
University of Latvia
Institute of Mathematics and Computer Science

OSKARS VILITIS

METAMODEL-BASED TRANSFORMATION-DRIVEN
GRAPHICAL TOOL BUILDING PLATFORM

Thesis for the Degree of Doctor of Philosophy
at the University of Latvia

Field: Computer Science
Section: Programming Languages and Systems

Scientific Advisor:
Prof., Dr. Habil. Sc. Comp.

AUDRIS KALNINS

Riga – 2009

2

TABLE OF CONTENTS

INTRODUCTION... 5

CHAPTER 1 METAMODEL-BASED

GRAPHICAL TOOL BUILDING PLATFORMS... 10

1.1 Basics of the Metamodeling... 12

1.2 Transformation Languages... 14

1.3 Model-Driven Approaches in Software Development .. 16

1.4 Paradigms of the Metamodel-Based Graphical Tool Building Frameworks.......... 18

1.4.1 General Principles of Paradigms... 18

1.4.1 Areas of applicability ... 21

1.5 Existing Non-Eclipse Platforms ... 24

1.5.1 MetaEdit+.. 24

1.5.2 Microsoft DSL Tools ... 26

1.5.3 Generic Modeling Tool .. 28

1.5.4 GrTP.. 29

1.6 Eclipse-Based Platforms .. 30

1.6.1 GMF .. 30

1.6.2 Tiger .. 32

1.6.3 ViatraDSM .. 32

CHAPTER 2 ECLIPSE TECHNOLOGIES USED FOR THE DEVELOPMENT . 34

2.1 Eclipse Modeling Framework .. 34

2.2 Graphical Editing Framework.. 37

2.3 Graphical Modeling Framework .. 39

2.4 Other Presentation Frameworks ... 41

3

CHAPTER 3 METACLIPSE: BUILDING TOOLS BY MODEL

TRANSFORMATIONS IN ECLIPSE.. 42

3.1 Methodology for Using the Model Transformations in Tool Building 43

3.2 Basic Principles of the METAclipse Framework.. 46

3.3 Application of Model-Transformation-Based Approach in METAclipse 50

CHAPTER 4 A PROXY APPROACH TO EXTERNAL MODEL REPOSITORY

INTEGRATION IN ECLIPSE EMF INFRASTRUCTURE 53

4.1 Motivation for the External Repository Integration in EMF 54

4.2 Integration Solutions.. 56

4.3 Objectives of the Integration .. 58

4.4 Applying the Proxy Pattern.. 59

4.5 Implementation of the Proxy for EMF: “Wise” Objects 62

4.5.1 External Repository API .. 63

4.5.2 “Wise” Objects as an EMF Extension .. 63

4.5.3 Repository Change Notification ... 67

4.6 Applicability of the Presented Approach.. 69

CHAPTER 5 TECHNICAL SOLUTIONS OF THE METACLIPSE 72

5.1 Interaction with the Repository and Transformations ... 73

5.1.1 Repository Interface ... 73

5.1.2 The Link between Eclipse and the Repository: “Wise” Objects 74

5.2 General Description of Presentation Engines.. 75

5.2.1 Presentation Metamodel Structure.. 77

5.2.2 The Common Part of the Presentation Metamodel (general Package) 79

5.2.3 Interaction between the Transformations and Engines 83

5.3 Project Tree Engine ... 86

5.4 Menu Engine ... 89

4

5.5 Properties Engine... 90

5.5.1 General Part of the Properties metamodel... 91

5.5.2 Property Editors and Commands .. 94

5.6 Graph Diagram Engine .. 97

5.6.1 The General Part of the Graph Diagram Engines Metamodel 98

5.6.2 Palette Part of the Graph Diagram Engines Metamodel 101

5.7 Transformation Structure ... 102

CHAPTER 6 PRACTICAL APPLICATION OF METACLIPSE: THE MOLA TOOL

.. 106

CHAPTER 7 CONCLUSIONS AND FUTURE WORK... 109

REFERENCES ... 114

5

Introduction

In software engineering the MDSD (Model Driven Software Development, [1])

approach has gained continuously increasing popularity in recent years. The basic idea of the

MDSD technology is to drive the whole software development process by specialized models

that correspond to each development phase. These models not only serve as documentation of

various aspects of the system, but also become a direct constituent of the software. In practice,

various specialized modeling languages are nowadays used for description of the MDSD

models. These languages (called Domain Specific Languages or DSLs, [2]) allow describing

models of some specific problem domain more clearly and effectively by using notation

designed specifically for the given domain.

Along with the introduction of MDSD in software development processes and its

application to new problem domains, a constant need for creation of new DSLs arises. In order

for the new DSLs to be practically usable, it is also mandatory to develop supporting tools,

i.e., editors for the programs (models) of newly developed DSLs. Creation of such tools is a

very time consuming process, which requires a lot of effort. Therefore, there is a need for

some means of speeding up and easing the development of DSL tools.

One way of making the development of DSL tools easier is using a supporting

universal metamodel-based tool building platform that allows simplified tool definition by

creating a correspondence between the metamodel of the DSL (domain metamodel) and the

metamodel of the tool being built (presentation metamodel). The research leading to this

thesis is devoted exactly to this topic: universal metamodel-based tool building platforms.

It must be noted that the idea of universal metamodel-based tool building platforms is

not new, and the history of such platforms can be traced to more than twenty years ago. GMT

(Generic Modeling Tool, [3]), developed in UL IMCS, is among many platforms created

during this time. GMF (Graphical Modeling Framework [4]), Microsoft DSL Tools [5] and

6

MetaEdit+ [6] can be named as the most popular tools of the recent years. All of the

mentioned platforms belong to the category of tools that use static mappings for defining the

correspondence between domain and presentation metamodels. The means available for

definition of such mappings are limited: tools provide a fixed set of mapping types that can be

used to map the model elements. This way of defining the correspondence is appropriate for

relatively simple cases where the domain metamodel is close to the presentation metamodel,

and no advanced mapping is required.

Unfortunately, DSL tools often require much more complicated and dynamic mapping

logic. In order to satisfy the DSL needs, static mapping definitions alone are not enough, and

in order to implement the required functionality, it is often necessary to write a supplementing

logic in one of the object-oriented programming (OOP) languages (Java for GMF, C# or

other supported language for Microsoft DSL Tools, etc.). This approach requires the user of

the platform to have deep knowledge both in the corresponding OOP language and the

platform architecture, so the usability and efficiency of these tool-building platforms are still

unsatisfactory.

In order to overcome the constraints of static mappings, a new approach has emerged,

which uses model transformations for the definition of the correspondence. This approach

allows the definition of very complex mapping logic in a uniform way and does not require

additional usage of OOP languages. This transformation approach is used in such platforms as

Tiger [7], Tiger GMF [8], ViatraDSM [9] and MOFLON [10]. However, these platforms still

do not allow complete freedom in mapping definition.

Despite the long history of research of metamodel-based tool building platforms, one

must come to the conclusion that the desired result still has not been achieved: a completely

universal and efficient solution for defining the correspondence between DSL and tool

metamodels has not been found. Therefore, the problem of creating an optimal DSL tool

building platform is still open. This thesis offers a new solution to the given problem: a

7

metamodel-based tool building platform that is completely driven by model transformations.

The newly developed methodology has the potential of finally achieving the desired

universality and efficiency in tool building arena.

One of the main results of the research carried out by the author is the methodology

that allows using model transformations in building metamodel-based tools. The practical

solution proposed by the author, METAclipse [11], demonstrates application of this

methodology in developing a platform for building DSL editors. The methodology itself,

however, can be used more generally, for creating a variety of transformation-driven

metamodel-based tools. Also the formalization of the presentation mechanisms that has been

created for the METAclipse platform (the Eclipse presentation metamodel) is important by

itself, as it allows looking at the Eclipse platform [12] through a modeling perspective and

driving the elements of the Eclipse platform through formal models. An interpreter of the

presentation metamodel has also been created (it is an extension of the Eclipse engines, which

fully utilizes their features), allowing to visualize the instances of the metamodel in

corresponding Eclipse engines.

As an interesting side result with its own scientific value, the developed methodology

for external repository integration in the Eclipse EMF environment must be noted. Practical

application of the methodology has been demonstrated by integrating the MIIREP [13]

repository in the METAclipse platform. The methodology itself, however, can be used more

generally for integrating an arbitrary MOF-isomorphous model repository.

The most straightforward proof of the practical significance is the use of the

METAclipse platform in the development of the MOLA language [29] editor. EU 6th

Framework project ReDSeeDS (Requirements-Driven Software Development System, [14]),

which is aimed to develop methodology and supporting tools for a real (in the sense of MDA

[15]) model-based system development, bases the whole development on the newly created

MOLA editor.

8

The research results presented in the thesis have achieved the desired efficiency in

building complicated DSL editors, exceeding the capabilities of currently available tools.

However, the static mapping approach is admittedly more efficient for simple DSLs. By

combining the transformation-driven approach with the possibility to use static mappings, the

developed methodology has a potential to reach or even exceed the efficiency of the existing

solutions also in the development of editors for simple DSLs. Currently this topic is actively

being researched in UL IMCS.

The thesis presents a newly developed Eclipse-based platform METAclipse, which

practically implements the developed methodology and defines the presentation metamodel

consisting of several parts, the most important of which is the graph diagram metamodel.

METAclipse provides engines driven by these metamodels, which are incorporated in a very

simple architecture allowing easy use of transformations. Following chapters give an in-depth

description of the developed methodology and architecture of the METAclipse platform,

overview of all principles and technologies utilized by the platform, and technical solutions

created for METAclipse:

• CHAPTER 1 outlines the main ideas and basic principles of metamodel-based

graphical tool building platforms. The reader is thus given the basic knowledge needed

for understanding the research carried out by the author, as well as the significance of

the results achieved. At the end of the chapter, two metamodel-based graphical tool

building approaches are compared: the static mapping approach and the model

transformation approach (METAclipse follows the latter). It is also explained which

situation is more suitable for which of the approaches. This chapter of the thesis also

gives an overview and analysis of the most popular metamodel-based graphical

modeling tool building platforms of the recent years.

9

• CHAPTER 2 briefly describes the Eclipse technologies used for the implementation of

the METAclipse platform. Justification for the suitability and use of each technology is

given, along with a description of the extent to which each of them has been used in

METAclipse. This chapter provides the reader with the basic knowledge needed for

understanding the solutions described in the following chapters.

• CHAPTER 3 explains the basic principles of the developed methodology for the

application of model transformations to building metamodel-based tools. It also

explains the main operating principles of the METAclipse platform and provides

description of the main components of the tool.

• CHAPTER 4 gives a detailed description of the solution for external repository

integration in the Eclipse EMF environment. The chapter also analyzes the practical

applicability of the solution.

• CHAPTER 5 gives a detailed description of technical solutions developed for

METAclipse. It also analyzes in greater detail the metamodels of all the developed

engines.

• CHAPTER 6 demonstrates the practical application of the developed tool building

platform: the editor of the MOLA graphical transformation language.

• CHAPTER 7 lists the conclusions accumulated during the development of the thesis.

Also, possible future directions of the research in metamodel-based transformation-

driven tool building platforms are outlined.

10

CHAPTER 1

Metamodel-Based Graphical Tool Building Platforms

When introducing metamodel-based graphical tool building platforms, it is worth

taking a brief look at their history. The first simple generic metamodel-based tool building

platforms, such as MetaEdit [16], Kogge [17] and early versions of Dome [18, 19], appeared

already in the mid-nineties, but their capabilities were quite limited. Tools of the next

generation, such as MetaEdit+ [6], GME [20] and ATOM3 [21], appeared around year 2000

(the first version of MetaEdit+ appeared much earlier [22]). These tools already had domain

metamodeling facilities close to MOF [23] and more advanced graphical capabilities. They

made it possible to base visual languages on a presentation-independent metamodel (such as

the UML [24] metamodel). The GMT (Generic Modeling Tool [3]) tool building platform,

developed at UL IMCS, also belongs to this category.

The popularity of DSLs has grown in recent years, and these languages are

increasingly being used in everyday software development tasks. As a response to such

increased popularity, a completely new generation of tool building platforms has emerged.

One such group of platforms is based on the open-source Eclipse platform, which, together

with its EMF plugin, is a broadly used, popular metamodeling environment, close to MOF.

Historically first and still the most popular among Eclipse-based graphical tool building

platforms is GMF [4]. Alternative Eclipse-based solutions are provided by the

Pounamu/Marama [25] environment and the GEMS project [26]. A popular alternative to

Eclipse on a commercial basis is offered by Microsoft DSL Tools [5], available in Microsoft

Visual Studio starting from version 2005. The logical capabilities there are quite close to

GMF. The already mentioned MetaEdit+ has significantly evolved in recent years and has

also become a key player in this area.

11

In order to define the correspondence between the metamodel of the DSL language

and the presentation metamodel, all of the above-mentioned solutions use the so-called static

mapping approach. This means that for the definition of the correspondence a fixed set of

patterns is used, which describes which presentation objects correspond to a given domain

object. Furthermore, this set is fixed at development-time and cannot be changed during

runtime. Such approach is suitable for relatively simple cases, when domain and presentation

metamodels are close and no complicated mapping logic is required. Whenever metamodels

have more significant differences, the correspondence cannot be defined through static

mappings and some traditional programming language has to be used in order to define the

mapping. This requires a deep knowledge and understanding of the architecture of the tool

building platform itself and is not easy to implement.

In order to solve this problem, a new approach has appeared: to define this mapping by

model transformation languages. Model mappings in tools are actually very close to

traditional MDA tasks, for which model transformation languages were invented. Therefore

these languages can be considered very appropriate DSLs for metamodel-based tool building,

yielding development efficiency that is an order of magnitude higher when compared to that

of OOPLs.

The first platforms using this approach to a degree are Tiger [7], ViatraDSM [9], and

MOFLON [10]. However, these platforms still do not provide complete freedom in the

definition of mappings. So, for example, the Tiger platform uses a specific domain modeling

notation, which still forces the domain metamodel to be close to the presentation metamodel.

The other tools have similar constraints. The subject of the research for the thesis is a

completely transformation-driven platform, which does not have any constraints on how the

correspondence between the metamodels can be defined. The goal of the research is to

develop a universal metamodel-based tool building platform that would be driven by model

transformations.

12

Further subdivisions of the chapter will describe the basic concepts and principles used

in metamodel-based graphical tool building platforms. In the beginning, basic metamodeling

concepts are introduced and process of the model transformations explained. Then the model-

driven approaches in software development are introduced. In chapter 1.4, two approaches for

the graphical tool building platform architectures are described. The last part of the chapter

concentrates on describing some of the most popular metamodel-based graphical tool building

platforms. Key features and brief analysis of each platform is given.

1.1 Basics of the Metamodeling

In order to understand the subject of the thesis and the principles of the graphical tool

building platforms, it is necessary to first understand the basic ideas of metamodeling. This

chapter will give an explanation of the main terms of metamodeling.

Metamodeling as such is a construction of the collections of concepts (objects,

phenomena, terms, events, etc) within a certain domain. In metamodeling, a model is an

abstraction of phenomena in the real world. It is a set of interconnected objects, which usually

is presented in the form of a graphical image, where different kinds of elements are shaped

and laid out according to certain rules (graphical representation is not obligatory: a model can

also be textual).

Metamodel is yet another level of abstraction, which describes the properties of the

model itself. The model is said to conform to a metamodel as a program conforms to the

grammar of the language in which the program has been written. So, for example, the

grammar of the UML [24] language is the UML metamodel. Metamodels are also referred to

as models of models.

Other examples of metamodels include the metamodels that define the elements for

describing the organizational structure of a company, as well as models describing automotive

engineering processes and models of physical processes, etc. In any case, a metamodel

13

defines rules for creating new models. Models conforming to a certain metamodel are also

called instances of the metamodel.

Classic metamodeling is based on an architecture that consists of four meta-layers:

• The information layer contains the data that we want to describe, i.e., the real-world

objects.

• The model layer contains metadata that describe the data of the information layer.

Informally these metadata are known as models.

• The metamodel layer contains meta-metadata, which define the structure and

semantics of the metadata. Informally meta-metadata are referred to as metamodels.

Metamodels are abstract languages that allow describing different kinds of data, i.e.,

they are languages without a concrete syntax or notation.

• The meta-metamodel layer contains definitions of the elements for description of the

meta-metadata structure and semantics. In other words, it is an abstract language for

definition of different kinds of metadata.

The most popular formalization of the four-layer architecture is MOF (Meta-Object

Facility [23]). In MOF terminology the four layers of the architecture are called

correspondingly M0, M1, M2 and M3 (see. Fig. 1). MOF defines a metamodel at the M3 layer.

This metamodeling language is being used for creating metamodels at the M2 layer. The most

prominent example of an MOF M2 model is the UML metamodel: the model that describes

the UML modeling language. M2 models describe elements at the M1 layer (for example,

UML models), which, in turn, describe the M0 layer: the real-world objects.

Because of the similarity of the MOF M3 model and UML structural models, MOF

metamodels are usually modeled as UML class diagrams. In fact, MOF2 even reuses parts of

the UML metamodel. MOF is a closed metamodeling architecture: it defines an M3

metamodel that conforms to itself.

14

MOF Model

UML
Metamodel

Some Other
Metamodel . . .

. . .
UML Models

Instances of
Some Other
Metamodel

M3 Layer
(Meta-Metamodel)

M2 Layer
(Metamodel)

M1 Layer
(Model)

M0 Layer
(Real-World Objects)

Fig. 1. MOF architecture

Some typical examples of the models:

• Business process model (UML activity diagram).

• System requirement specification (UML use-case and activity diagrams).

• System analysis model (UML class diagrams).

• Workflow definition (BPMN [27] or similar language).

1.2 Transformation Languages

As the focus of the research of the thesis is a transformation-driven platform, a couple

of words have to be said also about model transformations. Let there be a model Mo1 that

conforms to a metamodel MMo1 (see Fig. 2). Then a transformation of this model is a process

that transforms it into another model Mo2 by following certain rules, so that it conforms to the

metamodel MMo2 (MMo2 can also be the same as MMo1). Thus, a model transformation is a

set of rules that determines how a given model has to be transformed. In MOF terminology,

the transformation process is defined at the M2 layer and transformation itself is carried out at

the M1 layer.

15

Source Metamodel MMo1
(described using MOF in

OMG approach)

Transformation Definition

Target Metamodel MMo2
(described using MOF in

OMG approach)

Source Model Mo1
(PIM in OMG approach)

Transformation Execution

Target Model Mo2
(PSM in OMG approach)

Fig. 2. Transformation execution process

In order to be able to define model transformations, a specialized programming

language—a model transformation language—is required for description of the model

transformation processes. A program written in a given transformation language typically

takes an instance of some metamodel as input data and returns an instance of some other (or

the same) metamodel as a result. In the aforementioned example, the input data of the

transformation program are Mo1, and the result is Mo2.

The history of transformation languages is also quite long. In 2002 OMG announced a

tender for the development of a standard for the transformation language QVT (Queries /

Views / Transformations). Several projects were submitted for the development of the

standard, most of which were either discontinued or merged over time, until just one project

remained: MOF QVT [28]. 16 institutions participate in the development of this standard,

among which are IBM, Sun, and four universities. It must be noted that the final version of

this language was approved only recently.

At the same time a series of other transformation languages were developed that were

not directly associated with the OMG tender. It is interesting that the existing transformation

languages are still being extended and new languages created. Amongst them are both

graphical and textual languages. Special attention has to be brought to the graphical model

16

transformation language MOLA [29, 58], which is being developed in UL IMCS and is used

also for driving the METAclipse tool.

1.3 Model-Driven Approaches in Software Development

In the end of the nineties, enough experience had been accumulated to introduce a new

paradigm in software development. Software industry had well accustomed technologies like

metamodeling, model processing, use of UML in software engineering, various component-

based environments, object-oriented languages, etc. Still, all of this had not given the

expected efficiency increase in software development. In year 2000, OMG started a new

project: model-based architecture (MDA, [15]). First notable results were presented in the end

of the year 2001 when OMG published the first version of the MDA guide explaining the

basic ideas of MDA and its applications.

MDA bases the whole software development process on special models, and these

models become direct development artifacts. Three kinds of models are used by MDA:

• Platform-Independent Model (PIM), a model that does not contain any platform-

specific information.

• Platform-Specific Model (PSM), a model that supplements PIM by information,

specific to a particular platform (EJB, .NET, CORBA, etc.).

• Computation-Independent Model (CIM), the conceptual model of a system or business

model. It must be noted that CIM usually represents a part of the documentation rather

than a formal model, understood by a computer.

In software development process these three kinds of models are used sequentially:

first, CIM is developed, then, according to CIM, PIM is produced. And finally, PSM is

produced from the according PIM. In order to transfer information from model to model,

17

model transformations are used. Model transformation process is the keystone in model-based

system development.

Over the time there has developed multiple approaches of how models and model

transformations are being applied in software engineering. In OMG terms, a classical MDA

application is designed in a way that it consists of one platform-independent model and one or

more platform-specific models accompanied by full implementations. During the application

development, transformations (that are part of the development process) are used. It must be

noted, that only means of metamodeling allowed in MDA are the ones provided by OMG

(namely, MOF and UML).

Another approach, MDSD (Model-Driven Software Development, [1]), does not tie

the development process to particular standards, but instead allows to use any formalized

metamodeling architecture. In specific problem areas a widely accepted approach is to use

specialized modeling languages, so-called Domain-Specific Languages (DSLs, [2]). These

specialized languages allow using domain-specific notation for describing the domain, which

is in most cases much more appropriate than the use of the plain UML.

Another important difference in MDSD comparing to MDA is that in MDSD, any two

sequential models used in development process can be source and target models. The

categorization in PIM and PSM models is relative to the usage of the models and abstraction

level from which we look at them. So, for example, even such a specific model as Java

program, written in its abstract syntax, can act both as a PIM and as a PSM model. Such

program could be as a PSM model for a design class diagram or as a PIM model for a specific

development environment platform, which in its place is a PSM model for the

abovementioned Java program.

Due to the increasing interest in the MDA approach and the growing popularity of

various domain-specific languages (DSLs), the need for a possibility to rapidly build editors

18

for specific DSLs is increasing constantly. This is where metamodel-based tool building

platforms come in to play.

1.4 Paradigms of the Metamodel-Based Graphical Tool Building Frameworks

This chapter gives a brief analysis of the well-known static-mapping-based approach

and recently evolved, more flexible approach driven by model transformations, where the

correspondence between the domain metamodel and the presentation metamodel is defined by

transformations. Both static-mapping-based and transformation-driven approaches are

compared and their applicability for different situations is analyzed.

1.4.1 General Principles of Paradigms

A visual language basically consists of two parts – the domain part and the

presentation (visual) part. Sometimes they are called also the abstract and concrete syntax

respectively – the terminology taken from textual languages. For visual languages the mostly

used syntax specification technique is metamodels. Sometimes graph grammars are used too

(this possibility will not be analyzed here).

The domain part of the language is defined by means of the domain metamodel, where

the relevant language concepts and their relationships are formalized. The domain metamodel

is used also for precise definition of language semantics. Typically standard MOF [23] is used

for the definition of domain metamodel. Some frameworks (Microsoft DSL Tools [5],

MetaEdit+ [6], Tiger [7], and ViatraDSM [9]) use a slightly alternative notation for domain

metamodels, where those metamodel classes, which correspond to edges in diagrams, are

singled out and called relationships (actually they are equivalent to UML association classes,

which formally are not part of MOF). A note on terminology should be added here. Though

according to general modeling principles the language domain is defined by its metamodel,

several frameworks, including GMF and MS/DSL Tools, call the definition the domain model.

19

For the presentation part (concrete syntax) there is no universally accepted notation.

The same metamodeling techniques typically are used, but with various semantics. During the

definition of the presentation part, for example both GMF and MS/DSL Tools use a

presentation metamodel. Instances of classes in this metamodel are types of diagram elements

to be used in the diagram (e.g., ClassNode, AssociationEdge). A concrete set of graphical

element types for a diagram definition is called the presentation (or graphics) model. During

runtime GMF uses another metamodel (notation metamodel), where instances are specific

graphic elements in a diagram (nodes, edges, etc.).

As already mentioned, metamodel-based tool building platforms can be divided in two

categories: depending on how they are defining the correspondence between the domain and

presentation metamodels. The most traditional is the static mapping definition approach. In

this approach, during the development of a specific DSL tool, a presentation metamodel

element (for example, a graph node type, edge type, or label type) gets associated with a

specific element of the domain metamodel. This association is called mapping. By using such

mappings, domain elements get visualized. In the typical case, a specific node type is mapped

to a certain class of the domain metamodel, and a specific edge type is mapped to a certain

association of the domain metamodel. It means that all instances of the domain class will be

visualized using the given node type. The structure of the diagram elements (how elements

will be included in each other, how elements will be connected etc.) is also specified by the

mappings. Therefore, static mappings fully define the whole functionality of the graphical

tool. Different tools provide various additional tools allowing creation of more dynamic

mappings (for example, some tools allow to use OCL [30] constraints, while others use

specialized constraint languages).

Tools driven by static mappings usually have a generation step, during which the code

in some OOP language (Java, C++ or another) is generated, implementing logic described by

the mappings. However, code generation is not mandatory and some tools work as mapping

20

interpreters (for example, MetaEdit+ and GMT). In order to allow implementing logic that

cannot be described through static mappings, tools with the generation step usually provide

some mechanism allowing supplementing the generated code in the target OOP language.

An alternative to the static mapping approach is the model-transformation-driven

approach, which is the main topic of the thesis. In this approach, a correspondence between

the domain and presentation metamodels is defined dynamically, through the usage of the

model transformations that are described in an appropriate transformation language. These

transformations describe what corresponding changes have to be carried out in the domain or

presentation metamodel, if one of them is changed (in result of a user action or another

internal activity). Synchronization between models can occur in both directions. The key

distinguishing feature of the transformation approach, compared to the static mapping

approach, is the possibility to freely define any kind of relationship between the domain and

presentation metamodels. It should be noted that the transformation approach requires a

different model-metamodel terminology (transformations always process models defined by

metamodels). Therefore in the transformation approach by domain model we must understand

a concrete set of runtime instances, and by presentation model a diagram (or several

diagrams) representing this set visually. The definitions always are metamodels.

Let us conclude the chapter with some more comments on metamodeling. The defined

domain metamodel always is at the layer M2 according to the MOF hierarchy (it is defined

according to MOF itself, which is at M3). A concrete domain model (a runtime model in a

tool) is at M1. However, in the static mapping approach the presentation definition metamodel

is at M2 within the MOF hierarchy (it is not MOF itself, but a specific metamodel); the

defined presentation model (which contains the diagram element types) is at M1. The runtime

presentation model (also at M1) is not an instance of this definition model. This MOF layer

mismatch is not a problem for the generation approach. There only one metamodel/model

layer is used (metamodels for definition, corresponding models for generation of language

21

classes). However, the transformation approach (for all transformation languages) requires a

symmetric situation at both domain and presentation. Therefore the presentation definition

metamodels from GMF, MS/DSL Tools or other frameworks cannot directly be used for

transformations.

1.4.1 Areas of applicability

Here a brief discussion on DSLs is presented, in order to find out in what situations

which of the mapping approaches is superior. From the tool development perspective, most of

the industrial DSL languages (in telecommunications, process control, automotive industry

etc.) are relatively simple. Usually in these sectors no metamodeling standards are used and

the domain metamodel can be created from graphical notation used in practice. Examples of

such DSLs are usually used in the documentation of different tools (see, for example, [31]).

Here the mapping logic is very trivial: domain classes are associated with graph nodes;

associations with edges; class attributes with labels and so on. Of course, the runtime

semantics of these models is complicated, but this is a different dimension. For creation of

tools for these cases, the static mapping approach is very appropriate.

However, it has to be understood that the use of static mappings is this simple only in

cases when the correspondence between the domain and presentation metamodels is obvious.

In the software development industry DSL languages usually are much more complicated.

Often a given language already has certain domain metamodel standards, which are used for

the definition of formal semantics and are far from the concepts used for graphical

representation of the language. Furthermore, the interdependency among language elements is

much more complicated, including cases when the same elements are used in multiple

diagrams. When developing language editors, editing of the language elements typically has

to be made syntax-oriented, i.e., the editor must prevent the user from creating incorrect

constructs as much as possible. All these factors make the correspondence between the

22

domain and presentation metamodels very complicated and make the application of static

mappings less effective. For the transformation approach, on the other hand, the conditions

mentioned present no obstacles.

An example class of such complicated DSLs could be model transformation languages,

more precisely, the graphical ones. They include the OMG standard MOF QVT [28], the

MOLA language [29] used in this thesis, Fujaba language [32] and some others. Let us

consider a small fragment of the MOF QVT language. For this language, the OMG standard

provides the domain metamodel and both graphical and textual syntax. The domain

metamodel is quite far from the graphical form of the language.

Fig. 3. QVT template package

For example, the ObjectTemplateExp (see Fig. 3 or [28], page 30) domain metamodel

class has to be depicted as a pattern element (a rectangle similar to a class instance in UML).

An instance of this domain class can contain multiple instances of PropertyTemplateItem. If

the value association of the domain is pointing to a corresponding OCL expression, then each

23

of these instances has to be depicted as certain slot in the pattern element (a label within a

compartment in GMF terminology). If the value association is pointing to another

ObjectTemplateExp, then each of the instances has to be depicted as a link (edge) to another

pattern element. Another complicated task of QVT (as an example of a complicated DSL) is

composition of various texts, as they are composed from various domain classes, and the

content of the text depends on model data.

It is obvious that the described correspondence between the domain and the graphical

presentation cannot be specified with any static mapping definitions (and this is not the only

example of this kind in MOF QVT). If we tried to define this correspondence in GMF, this

would mean vast programming in pure Java (with just some generated classes to be reused).

On the other hand, by using transformations, the implementation of the given logic is

relatively simple.

The situation of the MOLA transformation language itself is similar to that of the QVT,

though the domain metamodel there is closer to the graphical presentation. However, the

requirement that the graphical tool must be syntax directed (and support a lot of context-

sensitive syntax constraints during diagram building) requires that the domain metamodel

must be "semantic" to a great degree. Therefore the correspondence between domain and

presentation is complicated in MOLA too. For example, each pattern element in MOLA

domain (a concept similar to that in MOF QVT) has only one of several possible paths in a

model to the corresponding class, the existing path must be found to display the class name as

a label in the corresponding node. The composition of label texts is as complicated as in

MOF QVT. A specific issue in MOLA tool (more related to property editing than mapping to

presentation) is the requirement to offer only relevant associations for building a pattern link.

To find the relevant list, a transitive closure of inherited associations in a class diagram must

be computed. There are other such complicated situations for property editors in MOLA too.

All the mentioned would make the implementation of MOLA tool by means of static

24

mappings quite complicated. At the same time, this thesis shows in CHAPTER 6 that a

MOLA tool satisfying all requirements has been built by reasonable efforts using the

transformation approach.

One more example from a completely different area would be a tool which would

visualize an RDF [33] data base as a simple class diagram, with update support too. This task

has become popular in the context of ontology development. The domain model implied by

typical RDF data bases [34] is a simplified metamodel for RDF triples [35]. To visualize RDF

data as a class diagram (containing also instances) in a natural way, a complicated analysis of

attribute values (of String type) for some RDF domain classes must be done. Only this way it

may be decided whether an RDF property should be visualized as an attribute or association.

Such a tool is apparently easier to be implemented by the transformation approach.

1.5 Existing Non-Eclipse Platforms

In order to provide a better understanding of the current situation in the world of

metamodel-based DSL editor building platforms, this and the following section will briefly

introduce some of the most popular of them. In these chapters, most characteristic features of

each platform will be described. Although the focus of the thesis is on Eclipse environment,

platforms based on other environments also are worth discussing, as ideas of the tool building

are similar regardless of the implementation technology. This chapter concentrates on non-

Eclipse solutions.

1.5.1 MetaEdit+

MetaEdit+ [6] tool is one of the most popular commercial DSL editor building

platforms and is used widely for development of DSL editors in various domains (mobile

communications, web application development, industrial processes, etc.). MetaEdit+ is using

a very simple metamodeling language called GOPPRR [22]. There are just Properties and

Non-Properties (which in turn can have Properties again). Non-Property-Types are Graph,

25

Object, Port, Role and Relationship, and for each of these types there is a creation

wizard/form. See Fig. 4 on how these terms relate to an example of a data flow diagram.

Fig. 4. A data flow diagram example in MetaEdit+

MetaEdit+ is using static mapping approach for definition of the correspondence

between the domain and presentation metamodels. A feature that distinguishes MetaEdit+

from other tools is its symbol editor (see Fig. 5). One does not have to specify the concrete

syntax by hand. Rather it is possible just to draw the component in a WYSIWYG-style editor

which makes the object creation process very simple. In particular it is not necessary to define

the mapping between the domain and presentation metamodels explicitly like in GMF; instead

it is done by the tool for you. This is possible because of the fact that mapping is very

straight-forward: objects correspond to nodes and relationships to edges of the diagram. Even

more: some properties of the presentation metamodel are encoded in the domain metamodel.

The relationships are specified by providing a so-called binding that tells the system which

object types may be linked together and in which roles.

26

Fig. 5. Symbol editor of the MetaEdit+ tool

Some other advantages of MetaEdit+ are:

• feature-richness, e.g., sophisticated editors for components,

• good documentation and plenty of examples,

• high integration,

• possible Model2Code transformations.

Being a tool using the static mapping approach, MetaEdit+ is suitable for creation of

editors for relatively simple DSLs with more or less straight-forward correspondence between

the domain and presentation.

1.5.2 Microsoft DSL Tools

“The Microsoft Tools for Domain-Specific Languages [5] is a suite of tools for

creating, editing, visualizing, and using domain-specific data for automating the enterprise

software development process” [36]. MS/DSL Tools employ the Software Factories approach

that is introduced by [37] and extend on the Microsoft’s notation for Domain Specific

Modeling which is a specific realization of MDE standards and principles (see, for example

[38] for more detailed description). Also MS/DSL Tools suite uses the static mapping

27

approach for tool definition. One of the main distinguishing features of the MS/DSL Tools

platform is the sophisticated integration with other Microsoft Visual Studio tools, which also

is the reason for its popularity among developers utilizing Microsoft technologies.

MS/DSL Tools use its own meta-metamodel, which offer classes, value properties, and

relations such as embedding (composition), reference (aggregation) and inheritance (see

Fig. 6).

.

Fig. 6. Simplified version of MS/DSL Tools meta-metamodel

The MS/DSL Tools suite consists of:

• A project wizard for creating a fully configured solution. In this solution, one can

define a domain metamodel that consists of a designer and a text output generator.

• A graphical designer for defining and editing domain metamodels.

• Graphical facilities for defining the mapping between the domain metamodel and

presentation elements. Mappings are defined graphically by drawing special mapping

lines from domain elements to presentation shapes and connectors.

• Designer definitions in XML (mappings). The source code for implementing designers

is generated from these definitions.

28

• A set of code generators, which take a domain metamodel definition and a designer

definition as input, validate it and produce source code that implements both

components as output.

• A framework for defining template-based text output generators.

The main steps in building a DSL in MS/DSL Tools are:

• Defining the domain metamodel in .dsl file.

• Defining the notation elements such as shapes and connectors. The XML serializations

of notation elements are automatically generated and stored in a separate file named

.dsl.diagram.

• Defining visualization of domain metamodel via notation elements (mapping shapes to

classes and connectors to relationships).

Following the static mapping path, MS/DSL Tools platform also is suitable only for

relatively simple DSLs and straight-forward mappings (even fewer capabilities than in GMF

are provided). In more complicated cases, this platform allows to manually add the required

functionality by writing the code in one of the languages supported by the Microsoft Visual

Studio.

1.5.3 Generic Modeling Tool

Another tool based on the static mapping approach is the Generic Modeling Tool

(GMT, [3]), developed in UL IMCS. This tool can be considered as one of the pioneers of the

metamodel-based modeling tool building platforms. At the time when this tool was created, it

was one of the most sophisticated DSL editor building platforms available. It can be said that

the research for this thesis is directly inspired by the results and experience of the GMT

development and practical application, accumulated in the Institute of Mathematics and

Computer Science at the University of Latvia.

29

GMT is based on a meta-metamodel that is very similar to MOF. For tool definition

GMT provides mapping definition wizards (both for graphical elements and element property

editors). Correspondence between the domain and presentation metamodels is defined, using

so-called mapping links (associations) between the model elements by specifying a particular

mapping type for the link. The semantics of each mapping type is predefined in GMT;

however in some cases it is possible to use explicit OCL expressions in order to specify more

advanced constraints.

One of the main distinguishing features of the GMT is a very intelligent diagram

layout engine. It supports different operation types: automatic layout, semi-automatic layout

and manual layout. By changing the layout style, it is possible to either quickly lay out

complicated diagrams, make modifications to existing diagrams still complying to layout

rules, or manually change layout with no constraints. The algorithms of the layout engine

have been awarded several prizes.

First MOLA transformation language (used for driving the METAclipse

transformations) editor was created, using GMT. All transformations for METAclipse version

of the MOLA editor were initially created using this editor, following the bootstrapping

approach.

1.5.4 GrTP

Graphical Tool Platform (GrTP, [39]) is the platform, ideas of which are the closest to

ones behind the METAclipse platform. In fact, GrTP platform was developed in parallel with

METAclipse, but it is based on different principles and is targeted at the implementation of a

different kind of modeling languages. One of the main areas the GrTP platform is intended to

address is support for the tasks related to ontologies and semantic web.

Main characteristic of the GrTP platform (and at the same time, the main difference

from METAclipse platform) is its ideological independency of domain metamodel. In fact,

30

GrTP platform does not require using the domain model at all, but instead operates (using

model transformations) with the terms of presentation metamodel and events. However, if

necessary, it is possible also to define the domain metamodel and create its instances upon

some specific request on some user event (for example, for code generation, model

import/export, etc.).

For transformations GrTP platform uses the Lx language series [40] developed in UL

IMCS (MOLA transformation language also is compiled to Lx as a lower level language).

GrTP uses parts of the GMT tool forming the base of the development; therefore it also

possesses and even further enhances the graphical capabilities of GMT.

1.6 Eclipse-Based Platforms

This chapter will give a brief overview of the most prominent examples of the existing

Eclipse-based DSL editor building platforms.

1.6.1 GMF

GMF is probably the most popular DSL editor building framework available for

Eclipse platform. It provides a code generation component and a runtime environment for

graphical editors, based on Eclipse EMF [41] and GEF [42] technologies. GMF uses EMF

ECore as meta-metamodel and follows the static mapping approach for defining the

correspondence between the domain and presentation metamodels. In fact, GMF utilizes three

definition metamodels: graphical (defining types of the graphical elements), tooling (defining

toolbar and menu elements) and mapping (defining the possible relations between the domain

and graphical models). Additionally, ECore is used as domain metamodel. Instances of all

these metamodels have to be created in order to define an editor in GMF. Code generated by

GMF generator uses yet another metamodel: notation metamodel, though this metamodel is

not visible to tool builders.

31

GMF provides a set of wizards for defining the mappings (see Fig. 7 for an example of

graphical definition model creation wizard). Admittedly, wizards of GMF are not as

convenient as symbol editor in MetaEdit+ or MS/DSL Tools graphical facilities for mapping

definition, however actual mapping possibilities in GMF are much broader. If DSL editors

require more advanced logic, GMF allows also using OCL expressions, and if that is not

enough, comprehensive APIs are provided for extending the generated editors with required

logic in Java.

Fig. 7. Graphical definition model wizard in GMF

Popularity of GMF lies in its integration in Eclipse platform, rich set of provided

mapping possibilities and fact that it is an open-source product. However, even with the

32

provided extension mechanisms, complicated DSLs cannot be easily built with GMF. If code

has to be written in Java programming language, deep understanding of GMF internal

architecture is required and non-trivial logic implemented. GMF will be discussed in more

detail in chapter 2.3.

1.6.2 Tiger

Tiger [7] is historically the first framework offered for Eclipse platform that

implements the transformation approach. Although this framework uses model

transformations for definition of the correspondence between the domain and presentation

metamodels, it also uses a specific domain modeling notation, which forces the domain

metamodel of a DSL still to be close to the presentation metamodel. Standard editing actions

(create, delete, etc.) are specified by graph transformations which act on the domain model,

and the presentation model is updated accordingly. The main goal of Tiger approach is to

provide the building of syntactically correct diagrams only.

Currently there is a new version of Tiger, called Tiger GMF [8], which as the name

suggests is based on the GMF framework. Tiger GMF Transformation project proposes to

extend GMF by complex editing commands. The mapping between domain and presentation

models is defined by standard GMF facilities, but new complex model editing commands can

be defined by transformations acting only on the domain model. However, this approach does

not permit to define more complicated (transformation-driven) mappings between the domain

and presentation metamodels.

1.6.3 ViatraDSM

Another framework based on Eclipse environment implementing the transformation

approach is ViatraDSM [9]. In fact, this framework already proposes some sort of combined

solution involving both static mapping definitions and model transformations, which is a topic

of further research also in case of METAclipse (out of the scope of this thesis). However, a lot

33

of principal issues such as a generic mapping metamodel, seamless integration of static

mappings with transformations and user-friendly mapping definition facilities are not solved

there.

The ViatraDSM framework is based on the Viatra2 transformation language [43]. In

this framework a mapping from domain to GEF-level presentation concepts has to be defined.

This static mapping is interpreted by the ViatraDSM engine. The transformation-driven

mapping (defined by Viatra2 rules) can be combined with the static mapping approach.

However, the static mapping mechanisms support only very limited mapping possibilities.

Only basic mapping patterns are supported. Mapping and transformation integration

possibilities are very limited as well. Each object can be mapped using either transformations

or mappings. Mapping definition for ViatraDSM framework has no adequate notation.

34

CHAPTER 2

Eclipse Technologies Used for the Development

As mentioned before, the METAclipse tool (developed as the result of the research of

the thesis) is based on the Eclipse platform and uses a series of Eclipse technologies. In order

to gain better understanding of the architecture and operating principles of the tool, this

chapter will give an introduction to the most important of the utilized technologies.

Eclipse itself is open-source software aimed to create a highly integrated tool platform.

The foundation of Eclipse development is formed by the so-called core project, which

consists of a universal framework for tool integration and a Java development platform based

on this framework. METAclipse also utilizes and extends the Eclipse core, but additionally it

uses several Eclipse extensions. The most important of those are EMF (Eclipse Modeling

Framework [41]), GEF (Graphical Editing Framework [42]) and GMF (Graphical Modeling

Framework [4]).

2.1 Eclipse Modeling Framework

EMF is a modeling framework and code generation tool, which eases the design and

implementation of structured models. Essentially, EMF is a runtime model repository that

offers various services for operation with models, including model serialization. Originally

EMF was created as an implementation of the MOF specification (to be more precise, an

implementation of the EMOF subset of MOF), but its evolution took a slightly different path,

based on the experience gained in the application of the EMF technology to a large set of

tools.

EMF, similarly to MOF, provides a metamodel at the M3 layer, called ECore

(see Fig. 8). The ECore metamodel describes a superset of EMOF modeling concepts. The

35

functionality of EMOF roughly matches EMF functionality. Differences are mainly in the

naming of concepts rather than in their essence. It is even possible to read and write EMOF

models with EMF.

Fig. 8. Class hierarchy of the ECore metamodel

Fig. 8 shows a full class hierarchy of the ECore metamodel (gray classes are abstract).

All ECore classes extend the base EObject class. ECore models are described using the

following classes: EClass (class), EDataType (data type), EEnum (enumeration data type),

EEnumLiteral (literal of an enumeration data type), EAttribute (attribute), EReference

(association), EOperation (method), EParameter (parameter) and EAnnotation (annotation).

In addition to these model description classes, ECore provides two additional classes:

EFactory (helper-class for creation of model instances) and EPackage (helper-class

containing the constants and methods for convenient access to model metadata).

36

EDataType
name : String

EAttribute
name : String

1

eAttributeType

1

EReference
name : String
containment : boolean
lowerBound : int
upperBound : int

0..1eOpposite 0..1

EClass
name : String

0..*

eSuperTypes

0..*

0..*

eAttributes

0..*

0..*

eReferences

0..*

1 eReferenceType1

Fig. 9. Fragment of the ECore metamodel for describing a class

The most important ECore classes are shown in more detail in Fig. 9. These are the

base classes used in metamodeling. As one can see, ECore metamodel stipulates that a model

will consist of classes (EClass), each of which can extend an arbitrary number of other classes

(eSuperTypes association) and contains an arbitrary number of attributes and references

(eAttributes and eReferences associations). An attribute has a specific data type

(eAttributeType association to EDataType class). A reference, on the other hand, has a

specific type—one of the model classes—and two-way association is modeled as two

references linked together with the eOpposite association.

Along with a clearly defined M3 metamodel ECore, EMF offers also several

supporting services:

• Code generation facility, which allows generating an efficient model implementation

(a repository, specific to the runtime model) from EMF models. The ECore

metamodel itself is generated using the EMF code generator.

• Dynamic API for operation on any ECore model (efficiency is not as high as with

generated models, but it is possible to work with any model in a unified fashion).

• Model change notification mechanism allowing carrying out a simple and dynamic

transfer of the model change events to various parts of the presentation engines.

37

• XMI [44] import / export.

• Additional services from other Eclipse projects: OCL [30] implementation, model

validation service, transaction services etc.

All of the above-mentioned services together with clear and thorough application of

well-defined standards have promoted significant popularity of EMF among users and

developers. Therefore the most important gain from using EMF is compatibility and

interoperability with other EMF-based tools. Taking into account that EMF fully supports all

of the METAclipse needs, this was also the main reason why EMF was used for its

implementation.

METAclipse is fully based on EMF modeling facilities and its metamodel (ECore),

which is used as an M3-layer metamodeling language. In order to make the usage of MOLA

transformations on EMF models possible, the author has developed a solution for external

repository integration in the EMF environment (for more detailed explanation about the EMF

extension developed, see CHAPTER 4 and paper [45]). This solution has allowed full

application of EMF features for model handling in the Eclipse environment, additionally

providing a possibility to utilize MOLA model transformations.

2.2 Graphical Editing Framework

GEF is a framework for the creation of graphical user interfaces, based on an existing

application model. GEF consists of two components: Draw2D and GEF API. Draw2D is a

component for graphical representation of the information, which provides an efficient API

for drawing and laying out the graphical components, together with a series of services

supporting various graphical tasks. GEF API, on the other hand, provides an infrastructure for

graphical editing: MVC (Model-View-Controller pattern [46]) framework, Undo/Redo

support, the concepts of toolbar (palette) and tools, etc.

38

Controller

View Model

User

U

1. User Actions

2. Model Modifications

3. Refreshing of the View

Fig. 10. Control flow in the GEF MVC framework

The GEF MVC (see Fig. 10) model and view are entirely independent from each other

and can be changed separately. If the model gets changed, the controller refreshes the view

(GEF uses Draw2D for the view). If the user makes any changes in the view, the controller

translates them into the corresponding model changes. GEF ensures a unified scheme for

graphical editing operations. The information being visualized is directly driven through the

model, and the state of the model unequivocally defines the visual state of the view. User

actions trigger changes in the model, which on turn trigger the refreshing of the view.

Because everything in GEF is driven through the model, the GEF framework is very

appropriate for the creation of model-based editors. It is the main reason why it is used in the

METAclipse platform. Additionally, GEF provides implementations also for such basic

services as printing, overview window, tree view, toolbar, the concept of an action, undo

support, etc.

From all the GEF instruments, METAclipse fully utilizes all of the 2D graphics

rendering infrastructure and the above-mentioned additional services. The author has

additionally developed the necessary graphical elements for efficient drawing of graph

diagrams based on the contents of the presentation models. The additions developed allow

39

direct visualization of the presentation metamodel instances. This link between the visual

representation and the presentation metamodel allows basing the driving of the tools on

models and using transformations in the tools. Bare GEF does not offer the presentation

metamodel, as it is positioned as model-agnostic technology.

2.3 Graphical Modeling Framework

As stated before, GMF is one of the most popular metamodel-based modeling tool

building platforms in the Eclipse environment. GMF utilizes EMF for model handling and

GEF for implementation of the user interface (see Fig. 11). GMF uses the static mapping

approach for the definition of the correspondence between the presentation and domain

metamodels (see chapter 1.4): at first the mapping models are defined, and then a modeling

tool is generated, based on these models.

Fig. 11. Components of the GMF

GMF logically consists of two components: editor generator and runtime. The

generative component uses several metamodels: the graphical definition metamodel, the

tooling metamodel and the mapping metamodel. Additionally, GMF uses ECore as the

domain metamodel (in GMF terminology; it is actually meta-metamodel in MOF

terminology). The graphical definition metamodel defines the types of the graphical elements;

the tooling metamodel defines the toolbar and menus, and the mapping metamodel defines the

possible relations between the domain and graphical models. In order to define a tool in GMF,

40

first all three models are created (four, if the domain model also has to be created), then the

generative component is used and Java code generated (Eclipse plugin).

The created Java code (graphical editor) uses the GMF runtime in order to provide the

basic functionality of the editor. The GMF runtime works on yet another metamodel: the

notation metamodel. This metamodel in traditional terminology corresponds to the

presentation metamodel and describes the graphical model instances during the runtime

(graph nodes and edges, diagram element compartments, labels etc.). In fact, the GMF

runtime is a graphical Eclipse plugin that significantly extends the GEF framework in the

direction of diagram drawing. Additionally, this runtime provides diagramming tools with

such services as export to image, printing, standardized style dialogs etc.

The METAclipse graph diagram engine partially uses the GMF runtime in order to

reuse the services it provides (such as the diagram layout service). The metamodel of the

graph diagram engine is created by taking into account the ideas of the GMF notation

metamodel; however, it is made more convenient for use from transformations. In fact, GMF

is the only technology of the utilized Eclipse technologies that already is based on

metamodels, therefore is slightly more convenient for metamodel-based development.

Unfortunately, it is not easy to use GMF runtime models directly in transformation-driven

tools: they are created with the static mapping ideas in mind, which introduces quite

significant constraints and makes development inconvenient. Therefore, for METAclipse the

author has developed a metamodel that is much more suitable for transformations. For

visualization of this metamodel, mostly pure GEF is used, reusing only several class libraries

from GMF for the support of several services.

41

2.4 Other Presentation Frameworks

As described in previous chapters, the model runtime for the METAclipse platform is

provided by EMF, and GEF together with GMF supports diagram drawing. However, DSL

tools additionally require rich possibilities for displaying the domain elements in a tree, as

well as for diagram and model element property editing. For these purposes METAclipse

supplements the already mentioned Eclipse frameworks with two more frameworks, Eclipse

Tabbed Properties and Navigator. The Tabbed Properties framework provides a standardized

approach to editing of various object properties: the so-called property sheets. The Navigator

framework provides the basic means for the representation of model elements in the project

tree. METAclipse extends both these frameworks by defining a metamodel for both and

allowing the control of their operation through the corresponding instances of the presentation

metamodel.

None of the frameworks mentioned can be used directly in model-based tools, as they

are not based on metamodels. The author has extended these frameworks by defining

convenient metamodels for each of them and implementing the functionality that “translates”

certain presentation metamodel instances to the corresponding states of framework elements

(e.g., with the created extension of the Navigator framework, a given instance of the project

tree metamodel is visualized in the project tree).

42

CHAPTER 3

METAclipse: Building Tools by Model Transformations in Eclipse

A graphical modeling tool has to handle a series of complicated tasks:

• Correctly visualize the domain elements;

• Provide intuitive and standardized editing support for them;

• Perform correct modification of the domain model elements according to graphical

editing events;

• Provide convenient model navigation;

• Provide unified style for editing of the model element properties, etc.

The most complex and time consuming of the tasks in the development of a

metamodel-based graphical tool are those associated with graphical representation and driving

of the user interface. Fortunately, most of them are common to all graphical tools and can be

solved already at the level of the tool building platform framework. METAclipse also provides

an implementation for these tasks in platform itself; therefore, when developing a new tool, it

is possible to concentrate on functionality that is specific to a given graphical tool.

This chapter will give a high-level description of the developed methodology for usage

of the model transformations in the metamodel-based modeling tool building platforms. Also,

an introduction will be given to the architecture of the METAclipse, Eclipse-based

implementation of the methodology. The description of the main ideas of model

transformation application in the tool building is given in the paper “Building Tools by Model

Transformations in Eclipse” [11].

43

3.1 Methodology for Using the Model Transformations in Tool Building

As mentioned before, one of the results of the thesis is the methodology developed for

the application of transformations in building of metamodel-based tools. This chapter will

describe the schematics of the developed transformation application solution.

Repository
(dll)

Repository
JNI Wrapper

Transformations
(dll)

Command
Processor

Tool Building
Platform

ECore

Native

Transformation
JNI Wrapper

Fig. 12. Basic components of a transformation-driven tool building platform

The most important task is to define the boundary between the functionality of the

graphical user interface of the tool building platform, which is common to all tools, and the

logic of the tool itself, which in case of transformation-driven tools consists of the model

transformations. The tool building platform consists of presentation engines, each of which is

responsible for steering a separate part of the graphical user interface. Presentation engines

must not depend on any functional logic specific to a certain tool. Model transformations, on

the other hand, should not be forced to deal with tasks for creation of the graphical user

interface. In order to define such clear separation, the developed methodology uses

metamodels of the engines as an interface between the engines and transformations. To

provide a functional link between the two sides, the concept of command has been introduced.

Commands also are parts of engine metamodels and depict possible actions that can be

44

received from the user (for example, the moving of a diagram element, or the request for a

context menu by clicking the right mouse button on a project tree element). Such notion of a

command allows defining the smallest unit of action that has to be processed by

transformations. It must be noted that this is the simplest implementation scheme both from

the perception and implementation points of view, which allows very clear separation of

responsibilities between the presentation engines and transformations.

Therefore, in the developed methodology, one can basically speak of two main parts

of the transformation-driven tool: the tool building platform, which provides the basic

functionality for the assembly of the user interface and its various supporting services, and the

command processor, which implements the functional logic of the tool and makes changes to

the models in response to user operations performed in the user interface (see Fig. 12).

Metamodels are used as an interface between the command processor and the platform: each

part of the tool building platform has its own metamodel defined. All these metamodels

together compose the so-called presentation metamodel. Commands also are part of the

presentation metamodel. The platform provides all tools with the common functionality;

however, the logic of a specific DSL tool is defined with the command processor written

specifically for the tool. The command processor is nothing else than a library of

transformations, which are invoked according to the commands passed to the processor for

processing.

Commands are created as a result of any semantic user action (semantic actions are

only those that trigger any changes in the domain model, for example, the creation of a new

element, the change of the text in one of the displayed elements, the drawing of a new

connecting line, etc.). The newly created command is passed to the command processor for

processing. The command processor is responsible for changing the domain and presentation

metamodels according to the command passed, therefore providing the tool with already

specific functionality.

45

Fig. 12 shows the transformation usage scheme specifically for the METAclipse

platform: the platform itself is based on Eclipse, and the presentation metamodels are defined

using EMF ECore. Transformations, on the other hand, are written in the MOLA model

transformation language, which operates upon an external model repository. Both the external

repository and MOLA compiled programs are DLLs (Dynamic Link Library), which are called

from the command processor through JNI (Java Native Interface [47]). In order to organize

communication between the DLLs and the platform, all models are being translated to the

model format understood by the external repository. The description of this translation can be

found in CHAPTER 4.

Command Processor

Commands

Command Listener #1
(Understands DeleteCommand)

...

Transformation
JNI Wrapper

Repository
JNI Wrapper

Command Listener #2
(Understands MoveCommand)

Fig. 13. Operation of the command processor

Fig. 13 demonstrates the operational scheme of the command processor: by passing a

specific command to the command processor, a corresponding command listener is found and

invoked. Some listeners do not require an invocation of the transformations, as they do not

make any changes in the domain models (so, for example, the moving of an element, i.e.,

changing its coordinates, impacts only the presentation model). In case of METAclipse it

means that instead of invoking the transformation JNI, changes are written directly to the

repository through the repository JNI. Semantic commands (such as the delete command), on

the other hand, require invocation of transformations, because they imply changes in the

46

domain model. Only transformations know how the domain model has to be changed in

response to such a command.

The methodology of the application of transformations in tool building platforms does

not depend on the implementation: the platform could just as well be based on C++ and use

completely different metamodeling means. Similarly, the transformations could be written in

other languages. The basic idea of the methodology is to define the platform interface with

clearly defined metamodels and include all of the actions available to the user as part of the

presentation metamodel. Interaction with transformations is then organized only through the

instances of these metamodels. The command processor is processing the received commands

(presentation metamodel element instances) by correspondingly changing both the

presentation and domain metamodels. Transformations are completely responsible for the

synchronization between the domain and presentation metamodels, because the platform itself

does not know anything about the domain metamodel and does not take care of its processing.

3.2 Basic Principles of the METAclipse Framework

In METAclipse, a well-defined framework is provided for the tool builders. The top-

level view of the METAclipse architecture is very simple (see Fig. 14). METAclipse itself

consists of a set of Eclipse plugins that define the framework of the tool building platform and

comprise several so-called presentation engines, each of which deals with a particular set of

graphical editor tasks (project tree engine, element property engine, etc.). Each of these

engines will be discussed later in chapter 5.2.

METAclipse plugins contain all the common functionality needed for the tools and

relieves the creator of the tool of a need to worry about many technical user interface issues.

The part that defines a concrete tool and that must be written by the toolsmith is the

transformation library containing all the necessary model transformations that change the

model according to the user actions in the tool.

47

Eclipse

Presentation Engines
(Plugins, Controlled by Eclipse)

Transformation
LibraryRepository

2. Calls the
Transformation

3. Transforms
the Model

4. Reads
the Result

1. Writes the
Command

ewdkjq

wev

ewrvw

Presentation
Metamodel

Fig. 14. High-Level view of the METAclipse architecture

In METAclipse the toolsmith must start with the creation of the domain metamodel

and proceed with wiring the domain metamodel to the presentation metamodel through

writing the model transformations. In the thesis the combined metamodel of presentation and

domain metamodels will be referred to as METAclipse metamodel. Accordingly, combination

of domain and presentation models will be called simply model. Manipulations with the

domain model are completely the responsibility of the transformation writer. METAclipse

framework provides no support for the domain model modifications.

Every engine exposes its features to the transformations through a strictly defined

metamodel that serve as an interface between the transformations and editors. Metamodels of

the engines will be discussed in more detail in later chapters of this thesis. Part of each

engine’s metamodel is also the available set of commands that could occur as a result of user

actions. Commands are used to trigger the transformations and a single command instance

represents one atomic user action, which constitutes the smallest piece of work in the

framework. All actions that make purely graphical changes are handled directly by

METAclipse framework. Only semantic actions (actions causing domain model changes or

any changes in the presentation model that are specific to a concrete tool) are transformed into

the commands and passed to the transformations for execution.

48

Together metamodels of all engines form the presentation metamodel of METAclipse.

Each element displayed in the tool, created using METAclipse, corresponds to a presentation

model element (an instance of some presentation metamodel class). Presentation model as

well as domain model (model on which the tool actually operates) are stored in the model

repository and are changed by the transformations as a reaction to the user triggered events.

Every semantic user action in METAclipse results in the following sequence of actions:

• The presentation engine that gets some user action writes the command corresponding

to the action taken (right click on a project tree node, creation of an element, drawing a

link between elements, etc.) to the model repository and invokes the main

transformation (steps 1 and 2 in Fig. 14);

• The main model transformation recognizes the command written and makes the

necessary changes to the presentation and/or domain models (step 3 in Fig. 14);

• Presentation engines read the model changes and react accordingly: show context

menu, show newly created element or edge, etc. (step 4 in Fig. 14).

Such top-level view of METAclipse architecture can be compared to the traditional

MVC approach: the role of the controller is played by transformations; the repository serves as

the model, and the presentation engines act as the view. It must be noted that METAclipse

leverages the abstraction level of the MVC approach: the controller (transformations) receives

only the semantic actions.

In order to make the METAclipse architecture and functionality more clear, an

example state of the project tree engine is given in Fig. 15. A visual representation of the

project tree engine is given on the left. In the middle, a part of the simplified project tree

engine metamodel is shown. Here one can see how the visual editor elements are represented

to the transformations: ProjectTreeNode class represents one node in the project tree. The

49

ShowMenuCommand class represents a right-click event on the tree node and expresses user

request to show the context menu.

Project Tree
Engine

Presentation
Metamodel of the

Project Tree Engine
(partial)

Presentation Model of
the Project Tree
Engine (partial)

Fig. 15. Example of a project tree engine and its metamodel and model states

Let us imagine that one has right-clicked the node called “menu” in the tree and the

project tree engine has written the ShowMenuCommand instance to the repository (step 1 in

Fig. 14). At the right side of Fig. 15 the presentation model part is given, showing the

instances involved in the handling of the right-click event. As the next step in event

processing, the engine will invoke the transformation (step 2 in Fig. 14). The transformation

will find that ShowMenuCommand is written in the repository and will create presentation

metamodel instances (not shown in the Fig. 15) comprising the needed context menu (step 3

in Fig. 14). No domain model changes are needed in this example. At last, Eclipse will get

back the control and presentation engines will be notified of the model elements changed. The

menu engine will see that a menu has been created, so it will show the context menu for the

project tree node called “menu.”

50

3.3 Application of Model-Transformation-Based Approach in METAclipse

Let us assume that a domain is given for which we need to build a tool, e.g., the Class

domain in UML2. In METAclipse the domain metamodel is specified as an EMOF-compliant

(Essential MOF, see [23]) UML model (similarly to the ECore model in GMF). The

presentation metamodel is predefined in METAclipse (an equivalent to the notation

metamodel in GMF). It describes the available graphical elements in a diagram: nodes, edges,

text labels, and other elements. More precisely, an instance of this metamodel is a runtime

graphical model, which is visualized and serviced by the METAclipse presentation engine.

Transformations build instances of the presentation classes and connect them by mapping

links to the corresponding domain instances. The presentation engine visualizes these

presentation instances and, in addition, notifies transformations when the user has performed

some action. A high-level graphical model transformation language MOLA [29, 58] is used in

METAclipse for building the required transformations, but in principle other such

transformation languages could be used too, e.g., MOF QVT. There is no generation step in

METAclipse (certainly, MOLA transformations must be compiled to an executable form).

Fig. 16 shows the most interesting part of the presentation metamodel. In fact, the

complete metamodel of the world transformations have to work in consists of the predefined

presentation metamodel (described in greater detail in CHAPTER 5) and the required domain

metamodel (of which only the Element class is visible in the figure). For UML-related

domains (such as the above mentioned Class domain) and many other it is typical that there is

a common ancestor for all domain classes (in UML it is Element in the Kernel package). The

association domain–present here serves as a generic mapping link between domain and

presentation.

51

Fig. 16. Graph diagram metamodel

To implement the abovementioned schema, a transformation procedure must be built

for each kind of diagram element (node, edge, or sub-diagram) representing an essential

domain element. For example, such procedure has to be created for a class node (representing

a domain Class). In particular, this transformation builds a new class node (an instance of

CompositeNode) when a Class instance in the domain is to be shown in a class diagram.

Though building the transformation procedure for each diagram element may initially

seem to require much more effort than just defining a static mapping in GMF, the job is

actually quite easy in an appropriate transformation language. It should be reminded that for

DSLs we are interested in, nearly each static mapping in GMF would need to be

complemented by a relevant piece of Java code after the generation step. The transformation

procedure can also collect in a cohesive block the various constraints relevant to a diagram

52

element. These constraints become much more readable in MOLA than they would be in a

mix of OCL and Java. The main gain, however, is flexibility.

Besides the domain-determined specific functionality for each diagram element, a lot

of functionality in a tool (setting an element style, displaying menu items, moving an element

etc.) is actually common to all elements, and therefore needs to be built only once, as part of

the framework. The presentation engines in METAclipse perform all generic presentation and

graphics-related jobs, such as moving an element. In order to maximize this common part in

transformations, the presentation metamodel must be used in an appropriate way, especially

the “scaffolding part” of it (see chapter 5.7).

53

CHAPTER 4

A Proxy Approach to External Model Repository Integration

in Eclipse EMF Infrastructure

An important result of the thesis is the developed universal solution for external model

repository integration in the Eclipse EMF environment. The need for the development of such

a solution occurred because the MOLA transformations used in METAclipse operate on their

own external repository, and there was a need for synchronization of the data between this

repository and Eclipse. However, the developed solution is sufficiently generic to be

applicable also for the integration of other external repositories; therefore the solution can be

of use also in other tools. There could be an interest in the integration of a repository in EMF

simply for the reason that EMF provides very wide model processing capabilities and various

services (XMI serialization, model validation, code generation, model transformations etc.).

These services can supplement the functionality of already existing tools with new

possibilities. On the other hand, integration increases also the value of the EMF tools by

giving access to services available only through the external repository.

In this chapter a direct integration of external model repositories in the EMF

infrastructure is described. The presented approach is based on the application of the proxy

pattern to extend the functionality of EMF base objects and provide a runtime synchronization

of the model data with the repository. The approach allows existing applications to

interchange the model data seamlessly with EMF, thus giving access to the services offered

by EMF technologies. On the other hand, EMF-based applications can benefit from the

services provided by the external repositories and applications (for example, efficient model-

to-model transformation implementation) without a need to adjust the application code.

Applicability of the introduced solution is analyzed at the end of the chapter.

54

4.1 Motivation for the External Repository Integration in EMF

Necessity to integrate the MIIREP repository in the EMF environment is clear. The

methodology itself, however, can be used more generally for integrating an arbitrary MOF-

isomorphous model repository. Therefore, it is important to understand the general motivation

for such integration.

EMF is widely used as a tool for the implementation of a structured model. However,

this is not the only functionality the family of the EMF technologies has to offer. By

introducing an efficient and standardized approach to model handling, EMF has promoted the

evolution of various EMF-based projects supporting the model-driven engineering process

(like EMF Query [48], EMF Transaction [49], OCL implementation [50], validation

component [51] and various transformation language implementations, e.g., ATLAS

Transformation Language ATL [52] for model-to-model transformations and JET [53] for

model-to-text transformations).

Other Eclipse frameworks and tools are built to operate on EMF models allowing rich

graphical editing of the models (like GMF [4]). There are number of practical Eclipse

applications built that even further extend the EMF model handling possibilities and

applicability of EMF models. Among those are various persistency and O/R mapping

solutions (like CDO [54] and Teneo [55]), MDSD supporting framework

openArchitectureWare [56] and even commercial development and design tools like IBM

Rational Software Architect [57], etc. The stack of the technologies in the EMF family and

tools operating on EMF models is growing continuously.

Having such a rich set of services available, EMF is an appealing environment for

model handling. Existing applications can benefit from allowing their models to be transferred

to EMF and back. For example, such interoperability could add missing features to existing

model environments when needed, like XMI [44] model serialization (provided by EMF as

55

default serialization mechanism), possibility to validate the model against defined rule set,

possibility to use code generation functionality or model-to-model transformations, possibility

to develop graphical model editors, etc.

Not only existing applications can benefit from being integrated with EMF. Another

very important aspect of external repository integration in EMF is the possibility to offer

additional specialized services to EMF-based tools. In fact, this is the case of the MIIREP [13]

repository integration in EMF in order for Eclipse and EMF-based tool METAclipse to gain

the access to UL IMCS model-to-model transformation engine. This allowed using the

transformation languages MOLA [29, 58] and Lx [40] in Eclipse environment.

Transformations are compiled to C++ code and work on MIIREP repository that is

specialized particularly for efficient execution of the operations needed by transformations.

By this integration the performance was gained that was needed for transformations to work

on huge models in a very efficient way.

The alternative to integration would have been the transferring of the MOLA

transformation language to Java so that it worked on EMF objects directly. This, however,

would mean massive work on new implementation of MOLA, and would not guarantee that it

would be possible to measure up with the efficiency of the C++ implementation. So,

integration of the existing repository was most reasonable choice. Also, it would not be

sufficient to have only the model import/export functionality, as in case of METAclipse the

interaction with repository is very dynamic. Every user interaction with METAclipse results in

the execution of some transformation, so a very rapid access and change of repository objects

is required from both Eclipse editor and MOLA transformations.

Another motivation for integration worth mentioning is the possibility to unite the

EMF with different other model-handling frameworks like MDR [59], MS/DSL Tools [5],

Generic Modeling Environment GME [20], Fujaba [32]. All these frameworks are meta-

model-based and their meta-meta-models provide similar capabilities to EMOF. They all can

56

handle models similar to EMF and each provides distinctive features for model handling. For

example, GME provides advanced facilities for building model-based simulators and

debuggers, while MS/DSL Tools provides easy integration with Microsoft technologies, etc.

The features of each framework can turn useful for EMF models and thus there are good

reasons for uniting them. There already exists such an attempt: Eclipse project GEMS [26]

binds the GME to EMF.

4.2 Integration Solutions

In general, the tool integration problem has been a topic of discussions and

publications for quite a long time. A survey [60] shows that the tool integration topic is very

wide. Most of the covered papers discuss the integration problem generically. The presented

solution for external repository integration in the EMF environment is comparatively specific

and suitable specifically for the EMF architecture.

In order to make models of existing applications accessible in EMF, there is a need to

map the meta-metamodel (M3) concepts of the application to the meta-metamodel of EMF,

namely ECore. If the M3 layer of the external modeling environment can be mapped to

ECore, it is possible to transfer the model and metamodel data between the external

application and EMF.

There already are some examples of model interchange between EMF and other

technologies by providing the import and export of models. In the simplest cases it is done

through some external format supported by both EMF and the external repository (like XMI),

but other solutions make use of the native repository APIs. Some of them are integration of

ARIS [61], MS/DSL Tools [36], GME [62] and EMT [63]. All of the mentioned solutions map

the concepts of the named technologies to the concepts of EMF as their M3 layer is close to

EMOF.

57

There is one significant problem with the import / export approach. In this process, the

model is first exported, resulting in a copy of the model. Then changes to the copy are made,

after which the modified copy is imported back in the model. If the whole model is

transferred, this process is not complicated. However, usually models are big and it is

inefficient to transfer them in their entirety. Normally, only a subset of the entire model needs

to be exported for external modification. In this case, a huge problem is the merging of the

transformed sub-model back into the original model. The main problem is that there can be

references from the unmodified parts of the model to some parts of the model that have been

deleted or changed. These references need to be traced and modified; sometimes perhaps

redirected to newly created elements. This is not an easy task and requires knowledge of both

the original and the modified models, and sometimes even about model transformation logic.

Import/export approach can support the integration needs if the model transfer from

one technical space to another is relatively infrequent (for the batch processing of the models).

If more rapid model data interchange is needed, other integration solutions should be

considered. Also in the case of METAclipse and the MOLA external repository it was not

possible to rely on complete export and import of the models, because normal operation of the

platform requires a high speed of data transfer, which means that maximally optimized

information volume has to be transferred between the repository and EMF.

The developed solution integrates the external repository directly in the EMF

environment, by using the API of the repository. This solution uses lazy data loading and

synchronization (only the relevant data is transferred to EMF and back) and dynamically

integrates with EMF (operations with external models are performed during the runtime). This

solution does not pose any problems with model merging, as the changes are made directly in

the original model and model export, import or merging is not required.

The main idea behind this approach is to alter the original implementations of the core

EMF objects in the way that they start acting as proxies to the external repository and every

58

operation on the EMF model is redirected to the corresponding operation(s) on the external

repository. Any changes done to the model at the runtime outside the EMF are properly

notified to listeners through the EMF notification API. Additionally, a small change is made

to the code generation facility of EMF in order for the generated code to use the proxy

implementations of EMF objects instead of original ones.

Summing it up, the presented integration approach allows existing applications to gain

the benefits of the services offered by the EMF tools and vice versa. For example, in the

context of transformation languages, applications not offering transformation languages can

use the transformation languages operating on EMF models. On the other hand, EMF tools

can use the transformation languages offered by external applications in order to gain the

efficiency and performance.

4.3 Objectives of the Integration

The goal to be achieved with the proposed repository integration solution is to provide

a bridge between the external repository and EMF that would possess the same characteristics

as import/export bridging solutions (possibility to transfer the model data from the external

repository to EMF and back), but at the same time would provide some more sophisticated

features. Main additional feature wanted is the ability to carry out the transfer of the model

data dynamically as the models are changing during the runtime. There has to be a possibility

to synchronize models between the external repository and EMF, propagating changes done in

either of sides to other in real time. It must be possible to carry out the synchronization in both

directions:

• If the change is done to the synchronized model directly in the external repository by

some external application, it must be transferred to the EMF and proper EMF

notifications should be called;

59

• If the change is done to the model by the EMF, it must be transferred also to the

external repository.

That being said, it must be noted that no objective has been established to allow

simultaneous changing of models by external applications and by EMF – the presented

solution presumes that if there will be changes on both sides, they will be sequential, but

never parallel and no concurrency is supported.

Another aspect to be considered is that we do not want to impose any additional

requirements to the applications using the EMF code. This means, EMF interfaces has to

remain intact and applications already using the EMF classes should not have to change

significantly if it was required for them to synchronize their model data with an external

repository.

4.4 Applying the Proxy Pattern

Taking into account the aforementioned goals, an appropriate method for the

implementation of the external repository integration in EMF is the proxy pattern, as it will be

shown in this chapter. The following figure (Fig. 17) shows the structure of the proxy pattern

as defined in the Design Patterns [64].

Fig. 17. Structure of the proxy pattern

60

The basic idea of the proxy pattern is to provide a façade for another object in order to

control the access to it. Demonstrating the proxy approach sketched in Fig. 17, let us say a

client is accessing some objects method. Let us call this object a “subject” (class RealSubject)

and method called, a request. The access to the object methods is organized through an

interface Subject. Now, if we want to control the access to the RealSubject object, proxy

pattern suggests to add another object—Proxy, which implements the Subject interface and

delegates the request method calls to the RealSubject class, adding necessary pre- and post-

processing. When client will call the request method of the interface, the Proxy object will be

called instead of RealSubject and the necessary control will be injected before calling the

RealSubject request method.

As Design Patterns book suggests, most typical cases when proxy pattern is used are

when:

• It is necessary to provide a local representation of a remote object (remote proxy);

• Objects are expensive to create and should be created on-demand, or in other words

lazy-loaded (virtual proxy);

• Additional checks or tasks have to be performed upon access of the object (protection

proxy and smart reference respectively).

Relating this to the goals, we want the EMF to act as a façade to the external

repository and delegate the calls to the external repository API. It is quite natural to apply the

proxy pattern for these needs. To be more specific, what we need is a remote proxy with the

features of the virtual proxy. The utilization of the remote proxy is obvious. The virtual proxy

features are needed as models tend to be very big and we want to transfer to EMF only those

objects that are really needed. Additionally, for increased performance, the caching

mechanism needs to be implemented so that subsequent access to the object properties would

61

result just in one call to the repository API functions. See the Fig. 18 for the class diagram of

the proxy pattern adjusted to integration needs.

Fig. 18. Structure of the proxy pattern
applied for the bridging of EMF and the external repository

The figure depicts only high-level structural elements and next chapter will discuss the

implementation in more details. In the figure, the client is accessing the EMF object interfaces

(only the root interface EObject is displayed with basic exemplary methods eGet and eSet, but

it could be any sub-interface of EObject in ECore metamodel or any generated EMF class

interface). The EMF interfaces correspond to the Subject interface in the basic proxy pattern.

Application of the proxy pattern is eased a lot because of the flexible EMF

architecture. As EMF has a top-level object defined in its metamodel, namely EObject, it is

enough to provide the proxy implementation for this object to get the proxy functionality

spread throughout all EMF metamodel implementation classes. Extension EObjectProxy of

the EMF EObject interface implementation EObjectImpl acts as a proxy to the external

repository API and corresponds to the Proxy class in the basic proxy pattern. This class

implements the “remote” and “virtual” features of the proxy pattern by delegating the calls to

62

the API of the external repository and providing a cachedData map that is consulted before

calling the actual repository API functions.

Finally, ExternalRepositoryAPI class corresponds to the RealSubject class. The

difference between the variation shown in Fig. 18 and original proxy pattern is that the

external repository API does not implement the same interface as proxy (EObject interface). It

is possible that some calls to the EObject will result to multiple calls to

ExternalRepositoryAPI, possibly even with some model data transformation involved.

However, external repository API cannot be absolutely arbitrary. It must operate with the

same concepts as EMF, i.e. its capabilities must be isomorphous to EMOF. Therefore, it can

be said that it “virtually” or “isomorphically” still implements the same interface as proxy.

By applying plain proxy pattern we can solve the synchronization problem just in one

direction—from EMF to the repository, but not the other way around. However, changes done

in the external repository by external applications must be transferred back to the EMF, as

both sides can actively change the models. For this reason, proxy pattern has to be augmented

to incorporate some change notification mechanism. Such mechanism will be described in the

next chapter (particularly, chapter 4.5.3) together with more technical details of application of

the proxy pattern.

4.5 Implementation of the Proxy for EMF: “Wise” Objects

Now, when we have established how to apply the proxy pattern, we can proceed to the

technical details how the actual proxy to the external repository has been implemented. The

description is given, based on the experience gained while integrating repository MIIREP [13]

with the EMF-based graphical model editing tool METAclipse [11], where the proxy approach

to integration is already successfully implemented and working. The actual implementation of

the EMF proxy will differ from repository to repository, as there will be differences in

repository APIs, still the concepts of the integration will remain the same. Technical

63

description of METAclipse, including some specific details about MIIREP and EMF

integration is given in CHAPTER 5.

In case of integration of MIIREP in EMF, the changes to the model can be done in

both model transformations working as external applications directly with the repository API

and METAclipse tool working with EMF representation of the model. Therefore, both kinds of

the synchronization are involved—from the repository to EMF and vice versa.

4.5.1 External Repository API

The prerequisite for being able to integrate a particular repository with the EMF is the

existence of a Java API for the repository. This API will be used by the EMF proxies to

perform the synchronization operations with the repository. Only repositories that provide

API capabilities similar to EMOF can be integrated with EMF. Therefore, the repository API

must cover following sets of operations:

• Metamodel (object type) manipulations, such as creating a class, adding a class

attribute, finding classes, creating associations, etc.

• Model (object) manipulations, such as finding an object of a certain class, creating

objects and setting object attributes, etc.

In case of the MIIREP integration, the Java API was not originally available, as the

repository is implemented in C++. But, from the functional point of view it provided all

necessary operations that were required. In order to provide a Java API, a JNI [47] wrapper of

the MIIREP repository was created.

4.5.2 “Wise” Objects as an EMF Extension

EMF ECore metamodel classes (ECore base classes) define the class hierarchy that

forms the basis for the Java runtime. All EMF runtime classes generated for a particular

metamodel extend these base classes. ECore base classes provide all the functionality to the

generated classes and allow using them in EMF infrastructure by providing all the EMF

64

framework features. So, base classes are the best place where the repository synchronization

should be implemented and, as it has already been roughly sketched in chapter 4.4, EMF

proxies are implemented as extension of original EMF ECore objects, providing an alternative

EMF runtime.

New proxy objects conform to the EMF interfaces and externally look like normal

EMF objects, but internally do all the synchronization with the repository. These objects were

named “wise” objects, as they show certain “intelligence”: though from the interface

perspective they look like normal EMF objects and support all EMF framework operations,

internally they know when and how it is necessary to read or write some information to the

repository. For EMF tools “wise” objects can be considered a second level of repository

abstraction, which introduces the caching mechanism, conforms to the EMF object interfaces

and uses first level abstraction—repository interface—to read and write data to the repository.

Base ECore classes were extended and a set of “wise” object base classes was defined

(see Fig. 19). By analogy to ECore classes, base “wise” object classes, together with some

helper classes comprising the whole “wise” object concept, were called WCore. In WCore, the

methods inherited from ECore for getting and setting the properties are extended with

functionality of reading and writing data from and to the repository through the repository

interface described in the previous chapter. For performance considerations, “wise” objects

keep track of the state of every object property and cache the data from the repository in the

object instance, so the consequent reads of the same property will result only in one read of

the property from the repository.

65

WCore Base Classes
ECore Base

Classes

„Wise” ObjectsEMF Standard Objects

ewdkjq

wev

ewrvw

„Wise” Object
Runtime Classes

ewdkjq

wev

ewrvw

EMF Runtime
Classes

EMF
Dynamic

Templates

„Wise”
Object

Dynamic
Templates

Fig. 19. “Wise” object dependencies

The fact that the parent of all ECore classes is a single class—EObject (see [41] for

complete ECore structure)—simplified the extension of ECore. For “wise” object needs it

was enough to extend just two ECore classes, EObject and EFactory, with the corresponding

WObject and WFactory classes. WObject contains all the caching and synchronization logic

and, as it is the superclass of all the other framework classes, the logic is available all across

the framework. The WFactory extension of the factory class was needed, as some

initialization of the “wise” object on its creation was required.

To put the WCore classes in action also for the generated code, the EMF generator had

to be extended so that it produced “wise” objects extending WCore base classes. The EMF

framework uses so-called dynamic code templates (using another Eclipse framework for the

code generation—JET [53]) during the generation process of the runtime classes. The EMF

generator reads the serialized form of the metamodel and then, using the set of templates,

generates the runtime classes (see Fig. 19). Default templates producing EMF runtime classes

were extended so that they would generate the code using WCore instead of ECore. The JET

template extension is not required if only runtime EMF objects are used.

66

The complete set of classes comprising the WCore can be seen in Fig. 20. The above-

mentioned extension of getter and setter methods of ECore is divided into two classes.

Reading of the attributes from the repository was easiest to implement in the WObjectImpl

class itself, in the inherited getter methods. Writing the attributes, however, was easier to

move to a separate class WObjectChangeObserver, which implements the EMF change

listener and is attached to every instance of WObject. The change observer listens to any

changes done to the WObject from the EMF side and if any occurs, writes the data to the

repository.

Fig. 20. WCore class diagram

To be able to read and write the repository data, “wise” objects need to have a

possibility to map the classes, attributes and associations to the corresponding repository

objects. Such mapping can be defined only at M2 layer and thus it is needed to have the

WCore class and feature mapping to the repository metadata at the M2 layer. As it is

inefficient to read these mappings every time any object is accessed, class metadata mappings

are cached. The WRepositoryMetadata object represents the class metadata. The map of

67

WCore class to repository metadata mappings is held in the WRepositoryController object and

the mappings are attached to every WObject instance for convenience when instantiating it (as

a reference to the cached mappings).

The two objects directly responsible for the synchronization of the model in repository

and its representation in EMF (WObject and WObjectChangeObserver) act on the events of

reading or changing the model information through the EMF API. When any operation on the

model is performed, it translates the EMF API call to the corresponding call(s) to the

repository API. It is easy to do this if the repository relies on the metamodel that is very close

to the EMOF. However, the less the repository API resembles EMOF, it becomes harder to

map the EMF calls to it and more intelligent transformations are necessary.

4.5.3 Repository Change Notification

Extending the ECore base classes covers the synchronization needs only from the

EMF perspective, i.e., if changes to the model are done from the environment working with

EMF classes (wise objects). However, model changes can happen also on the other side (in

case of the MIIREP integration in METAclipse, most intense changes to the model are done

by the transformations in the repository directly). So, besides the proxy pattern applied to

EMF objects, another missing piece is a change notifier back from the repository, which

would trigger the EMF change events for all objects that have been changed.

The change notification is not a trivial task, as it is also constrained with tight

performance requirements. It is very inefficient to detect the changes already after they have

been carried out, as it means inspection of all object instances in the repository. This means

that a support from the side of the repository or the tool performing the changes is required in

order to make an efficient implementation of the change notification.

In WCore, the WRepositoryController class takes care of the repository model change

tracking. There, a special method is defined for change detection, which has to be invoked

68

after each change done to the model at the repository directly (who calls this method depends

on how the integration of the external repository is used). The implementation of the

WRepositoryController, however, is strongly dependent on the possibilities offered by the

repository being integrated.

For each repository the change tracking mechanism will be different, as the

possibilities of detecting changes will differ from one to another. Worst case would be if the

external change source would do unpredictable changes in the repository and the repository

itself did not provide any change tracking mechanism. In this case there is only two options:

introduce a layer between the external tool and repository that will implement the change

tracking mechanism or, if the performance requirements allows it, do the full re-scan of all

model elements residing in the repository and detect which elements and how have been

changed. One possibility for the implementation of the change-tracking layer would be to use

aspect-oriented programming (AOP) in order to execute the change tracking code before or

after the repository API function calls.

Slightly better situation would be if some kind of an algorithm existed that could limit

the number of the model elements to consider while detecting the changes. Best, however, is

when it is possible to rely on repository-native service that would allow us to explicitly detect

or monitor the changes by either defining the listeners on the repository objects or calling

some method that would return us the set of the changes.

The various scenarios how the change detection can happen is why

WRepositoryController change notification method is designed in a way that it calls special

functions of the repository interface in order to get the lists of the changed or deleted objects.

Functionality of tracking changes is left to the implementation of the interface. When changed

or deleted object lists are read from the repository, WRepositoryController then issues the

corresponding EMF notifications and the changed features of the object instances that have

69

changed are set “dirty,” so that they are once again read from the repository instead of using

the cached values from the WObject instances.

In case of the repository and transformations currently used in METAclipse, it was

very easy to track object deletions, as the MIIREP repository itself has the functionality to

track such changes. However, the tracking of the changes to the existing objects had to be

incorporated in the transformations. Each transformation is responsible for maintaining the

lists of the changes to be returned through the repository interface to the

WRepositoryController.

4.6 Applicability of the Presented Approach

As already mentioned, main force that drove the development of the presented

approach, was the necessity for the use of an external repository in the METAclipse tool. This

demonstrates the case when the integration approach discussed here is applied in order for

EMF to gain some extra features provided by an external repository (i.e., the possibility to

invoke MOLA transformations on EMF models). METAclipse editors are driven by model

transformations that are executed on every user action in the editor (even a mouse click on

some model element invokes a transformation). This and the fact that models being edited

with the DSL editors tend to become fairly large (even millions of instances) raises very high

efficiency requirements to the transformation engine. For transformations to work efficiently,

it is important to have an appropriate repository with operations that used by transformations

fine-tuned to give maximum performance. EMF itself lacks the functionality required for

efficient implementation of operations like pattern matching. Therefore, for an efficient

transformation engine implementation, it is required to extend the EMF to add the

functionality for efficiency of the pattern matching.

In similar situation, Tiger project [7] team has chosen to redesign their graph

transformation language AGG [65] and transfer it to EMF. In case of METAclipse, there

70

already was a very efficient repository MIIREP [13], specialized for transformation languages

and capable of handling huge models, and a stable and efficient transformation language

MOLA [29, 58], working on this repository. It was more natural to integrate the named

repository into EMF rather than taking the road of redesigning the MOLA language to work in

the EMF environment and extending the functionality of EMF.

Another example, similar to the case of METAclipse, would be integration of the

external simulation engine functionality (such as available in GME framework) into EMF. For

example, if the graphical plugins of Eclipse are used for visualization and animation and

external libraries for computation, there is a need of rapid model data interchange between the

EMF and the external model storage.

Another applicability domain where presented solution would be useful is for

augmentation of the possibilities of the existing tools with the features provided by the EMF

technology family. Papers [36], [61] and [62] demonstrate that there is a real need for such

integration. Mentioned papers use the import/export approach with transformations involved

in metamodel mapping from one technical space to other. This approach was natural for the

problems addressed, as all three are examples of typical batch transfers of model data.

Things, however, get more complicated if there is a need to transfer only a part of the

model and merge the changes back. For example, if a MDSD transformation is applied to a

sub-model, the results must be integrated in the common design model of a system. In this

case the integration of the results requires some non-trivial reasoning how to preserve the

integrity of the complete model. The approach presented here could be adapted to fit the

needs of this use-case. The practical benefits in this domain, however, still have to be

investigated, as the application of presented approach for enrichment of the external

applications has not yet been practically verified.

It must be noted that the applicability of the proposed solution is constrained with the

need for the external repository API to provide functionality that would cover all the

71

capabilities of the EMOF. If the concepts behind the repository are not compatible with

EMOF (meta-meta-models at M3 layer are not close enough), it is not possible to apply the

presented approach. Also, there is no real need of using the introduced solution, if there is no

use for the runtime dynamic synchronization and lazy model handling, and all that is needed

are some batch updates. In such cases probably it will be easier to implement the

import/export features.

The proposed solution does not provide an absolutely universal implementation that

could fit all the repositories. Because of the differences in the APIs of various repositories and

variations in their capabilities, presented approach has to be adjusted slightly differently for

each of them. However, most part of the implementation (detailed description of which is

given in the chapters 4.5.2 and 4.5.3) can be reused and must not change.

72

CHAPTER 5

Technical Solutions of the METAclipse

As already stated, METAclipse is built on top of Eclipse technologies and is packaged

in the form of several Eclipse plugins. Eclipse was chosen as a mature and widely appreciated

platform, providing a large number of frameworks covering many needs of the tool

developers. Eclipse is also a very popular choice of a wide variety of leading production-

quality software development platforms that could potentially gain from integration of

modeling and DSL editor tools. Used Eclipse technologies are already described in

CHAPTER 2.

The transformation language MOLA [29, 58], developed by UL IMCS, was chosen for

the implementation of model transformations. MOLA has a rich set of language elements and

had already proven its performance and stability in practice, so it was a natural choice. The

current implementation of MOLA is compiled to a Windows DLL file and works against the

repository MIIREP (codenamed “OUR” in the paper “Towards Semantic Latvia” [13]), also

developed by UL IMCS. So, the choice of the repository also was clear. However, to make

METAclipse more flexible, it was decided to make the access to transformations and the

repository transparent so that it would be possible to switch to other transformation languages

and/or repositories. The repository access solution is described in CHAPTER 4 and 5.1.

This chapter gives a detailed description of technical solutions forming the basis of a

newly developed Eclipse plugin METAclipse that allows easy use of model transformations

and materializes the ideas of the transformation-driven tool building platform. Chapter is

based mainly on the paper [66].

73

5.1 Interaction with the Repository and Transformations

As already stated before, editor interaction with the repository and transformation

invocation was intended to be made as generic as possible in order to maintain the possibility

to change the implementation of repository or transformations if necessary. To achieve such

independence, two problems had to be solved. First of all, an interface to the set of external

repository operations used in METAclipse (such as find object, store object, change object

property etc.) had to be defined. Transformation invocation is also part of this interface, as

transformations are always related to a particular repository. Secondly, a generic mechanism

to transfer the repository data to EMF object instances had to be developed in order to allow

the handling of repository objects in Eclipse as if they were normal EMF objects, thus giving

the access to the entire infrastructure provided by EMF.

5.1.1 Repository Interface

The repository interface itself is nothing particularly special; it is a regular Java

interface containing all the operations required by METAclipse. The interface contains the

following sets of the operations:

• Metamodel (object type) manipulations, such as creating a class, adding a class

attribute, finding classes, creating associations, etc.

• Model (object) manipulations, such as finding an object of a certain class, creating

objects and setting object attributes, etc.

• Transformation invocation. Only one function for this is required, as transformations

have just one entry point in the METAclipse architecture.

74

MIIREP
Repository

(dll)

JNI Wrapper

MOLA
Transformations

(dll)

Repository Interface

Calls to the
Repository Interface

MIIREP Repository
Interface Implementation

Fig. 21. MIIREP repository interface implementation

MOLA transformations currently are compiled against the MIIREP repository, which

is developed in C++ and released as a Windows DLL file. MOLA transformations themselves

are also compiled to a DLL file, which directly accesses the MIIREP DLL loaded in memory.

This implies that the MIIREP repository interface implementation currently used in

METAclipse (see Fig. 21) uses a JNI (Java Native Interface) wrapper for the repository

operations (see [47] for information on JNI). The wrapper delegates all repository access

operations (model and metamodel manipulations) to the appropriate MIIREP repository API

functions and the invocation of transformations to the transformation library.

5.1.2 The Link between Eclipse and the Repository: “Wise” Objects

As stated before, all presentation engines (Eclipse plugins) developed work with EMF

runtime objects in order to gain all the benefits the EMF framework is offering.

Transformations, on the other hand, work with the external repository, so synchronization

between the repository and EMF is required.

The task of integrating the external repository seamlessly into the Eclipse EMF

framework was quite challenging. Simple interface did not satisfy the requirement to keep

Java-side code unaware that anything other than EMF is used, which is why the “wise” object

mechanism was created. “Wise” object mechanism is described in CHAPTER 4 in a great

detail The main reason for such a requirement was the wish to keep the possibility to switch to

a clean EMF implementation in the future (meaning that no external repository would be

75

used, with EMF itself serving as the repository), as well as to be able to use clean EMF

infrastructure.

Another aspect that had to be taken into account was performance. As every little

action in the editor results in changes in the repository through the invocation of the

transformation, a complete re-read of all repository data after each operation is unacceptable.

Only the “dirty” or changed information has to be transferred back to EMF object instances.

5.2 General Description of Presentation Engines

As already stated before, METAclipse consists of several presentation engines. Though

there are some additional smaller helper parts in METAclipse, four main presentation engines

can be named that together comprise the whole tool building platform (in Fig. 36 all of them

can be seen in action):

1. Project tree engine, responsible for organization of projects, models and model

elements in a hierarchical tree structure;

2. Graph diagram engine: the main engine of METAclipse, providing editing

capabilities to the graph diagrams;

3. Property engine: provides property editing capabilities for other engines (like

properties for a selected item in the project tree or a selected diagram element);

4. Menu engine: used by other engines for the displaying of context menus (like by

project tree engine for showing context menus of the tree nodes or by graph diagram

engine for showing context menus on the diagram elements).

Besides these four engines, additionally there are some less important components in

METAclipse responsible for common functionality like drag-and-drop, clipboard, METAclipse

perspective; utility functions; transformation control etc. These will not be discussed here. In

76

the following chapters the focus will be put on the interaction between the engines and

transformations, and special attention will be paid to the description of all the presentation

metamodels, as they form one of the most important aspects describing the METAclipse

functionality.

The look and feel and general operation principles in METAclipse engines were taken

over from Eclipse standard editors so that the editors would fit smoothly in the Eclipse

environment. This means that some Eclipse standards were obeyed. For example, METAclipse

does not use dialogs for the diagram element creation. Instead, all element properties are

assigned default values, which can later be changed to the desired values through the

properties view. Properties are displayed in one single view for all editors, implying that just

one editor is in focus at all times.

In the development of the presentation engines, one simple rule drove the splitting of

functionality between the engine and transformations:

• Every task that needs any information read from the domain model, i.e., that is

domain-specific, has to be done by transformation;

• All tasks that do not require any knowledge of the domain has to be done by the

engines.

So, for example, the right click on the project tree node for showing the context menu

needs the knowledge of what kind of node it is in order to know what menu options to offer.

This means that this is a task for a transformation. Another example—the move of a diagram

element within the borders of the same parent—does not require any knowledge of the

domain. Such operation requires only changing of some presentation model attributes, thus it

can be carried out by the engine itself. If, in contrast, the diagram element was dragged out of

the borders of the parent element (for example, dragged from one sub-diagram to another),

77

this again would need some domain model changes and thus is a semantic operation needed to

be performed by transformations.

5.2.1 Presentation Metamodel Structure

The transformation library is the changing part in METAclipse from one tool

implementation to other. That is why transformation creation must be made as easy as

possible in order to make METAclipse useful and convenient for the toolsmiths. In order to

accomplish this there are several prerequisites to be met:

• A well-established set of base transformations common to all or at least most editors

must be provided. This would form the base framework for transformations to be

created by the toolsmith. This would allow the toolsmith to concentrate on semantic

tasks for mapping of domain elements to presentation elements and would remove the

need to worry about some tasks that could be done by the framework (for example,

handling of the element styles, parts of copy and paste logic, building of standard

menus, etc.);

• A set of helper transformations must be provided, so that the transformation creator

has decent artillery at hand for handling of different kind of tasks (utility functions);

• It is very important to create a good interface to the presentation engines. Engine

metamodels in this case compose this interface. A proper presentation metamodel is

extremely important for the transformation creators to make work with the editors easy

and convenient.

A very short overview on the solutions provided by METAclipse for the first two will

be given in chapter 5.7. The focus in this thesis however is on the last—proper design of the

presentation metamodel. A large amount of effort and time was invested in the design of this

metamodel to make it best usable from transformations. The following few chapters will give

a thorough description of various parts of it, i.e., of various presentation engine metamodels.

78

The presentation engines rely heavily on various Eclipse frameworks. Therefore, the

metamodels of the engines could be partially extracted from them. It must be noted, however,

that none of the used Eclipse frameworks had a metamodel already defined. Metamodel of

every engine had to be synthesized from the corresponding framework API. It had to be

amended then with the METAclipse-specific classes needed for the engine.

As the metamodel is an interface between two parties, transformations and Java code,

it has to be conveniently usable from both sides. However, more importance must be given to

the transformation requirements for the metamodel. It was decided to take over the naming

and structuring standards of classes from the Java coding standards, keeping in mind not to

make any transformation tasks complicated. As it turned out, it is very convenient for both

sides if the metamodel is structured in strictly hierarchical and logically split packages. The

whole presentation model contains the following packages:

• the general package contents include the base classes used by the presentation

metamodel, classes common to all engines and various types used across the

presentation metamodel;

• the project package contains all the classes needed for project handling in METAclipse

and classes for steering the project tree engine (see chapter 5.3 for the description);

• the menu package contains classes for steering the menu engine (see chapter 5.4 for

the description);

• the properties package contains classes for steering the properties engine (see chapter

5.5 for the description);

• the graphDiagram package contains classes for steering the graph diagram engine,

excluding the classes for palette organization (see chapter 5.6 for the description);

• the palette package contains classes for creation of the editor palettes. This was

created as a separate package, because palettes may be required not only by graph

79

diagrams. Palette elements could be reused also if another kind of editor engine were

created.

5.2.2 The Common Part of the Presentation Metamodel (general Package)

The general package defines the core classes of the METAclipse presentation

metamodel (see Fig. 22). In this and following figures a special color-coding will be used.

Normal metamodel classes will be shown in yellow (or lightest in black-and-white printouts).

Pink (or slightly darker in black-and-white) will represent the command classes described

later in this chapter. See also chapter 3.2 and descriptions of METAclipse presentation engines

for more information on what a command is. Blue (or darkest in black-and-white) classes will

denote the singletons. The description of the term “singleton” is given below.

Fig. 22. The general part of the presentation metamodel

As the metamodeling practice shows, and also as the preliminary experience of

METAclipse technology evaluation proved, it is very convenient to have one superclass for all

classes in the metamodel and to organize all classes in strict hierarchies. Just as Java has a

80

superclass of all classes, “Object”, the METAclipse presentation metamodel also includes such

a superclass, JRObject. One example of how the introduction of such a superclass helps is the

case when there is a need to define a very general association to any kind of object. This can

be done only if there is a superclass for every object needed to be referenced. In the general

package this is used to model the concept that any presentation model element can be

displayed in the project tree engine as a node: association between PresentationElementNode

and JRObject (see Fig. 22).

A concept used across all metamodels by engines for finding the starting points of

various parts of models is singletons. Singletons are classes that have exactly one instance.

This fact is used by the presentation engines to find the only instance just by knowing the

class name. Singleton classes are used in METAclipse engines everywhere where there is a

need for an entry point in the model. In the general package one example of singletons is the

Changes class. This class is an important singleton, which is used to find all the changed or

deleted objects after the execution of a transformation.

As discussed in chapter 4.5.3, for wise objects to work there is a need of change

tracking after each transformation invocation. Current implementation of the MIIREP

repository and MOLA transformations does allow automatic tracking of deletions; however

changes must be tracked by each transformation manually. The Changes singleton instance

must be linked through “changes” association to every presentation model object changed by

the transformation. Engines will then use the singleton nature of the Changes class to find the

only instance and read the list of the changed model objects.

The general package contains also the supporting and base classes for one of the

backbones of METAclipse, namely, the command infrastructure. Commands are already

discussed before. A command in a presentation metamodel corresponds to a possible user

action in the editor that requires some reaction from the engine, i.e., the invocation of a

transformation. Command class in the metamodel is the superclass for all the command

81

classes. Command base class defines the “context” association: every command can have

links to some JRObject instances that form the context of the command. All commands are

structured in a strict class hierarchy: for every logical set of commands, an additional

superclass is defined (as GeneralCommand and ClipboardCommand in Fig. 22). This opens

diverse command parsing possibilities in transformations.

The sequence of command execution in METAclipse is described in chapter 3.2. After

any user action, a corresponding command is written to the repository. CommandStack

singleton instance is linked to the written command. Transformations then seek the command

to execute by querying the “command” link of the CommandStack singleton. Currently this

link points to at most one instance of a command. After execution, the transformation may

write back some results to the executed command by setting some attributes or links. Finally,

engines read the command after the transformation execution in order to get the

transformation results, if needed.

The rest of the general package classes shown in Fig. 22 are common classes used by

many presentation engines. This includes some common command classes and the clipboard-

supporting classes. NavigateCommand is used as a response to double-clicking on some

project tree node or diagram element. Such action would result in opening a diagram in the

editor and possibly selecting some diagram element (or multiple elements), if the element

under the cursor were a diagram or diagram element. Transformations must return the

diagram to open or diagram elements to select by setting the navigationTargets link. It will be

queried by the engines after the execution of the transformation to find the objects to open /

select.

SelectCommand is executed if any object is selected. It must be used by

transformations to generate the property sheets corresponding to the selected object. See

chapter 5.5 for more information about the properties engine. Command

DefaultDeleteCommand is executed if the delete button is pressed on any of the selected

82

objects. As the name suggests, transformations should carry out the default delete action when

processing this command. Such a command is especially useful for diagrams—usually, it is

possible to delete an element from the diagram while retaining the domain element or to

delete both the diagram and the model element. Different tools require different default logic

on such operation.

For clipboard operations, the Clipboard singleton and two commands for copying and

pasting are defined. The Clipboard singleton contains links to the copied or cut objects

(through “contents” association); the deleteAfter flag is used to distinguish the copy and cut

operations. Copy command is executed when the selection is copied. Selected objects are

linked to the command through the “context” association. Paste command is executed when

users executes the paste operation in the engines.

Fig. 23. General type part of the presentation metamodel

Finally, the last set of classes found in the general package consists of the various types used

across the entire METAclipse presentation metamodel. These include definitions of

83

enumerations like Alignment, ShapeType, Orientation, etc., as well as some type classes like

Color, Font and Point.

5.2.3 Interaction between the Transformations and Engines

The mechanism of the interaction between the engines and transformations has already

been outlined. Now, as all the concepts of the components involved in METAclipse (engines,

wise objects, repository, transformations and presentation metamodel) have been introduced,

it is time to put it all together. This chapter will give an example of how all of the METAclipse

components fit together before proceeding to the detailed descriptions of the separate engines

in the chapters to follow. See Fig. 24 for a detailed operation schema of the opening of a new

diagram from the project tree. Solid lines in the figure represent the control flow; dashed

lines, simple operations like creation of objects.

Eclipse

Project Tree Engine Graph Diagram Engine

MIIREP Repository Transformation
Library

:CommandStack :NavigateCommand

1

:CommandStack :NavigateCommand

5B 5A

6

:Diagram
command

WRepositoryController

2

4

5

3

navigationTargets

7

8

:Diagram

9

10

11

11B

12

13

11A

Fig. 24. Opening a new diagram from the project tree:
an example of the METAclipse component interaction

Let us imagine that a user has double-clicked a node in the project tree that represents

a graph diagram. This results in invocation of the project tree engine (discussed in more detail

84

in chapter 5.3). This engine must react so that a corresponding diagram is opened. Such

operation includes the following steps:

1. The project tree engine asks WRepositoryController to find the singleton instance of

the CommandStack class (see previous chapter for information about singletons,

repository controller and command stack).

2. If this is the first time CommandStack singleton is used, WRepositoryController

searches the repository for the single instance of the class with the name

“CommandStack.” As it is a singleton, there will be exactly one instance. The

repository controller loads the CommandStack wise object instance and caches it, so

that the next time the CommandStack is queried, it would be retrieved from the

cache.

3. The CommandStack wise object is returned to the project tree engine.

4. The project tree engine creates a new instance of NavigateCommand wise object and

links it to the project tree node wise object, on which the double-click was performed

(not shown in the figure). As the NavigateCommand is not yet saved to the

repository, for the time being no synchronization with repository is carried out.

5. The project tree engine links the newly created command to the CommandStack. At

this moment CommandStack wise object notices that a new link has occurred. As the

linked object is not yet saved to the repository, it asks the NavigateCommand

instance to save itself to the repository (5A). Then the CommandStack wise object

links the repository instance of CommandStack to the newly created instance of

NavigateCommand (5B).

6. Now, when the command is written to the repository, the transformation library is

invoked.

85

7. Transformation detects the NavigateCommand instance linked to the CommandStack

and finds which project tree node was double-clicked. Then it searches for the

corresponding diagram to be opened.

8. Transformation links the Diagram instance found to the NavigateCommand as the

result of the execution. Additionally, it puts a link from the Changes singleton (see

previous chapter) to the NavigateCommand in order to signal that NavigateCommand

instance has changed.

9. Control is given back to the project tree engine.

10. The project tree engine calls the WRepositoryController in order to invoke the

repository change notification process and synchronize the wise object state with the

repository.

11. WRepositoryController reads the Changes singleton to detect that the wise object

instance of NavigateCommand has changed. It then notifies the NavigateCommand

wise object that it must read its contents from the repository instead of its cached

data (11A). This causes also the instantiation of the linked Diagram object (11B).

12. Control is given back to the project tree engine.

13. Finally, the project tree engine delegates control to the graph diagram engine and

passes the Diagram wise object to be displayed. Graph diagram engine then uses the

Diagram object as the root for reading all the contents to be displayed on the

diagram.

All engines operate similarly and the wise object technology is used throughout all

METAclipse for synchronization with the repository. This ensures consistent interaction with

the transformations. It must be noted that only one transformation at a time can be executed.

This, however, does not cause any problems, because in the graphical editors the user makes

just one action at a time and actions are sequential.

86

We could continue on to describing property generation for the element that is

currently selected. However, the operations for that would be very similar to the ones

described already. The only additional operation for building of the properties would be the

querying and modification of the domain model. This, however, is hidden from the

METAclipse framework, as only transformations are responsible for the operations with it and

only transformations can access the domain model.

5.3 Project Tree Engine

Every graphical tool needs some means of organizing the model objects in a

hierarchical tree structure to enable the navigation through models—similarly to how files and

folders are organized on the computer hard drive. At the minimum, it is required to display

the diagrams as a list, so that the user could choose the one he/she desires to edit.

Eclipse defines the notion of “project” as the highest level of organization. Different

tools built on Eclipse provide different kinds of projects: for example, Java, C++, GMF and

others. METAclipse also defines a separate kind of project, the METAclipse project. A

METAclipse project corresponds to one repository instance, which is created together with the

project. All elements of the project model are stored in this repository, e.g., if there are several

diagrams in one METAclipse project, they all will be stored in the same repository instance.

For organization of project artifacts, Eclipse provides the so-called navigator

framework, which provides a view for displaying of items in a tree. The METAclipse project

tree engine is built using this framework and implements its own view (see Fig. 36, part 1).

The Eclipse navigator framework already provides all the functionality required to manage

the project tree. Only thing needed to implement a specific project tree is an implementation

of Navigator interfaces for the retrieving of the model data (or so-called provider-interfaces,

which is a concept used also in other Eclipse frameworks). This is an easy task, as the

interfaces require an implementation of a few very simple methods like one for getting the

87

children of a given node and another for getting the parent of a given node. METAclipse

provides the implementations of these interfaces for reading the project tree data from the

repository. This implementation was very easy to create: just about 100 LOC was required,

which was clearly less than would be needed if all functionality had to be created from

scratch.

Fig. 25. Project part of the presentation metamodel

Fig. 25 shows the metamodel of the project tree engine. When a METAclipse project is

opened, first the Project singleton is used to find the ProjectNode instance, which then is

interpreted as the root of the project tree. Every METAclipse project will always have exactly

one ProjectNode. Project is a singleton that represents the METAclipse project opened in the

platform (recall that there is one-to-one correspondence between a METAclipse project and a

repository instance).

The ProjectTreeNode class is the superclass of all kinds of tree nodes, ProjectNode

included. This class allows defining the hierarchical structure of the tree through the parent-

children association. Every instance of one of its subclasses will appear in the project tree

88

engine as a separate node with the given text and icon and ordered by the relativePosition.

Transformations are free to define any kind of project tree structures, using the

ProjectTreeNode building blocks. There are five kinds of nodes at their disposal, each with a

slightly different support from the engine’s side:

• ProjectNode. Interpreted by the engine as the root project node;

• ModelNode. Interpreted as the node defining the boundaries of one model. The model

term is introduced to allow further grouping of project items in smaller pieces of work.

On possible use of the ModelNode and Model classes could be for the demarcation of

the nodes that correspond to the packages in the domain or, if the domain metamodel

provides the term of model (like UML domain model [24]), to the models;

• DiagramNode. Interpreted as a node that can be opened and represents a diagram.

Transformations must make sure that tree nodes of this kind are linked to a

corresponding Diagram instance;

• PresentationElementNode. Interpreted as a node that represents some diagram

presentation element. Can be used for navigation;

• DomainElementNode. Interpreted as a node that corresponds to an element from the

domain model.

ProjectTreeNode is the only class that represents the original metamodel of the

Navigator framework according to its API. METAclipse project tree engine also does not

really need all the various subclasses of the ProjectTreeNode. The subclasses have been

introduced in order to ease the creation of the transformations.

There are only two commands specific to the project tree engine that can occur. One is

CreateProjectCommand, which is invoked when a METAclipse project is created. It must be

interpreted by transformations to initialize the models with some startup data—for example,

to initialize the singletons, to set up the default context menus and property editors, to

89

initialize styles, etc. Second is OpenProjectCommand, which is invoked when the project is

opened in METAclipse. It can be interpreted by the transformations to carry out some

initialization routines required for the opening of the project.

5.4 Menu Engine

The menu engine is the simplest engine of all and provides just the functionality

needed for the creation of context menus (see Fig. 36, part 2). It uses the standard Eclipse

infrastructure for the generation of the menus. Therefore the implementation of the menu

engine in METAclipse was even easier than the implementation of the project tree engine.

The menu engine metamodel defines one singleton class, RootMenu (see Fig. 26),

which points to the root of the active menu through the “menu” association. If the RootMenu

instance does not have this property set, it means that no menu will be displayed. Menu

structure is defined by the Menu and MenuItem classes. The Menu class is interpreted by the

engine as a menu container (like the root of the context menu or any submenu popping out

when an item containing the submenu is selected). Menu consists of menu MenuItem classes,

which correspond to the items displayed in the menu. Submenus are shown by the engine only

for those MenuItem instances that have the submenu property set.

Fig. 26. Menu part of the presentation metamodel

90

Only two specific commands can occur in the menu engine. ShowMenuCommand is

invoked when the user right-clicks any node in the project tree or any element in the diagram.

Selected JRObject instances (whether tree nodes or diagram elements) will be linked to the

ShowMenuCommand through the context association defined in the general Command class.

Transformations must react to this command by building the context-sensitive menu (using

the context information from the context association) and setting the RootMenu singleton

“menu” association to it. The menu engine then will consult the RootMenu singleton to read

the menu to be shown.

ChooseMenuItemCommand is written to the repository if the user chooses an item

from the menu. Transformations must carry out the corresponding action then. Action can be

anything necessary for the menu item chosen starting from creation of some element up to

very complicated tasks like model simplification, compiler invocation for visual DSL

languages and so on.

5.5 Properties Engine

A very important part of the tools is the properties editor. This editor is used to display

and edit various properties of elements displayed in editors. For example, in the UML class

diagram editor there is a need to edit the properties of a class or association. In Eclipse

property editing is done through a special properties view, which is common to all editors and

can be seen at all times (see Fig. 36, part 3). Any time the selection in Eclipse changes, the

contents of the properties view is also updated to reflect the properties of the currently

selected item. Properties can be arranged in so-called tabs for better structuring.

The properties view is driven by yet another Eclipse framework, the tabbed properties

framework [67], which is used by the properties engine of METAclipse. When the

development of METAclipse began, the tabbed properties framework did not provide all the

capabilities needed for the tool building platform. Particularly, it was not possible to define

91

the structure of the property sheets at runtime. The framework allowed only definition of what

should be displayed in the property sheets during the time of development, and this

information had to be compiled in the released plugins.

Because of this, at the beginning the tabbed properties framework was extended to add

this functionality. Later, however, the functionality of the framework was widened to include

the possibility to define the property sheets dynamically at runtime. This allowed switching to

a clean tabbed properties framework without the need to extend its classes.

5.5.1 General Part of the Properties metamodel

In METAclipse transformations are responsible for building of the property sheets. The

select command is issued by editors so that transformations could carry out this task (already

introduced in chapter 5.2.1 and seen in Fig. 22). Main part of the property engine metamodel

can be seen in Fig. 27.

Fig. 27. Property part of the presentation metamodel: main classes

The properties singleton is queried every time after the selection of any element and

execution of the SelectCommand to read the current state of the properties view. Through this

92

singleton the whole structure describing the contents of the property page can be read. The

title and icon attributes of the Properties singleton are used for the title of the properties view.

The class Tab represents one property sheet tab and is linked to the Properties singleton

through the “tabs” link. The attribute name is the title shown on the tab and is used to name

the contents of the tab. For example, both properties views in Fig. 28 consist of three tabs:

“General,” “Attributes,” and “Style.”

Every tab in the tabbed properties framework consists of so-called sections. Sections

group the properties shown in the tab in logical groups. The corresponding class in the

metamodel is the abstract Section class. The Tab class has a composite association with

Section. As many section implementations as necessary could be provided in Eclipse. Two

implementations turned out to be most useful in practice:

• A data grid that shows the properties in the form of a table with headers. Such a

section can be used for the representation of properties that have one-to-many

relationship with the element owning them. An example could be the list of attributes

for a class in the UML class diagram (see Fig. 28, bottom);

• A group of key-value pairs that can be used for the representation of properties that

have one-to-one relationship with the element owning them. An example application

of this can be seen in Fig. 28, at the top, where the “General” tab of the class

properties contains various values describing the class—such as “abstract” flag, name

of the class, etc.

93

Fig. 28. KeyValueGroup properties section implementation (at the top) and
DataGrid implementation (at the bottom) in action

These two kinds of section are implemented as part of the properties engine in

METAclipse. DataGrid and KeyValueGroup classes in the metamodel (see Fig. 27)

correspond to the data grid and key-value pair group section implementations, respectively.

Both section implementations use the same metamodel structure for the description of their

contents. This turned out to be particularly useful for the development of transformations, as it

allowed a uniform design of the property-building transformations.

The structure used for the two section implementations consists of three main classes:

GridColumn, GridRow, and RowElement. In case of the DataGrid section implementation,

GridColumn corresponds to the table column. The title attribute will be shown as the header

of the table. Attribute inplaceEditorType denotes the kind of editor that will be used for

editing of the data found in the column. Possible values are defined by the InplaceEditorType

enumeration and include such editors as text field, combo-box, checkbox, radio group etc. A

special kind of editor is CUSTOM_EDITOR, which means that an external dialog has to be

shown instead of in-place editor. This will be discussed in more detail below. For editing of

the combo-box or radio group fields, additionally a set of possible values must be defined.

94

This is done through the possibleValues association from the GridColumn class to the

ValueVariant class.

The GridRow class corresponds to one row in the grid. The DataGrid class will hold

an ordered reference to all row classes through “rows” association. Actual data of the table

cells is represented by the RowElement class. The association “column” of this class will

define what column the row element belongs to, while the association “row” will indicate in

which row it should be displayed.

As stated before, the KeyValueGroup section implementation uses the same model. To

understand how the structure is applied to the KeyValueGroup implementation, we can

imagine that this implementation is nothing more than DataGrid with one row, which is

displayed vertically instead of horizontally. So, there will be exactly one GridRow instance

and each GridColumn instance will correspond to the label of one key-value pair in the

KeyValueGroup section (for example, “name” or “abstract” at the property view shown at the

top of Fig. 28). RowElement instances correspond to the value part of key-value pairs, i.e., the

values of the properties that can be edited.

5.5.2 Property Editors and Commands

Not all properties can be edited directly in the properties view—some require more

advanced editing capabilities. For example, editing of a property denoting a color or a font

requires a proper color dialog to be shown. Also properties that must be chosen from a list

with lots of entries are inconvenient to be edited with a simple combo-box. The metamodel of

the properties engine contains an additional set of classes for the definition of external editors

(see Fig. 29).

95

Fig. 29. Property part of the presentation metamodel: editor classes

Theoretically it would be possible also to create a universal dialog engine, so that any

kind of dialogs could be constructed. However, it would require very large effort to build such

engine. Therefore, it was decided to build concrete dialogs for different tasks. In the

metamodel, a common superclass PropertyEditor is introduced for all dialogs. Three

implementations are provided by the engine: the FontEditor class representing the font dialog,

the ColorEditor class representing the color dialog and the ChooseFromListEditor

representing the dialog for showing large lists.

If an external dialog is needed for a particular column, the inplaceEditorType attribute

of the GridColumn instance must be set to CUSTOM_EDITOR. The engine will then display

a button for invoking the external editor. If the button is pressed, the ShowEditorCommand

(see Fig. 30) will be invoked and transformations will have to construct the dialog to be

shown. The editor constructed then has to be linked to the CurrentPropertyEditor singleton,

because the engine will consult this singleton to find which editor to show.

96

Fig. 30. Property part of the presentation metamodel: command classes

After showing the dialog and having the user choose something, the corresponding

command is executed, containing the information about user actions in the dialog. Thus, for

the font dialog, ChooseFontCommand is executed with the chosen font attached through the

font association. Similarly, ChooseColorCommand is executed after choosing any color from

the color dialog and ChooseFromListCommand, after choosing some list item from the list

dialog.

The remaining commands not yet discussed are ChangePropertyValueCommand, which is

invoked when any of in-place property editors is used to change the value of some property;

MoveRowCommand, which is used to change the order of the DataGrid rows;

DeleteRowComand, which deletes DataGrid rows; and AddRowCommand, which creates new

DataGrid rows.

97

5.6 Graph Diagram Engine

The most important of all engines is the graph diagram engine. This engine is used for

visual graph diagram editing (see Fig. 36, part 4). Eclipse technologies used for the graph

diagram engine are the Graphical Editing Framework GEF [42] and the Graphical Modeling

Framework GMF [4]. GMF is the most popular metamodel-based graphical tool building

platform for Eclipse. GMF utilizes EMF (Eclipse Modeling Framework) and GEF (Graphical

Editing Framework) technologies. EMF is used for model management and GEF, for

graphical user interface (see CHAPTER 2).

GMF is using a static-mapping-driven approach. It defines a set of metamodels:

graphical (presentation), tooling and mapping metamodels. In addition, it uses ECore as the

domain metamodel. The graphical metamodel defines the graphical element types. The

tooling metamodel defines the palette and menus. The mapping metamodel defines the

mapping possibilities between the models. To build an editor in GMF, the domain, graphical,

tooling and mapping models are defined, then generation is performed and manual code in

Java added. An analysis of the GMF and a comparison of the static-mapping-driven approach

as such to the transformation-driven approach described here is given in the paper “Building

Tools by Model Transformations in Eclipse” [11] and in chapter 1.4 of this thesis.

The graphical (presentation) metamodel is well adapted to the generation step in GMF,

but cannot be used directly by the transformation approach. The same situation is true for the

tooling metamodel. Therefore, nothing of the GMF definition part can actually be reused in

the proposed METAclipse approach. As a consequence, there are no explicit graphical element

types to be used by transformations.

Fortunately, the GMF runtime uses another metamodel—the notation metamodel. This

metamodel describes graphical instances in the runtime—nodes, edges, compartments and

labels (exactly, the layer required by transformations to build graphical objects dynamically).

98

In fact, the GMF runtime is a graphical engine for Eclipse, significantly extending GEF in the

direction required for diagram building. This allows at least partial reuse of the GMF runtime

in METAclipse.

The created graph diagram engine does not fall back from professional Eclipse-based

tools like RSA [57] in its diversity of features and graphical quality. The developed

metamodel, presented further, allows relatively simple control of quite advanced graphical

structures and behavior. Although the graph diagram engine was the most difficult to

implement, the reuse of GMF runtime and GEF components allowed keeping the required

effort for building it reasonably low.

5.6.1 The General Part of the Graph Diagram Engines Metamodel

The main part of the graph diagram engines metamodel in METAclipse slightly

resembles the GMF notation metamodel. However, it is not the same. It has been made more

accessible for the transformations and more easily usable in various contexts of METAclipse

(see Fig. 31).

The root element corresponding to the actual diagram is the Diagram class. It consists

of DiagramElement class instances, which can be either Node or Edge. Node class instances

correspond to the graph diagram nodes and Edge instances correspond to edges. Note that

Diagram itself is also a kind of node. This allows the use of sub-diagrams. The Diagram

element defines the general attributes of all elements, such as line style and width. Node

defines the general attributes of all kinds of nodes. The Edge class defines the routing of the

edges via the routing style attribute and association with Bendpoint instances. Routing style

defines how the line should be laid out on the diagram and Bendpoint instances define the

layout constraints.

Besides Diagram itself, the nodes are divided into two categories—SimpleNode and

CompositeNode. SimpleNode denotes the nodes that may not contain any children.

99

CompositeNode, on the other hand, may contain children. Theoretically, Diagram also is a

composite node. However, because of its specific nature, it is not in the class hierarchy of the

composite nodes.

Fig. 31. Graph diagram part of the presentation metamodel
without commands and palette

There is just one kind of SimpleNode type—the Label class. Labels are static text

elements that may also display an icon. CompositeNode is not abstract, thus it may be

instantiated itself, but there is also one special type of the composite node, i.e. Compartment.

Compartment is a kind of grouping, used, for example for class diagrams in UML [24].

Just as an example, let us consider the UML class diagram (like the one in Fig. 31).

Diagram itself is represented with the Diagram class instance. It consists of CompositeNode-

s, which in turn consist of one label for class icon and name, one compartment with labels for

100

attributes, and one compartment with labels for operations (operations not shown in the

figure). Associations are edges with different sets of attribute values for different kinds of

associations. These are the bricks for building class diagrams in the METAclipse framework.

In Fig. 32 the command part of the graph diagram engines metamodel is shown. There

are just four commands specific to the graph diagram engine:

• CreateEdgeCommand, used for creation of the edges;

• CreateNodeCommand, used for the creation of the nodes;

• MoveNodeCommand, used for the semantic moving of the nodes (in case the node is

dropped in another node, for example);

• RedirectEdgeCommand, used for relocating the edge start or end to a different node.

Fig. 32. Graph diagram command part of the presentation metamodel

Additionally, there are some already discussed common commands accessible in

graph diagram engine, like NavigateCommand, SelectCommand, etc. These are used for the

tasks that are common to more than just one METAclipse engine.

101

5.6.2 Palette Part of the Graph Diagram Engines Metamodel

The metamodel for description of the palettes has been separated from the graph

diagram metamodel as it could be reused also for other diagram kinds. Fig. 33 shows the

palette part of the graph diagram engines metamodel.

Fig. 33. Palette part of the presentation metamodel

Structure of the palette metamodel is representing the possibilities to build palette in

Eclipse. The Palette class represents the palette itself. It consists of AbstractPaletteElement

instances. There are four kinds of palette elements that can be used:

• PaletteElement—a simple palette element with an icon and an label;

• Separator—a separating line;

• PaletteElementGroup—a container for similar palette elements grouped together.

Groups cannot be nested and may be shown or hidden on user request;

• PaletteElementVariantGroup—a special kind of palette element group used for

displaying the variants of the same palette element. Visually this group is shown as a

normal palette element; however, it allows the switching to another palette element

variant upon user request.

102

5.7 Transformation Structure

Describing the transformation part of the framework is not the objective of this thesis.

Therefore transformations will be discussed here very briefly. As already stated,

transformations in METAclipse are written in the MOLA model transformation language

[29, 58]. The MOLA compiler uses another model transformation language developed at

UL IMCS, i.e. Lx language series [40]. Lx then is compiled to efficient C++ code, which is

able to work with large models in fractions of a second. Only by accomplishing such

performance is it possible to satisfy all needs of METAclipse, as every semantic user operation

results in non-trivial transformations.

Fig. 34. Example of a MOLA transformation:
a small excerpt of command handling procedure

In METAclipse there is only one entry point for the transformations, i.e., it is always

the same transformation that gets called when executing a command. It is then the task of the

transformation to call different procedures that implement model transformations that

103

correspond to the particular command. In Fig. 34, one small part of the command parsing or

main transformation is shown. It serves as an example of what MOLA transformations look

like visually and at the same time displays how the single main transformation calls the sub-

transformations in order to react to particular commands.

The transformation library is actually the key component that finally defines a

concrete DSL tool created with METAclipse. Different tools built in METAclipse will have

different transformation libraries. In order to build a tool, the toolsmith must first define the

domain metamodel. Then he/she must link the domain metamodel to the presentation

metamodel described in the previous chapter through model transformations. The presentation

metamodel may be augmented for the transformation needs with new links or attributes. The

only restriction is that existing classes, attributes and associations must remain intact. Finally,

if necessary, the toolsmith must implement various functions through transformations that are

needed for a particular tool.

METAclipse metamodel consists of the static “presentation” part, fixed by the

METAclipse framework, and a domain part, varying for each tool. In order to simplify the

transformation building in METAclipse and imitate the “static mapping paradigm” of GMF as

far as possible, there is another static part in the predefined metamodel, which is used by the

transformations only: the scaffolding part. METAclipse itself does not force to use this part of

the metamodel, however it makes writing the transformations much easier. The scaffolding

part is used to define the structure of a specific diagram (e.g., a UML class diagram) in a static

way, and by use of links to “hook up” all static parts of the metamodel, such as palette and

menus, on this “static frame”. Fig. 35 shows this “static” part of the metamodel and some of

its links to other (“non-static”) components. The scaffolding consists of two subparts. One is

the diagram structure definition by means of instances of DiagramType, NodeType, EdgeType

etc., which constrain what types may be inside/under other types in a valid diagram. This

structure definition is a semantic equivalent to the static presentation definition in GMF, but

104

in a form transformations can benefit from. The other subpart is style definitions, which

specify the graphical styles for diagram elements. Instances of the static part are built only

once, at the start of a new project.

Also the transformation set in the tool’s transformation library consists of two parts:

the domain-independent part, which actually belongs to the framework itself, and the domain-

dependent part, which implements functionality specific to the graphical editor for some

domain and should be built for each new domain.

Fig. 35. Static part of the metamodel

As it was explained in the previous chapters, transformations in general have to

execute the current command (only one at a time) generated by some presentation engine. The

domain-independent part of transformations includes an interpreter-like structure, which

recognizes the current command and checks its overall validity. But the main volume of

domain independent procedures is based on the static metamodel part. The static part of the

105

metamodel (Fig. 35) is created by special initialization transformations, which are invoked

once per project, immediately after its physical creation.

When instances of the static part are in place, many transformation tasks can be

implemented in a domain-independent way, as generic interpreters based on static instances.

The first such example is style-setting transformations, which set default styles for new

diagram elements or perform data-dependent style modifications when domain instance data

have been modified (such as the appropriate style for an association end). Certainly, all

possible style instances must be built during the initialization. A similar schema can be used,

for example, to build a universal procedure for displaying menu items for the selected

diagram element.

The domain-dependent transformation procedures do domain-dependent semantic jobs

(build domain and presentation instances, build details of a property dialog, update object

properties and so on). These actions cannot be performed by universal domain-independent

procedures, since a lot of specific semantic checks are to be performed during such editing.

Nevertheless, these specific procedures can use a lot of domain-independent subroutines for

standard jobs, such as a universal “context validity” checker for a new element (on the basis

of the static structure definition), a presentation element remover (used after a domain

element was deleted, which may involve nontrivial semantic checks), and others.

106

CHAPTER 6

Practical Application of METAclipse: The MOLA Tool

The MOLA transformation language editor created with METAclipse was the main

testbed for the developed METAclipse platform and for the transformation application

methodology in modeling tool building as such. As MOLA is a typical example of a

complicated DSL, the transformation-based approach described in the thesis is definitely

superior to the mapping approach in this case. Therefore MOLA is a very appropriate example

for testing of METAclipse possibilities.

Fig. 36. METAclipse presentation engines in action: the MOLA tool

The MOLA tool has been created through the so-called bootstrapping method, for

initial implementation using the prototype of the MOLA editor developed with Generic

Modeling Tool [3]. The new editor implements a series of model validations and an intelligent

107

population of menus with context-dependent values. The MOLA editor consists of a UML

class editor for processing of metamodels and a procedure editor for processing of

transformation programs. The procedure editor depends on much more complicated domain-

specific logic for creation and modification of procedure elements.

In the window of the graph diagram shown in Fig. 36 (denoted with number 2), both

editors can be seen: the class editor to the left and the procedure editor to the right. Both

editors are interrelated: for example a modification of a class name in the metamodel has to be

reflected in all class elements in MOLA procedures that use the given class. Furthermore, if

the class is used in multiple diagrams, changes have to be propagated to all of them.

After the development of the first METAclipse version (which included approximately

180 domain-independent MOLA procedures), the development of the new MOLA editor

required approximately one man-month for implementation and tests (the editor consists of

approximately 120 MOLA procedures in the domain-specific part and about 30 main domain

metamodel classes). The MOLA tool along with the editor provides also the MOLA compiler.

Currently the source procedures of the MOLA editor have been completely transferred

from Generic Modeling Tool environment to the MOLA editor implemented with the

METAclipse platform (the MOLA version has also been upgraded to the most recent one). The

editor has been extended with various functions that make the creation of transformations

even easier. The current functionality of the editor is spread across 435 MOLA procedures and

its metamodel consists of 50 classes.

Transformation programs of the editor itself are a good performance test for the

MOLA editor, as the data volume that has to be processed by the editor is equivalent or even

exceeds typical use cases. The programs of the MOLA editor contain about 100 000

metamodel class instances (around 70 000 in the presentation and 30 000 in the domain part).

Even with such a high data volume the performance of the editor is good: the time that is

spent by the editor for model processing is short and it does not slow down user actions. Of

108

course, execution of some of the functions is time consuming (for example, procedure

compilation or other semantically complicated operations); however, it is so because of their

complexity and the time spent working on them is adequate.

The developed MOLA editor has been approbated in real-world environment: it is

being successfully used as the main “MDA instrument” in the European Union IST 6th

framework project ReDSeeDS [14]. The typical data volume in this project is around 80

MOLA procedures and 4000 domain object instances (approximately 10 000 together with the

instances of the presentation classes).

109

CHAPTER 7

Conclusions and Future Work

The main goal of the research was to develop a universal metamodel-based tool

building platform that would be driven by model transformations. In order to achieve this

goal, the following problems were solved:

• A new methodology and architecture have been developed for a universal metamodel-

based modeling tool that is being driven by model transformations. In essence, it is a

platform that is completely based on metamodels and that allows defining the

correspondence between domain and presentation models using exclusively model

transformations. Comparing to other similar platforms, the main benefit of this

platform is that there are virtually no limitations on the way mappings can be defined.

Also, in the case of complicated DSL logic, no additional knowledge of any OOP

language is required in order to create an editor, nor is it required to have deep

architectural understanding of the platform itself. Therefore, in case of complicated

DSLs, the new solution is more efficient than existing ones.

• The developed methodology and architecture have been practically applied by

implementing a metamodel-based transformation-driven tool building platform,

METAclipse, which has been based on the Eclipse platform. The METAclipse platform

is voluminous original software containing more than 50 000 code lines in the Java

programming language. The implemented platform has been successfully applied in

subsequent research and also used for the development of a new editor for the MOLA

transformation language (a typical example of a complicated DSL). EU 6th Framework

project ReDSeeDS (Requirements-Driven Software Development System), which is

aimed to develop methodology and supporting tools for a real (in the sense of MDA)

110

model-based system development, bases the whole development on the newly created

MOLA editor. METAclipse demonstrates application of the methodology in developing

a platform for building DSL editors. The methodology itself, however, can be used

more generally, for creating a variety of transformation-driven metamodel-based tools.

• Another important result of the thesis is the development of an easy-to-use

presentation metamodel (although the Eclipse platform offers many frameworks for

tool building, they do not have a good and convenient metamodel available). The

metamodel formalizes several Eclipse presentation mechanisms: engines for drawing

graph diagrams, project tree management, object property editing, as well as context

menu assembly. Such formalization is important by itself, as it allows looking at the

Eclipse platform through a modeling perspective and driving the elements of the

Eclipse platform through formal models.

• An interpreter of the metamodel has also been created (it is an extension of the Eclipse

engines, which fully utilizes their features), allowing to visualize the instances of the

metamodel in corresponding Eclipse engines. One can say that a set of enhanced and

extended presentation engines has been developed, which not only supplements the

existing Eclipse engines with new functionality, but also allows driving them through

a special interface, namely, a metamodel. The formalization allows using these

engines also outside the METAclipse platform in various model-based solutions, as it

allows driving them through instances of the corresponding metamodels. Therefore,

the solution itself can be considered of value to the developers in the Eclipse

environment.

• A solution for external repository integration in the Eclipse EMF environment has

been developed, which is essentially a universal solution with its own scientific value

and can be used as a standard solution for repository integration. The newly created

tool uses the MOLA transformation language for the definition of mappings and

111

operates on a specialized model repository, MIIREP. The repository integration

solution was created in order to enable the use of the MOLA language in the

METAclipse platform.

The practical result of the thesis—the METAclipse platform—provides the

implementation of a completely transformation-based approach to the building of DSL

editors. The thesis shows that the chosen approach is effective in cases when the

correspondence between domain and presentation metamodels is relatively complex. This

statement is confirmed by the MOLA tool that was developed using METAclipse. However, in

more simple cases, when domain and presentation metamodels are close to each other, it

would be easier to use the static mapping approach (see chapter 1.4). Even in the case of

complex DSLs, often some parts of the domain metamodel are very similar to the

corresponding presentation metamodel parts. Therefore, combining the static mapping and

transformation approaches would allow efficient creation of DSL editors in simple cases, and

also would even further improve the development efficiency of complex DSLs. By combining

the transformation-driven approach with the possibility to use static mappings, the developed

methodology has a potential to reach or even exceed the efficiency of the existing solutions

also in the development of editors for simple DSLs. The stated combination of the approaches

is a very wide source for research. Currently other authors are working on doctoral theses

focusing on the development of an efficient unified solution. The research is based on the

results of this thesis, both theoretical and practical.

At the moment METAclipse already contains all the necessary functionality for

successful development of DSL editors. For example, the MOLA tool that was created using

METAclipse has proven itself as a powerful tool for editing MOLA model transformations and

is being successfully used in practice. In order to further test the capabilities of the

METAclipse platform, currently also a master’s thesis is being developed at UL IMCS, which

focuses on the development of an editor for the graphical form of the MOF QVT using

112

METAclipse. The METAclipse platform can be used also for implementation of complex

workflows.

There is still a lot of work to be done in order to make the creation of transformations

easier, so that tools could be built with much less effort. This would include generalization of

common transformations, creation of reusable transformation frameworks (small frameworks

for properties, styles, etc.), incorporation of the static mapping approach, definition of helper-

functions, etc. Analysis of the transformation part, however, is beyond the scope of this thesis.

Of course, there are also tasks to be done in order to make the METAclipse presentation

framework (engines) more convenient and easier to use. Additional features could be

implemented to enable more functionality for the tools. Some of these tasks are:

• Creating a more advanced property engine in order to allow building of more

customized property pages. Currently the layout and contents of property sheets are

very rigid and only a limited number of various controls can be used. There are cases

when it is necessary to have richer property editors;

• Introducing the possibility for transformations to impact the engines, meaning that

some special commands could be issued from transformations, which then would be

interpreted by engines. This would be necessary, for example, to provide interactive

debugging support for DSL editors. Current implementation of the METAclipse allows

only request-response type of communication between the engines and

transformations (engines issuing commands and transformations changing the state of

the models). For debugging it would be necessary also to allow transformations to

send commands to the engines.

• Adding possibilities to include animations. This would also be particularly useful for

debugging.

113

• Implementing XMI import/export for domain part of the models. EMF already has the

functionality needed for serialization and de-serialization of the models to XMI,

however, currently only the presentation model is loaded via wise objects.

• Enhancement of the current graph diagram engine to allow more advanced constructs,

such as swimlanes and pins used in UML activity diagrams.

• Creation of new engines for editing of other kinds of diagrams.

The tasks listed above illustrate only several aspects that could improve the

METAclipse platform. The amount of the work to be spent for the implementation of the

features mentioned above is relatively small in comparison to the work that has already been

invested to provide the basic functionality of METAclipse. Of course, the number of different

functions that could be implemented in order to improve the tool and that would be useful for

both DSL developers and the users of DSL editors is virtually infinite.

It must be noted also that currently the author of the thesis is working on the

development of a new version of METAclipse, which is going to use a MOLA transformation

language runtime version that works already in a clean EMF environment and uses EMF

objects directly. In this version there is no need to use the external repository anymore, which

allows creating a more homogenous METAclipse architecture, with purer Eclipse- and Java-

based implementation. This will allow adding the new version of METAclipse as an Eclipse

project in “incubator” state.

114

REFERENCES

1. Stahl, T., Völter, M., Czarnecki, K.: Model-Driven Software Development: Technology,
Engineering, Management. John Wiley & Sons, Ltd., 2006.

2. Kelly, S., Tolvanen, J-P.: Domain-Specific Modeling: Enabling Full Code Generation.
John Wiley & Sons, Ltd., 2008.

3. Celms, E., Kalnins, A., Lace, L.: Diagram definition facilities based on metamodel
mappings. Proceedings of the 18th International Conference, OOPSLA’2003, Workshop
on Domain-Specific Modeling, Anaheim, California, USA, October 2003, pp. 23–32.

4. Graphical Modeling Framework (GMF, Eclipse Modeling subproject),
http://www.eclipse.org/gmf/

5. Cook, S., Jones, G., Kent, S. and Wills, A. C.: Domain-Specific Development with Visual
Studio DSL Tools. Addison-Wesley, 2007.

6. Karsai, G.: A Configurable Visual Programming Environment: A Tool for Domain-
Specific Programming, IEEE Computer Society Press, pp. 36–44, 1995.

7. Ermel, C., Ehrig, K., Taentzer, G., Weiss, E.: Object Oriented and Rule-based Design of
Visual Languages using Tiger. Proceedings of GraBaTs'06, 2006, pp. 12.

8. Taentzer, G., Crema, A., Schmutzler, R., Ermel, C.: Generating Domain-Specific Model
Editors with Complex Editing Commands. Proceedings of AGTIVE 2007, Universität
Kassel, Germany, October 2007.

9. Rath, I., Varro, D.: Challenges for advanced domain-specific modeling frameworks.
Proceedings of Workshop on Domain-Specific Program Development (DSPD), ECOOP
2006, France.

10. Amelunxen, C., Königs, A., Rötschke, T., Schürr, A.: MOFLON: A Standard-Compliant
Metamodeling Framework with Graph Transformations. Model Driven Architecture—
Foundations and Applications: Second European Conference, Lecture Notes in Computer
Science, Vol. 4066, pp. 361–375, Springer 2006.

11. Kalnins, A., Vilitis, O., Celms, E., Kalnina, E., Sostaks, A., Barzdins, J.: Building Tools
by Model Transformations in Eclipse. Proceedings of DSM’07 workshop of OOPSLA
2007, Montreal, Canada, Jyväskylä University Printing House, 2007, pp. 194–207.

12. Eclipse Platform, http://www.eclipse.org/

13. Barzdins, J., Barzdins, G., Balodis, R., Cerans, K., Kalnins, A., Opmanis, M.,
Podnieks, K.: Towards Semantic Latvia. Proceedings of Seventh International Baltic
Conference on Databases and Information Systems, Communications, Vilnius, Lithuania,
O. Vasileckas, J. Eder, A. Caplinskas (Eds.), Vilnius, Technika, 2006, pp. 203–218.

14. ReDSeeDS. Requirements Driven Software Development System. European FP6 IST
project. http://www.redseeds.eu/, 2007.

15. OMG, Model Driven Architecture, http://www.omg.org/mda/

16. Smolander, K., Martiin, P., Lyytinen, K., Tahvanainen, V-P.: Metaedit—a flexible
graphical environment for methodology modeling. Springer-Verlag, 1991.

115

17. Ebert, J., Suttenbach, R., Uhe, I.: Meta-CASE in Practice: a Case for KOGGE.
Proceedings of the 9th International Conference, CAiSE'97, Barcelona, Spain, 1997, pp.
203–216.

18. DOME Users Guide, http://www.htc.honeywell.com/dome/support.htm

19. Karsai G.: A Configurable Visual Programming Environment: A Tool for Domain-
Specific Programming, IEEE Computer Society Press, pp. 36–44, 1995.

20. Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason IV, C., Nordstrom,
G., Sprinkle, J., Volgyesi, P.: The Generic Modeling Environment. Workshop on
Intelligent Signal Processing, Budapest, Hungary, May 17, 2001.

21. de Lara, J., Vangheluwe, H., Alfonseca, M.: Meta-Modeling and Graph Grammars for
Multi-Paradigm Modeling in AToM3. Software and System Modeling, 3(3), 2004, pp.
194–209.

22. Kelly, S., Lyytinen, K., Rossi, M.: MetaEdit+ A fully configurable multi-user and multi-
tool CASE and CAME environment Lecture Notes in Computer Science, Volume 1080,
Proceedings of the 8th International Conference on Advances Information System
Engineering, pp. 1–21, Springer-Verlag, 1996.

23. Meta-Object Facility (MOF), http://www.omg.org/mof/

24. OMG, Unified Modeling Language: Superstructure, version 2.0,
http://www.omg.org/docs/formal/05-07-04.pdf

25. Zhu1, N., Grundy, J. and Hosking, J.: Pounamu: a meta-tool for multi-view visual
language environment construction. Proc. IEEE Symposium on Visual Languages and
Human Centric Computing (VLHCC’04), pp. 254–256, 2004.

26. The Generic Eclipse Modeling System (GEMS), http://www.eclipse.org/gmt/gems/

27. OMG, Business Process Modeling Notation, http://www.bpmn.org/

28. OMG, MOF QVT Final Adopted Specification,
http://www.omg.org/docs/ptc/05-11-01.pdf

29. Kalnins, A., Barzdins, J., Celms, E.: Model Transformation Language MOLA.
Proceedings of MDAFA 2004, Vol. 3599, Springer LNCS, 2005, pp. 62–76.

30. OMG, Object Constraint Language, version 2.0,
http://www.omg.org/docs/formal/06-05-01.pdf

31. MetaCase, The S60 Phone Example, Version 4.5,
http://www.metacase.com/support/45/manuals/S60%20Phone%20Example.pdf

32. Fujaba. Universität Paderborn, Institut für Informatik.
http://wwwcs.uni-paderborn.de/cs/fujaba/documents/user/manuals/FujabaDoc.pdf

33. Resource Description Framework (RDF),
http://www.w3.org/RDF/

34. Sesame, http://www.openrdf.org, 2007.

35. OMG Ontology Definition Metamodel (ODM), Final Adopted Specification,
http://www.omg.org/docs/ptc/06-10-11.pdf

36. Bézivin, J., Hillairet, G., Jouault, F., Kurtev, I., Piers, W.: Bridging the MS/DSL Tools
and the Eclipse Modeling Framework. Proceedings of the International Workshop on
Software Factories at OOPSLA 2005, San Diego, California, USA, 2005.

37. Greenfield, J., Short, K.: Software Factories: Assembling Applications with Patterns,
Models, Frameworks, and Tools. John Wiley and Sons, 2004.

116

38. Özgür, T.: Comparison of Microsoft DSL Tools and Eclipse Modeling Frameworks for
Domain-Specific Modeling in the Context of the Model-Driven Development. Thesis
submitted to the School of Engineering at Blekinge Institute of Technology in partial
fulfilment of the requirements for the degree of M.Sc. in Software Engineering, 2007.

39. Barzdins, J., Zarins, A., Cerans, K., Kalnins, A., Rencis, E., Lace, L., Liepins, R.,
Sprogis, A.: GrTP: Transformation Based Graphical Tool Building Platform. Proceedings
of MODELS 2007, MDDAUI 2007 workshop, Nashville, Tennessee, USA,
September 30–October 5, 2007, pp. 4.

40. Lx Transformation Language Set, http://Lx.mii.lu.lv/, 2007.

41. Eclipse Modeling Framework (EMF, Eclipse Modeling subproject),
http://www.eclipse.org/emf/

42. Graphical Editor Framework (GEF, Eclipse Tools subproject),
http://www.eclipse.org/gef/

43. Visual Automated Model Transformations (VIATRA2), GMT subproject, Budapest
University of Technology and Economics,
http://dev.eclipse.org/viewcvs/indextech.cgi/gmthome/subprojects/VIATRA2/index.html

44. OMG, MOF 2.0 / XMI Mapping Specification, v2.1.1
http://www.omg.org/technology/documents/formal/xmi.htm

45. Vilitis, O., Kalnins, A.: A Proxy Approach to External Model Repository Integration in
Eclipse EMF Infrastructure. Proceedings of the ECMDA Workshop on Model Driven
Tool and Process Integration, Berlin, Germany, Fraunhofer IRB Verlag, 2008, pp. 67–78.

46. Bergin, J.: Building Graphical User Interfaces with the MVC Pattern,
http://csis.pace.edu/~bergin/mvc/mvcgui.html

47. Java Native Interface Specification,
http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/jniTOC.html

48. EMF Query Project, http://www.eclipse.org/modeling/emf/?project=query

49. EMF Transaction Project, http://www.eclipse.org/modeling/emf/?project=transaction

50. Model Development Tools (MDT) Project, http://www.eclipse.org/modeling/mdt/5.1.1

51. EMF Validation Project, http://www.eclipse.org/modeling/emf/?project=validation

52. Atlas Transformation Language (ATL) Project, http://www.eclipse.org/m2m/atl/

53. JET Project, http://www.eclipse.org/modeling/m2t/?project=jet
54. CDO Project, http://www.eclipse.org/modeling/emft/?project=cdo

55. Teneo Project, http://www.eclipse.org/modeling/emft/?project=teneo

56. openArchitectureWare, http://www.openarchitectureware.org/

57. Rational Software Architect (RSA),
http://www-306.ibm.com/software/awdtools/architect/swarchitect/

58. UL IMCS, MOLA pages, http://mola.mii.lu.lv/

59. Metadata Repository (MDR), http://mdr.netbeans.org/

60. Tool Integration within Software Engineering Environments: An Annotated Bibliography,
http://www.macs.hw.ac.uk:8080/techreps/build_table.jsp?id=0041

117

61. Kern, H., Kühne, S.: Model Interchange between ARIS and Eclipse EMF. Proceedings of
DSM’07 workshop of OOPSLA 2007, Montreal, Canada, Jyväskylä University Printing
House, 2007.

62. Bézivin, J., Brunette, C., Chevrel, R., Jouault, F., Kurtev, I.: Bridging the Generic
Modeling Environment (GME) and the Eclipse Modeling Framework (EMF). Proceedings
of the Best Practices for Model Driven Software Development at OOPSLA'05, San Diego,
California, USA, 2005.

63. Biermann, E., Ehrig, K., Koehler, C., Kuhns, G., Taentzer, G., Weiss, E.: Graphical
Definition of In-Place Transformations in the Eclipse Modeling Framework. Proceedings
of MoDELS’06, Genova, Italy, October 2006.

64. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of reusable
object-oriented software. Addison-Wesley, Boston, MA, 1995.

65. Taentzer, G: AGG: A Graph Transformation Environment for Modeling and Validation of
Software. AGTIVE’03, Vol. 3062, Springer LNCS, 2004.

66. Vilitis, O., Kalnins, A.: Technical Solutions for the Transformation-Driven Graphical
Tool Building Platform METAclipse. Computer Science and Information Technologies,
Acta Universitatis Latviensis, 2008, pp. 179–212.

67. The Eclipse Tabbed Properties View,
http://www.eclipse.org/articles/Article-Tabbed-Properties/tabbed_properties_view.html

