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INTRODUCTION

Model transformations play an important role in the Model-Driven Softear
Development (MDSD). The main idea of MDSD is a egsitic use ofmodels as
primary software engineering artefacts throughtwat $oftware development lifecycle.
Model-Driven Software Development refers to a ranfjelevelopment approaches that
are based on the use of software modelling. A medpltesses a particular aspect of a
software system in a certain level of detail. A ead the software system is generated
from models built by a system developer. The gdrdr&ode varies ranging from a
system skeleton to a complete product. It dependsnoabstraction level of models used
as a source for the generator. If the created maatel at high level of abstraction, then
model transformations are applied to create more detailed models thatbeaused for
code generation. The model transformation is thieraatic generation of a target model
from a source model, according to a transformatiefinition [1]. Model transformation
languages are used to define model transformatibloglels that are used by model
transformations must conform toetamodels A metamodel defines a language, which
specifies a model. A model transformation languaggs metamodels to define the model
transformation. A meta-language specifies the methats.

The best known Model-Driven Software Developmerntiative is the Object
Management Group’s (OMG) Model-Driven Architectu(®IDA) [2], which is a
registered trademark of OMG. The OMG has developeskt of standards related to
MDA including the Meta-Object Facility (MOF) [3] (meta-language), Object Constraint
Language (OCL) [4], Unified Modelling Language (UMI5] (a software modelling
language) and MOF Queries/Views/Transformations EM@V/T) [6] (a model
transformation language).

The MDA approach defines system functionality usanglatform-independent
model (PIM), which is written in an appropriate netishg language (for example, UML).
Then, the PIM is transformed to one or more platf@pecific models (PSMs), which
include platform or language specific details. Emample, the UML Profile for Java [7]
can be used to specify the PSM. Then, the PSMaisskated to the code written in the
appropriate to the PSM language.

Nowadays the application area for model transfolonatanguages is much

broader. One such area is generic meta-model-basddlling tool building. The model



transformation languages can be used (and are[8§68{10]) as a much more effective
domain specific substitute for the general purdasguages which are used up to now for
tool building.

The OMG was the first to state precisely the rezqagnts what should be a model
transformation language [11]. The MOF-QVT languagdch is an answer by OMG
itself to these requirements is becoming the OMEBard for model transformations [6].
In MOF-QVT source and target meta-models conformthte MOF. There are two
variants of MOF defined — the EMOF (Essential M@RYl the CMOF (Complete MOF).
The MOF can be viewed as a general standard toe wrietamodels, but, more
specifically, EMOF is used for metamodel definition MOF-QVT. The MOF-QVT
standard defines two languages for transformateveldpment — th&elationsand the
Operational MappingsThe Relationslanguage is at the highest level of abstractiash an
uses patterns and a declarative transformatiomitiefi style whenever possible. There
are several realizations of the MOF-QVT languagee Relationstextual languageis
implemented in themedini QVT [12]. The Operational Mappingslanguage is
implemented in theSmartQVT([13], several less complete implementations are als
available.

There are many other model transformation languageish also satisfy the
OMG requirements. There are textual model transdtion languages — ATL [14],
VIATRA2 [15], the Lx language family (LO-L3) [16] ral also graphical model
transformation languages — Fujaba [17], GReAT [IEPLA [19]. In fact, model
transformation languages existed even before thesQidined this concept. There are
several such graph transformation languages thatnaw being used as the model
transformation languages, for example, AGG [20] BRDGRES [21].

Model transformation languages are becoming inarghsmature in recent years
and range of the areas where transformation lareguage being used is widening. The
growing popularity of transformation languages pstsicter requirements on their
efficiency. Most of the popular transformation laages are using declarative pattern
definition constructs. The main implementation peot of such languagestise pattern
matching. This problem, in fact, is theubgraph isomorphism problewhich is known
to be NP-complete [22]. However, in practice typigatterns can be matched efficiently
using relatively simple methods. The use of diffiknmeans of pattern definition results

into different implementations of pattern matchify every language. The more



sophisticated constructs a language use, the mamaplcated becomes the
implementation of the pattern matching.

Research carried out by the author seeks for velgtisimple but efficient
algorithms for pattern matching in model transfotiora languages used in the MDSD
area. The main results of this research are algositwhich allow building efficient
implementation of pattern matching for typical mbdeansformation languages.
Solutions for implementation of model transformatitanguage MOLA demonstrate
applications of these algorithms.

The most straightforward proof of the practicalngigance of research is the
successful use of MOLA language and tool in EUfimework project ReDSeeDS [23]
(Requirements-Driven Software Development Systenmichv is aimed to develop
methodology and supporting tools for a model-drivaoftware development.
Transformations in ReDSeeDS are specified using M@Inguage and represent typical
MDSD transformations.

Another main use case of MOLA language and toahéstransformation based
tool building framework METACclipse [8]. Transformais are used to define the logic of
a tool built by METAclipse framework. In fact, MOLAool itself has been built using
MOLA language.

The research results presented in the thesis liwvevad the desired efficiency in
implementation of pattern matching for model transfation languages. Thus it has
become possible to apply MDSD technology in resegsmjects and verify these
technologies in industrial cases.

Following chapters give an in-depth descriptiorthaf developed pattern matching
algorithms and its implementations for model transfation language MOLA:

e CHAPTER 1 briefly describes the main ideas besMB$D and the role
of model transformation languages in this proceds software
development. The reader is thus given the basievketlye needed for
understanding the research carried out by the gut® well as the
significance of the results achieved.

e CHAPTER 2 briefly describes the model transformatemguage MOLA.
The algorithms developed in thesis are used init@ementation of
MOLA language.



CHAPTER 3 sketches existing algorithms of pattertaning in model
transformation languages. The applicability of thapproaches to MOLA
language is also discussed in this chapter.

CHAPTER 4 introduces a new algorithm which useati@hal database
with fixed schema and translates patterns to SQlerigs. The
implementation of this algorithm for MOLA languaigedescribed here.
CHAPTER 5 introduces two new algorithms of patteratching which
uses local search plan generation strategy. Thedigorithm is effective
for typical MDSD tasks and is based on few simpiles. Therefore the
implementation of this algorithm for MOLA languag® rather simple
using an Lx model transformation language familge Becond algorithm
is based a classical local search plan generalion,ntroduces a new
metamodel annotation mechanism which allows to ecéddhe efficiency
of pattern matching without complicated analysisuoflerlying models.
This chapter provides also details of MOLA implertagion through L3
language.

CHAPTER 6 demonstrates practical applications o ttleveloped
implementation of MOLA language: typical MDSD trémsnations in the
EU 6" framework project ReDSeeDS and defining tool logictool
building framework METACclipse.

CHAPTER 7 lists the conclusions accumulated dutiregdevelopment of
the thesis. Also, possible future directions of thesearch in

implementation of model transformation languages.



CHAPTER 1

Motivation - MDSD and Model Transformation Languages

Nowadays software becomes more and more complic&t#tivare development
and management has become more challenging, ebpeatié refers to large-scale
systems which are developed and used by hundreeis teousands of people. In order to
ease the development of software, particular modedsused which describe different
aspects of the system which is to be developed.

At first models were used as demonstrative docuatiemt which would help to
develop the system. MDSDMpEdel-Driven Software Developmgns a rather new
approach (emerged around the year 2000) which mselels in a broader context. This
chapter explains the basic principles of MDSD amel iole of metamodels, models and

model transformations in this process.

1.1 Modelling, Models and Metamodels
What is a model? Let us look at this issue intkelltroader context, not only as a

part of the software development process. Therenargy definitions available, but in the
author’s opinion the most adequate definition ofdeibing is the following — modelling
means using something instead of something eldeanitefinite purpose [24]. Therefore,
it allows usinga model, which is simpler, safer, and also cheaper, instdagbmething
else that is more complicated, dangerous or mgoeresive.

Regarding the processes of software developmentteima model is usually
applied to the abstraction of a computer systemeal world in a specific context, for
example, a requirements specification of the systemescription of business processes
of a company can be regarded as a model of thersyahd the company. These models
let judge and draw conclusions about the systenthercompany. The requirements
specification allows evaluating the complexity bétsystem and serves as the basis for
software development. However, the model of busimgscesses allows understanding
the processes that take place in the company amchiping business activities of the
company. Usually we use a language as a mean ftingvmodels, and this mean is

specific for a certain type of models. It meansewhve use a modelling language, it is



possible to describe different things of one typeaisimilar way. For example, when
using the business process modelling languagepibssible to describe various business
processes in a number of companies.

In order to be able to process the models by usamgputers, it is necessary to
formalize the way of model definition, which meatmat there must be some means
(preferably universal ones) available how to defmedelling languages. And these
means are callethetamodels Generally speaking, a metamodel describes a ihnglel
language- it is a model of a modelling languagené&amodel and a model together form
two levels of metamodelling abstraction or metalsy where the higher meta-level
describes the means which help in forming the loeeel. Theoretically, there could be
an unlimited number of such meta-levels, but oolyrfare used in practice.

As it has been previously stated, a metamodelss al model, so, in order to
describe metamodels, we use a modelling langualgis. [inguage is usually called a
metamodelling language and it is defined by makisg of a metamodel which is
commonly calleda meta-metamodel Thus modelsreside at the first level of
metamodelling or Level M1, the system that theycdbs, residesat the zero level or
Level MO. The metamodel describing a modekidesat the second level or Level M2,
but at the top-level, that is the third level oveeM3, the meta-metamodedsides

At present the most popular metamodelling standamguage) is MORKMeta-
Object Facility), developed by the international standards orgaaisa®DMG, which
describes four meta-levels (see Fig. 1). Currahiéyactual MOF version is 2.0 [3].

In practice many models are described by usingabnersions of the modelling
language UML [5], developed by OMG, (in Fig. 1 UNHnguage is used to illustrate the
MOF standard). Naturally, UML metamodel is defineg using MOF metamodelling
language. It must be noted that MOF does not defieevisible part of the language
(concrete syntgx but it defines its abstract syntax. Of courdas tis not the only
metamodelling language. There exist other waysedihthg metamodels, such &3M3
[25] and EMFEcore [26] - the metamodelling languages which are corbfstwith
EMOF [3], a subset of MOF. In order to define a modeglllanguage, one can use also

ontology [27].



MOF

M3 layer imetametamodel)

Other
languages

M2 layer (metamodels)

models models

M1 layer (models)

Systems J

MO layer {real world objects)

Fig. 1.Example of OMG MOF meta-level hierarchy.

There exist not only graphical, but also many taktmodelling languages

(actually, any OO programming language can be densd to be a modelling language).

In order to illustrate what models can be encowcteduring the software

development process there are some typical exaraptee models:

1.2

UML class diagrams- the system analysis model,

UML activity diagrams- the business process model,

UML use case and activity diagrams- the systemirements specification,
UML class diagrams where J2EE stereotypes are tisedletailed design
model,

BPMN diagrams [28] - workflow definition.

Model Driven Software Development
Until 2000, when OMG launched a new initiatiodel Driven Architecture

(MDA), many MDA ideas were already being used iragbice. However, it was

happening more intuitively rather than systematjcdh 2001 OMG published the first
version of MDA manual [2] which described basis apglications of MDA.
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The essential MDA idea is the following: in order tlevelop complicated
software, it is necessary to exploit various metaetiong principles systematically. An
important conclusion followed that models had défe roles during the development
process of software. The following three roles oidels were offered:

- Computation Independent ModelCIM, a model which describes what system
must do (requirements) and in what environmentsygem must work (for
example, business processes), but it does not iraply information about
implementation of the system.

- Platform independent modelPIM, a model which describes the architecture of
the system, but does not imply any details abaaptatform, in which system is
going to be built (for example, .NET, EJB, CORBAes{fic details).

- Platform Specific Model PSM, a model which contains specific details for the
platform.

These models are usedccessivelythat is, at first CIM model is made, and then
it is supplemented or transformed, so that PIMbigimed, after that PIM is supplemented
with specific details for the platform, and finatlye software code is obtained from PSM.
In practice similar models were already used, btAvbffered toautomate this process,
that is, to perform automatimodel transformations. In this way the models become an
essential part of the software development proc8sftware developers are able to
operate at a higher level of abstraction, whichdeadical influence on quality and speed
of development of complicated systems. It shouldnbted that this process does not
require an absolute automation, and it is hardlgsgme here. Each model is updated
manually and then it is changed by means of maedetformation.

Thus, a model transformation is an automatic paeeisen the source model,
which corresponds to a fixed metamodel, is tramséal into a target model, which
corresponds to another (or the same) fixed metah{ede Fig. 2). It must be noted that
the model transformation itself is defined by ussogirce and target metamodels.

In the classical MDA approach the software is depetl in such a manner that
there exist one PIM model and one or more PSM nsddem which a code for different
platforms is generated, depending on needs of ¢&veldper. MDA allows using only

UML language for model description.
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Transformation Ta rget
metamodel definition metamodel

describes

describes describes

Model

transformation l

Fig. 2. An implementation scheme for model transformations

However, MDSD Kodel Driven Software Developmgntiews this issue in a
broader context. The development process doesindihd usable modelling languages
and allows applying also arbitrary formalized meafsnetamodelling. However, the
majority of metamodels is set by means of MOF anpatible metamodelling language.
MDSD does not strictly regard the roles of modeld siews the development process as
a successive development of models by taking adgandf model transformations. Thus
one can consider that MDA is a specific case of d0Rat is worth mentioning because
it is the basis of all these ideas. It must be ahdibat the specialized modelling languages-
DSL (Domain Specific Languayiehave become exceedingly popular. They are uzed f
modelling specific fields, for example, a langudge automobile servicing software
development (AUTOSAR [29]), mobile telephone softevdevelopment [30], and many
other. These languages increase efficiency of soéwdevelopment in these fields. Also
models and model transformations are increasinggdun implementation of the DSL

languages.

1.3 Model Transformation Languages
The previous chapter concluded that automatic mvdakformations are one of

the most essential parts in the process of modetmsoftware development (MDSD).
Model transformation turns one model into anotheraccordance with a specific
definition of model transformation (see Fig. 2).eTtefinition of model transformation
can be stated as a program which is written bygusine of the existing software
languages, however, operating with models, whiclke described by means of

metamodels, creates specific requirements forléimguage. It turned out that in practice
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the existing software languages are not reallyabigtfor defining model transformations.
Therefore, in 2002 OMG announced a request for gals about development of a
standard for a new type of software languagedel transformation language QVT
(Queries/ Views/ Transformationd)1].

What and how can we describe with a model transition language? The
essential requirement for the model transformal@mguage is the ability to process the
models, which are set by means of the metamodels€dqncept of OMG- only with
MOF), that is, by means of this language one mastlide to work with a set of instances
of the metamodels (classes), as well as recogndel@ange them. It is also essential that
definitions of model transformations must bederstandabldor both the human and
computer- they must be as declarative as posgilileourse, there must be an appropriate
tool support available for a successful applicabbthe language.

As a part of OMG request for proposals there weitarstted several language
standard projects. However, over the years theye haerged, and now there is one
standard project left- MOF QVT. In the developmeftthis project 16 institutions
participate, includindBM, Sunand four universities. Although according to thanpthe
standard language had to be ready by March 20@5jrgt version of the standaMOF
QVT 1.0was issued only in April 2008. At the moment tlotual version iSMOF QVT
1.1 Beta 6], which has been issued in December 2009.

Simultaneously with MOF QVT, a number of model sfammation languages are
being developed, not directly related to the OMGuest for proposal MOLA [19], Lx
[16], GReAT[18], UMLX [31], ATL [14], Tefkat[32], MTF [33], ATOM [34], VMTS
[35], BOTL [36], Fujaba [17], RubyTL[37], Epsilon [38], Henshin[39]. Also graph
transformation languages turned out to be suitédrlesolving MDSD tasks, therefore,
such languages a&GG [20], PROGRES21], TGG [40], GrGen [41], VIATRAZ2[15]
were used for defining model transformations. Iragtler 2 of the thesis one can find out
about the model transformation language MOLA. lis tesearch MOLA is particularly
emphasised, because the author of the thesis haspgaded in the development process
of this language.

The significant number of various model transfolioratlanguages might seem
surprising, however, there must be regarded sewatitions, which initiated the
development of these languages. Firstly, lots sfsa@merged that were easier to solve by

means of model transformations. Therefore, eachth& previously mentioned
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transformation languages is suitable for solvingagticular class of tasks. For example,
MOLA is suitable for MDSD tasks, but VIATRAZ2- foregtelopment of model driven
simulation software. Secondly, the model transfdiomastandard MOF-QVT does not
have a completely developed implementation. N@@F-QVT Operationalis supported
by SmartQVTtool [13] andEclipse M2M QVT Operationgiroject [42]. BUMOF-QVT
Relational is partly implemented byediniQVT [12] tool. Therefore, the standard is
mostly used as documentation, but in practice atihedel transformation languages are
being used.

One of the most popular means, which is used inenwansformation languages,
is a modelpattern. The pattern is a declarative means. It helpsiting the metamodel
fragment, to which a corresponding model fragmeuosinbe found. The located model
fragment is supplemented, corrected or deletedrditgp to the proper transformation
algorithm. The pattern and the executable operatitwgether form therule of
transformation. Consequently, the definition of mloalansformation is made by a set of
rules written in the model transformation languadfatterns are used by many
transformation languages, such as MOF-QVT, MOLAeBR, ATOM?®, Fujaba, AGG,
PROGRES, VIATRA2, and GrGen. However, the meansdhaused in them to provide
the order of execution of rules is the essentiatoflathat differentiates languages and
states their suitability for solving different task

Pattern matching is a process in the result of which a fragmera afodel (a set
of instances) is found which corresponds to théiqdar pattern. In general it is an NP-
complete problem [22]; therefore an efficient implntation of pattern matching is an
essential (even the most essential) preconditionafo efficient implementation of the

model transformation language.
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CHAPTER 2

MOLA Language

Model transformation language MOLA is describedhis chapter. The author of
this thesis has actively taken part in the develampmof MOLA language and its
implementation. Pattern matching algorithms devetbpy the author have been used in
the implementation of MOLA. More about MOLA langwagan be found in [19], [43],
[44] and in the web page of MOLA project [45].

MOLA is a graphical model transformation languag®ijch is being developed
by the Institute of Mathematics and Computer S@ehniversity of Latvia, since 2003.
Metamodels have been already used by IMCS [46], Hdwever the request of OMG
for model transformation language proposal (QVT RER) was the determinant to start
the development of a new language. The goal of MQLdject is to provide a simple and
easy readable (therefore graphical) model transttom language, which would cover
the typical transformation applications in Modeii2n Software Development (MDSD).
The declarative rules are commonly used in MOLAgfarmations together with simple

procedural control structures governing the ordewxtich rules are applied to the model.

2.1 MOLA Overview

MOLA is a graphical model transformation languagehich is used for
transforming an instance of a source metamodels@hiece model) into an instance of the
target metamodel (the target model). A transforamatiefinition in MOLA consists of the

source and target metamodel definitions and omease MOLA procedures.
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Source and target metamodels are jointly definethenMOLA metamodelling
language, which is quite close to the OMG EMOF Bpation [3]. These metamodels
are defined by means of one or more class diagrpatkages may be used in a standard
way to group the metamodel classes. Actually, thisidn into source and target parts of
the metamodel is quite semantic, as they are nmrated syntactically (the complete
metamodel may be used in transformation procedures uniform way). Typically,
additional mapping associations link the corresponalasses from source and target
metamodels; they facilitate the building of natutshnsformation procedures and
document the performed transformations. The soantketarget metamodel may be the
same — that is the case for in-place model updedasformations. The MOLA
metamodelling language is defined formally in tKernel package of the MOLA
metamodel (see Fig. 3).

MOLA procedures form the executable part of a MOttAnsformation. One of

these procedures is the main one, which startswhele transformation. MOLA
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Fig. 3. The metamodel of the MOLA metamodelling language



procedure is built as a traditional structured paog but in a graphical form. Similarly to
UML activity diagrams (and conventional flowchartspntrol flow arrows determine the
order of execution of MOLA statements. Call statetseare used to invoke sub-
procedures. However, the basic language statenfdiOb.A procedures is specific to
the model transformation domain — it is thie. Rules embody thpattern matching
paradigm, which is typical of model transformatianguages. Each rule in MOLA has
the pattern and the action part. Both are defingdnieans ofclass-elementsand
association-links A class-element is a metamodel class, prefixethbyelementrfle)
name (graphically shown in a way similar to UML tersce). An association-link
connecting two class-elements corresponds to aciasi®n linking the respective classes
in the metamodel. A pattern is a set of class-etesnand -links which are compatible to
the metamodel for this transformation. A patterryraenply be a metamodel fragment,
but a more complicated situation is also possibseveral class-elements may reference
the same metamodel class — certainly, their elemantes must differ (these elements
play different roles in the pattern, e.g., thetsaad end node of an edge). A class-element
may also contain a constraint — a Boolean expmessi@ simplified subset of OCL. The
main semantics of a rule is in its pattern matcimealel fragment must be found, where an
instance of the appropriate class is allocatedaith eclass-element so that all required
links are present in this fragment and all consteaevaluate to true. If such a match is
found, the action part of the rule is executed. &eton part also consists of class-
elements and links, but typically these are createns — the relevant instances and links
must be created. An end of a create-link may aésattached to a class-element included
in pattern. Assignments in class-elements may led ts set the attribute values of the
instances. Instances may also be deleted and madifithe action part. Thus a rule in
MOLA typically is used to locate some fragmenthe source model and build a required
corresponding fragment in the target model. If sgivenodel fragments satisfy the rule
pattern, the rule is executed only once (on artrarly chosen match). Such a situation
should be addressed by another related construMOhA — the loop construct. In
addition, the reference mechanism (a class-elemmant be a reference to an already
matched or created instance in a previous rulayeésl to restrict the available match set.
Thus, rules are typically used in MOLA in situatsowhere at most one match is possible.
Certainly, there may be a situation when no matast®— then the rule is not executed at

all. To distinguish this situation, a rule may havespecialELSEexit (a control flow
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labelledELSE, which is traversed namely in this situation. $ha rule plays in MOLA
the role of anf-then-elseconstruct as well.

Another essential construct in MOLA is tle®p (more concretely, foreach loop).
The loop is a rectangular frame, which contains special rule — théoophead The
loophead is a rule which contains one speciallykedi(by a bold border) element — the
loop variable. The semantics of a foreach loop is that it iscaked for all possible
matches for the loophead, which differ by instaneflecated to the loop variable
(possible variations for other loophead elemenésrant taken into account). In fact, a
foreach loop is an iterator which iterates throwah possible instances of the loop
variable class that satisfy the constraint imposgdhe pattern in the loophead. With
respect to other elements of the pattern in thpHead, thexistential semantias in use
— there must be a match for these elements, does not matter whether there are one or
several such matches. Thus a foreach loop is the MW@LA construct, which is used to
code a situation: for each instance of ... which satisfies ... perfothe following
transformation .”. Namely such situations in informal descriptiorsf model
transformations are frequently called transformatioles, but in MOLA they must be
formalised as foreach loops. In addition to thepluead, a loop typically contains the loop
body — other MOLA statements whose execution oiglerganised by control flows. The
loop body is executed for each iteration of theploBince the loophead is a rule, it may
also contain create actions, thus simple transfooms of source model elements may be
coded in MOLA by loops consisting of the loopheadyo For nested loops the main
organising feature is the possibility to referetfoe loop variable (and other elements) of
the main loop in the pattern of the nested looph#ads specifying an iteration over all
related instances (to the current instance in tam thoop).

There also are other available constructs in MOlt8cpdures. Procedures may
haveparameters (of type of a metamodel class or a primitive typall localvariables
(also of both types). These elements may be uséddOhA rules. In additiontext-
statements(consisting of a constraint and assignments) mayised to process these
elements more directly. For primitive-typed varedblthe text statement is the only
option. A text statement containing a constrainB@alean expression) may also have an
ELSEexit and serve as aiftthen-elseconstruct (in addition to rule). Besides MOLA
procedures, external (coded in an OOPL) procedtaasalso be invoked; this feature is

used for low-level data processing (e.g., modeba datport). It should be noted that
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MOLA has no built-in Ul support (MOLA is orientedowards behind-the-scenes
transformations), therefore diagnostic messages sintlar situations should be
addressed via a library of external proceduresMEILA procedure elements are defined
formally in theMOLA package of the MOLA metamodel (see Fig. 4).

The execution of a MOLA transformation on a souraedel starts from the main
procedure. A loop is executed while there are mtsta to iterate over. Then the next
construct according to the control flow is executéd rule without a valid match is to be
executed, and this rule has BaSEexit, then the current procedure is terminatedh{s
occurs outside a loop) or the next iteration of lin@p is started (within a loop body).

When the main procedure reaches its end, the tnanafion is completed.

2.2 Simple MOLA Example

In order to illustrate the basic MOLA concepts,elyi listed in the previous
section, a simple MOLA transformation example ised. It is theclassicalexample
from an abstract MDA area — simplified UML class diagram to simmd database
schema definition.

Let us assume that we have to build an initial mdrtthe database schema
definition — tables and columns from a class diagrdahe source model (simple class
diagrams) is described by a significantly simptifitagment ofClassespackage in the
UML 2 metamodel (see Fig. 5). Though only the vbasic elements in this source
metamodel are retained, still it has the featueg ¢hclass attribute is represented by the
Property metamodel class, and so are the association €hdesefore eacRroperty
has to be analyzed, whether it really representttaibute. All metamodel classes in this
fragment are placed in thi€ernel package. TheClass metamodel class has one
additional tag — the BooleaisPersistent , Which is treated in this example as a
normal attribute.

The target metamodel is even simpler — it contaimy two classeJable and
Column, both in the SQL package (see Fig. 5). The associaols expresses the
ownership ofColumn by a Table , the associatiorpkey - that the corresponding

Column is a primary key for th&able .
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Fig. 4. The metamodel of the MOLA procedure elements



Two mapping associations link the source and targattamodels -
classToTable goes fromClass to Table and attributeToColumn from
Property

The transformation to be specified is the followinépr each persistent class (i.e.,
Class instance) we have to build Bable and its primary keyColumn (with a
specifically defined name and type String). Forheattribute of such a class, whose type
is a primitive one, we have to build@olumn in the correspondindable with the
same type, but for an attribute with &mumeration type — aColumn with type
String. The Column name coincides with the attribute name. Assoaigtian this

oversimplified example are not taken into account.

@ Kernel:NamedElemeant

name : String

(O Kernel: Tipe| tvpe =\ (3@ Kermel: TypedFiement] (3 Kernel:Association | 25500 3tion
0.1
0.1 byped
0.1 o nigls o 3ion
owredBnd (*

{3 Kernel:Enumeration () Kernel:Primitive Tvpe (3 Kernel:Class @ Kernel:Property rmember Erd
i o 1.#% ford
fa?bs‘c—r’;d& Flgnleian izCrdered ; Boolean[0..1] [ordlerect
IsTErsiEtent - Hoolean izComposite : Boolean[D..1] | opposite

p
0.1 @ class levaver : Integer[0..1] 0.
*forderel} | ypper : Integer0..1]

owmed it bte oA oA

classTaTable (0.1

(3 50L=Table
0.1
name : String
1 |owrer
phewfp. 1
{2 SaL:Column
* - attribnteTo Columnn
bype : String
cols . *
name : String

Fig. 5. The metamodel of the example

The metamodel example shows that metamodels aiaedein MOLA in a
standard way, by class diagrams, but only EMOF |leegilities are permitted.
Generalization is used in a standard way.

The transformation itself consists of two MOLA pedcrres —-Main (which is
really the main one) anrocessAttribute , which is invoked byMain. Fig. 6

shows the proceduidain .
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cl: Class
(Kernel)
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: tbl : Table
: (SQL)

{isPersistent = true} classToTable ! name:=@cl.name |
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cl: Class tbl : Table
(Kernel) classToTable | (SQL)
fcol:Coumn '

: Colu :
Vo : — 4-{{Generate primary ke
; (sQL) ipkey ] tbl : Table —|{ primary %
i name := @tbl.name +"_PK" ¢ (SQL)
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@cl: Class class prop : Property
(Kernel) ow nedAttribute | (Kernel)
{NOT} o {Process all
assoc : Association | association ~T 1 atributes}
(Kernel)
|
Y
( ProcessAttribute(@prop, @tbl) )

®

Fig. 6. The MOLA proceduréain

The start and end symbols of a MOLA procedure epeesented in the same way
as in UML activity diagrams. Control flows are dralwy dashed lines. The first element
to be executed in this procedure is a foreach (aoctangle with bold lines). This loop
consists of the sole loophead rule (a rule is \ized by a grey rounded rectangle). The
pattern part of this rule (elements with black l@ws) contains only one class element —
the loop variablecl corresponding to the metamodel cl&ass (loop variables are
distinguished from ordinary elements by bold bosjleFhis class element contains also a
constraint specifying that the attribuigPersistent must have the valugue
Thus, the semantics of this simple loop (and inetugattern) is — the loop is executed for

every instance dElass in the source model, wheisPersistent has the value true.
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The action part of the rule contains one class etéthl :Table and one link. The class
element is of create type (red dashed borders)ijtaimhtains one assignment — the value
@cl.name (the value of the attribut@eame in the matched elemerdi ) must be
assigned to the attribute name (of Trable instance to be created). The sole link in the
rule is of create type too (a red dashed line)@mdesponds to the mapping association in
the metamodel (between tiktass andTable classes). The correspondence between
links in MOLA rules and associations in the metasiodsually is shown via role names,
at least one of the role names must be preseut liok and UML syntax rules for classes
guarantee that a unique specification is possibie MOLA reference shows that
internally a link is directly related to an assdicia). Thus, the first loop is iterated over
all persistentClass instances in the source model and for each sustanoe a new
instance ofTable is created and itsame attribute is set to the same String value as the
name of the class. In addition, these two instameeslinked by thelassToTable

link.

This first loop is a typicatlesign patterrfor simple transformations in MOLA —
loop through the instances of a class in the soma@#el and for each valid instance build
something in the target model.

The control flow from the first loop leads to thexh foreach loop, which again
iterates over all classes in the source model lgbe variable is based o@lass ).
However, this time the pattern is more interesting contains one more class element
(tbl:Table ) and one link connecting these elements. The sirsas very natural —
only these instances @flass , which have &lassToTable link to aTable instance,
qualify as valid for iteration. Since this loophehds no actions, for each iteration
immediately the first construct of the loop bodyhe next rule is executed. It should be
noted, that actually the second loop is iterategt diterally the same instances as the first
loop (persistent classes), since namely for thastmces the first loop has built the
Table instance and the required link. Therefore in aptimized programfor this
example both loops could be merged in one. Thelbwps are retained in this example
for demo reasons (to demonstrate a pattern foop)land because in a more realistic
version (where associations also need to be traneft) namely thiswo passapproach

can provide a solution.
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The next rule in the loop body builds Golumn instance (the primary key
column), assigns the required values to its attedwand links this new instance to the
Table instance located by the loophead. Note the useeleient reference -
@tbl:Table in the rule. The reference construct (an elemetdtion prefixed by the
"@ character) says that namely the instance found psevious rule (here the loophead)
must be usedThe previous ruleneans the last (according to the execution ondge)
where the referenced element (without t@ character) was matched in the rule pattern,
or created in the action part. If a reference edus a pattern, it means that no matching
is done for this element, simply the known instaiscesed to build a constraint for other
pattern elements, or the instance is used as apantfor the link to be built (this is the
given case). The use of the reference as a qudbfi@n attribute in an expression has the
natural meaning — the attribute value of this instais taken.

The next construct to be executed in the loop bedy nested loop. It uses the
Property class for its loop variable and is meant to loaerothe attributes of the
current Class instance. The loophead contains a pattern, whbee reference
@cl:.Class says that only thBroperty instances linked to this known instance must
be iterated upon, in addition there must beAssociation instance linked to a valid
Property (by theassociation link). The cardinality constraint NOT is used in a
pattern element to specify that an appropriatelydd instance must not exist at all in the
model (a NOT-constraint is available also on link#1OLA, but there it says only that a
link must not exist). Let us remind that the NOThstraint is required here to filter these
Property instances, which are association ends. The irpaad of the loop pattern —
the loop variable linked to a reference from thenimg loop pattern — is very typical to
nested loops in MOLA.

The nested loop in its body has only one construtte call of the subprocedure
ProcessAttribute (which builds the required columns), using refeemnto the
known instanceprop andtbl as parameters. Certainly, the types (classesheaset
parameters must match the parameter definitiontheéninvoked procedure. Here the
classes coincide, but subclass instances may alsagplied (as in OO programming).

This concludes the definition of thiglain procedure. When all the relevant
iterations are completed, this simple transfornmatims built the required tables and

columns.
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It remains to give some comments on the subproedeitacessAttribute ,

which is shown in Fig. 7.

@prop : Property @tbl : Table
[1] 2]

(Kernel) (SQL)

show Msg("Inconsistent class model: —'D@
Class attribute has nonprimitive type")

® 3

|
4 {ELSE}
~
@prop : Property pt : PrimitiveType ELSE} @prop : Property en : Enumeration
(Kernel) type | (Kernel) (Kernel) type | (Kernel)
o I T
v v
( ) f )
@tbl : Table @prop : Property @tbl : Table @prop : Property
(SQL) (Kernel) (SQL) (Kernel)
H H H
f H ?
R e ; cols; .
i col : Column tribute ToCol ' i col : Column
) ' : i
} (SQL) attributeToColumn_ ¢ ! (sQL) attribute ToColumn
i name := @prop.name E name := @en.name
itype = @pt.name ) type :="String"
(S J N\ )

Fig. 7. The subprocedurrocessAttribute

The two top symbols in the diagram are parameténitens (their positions
must be numbered, since calls use the positiortation). Parameters can be freely used
in patterns, as element references would be.

This MOLA procedure has no loops, since the pararsealready provide the
exactly required instances. The first rule sensea #ypicalif-condition in anif-then-else
construct. It is used to distinguish whether thé&ritatte type is primitive or an
enumeration. If the rule pattern matches (the tgg@imitive), the next rule (followed to
via the unlabelled flow) builds th€olumn instance and sets its attributes. Note that in
this rule the referenc@pt is legal, since the previous rule has matchedlacated this
instance (it would not be legal to use this refeeeim the other branch).

If the first pattern fails, the alternative rulee¢assed vi&LSE-flow is executed.

If its pattern matches, the alternative buildinterior the enumeration case is executed. If
the second condition fails too (e.g., the attribtyype is another class), the external
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procedure showMsg is invoked. This external procedure is built-in MOLA

environment and it is used to display a simple mgs®Hox with the provided text.
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CHAPTER 3

Pattern Matching in Model Transformation Languages

Besides MOLA there are many model and graph tramsftton languages which
use declarative patterns to specify transformatides. The language specific pattern
features of several popular languages are deschib#dds chapter. An overview of the
most popular approaches for pattern matching imeidation is also given in this

chapter.

3.1 Patterns in Model Transformation Languages

The closestelative to MOLA in the world of model transformation larages is
Fujaba Story Diagrams from Fujaba Tool Suite [1F{ijaba is a graphical model
transformation language which uses imperative obngtructures and declarative
patterns. The specification of patterns in Fujabalmost identical to MOLA. There is a
restriction on patterns in Fujaba - the patterntngostain at least one bound (previously
matched) element. The graphical syntax, of cowdskers for both languages, but that is
obvious for independently developed languages. st significant difference between
the two is the foreach loop. Fujaba does not spetié loop variable and loops are
executed through all of the possible matches ofptitéern. In MOLA only the distinct
instances that correspond to the loop variableitarated over. MOLA foreach loop is
more readable and easier to use, because of thevéwmble.

A different programming paradigm is used in thepgréransformation language
AGG [20], which is a typical example of a declaratitransformation language. AGG
does not have any imperative control structured,rates that describe patterns are being
executed independently. The only way to affect ékecution order is to use layering.
Each rule in AGG includes a pattern which is spediby LHS graph and NACs. NACs
are used by declarative transformation languageslyna distinguish already processed
model elements. Negative patterns are used ditlgrenMOLA because of the specific
loop construct. MOLA also has negative pattern eleis, but they are used to express a

logical negative condition.
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The graph transformation language PROGRES [21] istestual graph
transformation language where patterns (graph es)eare specified graphically. Patterns
allow using similar and even richer options tharevpusly noted transformation
languages. The ordering of statements is manageadge¥raic structures and PROGRES
follows declarative PROLOG-like execution semantics

Graph transformation language VTCL (Viatra Text@mmand Language),
which is part of the VIATRA2 framework [15], defiagatterns using textual syntax.
VIATRA offers broad possibilities for the patterefahition: negative patterns may be at
arbitrary deep level; the call of a pattern fronotwer pattern and even recursive patterns
are allowed; the language may work both with maalel metamodel. The execution
order of rules is managed by ASM (Abstract Stateiviae) language constructs which
are purely imperative. VIATRA has a rudimentarygr@al syntax of patterns, however
it seems that whole expressiveness of the langouayenot be available there.

Another textual graph transformation language,cWwhhas appeared in recent
years, is GrGen [41]. The expressiveness of patterrhis transformation language is
close to VIATRA. Transformation rules are combinesing similar algebraic constructs
to PROGRES (except the PROLOG-like execution seicgnt

3.2 Related Pattern Matching Implementations

The authors of the graph transformation languag@®RES already in 1998 [48]
were the first ones who examined the pattern magchssue in the context of
transformations. Since then this issue has beewvedoin several graph and model
transformation languages. Let us look at the mopufar ways how pattern matching is
being implemented in different transformation laages.

One of the most popular ways of implementation aftggn matching is by
generating théocal search plans The basic idea of this approach is the followingthe
optimal way finding a fragment, which correspondsthe pattern, by using theasic
lookup operations (such as to find the first instanf a certain class; to find the instance
of a certain class when navigating the link; to athéhe attribute value of a certain
instance, etc., that actually is executed in alncosistant time). By means of the basic
operations a model fragment corresponding to theemais built. Usually the process

starts from a potentially suitable class instarece] gradually the fragment of the model
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is supplemented in correspondence with the pattbat,is, the rest of the instances are
chosen so that they form a suitable componentefrigment wanted. If it is impossible
to find a suitable instance, backtracking takeseldhe search continues until a suitable
fragment is found, or all potential fragments aheaked, but none of them is suitable.
The local search plan (LSP) is the order in whivh basic operations are applied. The
aim of LSP generation is to find such an optimaleorwhich uses the basic operations as
few as possible in order to find a model fragmemtesponding to the pattern.

So, to find the best LSP, typically differeheuristicsare used which help to
choose the optimal implementation order of the aj@ns. The most typical version is to
use cardinalities (multiplicitie3 of a metamodel element, usually an association, f
example, the instances matching the patternnakegatedin such a way that mostly
navigationtakes place along the link towards the end of #s®@ation with a cardinality
0 or0..1 . In this way the set of instances that shouldhezked is radically diminished.
Implementation of the graph transformation languaB®OGRES [48] is based exactly on
this principle. However, the cardinalities of thetammodel elements do not depict in full
the real cardinalities in a specific model. Forrapée, the cardinality * of the association
end indicates that there can be more than onddimkatch, but it does not provide more
precise information. It is possible to obtain mdetailed evaluation of the cardinalities of
certain model elements by analysing typical modétere transformations with given
patterns are used. This type of analyses can bfrped in VIATRA language
implementation [49]. This approach is suitable wlaeproper amount of corresponding
models is available. However, in practice there drequent situations when
transformations must be built before any modeblailable. It is possible to obtain more
precise values of the certain cardinalities exadbgfore the execution of the
transformation, by examining the model which isngpto be changed. In this case this
information must be provided by the model repogittut it is not always done. In this
case also the search plan must be generated dtimengexecution process that can
diminish the efficiency of the method and make ith@lementation more complicated.
This method is used in the implementation of thedformation languageérGen|[50].

The transformation language Fujaba uses a simp®&® Qeneration strategy.
Pattern matching always starts from an instanceesponding to the bound pattern
element (it exists always). Searching continuesi@lthe links in accordance with the
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pattern [51]. Despite this approach being simgleyarks almost as well as the already
mentioned approaches [52].

Also in MOLA implementation a similar approach sed [53], described in detail
in Chapter 5 of the thesis. MOLA uses also a moraglicated LSP generation algorithm
which employs the cardinalities of the metamodelsints and the mechanism of the
metamodel annotations which lets the transformatiater use his knowledge about the
real cardinalities in the models [53]. Also thigagach is discussed in detail in Chapter 5
of the thesis.

LSP generation is not the only way of solving tladtgrn matching problem. In
order to solve this problem it is possible to u#®ep popular technologies and methods.
One of these technologies is ttedational databases The basic idea of the method is to
save the model in the relational database in aecoel with some database scheme and
carry out pattern matching by means of SQL queriesthis way the optimization
mechanisms of query execution are exploited whieh accessible in all well-known
relational database management systems. Implenmntdtthis method is rather simple,
as it is possible to build an SQL query correspohde the pattern or a chain of queries.
Its execution, that is, the most complicated peaty be left to the query optimization
algorithms. This approach is used in one of impletagons of the transformation
language VIATRA [54]. The model is saved in theatiinal database whose schema
corresponds to the metamodel which describes tlodein Thus the schema of the
database is generated corresponding to each methnkat each pattern several SQL
views are generated which correspond to the patiath negative conditions. Pattern
matching reduces to execution of SQL queries cpomding to the views. Relational
database is used also in implementation of MOLAjlege [55], which is discussed in
detail in Chapter 4 of the thesis. Unlike the poesly mentioned implementation of
VIATRA language, in this case the fixed databadees@ is used and exactly one SQL
guery for each pattern.

It is possible toreduce pattern matchingto CSP (Constraint Satisfaction
Problen). CSP has ready-made solutions which make solubibpattern matching
possible. CSP is defined as a set of variables twhiast find a state, satisfactory for
number of constraints. The typical examples areeg8odoku[56] and map colouring
problem [57]. The search of such condition is chllariable ordering and this process is

rather similar to generation of the search plabS®P methodology. Thus pattern elements
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receive the corresponding CSP variables and afsainstraints, and if they are solved,
also the corresponding pattern matching problensoised. This solution is used in
implementation of AGG language [58].

The previously described solutions are trying tadfithe corresponding model
fragment in time, which depends on the size ofrtiwelel (number of instances) and on
the size of the pattern (number of pattern elemehtsremental pattern matching
allows finding the corresponding model fragmentdqrattern in constant time. The basic
idea of this method isachethe fragments corresponding to the pattern, anehwhodel
changes, update this information. Bacherequires additional memory resources. In this
case changing the model is inefficient, becausease of any change, the information
about the model fragments corresponding to theepattnust be updated. The typical
MDSD transformation model is being changed conbtafthere must be created the
corresponding element in the target model pradyidalr each element of the source
model. It must be noted that before the executfahetransformation, when loading the
model into the memory, theacheprocess must be performed and it needs a defimte
of execution. Because of these reasons incrempattdrn matching is not suitable for
MOLA language. This approach is implemented in VB language [59] and it works
very successfully in solving tasks when the nundfdransformations is small and local.
VIATRA incremental pattern matcher is built by usiRETEnetworks [60].

The authors of VIATRA offer alsbybrid pattern matching [61] which is able
to combine different approaches, for example, L8Regation and incremental pattern
matching. This approach offers to choose which oteto use for a specific pattern. The
choice can be made during transformation developreexecution. It is based on the
statistics of the available memory.

Patterns in the popular model transformation lagguATL [14] are hidden
within Boolean expressions of OCL language anddrdipnctions widely used by ATL.
ATL and MOF QVT [6] are not addressed here, becdaseur knowledge no pattern
matching implementation details are available fent.
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CHAPTER 4

Implementation of MOLA using Relational Databases ad SQL

The pattern matching algorithm which uses relafiolagabase is described in this
chapter. The implementation of this algorithm favdal transformation language MOLA
is one of the main results of these thesis. Thalteefiave been published in [55] and
MOLA Tool has been presented in the Tool Sessi@h ¢ the European Conference on
Model Driven Architecture — Foundations and Applicas (ECMDA-FA 2005).

This version of MOLA tool has been developed withimly academic goals — to
test the MOLA usability, teach the use of MDSD $aftware system development and
perform some real life experiments. This has infbexl some of the language design
requirements, though with easy usability as onthefgoals and sufficient efficiency for

research purposes as the second.

4.1 Overview of Architecture

Similarly to many model transformation environmendMOLA environment
consists of two major parts: MOLAransformation Definition Environment (TDE)
and Transformation Execution Environment (TEE). TDE is completely related to the
metalevelM2 according to MOF terminology, while TEE isMt level. TDE is used by
expert users, who define new model transformationglOLA for the adopted MDSD
technology or modify the existing ones from a tfamsation library to better suit the
needs of a specific project. Since MOLA is a graphilanguage, TDE is a set of
graphical editors built on the basis of Generic Elbdg Tool [46] (a generic metamodel
based modeling framework (GM): developed by University of Latvia, IMCS together
with the Exigen Company). The execution environn{eglated toM1 level) is intended
for use by system developers, who according to sblected MDSD methodology
perform the automated development steps and oltairrelevant target models. Two

forms of TEE are available. The form closer to adustrial use is an Eclipse plug-in,

! Do not confuse with Eclipse Graphical ModelingrReavork [63]
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which can be used as a transformation plug-in fgiLL2.0 modeling tools, including the
commercial IBM Rational tool RSA [64]. Another fori;a more experimental one. It is
based on Generic Modelling Tool as a generic madetnvironment and is intended for
various domain specific modeling and design notetio

MOLA Transformation Definition Environment (TDE) B
Metamodel
MOLA Transformation
Source-MM Definition Environment Target-MM
{GMF based} specifiedIn
specifiedIn 1 1
MOLA-MM- MOLA-diag- (MOLAcompiIer)
editor editor
Transformation
{in EBM MOLA}
{
MOLA-MM MOLA-prog-Tables |/
{Tables}

MOLA Transformation Execytion Environment (TEE) N
Source-MM T Y
{GMF} 2 TargetMMTables QIgets

SourceMMTables Transformation Y {GMF}
basedOn Execution basedOn | basedOn
basedOn | pocedon Enywonment basedon
{runtime, GMF- TargetModel
SourceModel based} {GMF}
{GMF}
—

ModelEditor ] ModelEditor
{GMF} Model-Import Model-Export {GMF}
Graphical editor/ {GMF} MOLA- {GMF} Graphical editor/
Model browser interpreter Model browser

fModeI-Import SourceModel- TargetModel- Model Export

{from EMF XMI} Tables Tables {to EMF XMI}
SourceModel J
{Xmi} TargetModel

. . ® {XM1}
Eclipse Plug-in Transformation
Execution
Environment
{runtime,Eclipse-based}

Fig. 8. MOLA Tool environment architecture.

Fig. 8 shows both the components of the MOLA twolunded rectangles) and
the used data objects (rectangles). Besides thgidraal class diagram notation, arrows
represent the possible data flows. Data objedid@LA runtime repository are annotated
as tables because it is SQL based. Now some moneeats on the MOLA TDE. It

contains graphical editors for class diagrams (EM&#el) and MOLA diagrams. Both
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the source and target metamodels are shown iname €lass diagram, together with
possible mapping associations. A transformatidypgcally described by several MOLA
diagrams, one of which is the main. Since the gcagpleditors are implemented on the
basis of Generic Modelling Tool, they have profesal diagramming quality, including
automatic layout of elements. In addition to edifoFDE contains the MOLA compiler
which performs the syntax check and converts duthcombined metamodel and MOLA
diagrams from the Generic Modelling Tool repositdoymat to the MOLA runtime
repository format.

The main component dlIOLA TEE is the MOLA Virtual machine (VM)
(interpreter), which actually performs the trangfation of the source model to the target
model. As it was already mentioned, the goal o$ timplementation is to provide a
simple and sufficiently efficient implementation BfOLA. The key factor in reaching
this goal is an appropriate implementation of MOUM, since the implementation cost
and efficiency of all the service components isrlye¢he same for all considered
solutions to MOLA VM. And in turn, a crucial poiof MOLA VM implementation is an
appropriate repository and execution environmenpéitern matching. This is due to the
fact that the implementation of control structuaesl executable actions in MOLA (due
to their procedural nature) is very straightforwarall cases. It should be noted that the
choice of repository and execution environmentcosely linked ones, thus the rest of
the section actually will be devoted to these issue

Typically model transformation languages are immgated on metamodel based
repositories, the most typical of whichislipse EMH26]. Several model transformation
tools have been built using EMF as a repository, [[3B], [39]. The EMF API in Java
provides the most basic actions for building a grattmatcher. The next version of
MOLA implementation is also implemented on suchosgories- MIIREP [65], JGraLab
[66] and also the mentioned EMF-.

It has been already shown [67] that a very effici®fOLA pattern matching
implementation is possible on such a basis. Howeheravailable low level operations
in these APIs (even lower level than analyzed ifi])6make the implementation
sufficiently complicated. Therefore another solntiwwas considered — to what degree an
SQL database can be used as a repository for pattatching. On the one hand, the
repository structure must match closely enough MOE — similarly as EMF does. On
the other hand, the desire was to use the poweafuabilities of SQL for a simple high
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level implementation of pattern matching. Such latsmn was found, which is described
in the next section. The only remaining concern padormance issues — whether the
guery optimization in SQL databases can at leashdtevery far from the optimal

performance described in [67].

4.2 Implementing Patterns by Natural SQL Queries

MOLA VM operates with models — MOF level M1. Howeyédor each model
element its metaclass must be known — for patteatciimg or any other MOLA action.
Therefore MOLA VM has to know the complete metamo@d2 level) for the
transformation. As it was described in CHAPTER 2 timetamodelling facilities in
MOLA are approximately those of EMOF. The most natuwvay is to store the
metamodel in tables which correspond to EMOF methehalasses. However, due to
efficiency reasons, theplain old class metamodelcontaining Classes |,
Associations and Attributes (but not Properties as association ends)
occurred to be more convenient to be coded bydhegponding SQL tables (see the left
column of Fig. 9). It can be easily seen, thataat fit is equivalent to EMOF, therefore
MOLA compiler can easily store the metamodel insthéables. In addition, there are
tables for identifying metamodels and models thévese

The storage of model elements — instances of metahotasses, associations and
attributes is completely straightforward in the responding three tables (see the right
column of Fig. 9). The MOLA program is also natiyatored in tables according to the
MOLA metamodel, but since we here are mainly comegrwith pattern matching, this
coding is not so important. The only fact to be trared here is that the MOLA compiler
for each program element (loop, rule, pattern cédsment, pattern link etc.) generates a
unique identifier. This fixed database schema ixhmeasier to implement than the
metamodel-specific one used in [54].

Let’'s find out how a MOLA pattern can be naturathapped to arSQL Select
statement. The idea is that each class elemeheipdttern corresponds to an occurrence
of the tableclass_inst (actually an alias of it) in therom clause. Similarly, each
pattern link corresponds to an alias of #sc_inst  table in theFrom clause. Next
theWhere clause is formed. Firstly, each pattern elemeat, (ihe corresponding alias of

class_inst ) must mandatory have the specified class, i.e.mita_class_id
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column must have the given value (metamodel elesnamé fixed during MOLA

execution). Similarly it is for links (associatiamstances) in the pattern.

Meta_model model
PK | meta_model_id PK | model id
name met 1ol .
Meta_class class_inst
PK |meta_class_id PK |class inst id
PK | meta_model id PK | model_id
nal . me .
isA Meta_association asoc_inst
isS PK | meta_asoc_id PK | association_instance_id
isT| PK | meta_model_id PK | model_id
pa
source_meta_class_id meta_asoc_id
target_r * — src —
source | Meta_attribute trg_| attr_inst
target_1 px | meta model id PK | attribute_instance_id
Source_| pk | meta_attr_id PK | model_id
target_¢ R
isInherit meta_class_id meta_attr_id
name class_inst_id
type value
cardinality
isinherited

Fig. 9. SQL Tables for storing metamodels and models.

A more non-trivial part of th&/here clause must specify that each link does link
the relevant instances, i.erc_class inst_id is equal to thelass_inst_id of
the corresponding (association source) alias ofssdlast , similarly for the
trg_class_inst_id . For reference element@&@:Package in Fig. 10) it must be
specified, that theiclass_inst_id has the given value (reference elements always
correspond to a fixed instance in MOLA). The mosinplicated part in th&Vhere
clause are the attribute constraints, which alredyBoolean expressions. However, the
simple attribute names used in MOLA constraints tmes substituted by additional
aliases ofattr_inst in theFrom clause, in addition, the transformed expressiostmu
be added to the/here clause.

Fig. 10 illustrates the generation of an SQL quesyn a pattern. The pattern is a
very simple one — toreachloop head containing the loop variable (of tyflass, with
a constraint) and a reference (to the instande@agkage ) linked by thepackage link.
Lines illustrate the described above mapping gy, the color coding (or levels of

gray in the black-and-white version) shows whicht$af the query were obtained from
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one pattern element. The alias names are gendratedthe pattern element identifiers
built by the MOLA compiler and therefore are unraiale.

gClass |
/@ {kind="persistert” ;

SELECT ¢1120000014820 lass inst 14 ,
01120000022250 class_imst id

FROM class inst ¢1i20000014820 , class inst ¢1i20000022250 ,
, asoc_inst asi20000022290

WHERE c1i20000014820.meta class _id=2000000006 AND

cl1i20000014820.class inst id AND

AND P s AND

cli20000022250.class_inst id=2000000004 AND
asi20000022290.meta _asoc_id=0000000018 AND
asi20000022290.src_class_inst 1d=cli20000022250.class_inst id
AND
asi20000022290.trg_class_inst 1d=c1i20000014820.class_inst id

Fig. 10.Generation of an SQL query from a pattern.

The result of the query (a virtual table) is define such a way that each row
represents (identifiers of) class instances fornaimglid match.

Now it can be easily seen, that the built SQL gquedeed expresses the pattern
match semantics, which for the given example asdbdt instances of the metaclass
Class must be sought, which have the lp&ckage to the fixed instance dtackage
and which have the given value of the attribkbed . Since the pattern is inside a
foreachloop, all such instances (all matches returnedhieyquery in this simple case)
must be processed. A similar argument applies ydW@LA pattern.

Thus the simplicity of the pattern mapping to SQlery has been shown, it
remains to show that this SQL Select can easilguie by the MOLA VM (actually it is
a sort ofJIT-compiling. It is being done in several steps. First, tlesslelements of the
pattern are picked up and for each of them an eienmethe Select list and in the
From list (the tableclass_inst with a new alias) is added, with the MOLA compiler
generated unique element identifier used as tles alame. In addition, a term in the
Where condition is added, which specifies that the insgamust be of the relevant class
(or that the instance is the given one for refeeeglements). Then in a similar manner
each link of the pattern is processed. Here the tedded to th&Vhere part is more
complicated, it has to state both that the link'soagiation is the relevant one and that the
endpoints are the corresponding class instanceslafier fact is easily to state due to the

fact that the MOLA compiler has documented thisreierences to the relevant element
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identifiers and namely these identifiers are usedlases for the element selection. Then
pattern constraints are processed, each addingetBrom part (the required attribute
instance) and to thé/here part (the expression itself). Simple OCL expressibaving a
direct counterpart in SQL and some simple OCL sptassions are supported.

Finally, some remarks on the negative patternsegative part can be added as a
NOT EXISTS subquery to thaVhere condition. In the case of a NOT-element, the
subquery has just one alias of ttlass_inst in theFrom list plus aliases for the links
connecting the element with the positive part of frattern. TheNhere part of the

subquery is generated similarly as for positiveqrat.

4.3 Database Performance Issues

In this section the performance of the generateerigs in several databases,
which are relevant for MOLA tool, is analyzed. Aegy generated from a pattern is
somewhat special in the sense that it is a soecaldf-join — aliases of the tables
class_inst and asoc_inst are repeated in thErom clause as many times as
there are elements and links in the pattern resdget Large self-join queries are non-
typical for standard database applications andetber may be processed by some
engines not so optimally.

The first natural choice for an experimental to@swthe open source database
MySQL, the version 5.0.12 [68]. The first intuitiyerformance evaluations were also
encouraging, but it was clear that a more thoroagalysis of query optimization is
required.

Since it has been shown [67] that pattern matcimnglOLA can be performed
very efficiently as a sequence of small queriesaaasonable model repository (and the
database schema described in previous sectionchy), st is clear that potentially the
generatedarge queries can also be executed efficiently. Sineepdrformance of a join
type SQL query is mostly dependent on the join oafdables inWHERBpart [69], the
right order in which the tables in a complicatetf-gen are joined must be found that is
equivalent to the sequence of small queries.

Let us explain the situation in detail on an exam(#lig. 11). This example is a
fragment of the MOLA transformation transforminglass model to OWL notation [70]

(used as a benchmark in Section 4.4), namely fareachloophead is shown, which
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generates an OWL object property for each UML assion instance (for classes the
corresponding OWL Classes are already built). I§ wlaown in [67], that for cases such
as in Fig. 11, the optimal order is to start frohe tloop variable (the element
as:BinaryAssociation , all instances of which must be tested anyway)l &n
proceed along the paths leading away from the \@wjable. In the example there are two
such paths — one leading via the liakgetEnd to objEnd:Property and further,
and another one starting with the lisurceEnd . Even without seeing the metamodel,
it is clear that in a valid class model this isagtimal order — a UML binary association
has just ondargetEnd (i.e., just one row in the tabkesoc_inst , where the join
condition is true), which in turn is followed by sju one objEnd (one row in
class_inst) and so on. Fig. 11 illustrates this order by numé&ags. The generated
query corresponding to this pattern is shown in ERy

Certainly, there are other optimal orders — anghefpaths could be traversed first,
and the paths can be traversetérmittently Similar easy-to-be-explainedptimal join
orders exist for more complicated patterns, whethgpmay haverosslinks and where
reference (fixed) elements exist (see more in [67])

it i
az: BinaryAssociation m I

sourceErd | 8] ta;getEmlﬁ
|3ulg|§nd Praperty| 9 '
class |10 :
subiCl Class |11

#’nhj_prcp_Fnr Assnc-_ =
: DE LD EE'P”:'@E
IacaﬂNam& ~@a3 name @

Rﬁdeun RDFranga

.- -

Fig. 11.Optimal pattern matching order

Further, it was to be found, how close the MySQErglexecution plans are to an
optimum, and at what expenses such a plan is fokodunately, MySQL has the
Explain  statement [71], which reveals some details of ékecution plan. Fig. 13
shows the join order of query shown in Fig. 12, esqu by theExplain  statement.

Actually, two experiments are merged there — orih wrder tags in squares has been
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performed on a small source model (29 rows dlass inst , 39 rows in
asoc_inst ).

Another one has been performed on a large sourcdelm25 rows in
class_inst , 975 rows inasoc_inst ), the join order (where different from the first
one) is shown in circles. For the large model tha prder is equivalent to the optimal
one, only another starting point has been seleatsdpaths are traversed intermittently.
For the small one the deviation is larger, but alsocritical.

However, if the number of elements and links ina#tgrn is increased, the query
execution time also increases. The query (discusdéexe) having a pattern with 7
elements and 6 links executes in 200ms on a moitlel3000 class instances and 4000
links, a query with 8 elements and 7 links in 60® an the same model, 9 elements and 8
links in 3200ms, but 10 elements and 9 links inOBAs that is a significant jump. There
are only few papers on MySQL optimization [72], [7and they do not explain the
optimization of the specific self-join queries usedMOLA pattern matching. Another
observation should be mentioned — theplain  statement execution itself requires
nearly as much time as the query execution, so are assert that MySQL query
optimization in case of large self-join queriesnst optimal — it itself is too time
consuming.

Thus we have to rely on ourlack boxexperiments, which say that MySQL
optimization is acceptable when there are limitstio@ pattern size (no more than 8
elements), but the query execution time increasesrtuch for larger patterns, to make
sense in using this RDBMS for pattern matching.

Thus the current version of MySQL can be used f@LM runtime repository,
but with restrictions on MOLA transformation patter The hope is for versions to come
(the current version performs better than thosedesarlier), but next versions could only
raise the limit for pattern size — not remove tiestriction completely.

Due to the mentioned above problem other altereatiwere sought. Possible
alternatives are MSDE 2000 [74] — the fremmall version of MS SQL 2000 server,
PostgreSQL [75] — another popular open source RDBMSSQL Server 2005 Express
[76] — the freesmallversion of MS SQL 2005 server.
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SELECT cli20000020780.class_inst_id cli20000020970.class id ,
¢li20000021040.class_inst_id , cli20000021110lasst_id

¢li20000021180.class_inst_id , cli20000021260<lasst_id , [i20000021330.class_inst|

FROM class_inst cli20000020780 , class_inst cli200000R0Xlass_inst cli20000021040
class_inst cli20000021110, class_inst cli200008R11class_inst cli20000021260 ,
class_inst cli20000021330 , asoc_inst asi20000021@8oc _inst asi20000021150 ,
asoc_inst asi20000021300 , asoc_inst asi2000002 1€ _inst asi20000021700 ,
asoc_inst asi20000021760
WHERE cli20000020780.meta_class_id=2000001847 AND
¢li20000020780.meta_model_id=0000000000 AND cliZgmD780.model_id=0 AND
¢li20000020970.meta_class_id=2000001790 AND
¢li20000020970.meta_model_id=0000000000 AND cliZiimxD970.model_id=0 AND
¢li20000021040.meta_class_id=2000001721 AND
¢li20000021040.meta_model_id=0000000000 AND cliZui 040.model_id=0 AND
¢li20000021110.meta_class_id=2000001723 AND
¢li20000021110.meta_model_id=0000000000 AND cliZm®1110.model_id=0 AND
¢li20000021180.meta_class_id=2000001790 AND
¢li20000021180.meta_model_id=0000000000 AND cliZpm®1 180.model_id=0 AND
¢li20000021260.meta_class_id=2000001721 AND
¢li20000021260.meta_model_id=0000000000 AND cliZgm®1260.model_id=0 AND
¢li20000021330.meta_class_id=2000001723 AND
¢li20000021330.meta_model_id=0000000000 AND cliZul 330.model_id=0 AND
asi20000021080.meta_asoc_id=2000001835 AND
asi20000021080.meta_model_id=0000000000 AND
asi20000021080.src_class_inst_id=cli2000002104kclast_id AND
asi20000021080.trg_class_inst_id=cli20000020978sclast_id AND
asi20000021080.model_id=0 AND asi20000021150.mstzc ad=2000001725 AND
asi20000021150.meta_model_id=0000000000 AND
asi20000021150.src_class_inst_id=cli2000002104xciast_id AND
asi20000021150.trg_class_inst_id=cli20000021118scliast_id AND
asi20000021150.model_id=0 AND asi20000021300.mstz&c ad=2000001835 AND
asi20000021300.meta_model_id=0000000000 AND
asi20000021300.src_class_inst_id=cli2000002126sclast_id AND
asi20000021300.trg_class_inst_id=cli20000021188sclast_id AND
asi20000021300.model_id=0 AND asi20000021400.mstzc ad=2000001725 AND
asi20000021400.meta_model_id=0000000000 AND
asi20000021400.src_class_inst_id=cli2000002126sclast_id AND
asi20000021400.trg_class_inst_id=cli20000021338scliast_id AND
asi20000021400.model_id=0 AND asi20000021700.mstz&c ad=2000001858 AND
asi20000021700.meta_model_id=0000000000 AND
asi20000021700.src_class_inst_id=cli2000002078txclast_id AND
asi20000021700.trg_class_inst_id=cli20000020978scliast_id AND
asi20000021700.model_id=0 AND asi20000021760.mstz&c ad=2000001852 AND
asi20000021760.meta_model_id=0000000000 AND
asi20000021760.src_class_inst_id=cli2000002078sclast_id AND
asi20000021760.trg_class_inst_id=cli20000021188sclast_id AND
asi20000021760.model_id=0

Fig. 12.Generated query example

d
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Fig. 13.MySQL query plan (table join order).

Similar performance experiments on large querie® lieen performed with these
engines too. Single pattern query execution tinneshiese alternatives were significantly
better Microsoft products) or similar (PostgreSQL). The join ordes nearly optimal. It
can be concluded from available references [771 Hwh MS SQL and MSDE use
instance data for query optimization in a more ssipfated way. However, experiments
show that execution of a complete transformatiomigh slower than by using MySQL.
MySQL was faster by an order of magnitude. It sed¢imas MSDE 2000 and MSSQL
Server 2005 Express engines have major problents aginpleting large sequences of
SQL queries, because of built-in features suchaklaad governor [78] in MSDE 2000,
which decreases the server performance.

Thus, MySQL is a satisfactory implementation for MOruntime repository if
the pattern size does not exceed 8-9 elementsa(pctonly thefree pattern elements
count — those which are class elements, but neteetes or parameters, in Fig. 13 all
pattern elements are free). The existing experiefecesing MOLA tool on some nearly
real life examples has confirmed this. The tramasftion execution times in these
examples testify that apparentipse-to-optimajoin order was used by MySQL in most
cases. Nearly all patterns in these examples walewvbthe size limit. In practice it is
also possible to bypass the limit by decomposingatiern into several smaller ones
(actually, even without sacrificing the transforioatreadability).

An alternative approach would be to enforce thanwgitjoin order manually,

since MySQL has such possibilities. Unfortunatehgse features are vendor-specific
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extensions of SQL. In addition, finding of this erdduring query generation is a
significant part of implementing the pattern @aall queriesand therefore much more

complicated.

4.4 Benchmark Results

The previous section demonstrated that usage ofQUydatabase server as model
repository and pattern matching engine has prowdpetsufficient. To estimate MOLA
Tool performance the experiments have been done.

A simple task and appropriate model transformatmoi for comparison have
been chosen. The choice — AGG [20] is a populgrigteansformation language that uses
pattern constructs similar to MOLA, only explicit AQ’s (negative application
conditions) must be added. AGG rules have no exmantrol structures, but in simple
cases MOLA control structures can be adequatelylasdiby AGG rule layering. AGG
has already been used for benchmark testing [Mi]s tallowing ensuring certain
correctness of the experiment. The transformatias @xecuted on both MOLA Tool and
AGG for models of various size and complete executimes were measured. Both
MOLA Tool and AGG were used with configurationsaeunended by developers. The
example transformssimplified UML class diagramto simplified OWL diagram.
Metamodels are shown in Fig. 14.

The transformation creates @WLClass instance for everglass instance and
OWLDataTypeProperty  for everyProperty  which is an owned attribute of the
Class . This task is done using nested loops. The fostachloop iterates through all
Class instances and the nesttmteachloop iterates through appropria®operty
instances. The thirdforeach loop creates OWLDataTypeProperty for each
BinaryAssociation (Fig. 15). Though this transformation is very siet is a
typical representative of MDSD tasks where freglyemtmodel has to be transformed to

a semantically equivalent one in another notation.
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Fig. 14.Metamodels of UML Class Diagram and OWL Diagram

The transformation was executed on a hyper-threadetPentium4 3GHz, 1 GB
RAM Windows XP workstation. No additional perforntantuning was done to MySQL

database server or operating system configuraliiemtical models of various sizes were
prepared for MOLA Tool and AGG. The first columnTdble 1 contains model data size

N — the number of class instances in the modelo®k@and third columns contain

complete transformation time for MOLA and AGG measlLin seconds.
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Fig. 15.Transformation UML Class Diagram to OWL Diagram

Both MOLA Tool and AGG showed sufficient performanan models with size
below N=175. MOLA Tool execution time grows neaflgearly up to model size
N=3500, but starts to grow faster above this vallieus the current MOLA Tool
implementation performs well in this range, butl e@mples could be also larger — there

are ontologies containing more than 500WL ClassesReal transformations are also
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more complicated. AGG has problems similar to MOL®&ol, but both tools are usable
for tasks they are designed for.

The main relational database engine feature, whidbles fast search, is table
indexing [77]. The MOLA Tool uses table indexes time most appropriate way;
apparently this ensures the nearly linear time ¢ndar queries.

The reason for faster complete transformation wreavth for large N lies in the
fact that the model size grows while transformatsheing executed.

A proportional to N number of insert and updaterapens must be done in this
MOLA program and each operation time grows dudnéorteed of refreshing indexes (but
indexes are crucial for fast pattern matching).irilar problem is the main reason for

AGG slowdown, even to a larger degree, as it isvshia [79].

Table 1.Benchmark Results

Transformation
ExecutionTime (S)
Model size
(N) MOLA AGG
42 1 4
56 1 6
70 2 9
84 3 14
175 5 62
400 10 334
1050 19 8280
1750 36
3500 65
17500 1781

For real MDSD tasks it is typical that a new modelst be built of size
proportional to the source model. Thus not only plagtern match time influences the

performance, but still it seems to be the key facto

4.5 Summary

Both simple and sufficiently efficient implementati of pattern matching via
SQL queries has been built. Thus this is a viablet®n at least for an experimental tool
(what this version of MOLA tool is). Several modeansformations supporting real
MDSD style development (automated use of Hiberpatsistence framework in Java — a

plug-in for the RSA tool, conversion of UML actiyidiagrams to BPMN notation and
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other) have been built and tested on examplesatistie size [80], [81]. In none of these
examples theatural pattern size in MOLA programs exceeded 8 — thicativalue up
to which the given MOLA implementation is efficiedthese experiments and benchmark
tests described in the paper have shown that tiemented MOLA VM performs
satisfactorily and MOLA is a suitable transformatianguage for typical MDSD tasks —
transforming a UML model to another one closer e tsystem implementation.
However, for an industrial usage of MOLA a spedi@memory repository and a
compiler/interpreter that implements the principteesscribed in [67] could be required.
The main reason could be the desire to get ridngf lanits on pattern size; also the
general performance for large models is expectedeobetter. Such a solution is
discussed in the next Chapter.

Certainly, these results obtained for MOLA implerta¢ion have value also for

other transformation languages, where the pattetchmsemantics is similar.
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CHAPTER 5

Implementation of MOLA Using L3 Language

The pattern matching algorithm which uses L3 lagguand local search plan

generation is described in this chapter. The implagation of this algorithm for model

transformation language MOLA is one of the mainulssof these thesis. The results
have been published in [82] [53] and MOLA Tool leen presented in the Tool Session
[83] of the European Conference on Model Driven Architecturd-eundations and
Applications (ECMDA-FA 2008).

The most critical part of the implementation of attprn-based transformation

language is the implementation of the pattern miagcht has been already shown [67]

that an efficient MOLA pattern matching implemendatis possible. In fact, some kind

of local search plans are generated and executgagpproach. It is based on only few

basic lookup operationseeded to iterate over a model. They are:

getNext(Class Cl) - returns the next instance of a cl&supon each call.
There is also an initialization for itinitializeGetNext(Class Cl)
getNextByLink(Association as, Cl1 inst, Class CI2) -
returns one by one instances of a cl&2 that can be reached by links

corresponding to associati@s from a fixed instancénst . There is also an

initialization for it, with similar parameters -
initializeGetNextByLink(Association as, CI1 inst, C lass
CI2)

checkLink(CI1 instl, CI2 inst2, Association as) - checks

whether a link of required type is between instance
eval(Cl inst, Expr exp) - evaluates a local constraint on attributes

Thus, the target language of the MOLA compilerta API of a repository that is

used for implementation of the MOLA interpreter ifal Machine) must contain similar

operations. This approach requires the implememtadf the pattern matching algorithm

using such low-level constructs. That is a suffiliecomplicated task.
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The Lx language family [16] (LO, LO", L1, L2, L3} ian appropriate target for
MOLA compiler. Each next language of Lx family Haesen built extending the previous
(see Section 5.3). LO language as well as MOLA #$iash concepts agrocedure
parametey variable sub-procedure callThese concepts can be mapped directly from
MOLA to LO language. These basic features alond viaasic lookup operations are
included in the LO language, but commands introducehe following languages LO™-L3
(imperative pattern matching, looping and branchemnmands) allow much easier
implementation of the MOLA compiler than API of asitories. That is possible because
these commands are at an abstraction layer mudercto MOLA concepts, such as
foreach loop and rule, than lower level languages A®l of metamodel based
repositories. Thus L3 language provides all neecgdeatures that allow us to build an
efficient MOLA compiler.

5.1 Architecture of MOLA Compiler

An efficient compiler has been already built [18F fthe Lx language family.
Actually, an efficient implementation of the LO fmage has been built and a compiler
for each next language is built using the bootgiragpp method [84]. It means that the
previous language in the family is used to builel tompiler for the next one (LO for LO’
compiler, LO’ for L1 compiler and so on).

Several metamodel-based in-memory repositories ERR65], EMF [26] and
JGraLab [66] have been chosen to store metamoddl itn instances for the
implementation of LO language. These repositori@agehappropriate low-level API's
implemented as a C++ (MIIREP) or Java (EMF and U0&a function libraries.
Therefore an intermediate result of the LO compitais a C++ or Java program. The
final result of the LO compilation is a dynamicHKihbrary (DLL file) or JAR file that can
be executed over a repository instance which cositthe appropriate metamodel and
model.

The bootstrapping method used to build compilersttie rest of the Lx family
languages requires that programs written in LQ’3anust be stored in the repository that
is used by LO language. Thus the metamodel of tlaegpiages is required. All languages

of the Lx family are described by the same metarhbdeause each next language is
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derived from the previous one by adding some natufes. Therefore the metamodel of
the last language in the chain (L3) describes allsthe previous languages.

The first step in the compilation of a L3 prograsma obtain a model - an instance
of the L3 metamodel. It is a representation of tBeprogram in the metamodel-based
repository. This step is a separate step in thelevhmcess of the compilation which
requires parsing of the text file and building ad®io It is implemented using a traditional
programming language (C++). Obtained lexemes [88]shored in the repository as a
very simple lexeme model [86]. Next, the transfaioralanguage LO is used to obtain
the L3 program model from the lexeme model.

When a program model has been built the actual datigm is being performed.
The L3 (also L2, L1, LO’) compiler actually is a o transformation. In this case, an in-
place transformation is used — the L3 program magl@verwritten by a semantically
equivalent L2 program model (also L2 by L1, etdhe final result of the chain of
compilation steps is an LO program model whicheantically equivalent to the initial
L3 program given as the input file. The chain ofihgpaation steps (from L3 to LO) can be
treated as one step (the corresponding transfaynsaére invoked one after another).

The last step in the compilation process is theeageheration (a model to text
transformation). An LO language text file is gerieda Also this step is done using the LO
language extended with native functions for filediiang written in C++. Actually, only
one write to file function is needed.

Since the whole L3 compilation process has beeidetivinto three separate steps,
there is a possibility to start with any step ié tappropriate model has been prepared.
This fact is used by MOLA to L3 compiler — MOLA m@m is being compiled directly
to an L3 model. This allows decreasing significantthe complexity of the
implementation of MOLA to L3 compiler. Actually, iallows using transformation
language L3 to build MOLA to L3 compiler.

The first MOLA Transformation Definition EnvironmerfMOLA Editor) [87]
was built on the basis of Generic Modelling Toob][4 a domain specific modelling
framework, developed by UL IMCS together with theigen Company. The models
(MOLA program and metamodel) were stored in a cdibfgaformat to the repository
used by the LO language. Thus the input for the MQ& L3 compiler, a model of a
MOLA transformation, already could be obtainedfdat, no other natural representation

of a MOLA program than a model can be obtained,abse MOLA is a graphical
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transformation language. The most appropriate wapnplement MOLA compiler to any
suitable language is using model transformatiorsus] the first MOLA compiler was
implemented using L3 language.

Since the MOLA Editor required more sophisticatedtéires than the Generic
Modelling Tool domain specific modelling framewodould offer, the next MOLA
Editor- MOLA2 Tool, has been built. MOLA2 Tool ustwe METACclipse framework [8],
which is based on Eclipse platform [88] and modahsformations. It should be noted
that METAclipse uses the same repository as thenfflementation. Therefore it was
possible to develop transformations for MOLA2 Tasing MOLA itself and the first
MOLA compiler. The second version of MOLA to L3 cpiler has been built for
MOLAZ2 Tool, using L3 language too.

Although there are two implementations of MOLA t8 tompiler, there are no
significant differences in the architecture andegahideas of implementations of both
compilers. The main difference between these twglementations is the MOLA
metamodel. The MOLA metamodel for MOLA2 Tool waspioved by eliminating
metamodel restrictions enforced by Generic Modgllifool and by making it more
suitable for compilation. The experience and aigant part of the code from the first
version of MOLA to L3 compiler is reused in the aed version. This work is based on
the second version of MOLA to L3 compiler.

Compilation of a MOLA transformation is divided anfour steps. Each of them is
performed by a separate component — compiler. Tt@sg@onents are:

e MOLA to L3 compiler

e L3 toLO compiler

e LOto C++ or Java compiler

e C++ or Java to executable file compiler

The general architecture of MOLA compiler is showrFig. 16. There may be a
guestion — why such a large number of compilers umed? Why do not use direct
compilation from MOLA to repository API? The answisrin the low complexity and
reusability of the each step. Each compiler trams$oa higher-level language to a lower-
level language. It is much easier to build comptlera language that is at a closer
abstraction level to the source language. Espgatal so if the general concepts of both
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languages are similar. This is the reason why L&l (rot LO) is used as the target

language for MOLA.
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Fig. 16. Thegeneral architecture of MOLA compiler

Another issue is the reusability. The compiler & language had been already
built and this implementation was efficient. Théa@éncy of the generated code does not
suffer if MOLA compiler is built on top of the condx chain. It has allowed
implementing MOLA on other EMOF compatible reposigs, EMF [26] or JGralLab
[66], and then only LO compiler must be rewrittdfven less, only the actual code
generator in LO compiler must be rewritten — lekmad syntax analyzers can be reused.
The last compiler (LO to code) is dependent ofARé¢ of the model repository.

The only disadvantage of a long compiler chaia lsnger compilation time. To
deal with this issue a program has to be structured most common approach is to use
code units. Each unit is compiled to a separateabbNext, a linker is used to obtain a
single executable. A similar idea is used alschsn MOLA2 Tool. Packages are used to
structure a MOLA program. A package may be defiae@d MOLA unit. That means that
all MOLA procedures that are contained by the an& compiled to a separate LO unit.
This allows using LO compiler as a linker that askkes all LO units into one C++ or Java
project. Thus model transformations (MOLA and L3ddmpilers) can work with

smaller models that helps to improve the overatigggance of the compilation process.
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5.2 Model-Driven Compiling

The usage of models and transformation languagéseiprocess of compilation
is not new. The ATL model transformation languadd][has already been used to
compile CPL to SPL [89] and FIACRE to LOTOS [90hel'ATL language itself is also
compiled using a domain specific only for this psge created language - ACG (ATL
Code Generation language) [91]. All these are xXanguages and the model-to-model
transformation is used for actual compilation samyl to the way it was used in the
example of the L3 to LO compilation [86]. A similatea is used also in the SmartQVT
[13] implementation. The QVT code is parsed to wbtae model representation of a
QVT transformation and the actual compilation te tlava file is performed using this

model.
A similar pattern of the compilation is used in @damples. Three basic steps are
performed:
e parse an input program and obtain the model of it
e compile the model of the input program to a modelrooutput program
e generate the code of the output program from theeio
This approach may be calledodel-driven compiling — models are used as core
elements of the compilation process (see Fig. 17).
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Fig. 17.Model-driven compiling

These steps are similar to phases of a compilatighe traditional compilation
technique [85]. The lexical and syntax analysispgdormed by the parser. The semantic
analysis, intermediate code generation (target rarogmodel) and optimization are

performed by compiler (model transformation). Tluele generation is done in the last

ol
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step. A model of a source program is stored acogrdo the language metamodel.
Actually, the parse trees used in traditional cdatioin technique can be treated as a sort
of models. Thus, the similarity is obvious.

All three steps of the model-driven compiling requappropriate metamodels
already built for both input and output languaged a transformation written using a
model transformation language suitable for the atatipn tasks. Actually, text-to-model
(T2M), model-to-model (M2M) and model-to-text (M2Tanguages are needed. An
exporter or importer written in a general purposegpamming language can be used
instead of the T2M and M2T transformations. Cefyaithe choice of the programming
language depends on the repository used to stodelsio

The model-driven compiling is even more approprifte graphical languages
such as MOLA. Since programs of graphical languagestored as models, the first step
can be omitted — the model-to-model transformatiwat implements a compiler can be
applied directly.

The main gains of using model-driven compiling are:

e The higher level of abstraction that is providedrbgdel transformation
languages allows reducing the complexity of conmpitglementation.

e This is the most appropriate way to compile graphi@nguages, because
they are mostly implemented using some metamodgdl 42 graph-based
[66] repository. Actually, programs (diagrams) aick languages are
models and the usage of a model transformationukege is the most
natural approach.

e |If the concrete syntax of the input language isedasn some general
coding language, like XML [92], then model transformasocan be
applied to obtain a model of the program fromcibsling In this case, a
standard parser can be used to obtain the modileaioding Next, the
model transformation can be used to obtain the moml&orming to the
input language metamodel. A similar approach idiegiple also for the
output language.

e Since attribute grammars have been used to sp#o#fysemantics of

programming languages [93], a precise definition thie model

54



transformation between source language and taaggubhges can be used
to define the semantics of the source language ieverore readable way.
The first experience usinmodel-driven compiling was quite promising. The
MOLA to L3 and L3 to LO [86] compilers have beervd®ped. The implementation of
both compilers has shown that using transformatamguage for compilation tasks
reduces the complexity of the implementation. Hosvevhe best practice of model-
driven compiling has yet to be developed and a @isgn to the traditional compilation
techniques [85] must be done.

5.3 L3 from Lx Language Family

The Lx language family as any other model transédiom language uses some
sort of metamodelling language. It is quite closehe OMG EMOF specifications. The
main difference is that there are no packages s ihetamodelling language. The
metamodel of this language is shown in Fig. 18.
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Fig. 18.The metamodel of Lx metamodelling language

Classes and binary associations are core elemértssdanguage. Classes can
have attributes which can be primitive or enumeratyped. There are four pre-defined
primitive types -String Integer, BooleanandReal There are no possibilities to define
new ones.

The basic commands (constructs for a textual defmpf a metamodel) of the Lx

family metamodelling language are the following:
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class<classNamep> defines class with a given name.

attr <classNamexattrName><ElementaryTypeName> defines attribute with a
given name and type.

assoc<classNameX {ordered} ]|<cardinality>
<roleName¥<roleName><cardinality> {ordered} ] . <classNamep- defines
association with corresponding properties.

compos<compositeClassName* {ordered} ] <card><roleName#?
<roleName><card>{ordered} ] .<partClassName>- defines compositions with
corresponding properties.

rel <subClassNamesubClassOf<superClassName> defines a generalization
relationship between given classes.

enum<enumNameX <enumlLiterall>< enumLiteral2>... }; - defines enumeration
with given elements.

An elementary unit of LO transformation i€@mmand (an imperative statement).

LO transformation contains several parts:

global variable definition part
native subprogram (function or procedure) declarapart (used C++ or Java library
function headers)
LO subprogram definition part. Exactly one subpawgrin this part is thenain. The
main subprogram defines the entry point of thedi@mation. An LO subprogram
definition also consists of several parts:
0 Subprogram header
= procedure <procName¥<paramList}; Subprogram header, the (formal)
parameter list can be empty. Parameter list cansisformal parameter
definitions separated by “,”. A parameter definiticonsists of its name,
the parameter type (the type can be an elemenypeyar a class from the
metamodel), and the passing method (parametersbeapassed by
reference or by value). If the parameter is passedeference, its type
name is preceded by t8echaracter.
= function funcNamex¥<paramListy}: <returnType3 - return type name can
be an elementary type name or class name.

0 Local variable definitions
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= pointer <pointerName> <classNamep>- defines a pointer to objects of
class <className>.
= var <varName>: <ElementaryTypeName>- defines a variable of
elementary type. <ElementaryTypeName> is one ohefgary types.
o Keywordbegin -starts subprogram body definition
0 Subprogram body definition
o Keywordend -ends subprogram body definition.
The subprogram body definition may contain theoiwlhg commands:

return; - returns execution control to caller proceduréuaxction.

call <subProgNamexactPrmList}; — calls a subprogram. Actual parameters list
can be empty. Actual parameter list consists chtyirexpressions separated by “,”.
label <labelName?>- defines a label with the given name.

goto <labelName> - unconditionally transfers control to label <lakame>. The
label <labelName> should be located in the cursebprogram.

first <pointer>: <className>else <label> - positions <pointer> to an arbitrary
object of class <className>. Typically, this comchancombination with th@ext
command is used to traverse all objects of thergigkass (including subclass
objects). If the class does not have objects, ¢potnbecomesiull, and execution
control is transferred to the <label>. The clasthis command must be the same as
(or a subclass of) the class used in pointer defmi If it is a subclass, then the
pointer value set is narrowed (for the subsequestidgions ohext).

first <pointerl>: <className>rom <pointer2>by <roleName>else <label> -
similar to the previous command. The differencth& it positions <pointerl> to an
arbitrary class object, which is reachable from igfy2> by the link <roleName>.
Similarly, this command in combination with thext command is used to traverse
all objects linked to an object by the given ligpé.

next <pointer> else <label> - gets the next object, which satisfies conditons
formulated during the execution of the correspogdirst and which has not been
visited (iterated) with this variable yet. If ther® no such object, the <pointer>
becomesull, and execution control is transferred to <label>.

addObj <pointer=<classNamep- creates a new object of the class <className>.
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10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

addLink <pointerl><roleName><pointer2> - creates a new link (of type specified
by <roleName>) between the objects pointed to ley<tpointerl> and <pointer2> ,
respectively.

deleteODbj <pointer> - deletes the object, which is pointed to by <pans.

deleteLink <pointerl><roleName><pointer2» - deletes link, whose type is
specified by <roleName>, between objects pointeblytepointerl> and <pointer2>,
respectively.

setPointer <pointerl=<pointer2> - sets <pointerl> to the object, which is pointed
to by <pointer2>. In place of <pointer2> thell constant can be used.

setVar <variable>= <binExpr> - sets <variable> to <binExpr> value. <binExpr> is
a binary expression consisting of the following elemergtementary variables,
subprogram parameterqof elementary types) literals, object attributesand
standard operatoré+,-,*,/,&&,]|,! ).

setAttr <pointer=<attrName=<binExpr> - sets the value of attribute <attrName>
(of the object, pointed to by <pointer>) to thaneixpr> value.

type <pointer>== <className>=lse<label> - if the type of the pointed object is
identical to the class <className>, then contrtlaissferred to the next command,
else control is transferred to <label>. In place¢haf equality symbaot= an inequality
symbol != can be used. This command is used faraehing the exact class of an
object.

var <variable==<binExpr>else<label> - if the condition igstrue , then control is
transferred to the next command, else controlaestferred to <label>. In place of
equality symbol other (<, <=, >, >=, I=) relationaperators compatible with
argument types can be used.

attr <pointer=<attrName>== <binExpr>else<label> - if the condition idrue then
control is transferred to the next command, elsatrobis transferred to <label>.
Other relational operators (<, <=, >, >=, |=) canused too.

link <pointerl><roleName><pointer2>else <label> - checks whether there is a
link (with the type specified by <roleName>) betwethe objects pointed to by
<pointerl> and <pointer2>, respectively.

pointer <pointerl>==<pointer2xelse<label> - checks whether the objects pointed
to by <pointerl> and <pointer2> are the same. &ubstef <pointer2>null constant

can be used. The inequality symbol (I=) can be tsed
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It is easy to see that the language LO containg th@ very basic facilities for
defining transformations [94].

Language LO’ - model transformation language LO’ is based on émgliage LO.
The new feature of LO’ is the possibility to makad arithmetic expressions (in LO, only
unary and binary expressions were allowed).

Language L1 -is supplemented with an imperative pattern matcHesjure
(suchthatblock), so that it is possible to search for ins&that match some condition.
The suchthatblock may be used withirst andnext commands. Thsuchthatblock can
contain conditions on values of variables or atiiels, links between instances and other.
In fact, all L1 commands can be used to specifyepatcondition, including the nested
first commands.

The textual syntax for the patteisuch-thatlock) is as follows:

(first | next ) <pointerNamel> : <className>[ from
<pointerName2> by <roleName>] [

suchthat

begin

<L1Commands>

end; ]

The condition holds if it is possible to succedgf(86] reach the end of the block
(i.e., successfully execute its last commandhéf¢ondition fails then the next instance is
examined. Theonditionalcommands in LO (commands that haveelebranch) may be
used without thelsebranch in thesuchthatblock. If in such a command the undefined
elsebranch is to be executed then the condition definethe pattern fails.

Language L2 -has the possibility to make loops. A special comanaxists in L2
with which it is possible either to visit all insiges of the specified class or just those
instances of the class that match the given patiéra textual syntax for the loop is as

follows:

foreach <pointerNamel> . <className> | from <pointerName2> by <roleName>
][  suchthat
begin
<L2Commands>
end ]
do
begin
<L2Commands>
end;

Language L3 -has the branching command — a standaitten-elseconstruct can

be used. The textual syntax of the branching conanmas follows:
if
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begin
<L3Commands>
end
then
begin
<L3Commands>
end
[ else
begin
<L3Commands>
end ];

The L3 metamodel (the Lx language family metamoethown in Fig. 19.
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Fig. 19.The metamodel of L3 language

It has already been shown [67] that MOLA language e implemented
efficiently using a set of low-level operations fwatterns. There is a direct mapping from
the required operations to the commands of Lx mtdakformation family.
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initializeGetNext(Class Cl) and getNext(Class CI)
operations can be mapped fisst c:Cl and next ¢ commands. These
commands return all instances of a given classhénbeginning thdirst

c:Cl command must be called to initialize the iterattbrough required
instances and afterwards thext c must be called to iterate through
initializeGetNextByLink(Association as, CI1 inst,

Class CI2) and getNextByLink(Association as, Cl1

inst, Class CI2) operations can be mapped to tinst c:CI2 from
instby asandnext c commands. These commands return all instances of a
given meta-class navigable by links of the givepetyfrom a fixed

instance. The iteration must be done similarlynethée previous case

In fact, thefirst ... suchthat command can be used instead of paifirst and

next. Actually thefirst ... suchthatis compiled to these commands. Thus, MOLA

compiler can use a closer construct to patterntasyat.

checkLink(CI1 instl, CI2 inst2, Association as)

operation can be mapped to tlek instlas rolenaménst2 command.
The semantics of this command is the same as thmarges of this
operation — check the existence of a link of theegitype between two
fixed instances.

eval(Cl inst, Expr exp) operation is an expression interpreter
and the MOLA realization to L3 must implement a g@tor of sequences
of L3 commands that interprets the given expressibie core elements of
such expressions are attribute or variable valezlsh These operations
can be mapped tattr inst<attrname><relation><expression>andvar
<varname><relation><expression>commands accordingly. Arithmetic
expressions can be mapped to expressions introduyctwe LO’ language.
Constraints that are complex (Boolean) expresswhere conjunction,
disjunction and negation are used can be mapped s®equence of

commands which interprets the given expression.
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5.4 Mapping from MOLA to L3

This section contains a detailed description of rttepping from MOLA to L3.
That includes a mapping of metamodelling languamesitucts and a mapping of MOLA

procedure and its elements to constructs of thlahGuage.

5.4.1 Mapping of Metamodelling Languages

Both MOLA metamodelling language and the Lx fammigtamodelling language
are based on EMOF. So the mapping is straightfawieor describing this mapping we
will use the meta-class names from MOLA and Lx fgnmetamodelling language
metamodels shown in Fig. 3 and Fig. 18. The MOLAategl meta-class names are
prefixed by theKernel prefix, but the Lx related meta-class names agéixad by thelx
prefix.

e EachKernel::Classinstance is transformed tox::Class with the same
name, but since there are no packages in Lx,LtheClass name is
prefixed by all parent package names.

e Both languages have pre-defined primitive types.pAimitive types that
are in MOLA -String, Integer, Boolean- are also in Lx.

e Each Kernel::Enumerationinstanceis transformed toLx::Enumeration
instance and eadkernel::EnumerationLiteralinstance is transformed to
Lx::EnumerationLiterainstance owned by the appropriate enumeration.

e EachKernel::Generalizationnstance is transformed to::Generalization
instance. Of coursegeneral and specificlinks are set to the appropriate
classes.

e EachKernel::Associationinstance is transformed tox::Associationand
appropriate association ends that are represergelemel::Property
instances linked bynemberEndink to the association are transformed to
Lx::AssociationEndinstances. They are linked to the appropriate class
instances. Multiplicity, ordering and compositiomfdarmation of

association ends are also transformed directlyto L
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e EachKernel::Property instancethat is an attribute is transformed to an
Lx::Attribute instance. Since MOLA allows only primitive or
enumeration-typed attributes the correspondendiea@st.

An example of the transformation is given in Fi. 2

classKernel::Classifier;

= VisibilityKind
e classKernel::Class;
public
private
package classKernel::Property;
© Kernel-Classifier enum VisibilityKind : {public,private,package};

iz&bstract . Boolean

composKernel::Clasg0..1]classownedAttribut§*]. Kernel::Property;

O Kernel:Class attr Kernel::Classifier.isAbstract:Boolean:;

0. Hglass attr Kernel::Property.isDerived:Boolean;
ownedAttribute  |*

O KernelzProperty attr Kernel::Property.isReadOnly:Boolean;

izDerived : Boolean
izFeadOnly : Boolean
vigibility © Vizibilitykind

attr Kernel::Property.AggregationKind:AggregationKind,;

attr Kernel::Property.VisibilityKind:VisibilityKind,;

rel Kernel::ClassubClassOfKernel::Classifier;

Fig. 20.An example of MOLA and Lx metamodelling languages.

5.4.2 Mapping of the Procedure Headers

MOLA procedures form the executable part of a MOtt&ansformation. The L3
language also has procedures. Both MOLA and L3qulaes may have parameters that
may bein (passed by value) an-out (passed by reference). Both languages may have
variables declared. In L3 the class-typed variables parameters are callpdintersand
have a different syntax, so compiler must distisguiclass-typed variables from
enumeration and primitive-typed variables. Each-redarence class element that is used
in rules in a MOLA procedure is transformed to a@nper declaration. Actually, the
transformation of procedure header is straightfodwand does not need a detailed
description. An example of the transformation dfl@LA procedure header is shown in
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Fig. 21 (the L3 code in all examples is used taebeliustrate the result of compilation.

Actually, the compiler produces instances of theleh@f an L3 program)

Is main: )
\ main procedure

. ExampleProcedure (
] ExampleProcedure ———— ——— >
Param:String,
Paraml &lnteractions::Lifeline
@F‘aram1 LIfE|II‘|E

{Interau:tlnns}

v ar . Enumerationt

\Avar Var: Enuner ati onl;
var! @ Message
tInteractions} .
pointer

fW R Varl: |l nterations::Message;
o araml [ LiTeline
. [} {Interactionz}

signature

pointer

ClIElem: Interactions:: Message;
signed | Y
CIElem ; Message,/

@{_‘]- -- {Interactionz}

p oy

Fig. 21.An Example of MOLAProcedure header transformation to L3
5.4.3 Mapping of the Execution Control Flows

The basic statements of MOLA are rule and foreadp.l There are also other
MOLA statements - text-statement, call-statement, €ontrol flows are used to
determine the order of execution of MOLA statemevithin one MOLA procedure.

There is exactly one start symbol in a MOLA proaedit defines the entry point
of the MOLA procedure. Other statements may passettecution control to another
statement or terminate the execution of the praeedtnd symbols are used to terminate
the execution of the procedure. They define thé goints of the MOLA procedure. The
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execution of the procedure may be terminated ajsa bext-statement or a rule, if the
corresponding control flow is not present. Actuadytext-statement and a rule are used as
traditional branching constructs (they may have éwtgoing control flows, one of them
labelledELSE. A foreach loop contains nested MOLA statemeldsp( body) that are
executed in each iteration. It has a special statem loophead (rule-based loophead),
which defines the entry point to the loop-body. fEhmay be any other MOLA statement
in the loop (except start-statement) — nested l@psalso allowed. A statement that has
no outgoing control flow terminates the currentrat®mn of the loop. A branching
statement also may terminate the current iteragifotme loop, if one of outgoing control
flows is not present. Other statements (call-statdiretc.) just pass the execution control
to the next statement. Control flows in MOLA proaesl may connect statements in an
almost arbitrary way, there are only few restrigsio Incoming control flows are not
allowed to the start symbol and loophead. Outgaioigtrol flows are not allowed from
end symbol. Also it is not allowed famp into a loop from an outside statement (it is
allowed tojumpout).

Control flows and MOLA statements form a directadpl, where some nodes
(loops) may contain a nested graph. This grapthaescontrol flow graph (CFG) of a
MOLA procedure. The control flow graph is a dataisture used by traditional compilers
for analysis and optimization of a program execuf{ib].

The most natural way to code a control flow graph textual language is to use a
labelled block of code for every node angump command for every edge. Thus each
node of the MOLA control flow graph will compile & block of L3 code. The block of
code starts with &bel command that unambiguously identifies the blocke €kecution
control is passed to another code block usingp® command. If the execution of a
MOLA procedure must be terminated, thereturn command is used.

According to the different types of statements dbsed above we can distinguish
five types of nodes in the control flow graph ofVEDLA procedure and define the
mapping to L3 language for these types:

e Entry node (start symbol) is a unique and mandatarye. Here we do a little
optimization — no L3 code block is created for tstdatement. The outgoing
control flow determines the first MOLA statemenatin turn determines the first

code block of the procedure.
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e Exit node (end symbol) is compiled to the followiogde block (in what follows,
a simple template language is used — L3 keywore$alded, other parts of code

are shown in angular braces containing an intuiescription ):

label <label name> ;
return;

e Simple node (e.g. call statement) haven’'t an oam&LSE control flow. It is
compiled to a simple code block — a sequence ofntanads depending on the
actual type of MOLA statement and tfeto command to théabel command of
the code block that is created from the MOLA stampmconnected by the

outgoing control flow.

label  <label name>
<sequence of commands>
goto <next label name>

e Branching node (e.g. rule) may have two outgoingtrad flows, where one of
them may be aikLSEcontrol flow. It is compiled to aif-then-else command.
The if-block contains the conditionthen-blockcontains the action part of the
MOLA rule or text-statement arglse-blockcontains ggoto command to th&abel
command of the code block that is created fromMI@LA statement connected
by the outgoindg=LSEcontrol flow. The last command in the main codeckls
thegoto command to théabel command of the code block that is created from the

MOLA statement connected by the otheor{-ELSE outgoing control flow.

label <label name> ;

if

begin

<condition commands>

end

then

begin

<action commands>

end

else

begin

goto <next else label name> X
end;

goto <next label name> :

e Loop node (e.g. foreach loop) contains a nestedraoiiow graph. Since a loop
and its loophead cannot be used separately, a cani@ode block is created
for both nodes. A loop is compiled tofareach command. Thesuchthatblock
contains the condition, thao block contains the action part of the loopheace Th

do block contains also goto command to théabel command of the code block
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that is created from the MOLA statement connectgdhe outgoing from the
loophead control flow. The last command in tteblock is alabel command.
This label is used to receive back the executiartrobfrom the code blocks that
terminate an iteration of the loop. Thus a MOLAtataent which terminates the
execution of the current iteration of the loop gasthe execution control to this
label command instead of terminating the execution ofviwle procedure. In
fact, the execution control is passed away from dbeblock of a foreach
command, but it is received back just at the endrofteration. Thus, the code
blocks that are created from MOLA statements withie loop body are included
in the corresponding L3 loop body indirectly - usgoto and label commands.
The last command in the main code block iga@o command to thdabel
command of the code block that is created fromMI@LA statement connected

by the outgoing control flow of the loop.

label <label name>

foreach < loop variable name > suchthat
begin

<loophead condition commands>

end

do

begin

label < loophead label name >
<loophead action commands >:

goto <loophead next label name> ;
label <loop iteration end label name> X
end

goto <next label name> :

The complete code of the procedure is assembled) wside blocks obtained in

the way just described. The first code block iduined by the start-statement. All other

code blocks may be added to the procedure in atragborder, because the order of

execution is determined only bgbel andgoto commands — not by the order in which

command blocks are added to the procedure.

The result will be likely a sort adpaghetti codg95], but this causes no danger

because the L3 code is just an intermediate codehw$ compiled further. This code is

not read by a transformation developer. The wideaf thegoto commands does not

cause any loss in the overall performance.
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5.4.4 Mapping of MOLA Statements

The control structure aspect of the mapping of MOkfatements to L3
commands has already been described in the pregeetgon. This section contains a
detailed description of the mapping for each MOltateament including data processing
and pattern matching aspects.

The mapping for start and end statements has glfeeeh described. The start-
statement is used to determine the first MOLA sttt and end-statement is
transformed to thesturn command.

Thecall statementis transformed to theall command. Since the mapping from a
MOLA procedure to L3 procedure is one-to-one, thkked L3 procedure is the same that
is mapped from the MOLA procedure called by the MOtall-statement. The L3
language allows only binary expressions to be usedictual parameters of ticall
command. MOLA allows arbitrary expressions (of appiate type) to be used as actual
parameters (the same problem is for functions irxgression). Our solution is to use
temporary variables or pointers (depending on theah type of a parameter) ardtVar
or setPointer commands to calculate the values of expressidmssd commands must be
executed before theall command. If the actual parameter is a MOLA vagapbrameter
or class element identifier, then a temporary Vdeids not used. An example of the

compilation is shown in Fig. 22.

var temp_varl :String;
var temp_var2 :|nteger,;

. begin
vV
Gest(a,"c:unstarrt",ﬁﬁetw.irrtAttrD label id_labl
T setVar temp_varl =" constant
setVar
temp_var2= 564+ c.intAttr ;I nteger;
call test (atemp_varlitemp var2 );

goto id_labx ;

Fig. 22.Compilation of call statement

As it was described before, thext statementis transformed to th#-then-else
command. MOLA text-statement has two main partsceraition (constraint) which is
expressed using OCL-style expression and a listssignments. The condition holds if
the expression evaluatesttae. The condition is compiled to thieblock of theif-then-

elsecommand. Assignments are compiled tottlenblock of theif-then-elsecommand.
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Assignments are used in the text statement to raseajues to elementary
variables and pointers. The L3 commands that aeel disr this task arsetVar and
setPointer. In MOLA the value that is being assigned is espesl using asimple
expressionof an appropriate type. A simple expressionlmkger type may contain
Integer-typedvariable, parameter or attribute specificatiomsteger constants, pre-
defined functions gize, indexOf, tolntegerand arithmetic operations (addition,
subtraction, multiplication). A simple expressidnSiringtype may contairstring-typed
variable, parameter or attribute specificatioB$;ing constants, pre-defined functions
(toLower, toUpper, substringand toString and a concatenation operation. A simple
expression oBooleantype may contairBoolean-typedrariable, parameter or attribute
specifications,Boolean constants tue and false or pre-defined functionigTypeOf,
iIsKindOf, toBooleap A simple expression ofenumeration type may contain
enumeration-typestariable, parameter or attribute specificatienymeratioriterals or a
pre-defined functiontoEnum A simple expression oflasstype may contain a&lass-
typedvariable or parameter specification (pointell constant or typecast.

In L3 similar expressions are allowed, but there faw differences. They are:
there is no direct typecast of a pointer, actuahmeters in a function call may be only a
binary expression of an appropriate type. Theoligire-defined functions in L3 also does
not match all the pre-defined functions of MOLA dmmage. The solutions of these
problems are rather simple. In addition, some kioti€xpressions in L3 allow more

features than in MOLA, but these features are eletvant for MOLA compiler.
Table 2.Correspondence of elements used in expression©ibAvand L3

MOLA L3

String, Integer, Booleanumeration-

typed constants, NULL constant "
elementary variables, pointers +
attribute specification +
+,-,*,concatenation +

temporary variable and extra
setPointercommand used
temporary variables and extra
function call setVar commands for complex
parameters used

direct typecast (class-typed)
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MOLA L3

extended library of native
functions used

pre-defined functions

toEnum, tolnteger, toString, toBoolean +
indexOf, toLower, toUpper extended library used
size, substring +

temporary variable antype
command used
The complete table of correspondence is shown ibleT@. The left column

isTypeOf, isKindOf

describes features used in MOLA expressions and riget column shows the
correspondence in L3. The plus sign means thantgeping is direct. If there is no direct
mapping the basic principles of a solution are ghdivmay be the usage of a temporary
variable (typecast and function call) or the usajean extended library of native
functions {ndexOf, toLower, toUppdunctions).

Though L3 expressions allow Boolean operationsy tb@nnot be used with
relational operators (<, >, etc.). Relational opmisamay be used only war andpointer
commands. That makes the compilationBafoleanexpressions used in MOLA more
difficult.

In MOLA the simplest condition is a simple expressof theBooleantype (no
relational operators, no Boolean operations). Theis compiled using a temporary

variable and aar command in the following way:

Condition: if
begin
[<extra commands>]
<simple boolean expression> setVar temp_var=<simple boolean

expression>;
var temp_var==true;
end

The extra commands m.éy be needed when the extralat@ns are needed, e.g.
to compute argument values for Boolean-typed fonctall.

Usually a condition contains also a relation (>p=, <=, =, <> operators can be
used). Since the left and the right operands magribigrary expressions of the same type,
the value of each expression is computed and storademporary variable. Then these
variables are compared usingvar or pointer command depending on the type of

expressions.
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Condition: i f
begin
[ <extra commands >]

<expressionl><relation> setVar/setPointer temp_varl=<expressionl> ;

_ [ <extra commands >]

<expression2> setVar/setPointer temp_var2=<expression2>  ;
var/pointer temp_varl <relation >temp_var2 ;
end

A condition in MOLA may contain also Boolean op&as - conjunctiongnd),
disjunction 6r) and negationnt) — together with relational operators. The L3 has
such features, but it is shown [16] that it is @llesto construct L3 code that implements
the Boolean operations. The algorithm implemente®1OLA to L3 compiler uses the
same principles.

An example of the compilation of a MOLA text statamhis shown in Fig. 23.

— . if begin
- ot Epar © Integer :

setVar _mvar_9=s;

-~

g="3tar" and par=0 setVar _mvar_10="Star";
.-- s:=tollpper(c.name+"3tar") var _mvar_9== mvar_10 else _mlabel_8;
par:=sizels+1 setVar _mvar_6= true ;
label  _mlabel_8;

setVar _mvar_7= false ;

setVar _mvar_12=par;

setVar _mvar_13=0;

var _mvar_12 > mvar_13 else _mlabel 11;
setVar _mvar_7= true ;

label  _mlabel 11;

setVar _mvar_4= false ;

var _mvar_6== true else _mlabel 5;

var _mvar_7== true else _mlabel 5;
setVar _mvar_4= true ;

label _mlabel_5;

var _mvar_4== true ;

end then begin

setVar _mvar_14=c.name: Stri ng+"Star";
setVar  s=toUpper(_mvar_14);

setVar  par= Length(s)+1;

end else begin

return

end;

Fig. 23.Compilation of text statement.
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Another and the most important decision statemeMOLA is arule. It is also
compiled to thef-then-else command. The condition of the rule is expressedgusi
pattern. The implementation of pattern matchingidgtly is the most demanding
component to implement and also the key factor rdeteng the implementation
efficiency.

The most obvious way to compile a MOLA pattern ® ¢commands is to start
from one (chosen by some algorithm) class elemedttaverse the pattern graph. The
result of such compilation is fast command created for the initial class element and
nestedirst commands for other class elements. It is obvibas the same pattern can be
matched in different ways using the basic L3 comusafrinding the most efficient way
(the optimal search plan) is the main task forguattmatching. The pattern matching
implementation in details is discussed in nextisast

An example of the compilation of a pattern is giweifrig. 25.

i~ >, f
f@c ; Class t: Type begin
N {Hernel} {Kernel} first p:Kernel::Property from c
- yped |ype b)t/)e%\%nedAttnbute suchthat
R Property setVar  _mvar3=p.name: String;
P (“crnelt setVar _mvar4="value”;
{name="value"y var _mvar3 == mvard;
p . . A first t:Kernel::Type from p
E ELSE} by type;
end ;
end
then

Fig. 24.Compilation of MOLA rule - pattern.

The action part of a rule consists of class elemenssociation links and
assignments that are included in class elementat€anddeleteclass elements are used
to create and delete particular instanc&®ate and deleteassociation links are used to
create and delete links. The assignment is usexsdmn the value of an attribute of a
particular instance. The value is specified usixgressions that have been already
described in previous sections. The correspondeaetteeen MOLA and L3 constructs is

shown in Table 3.
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Table 3.Correspondence of constructions used in actiongbdiie rule.

MOLA

create, deletelass-elements

L3
addObj, deleteObjcommands

create deleteassociation-links

addLink , deleteLink commands

attribute value assignments

setAttr commands

The L3 code that is created for the action parthef rule is placed in thtéhen

block of theif-then-elsecommand. An example of the compilation of the acpart of a

rule is shown in Fig. 25.

i Ty

e Class
tHernel}

name:="skudent"

typed owningPackage
pr: Property pack : Package:!
{Hernel} © 0 iHermelr |
Ename:="attendant" l i____________,:
Lecmmeemm e e mmeemnl
e : vy

i f begin ...end

then begin

addObj pr:Kernel::Property;
addLink  pr.type.c;

setAttr c.name="Student";

setAttr pr.name="attendant";
deleteLink c.owningPackage.pack;
deleteObj pack;

end else

Fig. 25.The compilation of the rule — action part.

The last MOLA statement described in this sectisrthie foreach loop The

implementation of a loop is one of the crucial esun the realization of the MOLA

compiler. An incorrectly chosen search structure weuse serious efficiency problems.
The condition of a loop is expressed using theepatof the loophead, which contains a
special class-element — tlh@op variable The iteration is performed over all instances

that correspond to the loop variable.

The loop is compiled to théoreach command. The condition of the loop is

compiled to thesuchthatblock of theforeach command. The compilation of the loophead
pattern is similar to the compilation of the rulettern and is also discussed in next

sections. The action part of the loophead is beorgpiled in the same way as the action

part of a rule. The created code is added tath@ock of theforeach command.

For example, it is possible to compile the looppided in Fig. 11, in the

following way:

foreach  as:BinaryAssociation
first subjEnd:Property
first subjCl:.Class from

suchthat
from as by sourceEnd suchthat
subjEnd by class suchthat
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first domOWLCIL:OWLClass from subjCl by #owlClassForCl suchthat
first objEnd:Property from as by targetEnd suchthat

first objCl:Class  from objEnd by class suchthat
first ranOWLCI:OWLClass from objCl by #owlClassForCl
do

addObj  op:OWLODbjectProperty;
addLink as.#obj_prop_For_Assoc.op;
addLink op.RDFdomain.domOWLCI;
addLink op.RDFrange.ranOWLCI;
SetAttr op.localName:=as.name;

As we seeforeach loop is naturally compiled to commaioreach ... suchthat
command. Thdirst ... suchthatcommands are nested in each other according to the
navigationorder of the elements corresponding to the pattarching begins from the
loop variable, continues along the both brancheb@pattern, that consist from the class
elements and links. The commarfdst from byare included in the block of the prior
suchthatcommand. If any of these commands is not exectited,is, the corresponding
first instance is not found, themacktrackingtakes place — the next instance, which
corresponds to the previous operation, is takertoflingly, the main task of MOLA
compiler is to arrange thirst ... suchthatommands in the order that makes pattern

matching the most efficient.

5.5 The Simple Pattern Matching Strategy

Implementation of pattern matching for MOLA use< tlocal search plan
generation strategy. This is one of the most popsteategies, however typically it
requires a sophisticated analysis of pattern on exalerlying model to choose the best
search plan. A simple algorithm (in the sense af lsomplex is the implementation) is
proposed which is efficient for the typical MOLAtpEns used in MDSD-related tasks (it
is efficient also for others if appropriate constauare used). The simple algorithm uses
the following principles:

e if the pattern contains a reference class elentleen, the pattern matching starts from
the reference (if there are more than one, thearlaitrary is chosen).

e otherwise the pattern matching starts from the leapable in a loophead or from
arbitrary chosen element in a normal rule.

e pattern matching is continued with class elementessible from already traversed

class elements by association links.
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If rule pattern contains several independent pattBagments, then these
fragments are processed independently by the samepbtes — such fragments can be
treated as separate patterns.

Pattern matching in a regular rule is started fithwn reference class element, if
such class element exists in the pattern. Though.M@bes not require the presence of a
reference class element in the pattern, the pedaigage of MOLA has shown that most
of the regular rules contain it. It is because tisage of imperative control structures
causes reuse of the previously matched instandeshware represented by the reference
class elements in MOLA. This is one of the mairsoges why such simple optimization
technique works almost as well as more sophisticapproaches.

Use of reference class elements is natural alsmoheads. It is common to have
a loop over, for example, all properties of a giedass. This task can be easily described,
using a single MOLA loop, where the pattern in lb@phead is given using the reference
class element and the loop variable. See the l@pb&the inner loop in Fig. 26 for the
typical case. In this case the pattern matchingtasted from the reference element
(@pack reducing the search space dramatically. Of couhsepath from the reference
class element to the loop variable may be longee. dnly restriction is that cardinalities
of associations along the path (except one dirdxetfgre the loop variable) should be "1"
or "0..1".

For foreach loop statements without a referendeerioophead, pattern matching
is started from the loop variable in the loopheRrhctical usage of MOLA has shown
that typical tasks are naturally programmed usirgtepns, where cardinalities of
association links leading from the loop variable 44" or "0..1". This causes the
execution of the loop to work in a linear time degant on the number of the instances
corresponding to the loop variable. Of course, tluss not apply for every example, but
if an appropriate metamodelling (UML-like, usingngposition hierarchy) and imperative

algorithms are used, then this condition holdsiost cases.
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( bhw_Create llze Case Interactions](Eue, ([@sPack, [Eam) )

Fig. 26.Transformation example - MOLA procedure buildingkeage hierarchy.

Note the loophead of the outer loop in Fig. 26. dgiocardinalities of association
links leading from the loop variable are "0..*"etlpattern matching started from loop
variable is still efficient. Since class elementeen than the loop variable provide the
"existence semantics" (find first valid match),gractice this loop works also in linear
time because almost all requirements are descubied scenarios. In fact, this additional
constraint is used to filter out those few caseerehrequirements are described using
different means.

Note that this strategy does not even require tiadyais of the cardinalities of
metamodel elements at the same time remainingexifin the practical usage. A similar
pattern matching strategy is used also by Fujalb@& Bound variable (reference class
element in terms of MOLA), is even required by thesttern in Fujaba. However, the
benchmark tests [52] have shown that this strapegforms as well as more sophisticated
strategies. The same tests also have shown thappmopriate usage of the language
constructs (improvement of Fujaba transformatica)ses a significant positive impact
on the performance. The same holds also for MOL8&wdver the feature which
distinguishes both languages is the loop variabldé MOLA foreach loop. First of all,
the transformation becomes more readable for hureader; secondly, it gives slight
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advantage in the performance of the pattern magcHinallows iterating through the
instances corresponding to the loop variable owlile other patterns elements are
checked just for the existence. On the contraryjalbau is forced to examine
corresponding instances to all pattern elementsarioreach loop.

5.6 Benchmark Results

The simple pattern matching strategy has been mmgaéed in the MOLA Tool
for MOLA language. The benchmark tests for thislengentation have been carried out.
The example described in the Section 4.4 has beesed. The same tests have been
repeated for MOLA implementations for MIIREP, JGahLand EMF repositories.

Table 4.Benchmark results of MOLA implementation for diéat repositories.

Transformation execution time (ms)

Model size (N) | MIIREP EMF JGralLab
1750 134 78 277
3500 266 106 388
17500 1349 378 1366
35000 2856 659 2601
87500 6872 1926 6288
175000 15222 3221 11609
350000 27614 7348 23420

The benchmark results are shown in Table 4. Siheetransformation which is
shown in Fig. 15 has been tested, similar measrmessed. The first column depicts the
size of model used for tests. The model size (N tistal number of class instances in a
source model. Transformation execution times faDIM implementation have been
shown in the next three columns. The times have lbeeasured in milliseconds rather
seconds as it was done in the previous test (sbke T3. It should be noted that the
performance has been much better than for previmptgementation. For example, the
models of size N=3500 have been processed in ks one second in the new
implementation, while the old (SQL-based) implenaibh executes the same
transformation in 65 seconds (see Table 1).
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The MOLA implementation through Lx language famiyd simple pattern
matching strategy perform in less than 1 secondriodels of size N10000 which is a
typical size of model used in MDSD. Since the ex@mpsed in the benchmark is a
typical MDSD transformation (all instances in a rabdf tree-like structure are
processed), benchmark tests show that MOLA impleatiem is efficient for MDSD-
related tasks.

It is interesting to compare also the performant®O®LA on different model
repositories. For all repositories the executiomes grow almost linearly against the size
of a model. The EMF repository has shown the bestits. Two other repositories
(MIIREP and JGralab) perform equally strong. MIIREPbetter for small models, but
JGralLab is better for larger models (the executiomes grow slower for JGralLab).
However, the difference between results is quiteoma It should be noted, that all
implementations have been tested on large sourclsigN=350000). They have been
processed in less than a half minute. Note thtitérexample every source model element
must be processed and target element created.

It should be noted that the performance of a répgsihas a great impact on
overall performance of transformation technologgr Example, the loading and saving
EMF-based models are quite inefficient comparedhto execution of transformations.
For a model of size N=350000 the loading data tob& seconds and saving data took
more than 10 minutes, while execution of transfdromatook just ~7 seconds. JGralLab
has much better results — loading model took ~lorscand saving model after
transformation took ~3 seconds. However, for ghosstories the saving time of model
increases non-linearly. This problem should bertakéo account, but typically MDSD-
related transformations are used within some modeiool and model is saved only

when a work with the tool has been ended.

5.7 Local Search Planning Using Annotated Metamodels

MOLA language can be used not only in the MDSD-likenains, where patterns
are similar to those described in the previousieecbut also in others. A more advanced
pattern matching technology should be used to supgificient matching of these
patterns. The classical local search planning ambras used in MOLA for these cases.

This algorithm uses similar principles as the immatations of the languages
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PROGRES [48], VIATRA [49] and GrGen [50]. It shoubd noted that this algorithm
hasn’'t been fully implemented in the MOLA Tool yéit first a search graph (host
graph) is built corresponding to the pattern. By usirige tassociation cardinalities,
existing in the metamodel and additional annotatidheweightsare placed on the edges
of the search graph. The weight of the edge reflgat priority with which the operation,
corresponding to this edge, is chosen in LSP. Tag Wwow the weights of the edges of
the search graph are chosen, is the essentiatatife among all implementations of LSP
generation algorithms. Subsequently in the searaphgtheminimal spanning trees

located, from which LSP is read in the final step.

5.7.1 Local Search Plan Generation

The search graph is built for a pattern in theofwlhg way (see Fig. 27):

e One vertex is added to the search graph for eam$s atlement in the
pattern.

e Two oriented edges, which connect the correspondantices, are added
to the search graph for each association link e ghttern. These edges
represent a possible navigation options from clasgances which
correspond to class elements in the pattern. Thedption is to check the
existence of corresponding link using LO comménkK. It can be done in
a constant time and it requires that both instaratethe ends of the
corresponding association link have been matchled.sEcond option is to
match a class instance using LO commérsd from by In this case only
an instance corresponding to source vertex in #ach graph (class
element in the pattern) has to be known.

e A special vertex — aoot vertex — is added to the search graph. Edges are
added outgoing from the root vertex to every othetex. They represent
a possibility to match a class instance correspanddo a class element

usingfirst command.
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Fig. 27.Search graph without weights for the pattern in Eig

A local search plan corresponds to a spanningitreee search graph. The root of the
spanning tree is the root vertex. Every edge insgpenning tree corresponds tdirat
suchthatcommand. Those pairs of edges (corresponding tcsdinge association link)
which are out of spanning tree are compiledlitdk commands. Thdirst suchthat

commands are nested accordingly to a traversat ofdbe spanning tree.

There are many ways to construct a spanning treea irsearch graph.
Consequently, there are many local search planshwimplement the pattern matching
for the given pattern. For example, one can takedgles from the root vertex and it will
be a spanning tree. However, this search plan eamahldly called efficient. Every set of
instances which corresponds to the class elemerttsei pattern should be examined in
the worst case. A local search plan is more efiicieclass instances are matched using
links from already found instances. It implies dtieg of less model fragments which
means less execution of backtracking stegirst suchthatcommands. Thus, the best
search plan is one which requires the smallest eundd basic lookup operations
executed — the smallest number of backtrackingsstéfirst suchthatcommands in the
case of MOLA. Let’'s call the number of basic lookojperations performed during the
execution of a local search plan dustof the search plan.

A pattern matching algorithm has to find out h@xpensiveare eachfirst
command for every edge in a search graph. Basidallyeans to find out how many

instances in the worst case should be examineddaafvalid one. The nature of patterns
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in model transformation languages is such thatepatelements (class elements in
MOLA) represents instance of a given classfirdt suchthatcommand also iterates
through instances of a particular class, thereforeappropriate measure to estimate the
potential number of instances to be checked igdta¢ number of instances of the given
class. Afirst from bycommand reduces the number of possible checksetaumber of
connected class instances by links of particulso@ation. If one can provide the number
of instances needed to be checked by operationespanding to edges in the search
graph (cost of operation), then these numbers eapub on the corresponding edges as
weights. Now in the weighted search graph we catotfind the cosof particularsearch
plan.

Since for every search plan there is a spannirggregpresenting it in the search
graph, let us assume that in the spanning tree trer edges with weights, ¢ »... Cp,
wheren is a number of class elements in a pattern. Thesghts correspond to the
largest possible number of operations, which areceted in order to find a
corresponding instance. As the commands are exkautecessively and backtracking
takes place, then in the worst case the cost of oaall search plan is
G=Cip +Ci1 Ci2 +...#G1 Ci2 ... G, .

The bestsearch plan is a plan with the lowest cost — theetdC . We must take
into notice that for every search pl@h<nci: ci; ...G , therefore to find the best search
plan means to find a search plan having the smallgsci, ..., . It means that we must
find a spanning tree in the search graph whichthadowest product of all weights of
corresponding edges. It can be found by using, deample, the efficientChu-
Liu/Edmondsalgorithm [96], which finds the minimal spanningé in the directed graph.
We must note that this algorithm is searching aspe tree with the smallest sum. Since
all weights in the search graph are positive (they number of instances), they can be
replaced with their logarithms. In such way @leu-Liu/Edmondslgorithm can be used
to find minimum product spanning trébecausdg(ab)=Ig(a)+lg(b) ). When the
search plan is found, the appropriate L3 commandst rhe created which is a quite
simple task.

As it was mentioned, similar algorithms have beaplemented in several model
transformation languages [48], [49], [50]. The mdifference is in the way the costs of

operations (weights of edges) are determined. O e runtime analysis of a model is
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performed before every execution of a pattern48] fhe analysis of models is performed
in the design time which works if there are modasiailable. In [48] the information from
pattern and metamodel is used (basically the calities of association ends).

In MOLA we are using only information which is aladle at the design
(compile) time. In fact, pattern and metamodel isilable only. So, what useful
information about number of instances can be obthifftom a pattern specification?
Patterns in MOLA may contain a reference — in avipres rule already found instance.
Such instance is not searched at all — it has bBeady found! The corresponding edges
in the search graph can have weight 1 — this iestaan be found in a constant time. No
other information about operation costs is in patteHowever, a metamodel shows
cardinalities of associations corresponding to @asion links in a pattern. When
navigating from an already located instance, theber of the class instances to be
checked, depends on the cardinalities of the qooreding associations. If the cardinality
is 0..1 or1, the navigation takes place in constant time,efioee the weight of the
corresponding edge is 1. If the cardinalitylis* or *, then in the worst case all
instances of the certain class must be reread. iawéhe practice shows that the real
models are rarely full graphs and the majorityhef teal association cardinalities are less
by a number of times compared to the total numlbéhe class instances. Since there is
no more information on actual cardinalities in ad®lp the cost estimation for operations
navigating by * or 1..* associations can be basedhese assumptions only. Therefore in

MOLA a simple cost model can be used:

For an edgéo a vertex representing a referen¢el

For an edge from the root vertex=1000. Of course, it is not a precise
number, but all other weights (in fact, a weightédges representing *
associations) can be adjusted accordingly to reptesproportion of

instances in typical models

For an edge if it corresponds to the end of MOLAoagtion with

cardinality * or 1..*c; =100.

For an edge if it corresponds to the end of MOLAoagtion with

cardinality 1 or 0..T; =1
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Fig. 28.Search graph with weights and minimum spanningdegected for the pattern in
Fig. 11

See Fig. 28 where weights are added to the seaaqin dor the pattern (see Fig.
11). The red edges denote the minimum product $partree — thebestlocal search
plan. In the parenthesis the logarithms of weigties shown which are actually used by
the Chu-Liu/Edmondslgorithm. In this case, there are several equefligient search
plans (it is possible to start pattern matching &lem subjEndor objEndnodes).

It should be noted, that the simple pattern matglalyorithm described in the
previous sections generates the same local sekmclag just presented. It shows that the
simple pattern matching algorithm works as effidiems more sophisticated algorithm
for such MDSD-related task. However, the simpleoatgm has been designed taking
into account the specifics of MDSD-related tasks.c@urse the algorithm described in
this section will perform better (or at least adlWer other tasks. But the mawalue of
this algorithm is the possibility to integrate iithv the annotation mechanism which
allows using domain knowledge in the pattern maiglm a simple and elegant way. The

annotation mechanism is described in the next@®ecti

5.7.2 Annotation Mechanism

The search algorithm described above optimizesséaech plan selection using
only data from the metamodel and pattern spec@inatOther approaches that are based
on the statistical analysis of the model collectuak cardinalities for classes and

associations (the number of instances of the gidass in the model) give very efficient

83



results, however there are situations where sualysia cannot be made (e.g. the runtime
repository does not support the required statisicsruntime analysis or there are no
models created yet in the case of offline analySikerefore we propose an approach
which allows using developer’'s knowledge of modahstraints that otherwise could be
obtained only by analysis of existing models. Atpdractual cardinalities can be already
predicted at the design time of a transformatiomvdlopment of a transformation
requires a good knowledge of the corresponding daonTderefore, the transformation
developer should be able to predict prospectivaligalities. Of course, the precise
number of the instances cannot be predicted, eXoeingleton classes. However, the
proportion of instances for different classes isqtrently known. For example, the
number of properties in UML model is several tingesater than the number of classes.
Since neither the metamodelling standard MOF, néfLUclass diagrams provide
convenient means for the specification of the peotpe cardinalities, we propose to
annotate the metamodel and patterns in MOLA. Owl ¢go to have a simple, handy
annotation mechanism that helps to select an efficsearch plan for the pattern
matching.

We allow annotating classes and association endhenmetamodel and class
elements and association link ends in patterns.aAmotation predicts the number of
instances for classes and the number of instaeeehable by links for association ends.
Pattern matching algorithm takes into account theotations, and edge weights in the
search graph are adjusted accordingly. In factammotation sets the priority on the
pattern element. The lower the predicted numbenstances is for the pattern element,
the higher priority it gets for the pattern matchiinnotations made in the metamodel
affect the pattern matching algorithm in every rulbere pattern elements of the
corresponding type are used. Annotations madeep#ttern affect the pattern matching
algorithm only in the scope of the rule. The depeloannotates metamodel elements
during the development process of the metamodelceSmetamodelling requires the
knowledge of the modeled domain, typically there ab problems to resolve actual
cardinalities. It should be noted that annotatiares optional - they are additional means
to improve the efficiency of transformations. Tleldwing annotations can be used:

SINGLE - denotes that the class (or navigation result)dtasost one instance.
Such instances and links as well as referencegraferred for the pattern matching.
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FEW - denotes that the class (or navigation resul) dnaearly constant number
of instances, or it is relatively low comparedhe total number of instances in the model.
For example, we can expect that in a UML classrdiaga typical class will have about
5-10 properties, and this number is independerthefmodel size. Such links will be
preferred over links that are not annotated forptiggern matching.

MANY - denotes that the class (or navigation resuk)aheelatively large number
of instances, and this number grows together ighsize of the model. For example, in a
UML class diagram the number of typed elementefary type grows as the size of the
class diagram increases. Links that are not arewtaill be preferred over links with the
MANY annotation for the pattern matching.

As annotations do not show a precise number oamegts, but only the number of
the corresponding class (or the result of navigatiostances against the total number of
instances in the model, then in tt@st modelve choose weights, which correspond to a
probable number of instances in the underlying nsode

e For the edge from th®ot vertex if it

o is to SINGLE annotated vertex or to a vertex cqoesling to the reference,
then its weight i€; =1,

0 is to the vertex without annotations, ther=1000 . Let us assume that this
is a typical number of instances in the model, #ral rest of weights we
choose proportionate to this weight,

0 is onFEWannotated vertex, then; =100,

0 is onMANY annotated vertex, then=10000 .

e For the edge if it corresponds to the end of MOIs&axiation, which

o is with a cardinalityd..1 or SINGLEannotated, thea; =1.

0 is without annotation with cardinalityor1..* , thenc; =100.

o is FEWannotated, thea ; =10,

0 is MANY annotated, thea ; =1000.

Therefore, by using only information from the metatal, which is supplemented
with the corresponding annotations, the real catdiaes of the model elements are taken
into notice. Although they are not denoted absbjupeecisely, it is enough that there is
information available about the proportion of numbginstances in a model. The chosen

weights seem to be appropriate.
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Fig. 29.Pattern example - annotation use case.

Fig. 29 shows a pattern in a loophead where anootahelp to find the best
search plan. This loop iterates trough every pityp@) of the given class@c having
the given type @1). The problem is that associatiomsnedAttributeandtypedboth have
cardinality ™" and without additional informatioboth are treated equally (un)efficient
for pattern matching. However, in practice the agernumber of owned attributes for a
class is by magnitude less than typed propertiea tgpe. Therefore, adding annotations
FEW and MANY to ownedAttributeand typed association ends accordingly gives the
desired result (see Fig. 30). The pattern matcksngtarted from the referen@c and

continued with the loop variable.

10 (1) 1000 (3)

10
1000 (3)

Fig. 30.Search graph with minimum spanning tree depictegdttern in Fig. 29
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CHAPTER 6

Use Cases of MOLA

MOLA language and tool have been used practicallyseveral projects. This
chapter describes two main use cases of MOLA —tyijpecal MDSD tasks in the
ReDSeeDS project [23] and specification of funaiidy for tools built with the
METACclipse framework [8].

6.1 ReDSeeDS

MOLA language has been used in the EY flamework project ReDSeeDS
(Requirements-Driven Software Development Systding goal of ReDSeeDS project is
to create framework (languages and tools) for MD&i3ed development. ReDSeeDS
framework includes the basic reuse approach. Thwoach is case-based, where a
reusable case is a complete set of closely linkeaijgh traceability links created by
model transformations) software development te@rsitefacts - models and code.

ReDSeeDS project took place between years 20062808. Universities from
Germany, Poland and Latvia, as well as, indusieitners from Poland, Germany,
Lithuania and Turkey were participants of the ptojéuthor of this thesis has actively
participated in activities of ReDSeeDS projecttexlato MDSD.

The ReDSeeDS approach covers a complete chain délsnéor MDSD — from
requirements to code. Each transition in this cl&ito a great degree assisted by formal
model transformations. Requirements are specifiedthie requirement specification
language RSL [97], which has been developed as qfathe ReDSeeDS project. A
significant part of RSL is the specification of vg@ments for system behavior in a
controlled natural language. The next models imtloelel chain are obtained using model
transformations which are specified using MOLA laage. Transformed models are
described using a ReDSeeDS-specific subset of UMiis subset together with RSL
forms the ReDSeeDS Software Development Specibicatianguage (SDSL). Updates
after every transformation step can be made alswally. A UML modeling toolSparx

Enterprise Architec{EA) [98] is used within ReDSeeDS project. It is a commeraial
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which allows creating and updating UML models. Theeroperability between
ReDSeeDS engine and EA is implemented also usimghtansformations.

During the ReDSeeDS project two model-based meti@ds [99] have been
proposed and the corresponding sets of transfaomeatin MOLA developed. Both
methods use the RSL and SDSL (UML) to specify n®deld ReDSeeDS engine to store
and process them. However, the essential differaacéhe set of design patterns

(architecture stylpused by both methods.

6.1.1 Description of Keyword-Based Approach

The keyword-based approach [99] has been develbpedICS, University of
Latvia. Starting from requirements, a chain of medeee Fig. 31) for a MDSD of the
software system is used. To a great degree, tlam ¢b inspired by the classical MDA
approach. However, the specific structure and cocisbn principles of models in this
approach are determined by the chosen architestiyte, which includes the set of
selected design patterns. All the models are bulltML using an appropriate profile.

Specific keywords are preserved by the keyword-dbaegproach. If the pre-
defined keywords (e.gelect show)are used in the requirement specification, they th
become the specific constructs in the target mgegl. selection from a list, calling

appropriate user interface method).

FEpS
CIM [ Requirements model (RSL) ]—7}'{{3 L) -
ReD3 T e
_____________________ Transformation
(1o MOLATS
[ Analysis model (UML) o
) —T T
" LT
_____________________ " Transformation )
Q rulesin MOLA
ot
Piv [ Architecture model (UML) o
— T

y

-~

Architec

T
Transformation \‘>
rulesin MOLA
-~

rules in MOLA and EA )

Ccde [Code (Java + Spring + Hibernate}}—v! ,E “E Ianguaﬁ,e_///
Dot

Fig. 31.Model chain for keyword-based approach.
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Initially the Analysis model is extracted by tramshations from requirements.
This model has no direct counterpart in the clag9dDA chain. In the Analysis Model
the most important part is a class diagram desgithhe main concepts of the software
system to be created. Stereotypes are used toglisgh different types of concepts
according to the Analysis Profile.

The next model in this chain is the Architecturedelo In this model, the
implementation structure is represented accordirthe behavior extracted from use case
scenarios. This model is platform-independent andldc be used as a basis for
development of a code on any enterprise platforntgiprise Java, .NET, etc.). This is
the model where the selected design patterns golistsicated analysis of requirements
permit to generate a non-trivial part of soluticgghbvior.

The final model in the chain is the Detailed Desigodel. From this model code
fragments for the selected platform can be gengraerrently the chosen platform is
Java in the Spring/Hibernate framework [100], [101} this model stereotypes
corresponding to Spring-specific annotations aexlui the final step the data from this
model are transformed to Java code with Spring/ifie annotations.

6.1.2 Description of ReDSeeDS Basic Approach

The ReDSeeDS Basic approach [97] has been develyp@thrsaw University of
Technology. Just like in the keyword-based appr@achain of models (see Fig. 32) for a
MDSD of the software system is used. The ReDSeeBSicBapproach includes three
transformations steps.

The first transformation step creates the architecinodel from the requirements
written using RSL. This approach concentrates omoraatically generating the
components of the system and interactions betwagous parts of the system and user.
A set of sequence diagrams is generated in thetectire model. Methods are added to
the appropriate interfaces for each call in theisage diagrams.

After the architecture is ready (generated fronumegnents and enhanced by an
architect), it can be transformed into the detadedign. The transformation process uses
only the information contained in the architecturaddel, assuming that transformation
from requirements to architecture extracted allgbssible information for generating the
detailed design model. The specific rules to adatggree are based on the chosen design

patterns (e.g. DTO, DAO and Factory). The rulesiagsa Java and ORM facility (e.g.
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Hibernate) to be used as the basis of the platfbuhno specific details of the platform

appear in the rules. Therefore they could be agiplécto other kinds of platforms as well.

CIM Raguirements moadel in R5L |

J:!, I

=

-

Fi l_ Architechure madel in S05L }

Pkt Deetailed design modal in 5%1

e

fatn |

Cade

Fig. 32.ReDSeeDS basic approach.

Detailed design of a software system is the loviegtl of its specification. It
contains all the logical elements - classes aratiogls between them for each component
in the architectural specification. The detailedsige model is the basis for
implementation in a specific programming languagg.(Java, C#).

The EA code generation templates are applied @ilddtdesign model in the last
step. The package hierarchy, declarations forlafises (DAO, DTO, etc.) and methods
are included in the generated code. Bodies of onbthimethods should be filled in

manually, since the detailed design model in thyile $n fact contains no behavior.

6.1.3 Empirical Study of Pattern Matching Cases in ReDSd2S

In this section the analysis of typical patternghi@ ReDSeeDS project is done. As

it was mentioned before, one of the goals of theept is MDSD using RSL and UML
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languages. The main idea is to obtain a part ofstfevare system automatically from
requirement specification using model transfornratio

To approximately estimate the volume of the tramsfdions written during the
ReDSeeDS project we are giving some statistics.mbael-based methodologies used in
the project cover quite a large subset of UML begegerated - UML class, activity,
component and sequence diagrams are being geneixéd methodologies include
several transformation steps. The first step fahboethodologies is the transformation
of requirements. The next steps are generating WMl models adding more specific
details. ~350 MOLA procedures have been developed duringReBSeeDS project.
They include~200 loops and800 rules that give1000 pattern specifications. We have
investigated the structure of patterns used inptiogect and most of them are fit to the
simple pattern matching strategy used by MOLA.

Fig. 26 refers to the typical usage of loops in BeBDS project - the MDSD
tasks areompilationlike jobs where every element of the source malptocessed and
corresponding elements in the target model aretemeé&since RSL and UML model
elements form a tree-based hierarchy, the transftbom algorithms traverse model
elements in the top-down style starting from the étements of the hierarchy. Therefore,
the most natural way to describe such traversingpyisusing nested foreach loops
referencing the previous loop variables. The patteay contain additional class elements
for collection of all necessary neighborhood ins&mor specifying additional constraints

on the existence of appropriate nearby instances.

(i : Actor el np : MounPhrase sgupce | Nl Mounlink nounLink nn : Noun

{Actors} {Phrazes} {Phrazes} fTerm=s}
narne noun target

Fig. 33.Pattern example - collecting nearby instances.

Another typical pattern used in the ReDSeeDS ptagedepicted in Fig. 33. This
pattern finds the name of an actor (names are casetbun phrases in RSL). Note, that
all associations leading from the Actor class ® Noun have cardinality "1" or "0..1" -
each actor has exactly one name (represented byptoase), there is only one noun link
for each noun phrase and every noun link is coedettt exactly one noun. Therefore this
pattern is matched in constant time when the simppteern matching strategy is applied.
This is a typical case where MOLA rule is useddbect the nearby instances.
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A variation of the previous pattern is shown in.R3g. This pattern describes the
collecting of nearby elements of a UML interactiorhe owning classifier and the
component corresponding to the lifeline named "UWhponent" should be matched.
Unlike in the previous example there is an assiciavith cardinality "*" leading from
the referenced element (to Lifeline). However, as sge in practice, typically there is
only one model element in the model satisfying gheen constraint and thguspicious
association has low cardinality in practice. Instltiase there are no more than 5-10
lifelines per interaction. Thus this pattern maghe linear time with regard to the

number of lifelines in the given interaction, whistrelatively low.

efi : Connectable Bement
lifelime {Irtemal Structures}

o : Collaboration : " - . ., ) ICUI; Lifelne
o ng Clas sifier @ : Interaction  |jtaract i j
{Collaborations} INteraction {Basic Interactions}

litelire [rame="UICampanent'}

represents

type |tyPed
GO Companent
[BasicComponerts}

{BasicInteractions}

owmed Behavor

Fig. 34.Pattern example - collecting nearby instances usdttitional constraints

We have tested the transformations on severalcsiftly large software cases
developed within the ReDSeeDS project. The pattelescribed above are the most
typical patterns used in MOLA transformations foe tReDSeeDS project. The total
amount of such patterns is about 95% of all pasteBome specific sub-tasks require non-
typical patterns which theoretically may cause ffisient pattern matching performance,
however in practice they are performed on elemetish are relatively low in number
compared to the number of constrained languagesess. Thus, they do not affect the
overall performance of pattern matching.

There was made a conjecture that a transformatiogrgm in MOLA written in
an appropriate style becomes efficient at the same [67]. Our empirical analysis of
typical patterns in the ReDSeeDS project confirtmat this holds also in praxis and
MOLA is a suitable model transformation languageNMbSD-related tasks. In this case
the simple pattern matching algorithm gives effitieesults.

The ReDSeeDS basic approach has been implement@liA and executed on
various requirements specifications. For examplee tequirement specification
containing 8 scenarios, 42 constrained languageéesess has been transformed to
architecture model in ~6 seconds. The target mbdsl 662 UML elements in total
including 24 packages, 10 components, 31 clas3estdrfaces, 71 methods, 8 sequence
diagrams. The detailed design model has been dgedeia ~5 seconds from the
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architecture model. The target model contains 4B l@lements including 16 packages,
44 classes, 17 interfaces, 169 methods.

This approach has been tried also for a real-lkangple. The requirements
specification of simple internet banking systemtaonng 19 scenarios, 102 constrained
language sentences has been transformed to atahitesodel in ~10 seconds. The target
model has 2114 UML elements including 27 packa@@&scomponents, 72 classes, 59
interfaces, 218 methods, 19 sequence diagrams.dé&taled design model has been
generated in ~16 seconds from architecture mode. thrget model has 1425 UML
elements including 18 packages, 116 classes, 88ants, 507 methods.

It should be noted that total time of transformasicexecution turns out to be
almost linear with regard to the total number ohstoained language sentences in the
requirement scenarios specified in the RSL for tase. The total transformation
execution time seems to be reasonable for suchaklifee example, because these
experiments considered regeneration of the wholeletndn fact, the importing and
exporting models from and to the UML modeling t¢BA) have executed significantly
longer then transformations itself. It is also poles to specify transformations
regenerating just a part of the model which reguicebe updated accordingly to changes

made in source models.

6.2 ReDSeeDS Integration with Sparx Enterprise Architet

As it has been already mentioned in the previougise Sparx Enterprise
Architect (EA)is a UML modelling tool, which was used in ReDS8eproject. It is a
popular modelling tool (also in Latvia), which alle creating UML models and
generating a code for many programming languagaseffample, Java, C#, C++). In
ReDSeeDS tool (engine) UML models are stored imll&v [66] model repository, but
the tool itself does not provide possibility of #aly and graphical viewing. Therefore it
was necessary to provide a model transfer betweerarkl ReDSeeDS tool. For this
purpose the model transformation language MOLAsisdu

In order to provide the exchange of models betw#genmentioned tools, the
format, in which EA stores UML models, was inveatag. It was described by using
metamodelling means, that is, a metamodel was, wiilich directly reflected the inner

structure of the EA models. Thus, in a simple wayraversal tool is built, which
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transfers UML models from the EA database to JGralaad vice versa. The whole
logically complicated work- model transformationtween EA and ReDSeeDS formats
(metamodels) in this case is possible to executmégns of the model transformations,
which is a more suitable manner of model processiam the programs written in
programming languages are.

The general scheme of model exchange between theamed tools can be seen
in Fig. 35. A similar manner can be used also meptases when the model exchange
between different modelling tools is necessary.

MOLA
ransformatlon

-
<::_| Java EA
maL® EAUML [ |_Program

JGralab

__..---"""

Fig. 35.EA and JGraLab model exchange schema.

Also in this use case of MOLA the use of patterntamiag was sufficiently
efficient. The task of model exchange is ratherilamnto the typical MDSD tasks that
require processing of all elements of one corredpontype and creating appropriate
elements in the target model. Thus the suitabdlitthe chosen algorithms for this type of
tasks was shown once again. It must be noted nhitel tool integration tasks also high
performance is important. However, it depends noly con efficiency of model
transformations, but on the efficiency of undertyibool, the EA in this case. The API of
EA has been used to import and export models tdrana the tool, however it causes the
major slowdown of overall performance. Unfortungatéhere are no better ways to
collaborate with EA, but this approach seems tanoee efficient for tools with more

efficient implementation.
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6.3 Tool Building in METAclipse

MOLA Tool has been built on the basis of METAcligse! building framework
[8], which also has been developed by the UniweiditLatvia, IMCS. METACclipse is a
metamodel and transformation based tool buildirgf@m, which is specially fit for the
support of complicated graphical domain specifinglaages, and MOLA is such a
language. From the technical point of view, METAsk is a set of Eclipse plug-ins
which extends the functionality of standard Eclipsenponents EMF, GEF and patrtially,
GMF [26] [102] [63]. It contains advanced preseiotatngines, which support graphical
diagram building, property editing and all otheagliam and model related facilities.
More precisely, the engines perform all the varisisialization and user interaction
related tasks in a standard way typical to Eclgs@ronment, they do these jobs on the
basis of a fixed presentation metamodel. HoweVer ntain functionality of a tool based
on METAclipse is defined by transformations, whiatk the domain and presentation
(visualization) models in the tool, fill up propertialogs, and process the updated
property values. In METAclipse framework these tspécific transformations are built

in MOLA language. Architecture of METAclipse framexk is shown in Fig. 36.

Eclipse
[l
Presentation engines
1. writes 4. reads result
2.calls
command

3. executes '
Model Transformation I
repository | n

ibrary

Fig. 36.Architecture of theVIETAclipseplatform.

Each of theMETAclipse engines exposes its functionality to transfornregio
through a strictly defined metamodel that serves aas interface through the
transformations and engines. The set of commarad<#m occur in the given engine as a
result of user actions is also part of the metarmotithe engine. Commands are used to
invoke the transformations. Each instance of a canthrepresents an atomic user action

and is the smallest piece of an actionM&TAclipseplatform. All actions that require
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purely graphical changes are processed directlshenMETAclipseengines. Only the
semantic actions (the ones that trigger changdehaerndomain model or changes in the
presentation model that are unique to a speci@b tre triggering commands and passed
to the transformations for processifdETAclipseplatform immediately filters out the
commands that do not require the invocation of di@mations and invokes the
mechanisms of the corresponding engines in ordendke the changes in the models.
Therefore, listeners that do not require the intiooaof transformations are implemented
already in the platform. Command listeners for pssing of semantic actions have to be
implemented in the transformation library as braschf the main model transformation
with branching conditions that depend on the passetmand.

The latest version of MOLA Tool has been built gsithe MOLA Tool itself.
Initially source procedures of MOLA tool have bdaunlt using the previous version of
MOLA Tool. Currently the source procedures of MOLA editor have been completely
transferred frontseneric Modeling Tooénvironment to the MOLA editor implemented
with the METAclipseplatform. The current functionality of the ediisrdefined by ~450
MOLA procedures.

The efficiency of model transformations is even enonportant in the context of
tool building than in MDSD-related tasks. Transfations are executed reacting on
actions performed by user. Response must be asasagiossible. Practical usage of
MOLA Tool has been shown that transformations agedp executed efficiently. To
verify it, the transformation execution time is raeged for user actions which require
significant effort of transformation compared tce tbffort of METAclipse framework
itself. For example, a class name is shown on eslass element in a MOLA program. If
the name of a class is changed (user changeseit) @liery occurrence of this class in
class elements must be updated. To test the peafmenof transformation implementing
such action we created a MOLA project having 8@&<lelements corresponding to the
same class. Changing the name of the class toskHas a second.

Similar results are shown in the transformation jgmo implementing the
ReDSeeDS methodologies. The total number of classnemts in the model
transformations for ReDSeeDS is greater than irptheiously described project- ~2700.
But in the same time there are at most 180 classearits having the same type and it is
much less than in the previous example. The samgs adenaming action has been

executed also in ReDSeeDS transformations prdjgoiok less than a second too.
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Similar results are observed also for other us@omr& which rely mainly on the
model transformations written in MOLA. It provesatithe MOLA Tool (in fact, model
transformations used in METAclipse framework) ssalesll also for larger projects and
Is usable practically. It should be mentioned, thatmodel saving problem described in
section 5.6 is actual also in MOLA Tool (METAclipseamework). For larger
transformation projects (like ReDSeeDS) the savalgs a significant amount of time
(~20 seconds). Although it is inconvenient, it afgejust the frequency a transformation

developer uses the save button. However, this ssoeld be solved in the future.

A screenshot of MOLA Tool is shown in Fig. 37.
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Fig. 37.MOLA2 Tool.
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CHAPTER 7

Conclusions

The main goal of the research was to develop a Isingnd efficient
implementation of pattern matching for model transfation languages. In order to
achieve this goal, the following tasks are accoshad:

e A new pattern matching algorithm has been develdpedhodel transformation
languages. The algorithm uses relational databadeS&L queries. The main
advantage of the algorithm is the simple mappimgnfipattern to single SQL
qguery. The implementation of this mapping is ea$yst enabling fast
development of an efficient model transformationgiaage prototype. In this
case the hardest part, the actual pattern matcisirtpne by query optimization
features of a relational database management system

e The developed algorithm has been practically impleted for model
transformation language MOLA. An interpreter for M®has been built which
works on most popular relational database managesyastems. The MOLA
interpreter has been used for academic and resgaath How MOLA language
is fit for MDSD has been tested using the intemgaret

e A new simple pattern matching algorithm which udesal search plan
generation has been developed. It works on metarbaded repositories which
are commonly used to store models in popular mimdeknvironments. The
algorithm is efficient for MDSD transformations, wh are typically dealing
with models of tree-like structure where every edaimof source model should
be processed and an element in a target modeldsheujuilt.

e The developed algorithm has been practically impleted for MOLA language.
A MOLA compiler has been built to lower-level modednsformation language
L3. MOLA transformations can process models staredeveral metamodel-
based repositories, including EMF, JGraLab and MPR The compiler is part
of MOLA Tool which has been successfully used ie BU 6" framework
project ReDSeeDS for development of MDSD transfaions.
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e An efficient algorithm has been developed whicim@e universal (it is efficient
not for MDSD-related tasks only). It is based oassical local search plan
generation strategy and together with a new metainaohotation mechanism
allows building efficient model transformations out any complicated runtime
model analysis. Comparing to other implementatioafiows utilize knowledge
of particular domain to build efficient transfornuats.

A review of pattern matching mechanisms for the tmpspular model
transformation languages has been presented intlib&s. There are several pattern
matching approaches, but the most popular is tbal leearch planning. In fact, it is the
most universal strategy - it gives efficient resttir different types of patterns. However,
implementations of more advanced approaches aherrabmplex, although simpler
strategies (like in case of MOLA and Fujaba) fraglyegive similar results. Of course,
that holds not for every use case, but mostly lierdomain the transformation language
is designed for. For example, MOLA is efficient ddDSD-related tasks, as the empirical
analysis of typical MOLA patterns in the ReDSeeD§jgrt has shown. Other languages
are efficient in other domains, e.g. VIATRA in teBenulation of complex systems or
Fujaba in the program refactoring domain.

A great role for efficient pattern matching is payalso by the constructs of the
pattern used in the language. MOLA offers very retmeans for describing MDSD-
related tasks, the foreach loops combined withreefse mechanism. At the same time
even the simple pattern matching algorithm whicls baen implemented for MOLA
works efficiently in these cases. Thus, for the piden-like tasks, where every element of
a structured model (like UML) should be proces9d@LA can be used with a high
efficiency, but with very simple implementation pattern matching. Of course, the
certain design patternsoriefly discussed in the thesis should be ensumed1OLA
programs, but they are very natural and easy to use

MOLA is used not only for MDSD-related tasks (thaugis designed for that).
Therefore more universal pattern matching stratemged on analysis of the pattern and
underlying metamodel have been developed. It haseén fully implemented in the
MOLA Tool yet. So the benchmark tests haven’t bdene for this algorithm. We have
introduced the metamodel annotation mechanism,wtaptures the domain knowledge

of actual cardinalities in the metamodel. It pesmib make pattern matching more
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efficient, that otherwise could be achieved onlyriagtime analysis of models which may
itself be costly at runtime or not available atigegime.

The future work is to identify model transformatidomains - the areas where
typical patterns are used. The most appropriateeqmamatching approaches should be
addressed for each domain. Since most of the niatedformation language developers
provide information on pattern matching implemeiotatfor their languages; that would
make the choice of the most appropriate model fioamsition language easier for a
concrete task. Of course, the pattern matchingamphtation is not the only condition
helping to make the decision. However, usuallgh& language constructs are fit for the
task, then it is a great chance that pattern magcwill be also appropriate. We believe
that practically the appropriate pattern matchilgp@thms can be developed for specific
tasks (domains) despite pattern matching beingRutdinplete problem in general.

A domain specific annotation language may be deesldo use other knowledge
of domain than cardinalities. In fact, it meanseexting metamodelling languages with
special features which capture information crufalpattern matching.

Currently there is an ongoing work on implementatid algorithm described in
the section 5.7. The implementation of the algamitill allow using MOLA efficiently
also for other kinds of tasks not just for MDSD.idtan important aspect also in the
context of integration of MOLA transformations irttee Eclipse ecosystem. Eclipse EMF
has become @de factostandard of model repository in the modelling comityu A
significant part of models are stored in EMF. Thare also lots of metamodels written in
EMF Ecore metamodelling language. One of the probleahe EMF-based model
transformation implementations are dealing with tie association navigability -
associations in EMF (references) are navigablenm direction only. The simple pattern
matching algorithm described in section 5.5 requiteat associations are navigable in
both directions. Therefore the model pre-processstgp is performed before
transformation runtime. In the pre-processing stepmodel is transformed to an
intermediate model containingissingreferences. The algorithm described in the section
5.7 can solve the navigability problem without adgditional model pre-processing steps
in the same time maintaining sufficient efficien@§olving this problem would allow
direct integration of model transformations in adavirange of Eclipse (EMF) -based
modelling tools.

100



There are no doubts that an efficient implementattd model transformation
language offers many new possible directions ofeasd. Model transformation
languages are used in the software development (M @E tool building (METAclipse
framework). These research fields offer still uvegied questions. Models, metamodels
and model transformations can be used in many afeas of research. For example,
model transformations may be used for complex gmtaessing in frameworks for
classical information systems. The task is to Apgropriate use cases where the usage of
model transformations (and model transformatiogleages) fits at most.

The great potential of models in the field of safter development is not realized

yet; however a significant leap is expected inrtbar future.
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