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Annotation 

 

The doctor thesis is devoted to the asymptotic methods for Markovian iterative 

procedures convergence analysis, which are presented in a form of linear difference 

equation � � 1,t t tx A y x t�� � �  in n� , where � 	
 �
,A y y � 
  is continuous n n�  

matrix function on the metric compact � , and � �,ty t � �  is a homogeneous ergodic 

Feller Markov chain with phase space � . The proposed method and algorithm are 

based on construction of discrete semigroup for the covariance matrices and spectral 

analysis of the semigroup generator. This permits to apply well developed spectral 

theory of positive operators in Banach space and to elaborate a special version of the 

second Lyapunov method for mean square asymptotic stability analysis. Especially a 

semigroup conception may be successfully used for asymptotical analysis of 

difference equations with near to constant coefficients. In that case one can employ 

the powerful tools of Kato perturbation theory for spectral projector decomposition 

and succeed in a calculation of mean square Lyapunov index for the above discrete 

dynamical system. The proposed method and algorithm of asymptotical analysis of 

small random perturbations are illustrated not only by theoretical examples, but also 

by analysis of fourth moments GARCH model, which is high-usage tool of 

contemporary financial econometrics. 
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Anot cija 

 

Promocijas darbs ir velt � ts line�ru Markova iter�ciju, kuras var izteikt line�ru 

diferen� u vien�dojumu form� � � 1,t t tx A y x t�� � �  telp� n� , konver� ences anal � zes 

asimptotisk�m metod� m, kur � 	
 �
,A y y � �  ir nep�rtraukta n n�  matricu funkcija 

metrisk� kompakt� telp� � , � �,ty t � �  ir homog� na ergodiska Fellera Markova � � de 

ar f�zu telpu � . Pied�v�t� metode un algoritms ir balst � ti uz diskr� tas pusgrupas 

konstru� šanu kovari�cijas matricai un pusgrupas � eneratora spektr�lo anal � zi. Tas � auj 

pielietot labi att � st � to spektr�lo teoriju pozit � viem operatoriem Banaha telp� un 

izstr�d�t otr�s � apunova metodes speci�lu versiju asimptotisk�s stabilit�tes vid� j� 

kvadr�tisk� noz� m�  anal � zei. Galvenok�rt pusgrupas j � dziens var veiksm� gi tikt 

pielietots diferen� u vien�dojumu ar gandr� z konstantiem koeficientiem asimptotiskai 

anal � zei. T�d� gad� jum� spektr�l� projektora dekompoz� cijai var izmantot Kato 

perturb�cijas teorijas efekt � vos l � dzek � us un veiksm� gi apr� � in�t vid� jo kvadr�tisko 

� apunova indeksu iepriekš min� tajai diskr� tai dinamiskai sist � mai. Pied�v�t� metode 

un algoritms mazu gad� juma perturb�ciju asimptotiskai anal � zei ir ilustr� ti ne tikai ar 

teor� tiskiem piem� riem, bet ar�  ar ceturto momentu anal � zi GARCH modelim, kas ir 

plaši lietots instruments m	 sdienu finansu ekonometrij�. 
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1 Introduction 

 

This doctor thesis is devoted to the asymptotic methods for linear Markovian 

iterative convergence analysis. The asymptotic behavior of linear difference equations 

with almost constant Markov coefficients subjected by a small parameter is 

investigated. 

The asymptotical analysis of stochastic dynamical systems is mainly based on 

such qualitative methods as: the second Lyapunov method, limit theorems of 

probability theory, perturbation theory and others. For mean square equilibrium 

stability analysis the second Lyapunov method and perturbation theory of linear 

continuous operators in Banach space can be applied. 

The first results on asymptotic theory of random processes appeared in the 

publications of Gikhman and Skorokhod ([20], [22], [23], [24], [25]) at the end of 

1950s. Discrete dynamical systems with random parameters in mathematical 

nowadays literature appear relatively recently. In 1972 Vazan [58] described iterative 

methods for algebraic equations in case a noise exists. Also in 1972 the authors 

Nevelson and Hasminskij [51] successfully used the idea of the second Lyapunov 

method for asymptotic analysis of iterative stochastic procedures. In more details the 

use of limit theorems in the asymptotic analysis of solutions of difference equations 

with random parameters is introduced by Anisimov [1]. 

Stability of Markov processes are investigated by such authors as I. I. Gikhman, 

R. Z. Hasminskij, M. B. Nevelson, H. J. Kushner, A. V. Skorokhod, Ye. F. Carkovs, 

M. L. Sverdan and others (for example, [20], [22], [23], [39], [51], [56]). Theory of 

asymptotic stability analysis developed substantially thanks to works of L. Arnold, V. 

I. Oseledets, M. B. Nevelson, R. Z. Hasminskij, H. J. Kushner. The interplay between 

characterization and approximation or convergence problems for Markov processes is 

the central theme of Ethier and Kurtz [20]. H. J. Kushner has contributed to many 

areas of stochastic systems theory and applications (for example, [39], [40]). He has 

developed the main current numerical methods for stochastic control problems in 

continuous time [38]. Many researches on random dynamical systems are performed 

by L. Arnold [3]-[5]. 
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Kesten in his work [35] studied the limit distribution of the solution nY  of the 

difference equation 1 , 1n n n nY M Y Q n�� � � , where nM  and nQ  are random matrices. 

The conditions for the exponential convergence of 1 2 nM M M�  to 0 in the special 

case is given by Konstantinov and Nevelson [36]. 

L. Aceto, R. Pandolfi and D. Trigiante studied the linear difference equations 

depending on a complex parameter [1]. By using the fact that the associated 

polynomials are solutions of a difference equation, they carried out a complete 

analysis for the class of linear multistep methods. 

Stochastic difference equations are one of the basic tools for analysis of time 

series. In most cases it is assumed that time series have conditional Gaussian 

distribution with constant variance. Therefore its mathematical model can be 

represented in a form of linear inhomogeneous iteration procedure in n� : 

 1t t tX FX ��� � , (1.1) 

where � �,t t� � �  - a sequence of identically distributed random variables in n�  with 

mean value zero and covariance matrix �  (so called "residuals"). 

It is well known [28], [42], [45] that under condition  ! " #1F z$ % � �'&  (here 

and further ( )( )  denotes a spectrum of a matrix or an operator) there exists unique 

satisfying to (1.1) stationary time series � �ˆ ,tx t � � . Let tX  be an arbitrary satisfying 

to (1.1) iteration and ˆ:t t tY X x* + . This random sequence satisfies deterministic 

recurrent procedure 1t tY FY �*  and therefore the difference ˆ:t t tY X x* +  converges to 

zero with t ,.-  if and only if / 0 1 21F z( 3 4 . In this case one says that (1.1) 

defines converging iterative procedures or the above stationary solution of (1.1) is 

asymptotically stable. 

However many problems of contemporary econometrics have to model 

residuals in (1.1) as a product t t t
5 6*87 , where � �,t t

9 � �  is a sequence of identically 

distributed random variables in n�  with mean value zero and unit covariance matrix, 

but matrices : ;2,t t7 < =  (conditional covariance) are defined as a solution of 

difference equations with coefficients linear dependent on t
6  (models VecGARCH 

[28]). For example, in scalar models like GARCH(p,q) (Generalized Auto Regressive 

Conditional Heteroskedasticity) conditional variance of residuals satisfies an equality 



 
 

7

 2 2 2
0

1 1

q q

t k t k j t j t j
k j

( > >?( @A( 6� �B�C C* D DE E
, (1.2) 

where 0 0> F , 0,k
> G  0, 1, ,j j q

HJI K L
. It is proved [7] that the stationary time 

series M N2ˆ t tOQPJR S  defined by (1.2) exists, and M N2E ˆ t
O TVU , if and only if for any other 

satisfies the equality (1.2) time series M N2
t tOQPJR S , mathematical expectation of 

deviation 22ˆ tt tx WWXZY [  tends to zero with t \.] . One can find the above mentioned 

second moment in turn-key form ^ _ 1

2
0

1 1

ˆE 1
q q

t k j
k j

` a a b cd d
e fg h hi jk lm m

 and to insure that 

satisfying (1.2) stable stationary solution with second moment exists if and only if 

1 1

1
p q

k j
k j

n Hd do pE E
. Not so difficult to write scalar iterative equation for tx  or vector 

equation for q r1: , , ,t t t t qX x x xs sK t
 with random matrix u v1: , , ,t t t t qF F wxw ws sK t

 and 

to formulate the above problem as a convergence problem for defined by equation 

1t t tX F X sK
 iterative procedures. 

It should be mentioned that all parameters of above defined equations (1.1) and 

(1.2) can be determined by given sampling, using the least square method [49], [59]. 

Of course, the existence of asymptotic stable stationary solution having the second 

moment for variance equation is a main assumption, that is, convergence of matrices y z { |
4 : T

t tM t E X X
K

 to some constant matrix 4M , if t \.] . This question leads to the 

analysis of moment behavior for corresponding homogeneous equation. The 

assumption about independence of sequence � �,t t
} ~ �  elements allows rather easy to 

obtain its necessary and sufficient conditions in a form convenient for use [13]. 

However in contemporary finance econometrics mostly are used regression models 

with uncertainty given in a form of random sequences in discrete state spaces. For 

example, in Cox-Rubinstein model [14] in the analysis of options' prices fixing 

possibility a market dynamics are determined by behavior of stocks, which can be 

represented in a form of iteration procedure 1t t tS S
� sK

, where interest rates 

� �,t t
� ~ �  are independent and have only two values in each time moment: either up 

or down. Even in such a simple case a sequence, which defines dynamics of such 

derivative securities like options, futures and so on at a securities market, is not only 
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the sequence with random coefficients as independent multipliers, but with 

coefficients having Markov property. If it would be interpreted using regression 

models with type GARCH residuals, it will be as modeling of a sequence of residuals' 

conditional variances in a form of linear difference equations with Markov 

coefficients in n� : 

 � � 1t t tx A x
} sg  (1.3) 

where � �,t t
} ~ �  is a homogeneous Markov chain with phase space �  and transition 

probabilities � �,P y dz . The problem we have to deal with is not only convergence to 

zero of any iteration defined by (1.3), but also convergence to zero of the 

unconditional second moments of the above stochastic recurrent procedure as t tends 

to infinity. 

The research object is a linear difference equation with Markov coefficients in 

space n� : 

 � � 1,t t tx A y x tsg ~ �  (1.4) 

where 
y z
 �

,A y y � �  is continuous n n�  matrix function on the metric compact � , � �
sup

y
A y const� ��� ; � �,ty t

~ �  is a homogeneous exponentially ergodic Feller 

Markov chain with phase space � , invariant measure � �dy�  and transition 

probability � �,p y dz . Under initial conditions kx x� , ky y�  the vector function 

� � � �
, , , ,tx k x y X t k y xg , where � � � �

1

, , :
t

m
m k

X t k y A y������ , satisfies the given 

difference equation, and it is called as a solution of this equation and matrix function � �
, ,X t k y  as a Cauchy matrix. 

The investigated problem is the second moments behavior of the above 

defined linear difference equation (1.4) with Markov coefficients as t tends to infinity, 

that is, convergence to zero of the unconditional second moments of the above 

stochastic recurrent procedure as t tends to infinity � �� �
2

, , 0t t
E x k x y ������ � ¡ . 

The aim of the doctor thesis is elaborate a methodology which can be used for 

the dynamics analysis of the second moments matrix of the above defined difference 

equation (1.4) solution, that is, behavior of a matrix as matrix function of argument t: 
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¢ £
, :T

x y t t tE x x Q� , in case if the matrix function � �
 �
,A y y ¤ �  is near to constant and 

can be given in a form of uniformly converging sequence ¥§¦ ¥§¦
0 1

0

: k
k

k

A y A A y¨ ¨� ©
ª� «­¬ , where ® ¯0,1° ~  is a small positive parameter. 

The research theme is actual, because difference equations with random 

coefficients are widely used in such contemporary applications of dynamical system 

theory as regressive financial time series analysis. These models one can find for 

example, in Bera and Higgins [6]; Bollerslev, Engle and Nelson [8]; Li with co-

authors [41]-[45], [47], [49]; Wong and Li [59]-[64]; Engle [19]; Gourieroux [26]; 

Heynen and Kat [29]; Pantula [53]. The analysis of the time varying stock returns and 

investigate return volatility is crucially important for many issues in macroeconomics 

and finance, such as for irreversible investments, option pricing, the term structure of 

interest rates, and general dynamic asset pricing relationships. The proposed in our 

dissertation methods and algorithms make possible asymptotical analysis of residuals 

of GARCH models. The proposed method allows to analyze the second moments 

behavior of the iteration procedures defined by (1.4) as t tends to infinity, that is, to 

analyze asymptotical stability. Moreover this method is convenient for use. 

Scientific innovation. The analysis of stochastic dynamical systems is an 

important research topic in the contemporary econometrics. A number of researchers 

worked on these problems, for example, [3], [4], [5], [9], [11], [13], [15], [20], [22], 

[23], [24], [25], [28], [30], [31], [32], [35], [36], [38], [39], [40], [51]. The methods 

and algorithms proposed of the above mentioned papers are mainly based on random 

coefficients independence. Our proposal methods and algorithms allow to take 

account of data correlation assuming the perturbed sequence as discrete Markov 

process. 

The second section contains auxiliary results regarding iteration procedures with 

Markov coefficients. Markov chain defined by stochastic difference equations is 

introduced. Stability analysis method – the second Lyapunov method – for solutions 

of difference equations with random coefficients is described. Necessary and 

sufficient conditions for mean square stability of linear systems with independent 

coefficients in finite space are given. 

The third section is devoted to asymptotical methods. As auxiliary results in this 

section the necessary issues from the perturbation theory for linear operators in a 
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finite-dimensional space are considered. The main question is how the eigenvalues 

and eigenvectors change with the operator, in particular when the operator depends on 

a parameter analytically. 

For equation (1.4) with almost constant coefficients a convenient for application 

asymptotic algorithm of mean square stability analysis by the second Lyapunov 

method is elaborated involving Laurent series decomposition by small parameter 

powers of specially constructed quadratic Lyapunov functions. The given algorithm is 

expounded using two examples: exponentially mean square stable difference equation 

and exponentially mean square unstable difference equation. 

A method for simplified analysis of linear difference equations in n-dimensional 

real space with near to constant coefficients dependent on homogeneous ergodic 

Markov chain is given. The difference equation in n�  with constant coefficients is 

constructed to approximate the covariation semigroup of correlation matrix family. 

The proposal method is based on decomposition of specially constructed spectral 

projector for generating operator of the above mentioned semigroup. 

In the fourth section the first and the second moments of linear difference 

equations with coefficients dependent on homogeneous ergodic Markov chain are 

analyzed. A convenient for application method of the first moment analysis is 

elaborated. This method is adapted to the analysis of the dynamics of the second 

moment matrix of difference equation (1.4) solution. In case if random perturbations 

are independent the proposal method enables to write necessary and sufficient 

stability conditions involving system coefficients. 
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2 I teration procedures with Markov coefficients 

2.1 Markov chain defined by stochastic difference equations 

Let assume some probability space ± ², ,
³ ´µ

 is given. Let ¶  be a metric space 

and · ¸  - Borel ¹ -algebra on its subsets. A function º »: 0,1P � � �½¼B¾¿� � À  is 

called [18] transition function to Á Â, ¼ ¿À  if for all natural 0n s
ÃÅÄ

: 

1. Á Â, , , 1P s n x gÀ  for all x Æ Ç ; 

2. È É 1,
, , ,

0,

if x A
P s s x A

if x A

ÆÊËÍÌ ÎÏ  for all x Æ Ç  and A Æ'Ð ¿ ; 

3. Ñ Ò, , ,P s n x A , as a function of argument A, is a probability measure on Ð ¿ ; 

4. Ñ Ò, , ,P s n x A , as a function of argument x, is Ð ¿ -measurable; 

5. for all x Æ Ç , A Æ'Ð ¿  and s m nÓ Ó  Chapman-Kolmogorov equation 

 Ô Õ Ô Õ Ô Õ, , , , , , , , ,P s n x A P s m x dy P m n y AÖØ×Ù  

is fulfilled. 

If a series of elements Ú ÛÜ Ý
,nx nÞ ß �  is given on à á, ,P

â µ
 with values in 

measurable space à á, ã ÙÀ  and if such a transition function ä å, , ,P s n x A  exists that for 

all A Æ'Ð Ù  and natural s k næ æ  the following equality is fulfilled 

 çéè çéè çéè çéèê ë çìèí î
1, , , , , ,n s s k kP x A x x x P k n x Aï ï ï ï ïðÆ Ët

, (2.1) 

this series has a Markov property. The equation (2.1) together with the Chapman-

Kolmogorov equation allows to define distribution for any finite sample of random 

variables ñìò ñìò ñéòó ô
0 0 01, , ,n n n kx x xï ï ïð ðt

 in case the distribution õ ö
0n dx÷  of element 

õ ö
0nx Þ  is known. For this reason for any Borel 0 1, , , kA A A

t
 a recurrent expression 

 
ñ ò ñ ò ñ òø ù
ñéò ñìòú û ñéò ñìòø ù0 0 0

0 0 0 0

1 1 0

1 1 1 1 0

, , ,

, , ,

n k k n k k n

n k k n k k n k k n

P x A x A x A

P x A x A P x A x A

ï ï ï
ï ï ï ïð ð�ü ü

ð ð�ü ü ð�ü ü
Æ Æ Æ Ë

Ë Æ Æ Æ Æ
t

t  (2.2) 

the Markov property (2.1) and an equality 
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ý þ ý þÿ �
ýéþ ýéþ� � ýéþÿ �

ý þ ý þ
0 0

0 0 0

0

0

1 1 0

1 1 0 0

0 0 1

,

, 1, ,

n n

n n n

n

A

P x A x A

P x A x A P x A

P n n x A dx

ï ï
ï ï ï�

ð
ð
Æ Æ Ë

Ë Æ Æ Æ Ë
Ë ��  (2.3) 

can be used. These formulas will be needed for the description of series � �,nx n ß �  

using the initial distribution of random variable � 	1x
Þ  and transition probability 

à á, , ,P s n x A . 

Let look in more details to a stochastic recurrent procedure. The difference 

equation in a form 

 
 �� 

1 1,n n n nx f x � Þ� �Ö  (2.4) 

will be investigated, where � �,n n� ß �  is a series of independent identically 

distributed random variables with values in � �, ã ��
, and � �� �

, ,nf x y n ß �  is a series 

of Ð��½Ð� � -measurable functions :nf � �Ç � Ç . Let’s denote n
k

 
 a minimal ¹ -

algebra concerning which random variables 1, , ,k k n

!"! !� t  are measurable, for 

0n k
Ã Ä

. If nx xË  let define an operator 1
1:n n n

k n kX x X X x
##Ë , 0n k

Ã Ä
, where $ %

1
1: ,k

k k kX x f x �& &Ö . 

Theorem 2.1 [11] Equality ' ( ) *, , , n
kP k n x A P X x AË Æ  defines a transition function 

of Markov chain. 

Let + ,- .
, , ,g n x n xÆ Æ/ Ç  be a series of scalar continuous functions on Ç . 

Using (2.4) an operator can be defined 

 

0 120 1 3 45 6 0 10 170 1 0 11, 1, ,

, 1, , 1, ,

n
nLg n x g n X x g n x

P n n x dy g n y g n x

89 : ; 99 : : ;<=
>

 (2.5) 

if the right part exists for all x Æ Ç  and 0n
Ã

. This operator L is called as discrete 

Lyapunov operator for (2.4) and its definition area let denote ? @L
A

. 
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2.2 Second Lyapunov method 

2.2.1 Definition of stability 

The equation (2.4) will be investigated in real n-dimension space nB . It is 

assumed that a condition ? @0, 0nf y C  is fulfilled for all n Æ / . A series D E
1n n

� F  

contains independent identically distributed random variables. The equation (2.4) has 

a trivial solution 0,nx nË Æ / . An item for investigation is behavior of a solution of 

(2.4) in some neighbourhood of zero in nB . 

A trivial solution of (2.4) is called: G p-stable, if for any 0H Ä  such a 0
I Ä

 exists that for all J K:nx U x xL MÆ Ë Æ æB
 

and 0n s
ÃÅÄ

: 

 N Opn
sE X x ¨æ ; (2.6) G stable by probability, if for any 0H Ä , 0P Ä  such a 0

I Ä
 exists that for all 

x U QÆ  and 0n s
ÃÅÄ

: 

 R Sn
sP X x ¨ PÃ æ ; (2.7) G stable almost sure, if for any 0H Ä , 0P Ä  such a 0

I Ä
 exists that for all x U QÆ  

and 0n s
ÃÅÄ

: 

 T Usup k
s

k n
P X x ¨ PV Ã æ ; (2.8) G stable in whole in meaning of previous stability definitions, if inequalities (2.6), 

(2.7) and (2.8) are fulfilled for all nx Æ W  starting with some X Y, ,n n x Z\[9 ; G asymptotically stable in meaning of previous stability definitions, if it is stable and 

such a 1 0M Ä  exists that the left side of inequalities (2.6), (2.7) and (2.8) tend to 

zero if n ]_^  for all 
1

x U `Æ ; G exponentially p-stable (p>0) , if such 0
I Ä

, 0M
Ä

, 0P Ä  exist that for all 

0t s
Ã Ä

 and x U `Æ : 

 N O acbp p t st
sE X x M x e defeg

; (2.9) G asymptotically stochastic stable, if it is stable almost sure and for any 0H Ä  such a 

0
I Ä

 can be found that for all x U `Æ  and 0s
Ä

: 
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 h ilim 0 1t
s

t
P X x jkml Ë Ã"n

. (2.10) 

Stability in some meaning if p=2 is called mean square stability. From p-

stability for 0p
Ä

 po -stability follows for any X »0,1prq  as 

 s t s tu v 1
p pn n

s sE X x E X x wwÃ
. 

From exponentially p-stability for some 0p
Ä

 asymptotically stability follows almost 
sure. 

Investigation of the stability of (2.4) trivial solution analyzing X Y X Y,Lg n x  

behavior in some zero neighbourhood using a series of functions X Y,g n x  is called the 

second Lyapunov method. The function X Y,g n x  is called Lyapunov function if x y
, 0g n x z  for all n Æ {  and mx Æ W , and such number N exists that 

 | } | }ˆsup , 0 if 0

r

n N
x U

g n x g r rV~ Ë � � , (2.11) 

 � � � �sup , if

r

n N
x U

g n x g r rV� Ë ��� �_� . (2.12) 

ĝ  and g are monotone functions. 

In the behavior analysis of Markov chain defined using an iteration procedure 

(2.4), it is important to know the conditions when the trajectory goes out of open area 

G with probability 1 in finite time. Let � �,nx n q �  be a Markov chain with 

reproducing operator L and arbitrary initial distribution, � �,g n x  is a positive 

function. If � � � �,g n x Lq A , then for 0n S n
Ä Ã

 

 � � � � � �� �
0 0 0

11, , ,n n n
n n nEg n X x Eg n X x E Lg n X x
�� � � , 

 � � � � � �� �
0 0 0

11, , ,
n

n s k
n n n

k s

Eg n X x Eg s X x E Lg k X x
� �� Ë � ¬ . 

Let denote � �G
� Þ  the moment of the first sequence's 

0 0
n
nX x  outlet of area G, where 

0x  is a random variable, ¹ -algebra � �0B x  measurable and not dependent on 
0n�µ . Let 

define a process ��� � � ,
min ,

,
G

G G
G G

t t
t t

t �� � � �
��   �¡ ¢£ . This process belongs to ¤ -algebra 

¥ ¦
00
t

t nN B x  § µ . For all t also ¨ © 1,
1

,
G

G
G G

t t
t

t �� � �
ª ��ª  �¡ ¢£  is tN -measurable. 
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Theorem 2.2 [51] If a mathematical expectation exists, then for all 0n n
Ã

 

 « ¬ ­f®¯ ° « ¬ ± ²­³®
0 0

0

1
0 0 0 01 , , ,

G

G

n
n k

G n n
k n

Eg n X x Eg n x E Lg k X x

´´µ ¶ ·¸ ¹º » º ¼ ½¾ ¿À
. 

If the conditions of Theorem 2.2 are true and ¨ ©, 0Lg n x Á  in G for all n, then a 

process given by Â�Ã Â�Ã ÄÆÅÇ È
0 0, G t

G ny t g t X x
´µ»  is non-negative supermartingale. 

Lemma 2.1 [51] Let function Â Ã, 0g t x
¢

 exists, 0,t x G
É Ê

. For some Â Ã Â Ã,Lg t x tËÁ�Ì  in this area, where Í ÎtË  is a sequence satisfying condition ÏÑÐ Ï�Ð
0

0,
t

t tÒ ÒÓ ·Ô »ÖÕÀ
. Then process tx  goes out of G in a finite time with 

probability 1, that is, × Ø 0GP �  ÖÙÚ  . 

Let B be a closed subset in mW ; 
Ï Ð Ï ÐÛ Ü

: ,U B x x BÝ Þ ß» à  its á -

neighbourhood, where â ã â ã, inf ,
y B

x B x yÞ Þä»  and å æ å æ\mU B U Bç ç  è ; Ï Ð Ï ÐÛ Ü
0, : 0,S R x x RÞ» à . Let denote å æ å æ å æ, : 0,RU B U B S Rç ç  é . Let say that 

function å æ å æ,t x Lê ë A  belongs to class ì íB
î

, if it is non-negative and for some ï ð
,N R Ná    ñóò ô õ

,,
inf , 0

Rt N x U B
t xö ÷øùø ú  for all 0 RHû û . 

If such R exists that ü ý ï ð
, 0,nx n S Rë þ� , 

ï ð ï ð
,n x Bê ë î  and ÿ �

lim , 0n
n

n x���� �  is valid, then � �lim , 0n
n

x B���� � . 

Lemma 2.2 [51] Let such a function � �, 0g t x 	  and a closed subset mB 
 W  exist 

that � � � �
0

inf ,
t

x

g t x g x� ���� 
���  (the Lyapunov condition) and � � � � � �, ,Lg t x t t x� ����
, 

0t � , mx � W , � � � �,t x B� ���  are valid, hereto a sequence � � � �� �
, 0,1,2,t t � t

 

satisfies conditions � � 0t� ! , "�#
0t

t � $ �%�À
. Then 

 0
0

sup 1t

t
P X x�& 'û �(�) *+ , , (2.13) 

 -%.0/ 10
0

, 1t

t

P t t X x ÷�$& 'û �2�) *+ ,À
, (2.14) 

 3 4Ç È
0lim , 0 1tP X x B5 � �  (lower limit). (2.15) 
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Theorem 2.3 [51] Let such a function - ., 0g t x 	  and a subset mB 
 W  exist for 

which 

 
- . - . - .-6. - . - .0

0

sup , 0, , 0,

inf , , , ,
t

t

g x g t x if x B

g x g t x if x B

5 5��
� 
 
� 
�� 
���

�  

 7 8 7 8 7 8, , , 0, mLg t x t g t x t x���� 	 � è , 

where 7 8 0t� ! , "%# "9#
0

t

t
k

t k
:  ���$� 
;�À

. Then < => ?
0lim , 0 1t

t
P X x B5��� � � . 

2.2.2 Sufficient conditions for stability 

Theorem 2.4 [11] If Lyapunov function 7 8,g n x  exists and such a number 0N ú  

exists, that for all n N�  and mx � W  

 7 8 7 8, 0Lg n x
�

, (2.16) 

then a trivial solution of (2.4) is stable almost sure. 

Corollary 2.1 [11] If Lyapunov function exists satisfying the condition 

 7 8 7 8 7 8, ,Lg n x cg n x
���

 (2.17) 

for all n � { , mx � W  and some 7 80,1c � , then a trivial solution of (2.4) is 

asymptotically stable almost sure. 

2.2.3 Stability of linear systems almost sure 

Let suppose that a difference equation in mW  has a form  

 7 81 1n n nx A x
@A A� , (2.18) 

where B Cn

@
 is a series of independent identically distributed random variables with 

values in metric space D , E FA y  is continuous by y � D  matrix function, hereto " #sup
y

A y constG � û �H . 

Theorem 2.5 [56] If a trivial solution of (2.18) is stable almost sure, then it is p-stable 

for all sufficiently small positive p. 

If trivial solution is asymptotically stable almost sure, then it is asymptotically 

p-stable for sufficiently small positive p. 

Theorem 2.6 [56] If (2.18) trivial solution is asymptotically p-stable, then it is 

exponentially p-stable. 
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Exponential p-stability for sufficiently small 0p ú  follows from asymptotical 

stability almost sure of (2.18) trivial solution. 

Theorem 2.7 [56] If (2.18) trivial solution is asymptotically stable almost sure, then 

Lyapunov function I Jg x  exists such, that 

 K6L ˆp p
x g x xMN N

, (2.19) 

 O P O P O PLg x cg x
���

, (2.20) 

 Q R Q R Q R1 2 1 2g x x g x g xS � S  (2.21) 

for all 1 2, , mx x x � T  and sufficiently small 0p ú , ˆ 0U V  and Q R0,1c W . 

2.3 Mean square stability of linear systems with independent 

coefficients 

2.3.1 Necessary and sufficient conditions for stability in finite space 

Let consider linear difference equation in mT  what has form 

 1 1n n n nx Ax Bx
XA A� Y , (2.22) 

where Z [,n n
\ W �  is a series of scalar identically distributed random variables, Z [1 0

\ ]>
, ^ _21 1
X �`

. Let define a following matrix for 0n k� ú : 

 a b a b1 , if ,

I, if .
n n k
k

A B A B n k
X

n k

\ \dce f f V]�g ]h i  (2.23) 

A solution of (2.22) has a form j k
0 0,n

nX x n n�  for initial conditions 
0nx x� . It is 

0 1
n
n

cl
- measurable and defines a transition probability 

 m n o p, , k n
kP n x C X x C

c� �q
 

for all 0n ú , mx � T  and mC B� , where mB  is r -algebra of Borel sets in mT . In a 

set of m ms  real matrices a bm

t è  a subset of symmetric matrices let denote u  and 

a set 
v u  - positive defined matrices, that is, 

 w xy z
: , 0, mq qx x x� � � {|�v u T . 

Let define in space u  a norm by equality 

 } ~
1

sup ,
x

q qx x�]
. (2.24) 

The following items from linear algebra will be used. Let q � u . Then 
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1) the spectrum of q consists of real values, hereto for all mx � T  

 w x2 2

min max,x qx x x
� �N N

, 

where 

 w x� �
max max , q
� ��� �� � , 

 w x� �
min min , q
� ��� �� � ; 

2) 
1

max
x

q qx�� ; 

3) such a nonsingular transform � �mU W t è  exists, that 1TU U ��  (orthogonal 

transform) and 

 � �1, ,T
mU qU diag � �] �

, 

where � �j q� rW , 1,2, ,j m� � ; 

4) q � v  then and only then, if all its corresponding eigenvalues non-negative; 

5) 
v

 is closed, that is, from � �,nq n W �� � , lim nn
q q����  follows that q � v ; 

6) from 1 2,q q � v  and 1 0 � , 2 0 �  follows 1 1 2 2q q  Y � v ; 

7) a set � �� �
: , 0, 0q qx x x� � ú {���v v

 consists of inner points of 
v

; 

8) for any q � u  such 1 2,q q � v  exist, that 1 2q q q� � ; 

9) q � �v  then and only then, if such a positive number 
:

 exists, that � � 2
,qx x x

:�  

for all mx � T . 

A set satisfying properties 5) and 6) is called a cone [37]. 

A correlation matrix of m-dimensional random variable 
X

 is defined by equality 

 
y z

Tq E
X�X� , 

and it is an element of 
v

. 

A system of difference equations (2.22) defines an linear operator family � �� �
, 0T n n �  by equality 

 �6�  ¡ ¢ £¤ ¥
, ,k n k n

k kT n qx x E qX x X x
¦ ¦�  (2.25) 

for any 0k � , q � u , mx � T , hereto � �0T I
]

. 

Lemma 2.3 [11] For any n � §  an operator � �T n  leaves as invariant 
v

. 
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Lemma 2.4 [11] For any 0n �  and 0k �  

 ¨ © ¨ © ¨ ©T n k T n T k
f ]

. (2.26) 

Let denote ¨ ©1T T
]

, then from (2.26) follows equality ¨ © nT n T
]

 for all 

n � § . It is easy to calculate, that 

 T TTq A qA B qB� Y  (2.27) 

for all q � u . 

Let define a scalar product in u  by equality 

 ª « ¨ © ¨ ©, :q p Sp qp Sp pq
] ]

. (2.28) 

Let assume that initial condition 0x  - a random variable having a correlation 

matrix 0q � v  and not dependent on 0¬ . Then a correlation matrix 1q  of random 

variable 1
1 0 0x X x�  can be found using equality 

 ­ ® ¯ °± ²
¯ °± ² 1 1

1 1 1 0 0 0 0

1 1
0 0 0 0 0 .

TT T

T T T

q E x x E X x x X

E X q X Aq A Bq B

� � �� � Y  (2.29) 

If a linear operator ³  is defined as 

 : T Tq AqA BqB� Y³ , (2.30) 

then from (2.29) follows 1 0q q� ³ . 

Lemma 2.5 [11] *T�³ . 

From linear operator properties in Banach space follows that 

 ´ µ ´ µTr r]¶ . (2.31) 

Theorem 2.8 [11] A trivial solution of (2.22) is exponentially mean square stable if 

and only if spectrum of operator T is located inside circle · ¸: 1z z� û¹
. 

Let define operator G by equality 

 
0

k

k

Gq T q¬ º� À  (2.32) 

and let write ´ µq GW A , if this series converges for given q � u . 

Corollary 2.2 [11] A trivial solution of (2.22) is exponentially mean square stable if 

and only if for any r � �v  such a q � �v  exists that » ¼T J q r½ ] ½ . 
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Corollary 2.3 [11] A trivial solution of (2.22) is exponentially mean square stable if 

and only if » ¼G ¾ �A
. 

Theorem 2.9 [11] For exponentially stability of (2.22) trivial solution it is necessary 

and sufficiently that for any ma � T  the following inequality is valid 

 ¿ ÀÁ Â Ã Ä
2 2 2

0
0

,n

n

E X x a cE x a¬ º NÀ
 

for some 0c ú  and all random vectors x having the second moment and not 

dependent on 0¬ . 
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3 Asymptotical methods 

3.1 
�

-group and projection for the 
�

-group 

In this section the necessary issues from the perturbation theory [33] for linear 

operators in a finite-dimensional space are considered. The main question is how the 

eigenvalues and eigenvectors change with the operator, in particular when the 

operator depends on a parameter analytically. 

Let turn to the perturbation theory for the eigenvalues problem in a finite-

dimensional vector space Å , where 0 dim Nû � û �Æ
. A typical problem of this 

theory is to investigate how the eigenvalues and eigenvectors of a linear operator T 

change when T is subjected to a small perturbation. In dealing with such a problem, it 

is often convenient to consider a family of operators of the form 

 » ¼T T TÇ Ç È] f
 (3.1) 

where Ç  is a scalar parameter supposed to be small. » ¼0T T
]

 is called unperturbed 

operator and TH É  the perturbation. 

A question arises whether the eigenvalues and the eigenvectors of » ¼T Ç  can be 

expressed as power series in Ç , that is, whether they are holomorphic functions of Ç  

in the neighborhood of 0H � . When » ¼T Ç  is defined and differentiable everywhere 

in its domain, » ¼T Ç  is said to be holomorphic. If this is a case, the change of the 

eigenvalues and eigenvectors is of the same order of magnitude as the perturbation 

TH É  itself for small Ç . However, this is not always the case. (3.1) can be generalized 

to 

 » ¼ ñ ò ñ ò
1 22T T T TÊ Ê Ê� Y Y Y � . (3.2) 

Let suppose that an operator-valued function » ¼T Ç  is given, which is holomorphic in 

a given domain 0D  of the complex Ç -plane. The eigenvalues of » ¼T Ç  satisfy the 

characteristic equation 

 Ë ÌÍ Î
det 0T Ê X� � . (3.3) 

This is an algebraic equation in 
X

 of degree dimN � Æ
 with coefficients, which are 

holomorphic in Ç . The number of eigenvalues of » ¼T Ç  is a constant s independent of 
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Ç , with the exception of some special values of Ç . There are only a finite number of 

such exceptional pointsÇ  in each compact subset of 0D . This number s is equal to N 

if these analytic functions are all distinct; in this case » ¼T Ç  is simple and therefore 

diagonable for all non-exceptional Ç . If, on the other hand, there happen to be 

identical ones among these analytic functions, then s Nû ; in this case » ¼T Ç  is said to 

be permanently degenerate. 

Let consider the eigenvalues of » ¼T Ç  in more detail. Since these are in general 

multiple-valued analytic functions of Ç , some care is needed in their notation. If Ç  is 

restricted to a simply-connected subdomain D of the fundamental domain 0D  

containing no exceptional point (for brevity such a subdomain will be called a simple 

subdomain), the eigenvalues of » ¼T Ç  can be written 

 » ¼ » ¼ » ¼1 2, , , s� Ç � Ç � Ç�
, (3.4) 

all s functions Ï Ð , 1, ,h h s� Ç ] �
 being holomorphic in D and Ï Ð Ï Ð ,h k h k� Ç � ÇÑ Ñ . 

Next the behavior of the eigenvalues in the neighborhood of one of the 

exceptional points, which can be taken as 0H � , is considered. Let D be a small disk 

near 0H �  but excluding 0H � . The eigenvalues of Ï ÐT Ç  for DH � can be expressed 

by s holomorphic functions of the form (3.4). If D is moved continuously around 

0H � , these s functions can be continued analytically. When D has been brought to its 

initial position after one revolution around 0H � , the s functions (3.4) will have 

undergone a permutation among themselves. These functions may therefore be 

grouped in the manner 

 Ë Ì Ë ÌÒ Ó Ë Ì Ë ÌÒ Ó
1 1, , , , , ,p p p q

� Ê � Ê � Ê � ÊÔ Ô� � � , (3.5) 

in such a way that each group undergoes a cyclic permutation by a revolution of D of 

the kind described. For brevity each group will be called a cycle at the exceptional 

point 0H � , and the number of elements of a cycle will be called its period. 

The elements of a cycle of period p constitute a branch of an analytic function 

(defined near 0H � ) with a branch point (if 2p � ) at 0H � , and Puiseux series can 

be obtained such as 

 Õ Ö 1 2 2
1 2 , 0,1, , 1h p h p

h h p� Ç � ×ÙØ Ç ×�Ø Ç] f f f ] ½� �
, (3.6) 
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where Õ Öexp 2 i pØ Ú]
. It should be noticed that here no negative powers of 1 pÊ  

appear, for the coefficient of the highest power NX  in (3.3) is ÛÝÜ1 N�  so that the Õ Öh� Ç  are continuous at 30Ê � . Õ Ö0h� �]  is called the center of the cycle under 

consideration. (3.6) shows that Û Üh

� Ê ��  is in general of the order 
1 pÊ  for small Ç  

for 1, ,h p� � . If 2p � , therefore, the rate of change at an exceptional point of the 

eigenvalues of a cycle of period p is infinitely large compared with change of Õ ÖT Ç  

itself. 

In general there are several cycles with the same center 
�

. All the eigenvalues 

(3.6) belonging to cycles with center 
�

 are said to depart from the unperturbed 

eigenvalue 
�

 by splitting at 0H � . The set of these eigenvalues will be called the 
�

-

group, since they cluster around 
�

 for small Ç . 

The resolvent 

 Þ ß Þ9ßà á 1
,R T
X Ê Ê X â� �  (3.7) 

of Þ ßT Ç  is defined for all 
X

 not equal to any of the eigenvalues of Þ ßT Ç  and is a 

meromorphic function of 
X

 for each fixed 0DÊ � . 

Theorem 3.1 [33] Þ ß,R
\ Ç  is holomorphic in the two variables 

X
, Ç  in each domain 

in which 
X

 is not equal to any of the eigenvalues of Þ ßT Ç . 

Let 
�

 be one of the eigenvalues of Þ ß0T T
]

, with multiplicity m. Let ã  be a 

closed positively-oriented curve, say a circle, in the resolvent set Þ ßP T  enclosing 
�

 

but no other eigenvalues of T. The second Neumann series 

 ä å äæå äçåèäéåäæå äçåèäéå äæå êìëíäéå
1

0 1

, 1

,
p nn

p n

R R A R

R A R R R

X Ê X Ê XX Ê X X Ê Xâ
¬ ¬º º
î ï� Y �ð ñî ï� � � Yð ñÀ À  (3.8) 

where 

 êòëóäéå ä(å äéåôê�ë9äéåôêõë ö ÷ äéå1 2

1
1

1 p

p

j

pn

n

R R T R T T R
øø øø ø øX X X XÔùÔ ºú� �Àû � , (3.9) 



 
 

24

is then convergent for sufficiently small Ç  uniformly for 
X ��ã . The existence of the 

resolvent ä å,R
\ Ç  of ä åT Ç  for 

X ��ã  implies that there are no eigenvalues of ä åT Ç  

on ã . The operator 

 üçý ü ý 21
,

2
P R d

i
Ê X Ê Xþ ÿ��� �

 (3.10) 

is a projection and is equal to the sum of the eigenprojections for all the eigenvalues 

of ä åT Ç  lying inside ã . In particular ä å0P P
]

 coincide with the eigenprojection for 

the eigenvalue 
�

 of T. Integrating (3.8) term by term, one can get 

 ��� ���
1

nn

n

P P PÊ Ê¬ º� Y À  (3.11) 

with 

 ��	 ��	 �
�1

2
n nP R d

i

X Xþ ÿ��� �
. (3.12) 

The range ä åM Ç  of ä åP Ç  is isomorphic with the (algebraic) eigenspace � �
0M M P

] ] 

 of T for the eigenvalue 

�
. In particular 

 
� �

dim dimP P mÇ ] ]
. (3.13) 

Since (3.13) is true for all sufficiently small Ç , it follows that the eigenvalues of � �
T Ç  lying inside ã  from exactly the 

�
-group. For brevity 

� �
P Ç  is called the total 

projection, and 
� �

M Ç  the total eigenspace, for the 
�

-group. 

Now let consider a simple subdomain D of the Ç -plane and the set (3.4) of the 

eigenvalues of 
� �

T Ç  for D� � , and let 
� �

hP Ç  be the eigenprojection for the 

eigenvalue 
� �

, 1, ,h h s� Ç ] �
. Each 

� �
hP Ç  is holomorphic in D and each 

� �
h� Ç  has 

constant multiplicity hm . Here it is essential that D is simple (contains no exceptional 

point); in fact, 
� �

1 0P Ç  is not even defined if, for example, 
� � � �

1 0 2 0� Ç � Ç]
 which may 

happen if 0
Ê  is exceptional. 

Let 
� � � �

h hM PÇ Ç] 

 be the (algebraic) eigenspace of 

� �
T Ç  for the eigenvalue � �

h� Ç . Then 

 
� � � �

1 sM MÇ Ç] � ��

, (3.14) 
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 ���
1

dim , ,
s

h h h
j

M m m N D� ��� � ��
. 

Let assume that the power series for � �T �  is given: 

 � � � 	 � 	1 22T T T TÊ Ê Ê� � � � � . (3.15) 

Let 
�

 be one of the eigenvalues of the unperturbed operator � �0T T�  with 

(algebraic) multiplicity m, and let P and D be the associated eigenprojection and 

eigennilpotent. Thus 

 
,

dim , 0, .m

TP PT PTP P D

P m D PD DP D

�� � � �
� � � �  (3.16) 

The eigenvalue 
�

 will in general split into several eigenvalues of � �T �  for small 

0� �  (the 
�

-group). The total projection � �P �  for this 
�

-group is holomorphic at 

0� �  

 ��� ��� ���0
0

,nn

n

P P P PÊ Ê� �� ��
, (3.17) 

with � �nP  given by (3.12). The subspace � � � �M P� �� 

 is m-dimensional and 

invariant under � �T � . The 
�

-group eigenvalues of � �T �  are identical with all the 

eigenvalues of � �T �  in � �M � . In order to determine the 
�

-group eigenvalues, an 

eigenvalue problem in the subspace � �M � , which is in general smaller than the 

whole space 
Æ

, should be solved. 

The eigenvalue problem for � �T �  in � �M �  is equivalent to the eigenvalue 

problem for the operator 

 � � � � � � � � � � � � � � � �rT T P P T P T P� � � � � � � �� � � . (3.18) 

Thus the 
�

-group eigenvalues of � �T �  are exactly those eigenvalues of � �rT �  which 

are different from zero, provided that   is large enough to ensure that these 

eigenvalues do not vanish for the small �  under consideration. 

It follows that 

 !#" !�"$!#"% & !�"% & !�"' (1 1ˆ tr T P tr T P
m m

)+* * * ) * ) *, , - .  (3.19) 
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is equal to the weighted mean of the 
�

-group eigenvalues of � �T � , where weight is 

the multiplicity of each eigenvalue. If there is no splitting of 
�

 so that the 
�

-group 

consists of a single eigenvalue � � �  with multiplicity m then 

 / 0 / 0ˆ)+* )+*, , (3.20) 

in particular this is always true if 1m , . In such a case the eigenprojection associated 

with / 0 �  is exactly the total projection (3.17) and the eigennilpotent is given by 

 ! " ! " ! "1 2 ! "D T P
* * )3* *, . . (3.21) 

These series give a complete solution to the eigenvalue problem for the 
�

-group in 

the case of no splitting, / 0 � , / 0P �  and / 0D �  being all holomorphic at 0� , . 

Let consider the series (3.18) for / 0 / 0 / 0rT T P� � �� . For computation it is 

more convenient to consider the operator 4 56 7 4 5T P
* ) *.  instead of / 0rT �  itself. 

From (3.10) follows that 

 4#58 9 4�5 4 5$4 51
,

2
T P R d

i

* ) * :;) :<* :=?>. ,@. .�
 (3.22) 

since A BC D A B A B A B, 1 ,T R R
* ) :<* :;) :E*. ,F- .  and the integral of 1 along G  vanishes. 

Noting that / 0T P D H �  by (3.16), it can be obtained that 

 I�JK L I�J M�N
1

nn

n

T P D T
* ) * *� �. , - � O

 (3.23) 

with 

 P�Q RTS R
S3PUQ VXWYRZS[R S1

1
1

1
1

2
p

p

j

pn

n

T R T T R d
i \\\ \ \

] ]^];_ ]` aba
c de
f@g g gh i

j
k l

 (3.24) 

for 1n m . 

If 
�

 is a semisimple eigenvalue of T, 0D ,  and (3.23) gives 

 nporq#s q�st u q#s nvo1 1

0

1 nn

n

T T P T
* * ) * ** w acx . , �O O

. (3.25) 

Since q s q st u
M R P
* *,  is invariant under R ST y , there is an obvious relationship 

between the parts of R ST y  and z { | }1T
*O

 in | }M y . Thus the solution of the eigenvalue 

problem for | }T y  in | }M y  reduces to the same problem for z { | }1T
*O

. Now (3.25) 
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shows that z { | }1T
*O

 is holomorphic at y =0. This process of reducing the problem for 

| }T y  to the one for z { | }1T
*O

 is called the reduction process. The "unperturbed 

operator" for this family z { | }1T
*O

 is  

 ~ � | } ~ � ~ �1 1 10T T PT P, ,O O
. (3.26) 

It follows that each eigenvalue of � �1T
O

 splits into several eigenvalues of � � | }1T
*O

 for 

small y . Let the eigenvalues of � �1T
O

 in the invariant subspace � � � �0M M R Pf f  be 

denoted by � �1 , 1,2,j j
) , � . The spectral representation of � �1T

O
 in M takes the form 

 

�p� ��� �p����� �p�� �
�p�

�p���p� �p�

1 1 1 1 1

1

1 1 1

,

,

.

j j j
j

j
j

j k jk j

T PT P P D

P P

P P P

)

�

, , -
,

,

�
�

O
 (3.27) 

Suppose for the moment that all the � �1j)  are different from zero. By perturbation 

each � �1j)  will split into several eigenvalues (the � �1j) -group) of � � � �1T
*O

, which are 

power series in 
1

jp*  with some 1jp m . The corresponding eigenvalues of � �T y  have 

the form 

 ��� 1
1

1 , 1,2,jp

j jk k
)�*�) * ��- - - ,� � . (3.28) 

If some � �1j)  is zero, the associated eigenspace of � �1T�  includes the subspace � �1R Pg . 

But this inconvenience may be avoided by adding to � �T y  a term of the form ��y , 

which amounts to adding to � � � �1T
*�  a term � �P� y . This has only the effect of 

shifting the eigenvalues of � � � �1T
*

 in � �M y  by the amount � , leaving the 

eigenprojections and eigennilpotents unchanged. By choosing �  appropriately the 

modified � �1j)  can be made different from zero. Thus the assumption that � �1 0j

) �
 does 

not affect the generality, and this should be assumed in the following whenever 

convenient. 

The eigenvalues (3.28) of � �T y  for fixed 
�

 and � �1j)  will be said to from the 

� �1j)�*�)- -group. From (3.28) follows the following theorem. 
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Theorem 3.2 [33] If 
�

 is a semisimple eigenvalue of the unperturbed operator T, 

each of the 
�

-group eigenvalues of � �T y  has the form (3.28) so that it belongs to 

some � �1j)�*�)- -group. These eigenvalues are continuously differentiable near 0� ,  

(even when 0� ,  is a branch point). The total projection � � � �1
jP
*

 (the sum of 

eigenprojections) for the � �1j)�*�)- -group and the weighted mean of this group are 

holomorphic at 0� , . 

The reduction process described above can further be applied to the eigenvalue 

� �1j)  of � �1T�  if it is semisimple, with the result that the � �1j) -group eigenvalues of 

� � � �1T
*�  have the form � � � � � �1 2

j jk o
) *�) *- - . The corresponding eigenvalues of � �T y  

have the form 

   ¡   ¡ ¢ £1 22 2
j jk o

)�*�) *¤) *- - - . (3.29) 

These eigenvalues with fixed j, k form the   ¡   ¡1 22
j jk

)�*�) *¤)- - -group of � �T y . In this 

way it can be seen that the reduction process can be continued, and the eigenvalues 

and eigenprojections of � �T y  can be expanded into formal power series in y , as long 

as the unperturbed eigenvalue is semisimple at each stage of the reduction process. 

But it is not necessary to continue the reduction process indefinitely, even when 

this is possible. Since the splitting must end after a finite number, say n, of steps, the 

total projection and the weighted mean of the eigenvalues at the n-th stage will give 

the full expansion of the eigenprojection and the eigenvalue themselves, respectively. 

 

3.2 Operators in Banach spaces 

3.2.1 Banach spaces and the adjoint space 

A normed space is a vector space 
Æ

 in which a function ¥  is defined and 

satisfies the conditions of a norm. In a normed space 
Æ

 the convergence of a 

sequence of vectors ¦ §nu  to a u ¨ Æ  can be defined by 0nu ug © . As in the finite-

dimensional case, this implies the Cauchy condition 0n mu ug © . In the infinite-

dimensional case, however, a Cauchy sequence ¦ §nu  (a sequence that satisfies the 

Cauchy condition) need not have a limit u ¨ Æ . A normed space in which every 
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Cauchy sequence has a limit is said to be complete. A complete normed space is 

called a Banach space. 

The adjoint space ªÆ  of 
Æ

 is defined as the set of all bounded semilinear forms 

on 
Æ

, and ªÆ  is a normed vector space if the norm of f ª¨ Æ  is defined as the 

bound f  of f. Let introduce the scalar product � � « ¬,f u f uf . ªÆ  is a Banach space. 

Theorem 3.3 [33] Let M be a closed linear manifold of 
Æ

 and let 0u ¨ Æ  not belong 

to M. Then there is f ª¨ Æ  such that � �0, 1f u f , � �, 0f u f  for u M¨  and 

­ ®
0

1

,
f

dist u M
f . 

The adjoint space ª¯ªÆ  of ªÆ  is again a Banach space. As in the finite-

dimensional case, each u ¨ Æ  may be regarded as an element of ª¯ªÆ . 

3.2.2 Linear operators in Banach spaces 

Let define a linear operator T from 
Æ

 to °  as a function, which sends every 

vector u in a certain linear manifold D of 
Æ

 to a vector v Tu, ¨ °  and which 

satisfies the linearity condition 
­ ®

1 1 2 2 1 1 2 2T u u Tu Tu� � � �± f ±  for all 1 2,u u D¨ . D is 

called the domain of definition, or simply the domain, of T and is denoted by 
­ ®

D T . 

The range 
­ ®

R T  of T is defined as the set of vectors of the form Tu  with ² ³u D T´ . Æ
 and °  are respectively called the domain and range spaces. If ² ³D T f 
 , T is 

said to be defined on 
Æ

. If µ° Æ
, it is said that T is an operator in 

Æ
. The null 

space ² ³N T  of T is the set of all ² ³u D T´  such that 0Tu µ . 

The inverse 1T ¶  of an operator T from 
Æ

 to °  is defined if and only if the map 

T is one to one, which is the case if and only if 0Tu µ  implies 0u µ . 1T ¶  is by 

definition the operator from °  to 
Æ

 that sends Tu  into u. Thus 

 · ¸ ¹ º · ¸ ¹ º1 1,D T R T R T D T¶ ¶µ µ  (3.30) 

 » ¼ » ¼ ½ ¾ » ¼1 1, , ,T Tu u u D T T T v v v R T¶ ¶µ ¿ µ ¿  (3.31) 

T is said to be invertible if 1T ¶  exists. 

An operator T from 
Æ

 to °  is continuous at ² ³0u u D Tf ´  if 

² ³0 0,n nu u u D Tg © ´ , implies 0 0nTu Tug © . T is continuous everywhere in its 
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domain if it is continuous at 0u µ . T is continuous if and only if T is bounded: 

Tu M u
À

, ² ³u D T´ . The smallest number M with this property is called the 

bound of T and is denoted by T . 

3.2.3 Bounded operators 

Let denote by ² ³,B

3Á

 the set of all bounded operators on 
Æ

 to ° . Every 

operator belonging to ² ³,B

3Á

 has domain 
Æ

 and range in ° . The resulting 

operator of the linear combination S T
� ÂÃ  of ² ³, ,S T B´ 
3Á

 is again linear and 

bounded. Thus ² ³,B

3Á

 is a normed space with the norm T  defined as the bound of 

T: 

 Ä Å
0 1 1
sup sup sup , ,

u u u

Tu
T Tu Tu T B

uÆÈÇ É ÊË Ë Ë ÌÍ Î3Ï . 

Similarly, the product TS is defined for ² ³,T B´ Á3Ð
, ² ³,S B´ 
3Á

 by 

² ³ ² ³TS u T Suf  for all u Ì Î  and belongs to ² ³,B

3Ð

. 

² ³,B

3Á

 is a Banach space. To prove the completeness of ² ³,B

3Á

, let Ñ ÒnT  

be a Cauchy sequence of elements of Ó Ô,B

3Á

. Then Ñ ÒnT u  is a Cauchy sequence in 

Ï  for each fixed u Ì Î , for 0n m n mT u T u T T ug À g © . Since Ï  is complete, 

there is a v Ì Ï  such that nT u vÕ . Let define an operator T by setting v TuË . T is 

linear and bounded so that Ó Ô,T B´ 
3Á
 and that 0nT Tg © . 

Different kinds of convergence can be introduced into Ó Ô,B

3Á

. Let 

Ó Ô, , , 1,2,nT T B n´ f l
3Á
. The convergence of Ñ ÒnT  to T in the sense of 

0nT Tg ©  (convergence in the normed space Ó Ô,B

3Á

) is called uniform 

convergence or convergence in norm. Ñ ÒnT  is said to converge strongly to T if 

nT u TuÕ  for each u Ì Î . Ñ ÒnT  converges in norm if and only if Ñ ÒnT u  converges 

uniformly for 1u
À

. Ñ ÒnT  is said to converge weakly if Ñ ÒnT u  converges weakly for 

each u Ì Î , that is, if Ó Ô,nT u g  converges for each u Ì Î  and g ÖÌ Ï . If Ñ ÒnT u  has a 

weak limit Tu for each u Ì Î , Ñ ÒnT  has the weak limit T. Ñ ÒnT  converges in norm if 
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and only if Ó Ô,nT u g  converges uniformly for 1u
À

 and 1g
À

. A weakly 

convergent sequence has a weak limit if Ï  is weakly complete. Convergence in norm 

implies strong convergence, and strong convergence implies weak convergence. Let 

use the notations n u
T T×Y× Õ  for convergence in norm, n s

T T×Y× Õ  for strong 

convergence and n w
T T×Y× Õ  for weak convergence. If Ñ ÒnT  is weakly convergent, it is 

uniformly bounded, that is, Ø ÙnT  is bounded. 

Lemma 3.1 [33] Let Ñ ÒnT  be uniformly bounded. Then Ñ ÒnT  converges strongly to T 

if Ñ ÒnT u  converges strongly to Tu for all u of a fundamental subset of Î . 

Lemma 3.2 [33] Let Ñ ÒnT  be uniformly bounded. Then Ñ ÒnT  converges weakly to T if Ú ÛÜ Ý
,nT u g  converges to Ó Ô,Tu g  for all u of a fundamental subset of Î  and for all g 

of a fundamental subset of ÖÏ . 

Lemma 3.3 [33] If n s
T T×Y× Õ  then n s

T u Tu×
× Õ  uniformly for all u of a compact 

subset Þ  of Î . 

Lemma 3.4 [33] If n s
T T×Y× Õ  in Ó Ô,B

ÁßÐ
 and n s

S S×Y× Õ  in Ó Ô,B

3Á

, then 

n n s
T S TS×Y× Õ  in Ó Ô,B


3Ð
. 

Lemma 3.5 [33] If n w
T T×Y× Õ  in Ó Ô,B

ÁßÐ
 and n s

S S×Y× Õ in Ó Ô,B

3Á

, then 

n n w
T S TS×Y× Õ  in Ó Ô,B


3Ð
. 

Ó Ô Ó Ô,B Bf
 
à

 is the set of all bounded operators on Î  to itself. In Ó ÔB



 

not only the linear combination of two operators S, T but also their product ST is 

defined and belongs to Ó ÔB



. Thus Ó ÔB



 is a complete normed algebra (Banach 

algebra). It should be noted that the completeness of Ó ÔB



 is essential here; for 

example, the existence of the sum of an absolutely convergent series of operators 

depends on completeness. 

Ó ÔT B´ 

 is said to be nonsingular if 1T á  exists and belongs to Ó ÔB



. 1 Tâ  is 

nonsingular if 1T ã . It follows that 1T á  is a continuous function of T on the set of 

all nonsingular operators, which is open in Ó ÔB



. 
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The spectral radius 
1

spr lim
nnT TË  can also be defined for every Ó ÔT B´ 


. 

The trace and determinant of Ó ÔT B´ 

 are in general not defined, but they can be 

defined for certain classes of operators of Ó ÔB



. 

For each Ó Ô,T B´ 
3Á
, the adjoint T Ö  is defined and belongs to ½ ¾,B ÖäÖÏäÎ . For 

each g ÖÌ Ï , Ó Ô,u g Tu©  is a bounded semilinear form on Î  by virtue of Ú Û
,g Tu g Tu T g u

å å
, so that it can be written Ó Ô,f u  with an f ÖÌ Î ; T Ö  is 

defined by T g fÖ Ë . æ ç
1

sup ,
u

T g f f u T gÖ Êf f À
 gives T TÖ å . 

T T TÖ¯Ö Öå å
, but T TÖ¯Ö è  if Î  is identified with a subspace of Ö¯ÖÎ , for 

é ê é ê é ê Ú Û
, , , ,T u g u T g T g u g TuÖ¯Ö Ö ÖË Ë Ë  shows that the semilinear form T uÖ¯Ö  on ÖÏ  is 

represented by Tu Ì Ï  and therefore T u TuÖ¯Ö Ë  by identification. Since T TÖ¯Ö è  

implies T TÖ¯Öìë , T TÖ Ë . 

An idempotent operator æ çP B´ 

 í î2P PË  is called a projection. Let M and 

N be two complementary linear manifolds of Î , that is 

 M NË ïÎ , (3.32) 

where M PË Î  and æ ç1N Pf g 

. M and N are closed linear manifolds of Î . A 

decomposition (3.32) of a Banach space into the direct sum of two closed linear 

manifolds defines a projection P on M along N. P is a linear operator on Î  to itself. 

For a given closed linear manifold M of Î , it is not always possible to find a 

complementary subspace N such that (3.32) is true. In other words, M need not have a 

projection on it. On the other hand, M may have more than one projections. 

3.2.4 Resolvents and spectra 

An eigenvalue of T is defined as a complex number ð  such that there exists a 

nonzero æ çu D T´ ñ 
 , called an eigenvector, such that Tu uðË . In other words, ð  

is an eigenvalue if the null space æ çN T
_g  is not 0; this null space is the geometric 

eigenspace for ð  and its dimension is the geometric multiplicity of the eigenvalue ð . 

These definitions are often vacuous, however, since it may happen that T has no 

eigenvalue at all or, even if T has, there are not "sufficiently many" eigenvectors. 
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T is assumed to be a closed operator in Î . Then the same is true of T òâ  for 

any complex number ò . It T òâ  is invertible with 

 óõô ó ôöó ô ó÷ô1
,R R T T Bò ò ò áË Ë â Ì Î , (3.33) 

ò  is said to belong to the resolvent set of T. The operator-valued function æ çR ø  thus 

defined on the resolvent set æ çP T  is called the resolvent of T. Thus æ çR ø  has 

domain Î  and range æ çD T  for any æ çP Tø ´ . 

Theorem 3.4 [33] Assume that æ çP T  is not empty. In order that T commute with 

æ çA B´ 

, it is necessary that 

 ù ú ù úR A ARø øf  (3.34) 

for every ù úP Tø ´ , and it is sufficient that this hold for some ù úP Tø ´ . 

The resolvent ù úR ø  satisfies the resolvent equation 

 ù ú ù ú ù ú ù ú ù ú1 2 1 2 1 2R R R Rø ø ø ø ø øg f g  

for every ù ú1 2, P Tø$ø ´ . ù úTR ø  is defined everywhere on Î . From this it follows 

that the Neumann series 

 ûõü û ü$ûýü ûýü û ü ûýü1 1

0 0 0 0 0
0

1
n n

n

R R R Rò ò ò ò ò ò ò òþá ÿÉ� �Ë â â Ë â� � �
 

for the resolvent is valid. 

Theorem 3.5 [33] ù úP T  is an open set in the complex plane, and ù úR ø  is 

(piecewise) holomorphic for ù úP Tø ´ . ("Piecewise" takes into account that ù úP T  

need not be connected.) Each component of ù úP T  is the natural domain of ù úR ø  

( ù úR ø  cannot be continued analytically beyond the boundary of ù úP T ). 

The complementary set ù úT
�

 (in the complex plane) of ù úP T  is called the 

spectrum of T. Thus ù úTø ´ �  if either T òâ  is not invertible or it is invertible but 

has range smaller than Î . It is possible for ù úT
�

 to be empty or to cover the whole 

plane. It happens frequently that the spectrum is an uncountable set. 

Consider an operator ù úT B´ 

. Then neither ù úP T  nor ù úT

�
 is empty. More 

precisely, ù úP T  contains the exterior of the circle 



 
 

34

 
1 1

1
spr lim inf

n nn n

n n
T T Tò � þ �Ë Ë Ë  (3.35) 

(which reduces to the single point 0ò Ë  if and only if spr 0T Ë , that is, T is quasi-

nilpotent), whereas there is at least one point of ù úT
�

 on this circle. In particular 

ù úT
�

 is a subset of the closed disk Tø À . Let note also that 

 û ü 1 0,Rò ò ò� Õ Õ	� . (3.36) 

The Neumann series on the right of 

 
�� 
 � 11 1 1

0

1 n n

n

R T Tò ò ò òþáá á á áÉË â â Ë â �  

converges for ò  outside of the circle (3.35). Since the convergence domain of this 

series is sprTø�� , it follows that there is at least one point of ù úT
�

 on (3.35) 

provided that spr 0T � . If spr 0T Ë , 0ò Ë  belongs to ù úT
�

 because otherwise ù úR ø  

would be an entire function, contradicting (3.36) and Liouville's theorem. Liouville's 

theorem implies that ù úR ø  is constant; since � � 0R ø ©  for ò Õ	� , this constant is 

0. 

3.3 Asymptotic algorithm of mean square stability analysis by the 

second Lyapunov method 

Let analyze a real n-dimension linear stochastic difference equation, which is an 

iterative procedure in n�  defined by equality 

 � � 1,t t tx A y x táf ´ � , (3.37) 

where 
 �Ü Ý
,A y y Ì Ï  is continuous n n�  matrix function on the metric compact Ï , 
 �sup

y
A y constË � � . Let � �,ty t ´ �  be a homogeneous exponentially ergodic 

Feller Markov chain with phase space Ï , invariant measure � �dy�  and transition 

probability � �,p y dz . Under initial conditions kx xË , ky yË  the vector function 

� � � �, , , ,tx k x y X t k y xf , where 
 � 
 �
1

, , :
t

m
m k

X t k y A yÉ ÿ
Ë�� , satisfies the equality (3.37). 

The above defined vector function � �, ,tx k x y  is called as a solution of (3.37) and 

matrix function � �, ,X t k y  as a Cauchy matrix of (3.37). The equation (3.37) is called 
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as exponentially mean square stable if there exist such a constants 0c �  and � �0,1
_ ´  

that 

 � � 2 2
, , t k

tE x k x y c x
) áå

 

for any y Ì Ï , nx Ì � , k Ì �  and t kë . To derive mean square stability conditions 

for (3.37) the spectral properties of linear continuous operator 

 � � � � � � � � � � � �: ,T

Y

q y A z q z A z p y dzf i
�  (3.38) 

acting in the Banach space   of symmetric uniformly bounded continuous n n�  

matrix functions 
 �Ü Ý
,q y y Ì Ï  with norm 

 !#"$ %
, 1

: sup ,
y x

q q y x xÇ ÉË'& , 

where ( )* + ( ), , :n
kj k j

j k

x q y x x q y x x
, ´ f h h-

, are analyzed. The operator (3.38) 

leaves as invariant the reproducing cone [37] 

 .#/0 12 3
, 1

: : inf , 0
y x

q V q y x xÇ ÉË Ì ë45
 

with a set of inner points 

 6#78 9: ;
, 1

: : inf , 0
y x

q V q y x xÇ ÉË Ì �< 45
. 

Let generalize the situation and choose near to constant matrix coefficients in (3.37), 

that is, matrix 

 6 7 6=7
1

, :
l

k
k

k

A y M A y
* *ÉË � �  (3.39) 

instead of ( )A y , where y  is small positive parameter. Applying (3.38) to matrix 

(3.39) an operator family ( )y�  can be decomposed by power of y  

 6>7 2

0
1

l
k

k
k

* *ÉË � �
� � �  (3.40) 

with some bounded operators , 1,2, ,2k k lË ��  and ? @ ? @0 ,T

Y

q M q u Mp y duf i
� . 

If the spectrum ? @MA  of matrix M is situated within the circle B C1) Då �  the 

equation (3.37) is exponentially mean square stable for all sufficiently small positive 

y . On the contrary if 6 7 B C1 0ME )F � G  there exists such a solution that becomes 
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unrestrictedly large with n ©	H . The problem arises only if spectral radius of matrix 

M is equal to one. Let suppose that matrix M has spectrum in a following form: ? @ ? @ ? @0M M MIA A Af J  divided to two parts 6 7 K L0 1ME )M Ë  and 6 7 K L1MIE ) NM å � . 

This section proposes an algorithm for finding the conditions, which guarantee 

decreasing of the iterations (3.37) for any sufficiently small y . The main idea of 

algorithm is testing of positive definition property of a solution of the specially 

constructed matrix equation. 

Theorem 3.6 [11] The next assertions are equivalent: 

(i) equation (3.37) is exponentially mean square stable; 

(ii) there exists such q Ì <5  that 

 q q Iâ Ë â�  (3.41) 

where I is unit matrix; 

(iii) real part of the spectrum ? @A
�  of operator � is situated in the circle K L: 1z C zÌ � . 

Theorem 3.7 [9] There exists such a positive number 0

*
 that for any ? @00,y y´  

equation (3.37) with matrix (3.39) is exponentially mean square stable if and only if 

the equation: 

 ? @ ? @ ? @q q Iy y yg f@g
�  (3.42) 

has solution in a form of Laurent series by powers of y , that is, 

 O P O#P, , 1k
k

k d

q y q y d
* *þÉ á
Ë ë�

 (3.43) 

with positive defined main part 

 O P O#P0

ˆ , : k
k

k d

q y q y
* *É á
Ë � . (3.44) 

Due to the third assertion of Theorem 3.6 and spectrum Q R0
A
�  property there 

exists [33] such a positive number 
*

 that a solution of the equation (3.41) has 

decomposition 

 O P O#P, k
k

k d

q y q y
* *þÉ á
Ë �  (3.45) 
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for all Q R0,y y´ , where matrices O PS T
,kq y k dë â  are defined by the following 

equations: 

 U V
U V

1 1

2 1 1 2

0 1 1 2 2

0d

d d

d d d

d d

q

q q

q q q

q q q q I

WWYX WWYX WZX W
W W W

[[]\[]\ ^
[]\ ^ ^ ^ ^_ `
_

�

� �

� � �

� � � �

 (3.46) 

where 0q q q[ \
� � . By definition of the above solution one can write 

 Q>Ra b Q R Q#R
1

ˆ , k
k

k

q y q y I
* * *c de f\ ^ []\g hi j�

� �  

and therefore the main part of this solution satisfies the equality 

 k>lm n k l kolm n k#l
1

ˆ , k
k

k

q y I q y
* * * *c de f\ []\ \ \ ^g hi j�

� � � � . (3.47) 

Because for sufficiently small positive y  the right part of this equation is negative 

define matrix and analyzed difference equation (3.37) is exponentially mean square 

stable, the solution (3.44) should be positive defined. 

The proposed algorithm uses the method of equating the coefficients 

corresponding to the same powers of the parameter y  in the equation (3.42) and the 

Fredholm alternative [37], which will be described below for the equation 

 k l k lq y f yf
�  (3.48) 

in the space  . Following the Fredholm alternative in order to conclude the existence 

of solution of (3.48) the orthogonality of the right part f of (3.48) to any solution of 

the equation 

 0p
p [
�  (3.49) 

must be verified, where 
p
�  is the conjugate of � . A linear functional on the space   

can be represented [37] in the form 

 q r q r, :
y

p q Tr q y p dys[ut v , (3.50) 

where the elements of symmetrical matrix valued function k lp dy  belong to the space p  of matrix valued regular count additive measures. The space   can be considered 

as the tensor product k l k lˆ
nM[ w � x Ï  of the space y zˆ

n

{ �
 of symmetric n n| -
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matrices and space y z}�~
. The space 

p  is tensor product y z y z* *ˆ
n

[ w { � x Ï  

where y z*} ~
 is the space of regular count additive measures. Hence the operators 

0

�
 and *

0

�
 can be considered as a tensor product 0 0 P[ w� �

 and * * *
0 0 P[ w� �

 

where P  is transition operator of Markov chain and the operators 0

�
 un *

0

�
 are 

defined on each � �ˆ
nq � { �

 by equalities 

 *
0 0,T Tq M qM q MqM[ [� �

. 

Let suppose that the operator 0

�
 has 1 as its spectrum point of multiplicity l and let 

, 1, ,kp k l[ `
 form basis in corresponding to 1 root subspace of adjoint operator *

0

�
. 

Any solution of (3.49) can be represented as the sum of the products � � � �k kdy p dy� �f . Thus, the equation (3.48) has solution if and only if 

 � � � �, 0j jf Tr f y y� �[ [� v  (3.51) 

for all 1, ,j l[ `
. Due to the assumptions this equation has l linearly independent 

constant solutions ( )jg , which form the basis in the corresponding to spectrum point 1 

of the operator 0

�
 root subspace of the space � �ˆ

n

{ �
. Hence any solution of the first 

equation of (3.46) has a form 

 �#� ���
1

:
l

j
d j

j

q y c gW df h  (3.52) 

with arbitrary constants jc . 

In the second step at first it must be determined whether d is equal or larger than 

one. If d=1 the following equation should be solved 

 �#� �#�
1

l

i i
i

q y I cv y
d[]\�\ �

�  (3.53) 

where 

 � � � � � �1 1
T

i iv y A y g A y
� �[ � �  (3.54) 

for 1, ,i l[ `
. If such numbers ic  can be chosen that the right part of (3.53) is 

orthogonal to each of above � �sp dy� , where 1, ,s l[ `
, then d=1 and 

 � � �#� �#�0
1

1
ˆ ,

l

i i
i

q y cv y q y
* * d[ ^�

. (3.55) 
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If the above mentioned ic  do not exist then we should put 2d �  and deal with 

equation 

 �#� 1
1

l

i i
i

q y c q
d[]\ �

� � , (3.56) 

and look for ic  in such a way that right part of this equation be orthogonal to each � � , 1, ,sp dy s l� f l
. Now the solution �	� � �1dq yW�W  of the second equation of (3.46)

should be found. The condition of normal solvability of the second equation of (3.46)

permits to find some of constants ic , but some of them will be as an arbitrary. Now on 

this step the equation 

 �   ¡	¢ �   �  1 21 ddq y I q y q yWW�W[]\�\ \
� � �  (3.57) 

will be analyzed with constants that have been found on the previous step. d=2 if and 

only if the remaining numbers ic  can be found in such way that the right part of this 

equation is orthogonal to any �   , 1, ,sp dy s l� f l
. In this case the main part (3.44) of 

Laurent series (3.43) has form 

 £ ¤ £#¤ £#¤2 1 02

1 1
ˆ ,q y q q y q y
* * *W W[ ^ ^ . (3.58) 

The equation (3.37) is exponentially mean square stable for all sufficiently small 

positive y  if and only if (3.58) is positive defined. If the right part of (3.57) is not 

orthogonal some of �  sp dy� , 3d �  should be put and so on. So, step by step all ic  

and the main part (3.44) of Laurent series (3.43) can be found. 

3.3.1 Example 1 

The following difference equation is given in 2� : 

 1

1 0 0 1

0 1 2 1t t tx y x
b

y W¥ ¦¥ ¦ ¥ ¦f ±§ ¨§ ¨ § ¨© ª © ª© ª , (3.59) 

where ty  is ergodic Markov process with three states « ¬1, 0, 1g  and the following 

transition probability matrix 

1 4 3 4 0

1 8 1 2 3 8

1 2 1 4 1 4

P

¥ ¦§ ¨f § ¨§ ¨© ª . 
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In this example 
1 0

0 1 2
M

e f[ g ­i j  and 1

0 1

1
A

b

e f[ g ­i j . Using that P® ®[ , the 

following equation system should be solved for finding the invariant measure ® : 

 

1 2 3 1

1 2 3 2

2 3 3

1 1 1

4 8 2
3 1 1

4 2 4
3 1

8 4

¯ ¯ ¯ ¯¯ ¯ ¯ ¯¯ ¯ ¯
° ± ± ²³³³ ± ± ²´ ³³ ± ²³µ , 

taking into account that 1 2 3 1¯ ¯ ¯± ± ²
. In this case the invariant measure is equal to « ¬1 4, 1 2, 1 4� f . Now let find the linear continuous operator (3.38): 

 ¶ · ¶ · ¶ · ¶ · ¶ · ¶ ·¶ · ¶¸·¹¶ ·�¶ ·¶º· ¶º· ¶º·» ¼ ¶º· ¶ ·1 1

2 2
1 1 1 1

, , ,

,

,

T

T

T T T T

q y A z q z A z P y dz

M zA q z M zA P y dz

M q z M M q z A A q z M z A q z A z P y dz

½ ½½ ½½ ½
² ²² ± ± ²
¾ ¿² ± ± ±À Á
ÂÂÂ
vv v

�

 

Therefore this operator has a form: 

 Ã Ä Ã Ä Ã Ä Ã Ä Ã Ä Ã Ä Ã Ä Ã Ä2
0 1 2q y q y q y q yy yf ± ±

� � � � , (3.60) 

where 

 Ã Ä Ã Ä Ã Ä Ã Ä0 ,Tq y M q z Mp y dzf iv
� , (3.61) 

 Å Æ Å Æ Å Æ Å ÆÇ È Å Æ1 1 1 ,T Tq y z M q z A A q z M p y dzf ±iv
� , (3.62) 

 Å Æ Å Æ Å Æ Å Æ2
2 1 1 ,Tq y z A q z A p y dzf iv

� . (3.63) 

Let choose d=1 in the first step. Thereby the following equations system should 

be solved: 

 É Ê É ÊÉ ÊËÉ#Ê É Ê¹É#ÊÌ Í1

0 1 1

0q y

q y q y I

W W
Î fÏÐ f@g ±ÏÑ �
� �

. (3.64) 

In the first equation of (3.64) 

 Ò Ó Ò Ó Ò Ó Ò Ó Ò Ó Ò Ó Ò Ó Ò Ó1 0 1 1 1 1, 0Tq y q y q y M q z MP y dz q yW W W W Wf g f g fiv
� �  



 
 

41

it can be assumed that Ò Ó1q yW  is a constant: Ò#Ó ¡Ô¢ ¡Õ¢¡Ô¢ ¡Õ¢1 1
11 12

1 1 1
12 22

q q
q y

q q

W WW W WÖ ×² Ø ÙØ ÙÚ Û . It follows that 

Ò Ó Ò Ó1 1 0TM q y M q yW Wg f , because Ü Ý, 1P y dz fiv . Consequently the solution of the 

first equation of system (3.64) has a form 1

0

0 0

q
qW Ö ×² Ø ÙÚ Û  with arbitrary constant q. 

Since matrices M and A1 in this example are symmetric matrices, then a solution of 

the adjoint equation * 0p

²
�  has a form Ü Ý Ü Ý1p y q y�Wf . Further the second 

equation of the system (3.64) should be solved: 

 Ü Ý Ü Ý Þ ß Ü Ý à á Ü Ý1
0 1 1 1 1 , :T Tq y I z M q A A q M P y dz f yW Wf@g$g ± fiv

� . 

Simplifying its right part Ü Ý1f y  can be found for each value of y: âäãæå'ç âèãéåºç âäãæåêç
1 1 11 4 1 4 1 4

1 ; 0 ; 1
4 1 4 1 4 1

q q q
f f f

q q q

ë ë ë ëÖ × Ö × Ö ×ë ² ² ²Ø Ù Ø Ù Ø Ùë ë ë ëÚ Û Ú Û Ú Û . 
Now the existence condition for the second equation of the system (3.64) should 

be verified, that means, the following condition should be true ìèíæî#ï1 , 0f y ¯ ² . In 

this case ðèñéò#ó1 , 1 0f y ¯ ² ë	ô , it means that the solution does not exist and the next 

step when d=2 should be chosen. 

In case when d=2 the following equations system should be analyzed: 

 

ò óËò#óò óËò#ó ò óËò#óò óËò#ó ò óËò=óõò ó¹ò#óÌ Í2

1 1 2

0 1 1 2 2

0q y

q y q y

q y q y q y I

WW W W W
° ²³³ ² ë´ ³ ² ë ± ±³µ
�

� �

� � �

 (3.65) 

Identically as in the first step, the solution of the first equation of the system (3.65)has 

a form 2

0

0 0

q
qW Ö ×² Ø ÙÚ Û , where q is arbitrary constant. Using this solution the second 

equation of this system can be rewritten: 

 ö ÷ ö ÷ ø ù ö ÷ ú û ö ÷2
1 2 1 1 2 1, :T Tq y z M q A A q M P y dz f yW W Wf@g ± fiv

�  (3.66) 

Solving it, the following three matrices are obtained: üþý ö'÷ ü�ý ö¸÷ üþý ö]÷2 2 2
1 1 1

0 4 0 4 0 4
1 ; 0 ; 1

4 0 4 0 4 0

q q q
f f f

q q q

ëÖ × Ö × Ö ×ë ² ² ²Ø Ù Ø Ù Ø ÙëÚ Û Ú Û Ú Û . 
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Since 
ü�ý ö=÷2

1 , 0f y ¯ ² , then the solution of the equation (3.66) exists. To find the 

form of this solution, the following equations system are analyzed: 

 ÿ � ÿ � ÿ � ÿ �ÿ �Ëÿ�� ÿ�� ÿ��ÿ �Ëÿ�� ÿ�� ÿ��
0 1 1

0 1 1

0 1 1

1 1 1

0 0 0

1 1 1

q q f

q q f

q q f

� �� �� �
� � � � � �� � �� � � �	 ��
�

. (3.67) 

Let note matrices ö ÷1q y�  like 
�� 
�� 
�� 
�� 
��
�� 
�� 
�� 
��1 1
1 2

1 1 1
2 3

q y q y
q y

q y q y

� �� � �¥ ¦§ ¨f § ¨© ª . Then from (3.67) 

follows that: ��� ��� ��� ������ ��� ��� ���
��� ��� ��� ������ ��� ��� ������ ��� ��� ������ ��� ��� ���

1 1 1 1
1 2 1 2

1 1 1 1
2 3 2 3

1 1
1 2

1 1
2 3

1 0 1 1 0 01 3
1

4 40 1 1 0 0
2

1 0 01 1 4 ,1
0 1 1 02

4

q q q q

q q q q

q
q q

qq q

� � � �� � � �
� �� �

� � � �� � � �� �� �  !� � � �" " # " $� � � � � � !� �� � % & % &' (% & � �� � � � � �� �� � � �$ � ) � �� � � �� �� � � �% & � �% & % &
 

*�+-,�. *�+/,�.*�+ ,�. *�+ ,�. *�+-,�. *�+-,�.*�+ ,�. *�+ ,�. *�+-,�. *�+-,0.*�+ ,�. *�+ ,0.
*�+ ,�. *�+ ,�.*�+ ,�. *�+ ,�.

1 1 1 1 1 1
1 2 1 2 1 2

1 1 1 1 1 1
2 3 2 3 2 3

1 1
1 2

1 1
2 3

1 0 1 1 0 0 1 11 1 3
1

8 2 80 1 1 0 0 1 1
2

1 0 00 0 4 ,1
0 0 0 02

4

q q q q q q

q q q q q q

q
q q

qq q

� � � � � �� � � � � �
� �� �

� � � �� � � � � �� �� �  !� � � � � �" " # " #1" $� � � � � � � � !� �� � % & % & % &' (% & � ��� � � � � �� � � �$ � ) � �� � � �� � � �% & �� �% & % &
 2�3 4�5 2�3 4�52�3 4�5 2�3 4�5

2�3 4�5 2�3 4�52�3 4�5 2�3 4�5
2�3 405 2�3 4052�3 405 2�3 4052�3 4�5 2�3 4052�3 4�5 2�3 405

1 1 1 1 1 1
1 2 1 2 1 2

1 1 1 1 1 1
2 3 2 3 2 3

1 1
1 2

1 1
2 3

1 0 1 1 0 0 1 11 1 1
1

2 4 40 1 1 0 0 1 1
2

1 0 01 1 4 .1
0 1 1 02

4

q q q q q q

q q q q q q

q
q q

qq q

� � � � � �� � � � � �
� �� �

� � � �� � � � � �� �� �  !� � � � � �" " # " # " $� � � � � � � � !� �� � % & % & % &' (% & � �� � � � � �� � � �$ � ) � �� � � �� � � �% & � �% & % &
 

Solving all these equations the form of the solution (3.66) can be obtained: 


�� 
�� 
0�1 1 1

8 102
0 00

33 33111 ; 0 ; 1
2 8 10

0 0 0
11 33 33

q qq
q q q

q q q
� � �

� � � �� � �� � � � �� �� ) ) )� � � �� � � � � �� �� �� � � � � �% & % & % & . 
Further the third equation of the system (3.65) should be solved: 
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 � 
 � 
 � 
 �6 7 
 �
 � 283 
��0 1 1 1 1

22
1 1 2

,

, :

T T

T

q y z M q z A A q z M P y dz

z A qAP y dz I f y

� �)0� # �� � )
ÂÂ vv�  (3.68) 

Solving the equation (3.68) and taking into account the results from the previous 

equations, as well as the condition for the existence of solution, the following 

matrices are obtained: 

 

283 
�� 283 
��
283 
0�
2 2

2 2

2
2

1 1 2 1
1 1

11 22 11 111 ; 0 ;
1 13 1 9

1 1
22 44 11 22

1 1
1

33 661 .
1 101

1
66 132

q qb q qb
f f

qb q qb q

q qb
f

qb q

� � � �� � � �� � � �� ) )� � � �� � � �� � � � �� � � �% & % &� �� � �� �) � �� �� � �� �% &
 

Let assume that in general the matrix 9 : 
 �2
2f y  can be written as ;8<-=�> = > = >=?> =�>2 1 2

2
2 3

1

1

c y c y
f y

c y c y

� ��) � ��% & . Then, to make sure whether a solution exists for the 

third equation of the system (3.65), the following condition should be verified: 

 

�� 
��
�� 
?� 
��Ì Í

1 2
1

2 3

11 0
1 0

10 0

c y c y
Sp d c y d

c y c y
¯ ¯� �� ��� � " ) � ) !� �� � �% & !% &' (Â Âv v . (3.69) 

From (3.69) it follows that the constant q should be 
33

16,5
2

q ) ) . Therefore 

;8< 
�� ;8< 
�� ;8< 
0�2 2 2
2 2 2

5 3 3 13
2

2 4 2 421 ; 0 ; 1
3 47 1 1093 31

4 8 4 82 4

b bb
f f f

b bb

� � � �� �� � � �� � � �� �� ) ) )� � � �� �� � � �� �� � � ��� �� � � �% &% & % & . 
Next the following equations should be solved 

 

= > = > = > = >= >@=�> =�> =�>= >@=0> =�> =0>0 0 0

0 0 0

0 0 0

1 1 1

0 0 0

1 1 1

q q f

q q f

q q f

A �B� � ) �C � )D C � )E ��
�

 (3.70) 

to find the solution of the equation (3.68). Let note matrices 
 �0q y  like F�G HJI F�G H8I F�GHJI F�G H8I F�G0 0
1 2

0 0 0
2 3

q y q y
q y

q y q y

¥ ¦§ ¨f § ¨© ª . Then from (3.70) follows that: 
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K8L/M�N KJL-M�NK8L/M�N KJL-M�N KJL-M�N KJL-M�NKJL-M�N KJL-M�N
K8L-M�N KJL-M�NK8L-M�N KJL-M�N

0 0 0 0
1 2 1 2

0 0 0 0
2 3 2 3

0 0
1 2

0 0
2 3

1 0 1 1 0 01 3
1

4 40 1 1 0 0
2

5 3
1 0 1 1 2 4 ,1

3 470 1 1
2

4 8

q q q q

q q q q

bq q

q q b

� � � �� � � �� �� �  !� � � �" " # " $� � � � � � !� �� � % & % &' (% & � �� �� � � � � �� �� � � �$ � ) � �� � � �� �� � � �% & � �� �% & % &
 

KJL M�N KJL M�NKJL-M�N KJL-M�N KJL M�N KJL M�NKJL-M�N KJL-M�N KJL M0N KJL M�NKJL-M0N KJL-M�N
K8L-M�N KJL-M�NK8L-M�N KJL-M�N

0 0 0 0 0 0
1 2 1 2 1 2

0 0 0 0 0 0
2 3 2 3 2 3

0 0
1 2

0 0
2 3

1 0 1 1 0 0 1 11 1 3
1

8 2 80 1 1 0 0 1 1
2

3
1 0 20 0 2 ,1

3 310 0 0
2

2 4

q q q q q q

q q q q q q

bq q

q q b

� � � �� � � � � �� �� �  !� � � � � �" " # " #1" $� � � � � � � � !� �� � % & % & % &' (% & � �� � � � � �� � � �$ � ) � �� � � �� � � �% & �� �% & % &
 

KJL-O�P KJL-O�PKJL-O�P KJL-O�P K8L-O�P K8L-O�PK8L-O�P K8L-O�P KJL-O�P KJL-O�PKJL-O�P KJL-O�P
K8L/O0P KJL-O0PK8L/O0P KJL-O0P

0 0 0 0 0 0
1 2 1 2 1 2

0 0 0 0 0 0
2 3 2 3 2 3

0 0
1 2

0 0
2 3

1 0 1 1 0 0 1 11 1 1
1

2 4 40 1 1 0 0 1 1
2

3 1
1 0 1 1 2 4 .1

1 1090 1 1
2

4 8

q q q q q q

q q q q q q

bq q

q q b

� � � �� � � � � �� �� �  !� � � � � �" " # " # " $� � � � � � � � !� �� � % & % & % &' (% & � �� �� � � � � �� � � �$ � ) � �� � � �� � � �% & � �� �% & % &
 

Now the matrices 
F G

0q y  can be found: 

 
F�G F�G F�G

0 0 0

10 38
0 20 0

3 91 ; 0 ; 11408
1090 21142

0 0129
129 129

b
q q q

b

� � � �� �� � � �� �� ) ) )� � � �� �� �� � � �� � � �% &% & % & . 
The Loran series main part of the given difference equation (3.59) has a form 

 Q�R Q R Q�R12
02

q yq
q y q y½ ½��) # # , 

therefore: 
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Q R
Q R
Q R

2

2

2

16,5 3
3,3

ˆ 1, ;
3

8,4

16,5 4
2

ˆ 0, ;
4

2 10,9

16,5 5
4,2

ˆ 1, .
5

16,4

q

b
q

b

q

½ ½½ ½
½ ½½ ½
½ ½½ ½

� �# �� �� ) � �� ��� �% &� ��� �) � �� ��� �% &� �#� �) � �� �� �% &
 (3.71) 

Since the matrices (3.71) are positive defined for all sufficiently small positive y , the 

difference equation (3.59) is exponentially mean square stable for any constant b. 

3.3.2 Example 2 

Let analyze the difference equation rather similar to the first example, that is, 

the following equation is given in 2� : 

 1

1 0 1 0

0 1 2 0 1t t tx y xy �¥ ¦¥ ¦ ¥ ¦f ±§ ¨§ ¨ § ¨© ª © ª© ª , (3.72) 

where ty  again is ergodic Markov process with three states S T1, 0, 1g  and with the 

same transition probability matrix 

1 4 3 4 0

1 8 1 2 3 8

1 2 1 4 1 4

P

¥ ¦§ ¨f § ¨§ ¨© ª . It means that also the 

invariant measure is the same S T1 4, 1 2, 1 4� f . 

Because all calculations are identical to the previous example, only some 

intermediate results will be given. The first step, when d=1, does not give a solution, 

therefore d=2 should be chosen. In this case again the equations system type (3.65) 

should be solved. The first equation of this system has a solution in a form 

2

0

0 0

q
q� � �) � �% & , where q is arbitrary constant; the second equation – in a form: 

 U�V U�V U�V1 1 1

2 4 2
0 0 0

1 ; 0 ; 19 9 3
0 0 0 0 0 0

q q q
q q qW W WX Y X Y X YZ Z[ \ [ \ [ \Z ] ] ][ \ [ \ [ \[ \ [ \ [ \^ _ ^ _ ^ _ . 
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Verifying whether the solution of the system's second equation exists it can be 

obtained that the constant q should be 
144

53
q ]0Z . Therefore 

 2

144
0

53
0 0

qW X YZ[ \] [ \[ \^ _  
and 

 U�V U�V U�V1 1 1

32 64 96
0 0 0

1 ; 0 ; 153 53 53
0 0 0 0 0 0

q q qW W WX Y X Y X YZ[ \ [ \ [ \Z ] ] ][ \ [ \ [ \[ \ [ \ [ \^ _ ^ _ ^ _ . 
Substituting these results in the system's (3.65) third equation Q R0q y  can be found: 

 Q�R Q�R Q�R0 0 0

80 124 168
0 0 0

159 159 1591 ; 0 ; 1
4 4 1052

0 0 0
5 3 45

q q q

X Y X Y X YZ Z[ \ [ \ [ \Z ] ] ][ \ [ \ [ \[ \ [ \ [ \Z Z[ \ [ \ [ \^ _ ^ _ ^ _ . 
Consequently the Loran series main part of the given difference equation (3.72) has a 

form 

 

Q R
Q R
Q R

2

2

2

2

2

2

432 96 80
0

159ˆ 1, ;
4

0
5

432 192 124
0

159ˆ 0, ;
4

0
3

432 288 168
0

159ˆ 1, .
1052

0
45

q

q

q

½ ½½½
½ ½½½
½ ½½½

X YZ ` Z[ \[ \Z ] [ \[ \^ _X YZ Z `[ \[ \] [ \Z[ \^ _X YZ ` Z[ \[ \] [ \Z[ \^ _

 (3.73) 

Evidently all matrices (3.73) are not positive defined for all sufficiently small positive 

y , therefore the difference equation (3.72) is not exponentially mean square stable. 

3.4 Spectrum decomposition 

The spectrum Q RA
�  of the operator � introduced in the section 3.3 defines the 

second moment of solutions of equations (3.37) dynamic. The exponential decreasing 

of the second moments is equivalent to spectrum Q RA
�  location inside the unit radius 
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circle 1 : { | | 1}S z] a  of the complex plane. This spectrum location analysis can be 

performed [7] for the equation (3.37) with coefficients dependent on independent 

identically distributed sequence S Tty  or constant dealing only with the operator (3.38) 

restriction 

 Q R Q R Q R: T

Y

q A z qA z dzbf i
�  

in the 
( 1)

2

n n`
-dimensional subspace 0 c   of constant symmetric n n|  matrices. 

This assertion greatly simplifies Lyapunov stability analysis of the equation (3.37). 

An algorithm has delivered, which reduces the performances of the equation 

(3.37) with matrices given in a form (3.39) second moments dynamic to analysis of 

the operator Q Rd�  in the 
( 1)

2

n n`
-dimensional subspace Q Rd ñe e

. This subspace 

as well as the restriction matrix ( )½f  of the operator �  may be defined by the 

specially constructed basis B( )½ , analytically dependent on d . The maximal by 

modulus real eigenvalue Q Rghd  of matrix ( )½f  for sufficiently small 0i j  coincides 

with similar eigenvalue of operator Q Rd� . By terminology of [56] this number 

defines mean square Lyapunov index by formula k lm n
2

2

1
( ) limsup ln , ,

2 t
t

E x k x y
t

o ½ prq]  and this number defines behavior of the second 

moment s tu v
2

, ,tE x k x y  as t whx : if 2( ) 0
o ½ a  sequence s tu v

2
, ,tE x k x y  

exponentially decreases, if 2( ) 0
o ½ j  - exponentially increases. 

Owing to exponential ergodicity assertion the defined on Q R}�~
 Markov 

operator �  has spectrum Q R S T1 yz zf J
�  where { |: 1Cy} o o ~c � a a . Therefore 

there exists such a number 0 0½ j  that for any 0(0, )½ ½�  spectrum s tÌ Í} ½
�  of the 

perturbed operator Q Rd�  consists of two sets and� �} }  where spectrum �}  is located 

in d -neighborhood of the part of the operator 0�  spectrum defined by equality s t s t s t� �
0ˆ : : ,M M} o���o } � }] � ��  and � �: 1C�} o o �c � a a . By definition 

the operator 0�  leaves as invariant the space � �ˆ n{ �
 of symmetric n n|  matrices 
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with dimension 
( 1)

2

n n
m

`] . Hence the operators Q Rd�  have invariant subspaces 

Q Rd ñe e
 with Q Rdim md fe

 and a basis s t s t s t� �
1 , , , ,mB b y b y½ ½ ½] `

 in a form 

 Q R Q R 0B P Bd df  (3.74) 

can be chosen [33], where Q RP d  is the total projector in Q Rde  and B0 is basis in � �ˆ n{ �
. Because of projector Q RP d  is an analytic function of d  [33] one can look 

for the basis as decomposition 

 Q R 0 1 2 2B B B Bd d df ± ± ± l , (3.75) 

where 
� �

0 01 0, , mB b b] `
 and s t s t� �

1 , ,j j jmB b y b y] `
 for any j � � . This means 

that all jB  are rows with Q R , 1, ,jkb y k mf l
 as n n|  matrices. 

For the shortening of the computations let define some special operations 

involving a row 

 S T1 2, , , mG g g gf l
 

of elements of the space   and a column 

 

1

2

m

h

h
H

h

� �� �� �� � �� �� ��  

of elements of the space � . The first of these operations is 

 � � � �
� � � �

1 1 1

1

, ,

:

, ,

m

m m m

h g h g

H G

h g h g

X Y[ \� ] [ \[ \^ _�� � �� , 

where � �,p q  is the scalar product of p ��   and q �  , that is � � � � � �
,p q q y p dyf iv . The second operation with row G is defined by 

 �  1 2: , , , , 1, ,2j j j j mG g g g j l¡ ] ]� �� � � �  

Let 

 

11 12 1

21 22 2

1 2

m

m

m m mm

c c c

c c c
C

c c c

� �� �� �� � �� �� �
¢¢� � £ �¢  
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be a real matrix with m rows and m columns. We also write for above G, H and C 

 1 2
1 1 1

: , , ,
m m m

i i i i i im
i i i

G C g c g c g c¤ ¤ ¤¥ ¦] § ¨© ª� � �« �  

and 

 

1
1

2
1

1

:

m

i i
i

m

i i
i

m

i mi
i

hc

hc
C H

hc

¬
¬
¬

­ ®¯ ¯¯ ¯¯ ¯¯ ¯° ± ²¯ ¯¯ ¯¯ ¯¯ ¯³ ´

µ
µ
µ

¶ · . 

Let 
� �d¸  be the matrix of restriction of the operator 

� �d
�  on the subspace 

� �de . 

This matrix can be obtained [33] from the expression 

 
� � � � � � � �

B Bd d d d¹ f ¸º
� , (3.76) 

where for the matrix 
� �d¸  also can be used the decomposition 

 » ¼ 2
0 1 2

d d d¸ f ¸ ± ¸ ± ¸ ± l  

Therefore equality (3.76) can be rewritten into the form ½ ¾ ½ ¾ ½ ¾ ¿ À
2 0 1 2 0 1 2

0 1 2 0 1 2B B B B B BÁ Á Á Á Á Á Á ÁÂ Â Â Ã Â Â Â Ä Â Â Â ÅÆÂÇÅÈÂÇÅ�ÂÉ É ÉËÊ É� � � . 

We can look for 0 1 2, , ,
Ì Ì Ì ·

 by equating the coefficients corresponding to the 

same powers of d . At the same time we have to look for the components 

0 1 2, , ,B B B

·
 of the basis decomposition given by (3.75). 

On the first step we have to deal with the system of m equations: 

 0 0
0 0 0B BÍ Î Ì °¶

�  (3.77) 

for the elements 01 02 0, , , mb b b

·
 of the basis 0B . One can satisfy the equations with 

any basis s t � � � �0 ˆ ˆ0 n nB P° Ï{ÑÐ {ÒÐ
 in the root subspace corresponding to the 

matrix 0

Ì
 of the operator 0�  in this basis. The matrix 0

Ì
 is in a form 

0 0
11 1

0
0 0
1

m

m mm

Ó Ó
Ó Ó
Ô ÕÖ ×Ì ° Ö ×Ö ×Ø Ù

·
Ú Ú Ú· . 

On the second step there is the following system of equations which involves 

the m components of the basis 1B : 
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 1 1 0 0
0 0 1 1B B B BÍ Î Ì ° Ì Î Í¶ ¶

� � . (3.78) 

This system has solution if and only if the right part is orthogonal to m linearly 

independent solutions of the adjoint equation. It is obvious that the adjoint 

homogeneous equation for (3.78) based on the scalar product defined above and using 

the given notations has the form 

 0 0 0H H
Û Í Î Ì °¶

�  

where the adjoint operator 0

Û
�  is defined by 

6 7 » ¼ » ¼ » ¼0 0 ,Th dz A h dy p y dz
Û f i Üv

�  for any 

count additive matrix measure h
ÛÝ Þ . It can be proven that due to ergodicity 

assertion we can present matrix measures » ¼jh dy  in a form 

» ¼ » ¼ˆ , 1, ,j jh dy h dy j mß° ° ·  where 0
0

1

ˆ ˆ
m

T
j ji i

i

A h h
Ó¬° µà

 and the column Ĥ  of constant 

matrixes ˆ
jh  can be chosen in such a way that 

 0 0, ja ,ˆ
1, ja .

k
j

j k
b h

j k

á­°0± °³  (3.79) 

Next the condition of orthogonality of all elements of H with respect to the right part 

of (3.78) must be verified, that is 

 0 1 0
1

1

, , 1,
m

i k
j ik

i

h b b j k m
Ó¬Ô Õâ Î ã °Ö ×Ø Ùµ

�  

or using previous notations 

 ä å0 0
1 1 0H B Bæ Ì Î Í °¶
� . (3.80) 

This condition permits to find the matrix 1

Ì
: 

 1 0
1

ˆk j
jk Ab h
ç f è . (3.81) 

Using (3.81) and solving the equation (3.78) the basis 1B  can be found. 

On the next step the equation for 2B  what is based on the coefficients 

corresponding to 2é  in the equation (3.76) should be analyzed: 

 2 2 0 1 1 0
0 0 2 1 1 2B B B B B BÍ Î Ì ° Ìëê Ì Î Í Î Í¶ ¶ ¶

� � �  (3.82) 

Making the similar considerations as on the second step one can find the matrix 2

Ì
 

using the following condition of orthogonality 

 ì í0 1 1 0
2 1 1 2 0H B B B Bæ Ìëê Ì Î Í Î Í °¶ ¶

� � . (3.83) 
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Therefore the elements for matrix 2

Ì
 can be expressed as 

 2 1 1 1 1
1 2

1

ˆ
m

k k i j
jk ik

i

Ab A b b h
Ó Ó¬Ô Õ° ê ÎÖ ×Ø Ùµà à

 (3.84) 

and the matrix 2B  can be found. 

3.4.1 Example 

Let consider the following difference equation in 2Ð : 

 1

1 0 0 1

0 1 2 1t t tx y x
b

d î¥ ¦¥ ¦ ¥ ¦f ±§ ¨§ ¨ § ¨© ª © ª© ª  (3.85) 

where ty  is Markov chain with states ï ð1,0,1g  and transition probability matrix 

 

1 4 3 4 0

1 8 1 2 3 8

1 2 1 4 1 4

P

¥ ¦§ ¨f § ¨§ ¨© ª  
It is easy to find that the invariant measure is equal to ï ð1 4,1 2,1 4b f . The linear 

operator should be analyzed 

 » ¼ » ¼ » ¼ » ¼ » ¼ » ¼ » ¼ » ¼2
0 1 2q y q y q y q yd df ± ±ñ ñ ñ ñ

� � � �  

where 

 » ¼ » ¼ » ¼ » ¼0 0 ,
Y

q y A q z p y dzf iñ ñè
� , 

 ò ó ò ó ò ó ò ó ò ó1 1 ,
Y

q y A z q z p y dzf iñ ñè
� , 

 ò ó ò ó ò ó ò ó ò ó2 2 ,
Y

q y A z q z p y dzf iñ ñè
�  

and matrices 0 1 2, ,A A Aè è1è  for finding operators ò ó ò ó ò ó ò ó ò ó ò ó0 1 2, ,q y q y q y
ñ ñ ñ

� � �  are as 

followings: 0

1 0 0

0 1 2 0

0 0 1 4

A

¥ ¦§ ¨f § ¨§ ¨© ªô
, õ�ö1

0 2 0

2

0

z

A z z bz z

z bz

¥ ¦§ ¨f § ¨§ ¨© ªô
, ÷�ø 2

2 2
2

2 2 2 2

0 0

0

2

z

A z z bz

z bz b z

Ô ÕÖ ×° Ö ×Ö ×Ø Ùà
. 

In the first equation (3.77) a basis can be chosen as 0

1 0 0

0 1 0

0 0 1

B

¥ ¦§ ¨f § ¨§ ¨© ª  and 

therefore 0

1 0 0

0 1 2 0

0 0 1 4

¥ ¦§ ¨¸ f § ¨§ ¨© ª . Substituting known results in the second equation 
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(3.78) and following the steps described in the algorithm it is possible to obtain 

1

0 0 0

0 0 0

0 0 0

¥ ¦§ ¨¸ f § ¨§ ¨© ª  and corresponding basis 1B  for each y value: 

ùûú
1

1 0 0

1 2 11 1 2 3 0

0 4 11 0

B b

ü ýþ ÿ� � � �þ ÿþ ÿ�� � , ���1

1 2 3 0

0 8 33 1 1 3

0 16 33 4 3

B

b

ü ýþ ÿ� þ ÿþ ÿ�� � , 
�	�

1

1 4 3 0

1 10 33 1 10 9 2 3

0 76 33 8 9

B b

b

�ü ýþ ÿ� � � �þ ÿþ ÿ� �� � . 
Considering all obtained results it is possible to find 2

Ì
 using equation (3.82). 

Leaving out calculations 2

Ì
 can be presented as 

2
2

2

2 33 2 9 1 6

33 5 66 9 2 9

31 66 40 99 1 6 5 18

b

b b b

b b

g g¥ ¦§ ¨¸ f g g g§ ¨§ ¨g g© ª . 
Therefore 

2 2 2
0 1 2

2

1 0 0 2 33 2 9 1 6

0 1 2 0 33 5 66 9 2 9

0 0 1 4 31 66 40 99 1 6 5 18

b

b b b

b b


 
 
 g g¥ ¦ ¥ ¦§ ¨ § ¨¸ f ¸ ± ¸ ± ¸ f ± g g g§ ¨ § ¨§ ¨ § ¨g g© ª © ª . 
For higher accuracy of 

Ì
 the algorithm can be continued in the similar way as 

described steps till 2

Ì
. 
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4 Covar iance analysis of linear  Markov iterations 

4.1 Analysis of the first moments 

Henceforward a linear n-dimensional column-vector space nÐ  will be viewed 

as Euclid space with a scalar product õ ö, : ,n n Tu v u v u v´ ´ f� �
. 

Let assume that a Markov sequence � 
: ,ty y tf ´� �
 is given in a filtrated 

probability space ì í, , ,t P
�����

, where � �t�  is a minimal filtration harmonizing it. 

The following assumptions are necessary to get formulas convenient for use: æ matrix function ÷ ø� �
,A y y Ý Ï  is continuous; æ Markov chain phase space Ï  is a metric and compact space; æ transition probabilities õ ö,p y dz  have Feller property, that is, if functions ÷ ø� �

,u y y Ý Ï  are continuous, continuity of functions ÷ ø ÷ ø� �
,u y y Ý Ï�

 follows, 

where 

 õ ö õ ö õ ö õ ö: ,u y u z p y dzf i��
; (4.1) æ only one probability measure exists on space Ï , which satisfies the equality 

 � � õ ö õ ö õ ö* : ,dz dy p y dz� �f i��
; (4.2) æ such a positive number 1� �  exists, that the spectrum of operator 

�
 defined on õ ö}�~

 can be expressed in a form 

 ÷ ø � � � �1 , :y y   Ó Ó �° ! Ý Ý �� "
 (4.3) 

(exponential ergodicity). 

The following denotations will be used: 

 ÷�ø
1

: ; : :
t

s t
s s k

k s

s X I t s X A y¬$#Ý ° % °'&(
. (4.4) 

The solution of the linear difference equation with Markov coefficients 

 õ ö 1t t tx A y x îf , (4.5) 
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where � 
,ty t ´ �  is a homogeneous Markov chain with phase space )  and transition 

probabilities õ ö,p y dz , can be written in a form s
t t sx X x°  for all ,s t sÝ *(

. As the 

sequence � 
,ty t ´ �  has Markov property, probabilistic characteristics of matrix + ,
,t

sX t s*  depend only on probabilistic characteristics of sy . Let define an operator 

in a space of continuous n-dimensional reproductions - . / 0:n
n

1 °2 ) 3 2 ) : 

 õ ö õ ö õ ö õ ö õ ö õ ö, : ,T
ny u u y A z u z p y dz´ ´ f iv~ } ~

�  (4.6) 

Since transition probabilities have Feller property, 4 5nu ´ } ~
�  is valid. Hereto for 

all 4 5nu ´ } ~
 6 7 6 7 6 7 6 7

sup sup supT T

z z z
u A z u z A z u z8 8 8À À9 9 9� , 

follows from (4.6) and therefore 

 : ;
1

: sup sup
u z

u A z¬ 8f À 9� � , (4.7) 

that is, the operator � is linear continuous operator in : ;n

} ~
. 

Lemma 4.1 For any : ;, 0, , n
ns t v x´ < ´ ´� } ~ �

 

 : ;= >? @ = > ACB� �
, / ,s t s t

s s t sE X x v y x v y
D D EF

�  (4.8) 

Proof. An induction method is used. For 1t E  and any s G H  the equality (4.8) 

follows from Markov property of sequence y
I

: A B= >? @ A BJA B= >? @ A BKACBL M
1

1 1 1, / , / ,s s T
s s s s s sE X x v y E x A y v y y x v y
D D D DE EF

� . 

To be sure about correctness of the lemma's statement for 1t mE N , this equality is 

used taking s mN  instead of s, assuming that (4.8) is true for t mE : A B= >? @
1

1, /s m s
s s mE X x v y
DOD DOD EF

 A BJA BP QR ST U
1 1, / /s m T s m s

s s m s mE E X x A y v y
D DDOD DOD fV V

 

W XJW XY Z[ \
1 1, / /

s m
s

T s m s
s m s m

z X x
E E z A y v y ]DDOD DOD ¬ ^_ _

 

` ab` ac de f ` ac d `Cag h c d `iag h
1, / , ,s m s m m

s s m s sE X x v y x v y x v y
D DD ^ ^_

� � � � . 

Lemma is proved. 
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Theorem 4.1 Let elements of sequence j k,ty t ´ l  are independent and identically 

distributed. Then 

(i) operator � leaves as invariant a subspace 
` a

n
n

mn o p
 and restriction 

�  of operator � in this subspace is defined by equality 

 :n Tv v A vG ^q
�  (4.9) 

where 
W Xr s

0A E A y^ ; 

(ii) for each s G H , each t st  and each tu -adapted solution j k, 0tx t v  of 

equation (4.5) the following equality is into force: 

 j k j kt s
t sE x A E x

wf . (4.10) 

Proof. Since in the theorem conditions 
` a

,p y dz  is independent from y, that is, ` a ` a
,p y dz p dzx , then assertion (i) directly follows from (4.6): ` a ` a ` ay z

0:n T Tv v A y vp dz E A y v v´ f f fi{n
� � . 

Further, since elements of the sequence j k,ty t ´ l  are independent, according to 

filtration definition a random variable ty  does not depend on 1t |u -measurable 

random vector 1tx | . Therefore for each nv G q  }�~� � W�X� �� �� � W�X� �� �� �
} ~ W�X� �� � } ~� �1 1

1 1

1 0 1

, , / , /

, ,

T t T t
t t t t t

T T
t t

E x v E E x A y v E x E A y v

E x E A y v E x A v

| || |
| |

^ ^
^ ^

� �
 

is into force. Applying this formula sequentially for all j k1, 1t s t´ ± g  the theorem is 

proved. 

One of the most common [11] methods for difference equations, which can be 

represented in a form 

 1: t t tt y G y |G ^H , (4.11) 

analysis in nq  is variables substitution t t ty B z^ , where tB  is a basis matrix of some 

variable in nq . If such a sequence of matrices can be found that 1t tz Hz |^ , then from 

the equation (4.11) can be changed to an equation with constant coefficients and each 

its solution can be written in a form 

1t s t s
t t t t s t s sy B z B H z B H B y| |�|^ ^ ^ . 
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This property in theory of difference equations is called reducibility. The equation 

(4.5) is mean reducible, if such a continuous matrix function 
W X� �

,B y y G �  and such 

a matrix �  exist, that for all s G H  and t st  the following equality is into force 

 
W X� � W X

/ s t s
t t s sE B y x B y x|^ ��

. (4.12) 

Further the possibility of (4.5) mean reducibility will be considered in the case 

when the matrix function 
W X� �

,A y y G �  is near to constant and can be given in a 

form of uniformly converging sequence: 

 
W�X W�X

0 1
0

: k
k

k

A y A A y� �� �
�^ N��  (4.13) 

where 
` a
0,1� ´  is a small parameter. 

At the beginning some additional constructions are needed. Let define a tensor 

product for elements of spaces 
` ao�p

 and nq  as a product of scalar function with 

vector, and let represent a space 
` a

n

o p
 as a tensor product of spaces ` a ` a

n
n

f �o p o p n
. A tensor product of linear spaces ¡  and ¢  defines as a linear 

span of tensor set j k, ,h g h g� ´ ´£ ¤
. The operator (4.6), which corresponds to 

matrix (4.13), can be expressed in a form 
W¥X W¥X

0 1
0

k
k

k

� � � �� �
�^ N¦�� � � , hereto the 

operator 0�  leaves as invariant subspace nq , and it can be represented as a tensor 

product of operators 0 0
TA^ §� ¨ : ` a ` a

0 0, :n Th g h g h A g´ ´ � f �o�p n ©
� , 

where ¨  is a Markov operator defined by equality (4.1). The tensor representation of 

operator allows to simplify finding the spectrum and resolvent using the spectrum and 

resolvent of operators which define it [34]. Taking into account the assumption about 

exponential ergodicity of (4.3) the operator 0�  spectrum can be expressed in a form: 

 
W X W X W X� � W X

0 1 2 1 2 0 0: , A A ª« ¬­¬®¬ « ¬ « « «^ G G ^ ¯� ¨  (4.14) 

where 
W X° ±

1 2 1 2: : ,ª ª« ¬­¬²¬ « ¬ «^ G G¨ . As main assumption for mean reducibility of 

the equation (4.5) is disjunction of sets in spectrum decomposition (4.14), that is, 

 
` a

0A ª³ ³´ f­µ . (4.15) 
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It makes possible to offer an asymptotical method, which is based on the 

decomposition of operator 
` a�

�  spectral projection [33] by powers of a small 

parameter � . 

Conjugated space of 
` a

n

o p
 [17] is a space of vector-valued measures 

` a
n

¶o p
, 

and scalar product of elements 
` a

nv ´ o p
 and 

` a
ng
¶´ o p

 is defined by equality 

 · ¸ · ¸¹ º
, : ,g v g dy v yf i{ . (4.16) 

Using the definition of conjugated operators 0 0, ,g v g v
¶ ^� � , that is, 

»½¼ »¾¼¿ À » ¼ »Á¼ » ¼Â»Ã¼
0 0, , , ,Tg dy A v z p y dz A g dy p y dz v z

Ä Åf Æ ÇÈ ÉÊ ÊË Ë  

it's form can be found: 

 
¿ À » ¼ » ¼ » ¼

0 0 ,g dz A g dy p y dz
¶ Ì ÊË� . (4.17) 

The space 
» ¼

n

¶o p
 can be expressed also as a tensor product of the space consisting 

scalar count additive measures 
» ¼¶o p

and nq . Using the definition of tensor product 

the following equality follows: 

 Í Î Í ÎÏ Ð Í Î Ï Ð Í Î0 0, : :na b a b dy a dy A b
¶ ¶ ¶G G § ^ §Ñ � q ¨� . (4.18) 

Lemma 4.2 If all above mentioned assumptions are into force, then for sufficiently 

small 0Ò t  and all � �ã  a difference equation is mean reducible, hereto the matrix 

function Í ÎÓ Ô
, ,B y y� G �  is a basis in operator 

» ¼�
�  root subspace which 

corresponds to the spectrum 
» ¼

0
³ �  part which is defined by equality Õ Ö0 0

0
lim× ³ � ³Ø Ì

, 

but matrix Õ Ö�Ù  is operator Õ Ö��  restriction matrix to this root subspace. For each � �Ú  n×n-matrix function of basis Í ÎÓ Ô
, ,B y y� G �  and constant n×n-matrix Õ Ö�Ù  

unambiguously are defined by equality 

 Í Î¹ º Í Î Í Î Í Î, : , , Ty B y B y� � � � � �G Û ^ �� �  (4.19) 

Proof. Since the assumptions about exponential ergodicity of Markov process and 

possibility to express operator 0�  spectrum in a form (4.15) are into force, the 

dimension of the root subspace of this operator, which corresponds to spectrum part Õ Ö0A³ , is equal to n. Hereto, taking into account the assumption about uniform 
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convergence by y G �  of matrices sequence Õ Ö,A y � , such a positive number �  

exists, that an operator family Õ Ö��  is analytically dependent on parameter �  at � �Ú  [33]. The equality Õ Ö0 0
0

lim× ³ � ³Ø Ì
 unambiguously defines an isolated operator 

Õ Ö��  spectrum part for all � �Ú , but dimension of the root subspace corresponding 

to this spectrum part is equal to n. Therefore a basis can be chosen in this root 

subspace using n elements from Õ Ön

o p
 in a form of matrices function: 

 Í Î Í Î Í Î Í ÎÜ Ý
1 2, , , , , , ,nB y b y b y b y� � � �^ Þ  (4.20) 

The operator Õ Ö��  restriction matrix in this subspace can be obtained consecutive 

applying operator Õ Ö��  for each Õ Ö,� �ß�àâá  to the elements of basis (4.20) and to 

the decomposition by this basis: 

 

ã¥äå æ ã ä ãJäç è ã äé ê
ãJäCã ä ã ä ã¥ä

1

, : , , 1,2, ,

, , 1,2, , : ,

j

n
T

jk j
k

B y b y j n

b y j n B y

ë ë ë ë
ì ë ë ë ëí

î î îï ðî î î ñò óô õö ÷
÷

� �

 (4.21) 

Substituting (4.20) in the equality (4.12) one can get: ø ùú û ø ùü ýþ ÿ ø ùü ýþ ÿ� �
ø¥ù� � ø ù� � ø¥ù� � ø ù� �� �

ø¥ù� � ø ù ø ù ø¥ù� 	
1

1

, / , , / , , , , /

, , , , , ,

, ,

s s s
t t t t n

t s t s

s s s n s

t st s T
s s s s

E B y x E x b y E x b y

x b y x b y

B y x B y x


 
 

 
 
 

 
 
 

� � ��

� �� �� � 

� �

� � �
� �

�

 

and the lemma is proved. 

For the description of the construction algorithm for basis matrix (4.20) and 

matrix 
ã äëñ  the decompositions of these matrices in a form of uniformly converged 

sequences by powers of a small parameter ë : 

 ���
� � ���

0 1
0

0 1
0

:

, :

k
k

k
k

B y B B y

� �
� �

� �� � ��
� ����� �

� �
�
�  (4.22) 

and also the decomposition of operator 
ã äë

�  in a form of uniformly converged 

sequence by powers of a small parameter ë : 

 ��� 0 1
0

: k
k

k

� � �� ��� � �
� � �  (4.23) 
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are used, where 

 �  ã ä ã ä ã ä ã ä
,T

j jv y A z v z p y dzî"!Ë� . (4.24) 

For each sufficiently small ë  these decompositions can be substituted in the 

expression (4.21). Equating coefficients of equal powers of ë  and taking into account 

(4.24), the following equations can be obtained: 

 0 0 0 0
TB B

� �
�  (4.25) 

 0 1 1 0 0 1 1 0
T TB B B B# �$� � #� �  (4.26) 

 0 2 2 0 0 2 1 1 0 2 1 1
T T TB B B B B B# �%� �&� � # #� � �  (4.27) 

and so on. These equations can be used for finding the unknown elements of series 

(4.22). Taking unit matrix 0 :B I
�

 as basis in nq  and substituting it in the equation 

(4.25), 0 0
T TA
�$�

 can be find, that is, 0 0A
�'�

. Let define an operator 

ˆ, :y v( (� Ñ
 

 

) * ) * ) * ) * ) *)+* )�*, - ) * )�* )�*) *.)�*/) *.)�*
0 0

0 0 0

: :

: , :

:

T

T T T

v y v y v y A

A v z v y p y dz A v y v y A

v y v y

0 1 00 1 2 1 00 2
34

5
6 7
�

 (4.28) 

for the elements of continuous matrix functions space ˆÑ . Looking at ˆÑ  as at 
2n8 , 

similarly as in 
) *

n

9 :
 case, count additive matrix-valued measure ˆ ;Ñ  can be found, 

which will be as conjugated space, and a scalar product of elements ˆg ;( Ñ  and ˆv < 9  

can be defined by formula 

 =?>@=$>, : Tg v Tr v y g dy

ï ðî ò óô õ!4 , (4.29) 

where A BTr  is a matrix trace. Using this definition, analogically as (4.17), the 

conjugated operator ;C  of operator 
C

 can be found: 

 

D E F G D E F G F GFHG FIGJ K F G FIG FIG
D E.FHG/D E.FHG

0 0

0 0 0

: :

: , :

:

g dz g dz g dz A

A g dy g dz p y dz A g dz g dz A

g dy g dy

L L
L L

M N MM N O N M
M O
PQ

R
S T
�

 (4.30) 
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Similarly as in 
F G

n

9 :
 case, ˆÑ  can be viewed as a tensor product of 

F G9U:
 and the 

space of constant matrices n

V
, but a space ˆ LÑ  - a tensor product of 

F GL9 :
 and the 

space of constant matrices n

V
. The operator 

LC
 in accordance with (4.30) is a tensor 

sum of operator 
L¡  acting in 

F GL9 :
 and operator 

L¢  acting in n

V
. Therefore the 

kernel of operator 
LC
 consists of elements in a form 

 W X � � Y Z0 0, : 0nM Ker M dy M M M A M MA[L( \ � ( # �C
. (4.31) 

Now (4.26) can be rewritten in a form ] ^ ] ^ ] ^
0 1 1 0 1 1

T T TB y B y A y_ ñ î ñ _�  

and Fredholm theorem about normal solvability can be applied. The right side 

orthogonality of this equation respecting to the all elements of operator 
LC
 kernel is 

necessary and sufficiently to ensure that a solution exists for the equation in a form 

0 2 2 0
TB B C# �$�

�  

for all ˆC < 9 . Consequently for solvability of (4.26), taking into account that 0B I
�

, 

it is necessary to fulfill the equality 

 ` a ` a1 1 0TA y M dybc dñ _ îe f!Q  (4.32) 

for all n ng  matrices, which satisfy the equality 0 0 0A M MA# �
. The equality (4.32) 

is into force for each constant matrix M if 

 ` a ` a1 1 1:A A y dybñ î îh!Q . (4.33) 

Now ` a1B y  can be found and the next equation can be analyzed for finding 2

�
 and ` a2B y . The equation (4.26) has many solutions. It is convenient to choose such a 

solution ` a1B y , that 1 0B
�

. Known matrices can substitute in the equation (4.27) and 

this equation can be rewritten in a form i j i j i j
0 2 2 0 2 1 1 1 1

T T T TB B B y A A y B y_ ñ î ñ&k _� . 

Now the Fredholm alternative can be applied 

 

i j i j
2 1 1 1 1
T T TB A A y B y dybñ½î _ kl!Q  (4.34) 

and matrix 2

�
 can be found, afterwards also 

i j
2B y . Then the next equations can be 

written for finding 3

�
, 

i j
3B y  and so on until the needed accuracy of matrix 

i jëñ  
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decomposition is obtained. Since �  is compact and matrices � �m n
, 1,2,jB y j
� �  are 

continuous, the elements of obtained basis 2
1 2:B I B B� ��o� � � �  are linearly 

independent for sufficiently small ë . 

4.2 Covariance analysis 

In this paragraph dynamics of the second moment matrix of difference equation 

(4.5) solution will be analyzed, that is, behavior of matrix as matrix function of 

argument t 

 W X: T
t t tQ E x x
�

. (4.35) 

Let introduce some denotations. At first it should be noted that a real n ng  matrix 

space n

V
 can be viewed as 2n -dimensional Euclid space 

2n8  with scalar product p q r s
, : Tq g Tr qg
�

. A set of symmetric n ng  matrices ˆ
n

t
 in a form 

 

11 12 1

12 22 2

1 2

:

n

n

n n nn

q q q

q q q
q

q q q

u vw xw xM w xw xy z
{{| | } |{  (4.36) 

makes linear closed subspace in n

V
. Since for ˆ

nq < t  an equality ~ � � � 22

1 1

: , : 0
n n

kj
k j

q q q q�/�î î îö ö
 

is equivalent to i j � �
22

1 1

: , : 0
n n

kj
k j

q q q q�/�î î îö ö�
, 

then ˆ
n

t
 can be identified with Euclid space � �12

n n �q
 with column vectors in form 

 ��� �������� �
11 12 1 22 23 2 1 1 1: , , , ; , , , ; , ;

T

n n nnn n n nq q q q q q q q q q��� ��� � �
 (4.37) 

and scalar product 

i j
, : Tq g q gî . Using these denotations, equation (4.5) and the 

results from the section 4.1 for matrices sequence 

i j
: T

t tt
xx x xî  a linear difference 

equation in space n

V
 can be written as 

 � � � � � � � � � � � �
1 1

:T
t t tt t t

xx A y xx A y A y xx� �� � �
. (4.38) 
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The above defined linear operator � �tA y
�

 family leaves as invariant symmetric 

matrices space ˆ
n

t
 for each fixed value of argument ty , therefore, if it is more 

convenient for use, instead of (4.38) the corresponding linear difference equation in 

space 

� �1
2

n n �q
 can be analyzed. 

Let denote �  Banach space, which consists of symmetric n ng  matrix 

functions � �� �
,q y y ( �  with norm ���� �

, 1
: sup ,

y x
q q y x x� �� Q . 

Let define a linear continuous operator in space �  using matrix function 

� �� �
,A y y ( �  and transition probabilities of Markov chain 

 � � � � � � � � � � � �: ,Tq y A z q z A z p y dzî"!Q�  (4.39) 

All results from the section 4.1 can be adapted to the analysis of this operator. 

The operator (4.39) has a property, which allows to simplify its analysis. The operator 

(4.39) leaves as invariant a cone of non-negative defined matrix functions [37] �? ¡ ¢£ ¤
, 1

: : inf , 0
y x

q q y x x� �� ( ¥Q¦ �  

with a set of inner points �? ¡ ¢£ ¤
, 1

: : inf , 0
y x

q q y x x� �� ( §¨ Q¦ � . 

A cone 
¦

 partially allows to arrange space �  using inequality 

1 2 2 1q q q q©ª© \ # ( ¦ . 

q ( ¨¦  if and only if such a � �c q  exists that « ¬q c q I­®­ , where I is unit matrix. This 

arrangement makes possible easy to analyze behavior of the second moment of (4.5) 

solution for t ¯±° . It is convenient for use to consider a denotation for (4.5) solution « ¬, ,t kx k x y� , what satisfies an initial conditions kx x
�

, ky y
�

, and « ¬, ,X t k k yk  

for matrix (4.4) if ky y
�

. It is understood that « ¬ « ¬, , , ,t kx k x y X t k k y x� î k . If 

(4.35) solution's the unconditional second moment exponentially decreases for 

t ¯±° , that is, 
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 ² ³´ µ¶ ·
2 2

0, : 1 , , , , 0:

, ,

n

t
t k

C z x y k t

E x k x y C x

¸ ¸�
¹ § ¹ ( © º ( º ( º ( º ¥» ¼ ½ ¾¿

 (4.40) 

then [51] (4.5) is exponentially mean square stable. In this section it will be shown 

that this property is rather easy to determine analyzing a positive real spectrum of 

operator (4.39). 

Lets define how the operator � acts using the equation (4.5) solution. 

Lemma 4.3 [9] For any q ( À , 0t k§ ¥ , y ( ½  and nx ( ¼  Á Â «�¬Ã Ä « ¬ « ¬ « ¬Å ÆÇ È
, , , , , , /t

t k t k t k kq y x x E q y x k x y x k x y y y� � �� �
� . 

Analogically than (4.8), this formula follows from Markov property for a sequence É Ê
,t tx y : Ë Ì Ë Ì Ë ÌÍ ÎÏ ÐË ÌÑË ÌUË Ì Ë Ì Ë ÌÒ ÓÔ ÕËÖÌ×Ë+ÌØËÖÌÙË Ì

Ú ÛË Ì.Ë Ì Ë Ì Ë ÌÍ ÎÏ ÐÒ Ó Ë Ì Ë Ì 1

1 1

1

, , ,

1 1 1

1
1 1 1

, , , , , /

, , , , , /

, ,

, , , , , /

, , ,

t k k

t k t k t k k

T
t k t k t k t k t k k

T
t k

h x k x y y y

t k t k t k k

t
k k k

E q y x k x y x k x y y y

E A y q y A y x k x y x k x y y y

E A z q z A z p y dz h h

E q y x k x y x k x y y y

E q y x k x y x k

ÜÞÝ

ß ß ßß ß ß ßáà ßáà
ßáà â â

ßáà ßáà ßáàà ß ß ß

ã ã ã ãä åæ çè è ãéëê ì íî ïè èð ñã ã ã
ò

óô
�

�

Ë Ìõ ö÷ ø Ò Ó Ë?Ìõ ö
, , / , .t

kx y y y q y x xã ã
�

 

Using denotation (4.4), the statement of lemma can be rewritten in a form of matrix 

 ù ú ´ µ ´ µ ´ µ ´ µr s
, , , , /t T

t k kq y E X t k k y q y X t k k y y yß� � � �
� . (4.41) 

Theorem 4.2 The following assertions are equivalent: 

(i) the equation (4.5) is exponentially mean square stable; 

(ii) such a matrix function q ( ¨û  exists that 

 q q I# � #� ; (4.42) 

(iii) a maximal positive point of operator � spectrum ü ýr �  is less than 

unit. 

Proof. 

Ë Ì Ë Ì
i iiþ . Using equality ÿ �Iÿ �� � ÿ � ÿ �� �� �

ÿ � ÿ �� �� � ÿ �	 
1

2

1 1

,0, ,0, sup ,0, ,0, ,

sup ,0, , ,0, sup 0, ,

T T

x

t
x x

E X t y X t y E X t y X t y x x

E X t y x X t y x E x x y

�
� �

� �
�  
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and conditions for exponentially mean square stability, an existence of matrix 

function defined by equality 
�� 
 ��
 �� �
0

: ,0, ,0,T

t

q y E X t y X t y
� �� � , 

can be proved. Taking into account an identity 

Ë Ì
, ,X k k y I� , from equality 
 ��
 �� � 
 ��
 �� �

0 1

,0, ,0, ,0, ,0,T T

t t

E X t y X t y I E X t y X t y
� �� ����� �

 

inequality q I���  follows. Therefore q � ¨û . To finish the proof of the theorem's first 

assertion, a formula (4.41) can be applied for matrix function 

Ë Ì
q y I� : Ë�Ì Ë�Ì

0 0

1

0 0

t t

t t

t t

t t

q y q y I I

I I I

� �� �� ��� �
� � �  ! "# $

�  �  
� �

� �� � � �

� �

 Ë Ì Ë Ì
ii iiiþ . If q � ¨û , then such a positive number 

Ë Ì
c q  can be found that Ë Ì

c q I q q I%�% %�% , because ½  is compact space and this matrix function is 

continuous. Let assume that this matrix function satisfies equality (4.42). Then 

inequality 
q

q q
q

_ %�% _�  or t tq r q&�&
�  should be into force for any t � ' , where 


 �1
1 0,1r q (�  � . Therefore 

)+* )+* )+*1 t t
t t r r
I q q q I

c q c q c q
&,& &�& &�&

� �  

for any t � ' , that is, 

-+. -+./- .
0 0 1

m m
t t

t t

q q
I r I I

c q c q r� �&�& &�&  0 0
�  

for any m � '  and 

 1 243�56 7
1, 0

lim sup ,
m

t

m x y t

g y x x8 � �:9 � %<;ö= �  (4.43) 

for any matrix function g � À . Because the linear continuous operator � leaves as 

invariant a solid cone 
û

, such a positive spectrum point 3 5>
�  exists [37] that 



 
 

65

- . - .? @
sup ,z zA B� �� �  and for this spectrum point a real eigen-function (matrix 

function) qC � û  corresponds, that is, 3 5q qC C>î
� � . Therefore, if 3 5 1> D

� , then 

 E F4G�HI J
1, 0

lim sup ,
m

t

m x y t

q y x xK8 � �:9 � î ;ö= � . 

This is contradictory with (4.43). G H G Hiii iþ . Because the operator � leaves as invariant a cone 
û

, such a positive 

spectrum point G Hr �  exists [37] which satisfies 
- . - .L M

max Rer B�
� � . 

Consequently, if G H 1r %
� , then 

- . ² ³: 1z zB N � &O
�  and then such constants 

0c �  and G H0,1
ì <  exist [37], that t tç

P
�  for all t � ' . Now an inequality 

 Q R S T Q�RU V
2 2

, , ,t t
t kx k x y I y x x c x

¸� � PW
�  

can be used and the theorem is proved. 

If the matrix function Q RL M
,A y y � ½  is near constant and can be represented in 

a form of uniformly convergent series (4.13), where G H0,1ë <  is a small parameter, 

then considerations can be made similarly as in the section 4.1 for mean square 

reducibility of equation, changing a dimension from n to X Y1
2

n n �
 of matrix X Yëñ  

and matrix-basis X YB ë . Due to this increasing of dimension the calculation becomes 

more complicated and therefore an algorithm for the behavior analysis of the second 

moments of equation (4.5) solution described below can be useful. This algorithm is 

based on the application of the statement (iii) of Theorem 4.2, since according to (iii) 

an isolated positive major by module eigenvalue Z [ˆ¸ �  of operator (4.39) should exist. 

If matrix (4.13) analytically depends on parameter ë , then this operator in some 

neighbourhood 0
ë ë%  also analytically depends on ë  and its isolated eigenvalue 

Z [ˆ¸ �  also can be represented in a form of series by powers of ë . For finding 

decomposition Z [ 0 1
ˆ :
¸ � ¸ � ¸� � � �  a basis \ ]B̂ �  in a root subspace of this 

eigenvalue will be needed. If an eigenvalue has dimension m, then a basis consists of 

m elements from space À  and it can be represented as row ^+_ ^+_ ^+_ ^`_a b
1 2
ˆ ˆ ˆˆ : , , , mB b b bc c c cî d . A basis can be represented in a form of series [33] 
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^ _
2

0 1 2
ˆ ˆ ˆ ˆ:B B B B� � �� � � � �  for sufficiently small c . Because a total projector in a 

root subspace also is an analytic function of parameter c , then a matrix 
^ _

ˆ �e  of 

operator 
^ _c

�  restriction Q+Rˆ ��  on this subspace also can be represented in a form 

of series 
^ _

2
0 1 2

ˆ ˆ ˆ ˆ:� � �e � e � e � e � � . Following to the considerations from the 

section 4.1, the equations for finding j

¸
, ˆ

j

e
 and ˆ

jB  for all 0,1,2,j � �
 can be 

written: 

 0 0 0 0
ˆ ˆ ˆ ˆ TB B� e
�  (4.44) 

 0 1 1 0 0 1 1 0
ˆ ˆˆ ˆ ˆ ˆ ˆ ˆT TB B B B e � e  � �  (4.45) 

 0 2 2 0 0 2 1 1 2 0 1 1
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆT T TB B B B B B e � e � e   � � �  (4.46) 

Some remarks in connection with possibilities to simplify the calculation. At first, the 

representation of matrix 
^ _

A c  in a form of series by powers of parameter c  can be 

chosen in such a way, that all matrix 0A  eigenvalues f g1 2, , , kv v vd , which are by 

module equal to spectral radius 
^ _

0 0: Ah hî , are simple, where k is total multiplicity 

of above described eigenvalues. Since the space consisting of continuous n ng -matrix 

functions can be represented in a form of tensor product 
^ _

: n nî i ij 9U: 8 8
 and 

operator 0�  as a tensor product 0 0A A
k k¨ , the largest by module eigenvalues of 

this operator create a set l m, 1,2, , ; 1,2, ,j lv v l k j k� �� �
. Then the largest by module 

real positive eigenvalues of operator 0�̂  has a form [34] 2
0 0
ˆn hî  and has a 

multiplicity 2m k� . Therefore, in the root subspace corresponding to this eigenvalue 

a basis 0B̂  can be chosen so, that 2
0 0

ˆ T Ihñ½î , where I – unit m mg  matrix. Now using 

this basis the following operator can be defined 

 o p ^�_ 2
0 0

ˆˆ ˆ:v y v vA�  q
�  (4.47) 

and equation (4.45) can be rewritten in a form 

 r s ^�_1 0 1 1 0
ˆˆ ˆ ˆ ˆ ˆTB y B B� e  q
� . (4.48) 

Now the Fredholm theorem about normal solvability should be applied to the equation 

(4.48), using the conjugated equation in space of matrix-valued measures, as it was 

described in the section 4.1. The orthogonality of the (4.48) right side to all elements 
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of operator tq  kernel is necessary and sufficiently condition for the existence of the 

equation's (4.48) solution. Therefore for (4.48) solvability, taking into account 

0B I� , it is enough to ensure equality 

 QuR0 1 1 0
ˆˆ ˆ ˆ 0T

Y

B B dy[v we  �x yz
� , (4.49) 

from which 1
ˆñ  can be found. Substituting it in (4.48) 1B̂  can be found. Then 

proceeding with further equations 2
ˆñ  and 2B̂  can be found, and so on until necessary 

accuracy is obtained. 

4.3 Equations with independent coefficients 

If a sequence f g,ty t < {  consists of independent random variables having 

identical distribution 
^ _

p dy , then analysis of covariance of (4.5) gets simpler. In this 

case, similarly as in analysis of the first moments, the operator’s � defined by 

formula (4.39) restriction �̂  on space of constant real symmetric n ng -matrices n

|
: 

 }�~ }�~� � }�~ }�~�}u~ˆ : T T
t t

Y

q E A y qA y A y qA y p dy� � z
�  

and the cone of positive defined matrices ˆ:n n
� �� �| û

�  can be used. 

Corollary 4.1 Let consider that a sequence � �,ty t < {  consists of independent 

random variables and the other conditions of Theorem 4.2 are satisfied. Then 

following statements are equivalent: 

(i) the equation (4.5) is exponentially mean square stable; 

(ii) such a matrix nq � ��  exists , that 

 q q I �  � ; (4.50) 

(iii) maximal by module spectrum point � �r �  of operator � is less than 

unit. 

The statement (iii) allows rather easy to analyze the solutions of m-dimensional scalar 

difference equations behavior 

 
1 1

1 1 1
0 0

m m

n m k n k k n k n k
k k

x a x c h y x( (� ��� �������� �� �0 0
, (4.51) 
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where � �ky  is a sequence of identically distributed independent random variables 

with mean value zero and unit variance. This equation can be rewritten in vector form 

in space m¼ : 

 
1

1 1 1
0

m

n n n k k n
k

X AX c y H X(� ��� ��� � 0� � �
, (4.52) 

where 

1 2 1

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

,

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0

k

m m m m k

A H

a a a a h� � �

� � � �� � � �� � � �� � � �� �� � � �� � � �� � � �� � � �

� � �� � �� � � � � � � � � � � � �� � �� � �
. 

According to Corollary 4.1 the second moment of any solution of equation (4.52) is 

exponentially decreasing if and only if for some 0 1AP &  a positive defined matrix 

solution of equation 

 2

1

m
T T

k k
k

A qA c H qH qA�� �0
 

exists. Therefore, if eigenvalues of matrix A are located inside circle � �1z & , then 

such a positive number 2 2c r&  exists, that the second moment of each solution 
2

nE x  

of equation (4.51) tends to zero if n þ ; , but in case if 2 2c r�  then unlimited 

increasing solution exists. Submitting this number 2r  in the previous matrix equation: 

 2

1

0
m

T T
k k

k

A qA r h qH q��  �0
. (4.53) 

It can be rewritten in a form of equations system for matrix elements � �: sjq q� : 

 � � � �
11 22 12 23 1 1 2 1 2

1

22 33 23 34 2 1 3 2 3
1

2 2 2 2 2 2
1 1 11

1 12 1 1 1 2 23

1 1 2 2 1 1

, , , , ,

, , , , ,

2 2 2

2 2 .

m

m m m i i
i

m

m m m i i
i

mm m m mm

m m m m m m

m m m m

q q q q q q q q a

q q q q q q q q a

q a r h q a r h q

a a q a a q a a q

a a q a a q
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From these equalities form of matrix-solutions can be found: 
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1 2 3 2 1

1 1 4 3 2

2 1 5 4 3

3 4 5 1 2

2 3 4 1 1

1 2 3 2 1

mm m m m m m m m

m m mm m m m m m

m m m m mm m m m

m m m mm m m m m

m m m m m mm m m

m m m m m m m mm

q q q q q q

q q q q q q

q q q q q q

q

q q q q q q

q q q q q q

q q q q q q

         
         

¡ ¢£ ¤£ ¤£ ¤£ ¤¥ £ ¤£ ¤£ ¤£ ¤£ ¤¦ §

¨¨¨¨ ¨ ¨ ¨ ¨ ¨ ¨¨¨¨
 

and then from (4.53) a system of m linear equations for numbers , 1,2, ,jmq j m� �  

can be easy found: 

 © ª © ª11 1
1 1

0, 1,2, , 1
i m i

im l m i lm i l m m l m
l l

q a q a q i m
   , ¬« � ­«  ­«® ®¯ ¯ � � ¯� � �  (4.54) 

 

� �
1

2 2 2
1 1 1 1

1 1 1

1 2 0
m m l

mm m i m i m l l s lm
i l s

q a r h a a q
  ,«  ,«  ­«� °«® ®±®

² ³¯ � ¯ �´ µ¶ ·� ���
 (4.55) 

Because of number 2r  existence, this equation should have nontrivial solution and 

therefore a determinant of equations system (4.54)-(4.55) should be equal to zero. 

Taking into account the form of analyzed equations system the following conclusion 

can be made, that its determinant is a linear function of parameter 2r  and this number 

can be found as ratio of two parameters. Lets illustrate above described algorithm on 

example analyzing existence of a stable stationary process GARCH(p,q) [13] having 

the second moment defined by formula 

 2 2 2
0

1 1

p q

t k t k j t j t j
k j

B ¸ ¸¹B º»B ¼   ½ ® ®� � �� �
. (4.56) 

Let consider 2ˆt
B  - a stationary process satisfying the formula (4.56) and 2 2ˆ:t t tx B B� ¯ . 

If 

� �¾ ¿
24 2

1: 1s E �� ¯  exists then a difference equation in a form (4.51) for tx  can be 

written, where À Á2 2: 1t t s¼ �  � ¯ , 2c s� , � �max ,m p qî , 

 

, , 1,2, , ,

, , 1, 2, , ,

, , 1, 2, , ,

k k

k k

k

if p q m k p

a if p q m k p p m

if q p m k q q m

Â ÃÂÃ
k Ä î îïÅ

î % î î k kò Å % î î k kô
d dd  

k kh º�  for 1,2, ,k q� �  and 0kh �  for k qÆ . Any process satisfying (4.56) tends to 

stationary if and only if the second moment of equation (4.51) tends to zero if t ÇÉÈ . 

A number 2r  can be found and compared to 2 4:c s� . If inequality 4 2s rÊ  is into 

force, then GARCH(p,q) process defined by (4.56) converges to stationary for t ÇÉÈ . 

This condition is also necessary for existence of unconditional second moment of 



 
 

70

conditional variance 2
t
B . The proposed algorithm is rather simple to use. It is 

particularly simple for small values of p and q. For example, for model GARCH(2,1) 

equations system for finding 2r  has a form: 

 
} ~� �

12 2 1 22

2 2 2 2
1 2 12 1 2 1 22

1 0,

2 1 0.

q a a q

a a q a a r b q

¯ � �¯ ¯ ¯ ¯ �  

Substituting 1 1 1a Ë º� � , 2 2a Ë� , 1 1b º�  and equating to zero, a critical value of 2r  

can be found: 

 
} ~Ì} ~ } ~} ~

2 1
2 2

2 2
2 2 1 11 2 1 22

2
2 1 1 2

2
1

1
1 12 1

1 1

0

a a

a a a a
r

a a

b

Ë Ë Ë ºº Ë
¯ Í Î� ¯ ¯ �� ¯ Ï Ð� ¯ �¯ ¯ . 

As consequence, a stationary process GARCH(2,1) with the second moment of 

conditional variance exits if and only if the fourth moment 

� �¾ ¿
24 2

1: 1s E �� ¯  of 

random perturbations � �k
c  satisfies inequality 

 Ñ ÒÓÑ Ò Ñ ÒÑ Ò
2 2

2 2 1 14
2

1 2

1 1

1
s

Â Â Â ÃÃ Â
c dk _ _ ke f% _ . 



 
 

71

Conclusion 

 

In this doctor thesis it is shown that for asymptotical analysis of Markovian 

iterative procedures, which are presented in a form of linear difference equation, as a 

base a construction of discrete semigroup for the covariance matrices and spectral 

analysis of the semigroup generator can be chosen and spectral theory of positive 

operators in Banach space can be used. Against this background it was possible to 

elaborate a special version of the second Lyapunov method for mean square 

asymptotic stability analysis of difference equations with near to constant coefficients. 

As main result of the doctor thesis is developed methodology for analyzing 

convergence to zero of the unconditional second moments of the linear difference 

equation as t tends to infinity Q R	 

2

, , 0t t
E x k x y ÔÖÕ×Ø×Ù× Ç . For this reason two 

theorems (Theorem 4.1 and Theorem 4.2) and two lemmas (Lemma 4.1 and Lemma 

4.2) were proved. For the simplifying the description at first the algorithm was 

elaborated for the first moments dynamics analysis and then adapted to the analysis of 

the second moments matrix of difference equation solution. It is shown that in case if 

random perturbations are independent identically distributed the proposal method gets 

simpler. Kato perturbation theory for spectral projector decomposition was used. 
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