative method. 

The Taylor number of forcing contains linear size to the fourth power. Therefore, 
the critical threshold significantly depends on the aspect ratio. In the current study we 
examined aspect ratios R=RQIL=0.\25, 0.25, 0.5, 1. Neither the height nor the radius 
used in T definition ensured invariance of the critical value T c with respect to the 
aspect ratio. Instead of that noticed the numerical solution to lose its stability at a 
fixed Reynolds number based on the vessel height Re= FZ/v=2300(± 10%) (See, figure 
1). 
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Figure I Critical Reynolds number (based on radius) depending on the aspect ratio R. 

The instability appears as Taylor-Gotler vortices slowly swept by the meridional 
flow from the mid-plane towards both end walls. The investigations by Martin 
Witkowski (private communication) confirmed these results. At the same time, a 
numerical solution by FLUENT becomes unstable at a much lower (though 
approximately constant) Re«1000. The comparison of critical Reynolds numbers from 
different studies is given in figure 1. The critical Reynolds number based on vessel's 
radius is used here to simplify comparison with Richardson's results for an infinite 
cylinder. The Reynolds number in experiment by Volz & Mazurk (1996) is deduced 
from the parameters of forcing. 
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Figure 2. Radial profiles of azimuthal velocity near onset. 
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The obtained result ( R e / r = const R) agrees with that for Taylor-Cuette flow with 
the inner cylinder rotating, for which ReR

cr(c/R0fa * 42, (e.g., Cole 1976) if 
R - (bCRIRQym or (bCR/R0) ~ R~M, where 8 c r is characteristic thickness of a critical side 
layer, but с is distance between cylinders. Figure 2 depicts radial profiles of the 
azimuthal velocity just below the stability threshold. One can see that maximum 
location does fit the expected scaling. 

To link the critical Reynolds number with the corresponding forcing, we performed 
a numerical investigation of the characteristic velocity of the base flow depending on 
the aspect ratio. The characteristic angular velocity was found proportional to the 
square root of aspect ratio R = RQIL. On the other hand, the dependence on the forcing 
matched a well-known "2/3"-law following from the similarity solution. At aspect 
ratio R=\ the numerical solution agreed with the self-similar one. Thus, the 
approximate expressions for the dimensionless core angular velocity 

0 0 = 0 . 5 2 ^ ½ 1 ' 2 , (9) 

and the Reynolds number 

Re=0.52T 2 / 3/? 3 / 2 , (10) 

were obtained. The numerical results are depicted in figure 3. 

T 

Figure 3. The Reynolds number of inducedflow depending on forcing. Critical Reynolds numbers at 
different aspect ratios R depicted by dashed lines. Limits of viscosity controlled and turbulent flow are 

depicted by symbols x and +, respectively. 

At i?=l expression (9) coincides with the self-similar solution for radially 
unbounded layer between parallel planes (Davidson 1992). Eq. (10) is not applicable 
for R >1 when a similarity solution Re=0.52T R~ seems to take place. 

Figure 4 depicts the isolines of angular velocity and streamlines of meridional 
recirculation in vessels with aspect ratios R=\.0 and i?=0.125. One can see that a 
spatially oscillating Bodewadt's type boundary layer is pushed by the side layer 
towards the axis together with eyes of meridional vortices. 
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О) (b) 

Figure 4. Isolines of angular velocity (a & b) and streamlines (c&d) of meridional flow near the onset 
of instability for aspect ratios R=l (a & c) and R=l/8 (b& d). 
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T 
Figure 5. Reynolds number depending on forcing. Comparison of numerical and experimental results. 

R=l. 
Let us estimate the range of applicability of Eq. (10). According to Richardson 

(1974), the Reynolds number of viscosity controlled flow is Re=0.048T7?3. A 
comparison to Eq. (10) yields a limiting value T=1300/T 9 / 2 , at which Re=62i?" 3 / 2. In 
order to assess the applicability limit due to turbulence, we compared Eq. (10) with an 
estimate found by Davidson (1992), according to which the Reynolds number of 
turbulent flow is Re=1.98T 5 / 9 i? I 1 / 1 8 . Both relations intersect at T=0.18xl0 6 iT 8 and 
Re=1645i? . The limiting values are shown in figure 3. 
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We compared the Davidson's expression for tubulent flow with our numerical and 
recent experimental results (Grants 1998, ch. 3) in figure 5. Besides the characteristic 
velocity of turbulent flow, the laminar numerical model exhibited another feature of 
such flow as well. According to Davidson (1992), the swirl is reinforced near the axis 
of turbulent flow. The phenomenon manifested itself in our numerical simulation as 
shown in figure 6. 

so -

mo"' 

Figure 6. Radial profde of angular velocity at strong forcing T=107. Comparison of our numerical 
results to the profde for turbulent flow (Davidson 1992). 

5. Summary and concluding remarks 

This chapter concerns the stability of a liquid metal flow driven by a rotating 
magnetic field. The investigations by the Galerkin's spectral method as well as the 
numerical simulation and simple energetical estimates showed the stability of the core 
flow with respect to self-similar perturbations. A numerical 2D simulation revealed a 
Taylor-Gotler type instability of the side layer at Re7 - c r =Wv(8 c 7£ 0 ) 3 / 2 =46(±10%), 
which is close to the criterion for Taylor-Couette instability between rotating coaxial 
cylinders (for the inner cylinder rotating Rer c r«42. See, e.g. Cole 1976). The distance 
to the maximum in azimuthal velocity profile 8 c r corresponded to the distance 
between the cylinders. Our numerical simulation yielded (5 c7i?o) 3 / 2 =0.02Z/i?o for 
aspect ratios V%<Ro/L<\. Hence, the onset occurs at a fixed Reynolds number based 
on the vessel's height Rec r=FZ,/v=2300 even in considerably elongated cylinders. The 
delay of the onset in comparison to a diffusion controlled flow Re / r =140 (Richardson 
1974) is caused by meridional recirculation, that reduces the thickness of a steady side 
layer. Extrapolating our results beyond i?=l/8 we deduced Richardson's analysis being 
valid for the aspect ratios R less than 1/16. It agrees with the conclusion of Martin 
Witkowski & Marty (1997) and Martin Witkowski (private communication). A 
numerical simulation with FLUENT yielded a significantly lower (though constant in 
a given range of aspect ratios) stability limit Re c r=1000. Critical Reynolds number 
Re c r=3200 deduced from the forcing parameters in experiment by Volz & Mazurk 
(1996) agrees better with the results obtained with our code. Grants (1998, ch. 3) 
investigated the stability of RMF driven flow in the presence of a steady axial field. 
An estimate Re c r<1700 was obtained for small steady field limit. However, the 
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observed instability could be due to 3D perturbation of a probe which was 
considerably larger than those used by Volz & Mazurk. 

To link the critical Reynolds number with critical forcing, dependence of the base 
flow on the forcing was investigated close to the onset of instability. A characteristic 
velocity of the base flow was found to be Re«0.52T 2 / 3 /? 3 / 2 leading to the critical Taylor 
number Г г «0.3хЮ 6 Л" 9 / 4 . 

Experimental and theoretical investigations of 3D instability of a Bodewadt layer 
done by Savas (1987) and Lingwood (1997) led to the critical Reynolds number for 
local absolute instability Re5Cr=ve6 /v=(Q/v) 1 / 2 r c r »25. Substituting the vessel's radius 
into this result, we find Re c r =625/? _ l . The corresponding critical forcing is 
Г г «42х10 3 Л" 1 5 / 4 . The comparison of both critical values yields a simultaneous 
appearance of both instabilities at aspect ratio R*=021. Below this value the 
instability appears first in the side layer. It should be noted that the critical forcing for 
3D instability might be slightly overestimated for such an elongated cylinder, since the 
thickness of the side layer becomes considerable. The corner region, a part of the side 
layer adjacent to endwalls, has no spatially oscillating pattern and, therefore, is 
expected to be more stable. 

It is interesting to note that the characteristic velocity supplied by the laminar 
model is surprisingly close the corresponding values resulting from the model of 
turbulent flow. So the numerical results for laminar flow agree well with experimental 
data (Grants 1998, ch. 3) even for Reynolds numbers Re=O(10 4) which exceed the 
onset value at least four times. Besides, the reinforcing of swirl at the axis obtained by 
Davidson (1992) for turbulent flow reveals itself in our laminar numerical simulation 
as well. 

In order to assess the range of applicability of the found relation for characteristic 
velocity of laminar flow, we compared it to the Davidson's formula. We obtained that 
for elongated cylinders (/?<0.25) the latter holds only for very high Reynolds numbers. 
This suggests existence of an intermediate turbulent scaling. 

The numerical simulation revealed that the relative thickness of the side layer 
considerably increases with a length of the vessel. As a result, the eyes of secondary 
recirculation move towards the axis. Location of these eyes may be important for 
crystal growth, since it determines the place where the influence of convection on heat 
transfer is inverted. It means that the heat flux through the solidification front is 
reduced or increased depending on whether the radius is smaller or larger than that of 
the eye. This heat flux determines the shape of the steady solidification interface 
(Grants & Gelfgat 1997). So, the aspect ratio of liquid zone can significantly influence 
the shape of solid-liquid interface. 
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Chapter III 

On liquid metal flow generated by superimposed 
rotating and steady magnetic fields 

Rotating magnetic field drives a swirling recirculating flow of conducting liquid. The fixed structure of 
this flow is shortcoming from the point of view of its application in crystal growth technologies. The 
current chapter deals with the influence of imposed steady axial magnetic field as a tool to control the 
induced flow. We used different methods: order of magnitude analysis, analytical solutions of 
simplified equations, 2 D numerical simulation as well as experimental investigation. Conditions of 
overlapping of results, simple physical interpretations as well as analogy to a fully developed flow in 
duct have been introduced and illustrated. Estimates of the necessary field induction to influence the 
mean flow are given. The threshold value essentially depends on the wall conductivity and may differ 
for the core region and boundary layer. The presence of a strong steady field makes the flow in its 
middle part analogous to classic Hartmann flow. The parallel boundary layer appears near the side wall. 
The behavior of this layer has some peculiarities if compared to the corresponding classic one. The 
angular velocity drop along the side layer generates meridional flow, which vanishes slower than the 
"normal one." The Taylor-Gotler type instability occurs at strong forcing. Flow oscillations disappear 
when the imposed SMF suppresses inertia in the side layer.  

1. Introduction. 

An obvious example of the source of rotating magnetic field (RMF) is the stator of 
electric motor. It induces a magnetic field rotating in the plane perpendicular to the 
axis of symmetry. Similarly to the rotation of the rotor, RMF drives the swirling flow 
of conducting liquid. The stirring due to RMF can be used, e.g., in metallurgy 
(Davidson & Hunt 1987) and semiconductor crystal growth (see, Gelfgat and Priede 
1995). Besides a certain practical aspect, the RMF driven flow turns out to be an 
attractive theoretical problem. The exhaustive investigation by Davidson (1992) 
summarizes the key features of mean flow. It has a solid body resembling core 
surrounded by thin boundary layers of Bodewadt's type on end-walls. Any axial non-
uniformity of angular velocity induces meridional flow, which tends to eliminate it. 
The balance of driving magnetic force and Coriolis force determines the core angular 
velocity. Thus, the core rotates as a solid body, but the core meridional flow is 
adjusted to the driving force distribution. The axial uniformity of the core rotation 
persists even when the forcing is highly localized. The theoretical explanations were 
shown in a good agreement with the experimental results by Robinson (1973). 

A strong coupling between the azimuthal swirl and secondary recirculation 
provides an environment for inertial waves. An unsteady RMF driven flow was 
investigated by Davidson (1989), recently by Ungarish (1997). The numerical 
simulation (e.g., Gelfgat, Priede & Sorkin 1991, Barz et al. 1997) demonstrated that 
the recirculation stabilized the flow in comparison to an axially unbounded case 
investigated by Richardson (1974). However, the flow is unstable under usual crystal 
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growth conditions. A review on the RMF driven flow was presented by Gelfgat & 
Priede (1995). 

The fixed pattern of the base flow as well as the oscillating velocity field is 
shortcoming in crystal growth technologies. The stabilizing action of steady axial 
magnetic field (SMF) is well known (e.g., Branover & Tsinober 1970). On the other 
hand, SMF influences the base flow as well (see, the review by Hunt and Shercliff 
1971, Sterl 1990). 

The flow due to superimposed rotating and steady magnetic fields has been 
investigated by Grants, Priede & Gelfgat (1996). They found the necessary induction 
to influence the flow for two limiting cases of insulating and perfectly conducting end-
walls. However, the new solidified semiconductor crystal has a characteristic relative 
conductance of few percents. Such weak conductance plays an important role in spite 
of seeming negligibility (Hjelming & Walker 1986). In the current chapter we 
examined all three cases of wall conductance. The existence of two limiting values of 
SMF induction for both the core and boundary layer was found in the presence of 
perfectly or poorly conducting ends (§3). 

The numerical simulation of selfsimilar problem (§4) confirmed the results of order 
of magnitude analysis and illustrated a consequent boundary layer widening due to 
SMF. A simple analytical selfsimilar solution coincides with the related Hartmann 
solution between the planes in the presence of a strong SMF. The numerical 2D 
simulation (§5) showed the role of the force distribution as well as revealed an 
analogy to a fully developed flow in the rectangular duct. However, an essentially 
different side layer behavior was detected in case of all perfectly conducting walls. We 
have found an analytical boundary layer type solution (§6) explaining this distinction. 

The duct flow studies (Hunt and Shercliff 1971) as well as our 2D numerical 
solution predicted the angular velocity drop in the axial direction along the side layer. 
Thus, an additional meridional flow is induced there. The order of magnitude 
estimates and corresponding 2D numerical simulation (§7) showed that this flow was 
less suppressed by SMF than the one generated by normal layers. As a result, the 
inertia persists in the side layer for a higher induction value. 

A strong SMF suppresses the mean flow. At the same time, the oscillating with the 
frequency of RMF azimuthal forces due to alternating radial currents and steady axial 
magnetic field grow together with the SMF induction. Section 8 discusses the 
estimated amplitude of induced oscillating flow velocity. 

The appearance of thin boundary layers at the end walls is a characteristic feature 
of the rotating recirculating flows. Similar thin boundary layers for SMF induced 
currents usually appear, too. In such cases a couple of electrodes can be simply used to 
measure the angular velocity of flow. Using this favorable circumstance, we have 
verified some results experimentally, as well (§9). 

2. Equations 

Figure 1 depicts the sketch of investigated model. A liquid with a conductivity a 
fills a cylindrical vessel of dimensions L and RQ. The vessel walls are thin A«L and 
their conductivity is a w . The induction of superimposed rotating and steady magnetic 
fields is Bo and B, correspondingly. Bo rotates with an angular velocity ©o-
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Figure 1. Sketch of the model 

The alternating magnetic field in conducting media as well as a moving conducting 
liquid in the steady magnetic field induces currents. Their interaction with both 
imposed magnetic fields produces an e.m. body Lorentz force. It can be divided into 
several parts: 

(i) A steady time-averaged part of the interaction between RMF induced axial 
current and RMF itself. 

(ii) An oscillating with frequency 2щ part of the above interaction. This one gives 
rise to flow oscillations with a relative velocity amplitude u'/u ~ Q/©o, where Q is 
angular velocity of base flow (Davidson & Hunt 1987). 

(iii) A steady part due to the interaction of SMF induced current with SMF itself. 
(iv) Two oscillating with the frequency a>o parts generated by the interaction of 

SMF induced currents with RMF, and vice versa. 
We traditionally consider the induction of RMF too small to drive the flow with an 

angular velocity comparable to that of field rotation. On the one hand, it allows to 
ignore the effect of oscillating e.m. force (ii). On the other hand, if Q«a>o, the 
induced swirl does not influence the RMF generated body force. Besides, we dropped 
the part of Lorentz force oscillating with field frequency con (iv). This requires certain 
conditions, which are examined below in §8. The low frequency condition is usual for 
RMF applications. If (0oi?o ЦС^З (u. is magnetic permeability), then the induced body 
force can be assumed purely azimuthal (Davidson 1992). We restricted the 
investigation to low-frequency fields, too. The azimuthal body force in an infinitely 
long cylinder then is Fe°°(r)=0.5Bo2aa)or. The force acting on a truncated cylinder 
Fo(r,z) is determined by the electric boundary conditions. Further we shall use the 
force distribution Д г ^ ) : = ^ 9 ^ ^ ) / ^ 9 ^ ( / - ) and consider it to be defined (Gelfgat et al. 
1991, Priede 1993, Gelfgat and Priede 1996, Trombeta et al. 1997). If the aspect ratio 
R=RQ/L is of the order of unity or less and the Reynolds number is of the order of 
some thousand that is characteristic for crystal growth, the core rotates as a solid body. 
In this case the force distribution f\r^z) can be substituted by an "effective" value a 
constant MIMQ ratio of an actual driving torque to the one acting on a corresponding 
piece of infinite cylinder. We used the actual force distribution f{r^) in a 2D 
numerical simulation and the constant one in a selfsimilar formulation of the problem. 
The influence of force distribution, which appears under action of a strong steady 
field, is analyzed below in §5. 
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We consider the flow to be laminar and axially symmetric. Hence, it is described 
by 2D Navier-Stokes equations supplemented by the body forces due to RMF and 
SMF. The first one, as mentioned, is flow independent. The second one due to SMF, 
in its rum, is flow determined. There are radial and azimuthal parts since the imposed 
SMF is purely axial. The radial force is fr=joB. From the Ohm's law it follows that 
JQ=-crvrB. The azimuthal force is fQ=-jrB. Let us use Я— induced magnetic field 
instead of j : Vx-7/ = j . It yields the azimthal force /в=д!Ио/дгВ. The Ohm's law 
introduces a link between 7iq and the velocity: 

A#e=-o-Bdve/& (1) 

The continuity of tangential electric field and normal current determine the 
boundary conditions for Suppose the walls are thin enough to consider the 
tangential current density through them as a constant along the depth. Then the 
boundary condition for tfk is дТьУдп = (а/стп)Ле/Ап on the end walls, and dldr{rJto)= 
(о7о\)(г#ё)/Дт on the side wall. 

With an eye to the further application of von Kārmān similarity variables (e.g., 
Shlichting 1979), let us introduce the functions Q, H, W, and Ф as: rQ. = v e ; 0.5r 2H = 
iļ/; rW = w; гФ = Jt%, where w is vorticity: w=(Vxv,ee), and vpr is stream function: 
l/r(-čh\)/dz, дц)/дг)=\ =(v r, v z) = (-0.5rdVUdz, H+0.5rdWdr). Then, the dimensionless 
Navier-Stokes equation, Ohm's law and definition of both W and H yield the 
following set: 

SO жтдС1 rfdHdQ дНдО) 5 H „ 5 2 П 3 дП 5 2 П „ 2 дФ „ , п л 

— + Н — + - Q = — г - + + —— + Ha — + 7ef(r,z) Kz) 
dt dz 2 \ dr dz dz dr J dz gr

z r dr fa1 dz 
aw aw rfdwdw aHaw^i a n 2 a 2 w 3 a w a 2 w , , 2 а 2 н 

+ H + - = — — + + — - r - + Ha — - \ J ) 

dt dz 2\dr dz dz dr J dz dr2 r dr dz2 dz2 

* H + 3 M + £ H + 2 W - 0 ( 4 ) 

dr2 r dr dz2 

а 2 Ф 3 дФ д2Ф an 
^ + + z- + 

dr2 r dr dz2 dz 
= 0 (5) 

The symmetry condition on the axis is д/дг(0.,У/,Н,Ф) = 0. The no-slip condition on 
rigid boundaries requires Q=0, H=0. The boundary conditions for Ф are 
а п дФ/&±Ф=0, (z=±l/2) and а,д/8г(Фг2) + Фг 2=0, (r=R) on the end walls and the side 
wall, respectively. 

The following dimensional scales were used: vessel's height L for the distance; 
characteristic time т of swirl diffusion T = I 2 / V ; characteristic density of induced 
current а(1/т)В. г The problem depends on the five dimensionless parameters (table 
1), namely, magnetic Taylor number Те, Hartmann number of steady magnetic field 
Ha; aspect ratio R; relative conductance of end and side walls ccn and a x , respectively. 
As mentioned, the constant effective value T=M/MoTe often can substitute the actual 
source ТеДг^), the total torque remaining the same. Further we shall refer to it as a 
Taylor number of forcing. It can be defined directly by the total applied torque M, as 
well. This definition is convenient for the selfsimilar formulation. On the other hand, 

f No special notation is introduced for the dimensional variables used further in scaling analysis. 
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it may turn out useful in experiment. Besides, it has a slightly more general physical 
content, i.e., it uses the total torque — the only essential parameter of forcing, instead 
of the parameters of RMF. 

j c _ CU>oB() 2I 4 

2pv2 

Magnetic Taylor number; expresses the ratio of 
e.m. torque induced in a piece of the infinite 
cylinder to the characteristic viscous torque. 

ry i M ^ 2 ML4 M 
T = Те = T—T- = г — r -

Â O mRo V 05mR0

2/r 

Taylor number of forcing; expresses an actual 
dimensionless e.m. torque (m is mass of liquid 
metal). 

( V / 2 

Ha = — LB 
Hartmann number; the ratio of Lorentz force to 
frictional force. 

R=RQIL Aspect ratio. 

а -СТ"Лп  

n oL 
Relative conductance of end walls. 

сттДт  

aL 
Relative conductance of side wall. 

Table 1. Dimensionless criteria. 

Under the aforementioned so-called selfsimilar approximation, the functions Q, W, 
H and Ф are considered constant in the radial direction. Then the problem can be 
formally treated as a problem of the flow in a layer between two parallel infinite disks. 
The term дФ/dz can be integrated from (5), but from (4) it follows that 
W = -l&Wldz1. Therefore, the number of independent equations reduces to two: 

— + HQ' -QH = Q!'+T - Ha 2 

dt 

Q 4 

Q — 
к 2 a n + U (6) 

dH" 
dt 

+ HH'"+2(Q 2)'= H ( 4 ) - Ha 2 H' (7) 

Here the bar sign denotes the averaging over the height of layer. 

3. Orders of Magnitude 

First consider inertia dominated laminar flow due to sole RMF. The liquid rotates 
with a nearly constant angular velocity Q 0=0.52v/Z, 2T 2 / 3 determined by the balance of 
driving Lorentz and braking Coriolis forces. Narrow boundary layers of thickness 
5n~£T~1 / 3 occur at rigid walls. The radial velocity in the core is v 0 ~v/ IT 1 / 3 . The flow 
returns through narrow boundary layers, so, due to the continuity condition, the radial 
velocity is Z,/5n~T times larger there. Therefore, the inertia in the boundary layer 
exceeds the driving force in Z/5 n ~T 1 / 3 times, as well (Davidson 1992). 

The imposed SMF in a non-uniformly rotating conducting fluid induces current 
with characteristic values jo and j n in the core and boundary layer, respectively. 
Suppose temporarily, they are too small to influence the mean flow. To estimate their 
magnitude, let us integrate the Ohm's law over a closed contour A shown in figure 2 
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(Priede, private cornmunication). In such a way we can get rid of the contribution of 
unknown potential. 

( j„+jo)£~aQoZ 2 B. ( g ) 

В 

A Ēl 

к 4 ГГ 

М 

4 ГГ 

М 

Jnw 

Figure 2. Induced currents 

In case of a perfectly conducting wall, the current closes through it and enter the 
wall normally. Relation (8) simplifies: 

JO~CTQOLB, j n - » 0 . (9) 

If the end walls are insulating, the current completely closes through the boundary 
layer. Due to the continuity condition, j n will be L/5 n time larger than jo. Consequently, 
the resistance of thin boundary layer determines the current as follows: 

jo ~ a f i 0 5 n B, j n ~ oQoLB. (10) 

In case of finite wall conductivity, the currents close partially through the boundary 
layer and partially through the end-wall, where its characteristic value is j n w - The 
condition of continuity allows us to link these currents with the core current density: 
joZ ~ j n 5 n + jnwA„. Together with the continuity condition of tangential to wall electric 
field: jn/or ~ j n w / o" n , it introduces the relationship between the current density in the 
core and that in the boundary layer (Priede, private communication): 

joZ,~jn(5n + A n o n / a ) 

If the conductance of end wall is much lower than that of liquid layer and, at the 
same time, much higher than that of adjacent thin boundary layer ( l » a n » 5 n / Z , ) , then 
the induced current is determined by a relative wall conductance as follows: 

jo ~ o-QoLBan, j n ~ aQoLB. (11) 

So, in spite of poor wall's conductivity, the latter plays an important role (Hjelming 
& Walker 1986). In this case, the radial current density in the boundary layer has the 
same order of magnitude as for insulating walls. In its turn, the current density in the 
core is a n times smaller than in case of perfectly conducting walls. 

When the induced currents are found, let us estimate the necessary SMF induction 
to considerably influence the mean flow. Notice that the force balance in the core and 
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boundary layer should be examined separately, since the characteristic inertia in the 
normal boundary layer is 0(I/8„) times larger than the driving force. However, in case 
of insulating walls, the current density in the boundary layer exceeds that in the core 
exactly in the same number of times (10). Comparing the Lorentz force 0(joB) to the 
driving force 0(pv 2/Z, 3T), the threshold value of strong field 

Ha~T , / 3 (12) 

yields from (10) for the core and, hence, for the boundary layer, as well. 
In case of perfectly conducting walls, the core current density (9) is 0(L/5n) times 

larger than in the previous case. Consequently, the SMF induced Lorentz force 
become considerable at a lower SMF induction. The threshold value 

Ha~T 1 / 6 (13) 

follows from the force balance in the core. At further increase of the SMF induction 
the core angular velocity 

Qo~v/Z, 2 THa 2 (14) 

is determined by the balance of driving and braking Lorentz forces due to RMF and 
SMF, respectively, p v 2 / I 3 T ~ а В Д В 2 . 

At the same time, the Lorentz force due to SMF vanishes at perfectly conducting 
end walls, since the electric current lines enter them normally. So in the boundary 
layer the balance of inertia and shear (pvnCio ~ pvQoZ./8n ) remains (Priede, private 
communication). The radial velocity of meridional flow v„ is determined by the 
balance of driving pressure gradient 0(dpldr)=0(pQ.Q2L) and shear 0(pvvn/5 n

2). Thus, 
the characteristic thickness of rotating boundary layer (Greenspan 1968) persists: 

6 n ~ (v /Q 0 ) 1 / 2 and consequently 5 n ~ I H a T 1 / 2 . (15) 

The boundary layer thickness should increase with the field induction. Of course, 
the boundary layer growth must be limited. The phenomenon will take place while 
both the inertia and shear in the boundary layer dominate over the driving force, i.e., 
until 

pv 2 /Z 3 T ~ pvQoI/5n 2. (16) 

From (16) and (15) the second threshold for SMF induction follows. The inertia 
looses its determining role in the whole layer at: 

H a ~ T 1 / 4 . (17) 

The region of Ha, where the phenomenon manifests itself, is rather narrow. The 
boundary layer thickness can increase in <9(T 1 / I 2) times. 

Similarly the phenomenon can be shown to take place in case of poorly conducting 
end-walls as well. Indeed, in the boundary layer the current density (11) coincides 
with that at insulating walls but a corresponding ratio of the core current density is 
0 ( / _ / 5 n a n ) » l , (cf, (10) and (11)). Expressing the Lorentz force due to SMF from 
(11) and comparing with the one provided by RMF, the first threshold value can be 
estimated as follows 

H a ~ T , / 6 a n ' 1 / 2 . (18) 

Similarly to (14), the core angular velocity estimate Q 0 ~ v/Z.2THa"2an"' follows from 
(11). Contrary to the case of perfectly conducting walls, the characteristic radial 
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current density in the boundary layer is considerably larger ( a n ' ' times) than in the 
core. As a result, the effect is restricted by the increase of SMF induced force rather 
than by the decay of inertia down to the magnitude of driving force. The comparison 
of the Lorentz force due to SMF OQnB) with the shear 0(pvQoL/8 n

2) together with 
(11) and (15) yield an estimate of the second threshold value 

H a ~ T 1 / 4 a n - ' / 4 , (20) 

when the inertia vanishes in the whole layer. 
Figure 3 shows the boundaries of regions with different flow behavior in the (a„, 

На) plane. To the left from ABCD, the SMF influence on the mean flow is 
insignificant. To the right from FECD, the flow linearizes due to a strong SMF. Inside 
ABCEF the core is SMF dominated but the inertia dominates in the boundary layer. 
Note that in figure 3 the scale in both Ha and a n directions is determined by the rate of 
forcing T. 

A 

В Щ E 

К г* 

D 
>1V у • у • 

На 

Figure 3. Intermediate range of steady magnetic field induction 

4. Self-similar solution 

A simple analytical solution for self-similar flow can be obtained in case of a 
strong SMF. As expected, it exactly coincides with the corresponding well-known 
Hartmann solution between the planes. The flow has the core angular velocity: 

T 0.5+ a , 
H a 2 a n + Н а - 1 

П 0 = Л ^ т (2D 

and exponentially boundary layers: Q=Q 0(l-e"^), I^=Ha(0.5±z). Since SMF eliminates 
the inertia, the corresponding term may be dropped in (7), and a simple linear problem 
follows: 

H""-HaH"-2(Q 2) ,=0, H(±0.5)=H'(±0.5)=0. 

The solution yields the magnitude of axial velocity in the vicinity of rigid end-walls: 

H 0 =5/6Q 0

2 Ha- 3 , (22) 

and the direction towards the liquid bulk. The radial velocity in the core is: 

vo=rHo=5/6rQ 0

2Ha- 3 (23) 
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Let us estimate the influence of axial non-uniformity of driving force. The order of 
velocity drop in the core (Q - Q) = 0 (THa~ 2 ) follows from (6) for insulating or 
poorly conducting walls. It is much lower than the core velocity itself (21) in these 
cases. The angular velocity drop in the core becomes essential for perfectly conducting 
walls. However, the driving force distribution is constant then. Thus, a significant 
axial non-uniformity of the core rotation appears only when the relative conductivity 
ctn is about unity. 

Notice that only the intermediate region has a certain novelty. If SMF is small, the 
mean flow stays nearly the same as the one driven by RMF alone. If SMF is large, the 
core flow coincides with the classic Hartmann flow. The performed numerical 
solution of self-similar problem has completely confirmed the above conclusions on 
scaling (§3). Figure 4 depicts characteristic value of angular and axial velocity in the 
core depending on the Hartmann number for both insulating and perfectly conducting 
walls. The Taylor number of forcing there is T=10 8. The estimated limiting values of 
SMF induction Hai/ 6=21.5, (13); Hai/ 4=100, (17); Н а ш = 4 6 4 , (12) are depicted by 
doted vertical lines. The numerical simulation has revealed that the constants in these 
estimates are about unity. 

1 10 100 1000 

Ha 

Figure 4. Core angular (solid dots) and maximum axial (hollow dots) velocities versus the Hartmann 
number. Numerical selfsimilar solution and strong field asymptotic ((21),(22)). T=l(f, the end walls 

insulating (a„=0) and perfectly conducting (a„»l). 

Figure 5 illustrates the effect of boundary layer widening in the numerical solution 
of self-similar problem. According to the estimates, the boundary layer thickness 
should increase ( 1 0 8 ) 1 / 1 2 « 4.6 times. 
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Figure 5. Characteristic boundary layer profiles in the intermediate range of SMF. Numerical 
selfsimilar solution. T=l(f, Ha=0, 20, 40, 60, 80, 100. 

The distance to the velocity maximum increases as predicted by the scaling. At the 
same time, the distance of spatial oscillation vanishing does not change significantly. 

5. Numerical 2D solution 

In the previous section we examined a selfsimilar solution. A question on its 
usefulness for the central part of an actual radially bounded flow arises. To answer this 
question, we performed a numerical simulation of a corresponding 2D flow. The 
exponential type finite difference approximation, obtained by the integral identity 
technique, and the Peaceman-Rachford alternating direction time-stepping scheme 
were used. The code developed by J. Priede (Priede 1993, Gelfgat et al. 1991) was 
adapted. 

When the end walls are perfectly conducting, the driving force distribution is 
f{r^)=1. It assured a good agreement between selfsimilar and 2D solutions for a 
strong SMF (see, figure 6). In the intermediate range of Ha numbers this agreement 
was not so evident. However, the predicted boundary layer thickness increase occurs. 
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» 
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-> 1 \ 
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* ** I b l i j v**t~** * i 
Ш П о ; a » 1 ; selfsimilar 

о fi; (a t-0 ,a e»1) 
• v fĻfķ (а~ая=0)  

strong field asymptotic 

* ** I b l i j v**t~** * i 
Ш П о ; a » 1 ; selfsimilar 

о fi; (a t-0 ,a e»1) 
• v fĻfķ (а~ая=0)  
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* ** I b l i j v**t~** * i 
Ш П о ; a » 1 ; selfsimilar 

о fi; (a t-0 ,a e»1) 
• v fĻfķ (а~ая=0)  

strong field asymptotic a' 
0 21 T la" 

10 100 1000 
Ha 

Figure 6. Characteristic angular velocity in the core and boundary layer versus Hartmann number. 
T=l(f, R=1.0 
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In case of insulating or poorly conducting end-walls, the driving force distribution 
differs significantly. Alternating currents due to RMF have to bend along the end 
walls. These currents have no boundary layers there, since the alternating e.m.f. 
cflrjxrxBo is purely axial (Priede 1993). Therefore, the e.m. driving force distribution is 
nearly the same in both above cases. The total driving torque obviously must come 
down because the currents pass nearly parallel to RMF at the end walls. For example, 
if the aspect ratio is R=l, the averaged torque is only about one fifth of that for 
perfectly conducting walls (table 2). 

R M/Mo Qo/QT 

0.25 0.72 0.95 

0.5 0.48 0.81 

1.0 0.20 0.40 

2.0 0.061 0.05 

Table 2. Average torque and rate of radial non-uniformity of the angular velocity distribution in case 
of strong SMF and insulating walls. 

Let us examine the case of all insulating walls depicted in figure 6. We see in §4 
that a strong SMF induced current smoothes the axial distribution of angular velocity 
as the meridional flow does. So, one can suppose the core rotation to be determined by 
the total magnetic torque again. The numerical 2D simulation has confirmed this 
assumption for the maximum angular velocity Q T near the side wall. However, the 
current does not smooth the radial distribution of angular velocity. Consequently, the 
radial non-uniformity of core rotation appears. The ratio of minimum and maximum 
core angular velocities was found numerically Qo/Q x«(l+1.5i? 3) - 1 (figure 7). 

ад 

1 

(1+1.5ЯУ 

R 

Figure 7. Radial non-uniformity of angular velocity distribution in the presence of strong SMF and all 
insulating walls as a function of aspect ratio. 

The influence of tangential MHD boundary layer at the side wall may violate the 
agreement between the 2D and selfsimilar solutions, which usually takes place. This 
phenomenon is a subject of the following section. Since the tangential boundary layer 
is much thicker than the normal one, it may occupy all the volume. In such cases the 
core actually disappears, and the selfsimilar solution is evidently a nonsense. 
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6. Tangential boundary layer 

We see in §4 that under a strong SMF the solution of selfsimilar problem coincides 
with the classic Hartmann problem on the flow between parallel walls. A certain 
analogy to the fully developed MHD duct flow with the so-called side layers of 
0(Ha" 1 / 2 ) thickness is expected to appear as well. These boundary layers are well 
studied (See, Hunt & Shercliff 1971). The conductivity of both walls plays an 
important role. The most surprising is the case of a well conducting normal and 
insulating side wall, when the velocity in the tangential boundary layer is of a higher 
order than the core velocity. Besides, the velocity profile has spatial oscillations and 
can even change the sign. The boundary layer velocity is of the core velocity order 
(0(Ha~ 2)), and the velocity sign does not change in case of all perfectly conducting 
walls (Chang & Lundgren 1961, Hunt 1965). Our numerical solution has revealed the 
difference for a rotating flow. The angular velocity scale 0(Ha ) in the tangential 
boundary layer turned out much larger than in the core. In order to explain this 
distinction, we found an analytical boundary layer type solution for an arbitrary 
conducting side wall and perfectly conducting ends similar to the one obtained by 
Hunt (1965). 

Let us rewrite equations (2) and (5) for a strong SMF, when the inertia vanishes: 

— + - — + — + H a 2 — + Te/fr ,z; = 0 (24) 
dr2 r dr dz2 dz 

дгФ 3 ЭФ д2Ф дП п 

— г + + — г + = 0 (25) 

dr г dr dz dz 

The boundary conditions for Ф are: 

дФ/дг = 0, (z=±l/2), and ахЭ/Эг(г2Ф) + г 2 Ф = 0, (r=R). (26) 
If volume end walls are perfectly conducting, the e.m. driving force is Te/(r,z)sT. 

Suppose, the induction of SMF is so high that the boundary layer appears at the side 
wall. It has to match the core solution (21). Let us introduce the boundary layer 
variables: Q ( r ^ ) = T H a _ 1 g ( ^ ) , Ф(г^)=ТНа~2(-г+Л(т7^)), ^=(i?-r)Ha" 1 / 2 . Then the 
problem (24-26) in the boundary layer at the side wall transforms into: 

i ! f + | < U 0 ( H a - " 2 ) (27) 
drj1 dz 

^ + § U 0 ( H a - " 2 ) (28) 
drj2 dz 

dhldz=\, g=0, (z=±l/2), (29) 

on ) V R J 
a. 

"Sewing" with the core requires Л(т7-»ОО)=0, since Ф(г^)=-ТНа 2z in the core. 
Condition g(7-»CO)=Ha - 1 follows from the core angular velocity expression (21). The 
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form of Ф was chosen to ensure equal characteristic values of h and g, which do not 
exceed the unity order: CĶh)=CĶg)<0{\). 

Notice that the order of equations (27) and (28) is lower than the corresponding 
number of boundary conditions in the axial direction. Hence, a corner region of 
0(Ha- 1 / 2 )xO(Ha _ l ) size should appear near the end-walls (Hunt & Stewartson 1965). 
The radial scale of the corner region is much larger than the axial one. So, it is easy to 
check that both h and g take the following asymptotic form in the corner region: 
girj^)=gc(77)( 1 - е 4 ) and A(^)= / i c (7 ) -gc (7 ) e ^ . w h e r e 8c(n) md hc(rj) represent the 
values of functions on the border between the side layer and the corner. Substituting 
of this corner solution into (29) yields g c(r/)=Ha _ 1 . Thus, the drop of angular velocity 
in the corner is equal to the core velocity. Notice, that the estimate dh/dz=OĢia~l) 
follows from (27) on the border between the corner and the side layer. Suppose, the 
order of solution g and h is higher than 0(Ha _ 1 ) . Then the asymptotic side layer 
solution of (27-30) can be found in the following form: 

ao 00 
h(tj,z)=^hn(rj)sm(Xnz), and gin,z)= ^gni^os^z), (31) 

л=0 n=0 

where X„=(2n+l)n, n=0,\,2... (cf, Hunt 1965). Substituting of (31) into (27) and (28) 
yields the same equation for both g„ and h„: 

gnW+K2gn=0, h„{4)+Xn\=0 , and additionally hn=-gn"/Xn. 

A corresponding characteristic equation has 4 complex roots: ±(X, n/2) 1 / 2±i(X n/2) 1 / 2. 
Since g„ and h„ vanish in the infinity (i.e., the core), then those with positive real parts 
should be dropped. According to the no-slip condition on the side wall (g n(0)=0) it 
follows: 

g„(r})=bnsm(K„r})exp(-KnT]) and / i N ( ^ ) = 6 „ c o s ( K „ ^ ) e x p ( - K „ 7 7 ) , к„=(кп/2)т. (32) 

The boundary condition (30) for h{rj) determines b„: 

1 + ^ 
Ьп=ап- - 1 7 2 — ' ( 3 3 ) 

l + a T H a к„ 
where a„=4(-l)n/A.„2 are coefficients in the expansion of z=Xarnsin(A,„z), ze[-0.5,0.5]. 
So, the solution (31-33) for perfectly conducting ends and an arbitrary conducting 
side wall, being the first term of asymptotic expansion, has been expressed as a 
rapidly converging series of elementary functions. In case of insulating side walls 
(a T=0), this solution exactly coincides with one found by Hunt (1965) for the 
rectangular duct flow. The analogy seems to be obvious, since the curvature effect in 
a narrow boundary layer is of a higher order of magnitude. Nevertheless, this analogy 
is not complete. The curvature effect in the boundary condition (26) is characterized 
by the term 2а хФ/Л. When the conductance а т increases, the characteristic Ф drop in 
the tangential boundary layer (and, consequently, the derivative,) decreases if 
compared to Ф itself. So, the increasing of conductivity increases the role of the 
curvature. It follows from (33) that the curvature effect governs at ar»R. 

The maximum angular velocity calculated from the first term of expansion is 
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T 4 \+2aX/R T 
-vsin(7t/4)exp(-7ī/4)«—0.13-

H a x 0

2 1 + а т (0 .5НаХ 0 ) , / 2 На - • — u _l/2 

1 + 2 а т / Л 
1 + 1.25атНа' 

(34) 

Suppose, a^»R. Then ат«0.2/(/Ша 3 / 2) that agrees with the results of a previous 
numerical solution (Figure 6). The tangential boundary layer velocity scale 
Q T~THa~ 3 / 2 takes place for poorly conducting side wall and negligible curvature as 
well ( Н а " , / 2 « а т « п и п ( 0 . 1 Н а 1 / 2 ^ ) ) . In this case П^0.П/(ахЯаш). It means that 
there is a range of tangential wall conductivity, when fix=(9(T/Ha3/2) for the duct flow 
(Л->ОО), too. As well as for the flow in the cylinder, it is necessary that aTHal/2»\. 
Of course, the " -3 /2" scaling law takes place only when the characteristic value of the 
solution (34) dominates over the dropped 0 (Ha _ 1 ) term in the "sewing" condition. It is 
ensured by ( ^ « О . Ш а " 2 . Notice that this poorly conducting wall limit depends on the 
Hartmann number. If Н а » 100, then even the side wall with O R » l may turn out 
"poorly conducting". If the side wall is perfectly conducting, the solution (31-33) for 
the duct flow looses its sense, because the dropped 0 (Ha _ 1 ) term in the "sewing" 
condition becomes a leading one. Evidently, Hunt's (1965) solution for all perfectly 
conducting walls sets in then. 

The analytical boundary layer type solution (31-33) for large Ha and perfectly 
conducting end-walls was compared with the numerical one (Figure 6 and 8). Figure 8 
(a and b) depicts the velocity profiles in the mid-height of vessel for perfectly 
conducting and insulating side walls. In the first case, even a rather strong SMF does 
not ensure good agreement because the core velocity remains comparable to the 
maximum boundary layer velocity. However, an algebraic sum of analytical maximum 
boundary layer (34) and core (20) angular velocity fits well to the numerical results 
(Figure 6). Besides, the characteristic profile behavior and extreme location turned out 
well predicted, even when the core and boundary layer velocities were of the same 
order (Figure 8 a). 

0.80 0.85 0.90 0.95 1.00 0.80 0.95 1.00 

Figure 8. Radial profiles of angular velocity in the tangential boundary layer. 7=106, R=1.0, a „ » l . 
(a) —perfectly conducting, (b) — insulating side wall. Dots — numerical, curves — analytical 

boundary layer type solution. 

The case of poorly conducting end-walls and insulating side wall has a special 
practical importance, since the mentioned combination of wall conductance is 
characteristic for semiconductor crystal growth processes. A problem similar to (27-
30) follows. The characteristic value of g(n->ao) in the core is 0 ( H a " ' a n

_ 1 ) « l , so а 
solution similar to (31-33) can be found. The problem essentially differs with the 
force distribution, which is nearly the same as for the insulating ends. It should be 
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integrated to receive the base solution Фо analogous to Фо~THa~ 2 z for perfectly 
conducting ends. After that, the solution (31-33) can be applied with the 
corresponding coefficients of expansion a„ of the base solution Фо. The values of first 
two coefficients depending on the aspect ratio are presented in table 3. 

R ao a\ 
0.1 0.41 -0.056 

0.25 0.37 -0.037 

0.5 0.27 -0.022 

1.0 0.15 -0.012 

2.0 0.072 -0.0056 

4.0 0.035 -0.0027 

Table 3. Driving force expansion coefficients depending on the aspect ratio. 

We see from (26) or (30) that the curvature of sidewall is significant only when it is 
conducting. Therefore, if a vessel has all insulating walls, the tangential boundary 
layer solution should coincide with the corresponding one in the duct flow. It has a 
thickness varying along the side wall and a characteristic velocity of the same order as 
in the core (Shercliff 1953, Williams 1963). The numerical simulation has confirmed 
that. 

The last characteristic case deals with the insulating end walls and a perfectly 
conducting side wall. Similarly to the duct flow, the numerical simulation revealed no 
essential influence of the side wall conductance. There was an analytical solution 
found for a corresponding duct flow (see, Hunt & Stewartson 1965, Grinberg 1961 
and 1962). No essential novelty is expected, since then it has to reveal itself in the 
numerical solution. Thus, we restricted our consideration of this case to the numerical 
simulation. 

7. Meridional flow under a strong steady magnetic field 

It is shown in §6 that the variation of angular velocity takes place in the axial 
direction of side layer regardless of the wall conductivity. Thus, an additional 
meridional flow is generated. The angular velocity drop in the longitudinal direction 
of the side layer is of the same order as the angular velocity itself. So, the axial 
pressure gradient there can be estimated as follows: 

dp/dz ~ bJLdpldr ~ bxILpQ.?L. 

It should be balanced by a shear: др/dz ~ / T V V t / 8 t . Combining two previous 
expressions, an estimated meridional velocity in the boundary layer follows: 

v ^ v W , (35) 

which always vanishes slower than the characteristic meridional flow velocity v n in 
the normal boundary layer. From (23) and flow continuity it follows that 
v n ~ v Qo 8 n L. The comparison of the scales of characteristic flow velocities at 
different wall conductance is presented in table 4. 
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TaWe 4 Characteristic velocities of azimuthal swirl and meridional flow. 

These scales fit well to the results of numerical simulation. Figure 9 depicts the 
dependence of stream function maximum \ ļ / m a x on Hartmann number for three 
characteristic cases of wall conductivity. Note that v T~vļ/m a x/5 T. 

Figure 9. Stream function maximum versus Ha. T=l(f, R=l. 

Figure 10 illustrates the consequent feature of a strong SMF field to "push" the 
meridional flow towards the side wall. 

Z 0.0 

-0 5 -0 .5 

Figure 10. Meridional flow under weak and strong SMF. All walls are insulating. 
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Since the meridional flow in the boundary layer vanishes slower, the inertia is 
expected to dominate longer there. Let us estimate a limiting value of strong SMF 
induction. The field will be strong, if the Coriolis force 0(р\гС1х) becomes negligible 
in comparison to the e.m. driving force 0(pv 2 /L 3 T). A characteristic radial velocity of 
secondary flow in the boundary layer at side wall v r can be estimated from expression 
(35) for vT. Due to continuity, vr~vT5T/Z,. Thus, the estimates of large Ha numbers 
follow: 

(Ha 1 / 2 ) (T 2 Ha 7 / 2 ) (THa 1 )~T o r H a ~ T 2 / 5 , i fQ T ~T/Haand (36) 

(Ha 1 / 2 ) (T 2 Ha 9 / 2 ) (THa 3 / 2 )~T or Ha ~ T 4 " 3 , if Q T ~T/Ha 3 / 2 . (37) 

One can see that these limiting values are larger than the ones for the core. The 
effect manifests itself in the unsteady numerical solution. Strong forcing by RMF 
gives rise to continuous flow oscillations. Richardson (1974) examined the stability of 
purely azimuthal flow in an infinite cylinder. The Taylor-Gotler type instability 
appears near the side wall. The numerical simulation in the cylinder of finite length 
revealed essential stabilization by recirculation (Gelfgat et al. 1991, Priede 1993, Barz 
et al. 1997, Grants 1998, ch. 2). We investigated the flow stability depending on the 
imposed SMF. Our numerical simulation has revealed that the oscillations disappear 

-tic 

together with the determining role of inertial forces at SMF of Ha~T (Figure 11). 
The numerical results were confirmed experimentally only for a strong SMF. 
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Figure 11. Neutral stability curve at a strong SMF. Comparison of numerical and experimental results. 
R=l. Dashed line depicts the limit of На-Ю. 

8. Oscillating body force 

Note that the model is based on the assumption of negligible oscillating body force 
(§2). Let us estimate the amplitude of angular velocity oscillations. According to the 
Maxwell's equation, a uniform magnetic field rotating in a (0,r) plane induces a 
purely axial alternating e.m.f. of magnitude coryBo. If the end walls are perfectly 
conducting, the induced currents are purely axial fj z '~ стюоВоЛо)-

If the end walls have finite conductance, then radial current of magnitude >' 
appears. Similarly to (8), the relationship: jz'+jr'~CTcooBoZ for oscillating current density 
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follows from the Ohm's law. Contrary to the SMF induced currents, there are no 
boundary layers for the oscillating ones. The current continuity requires 
j z '/? 0~j r 'Z,+jw r

,A n, where j w r ' is radial current density in the endwall. Expressing j w r ' from 
the continuity condition for tangential electric field on the end wall Qr'/a-Jv/r'^n) and 
considering Ro~L, it follows that j z '~ j r ' ( l+a n ) . Hence, >' can be estimated as: 

, о-Ц>о£В0  

J r ~ l + a n 

The SMF induced steady current is j~(aQr>LB) (9-11). Suppose, a„ is finite. Since 
a>o»Qo, an oscillating body force jBn due to the interaction between SMF induced 
current and RMF will be negligible. A dominating oscillating body force j r 'B , in its 
turn, will be balanced by the inertia: jr'B~pQ'Z,tūo, where Q' is amplitude of angular 
velocity oscillations. Now we can estimate the amplitude of oscillations as: 

P 

It should grow together with В while the mean flow angular velocity decreases. So, in 
case of insulating wall, the velocity oscillation amplitude becomes comparable to the 
mean flow velocity at Ha~(T/Hae)1 / 2. Here Ha* denotes the Hartmann number of RMF. 
In this case the SMF induction threshold hardly lies in the range of practical interest. 

If the end walls' conductance is cc n=0(l), then the amplitude of velocity 
oscillations in the core reaches the magnitude of the core velocity already at 
Ha~(T/Hae) 1 / 3. Contrary to the insulating wall case, the threshold induction seems 
quite realistic. However, the characteristic mean and oscillating core angular velocities 
stay very small in comparison to the mean angular velocity of boundary layer. Further 
increase of the end wall conductance reduces the radial part of oscillating current and, 
consequently, the phenomenon takes place later. 

9. Experiment. 

The experiment was carried out on In-Ga-Sn eutectic (table 5) poured in a vessel of 
the radius equal to the height of 50 millimeters (figure 12 a). The vessel walls were 
insulating. A maximum induction of rotating magnetic field was about 6 mT (T=10 7) 
that provided a maximum azimuthal velocity about 15 cm/s, or the Reynolds number 
about 10 4. The rotating magnetic field was generated by a one pole pair inductor of 
dimensions: diameter Z)=29cm, height Я = 1 9 с т . The inductor was fed by 50 Hz 
three phase alternating current. A maximum steady magnetic field induction was 
180 mT, or the Hartmann number about 300. SMF was generated by a water-cooled 
coil with the internal diameter approximately equal to the height of 17 cm. The field 
non-uniformity in the experimental volume was less than 10%. 

The presence of the imposed steady axial magnetic field and thin hydrodynamic 
boundary layers at the end walls allows to use simply a couple of electrodes to 
measure the azimuthal velocity. Suppose, the normal to field end walls are insulating 
or poorly conducting. The induced current density in the core can be estimated then 
as: jo~o"fio5nB (9) or jo~CTQo£Ban (10), correspondingly. So, if both bJL and ctn are 
much smaller than unity, then the contribution of current density is negligible in the 
Ohm's law if compared to the one of characteristic e.m.f. 0(GQQLB), and, hence, 

veBz=5<ļ>/dr. 
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Figure 12 (b) schematically depicts the probe. Distance between electrodes Д1 in 
our experiments varied from 4 to 12 mm and measured potential difference Аф was of 
the order of 1-100 uV. 

Figure 12. Sketch of experimental device, (a) general view. 1 - experimental volume; 2 - RMF 
inductor; 3 - SMF inductor; 4 - probe positioner; 5 -probe, (b) probe. 

Content 67% Ga, 20.5% In, 12.5% Sn 
Density /7=6.4 g/cm 3 

Conductivity o=3.46xl0 6 S/m 
Viscosity (20°C) v=62.3xl0" 8 m 2 / s 

Table 5. Properties of experimental liquid. 

We measured the total applied e.m. torque acting on the liquid instead of the RMF 
induction. For this purpose we hung our volume on a calibrated string and measured 
steady rotation angle. 

The experiment showed a good agreement with the theoretical results (Figure 13). 
Note that both experimental and laminar numerical results fitted well to the theoretical 
results for a turbulent flow obtained by Davidson (1992): m a x ( v e > * 1 . 9 8 T 5 / V / 1 8 . At a 
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lower forcing, the coincidence to the selfsimilar solution at weak (Q 0~0.52T ) and 
strong (Qo=0.5THa"') steady magnetic field limit has been found in experiments. 

Figure 13. Reynolds number of inducedflow versus Taylor number offorcing. Here Re is based on the 
azimuthal velocity at r=0.86, z=0. 

An important theoretical fact is the appearance of a new source of meridional flow 
in the tangential layer. The experiment has confirmed the presence of an essential 
angular velocity drop in the axial direction at a strong steady magnetic field (figure 
14). 
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Figure 14. Azimuthal velocity profile along the tangential boundary layer. T=2.2x10s, Ha=90. 

In order to verify numerical results concerning the SMF influence on the flow 
stability, we performed experimental measurements of time dependent azimuthal 
velocity. For a strong SMF (Ha>T 1 / 3), the experimental and numerical results coincide 
well (figure 11). Unfortunately, we could not increase T above 10 7 in the experiment. 
Nevertheless, at least the possibility to generate a stable rotating-recirculating flow 
with Re«10 4 has been shown. 

The relationship between the Reynolds number and Hartmann number necessary to 
stabilize the flow can be introduced. The oscillations were found to disappear at a 
strong SMF threshold (Ha~T ), when the velocity scale Re~THa sets in. 
Consequently, a maximum stable flow velocity is Re~T 1 _ 2 / 5 ~T 3 / 5 . Thus, the imposed 
SMF of induction Ha allows to generate a stable flow of velocity Re~Ha 3 / 2 . The " T 2 7 5 " 
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law can be broken at a certain higher Reynolds number. This question lies beyond the 
scope of the current investigation, so we can refer to the general similarity to the duct 
flow only. The stability threshold Re/Ha=O(10 2) was introduced by Branover & 
Tsinober (1970) for the duct flow at a strong transverse field. Unfortunately, their 
conclusion is based on experimental data at the Reynolds number below some 2x l0 4 . 
So, it worth nothing in our case. 

Our experiment showed that a 2D numerical axially symmetric model considerably 
overestimated the experimental stability threshold in case of a weak SMF. 
Unfortunately, we could not measure the flow oscillations below Ha=35 because of a 
very low signal. The discrepancy may be caused by the 3D instability of Bodewadt 
layer (Lingwood 1997, Savas 1987) as well as by perturbation of probe. 

Figures 15 and 16 present some examples of the experimental results illustrating 
the unsteady flow behavior. Figure 15 depicts time dependencies of azimuthal velocity 
and corresponding amplitude spectrum in the vicinity of a neutral stability curve. 
Rather monochrome oscillations are characteristic for a strong imposed SMF. The 
relative amplitude grows and spectra widen at a lower induction. 

{a) 

Figure 14. Azimuthal velocity oscillations and amplitude spectrum (fast Fourier transformation) in the 
vicinity of neutral stability (See, figure 11). 

In practical applications RMF is known not only as a tool for stirring but as a mean 
to "stabilize" the flow as well. An undesirable strong oscillating convection due to 
buoyancy takes place during crystal growth processes. It turned out that the period and 
amplitude of oscillations of RMF driven flow was much smaller (Dold & Benz 1995, 
Fischer et al 1997). Unfortunately, the increase of necessary forcing that accompanies 
linear scale enlargement, can increase the flow oscillations, too. The imposed SMF 
reduce them or eliminate at all. Figure 16 illustrates the above said. 
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Figure 15. SMF effect on flow oscillations at strong forcing ТяЮ.8107, Re^lO4 

10. Concluding remarks 

This chapter presents a theoretical investigation of main features of the mean flow 
of conducting liquid generated by rotating and steady axial magnetic fields in a 
cylindrical vessel. The influence of a variety of main dimensionless parameters is 
examined. Some results are verified experimentally. 

On the one hand, the flow is related to the RMF alone driven flow when the 
induction of imposed SMF is small. On the other hand, it becomes similar to the well-
studied rectangular duct flow at a strong SMF. If the conductance the of end walls is 
comparable or much larger than the conductance of an adjacent boundary layer, the 
core is subject to the influence of SMF before the normal boundary layer is. Hence, an 
intermediate range of SMF action appears. The rotating boundary layer thickness 
(v/Qo) 1 / 2 remains, while SMF brakes the core as Qn=0(THa~ 2 ) . Thus, the normal 
boundary layer grows wider until the inertia is suppressed in the whole layer. 

The order of magnitude estimates was confirmed by a selfsimilar numerical 
solution, which, in its turn, agreed with the results of 2D numerical simulation. The 
Taylor number of forcing based on the average torque can be used to predict 
maximum angular velocity in case, when the end walls are insulating. A strong SMF 
increases the role of radial non-uniformity of the force distribution. So, the core 
angular velocity in the vicinity of the axis is about (1+1.5/Г ) times smaller than the 
maximum one near the side wall. 

A tangential boundary layer appears at the side wall under the influence of a strong 
SMF. This boundary layer is generally analogous to the one in the 2D duct flow. 
However, in case of considerably conducting end and side walls ( a „ » l & a^»R), an 
unexpected "-3 /2" scaling appears for the boundary layer velocity. The analytical 
solution has revealed the role of curvature causing this discrepancy. It also 
demonstrated that the same 0 ( H a - 3 / 2 ) velocity scale should take place in case of 
conducting end walls and a poorly conducting side wall ( H a _ l / 2 « a x « 0 . 1 H a 1 / 2 ) 
regardless of the curvature (i.e., for the duct flow as well). Notice, if the Hartmann 
number is O(10 4) or more, then the side wall with a relative conductance exceeding 
the unity ( o t T » l ) may turn out "poorly" conducting. 

An essential angular velocity drop in the axial direction of tangential boundary 
layer causes the meridional flow, which is less influenced by SMF than the "usual" 
one. The inertia persists in the tangential layer until the Hartmann number reaches a 
value Ha~T . Both, the numerical and experimental investigations showed that the 
flow oscillations disappeared at this threshold. The maximum velocity of stabilized 
flow scales as Re~Ha . 
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The effect of oscillating forces due to alternating radial currents and steady axial 
magnetic field was neglected in our investigation. The order of magnitude estimates 
showed that the assumption justified itself under common industrial or laboratory 
conditions. At the same time, the core flow considerably oscillating with the rotating 
field frequency coo can be generated under special conditions. 

One can employ an analogy to the rectangular duct flow if plans any experiment on 
fully developed flow in the presence of a strong SMF. However, this analogy then 
may need a more detailed exploring. 

The imposed SMF often allows simple azimuthal velocity measurements. If the 
flow has thin boundary layers near the insulating or poorly conducting end walls, a 
couple of electrodes is helpful enough for measuring the azimuthal velocity. 

The present investigation reveals and illustrates the ability of SMF to control both 
the mean and unsteady characteristics of the RMF driven flow. A strong SMF brakes 
the meridional flow drastically. Therefore, the superimposed rotating and steady 
magnetic fields can be efficiently used to control the heat transfer and solidification 
interface, at the same time ensuring axial symmetry due to a residual strong azimuthal 
flow (Grants & Gelfgat 1997). On the other hand, SMF reduces or even eliminates the 
flow oscillations, which are undesirable in crystal growth. 
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Chapter IV 

Rotating magnetic field driven flow in a rotating 
cylinder 

Azimuthal body force driven swirling flow in a rotating vessel is examined theoretically. The core 
region appears surrounded by von Karman swirling layers. Steady flow is controlled by a boundary 
layer type similarity solution of the so-called one disk problem. This solution predicts the existence of 
several steady states as well as the absence of any solution in a certain range of imposed rotation. A 
corresponding numerical simulation of full original problem confirms the feasibility of those branches 
which tends to the Ekman type flow at increasing of the vessel's speed. Instability of the force balance 
in the core is shown for a branch which tends to the Cohran's solution. An essentially 2 D flow with 
separating layers or an additional couple of meridional recirculation loops appear in the range of absent 
similarity solution. An asymptotic solution is given for the Stewartson's type side layer at almost rigid 
rotation. The results on the stability of rotating boundary layers are reviewed. The investigation shows a 
possibility to generate controllable and stable flows needed in the crystal growth technologies. 

1. Introduction. 

Guided melt flow can serve as an effective tool to optimize heat and mass transfer 
as well as solidification interface in the crystal growth processes (Gelfgat & Priede 
1995, Grants & Gelfgat 1997). Since the semiconductor melt has a considerable 
conductivity, magnetohydrodynamic (MHD) methods can be used (Langlois 1987). 
The rotating magnetic field recently has received attention as a tool to generate 
swirling flow and, thus, to control convection of the melt. A practical point is that the 
induced artificial flow is more uniform and less oscillating than the natural buoyant 
one (Gelfgat & Priede 1995, Dold & Benz 1995, Fischer et al 1997). Besides, the 
necessary induction of rotating field is of the order of few militeslas that is much 
smaller than in case of the steady magnetic field application. 

The rotating magnetic field (RMF) is considered to be a uniform magnetic field 
rotating in the plane perpendicular to the axis of symmetry. An induced Lorentz force 
drives a swirling-recirculating flow with strong coupling between swirl and poloidal 
recirculation. An exhaustive work of Davidson (1992) explains the key features of 
mean flow, and the theory was shown in a good agreement with previous experimental 
investigations. A review of RMF driven flow is given by Gelfgat and Priede (1995). 
The pattern of the induced flow is rather fixed. A uniformly rotating core region 
occurs surrounded by thin boundary layers. The main flow characteristics are 
determined by a single applied magnetic torque. Centrifugal force in the core is 
balanced by a radial pressure gradient. Therefore, in the boundary layer, where the 
azimuthal velocity falls to zero, a radial inflow of the order of azimuthal velocity is 
generated. Due to continuity, the flow is always directed from rigid walls (the 
solidification interface) towards the bulk of melt. The fixed flow structure is 
shortcoming from the point of view of optimization. A superimposed steady axial 
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magnetic field may improve characteristics of RMF driven flow (Grants, Priede & 
Gelfgat 1996, Grants 1998, ch. 3). The steady magnetic field can control the pattern 
and magnitude of velocities of meridional flow but its direction. 

Priede (1993, 1994) proposed the imposed rotation of vessel (IRV) to control RMF 
driven flow. He used steady self-similar (laterally unbounded) boundary layer type 
approach transforming the original problem to the well-known single parameter 
problem of the flow due to the disk rotation (see, review by Zandbergen and Dijkstra 
1987). Besides, Priede proposed a new effective analytical method to solve it. The 
main results of the analytical solution were: 

(i) Possibility of meridional flow direction change; 
(ii) Possibility to control flow velocities and boundary layer thickness; 
(iii) Existence of two steady state solutions for counter-rotation; 
(iv) Absence of a solution for a certain range of counter-rotation. 

However, some questions can not be answered by similarity solution. The first one is 
on capability of selfsimilar approach to describe the flow in the cylinder of finite 
dimensions. Next one is on existence and additional conditions to obtain a laterally 
bounded flow corresponding to each of the steady solutions possible at the same 
imposed rotation. Last but one question is on the actual flow in the range of counter-
rotation where a steady self-similar solution is absent. In order to answer these 
questions, we resorted to a direct numerical simulation of the problem in both self-
similar and axially symmetric (2D) approximations. 

Notice that the current problem gives a certain example of single parameter von 
Kārmān flow which had received much attention of researchers in the past. On the 
other hand, the current paper continues the recent investigation of certain MHD 
application. The single parameter, that governs the solution, can be introduced in 
several ways. Usually the ratio of fluid (core) and disk (vessel) angular velocity is 
used. However, referring to the original problem it is more convenient to use the terms 
of differential rotation as Priede did. The original problem, in its turn, deals with a 
fixed angular velocity of the vessel and unknown angular velocity of the core flow to 
be found. So, different formulations arises, which are sequentially examined in the 
current chapter. The problem of von Kārmān swirling flow has been attacked by a 
variety of methods (numerical solutions, different expansions as well as rigorous 
provements of existence and uniqueness) during several decades as described in the 
review by Zandbergen and Dijkstra (1987). Thus, we aimed our efforts mainly to 
study applicability of the associated single parameter solution to the original problem. 

Our investigation confirmed the feasibility of two solution branches tending to an 
almost rigid (Ekman type) flow. The steady solution at counter-rotation, which tends 
to the Cohran solution with the core in rest (von Kārmān type flow), was unreachable 
numerically from a variety of initial conditions. We have found a corresponding 
solution of the original problem to be unstable. 

Section 2 deals with model and governing equations in both 2D and self-similar 
approximations. In §3 we introduce connection between the original and the one disk 
problems. Simple order of magnitude estimates are given in §4 for the case of almost 
rigid rotation. An analytical boundary layer type solution of both full and linearized 
equations is compared with a corresponding numerical similarity solution of the 
original problem in §5. An original 2D flow in the range of absent selfsimilar solution 
is examined in §6. A Stewartson's type boundary layer appears at the side wall in case 
of a rapid vessel's rotation. We examined it in §7. Section 8 deals with the stability of 
flow. 
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2. Equations 

Consider magnetic field vector Bo=const rotating with a constant angular velocity 
a>o in a plane perpendicular to the axis of cylinder filled with a conducting liquid. The 
rotating field induces an oscillating current, that interacts with RMF itself, so giving 
rise to an oscillating body force with a frequency 2coo and averaged value in the 
direction of field rotation. This volumetric force drives a swirling flow. Besides, the 
cylinder itself rotates with an angular velocity Qd . The meridional flow appears due 
to the so-called Ekman pumping at differently rotating endwalls. A theoretical model 
is based on the following assumptions: 

(i) Frequency of RMF rotation is too low to cause an essential skin-effect; 
(ii) Induction of RMF is too low to drive a flow with an angular velocity 

comparable to that of RMF rotation. 
Under these assumptions the driving body force is purely azimuthal and flow 
independent (Davidson 1992). In an infinitely long cylinder (liquid enclosed by thick 
and well conducting endwalls) the induced magnetic force is Fe°°(r)=0.5pQf2r, where 
Qf is angular velocity of forcing Qf=(o-oVp)1/2Bo (Davidson 1992); a and p is 
conductivity and density of liquid, respectively. The induced currents have to bend 
along the insulating endwalls making body force zero here. An analytical expression 
of the force distribution in a truncated cylinder with insulating ends is given by 
Trombetta et al. (1997): 

FQ = B 0 aco 0 

2 £ 1 ( ^ - 1 ) / , ( ^ ) 

sinh z + 0.5L - sinh z - 0.5/ 

о J 
sinh(A,£ L/RQ) 

where the axial coordinate z is measured from the midheight of cylinder of lenght L 
and radius RQ, Iv(x) is the Bessel function of first kind and Л,* are the roots of lv'(x)=0. 

The flow is considered to be axially symmetric, laminar but already inertia 
dominated. These assumptions turn out to be applicable under the common crystal 
growth conditions. On the other hand, they permit to separate electromagnetic and 
hydrodynamic problems and provide the reception of 2D or even ID (self-similar) sets 
of equations. (Davidson 1992, Priede 1993, 1994, Gelfagt and Priede 1996). 

Let us write a non-dimensionalized^ axially symmetric Navier-Stokes set of 
equations in a form of: 

f^ + H — + - { — — - — — 
dt dz 2\dr dz dz dr 

d2Q 

dz dr 

3 3Q 
, + + 

2 r dr 

d2Q 
— + ̂ - + Te/(r,z) , (1) 
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dt dz 2 \ dr dz dz dr 

dQ2 d 2 W 
dz dr 

3 5W 
. + + 

2 r dr 

d2W 

dz2 

а 2 н з а н а 2 н „ „ 7 n 

—r + + —- + 2W = 0. 
dr2 r dr dz2 

(2) 

(3) 

+ Vessel's height L and diffusion time t=L2/v are used as characteristic values. No special notation is introduced 
for the dimensional variables used further in scaling analysis. 
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Functions Q, W, H are defined as follows: Q=ve/r; W=w/r=(Vxv,ee)/r; 11=2//^11/, 
where iļ/ is stream function and w is worticity of the meridional flow. Hence, physical 
velocities are expressed as follows 

v e =rQ, vz=H+0.5rdH/dr, v r=-0.55H/&. (4) 

The magnetic Taylor number Te=0.5ocooBo2£4/(pv2) characterizes the magnetic 
forcing; v denote kinematic viscosity of liquid. Force distribution flr^) is defined here 
d&j{rj:)=FQ(rj:)IFQm(f). Imposed rotation of a vessel is encountered through boundary 
conditions for angular velocity: 

where Qa=Qd*I 2/v is non-dimensional angular velocity of a vessel and 27 is vessel's 
surface. 

The numerical simulation in a resting vessel shows (e.g., Gelfgat, Priede & Sorkin 
1991, Priede 1993) that under considered conditions RMF driven flow has an almost 
uniformly rotating core. If so, it is insensitive to the force distribution and is 
determined by a sole total applied torque. Let us substitute the actual force distribution 
in a truncated cylinder by an idealized one linearly increasing with the radial distance 
from the axis (Ungarish 1997). It implies a substitution of actual source Teftrj:) by a 
constant T, called here the Taylor number of forcing 

т__м_Те__ш?__ w — ( 4 ) 

Щ mR0

2v2 

0.5 m[Ro /x) 

where M/Mo is ratio of an actual driving torque to the one acting on a corresponding 
piece of infinite cylinder; m is mass of liquid. Then a ID set of similarity equations 
can be obtained assuming Q, H and W constant in the radial direction (e.g., Shlicting 
1979): 

— + H Q ' - H ' f i = Q" + T (5) 
dt 

dH" 
dt 

+ HH"' + 2 (Q 2 ) ' = H ( 4 ) (6) 

The boundary conditions for (5-6) are: Q(±0.5)=Q d; H(±0.5)=H'(±0.5)=0. We used an 
idealized source characterized by T in self-similar analysis and an actual driving force 
distribution lefir^z) in a 2D simulation. 

3. Connection to one disk problem 

Consider a selfsimilar problem. As shown by Davidson (1992), magnetic forcing T 
is balanced by the Coriolis force H'Q in the core. Hence, the angular and radial 
velocity is constant along the height: Q=Qn and H=-2Hoz, QoHn=2T. The core 
solution does not satisfy the boundary conditions, so hydrodynamic boundary layers 
appear. Due to continuity, the radial velocity and, consequently, the Coriolis force are 
much larger there than those in the core. Therefore, the magnetic force is negligible in 
the boundary layer. Let us introduce reference values for dimensionless angular 
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velocity Clref=Tm, axial velocity H r e / =T 1 / 3 and an axial scale 6 r e / = T l / 3 . Then the 
steady boundary layer problem follows (Priede 1994): 

"080 - "ЬёО = So . (7) 

W + 4 g 6 S 0 = * ( ) ( 4 ) (8) 

go(0)=QVftre/,go'(«>)=0, (9) 

Ло(0)=^(0)=Ло 'К> = 0, (10) 

Ао(«>Ь(°о)=2, (11) 

where gQ(Ģ)=CllQ.ref, И0(ф=Н/Нге/, Ģ=(0.5±z)lbref. Condition (11) follows from the 
force balance in the core. Terms of 0(T~ 1 / 3 ) has been dropped in (7-11), so solutions 
ho, go represent the first terms of asymptotic expansion. This problem can be further 
transformed into the problem on disk and liquid differential rotation. Let us use a 
substitution (Priede 1994): 

£ о ( £ = Ы « Ь Г о ( О М у ) , Ло(^=Ы°о)-ЫО)) 1 / 2Л(уЛ ;Hgo(°°bgo(0)) 1 / 2 £, (12) 

that affects only boundary conditions, as follow: 

hg'-h'g = g", (13) 

hh'" +4g'g = h(4), (14) 

^ 0 ) = ^ - 1 / 2 , g(«>)=$c+l/2 (15) 

A(0)= A'(0)= h'(oo)=0, (16) 

where ¢¢. is inverse Rosby number representing an inverse value of a relative 

differential angular velocity = 05 g o ( o o ) + g ° ( Q ) = 0 . 5 ^ ° + Q d • Values of ^ 0 . 5 
go(°°)-So( 0 ) Q o " Q d 

(when Qd=0, Bodewadt's solution) and 1^-0.5 (when fio=0, Cohran's solution) mark 
the boundaries of three different flow regimes. If |^[>0.5, then the sign of the core and 
vessel velocity coincides with the sign of <Ķ If -0.5<<^<0.5, then the core and the 
vessel rotate in different directions. Large inverse Rosby number |^ļ—>oo correspond to 
the Ekman type almost rigid flow. 

The link to the original problem (7-11) is introduced via the solution of associated 
problem (13-16) for axial velocity //«,(¾) in the liquid bulk far from the disk, where 
the force balance in the core (11) should be satisfied. It yields 
^o(0)=Q d/^ e /=(^-0.5)(2/i 0 0(!J ŗ+0.5))- 2 / 3 . 

Priede (1994) has solved the associated problem using an expansion in form of a 
double sum of complex exponentials. Substituting into (13-14) he showed all the 
coeficients depending on three real parameters: hx and a complex constant. These 
parameters were found to satisfy three boundary conditions (16) on the disk. A full 
asymptotic expansion containing only exponentials is briefly described also by 
Zandbergen & Dijkstra (1987) with a reference to Dijkstra (1978). Unfortunately, the 
latter one was not available to the author and made the comparison impossible. Figure 
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1 depicts solution Лда as a function of the inverse Rosby number. Different flow 
regimes (further called branches) are denoted by numbers 1-5. 

Figurel. Axial velocity at infinity as a function of the inverse Rosby number. — exact solution of 
associated problem (13-16); — linearized solution of original problem (5-6); - • - linearized solution 
of associated problem; numerical solution of (5-6) is depicted by dots. Value of ^=-1.4495 separates 

branches 3 and 4 (See, also figures 3 and 11). 

The associated one disk problem is traditionally investigated in the terms of 
velocity ratios s=Qo/Qd and functions fix) and g(x), defined 

v r =rf'(x), \Q=rg(x), v 2 = - 2 / ( * ) , 

where \ r , vg and v z are dimensionless radial, azimuthal and axial velocities, 
respectively. Under this formulation further referred as a classic one, the problem 
takes the following form (e.g., Zanbergen & Dijkstra 1987) 

f'" + 2ff" = f ' 2 + s 2 - 3

2 , (17) 

g" + 2fg' = 2f3, (18) 

with the boundary conditions 

/= / '=0 , g=\, x=0 and / ' ->0 , #-+s, x ->oo (19) 

The link to the terms of problem (13-16), that is the inverse Rosby number <^and the 
value of function A(oo)=Aa>, follows: 

5=1+1/(^-0.5), /„=-0.515-111 7 2/!». 

A solution in terms of s and fx, is shown in figure 2. 
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Figure 2. Solution of one-disk problem in the terms of ratio parameter. Value s=0.48705 separates 
solution branches 3 and 4 (See, also figures 3 and 11). 

4. Orders of magnitude and linearized solution 

4.1 Orders of magnitude at almost rigid rotation 

Suppose, the imposed rotation is much larger than the differential rotation of liquid 
evoked by body force. Then the core rotates with an angular velocity close to that of 
the vessel. Since the flow is inertia dominated, it has the core and boundary layers. 
The core radial velocity vo is determined by the balance of driving magnetic body 
force due to RMF and braking Coriolis force: 

pv0fid ~ F e , (20) 

from which the estimate vo~/V(p£2d*) follows. Thus, the sign of radial velocity 
depends on the direction of imposed rotation. An obtained obvious suggestion on the 
meridional flow direction change is consistent with the sign of centrifugal force drop 
driving the meridional recirculation. Differential rotation of the core causes a 
imbalance between the centrifugal force and radial pressure gradient in the boundary 
layer. The sign of centrifugal force drop depends on the direction of imposed rotation 
(Davidson & Hunt 1987). If the vessel and RMF co-rotates, then, obviously, the 
centrifugal force in the core is larger than in the boundary layer and, therefore, a radial 
inflow is generated. On the contrary, if RMF acts in the direction opposite to a strong 
vessel's rotation, then it can only slightly brake the core. Consequently, the centrifugal 
force in the core is less than in the boundary layer and the radial outflow occurs there. 

Since the boundary layers are ex hypotesis thin, the radial velocity in these layers is 
much larger than in the core. Consequently, the Coriolis force is much larger than the 
driving body force and, thus, is balanced only by a shear: pQd vn~pvZ,AQ/62. A 
characteristic velocity of meridional flow is determined by the balance of the 
aforementioned drop of centrifugal force 0(pZ,(Qo2-Qd*2)) = 0(pZ,Qd*AQ) and 
frictional force 0(pvv n /6 2 ) . A characteristic Ekman boundary layer thickness 
5~|v/Qd I follows from two previous relations (Greenspan 1968). Now applying 
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(20), one can see that the differential angular velocity can be expressed as 
AQ~F9/(p|vQ d ' | 1 / 2). On the one hand, the velocity of both swirl and poloidal 
recirculation is suppressed by IRV similarly to the steady magnetic field (Grants, 
Priede & Gelfgat 1996, Grants 1998, ch. 3). On the other hand, IRV has a possibility 
to control direction of meridional flow as well. 

4.2 Linearized solution of original problem 

An analytical solution of original problem (5-6) can be easily found using a 
dimensionless form of obtained estimates. Let us rewrite (5-6) for boundary layer 
variables u(Q and v(Q defined as 

Q=Q d +T|Q d r 1 / 2 i ; (Q, H=TQ d - 'u (Q, C=|fi d| 1 / 2(0.5+z), 

neglecting small terms of higher order. A simple linear problem follows 

v"=-u\ 4 i /=u ( 4 ) (21) 

u(oo)=0.5, i/(0)=u(0)=u'(0)=0. (22) 

Condition u(QO)=Uco=0.5 follows from the force balance in the core. The solution of 
the linearized problem is well-known (e.g, Rogers and Lance 1960, Greenspan 1968): 

v { Q = u 0 0 ( l - c o s ( Q ^ ) (23) 

u(Q= M H s i n ( Q + c o s ( Q ) e<) (24) 

It can be expressed in terms of associated problem as follows: 
Лоо(ф=|^0.5|1/2/(!2гЧ-0.5), that differs from the solution of linearized associated 
problem Лоо(30=|3й1/2/^. (Priede 1993). Both are compared to the exact solution in 
figure 1. 

5. Numerical similarity solution 

Figure 3 depicts the results of numerical solution of the original selfsimilar 
problem (5-6) as well as the comparison to the linearized and exact boundary layer 
type solutions. The feasibility of a branch denoted by 1 at co-rotation and slight 
counter-rotation has been confirmed. A steady numerical solution disappears at 
Q d /Q r e / =-0.075 (¢£=0-36 or о=1/л=-0.16) together with an unlimited growth of 
velocities. That agrees with the results of an unsteady numerical solution of the 
associated problem performed by Bodonyi (1978). He recovered a limit-cycle 
character of time-dependent similarity solution at 0=-0.1 (¢£=0.41, Q d /Q

r ^=-0.05). 
Beyond 0=-0.15 (¢£=0-37, Q d /Q r e / =-0.07) his numerical solution diverged. 

According to the investigations by Priede (1994), another branch denoted by 2 
takes place in the range from $£=0-325 {Q.J€lref= -0.097) where function hx(<R) reaches 
its maximum (figure 1), down to ¢¢=-0.125 (Q d/Q

r e^=-0.83). An indicative case of this 
branch with ¢¢=0 or 5=-1 corresponds to equally counter-rotating disk and liquid, 
which does not possess any solution (McLeod 1970). Priede concluded the solution of 
this branch to be unstable due to an abnormal dependence between the disk rotation 
and the rate of meridional recirculation. 
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Figure 3. Core angular velocity versus disk rotation rate. — exact solution of associated problem 
(13-16); — linearized solution of original problem (5-6); numerical solution of (5-6) is depicted by 

dots. Branches 3 and 4 appear simultaneously at QJfTf =-1.4968 (See, also figure 11). 

Lack of corresponding steady numerical solution agrees with this. However, the 
offered suggestion seems not convincing since it is based on the analysis of a steady 
solution behavior instead of the dynamic terms. Besides, our more careful 
investigation revealed that the analytical similarity solution disappeared already at 
¢£=0.29 (o=-0.266 or Q d /Q r e / =-0.12) . Thus, Branch 2 turns out quite narrow ¢(.€[0.29; 
0.325]. Note that Bodonyi & Ng (1984) stated the disk similarity solution to be 
unstable below 0=-0.03. 

Neither analytical nor numerical steady solution exists at further increasing of 
counter-rotation until the interaction parameter reaches the value Qa/Cf^=-1A97, 
when two branches of the analytical solution appear simultaneously (figure 3; see, also 
figure 11). Only one of them, namely, Branch 3 already examined in the limits of a 
strong counter-rotation (§4.2) was detected numerically. A variety of initial conditions 
have been tried. The von Kārmān type analytical solution of Branch 4 has been taken 
as an initial condition at last. Nevertheless, the Ekman type solution of Branch 3 set 
in. The instability of force balance in the core of Branch 4 type solution is discussed 
below in §8.1. 

We detected another steady numerical solution denoted by 5 at a rapid counter-
rotation Qi/Ciref<-5.5. It developed in an initially resting or co-rotating layer. In spite 
of rapid vessel's counter-rotation, the core co-rotated with RMF (See, figure 3). 
Moreover, the core angular velocity increased together with a rate of vessel's counter-
rotation (5Qo/5Qd<0). A corresponding associated solution (denoted by 5) possesses 
to the well-known solution at vessel's counter-rotation (figure 1 and 2). Priede (1994) 
has missed the analytical solution already at ¢£=-0.38 (5=-0.134), before the core axial 
velocity hoo changed sign. Notice, that the force balance in the core (11) requires a 
positive Aoo($0 a t ^?—0.5 (fio>0). Thus, the solution ranged between ¢£=-0.5 up to 
¢£=-0.3664 (5=-0.1542), when h x reaches zero, has no consequences to the original 
problem. However, the solution continues up to ¢£=-0.3617 (5=-0.16054) with a 
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positive Лоо- A corresponding domain of the associated solution is quite narrow, while 
the parameter of original problem Qd/Qr<?^ changes from -5.5 to -co. Hence, the ratio 
of core and disk angular velocity fio/Qd stays nearly constant. 

• 

5 

.3, , , П Q 

• 
• 

. . . 1 

0 2 4 6 8 10 12 

(r*-0.5V5"y 

Figure 4. Axial profile of Branches 3 and 5 type solution at QJfPf=—5.67. The results of numerical 
and analytical solution are depicted by dots and lines, respectively. 

Branch 5 type steady solution has a much higher rate of the differential rotation 
and, hence, the meridonal recirculation if compared to Branch 3 (see, figure 4). The 
meridional flow is redistributed between two eddies (figure 5) depending on the rate 
of imposed rotation. In the limits of a very strong vessel's counter-rotation, the core 
circulation tends to zero and the entire meridional flow is localized in the boundary 
layer. A zero core circulation gives rise of the infinite growth of core angular velocity. 
It implies a limit of infinite imposed rotation accompanied by infinite opposite 
rotation of the core surrounded by infinitesimally thin boundary layers in the original 
solution. 

(z-0.5)/5^ 

FigureS. Streamlines of meridional flow for Branch 5 steady solution. £ij/Cl''=-5.67 

It is worth mentioning that the self-similar model does not control the balance of 
angular momentum. So, e.g., only 57% of the angular momentum production due to 
body force is driven out by shear on the resting end walls (Davidson 1992). The 
residue is carried away by radial outflow in the core. The ratio of frictional outflux to 
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magnetic production of angular momentum can be used as a measure of this 
imbalance: 

_ 2Q'(z = -0-5) _ g'(S = 0) ( 25) 
T 2^(41 + 0.5) 

Notice that the linearized steady solution (23-24) provides a conservation of 
angular momentum (5=1). Since the linearized solution underestimates differential 
rotation in case of counter-rotation and overestimates it in case of co-rotation (figure 
3), the angular momentum deficit (5>1) or residue (5<1) appears, correspondingly. 
The solution of Branch 5 has a much larger differential rotation and, hence, the 
angular momentum deficit is much larger than the production (5>10). Hence, a 
corresponding laterally bounded 2D flow should be supported by an additional forcing 
outside the core. An example of such flow is given below in §6. 

6. 2D numerical solution 

Neither analytical nor numerical self-similar steady solution was found in the range 
of counter-rotation Qd/Q r e^e[-1.5,-.12]. So, what actually happens to the flow in this 
range? Besides, a question on the ability of self-similar solution to describe the real 
flow in the cylinder of finite dimensions arises. In order to answer these questions, we 
performed a direct numerical 2D simulation. An exponential finite difference scheme 
obtained by the integral identity technique as well as Peaceman-Rachford implicit 
alternating direction time-stepping scheme were employed (Priede 1993). We 
considered an actual source of swirl Teflrj) instead of the idealized constant one T 
used so far in the selfsimilar formulation. 

A numerical 2D simulation confirmed the results of similarity solution for 
Branches 1 and 3. The boundary layer thickness and characteristic velocities scaled in 
agreement with the estimates (§4). A considerably oscillating pattern of Bodewadt's 
type boundary layer about ¢£=0.5 was replaced by an Ekman type behavior at almost 
rigid rotation Solutions at rapid со- and counter-rotation of the vessel differed 
in the direction of meridional velocity only, similarly as solution (23-24) describes 
both cases. The increase of imposed rotation increased the role of force distribution in 
the core. We shall see in §7 that at almost rigid rotation the radial profile of the core 
differential angular velocity adjusts to the body force averaged over the height. 

A significantly thicker boundary layer appeared near the side wall at almost rigid 
rotation. According to Stewartson (1957), it has 0(|Qd|" 1 / 4) thickness and, so, is 
somehow analogous to the magnetohydrodynamic side layer at the wall parallel to the 
field (Hunt & Shercliff 1971). Contrary to the MHD side layer, an angular velocity 
drop in the axial direction vanishes, decoupling the meridional flow. Thus, the almost 
rigid flow in the system under consideration turns out physically simple. The side 
layer is briefly examined below in §7. 

The numerical simulation showed that the flow becomes essentially two-
dimensional in the range of absent similarity solution. That implies the appearance of 
a radial non-uniformity of angular velocity distribution even in the very vicinity of the 
axis (figure 6, a and b) as well as separating boundary layers (figure 6, a and c). An 
intermediate stage includes the development of an additional couple of meridional 
flow loops near the side wall (figure 6, d). As a result, the boundary layer at side wall 
grows much wider (figure 6, b). A more detailed examination of the flow ranged to 
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the absent similarity solution lies beyond the scope of our investigation. These flow 
structures are expected to be less stable and, hence, suitable for intense stirring. 

(a) (b) 

Figure 6. Isolines of angular velocity (a, c) and streamlines of meridional flow (b, d) at: QJfT'f =-0.25 
(a, b) andQ/sTf=-0.75; (c, d). 

A probably aphysical Branch 5 with a huge deficit of angular momentum has been 
detected in the selfsimilar solution. Evidently, such flow should be supported by an 
"injection" of angular momentum outside the core. One can realize such a support by 
RMF forcing beyond "open" side wall or by co-rotating with the RMF "closed" side 
wall. The "open" side wall implies the disks surrounded by an unbounded liquid, but 
"closed" side wall corresponds to the discs enclosed by a cylinder (Brady & Durlofsky 
1987). A certain "open" side wall occurs, for example, below the edge of crystal in the 
Czochralski process (Figure 7). Besides, the side wall of the crucible serves as a 
"closed" wall in this case. Thus, the flow could pick up a necessary amount of angular 
momentum to provide a "wasteful" boundary layer of Branch 5 type in two regions: (i) 
at the free surface and (ii) near the side wall of co-rotating cruicible. We performed 
numerical 2D simulation in following case: ^ с о , л И /= -7000 ; Q C n«c /*/e-700; 
Q r e / _ T 2 / 3 = 2 ļ 7 Q . Rcrystaj=Q 5Ķ where R=RrJL=\ is dimensionless radius of crucible, or 
the aspect ratio. The steady solution revealed a boundary layer of Branch 5 under the 
crystal depicted in figure 7. Thus, the numerical 2D solution confirmed the feasibility 
of second branch at rapid counter-rotation. 
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7. Side layer at almost rigid rotation 

The 2D numerical simulation of the RMF induced flow under conditions of almost 
rigid rotation revealed a constant along the height angular velocity distribution with a 
rather thick boundary layer near the side wall. A radial variation of the angular 
velocity appeared in the core due to a non-uniform force distribution. In order to 
simplify further investigation of principal features of this side layer, let us restrict 
ourselves to a constant force distribution f{r^)=\ temporary. A corresponding 
characteristic angular velocity distribution is depicted in figure 8. 

r 

Figure 8. Isolines of a characteristic angular velocity distribution for a rapid imposed rotation 
(f(r,z)=-l). 

66 



Functions u(rj) and v(rj), introduced in §4 can be used to describe the side layer, 
too. Then the linearized equations (1-3) take the following form: 

# = ^ 1 - ^ ^ ( 1 , ) + 1 , (26) 
dz 

- 4 = | "с .Г 2 Ли) , (27) 
oz 

where £• S J L + 2 i . + I L . 
dr2 r dr &2 

Evidence of an axially uniform differential angular velocity distribution now is 
seen from (27). The whole angular velocity drop occurs in thin corner regions of usual 
thickness 0(\С1&[Ш) separating the side layer from the rigid end-walls. Consequently, 
the meridional recirculation decouples from the angular velocity in the side layer. At 
the same time, the angular velocity distribution remains coupled with recirculation via 
the Coriolis force. Since the angular velocity is constant along the height, the 
meridional flow is generated in the corner. Hence, the comer is expected to play the 
key role. Its radial scale is much larger than the axial one. Consequently, the corner 
flow is described by set (21-22). The most important feature of its solution (23-24) is 
the equivalence of functions и and v in infinity, i.e., on the boundary between the side 
layer and the corner. Let us split the solution for angular velocity in the side layer as 
v(r^:)=vo(r)+vi(r^), where Do is the main part being constant along the height. Notice 
that it should match the corner solution, i.e., ио(г)=1>АО(/)=МАО(г). Now we can rewrite 
equation (26) for the side layer as follows: 

^ • 1 5 Я - ' « * К « ) + 1 - < 2 8 ) 

where щ is the main part of axial velocity. The right-hand side does not depend on the 
axial coordinate. Thus, the main radial velocity duo/dz should be constant along the 
height and, consequently, щ{г^)=-2 um(r)z, to match the corner solution. An 
asymptotic solution of (28) for large |Qa| has a 0(\Qd\~m) thickness, discussed by 
Stewartson (1957, 1966): 

u„(r)=0.5( 1 -exp(- |4Q d | m(R-r)), (29) 

where R is dimensionless radius or the aspect ratio of vessel. 
Figure 9 depicts the comparison of 2D numerical solution and asymptotic solution 

(29) at T=T0 5, Qd=40000, R=l. In real applications, however, the aspect ratio may be 
much less than unity and, therefore, boundary layer may turn out of the order of 
radius. A limit for solution (29) applicability can be estimated from (28) as 
3/(/?|4Q d | 1 / 4)<0(£), where s is maximum tolerance. 
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Figure 9. Radial profile of side layer at almost rigid rotation. 7=105, Qd=40000, R=l. 

Evidently the main part uo{r^)=-2uJf)z does not satisfy the boundary condition 
du/dr=Q (r=R) for axial velocity neither equation (27). Thus, some correction u\{r^z) 
and, consequently, v\(r^) should be added. Substituting a corrected solution into (26-
27), the problem for щ 

1-2 . 2 i ~ 1-2 
0, (30) 

dz2
 4 

•L6{u) 

дщ 
dr 

du0 

r=R cr r = R 
(31) 

follows. The equation is singularly perturbed and, thus, an inner boundary layer of 
OflQdP173) thickness must appear (Stewartson 1957, 1966). A characteristic value of 
the correction now can be estimated from boundary condition (31) 
0(ui)=|Qd| 1 / 48 T=|Qd|~ 1 / 1 2, where 8 T is thickness of the inner layer. A correction to 
angular velocity can be estimated now from (27) 0( i ; i )= |Q D R 3 / 2 5 x

_ 4 0(ui)= |Qd|" 1 / 4 that 
is O(ui) times smaller than for the case considered by Stewartson (1957). In order to 
obtain more information on this correction, we performed a direct numerical 
simulation (|Qd|=4xl0 4). Figure 10 depicts the results of calculation for correction to 

radial velocity JFJ_ _ u ~ ц о > where и is numerical solution. One can see that a 
-2z -2z 

contribution of щ does not exceed ten percents of maximum щ. Taking into account 
its poor dependence on imposed rotation, we concluded that the primary solution (29) 
provides accuracy sufficient for intended practical needs. 

So far we ignored the body force distribution. However, it plays an important role 
in the core if its rotation is almost rigid. The angular velocity profile there adjusts the 
force distribution f(r) averaged over the height. Let us consider an actual force 
distribution f\r, z) instead of idealized unity source in (26) and integrate the equation 
along a line passing between the both Ekman layers at a fixed radius. Then the relation 
иж{г) = 0.5f (r) follows for the core, where diffusive terms are negligible. 
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Figure 10. Correction to main radial velocity. 

8. Stability 

8.1 Instability offorce balance in the core of von Kdrmdn type solution 

The instability of force balance in the core of von Kārmān type solution (Branch 4 ) 
can be easily shown. It takes place due to a positive derivative of the Coriolis force 
with respect to differential angular velocity dFc/dAQ. It implies that the perturbation 
of a steady core angular velocity reflects in the force balance giving rise of its further 
growth. Coriolis force is Fc=-2voQo =-2(vo(Qd+A^))- Its derivative can be expressed 
in terms of ( 7 - 1 1 ) as follows: 

dFc_ 
8АП 

+ П ° 1 Й = ~ н Г е / M 0 0)+£o(°°)^(*o(«>))(^teo(«>) - *o(0)) 
( 3 2 ) 

If the core radial velocity is directed towards the axis (vn<0), the flow is potentially 
unstable. The second term, however, can eliminate instability due to an influence of 
perturbation on the meridional flow. One can conclude from ( 3 2 ) that a flow at 
counter-rotation with a lower core angular velocity and a higher radial velocity (i.e., 
Kārmān type Branch 4 ) is less stable. Expressions 

h0(<x>)=hJ'\2(<R+0.5)rm, (яо(«))-^о(0))=(2Аоо(ФУ-0.5))- 2 / 3, 

go(°o)=(go(<»)-go(0))(*tb0.5) 

follows from ( 1 2 ) . Substituting in ( 3 2 ) , the stability criterion yields 

hjl + (<£ + 0.5) 
0 . 5 / ^ - ( ^ , + 0 .5)5/^/5%. 

^ + ( ^ + 0 . 5 ) 5 ^ / 9 ¾ . 
> 0 ( 3 3 ) 
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Figure 11. Bifurcation of similarity solution at counter-rotation. Stability limit (33) depicted by a doted 
line. 

The expression is positive for the entire domain of £. except Branch 4. Notice, that 
threshold value ¢¢=-1.4495 coincides with the bifurcation point within four decimal 
digits, at least (figure 11). Thus, a von Kārmān type solution 4 of original problem is 
unstable. This conclusion agrees with the numerical solution, where the Branch 3 
steady solution set in even from Branch 4 initial state. 

8.2 Rayleigh criterion at almost rigid rotation. 

Similarity of the side layer to the Taylor-Couette flow between cylinders has been 
employed from very first works in field of RMF driven flow (Moffat 1965). The 
Taylor-Couette flow is stable if the Rayleigh criterion is satisfied. It requires a 
positive derivative of squared angular momentum д(Г )/dr=d/dr(vQ r )>0 (see, e.g., 
Greenspan 1968). If the core counter-rotates to RMF, the Rayleigh criterion is 
satisfied. Indeed, the absolute value of angular velocity increases in the radial 
direction, since RMF brakes the core. 

At almost rigid co-rotation the criterion is 6(Г2)/дгя2С1йГ4(дАС1/дг +2Qd/r)>0. Let 
us use asymptotic solution (28) to estimate dAQJdr. Then the satisfaction of the 
Rayleigh criterion is guaranteed by T |Qd | _ 1 4 <£V^, or T<Qa 5 / 4/i?. 

8.3 Stability of Ekman layer. 

Stability of boundary layers occurring on a horizontal wall in rotating flow has 
been studied both theoretically and experimentally for several decades. A review of 
these studies as well a recent investigations recovering the absolute instability are 
given by Lingwood (1997). An inviscid crossflow instability of Ekman type flow 
occurs at Re=T25 observed experimentally by Faller (1963). It agrees closely with 
Lilly's (1966) and Lingwood's (1997) calculations Re=115 and 116, correspondingly. 
The flow has a second unstable mode which is stable in inviscid limit and has a lower 
critical Reynolds number Re=56 (Lilly 1966, Melander 1983). The Reynolds number 
is defined here as Re=Ave//v; Ave is differential azimuthal velocity of the disk, I is 
characteristic boundary layer thickness /=(v/Qd) 1 / 2- However, Lingwood (1997) 
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concluded the absolute instability occurring at a higher Reynolds number Re=198 to 
be far more dangerous and responsible essentially for transition to turbulence. Her 
theoretical results agree with an experimentally observed transition at Re«200 (Faller 
and Keylor 1966, Owen, Pincombe & Rogers 1985). 

Let us use these results to estimate the threshold of first instability and laminar-
turbulent transition. Employing the differential angular velocity obtained in §4.2, 
conditions T<1 КЮ<|Л and T<400Qdi? follow, correspondingly. The comparison to the 
Raylaigh criterion at rapid co-rotation (§7.2) yields that side layer become unstable 
first, ifO(|Q d | )<10 8 . 

9. Conclusions 

Von Kārmān similarity variables has been applied to study a swirling flow due to a 
rotating magnetic field in a rotating cylinder. As showed by Priede (1993, 1994), the 
problem reduces to the so-called one-disk problem. Different solutions of this classic 
problem are reviewed by Zandbergen and Dijkstra (1987). However, only some parts 
of this solution has consequences to the original problem. Besides, a steady solution, 
corresponding to the von Kārmān type flow, turns out unreachable due to an unstable 
force balance in the core of the original flow. A direct numerical solution in both self-
similar and axially symmetric (2D) formulations confirmed the feasibility of both 
Ekman type branches. So, one of practically most important features, namely, the 
possibility to control the meridional flow intensity and direction has been confirmed. 
A solution with a small negative ratio parameter s about -0.16 and axial velocity 
towards the disk was achieved numerically as well. The latter has a closed loop of 
meridional flow inside the boundary layer. A corresponding solution of the original 
problem appears at a rapid counter-rotation. The solution has a huge angular 
momentum deficit, so it cannot be observed in a laterally bounded flow without 
additional forcing. However, such boundary layer is feasible in certain technological 
processes with differently rotating rigid boundaries. 

Self-similar analysis can not answer the question on the flow in an intermediate 
range of vessel's counter-rotation, when simlarity solution is absent. A corresponding 
numerical 2D simulation revealed a peculiar flow patterns with separating boundary 
layers and additional couples of secondary recirculation. 

The numerical simulation showed an increasing of the side layer with vessel's 
rotation rate, until the condition of almost rigid rotation is satisfied. Further increasing 
of the imposed rotation gives rise to the constant along the height angular velocity in 
the side layer. Thus, the recirculation remains coupled with the angular velocity in the 
corner regions only. As a result, an asymptotic similarity of radial and angular velocity 
profiles is established. A simple singularly perturbed equation yields the thickness of 
side layer OflQdf )• This primary boundary layer solution does not satisfy the no-slip 
condition for axial flow. Therefore, an inner boundary layer of OflQdl Ш ) thickness 
appears. Contrary to Stewartson's (1957) solution, only axial velocity has a 
discontinuity of primary boundary layer solution on the sidewalk It yields the 
correction 0(\Od\~vn) and 0( |Qd| _ 1 / 4 ) for radial and angular velocities, respectively. 

The Rayleigh criterion is satisfied, if the core counter-rotates to the magnetic field, 
as well as for a rapid co-rotation. Thus, the imposed rotation stabilizes the side layer. 
Besides, the imposed rotation reduces the differential core rotation and boundary layer 
thickness, so stabilizing the Ekman type layers as well. The comparison of instability 
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estimates yields that the side layer at co-rotation is less stable, if OflQdIKlO that 
completely includes the crystal growth conditions. The Rayleigh criterion is satisfied 
if core counter-rotates to the magnetic body force. Hence, the imposed rotation 
directed opposite to the driving body force is expected to produce a more stabilizing 
action. 
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Chapter V 

Simplified theoretical model of hydrodynamically 
guided solidification 

A simplified theoretical model for the solidification interface shape prediction is introduced and tested. 
We linearised a coupled hydrodynamic-solidification problem about the state with a flat interface. In 
such a way we split the problem into a hydrodynamic part with a flat solid-liquid front and a 
solidification part with a calculated heat flux from the liquid phase. The method allows obvious 
conclusions on optimum heat conditions near the solidification interface providing its flatness and 
maximum pulling velocity at the same time. Comparison to the results by FLUENT package showed 
that the method provides a reasonable accuracy even for a noticeably deformed interface shape. 
Another part of the contribution deals with an influence of artificial swirling-recirculating flow due to a 
rotating magnetic field with an optional superimposed steady axial field or rotation of crucible. 
Estimates of necessary forcing to suppress buoyancy are given and illustrated by numerical simulation. 
The limits of possibilities to control heat regime (consequently, the interface shape and pulling velocity) 
are discussed and illustrated. 

1. Introduction 

The current chapter concerns an artificial flow as a means to optimise the 
solidification interface shape during crystal growth. Traditionally solidification 
problems are solved numerically on adapting meshes or in enthalpy-porosity 
formulation on a fixed mesh (Voller & Cross 1980, Bennon & Incropera 1987, Voller 
& Prakash 1987). Both methods are widely used including commercial codes. 
However, the numerical simulation of full problem takes much time and gives less 
understanding of the physical process. The shape of solidification front has a 
significant influence on the quality of produced crystals. There are optimum growth 
conditions with a flat solidification interface and a strong and stable motion of melt. 
These conditions are expected to ensure a minimum concentration of dislocations. I 
split a coupled problem, in order to obtain an obvious model of guided solidification. 
Such model is expected to provide more understanding of the process and, hence, 
possibilities of its control. Besides, it can be used in estimates as well as for testing of 
numerical codes. The method is originally intended for the vertical gradient freeze 
growth, but it can be easily generalised. 

The shape of solid-liquid interface is closely linked to a heat flux between both 
phases. If crystals are small, then the heat transfer is diffusive and completely 
determined by thermal boundary conditions. In recent technologies, however, the size 
of grown crystals is more and more enlarged. If a properly defined Peclet number is 
more than unity, then the melt motion can significantly influence the heat transfer near 
the solid-liquid front and, hence, its shape, too. Thus, there are two tools to control the 
interface shape: thermal boundary conditions and the artificial flow of melt controlling 
a convective heat flux. As mentioned, there is an optimum solidification interface that 
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simply has a flat shape. Suppose, both controlling tools allow to obtain an almost flat 
quasi-steady interface. In order to find corresponding conditions, we can linearise a 
full problem about this optimum state. It implies neglecting of the influence of actual 
shape of almost flat interface on the melt motion and heat transfer within it. Having 
solved a hydrodynamic-thermal problem with an isotermic flat interface, we receive 
heat flux from the liquid phase. Together with a latent heat flux due to pulling and 
heat transfer in the solid phase it determines the shape of actual quasi-steady almost 
flat front. Besides, I considered a non-isotermic flow of melt. Natural motion occurs 
due to buoyancy. An artificial swirling-recirculating flow of conducting liquid with a 
number of favourable properties (Priede 1993) can be induced by a rotating magnetic 
field (Moffat 1965, Davidson 1992). Superimposed actions such as a steady axial 
magnetic field (Grants, Priede & Gelfgat 1996, Grants 1998, ch. 3) or imposed 
rotation of crucible (Priede 1993, 1994, Grants 1998, ch. 4) significantly widen 
possibilities to control the induced base flow and its stability. A first question arises 
on necessary strength of imposed forcing to suppress buoyancy, i.e., to make the flow 
completely artificial. Another question is the influence of considered artificial flow on 
a heat flux through the solidification interface and its shape. 

The obtained method reveals a close relationship among heat flux from the melt, 
pulling velocity and shape of quasi-steady solidification interface. It follows from this 
relationship that optimum growth conditions are provided by a minimum heat flux 
with a uniform distribution, especially in the middle part of new solidified crystal. Our 
numerical simulation showed that the buoyancy increased this flux in comparison to a 
purely diffusive regime. A swirling-recirculating flow due to a rotating magnetic field 
(RMF) of sufficient strength suppresses the buoyancy and changes the direction of 
meridional flow. As a result, the heat flux can be significantly reduced. An imposed 
steady magnetic field (SMF) or rotation of crucible promotes a transition to a swirl 
dominated flow and provides additional options to improve the thermal conditions. 

Section 2 introduces the model and governing equations. A link is established for 
the shape of quasi-steady solidification interface, heat flux conditions on it and pulling 
velocity in §3. Estimates of necessary forcing are made in §4. Section 5 discusses the 
influence of artificial flow on the heat transfer. Section 6 proceeds with the main 
results of numerical simulation. The summary is given in §7. 

2. Model and equations 

Consider a solidification problem in a cylindrical vessel schematically depicted in 
figure 1. Basic assumptions of our model are: 

(i) Melt motion considerably influences the solidification interface C, (r). In terms 
of dimensionless criteria it requires the Peclet number more than unity. 

(ii) A guided artificial flow allows to transform the interface into almost flat. 
Besides, the solidification interface was considered to be isotermic and quasi-steady. 
A non-isotermic interface may take place when a binary system solidifies. We 
neglected a possible morphological instability and consequent dendrite growth with 
respect to a strong azimuthal flow due to a rotating magnetic field considered for the 
generation of artificial flow (Priede 1993, 1994, Grants et al. 1996, Grants 1998, ch. 
1-4). A condition of quasi-steady interface shape requires that its change in time is 
much slower than pulling velocity dC, /dr « up. This condition is consistent with our 
task to keep the front as flat as possible. Under these assumptions a full solidification 
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problem can be easily split. First, let us find a heat flux through a flat isotermic 
interface dl*(r)=0 solving a corresponding hydrodynamic-thermal problem in the melt. 

Figure 1. Sketch of the model. 

We assumed fixed temperature profile on crucible surface as schematically shown 
in figure 1. Besides, we substituted an actual temperature distribution by a stepwise 
linear function that is characterised by a temperature drop AT in the liquid phase and a 
temperature gradient T' on the crystal surface. Of course, such assumption seems 
inappropriate for a modelling of real process. However, our task was mostly the 
developing and testing of the method itself rather than the investigation of specified 
technological process. Thus, to avoid less important details, we restricted ourselves to 
a minimum set of parameters. 

The assumptions for heat transfer in the liquid phase included axial symmetry, 
laminar motion, lack of volumetric heat sources as well as Bussinesq approximation 
for buoyancy. Axial symmetry is ensured by a strong swirling flow. The motion is 
stabilised and, hence, laminar due to a superimposed steady axial magnetic field or 
rotation of crucible (Grants 1998, ch. 3-4). A rotating magnetic field is usually 
generated by AC of industrial frequency that can not rise a considerable heating. 
Under these assumptions, the Navier-Stokes equations were supplemented by a 
buoyant body force fb that is proportional to a temperature f\,=p$gT e z, where e z is 
unity vector in the axial direction, T is the temperature, p is the density and p is the 
coefficient of thermal expansion of the melt, but g is the gravity acceleration. 
According to the assumptions, the temperature field is described by an equation in 
dimensionless form 

ĒL + (vW)T = — V 2 7 \ (1) 
dt Pr 

with the boundary conditions 
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71,=,=1, 7U=*. 7U=0, (2) 

where Г=(Г*-Г5)/АГ is the dimensionless temperature, TS is the solidification 
temperature, v is the velocity of melt motion, Pr is the Prandtl number defined as 
Pr=v/a, v is the kinematic viscosity, a is the thermal diffusivity, R=RqIL is a 
dimensionless crucible radius or aspect ratio of liquid zone. The characteristic height 
of liquid zone L is used as a linear lenghtscale since usually it is a determining scale in 
a rotating flow (Greenspan 1968). 

Having solved hydrodynamic-heat problem, we found an axial heat flux on 
isotermic flat bottom q (г)=Х(ЬТ1Ь)дТ1дг that substituted the actual one on an almost 
flat front in our model (A. is a thermal conductivity of liquid). Write a heat balance on 
the solidification interface 

= St+q(r), (3) 

where T i s the dimensionless crystal temperature defined as T= (T*-Ts)/(T'Rq), St is 
the Stenton number St = upp sA/(A. s7"), p s and XS are density and thermal conductivity 
of crystal, but A is the latent heat of solidification. We used another lenghtscale that 
was the radius of crystal Rq for a thermal problem in the solid phase since here it was 
more convenient than the previous one L used in the hydrodynamic part. Both parts 
are linked by the heat flux written in dimensionless form q{r) = q*{r)l{XSTR). We 
considered a slow pulling with a Peclet number Pe p = UpRo/as« 1 and constant 
thermal conductivity. Actual conditions in technological processes may turn out 
different. However, they play a secondary role and may be easily incorporated into the 
present model. Under these assumptions the temperature distribution T in crystal is 
described simply by the Laplace equation 

V 2 r = 0, (4) 

with Dirichlet boundary conditions on the crucible wall 

(5) 

dz 

3. Stefan problem with a known heat flux from the liquid phase 

There are two boundary conditions on the quasi-steady solidification interface of 
unknown shape. Obviously, an isothermal solidification front will move, to finally 
adjust the second boundary condition for the heat flux, too. Suppose, we have found a 
heat flux q from the liquid phase to a flat isotermic bottom that substitutes an almost 
flat front. Remember that our practical interest was exactly to find the conditions for a 
flat solidification interface. Of course, even under optimal conditions, the heat flux 
continuity on the assumed flat front may be unsatisfied. The disbalance in the heat 
flux continuity will be a measure of shift of actual solidification front from the 
assumed flat one. This section concerns in a link between these variables. 

The shape of quasi-steady solidification interface is described by a solution of ( 3 -
5). Let us introduce a temperature correction due to an actual deformed interface as 
follow 

<Y(r,z)=%r,zy%(T,z), (*<£(/)) (6) 
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where %{r,z) is the temperature field in crystal with a flat front. From (4-5) it follows 
that %(r,z)=z in our model. Hence, the heat flux continuity (3) on an almost flat 
interface takes the form of 

6Г  
dz 

= St-l + q(r), (7) 

The correction %r,z) satisfies the Laplace equation and takes zero value on crystal 
surface with Dirichlet boundary conditions used in our model. Definition (6) 
establishes a relationship between the correction %r,z) and corresponding profile of 
front t&r) 

%r,z)\^ = afe^Uat - % ( r , z ) | ^ w . (8) 

The solidification interface z=C,(r) is isotermic, so the temperature %г,£)\^(^=0 takes 
zero value on it, but %{r,z)\B=ri(r) = ̂ (r) in case of the assumed linear temperature 
profile and slow pulling. Thus, the profile C,(r) to be found coincides with a value of 
temperature correction %r,z) on surface defined by this profile itself 

C(r)=- l (nz) |^ w . (9) 

The problem is still defined by the boundary condition on unknown surface C,(r). 
However, it can be easily found iteratively, e.g., 

dz 
; ° ( r ) = 0. (10) 

z = ; " ( r ) 

The first approximation C,\r) is expected to provide a reasonable accuracy for an 
almost flat solidification interface. It is defined simply by a solution of Laplace 
equation with homogenous Dirihlet conditions on the crucible wall and Neuman 
condition (7) on a flat front z=0. 

Now we can derive some rather evident conclusions, that define certain optimal 
conditions for the heat flux. A flat quasi-steady front corresponds to zero right hand 
expression of (7). Hence, from the point of view of optimum solidification interface 
and maximum pulling velocity, a minimal heat flux q(r) is required. The heat flux 
through the interface may be reduced either by thermal boundary conditions (such as a 
temperature drop AT in melt or gradient T' on the crystal surface) or by a guided 
motion of the melt. Second, the solidification interface is more sensitive to the heat 
flux in the central part of new solidified crystal. If this flux has a uniform distribution 
q(r)=qo and a magnitude below unity <jb<l there, then an almost flat front can be 
achieved by an appropriate pulling velocity that follows from (7) S t = l - ^ . 

4. Estimates of buoyancy suppression 

Consider an artificial swirling flow of the melt driven by azimuthal body force due 
to a rotating magnetic field in a rotating vessel. Different rotation of the core region 
that appears in such flow (Priede 1993, 1994) leads to a secondary recirculation. At a 
certain threshold of magnetic forcing and imposed rotation of vessel this flow is 
expected to suppress the natural buoyant one. In order to estimate this limit, let us 
consider a circulation of centrifugal and buoyant forces over a closed loop ABCDA in 
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figure 2. Horizontal parts AB and DC give no contribution to the circulation of a 
buoyant force fb=ppgr*e z, since it is purely axial 

(C D \ 
Ф ь = jfbdl = pBg Jr(r, z)dz - \T{r, z)dz 

ABCDA Ув A 
= ppgO(A7X). (11) 

ID 
almost 

uniformly 
rotating core: 

Figure 2. Sketch of swirl dominatedflow. 

A centrifugal force f c =pQ 2 e r is purely radial (Q is the angular velocity). Consider a 
completely artificial (swirl dominated) flow. Then the circulation of fc can be 
estimated as follow 

'в с \ 2 
Ф с = jtc<ū = p JQ2(r,z)rdr- jn2(r,z)rdr *£2Lķiļ-rify (12) 

ABCDA M D 

where Qd and Qo are the angular velocities of the crucible and the core, respectively. 
Suppose, the buoyancy is suppressed, if Ф с » ф ь . Then, the threshold forcing can be 
estimated comparing (11) and (12). 

First, consider a sole rotating magnetic field driven flow Qd = 0. Grants (1997) 
numerically found that the core angular velocity (for moderate Reynolds numbers 
Re<O(10 4)) is approximately €lQ«vlLlrīmRm, where R=Ro/L is the aspect ratio of 

liquid zone and T is the Taylor number of forcing j _ M L * proportional to a 
OSmRņV2 

driving magnetic torque M (Grants & Gelfgat 1997, Grants 1998, ch. 1 and 3); m is 
the mass of enclosed liquid. Substituting in (12) and comparing to (11) yields the 
following estimate of strong forcing: 

T-iGtR-3?4. (13) 

The Grashoff number Gr is defined here as Qr = P g A 7 ^ 3 . Estimate (13) differs from the 
v 2 

one given by Fischer et al. (1997). They simply compared O(T) and O(Gr). One 
should notice that both these parameters characterise the body forces that act in 
perpendicular directions, so such straightforward comparison hardly justifies itself. On 
the other hand, results of such comparison agreed with the experimental and 
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numerical results on the stabilising action of rotating field. In our case, however, we 
are interested mostly in the effect on heat flux and, thus, characteristics of base flow. 
To verify (13), we performed a numerical simulation with a forcing rate ranging about 
the estimated threshold value. The results for different aspect ratios are depicted in 
figure 5. 

We restricted our study of action of superimposed SMF to a "small" induction. 
From practical point of view the imposed steady magnetic field is expected to be 
"hardly strong" that is with about a minimum strength providing a stable flow. The 
angular velocity of such flow is of order of RMF alone driven flow. Hence, the above 
estimate (13) is sufficient for such cases. In case of a strong steady field, a 
considerable angular velocity drop occurs along the height of <3(Ha~ l /2) side layer. 
Besides, this layer may have its own velocity scale of a higher order of magnitude. As 
a result, an axial pressure gradient appears driving the meridional flow that vanishes 
slower in a strong steady field (Grants et al. 1996, Grants 1998, ch. 3). Hence, 
estimate (12) is not suitable any more. 

Now, consider an almost rigidly rotating flow (Qo«^d)- Then the circulation of 
centrifugal forces (12) can be estimated as 

2 

Фс - * ( " d - «o) * рЛбЧДО. (14) 

The differential rotation AQ of such flow is (Priede 1993, Grants 1998, ch. 4) 

AQ ~ v/Z2T|E| l / 2, (15) 

where E=v/(QaZ ) is the Ekman number of crucible rotation. Then the comparison of 
(11) and (14) yields: 

T |Er 1 / 2~Gr/T 2. (16) 

The condition of almost rigidly rotating flow requires |E| » T (Priede 1993). 
Notice that expression (11) overestimates the contribution of buoyancy and it is 

valid only for large Peclet numbers, when the recirculation significantly deforms a 
diffusive temperature field. The circulation of buoyant forces (11) vanishes as the 
Peclet number tends to zero in our model, since no radial temperature gradient occurs 
according to boundary conditions (2). 

5. Heat transfer 

In the previous section we estimated a limit of necessary forcing to suppress a 
buoyancy driven flow. Now let us consider heat transfer in swirl dominated flow as a 
limiting case of non-isotermic motion. An azimuthal body force due to a rotating 
magnetic field induces a swirling flow that provides axial symmetry of time-averaged 
characteristics. However, the main role belongs to an induced secondary recirculation 
that influences the heat transport in the normal direction to the solidification interface. 

Flows of all three types considered in this chapter have a single vortex structure as 
schematically depicted in figure 3. From the point of view of heat transfer through the 
solid-liquid interface this vortex can be characterised by two parameters: the core 
axial velocity v z and the location of vortex eye r . We see in §3 that the solidification 
interface is more sensitive to the heat flux in its central part. The direction of core 
axial velocity determines whether the heat flux is reduced or increased here in 
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comparison to a purely diffusive regime. The magnitude of core axial velocity Ho 
determines the role of convection. Peclet number Pe=HoZ/tf should be larger than 
unity according to our basic assumption on a hydrodynamically guided solidification. 
The radial location of vortex eye determines the place where the influence of 
convection on heat transfer is inverted. Thus, it marks out the place, where a 
significant non-uniformity of convection dominated heat flux is expected. From the 
practical point of view the vortex eye should be pushed towards the side wall as far as 
possible, since exactly such configuration could increase the size of flat part of the 
heat flux profile and, hence, the solidification interface. 

Figure 3. Characteristic pattern of swirl dominated motion near the solidification interface. 

Let us consider a sole rotating field driven flow. According to Grants' (1997) 
numerical simulation of moderate Reynolds number flow in an elongated cylinder (the 
aspect ratio 1/8<Л<1), the core angular velocity is Q 0«0.52v/Z, 2T 2 / 3/? , / 2 . This 
expression for R=\ coincides with the corresponding similarity solution (Davidson 
1992, Ungarish 1997). Employing a Bodewadt's solution (e.g., Greenspan 1968), we 
obtained the core axial velocity and Peclet number in form 

Ho*1.35(vQo)1/2=v/Z0.97T1/3/?1/4, Ре*0.97Т1 / 3Л1 / 4Рг. (17) 

Evidently, the location of vortex eye is closely connected to the thickness of side 
layer. Grants (1998, ch. 2) found that the relative thickness of this layer is 
(5x//?o)~0.075i? for moderate Reynolds numbers near the onset of Taylor-Gotler 
instability and the aspect ratios ranging l/8<i?<l. Here the side layer was defined via 
the location of maximum in the azimuthal velocity profile. Correspondingly, the 
"thickness of side layer" in an infinite cylinder is (5 T/i?o)=l-3" 1 / 2«0.422 (Richardson 
1974). The current investigation revealed that such widening of side layer persisted in 
elongated cylinders for the Reynolds numbers far beyond the onset value as well. One 
can see that in case of elongated liquid zone that is characteristic for the initial stage of 
the vertical gradient freeze method, the vortex eye moves away from the side wall. It 
reflects in the heat flux distribution so that the central uniform part is less expressed 
(cf. figure 5 a and b for forcing rate T=3To). The thickness of critical side layer is 
depicted here by a vertical dashed line. 

Under the magnetic field with a large Hartmann number the core angular velocity 
of flow greatly depends on a relative conductance of new solidified crystal 
an=oJlJ(oL), where rj s is the conductivity of crystal and £ s is its height. In case of 
semiconductor growth it is of order of few percents (Hjelming & Walker 1986). Such 
seemingly negligible conductance, however, is much larger than that of adjacent 
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Hartmann layer if the imposed field is strong a n » H a _ 1 ; Ha=(o7(vp))1 /2Z,B is the 
Hartmann number; В is the induction of steady magnetic field. As a result, the 
swirling flow is braked more efficiently than in case of insulating walls (Grants et al. 
1996, Grants 1998, ch. 3). Besides an indirect braking via the reduction of swirl, the 
meridional flow is suppressed directly as well. The core axial velocity scales as 

I? •> i H 0 Q5Ha _ i , where q 0.5 + a n 

v " I? На 2 a n +Ha 1
 j 

( 1 8 ) 

One can see that a strong SMF brakes recirculation drastically and, thus, it is 
appropriate to control the heat transfer and solidification in a narrow range beyond the 
threshold of strong field that is 

Ha=0(T 1 / 4a n"' / 4) and На=0(Т 1 / 3) (19) 

for poorly conducting and insulating walls, respectively. 
A rapid imposed rotation rises an almost rigidly rotating flow with the axial 

velocity sign as that of crucible angular velocity (Priede 1993) 

Ho~v/ZTE. (20) 

Priede predicted that there was a second branch of steady similarity solution at 
counter-rotation with a larger axial velocity and lower core angular velocity. However, 
Grants (1998, ch. 4) showed that this solution was not feasible due to an unstable 
force balance in the core. Thus, both imposed actions reduce the core axial velocity. 
Consequently, they can not reduce the heat flux more than a sole rotating field does. A 
rapid counter-rotation of crucible changes the direction of normal to bottom flow 
towards it. As a result, the heat flux increases and, consequently, an optimum pulling 
velocity decreases. There is the so-called Stewartson layer near the curved side wall in 
an almost rigidly rotating flow. It has an exponentially rising profile, a thickness of 
0 ( I |E | 1 / 4 ) and an inner more complicated layer of 0(Z,|E| l / 3) order that smoothes out a 
discontinuity in the primary axial velocity profile (Stewartson 1957). Besides, the 
radial profile of core axial velocity is no more uniform but fits the driving magnetic 
body force distribution averaged over the height (Grants 1998, ch. 4). Minding that 
(20) expresses a softer damping law than (18), the above features of almost rigid flow 
make it more suitable for the controlling of heat flux distribution. 

6. Numerical results 

First, let us consider a buoyancy dominated flow (figure 4). The melt moves 
upward at a warmer side wall and is directed towards the solidification interface in its 
middle part. As a result, the buoyancy considerably increases the heat flux from the 
liquid phase in comparison to a diffusive regime (figure 5). 

81 



Figure 4. Characteristic pattern of buoyancy dominated motion near the solidification interface. 

A magnetic forcing of sufficient strength changes the pattern of recirculation 
similar to the one depicted in figure 3. In such a way the heat flux is reduced. Figure 5 
illustrates the above said. The heat flux from the liquid phase is depicted here in 
several regimes of forcing about estimated threshold value (13) for aspect ratio R=\I2 
and i?=l/8. The Grashoff number is G r = 4 x l 0 6 x / r 3 with corresponding threshold 

"7 0 
value To=3.2xlO and To=10 for aspect ratios 1/2 and 1/8, respectively. One can see 
that a transition between buoyancy and swirl dominated regimes really occurs as 
predicted by scaling. The numerical simulation showed that the heat flux could be 
more reduced in a shorter cylinder (figure 5 a). Transition regime with an almost 
uniform heat flux was detected for an elongated cylinder (figure 5 b). The effect of 
sidelayer widening together with a relative height of liquid zone (§5) restricts 
possibilities to reduce the heat flux from an elongated liquid zone. 

(a) (b) 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

rlR rlR 

Figure 5. The heat flux distributions in the range at transition from buoyancy to swirl driven motion, 
(a) the aspect ratio R=l/2, the Grashoff number Gr=4xl06R'3=32xl06 and estimated rate of threshold 

forcing T0=2xl(f. (b) R=I/8, Gr=4xI06R~3=2xI09, T0=l(f. A constant qdif characterises purely 
diffusive heat flux. 
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Figure 6. The heat flux profiles under imposed: (a) steady magnetic field or (b) rotation of crucible. 
The aspect ratio of liquid zone R=l/2, Gr=32xl06, estimate offorcing threshold rate T0=2xl06. A 

constant ̂ characterises a purely diffusive heat flux. 

Figure 6 depicts the characteristic heat flux distributions under a superimposed 
steady magnetic field or rotation of crucible. The aspect ratio is R=\/2, the Grashoff 
number is Gr=32xl0 6 and a corresponding threshold forcing is Tn=2xl0 6 . An imposed 
steady magnetic field promotes a transition to the heat regime characteristic for a 
magnetically driven flow. Figure 6 (a) illustrates the role of seemingly negligible 
conductance of grown crystal a n = 3 % as well. 

The imposed rotation of vessel (figure 6 b) provided a more uniform heat flux 
distribution. A counter-rotation of magnitude about Qd«-1.5v/Z 2 T 2 / 3 (Priede 1993, 
1994, Grants 1998, ch. 4) changed the direction of core axial velocity towards the 
solidification front. As a result, the heat flux grows. Contrary to the motion due to 
buoyancy, the axial velocity distribution is more uniform. Besides, its magnitude is 
much lower, so the heat flux hardly increases in comparison to the diffusive regime. 

Figure 7. (a) comparison of front shape calculated by simplified model and FLUENT; zero pulling 
velocity; Gr=0.31xl(f; R=l/3. Lower and upper curves correspond to buoyancy and swirl 

(T=0.2x109) dominatedflow, respectively, (b) an example of solid-liquid interface optimisation. 
Dashed curves depict sole rotating field guided profiles at different pulling velocities. Solid curve 

corresponds to rotating (T=0.2xl(f) and steady (Ha=510) magnetic field driven regime. 
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In order to verify the method, we calculated a case modelling a 100 mm diameter 
GaAs crystal growth process by the vertical gradient freeze method (for parameters of 
GaAs see, e.g., Liang & Lan 1997: X=7 W/(Km), ^ = 1 4 W/(Km), o=6.45xl0"* m 2 /s, 
v=3.45xl0" 7 m 2 /s , A=0.726xl0 6 J/kg, p=p s =5.17xl0 3 kg/m 3, p=l .16x10^ K" 1). We 
assumed a temperature drop Д7=10 К in the melt, a temperature gradient on the 
crystal surface T - 1 0 K/cm, a height of liquid zone 1,=150 mm, the Grashoff number 
Gr=PgA77_ 3v" 2=0.32xl0 9. Figure 7 (a) depicts a steady solidification interfaces 
calculated by a simplified method as well as by commercial hydrodynamic code 
FLUENT. We considered two cases of buoyancy or swirl dominated flows and zero 
pulling velocity. The melt motion influenced the interface shape drastically, since the 
crystal diameter was large and the ratio of solid-liquid thermal conductivity was poor. 
One can see that our simplified method provided a reasonable accuracy even for a 
large front deformation of crystal radius order. In case of a buoyancy driven motion, 
the front is noticeably concave to the melt even for zero pulling velocity and 
favourable thermal boundary conditions used. According to (7) and its consequences, 
interface convex to the melt, that occurs for a swirl driven motion, can be always 
smoothed out by an appropriate pulling velocity (see, figure 7 b). However, a non-
uniformity of heat flux distribution always manifested itself in a corresponding profile 
of the front (compare figure 7 b with the results by Friedrich et al. 1997). An imposed 
steady magnetic field reduced this non-uniformity and, thus, improved the growth 
interface. 

7. Summary 

This chapter concerns the solid-liquid interface between a grown crystal and the 
melt in the vertical gradient freeze method. We considered a lenghtscale large enough 
to significantly influence the heat transport by forced motion of melt. We linearised 
the coupled hydrodynamic-solidification problem about the optimum state simply 
with a flat growth interface. Thus, the hydrodynamic problem is to be solved in a fixed 
simplified geometry. After that a corresponding quasi-steady interface shape can be 
calculated solving the Laplace equation with the previously found flux source in the 
solid phase. Main benefits of the method are: 

(i) The solution of a more complicated hydrodynamic part once calculated can be 
used repeatedly to find the corresponding optimum pulling velocity and thermal 
conditions on the crystal surface; 

(ii) An evident relation between the heat flux from the melt and the shape of 
solidification interface allows obvious conclusions on an optimum pattern of melt 
motion; 

(iii) Originally intended for the vertical gradient freeze technique with a lot of 
additional assumptions, the model can be easily generalised and supplemented; 

(iv) The method provides a reasonable accuracy even for a significantly deformed 
interface. 

We considered an artificial swirling-recirculating flow of conducting melt forced 
by a rotating magnetic field under an action of either steady magnetic field or rotation 
of crucible. The estimates of necessary forcing to suppress a natural buoyant flow are 
given and illustrated by the results of numerical simulation for different aspect ratios 
of the liquid zone. A sole rotating field driven flow could significantly reduce the heat 
flux from the liquid phase in comparison to a purely diffusive one. Hence, the 
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optimum pulling velocity can be increased. An imposed steady field or co-rotation of 
crucible control the heat flux in the range between sole rotating field driven and purely 
diffusive regimes. At the same time, the above actions allow to manipulate its 
distribution. Therefore the front shape can be noticeably improved with an additional 
benefit to the pulling velocity. The goal of imposed steady field or crucible rotation is 
to provide a certain compromise between the magnitude of heat flux and its 
uniformity (or, in other words, the optimum velocity of pulling and flatness of the 
front). The imposed counter-rotation increases the heat flux from the liquid phase in 
comparison to diffusive regime. Thus, from the point of view of solidification 
interface shape and pulling velocity, it is not an optimal case. However, the heat flux 
is reduced in comparison to the buoyancy driven flow. Besides, exactly such a 
configuration with a uniform flow towards a new solidified crystal may have benefits 
in quality characteristics that depend on mass transfer. 
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Summary 
The present thesis concerns a cylindrical, swirling-recirculating, azimuthal body 

force driven flow of conducting, incompressible liquid guided by a steady axial 
magnetic field or imposed rotation. Such flow is considered as a tool to control the 
convective transport in crystal growth from the melt. The optimum conditions of the 
intended application require an axially symmetric, uniform, controllable and steady 
flow. The natural buoyancy driven one usually does not satisfy any of these 
conditions. An azimuthal body force due to a rotating magnetic field drives an 
artificial flow with a number of advantages. However, it usually is neither stable nor 
controllable enough. The current thesis paper reveals and illustrates an ability of both 
imposed actions under consideration to control the base flow characteristics and its 
stability. I used mostly theoretical methods including scaling analysis, analytical 
solutions of simplified indicative cases as well as numerical simulation in selfsimilar 
or axially symmetric formulation. 

The thesis paper consists of five independent contributions (chapters). A review of 
flows related to the investigated ones is given in the first chapter. The cited literature 
clearly shows that the problem under consideration is closely related to famous and 
well known problems on: (i) fully developed (2D) magnetohydrodynamic boundary 
layers under a strong transverse magnetic field; (ii) von Kārmān swirling flow in half-
space above a rotating disk. However, only few of existing results can be directly 
applied in our case. 

The second chapter concerns the stability of sole rotating magnetic field driven 
flow in a truncated cylinder of aspect ratio (radius vs. height) below a unity. The 
numerical investigation showed that the Taylor-Gotler type instability onset delays in 
a shorter cylinder due to a stronger recirculation that reduces the relative thickness of 
side layer. A numerically found criterion expressed in terms of maximum azimuthal 
velocity and the relative thickness of sidelayer approximates the corresponding one in 
the Taylor-Couette flow with an inner cylinder rotating. The investigation of base 
flow yielded the expressions for the characteristic velocity and boundary layer 
thickness thus introducing a link to the critical forcing rate. The comparison to a 3D 
instability onset in the Bodewadt layer yields that this type of instability is expected to 
take place first in the vessel with the aspect ratio (radius vs. height) above one third. 

Chapter III deals with a body force driven flow under the action of steady axial 
magnetic field. The force balance analysis revealed a significant role of conductivity 
of normal to field end-walls. Magnetic braking starts to dominate first in the core if 
conductivity of end-walls is larger than that of adjacent boundary layer. Consequently, 
an intermediate range of braking occurs when the core is already braked but inertia 
perists to dominate in the boundary layer. The phenomenon is accompanied by a 
boundary layer widening with induction of the imposed field. Under a strong steady 
field the core rotation is braked exactly as the classic Hartmann flow. The source of 
core recirculation is proportional to a squared angular velocity drop in the boundary 
layer. Besides, a steady field brakes the recirculation directly as well that results in a 
drastic damping law of core recirculation. A strong field provides an axial uniformity 
of core rotation if the end-walls are insulating or thin. However, a strong field 
increases the role of radial distribution of driving body force. 
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A tangential boundary layer near a curved wall demonstrated an unexpected 
behavior in case of a reasonable conductivity of side wall. So, in case of all perfectly 
conducting walls, a sidelayer's velocity scale turned out much larger than that of the 
core. It differs essentially from the related classic case where both these scales are 
equal. A simple approximate analytical solution revealed that the difference occured 
due to curvature. An angular velocity drop along the height of side layer rises the 
meridional flow being less suppressed than the normal one in a horizontal layer. 
Therefore, in the side layer inertia persists for a higher induction of steady field. The 
numerical simulation showed that the Taylor-Gotler type instability in the side layer is 
suppressed together with inertia. An imposed steady magnetic field allowed simple 
azimuthal velocity measurements by a couple of electrodes. Such technique is 
validated by the closure of steady field induced current through thin boundary layers 
or poorly conducting end-walls. The experiment has confirmed some theoretical 
results including the neutral stability curve at a strong steady field, the presence of 
essential azimuthal velocity drop in vertical direction of side layer as well as the 
numerically found (by a laminar model) base flow velocity in the range of Reynolds 
numbers up to 10 4. 

Chapter IV concerns a flow driven by a rotating magnetic field and vessel's 
rotation. A steady solution of such flow is greatly controlled by the core force balance 
and a solution of associated so-called one disk problem. This classic problem 
describes a flow in a layer between a rotating bulk (i.e., the core in our case) over a 
differently rotating infinite disk (i.e. horizontal end-wall). According to its solution, 
the flow velocities can be controlled by imposed rotation similarly as it is done by a 
steady magnetic field. Contrary to the steady field, an imposed counter-rotation allows 
to change the direction of recirculation. A range of absent similarity solution appears 
as well as multiple solutions for counter-rotation. The numerical solution has 
confirmed the feasibility of those branches tending to an Ekman type almost rigid flow 
at a rapid vessel's rotation. Hence, the controllability of flow has been confirmed. 
Contrary to the steady field, the imposed rotation does not brake the recirculation 
directly. Thus, the decay law is softer. Axial variation of angular velocity occurs 
neither in the core nor in the side layer of almost rigid flow. The radial profiles of both 
the axial and angular velocities match each other and fit to an averaged over the height 
driving force distribution in the core. An approximate analytical solution was received 
for Stewartson's type vertical side layer. 

The numerical simulation exhibited essentially 2D flow structures with separating 
layers and additional couples of recirculation loops in the range of absent similarity 
solution. The second solution at counter-rotation turned out unreachable due to an 
unstable force balance in the core. However, another branch of similarity solution was 
confirmed tending to the state with zero core circulation at a rapid counter-rotation. 
This solution was observed in a laterally bounded volume with differently rotating 
boundaries (e.g. Czohralski growth). 

The existing results of rotating flow stability, as well as simple estimates using the 
Rayleigh criterion showed the stabilizing action of imposed rotation, especially of 
rapid counter-rotation. 

In Chapter V a simplified model of hydrodynamically guided solidification is 
given. The method was obtained by linearizing a coupled hydrodynamic-solidification 
problem with an almost flat growth interface. The proposed technique allows to 
clarify optimum thermal and hydrodynamic conditions ensuring a maximum pulling 
velocity and flat solidification front. Besides, the method significantly simplified 
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calculations providing a reasonable accuracy at the same time. A minimum heat flux 
with a uniform distribution in the middle part is required. A natural buoyant flow is 
directed towards the solidification interface in its middle part. Hence, the heat flux is 
large and non-uniform there. A rotating field of sufficient strength drives a swirling-
recirculating flow with axial velocity towards the bulk of melt. Consequently, the heat 
flux can be considerably reduced. The imposed steady magnetic field or rotation of 
vessel promoted a transition from buoyancy to a swirl dominated flow. Besides, both 
these actions allowed to control the heat flux distribution. Thus, they provided a 
certain compromise between the magnitude of heat flux and its non-uniformity. In 
terms of solidification front, it corresponds to its maximum flatness and an additional 
benefit to the pulling velocity rate. 

The thesis offers a rich material to one wishing to optimize the melt motion during 
crystal growth. I believe, it somehow supplements the knowledge on famous 
theoretical problems in magnetohydrodynamic and rotating boundary layers, as well, 
or at least, gives several illustrative examples. Most of theoretical results wait for 
further experimental checking. 
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