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Abstract

The speedups of quantum algorithms over classical algorithms have been
a main reason for the current interest on quantum computing. The most
famous quantum algorithms are: Grover’s search algorithm and Shor’s fac-
toring algorithm. Grover’s algorithm solves an arbitrary search problem with
N possibilities in time Ø(

√
N). It is obvious that classical algorithm needs

Ω(N) time to solve the problem. So we are very interested in finding all such
problems where quantum algorithms can give a better speedup over classical
algorithms. The central question of the quantum computing is: how power-
ful the quantum algorithms are, how big speedup is possible? We give some
answers to this question in our thesis.

We are considering two main problems in this thesis. Firstly we show the
problem of finding cycle in the graph. We provide the quantum algorithm
solving this problem better than any classical analogue and prove that this
algorithm is optimal.

In the second part of our work we complete the research of probabilis-
tic reversible automata by investigating properties of probabilistic reversible
Decide and Halt automata (DH-PRA). We show general class of languages
not recognizable by DH-PRA, that is very similar to the class of languages
not recognizable by measure-many quantum automata (MM-QFA). We also
show that the class of languages recognized by DH-PRA is not closed under
union. That allows us to speculate that that class of languages recognizable
by DH-PRA is likely to include the one recognizable by MM-QFA or these
classes are equal. We are still working on this problem.



Anotācija

Kvantu algoritmu veiktspējas pārākums par klasiskajiem algoritmiem ir gal-
venais iemesls pašreizējai lielai ieinteresēt̄ibai par kvantu skaitļošanu. Vieni
no slavenākiem kvantu algoritmiem ir Grovera meklēšanas algoritms un Šora
skaitļu faktorizācijas algoritms. Piemēram, Grovera algoritms atrisina el-
ementa meklēšanas problēmu N elementu sarakstā ar laiku Ø(

√
N), kaut

klasiskam algoritmam ir nepieciešams Ω(N) laiks, lai atrisinātu šo problēmu.
Tātad mēs esam ļoti ieienteresēti atrast šādas problēmas, kurām kvantu al-
goritms var būt parāks par klasisko analogu. Kvantu skaitļošanas centrālais
jautājums ir, cik spēc̄ıgi ir kvantu algoritmi? Cik liels veiktspējas uzlabo-
jums ir iespējams? Šajā darbā mēs sniedzam dažus jautājumus uz š̄ım
jautājumiem.

Mēs aplūkojam divas lielas problēmas šajā darbā. Pirmkārt, mēs aplūkojam
cikla eksistences grafā problēmu. Mēs piedāvājam kvantu vaicājošo algo-
ritmu, kas atrisina šo problēmu efekt̄ıvāk par jebkuru klasisko analogu, un
pierādām, ka mūsu piedāvātais algoritms ir optimāls.

Otrkārt mēs turpinām pēt̄ıjumus par varbūtiskiem apgriežamiem automātiem,
izpētot apstādināmo varbūtisko apgriežamo automātu (DH-PRA) ı̄paš̄ıbas.
Mēs parādām vispārējo valodu klasi, ko nevar paz̄ıt ar DH-PRA, un kas ir ļoti
l̄ıdz̄ıga valodu klasei, ko nevar paz̄ıt ar daudz-mēr̄ıjumu kvantu automātiem
(MM-QFA). Mēs ar̄ı parādām, ka valodu klase, kuru paz̄ıst DH-PRA nav
slēgta pret apvienojuma operāciju. Tas ļauj mums izteikt minējumu, ka val-
odu klase, ko paz̄ıst DH-PRA automāti iekļauj valodu klasi, ko paz̄ıst MM-
QFA vai nu š̄ıs klases ir ekvivalentas. Mēs turpinām strādāt pie š̄ı minējuma
pierād̄ı̌sanas.
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Chapter 1

Introduction

The speedups of quantum algorithms over classical algorithms have been
a main reason for the current interest on quantum computing. The most
famous quantum algorithms are: Grover’s search algorithm and Shor’s fac-
toring algorithm. Grover’s algorithm solves an arbitrary search problem with
N possibilities in time Ø(

√
N). It is obvious that classical algorithm needs

Ω(N) time to solve the problem. So we are very interested in finding all such
problems where quantum algorithms can give a better speedup over classical
algorithms. The central question of the quantum computing is: how power-
ful the quantum algorithms are, how big speedup is possible? We give some
answers to this question in our thesis.

We are considering two main problems in this thesis. Firstly we show the
problem of finding cycle in the graph. We provide the quantum algorithm
solving this problem better than any classical analogue and prove that this
algorithm is optimal.

In the second part of our work we complete the research started by M.
Golovkins and M. Kravtsev [GK 02] by investigating properties of proba-
bilistic reversible Decide and Halt automata. We have almost completed
the proof that probabilistic reversible automata is at least as powerful as
quantum automata, but the problem is still open.

In Chapter 1 of this thesis we give some background of quantum compu-
tation, including quantum Turing machine, quantum automata and quantum
query complexity.

In Chapter 2 of the thesis we state some common notations and definitions
used in the rest part of the thesis. In Section 2.1 we recall several notions
of linear algebra used in quantum computations. In Sections 2.2 and 2.3 we
discuss notions applicable to quantum automata and decision tree models.
We also recall several notions from the probability theory in Section 2.4

In Chapter 3 we consider all known quantum query complexity lower
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CHAPTER 1. INTRODUCTION 6

bound techniques, paying more attention on Adversary methods. We use
this technique to prove lower bounds of graph cycle problem in Section 3.4,
showing that our quantum algorithm, that solves the problem, is optimal.

In Chapter 4 we explore properties of the probabilistic reversible Decide
and Halt automata. We show a general class of regular languages, not rec-
ognizable by DH-PRA. This class is identical to a class not recognizable by
MM-QFA [AKV 01] (and similar to the class of languages, not recognizable
by C-PRA [GK 02]). We also prove that the class of languages recognizable
by DH-PRA is not closed under union. The one open problem still remains:
we show the class of languages for which we can not prove whether it is
recognizable by DH-PRA or not. So we still unable to prove or disprove
that class of languages recognizable by DH-PRA is likely to include the one
recognizable by MM-QFA or these classes are equal.

For those interested in quantum computation in general we refer to the
monographs of J. Gruska [Gr 99] and M.Nielsen and I.Chuang [NC 00] for
the complete overview on the subject.

1.1 Quantum Turing machine

As in the classical theory of computation there are a lot of models of quantum
computation. We can consider such models as: quantum Turing machine,
quantum circuits, quantum finite automata etc. We refer to the [BV 97]
for the description of quantum Turing Machine. Deutch [De 85] introduced
the notion of quantum Turing machine in 1985. He gave a precise model
of quantum computation and proved that quantum Turing machines com-
pute exactly the same recursive functions as classical deterministic Turing
machines do. A quantum Turing Machine as a quantum physical analogue
of a probabilistic Turing Machine it has an infinite tape and a transition
function, and the actions of the machine are local and completely specified
by this transition function. Unlike probabilistic Turing Machines, quantum
Turing Machines allow branching with complex “probability amplitudes”,
but impose the further requirement that the machine’s evolution be timere-
versible. Yao [Y 93] extended the Deutch’s results by proving that quantum
circuits are polynomially equivalent to quantum Turing machines. Bernstein
and Vazirani [BV 97] introduced an efficient universal quantum Turing ma-
chine and defined BQP - the class of decision problems (languages) that
can be solved in polynomial time by quantum Turing machines with error
probability bounded by 1/3. BQP is the quantum analogy of the BPP -
the class of decision problems (languages) that can be solved in polynomial
time by probabilistic Turing machines with error probability bounded by 1/3
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(for all inputs). As in the case with BPP, the error probability of BQP ma-
chines can be made exponentially small [BBBV 97]. In [BV 97] Bernstein
and Vazirani proved that BPP ⊆ BQP ⊆ PSPACE 1. Simon [Si 94] gave
the evidence that BQP 6= BPP, proving the existence of an oracle, relative
to which BQP cannot even be simulated by probabilistic machines allowed
to run for 2n/2 steps. Finally Bennett, Bernstein, Brassard and Vazirani
in [BBBV 97] gave evidence that quantum Turing Machines can not solve
every problem in NP in polynomial time. They showed that relative to an
oracle chosen uniformly at random, with probability 1, the class NP cannot
be solved on a quantum Turing Machine in time o(2n/2).

1.2 Quantum automata

1.2.1 Quantum finite automata

Opposite to Turing machine Quantum finite automata represent the cases
when specific restrictions are inevitable regarding space consumption and
time usage. We can say that Quantum one way finite automaton is the most
restricted model of quantum computation, where computation is performed
with finite memory and the number of computation steps does not exceed the
length of input. The advantage of such model is that such device is relatively
simple to be built because the quantum device is controlled by the classical
part. It sequentially reads letters of the word from the input and applies
certain quantum operations dependant on the letter read on the quantum
system. In other words the computation of a word can be represented as
consecutive application of the unitary transformations according to the let-
ters of the word on the state of the underlying finite dimensional quantum
system.

Several models of quantum finite automata were presented in different
papers. Major differences between models are what are the allowed measure-
ments and definition of acceptance. We refer to the type of language recog-
nition with halting before reading the whole input as “decide and halt” and
to the respective automata as “decide and halt” automata (DH-automata).
We refer to the type of language recognition when no halting states exist and
decision on acceptance is taken by the state of automaton after reading the
whole word as “classical” acceptance. Such acceptance model is usually used
in deterministic or probabilistic automata. We briefly describe the models

1thus they established that it will not be possible to conclusively prove that BPP 6=
BQP without resolving the major open problem P ?= PSPACE.
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connected with topic of research in Probabilistic Reversible Automata in this
section.

Moore and Crutchfield in [MC 00] introduced ”Measure Once” (MO-
QFA) - the most straightforward model of the Quantum finite automata.
It makes the only measurement when the whole word is processed obtaining
classical result - whether word is accepted or rejected. According to this
MO-QFA is pure state model with classical acceptance, as no measurement
are allowed at all. Brodsky and Pippenger in [BP 99] proved, that MO-QFA
recognize the same language class as permutation automata ([T 68]).

Kondacs and Watrous in [KW 97] proposed another definition of the
QFA. Their ”Measure-many” quantum finite automata (MM-QFA) differs
from the MO-QFA in such way that it allows a special measurement to be
performed after each unitary transformation when reading each letter. The
measurement provides the probabilistic decision on every letter of the input
by projecting the state of the automaton to one of three subspaces: one that
corresponds to accepting states of automata, one to the rejecting states and
one to the non-halting states. The computation halts when accepting or re-
jecting state is reached and continues otherwise. Thus MM-QFA has more
power in comparison with MO-QFA, but still this model recognizes only the
subset of the regular languages ([KW 97]). Moreover the class of languages
recognized by MM-QFA is not defined completely. Brodsky and Pippenger
in [BP 99] introduced the first ”forbidden construction” 2 for languages rec-
ognizable by MM-QFA. Later Ambainis, Ķikusts and Valdats in [AKV 01]
have shown another ”forbidden constructions” for MM-QFA, but still it is
open problem whether any language that does not have ”forbidden construc-
tion” is recognizable by MM-QFA. According to our classification MM-QFA
is pure state model with decide and halt acceptance.

Nayak in [N 99] generalized MM-QFA allowing any orthogonal measure-
ment to be performed after reading each letter. Processing of each input
letter in this model means applying of finite sequence of unitary transforma-
tions and orthogonal measurements, followed by the measurement on fixed
subspaces formed by accepting, rejecting and non-halting states as in the
MM-QFA case. The automata of that model can recognize only the subset
of regular languages anyway. According to our classification Nayak’s model
is mixed state model with decide and halt acceptance.

In the [ABGKMT 06] Nayak’s enhanced QFA model with classical accep-

2If minimal deterministic automaton for the language contains such construction then
the language can not be recognized by MM-QFA
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tance is considered. It is called ”latvian QFA” in the paper. This model is
similar counterpart for Nayak’s model, as MO-QFA for MM-QFA. There are
no measurements according to the MM-QFA rules in this model, but any or-
thogonal measurement as a valid intermediate computational step is allowed
in this model. The class of languages recognizable by this model is found. It
is expressed in algebras terms but can be expressed in terms of ”forbidden
constructions” as well.

1.2.2 Probabilistic Reversible Automata

Ambainis and Freivalds in [AF 98] raised the question what kind of proba-
bilistic automata can be considered as a special case of QFA. To answer this
question and to study relationship between QFA and probabilistic finite au-
tomata (PFA) M.Kravcevs and M.Golovkins in [GK 02] have introduced the
model of probabilistic reversible automata (PRA). They noticed that if we
consider Nayak’s model of QFA with measurement allowed only to subspaces
restricted to be one dimensional, then such automaton will be probabilistic
automaton which transition matrix being double stochastic3. The property
of transition matrix to be doubly stochastic is used to define Probabilistic
Reversible automata. Note that we can not obtain this model as subclass
of quantum automata because not every double stochastic matrix has an
unitary prototype.

One way C-PRA

One way C-PRA automata were introduced by M. Golovkins and M. Kravcevs
in the [GK 02]. They showed general class of regular languages, not recog-
nizable by C-PRA. For example, such languages as (a,b)*a and a(a,b)* are
in this class. This class has strong similarities with the class of languages,
not recognizable by DH-QFA [AKV 01]. M. Golovkins and M. Kravcevs
expressed this class as a set of forbidden constructions for minimal determin-
istic automata. There are 2 forbidden constructions first one is exactly the
one as for DH-QFA [BP 99], the second one includes the one considered in
[AKV 01]. In [GK 02] it was also proved that the class of languages recog-
nized by C-PRA is closed under boolean operations, inverse homomorphisms
and word quotient. But also it is not closed under homomorphisms.
Later, in [ABGKMT 06] M. Mercer, D. Thrien e.t.c. have found the class
of languages recognizable by C-PRA. This class coincides with the class of
the enhanced QFA with classical acceptance. This class expressed in terms

3double stochastic mean the sum of elements in every column and row of transition
matrix equals to 1
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of forbidden constructions for the minimal deterministic automata coincides
with the forbidden constructions found in [GK 02].

DH-PRA automata

Properties of DH-PRA model are studied in [GKK 05] and [GKK 07]. Obvi-
ously C-PRA recognize proper subset of languages recognizable by DH-PRA,
for example C-PRA can not recognize a(a,b)* that can be recognized by DH-
PRA.

We prove forbidden constructions for DH-PRA. These constructions are
very similar to the constructions for DH-QFA considered in [AKV 01]. In
fact it is possible to prove that for a language a minimal automaton contains
one of the forbidden constructions for DH-PRA iff it contains one of the
forbidden constructions for DH-QFA

Thus we are not able to show the exact class of languages recognizable by
DH-PRA. The unknown gap is left for languages which minimal automaton
contains forbidden construction for C-PRA but not for DH-PRA.

We show that the class of languages recognized by DH-PRA is not closed
under union. This proof uses the same languages and resembles the proof for
DH-QFA in [AKV 01].

That leads to a conjecture that class of languages recognizable by DH-
PRA is likely to include the one recognizable by DH-QFA or these classes
are equal. Still we are unable to prove that.

1.3 Background on quantum query complex-

ity

1.3.1 Background on black-box model

The black-box model of computation arises when one is given a black-box
containing an N-tuple of Boolean variables X = (x0, x1, ..., xN−1). The box
is equipped to output xi on input i. We wish to determine some property
of X, accessing the xi only through the black-box. Such a black-box access
is called a query. A property of X is any Boolean function that depends on
X, i.e. a property is a function f : {0, 1}N → {0, 1}. We want to compute
such properties using as few queries as possible. Consider, for example, the
case where the goal is to determine whether or not X contains at least one
1, so we want to compute the property OR(X) = x0 ∨ x1 ∨ ... ∨ xN−1. It
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is well known that the number of queries required to compute OR by any
classical (deterministic or probabilistic) algorithm is Θ(N). Grover [GR 96]
discovered a remarkable quantum algorithm that, making queries in super-
position, can be used to compute OR with small error probability using only
O(
√

N) queries. This number of queries was shown to be asymptotically
optimal [BBBV 97],[BBHT 98], [ZA 97]. Many other quantum algorithms
can be naturally expressed in the black-box model, such as an algorithm due
to Simon [Si 94], in which one is given a function f(X) : {0, 1}n → {0, 1}n,
which technically can also be viewed as a black-box X = (x0, ..., xN−1) with
N = n2n. The black-box X satisfies a particular promise, and the goal is
to determine whether or not X satisfies some other property (the details
of the promise and properties are explained in [Si 94]). Simon’s quantum
algorithm is proven to yield an exponential speed-up over classical algo-
rithms. It makes (log N)O(1) queries, whereas every classical randomized
algorithm for the same function must make NΩ(1) queries. The promise
means that the function f : 0, 1N → 0, 1 is partial; it is not defined on all
X ∈ 0, 1N . (In the previous example of OR, the function is total; how-
ever, the quantum speed-up is only quadratic.) Some other quantum algo-
rithms that are naturally expressed in the black-box model are described in
[DJ 92, BL 95, BBHT 98, BH 97, ME 98, BHT 98, M 98]. Of course, up-
per bounds in the black-box model immediately yield upper bounds for the
circuit description model, in which the function X is succinctly described as
a (log N)O(1) -sized circuit computing xi from i. On the other hand, lower
bounds in the black-box model do not imply lower bounds in the circuit
model, though they can provide useful guidance, indicating what certain al-
gorithmic approaches are capable of accomplishing. It is noteworthy that, at
present, there is no known algorithm for computing OR (i.e. satisfiability)
in the circuit model that is significantly more efficient than using the cir-
cuit solely to make queries (though, proving that no better algorithm exists
is likely to be difficult, as it would imply P 6=NP). It should also be noted
that the black-box complexity of a function only considers the number of
queries; it does not capture the complexity of the auxiliary computational
steps that have to be performed in addition to the queries. In cases such
as OR, PARITY, MAJORITY, this auxiliary work is not significantly larger
than the number of queries; however, in some cases it may be much larger.
For example, consider the case of factoring N-bit integers. The best known
algorithms for this involves Θ(N) queries to determine the integer, followed
by 2NΩ(1) operations in the classical case, but only N2(log N)O(1) operations
in the quantum case [Sh 97]. Thus, the number of queries is apparently not
of primary importance in the case of factoring.

We use black-box model proving upper and lower bounds for graph cycle
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problem.

1.3.2 Background on lower bound methods

Usually we are interested in bound-error computation, where the output
is correct with probability at least 2

3
for all inputs. We use Q2(f) to de-

note minimal number of queries for computing f with bound-error. Two
main lower bound techniques for proving Q2(f) are the polynomial method
[BBCMW 01] and hybrid/adversary method (sometimes called Ambainis’s
method) [AM 02],[LM 04],[SS 04].

1.3.3 Lower bounds by polynomials

The polynomial method is used both for proving lower bounds in classical
and quantum complexity. Beals, Buhrman and others [BBCMW 01] proved
that number of queries QE(f) needed to compute a Boolean function f by

an exact quantum algorithm is at least deg(f)
2

, where deg(f) is the degree
of multilinear polynomial representing function f . The number of queries
Q2(f) needed to compute a Boolean function f by a two-sided quantum al-

gorithm is at least d̃eg(f)
2

, where d̃eg(f) is the smallest degree of multilinear
polynomial approximating f .This reduces proving lower bounds on quan-
tum algorithms to prove lower bounds on degree of polynomials. This is a
well-studied mathematical problem with methods from approximation the-
ory [C 66] available. Quantum lower bounds shown by polynomials method
include a Q2(f) = Ω( 6

√
D(f)) relation for any total Boolean function f

[BBCMW 01], lower bounds on finding mean and median [NW 99], collisions
and element distinctness [Ku 03], [AS 04]. Polynomials method is also a key
part of Ω(

√
N) lower bound on set disjointness which resolved a longstanding

open problem in quantum communication complexity [RA 03].

1.3.4 Adversary methods

The quantum adversary method runs a quantum algorithm on different in-
puts from some set. If every input in this set can be changed in many different
ways so that the value of the function changes, many queries are needed. The
original version of the quantum adversary method, let us call it unweighted,
was invented by Ambainis [AM 02]. It was successfully used to obtain the
following tight lower bounds: Ω(

√
n) for Grover search [GR 96], Ω(

√
n) for

two-level And-Or trees (see [HMW 03] for a matching upper bound), and
Ω(
√

n) for inverting a permutation. The method starts with choosing a set
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of pairs of inputs on which f takes different values. Then the lower bound is
determined by some combinatorial properties of the graph of all pairs chosen.

Some functions, such as sorting or ordered search, could not be satisfac-
torily lower-bounded by the unweighted adversary method. Hoyer, Neerbek,
and Shi used a novel argument [HNS 02] to obtain tight bounds for these
problems. They weighted the input pairs and obtained the lower bound
by evaluating the spectral norm of the Hilbert matrix. Barnum, Saks, and
Szegedy proposed a general method [BSS 03] that gives necessary and suffi-
cient conditions for the existence of a quantum query algorithm. They also
described a special case, the so-called spectral method, which gives a lower
bound in terms of spectral norms of an adversary matrix. Ambainis also
published a weighted version of his adversary method [AM 04]. He showed
that it is stronger than the unweighted method, and successfully applied it
to get a lower bound for several iterated functions. This method is slightly
harder to apply, because it requires one to design a so-called weight scheme,
which can be seen as a quantum counterpart of the classical hard distribu-
tion on the inputs. Zhang observed that Ambainis had generalized his oldest
method [AM 02] in two independent ways, so he unified them, and published
a strong weighted adversary method [ZH 04]. Finally, Laplante and Magniez
used Kolmogorov complexity in an unusual way and described a Kolmogorov
complexity method [LM 04].

It was assumed that all adversary methods are related to each other. At
first, Laplante and Magniez showed that the Kolmogorov complexity method
is at least as strong as all the following methods: the Ambainis unweighted
and weighted methods, the strong weighted method and the spectral method.
Later Spalek and Szegedy proved that all methods are equivalent.

We use the results obtained by A. Ambainis [AM 02, AM 04] to prove
lower complexity bounds for quantum query algorithm that solves graph
cycle problem.



Chapter 2

Preliminaries

In this chapter we consider notions, definitions and well-known or elementary
facts, referenced directly or indirectly further in the thesis. We refer to [G 02]
for the most of definitions.

2.1 Unitary and Stochastic Operations

In this section, we recall well known definitions and theorems from linear
algebra. We also consider elementary properties of Doubly Stochastic Ma-
trixes. Some of the theorems are supplied with elementary proofs for the
sake of completeness.

Unitary Matrices

As noted in the next sections infinite unitary matrices with finite number
of nonzero elements in each row and column describe the work of quantum
automata. Further lemmas state some properties of such matrices.

Definition 2.1. A complex matrix U is called unitary, if UU∗ = U∗U = I.

Lemma 2.2. If matrices A and B are unitary, then their direct product is a
unitary matrix.

If U is a finite matrix, then UU∗ = I iff U∗U = I. However this is not
true for infinite matrices:

14
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Example 2.3.

U =




1√
2

0 0 0 0 . . .
1√
2

0 0 0 0 . . .

0 1 0 0 0 . . .
0 0 1 0 0 . . .
0 0 0 1 0 . . .
...

...
...

...
...

. . .




Here U∗U = I but UU∗ 6= I.

Lemma 2.4. If infinite matrices A,B,C have finite number of nonzero
elements in each row and column, then their multiplication is associative:
(AB)C = A(BC).

Proof. The element of matrix (AB)C in i-th row and j-th column is kij =
∞∑

s=1

∞∑
r=1

airbrscsj. The element of matrix A(BC) in the same row and column

is lij =
∞∑

r=1

∞∑
s=1

airbrscsj. As in the each row and column of matrices A,B, C

there is a finite number of nonzero elements, it is also finite in the given series.
Therefore the elements of the series can be rearranged, and kij = lij.

Lemma 2.5. If U∗U = I have finite number of nonzero elements in each
row and column, then the norm of any row in the matrix U does not exceed
1.

Proof. Let us consider the matrix S = UU∗. The element of this matrix
sij = 〈rj|ri〉, where ri is i-th row of the matrix U . Let us consider the matrix
T = S2. The diagonal element of this matrix is

tii =
∞∑

k=1

sikski =
∞∑

k=1

〈rk|ri〉〈ri|rk〉 =
∞∑

k=1

|〈rk|ri〉|2.

On the other hand, taking into account Lemma 2.4, we get that

T = S2 = (UU∗)(UU∗) = U(U∗U)U∗ = UU∗ = S.

Therefore tii = sii = 〈ri|ri〉. It means that

∞∑

k=1

|〈rk|ri〉|2 = 〈ri|ri〉. (2.1)

This implies that every element of series (2.1) does not exceed 〈ri|ri〉. Hence
|〈ri|ri〉|2 = 〈ri|ri〉2 ≤ 〈ri|ri〉. The last inequality implies that 0 ≤ 〈ri|ri〉 ≤ 1.
Therefore |ri| ≤ 1.
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Lemma 2.6. Let us assume that U∗U = I. Then the rows of the matrix U
are orthogonal iff every row of the matrix has norm 0 or 1.

Proof. Let us assume that the rows of the matrix U are orthogonal. Let

us consider equation (2.1) from the proof of Lemma 2.5, i.e.,
∞∑

k=1

|〈rk|ri〉|2 =

〈ri|ri〉. As the rows of the matrix U are orthogonal,
∞∑

k=1

|〈rk|ri〉|2 = |〈ri|ri〉|2.
Hence 〈ri|ri〉2 = 〈ri|ri〉, i.e., 〈ri|ri〉 = 0 or 〈ri|ri〉 = 1. Therefore |ri| = 0 or
|ri| = 1.

Let as assume that every row of the matrix has norm 0 or 1. Then
〈ri|ri〉2 = 〈ri|ri〉 and in compliance with the equation (2.1),

∑
k∈n+\{i}

|〈rk|ri〉|2 =

0. This implies that ∀k 6= i |〈rk|ri〉| = 0. Hence the rows of the matrix are
orthogonal.

Lemma 2.7. The matrix U is unitary iff U∗U = I and its rows have norm
1.

Proof. Let us assume that the matrix U is unitary. Then in compliance
with Definition 2.1, U∗U = I and UU∗ = I, i.e, the rows of the matrix are
orthonormal.

Let us assume that U∗U = I and the rows of the matrix are normalized.
Then in compliance with Lemma 2.6 the rows of the matrix are orthogonal.
Hence UU∗ = I and the matrix is unitary.

Doubly Stochastic Matrices

These matrixes stand for transition matrixes for Probabilistic Reversible Au-
tomata considered in this thesis

Definition 2.8. A real (n × n) matrix S, si,j ≥ 0, is called stochastic, if

∀j
n∑

i=1

si,j = 1.

Definition 2.9. A stochastic n× n matrix D is called doubly stochastic, if

∀i
n∑

j=1

di,j = 1.

Lemma 2.10. If matrices A and B are doubly stochastic, then their direct
product is a doubly stochastic matrix.

Lemma 2.11. If A is a doubly stochastic matrix and X - a vector with
components xi ≥ 0, then max(X) ≥ max(AX) and min(X) ≤ min(AX).
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Proof. Let us consider X =




x1

x2

. . .
xn


 and A =




a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .
an1 an2 . . . ann


,

where A is doubly stochastic. Let us suppose that xj = max(X). For any i,
1 ≤ i ≤ n,

xj = ai1xj + ai2xj + . . . + ainxj ≥ ai1x1 + ai2x2 + . . . + ainxn.

Therefore xj is greater or equal than any component of AX. The second
inequality is proved in the same way.

Definition 2.12. We say that a doubly stochastic matrix S is unitary stochas-
tic ([MO 79]), if exists a unitary matrix U such that ∀i, j |ui,j|2 = si,j.

Remark 2.13. Not every doubly stochastic matrix is unitary stochastic.

Such matrix is, for example,




1
2

1
2

0
1
2

0 1
2

0 1
2

1
2


.

2.2 Automata

In this section, we define notions applicable to arbitrary type of automata
we will use through out the thesis.

Abstract Automaton

Consider an abstract automaton A = (Q, Σ1, . . . , Σm, q0, δ), where Q is a
finite set of states, Σk is an alphabet of the k-th tape, q0 is the initial state
and δ is a transition function.

Each tape is potentially infinite on both directions. The cells of each tape
are indexed by numbers in Z. Each cell of the k-th tape stores a symbol in
Σk or white space, denoted λ. A cell the k-th tape head is above is called
the k-th current cell. The transition function determines possible transitions
of the automaton depending on its current configuration.

Definition 2.14. A configuration of an abstract automaton is
c = (qi, n1, σ1, τ1, . . . , nm, σm, τm), where the automaton is in a state qi ∈ Q
and σkτk ∈ Σ∗

k is a finite word on the k-th input tape. The k-th current cell
is indexed by nk and it contains the last symbol of the word σk, if σk 6= ε and
λ, otherwise. All cells before or after σkτk are blank (contain λ).
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The automaton operates in discreet time moments (t0, . . . , tr, . . .). If the
automaton cannot change contents of a particular tape, it is called input
tape. Let us assume that the automaton has p input tapes, and renum-
ber the tapes, so that first come input tapes. At the time moment t0, the
automaton is in configuration (q0, 0, ε, τ1, . . . , 0, ε, τp, 0, ε, ε, . . . , 0, ε, ε), where
τ1, . . . , τp are input words. We refer to the input word tuple as input. At
each time moment, the automaton performs a single transition, called step.
At each step, depending on its current state and symbols in current cells,
the automaton may change its current state, change the contents of current
cells, and afterwards, move each tape head one cell forward or backward.

Formally, the transition function δ defines a binary relation ρ from the
set Q × Σ1 × . . . × Σm to the set Q × Σp+1 × . . . × Σm × {←, ↓,→}m.
(q1, s1, . . . , sm)ρ(q2, s

′
p+1, . . . , s

′
m, d1, . . . , dm), di ∈ {←, ↓,→}, means that for

the automaton being in the state q1 and having symbols s1, . . . , sm in cur-
rent cells, the following transition is possible: the automaton goes to the
state q2, writes s′p+1, . . . , s

′
m into the current cells of the tapes p + 1, . . . , m

and moves tape heads according to the directions di. If this relation is a func-
tion, we speak about deterministic automata, other considered possibilities
are probabilistic automata and quantum automata. Probabilistic automata
perform transitions with certain probabilities, whereas quantum automata -
with certain amplitudes.

For technical reasons, we may introduce two categories of white spaces for
input tapes, called end-markers; one is used before input word and denoted
as #, and the other after input word and denoted as ". So every input word
is enclosed into end-marker symbols # and "1. Therefore we introduce a
working alphabet of the k-th input tape as Γk = Σk ∪ {#,"}. We define
the length of input as the length of the longest word in the input word tuple
(including one end-marker to the left of the word and one to the right of the
word).

By C we denote the set of all configurations of an automaton. This set
is countably infinite.

Remark 2.15. It is possible to reach only a finite number of other configu-
rations from a given configuration in one step, all the same, within one step
the given configuration is reachable only from a finite number of different
configurations.

1To get rid of infinite input tapes we may also assume that input tapes are circular
and the length of every input tape is l = max

0<k≤p
{|τk|} + 2, so that the next cell after the

cell indexed by l− 1 is the cell indexed by 0. The cells indexed by 0 store # and the rest
blank cells store ".
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An abstract automaton introduced above is actually a description of an
m-tape Turing machine. To define other types of automata, we apply specific
restrictions to this general model. We say that an automaton is 1-way, if at
each step, it must move each input tape head one cell forward. We say
that an automaton is 1.5-way, if at each step, it may not move input tape
heads backward. Otherwise, an automaton is called 2-way. We refer to an
automaton as a finite automaton, if all of its tapes are input tapes.

To halt computation of the automaton, we may consider at least two
options. According to the first option, a subset of C is introduced and
configurations in the subset are marked as halting configurations. We monitor
the computation of the automaton and stop the computation as soon as the
automaton enters a halting configuration. According to the second option,
we determine the number of steps of computation in advance, and run the
automaton the specified number of steps. In particular, when the number of
steps is equal to the length of input, we get real-time automata.

Word Acceptance

We study automata in terms of formal languages they recognize. At least
two definitions exist, how to interpret word acceptance, and hence, language
recognition, for automata.

Definition 2.16. “Decide and halt” acceptance. Consider an automaton
with the set of configurations partitioned into non-halting configurations and
halting configurations, where halting configurations are further classified as
accepting configurations and rejecting configurations. We say that an au-
tomaton accepts (rejects) an input in a decide-and-halt manner, if the fol-
lowing conditions hold:

• the computation is halted as soon as the automaton enters a halting
configuration;

• if the automaton enters an accepting configuration, the input is ac-
cepted;

• if the automaton enters a rejecting configuration, the input is rejected.

We refer to the decide-and-halt automata as DH-automata further in the
thesis. In case of real-time automata, we may use the following definition.

Definition 2.17. Classical acceptance. Consider an automaton with the set
of configurations partitioned into accepting configurations and rejecting con-
figurations. We say that an automaton accepts (rejects) an input classically,
if the following conditions hold:
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• the computation is halted as soon as the number of computation steps
is equal to the length of input;

• if the automaton has entered an accepting configuration when halted,
the input is accepted;

• if the automaton has entered a rejecting configuration when halted, the
input is rejected.

We refer to the classical acceptance automata as classical automata or
C-automata further in the thesis.

The both definitions generally are not equivalent.

Language Recognition

Having defined word acceptance, we define language recognition in an equiv-
alent way as in [R 63].

By px,A we denote the probability that an input x is accepted by an
automaton A.

Furthermore, we denote PL = {px,A | x ∈ L}, PL = {px,A | x /∈ L},
p1 = sup PL, p2 = inf PL.

Definition 2.18. We say that an automaton A recognizes a language L with
interval (p1, p2), if p1 ≤ p2 and PL ∩ PL = ∅.
Definition 2.19. We say that an automaton A recognizes a language L with
bounded error and interval (p1, p2), if p1 < p2.

We consider only bounded error language recognition in this thesis.

Definition 2.20. An automaton recognizes a language with probability p if
the automaton recognizes the language with interval (1− p, p).

Definition 2.21. We say that a language is recognized by some class of
automata with probability 1− ε, if for every ε > 0 there exists an automaton
in the class which recognizes the language with interval (ε1, 1 − ε2), where
ε1, ε2 ≤ ε.

Quantum Automata

In case of a quantum automaton, the transition function is

δ : (Q× Σ1 × . . .× Σm)× (Q× Σp+1 × . . .× Σm × {←, ↓,→}m) −→ C[0,1].
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On each computation step, the quantum automaton is in quantum super-
position of configurations2 |ψ〉 =

∑
c∈C

αc|c〉, where
∑
c∈C

|αc|2 = 1 and αc ∈ C
is the amplitude of a configuration |c〉. Every configuration |c〉 ∈ C is a
basis vector in the Hilbert space H, determined by l2(C). Every quantum
automaton defines a linear operator (evolution) over this Hilbert space. Due
to the laws of quantum mechanics, this operator must be unitary. Although
evolution operator matrix is infinite, by Remark 2.15 it has a finite number
of nonzero elements in each row and column, therefore it is possible to derive
necessary and sufficient conditions, i.e., well-formedness conditions to check
unitarity for each particular automata type.

General measurements. After each step, a measurement is applied
to the current quantum superposition of configurations. A measurement is
defined as follows. We introduce a set partition of C as {C1,C2, . . . ,Cz}. So⋃
0<i≤z

Ci = C and if i 6= j then Ci ∩Cj = ∅. E1, E2, . . . , Ez are subspaces of

H spanned by C1,C2, . . . ,Cz, respectively. We use the observable O1 that
corresponds to the orthogonal decomposition H = E1⊕E2⊕ . . .⊕Ez. If the
quantum superposition before the observation is

∑
c∈C

αc|c〉, with probability

pi =
∑

c∈Ci

|αc|2 the outcome of the observation is |ψi〉 = 1√
pi

∑
c∈Ci

αc|c〉. Hence

the total outcome of the observation is a mixed state
z∑

i=1

pi|ψi〉〈ψi|.
If z = 1, we get quantum automata with pure states, otherwise we gener-

ally have quantum automata with mixed states. We get other marginal case,
when C is set partitioned into infinitely many subsets, with a single config-
uration in each subset3. In that case, the resulting quantum automaton is a
special kind of a probabilistic automaton. See the next subsection for further
details.

Word acceptance measurements. Another type of measurement is
applied to the quantum automaton to facilitate language recognition.

Decide-and-halt acceptance. We have to monitor when the quantum au-
tomaton enters a halting configuration. Hence we perform the following mea-
surement after each step. We partition C as Ca, Cr and Cnon, i.e., accepting,
rejecting and non-halting configurations. Ea, Er and Enon are subspaces of
H spanned by Ca, Cr, and Cnon, respectively. We use the observable O2

that corresponds to the orthogonal decomposition H = Ea⊕Er⊕Enon. The

2More precisely, the automaton with certain probabilities is one of several possible
quantum superpositions, or in a mixed state.

3By Remark 2.15, on each computation step the number of configurations in a quantum
superposition is finite, so on each step it is possible to make the corresponding measurement
actually using some finite partition of C.
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outcome of each observation is either “accept” or “reject” or “continue”. If
the quantum superposition before the observation is

∑
c∈C

αc|c〉, with probabil-

ity pa =
∑

c∈Ca

|αc|2 the input is accepted, with probability pr =
∑

c∈Cr

|αc|2 the

input is rejected, and with probability pnon =
∑

c∈Cnon

|αc|2 the automaton is

in the quantum superposition of non-halting states |ψ〉 = 1√
pnon

∑
c∈Cnon

αc|c〉.
Classical acceptance. After the computation is halted, we have to de-

termine, whether the automaton has entered accepting or rejecting config-
uration. We partition C as Cacc and Crej, i.e., accepting and rejecting
configurations. Eacc, Erej are subspaces of H spanned by Cacc and Crej,
respectively. We use the observable O3 that corresponds to the orthogonal
decomposition H = Eacc ⊕ Erej. The outcome of the observation is either
“accept” or “reject”. If the quantum superposition before the observation is∑
c∈C

αc|c〉, with probability pacc =
∑

c∈Cacc

|αc|2 the input is accepted and with

probability prej =
∑

c∈Crej

|αc|2 the input is rejected.

In case both general measurement and word acceptance measurement
have to be performed in a single step, it is easy to see that the order of
measurements is irrelevant, actually both measurements may be combined
into a single measurement after each step.

Putting things together, each computation step consists of two parts.
At first the unitary evolution operator is applied to the current quantum
superposition and then the appropriate measurements are applied, using ob-
servables as defined above.

Probabilistic Reversible Automata

Let us consider A. Nayak’s model of quantum automata with mixed states,
[N 99]. A variety of this model for arbitrary type of automata was consid-
ered in the previous subsection. (The difference is that Nayak’s model allows
a fixed sequence of unitary transformations and subsequent measurements
after each step.) As noted there, if a result of every observation is a sin-
gle configuration, not a superposition of configurations, we actually get a
probabilistic automaton. However, the following property applies to such
probabilistic automata - their evolution matrices are doubly stochastic.

The transition function is

δ : (Q× Σ1 × . . .× Σm)× (Q× Σp+1 × . . .× Σm × {←, ↓,→}m) −→ R[0,1].

After its every step, the probabilistic automaton is in some probability
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distribution p0c0 + p1c1 + . . . + pzcz, where p0 + p1 + . . . + pz = 1. Such
probability distribution is called a superposition of configurations.

A linear closure of C forms a linear space, where every configuration can
be viewed as a basis vector. This basis is called a canonical basis. Every
probabilistic automaton defines a linear operator (evolution) over this linear
space. The corresponding evolution matrix must be doubly stochastic. So
we give the following definition for probabilistic reversible automata:

Definition 2.22. A probabilistic automaton is called reversible if its evolu-
tion is described by a doubly stochastic matrix, using canonical basis.

If the evolution of a probabilistic reversible automaton is described by
unitary stochastic matrix (see Definition 2.12), the automaton can be viewed
as a special case of a quantum automaton with mixed states.

It is necessary to note that in [AF 98], A. Ambainis and R. Freivalds
proposed a more restricted notion of probabilistic reversibility. For example,
they remarked that for the language L = {a2n+3|n ∈ N}, not recognizable by
a 1-way deterministic reversible finite automata, there exists a 1-way prob-
abilistic reversible finite automaton which recognizes the language. Conse-
quently, this restricted notion was used in [YKTI 00]. That model is actually
a restricted special case of probabilistic reversible DH-automata, as defined
in the thesis.

Deterministic Reversible Automata

Deterministic reversible automata can be viewed both as a special case of
quantum automata or as a special case of probabilistic reversible automata.
The transition function is

δ : (Q× Σ1 × . . .× Σm)× (Q× Σp+1 × . . .× Σm × {←, ↓,→}m) −→ {0, 1}.

Automata Notations

We regard quantum automata, probabilistic reversible automata and deter-
ministic reversible automata as reversible automata. Refering to different
types of automata, we shall use the following notation:

[C|DH-]〈automata type〉[-P|M].

C refers to “classical”, whereas DH refers to “decide-and-halt”. Notations
P and M are used in the case of quantum automata. P denotes an automaton
with pure states, whereas M - an automaton with mixed states.

For example, C-QFA-M are quantum finite automata with mixed states,
using classical definition of language recognition.
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2.3 Boolean function query complexity

In this section, we recall well known definitions for black box computational
model in deterministic and quantum cases. A good survey of this model is
given in [BW 02].

Consider a Boolean function f : 0, 1n → 0, 1. We are equipped with
an oracle that provide us information about variables of function’s input
vector X = (x0, x1, ...xn−1). At one moment of time we can receive from
the oracle value of the one xi from X. Such call to oracle is called a query.
We are interested to compute function f making as few number of query
as possible. The classical algorithm that computes f using oracle queries is
called a decision tree, because it can be represented as a binary tree where
each vertex represent call for the oracle.

2.3.1 Deterministic decision tree complexity

A deterministic decision tree is a rooted ordered binary tree T . Each internal
node of T is labeled with a variable xi, and each leaf is labeled with a value
0 or 1. Given an input X ∈ {0, 1}N , the tree is evaluated as follows. Start
at the root, if this is a leaf, then stop. Otherwise, query the variable xi that
labels the root. If xi = 0 then recursively evaluate the left subtree, if xi=1
then recursively evaluate the right subtree. The output of the tree is the
value (0 or 1) of the leaf that is reached eventually. Note that the input
X deterministically determines the leaf, thus the output, that the procedure
ends up in.

Definition 2.23. The decision tree computes Boolean function f : 0, 1n →
0, 1 if for each input tuple X = (x0, x1, ..., xn−1), computation goes to ac-
cepting leaf if f(X) = 1 and the computation ends in the rejecting leaf, if
f(X) = 0.

Definition 2.24. Decision tree computes Boolean function f(X) with com-
plexity k if k is the number of oracle queries in worth case (k is the depth of
decision tree).

Definition 2.25. The decision tree complexity D(F ) of the Boolean function
f(X) is complexity of the best decision tree that computes f(X).

2.3.2 Randomized decision tree

As in many other models of computation we can add the power of randomiza-
tion to the decision trees. There are two ways to view a randomized decision
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tree. Firstly we can add (possibly biased) coin flips as internal nodes to the
tree. That is, the tree may contain internal nodes labelled by a bias p ∈ [0, 1],
and when the evaluation procedure reaches such a node, it will flip a coin
with bias p and will go to the left child on outcome ’heads’ and to the right
child on ’tails’. Now an input X no longer determines with certainty which
leaf of the tree will be reached, but instead induces a probability distribution
over the set of all leaves. Thus the tree outputs 0 or 1 with certain proba-
bility. The complexity of the tree is the number of queries on the worst-case
input and the worst-case outcome of the coin flips. A second way to define a
randomized decision tree is as a probability distribution µ over deterministic
decision trees. The tree is evaluated by choosing a deterministic decision
tree according to µ, which is then evaluated as before. The complexity of
the randomized tree in this second definition is the depth of the deepest T
that has µ(T ) ≥ 0. Obviously these two definitions are equivalent.

Definition 2.26. A randomized decision tree computes f with bounded-error
if its output equals f(x) with probability at least 2/3 for all X ∈ {0, 1}N .
R2(f) denotes the complexity of the optimal randomized decision tree that
computes f with bounded error.

2.3.3 Quantum decision tree

The quantum decision tree (or quantum circuit) is a quantum analogue of
the classical decision tree where each oracle query and other operations are
made in quantum superposition. Formally it can be described in terms of
quantum circuits.

Consider Boolean function f : 0, 1n → 0, 1. If we have a quantum circuit
U that works on N-bit input data, using M extra bits. We can rewrite this
circuit as:

U|x〉
∣∣0M

〉
=

∑

y,b

αy,b|y〉|b〉

where x is N-bit string 0, 1N and b is arbitrary bit: b∈ 0, 1.

Definition 2.27. The quantum circuit U exactly computes Boolean function
f(X) ,iff ∑

y

∑

b=f(X)

|αy,b|2 = 1

(It means that outcome bit of the measurement is equal with f(X))
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Definition 2.28. The quantum circuit U computes Boolean function f(X)
with bound error δ,iff ∑

y

∑

b=f(X)

|αy,b|2 = 1− δ

(It means that outcome bit of the measurement is equal with f(X) with
probability at least 1−δ). If for each X we define unitary transformation OX

such that: OX |i〉|b〉=|i〉|b⊕ xi〉. Then we can imagine this unitary transfor-
mation as oracle, because it returns the bits of input data. (Sometimes it is
better to use such transformation Ox: Ox|i, b〉=(−1)bx|i, b〉 both transforma-
tions are equivalent, as each can be simulated by another).

Then quantum decision tree with T queries can be represented as quan-
tum circuit:

U = UT OXUT−1OX ...OXU1OXU0,

where Ui is arbitrary unitary transformations and OX is unitary transforma-
tion that depends on input data X. The computation begins in the state |0〉
then we sequentially apply transformations: U0,OX ...UT and finally make a
measurement of the final state. The outcome of the algorithm is the right-
most bit of the measurement. If the result of the algorithm is equal with
f(X) for every X then quantum decision tree exactly computes f(X). If for
each X the outcome of the algorithm equals with f(X) with probability at
least frac23 then we say that algorithm computes f(X) with bound-error.

The complexity of the quantum algorithm that computes f(X) is equal
with the maxX(|OX |). The quantum query complexity for Boolean function
f(X) is the complexity of the best quantum algorithm that computes f(X).
We denote QE(f) for the query complexity of quantum algorithms that com-
putes f(X) exactly, and Q2(f) for the query complexity for quantum algo-
rithms that computes f(X) with bounded-error. Usually we are interested
in bound-error computation, where the output is correct with probability at
least 2

3
for all inputs. Note that we just count the number of queries, not the

complexity of the Ui.
Unlike the classical deterministic or randomized decision trees, the quan-

tum algorithms are not really trees anymore (the names ’quantum query
algorithm’ or ’quantum black-box algorithm’ are also in use). Nevertheless
we prefer the term ’quantum decision tree’, because such quantum algo-
rithms generalizes classical trees in the sense that they can simulate them,
as sketched below. Consider a T -query deterministic decision tree. It first
determines which variable it will query initially. Then it determines the next
query depending upon its history, and so on for T . Eventually it outputs an
output-bit depending on its total history. The basis state of the correspond-
ing quantum algorithm have the form |i, b, h, a〉 where i, b is the query-part,
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h ranges over all possible histories of the classical computation (this his-
tory includes all previous queries and their answers), and a is the rightmost
qubit, which will eventually contain the output. Let U0 maps the initial state∣∣∣−→0 , 0,

−→
0 , 0

〉
to

∣∣∣i, 0,−→0 , 0
〉
, where xi is the first variable that the classical tree

would query. Now the classical algorithm applies O, which turns the state

into
∣∣∣i, xi,

−→
0 , 0

〉
. Then the algorithm applies a transformation U1 that maps∣∣∣i, xi,

−→
0 , 0

〉
to |j, 0, h, 0〉, where h is the new history (which includes i and

xi) and xj is the variable that classical tree would query given the outcome
of the previous query. Then the quantum algorithm applies O for the sec-
ond time, it applies the transformation U2 that updates the workspace and
determines the next query e.t.c. Finally, after T queries the quantum tree
sets the answer bit to 0 or 1 depending on its total history. All operations
Ui performed here are injective mappings from basis states to basis states,
which are unitary transformations. Thus a T -query deterministic decision
tree can be simulated by an exact T -query quantum algorithm. Similarly
(basically because a superposition can ’simulate’ a probability distribution)
a T -query randomized decision tree can be simulated by a T -query quan-
tum decision tree with the same error probability. Accordingly, we have
Q2(f) ≤ R2(f) ≤ D(f) ≤ n and Q2(f) ≤ QE(f) ≤ D(f) ≤ n for all f.

2.4 Markov Chains

We recall several definitions from the theory of finite Markov chains ([KS 76],
etc.) used in this thesis when describing behavior of PRA.
A Markov chain with n states can be determined by an n × n stochastic
matrix A, i.e., matrix, where the sum of elements of every column in the
matrix is 1. If Ai,j = p > 0, it means that a state qi is accessible from a state
qj with a positive probability p in one step.

2.4.1 Classification of states

Definition 2.29. A state qj is accessible from qi (denoted qi → qj) if there
is a positive probability to get from qi to qj in 1 or more steps.

Note that some authors consider zero steps are valid for this definition
that means qi → qi for any i.

Definition 2.30. States qi and qj communicate (denoted qi ↔ qj) if qi → qj

and qj → qi.
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For accessibility or communication in one step we will put the correspond-

ing matrix above the symbol. Example: qi
A−→ qj means there is a positive

probability to get from qi to qj in 1 step. Or the same Aj,i¿0. When working
with automata we will use sometimes input words instead of their matrixes.

Definition 2.31. A state q is called recurrent if ∀i q → qi ⇒ qi → q.
Otherwise the state is called transient.

There several different definitions for transient states proven to be equiv-
alent to the above, important for us is

Definition 2.32. A state qi is called transient iff
∑

n→∞
(An)i,i < ∞

Definition 2.33. A state q is called absorbing if there is a zero probability
of exiting from this state.

Definition 2.34. A Markov chain without transient states is called irre-
ducible if for all qi, qj qi ↔ qj. Otherwise the chain without transient states
is called reducible.

Definition 2.35. The period of an recurrent state qi ∈ Q of a Markov chain
with a matrix A is defined as d(qi) = gcd{n > 0 | (An)i,i > 0}.
Definition 2.36. An recurrent state qi is called aperiodic if d(qi) = 1. Oth-
erwise the recurrent state is called periodic.

Definition 2.37. A Markov chain without transient states is called aperiodic
if all its states are aperiodic. Otherwise the chain without transient states is
called periodic.

Definition 2.38. Markov chain is called absorbing iff that contains at least
one absorbing state, and for any non-absorbing state qi there is an absorbing
state that is accessible from qi. Thus the states of absorbing Markov Chain
can be numbered so that transition matrix A has a form

A O
B I

.

where I - unit matrix, O - all zero matrix

Definition 2.39. A probability distribution X of a Markov chain with a
matrix A is called stationary, if AX = X.
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2.4.2 Behaviour of Markov chains

We recall the following theorem from the theory of finite Markov chains about
stationary distribution:

Theorem 2.40. If a Markov chain with a matrix A is irreducible and ape-
riodic, then
a) it has a unique stationary distribution Z;
b) lim

n→∞
An = (Z, . . . , Z);

c) ∀X lim
n→∞

AnX = Z.

We recall the following fact regarding transient states of a Markov Chain

Theorem 2.41. Given Markov chain with matrix A and transient state qi,
for matrix An when n →∞ an

ij → 0 for any j

Proof. from Definition 2.32

2.4.3 Doubly Stochastic Markov Chains

The notion again is introduced according to the needs of PRA.

Definition 2.42. A Markov chain is called doubly stochastic, if its transition
matrix is a doubly stochastic matrix.

Corollary 2.43. If a doubly stochastic Markov chain with an m×m matrix
A is irreducible and aperiodic,

a) lim
n→∞

An =




1
m

. . . 1
m

. . . . . . . . .
1
m

. . . 1
m


;

b) ∀X lim
n→∞

AnX =




1
m

. . .
1
m


.

Proof. By Theorem 2.40.

Lemma 2.44. If M is a doubly stochastic Markov chain with a matrix A,
then ∀q q → q.

Proof. Assume existence of q0 such that q0 is not accesible from itself. Let
Qq0 = {qi | q0 → qi} = {q1, . . . , qk}. Qq0 is not empty set. Consider those
rows and columns of A, which are indexed by states in Qq0 . These rows and
columns form a submatrix A′. Each column j of A′ must include all non-zero
elements of the corresponding column of A as those states are accesible from
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the state qj, hence also from q0 and are in Qq0 . Therefore ∀j, 1 ≤ j ≤ k,
k∑

i=1

A′
i,j = 1 and

∑
1≤i,j≤k

A′
i,j = k. On the other hand, since q0 /∈ Qq0 , a row

of A′ indexed by a state accesible in one step from q0 does not include all

nonzero elements. Since A is doubly stochastic, ∃i, 1 ≤ i ≤ k,
k∑

j=1

A′
i,j < 1

and
∑

1≤i,j≤k

A′
i,j < k. This is a contradiction.

Corollary 2.45. Suppose A is a doubly stochastic matrix. Then exists k > 0,
such that ∀i (Ak)i,i > 0.

Proof. Consider an m×m doubly stochastic matrix A. By Lemma 2.44, ∀i
∃ni > 0 (Ani)i,i > 0. Take n =

m∏
s=1

ns. For every i, (An)i,i > 0.

Lemma 2.46. If M is a doubly stochastic Markov chain with a matrix A,
then ∀qa, qb Ab,a > 0 ⇒ qb → qa.

Proof. Ab,a > 0 means that qb is accesible from qa in one step. We have to
prove, that qb → qa. Assume from the contrary, that qa is not accesible from
qb. Let Qqb

= {qi | qb → qi} = {q1, q2, . . . , qk}. By Lemma 2.44, qb ∈ Qqb
. As

in proof of Lemma 2.44, consider a matrix A′, which is a submatrix of A and
whose rows and columns are indexed by states in Qqb

. Each column j has
to include all nonzero elements of the corresponding column of A. Therefore

∀j, 1 ≤ j ≤ k,
k∑

i=1

A′
i,j = 1 and

∑
1≤i,j≤k

A′
i,j = k. On the other hand, Ab,a > 0

and qa /∈ Qqb
, therefore a row of A′ indexed by qb does not include all nonzero

elements. Since A is doubly stochastic,
k∑

j=1

A′
b,j < 1 and

∑
1≤i,j≤k

A′
i,j < k. This

is a contradiction.

Corollary 2.47. If M is a doubly stochastic Markov chain and qa → qb,
then qa ↔ qb.

Proof. If qa → qb then exists a sequence qi1 , qi2 , . . . , qik , such that Ai1,a >
0, Ai2,i1 > 0, . . . , Aik,ik−1

> 0, Ab,ik > 0. By Lemma 2.46, we get qb → qik ,
qik → qik−1

, . . ., qi2 → qi1 , qi1 → qa. Therefore qb → qa.

Lemma 2.48. Suppose A is a doubly stochastic matrix and k > 0, such that
∀i (Ak)i,i > 0. Then exist m > 0 such that for all pairs qi qj where qi → qj

for Ak, qi → qj in one step for (Ak ∗m)
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Proof. Assume qi → qj in x steps, as according to Lemma 2.45 qi → qi in one
step, qi → qj in x+1 step as well. For any pair of states qi qj where qi → qj

for Ak, qj is accessible in less then n number of rows in A steps. Thus m = n
gives the necessary constant.

Corollary 2.49. Communication is a class property for states of doubly
stochastic Markov chains. 4

Proof. .

• reflexive - ∀iqi ↔ qi by Lemma 2.44

• symmetric - If qi ↔ qj then qj ↔ qi

• transitive - If qi ↔ qj and qj ↔ qk then qi ↔ qk

Corollary 2.50. Accessibility is a class property for states of doubly stochas-
tic Markov chains.

Proof. .

• reflexive - ∀iqi → qi by Lemma 2.44

• symmetric - If qi → qj then qj → qi by Corollary 2.47

• transitive - If qi → qj and qj → qk then qi → qk

Therefore, for doubly stochastic Markov chains communication and ac-
cessibility divides the state space into mutually disjoint exclusive classes.

4if we would use definition of accessibility where a state is always accessible from itself
then this corollary would hold for any finite Markov chain
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Quantum query algorithm
complexity

3.1 Quantum lower bounds by polynomials

In this section we briefly describe polynomial method of quantum query
complexity. We do not pay much attention on it, because we use adversary
lower bound technique to prove quantum query complexity of our problem.
We refer to [BBCMW 01, AM 04] in this section.

Consider finite field Z2 For each Boolean function f(X) : 0, 1N → 0, 1 we
can find such pf (x0, x1, ..., xN−1) ∈ Z2[x0, x1, ..., xN−1] such that f(a0, a1, ..., aN−1)
= pf (a0, a1, ..., aN − 1) for all (a0, a1, ..., aN−1) ∈ ZN

2 . That’s true because
every Boolean function can be written using only 2 binary operations: AND
and NOT. AND operation can be represented as polynomial pAND(x1, x2) =
x1x2, and NOT operation cab be represented as polynomial pNOT (x) = 1−x
(remember that xk = x for every x ∈ Z2). We are interested to find such
polynomials in the field of real numbers.

Definition 3.1. We say the polynomial p ∈ R[x0, x1, ...xN − 1] represents
Boolean function f(x0, x1, ...xN−1) iff f(x0, x1, ...xN−1) = p(x0, x1, ...xN−1)
for all (x0, x1, ...xN−1) ∈ 0, 1N

We use deg(f) to denote the degree of a minimum-degree p that represents
f .

Definition 3.2. We say the polynomial p ∈ R[x0, x1, ...xN − 1] approxi-
mates Boolean function f(x0, x1, ...xN−1) with bounded-error δ (δ ≤ 1

3
), iff

|p(x0, x1, ...xN−1)− f(x0, x1, ...xN−1)| ≤ δ for all (x0, x1, ...xN−1) ∈ 0, 1N

We use d̃eg(f) to denote the degree of a minimum-degree p that approx-
imates f . For example, x0x1...xN−1 is a multilinear polynomial of degree N

32
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that represents the AND-function. Similarly, 1− (1−x0)(1−x1)...(1−xN−1)
represents OR. The polynomial 1

3
x0+

1
3
x1 approximates but does not repre-

sent AND on 2 variables.
The next two lemmas link quantum networks with polynomials. The idea

is to obtain the lower bound of approximation polynomial’s degree. Then we
can obtain lower bounds for Boolean function.

Lemma 3.3. Consider quantum network that makes T oracle queries. Let
x0, x1, ..., xN−1 is input bit vector. For each k: 0 ≥ k ≤ 2M −1 exists polyno-
mials pk, pk ∈ C[x0, x1, ..., xN − 1] each of degree at most T , such that final
state of the network is the superposition

∑

k

pk(x0, x1, ..., xN−1) |k〉

where M is the maximum number of qubits used in computational process.

Proof. Every quantum network U can be represented as sequence of unitary
transformations: U=UT OXUT−1Ox...U1OxU0 where Uk is arbitrary unitary
transformation and OX is unitary transformation representing oracle query
that maps state |i, b, z〉 to the state |i, b⊕ xi, z〉 Let quantum network is in
state |φi〉 before ith query. Then |φi+1〉=UiOX |φi〉 The amplitudes in |φ0〉
depend on the initial state and on U0 but not on X, so they are polynomials
of X of degree 0. A query maps basis state |i, b, zi〉 to |i, b⊕ xi, zi〉. Hence if
the amplitude of |i, 0, zi〉 in |φ0〉 is α and the amplitude of |i, 1, zi〉 in |φ0〉 is β,
then the amplitude of |i, 0, zi〉 after the query becomes (1−xi)α+xiβ and the
amplitude of |i, 1, zi〉 becomes xiα+(1−xi)β, which are polynomials of degree
1. (In general, if the amplitudes before a query are polynomials of degree ≤ j,
then the amplitudes after the query will be polynomials of degree ≤ j + 1.)
Between the first and the second query lies the unitary transformation U1.
However, the amplitudes after applying U1 are just linear combinations of
the amplitudes before applying U1, so the amplitudes in |φ1〉 are polynomials
of degree at most 1. Continuing in this manner, the amplitudes of the final
states are found to be polynomials of degree at most T.

If the amplitude of state |k〉 is αk then the probability of getting this
state |k〉 after the measurement is |αk|2 By lemma 3.3 αk are polynomials in
field C[x0, x1, ..., xN−1] each of degree at most T. Then we can rewrite αk:
αk=βk(x0, x1, ..., xN−1)+iγk(x0, x1, ..., xN−1) where βk,γk in R[x0, x1, ..., xN−1]
each of degree at most T. As |αk|2 = |βk|2 + |γk|2 we obtain the next lemma:

Lemma 3.4. Let N be a quantum network that makes T oracle queries. Then
exists polynomials qk(x0, x1, ...xN−1) ∈ R[x0, x1, ..., xN−1] each of degree at
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most 2T such that probability of getting state |k〉 after the measurement is
equal qk(x0, x1, ...xN−1)

The lemmas 3.3 and 3.4 imply the lower bounds of Boolean functions.

Theorem 3.5. For Boolean function f : Q2(f) ≥ d̃eg(f)
2

Proof. Consider a quantum network that computes Boolean function f with
bounded-error delta. Let T be a number of oracle queries made. Then the
final state of the network Ψ can be rewritten as follows:

Ψ =
2M−1−1∑

k=0

αk|k〉|1〉+
2M−1−1∑

k=0

βk|k〉|0〉 ,

where the rightmost bit is the result of the computation. The probability

of getting 1 after the measurement is equal
∑2M−1−1

k=0 |αk|2. The lemma 3.4
implies that probability of getting 1 is a multilinear real polynomial p with
degree at most 2T. As quantum network computes f with bounded-error δ
then such statements hold:

• if f(x0, x1, ..., xN−1) = 1 then p(x0, x1, ..., xN−1) ≥ 1− δ, and then

|f(x0, x1, ..., xN−1)− p(x0, x1, ..., xN−1)| ≤ δ

• if f(x0, x1, ..., xN−1) = 0 then p(x0, x1, ..., xN−1) ≤ δ, and then

|f(x0, x1, ..., xN−1)− p(x0, x1, ..., xN−1)| ≤ δ

Then p(x0, x1, ..., xN−1) approximates f with bounded-error δ. As p degree

is at most 2T, then T ≥ gdeg(f)
2

Theorem 3.6. For Boolean function f : QE(f) ≥ deg(f)
2

Proof. The proof is analogical to the proof of theorem 3.5. The only difference
is that computation is exact, then p(x0, x1, ..., xN−1) represents f . As p degree

is at most 2T, then T ≥ deg(f)
2

For example, for Boolean function AND(x0, x1, ..., xN−1) we can find mul-
tilinear real polynomial p(x0, ...xN−1) = x0x1...xN−1 that represents AND
(indeed if all input bits are 1 then p(X) = 1, otherwise p(X) = 0). This
implies that QE(f) ≥ N

2

The main advantage of the polynomials method is that this reduces prov-
ing lower bounds on quantum algorithms to proving lower bounds on degree
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of polynomials. This is a well-studied mathematical problem with methods
from approximation theory [C 66] available. Quantum lower bounds shown
by polynomials method include a Q2(f) = Ω( 6

√
D(f)) relation for any to-

tal Boolean function f [BBCMW 01], lower bounds on finding mean and
median [NW 99], collisions and element distinctness [AM 99, Ku 03]. Poly-
nomials method is also a key part of recent Ω(

√
N) lower bound on set

disjointness which resolved a longstanding open problem in quantum com-
munication complexity [RA 03].

Given the usefulness of polynomials method, it is an important question
how tight is the polynomials lower bound. [BBCMW 01, BW 02] proved that,
for all total Boolean functions, Q2(f) = O(deg6(f) and QE(f) = O(deg4(f)).
The second result was improved to QE(f) = O(deg3(f)) [MI 04]. Thus,
the bound is tight up to polynomial factor. Even stronger result would be
QE(f) = O(deg(f)) or Q2(f) = O(d̃eg(f)). Then, determining the quantum
complexity would be equivalent to determining the degree of a function as
a polynomial. It has been an open problem to prove or disprove either of
these two equalities [BBCMW 01, BW 02]. A. Ambainis In [AM 04] showed
the first provable gap between polynomial degree and quantum complexity:
deg(f) = 2d and Q2(f) = Ω(2.5d). Since deg(f) ≥ d̃eg(f) and QE(f) ≥
Q2(f), this implies a separation both between QE(f) and deg(f) and between

Q2(f) and d̃eg(f). To prove the lower bound, Ambainis used the quantum
adversary method of [AM 02]. This method is of high importance for us,
because we use it to prove lower bounds for graph circuit problem.

3.2 Adversary methods

The quantum adversary method runs a quantum algorithm on different in-
puts from some set. If every input in this set can be changed in many different
ways so that the value of the function changes, many queries are needed. The
original version of the quantum adversary method, let us call it unweighted,
was invented by Ambainis [AM 02]. It was successfully used to obtain the
following tight lower bounds: Ω(

√
n) for Grover search [GR 96], Ω(

√
n) for

two-level And-Or trees (see [HMW 03] for a matching upper bound), and
Ω(
√

n) for inverting a permutation. The method starts with choosing a set
of pairs of inputs on which f takes different values. Then the lower bound is
determined by some combinatorial properties of the graph of all pairs chosen.

Some functions, such as sorting or ordered search, could not be satisfac-
torily lower-bounded by the unweighted adversary method. Hoyer, Neerbek,
and Shi used a novel argument [HNS 02] to obtain tight bounds for these
problems. They weighted the input pairs and obtained the lower bound
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by evaluating the spectral norm of the Hilbert matrix. Barnum, Saks, and
Szegedy proposed a general method [BSS 03] that gives necessary and suffi-
cient conditions for the existence of a quantum query algorithm. They also
described a special case, the so-called spectral method, which gives a lower
bound in terms of spectral norms of an adversary matrix. Ambainis also
published a weighted version of his adversary method [AM 04]. He showed
that it is stronger than the unweighted method and successfully applied it
to get a lower bound for several iterated functions. This method is slightly
harder to apply, because it requires one to design a so-called weight scheme,
which can be seen as a quantum counterpart of the classical hard distribu-
tion on the inputs. Zhang observed that Ambainis had generalized his oldest
method [AM 02] in two independent ways, so he unified them, and published
a strong weighted adversary method [ZH 04]. Finally, Laplante and Magniez
used Kolmogorov complexity in an unusual way and described a Kolmogorov
complexity method [LM 04].

It was assumed that all adversary methods are related to each other. At
first, Laplante and Magniez showed that the Kolmogorov complexity method
is at least as strong as all the following methods: the Ambainis unweighted
and weighted method, the strong weighted method, and the spectral method.
Later Spalek and Szegedy proved that all methods are equivalent.

In addition it was known limitations for lower bounds obtained by the ad-
versary methods. Firstly Szegedy in [SZ 03] proved that the weighted adver-
sary method is limited by min(

√
C0n,

√
C1n), where C0 is the zero-certificate

complexity of Boolean function f and C1 is the one-certificate complexity of
f . Laplante and Magniez proved the same limitation for the Kolmogorov
complexity method [LM 04]. Finally Zhang in [ZH 04] and independently
Spalek and Szegedy [SZ 03] improved this bound to

√
C0C1 for total f .

In this section we briefly describe all these methods, concentrating on
Ambainis’s method, because we use it to prove lower bounds for graph circuit
problem.

3.2.1 Spectral adversary method

Theorem 3.7. Let f(X) : {0, 1}N → {0, 1} be a partial boolean function,
Di,F be |N |×|N | zero-one valued matrices that satisfy Di[x, y] = 1 iff xi 6= yi

for i ∈ [N ], and F [x, y] = 1 iff f(x) 6= f(y). Let Γ denote an |N | × |N | non-
negative symmetric matrix such that Γ ◦ F = Γ. Then

Q2(f) = Ω(max
Γ

λ(Γ)

maxi∈[N ] λ(Γ ◦Di)
).
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3.2.2 Kolmogorov complexity

Deep knowledge of Kolmogorov complexity is not necessary to understand
the results in this section. We just introduce lower bound technique based
on this method. The results on the relation between various classical forms
of the quantum adversary method and the Kolmogorov complexity method
are taken from Laplante and Magniez [LM 04].

Definition 3.8. A set is called prefix-free if none of its members is a prefix
of another member.

Definition 3.9. For a fixed universal Turing machine M and a prefix-free
set S, the prefix-free Kolmogorov complexity of x given y, denoted by
K(x|y), is the length of the shortest program from S that prints x if it gets y
on the input. Formally,

K(x|y) = min{|P | : P ∈ S, M(P, y) = x}.

Laplante and Magniez gave lower bounds for quantum query complexity,
using Kolmogorov complexity.

Theorem 3.10. Let σ ∈ {0, 1}∗ denote a finite string. Then

Q2(f) = Ω(min
σ

max
x,y,f(x)6=f(y)

1∑
i:xi 6=yi

√
2−K(i|x,σ)−K(i|y,σ)

).

3.2.3 Weighted adversary

The previously known version of quantum adversary method gives a weaker
lower bound of Q2(f) = Ω(2.1213...d). While this already gives some gap
between polynomial degree and quantum complexity, we can achieve a larger
gap by using a new, more general version of the method. The new compo-
nent is that we carry out this argument in a very general way. We assign
individual weights to every pair of inputs and distribute each weight 2 among
the two inputs in an arbitrary way. This allows us to obtain better bounds
than with the previous versions of the quantum adversary method. We ap-
ply the new lower bound theorem to three functions for which deterministic
query complexity is significantly higher than polynomial degree. The result
is that, for all of those functions, quantum query complexity is higher than
polynomial degree. The biggest gap is polynomial degree 2d = M and query
complexity Ω(2.5d) = Ω(M1.321...). Spalek and Szegedy [SS 04] have recently
shown that Ambainis method is equivalent to two other methods, the spec-
tral method of [BSS 03] that was known prior to Ambainis’s work [AM 04]
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and the Kolmogorov complexity method of [LM 04] that appeared after the
conference version of Ambainis’s paper was published. Although all three
methods are equivalent, they have different intuition. It appears to us that
Ambainis’s method is the easiest to use for results in this paper. Let start
with the earliest Ambainis’s adversary method [AM 02].

Theorem 3.11. Let f : 0, 1N → 0, 1, A ⊂ 0, 1N , B ⊂ 0, 1N , be such that
f(A) = 0, f(B) = 1 and

• for every x ∈ A, there are at least m inputs y ∈ B such that y differs
from x in one bit

• for every y ∈ B, there are at least m′ inputs x ∈ A such that x differs
from y in one bit.

Then, Q2(f) = Ω(
√

mm′)

Later Ambainis gave another generalized version of this theorem.

Theorem 3.12. Let f : 0, 1N → 0, 1, A ⊂ 0, 1N , B ⊂ 0, 1N , R ⊂ A × B be
such that f(A) = 0, f(B) = 1 and

• for every x ∈ A, there are at least m inputs y ∈ B such that (x, y) ∈ R

• for every y ∈ B, there are at least m′ inputs x ∈ A such that (x, y) ∈ R

• for every x = (x1...xN) ∈ A and every i ∈ [N ] there are at most l inputs
y ∈ B such that (x, y) ∈ R and xi 6= yi

• for every y = (y1...yN) ∈ B and every i ∈ [N ], there are at most l′

inputs x ∈ A such that (x, y) ∈ R and xi 6= yi.

Then, Q2(f) = Ω(
√

mm′
ll′ )

The main idea of these theorems is if we can split input data into 2 sets
X, Y such that f(X) =0 and f(Y) = 1 and there are lots of possibilities how
to obtain X from Y, changing some bits, than lower bounds had to be big
enough.

Finally Ambainis provided generalization of this theorem.

Theorem 3.13. Let f : 0, 1N → 0, 1, A ⊂ 0, 1N , B ⊂ 0, 1N , R ⊂ A × B be
such that f(A) = 0, f(B) = 1 and

• for every x ∈ A, there are at least m inputs y ∈ B such that (x, y) ∈ R

• for every y ∈ B, there are at least m′ inputs x ∈ A such that (x, y) ∈ R



CHAPTER 3. QUANTUM QUERY ALGORITHM COMPLEXITY 39

• let lx,i = |y : (x, y) ∈ R, xi 6= yi|, ly,i = |x : (x, y) ∈ R, xi 6= yi|,

lmax = max
x,y,i:(x,y)∈R,i∈[N ],xi 6=yi

lx,ily,i

Then, Q2(f) = Ω(
√

mm′
lmax

)

In [AM 04] Ambainis gave another way to generalize theorem 3.12. He
used weighted scheme to prove better lower bounds.

Definition 3.14. Let f : 0, 1N → 0, 1, A ⊂ f−1(0), B ⊂ f−1(1) and R ⊂ A×
B. A weight scheme for A,B,R consists of numbers w(x, y) > 0, u(x, y, i) >
0, v(y, x, i) > 0 for all (x, y) ∈ R and i ∈ [N ] satisfying xi 6= yi, we have

u(x, y, i)v(y, x, i) ≥ w2(x, y).

Definition 3.15. The weight of input vector is wx =
∑

y:(x,y)∈R

w(x, y), if x ∈ A

and wy =
∑

x:(x,y)∈R

w(x, y) if y ∈ B.

Definition 3.16. Let i ∈ [N ]. The load of variable xi is

ux,i =
∑

y:(x,y)∈R,xi 6=yi

u(x, y, i)

and the load of variable yi is

vy,i =
∑

x:(x,y)∈R,xi 6=yi

v(x, y, i)

.

Theorem 3.17. Let f : 0, 1N → 0, 1 where X ⊂ f−1(0), Y ⊂ f−1(1) and
R ⊂ X × Y . Let w, u, v be a weight scheme for X, Y, R. Then

Q2(f) = Ω(

√
min

x∈X,0≤i≤N−1

wx

ux,i

min
y∈Y,0≤j≤N−1

wy

uy,j

)

It’s easy to see that theorem 3.17 generalizes theorem 3.13. Indeed, for
each A, B, R from 3.13 we can construct such weight scheme: w(x, y) = 1,

u(x, y, i) =
√

lmax

lx,i
, v(x, y, i) =

√
lmax

ly,i
then:

• u(x, y, i)v(x, y, i)= lmax

lx,ily,i
≥ 1 ⇒ u(x, y, i)v(x, y, i) ≥ w2(x, y)
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• ux,i =
∑

y:(x,y)∈R,xi 6=yi

u(x, y, i) = lx,iu(x, y, i)

• vy,i =
∑

x:(x,y)∈R,xi 6=yi

v(x, y, i) = ly,iv(x, y, i)

Then

√
min

x∈X,0≤i≤N−1

wx

ux,i

min
y∈Y,0≤j≤N−1

wy

uy,j

=

√
min

x∈X,0≤i≤N−1

wx

lmax

min
y∈Y,0≤j≤N−1

wy

lmax

=
√

mm′
lmax

, thus theorem 3.17 gives at least the same lower bounds as 3.13.

Later Zhang in [ZH 04] gave improved version of Ambainis’s theorem.

Theorem 3.18. Let f : 0, 1N → 0, 1, and X, Y be two sets of inputs such
that f(x) 6= f(y) if x ∈ X and y ∈ Y . Let R ⊂ X × Y . Let w, u, v be a
weight scheme for X, Y,R. Then

Q2(f) = Ω(

√
min

(x,y)∈R,i∈[N ],xi 6=yi

wxwy

ux,ivy,i

)

It’s obvious that theorem 3.18 gives better lower bounds that theorem
3.17. Indeed, for each, X, Y, R, w, u, v holds:

min
x,y,i,j:x∈X,y∈Y,i,j∈[N ]

wxwy

ux,ivy,j

≤ min
x,y,i:(x,y)∈R,i∈[N ],xi 6=yi

wxwy

ux,ivy,i

.

3.2.4 Limitations of adversary methods

Let us denote by Alb1(f), Alb2(f) and Alb3(f) the best lower bound for
function f achieved by Theorem 3.13, 3.17 and 3.18, respectively (it means

Alb1(f) = max
X,Y,R

(

√
mm′

lmax

) e.t.c.). Note that in the four Albs, there are many

parameters (X, Y,R, u, v,w) to be set. By setting these parameters in an
appropriate way, one can get lower bounds of quantum query complexity for
many problems. Since theorem 3.12 generalizes theorem 3.13 and theorem
3.18 generalizes 3.12 then Alb1 ≤ Alb2 ≤ Alb3 generalizes. But Alb3 also has
a limitation that was shown by Zhang [ZH 04]. Let start with definition.

Definition 3.19. Let f : {0, 1}N → {0, 1} be a Boolean function and x ∈
{0, 1}N be some input, a certificate set CSx of f on x is a set of indices
such that f(x) = f(y) whenever yi = xi for all i ∈ CSx. The certificate
complexity C(f, x) of f on x is the size of a smallest certificate set of f on x.
The 0-certificate complexity of f is C0(f) = max

x:f(x)=0
C(f, x). The 1-certificate

complexity of f is C1(f) = max
x:f(x)=1

C(f, x). The certificate complexity of f is

C(f) = max{C0(f), C1(f)}. We further denote C (f) = min{C0(f), C1(f)}.
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For example, if f is the OR-function, then the certificate complexity on
X = (1, 0, 0, . . . , 0) is 1, because the assignment x0 = 1 already forces the
OR to 1. The same holds for the other X for which f(X) = 1, so C1(f) = 1.
On the other hand, the certificate complexity on X = (0, 0, . . . , 0) is N,
so C0(f) = N and C(f) = N and C (f) = 1.

Theorem 3.20. [ZH 04] Alb3(f) ≤
√

N · C (f) for any total N-ary Boolean
function f.

Theorem 3.21. [ZH 04] Alb3(f) ≤
√

C0(f) · C1(f) for any total N-ary
Boolean function f.

Later Spalek and Szegedy in [SS 04] showing that all adversary meth-
ods are equivalent, have also proved that all adversary methods have such
limitation as in theorem 3.21.

Theorem 3.22. Let f : {0, 1}N → {0, 1} be a Boolean function. Let Q2(f)

denote the bounded-error quantum query complexity of f. Then Q2(f)

1−2
√

e(1−e)
≥

SA(f) = WA(f) = Ω(KA(f)) , where SA, WA and KA are lower bounds
given by the following methods:

• SA(f)- Spectral adversary lower bound obtained by theorem 3.7

SA(f) = max
Γ

λ(Γ)

maxi∈[N ] λ(Γ ◦Di)

• WA(f) - weighted adversary lower bound obtained by theorem 3.17 and
3.18

WA(f) =

√
min

(x,y)∈R,i∈[N ],xi 6=yi

wxwy

ux,ivy,i

• KA(f)- Kolmogorov lower bound obtained by theorem 3.10

KA(f) = min
σ

max
x,y,f(x)6=f(y)

1∑
i:xi 6=yi

√
2−K(i|x,σ)−K(i|y,σ)

3.2.5 Separation between the polynomial and adver-
sary method

The polynomial method and the adversary method are generally incompara-
ble. There are examples when the polynomial method gives better bounds
and vice versa. The polynomial method has been successfully applied to
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obtain tight lower bounds for the following problems: Ω(n1/3) for the col-
lision problem and Ω(n2/3) for the element distinctness problem [1] (see [4]
for a matching upper bound). The quantum adversary method is incapable
of proving such lower bounds due to the small certificate complexity of the
function. Furthermore, the polynomial method often gives tight lower bounds
for the exact and zero-error quantum complexity, such as n for the Or func-
tion [8]. The adversary method completely fails in this setting and the only
lower bound it can offer is the bounded-error lower bound. On the other
hand, Ambainis exhibited some iterated functions [3] for which the adver-
sary method gives better lower bounds than the polynomial method. The
largest established gap between the two methods is n1.321. Furthermore, it
is unknown how to apply the polynomial method to obtain several lower
bounds that are very simple to prove by the adversary method. A famous
example is the two-level And-Or tree. The adversary method gives a tight
lower bound Ω(

√
n) [2], whereas the best bound obtained by the polyno-

mial method is Ω(n1/3) and it follows [5] from the element distinctness lower
bound [1]. There are functions for which none of the methods is known to
give a tight bound. A long-standing open problem is the binary And-Or
tree. The best known quantum algorithm is just an implementation of the
classical zero-error algorithm by Snir [25] running in expected time Ø(n0.753),
which is optimal for both zero-error [23] and bounded-error [24] algorithms.
As we have shown in previosu section the adversary lower bounds are limited
by
√

C0C1 =
√

n. The best known lower bound obtained by the polynomial
method is also Ω(

√
n) and it follows from embedding the parity function.

It could be that the polynomial method can prove a stronger lower bound.
Two other examples are triangle finding and verification of matrix products.
For triangle finding, the best upper bound is Ø(n1.3) [20] and the best lower
bound is Ω(n). For verification of matrix products, the best upper bound
is Ø(n5/3)[10] and the best lower bound is Ω(n3/2). Again, the adversary
method cannot give better bounds, but the polynomial method might. It is
an interesting open problem to find a lower bound that cannot be proved by
the adversary or polynomial method.

3.3 Relation between classical and quantum

complexity

In In this section we will show the relation between the classical complexities
D(f) and R(f) and the quantum complexities. By a well-known result, the
best randomized decision tree can be at most polynomially more efficient
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than the best deterministic decision tree: D(f) ∈ O(R(f)3) [23, Theorem
4]. Beals, Buhrmans e.t.c using polynomial method proved that also the
quantum complexity can be at most polynomially better than the best de-
terministic tree: D(f) ∈ O(Q2(f)6). In other words, if we can compute some
function quantumly with bounded-error using T queries, we can compute it
classically error-free with O(T 6) queries. We will briefly describe the idea of
their proof in this section. To start we define blocksensitivity complexity.

Let f be a Boolean function and X = (x0, ..., xN−1) an input to f . For a
set S ⊂ 0, ..., N − 1, X(S) denotes the input obtained from X by flipping all
variables xi, i ∈ S. f is sensitive to S on input X if f(X) 6= f(X(S)).

Definition 3.23. The block sensitivity of f on input X is the maximal
number t such that there exist t pairwise disjoint sets S0, S1, . . ., St−1 such
that, for all i ∈ {0, ..., t−1}, f is sensitive to Si on X. We denote it by
bsX(f).

Definition 3.24. The block sensitivity of f, bs(f) is just the maximum
of bsX(f) over all inputs X.

For example, bs(OR) = N , because for input X = (0, 0, ..., 0) we can take
Si = i, then flipping the i− th bit in X changes the value of OR from 0 to 1.

Nissan in [NS 91] proved the relationship between certificate complexity
and block-sensitivity complexity.

Lemma 3.25. [NS 91] C1(f) ≤ C(f) ≤ bs(f)2.

Beals, Buhrman e.t.c in [BBCMW 01] using polynomial method proved
quantum lower bounds in the terms of block sensitivity.

Lemma 3.26. [BBCMW 01] If f is a Boolean function, then QE(f) ≥√
bs(f)

8
and Q2(f) ≥

√
bs(f)
16

.

Lemma 3.27. [BBCMW 01] D(f) ≤ C1(f)bs(f).

Lemmas 3.25 and 3.27 imply that D(f) ≤ bs(f)3. Combining this with
lemma 3.26 Beals e.t.c. in [BBCMW 01] obtained this result.

Theorem 3.28. [BBCMW 01] If f is a Boolean function then D(f) ≤
4096Q2(f)6

They also give a limitation on exact quantum query computation.

Theorem 3.29. [BBCMW 01] If f is a Boolean function then D(f) ≤
32QE(f)4
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Later this result was improved by Midrijanis [MI 04]

Theorem 3.30. [MI 04] If f is a Boolean function then D(f) ∈ Ø(QE(f)3)

It was an open problem whether the polynomial method is tight or not?

It means whether QE(f) = O(deg(f)) or Q2(f) = O(d̃eg(f))? Ambainis in
[AM 04] showed the gap between polynomial degree and quantum complex-
ity. He constructed the function f for which: deg(f) = 2d and Q2(f) = (2.5d).

Since deg(f) ≥ d̃eg(f) and QE(f) ≥ Q2(f), this implies a separation both

between QE(f) and deg(f) and between Q2(f) and d̃eg(f)

3.3.1 Query complexity upper bounds

There is no major technique to obtain quantum query complexity upper
bounds for any problem as it is in the case of lower bounds. We just need
to provide correct quantum algorithm that solves the problem. We also
need to prove query complexity lower bounds for the problem to show that
algorithm solving this problem is optimal. In this section we briefly describe
the amplitude amplification method [BHMT 02] for getting query complexity
upper bounds, because we will use it in our proof for graph circuit problem.
The method is a generalization of Grover’s search algorithm [GR 96].

Consider a problem that is characterized by Boolean function χ(x, y) in
the sense that y is a good solution to instance x if and only if χ(x, y) = 1
(there could be more than one good solution to a given instance x). If we have
a probabilistic algorithm P that outputs a guess P (x) on input x, we can call
P and χ repeatedly until the solution to instance x is found. If χ(x, P (x)) = 1
with probability px > 0 then we expect to repeat this process 1/px times on
the average. Consider now the case when we have a quantum algorithm A
instead of the probabilistic algorithm. Assume A makes no measurements:
instead of the classical answer it produces quantum superposition |Ψx〉 when
run on x. Let ax denote the probability that |Ψx〉, if measured, is a good
solution. If we repeat the process of running A on x, measuring the output,
and applying χ to check the validity of the result, we shall expect to repeat
1/ax times on the average before a solution is found. This is no better than
the classical probabilistic paradigm.

Brassard e.t.c in [BHMT 02] described a more efficient approach to the
problem which they called amplitude amplification. The probabilistic paradigm
increases the probability of success roughly by a constant. By contrast, am-
plitude amplification increases the amplitude of success roughly by a constant
on each iteration. Because amplitudes correspond to square roots of probabil-
ities, it suffices to repeat the amplitude amplification process approximately
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1/
√

ax times to achieve success with overwhelming probability. Formally, in
[BHMT 02] it was proved such theorem.

Theorem 3.31. [BHMT 02] Let A be a quantum algorithm with one-sided
error and success probability at least ε > 0. Then, there is a quantum algo-
rithm B that solves the same problem with success probability 2/3 by invoking
A O(1

ε
) times.

The Grover’s search algorithm and amplitude amplification method can
simplify constructing of quantum algorithms. It is well-known fact that any
classical (either deterministic or probabilistic) computation can be simulated
on a quantum computer (see []). More precisely,

• In the circuit model, a classical circuit with N gates can be simulated
by a quantum circuit with O(N) gates.

• In the query model (when only the number of queries is counted), a
classical computation with N queries can be simulated by a quantum
computation with N queries.

This greatly simplifies descriptions of quantum algorithms. Instead of
describing a quantum algorithm, we can describe a classical algorithm that
succeeds with some small probability ε. Then, we can transform the classical
algorithm to a quantum algorithm and apply the amplitude amplification to
the quantum algorithm. The result is a quantum algorithm with the running
time or the number of queries that is O(1

ε
) times the one for the classical

algorithm with which we started. A similar reasoning can be applied, if
instead of a purely classical algorithm, we started with a classical algorithm
that involves quantum subroutines. Such algorithms can also be transformed
into quantum algorithms with the same complexity. For example we can
provide very simple upper bound for graph triangle problem.

Finding triangles problem. [SZ 03] We have n2 variables describing
adjacency matrix of a graph. We would like to know if the graph contains a
triangle. The very simple quantum algorithm can be written as follows:

• choose any 3 vertices of the graph and check whether they form a
triangle;

• amplify the first step
√

n3 times.

If graph contains a triangle then the probability of getting correct answer
by choosing randomly any 3 graph vertices pε ≥ 1

n
· 1

n
· 1

n
. Then by theorem

3.31 we can repeat this step O(
√

1
1

n3
) = O(

√
n3) times getting probability
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≥ 2/3. This algorithm gives us quantum query complexity upper bounds:
Q2(f) = O(

√
n3) (as we make constant number of oracle query in the first

step of algorithm). In [SZ 03] it was proved better upper bound: O(n1.3).
It’s easy to see that adversary methods can not give us a better lower bound
then

√
n2, because certificate complexity C0 = O(n2) (if there is now triangle

in the graph we need to check all edges), but C1 = 3 (if there is a triangle,
we just need to check the three edges, that form a triangle). It is an open
problem to improve lower bounds for this problem, reducing the gap between
upper and lower bound.

Similarly we can obtain upper bounds for graph rectangle problem.
Finding rectangle problem. We have n2 variables describing ad-

jacency matrix of a graph. We would like to know if the graph contains a
rectangle. The quantum algorithm can be written as follows:

• choose any 2 vertices i, j of the graph;

• with 2 Grover’s searches find vertices k, l that are connected with both
i and j;

• amplify the first 2 steps
√

n2 = n times.

If graph contains a rectangle then the probability of getting correct answer
by choosing randomly any 2 graph vertices pε ≥ 1

n
· 1

n
. Then by theorem 3.31

we can repeat this step O(
√

1
1

n2
) = O(

√
n2) = O(n) times getting probability

≥ 2/3. This algorithm gives us quantum query complexity upper bounds:
Q2(f) = O(

√
n3) (as we make 2 Grovers searches on n elements in the second

step of the algorithm). It’s easy to see that adversary methods can not give us
a better lower bound then

√
n2, because (as for triangle problem) certificate

complexity C0 = O(n2) (if there is now rectangle in the graph we need to
check all edges), but C1 = 4 (if there is a rectangle, we just need to check
the 4 edges, that form a triangle).

We can not use similar proofs to obtain upper bounds for the problem
whether graph contains cycle of length k for some fixed k. So it is still open
problem. In the next section we consider the graph cycle problem, providing
an algorithm solving this problem. We also prove that these algorithm is
optimal.
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3.4 Graph cycle problem. Algorithm. Lower

bounds.

Let G be an undirected graph with N vertices. We are interested to know
whether graph contains any cycle? In this section we provide a quantum
algorithm solving this problem and then show that this algorithm is optimal
using adversary lower bound technique.

Graph cycle problem.
INSTANCE: Undirected graph G = (V, E), |E| = n, represented by

adjacency matrix A = (aij), where

aij =

{
1, if there is edge between i-th and j-th vertices
0, otherwise

QUESTION: Is there exists any circuit in this graph G?
In other words we have boolean function fG : {0, 1}N → {0, 1} (where

N = n2) that outputs 1 if there is any cycle in the graph G representing by
its adjacency matrix.

It is easy to see that query complexity of classical algorithm is O(n2)
(indeed, in the worst case we need to query (n2−n) elements of the adjacency
matrix if there is no triangle in the graph). We will prove the complexity
of quantum algorithm that is better than in classical case. The quantum
algorithm that solves the problem uses such lemma.

Lemma 3.32. If the number of edges in the undirected graph with n vertices
is greater or equal with n then the graph contains cycle.

Proof. Lets the graph is connected, thats it, from every vertex there exists
path to another vertex. Assume from the contrary, that there is no cycle in
the graph containing ≥ n vertices. As we can reach any vertex from another
then there is spanning tree T containing all vertices of the graph (see fig.
3.1). There are (n-1) edges in the spanning tree, because each edge can be
inside the tree only once. As the number of edges in the graph is ≥ n, then
exists at least 2 vertices ai un aj connected with edge e, that does not belong
to tree T . It means that exist at least 2 different ways how to reach vertex
aj from the vertex ai: by the edge e or by the path inside the tree T (see
pict. 3.1). Then there is a cycle in the graph, containing vertices ai and
aj. If the graph is not connected, then it can be split into m connected
subgraphs each containing v1, v2, ..., vm vertices. Then exists subgraph in
which the number of edges ei is greater or equal with the number of vertices.

(Otherwise,
∑
i≤m

si <
∑
i≤m

vi = n). Then this subgraph contains a cycle.
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Figure 3.1: Spanning Tree. Additional edge aiaj makes cycle

We provide quantum algorithm solving the problem 3.4 with bounded-
error making O(

√
n3) oracle queries.

Algorithm (FCYCLE(G,(aij)).

1. Fix some k = 1, that denotes current row of the adjacency matrix we
are working on. Fix l = 1, the starting column in the k-th row from
which we shall begin quantum search for 1 in this row. Fix M = 0 -
the number of founded edges.

2. Take the k-th row of the adjacency matrix. Run Grover’s search algo-
rithm to find such j > l that akj = 1. If Grover’s search finds such j
then go to step 3. Otherwise, increase k by 1 (thats it, take next row of
the adjacency matrix). If k > n then go to step 4. Otherwise, set l to
k, because the graph is undirected and we do not need to search in the
first k elements of the k-th row in graph’s adjacency matrix. Repeat
the 2-nd step.

3. Remember the pair (k, j) and increase M by 1. If M ≥ n, then output
1 and finish the computation. If m < n, tad set l to j and go to step 2
(search another 1 in the k-th row).

4. Run classical deterministic algorithm finding cycle on all pairs (k, j)
(founded edges) remembered in the previous steps. The output of our
algorithm equals with the output of this deterministic algorithm.

Note that algorithm not only detects whether graph contains a cycle or
not, but it also provides a set of edges containing cycle, if there is cycle in
the graph.

Correctness of the algorithm
We sequently find edges of the graph in the steps 2 and 3 of the Algorithm.

We stop either we have found n-th edge or we have gone through all n rows
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of the adjacency matrix. If we have found n-th edge, then by lemma 3.32
graph contains cycle and we output 1. If we have found all edges and their
count is less than n then we output correct answer just running deterministic
algorithm on all founded edges.

Query complexity of the algorithm
We are interested in how many oracle questions about (aij) elements does

the algorithm make. We are going to prove that Q2(fg) = O(
√

n3). The 2-
nd step of the Algorithm (where Grover’s search is run) is computed ≤ 2n
times, because each founded edge corresponds to one Grover’s search, and one
Grover’s search is computed for each row, when there is no more 1-s(edges)
in the row. In each Grover’s search we make O(

√
n) queries, because input

size is ≤ n for each Grover’s search. Then the overall query complexity of
the algorithm is O(n

√
n).

As we can see the quantum query algorithm complexity for graph cycle
problem is O(

√
n3), because we provide algorithm that solves the problem

with such number of queries. To prove that this algorithm is optimal we need
to prove that complexity lower bound is also O(

√
n3). We can prove weaker

lower bound, using theorem 3.11.

Theorem 3.33. Quantum query algorithm, that solves graph cycle problem,
needs to make Ω(n) queries.

Proof. We will use theorem 3.11 to prove lower bounds. Lets make set X
and Y in such way: the set X contains all spanning trees of the graph (see
fig. 3.2). Then f(X) = 0. The set Y consists of all graphs that are made
from spanning tree by adding one additional edge (see fig. 3.3). By lemma
3.32 f(Y ) = 1.

Figure 3.2: Instances of the set
X

Figure 3.3: Instances of the set
Y

For each x ∈ X there are m = C2
n = n(n−1)

2
= O(n2) different y ∈ Y

such that y differs from x in one bit. Indeed, we can add additional edge
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to the spanning tree by choosing any two vertices of the graph. For each
y ∈ Y there are O(1) different x ∈ X such that x differs from y in one bit,
because we obtain x from y by removing one of the edges in the cycle of the
graph y. Note that there are such y from whom we can obtain x in O(n)
ways(if the length of the cycle is close to n), but for the graph with a short
cycle, we do not have much possibilities to remove an edge. Then by theorem
3.11 quantum algorithm solving the problem makes Ω(

√
n2) queries to the

oracle.

As we can see the unweighted adversary method is not very useful for
proving lower bounds for the graph cycle problem. We shall use weighted
adversary method to improve lower bound.

Theorem 3.34. Quantum query algorithm, that solves graph cycle problem,
needs to make Ω(

√
n3) queries.

Proof. We will construct sets X and Y in such way to apply theorem 3.17.
Let the set X consists of all such graphs, that are obtained from the graphs
with the cycle of length n by removing one edge from it (see fig. 3.4). The
set Y consists of all such graphs, that are obtained from the graph with 2
cycles, each of length between n/3 and 2n/3 by removing one random edge
from one of the cycles (see fig. 3.5). The relation R = X × Y consists of
such graph pairs (x, y) that only difference between x and y is: there are for
4 vertices a, b, c, d such that edges (a, b) and (c, d) are in the graph x, but
not in y, and vice a versa: edges (a, c) and (b, d) are in the graph y, but not
in x (see fig. 3.34). The weight scheme for X, Y, R is given as follows:

w(x, y) = 1, u(x, y, (i, j)) =
√

n, v(x, y, (i, j)) =
1√
n

,

for all (x, y) ∈ R, (i, j) ∈ [n2] and xij 6= yij ( xi,j denotes an element of
the graph’s adjacency matrix). Its easy to see that weight scheme is correct,
because

√
n 1√

(n)
≥ w(x, y) = 1

wx =
∑

y:(x,y)∈R

w(x, y) = O(n2), because there are O(n2) such y ∈ Y , that

(x, y) ∈ R. Indeed, we have (n − 2) possibilities to choose edge (a, b) and

then n/3 possibilities to choose the second edge (c, d). wy =
∑

x:(x,y)∈R

w(x, y) =

O(n2), because there O(n2) such x, that (x, y) ∈ R. We need to remove two
edges, each edge from the each of the two cycles in the graph y, then we have
O(n2) possibilities to choose these edges, because the length of each cycle is
greater or equal than n/3.
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Figure 3.4: Instances of the set
X

Figure 3.5: Instances of the set
Y

ux,(i,j) =
∑

y:(x,y)∈R,x(i,j) 6=y(i,j)

u(x, y, (i, j)) =

=
∑

y:(x,y)∈R,x(i,j)=0&y(i,j)=1

u(x, y, (i, j)) +
∑

y:(x,y)∈R,x(i,j)=1&y(i,j)=0

u(x, y, (i, j))

∑

y:(x,y)∈R,x(i,j)=0&y(i,j)=1

u(x, y, (i, j)) = 4
√

n

, because if there is no edge between i-th and j-th vertices in the graph x,
but this edge is in the graph y, then these are vertices a, c (or vertices b and
d). Then we have only 4 possibilities to choose neighbors of these vertices
(the vertex b is the neighbor of the vertex a and vertex d is the neighbor of
the vertex c).

∑

y:(x,y)∈R,x(i,j)=1&y(i,j)=0

u(x, y, (i, j)) = O(n
√

n)

, because the edge (i, j) is the edge (a, b) (or (c, d) edge) and we have O(n)
possibilities to remove from the graph the edge (c, d) (or the edge (a,b) re-
spectively), because the length of the cycle is at least n/3. Similarly:

∑

x:(x,y)∈R,y(i,j)=0&x(i,j)=1

v(x, y, (i, j)) = 4/
√

n

, and ∑

x:(x,y)∈R,y(i,j)=1&x(i,j)=0

v(x, y, (i, j)) = O(n/
√

n).
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Then the lower bound for the graph cycle problem is:√
min

(x,y)∈R,i∈[n2],x(i,j) 6=y(i,j)

wxwy

ux,(i,j)vy,(i,j)

=

√
min( min

(x,y)∈R,i∈[n2],x(i,j)=0&y(i,j)=0

wxwy

ux,(i,j)vy,(i,j)

, min
(x,y)∈R,i∈[n2],x(i,j)=1&y(i,j)=1

wxwy

ux,(i,j)vy,(i,j)

) =

√
min( n2n2

4
√

n(n/
√

n)
, n2n2

n
√

n(4/
√

n)
) =

√
min(n3, n3) =

√
(n3)

. Then, by theorem 3.17 Q2(f) = Ω(
√

n3).



Chapter 4

Probabilistic reversible
automata

Probabilistic reversible automata (PRA) were introduced by M. Golovkins
and M. Kravtsev in [GK 02] as probabilistic automata which transformation
is determined by doubly stochastic operators. In case of one-way automata
that means that for each letter of working alphabet the transition matrix is
doubly stochastic. This model is a probabilistic counterpart for Nayaks model
of enhanced quantum automata. M.Golovkins and M.Kravtsev in [GK 02]
and later M. Beadry e.t.c in [ABGKMT 06] proved the class of languages rec-
ognizable by PRA. In this thesis we address another type of PRA, i.e., the
DH-PRA merely defined in [GK 02], that behave more like measure-many
quantum automata [KW 97], as they halt when entering accepting or reject-
ing states. We show a general class of regular languages, not recognizable
by DH-PRA. This class is identical to a class not recognizable by MM-QFA
[AKV 01] (and similar to the class of languages, not recognizable by C-PRA
[GK 02]. We also prove that the class of languages recognizable by DH-PRA
is not closed under union. The one open problem still remains: we show
the class of languages for which we can not prove whether it is recognizable
by DH-PRA or not. So we still unable to prove or disprove that class of
languages recognizable by DH-PRA is likely to include the one recognizable
by MM-QFA or these classes are equal.

4.1 1-way Probabilistic Reversible Automata

In this section we give formal definition of 1-way PRA

Definition 4.1. 1-way probabilistic reversible C-automaton (C-PRA)
A = (Q, Σ, q0, QF , δ) is specified by a finite set of states Q, a finite input

53
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alphabet Σ, an initial state q0 ∈ Q, a set of accepting states QF ⊆ Q, and a
transition function

δ : Q× Γ×Q −→ R[0,1],

where Γ = Σ ∪ {#, $} is the input tape alphabet of A and #, $ are end-
markers not in Σ. Furthermore, transition function satisfies the following
requirements:

∀(q1, σ1) ∈ Q× Γ
∑
q∈Q

δ(q1, σ1, q) = 1 (4.1)

∀(q1, σ1) ∈ Q× Γ
∑
q∈Q

δ(q, σ1, q1) = 1 (4.2)

For every input symbol σ ∈ Γ, the transition function may be determined
by a |Q| × |Q| matrix Vσ, where (Vσ)i,j = δ(qj, σ, qi).

Lemma 4.2. All matrices Vσ are doubly stochastic iff conditions (4.1) and
(4.2) of Definition 4.1 hold.

Proof. Trivial.

A linear operator UA corresponds to the automaton A. Formal definition
of this operator follows:

Definition 4.3. Given a configuration c = 〈νiqjσνk〉,

UAc
def
=

∑
q∈Q

δ(qj, σ, q)〈νiσqνk〉.

Given a superposition of configurations ψ =
∑
c∈C

pcc,

UAψ
def
=

∑
c∈C

pcUAc.

Using canonical basis, UA is described by an infinite matrix MA.
To comply with Definition 2.22, we have to state the following:

Lemma 4.4. Matrix MA is doubly stochastic iff conditions (4.1) and (4.2)
of Definition 4.1 hold.

Proof. Condition (4.1) takes place if and only if the sum of elements in every
column in MA equal to 1. Condition (4.2) takes place if and only if the sum
of elements in every row in MA equal to 1.

This completes our formal definition of 1-way PRA.
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4.2 1-way Probabilistic Reversible C Automata

In this section we give formal definition of C-PRA automata. And briefly
describe the results from [GK 02] and [ABGKMT 06] because they are of
high importance for us. We will further refer to them proving our theorems
for the DH-PRA automata.

4.2.1 Definition

For a definition 2.22 we define word acceptance as specified in Definition 2.17.
The set of rejecting states is Q \ QF . We define language recognition as in
Definition 2.20. That completes formal definition of 1-way C-PRA automata.

4.2.2 Closure properties

Lemma 4.5. If a language is recognized by a C-PRA A with interval (p1, p2),
exists a C-PRA which recognizes the language with probability p, where

p =

{
p2

p1+p2
, if p1 + p2 ≥ 1

1−p1

2−p1−p2
, if p1 + p2 < 1.

Theorem 4.6. If a language is recognized by a C-PRA, it is recognized by
C-PRA with probability 1− ε.

Lemma 4.7. If a language L1 is recognizable with probability greater than
2
3

and a language L2 is recognizable with probability greater than 2
3

then lan-
guages L1 ∩ L2 and L1 ∪ L2 are recognizable with probability greater than
1
2
.

Theorem 4.8. The class of languages recognized by C-PRA is closed under
intersection, union and complement.

Theorem 4.9. The class of languages recognized by C-PRA is closed under
inverse homomorphisms.

Corollary 4.10. The class of languages recognized by C-PRA is closed under
word quotient.

Separate question regarding necessity of end-markers is considered in
[GK 02]. It has been proven that C-PRA automata without end-markers
recognize the same class of languages as C-PRA automata with both end-
markers. Thus if C-PRA without end-markers are considered, closure under
word quotient remains true.
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Theorem 4.11. For every natural positive n, a language Ln = a∗1a
∗
2 . . . a∗n is

recognizable by some C-PRA with alphabet {a1, a2, . . . , an}.
Corollary 4.12. Quantum finite automata with mixed states (model of Nayak,
[N 99]) recognize Ln = a∗1a

∗
2 . . . a∗n with probability 1− ε.

Proof. This comes from the fact, that matrices Va1 , Va2 , . . . , Van from the
proof of Theorem 4.11 all have unitary prototypes (see Definition 2.12).

4.2.3 Languages not recognizable by C-PRA

In this section we will show the results obtained from [GK 02], that regular
languages which minimal deterministic automaton contain certain forbidden
constructions can not be recognizable by 1-way C-PRA. We start by defini-
tion of these ”forbidden” constructions.

Definition 4.13. We say that a regular language is of Type 0 (Figure 4.1)
if the following is true for the minimal deterministic automaton recognizing
this language: Exist three states q, q1, q2, exist words x, y such that

1) q1 6= q2;
2) qx = q1, qy = q2;
3) q1x = q1, q2y = q2;
4) ∀t ∈ (x, y)∗ ∃t1 ∈ (x, y)∗ q1tt1 = q1;
5) ∀t ∈ (x, y)∗ ∃t2 ∈ (x, y)∗ q2tt2 = q2.

½¼

¾»

½¼

¾»

½¼

¾» BBN¤¤²
XXz

XXy

¾
-

q

q1 q2

x y

t t
t1 t2

Figure 4.1: Type 0 construction



CHAPTER 4. PROBABILISTIC REVERSIBLE AUTOMATA 57

Definition 4.14. We say that a regular language is of Type 1 (Figure 4.2)
if the following is true for the minimal deterministic automaton recognizing
this language: Exist two states q1, q2, exist words x, y such that

1) q1 6= q2;
2) q1x = q2, q2x = q2;
3) q2y = q1.

Definition 4.15. We say that a regular language is of Type 2 (Figure 4.3)
if the following is true for the minimal deterministic automaton recognizing
this language: Exist three states q, q1, q2, exist words x, y such that

1) q1 6= q2;
2) qx = q1, qy = q2;
3) q1x = q1, q1y = q1;
4) q2x = q2, q2y = q2.

½¼

¾»

½¼

¾»
q1 q2 »»9

x
-

¾

x
y

Figure 4.2: Type 1 construc-
tion
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x y

»»9XXz
x, yx, y

Figure 4.3: Type 2 construc-
tion

Type 1 languages are exactly those languages that violate the partial
order condition of [BP 99].

The following two theorems illustrate the relationship between Type 0,
Type 1 and Type 2 languages.

Theorem 4.16. A regular language is of Type 0 iff it is of Type 1 or Type
2.

Theorem 4.17. A regular language L is of Type 1 iff LR is of Type 2.

Remark 4.18. Both C-DRA and C-QFA-P (see Section 5) recognize exactly
the regular languages for which the corresponding minimal deterministic fi-
nite automata do not contain the following construction ([HS 66, BP 99]),
denoted henceforth as Type A construction (Figure 4.4): Exist two states q1,
q2, exist words x, y such that

1) q1 6= q2;
2) q1x = q2, q2x = q2.

Similarly as in Theorem 4.17, it is possible to demonstrate that a regular
language L is of Type A if and only if the language LR is of Type A.
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Figure 4.4: Type A construction

M.Golovkins and M. Kravtsev in [GK 02] proved that every language of
Type 0 is not recognizable by any C-PRA. We give the complete proof from
their work [GK 02], because this proof is very helpful for understanding our
results for DH-PRA.

Definition 4.19. By q
S−→ q′, S ⊂ Σ∗, we denote that there is a positive

probability to get to a state q′ by reading a single word ξ ∈ S, starting in a
state q.

Lemma 4.20. If a regular language is of Type 2, it is not recognizable by
any C-PRA.

Proof. Assume from the contrary, that A is a C-PRA automaton which rec-
ognizes a language L ⊂ Σ∗ of Type 2.

Since L is of Type 2, it is recognized by a minimal deterministic automa-
ton D with particular three states q, q1, q2 such that q1 6= q2, qx = q1,
qy = q2, q1x = q1, q1y = q1, q2x = q2, q2y = q2, where x, y ∈ Σ∗. Further-
more, exists ω ∈ Σ∗ such that q0ω = q, where q0 is an initial state of D, and
exists a word z ∈ Σ∗, such that q1z = qacc if and only if q2z = qrej, where
qacc is an accepting state and qrej is a rejecting state of D. Without loss of
generality we assume that q1z = qacc and q2z = qrej.

The transition function of the automaton A is determined by doubly
stochastic matrices Vσ1 , . . . , Vσn . The words from the construction of Type
2 are x = σi1 . . . σik and y = σj1 . . . σjs . The transitions induced by words
x and y are determined by doubly stochastic matrices X = Vσik

. . . Vσi1
and

Y = Vσjs
. . . Vσj1

. Similarly, the transitions induced by words ω and z are
determined by doubly stochastic matrices W and Z. By Corollary 2.45,
exists K > 0, such that

∀i (XK)i,i > 0 and (Y K)i,i > 0. (4.3)

Consider a relation between the states of the automaton defined as R =

{(qi, qj) | qi
(xK ,yK)*−→ qj}. By (4.3), this relation is reflexive.

Suppose exists a word ξ = ξ1ξ2 . . . ξk, ξs ∈ {xK , yK}, such that q
ξ−→ q′.

This means that q
ξ1−→ qi1 , qi1

ξ2−→ qi2 ,. . ., qik−1

ξk−→ q′. By Corollary 2.47,
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since both XK and Y K are doubly stochastic, ∃ξ′k . . . ξ′1, ξ′s ∈ {(xK)∗, (yK)∗},
such that q′

ξ′k−→ qik−1
,. . ., qi2

ξ′2−→ qi1 , qi1

ξ′1−→ q, therefore q′
ξ′−→ q, where

ξ′ ∈ (xK , yK)∗. So the relation R is symmetric.
Surely R is transitive. Therefore all states of A may be partitioned into

equivalence classes [q0], [qi1 ], . . . , [qin ]. Let us renumber the states of A in
such a way, that states from one equivalence class have consecutive numbers.
First come the states in [q0], then in [qi1 ], etc.

Consider the word xKyK . The transition induced by this word is deter-
mined by a doubly stochastic matrix C = Y KXK . We prove the following
proposition. States qa and qb are in one equivalence class if and only if qa → qb

with matrix C. Suppose qa → qb. Then (qa, qb) ∈ R, and qa, qb are in one
equivalence class. Suppose qa, qb are in one equivalence class. Then

qa
ξ1−→ qi1 , qi1

ξ2−→ qi2 , . . . , qik−1

ξk−→ qb, where ξs ∈ {xK , yK}. (4.4)

By (4.3), qi
xK−→ qi and qj

yK−→ qj. Therefore, if qi
xK−→ qj, then qi

xKyK−→ qj, and

again, if qi
yK−→ qj, then qi

xKyK−→ qj. That transforms (4.4) to

qa
(xKyK)t

−→ qb, where t > 0. (4.5)

We have proved the proposition.
By the proved proposition, due to the renumbering of states, matrix C

is a block diagonal matrix, where each block corresponds to an equivalence
class of the relation R. Let us identify these blocks as C0, C1, . . . , Cn. By
(4.3), a Markov chain with matrix C is aperiodic. Therefore each block Cr

corresponds to an aperiodic irreducible doubly stochastic Markov chain with
states [qir ]. By Corollary 2.43, lim

m→∞
Cm = J , J is a block diagonal matrix,

where for each (p×p) block Cr (Cr)i,j = 1
p
. Relation qi

(yK)∗−→ qj is a subrelation

of R, therefore Y K is a block diagonal matrix with the same block ordering
and sizes as C and J . (This does not eliminate possibility that some block
of Y K is constituted of smaller blocks, however.) Therefore JY K = J , and
lim

m→∞
Z(Y KXK)mW = lim

m→∞
Z(Y KXK)mY KW = ZJW . So

∀ε > 0 ∃m
∥∥∥
(
Z(Y KXK)mW − Z(Y KXK)mY KW

)
Q0

∥∥∥ < ε. (4.6)

However, by construction of Type 2, ∀k ∀m ω(xkyk)mz ∈ L and ωyk(xkyk)mz /∈
L. This requires existence of ε > 0, such that

∀m
∥∥∥
(
Z(Y KXK)mW − Z(Y KXK)mY KW

)
Q0

∥∥∥ > ε. (4.7)

This is a contradiction.
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Lemma 4.21. If a regular language is of Type 1, it is not recognizable by
any C-PRA.

Proof. Proof is nearly identical to that of Lemma 4.20.
Consider a C-PRA which recognizes the language L of Type 1. We prove

that for words x, y exists constant K, such that for every ε exists m, such that
for two words ξ1 = ω(xK(xy)K)mz and ξ2 = ω(xK(xy)K)mxKz, |pξ1−pξ2| < ε.

We denote The transition function of the automaton A is determined by
doubly stochastic matrices Vσ1 , . . . , Vσn . The words from the construction of
Type 2 are x = σi1 . . . σik and y = σj1 . . . σjs . The transitions induced by
words x and y are determined by doubly stochastic matrices X = Vσik

. . . Vσi1

and Y = Vσjs
. . . Vσj1

. Similarly, the transitions induced by words ω and z are
determined by doubly stochastic matrices W and Z.

By Corollary 2.45 we can select such K that XK
ii > 0 and (Y X)K

ii > 0
for every i. Matrix C = (Y X)KXK corresponds to reading of xK(xy)K .
We consider a relation between the states of the automaton defined as R =

{(qi, qj) | qi
(xK(xy)K)∗−→ qj}. This relation by Corollary 2.50 divides states into

equivalence classes.

q
(xK)∗−→ q′ is subrelation of R. To show that rewrite q

(xK)∗−→ q′ as sequence

q
xK−→ qi1 ,. . ., qik−2

xK−→ qik−1
, qik−1

xK−→ q′. As K selected so that qj
(xy)K

−→ qj for

any j then we can substitute xK with xK(xy)K at each step q
xK(xy)K

−→ qi1 ,. . .,

qik−2

xK(xy)K

−→ qik−1
, qik−1

xK(xy)K

−→ q′, getting q
(xK(xy)K)∗−→ q′. Thus qi and qj are

in one equivalence class in respect to R.
Due to the renumbering of states, matrix C is a block diagonal ma-

trix, where each block corresponds to an equivalence class of the relation
R. Let us identify these blocks as C0, C1, . . . , Cn. By (4.3), a Markov chain
with matrix C is aperiodic. Therefore each block Cr corresponds to an
aperiodic irreducible doubly stochastic Markov chain with states [qir ]. By
Corollary 2.43, lim

m→∞
Cm = J , J is a block diagonal matrix, where for each

(p × p) block Cr (Cr)i,j = 1
p
. As relation qi

(xK)∗−→ qj is a subrelation of R,

therefore XK is a block diagonal matrix with the same block ordering and
sizes as C and J . (This does not eliminate possibility that some block of
XK is constituted of smaller blocks, however.) Therefore JXK = J , and
lim

m→∞
ZXK((Y X)KXK)mW = lim

m→∞
Z((Y X)KXK)mW = ZJW .

So

∀ε > 0 ∃m
∥∥∥
(
Z(XK((Y X)KXK)mW − Z((Y X)KXK)mW

)
Q0

∥∥∥ < ε. (4.8)
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However, by construction of Type 1, we can select z such that ω(xk(xy)k)mxKz ∈
L and ω(xk(xy)k))mz /∈ L. This requires existence of ε > 0, such that

∀m
∥∥∥
(
ZXK((Y X)KXK)mW − Z((Y X)KXK)mW

)
Q0

∥∥∥ > ε. (4.9)

This is a contradiction.

Theorem 4.22. If a regular language is of Type 0, it is not recognizable by
any C-PRA.

Proof. By Lemmas 4.16, 4.20, 4.21.

It can be easily noticed, that the Type 0 construction is a generaliza-
tion of construction proposed by [AKV 01]. (Constructions of [BP 99] and
[AKV 01] characterize languages, not recognized by measure-many quantum
finite automata of [KW 97].)

Corollary 4.23. Languages (a,b)*a and a(a,b)* are not recognized by C-
PRA.

Proof. Both languages are of Type 0.

Corollary 4.24. Class of languages recognizable by C-PRA is not closed
under homomorphisms.

Finally in [ABGKMT 06] it was proved the general class of languages
recognizable by C-PRA automata.

Theorem 4.25. The classes of languages recognizable by C-PRA and C-QFA-M
are equal and coincide with the all regular languages but languages which min-
imal deterministic automaton contains forbidden constructions of Type 0.

4.3 1-way Probabilistic Reversible DH Au-

tomata

4.3.1 Definition

Taken the definition 2.22 of Probabilistic Reversible automata we define word
acceptance as specified in Definition 2.16. The set of accepting states is QF

and set of rejecting states is Q \ QF , these states are halting. We define
language recognition as in Definition 2.20. That completes formal definition
of 1-way DH-PRA automata.
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We can formulate Decide and Halt acceptance for classical automaton in
an equivalent form of classical acceptance. Instead of halting once reaching
the halting state we can consider that automaton continues to read input till
the end of but remain in the same halting state.

We can see that transition matrixes Vσk
are not doubly stochastic any-

more, but for some Vσk
we can enumerate states of DH-PRA in such way

that :

1. q1 ... qk are states, from which halting states are not accessible

2. qk+1 ... qn−l are non-halting states from which halting states are acces-
sible,

3. qn−l+1 ... qn are halting states

Then the structure of transition matrix Vσk
will look so:




k{DST O O
O aij O

l{O aij I


 .

where

• DST - doubly stochastic matrix,

• I - unit matrix,

• ∀k + 1 ≤ j ≤ n− l :
n∑

i=1

αij = 1 (it’s still stochastic)

• ∀k + 1 ≤ i ≤ n− l :
n∑

j=1

αij <= 1 (as originated from double stochastic

matrix where sum in each row is one)

According to definitions 2.32 states qk+1 ... qn−l are transient and states
q1 ... qk and qn−l+1 ... qn are recurrent, with qn−l+1 ... qn being absorbing
for Markov chain induced by transitions Vσk

. Note that for different letters
of the alphabet σk the numbering of non halting states will be different.

Let us call matrix of such type DH-stochastic matrix.

Lemma 4.26. Let A a k × m matrix such that m < k, where the sum of
elements in any column is one, and the sum of elements in any row is less
or equal than one. Then exists a k × (k −m) matrix B, such that (A B) is
doubly stochastic.
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Proof. Let si the sum of elements of the i-th row of A. Let B =




1−s1

k−m
. . . 1−s1

k−m

. . . . . . . . .
1−sk

k−m
. . . 1−sk

k−m


.

Now the sum of elements in any column of B is
k−

kP
i=1

si

k−m
= 1. Hence (A B) is

stochastic. The sum of the i-th row of (A B) is si + (k−m) 1−si

k−m
= 1. Hence

(A B) is doubly stochastic.

Theorem 4.27. A stochastic matrix S is DH-stochastic, iff exists a per-

mutation P such that PSP T =




D 0 0
0 A 0
0 B I


, where D is a k × k doubly

stochastic matrix with k ≥ 0, A - l × l matrix with l ≥ 0, I - m × m unit
matrix with m > 0, and the sum of elements in any row in the matrices A
and B is less or equal than one.

Proof. To prove the theorem, it is sufficient to show that any matrix of

the form




D 0 0
0 A 0
0 B I


, specified in the theorem, can be obtained from

a doubly stochastic matrix. This indeed holds, since by Lemma 4.26, the

matrix




D 0
0 A
0 B


 can be complemented with new columns to obtain a

doubly stochastic matrix.

Certainly transformation that corresponds to the reading of a sequence
of letters also is described by a DH-stochastic matrix.

Lemma 4.28. For any σs, σt ∈ Σ: Vσs · Vσt - is also DH-stochastic matrix.

Proof. Follows from the matrix manipulation. To show that for states from
which halting states are not accessible the matrix is double stochastic observe
that no sum in the row can exceed 1 still and also can not be less then 1 as
otherwise summing by rows and columns would give different results.

Note that the transient states in Vσs · Vσt may be different from the tran-
sient states in Vσs and in Vσt .

4.3.2 On Class of languages recognizable by 1-way DH-
PRA

To prove forbidden constructions for DH-PRA we need to consider the be-
havior of the Markov chain induced by transition Vσk

in long run.
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Before looking at forbidden constructions for DH-PRA we need to exam-
ine how accessibility property stands for Markov chains with DH-stochastic
matrixes and also how it changes if we consider several letters.

Obviously for recurrent states of DH-stochastic Markov chain it is still
true that accessibility is class property by Lemma 2.50, that will be used
without any further references in the proof of the main theorem of this sec-
tion.

Theorem 4.29. Given Markov chains with DH-stochastic matrixes A and B,
there exists K such that for Markov chain with matrix AKBK the following
holds:
A. any transient state with respect to A or B is transient for AKBK;
B. for any two recurrent states q1 and q2 that are in the same equivalence
class regarding accessibility in A, either both are transient for AKBK or both
are recurrent and in the same equivalence class for AKBK;
C. for any two recurrent states q1 and q2 that are in the same equivalence
class regarding accessibility in B, either both are transient for AKBK or both
are recurrent and in the same equivalence class for AKBK.

Proof. We take K to be

• K > n, where n is a number of states;

• K is a multiple of K1 ∗ n where (AK1)i,i > 0 for all recurrent states of
A;

• K is a multiple of K2 ∗ n where (BK2)i,i > 0 for all recurrent states in
B.

Recurrent states in A and B in general could be different. We can select
such K1 and K2 by Corollary 2.45. We selected K to satisfy the conditions
of Lemma 2.48 for both A and B.

For any transient state q of any DH-stochastic matrix D of size n there

is some absorbing state q′ such that q
DK−→ q′ (will be accessible by DK in 1

step). For any absorbing state q′ it holds q′ D−→ q′. For any states q1, q2 and

q3 and DH-stochastic matrixes C and D, q1
C−→ q2, q2

D−→ q3 =⇒ q1
DC−→ q3.

A. If a state q is transient for B, an absorbing state q′ exists such that

q
BK−→ q′, so q′ AK−→ q′ implies q

AKBK−→ q′.

Assume a state q is transient for A but recurrent for B. As q
BK−→ q and

some absorbing state q′ exists such that q
AK−→ q′, then again q

AKBK−→ q′.
B. Let q1 be transient for AKBK , we need to prove that q2 is transient

for AKBK :
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a) if q2 is transient for BK then there is an absorbing state q′ such that

q2
BK−→ q′ and thus q2 is transient for AKBK since q′ AK−→ q′;

b) if q2 is recurrent for BK , then q2
BK−→ q2 and as q2

AK−→ q1, then q2
AKBK−→ q1.

Hence q2 is transient for AKBK .
Let q1 and q2 be recurrent for AKBK :

a) Assume q1 is recurrent for BK , as q1
BK−→ q1 and q1

AK−→ q2 we get q1
AKBK−→

q2, thus they are in the same equivalence class.
b) Assume q1 is transient for BK , then there is some absorbing state q′ such

that q1
BK−→ q′ and since q′ AK−→ q′, q1 is transient for AKBK , leading to

contradiction.
C. The case is not identical with B as matrices multiplication is not

commutative.
Let q1 be transient for AKBK , we need to prove that q2 is transient for

AKBK .
a) Assume q1 is transient for AK , then there is some absorbing state q′ such

that q1
AK−→ q′. So q2

BK−→ q1 implies q2
AKBK−→ q′.

b) Assume q1 is recurrent for AK , q1
AK−→ q1. As q2

BK−→ q1 it follows that

q2
AKBK−→ q1 and therefore q2 is transient for AKBK .
Let q1 and q2 be recurrent for AKBK .

a) Assume q2 is recurrent for AK . Since q1
BK−→ q2 and q2

AK−→ q2, we get

q1
AKBK−→ q2, therefore they are in the same equivalence class for AKBK .

b) Assume q2 is transient for AK . Then exists an absorbing state q′ such that

q2
AK−→ q′, so q1

BK−→ q2 implies q1
AKBK−→ q′ and thus q1 is transient for AKBK

leading to contradiction.

The subsequent lemma and corollary illustrate Theorem 4.29 in terms of
transition matrices:

Lemma 4.30. Given a DH-stochastic matrix A, there exists K such that

lim
n→∞

AKn =




D′ 0 0
0 0 0
0 aij I


, where D′ is a block diagonal kr × kr matrix

such that each block is a doubly stochastic matrix with every element equal
to 1

ki
, where ki is the size of the block.

Proof. Take K such that AK
i,i > 0 for all recurrent states (possible by Lemma

2.44). Rows filled entirely by zeros correspond to transient states. As non-
halting recurrent states in AK form a doubly stochastic matrix then they
can be split into equivalence classes with respect to communication property



CHAPTER 4. PROBABILISTIC REVERSIBLE AUTOMATA 66

(Lemma 2.50) and each block diagonal submatrix corresponds to states in one
equivalence class. Values in these submatrices are determined by Corollary
2.43.

Corollary 4.31. Given DH-stochastic matrices A and B, there exists K
such that

A. lim
n→∞

(AKBK)n = J =




D 0 0
0 0 0
0 R I


, where D is a block diagonal ks×ks,

s ≤ r, matrix such that each block is a doubly stochastic matrix with every
element equal to 1

ki
, where ki is the size of the block.

B. AKJ = J .

C. JAK =




D 0 0
0 0 0
0 R′ I




Proof. Follows directly from Theorem 4.29 and Lemma 4.30 if we observe
the structure of the matrix for A and B. Difference between items B and C
is that if we apply AK first we can get some different probability distribution
for halting states, however if we apply AK after J then it is the same as to
apply J .

Definition 4.32. By q
S−→ q′, S ⊂ Σ∗, we denote that there is a positive

probability to get to a state q′ by reading a single word ξ ∈ S, starting in a
state q.

Now we are ready to show the class of languages recognized by DH-PRA.
It is easy to see that the class of languages recognized by C-PRA is a

proper subclass of languages recognized by DH-PRA. Indeed, by [FGK 04],
we may assume that C-PRA does not use any end-markers. Given a C-
PRA A, for any final state qi add an accepting halting state qh

i , and for
any non-final state qj, add a rejecting halting state qh

j . Add the final end-
marker $ with transitions qi$ = qh

i , qh
i $ = qi, qj$ = qh

j , qh
j $ = qj. V$ is doubly

stochastic. The addition of end-marker ensures that any input word accepted
(rejected) by A is also accepted (rejected) by the DH-PRA with the same
probability.

There exist languages recognized by DH-PRA, and not recognized by
C-PRA.

Example 4.33. The language a(a,b)* known not to be recognizable by C-
PRA is recognizable by DH-PRA.

In this section we will prove that regular languages which minimal de-
terministic automaton contain certain forbidden constructions can not be
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Figure 4.5: Type 3 construction

recognizable by 1-way DH-PRA. We start by definition of these ”forbidden”
constructions, that are quite similar to ones defined for C-PRA.

First class of languages to be considered will be Type 1 described in
C-PRA section (see Figure 4.2).

Second class will be a modification of Type 2.

Definition 4.34. We say that a regular language is of Type 3 (Figure 4.5)
if a regular language is of Type 2 and additional conditions hold for states
q1, q2.
There exist 2 words z1 and z2 such that

1. reading of z1 when being in q1 leads to accepting state and reading z1

when being in q2 leads to not accepting state;

2. reading of z2 when being in q2 leads to accepting state and reading z2

when being in q1 leads to not accepting state.

Theorem 4.35. If a regular language is of Type 3 then it is not recognizable
by any DH-PRA.

Proof. Assume from the contrary, that A is a DH-PRA automaton which
recognizes a language L ⊂ Σ∗ of Type 3.

Since L is of Type 3, it is recognized by a minimal deterministic automa-
ton D with particular three states q, q1, q2 such that q1 6= q2, qx = q1,
qy = q2, q1x = q1, q1y = q1, q2x = q2, q2y = q2, where x, y ∈ Σ∗. Further-
more, there exists ω ∈ Σ∗ such that q0ω = q, where q0 is an initial state of D,
and there exist words z1 ∈ Σ∗, z2 ∈ Σ∗, such that q1z1 = q1

acc and q1z2 = q1
rej,
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q2z1 = q2
rej and q2z2 = q2

acc, where q1
acc, q

2
acc are final states and q1

rej, q
2
rej are

non-final states of D.
The transition function of the automaton A is determined by DH-stochastic

matrices Vσ1 , . . . , Vσn . The words from the construction of Type 3 are x =
σi1 . . . σik and y = σj1 . . . σjs . The transitions induced by words x and y are
determined by DH-stochastic matrices X = Vσik

. . . Vσi1
and Y = Vσjs

. . . Vσj1
.

Similarly, the transitions induced by words ω, z1 and z2 are determined by
DH-stochastic matrices W , Z1 and Z2.

Let us select 2 words x1 and x2 of the form x1 = ωyK(xKyK)m and
x2 = ω(xKyK)m.

We select K as in Theorem 4.29. Using related Corollary 4.31 we get
that lim

m→∞
(Y KXK)m converges to some matrix J of the form described in

Corollary 4.31 and that J differs from JY K only in transitions from transient
to absorbing states for (Y KXK)m.

That means that after reading x1 = ωyK(xKyK)m and x2 = ω(xKyK)m

from the initial state we will get arbitrary close probability distributions
for non-halting states, but possibly different probability distributions for the
halting states. Let ρa1 be accepting probability and ρr1 rejecting probability
after reading x1. (So at that moment the automaton remains in a non-halting
state with probability 1 − ρa1 − ρr1). Let ρa2 be accepting probability and
ρr2 rejecting probability after reading x2. Consider reading z1 after x1 that
needs to be rejected and x2 that needs to be accepted. As distributions on
non-halting states before reading z1 are arbitrary close, and reading any word
cannot significantly increase their difference, at that moment the word x1z1 /∈
L is accepted with probability ρa1 + c1, and the word x2z1 ∈ L is accepted
with probability ρa2 + c2, where c1 and c2 are arbitrary close nonnegative
values. Due to the assumption that L is recognized with bounded error, we
get ρa1 < ρa2. On the other hand, consider reading z2 after x1 that needs to
be accepted and x2 that needs to be rejected. In a similar fashion, we get
that ρa2 < ρa1. This is a contradiction.

Theorem 4.36. If a regular language is of Type 1, it is not recognizable by
any DH-PRA.

Proof. Assume from the contrary, that A is a DH-PRA automaton which
recognizes a language L ⊂ Σ∗ of Type 1.

Since L is of Type 1, it is recognized by a deterministic automaton D
which has two states q1, q2 such that q1 6= q2, q1x = q2, q2y = q1, q2x = q2

where x, y ∈ Σ∗. Furthermore, exists ω ∈ Σ∗ such that q0ω = q1, where q0 is
an initial state of D, and exists a word z ∈ Σ∗, such that q1z = qacc if and
only if q2z = qrej, where qacc is an accepting state and qrej is a rejecting state
of D.
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The transition function of the automaton A is determined by DH-stochastic
matrices Vσ1 , . . . , Vσn . The words x = σi1 . . . σik and y = σj1 . . . σjs . The tran-
sitions induced by words x and y are determined by DH-stochastic matrices
X = Vσik

. . . Vσi1
and Y = Vσjs

. . . Vσj1
. Similarly, the transitions induced by

word ω is determined by DH-stochastic matrix W .
Let us select two words x1 and x2 of the form x1 = ω(xK(xy)K)m and

x2 = ω(xK(xy)K)mxK .
We will show that for any ε we can select K and m such that |px1−px2| < ε.

Then as x1z ∈ L and x2z /∈ L we get a contradiction.
We select K as in Theorem 4.29. Using related Corollary 4.31 we get

that lim
m→∞

((Y X)KXK)m converges to some matrix J of the form described

in Corollary 4.31, for which the equality XKJ = J stands.
That means that after reading x1 = ω(xK(xy)K)m and x2 = ω(xK(xy)K)mxK

we will get arbitrary close probability distributions that gives us required
contradiction. Or formally,

lim
m→∞

ZXK((Y X)KXK)mW = lim
m→∞

Z((Y X)KXK)mW = ZJW . So

∀ε > 0 ∃m
∥∥∥
(
Z(XK((Y X)KXK)mW − Z((Y X)KXK)mW

)
Q0

∥∥∥ < ε.

(4.10)
As we can select z such that ω(xk(xy)k)mxKz ∈ L and ω(xk(xy)k))mz /∈ L,
that requires existence of ε > 0, such that

∀m
∥∥∥
(
ZXK((Y X)KXK)mW − Z((Y X)KXK)mW

)
Q0

∥∥∥ > ε. (4.11)

4.3.3 Closure properties of the DH-PRA automata

In this section we prove that the class of languages recognizable by DH-
PRA automata is not closed by the union. In [AKV 01] there is proposed a
language which is union of languages recognizable by QFA-DH which is not
recognisable by QFA-DH, we basically follow their proof. Although forbidden
construction for QFA-DH considered in [AKV 01] is different from considered
above we find also Type 3 forbidden construction in this language.

Theorem 4.37. There are two languages L2 and L3 which are recognizable
by DH-PRA, but the union of them L1 = L2 ∪ L3 is not recognizable by
DH-PRA.

Proof. Let L1 be the language consisting of all words that start with any
number of letters a and after first letter b (if there is one) there is an odd
number of letters a. Its minimal automaton G1 is shown in Fig. 4.6.
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Figure 4.6: Minimal Automaton of L1

This language satisfies the conditions of Theorem 4.35 (g1, g2 and q3 of
Theorem 4.35 are just g1, g2 and q3 of G1. x, y, z1, z2 are b, aba, ab and b.)
Hence it cannot be recognized by a DH-PRA. Consider two other languages
L2 and L3 defined as follows. L2 consists of all words which start with an
even number of letters a and after firs letter b (if there is one) there is an odd
number of letters a. L3 consists of all wards which start with an odd number
of letters a and after firs letter b (if there is one) there is an odd number of
letters a. It is easy to see that L1 = L2 ∪ L3. The minimal automatons G2

and G3 are shown on Fig. 4.7 and Fig. 4.8.

Figure 4.7: Minimal Automa-
ton of L2 ”even”

Figure 4.8: Minimal Automa-
ton of L3 ”odd”

We construct two DH-PRA automata K2 and K3 which recognize lan-
guages L2 and L3. The automaton K2 is obtained from the automaton G2

(see Fig. 4.7) in a simple way: just splitting the automaton into two dis-

connected sub-automata, by replacing transition q1
b→ q2 with the transition

q1
b→ qacc and the transition q1

b→ qrej, each with the probability 1/2. The
initial state with the probability 2/3 is q1 and with the probability 1/3 is q2.
This transformation of the automaton G2 can be written as follows:

• the states q1,q2,q3,q4 are non-halting states;
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• the state q5 is a rejecting state;

• the transition q1
b→ q2 is replaced with two transitions: q1

b→ qacc and

q1
b→ qrej, each with probability 1/2;

• reading right end-marker from the states q2 and q4 leads to two ad-
ditional rejecting states, and from the states q1 and q3 leads to two
additional accepting states;

• create a new initial state q0. Reading left end-marker in the q0 leads to
the q1 with probability 2/3 and to the q2 with probability 1/3.

Formally we define the automaton K2 to comply with the DH-PRA defi-
nition. The automaton consists of 12 states: g1, g2, g3, g4, g5, g6, g7, g8, g9,
g10, g11 and g12, where Qnon = {g1, g2, g3, g4, q12}, Qrej = {g5, g6, g7, g8}
and Qacc = {g9, g10, g11}. The starting state of K2 is q12. The transition
matrixes Vk, Va, Vb and V$ are defined as follows:

Vk =




1
3

0 0 0 0 0 0 0 0 0 0 2
3

0 2
3

0 0 0 0 0 0 0 0 0 1
3

0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
2
3

1
3

0 0 0 0 0 0 0 0 0 0




.

Va =




0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1




.
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Vb =




0 0 0 0 0 0 0 1
2

1
2

0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
1
2

0 0 0 0 0 0 1
2

0 0 0 0
1
2

0 0 0 0 0 0 0 1
2

0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1




.

V$ =




0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1




.

1. After reading the left endmarker k K2 with probability 2
3

is in the state
q1 and with probability 1

3
is in the state q2. G2 is in the starting state

q1.

2. After reading even number of letters a K2 with probability 2
3

is in the
state q1 and with probability 1

3
is in the state q2.

3. After reading odd number of letters a K2 with probability 2
3

is in the
state q4 and with probability 1

3
is in the state q3.

4. If after reading an odd number of the letter a K2 receives the letter
b or right endmarker then it rejects input with probability at least 2

3

(from the state q4 by reading b or right endmarker K2 goes to rejecting
state)

5. If after reading even number of letters a K2 receives right endmarker
then it accepts the input with probability 2

3
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6. If after reading even number of letters a K2 receives letter b then with
probability 1

3
K2 passes to accepting state, with probability 1

3
K2 passes

to rejecting state, and probability 1
3

K2 passes to the non-final state q2

7. By reading the letter a automaton K2 passes from q2 to q3 or back. By
reading the letter b automaton K2 passes from q2 to q2 and from q3 to
q3, so receiving right endmarker in the state q3 the input is accepted
with total probability 2

3
and receiving right endmarker in the state q2

the input is rejected with total probability 2
3
.

This shows that K2 accepts the language L2 with probability 2
3
. Simi-

larly we construct K3 that accepts L3 with probability 2
3
.

Thus we have shown that there are two languages L2 and L3 which are
recognizable by DH-PRA with probability 2

3
, but the union of them

L1 = L2 ∪ L3 is not recognizable by DH-PRA.



Chapter 5

Conclusion

In this thesis we investigated some problems concerning possible speedup of
quantum algorithms over classical ones. We considered the two main prob-
lems in this thesis. In the first part of the thesis we considered quantum query
complexity of Boolean functions and gave an overview of the lower bound
techniques. We have introduced the problem of finding cycle in the graph.
We provided the quantum algorithm solving this problem better than any
classical analogue. The overall query complexity of the algorithm is O(n

√
n)

while it is O(n2) in classical case (where n is a size of adjacency matrix rep-
resenting the graph). We also showed that the algorithm is optimal, using
the adversary lower bound technique ([AM 02]).

In the second part of our work we completed the research started by
M. Golovkins and M. Kravtsev [GK 02] by investigating properties of proba-
bilistic reversible Decide and Halt automata. The DH-PRA behave more like
measure-many quantum automata [KW 97], as they halt when entering ac-
cepting or rejecting states. In the thesis we showed a general class of regular
languages, not recognizable by DH-PRA. This class is identical to a class not
recognizable by MM-QFA [AKV 01] (and similar to the class of languages,
not recognizable by C-PRA [GK 02]. We also proved that the class of lan-
guages recognizable by DH-PRA is not closed under union. The one open
problem still remains: we showed the class of languages for which we can not
prove whether it is recognizable by DH-PRA or not. So we still unable to
prove or disprove that class of languages recognizable by DH-PRA is likely
to include the one recognizable by MM-QFA or these classes are equal.

We propose the following classification for one-way reversible finite au-
tomata:
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C-Automata DH-Automata
Deterministic
Automata

Permutation Automata
[HS 66, T 68] (C-DRA)

Reversible Finite Au-
tomata [AF 98] (DH-
DRA)

Quantum
Automata with
Pure States

Measure-Once Quantum
Finite Automata [MC 00]
(C-QFA-P)

Measure-Many Quantum
Finite Automata [KW 97]
(DH-QFA-P)

Probabilistic
Automata

Probabilistic Reversible
C-Automata (C-PRA)

Probabilistic Reversible
DH-Automata (DH-PRA)

Quantum Fi-
nite Automata
with Mixed
States

”Latvian” QFA
[ABGKMT 06]
(C-QFA-M)

Enhanced Quantum
Finite Automata [N 99]
(DH-QFA-M)

Language class problems have been solved for C automata and DH-DRA,
for the remaining types they are still open. Every type of DH-automata may
simulate the corresponding type of C-automata.

The following relation among language classes also presents interest, ques-
tion marks denoting conjectures:

C-DRA = C-QFA-P ⊂ C-PRA = C-QFA-M

DH-DRA ⊂ DH-QFA-P
?⊂ DH-PRA

?⊂ DH-QFA-M

Note that language classes recognized by C-automata are closed under
boolean operations, while DH-automata are not.
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