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Annotation

The doctor thesis is devoted to the asymptotic methods for Markovian iterative

procedures convergence analysis, which are presented in a form of linear difference

equation x =A(Y,)%_,,teN in R", where {A(y), er} is continuous nxn

matrix function on the metric compact Y , and {yt, te N} is a homogeneous ergodic

Feller Markov chain with phase space Y. The proposed method and agorithm are
based on construction of discrete semigroup for the covariance matrices and spectral
analysis of the semigroup generator. This permits to apply well developed spectra
theory of positive operators in Banach space and to elaborate a special version of the
second Lyapunov method for mean square asymptotic stability analysis. Especially a
semigroup conception may be successfully used for asymptotical analysis of
difference equations with near to constant coefficients. In that case one can employ
the powerful tools of Kato perturbation theory for spectral projector decomposition
and succeed in a calculation of mean sgquare Lyapunov index for the above discrete
dynamical system. The proposed method and algorithm of asymptotical anaysis of
small random perturbations are illustrated not only by theoretical examples, but aso
by analysis of fourth moments GARCH model, which is high-usage tool of

contemporary financial econometrics.



Anotacija

Promocijas darbs ir veltits linearu Markova iteraciju, kuras var izteikt linearu

diferencu vienadojumu forma x = A(Y,)%_,, teN telpa R", konvergences analizes
asimptotiskam metodem, kur {A(y), yeY} ir nepartraukta nxn matricu funkcija

metriska kompakta telpa Y, {y,, t e N} ir homogena ergodiska Fellera Markovakede

ar fazu telpu Y. Piedavata metode un algoritms ir balstiti uz diskrétas pusgrupas
konstrueSanu kovariacijas matricai un pusgrupas generatora spektralo analizi. Tas layj
pielietot labi attistito spektralo teoriju pozitiviem operatoriem Banaha telpa un
izstradat otras Lapunova metodes specialu versiju asimptotiskas stabilitates videja
kvadratiska nozimé analizel. Galvenokart pusgrupas jedziens var velksmigi tikt
pielietots diferencu vienadojumu ar gandriz konstantiem koeficientiem asimptotiskai
andizei. Tada gadijuma spektrala projektora dekompozicijai var izmantot Kato
perturbacijas teorijas efektivos Itdzeklus un veiksmigi aprékinat videjo kvadratisko
Lapunova indeksu ieprieks mingtajai diskrétal dinamiskai sistémai. Piedavata metode
un agoritms mazu gadijuma perturbaciju asimptotiskai analizei ir ilustréti ne tikai ar
teorctiskiem piemeriem, bet art ar ceturto momentu analizi GARCH modelim, kas ir

plas lietots instruments masdienu finansu ekonometrija.



1 Introduction

This doctor thesis is devoted to the asymptotic methods for linear Markovian
iterative convergence anaysis. The asymptotic behavior of linear difference equations
with amost constant Markov coefficients subjected by a smal parameter is
investigated.

The asymptotical analysis of stochastic dynamical systems is mainly based on
such qualitative methods as: the second Lyapunov method, limit theorems of
probability theory, perturbation theory and others. For mean square equilibrium
stability analysis the second Lyapunov method and perturbation theory of linear
continuous operators in Banach space can be applied.

The first results on asymptotic theory of random processes appeared in the
publications of Gikhman and Skorokhod ([20], [22], [23], [24], [25]) at the end of
1950s. Discrete dynamical systems with random parameters in mathematical
nowadays literature appear relatively recently. In 1972 Vazan [58] described iterative
methods for algebraic equations in case a noise exists. Also in 1972 the authors
Nevelson and Hasminskij [51] successfully used the idea of the second Lyapunov
method for asymptotic analysis of iterative stochastic procedures. In more details the
use of limit theorems in the asymptotic analysis of solutions of difference equations
with random parametersis introduced by Anisimov [1].

Stability of Markov processes are investigated by such authors as 1. |. Gikhman,
R. Z. Hasminskij, M. B. Nevelson, H. J. Kushner, A. V. Skorokhod, Ye. F. Carkovs,
M. L. Sverdan and others (for example, [20], [22], [23], [39], [51], [56]). Theory of
asymptotic stability analysis developed substantially thanks to works of L. Arnold, V.
|. Oseledets, M. B. Nevelson, R. Z. Hasminskij, H. J. Kushner. The interplay between
characterization and approximation or convergence problems for Markov processesis
the central theme of Ethier and Kurtz [20]. H. J. Kushner has contributed to many
areas of stochastic systems theory and applications (for example, [39], [40]). He has
developed the main current numerical methods for stochastic control problems in
continuous time [38]. Many researches on random dynamical systems are performed
by L. Arnold [3]-[5].



Kesten in his work [35] studied the limit distribution of the solution Y, of the
difference equation Y, =M.Y, ,+Q,, n>1, where M, and Q, are random matrices.
The conditions for the exponential convergence of M;M,...M_ to O in the special

caseis given by Konstantinov and Nevelson [36].

L. Aceto, R. Pandolfi and D. Trigiante studied the linear difference equations
depending on a complex parameter [1]. By using the fact that the associated
polynomials are solutions of a difference equation, they carried out a complete
analysis for the class of linear multistep methods.

Stochastic difference equations are one of the basic tools for anaysis of time
series. In most cases it is assumed that time series have conditiona Gaussian

distribution with constant variance. Therefore its mathematical model can be
represented in aform of linear inhomogeneous iteration procedurein R":

X, =FX_+n,, (1.2)
where {n,,t e Z} - a sequence of identically distributed random variables inR" with
mean value zero and covariance matrix ¥ (so called "residuas").

It iswell known [28], [42], [45] that under condition o(F){|Z=1} =@ (here
and further o(-) denotes a spectrum of a matrix or an operator) there exists unique
satisfying to (1.1) stationary time series {%,t e Z}. Let X, be an arbitrary satisfying
to (1.1) iteration and Y, = X,—X . This random sequence satisfies deterministic
recurrent procedure Y, = FY,_, and therefore the difference Y, := X, — X converges to
zero with t — oo if and only if o(F)<={|Z<1}. In this case one says that (1.1)

defines converging iterative procedures or the above stationary solution of (1.1) is
asymptotically stable.

However many problems of contemporary econometrics have to model

residualsin (1.1) as aproduct 7, =%.& , where {&,t € Z} isasequence of identically
distributed random variablesin R" with mean value zero and unit covariance matrix,
but matrices {Zf,t € Z} (conditional covariance) are defined as a solution of
difference equations with coefficients linear dependent on & (models VecGARCH

[28]). For example, in scalar models like GARCH(p,q) (Generalized Auto Regressive
Conditional Heteroskedasticity) conditional variance of residuals satisfies an equality
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ol =@, +§;¢kof_k +jzcj;0j0't2_j§t_j , (1.2
where ¢, >0, ¢, 20, 6,20, j=1...,q. It is proved [7] that the stationary time
series {67, t e Z} defined by (1.2) exists, and E{57} <o, if and only if for any other
satisfies the equality (1.2) time series {gf,teZ}, mathematical expectation of

deviation x := 52— o7 tends to zero with t — oo . One can find the above mentioned

-1
q q
second moment in turn-key form E{&f} =g, [l—Zgok —Zﬁj] and to insure that
k=1 j=1
satisfying (1.2) stable stationary solution with second moment exists if and only if

p q
D @ +>.6, <1. Not so difficult to write scalar iterative equation for x or vector
k=1 j=1

equation for X, ::{x[,xt_l,...,x[_q} with random matrix F, = F(ft,ft_l,...,ft_q) and
to formulate the above problem as a convergence problem for defined by equation
X, = K X,_, iterative procedures.

It should be mentioned that all parameters of above defined equations (1.1) and
(1.2) can be determined by given sampling, using the least square method [49], [59].

Of course, the existence of asymptotic stable stationary solution having the second

moment for variance equation is a main assumption, that is, convergence of matrices

M, (t):=E{X, X/} to some constant matrix M, if t —co. This question leads to the

anaysis of moment behavior for corresponding homogeneous equation. The
assumption about independence of sequence {; te Z} elements allows rather easy to
obtain its necessary and sufficient conditions in a form convenient for use [13].
However in contemporary finance econometrics mostly are used regression models
with uncertainty given in a form of random sequences in discrete state spaces. For
example, in Cox-Rubinstein model [14] in the analysis of options prices fixing
possibility a market dynamics are determined by behavior of stocks, which can be

represented in a form of iteration procedure § =¢,S,, where interest rates
{¢..teZ} areindependent and have only two values in each time moment: either up

or down. Even in such a simple case a sequence, which defines dynamics of such

derivative securities like options, futures and so on at a securities market, is not only



the sequence with random coefficients as independent multipliers, but with
coefficients having Markov property. If it would be interpreted using regression
models with type GARCH residuals, it will be as modeling of a sequence of residuals
conditional variances in a form of linear difference equations with Markov

coefficientsin R":
X = A(é)xt—l (1-3)
where {(,ﬁ te Z} is a homogeneous Markov chain with phase space Y and transition

probabilities P(y, dz) . The problem we have to deal with is not only convergence to

zero of any iteration defined by (1.3), but also convergence to zero of the
unconditional second moments of the above stochastic recurrent procedure as t tends
to infinity.
The research object is alinear difference equation with Markov coefficientsin
space R":
X =A(Y)% teN (1.4)

where {A( y), ye Y} is continuous nx n matrix function on the metric compact Y,

sup| A(y)|=const <w; {y,,teN} is a homogeneous exponentially ergodic Feller
y

Markov chain with phase space Y, invariant measure ,u(dy) and transition

probability p(y,dz). Under initial conditions x =X, Yy, =y the vector function

x (k,x, y)=X(t.k,y)x, where X(t,k,y)::f[A(ym), satisfies  the given

m=k+1

difference equation, and it is called as a solution of this equation and matrix function
X (t,k, y) asaCauchy matrix.
The investigated problem is the second moments behavior of the above

defined linear difference equation (1.4) with Markov coefficients as t tends to infinity,

that is, convergence to zero of the unconditional second moments of the above

stochastic recurrent procedure ast tends to infinity E {‘ X, (k, X, y)‘z} ——0.

The aim of the doctor thesis is elaborate a methodology which can be used for
the dynamics analysis of the second moments matrix of the above defined difference

equation (1.4) solution, that is, behavior of a matrix as matrix function of argument t:



E,,{xX }=Q, incaseif the matrix function {A(y), y Y} is near to constant and

can be gven in a form of uniformly converging sequence
A(y)=A+eD A, (Y), where £ €(0,1) isasmall positive parameter.
k=0

The research theme is actual, because difference equations with random
coefficients are widely used in such contemporary applications of dynamical system
theory as regressive financial time series anaysis. These models one can find for
example, in Bera and Higgins [6]; Bollerslev, Engle and Nelson [8]; Li with co-
authors [41]-[459], [47], [49]; Wong and Li [59]-[64]; Engle [19]; Gourieroux [26];
Heynen and Kat [29]; Pantula [53]. The analysis of the time varying stock returns and
investigate return volatility is crucially important for many issues in macroeconomics
and finance, such as for irreversible investments, option pricing, the term structure of
interest rates, and general dynamic asset pricing relationships. The proposed in our
dissertation methods and agorithms make possible asymptotical analysis of residuals
of GARCH models. The proposed method allows to analyze the second moments
behavior of the iteration procedures defined by (1.4) ast tends to infinity, that is, to
analyze asymptotical stability. Moreover this method is convenient for use.

Scientific innovation. The analysis of stochastic dynamical systems is an
important research topic in the contemporary econometrics. A number of researchers
worked on these problems, for example, [3], [4], [5], [9], [11], [13], [15], [20], [22],
[23], [24], [25], [28], [30], [31], [32], [35], [36], [38], [39], [40], [51]. The methods
and algorithms proposed of the above mentioned papers are mainly based on random
coefficients independence. Our proposal methods and agorithms alow to take
account of data correlation assuming the perturbed sequence as discrete Markov
process.

The second section contains auxiliary results regarding iteration procedures with
Markov coefficients. Markov chain defined by stochastic difference equations is
introduced. Stability analysis method — the second Lyapunov method — for solutions
of difference equations with random coefficients is described. Necessary and
sufficient conditions for mean square stability of linear systems with independent
coefficientsin finite space are given.

The third section is devoted to asymptotical methods. As auxiliary resultsin this

section the necessary issues from the perturbation theory for linear operators in a



finite-dimensional space are considered. The main question is how the eigenvalues
and elgenvectors change with the operator, in particular when the operator depends on
aparameter analyticaly.

For equation (1.4) with almost constant coefficients a convenient for application
asymptotic algorithm of mean square stability analysis by the second Lyapunov
method is elaborated involving Laurent series decomposition by small parameter
powers of specially constructed quadratic Lyapunov functions. The given agorithm is
expounded using two examples. exponentially mean square stable difference equation
and exponentially mean square unstabl e difference equation.

A method for ssimplified analysis of linear difference equations in n-dimensional
real space with near to constant coefficients dependent on homogeneous ergodic
Markov chain is given. The difference equation in R" with constant coefficients is
constructed to approximate the covariation semigroup of correlation matrix family.
The proposal method is based on decomposition of specialy constructed spectral
projector for generating operator of the above mentioned semigroup.

In the fourth section the first and the second moments of linear difference
equations with coefficients dependent on homogeneous ergodic Markov chain are
anayzed. A convenient for application method of the first moment analysis is
elaborated. This method is adapted to the anaysis of the dynamics of the second
moment matrix of difference equation (1.4) solution. In case if random perturbations
are independent the proposa method enables to write necessary and sufficient
stability conditions involving system coefficients.
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2 Iteration procedureswith Markov coefficients

2.1 Markov chain defined by stochastic difference equations
Let assume some probability space (Q,F,P) isgiven. Let X be ametric space
and X, - Borel o -algebra on its subsets. A function P:NxNxXxZ, —[0,1] is
called [18] transition function to (X,Zy ) if for all natural n>s> 0:
1. P(s,nxX)=1foral xeX;

if A
P(s,s,x,A):{(])’ I_f XZAforalI xeX and AeZ,;
Cif x

N

w

P(s, n, X, A) , asafunction of argument A, is a probability measureon Zy ;

e

P(s.,n,x A), asafunction of argument x, is =, -measurable;
5. foral xeX, AeZy and s<m<n Chapman-Kolmogorov equation

P(s,nxA)= J‘ P(s,mx,dy)P(mn,y,A)

isfulfilled.
If a series of elements {xn(a)),neN} is given on (Q,§,P) with values in
measurable space (X, 2y ) and if such atransition function P(s,n, x, A) exists that for
al AeXy andnatura s<k < n thefollowing equality isfulfilled
P(%. () € Al (0), % (@) .. % (@) = P(kin % (@), A),  (2)

this series has a Markov property. The equation (2.1) together with the Chapman-
Kolmogorov equation allows to define distribution for any finite sample of random

variables {xrb (@) X1 (@) 10000 X (a))} in case the distribution 4, (dx) of element
X, (@) isknown. For this reason for any Borel A, A,..., A arecurrent expression
P(ka(a))e A<,X,b+k_l(a))e Al Xno(a))eA))=

= P(erk (w)e A<|Xno+k—1(a)) € A<_1) P(X,w_l(a)) €A%, (0)e A)),
the Markov property (2.1) and an equality

(2.2)
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P(%, X, (@) € &)=
P(Xw /i|xno e A)P(x, (o) A)= 23
I (ny,np +1,X, A)yno(dx)

can be used. These formulas will be needed for the description of series {x,,ne N}
using the initial distribution of random variable xl(a)) and transition probability
P(s,nxA).

Let look in more details to a stochastic recurrent procedure. The difference
eguation in aform

X = T (% &0a (@) (24)
will be investigated, where {£,,neN} is a series of independent identically
distributed random variables with valuesin (Y,2,), and { f,(x,y),neN} isaseries
of X, xZ,-measurable functions f :XxY — X. Let's denote §; a minima o -
algebra concerning which random variables ¢&,¢&, ,,...,£, are measurable, for
n>k>0. If x =x let define an operator X['x:=X" X''x, n>k>0, where
Xixi= £ (%, &)

Theorem 2.1 [11] Equality P(k,n,x,A)= P(X,Sxa A) defines a transition function
of Markov chain.
Let {g(n,x), neN, XGX} be a series of scalar continuous functions on X.
Using (2.4) an operator can be defined
(Lg)(n,x):]E{g(n+L X,'j*lx)}—g(n,x):

:J‘P(n,n+lx,dy)g(n+Ly)—g(n,x) (29)

if the right part exists for all xeX and n>0. This operator L is caled as discrete
Lyapunov operator for (2.4) and its definition area let denote D(L).

12



2.2 Second Lyapunov method

2.2.1 Definition of stability
The equation (2.4) will be investigated in rea n-dimension space R". It is
assumed that a condition f (0,y)=0 is fulfilled for al neN. A series {£} |

contains independent identically distributed random variables. The equation (2.4) has

atrivial solution x, =0, ne N. An item for investigation is behavior of a solution of

(2.4) in some neighbourhood of zeroin R".
A trivial solution of (2.4) is called:

e p-stable, if forany ¢ >0 sucha & >0 exists that for all XEU5={XeRn :|x|<5}

and n>s>0:

E{\x:x

p} <Eg; (2.6)

e stable by probability, if for any £>0, >0 such a 6 >0 exists that for al

xeU; and n>s>0:

P{\xgx

> g} <y, (2.7)

e stable amost sure, if for any ¢ >0, ¥ >0 such a § >0 exists that for all xeU;

and n>s>0:

k
XX

P{%E > g} <y; (2.8)

e stable in whole in meaning of previous stability definitions, if inequalities (2.6),
(2.7) and (2.8) arefulfilled for all xeR" starting with some n=n(x,¢,7);

e asymptotically stable in meaning of previous stability definitions, if it is stable and
such a 8, > 0 exists that the left side of inequalities (2.6), (2.7) and (2.8) tend to
zeroif n—oo foral xeU ;

e exponentialy p-stable (p>0) , if such >0, M >0, y>0 exist that for al

t>s>0and xeUj:

E{‘X;x p} <M|x" e, (2.9)

e asymptotically stochastic stable, if it is stable aimost sure and for any £ >0 such a
6 >0 can befound that for al xeU, and s>0:

13



P{limx;x=o}21—g. (2.10)

t—>o
Stability in some meaning if p=2 is called mean square stability. From p-
stability for p>0 « p-stability follows for any a €(0,1] as

e[ ()

From exponentially p-stability for some p >0 asymptotically stability follows almost
sure.
Investigation of the stability of (2.4) trivia solution analyzing (Lg)(n,x)

n
XX

behavior in some zero neighbourhood using a series of functions g(n, x) is called the
second Lyapunov method. The function g(n, x) is called Lyapunov function if

g(n,x)>0 forall neN and xe R™, and such number N exists that

supg(n,x)=4(r)—->0 if r—>0, (2.11)
n=N
xeU,
supg(n,x)=g(r)—>o if r—ow. (2.12)

n=N
xgU,

g and g are monotone functions.

In the behavior analysis of Markov chain defined using an iteration procedure
(2.4), it isimportant to know the conditions when the trajectory goes out of open area

G with probability 1 in finite time. Let {x,neN} be a Markov chain with

reproducing operator L and arbitrary initial distribution, g(n, x) is a positive

function. If g(n,x)e®(L), thenfor n>S>n,
Eg(n+lxr’;+1x)—Eg(n,Xr';x):E(Lg(n,X:ox)),

Eg(n+L X,']Oﬂx): Eg(s, X;x)+ E(Lg(k, X,'fox)).

k=s

Let denote 7, (@) the moment of the first sequence's X[ x, outlet of area G, where
%, isarandom variable, o -algebra B(x,) measurable and not dependent on § . Let

t, t<r

define a process 74 (t) = min(t,’l’G):{ ‘s ¢ . This process belongs to ¢ -algebra
7o, L2175
t+1Lt<
N, = B(%)x3;, . For all talso rG(t+1):{ Li<z is N,-measurable.
75, (274

14



Theorem 2.2 [51] If amathematical expectation exists, then for al n> n,

76(n)
Eg(rG(n+1), X,ff(““)xo): Eg(ny, %)+ E{ > Lg(k, Xl'joxo)]

k=ny

If the conditions of Theorem 2.2 are true and Lg(n, x)SO in G for al n, then a

process given by y(t)= g(rG (1), X,ZOG(‘)XO) is non-negative supermartingale.

Lemma 21 [51] Let function g(t,x)>0 exists, t>0,xeG. For some

Lg(t,x)<—a(t) in this area, where «a(t) is a sequence satisfying condition
a(t)>0, ia(t):oo. Then process x goes out of G in a finite time with
t=0

probability 1, that is, P(z5 =)=0.
Let B be a closed subset in R™; U,(B)={x:p(x,B)<e} its &-

neighbourhood, ~ where  p(x,B)=inf p(x,y) and U,(B)=R™\U,(B);

yeB
S(0,R)={x:p(0,x)<R}. Let denote U,.(B)=U,(B)nS(O,R). Let say that
function ¢(t,x)e®D(L) belongs to class ®(B), if it is non-negative and for some

N(e,R)=N _inf o(t,x)>0 foral 0<e<R.

teN,xeU, r(B)
If such R exists tha {x,neN}cS(O,R), ¢(nx)e®(B) and

limp(n,x,)=0 isvalid, then Limp(xn, B)=0.

n—oo

Lemma 2.2 [51] Let such a function g(t,x)>0 and a closed subset Bc R™ exist

that inf g(t,x)=g(x) = (the Lyapunov condition) and Lg(t,x)<-e(t)e(t,x),

[X—>o0

t>0, xeR", ¢(t,x)e®(B) are vaid, hereto a sequence {a(t),te{O,Lz,...}}

satisfies conditions a (t) >0, i“(t): . Then

t=0

P(sup xgx\<ooj=1, (2.13)
P(ia(t)gp(t,xgx)<oo]=l, (2.14)
P(limp(X{x B)=0)=1 (lower limit). (2.15)

15



Theorem 2.3 [51] Let such a function g(t,x)>0 and a subset BcR™ exist for
which

(x)=supg(t,x) >0, ifp(x,B)—>0,

(x)=inf g(t,x) >, if p(x,B)—> o,

Lg(t,x)<-a(t)g(t,x), t=0, xeR",

where a(t)>0, ,B(t):zt:a(k) — . Then P(Iimp(xgx, B):O):l.

=0 t—o t—oo

2.2.2 Sufficient conditions for stability
Theorem 2.4 [11] If Lyapunov function g(n,x) exists and such a number N >0
exists, that for all N> N and xeR"

(Lg)(n,x)<0, (2.16)

then atrivial solution of (2.4) is stable almost sure.

Corollary 2.1 [11] If Lyapunov function exists satisfying the condition
(Lg)(n,x)<—cg(n,x) (2.17)
for al neN, xeR™ and some ce(0,1), then a trivia solution of (2.4) is

asymptotically stable almost sure.

2.2.3 Stability of linear systems almost sure
Let suppose that a difference equationin R™ has aform
Xos = A(Gnin) %, (2.18)
where {¢,} is a series of independent identically distributed random variables with

values in metric space Y, A(y) is continuous by yeY matrix function, hereto

sup| A(y)| = const <.

yey
Theorem 2.5 [56] If atrivial solution of (2.18) is stable almost sure, then it is p-stable
for al sufficiently small positive p.

If trivial solution is asymptotically stable amost sure, then it is asymptotically
p-stable for sufficiently small positive p.
Theorem 2.6 [56] If (2.18) trivial solution is asymptotically p-stable, then it is
exponentially p-stable.

16



Exponentia p-stability for sufficiently small p>0 follows from asymptotical

stability amost sure of (2.18) trivial solution.
Theorem 2.7 [56] If (2.18) trivial solution is asymptotically stable ailmost sure, then

Lyapunov function g(x) exists such, that

IX°<g(x)<7[¥", (2.19)
(Lg)(x) <-cg(x), (2.20)
g(%+%)<g(x)+9(x) (2.21)

for al x,x,x, e R™ and sufficiently small p>0, 7>0 and ce(0,1).

2.3 Mean square stability of linear systems with independent
coefficients

2.3.1 Necessary and sufficient conditions for stability in finite space
Let consider linear difference equationin R™ what has form
Xn+1 = AXn + ‘§n+1BXn ' (222)

where {£,,neN} is a series of scalar identically distributed random variables,

E{&}=0, ]E{ff} =1. Let define afollowing matrix for n>k >0:

(2.23)

x;:{(AJ”:nB)‘“(AJr‘kaB)' i_f n>k,
, if n=k.

A solution of (2.22) has a form {X,?Ox,nz no} for initiad conditions x, =x. It is

B2~ Measurable and defines a transition probability

P(n,x,C)=P(X{"xeC)
foral n>0, xeR™ and Ce B™, where B™ is o -algebra of Borel setsin R™. Ina
set of mxm real matrices M, (R) asubset of symmetric matrices let denote V and
aset Kc 'V - positive defined matrices, that is,
KZ{QGV:(QX,X)ZO,VXGRm}.
Let definein space V anorm by equality
ol = sup| (e, x)] (224)

The following items from linear algebrawill beused. Let qe V. Then
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1)

2)

3)

)
5)
6)
7
8)

9)

the spectrum of q consists of real values, hereto for all xe R™

X A < (0% X) <X A

where
ﬂ’max = max{ﬂ”ﬂ’ € O'(Q)} !
Ain =Min{2,2 € o (q)};
|l = mex|a;
such a nonsingular transform U e M, (R) exists, that UT =U™ (orthogonal

transform) and
UTqu =diag{A,...., A}
where 4, eo(q), j=12...,m;
ge K then and only then, if all its corresponding eigenval ues non-negative;

K isclosed, that is, from {q,,neN}c K, q=limq, followsthat qeK;

from q,,0,eK and «, 20, o, >0 follows ¢, + 2,0, € K;

aset k:{qu:(qx,x)>O,Vx¢ 0} consists of inner points of K ;

forany eV such q,,q9, €K exist, that q=0q,—0q,;

qe K then and only then, if such a positive number 8 exists, that (gx, x) > ,B|x|2

forall xeR™.
A set satisfying properties 5) and 6) is called acone [37].
A correlation matrix of m-dimensional random variable & is defined by equality

q=E{&'},

anditisan eement of K.

A system of difference equations (2.22) defines an linear operator family

{T(n),n>0} by equality

(T(n)ax,x)= E{(qx,':*”x, Xl'(‘*”x)} (2.25)

forany k>0, qeV, xeR"™, hereto T(0) =1 .

Lemma 2.3[11] For any ne N an operator T(n) leavesasinvariant K.
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Lemma24[11] Forany n>0 and k>0
T(n+k)=T(n)T(k). (2.26)
Let denote T(1)=T, then from (2.26) follows equality T(n)=T" for all

neN. Itiseasy to caculate, that
Tq= A"gA+B'gB (2.27)
foral qe V.
Let define ascalar product in V by equality

[a. p] = Sp(ap) = Sp(pa). (2.28)
Let assume that initial condition X, - a random variable having a correlation
matrix ¢, € K and not dependent on §; . Then a correlation matrix g, of random

variable x, = X;x, can be found using equality

= Efxx } = E{ X (x3)} -

. (2.29)
= E{xgqo(x;) }: Ag,A" +Bq,B".

If alinear operator A isdefined as
Ag:=AgA" + BgB', (2.30)

then from (2.29) follows g, = Aq,.

Lemma25[11] A=T".
From linear operator propertiesin Banach space follows that

O'(A\) = O'(T) : (2.31)

Theorem 2.8 [11] A trivia solution of (2.22) is exponentially mean square stable if

and only if spectrum of operator T islocated inside circle {ZEC ; |z| <1} .

Let define operator G by equality
Gq=>Tkq (2.32)

and let write q e D(G), if this series converges for given qe V.

Corollary 2.2 [11] A trivia solution of (2.22) is exponentially mean square stable if

and only if for any r cK suchaqe]f{ existsthat (T—J)q=—r .
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Corollary 2.3 [11] A trivia solution of (2.22) is exponentially mean square stable if
and only if D(G)>K.

Theorem 2.9 [11] For exponentially stability of (2.22) trivial solution it is necessary
and sufficiently that for any ae R™ the following inequality isvalid

ol

3 E{(Xg‘x, a)z} < cE{|x|2}|al2

for some ¢>0 and al random vectors x having the second moment and not

n

dependent on 3’ .

20



3 Asymptotical methods

3.1 A-group and projection for the A-group

In this section the necessary issues from the perturbation theory [33] for linear
operators in a finite-dimensional space are considered. The main question is how the
eigenvalues and eigenvectors change with the operator, in particular when the
operator depends on a parameter analyticaly.

Let turn to the perturbation theory for the eigenvalues problem in a finite-
dimensional vector space X, where O0<dimX=N<w. A typical problem of this
theory is to investigate how the eigenvalues and eigenvectors of a linear operator T
change when T is subjected to a small perturbation. In dealing with such a problem, it

is often convenient to consider afamily of operators of the form
T(e)=T+eT' (3.1)
where ¢ is a scalar parameter supposed to be small. T(0)=T is called unperturbed

operator and £T' the perturbation.

A question arises whether the eigenvalues and the eigenvectors of T (&) can be
expressed as power seriesin ¢, that is, whether they are holomorphic functions of &
in the neighborhood of ¢ =0. When T(¢) is defined and differentiable everywhere
in its domain, T (&) is said to be holomorphic. If this is a case, the change of the

eigenvalues and eigenvectors is of the same order of magnitude as the perturbation

T’ itself for small |¢|. However, thisis not always the case. (3.1) can be generalized
to
T(e)=T+eTW+£TO 4 . (3.2)
Let suppose that an operator-valued function T (&) is given, which is holomorphic in
a given domain D, of the complex ¢-plane. The eigenvalues of T (&) satisfy the
characteristic equation
det(T (£)-¢&)=0. (3.3)
This is an agebraic equation in & of degree N =dimX with coefficients, which are

holomorphic in & . The number of eigenvalues of T (&) isaconstant s independent of
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£, with the exception of some specia values of . There are only afinite number of

such exceptional pointse in each compact subset of D,. This number sis equal to N
if these analytic functions are all distinct; in this case T (&) is simple and therefore
diagonable for al non-exceptional ¢. If, on the other hand, there happen to be
identical ones among these analytic functions, then s< N ; in thiscase T(¢) issaid to
be permanently degenerate.

Let consider the eigenvalues of T(e) in more detail. Since these are in general
multiple-valued analytic functions of &, some care is needed in their notation. If ¢ is
restricted to a simply-connected subdomain D of the fundamental doman D,
containing no exceptional point (for brevity such a subdomain will be called a simple

subdomain), the eigenvalues of T (&) can be written

A(8),2(),--1 45 (8), (34)

all sfunctions 4,(¢), h=1,...,s being holomorphicin D and 4, (&) # 4. (&), h=k.
Next the behavior of the eigenvalues in the neighborhood of one of the
exceptiona points, which can be taken as £ =0, is considered. Let D be a small disk

near £ =0 but excluding & =0. The eigenvalues of T (&) for & e D can be expressed

by s holomorphic functions of the form (3.4). If D is moved continuously around
¢ =0, these s functions can be continued analytically. When D has been brought to its
initial position after one revolution around £=0, the s functions (3.4) will have
undergone a permutation among themselves. These functions may therefore be

grouped in the manner

{A(£)ri 25 (&)} {2 (8) 1o A (€)oo (3.5)
in such away that each group undergoes a cyclic permutation by a revolution of D of
the kind described. For brevity each group will be called a cycle at the exceptional
point &£ =0, and the number of elements of acycle will be called its period.

The elements of a cycle of period p constitute a branch of an analytic function
(defined near £ =0) with a branch point (if p>2) a ¢=0, and Puiseux series can
be obtained such as

(€)= A+a0"e"? + a,0™e?P +..., h=01...,p-1, (3.6)
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where @ =exp(27i/p). It should be noticed that here no negative powers of &*P

appear, for the coefficient of the highest power £V in (3.3) is (—1)N so that the

2,(€) are continuous at ¢=0°. 1=4,(0) is caled the center of the cycle under

consideration. (3.6) shows that |4, ()~ 4| isin general of the order |e'" for small |g]
for h=1...,p. If p>2, therefore, the rate of change at an exceptional point of the
eigenvalues of a cycle of period p is infinitely large compared with change of T (¢)

itself.

In genera there are several cycles with the same center 4. All the eigenvalues
(3.6) belonging to cycles with center 4 are said to depart from the unperturbed
eigenvalue A by splitting at £ =0. The set of these eigenvalues will be called the A -

group, since they cluster around A for small | .

The resolvent

R(¢.6)=(T(¢)-¢)" (37)

of T(e) is defined for al & not equal to any of the eigenvalues of T(¢) and is a
meromorphic function of & for each fixed ¢ € D, .
Theorem 3.1[33] R(¢&,¢) is holomorphic in the two variables &, ¢ in each domain
inwhich & isnot equal to any of the eigenvalues of T (¢).

Let A be one of the eigenvalues of T =T (0), with multiplicity m. Let T be a
closed positively-oriented curve, say acircle, in the resolvent set P(T) enclosing 4

but no other eigenvalues of T. The second Neumann series

1

R(¢.£)=R(&)[1+A(e)R(¢)] =

. i - (38)
=REOZ[AERE)] =R(E)+ 2R (&),
where
RO(E)= T (<) R(E)TWR(E)T . TR(e), (3.9)
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is then convergent for sufficiently small |g| uniformly for £ e T". The existence of the

resolvent R(&,¢) of T(g) for £eT implies that there are no eigenvalues of T (&)

on I'. The operator

p(g):-% R(£.£)dE? (3.10)

is aprojection and is equal to the sum of the eigenprojections for all the eigenvalues
of T(&) lying inside T'. In particular P(0)=P coincide with the eigenprojection for

the eigenvalue A of T. Integrating (3.8) term by term, one can get

o«

P(e)=P+> &"P" (3.12)
n=1
with
1
PO =— = [R"(£)dE. 3.12
5 RV ()dS (312

r

The range M(g) of P(g) is isomorphic with the (algebraic) eigenspace
M =M (0)=PX of T for the eigenvalue 4. In particular

dimP(g)=dimP=m. (3.13)
Since (3.13) is true for all sufficiently small ||, it follows that the eigenvalues of
T (&) lyinginside T" from exactly the 4 -group. For brevity P(¢) is called the total
projection, and M (&) thetotal eigenspace, for the 4 -group.

Now let consider a simple subdomain D of the ¢ -plane and the set (3.4) of the

eigenvalues of T(¢) for eeD, and let R (&) be the eigenprojection for the
eigenvalue 4 (&), h=1...,s. Each R, (&) isholomorphicin D and each 4, (&) has
constant multiplicity m,. Hereit is essential that D is simple (contains no exceptional
point); in fact, B(&,) isnot even defined if, for example, 4,(&,)=4,(&,) which may
happen if ¢, isexceptional.
Let M, (¢)=R,(¢)X bethe (algebraic) eigenspace of T (&) for the eigenvalue
2,(€). Then
X=M,(¢)®...0M(¢), (3.14)
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dmM,(¢)=m, > m =N, £eD.
i=1
Let assume that the power seriesfor T (&) isgiven:
T(e)=T+eTW+£TO 4. (3.15)
Let 4 be one of the eigenvalues of the unperturbed operator T =T(0) with

(algebraic) multiplicity m, and let P and D be the associated eigenprojection and
eigennilpotent. Thus

TP=PT =PTP=AP+D,

, (3.16)

dmP=m, D"=0, PD=DP=D.
The eigenvalue A4 will in general split into several eigenvalues of T (&) for small
£ #0 (the A-group). The total projection P(g) for this A -group is holomorphic at
e=0

P(e)=>&"P", PO=p, (3.17)

with P given by (3.12). The subspace M (&)=P(&)X is m-dimensiona and
invariant under T(&). The A-group eigenvalues of T(¢) are identical with al the
eigenvalues of T(g) in M(&). In order to determine the A -group eigenvalues, an

eigenvalue problem in the subspace M (e) which is in general smaller than the
whole space X, should be solved.

The eigenvalue problem for T(g) in M (&) is equivaent to the eigenvalue
problem for the operator

T.(¢)=T(e)P(e)=P(&)T(e)=P(&)T(¢)P(e). (3.18)

Thus the 4 -group eigenvalues of T (&) are exactly those eigenvalues of T, (&) which
are different from zero, provided that |/1| is large enough to ensure that these
eigenvalues do not vanish for the small |¢| under consideration.

It follows that

A(e)==tr(T(¢)P(s))=A+—tr ((T(£)-1)P(s)) (3.19)
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is equal to the weighted mean of the A -group eigenvalues of T (e) where weight is
the multiplicity of each eigenvalue. If there is no splitting of A so that the A -group
consists of asingle eigenvalue A (&) with multiplicity mthen

A(g)=4(g), (3.20)
in particular this is always true if m=1. In such a case the eigenprojection associated

with A(¢) isexactly thetotal projection (3.17) and the eigennilpotent is given by

D(¢)=(T(¢)-4(¢))P(¢). (3.21)
These series give a complete solution to the eigenvalue problem for the A -group in

the case of no splitting, A(¢), P(¢) and D(¢) being al holomorphic at & =0.

Let consider the series (3.18) for T

(¢)=T(&)P(&). For computation it is
more convenient to consider the operator (T (¢)-4)P(¢) instead of T, (z) itsalf.

From (3.10) follows that

(T(é>")—/1)F’(f9)=—i (E-2)R(¢,5)de (3.22)

27 Y
since (T(¢)-A)R(&,6)=1+(&-2)R(&,¢) and theintegral of 1 along T vanishes.

Noting that (T —1)P=D by (3.16), it can be obtained that

(T()-2)P(e)=D+ 3 eF" (323)
with
T2 % (P [REOT.TUREE-2E (329
for n>1.

If 4 isasemisimpleeigenvalueof T, D=0 and (3.23) gives

0 ()= 2(T(e)-4)P(s) = 36T, (3:25)
& n=0

Since M (£)=R(P(&)) is invariant under T (&), there is an obvious relationship
between the parts of T(¢) and T% (&) in M (&) . Thus the solution of the eigenvalue

problem for T (&) in M (&) reduces to the same problem for T (£). Now (3.25)
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shows that T? (e) is holomorphic at & =0. This process of reducing the problem for
T(e) to the one for 'I:(l)(e) is caled the reduction process. The "unperturbed
operator” for this family T () is
T0(0)=TW =pPTOP. (3.26)
It follows that each eigenvalue of T splits into several eigenvalues of TY (&) for
small |¢|. Let the eigenvalues of T in the invariant subspace M =M (0) = R(P) be
denoted by /lj(l), j=1,2,.... The spectral representation of T in M takes the form
T = pTOP = Y (2P0 + DY),
J
P=Y PO, (3.27)
Py F?((Il) =5,P0.
Suppose for the moment that all the /lfl) are different from zero. By perturbation

each 2% will split into several eigenvalues (the A" -group) of T% (&), which are

E
power seriesin & with some p, >1. The corresponding eigenvalues of T (&) have

theform

1

Arei®se Pay b, k=12... (3.28)
If some A% is zero, the associated eigenspace of T includes the subspace R(1-P).
But this inconvenience may be avoided by adding to T (&) aterm of the form ae,
which amounts to adding to f(l)(g) aterm aP(&). This has only the effect of
shifting the eigenvalues of T(l)(g) in M(g) by the amount o, leaving the
eigenprojections and eigennilpotents unchanged. By choosing « appropriately the
modified ﬂfl) can be made different from zero. Thus the assumption that /1}1) # 0 does

not affect the generality, and this should be assumed in the following whenever

convenient.

The eigenvalues (3.28) of T(¢) for fixed 2 and A% will be said to from the

A+ eﬂfl) -group. From (3.28) follows the following theorem.
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Theorem 3.2 [33] If A is a semisimple eigenvalue of the unperturbed operator T,

each of the A -group eigenvalues of T (&) has the form (3.28) so that it belongs to
some /1+e/1f1)-group. These eigenvalues are continuously differentiable near £=0
(even when £=0 is a branch point). The total projection P” (&) (the sum of

eigenprojections) for the A+&4” -group and the weighted mean of this group are

holomorphicat £ =0.

The reduction process described above can further be applied to the eigenvalue

AW of TO if it is semisimple, with the result that the A" -group eigenvalues of

T® (&) have the form A" + &4 +0(&). The corresponding eigenvalues of T (&)
have the form

A+eA + 220 + 0(32) . (3.29)

These eigenvalues with fixed j, k form the A+eA” +&241 -group of T(¢). In this

way it can be seen that the reduction process can be continued, and the eigenvalues

and eigenprojections of T(g) can be expanded into formal power seriesin ¢, aslong

as the unperturbed eigenvalue is semisimple at each stage of the reduction process.

But it is not necessary to continue the reduction process indefinitely, even when
thisis possible. Since the splitting must end after a finite number, say n, of steps, the
total projection and the weighted mean of the eigenvalues at the n-th stage will give
the full expansion of the eigenprojection and the eigenval ue themselves, respectively.

3.2 Operators in Banach spaces

3.2.1 Banach spaces and the adjoint space
A normed space is a vector space X in which a function ||| is defined and

satisfies the conditions of a norm. In a normed space X the convergence of a

sequence of vectors {u,} to a ue X can be defined by |u, —u| — 0. Asin the finite-
dimensional case, this implies the Cauchy condition |u,—u,,|— 0. In the infinite-

dimensional case, however, a Cauchy sequence {u,} (a sequence that satisfies the

Cauchy condition) need not have a limit ueX. A normed space in which every
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Cauchy sequence has a limit is said to be complete. A complete normed space is

called a Banach space.
The adjoint space X* of X isdefined as the set of all bounded semilinear forms

on X, and X" is a normed vector space if the norm of f € X" is defined as the
bound| f| of f. Let introduce the scalar product ( f,u)= f [u]. X" isaBanach space.

Theorem 3.3 [33] Let M be aclosed linear manifold of X and let u, € X not belong
to M. Then there is feX" such that (f,u,)=1, (f,u)=0 for ueM and

1
”f”_dist(uo,M)'

The adjoint space X™ of X" is again a Banach space. As in the finite-

dimensional case, each ue X may beregarded as an element of X™.

3.2.2 Linear operators in Banach spaces

Let define a linear operator T from X to Y as a function, which sends every

vector u in a certain linear manifold D of X to a vector v=TueY and which
satisfies the linearity condition T (U, +@,U,) = &, Tu, +a,Tu, for al u,u,eD.Dis
called the domain of definition, or simply the domain, of T and is denoted by D(T).
Therange R(T) of T is defined as the set of vectors of the form Tu with ue D(T).

X and Y are respectively called the domain and range spaces. If D(T)=X, T is

said to be defined on X. If Y=X, it issaid that T is an operator in X. The null
space N(T) of Tisthesetof all ue D(T) suchthat Tu=0.

Theinverse T~ of an operator T from X to Y isdefined if and only if the map
T is one to one, which is the case if and only if Tu=0 implies u=0. T is by

definition the operator from Y to X that sends Tu into u. Thus
D(T™)=R(T), R(T™)=D(T) (3.30)
T*(Tu)=u, ueD(T), T(T)=v, veR(T) (3.31)

Tissaidto beinvertibleif T exists.

An operator T from X to Y is continuous a u=u,eD(T) if

|lu, —Uo| =0, u, e D(T), implies |Tu, —Tu,| — 0. T is continuous everywhere in its
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domain if it is continuous at u=0. T is continuous if and only if T is bounded:

Tu|<Mu|, ueD(T). The smallest number M with this property is called the

bound of T and is denoted by |T|.

3.2.3 Bounded operators

Let denote by B(X,Y) the set of all bounded operators on X to Y. Every
operator belonging to B(X,Y) has domain X and range in Y. The resulting
operator of the linear combination aS+ AT of ST eB(X,Y) is again linear and
bounded. Thus B(X,Y) isanormed space with the norm |T| defined as the bound of

T:

T
IT|= sup M =sup|Tu|=sup|Tu, TeB(XY).

oruex U Jul<t
Similarly, the product TS is defined for TeB(Y,Z), SeB(XY) by
(TS)u=T(Su) foral ueX and belongsto B(X,Z).

B(X,Y) is a Banach space. To prove the completeness of B(X,Y), let {T,}
be a Cauchy sequence of elements of B(X,Y). Then {T,u} is a Cauchy sequencein
Y for each fixed ueX, for |[Tu—Tu|<|T,-T,[|u| > 0. Since Y is complete,
thereisa ve Y such that T.u— v. Let define an operator T by setting v=Tu. T is
linear and bounded so that T € B(X,Y) and that |T,-T| - 0.

Different kinds of convergence can be introduced into B(X,Y). Let
T,T,eB(X,Y), n=12.... The convergence of {T,} to T in the sense of
IT,—T| >0 (convergence in the normed space B(X,Y)) is called uniform

convergence or convergence in norm. {Tn} is said to converge strongly to T if

T.u—>Tu for each ueX. {T,

n

} converges in norm if and only if {T,u} converges

uniformly for uf <1. {T,

n

} is said to converge weakly if {T,u} converges weakly for
each ueX, that is, if (T,u,g) converges for esch ueX and geY". If {T,u} hasa

n

wesak limit Tu for each ue X, {T,} has the weak limit T. {T,} converges in norm if
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and only if (T,u,g) converges uniformly for |u[<1 and |g|<1. A weakly

convergent sequence has aweak limit if Y isweakly complete. Convergence in norm
implies strong convergence, and strong convergence implies weak convergence. Let

use the notations T, ——T for convergence in norm, T ——T for strong
convergence and T, ——T for weak convergence. If {T,} isweakly convergent, it is
uniformly bounded, that is, {|T,} is bounded.

Lemma 3.1 [33] Let {T,} be uniformly bounded. Then {T,} converges strongly to T
if {Tnu} converges strongly to Tu for al u of afundamental subset of X.

Lemma 3.2 [33] Let {T,} be uniformly bounded. Then {T,} convergesweakly to T if
{(T,u,g)} convergesto (Tu,g) for all u of afundamental subset of X and for all g

of afundamental subset of Y*.

Lemma 3.3 [33] If T.——T then Tu——Tu uniformly for al u of a compact

subset S of X.
Lemma34 [33] If T,—>T in B(Y,Z) and S ——S in B(X)Y), then

T.S,——TSin B(X,Z).
Lemma35 [33] If T,——>T in B(Y,Z) and S,——Sin B(X,Y), then
T.S,——TS in B(X,Z).

B(X)=B(X,X) is the set of all bounded operators on X to itself. In B(X)

not only the linear combination of two operators S T but also their product ST is

defined and belongs to B(X). Thus B(X) is a complete normed algebra (Banach

algebra). It should be noted that the completeness of B(X) is essentia here; for

example, the existence of the sum of an absolutely convergent series of operators

depends on compl eteness.

T e B(X) issaid to be nonsingular if T™ existsand belongsto B(X). 1-T is
nonsingular if |T|<1. It followsthat T™ is a continuous function of T on the set of

all nonsingular operators, which isopenin B(X).

31



The spectral radius sprT = lim|T" " can aso be defined for every T e B(X).

The trace and determinant of T e B(X) are in general not defined, but they can be
defined for certain classes of operators of B(X).

For each T € B(X,Y), the adjoint T* is defined and belongs to B(Y*,X*) . For
each geY", u—(g,Tu) is a bounded semilinear form on X by virtue of
‘(gTu)‘£||g||||Tu||£||T||||g||||u|| so that it can be written (f,u) withan f eX"; T* is

defined by T'g=f. T

T g

=[fll=supl(f.u)<[Tllg] ~gives [T*|<[T].

Juls2
T*

T <

<[T[, but T* T if X is identified with a subspace of X™, for

(T**u,g):(u,T*g):(T*g,u):(g,Tu) shows that the semilinear form T**u on Y" is

represented by TueY and therefore T"u=Tu by identification. Since T oT

implies [T T

2[T],

=T
An idempotent operator P e B(X) (P2 = P) is called a projection. Let M and
N be two complementary linear manifoldsof X, that is
X=M®N, (3.32)
where M =PX and N=(1-P)X. M and N are closed linear manifolds of X. A

decomposition (3.32) of a Banach space into the direct sum of two closed linear

manifolds defines a projection P on M along N. P isalinear operator on X to itself.
For a given closed linear manifold M of X, it is not always possible to find a

complementary subspace N such that (3.32) istrue. In other words, M need not have a

projection on it. On the other hand, M may have more than one projections.

3.2.4 Resolvents and spectra

An eigenvalue of T is defined as a complex number A such that there exists a
nonzero ue D(T) c X, caled an eigenvector, such that Tu= Au. In other words, 4
is an eigenvaue if the null space N (T —/1) is not O; this null space is the geometric

eigenspace for 4 and its dimension is the geometric multiplicity of the eigenvalue A .
These definitions are often vacuous, however, since it may happen that T has no

eigenvalue at al or, even if T has, there are not "sufficiently many" eigenvectors.
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T is assumed to be a closed operator in X . Then the same istrue of T—¢ for

any complex number £ .1t T—¢ isinvertible with

R(¢)=R(¢,T)=(T-¢) " eB(X), (3.39)
¢ issaid to belong to the resolvent set of T. The operator-valued function R(g“ ) thus
defined on the resolvent set P(T) is called the resolvent of T. Thus R(¢) has
domain X and range D(T) for any ¢ e P(T).
Theorem 3.4 [33] Assume that P(T) is not empty. In order that T commute with
Ae B(X), itisnecessary that

R(¢)A=AR(S) (3.34)
for every ¢ e P(T), and it is sufficient that this hold for some ¢ e P(T).
Theresolvent R(¢) satisfies the resolvent equation
R(£1)-R(£:)=(61-£:)R(£1)R(<)

for every ¢1,¢, € P(T). TR(¢) is defined everywhere on X. From this it follows

that the Neumann series

R(¢)=[1-(¢-&)R(&) T RS =§: &) R(&)™

for the resolvent is valid.

Theorem 3.5 [33] P(T) is an open set in the complex plane, and R(¢) is
(piecewise) holomorphic for ¢ e P(T). ("Piecewise" takes into account that P(T)
need not be connected.) Each component of P(T) is the natural domain of R(¢)
(R(¢) cannot be continued analytically beyond the boundary of P(T)).

The complementary set =(T) (in the complex plane) of P(T) is called the
spectrum of T. Thus ¢ e =(T) if either T—¢ is not invertible or it is invertible but

has range smaller than X. It is possible for Z(T) to be empty or to cover the whole

plane. It happens frequently that the spectrum is an uncountable set.
Consider an operator T € B(X). Then neither P(T) nor £(T) is empty. More

precisely, P(T) contains the exterior of thecircle

33



yn
" —inf

nx1

1n

-I-n -I-n

{]=sprT =1lim (3.35)

(which reduces to the single point £ =0 if and only if sprT =0, that is, T is quasi-
nilpotent), whereas there is at least one point of E(T) on this circle. In particular
2(T) isasubset of the closed disk |¢]<|T|. Let note also that

[¢R(£)+1 >0, ¢—>w. (3.36)

The Neumann series on the right of
-1 °°
R(é’) _ _4—1 (1_ ;—11-) _ _z é«—n—l-l-n
n=0
converges for £ outside of the circle (3.35). Since the convergence domain of this
series is |¢|>sprT, it follows that there is at least one point of %(T) on (3.35)

provided that sprT > 0. If sprT =0, ¢ =0 belongsto X(T) because otherwise R(¢)

would be an entire function, contradicting (3.36) and Liouville's theorem. Liouvill€'s
theorem implies that R(¢) is constant; since R(£)— 0 for ¢ — oo, this constant is

0.

3.3 Asymptotic algorithm of mean square stability analysis by the

second Lyapunov method
Let analyze area n-dimension linear stochastic difference equation, which is an

iterative procedurein R" defined by equality
% =A(Y,) %1 teN, (3.37)

where {A(Yy), ye Y} is continuous nxn matrix function on the metric compact Y,

sup| A(y)|=const<w. Let {y,teN} be a homogeneous exponentialy ergodic
y

Feller Markov chain with phase space Y, invariant measure x(dy) and transition

probability p(y,dz). Under initial conditions x =X, Yy, =Yy the vector function

x (k,x, y)= X (t,k,y)x, where X(t,k,y):= ] A(y,). satisfies the equality (3.37).

m=k+1

The above defined vector function xt(k,x, y) is caled as a solution of (3.37) and

matrix function X (t,k, y) asaCauchy matrix of (3.37). The equation (3.37) is called
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as exponentially mean square stable if there exist such aconstants c>0 and A e (0,1)

that
E‘xt (K, X, y)‘2 <cA™|K’

forany yeY, xeR", keN and t>k. To derive mean square stability conditions

for (3.37) the spectral properties of linear continuous operator

(Ag)(y) :=J'AT (2)a(z) A(z) p(y.dz) (3.38)

acting in the Banach space V of symmetric uniformly bounded continuous nxn

matrix functions {q(y), ye Y} with norm

o= sp [(a(y)x ).

yeY, |x|=1

where VxeR", (q(y)xx)=> 0, (y)%X . are anayzed. The operator (3.38)
j ok

leaves as invariant the reproducing cone [ 37]

K::{qev: inf (q(y)x,x)zo}

yeY |x=1

with a set of inner points
]I%:z{q eV: inf (q(y)x, x)>0} .

yeY |x=1

Let generalize the situation and choose near to constant matrix coefficients in (3.37),
that is, matrix

A(y.e)=M +Z|_:5kA<(Y) (3.39)

instead of A(y), where & is small positive parameter. Applying (3.38) to matrix

(3.39) an operator family A () can be decomposed by power of &
21
A(e)=RA,+) A, (3.40)
k=1
with some bounded operators A, , k=12,...,2 and A,q= J' MTq(u)Mp(y,du).
Y

If the spectrum (M) of matrix M is situated within the circle {|4| < y <1} the

equation (3.37) is exponentially mean square stable for al sufficiently small positive

£ . On the contrary if 0'( M )m{|ﬂ| > 1} # 0 there exists such a solution that becomes
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unrestrictedly large with n— . The problem arises only if spectral radius of matrix

M is equal to one. Let suppose that matrix M has spectrum in a following form:
o(M)=0,(M)uc,(M) dividd to two pats o,(M)c{4=1 and
o, (M)c{a<v<1}.

This section proposes an algorithm for finding the conditions, which guarantee
decreasing of the iterations (3.37) for any sufficiently small &. The main idea of
algorithm is testing of positive definition property of a solution of the specially
constructed matrix equation.

Theorem 3.6 [11] The next assertions are equivalent:
(i) equation (3.37) is exponentially mean square stable;
(i) thereexistssuch qeK that
Ag-q=-I (3.41)
where | is unit matrix;

(iii)  real part of the spectrum o (A) of operator A is situated in the circle
{ZE C:|7 <1} :
Theorem 3.7 [9] There exists such a positive number &, that for any &€ (0,¢,)

equation (3.37) with matrix (3.39) is exponentially mean square stable if and only if
the equation:

A(g)q(e)-a(e)=-I (3.42)
has solution in aform of Laurent series by powers of &, that is,
q(y,e):kigqu(y), d>1 (3.43)
with positive defined main part
d(y.€)= go_:d g“a.(y). (3.44)
Due to the third assertion of Theorem 3.6 and spectrum a(AO) property there

exists [33] such a positive number £ that a solution of the equation (3.41) has

decomposition

a(y.¢)= i g (y) (3.45)
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for al £e(0,), where matrices {qk(y), kz—d} are defined by the following
eguations:
Jg, =0
Jg .., =-Aq,

Jg ., = _(Alq—d+l +A,0 ) (3.46)

Jo, =—(A0, +A,q,+...+ A0 +])

where Jg= A,q—q. By definition of the above solution one can write

(A(S)—J)(d(y,e)+§;gqu(y)]:_|

and therefore the main part of this solution satisfies the equality

(A(e)—J)ﬁ(y,g):—[l -(A(g)-.:)+§gqu(y)]. (3.47)

Because for sufficiently small positive ¢ the right part of this equation is negative
define matrix and analyzed difference equation (3.37) is exponentially mean sgquare
stable, the solution (3.44) should be positive defined.

The proposed agorithm uses the method of equating the coefficients
corresponding to the same powers of the parameter £ in the equation (3.42) and the
Fredholm aternative [37], which will be described below for the equation

Ja(y)=f(y) (3.48)
in the space V . Following the Fredholm alternative in order to conclude the existence

of solution of (3.48) the orthogonality of the right part f of (3.48) to any solution of
the equation

J'p=0 (3.49)
must be verified, where J* is the conjugate of J. A linear functiona on the space V

can be represented [37] in the form

(p.a):= [ Tra(y)p(dy), (3.50)

yeY

where the elements of symmetrical matrix valued function p(dy) belong to the space

V* of matrix valued regular count additive measures. The space V can be considered

as the tensor product V = l\7|n(]R)®<C(Y) of the space Mn(R) of symmetric nxn-
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matrices and space C(Y). The space V" is tensor product V' =Mn(R)®C* (Y)
where C (Y) is the space of regular count additive measures. Hence the operators
A, and A} can be considered as a tensor product A,=_4,®P and A, =4, ®P
where P is transition operator of Markov chain and the operators 4, un 4, are
defined on each qe M, (R) by equalities

A,9=M"gM, A,gq=MqM".
Let suppose that the operator 4, has 1 as its spectrum point of multiplicity | and let

P, k=1,...,] form basisin corresponding to 1 root subspace of adjoint operator 4, .
Any solution of (3.49) can be represented as the sum of the products

P (dy) = pu(dy). Thus, the equation (3.48) has solution if and only if

(pyn )= 2T 1 (¥)py (¥)=0 (351)

for dl j=1,...,I. Due to the assumptions this equation has | linearly independent
constant solutions g, which form the basis in the corresponding to spectrum point 1
of the operator 4, root subspace of the space M (R). Hence any solution of the first

equation of (3.46) hasaform
dq(y)=>c,g" (3.52)

with arbitrary constants c; .

In the second step at first it must be determined whether d is equal or larger than
one. If d=1 the following equation should be solved

y)=-I —izlllqvi (¥) (353)

where
v (Y)=[ A (Y)gA(Y)] (3.54)
for i=1...,1. If such numbers c, can be chosen that the right part of (3.53) is

orthogonal to each of above p.u(dy), where s=1,...,1 , then d=1 and

1 |
= Z vI + q0 (3.55)
g
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If the above mentioned ¢ do not exist then we should put d>2 and deal with

eguation

Ja(y)=-> cAgq, (3.56)

i=1
and look for ¢ in such a way that right part of this equation be orthogonal to each
p.(dy), s=1,...,I. Now the solution q_(d_l)(y) of the second equation of (3.46)

should be found. The condition of normal solvability of the second equation of (3.46)
permits to find some of constants ¢ , but some of them will be as an arbitrary. Now on
this step the equation

Ja(y) =1 = A g4 (¥) - A (Y) (357)
will be analyzed with constants that have been found on the previous step. d=2 if and

only if the remaining numbers ¢ can be found in such way that the right part of this

equation is orthogonal to any psy(dy), s=1,...,1. Inthis case the main part (3.44) of

Laurent series (3.43) hasform

6I(y’«ﬁ)=g—12apz+%q_1(y)+0|o(y)- (3.58)

The equation (3.37) is exponentially mean square stable for al sufficiently small
positive ¢ if and only if (3.58) is positive defined. If the right part of (3.57) is not

orthogonal some of p.x(dy), d >3 should be put and so on. So, step by step al ¢

and the main part (3.44) of Laurent series (3.43) can be found.

3.3.1 Example 1

The following difference equation is given in R?:

X = [((1) ]/02]+8yt (2 ;Dx[_l, (3.59)

where vy, is ergodic Markov process with three states {—L 0, 1} and the following

14 34 0
transition probability matrix P=|1/8 1/2 3/8|.
Y2 Y4 14
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In this example M = 1o and A= 01 Using that uP=u, the

following equation system should be solved for finding the invariant measure u :

1,1 1
4/‘1 8:”2 2/”3 H
3

1 1
<ZM+§!‘2+Z!‘3 =M

3 1
gﬂz +Zﬂ3 =H

\

taking into account that z, + u, + 1, =1. In this case the invariant measure is equal to

1={1/4,12,1/4}. Now let find the linear continuous operator (3.38):

(‘\OI)(Y)=‘[AT (z.#)a(z) A(z#)P(y,dz) =
=£(M +gz,01)T a(z)(M +&zA)P(y,dz)=
=J'[MTq(z)M +5(MTq(z)A+ ATq(z)M)z+ngqu(z)Azz} P(y,dz)

Therefore this operator has aform:

(Aa)(y)=(Aa)(y)+(Aa)(y)+s* (A0)(Y), (3.60)

where
(Aoq)(y):IMTq(z)Mp(y,dz), (3.61)
(Alq)(y):jz(MTq(z)AL+Aqu(z)M)p(y,dz), (3.62)
(Aq)(y)=]ZATa(2) Ap(y.dz). (3.63)

Let choose d=1 in the first step. Thereby the following equations system should
be solved:

(3.64)

{(Jql)(y)—o
(9)(¥)==((Aa)(y)+1)

In the first equation of (3.64)
(Ja,)(¥) = (Aca,)(¥)-a.(y) = [MTa, (2)MP(y,dz)-q, (y) =0
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q;’ o3

1 (_1)]' It follows that
0&2 q22

it can be assumed that g, (y) is a constant: Ql(Y)={

MTa,(y)M —q,(y)=0, because IP(y, dz)=1. Consequently the solution of the
Y

0
first equation of system (3.64) has a form q_l:(g O] with arbitrary constant g.

Since matrices M and A; in this example are symmetric matrices, then a solution of

the adjoint equation J'p=0 has a form p(y)=0_u(y). Further the second
eguation of the system (3.64) should be solved:
(Jap)(y)=— —J.z(MTq_lA+qu_lM)P(y,dz) =10(y).

Y

Simplifyingitsright part f,(y) can befound for each value of y:

f(l)(_l)z[q_/i1 q_/f]; f(l)(o)z[_;;4 —?14]; f(l)(l):[q_/i q_/f].

Now the existence condition for the second equation of the system (3.64) should

be verified, that means, the following condition should be true <f(l)(y),,u>:0. In

this case < fO (y),y> =—-1+0, it means that the solution does not exist and the next

step when d=2 should be chosen.
In case when d=2 the following equations system should be analyzed:

(Jq—z)(Y) =0
(Ja.)(y)=-(Aa.)(y) (3.65)
(99 ) (¥) =—((Aa:) (¥)+(A0,)(y)+1)

Identically as in the first step, the solution of the first equation of the system (3.65)has

0
aform q, = [g 0] , Where q is arbitrary constant. Using this solution the second

equation of this system can be rewritten:

(Ja,)(y)=-[z(MTa,A+ATq,M)P(y,dz) = £ (y) (3.66)

Y

Solving it, the following three matrices are obtained:

fl(Z)(_l):(q(/)4 Clé4]; fl(Z)(O):[—c?M —%/4]; fl(z)(l):(q(/)4 q(/)4J'
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Since <f1(2)(y), ,u>:0, then the solution of the equation (3.66) exists. To find the

form of this solution, the following equations system are analyzed:

(Aoa)(-1)-a4(-1)=f(-1)
(A,0.,)(0)-0,(0)=f(0) . (3.67)
(Ao0)(1)-a4(1)= (1)

Let note matrices q,(y) like ql(y):[ : )J Then from (3.67)

follows that:

O
N
N
—
2 =
Q/-\
=
—_
=

Solving al these equations the form of the solution (3.66) can be obtained:

11 . 33 . 33
Q.. (_1) = 2 , q—l(o) = 3 v 0y (1) = 10
~£q 0 Zq 0 ~=q 0
11q 33q 33q

Further the third equation of the system (3.65) should be solved:
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(Jqo)(y) = _I Z(M Tq—l(z) Al"' ALTq-l(Z) M ) P(y' dZ)—
¥ (3.68)
—I ZA gAP(y,dz)—1 = 17 (y)
Y
Solving the equation (3.68) and taking into account the results from the previous
equations, as well as the condition for the existence of solution, the following

matrices are obtai ned:

_iq_ _iqb Eq_ iq
£ (_q 11 22 @ (0 11 11
2 ( )_ 1 13 ’ 2 ()_ 1 9
——gb -=2g-1 —gb -—q-1
22q 44q 11q 22q
1 1
—220-1 ——-db
f(z)(l): 33 66
i 1y oo o)
66 132

Let assume that in general the matrix fz(z)(y) can be written as

9 (y)= a(y)-1 a(y) ].Then, to make sure whether a solution exists for the
Cz(y) Cs(Y)_l

third equation of the system (3.65), the following condition should be verified:

lao[(cl) g]'[qc(:?y;l C:Ef/;/zlﬂdﬂ=£(q(y)_1)dﬂ=0_ (3.69)

From (3.69) it follows that the constant q should be g = 3—23 =16,5. Therefore
5 ) ol 2]
£ (-1)= (0)= 2 (1)
_3, A 3, 3 _1, 109
4 8 2 4 4 8

Next the following equations should be solved

(A )(-2)- 0 (-1)=f (-1)
(Aq)(0)-(0) = £ (0) (3.70)
(Ag)(1) -0 (1) = T (1)

to find the solution of the equation (3.68). Let note matrices q,(y) like

O(y) o
o (y)= [qto) () " (y)] Then from (3.70) follows that:
%’ (y) o (Y)
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Now the matrices d,('y) can be found:

The Loran series main part of the given difference equation (3.59) has aform

therefore:



> +33 ——
6](—1,6‘)— & 2 & :
-> 84
&
165 4_,,
~ & &
4(0,¢)= ; (3.71)
—=2b 10,9
&
165 4, °
6](1,6‘)2 & c & '
— 16,4
&

Since the matrices (3.71) are positive defined for all sufficiently small positive ¢, the

difference equation (3.59) is exponentially mean square stable for any constant b.

3.3.2 Example 2
Let analyze the difference equation rather similar to the first example, that is,

the following equation is given in R?:

x{[; yo) o (g 2]]& @7)

where y, again is ergodic Markov process with three states {—1, 0,1} and with the

Y4 34 0

same transition probability matrix P=|1/8 1/2 3/8|. It means that also the
Y2 14 14

invariant measure isthe same 2 ={1/4,1/2,1/4}.

Because al caculations are identical to the previous example, only some
intermediate results will be given. The first step, when d=1, does not give a solution,
therefore d=2 should be chosen. In this case again the equations system type (3.65)
should be solved. The first equation of this system has a solution in a form

0
q,= [q O] , Where q is arbitrary constant; the second equation —in aform:

0
2 4 2
~£q 0 2q 0 ~£q 0
a.(-0=| 9" | a,(0)=|9" " a,@=|"3" "
0 0 0 0 0 0
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Verifying whether the solution of the system's second equation exists it can be

obtained that the constant q should be q= —% . Therefore

_144
q,=| 53
0 0
and
32 64 96

— 0 -— 0 — 0
q_l(_1)= 53 ; q—1(0): 53 ; q_1(1)= 53 '
0 O 0O O 0O O

Substituting these results in the system's (3.65) third equation qo(y) can be found:

80 24 _168
159 159 159
-1)= ; 0)= ; 1)= :
0 - 0 —— -——
5 3 45
Consequently the Loran series main part of the given difference equation (3.72) has a
form
—432+ 96¢ —80¢? 0
2
Q(—l 6‘) _ 159¢ . ;
0 —
5
—432-192¢ +124&* 0
2
G(0,¢)= 159¢ : (3.73)
4
0 S
3
—432+ 288¢ —168¢* 0
A 159¢°
le)= )
4(%2) 1052
0 =
45

Evidently all matrices (3.73) are not positive defined for all sufficiently small positive
¢ , therefore the difference equation (3.72) is not exponentially mean square stable.
3.4 Spectrum decomposition

The spectrum a(A) of the operator A introduced in the section 3.3 defines the

second moment of solutions of equations (3.37) dynamic. The exponential decreasing

of the second moments is equivalent to spectrum a(A) location inside the unit radius
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circle S :={]zk13} of the complex plane. This spectrum location analysis can be
performed [7] for the equation (3.37) with coefficients dependent on independent
identically distributed sequence {yt} or constant dealing only with the operator (3.38)

restriction

Aq ::IAT(z)qA(z)y(dz)

Y

in the (N+N

-dimensional subspace V, <V of constant symmetric nxn matrices.

This assertion greatly simplifies Lyapunov stability analysis of the equation (3.37).
An agorithm has delivered, which reduces the performances of the equation
(3.37) with matrices given in a form (3.39) second moments dynamic to analysis of

the operator A(&) in the @—dimensional subspaceV (&) = V. This subspace

as well as the restriction matrix A(g) of the operator A may be defined by the
specially constructed basis B(g), anaytically dependent on &. The maxima by

modulus real eigenvalue p(&) of matrix A(e) for sufficiently small &> 0 coincides

with similar eigenvalue of operator A(e). By terminology of [56] this number

defines mean square Lyapunov index by formula

(&)= Iimsup%In E{|x[ (k, , y)|2} and this number defines behavior of the second
t—w

moment E{‘x[(k,x, y)‘z} as t—ow: if A,(6)<0 sequence E{‘x[(k,x, y)‘z}
exponentially decreases, if 4,(g) >0 - exponentially increases.

Owing to exponential ergodicity assertion the defined on C(Y) Markov
operator P has spectrum o (P)={l} Uo, whereo, = {4 eC:|4|< p<1} . Therefore
there exists such a number &,>0 that for any & e (0,,) spectrum o (A(z)) of the

perturbed operator A(g) consists of two setso, ando, where spectrum o, islocated
in ¢-neighborhood of the part of the operator A, spectrum defined by equality
G(A,) :={/1v:/1 eoc(M)veo(M )} and o, c {/1 € C:|/1| < }/<1} . By definition

the operator A, leaves as invariant the space M(R”) of symmetric nxn matrices
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(n+Dn

with dimension m= . Hence the operators A(¢) have invariant subspaces

V(&)< V with dmV (g)=m and abasis B(¢) ={b'(z,Y), ..., b"(¢,y)} inaform
B(s)=P(&)B° (3.74)
can be chosen [33], where P(¢) is the total projector in V(&) and B’ is basis in
M(R”). Because of projector P(e) is an analytic function of & [33] one can look
for the basis as decomposition
B(¢)=B"+&B'+£°B*+..., (3.75)
where BO:{b"l, bom} and B :{bjl(y), bjm(y)} for any j eN. This means
that all B’ arerowswith b™(y), k=1,...,m as nxn matrices.

For the shortening of the computations let define some special operations

involving arow

G={0,0,+On}

of elements of the space V and a column

hy
oo
h,
of elements of the space V*. Thefirst of these operationsis

[h.a] - [h.9.]
HeG =

[N @] - [P 0]
where [p,q] is the scalar product of peV® and qeV, tha is

[p.q] :I q(y) p(dy). The second operation with row G is defined by
Y

A +G={Ag.AQ,...Ag,l j=1..2

Let
Gy G o G
co| @ & o
Cu G2 Com
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be areal matrix with mrows and m columns. We also write for above G, H and C

GoC:= {Z giQ1'ZgiQ2""'zgiQm}
i=1 i=1

i=1

and

> e,
CoH =1 izzl:hCZi b

3 he,
Li=1 )
Let A(g) be the matrix of restriction of the operator A (&) on the subspace V(¢).
This matrix can be obtained [33] from the expression

A(£)*B(g)=B(g)oA(e), (3.76)
where for the matrix A (&) aso can be used the decomposition

A(g)=Ag+eh +&°A,+...

Therefore equality (3.76) can be rewritten into the form
(AO+5A1+52A2+...)*(B°+gBl+ng+...)=(B°+gBl+582+...)o(Ao+eAl+gA2+...)-
We can look for A,, A,, A,,... by equating the coefficients corresponding to the
same powers of &. At the same time we have to look for the components

B?,B', B?,... of the basis decomposition given by (3.75).
On thefirst step we have to deal with the system of m equations:

A, *B°—B%A,=0 (3.77)
for the dlements b™,b%,..., b of the basis B°. One can satisfy the equations with
any basis B° = P(O)M(R”)cM(R”) in the root subspace corresponding to the
matrix A, of the operator A, in this basis. The matrix A, is in a form

Ay Ao
Ag=| -+ e e
A0 . A
On the second step there is the following system of equations which involves

the m components of the basis B:
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A, ,+B'-B'oA,=B% A, —A *B° (3.78)
This system has solution if and only if the right part is orthogona to m linearly
independent solutions of the adjoint equation. It is obvious that the adjoint
homogeneous equation for (3.78) based on the scalar product defined above and using
the given notations has the form

A xH-AjoH =0

where the adjoint operator A} is defined by (A;h)(dz) :IAIh(dy) p(y.dz) for any
Y

count additive matrix measure he V*. It can be proven that due to ergodicity

assertion we can present matrix  measures hj(dy) in a form
hj(dy):ﬁj,u(dy), j=1...,m where AIHJ. :Z/Iﬁﬁ and the column H of constant
i=1

matrixes ﬁj can be chosen in such away that

BOf = 0, jaj#k,
"1, jaj=k

Next the condition of orthogonality of al elements of H with respect to the right part

of (3.78) must be verified, that is

(3.79)

h, L[Zb‘”ﬂfk—AlbO"], Vijk=1m

=
Or using previous notations
He(B% A, —A,*B°)=0. (3.80)
This condition permits to find the matrix A, :
A% = Ab%h! (3.81)
Using (3.81) and solving the equation (3.78) the basis B' can be found.
On the next step the equation for B* what is based on the coefficients
corresponding to &2 in the equation (3.76) should be analyzed:
A,*B?>-B?cA,=B%A,+B'oA,—A *B'-A,*B° (3.82)
Making the similar considerations as on the second step one can find the matrix A,
using the following condition of orthogonality

He(B°0A,+B'oA,—A, *B'—A, *B°)=0. (3.83)
2 1 1 2
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Therefore the elements for matrix A, can be expressed as
A2 = (Rblk + AP - b A ] hi (3.84)
i=1
and the matrix B? can be found.

3.4.1 Example

Let consider the following difference equation in R?:

Rl em

where y, is Markov chain with states {1,0,1} and transition probability matrix

14 34 0
P=|18 12 38
Y2 y4 y4

It is easy to find that the invariant measure is equal to x={1/4,1/2,3/4}. The linear

operator should be analyzed
(Ad)(y)=(As0)(y)+&(Ad)(y)+&" (AA)(y)

where

and matrices A, A, A, for finding operators (A.d)(y), (Ad)(y), (Ad)(y) aeas

1 0 O 02z 0 o o 7
followings: A,=|0 32 0 |, A(z)=|z bz z2|, A(z)=|0 Z* bZ |
0 0 V4 0 z bz ¢ 2bZ’ b*7

1 00
In the first equation (3.77) a basis can be chosen as B,=/0 1 0| and
0 01

1 0 O
therefore A,=|0 1/2 0 |. Substituting known results in the second equation
0 0 Y4
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(3.78) and following the steps described in the algorithm it is possible to obtain

0 00O
A;={0 0 0] and corresponding basis B, for eachy value:
0 00O
1 0 0 1 23 0
B(-1)=|-2/11 1-20/3 0|, B(0)=[833 1  ¥3
0 -411 0 0 -16/33 4b/3
1 —4/3 0
B(1)=|-10/33 1-10b/9 -2/3 |.
0  -76/33 -8/9

Considering all obtained results it is possible to find A, using equation (3.82).
Leaving out calculations A, can be presented as

-2/33  -2b/9 1/6
A, =|-b/33 —5/66-b*/9 2b/9
31/66  40b/99  —1/6-5b*/18

Therefore
1 0 0 -2/33 -20/9 1/6
A=A +eA +&*A,=| 0 12 0 |+&?| -b/33 —5/66-b?/9 2b/9
0 0 14 31/66  400/99  —1/6-5b?/18

For higher accuracy of A the agorithm can be continued in the similar way as

described stepstill A, .
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4 Covariance analysisof linear Markov iterations

4.1 Analysis of the first moments

Henceforward a linear n-dimensional column-vector space R" will be viewed

as Euclid space with a scalar product

ueR", veR": (uv)=u'v.

Let assume that a Markov sequence y:={y,, teN} is given in a filtrated

probability space (Q,S,%‘, P), where {St} is a minimal filtration harmonizing it.

The following assumptions are necessary to get formulas convenient for use:

matrix function {A(y),ye Y} iscontinuous;

Markov chain phase space Y isametric and compact space;

transition probabilities p(y,dz) have Feller property, that is, if functions
{u(y), er} are continuous, continuity of functions {((Pu)(y), er} follows,

where

(2u)(y) ::Iu(z) p(y,dz); (4.1)

only one probability measure exists on space Y , which satisfies the equality
(1) (dz)=: i p(dy) p(y,dz); (4.2)
such a positive number p <1 exists, that the spectrum of operator ® defined on
C(Y) can be expressed in aform
o(®)={l}uo,, o,e{1eC:|i<p] (4.3)

(exponential ergodicity).

The following denotations will be used:

t
seN: XJ=1;  t>s: Xi=[] A(w)- (4.4)

k=s+1

The solution of the linear difference equation with Markov coefficients

X = A( Wi ) X1 (4-5)
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where {yt te N} is a homogeneous Markov chain with phase space Y and transition
probabilities p(y,dz), can bewritteninaform x = X:x, foral seN, t>s. Asthe
sequence {yt te N} has Markov property, probabilistic characteristics of matrix
{X;,t > s} depend only on probabilistic characteristics of y, . Let define an operator
in a space of continuous n-dimensional reproductions C(Y - R“) =C, (Y) :

yeY,ueC,( jAT p(y,d2) (4.6)

Since transition probabilities have Feller property, AueC, (Y) is valid. Hereto for
al ueC,(Y)

|Au| < sgg‘AT (z)u(z)‘ < s;;g”AT (z)Hs;;Nu(z)H ,
follows from (4.6) and therefore

|- ool < s (2 @7

that is, the operator A islinear continuous operator in C, (Y).
Lemma4.1Forany seN, t>0, veC,(Y), xeR"
E{( XXV ( Vo ))/33} = (X,(Atv)(ys)) (4.8)

Proof. An induction method is used. For t=1 and any seN the equality (4.8)

follows from Markov property of sequence y:

E{(XEV(Yer)) /87 = E{(% AT (Your)V(Yorr)) Ve = (X (AV)(,)).-

To be sure about correctness of the lemma’s statement for t = m+1, this equality is
used taking s+ m instead of s, assuming that (4.8) istruefor t=m

E Xs+m+1x Vv ys+m+1))/33} =

E E Xs+mX AT ys+m+l) (ys+m+l))/33+m}/gs}:

15|~

z=X""x

{
(=
E{E (2 A7 (Yauma)V(Yeurna)) 1557}
070 A0 )= e (A7 (89 ) = (A7)0

E

Lemmais proved.
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Theorem 4.1 Let elements of sequence {y,,t €N} are independent and identically
distributed. Then
(i) operator A leaves asinvariant a subspace R" = C,(Y) and restriction
A of operator A in this subspace is defined by equality
veR": Av=A'v (4.9)
where A=E{A(Y,)} :
(i) for each seN, each t>s and each §'-adapted solution {x,t >0} of
equation (4.5) the following equality isinto force:
E{x}=ATE{x]}. (4.10)
Proof. Since in the theorem conditions p(y, dz) is independent from vy, that is,
p(y.dz) = p(dz), then assertion (i) directly follows from (4.6):

veR": AV:IAT(y)vp(dz): E{AT(yO)}v:IT\v.

Further, since elements of the sequence {yt,t eN} are independent, according to
filtration definition a random variable y, does not depend on F'-measurable

random vector x _,. Therefore for each ve R"

(B} v) = E{E{(x0 AT ()V)/ 32} = E{ (0 E{ AT ()15 }V))
:(E{xt_l},E{AT(yO)}v):(E{x_l},ﬂTv)
isinto force. Applying this formula sequentialy for all te{s+Lt—1} the theorem is

proved.
One of the most common [11] methods for difference equations, which can be
represented in aform
teN: y,=GVy.,, (4.11)

analysisin R" is variables substitution y, = B,z , where B, is a basis matrix of some

variablein R". If such a sequence of matrices can be found that z = Hz_,, then from

the equation (4.11) can be changed to an equation with constant coefficients and each

its solution can be written in aform

Y = Btzt = Bth_sZs = Bth_sBs_lys'
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This property in theory of difference equations is called reducibility. The equation

(4.5) is mean reducible, if such a continuous matrix function {B(y),ye Y} and such
amatrix A exigt, that for all se N and t > s the following equality isinto force

E{B(y)%/5°} = AB(¥,)% (4.12)

Further the possibility of (4.5) mean reducibility will be considered in the case

when the matrix function {A(y),ye Y} is near to constant and can be given in a

form of uniformly converging sequence:
Aly)=A+eX e Au(Y) (4.13)
k=0

where ¢ €(0,1) isasmall parameter.

At the beginning some additional constructions are needed. Let define a tensor

product for elements of spaces C(Y) and R" as a product of scalar function with
vector, and let represent a space C, (Y) as a tensor product of spaces
C,(Y)=C(Y)®R". A tensor product of linear spaces H and G defines as a linear

span of tensor set {h®g,heH,geG}. The operator (4.6), which corresponds to

matrix (4.13), can be expressed in a form A(g):Ao+gig"Ak+l(g), hereto the

k=0
operator A, leaves as invariant subspace R", and it can be represented as a tensor
product of operators A, =P ® A :

heC(Y),geR": A (h®g)=Ph® A g,
where @ is a Markov operator defined by equality (4.1). The tensor representation of
operator allows to simplify finding the spectrum and resolvent using the spectrum and

resolvent of operators which define it [34]. Taking into account the assumption about

exponential ergodicity of (4.3) the operator A, spectrum can be expressed in aform:
o(A))={44, 4 ec(P),Lea(A)=c(A)uo, (4.14)
where o, = {ﬂlﬂz leo(®). A€ ap} . As main assumption for mean reducibility of

the equation (4.5) is digunction of setsin spectrum decomposition (4.14), that is,
O'(A))ﬁO'pZQ. (4.15)
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It makes possible to offer an asymptotical method, which is based on the
decomposition of operator A(g) spectral projection [33] by powers of a small
parameter ¢ .

Conjugated space of C,(Y) [17] is a space of vector-valued measures C; (Y),

and scalar product of elements ve C,(Y) and g €C; (Y) isdefined by equality

(9.v)=[(9(dy).v(y))- (4.16)

Y

Using the definition of conjugated operators <Agg,v> =(g,Ay), thatis,

J(a(e). Av(2) p(y,d2)=u'%g(dy) o(,2)(2)

Y

it's form can be found:

(Agg)(dz):IAbg(dy) p(y,dz). (4.17)

The space C;, (Y) can be expressed also as a tensor product of the space consisting
scalar count additive measures C* (Y)and R". Using the definition of tensor product
the following equality follows:
aeC'(Y),beR": (A;(a®b))(dy):=(2"a)(dy)® Ab. (4.18)
Lemma 4.2 If all above mentioned assumptions are into force, then for sufficiently
small £>0 and al |¢[<Z adifference equation is mean reducible, hereto the matrix
function {B(y.£),yeY} is a basis in operator A(z) root subspace which
corresponds to the spectrum o, (&) part which is defined by equality limo, (¢)=0,,
but matrix A(e) is operator A(e) restriction matrix to this root subspace. For each
e[ <2 nxn-matrix function of basis {B(y,&),y e Y} and constant nxn-matrix A (&)
unambiguously are defined by equality
yeY,|e/<z: (A(g) B)(y,s:)zB(y,g)AT (¢) (4.19)
Proof. Since the assumptions about exponential ergodicity of Markov process and

possibility to express operator A, spectrum in a form (4.15) are into force, the
dimension of the root subspace of this operator, which corresponds to spectrum part

a(A)), is equal to n. Hereto, taking into account the assumption about uniform
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convergence by yeY of matrices sequence A(y,s), such a positive number &
exists, that an operator family A(e) is analyticaly dependent on parameter ¢ at
|e| <& [33]. The equality lim o, () =0, unambiguously defines an isolated operator
A(g) spectrum part for all |g| < &, but dimension of the root subspace corresponding

to this spectrum part is equal to n. Therefore a basis can be chosen in this root

subspace using n elements from C, (Y) in aform of matrices function:

B(Y.)={b(y.6).0,(y.6).....0,(v.€)} (4.20)
The operator A(¢) restriction matrix in this subspace can be obtained consecutive

applying operator A(¢) for each £ e(—£,2) to the elements of basis (4.20) and to

the decomposition by this basis:

~{{(xAE)"B) (o) (< AE) 7B (o)} =
= (A () " B)(vae) % =B(v.8) (A (),

and the lemmaiis proved.

For the description of the construction algorithm for basis matrix (4.20) and

matrix A(g) the decompositions of these matrices in a form of uniformly converged

sequences by powers of asmall parameter & :

A(g)=A, +g§:Ak+1
k=0 (4.22)

B(y.¢):= Bo+g§ B..(Y)

and also the decomposition of operator A(e) in a form of uniformly converged

sequence by powers of asmall parameter ¢ :

A(s)= Ao+5§,5kAk+1 (4.23)
k=0
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are used, where

(Ajv)(y)

For each sufficiently small & these decompositions can be substituted in the

IAjT (z)v(z) p(y.dz). (4.24)

Y

expression (4.21). Equating coefficients of equal powers of ¢ and taking into account

(4.24), the following equations can be obtai ned:

A B,=BA; (4.25)
AB -BA;=BA; -AB, (4.26)
AoBz - BzAg = BoA; + BlAI _AoBz _AlBl (4-27)

and so on. These equations can be used for finding the unknown elements of series
(4.22). Taking unit matrix B,:=1 asbasisin R" and substituting it in the equation
(4.25), Aj = A canbefind, that is, A, = A,. Let define an operator
yeY,ve C:
(LV)(y) = (AV)(y)-V(¥) A =
::J'AI (v(2)-v(y)) p(y.dz)+ A v(y)-Vv(Y) A = (4.28)
Y

=(HV)(y)+(Gv)(y)

for the elements of continuous matrix functions space C. Looki ng at C asa R",

smilarly asin C,(Y) case, count additive matrix-valued measure C* can be found,

which will be as conjugated space, and a scalar product of elements g C and veC

can be defined by formula

(g.v)=Tr {I VT(y)g(dy)}, (4.29)

where Tr{ } is a matrix trace. Using this definition, analogically as (4.17), the

conjugated operator " of operator L can be found:
(L'g)(dz) = (A;0)(dz) - g (d2) A, =
= [ A (9(dy)-g(d2)) p(y.dz)+ Ag(dz)-g(dz) A= (4.30)

= (]I-]I*g)(dy)+(G*g)(dy)
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Similarly asin C,(Y) case, C can be viewed as a tensor product of C(Y) and the
space of constant matrices M, but a space C* - atensor product of C* (Y) and the
space of constant matrices M. The operator " in accordance with (4.30) is a tensor
sum of operator H" acting in C*(Y) and operator G* acting in M. Therefore the
kernel of operator I consists of elementsin aform

MeKer{L'} &M =u(dy)M, Me{M,:AM-MA=0}. (431
Now (4.26) can be rewrittenin aform

A.B (Y)-B(Y)A;=A] —A (Y)

and Fredholm theorem about normal solvability can be applied. The right side

orthogonality of this equation respecting to the al elements of operator " kernel is

necessary and sufficiently to ensure that a solution exists for the equation in aform

AB,-B,A;=C
foral CeC. Consequently for solvability of (4.26), taking into account that B, =1,

it is necessary to fulfill the equality
[[A-A(y)IMTu(dy)=0 (4.32)
Y

for al nxn matrices, which satisfy the equality A/M —MA, =0. The equality (4.32)

isinto force for each constant matrix M if

A =A=[A(y)u(dy). (4.33)

Now B, (y) can be found and the next equation can be analyzed for finding A, and
B,(y). The equation (4.26) has many solutions. It is convenient to choose such a

solution B,(y), that B, =0. Known matrices can substitute in the equation (4.27) and

this equation can be rewritten in aform
AoBz_ BzAg :A; + Bl(y) AT - AlT (y) Bl(y)
Now the Fredholm aternative can be applied

A} =-BA +[A (y)B(y)udy (4.34)
Y
and matrix A, can be found, afterwards also Bz(y). Then the next equations can be

written for finding A,, B;(y) and so on until the needed accuracy of matrix A(e)
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decomposition is obtained. Since Y is compact and matrices {Bj (y) ] :12,...} are

continuous, the elements of obtained basis B:=1+¢&B +¢£°B,+... are linearly

independent for sufficiently small ¢.

4.2 Covariance analysis

In this paragraph dynamics of the second moment matrix of difference equation
(4.5) solution will be analyzed, that is, behavior of matrix as matrix function of

argument t
Q=E{xx}. (4.35)
Let introduce some denotations. At first it should be noted that a real nxn matrix

space M, can be viewed as n’-dimensional Euclid space R"™ with scalar product

[a,9] ::Tr{qu} . A set of symmetric nxn matrices M, in aform

s G2 -+ Ghn
q — 0?2 q:22 : : . q:2n (4.36)
Oﬂ.n q2n o qnn

makes linear closed subspacein M, . Since for qun an equality

ld = [aa]=3. > (a,) =0

k=1 j=1

isequivalent to

n n

lal” = (a.9) =Y. >(a,) =0,

k=1 j=1

R n(n+1)
then M, can beidentified with Euclid space R 2 with column vectorsin form

.

6= (s Gz Gt Gz G- G oy G G (4.37)
and scalar product (g,9):=q"'g. Using these denotations, equation (4.5) and the
results from the section 4.1 for matrices sequence (xx), == xx a linear difference

equation in space M, can be written as

(00), = ALY (00, AT (%) = A(Y) (%9), ;- (4.38)
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The above defined linear operator A(yt) family leaves as invariant symmetric

matrices space Mn for each fixed value of argument vy,, therefore, if it is more

convenient for use, instead of (4.38) the corresponding linear difference equation in

n(n+1)

space R 2 can beanalyzed.

Let denote V Banach space, which consists of symmetric nxn matrix

functions {q(y),y e Y} with norm

Jal="sup |(a(y)x.x)-

yey |xj=1
Let define a linear continuous operator in space V using matrix function

{A(y),yeY} and transition probabilities of Markov chain
(Ag)(y) :=J'AT (2)a(z) A(z) p(y.dz) (4.39)

All results from the section 4.1 can be adapted to the analysis of this operator.
The operator (4.39) has a property, which allows to simplify its analysis. The operator

(4.39) leaves as invariant a cone of non-negative defined matrix functions [37]

K:z{qu: inf (q(y)x,x)zo}

yeY |x|=1

with a set of inner points

K= {q eV: yeiyr‘ﬂl’;uzl(q(y) X,X) > O} .

A cone K partialy alowsto arrange space V using inequality
0,<<0,<0,—¢ kK.

qe]f{ if and only if such a c(q) existsthat q>>c(q)l, where | is unit matrix. This

arrangement makes possible easy to analyze behavior of the second moment of (4.5)

solution for t — o . It is convenient for use to consider a denotation for (4.5) solution
.« (K, y), what satisfies an initial conditions x =X, y, =y, and X(t+k,k,y)
for matrix (4.4) if y,=y. It is understood that x,, (k,x y)=X(t+kk y)x. If

(4.35) solution's the unconditional second moment exponentially decreases for
t > o0, thatis,
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EIC>O,Elle{6':|z|<1},VXGR“,Ver,VkeZ,Vt20:

“|

then [51] (4.5) is exponentially mean square stable. In this section it will be shown

that this property is rather easy to determine analyzing a positive real spectrum of
operator (4.39).

(4.40)

X (koY) s C2

Lets define how the operator A acts using the equation (4.5) solution.
Lemma4.3[9] Forany qeV,t>k>0, yeY and xeR"

((A'a)(y)% %) = E{(Q( o) Xt (K% ¥) Xesc (KX ¥)) T i = W)
Anaogicaly than (4.8), this formula follows from Markov property for a sequence
o

E{( (V) Xt (Ko X0 ¥) % (Ko X, Y)) Y = ¥} =
E{(A (Vo) A0V ) At ) Xt (K ¥) %is (K ) i = v} =

{ AT p(yt+k1d )h’h] }:
h=xX 1 (KX, Y) Y=y

E{((Aq yt+k—1)xt+k—1(k’ X y) , Xt+k—1(k’ X, Y))/ Yo = Y} ==
E{((A70) (V) X (ko % ¥) % (ko % ) v = v = ((A') () %, %)-
Using denotation (4.4), the statement of lemma can be rewritten in aform of matrix

(A‘q)(y): E{XT (t+ KK Y)a(Veu) X (t+K, K, Y) = y} : (4.41)

Theorem 4.2 The following assertions are equival ent:

m

(i) theeguation (4.5) is exponentially mean square stable;
(i)  such amatrix function ge K existsthat
Ag-q=-1; (4.42)
(iii) amaxima positive point of operator A spectrum r{A} is less than
unit.

Proof. (i) — (ii). Using equality

[E{x7(tLoy)X(1oy))|=

X1 (E{XT(t,O,y)X(t,O,y)}X,X)‘z

={(x(00.%)%x (0.0} ~swpE(x (0.x)

X=1

[x=1
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and conditions for exponentially mean sguare stability, an existence of matrix

function defined by equality

a(y)= Y E{X" (1.0.y) X (t.0,)}

t=0

can be proved. Taking into account an identity X (k,k,y)=1, from equality

i{ (t,0,y) (t,O,y)}:I+ZE{XT(t,O,y)X(t,O,y)}

t=0

inequality g>>1 follows. Therefore g e K . To finish the proof of the theorem's first

assertion, aformula (4.41) can be applied for matrix function q(y) =
Aq(y)-a(y)= A(ZA" ]—ZA"
t=0 t=0

o0

=> A" —iA‘I =—|
= t=0

t=0
(i) —>(iii). If qe]f&, then such a positive number c(q) can be found that
c(a)!l <<q<<||q|l, because Y is compact space and this matrix function is

continuous. Let assume that this matrix function satisfies equality (4.42). Then

inequality Agq—qg<<—-—- or A'q<<r'g should be into force for any te N, where

r :1—||q||_l e(0,1). Therefore

A'l <<LAt <

c(a)

forany te N, that is,

forany meN and

m

> ((Atg)( y) X, x)‘ <o (4.43)

X‘zl,er t=0

lim sup

m—>o0 ‘

for any matrix function g eV . Because the linear continuous operator A leaves as

invariant a solid cone K, such a positive spectrum point p(A) exists [37] that
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p(A)=sup{|Z,zec(A)} and for this spectrum point areal eigen-function (matrix

function) g, e K corresponds, that is, Ag, = p(A)q, . Therefore, if p(A)>1, then

m

lim sup Z((A‘qp)(y)x, X):oo.

M= |%=1,yeY 1—o
Thisis contradictory with (4.43).

(iii) —>(i). Because the operator A leaves as invariant a cone K, such a positive
spectrum point r(A) exists [37] which satisfies r(A)=maxRe{c(A)}.
Consequently, if r(A)<1, then o(A)c{zeC:|4<1} and then such constants
c>0 and 1 €(0,1) exist [37], that HAtHSCﬁJ for al t e N. Now an inequality

E

X, (K, X, y)‘2 = ((Atl )(y) X, x) <ca'|x’
can be used and the theorem is proved.

If the matrix function { A(y),ye Y} is near constant and can be represented in

a form of uniformly convergent series (4.13), where £ (0,1) is a small parameter,

then considerations can be made similarly as in the section 4.1 for mean square
. : : : : n(n+1) :
reducibility of equation, changing a dimension from n to — of matrix A(e)

and matrix-basis B(s) . Due to this increasing of dimension the calculation becomes

more complicated and therefore an algorithm for the behavior anaysis of the second
moments of equation (4.5) solution described below can be useful. This algorithm is
based on the application of the statement (iii) of Theorem 4.2, since according to (iii)

an isolated positive major by module eigenvalue ﬁ:(s) of operator (4.39) should exist.
If matrix (4.13) analytically depends on parameter &, then this operator in some
neighbourhood |&] < &, also analytically depends on & and its isolated eigenvalue

/i(e) also can be represented in a form of series by powers of &. For finding

decomposition A(g)=4,+&4+... a basis B(g) in a root subspace of this

eigenvalue will be needed. If an eigenvalue has dimension m, then a basis consists of

m elements from space V and it can be represented as row

é(e) = {61(5)62(3) b (g)} . A basis can be represented in a form of series [33]

CEXER
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B(g):=B, +£B +&°B, +... for sufficiently small ¢. Because a total projector in a
root subspace aso is an analytic function of parameter &, then a matrix f\(e) of
operator A (&) restriction A(s) on this subspace aso can be represented in a form
of series A(g)=A,+&A,+&%A,+.... Following to the considerations from the

section 4.1, the equations for finding 4;, f\j and éi for adl j=0,12,... can be

written:
A B, =BA’ (4.44)
A B -BAl =BAl -AB, (4.45)
AB,-BAl =BAl +BAT —-A,B —AB (4.46)

Some remarks in connection with possibilities to simplify the calculation. At first, the
representation of matrix A(e) in aform of series by powers of parameter ¢ can be
chosen in such a way, that all matrix A, eigenvaues {v,,v,,...,V, }, which are by
module equal to spectral radius p, = p(A)), are ssimple, where k is total multiplicity
of above described eigenvalues. Since the space consisting of continuous nx n-matrix
functions can be represented in a form of tensor product V :zC(Y)@R” ®R" and

operator A, as a tensor product ?® A, ® A, the largest by module eigenvalues of

this operator create a set {vjv,,l =12...,k;] :12,...,k} . Then the largest by module

real positive eigenvalues of operator AO has a form [34] /?0 =p, and has a
multiplicity m= 2k . Therefore, in the root subspace corresponding to this eigenvalue
abasis B, can be chosen so, that AT = pZI , where | — unit mxm matrix. Now using

this basis the following operator can be defined

(iv)( y)= A\V-pX (4.47)
and equation (4.45) can be rewrittenin aform
(L8)(y)=BA] -AB,. (4.48)

Now the Fredholm theorem about normal solvability should be applied to the equation
(4.48), using the conjugated equation in space of matrix-valued measures, as it was
described in the section 4.1. The orthogonality of the (4.48) right side to all elements

66



of operator I kerndl is necessary and sufficiently condition for the existence of the
equation's (4.48) solution. Therefore for (4.48) solvability, taking into account

B, =1, itisenough to ensure equality

[ BA] -AB, | u(dy)=0, (4.49)
Y

from which ]\1 can be found. Substituting it in (4.48) él can be found. Then

proceeding with further equations Az and I§2 can be found, and so on until necessary

accuracy is obtained.

4.3 Equations with independent coefficients

If a sequence {yt,teN} consists of independent random variables having
identical distribution p(dy), then analysis of covariance of (4.5) gets simpler. In this
case, similarly as in analysis of the first moments, the operator's A defined by

formula (4.39) restriction A on space of constant real symmetric nx n-matrices M, :

Aq:=E{A (y,)0A(y,)} = IAT p(dy)

and the cone of positive defined matrices K. = Mn AK can be used.

Corollary 4.1 Let consider that a sequence {y,,teN} consists of independent
random variables and the other conditions of Theorem 4.2 are satisfied. Then
following statements are equival ent:
(i) theeguation (4.5) is exponentially mean square stable;
(i)  suchamatrix qe K, exists, that
Ag-q=-1; (4.50)
(@iii)  maximal by module spectrum point r{A} of operator A is less than

unit.
The statement (iii) allows rather easy to analyze the solutions of m-dimensional scalar

difference equations behavior

m-1 m-1
Xn+m = Z ak+1xn+k + CZ h.<+1yn+k+1xn+k ’ (451)
k=0 k=0
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where {yk} is a sequence of identically distributed independent random variables

with mean value zero and unit variance. This equation can be rewritten in vector form

inspace R™:
— — m-1 —
Xn+l = Axn + Cz yn+k+lHk+lxn ! (452)
k=0
where
0 1 0 0 0 O O 0O O 0
0O O 1 0 0 O O 0O O 0
0O O o ... 1 o 0o.. 0o 0 O .. O
a, a,, a,, ... & O 0 .. 0 h, O .. O

According to Corollary 4.1 the second moment of any solution of equation (4.52) is

exponentially decreasing if and only if for some 0< p <1 a positive defined matrix

solution of equation
ATgA+c?) H{gH, = pq
k=1
exists. Therefore, if eigenvalues of matrix A are located inside circle {|7 <1}, then

such a positive number ¢ <r? exists, that the second moment of each solution E|x,|*

of equation (4.51) tends to zero if n— oo, but in case if ¢®>r? then unlimited

increasing solution exists. Submitting this number r? in the previous matrix equation:
ATgA+r?) higH, —q=0. (4.53)
k=1

It can be rewritten in aform of equations system for matrix elements q:= {qu} :

Ghi =0 O =0 ---s Ghia = Uoms Oy :Zq2i31,

i=1

O =0 Gz =Uasr -+ ot = Ggmr Qo :zqsiaw

i=1

O :(af + rzhf)qu+...+(a§1 + rzh,i)qmm +
+28,8, (G, +...+ 28,3, Gy + 28, 18 ,0pg . F
+28,, 18,0y + ..+ 28,80y e

From these equalities form of matrix-solutions can be found:
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Om  Omwam Omom -+ Gm %m Ohm
Ontm G Omam - Gam Sm Oom
Onom Onam G -+ Osm Qam Gem
q =
Bn  Tm Gm o+ O Ooam Oneam
Bm %m Lm ¢ Oeim G Ooam
Gm  %m  &m -+ Onom Onam G

and then from (4.53) a system of m linear equations for numbers q,,, j=12,...,m

can be easy found:

qim - z al q(m—i—1+l)m - z a'm—i—I+lq(m—I+1)m = O' i = :L 2' ce m-1 (454)
I=1 I=1

m m-1 |
Chrn [1—Z(ai_i+l - rzh,i_i+1)]— 2> Y a8 uln =0 (4.55)

i=1 =1 s=1
Because of number r? existence, this equation should have nontrivial solution and
therefore a determinant of equations system (4.54)-(4.55) should be equa to zero.
Taking into account the form of analyzed equations system the following conclusion
can be made, that its determinant is a linear function of parameter r? and this number
can be found as ratio of two parameters. Lets illustrate above described algorithm on
example analyzing existence of a stable stationary process GARCH(p,q) [13] having

the second moment defined by formula
p q
Ol =0+ Y. QO+ 2. 000 E . (4.56)
k=1 =1

Let consider &7 - a stationary process satisfying the formula (4.56) and x =67 —67.
If s*= E{(gf—l)z} exists then a difference equation in a form (4.51) for x, can be
written, where & = (&7 -1)s?, c=s*, m=max{p,q},

6 +6, if p<g=m, k=12,...,p,

a =14, if p<gq=m, k=p+1p+2,...,m,
o, if g<p=m k=q+Lg+2,...,m,

h. =6, for k=12,...,q and h, =0 for k> q. Any process satisfying (4.56) tends to
stationary if and only if the second moment of equation (4.51) tendsto zero if t - .

A number r? can be found and compared to ¢®:=s*. If inequality s’ <r? isinto
force, then GARCH(p,q) process defined by (4.56) converges to stationary for t — .

This condition is aso necessary for existence of unconditional second moment of
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conditional variance . The proposed agorithm is rather simple to use. It is
particularly simple for small values of p and g. For example, for model GARCH(2,1)
equations system for finding r* has aform:
A (2, ~1)+ad, =0,
28,8,q, —(1-&7 —a; b ) o, =O.

Substituting a, =¢,+6,, a,=¢,, b =6, and equating to zero, a critical value of r?

can be found:
a-1 & , ,
o |2as, ava1_(+a)|[@-4) -(4+a) ]
a-1 a 67 (1-¢,)
0 bf

As consequence, a stationary process GARCH(2,1) with the second moment of

conditional variance exits if and only if the fourth moment s*:= E{(gf—l)z} of

random perturbations {¢, } satisfies inequality

(1+ ¢2)|:(1_ ¢2 )2 - (¢1 + 01)2:|
912 (1_ ¢2) .

S <
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Conclusion

In this doctor thesis it is shown that for asymptotica analysis of Markovian
iterative procedures, which are presented in a form of linear difference equation, as a
base a construction of discrete semigroup for the covariance matrices and spectral
anaysis of the semigroup generator can be chosen and spectra theory of positive
operators in Banach space can be used. Against this background it was possible to
elaborate a specia version of the second Lyapunov method for mean square
asymptotic stability analysis of difference equations with near to constant coefficients.

As main result of the doctor thesis is developed methodology for analyzing

convergence to zero of the unconditional second moments of the linear difference

equation as t tends to infinity E{‘x[(k,x, y)‘z}TO. For this reason two

theorems (Theorem 4.1 and Theorem 4.2) and two lemmas (Lemma 4.1 and Lemma
4.2) were proved. For the simplifying the description at first the algorithm was
elaborated for the first moments dynamics analysis and then adapted to the analysis of
the second moments matrix of difference equation solution. It is shown that in case if
random perturbations are independent identically distributed the proposal method gets
simpler. Kato perturbation theory for spectral projector decomposition was used.
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