
University of Latvia

AGRIS ŠOSTAKS

IMPLEMENTATION OF MODEL TRANSFORMATION
LANGUAGES

Thesis for the PhD Degree
at the University of Latvia

Field: Computer Science
Section: Programming Languages and Systems

Scientific Advisor:
Prof., Dr. Habil. Sc. Comp.

AUDRIS KALNINS

Riga – 2010

2

TABLE OF CONTENTS

INTRODUCTION ... 4
CHAPTER 1 MOTIVATION - MDSD AND MODEL TRANSFORMATIO N

LANGUAGES ... 8
1.1 Modelling, Models and Metamodels ... 8

1.2 Model Driven Software Development .. 10

1.3 Model Transformation Languages .. 12

CHAPTER 2 MOLA LANGUAGE .. 15
2.1 MOLA Overview .. 15

2.2 Simple MOLA Example .. 19

CHAPTER 3 PATTERN MATCHING IN MODEL TRANSFORMATION
LANGUAGES ... 27

3.1 Patterns in Model Transformation Languages .. 27

3.2 Related Pattern Matching Implementations .. 28

CHAPTER 4 IMPLEMENTATION OF MOLA USING RELATIONAL
DATABASES AND SQL .. 32

4.1 Overview of Architecture .. 32

4.2 Implementing Patterns by Natural SQL Queries ... 35

4.3 Database Performance Issues .. 38

4.4 Benchmark Results .. 43

4.5 Summary ... 46

CHAPTER 5 IMPLEMENTATION OF MOLA USING L3 LANGUAGE 48
5.1 Architecture of MOLA Compiler .. 49

5.2 Model-Driven Compiling .. 53

5.3 L3 from Lx Language Family ... 55

5.4 Mapping from MOLA to L3 ... 62

5.4.1 Mapping of Metamodelling Languages .. 62

5.4.2 Mapping of the Procedure Headers ... 63

5.4.3 Mapping of the Execution Control Flows ... 64

3

5.4.4 Mapping of MOLA Statements ... 68

5.5 The Simple Pattern Matching Strategy ... 74

5.6 Benchmark Results .. 77

5.7 Local Search Planning Using Annotated Metamodels .. 78

5.7.1 Local Search Plan Generation ... 79

5.7.2 Annotation Mechanism ... 83

CHAPTER 6 USE CASES OF MOLA ... 87
6.1 ReDSeeDS ... 87

6.1.1 Description of Keyword-Based Approach .. 88

6.1.2 Description of ReDSeeDS Basic Approach .. 89

6.1.3 Empirical Study of Pattern Matching Cases in ReDSeeDS 90

6.2 ReDSeeDS Integration with Sparx Enterprise Architect .. 93

6.3 Tool Building in METAclipse ... 95

CHAPTER 7 CONCLUSIONS .. 98
REFERENCES .. 102

4

INTRODUCTION

Model transformations play an important role in the Model-Driven Software

Development (MDSD). The main idea of MDSD is a systematic use of models as

primary software engineering artefacts throughout the software development lifecycle.

Model-Driven Software Development refers to a range of development approaches that

are based on the use of software modelling. A model expresses a particular aspect of a

software system in a certain level of detail. A code of the software system is generated

from models built by a system developer. The generated code varies ranging from a

system skeleton to a complete product. It depends on an abstraction level of models used

as a source for the generator. If the created models are at high level of abstraction, then

model transformations are applied to create more detailed models that can be used for

code generation. The model transformation is the automatic generation of a target model

from a source model, according to a transformation definition [1]. Model transformation

languages are used to define model transformations. Models that are used by model

transformations must conform to metamodels. A metamodel defines a language, which

specifies a model. A model transformation language uses metamodels to define the model

transformation. A meta-language specifies the metamodels.

The best known Model-Driven Software Development initiative is the Object

Management Group’s (OMG) Model-Driven Architecture (MDA) [2], which is a

registered trademark of OMG. The OMG has developed a set of standards related to

MDA including the Meta-Object Facility (MOF) [3] (a meta-language), Object Constraint

Language (OCL) [4], Unified Modelling Language (UML) [5] (a software modelling

language) and MOF Queries/Views/Transformations (MOF-QVT) [6] (a model

transformation language).

The MDA approach defines system functionality using a platform-independent

model (PIM), which is written in an appropriate modelling language (for example, UML).

Then, the PIM is transformed to one or more platform-specific models (PSMs), which

include platform or language specific details. For example, the UML Profile for Java [7]

can be used to specify the PSM. Then, the PSM is translated to the code written in the

appropriate to the PSM language.

Nowadays the application area for model transformation languages is much

broader. One such area is generic meta-model-based modelling tool building. The model

5

transformation languages can be used (and are used [8][9][10]) as a much more effective

domain specific substitute for the general purpose languages which are used up to now for

tool building.

The OMG was the first to state precisely the requirements what should be a model

transformation language [11]. The MOF-QVT language which is an answer by OMG

itself to these requirements is becoming the OMG standard for model transformations [6].

In MOF-QVT source and target meta-models conform to the MOF. There are two

variants of MOF defined – the EMOF (Essential MOF) and the CMOF (Complete MOF).

The MOF can be viewed as a general standard to write metamodels, but, more

specifically, EMOF is used for metamodel definition in MOF-QVT. The MOF-QVT

standard defines two languages for transformation development – the Relations and the

Operational Mappings. The Relations language is at the highest level of abstraction and

uses patterns and a declarative transformation definition style whenever possible. There

are several realizations of the MOF-QVT language. The Relations textual language is

implemented in the medini QVT [12]. The Operational Mappings language is

implemented in the SmartQVT [13], several less complete implementations are also

available.

There are many other model transformation languages which also satisfy the

OMG requirements. There are textual model transformation languages – ATL [14],

VIATRA2 [15], the Lx language family (L0-L3) [16] and also graphical model

transformation languages – Fujaba [17], GReAT [18], MOLA [19]. In fact, model

transformation languages existed even before the OMG coined this concept. There are

several such graph transformation languages that are now being used as the model

transformation languages, for example, AGG [20] and PROGRES [21].

Model transformation languages are becoming increasingly mature in recent years

and range of the areas where transformation languages are being used is widening. The

growing popularity of transformation languages puts stricter requirements on their

efficiency. Most of the popular transformation languages are using declarative pattern

definition constructs. The main implementation problem of such languages is the pattern

matching. This problem, in fact, is the subgraph isomorphism problem which is known

to be NP-complete [22]. However, in practice typical patterns can be matched efficiently

using relatively simple methods. The use of different means of pattern definition results

into different implementations of pattern matching for every language. The more

6

sophisticated constructs a language use, the more complicated becomes the

implementation of the pattern matching.

Research carried out by the author seeks for relatively simple but efficient

algorithms for pattern matching in model transformation languages used in the MDSD

area. The main results of this research are algorithms which allow building efficient

implementation of pattern matching for typical model transformation languages.

Solutions for implementation of model transformation language MOLA demonstrate

applications of these algorithms.

The most straightforward proof of the practical significance of research is the

successful use of MOLA language and tool in EU 6th framework project ReDSeeDS [23]

(Requirements-Driven Software Development System) which is aimed to develop

methodology and supporting tools for a model-driven software development.

Transformations in ReDSeeDS are specified using MOLA language and represent typical

MDSD transformations.

Another main use case of MOLA language and tool is the transformation based

tool building framework METAclipse [8]. Transformations are used to define the logic of

a tool built by METAclipse framework. In fact, MOLA Tool itself has been built using

MOLA language.

The research results presented in the thesis have achieved the desired efficiency in

implementation of pattern matching for model transformation languages. Thus it has

become possible to apply MDSD technology in research projects and verify these

technologies in industrial cases.

Following chapters give an in-depth description of the developed pattern matching

algorithms and its implementations for model transformation language MOLA:

• CHAPTER 1 briefly describes the main ideas besides MDSD and the role

of model transformation languages in this process of software

development. The reader is thus given the basic knowledge needed for

understanding the research carried out by the author, as well as the

significance of the results achieved.

• CHAPTER 2 briefly describes the model transformation language MOLA.

The algorithms developed in thesis are used in the implementation of

MOLA language.

7

• CHAPTER 3 sketches existing algorithms of pattern matching in model

transformation languages. The applicability of these approaches to MOLA

language is also discussed in this chapter.

• CHAPTER 4 introduces a new algorithm which uses relational database

with fixed schema and translates patterns to SQL queries. The

implementation of this algorithm for MOLA language is described here.

• CHAPTER 5 introduces two new algorithms of pattern matching which

uses local search plan generation strategy. The first algorithm is effective

for typical MDSD tasks and is based on few simple rules. Therefore the

implementation of this algorithm for MOLA language is rather simple

using an Lx model transformation language family. The second algorithm

is based a classical local search plan generation, but introduces a new

metamodel annotation mechanism which allows to enhance the efficiency

of pattern matching without complicated analysis of underlying models.

This chapter provides also details of MOLA implementation through L3

language.

• CHAPTER 6 demonstrates practical applications of the developed

implementation of MOLA language: typical MDSD transformations in the

EU 6th framework project ReDSeeDS and defining tool logic in tool

building framework METAclipse.

• CHAPTER 7 lists the conclusions accumulated during the development of

the thesis. Also, possible future directions of the research in

implementation of model transformation languages.

8

CHAPTER 1

Motivation - MDSD and Model Transformation Languages

Nowadays software becomes more and more complicated. Software development

and management has become more challenging, especially if it refers to large-scale

systems which are developed and used by hundreds, even thousands of people. In order to

ease the development of software, particular models are used which describe different

aspects of the system which is to be developed.

At first models were used as demonstrative documentation which would help to

develop the system. MDSD (Model-Driven Software Development) is a rather new

approach (emerged around the year 2000) which uses models in a broader context. This

chapter explains the basic principles of MDSD and the role of metamodels, models and

model transformations in this process.

1.1 Modelling, Models and Metamodels
What is a model? Let us look at this issue in a little broader context, not only as a

part of the software development process. There are many definitions available, but in the

author’s opinion the most adequate definition of modelling is the following – modelling

means using something instead of something else with a definite purpose [24]. Therefore,

it allows using a model, which is simpler, safer, and also cheaper, instead of something

else that is more complicated, dangerous or more expensive.

Regarding the processes of software development the term model is usually

applied to the abstraction of a computer system or real world in a specific context, for

example, a requirements specification of the system or description of business processes

of a company can be regarded as a model of the system and the company. These models

let judge and draw conclusions about the system or the company. The requirements

specification allows evaluating the complexity of the system and serves as the basis for

software development. However, the model of business processes allows understanding

the processes that take place in the company and optimizing business activities of the

company. Usually we use a language as a mean for writing models, and this mean is

specific for a certain type of models. It means, when we use a modelling language, it is

9

possible to describe different things of one type in a similar way. For example, when

using the business process modelling language it is possible to describe various business

processes in a number of companies.

In order to be able to process the models by using computers, it is necessary to

formalize the way of model definition, which means that there must be some means

(preferably universal ones) available how to define modelling languages. And these

means are called metamodels. Generally speaking, a metamodel describes a modelling

language- it is a model of a modelling language. A metamodel and a model together form

two levels of metamodelling abstraction or meta-levels, where the higher meta-level

describes the means which help in forming the lower level. Theoretically, there could be

an unlimited number of such meta-levels, but only four are used in practice.

As it has been previously stated, a metamodel is also a model, so, in order to

describe metamodels, we use a modelling language. This language is usually called a

metamodelling language and it is defined by making use of a metamodel which is

commonly called a meta-metamodel. Thus models reside at the first level of

metamodelling or Level M1, the system that they describe, resides at the zero level or

Level M0. The metamodel describing a model, resides at the second level or Level M2,

but at the top-level, that is the third level or Level M3, the meta-metamodel resides.

At present the most popular metamodelling standard (language) is MOF (Meta-

Object Facility), developed by the international standards organisation OMG, which

describes four meta-levels (see Fig. 1). Currently the actual MOF version is 2.0 [3].

In practice many models are described by using one of versions of the modelling

language UML [5], developed by OMG, (in Fig. 1 UML language is used to illustrate the

MOF standard). Naturally, UML metamodel is defined by using MOF metamodelling

language. It must be noted that MOF does not define the visible part of the language

(concrete syntax), but it defines its abstract syntax. Of course, this is not the only

metamodelling language. There exist other ways of defining metamodels, such as KM3

[25] and EMF Ecore [26] - the metamodelling languages which are compatible with

EMOF [3], a subset of MOF. In order to define a modelling language, one can use also

ontology [27].

10

Fig. 1. Example of OMG MOF meta-level hierarchy.

There exist not only graphical, but also many textual modelling languages

(actually, any OO programming language can be considered to be a modelling language).

In order to illustrate what models can be encountered during the software

development process there are some typical examples of the models:

- UML class diagrams- the system analysis model,

- UML activity diagrams- the business process model,

- UML use case and activity diagrams- the system requirements specification,

- UML class diagrams where J2EE stereotypes are used- the detailed design

model,

- BPMN diagrams [28] - workflow definition.

1.2 Model Driven Software Development
Until 2000, when OMG launched a new initiative Model Driven Architecture

(MDA), many MDA ideas were already being used in practice. However, it was

happening more intuitively rather than systematically. In 2001 OMG published the first

version of MDA manual [2] which described basis and applications of MDA.

11

The essential MDA idea is the following: in order to develop complicated

software, it is necessary to exploit various metamodelling principles systematically. An

important conclusion followed that models had different roles during the development

process of software. The following three roles of models were offered:

- Computation Independent Model – CIM , a model which describes what system

must do (requirements) and in what environment the system must work (for

example, business processes), but it does not imply any information about

implementation of the system.

- Platform independent model – PIM , a model which describes the architecture of

the system, but does not imply any details about the platform, in which system is

going to be built (for example, .NET, EJB, CORBA specific details).

- Platform Specific Model – PSM, a model which contains specific details for the

platform.

These models are used successively, that is, at first CIM model is made, and then

it is supplemented or transformed, so that PIM is obtained, after that PIM is supplemented

with specific details for the platform, and finally the software code is obtained from PSM.

In practice similar models were already used, but MDA offered to automate this process,

that is, to perform automatic model transformations. In this way the models become an

essential part of the software development process. Software developers are able to

operate at a higher level of abstraction, which has a radical influence on quality and speed

of development of complicated systems. It should be noted that this process does not

require an absolute automation, and it is hardly possible here. Each model is updated

manually and then it is changed by means of model transformation.

Thus, a model transformation is an automatic process when the source model,

which corresponds to a fixed metamodel, is transformed into a target model, which

corresponds to another (or the same) fixed metamodel (see Fig. 2). It must be noted that

the model transformation itself is defined by using source and target metamodels.

In the classical MDA approach the software is developed in such a manner that

there exist one PIM model and one or more PSM models from which a code for different

platforms is generated, depending on needs of the developer. MDA allows using only

UML language for model description.

12

Fig. 2. An implementation scheme for model transformations.

However, MDSD (Model Driven Software Development) views this issue in a

broader context. The development process does not fix the usable modelling languages

and allows applying also arbitrary formalized means of metamodelling. However, the

majority of metamodels is set by means of MOF or compatible metamodelling language.

MDSD does not strictly regard the roles of models and views the development process as

a successive development of models by taking advantage of model transformations. Thus

one can consider that MDA is a specific case of MDSD that is worth mentioning because

it is the basis of all these ideas. It must be noted that the specialized modelling languages-

DSL (Domain Specific Language), have become exceedingly popular. They are used for

modelling specific fields, for example, a language for automobile servicing software

development (AUTOSAR [29]), mobile telephone software development [30], and many

other. These languages increase efficiency of software development in these fields. Also

models and model transformations are increasingly used in implementation of the DSL

languages.

1.3 Model Transformation Languages
The previous chapter concluded that automatic model transformations are one of

the most essential parts in the process of model driven software development (MDSD).

Model transformation turns one model into another in accordance with a specific

definition of model transformation (see Fig. 2). The definition of model transformation

can be stated as a program which is written by using one of the existing software

languages, however, operating with models, which are described by means of

metamodels, creates specific requirements for this language. It turned out that in practice

13

the existing software languages are not really suitable for defining model transformations.

Therefore, in 2002 OMG announced a request for proposals about development of a

standard for a new type of software language, model transformation language- QVT

(Queries/ Views/ Transformations) [11].

What and how can we describe with a model transformation language? The

essential requirement for the model transformation language is the ability to process the

models, which are set by means of the metamodels (in concept of OMG- only with

MOF), that is, by means of this language one must be able to work with a set of instances

of the metamodels (classes), as well as recognise and change them. It is also essential that

definitions of model transformations must be understandable for both the human and

computer- they must be as declarative as possible. Of course, there must be an appropriate

tool support available for a successful application of the language.

As a part of OMG request for proposals there were submitted several language

standard projects. However, over the years they have merged, and now there is one

standard project left- MOF QVT. In the development of this project 16 institutions

participate, including IBM, Sun and four universities. Although according to the plan the

standard language had to be ready by March 2005, the first version of the standard MOF

QVT 1.0 was issued only in April 2008. At the moment the actual version is MOF QVT

1.1 Beta 2 [6], which has been issued in December 2009.

Simultaneously with MOF QVT, a number of model transformation languages are

being developed, not directly related to the OMG request for proposal - MOLA [19], Lx

[16], GReAT [18], UMLX [31], ATL [14], Tefkat [32], MTF [33], ATOM3 [34], VMTS

[35], BOTL [36], Fujaba [17], RubyTL [37], Epsilon [38], Henshin [39]. Also graph

transformation languages turned out to be suitable for solving MDSD tasks, therefore,

such languages as AGG [20], PROGRES [21], TGG [40], GrGen [41], VIATRA2 [15]

were used for defining model transformations. In Chapter 2 of the thesis one can find out

about the model transformation language MOLA. In this research MOLA is particularly

emphasised, because the author of the thesis has participated in the development process

of this language.

The significant number of various model transformation languages might seem

surprising, however, there must be regarded several conditions, which initiated the

development of these languages. Firstly, lots of tasks emerged that were easier to solve by

means of model transformations. Therefore, each of the previously mentioned

14

transformation languages is suitable for solving a particular class of tasks. For example,

MOLA is suitable for MDSD tasks, but VIATRA2- for development of model driven

simulation software. Secondly, the model transformation standard MOF-QVT does not

have a completely developed implementation. Now MOF-QVT Operational is supported

by SmartQVT tool [13] and Eclipse M2M QVT Operational project [42]. But MOF-QVT

Relational is partly implemented by MediniQVT [12] tool. Therefore, the standard is

mostly used as documentation, but in practice other model transformation languages are

being used.

One of the most popular means, which is used in model transformation languages,

is a model pattern. The pattern is a declarative means. It helps in setting the metamodel

fragment, to which a corresponding model fragment must be found. The located model

fragment is supplemented, corrected or deleted according to the proper transformation

algorithm. The pattern and the executable operations together form the rule of

transformation. Consequently, the definition of model transformation is made by a set of

rules written in the model transformation language. Patterns are used by many

transformation languages, such as MOF-QVT, MOLA, GReAT, ATOM3, Fujaba, AGG,

PROGRES, VIATRA2, and GrGen. However, the means that are used in them to provide

the order of execution of rules is the essential factor that differentiates languages and

states their suitability for solving different tasks.

Pattern matching is a process in the result of which a fragment of a model (a set

of instances) is found which corresponds to the particular pattern. In general it is an NP-

complete problem [22]; therefore an efficient implementation of pattern matching is an

essential (even the most essential) precondition for an efficient implementation of the

model transformation language.

15

CHAPTER 2

MOLA Language

Model transformation language MOLA is described in this chapter. The author of

this thesis has actively taken part in the development of MOLA language and its

implementation. Pattern matching algorithms developed by the author have been used in

the implementation of MOLA. More about MOLA language can be found in [19], [43],

[44] and in the web page of MOLA project [45].

MOLA is a graphical model transformation language, which is being developed

by the Institute of Mathematics and Computer Science, University of Latvia, since 2003.

Metamodels have been already used by IMCS [46], [47]; however the request of OMG

for model transformation language proposal (QVT RFP [11]) was the determinant to start

the development of a new language. The goal of MOLA project is to provide a simple and

easy readable (therefore graphical) model transformation language, which would cover

the typical transformation applications in Model Driven Software Development (MDSD).

The declarative rules are commonly used in MOLA transformations together with simple

procedural control structures governing the order in which rules are applied to the model.

2.1 MOLA Overview

MOLA is a graphical model transformation language, which is used for

transforming an instance of a source metamodel (the source model) into an instance of the

target metamodel (the target model). A transformation definition in MOLA consists of the

source and target metamodel definitions and one or more MOLA procedures.

16

Source and target metamodels are jointly defined in the MOLA metamodelling

language, which is quite close to the OMG EMOF specification [3]. These metamodels

are defined by means of one or more class diagrams, packages may be used in a standard

way to group the metamodel classes. Actually, the division into source and target parts of

the metamodel is quite semantic, as they are not separated syntactically (the complete

metamodel may be used in transformation procedures in a uniform way). Typically,

additional mapping associations link the corresponding classes from source and target

metamodels; they facilitate the building of natural transformation procedures and

document the performed transformations. The source and target metamodel may be the

same – that is the case for in-place model update transformations. The MOLA

metamodelling language is defined formally in the Kernel package of the MOLA

metamodel (see Fig. 3).

MOLA procedures form the executable part of a MOLA transformation. One of

these procedures is the main one, which starts the whole transformation. MOLA

Fig. 3. The metamodel of the MOLA metamodelling language

17

procedure is built as a traditional structured program, but in a graphical form. Similarly to

UML activity diagrams (and conventional flowcharts), control flow arrows determine the

order of execution of MOLA statements. Call statements are used to invoke sub-

procedures. However, the basic language statement of MOLA procedures is specific to

the model transformation domain – it is the rule. Rules embody the pattern matching

paradigm, which is typical of model transformation languages. Each rule in MOLA has

the pattern and the action part. Both are defined by means of class-elements and

association-links. A class-element is a metamodel class, prefixed by the element (role)

name (graphically shown in a way similar to UML instance). An association-link

connecting two class-elements corresponds to an association linking the respective classes

in the metamodel. A pattern is a set of class-elements and -links which are compatible to

the metamodel for this transformation. A pattern may simply be a metamodel fragment,

but a more complicated situation is also possible – several class-elements may reference

the same metamodel class – certainly, their element names must differ (these elements

play different roles in the pattern, e.g., the start and end node of an edge). A class-element

may also contain a constraint – a Boolean expression in a simplified subset of OCL. The

main semantics of a rule is in its pattern match –a model fragment must be found, where an

instance of the appropriate class is allocated to each class-element so that all required

links are present in this fragment and all constraints evaluate to true. If such a match is

found, the action part of the rule is executed. The action part also consists of class-

elements and links, but typically these are create-actions – the relevant instances and links

must be created. An end of a create-link may also be attached to a class-element included

in pattern. Assignments in class-elements may be used to set the attribute values of the

instances. Instances may also be deleted and modified in the action part. Thus a rule in

MOLA typically is used to locate some fragment in the source model and build a required

corresponding fragment in the target model. If several model fragments satisfy the rule

pattern, the rule is executed only once (on an arbitrarily chosen match). Such a situation

should be addressed by another related construct in MOLA – the loop construct. In

addition, the reference mechanism (a class-element may be a reference to an already

matched or created instance in a previous rule) is used to restrict the available match set.

Thus, rules are typically used in MOLA in situations where at most one match is possible.

Certainly, there may be a situation when no match exists – then the rule is not executed at

all. To distinguish this situation, a rule may have a special ELSE-exit (a control flow

18

labelled ELSE), which is traversed namely in this situation. Thus, a rule plays in MOLA

the role of an if-then-else construct as well.

Another essential construct in MOLA is the loop (more concretely, foreach loop).

The loop is a rectangular frame, which contains one special rule – the loophead. The

loophead is a rule which contains one specially marked (by a bold border) element – the

loop variable. The semantics of a foreach loop is that it is executed for all possible

matches for the loophead, which differ by instances allocated to the loop variable

(possible variations for other loophead elements are not taken into account). In fact, a

foreach loop is an iterator which iterates through all possible instances of the loop

variable class that satisfy the constraint imposed by the pattern in the loophead. With

respect to other elements of the pattern in the loophead, the existential semantics is in use

– there must be a match for these elements, but it does not matter whether there are one or

several such matches. Thus a foreach loop is the main MOLA construct, which is used to

code a situation: “for each instance of ... which satisfies ... perform the following

transformation ...”. Namely such situations in informal descriptions of model

transformations are frequently called transformation rules, but in MOLA they must be

formalised as foreach loops. In addition to the loophead, a loop typically contains the loop

body – other MOLA statements whose execution order is organised by control flows. The

loop body is executed for each iteration of the loop. Since the loophead is a rule, it may

also contain create actions, thus simple transformations of source model elements may be

coded in MOLA by loops consisting of the loophead only. For nested loops the main

organising feature is the possibility to reference the loop variable (and other elements) of

the main loop in the pattern of the nested loophead, thus specifying an iteration over all

related instances (to the current instance in the main loop).

There also are other available constructs in MOLA procedures. Procedures may

have parameters (of type of a metamodel class or a primitive type) and local variables

(also of both types). These elements may be used in MOLA rules. In addition, text-

statements (consisting of a constraint and assignments) may be used to process these

elements more directly. For primitive-typed variables the text statement is the only

option. A text statement containing a constraint (a Boolean expression) may also have an

ELSE-exit and serve as an if-then-else construct (in addition to rule). Besides MOLA

procedures, external (coded in an OOPL) procedures can also be invoked; this feature is

used for low-level data processing (e.g., model data import). It should be noted that

19

MOLA has no built-in UI support (MOLA is oriented towards behind-the-scenes

transformations), therefore diagnostic messages and similar situations should be

addressed via a library of external procedures. All MOLA procedure elements are defined

formally in the MOLA package of the MOLA metamodel (see Fig. 4).

The execution of a MOLA transformation on a source model starts from the main

procedure. A loop is executed while there are instances to iterate over. Then the next

construct according to the control flow is executed. If a rule without a valid match is to be

executed, and this rule has no ELSE-exit, then the current procedure is terminated (if this

occurs outside a loop) or the next iteration of the loop is started (within a loop body).

When the main procedure reaches its end, the transformation is completed.

2.2 Simple MOLA Example

In order to illustrate the basic MOLA concepts, briefly listed in the previous

section, a simple MOLA transformation example is provided. It is the classical example

from an abstract MDA area – simplified UML class diagram to simplified database

schema definition.

Let us assume that we have to build an initial part of the database schema

definition – tables and columns from a class diagram. The source model (simple class

diagrams) is described by a significantly simplified fragment of Classes package in the

UML 2 metamodel (see Fig. 5). Though only the very basic elements in this source

metamodel are retained, still it has the feature that a class attribute is represented by the

Property metamodel class, and so are the association ends. Therefore each Property

has to be analyzed, whether it really represents an attribute. All metamodel classes in this

fragment are placed in the Kernel package. The Class metamodel class has one

additional tag – the Boolean isPersistent , which is treated in this example as a

normal attribute.

The target metamodel is even simpler – it contains only two classes Table and

Column , both in the SQL package (see Fig. 5). The association cols expresses the

ownership of Column by a Table , the association pkey – that the corresponding

Column is a primary key for the Table .

20

Fig. 4. The metamodel of the MOLA procedure elements

21

Two mapping associations link the source and target metamodels –

classToTable goes from Class to Table and attributeToColumn from

Property .

The transformation to be specified is the following – for each persistent class (i.e.,

Class instance) we have to build a Table and its primary key Column (with a

specifically defined name and type String). For each attribute of such a class, whose type

is a primitive one, we have to build a Column in the corresponding Table with the

same type, but for an attribute with an Enumeration type – a Column with type

String. The Column name coincides with the attribute name. Associations in this

oversimplified example are not taken into account.

Fig. 5. The metamodel of the example

The metamodel example shows that metamodels are defined in MOLA in a

standard way, by class diagrams, but only EMOF level facilities are permitted.

Generalization is used in a standard way.

The transformation itself consists of two MOLA procedures – Main (which is

really the main one) and ProcessAttribute , which is invoked by Main . Fig. 6

shows the procedure Main .

22

tbl : Table
 (SQL)
name:=@cl.name

cl : Class
 (Kernel)
{isPersistent = true}

{Process all
atributes}

@cl : Class
 (Kernel)

prop : Property
 (Kernel)

{NOT}
assoc : Association
 (Kernel)

ProcessAttribute(@prop, @tbl)

cl : Class
 (Kernel)

tbl : Table
 (SQL)

@tbl : Table
 (SQL)

col : Column
 (SQL)
name := @tbl.name + "_PK"
type := "String"

{Generate primary key}

classToTable

classToTable

pkey

ow nedAttribute
class

association

Fig. 6. The MOLA procedure Main

The start and end symbols of a MOLA procedure are represented in the same way

as in UML activity diagrams. Control flows are drawn by dashed lines. The first element

to be executed in this procedure is a foreach loop (a rectangle with bold lines). This loop

consists of the sole loophead rule (a rule is visualized by a grey rounded rectangle). The

pattern part of this rule (elements with black borders) contains only one class element –

the loop variable cl corresponding to the metamodel class Class (loop variables are

distinguished from ordinary elements by bold borders). This class element contains also a

constraint specifying that the attribute isPersistent must have the value true .

Thus, the semantics of this simple loop (and included pattern) is – the loop is executed for

every instance of Class in the source model, where isPersistent has the value true.

23

The action part of the rule contains one class element tbl :Table and one link. The class

element is of create type (red dashed borders), and it contains one assignment – the value

@cl.name (the value of the attribute name in the matched element cl) must be

assigned to the attribute name (of the Table instance to be created). The sole link in the

rule is of create type too (a red dashed line) and corresponds to the mapping association in

the metamodel (between the Class and Table classes). The correspondence between

links in MOLA rules and associations in the metamodel visually is shown via role names,

at least one of the role names must be present for a link and UML syntax rules for classes

guarantee that a unique specification is possible (the MOLA reference shows that

internally a link is directly related to an association). Thus, the first loop is iterated over

all persistent Class instances in the source model and for each such instance a new

instance of Table is created and its name attribute is set to the same String value as the

name of the class. In addition, these two instances are linked by the classToTable

link.

This first loop is a typical design pattern for simple transformations in MOLA –

loop through the instances of a class in the source model and for each valid instance build

something in the target model.

The control flow from the first loop leads to the next foreach loop, which again

iterates over all classes in the source model (the loop variable is based on Class).

However, this time the pattern is more interesting – it contains one more class element

(tbl:Table) and one link connecting these elements. The semantics is very natural –

only these instances of Class , which have a classToTable link to a Table instance,

qualify as valid for iteration. Since this loophead has no actions, for each iteration

immediately the first construct of the loop body – the next rule is executed. It should be

noted, that actually the second loop is iterated over literally the same instances as the first

loop (persistent classes), since namely for these instances the first loop has built the

Table instance and the required link. Therefore in an optimized program for this

example both loops could be merged in one. The two loops are retained in this example

for demo reasons (to demonstrate a pattern for a loop) and because in a more realistic

version (where associations also need to be transformed) namely this two pass approach

can provide a solution.

24

The next rule in the loop body builds a Column instance (the primary key

column), assigns the required values to its attributes and links this new instance to the

Table instance located by the loophead. Note the use of element reference -

@tbl:Table in the rule. The reference construct (an element notation prefixed by the

"@" character) says that namely the instance found by a previous rule (here the loophead)

must be used. The previous rule means the last (according to the execution order) rule,

where the referenced element (without the "@" character) was matched in the rule pattern,

or created in the action part. If a reference is used in a pattern, it means that no matching

is done for this element, simply the known instance is used to build a constraint for other

pattern elements, or the instance is used as an end point for the link to be built (this is the

given case). The use of the reference as a qualifier for an attribute in an expression has the

natural meaning – the attribute value of this instance is taken.

The next construct to be executed in the loop body is a nested loop. It uses the

Property class for its loop variable and is meant to loop over the attributes of the

current Class instance. The loophead contains a pattern, where the reference

@cl:Class says that only the Property instances linked to this known instance must

be iterated upon, in addition there must be no Association instance linked to a valid

Property (by the association link). The cardinality constraint NOT is used in a

pattern element to specify that an appropriately linked instance must not exist at all in the

model (a NOT-constraint is available also on links in MOLA, but there it says only that a

link must not exist). Let us remind that the NOT-constraint is required here to filter these

Property instances, which are association ends. The initial part of the loop pattern –

the loop variable linked to a reference from the owning loop pattern – is very typical to

nested loops in MOLA.

The nested loop in its body has only one construct – the call of the subprocedure

ProcessAttribute (which builds the required columns), using references to the

known instances prop and tbl as parameters. Certainly, the types (classes) of these

parameters must match the parameter definitions in the invoked procedure. Here the

classes coincide, but subclass instances may also be supplied (as in OO programming).

This concludes the definition of the Main procedure. When all the relevant

iterations are completed, this simple transformation has built the required tables and

columns.

25

It remains to give some comments on the subprocedure ProcessAttribute ,

which is shown in Fig. 7.

@tbl : Table
[2]

(SQL)

@prop : Property
 (Kernel)

en : Enumeration
 (Kernel)

@prop : Property
 (Kernel)

pt : PrimitiveType
 (Kernel)

@tbl : Table
 (SQL)

col : Column
 (SQL)
name := @en.name
type := "String"

@prop : Property
 (Kernel)

show Msg("Inconsistent class model:
Class attribute has nonprimitive type")

@prop : Property
[1]

(Kernel)

@tbl : Table
 (SQL)

col : Column
 (SQL)
name := @prop.name
type := @pt.name

@prop : Property
 (Kernel)

type

{ELSE}

type

{ELSE}

cols cols

attributeToColumnattributeToColumn

Fig. 7. The subprocedure ProcessAttribute

The two top symbols in the diagram are parameter definitions (their positions

must be numbered, since calls use the positional notation). Parameters can be freely used

in patterns, as element references would be.

This MOLA procedure has no loops, since the parameters already provide the

exactly required instances. The first rule serves as a typical if-condition in an if-then-else

construct. It is used to distinguish whether the attribute type is primitive or an

enumeration. If the rule pattern matches (the type is primitive), the next rule (followed to

via the unlabelled flow) builds the Column instance and sets its attributes. Note that in

this rule the reference @pt is legal, since the previous rule has matched and located this

instance (it would not be legal to use this reference in the other branch).

If the first pattern fails, the alternative rule (accessed via ELSE-flow) is executed.

If its pattern matches, the alternative building rule for the enumeration case is executed. If

the second condition fails too (e.g., the attribute type is another class), the external

26

procedure showMsg is invoked. This external procedure is built-in in MOLA

environment and it is used to display a simple message box with the provided text.

27

CHAPTER 3

Pattern Matching in Model Transformation Languages

Besides MOLA there are many model and graph transformation languages which

use declarative patterns to specify transformation rules. The language specific pattern

features of several popular languages are described in this chapter. An overview of the

most popular approaches for pattern matching implementation is also given in this

chapter.

3.1 Patterns in Model Transformation Languages

The closest relative to MOLA in the world of model transformation languages is

Fujaba Story Diagrams from Fujaba Tool Suite [17]. Fujaba is a graphical model

transformation language which uses imperative control structures and declarative

patterns. The specification of patterns in Fujaba is almost identical to MOLA. There is a

restriction on patterns in Fujaba - the pattern must contain at least one bound (previously

matched) element. The graphical syntax, of course, differs for both languages, but that is

obvious for independently developed languages. The most significant difference between

the two is the foreach loop. Fujaba does not specify the loop variable and loops are

executed through all of the possible matches of the pattern. In MOLA only the distinct

instances that correspond to the loop variable are iterated over. MOLA foreach loop is

more readable and easier to use, because of the loop variable.

A different programming paradigm is used in the graph transformation language

AGG [20], which is a typical example of a declarative transformation language. AGG

does not have any imperative control structures, and rules that describe patterns are being

executed independently. The only way to affect the execution order is to use layering.

Each rule in AGG includes a pattern which is specified by LHS graph and NACs. NACs

are used by declarative transformation languages mainly to distinguish already processed

model elements. Negative patterns are used differently in MOLA because of the specific

loop construct. MOLA also has negative pattern elements, but they are used to express a

logical negative condition.

28

The graph transformation language PROGRES [21] is a textual graph

transformation language where patterns (graph queries) are specified graphically. Patterns

allow using similar and even richer options than previously noted transformation

languages. The ordering of statements is managed by algebraic structures and PROGRES

follows declarative PROLOG-like execution semantics.

Graph transformation language VTCL (Viatra Textual Command Language),

which is part of the VIATRA2 framework [15], defines patterns using textual syntax.

VIATRA offers broad possibilities for the pattern definition: negative patterns may be at

arbitrary deep level; the call of a pattern from another pattern and even recursive patterns

are allowed; the language may work both with model and metamodel. The execution

order of rules is managed by ASM (Abstract State Machine) language constructs which

are purely imperative. VIATRA has a rudimentary graphical syntax of patterns, however

it seems that whole expressiveness of the language may not be available there.

 Another textual graph transformation language, which has appeared in recent

years, is GrGen [41]. The expressiveness of patterns in this transformation language is

close to VIATRA. Transformation rules are combined using similar algebraic constructs

to PROGRES (except the PROLOG-like execution semantics).

3.2 Related Pattern Matching Implementations

The authors of the graph transformation language PROGRES already in 1998 [48]

were the first ones who examined the pattern matching issue in the context of

transformations. Since then this issue has been solved in several graph and model

transformation languages. Let us look at the most popular ways how pattern matching is

being implemented in different transformation languages.

One of the most popular ways of implementation of pattern matching is by

generating the local search plans. The basic idea of this approach is the following: in the

optimal way finding a fragment, which corresponds to the pattern, by using the basic

lookup operations (such as to find the first instance of a certain class; to find the instance

of a certain class when navigating the link; to check the attribute value of a certain

instance, etc., that actually is executed in almost constant time). By means of the basic

operations a model fragment corresponding to the pattern is built. Usually the process

starts from a potentially suitable class instance, and gradually the fragment of the model

29

is supplemented in correspondence with the pattern, that is, the rest of the instances are

chosen so that they form a suitable component of the fragment wanted. If it is impossible

to find a suitable instance, backtracking takes place. The search continues until a suitable

fragment is found, or all potential fragments are checked, but none of them is suitable.

The local search plan (LSP) is the order in which the basic operations are applied. The

aim of LSP generation is to find such an optimal order which uses the basic operations as

few as possible in order to find a model fragment corresponding to the pattern.

So, to find the best LSP, typically different heuristics are used which help to

choose the optimal implementation order of the operations. The most typical version is to

use cardinalities (multiplicities) of a metamodel element, usually an association, for

example, the instances matching the pattern are navigated in such a way that mostly

navigation takes place along the link towards the end of the association with a cardinality

0 or 0..1 . In this way the set of instances that should be checked is radically diminished.

Implementation of the graph transformation language PROGRES [48] is based exactly on

this principle. However, the cardinalities of the metamodel elements do not depict in full

the real cardinalities in a specific model. For example, the cardinality * of the association

end indicates that there can be more than one link to match, but it does not provide more

precise information. It is possible to obtain more detailed evaluation of the cardinalities of

certain model elements by analysing typical models where transformations with given

patterns are used. This type of analyses can be performed in VIATRA language

implementation [49]. This approach is suitable when a proper amount of corresponding

models is available. However, in practice there are frequent situations when

transformations must be built before any model is available. It is possible to obtain more

precise values of the certain cardinalities exactly before the execution of the

transformation, by examining the model which is going to be changed. In this case this

information must be provided by the model repository, but it is not always done. In this

case also the search plan must be generated during the execution process that can

diminish the efficiency of the method and make the implementation more complicated.

This method is used in the implementation of the transformation language GrGen [50].

The transformation language Fujaba uses a simpler LSP generation strategy.

Pattern matching always starts from an instance corresponding to the bound pattern

element (it exists always). Searching continues along the links in accordance with the

30

pattern [51]. Despite this approach being simple, it works almost as well as the already

mentioned approaches [52].

Also in MOLA implementation a similar approach is used [53], described in detail

in Chapter 5 of the thesis. MOLA uses also a more complicated LSP generation algorithm

which employs the cardinalities of the metamodel elements and the mechanism of the

metamodel annotations which lets the transformation writer use his knowledge about the

real cardinalities in the models [53]. Also this approach is discussed in detail in Chapter 5

of the thesis.

LSP generation is not the only way of solving the pattern matching problem. In

order to solve this problem it is possible to use other popular technologies and methods.

One of these technologies is the relational databases. The basic idea of the method is to

save the model in the relational database in accordance with some database scheme and

carry out pattern matching by means of SQL queries. In this way the optimization

mechanisms of query execution are exploited which are accessible in all well-known

relational database management systems. Implementation of this method is rather simple,

as it is possible to build an SQL query correspondent to the pattern or a chain of queries.

Its execution, that is, the most complicated part, can be left to the query optimization

algorithms. This approach is used in one of implementations of the transformation

language VIATRA [54]. The model is saved in the relational database whose schema

corresponds to the metamodel which describes this model. Thus the schema of the

database is generated corresponding to each metamodel. For each pattern several SQL

views are generated which correspond to the pattern and negative conditions. Pattern

matching reduces to execution of SQL queries corresponding to the views. Relational

database is used also in implementation of MOLA language [55], which is discussed in

detail in Chapter 4 of the thesis. Unlike the previously mentioned implementation of

VIATRA language, in this case the fixed database schema is used and exactly one SQL

query for each pattern.

It is possible to reduce pattern matching to CSP (Constraint Satisfaction

Problem). CSP has ready-made solutions which make solution of pattern matching

possible. CSP is defined as a set of variables which must find a state, satisfactory for

number of constraints. The typical examples are game Sudoku [56] and map colouring

problem [57]. The search of such condition is called variable ordering and this process is

rather similar to generation of the search plan in LSP methodology. Thus pattern elements

31

receive the corresponding CSP variables and a set of constraints, and if they are solved,

also the corresponding pattern matching problem is solved. This solution is used in

implementation of AGG language [58].

The previously described solutions are trying to find the corresponding model

fragment in time, which depends on the size of the model (number of instances) and on

the size of the pattern (number of pattern elements). Incremental pattern matching

allows finding the corresponding model fragment for a pattern in constant time. The basic

idea of this method is cache the fragments corresponding to the pattern, and when model

changes, update this information. But cache requires additional memory resources. In this

case changing the model is inefficient, because in case of any change, the information

about the model fragments corresponding to the pattern must be updated. The typical

MDSD transformation model is being changed constantly. There must be created the

corresponding element in the target model practically for each element of the source

model. It must be noted that before the execution of the transformation, when loading the

model into the memory, the cache process must be performed and it needs a definite time

of execution. Because of these reasons incremental pattern matching is not suitable for

MOLA language. This approach is implemented in VIATRA language [59] and it works

very successfully in solving tasks when the number of transformations is small and local.

VIATRA incremental pattern matcher is built by using RETE networks [60].

The authors of VIATRA offer also hybrid pattern matching [61] which is able

to combine different approaches, for example, LSP generation and incremental pattern

matching. This approach offers to choose which method to use for a specific pattern. The

choice can be made during transformation development or execution. It is based on the

statistics of the available memory.

Patterns in the popular model transformation language ATL [14] are hidden

within Boolean expressions of OCL language and helper functions widely used by ATL.

ATL and MOF QVT [6] are not addressed here, because to our knowledge no pattern

matching implementation details are available for them.

32

CHAPTER 4

Implementation of MOLA using Relational Databases and SQL

The pattern matching algorithm which uses relational database is described in this

chapter. The implementation of this algorithm for model transformation language MOLA

is one of the main results of these thesis. The results have been published in [55] and

MOLA Tool has been presented in the Tool Session [62] of the European Conference on

Model Driven Architecture – Foundations and Applications (ECMDA-FA 2005).

This version of MOLA tool has been developed with mainly academic goals – to

test the MOLA usability, teach the use of MDSD for software system development and

perform some real life experiments. This has influenced some of the language design

requirements, though with easy usability as one of the goals and sufficient efficiency for

research purposes as the second.

4.1 Overview of Architecture

Similarly to many model transformation environments, MOLA environment

consists of two major parts: MOLA Transformation Definition Environment (TDE)

and Transformation Execution Environment (TEE). TDE is completely related to the

metalevel M2 according to MOF terminology, while TEE is at M1 level. TDE is used by

expert users, who define new model transformations in MOLA for the adopted MDSD

technology or modify the existing ones from a transformation library to better suit the

needs of a specific project. Since MOLA is a graphical language, TDE is a set of

graphical editors built on the basis of Generic Modelling Tool [46] (a generic metamodel

based modeling framework (GMF1), developed by University of Latvia, IMCS together

with the Exigen Company). The execution environment (related to M1 level) is intended

for use by system developers, who according to the selected MDSD methodology

perform the automated development steps and obtain the relevant target models. Two

forms of TEE are available. The form closer to an industrial use is an Eclipse plug-in,

1 Do not confuse with Eclipse Graphical Modeling Framework [63]

33

which can be used as a transformation plug-in for UML 2.0 modeling tools, including the

commercial IBM Rational tool RSA [64]. Another form is a more experimental one. It is

based on Generic Modelling Tool as a generic modeling environment and is intended for

various domain specific modeling and design notations.

MOLA Transformation Definition Environment (TDE)

MOLA Transformation Execution Environment (TEE)

MOLA-MM-
editor

MOLA-diag-
editor

MOLAcompiler

Transformation
{in EBM MOLA}

SourceModel-
Tables

Eclipse Plug-in Transformation
Execution

Environment
{runtime,Eclipse-based}

Model-Import
{from EMF XMI}

TargetModel-
Tables

Model-Export
{to EMF XMI}

TargetMMTables

SourceModel
{XMI} TargetModel

{XMI}

SourceMMTables

MOLA-
interpreter

MOLA-MM
{Tables}

MOLA-prog-Tables

Source-MM
{GMF}

Transformation
Execution

Environment
{runtime, GMF-
based}

Target-MM
{GMF}

TargetModel
{GMF}SourceModel

{GMF}

ModelEditor
{GMF}
Graphical editor/
Model browser

Model-Import
{GMF}

Model-Export
{GMF}

ModelEditor
{GMF}
Graphical editor/
Model browser

MOLA Transformation
Definition Environment
{GMF based}

Metamodel

Source-MM Target-MM

basedOn
basedOnbasedOnbasedOn

basedOn

specifiedIn

basedOn

specifiedIn

Fig. 8. MOLA Tool environment architecture.

 Fig. 8 shows both the components of the MOLA tool (rounded rectangles) and

the used data objects (rectangles). Besides the traditional class diagram notation, arrows

represent the possible data flows. Data objects in MOLA runtime repository are annotated

as tables because it is SQL based. Now some more comments on the MOLA TDE. It

contains graphical editors for class diagrams (EMOF level) and MOLA diagrams. Both

34

the source and target metamodels are shown in the same class diagram, together with

possible mapping associations. A transformation is typically described by several MOLA

diagrams, one of which is the main. Since the graphical editors are implemented on the

basis of Generic Modelling Tool, they have professional diagramming quality, including

automatic layout of elements. In addition to editors, TDE contains the MOLA compiler

which performs the syntax check and converts both the combined metamodel and MOLA

diagrams from the Generic Modelling Tool repository format to the MOLA runtime

repository format.

The main component of MOLA TEE is the MOLA Virtual machine (VM)

(interpreter), which actually performs the transformation of the source model to the target

model. As it was already mentioned, the goal of this implementation is to provide a

simple and sufficiently efficient implementation of MOLA. The key factor in reaching

this goal is an appropriate implementation of MOLA VM, since the implementation cost

and efficiency of all the service components is nearly the same for all considered

solutions to MOLA VM. And in turn, a crucial point of MOLA VM implementation is an

appropriate repository and execution environment for pattern matching. This is due to the

fact that the implementation of control structures and executable actions in MOLA (due

to their procedural nature) is very straightforward in all cases. It should be noted that the

choice of repository and execution environment are closely linked ones, thus the rest of

the section actually will be devoted to these issues.

Typically model transformation languages are implemented on metamodel based

repositories, the most typical of which is Eclipse EMF [26]. Several model transformation

tools have been built using EMF as a repository [14], [38], [39]. The EMF API in Java

provides the most basic actions for building a pattern matcher. The next version of

MOLA implementation is also implemented on such repositories- MIIREP [65], JGraLab

[66] and also the mentioned EMF.

It has been already shown [67] that a very efficient MOLA pattern matching

implementation is possible on such a basis. However, the available low level operations

in these APIs (even lower level than analyzed in [67]) make the implementation

sufficiently complicated. Therefore another solution was considered – to what degree an

SQL database can be used as a repository for pattern matching. On the one hand, the

repository structure must match closely enough to EMOF – similarly as EMF does. On

the other hand, the desire was to use the powerful capabilities of SQL for a simple high

35

level implementation of pattern matching. Such a solution was found, which is described

in the next section. The only remaining concern was performance issues – whether the

query optimization in SQL databases can at least be not very far from the optimal

performance described in [67].

4.2 Implementing Patterns by Natural SQL Queries

MOLA VM operates with models – MOF level M1. However, for each model

element its metaclass must be known – for pattern matching or any other MOLA action.

Therefore MOLA VM has to know the complete metamodel (M2 level) for the

transformation. As it was described in CHAPTER 2 the metamodelling facilities in

MOLA are approximately those of EMOF. The most natural way is to store the

metamodel in tables which correspond to EMOF metamodel classes. However, due to

efficiency reasons, the plain old class metamodel containing Classes ,

Associations and Attributes (but not Properties as association ends)

occurred to be more convenient to be coded by the corresponding SQL tables (see the left

column of Fig. 9). It can be easily seen, that in fact it is equivalent to EMOF, therefore

MOLA compiler can easily store the metamodel in these tables. In addition, there are

tables for identifying metamodels and models themselves.

The storage of model elements – instances of metamodel classes, associations and

attributes is completely straightforward in the corresponding three tables (see the right

column of Fig. 9). The MOLA program is also naturally stored in tables according to the

MOLA metamodel, but since we here are mainly concerned with pattern matching, this

coding is not so important. The only fact to be mentioned here is that the MOLA compiler

for each program element (loop, rule, pattern class element, pattern link etc.) generates a

unique identifier. This fixed database schema is much easier to implement than the

metamodel-specific one used in [54].

Let’s find out how a MOLA pattern can be naturally mapped to an SQL Select

statement. The idea is that each class element in the pattern corresponds to an occurrence

of the table class_inst (actually an alias of it) in the From clause. Similarly, each

pattern link corresponds to an alias of the asoc_inst table in the From clause. Next

the Where clause is formed. Firstly, each pattern element (i.e., the corresponding alias of

class_inst) must mandatory have the specified class, i.e., its meta_class_id

36

column must have the given value (metamodel elements are fixed during MOLA

execution). Similarly it is for links (association instances) in the pattern.

Fig. 9. SQL Tables for storing metamodels and models.

A more non-trivial part of the Where clause must specify that each link does link

the relevant instances, i.e., src_class_inst_id is equal to the class_inst_id of

the corresponding (association source) alias of class_inst , similarly for the

trg_class_inst_id . For reference elements (@p:Package in Fig. 10) it must be

specified, that their class_inst_id has the given value (reference elements always

correspond to a fixed instance in MOLA). The most complicated part in the Where

clause are the attribute constraints, which already are Boolean expressions. However, the

simple attribute names used in MOLA constraints must be substituted by additional

aliases of attr_inst in the From clause, in addition, the transformed expression must

be added to the Where clause.

Fig. 10 illustrates the generation of an SQL query from a pattern. The pattern is a

very simple one – a foreach loop head containing the loop variable (of type Class, with

a constraint) and a reference (to the instance of Package) linked by the package link.

Lines illustrate the described above mapping graphically, the color coding (or levels of

gray in the black-and-white version) shows which parts of the query were obtained from

 Meta_model

PK meta_model_id

name
Meta_class

PK meta_class_id
PK meta_model_id

name
isAbstract
isSource
isTarget
parent_meta_class_id

Meta_association

PK meta_asoc_id
PK meta_model_id

source_meta_class_id
target_meta_class_id
source_role_name
target_role_name
source_cardinality
target_cardinality
isInherited

Meta_attribute

PK meta_model_id
PK meta_attr_id

meta_class_id
name
type
cardinality
isInherited

model

PK model_id

meta_model_id
class_inst

PK class_inst_id
PK model_id

meta_class_id
asoc_inst

PK association_instance_id
PK model_id

meta_asoc_id
src_class_instance_id
trg_class_instance_id attr_inst

PK attribute_instance_id
PK model_id

meta_attr_id
class_inst_id
value

37

one pattern element. The alias names are generated from the pattern element identifiers

built by the MOLA compiler and therefore are unreadable.

Fig. 10. Generation of an SQL query from a pattern.

The result of the query (a virtual table) is defined in such a way that each row

represents (identifiers of) class instances forming a valid match.

Now it can be easily seen, that the built SQL query indeed expresses the pattern

match semantics, which for the given example asserts that instances of the metaclass

Class must be sought, which have the link package to the fixed instance of Package

and which have the given value of the attribute kind . Since the pattern is inside a

foreach loop, all such instances (all matches returned by the query in this simple case)

must be processed. A similar argument applies to any MOLA pattern.

Thus the simplicity of the pattern mapping to SQL query has been shown, it

remains to show that this SQL Select can easily be built by the MOLA VM (actually it is

a sort of JIT-compiling). It is being done in several steps. First, the class elements of the

pattern are picked up and for each of them an element in the Select list and in the

From list (the table class_inst with a new alias) is added, with the MOLA compiler-

generated unique element identifier used as the alias name. In addition, a term in the

Where condition is added, which specifies that the instance must be of the relevant class

(or that the instance is the given one for reference elements). Then in a similar manner

each link of the pattern is processed. Here the term added to the Where part is more

complicated, it has to state both that the link's association is the relevant one and that the

endpoints are the corresponding class instances. The latter fact is easily to state due to the

fact that the MOLA compiler has documented this via references to the relevant element

38

identifiers and namely these identifiers are used as aliases for the element selection. Then

pattern constraints are processed, each adding to the From part (the required attribute

instance) and to the Where part (the expression itself). Simple OCL expressions having a

direct counterpart in SQL and some simple OCL set expressions are supported.

Finally, some remarks on the negative patterns. A negative part can be added as a

NOT EXISTS subquery to the Where condition. In the case of a NOT-element, the

subquery has just one alias of the class_inst in the From list plus aliases for the links

connecting the element with the positive part of the pattern. The Where part of the

subquery is generated similarly as for positive patterns.

4.3 Database Performance Issues

In this section the performance of the generated queries in several databases,

which are relevant for MOLA tool, is analyzed. A query generated from a pattern is

somewhat special in the sense that it is a so-called self-join – aliases of the tables

class_inst and asoc_inst are repeated in the From clause as many times as

there are elements and links in the pattern respectively. Large self-join queries are non-

typical for standard database applications and therefore may be processed by some

engines not so optimally.

The first natural choice for an experimental tool was the open source database

MySQL, the version 5.0.12 [68]. The first intuitive performance evaluations were also

encouraging, but it was clear that a more thorough analysis of query optimization is

required.

Since it has been shown [67] that pattern matching in MOLA can be performed

very efficiently as a sequence of small queries on a reasonable model repository (and the

database schema described in previous section is such), it is clear that potentially the

generated large queries can also be executed efficiently. Since the performance of a join

type SQL query is mostly dependent on the join order of tables in WHERE part [69], the

right order in which the tables in a complicated self-join are joined must be found that is

equivalent to the sequence of small queries.

Let us explain the situation in detail on an example (Fig. 11). This example is a

fragment of the MOLA transformation transforming a class model to OWL notation [70]

(used as a benchmark in Section 4.4), namely, the foreach loophead is shown, which

39

generates an OWL object property for each UML association instance (for classes the

corresponding OWL Classes are already built). It was shown in [67], that for cases such

as in Fig. 11, the optimal order is to start from the loop variable (the element

as:BinaryAssociation , all instances of which must be tested anyway), and to

proceed along the paths leading away from the loop variable. In the example there are two

such paths – one leading via the link targetEnd to objEnd:Property and further,

and another one starting with the link sourceEnd . Even without seeing the metamodel,

it is clear that in a valid class model this is an optimal order – a UML binary association

has just one targetEnd (i.e., just one row in the table asoc_inst , where the join

condition is true), which in turn is followed by just one objEnd (one row in

class_inst) and so on. Fig. 11 illustrates this order by numeric tags. The generated

query corresponding to this pattern is shown in Fig. 12.

Certainly, there are other optimal orders – any of the paths could be traversed first,

and the paths can be traversed intermittently. Similar easy-to-be-explained optimal join

orders exist for more complicated patterns, where paths may have cross-links and where

reference (fixed) elements exist (see more in [67]).

1

2
3

4
5

6

7

8
9

10
11

12

13

Fig. 11. Optimal pattern matching order

Further, it was to be found, how close the MySQL query execution plans are to an

optimum, and at what expenses such a plan is found. Fortunately, MySQL has the

Explain statement [71], which reveals some details of the execution plan. Fig. 13

shows the join order of query shown in Fig. 12, exposed by the Explain statement.

Actually, two experiments are merged there – one with order tags in squares has been

40

performed on a small source model (29 rows in class_inst , 39 rows in

asoc_inst).

Another one has been performed on a large source model (725 rows in

class_inst , 975 rows in asoc_inst), the join order (where different from the first

one) is shown in circles. For the large model the join order is equivalent to the optimal

one, only another starting point has been selected, and paths are traversed intermittently.

For the small one the deviation is larger, but also not critical.

However, if the number of elements and links in a pattern is increased, the query

execution time also increases. The query (discussed above) having a pattern with 7

elements and 6 links executes in 200ms on a model with 3000 class instances and 4000

links, a query with 8 elements and 7 links in 600 ms on the same model, 9 elements and 8

links in 3200ms, but 10 elements and 9 links in 43000ms that is a significant jump. There

are only few papers on MySQL optimization [72], [73], and they do not explain the

optimization of the specific self-join queries used in MOLA pattern matching. Another

observation should be mentioned – the Explain statement execution itself requires

nearly as much time as the query execution, so we can assert that MySQL query

optimization in case of large self-join queries is not optimal – it itself is too time

consuming.

Thus we have to rely on our black box experiments, which say that MySQL

optimization is acceptable when there are limits on the pattern size (no more than 8

elements), but the query execution time increases too much for larger patterns, to make

sense in using this RDBMS for pattern matching.

Thus the current version of MySQL can be used for MOLA runtime repository,

but with restrictions on MOLA transformation patterns. The hope is for versions to come

(the current version performs better than those tested earlier), but next versions could only

raise the limit for pattern size – not remove this restriction completely.

Due to the mentioned above problem other alternatives were sought. Possible

alternatives are MSDE 2000 [74] – the free small version of MS SQL 2000 server,

PostgreSQL [75] – another popular open source RDBMS, MSSQL Server 2005 Express

[76] – the free small version of MS SQL 2005 server.

41

Fig. 12. Generated query example

SELECT cli20000020780.class_inst_id cli20000020970.class_inst_id ,
cli20000021040.class_inst_id , cli20000021110.class_inst_id ,
cli20000021180.class_inst_id , cli20000021260.class_inst_id , li20000021330.class_inst_id

FROM class_inst cli20000020780 , class_inst cli20000020970 , class_inst cli20000021040 ,
class_inst cli20000021110 , class_inst cli20000021180 , class_inst cli20000021260 ,
class_inst cli20000021330 , asoc_inst asi20000021080 , asoc_inst asi20000021150 ,
asoc_inst asi20000021300 , asoc_inst asi20000021400 , asoc_inst asi20000021700 ,
asoc_inst asi20000021760
WHERE cli20000020780.meta_class_id=2000001847 AND
cli20000020780.meta_model_id=0000000000 AND cli20000020780.model_id=0 AND
cli20000020970.meta_class_id=2000001790 AND
cli20000020970.meta_model_id=0000000000 AND cli20000020970.model_id=0 AND
cli20000021040.meta_class_id=2000001721 AND
cli20000021040.meta_model_id=0000000000 AND cli20000021040.model_id=0 AND
cli20000021110.meta_class_id=2000001723 AND
cli20000021110.meta_model_id=0000000000 AND cli20000021110.model_id=0 AND
cli20000021180.meta_class_id=2000001790 AND
cli20000021180.meta_model_id=0000000000 AND cli20000021180.model_id=0 AND
cli20000021260.meta_class_id=2000001721 AND
cli20000021260.meta_model_id=0000000000 AND cli20000021260.model_id=0 AND
cli20000021330.meta_class_id=2000001723 AND
cli20000021330.meta_model_id=0000000000 AND cli20000021330.model_id=0 AND
asi20000021080.meta_asoc_id=2000001835 AND
asi20000021080.meta_model_id=0000000000 AND
asi20000021080.src_class_inst_id=cli20000021040.class_inst_id AND
asi20000021080.trg_class_inst_id=cli20000020970.class_inst_id AND
asi20000021080.model_id=0 AND asi20000021150.meta_asoc_id=2000001725 AND
asi20000021150.meta_model_id=0000000000 AND
asi20000021150.src_class_inst_id=cli20000021040.class_inst_id AND
asi20000021150.trg_class_inst_id=cli20000021110.class_inst_id AND
asi20000021150.model_id=0 AND asi20000021300.meta_asoc_id=2000001835 AND
asi20000021300.meta_model_id=0000000000 AND
asi20000021300.src_class_inst_id=cli20000021260.class_inst_id AND
asi20000021300.trg_class_inst_id=cli20000021180.class_inst_id AND
asi20000021300.model_id=0 AND asi20000021400.meta_asoc_id=2000001725 AND
asi20000021400.meta_model_id=0000000000 AND
asi20000021400.src_class_inst_id=cli20000021260.class_inst_id AND
asi20000021400.trg_class_inst_id=cli20000021330.class_inst_id AND
asi20000021400.model_id=0 AND asi20000021700.meta_asoc_id=2000001858 AND
asi20000021700.meta_model_id=0000000000 AND
asi20000021700.src_class_inst_id=cli20000020780.class_inst_id AND
asi20000021700.trg_class_inst_id=cli20000020970.class_inst_id AND
asi20000021700.model_id=0 AND asi20000021760.meta_asoc_id=2000001852 AND
asi20000021760.meta_model_id=0000000000 AND
asi20000021760.src_class_inst_id=cli20000020780.class_inst_id AND
asi20000021760.trg_class_inst_id=cli20000021180.class_inst_id AND
asi20000021760.model_id=0

42

12

11

13

5
6

7
8

9

4
3

1
2

10

11

12

13

Fig. 13. MySQL query plan (table join order).

Similar performance experiments on large queries have been performed with these

engines too. Single pattern query execution times for these alternatives were significantly

better (Microsoft products) or similar (PostgreSQL). The join order was nearly optimal. It

can be concluded from available references [77] that both MS SQL and MSDE use

instance data for query optimization in a more sophisticated way. However, experiments

show that execution of a complete transformation is much slower than by using MySQL.

MySQL was faster by an order of magnitude. It seems that MSDE 2000 and MSSQL

Server 2005 Express engines have major problems with completing large sequences of

SQL queries, because of built-in features such as workload governor [78] in MSDE 2000,

which decreases the server performance.

Thus, MySQL is a satisfactory implementation for MOLA runtime repository if

the pattern size does not exceed 8-9 elements (actually, only the free pattern elements

count – those which are class elements, but not references or parameters, in Fig. 13 all

pattern elements are free). The existing experience of using MOLA tool on some nearly

real life examples has confirmed this. The transformation execution times in these

examples testify that apparently close-to-optimal join order was used by MySQL in most

cases. Nearly all patterns in these examples were below the size limit. In practice it is

also possible to bypass the limit by decomposing a pattern into several smaller ones

(actually, even without sacrificing the transformation readability).

An alternative approach would be to enforce the optimal join order manually,

since MySQL has such possibilities. Unfortunately, these features are vendor-specific

43

extensions of SQL. In addition, finding of this order during query generation is a

significant part of implementing the pattern via small queries and therefore much more

complicated.

4.4 Benchmark Results

The previous section demonstrated that usage of MySQL database server as model

repository and pattern matching engine has proven to be sufficient. To estimate MOLA

Tool performance the experiments have been done.

A simple task and appropriate model transformation tool for comparison have

been chosen. The choice – AGG [20] is a popular graph transformation language that uses

pattern constructs similar to MOLA, only explicit NAC’s (negative application

conditions) must be added. AGG rules have no explicit control structures, but in simple

cases MOLA control structures can be adequately emulated by AGG rule layering. AGG

has already been used for benchmark testing [79], thus allowing ensuring certain

correctness of the experiment. The transformation was executed on both MOLA Tool and

AGG for models of various size and complete execution times were measured. Both

MOLA Tool and AGG were used with configurations recommended by developers. The

example transforms simplified UML class diagram to simplified OWL diagram.

Metamodels are shown in Fig. 14.

The transformation creates an OWLClass instance for every Class instance and

OWLDataTypeProperty for every Property which is an owned attribute of the

Class . This task is done using nested loops. The first foreach loop iterates through all

Class instances and the nested foreach loop iterates through appropriate Property

instances. The third foreach loop creates OWLDataTypeProperty for each

BinaryAssociation (Fig. 15). Though this transformation is very simple it is a

typical representative of MDSD tasks where frequently a model has to be transformed to

a semantically equivalent one in another notation.

44

Classifier

Type

Class

TypedElement

RDFSClass

DataType

RDFProperty

NamedElement
name : String[0..1]

BinaryAssociation

OWLDatatypeProperty

RDFSResource
namespace : String
localName : String
uri : String

OWLObjectProperty
symetric : Boolean
transitive : Boolean

RDFSDatatypeOWLClass

Property

RDFDomainProperty
0..*RDFdomain

0..*

typedElement
type
0..1

reverse 0..1 targetEnd
1

RDFRangeProperty
0..*RDFrange0..*

0..1

#obj_prop_For_Assoc 0..1

forw ard
0..1 sourceEnd

1

class0..1

ow nedAttribute
*

0..1

#dtForAttr0..1

0..1

#ow lClassForCl 0..1

Fig. 14. Metamodels of UML Class Diagram and OWL Diagram

The transformation was executed on a hyper-threaded Intel Pentium4 3GHz, 1 GB

RAM Windows XP workstation. No additional performance tuning was done to MySQL

database server or operating system configuration. Identical models of various sizes were

prepared for MOLA Tool and AGG. The first column of Table 1 contains model data size

N – the number of class instances in the model. Second and third columns contain

complete transformation time for MOLA and AGG measured in seconds.

45

Fig. 15. Transformation UML Class Diagram to OWL Diagram

Both MOLA Tool and AGG showed sufficient performance on models with size

below N=175. MOLA Tool execution time grows nearly linearly up to model size

N=3500, but starts to grow faster above this value. Thus the current MOLA Tool

implementation performs well in this range, but real examples could be also larger – there

are ontologies containing more than 5000 OWL Classes. Real transformations are also

46

more complicated. AGG has problems similar to MOLA Tool, but both tools are usable

for tasks they are designed for.

The main relational database engine feature, which enables fast search, is table

indexing [77]. The MOLA Tool uses table indexes in the most appropriate way;

apparently this ensures the nearly linear time growth for queries.

The reason for faster complete transformation time growth for large N lies in the

fact that the model size grows while transformation is being executed.

A proportional to N number of insert and update operations must be done in this

MOLA program and each operation time grows due to the need of refreshing indexes (but

indexes are crucial for fast pattern matching). A similar problem is the main reason for

AGG slowdown, even to a larger degree, as it is shown in [79].

Table 1. Benchmark Results

Transformation

ExecutionTime (s)
Model size

(N) MOLA AGG
42 1 4
56 1 6
70 2 9
84 3 14
175 5 62
400 10 334
1050 19 8280
1750 36
3500 65
17500 1781

For real MDSD tasks it is typical that a new model must be built of size

proportional to the source model. Thus not only the pattern match time influences the

performance, but still it seems to be the key factor.

4.5 Summary

Both simple and sufficiently efficient implementation of pattern matching via

SQL queries has been built. Thus this is a viable solution at least for an experimental tool

(what this version of MOLA tool is). Several model transformations supporting real

MDSD style development (automated use of Hibernate persistence framework in Java – a

plug-in for the RSA tool, conversion of UML activity diagrams to BPMN notation and

47

other) have been built and tested on examples of realistic size [80], [81]. In none of these

examples the natural pattern size in MOLA programs exceeded 8 – the critical value up

to which the given MOLA implementation is efficient. These experiments and benchmark

tests described in the paper have shown that the implemented MOLA VM performs

satisfactorily and MOLA is a suitable transformation language for typical MDSD tasks –

transforming a UML model to another one closer to the system implementation.

However, for an industrial usage of MOLA a special in-memory repository and a

compiler/interpreter that implements the principles described in [67] could be required.

The main reason could be the desire to get rid of any limits on pattern size; also the

general performance for large models is expected to be better. Such a solution is

discussed in the next Chapter.

Certainly, these results obtained for MOLA implementation have value also for

other transformation languages, where the pattern match semantics is similar.

48

CHAPTER 5

Implementation of MOLA Using L3 Language

The pattern matching algorithm which uses L3 language and local search plan

generation is described in this chapter. The implementation of this algorithm for model

transformation language MOLA is one of the main results of these thesis. The results

have been published in [82] [53] and MOLA Tool has been presented in the Tool Session

[83] of the European Conference on Model Driven Architecture – Foundations and

Applications (ECMDA-FA 2008).

The most critical part of the implementation of a pattern-based transformation

language is the implementation of the pattern matching. It has been already shown [67]

that an efficient MOLA pattern matching implementation is possible. In fact, some kind

of local search plans are generated and executed by this approach. It is based on only few

basic lookup operations needed to iterate over a model. They are:

• getNext(Class Cl) - returns the next instance of a class Cl upon each call.

There is also an initialization for it - initializeGetNext(Class Cl)

• getNextByLink(Association as, Cl1 inst, Class Cl2) -

returns one by one instances of a class Cl2 that can be reached by links

corresponding to association as from a fixed instance inst . There is also an

initialization for it, with similar parameters -

initializeGetNextByLink(Association as, Cl1 inst, C lass

Cl2)

• checkLink(Cl1 inst1, Cl2 inst2, Association as) - checks

whether a link of required type is between instances

• eval(Cl inst, Expr exp) - evaluates a local constraint on attributes

Thus, the target language of the MOLA compiler or the API of a repository that is

used for implementation of the MOLA interpreter (Virtual Machine) must contain similar

operations. This approach requires the implementation of the pattern matching algorithm

using such low-level constructs. That is a sufficiently complicated task.

49

The Lx language family [16] (L0, L0`, L1, L2, L3) is an appropriate target for

MOLA compiler. Each next language of Lx family has been built extending the previous

(see Section 5.3). L0 language as well as MOLA has such concepts as procedure,

parameter, variable, sub-procedure call. These concepts can be mapped directly from

MOLA to L0 language. These basic features along with basic lookup operations are

included in the L0 language, but commands introduced in the following languages L0`-L3

(imperative pattern matching, looping and branching commands) allow much easier

implementation of the MOLA compiler than API of repositories. That is possible because

these commands are at an abstraction layer much closer to MOLA concepts, such as

foreach loop and rule, than lower level languages or API of metamodel based

repositories. Thus L3 language provides all necessary features that allow us to build an

efficient MOLA compiler.

5.1 Architecture of MOLA Compiler

An efficient compiler has been already built [16] for the Lx language family.

Actually, an efficient implementation of the L0 language has been built and a compiler

for each next language is built using the bootstrapping method [84]. It means that the

previous language in the family is used to build the compiler for the next one (L0 for L0’

compiler, L0’ for L1 compiler and so on).

Several metamodel-based in-memory repositories MIIREP [65], EMF [26] and

JGraLab [66] have been chosen to store metamodel and its instances for the

implementation of L0 language. These repositories have appropriate low-level API’s

implemented as a C++ (MIIREP) or Java (EMF and JGraLab) function libraries.

Therefore an intermediate result of the L0 compilation is a C++ or Java program. The

final result of the L0 compilation is a dynamic link library (DLL file) or JAR file that can

be executed over a repository instance which contains the appropriate metamodel and

model.

The bootstrapping method used to build compilers for the rest of the Lx family

languages requires that programs written in L0’ to L3 must be stored in the repository that

is used by L0 language. Thus the metamodel of these languages is required. All languages

of the Lx family are described by the same metamodel because each next language is

50

derived from the previous one by adding some new features. Therefore the metamodel of

the last language in the chain (L3) describes also all the previous languages.

The first step in the compilation of a L3 program is to obtain a model - an instance

of the L3 metamodel. It is a representation of the L3 program in the metamodel-based

repository. This step is a separate step in the whole process of the compilation which

requires parsing of the text file and building a model. It is implemented using a traditional

programming language (C++). Obtained lexemes [85] are stored in the repository as a

very simple lexeme model [86]. Next, the transformation language L0 is used to obtain

the L3 program model from the lexeme model.

When a program model has been built the actual compilation is being performed.

The L3 (also L2, L1, L0’) compiler actually is a model transformation. In this case, an in-

place transformation is used – the L3 program model is overwritten by a semantically

equivalent L2 program model (also L2 by L1, etc.). The final result of the chain of

compilation steps is an L0 program model which is semantically equivalent to the initial

L3 program given as the input file. The chain of compilation steps (from L3 to L0) can be

treated as one step (the corresponding transformations are invoked one after another).

The last step in the compilation process is the code generation (a model to text

transformation). An L0 language text file is generated. Also this step is done using the L0

language extended with native functions for file handling written in C++. Actually, only

one write to file function is needed.

Since the whole L3 compilation process has been divided into three separate steps,

there is a possibility to start with any step if the appropriate model has been prepared.

This fact is used by MOLA to L3 compiler – MOLA program is being compiled directly

to an L3 model. This allows decreasing significantly the complexity of the

implementation of MOLA to L3 compiler. Actually, it allows using transformation

language L3 to build MOLA to L3 compiler.

The first MOLA Transformation Definition Environment (MOLA Editor) [87]

was built on the basis of Generic Modelling Tool [46] – a domain specific modelling

framework, developed by UL IMCS together with the Exigen Company. The models

(MOLA program and metamodel) were stored in a compatible format to the repository

used by the L0 language. Thus the input for the MOLA to L3 compiler, a model of a

MOLA transformation, already could be obtained. In fact, no other natural representation

of a MOLA program than a model can be obtained, because MOLA is a graphical

51

transformation language. The most appropriate way to implement MOLA compiler to any

suitable language is using model transformations. Thus, the first MOLA compiler was

implemented using L3 language.

Since the MOLA Editor required more sophisticated features than the Generic

Modelling Tool domain specific modelling framework could offer, the next MOLA

Editor- MOLA2 Tool, has been built. MOLA2 Tool uses the METAclipse framework [8],

which is based on Eclipse platform [88] and model transformations. It should be noted

that METAclipse uses the same repository as the L0 implementation. Therefore it was

possible to develop transformations for MOLA2 Tool using MOLA itself and the first

MOLA compiler. The second version of MOLA to L3 compiler has been built for

MOLA2 Tool, using L3 language too.

Although there are two implementations of MOLA to L3 compiler, there are no

significant differences in the architecture and general ideas of implementations of both

compilers. The main difference between these two implementations is the MOLA

metamodel. The MOLA metamodel for MOLA2 Tool was improved by eliminating

metamodel restrictions enforced by Generic Modelling Tool and by making it more

suitable for compilation. The experience and a significant part of the code from the first

version of MOLA to L3 compiler is reused in the second version. This work is based on

the second version of MOLA to L3 compiler.

Compilation of a MOLA transformation is divided into four steps. Each of them is

performed by a separate component – compiler. These components are:

• MOLA to L3 compiler

• L3 to L0 compiler

• L0 to C++ or Java compiler

• C++ or Java to executable file compiler

The general architecture of MOLA compiler is shown in Fig. 16. There may be a

question – why such a large number of compilers are used? Why do not use direct

compilation from MOLA to repository API? The answer is in the low complexity and

reusability of the each step. Each compiler transforms a higher-level language to a lower-

level language. It is much easier to build compiler to a language that is at a closer

abstraction level to the source language. Especially it is so if the general concepts of both

52

languages are similar. This is the reason why L3 (and not L0) is used as the target

language for MOLA.

Fig. 16. The general architecture of MOLA compiler

Another issue is the reusability. The compiler of L3 language had been already

built and this implementation was efficient. The efficiency of the generated code does not

suffer if MOLA compiler is built on top of the compiler chain. It has allowed

implementing MOLA on other EMOF compatible repositories, EMF [26] or JGraLab

[66], and then only L0 compiler must be rewritten. Even less, only the actual code

generator in L0 compiler must be rewritten – lexical and syntax analyzers can be reused.

The last compiler (L0 to code) is dependent of the API of the model repository.

 The only disadvantage of a long compiler chain is a longer compilation time. To

deal with this issue a program has to be structured. The most common approach is to use

code units. Each unit is compiled to a separate object. Next, a linker is used to obtain a

single executable. A similar idea is used also in the MOLA2 Tool. Packages are used to

structure a MOLA program. A package may be defined as a MOLA unit. That means that

all MOLA procedures that are contained by the unit are compiled to a separate L0 unit.

This allows using L0 compiler as a linker that assembles all L0 units into one C++ or Java

project. Thus model transformations (MOLA and L3-L0’compilers) can work with

smaller models that helps to improve the overall performance of the compilation process.

53

5.2 Model-Driven Compiling

The usage of models and transformation languages in the process of compilation

is not new. The ATL model transformation language [14] has already been used to

compile CPL to SPL [89] and FIACRE to LOTOS [90]. The ATL language itself is also

compiled using a domain specific only for this purpose created language - ACG (ATL

Code Generation language) [91]. All these are textual languages and the model-to-model

transformation is used for actual compilation similarly to the way it was used in the

example of the L3 to L0 compilation [86]. A similar idea is used also in the SmartQVT

[13] implementation. The QVT code is parsed to obtain the model representation of a

QVT transformation and the actual compilation to the Java file is performed using this

model.

A similar pattern of the compilation is used in all examples. Three basic steps are

performed:

• parse an input program and obtain the model of it

• compile the model of the input program to a model of an output program

• generate the code of the output program from the model

This approach may be called model-driven compiling – models are used as core

elements of the compilation process (see Fig. 17).

Fig. 17. Model-driven compiling

These steps are similar to phases of a compilation in the traditional compilation

technique [85]. The lexical and syntax analysis are performed by the parser. The semantic

analysis, intermediate code generation (target program model) and optimization are

performed by compiler (model transformation). The code generation is done in the last

54

step. A model of a source program is stored according to the language metamodel.

Actually, the parse trees used in traditional compilation technique can be treated as a sort

of models. Thus, the similarity is obvious.

All three steps of the model-driven compiling require appropriate metamodels

already built for both input and output languages and a transformation written using a

model transformation language suitable for the compilation tasks. Actually, text-to-model

(T2M), model-to-model (M2M) and model-to-text (M2T) languages are needed. An

exporter or importer written in a general purpose programming language can be used

instead of the T2M and M2T transformations. Certainly, the choice of the programming

language depends on the repository used to store models.

The model-driven compiling is even more appropriate for graphical languages

such as MOLA. Since programs of graphical languages are stored as models, the first step

can be omitted – the model-to-model transformation that implements a compiler can be

applied directly.

The main gains of using model-driven compiling are:

• The higher level of abstraction that is provided by model transformation

languages allows reducing the complexity of compiler implementation.

• This is the most appropriate way to compile graphical languages, because

they are mostly implemented using some metamodel [26] or graph-based

[66] repository. Actually, programs (diagrams) of such languages are

models and the usage of a model transformation language is the most

natural approach.

• If the concrete syntax of the input language is based on some general

coding language, like XML [92], then model transformations can be

applied to obtain a model of the program from its coding. In this case, a

standard parser can be used to obtain the model of the coding. Next, the

model transformation can be used to obtain the model conforming to the

input language metamodel. A similar approach is applicable also for the

output language.

• Since attribute grammars have been used to specify the semantics of

programming languages [93], a precise definition of the model

55

transformation between source language and target languages can be used

to define the semantics of the source language even in more readable way.

The first experience using model-driven compiling was quite promising. The

MOLA to L3 and L3 to L0 [86] compilers have been developed. The implementation of

both compilers has shown that using transformation language for compilation tasks

reduces the complexity of the implementation. However, the best practice of model-

driven compiling has yet to be developed and a comparison to the traditional compilation

techniques [85] must be done.

5.3 L3 from Lx Language Family

The Lx language family as any other model transformation language uses some

sort of metamodelling language. It is quite close to the OMG EMOF specifications. The

main difference is that there are no packages in this metamodelling language. The

metamodel of this language is shown in Fig. 18.

Fig. 18. The metamodel of Lx metamodelling language

Classes and binary associations are core elements of this language. Classes can

have attributes which can be primitive or enumeration-typed. There are four pre-defined

primitive types – String, Integer, Boolean and Real. There are no possibilities to define

new ones.

The basic commands (constructs for a textual definition of a metamodel) of the Lx

family metamodelling language are the following:

56

• class <className>; - defines class with a given name.

• attr <className>.<attrName>:<ElementaryTypeName>; - defines attribute with a

given name and type.

• assoc <className>. [{ordered}]<cardinality>

<roleName>/<roleName><cardinality> [{ordered}] . <className>; - defines

association with corresponding properties.

• compos <compositeClassName>. [{ordered}] <card><roleName> /

<roleName><card> [{ordered}] .<partClassName>; - defines compositions with

corresponding properties.

• rel <subClassName>.subClassOf.<superClassName>; - defines a generalization

relationship between given classes.

• enum <enumName>:{ <enumLiteral1>,< enumLiteral2>, … }; - defines enumeration

with given elements.

An elementary unit of L0 transformation is a command (an imperative statement).

L0 transformation contains several parts:

• global variable definition part

• native subprogram (function or procedure) declaration part (used C++ or Java library

function headers)

• L0 subprogram definition part. Exactly one subprogram in this part is the main. The

main subprogram defines the entry point of the transformation. An L0 subprogram

definition also consists of several parts:

o Subprogram header

� procedure <procName>(<paramList>); Subprogram header, the (formal)

parameter list can be empty. Parameter list consists of formal parameter

definitions separated by “,”. A parameter definition consists of its name,

the parameter type (the type can be an elementary type or a class from the

metamodel), and the passing method (parameters can be passed by

reference or by value). If the parameter is passed by reference, its type

name is preceded by the & character.

� function funcName>(<paramList>): <returnType>; - return type name can

be an elementary type name or class name.

o Local variable definitions

57

� pointer <pointerName> : <className>; - defines a pointer to objects of

class <className>.

� var <varName> : <ElementaryTypeName>; - defines a variable of

elementary type. <ElementaryTypeName> is one of elementary types.

o Keyword begin - starts subprogram body definition

o Subprogram body definition

o Keyword end - ends subprogram body definition.

The subprogram body definition may contain the following commands:

1. return; - returns execution control to caller procedure or function.

2. call <subProgName>(<actPrmList>); – calls a subprogram. Actual parameters list

can be empty. Actual parameter list consists of binary expressions separated by “,”.

3. label <labelName>; - defines a label with the given name.

4. goto <labelName>; - unconditionally transfers control to label <labelName>. The

label <labelName> should be located in the current subprogram.

5. first <pointer> : <className> else <label>; - positions <pointer> to an arbitrary

object of class <className>. Typically, this command in combination with the next

command is used to traverse all objects of the given class (including subclass

objects). If the class does not have objects, <pointer> becomes null , and execution

control is transferred to the <label>. The class in this command must be the same as

(or a subclass of) the class used in pointer definition. If it is a subclass, then the

pointer value set is narrowed (for the subsequent executions of next).

6. first <pointer1> : <className> from <pointer2> by <roleName> else <label>; -

similar to the previous command. The difference is that it positions <pointer1> to an

arbitrary class object, which is reachable from <pointer2> by the link <roleName>.

Similarly, this command in combination with the next command is used to traverse

all objects linked to an object by the given link type.

7. next <pointer> else <label>; - gets the next object, which satisfies conditions,

formulated during the execution of the corresponding first and which has not been

visited (iterated) with this variable yet. If there is no such object, the <pointer>

becomes null , and execution control is transferred to <label>.

8. addObj <pointer>:<className>; - creates a new object of the class <className>.

58

9. addLink <pointer1>.<roleName>.<pointer2>; - creates a new link (of type specified

by <roleName>) between the objects pointed to by the <pointer1> and <pointer2> ,

respectively.

10. deleteObj <pointer>; - deletes the object, which is pointed to by <pointer>.

11. deleteLink <pointer1>.<roleName>.<pointer2>; - deletes link, whose type is

specified by <roleName>, between objects pointed to by <pointer1> and <pointer2>,

respectively.

12. setPointer <pointer1>=<pointer2>; - sets <pointer1> to the object, which is pointed

to by <pointer2>. In place of <pointer2> the null constant can be used.

13. setVar <variable> = <binExpr>; - sets <variable> to <binExpr> value. <binExpr> is

a binary expression consisting of the following elements: elementary variables,

subprogram parameters (of elementary types), literals, object attributes and

standard operators (+,-,*,/,&&,||,!).

14. setAttr <pointer>.<attrName>=<binExpr>; - sets the value of attribute <attrName>

(of the object, pointed to by <pointer>) to the <binExpr> value.

15. type <pointer> == <className> else <label>; - if the type of the pointed object is

identical to the class <className>, then control is transferred to the next command,

else control is transferred to <label>. In place of the equality symbol == an inequality

symbol != can be used. This command is used for determining the exact class of an

object.

16. var <variable>==<binExpr> else <label>; - if the condition is true , then control is

transferred to the next command, else control is transferred to <label>. In place of

equality symbol other (<, <=, >, >=, !=) relational operators compatible with

argument types can be used.

17. attr <pointer>.<attrName> == <binExpr> else <label>; - if the condition is true then

control is transferred to the next command, else control is transferred to <label>.

Other relational operators (<, <=, >, >=, !=) can be used too.

18. link <pointer1>.<roleName>.<pointer2> else <label>; - checks whether there is a

link (with the type specified by <roleName>) between the objects pointed to by

<pointer1> and <pointer2>, respectively.

19. pointer <pointer1>==<pointer2> else <label>; - checks whether the objects pointed

to by <pointer1> and <pointer2> are the same. Instead of <pointer2> null constant

can be used. The inequality symbol (!=) can be used too.

59

It is easy to see that the language L0 contains only the very basic facilities for

defining transformations [94].

Language L0’ - model transformation language L0’ is based on the language L0.

The new feature of L0’ is the possibility to make long arithmetic expressions (in L0, only

unary and binary expressions were allowed).

Language L1 - is supplemented with an imperative pattern matching feature

(suchthat block), so that it is possible to search for instance that match some condition.

The suchthat block may be used with first and next commands. The suchthat block can

contain conditions on values of variables or attributes, links between instances and other.

In fact, all L1 commands can be used to specify pattern condition, including the nested

first commands.

The textual syntax for the pattern (such-that block) is as follows:

(first | next) <pointerName1> : <className> [from
<pointerName2> by <roleName>] [
suchthat
begin
<L1Commands>
end;]
The condition holds if it is possible to successfully [86] reach the end of the block

(i.e., successfully execute its last command). If the condition fails then the next instance is

examined. The conditional commands in L0 (commands that have an else branch) may be

used without the else branch in the suchthat block. If in such a command the undefined

else branch is to be executed then the condition defined by the pattern fails.

Language L2 - has the possibility to make loops. A special command exists in L2

with which it is possible either to visit all instances of the specified class or just those

instances of the class that match the given pattern. The textual syntax for the loop is as

follows:

foreach <pointerName1> : <className> [from <pointerName2> by <roleName>
] [suchthat

begin
 <L2Commands>
end]
do
begin
 <L2Commands>
end;

Language L3 - has the branching command – a standard if-then-else construct can

be used. The textual syntax of the branching command is as follows:

if

60

begin
<L3Commands>

end
then

begin
<L3Commands>

end
[else

begin
<L3Commands>

end] ;

The L3 metamodel (the Lx language family metamodel) is shown in Fig. 19.

Fig. 19. The metamodel of L3 language

It has already been shown [67] that MOLA language can be implemented

efficiently using a set of low-level operations for patterns. There is a direct mapping from

the required operations to the commands of Lx model transformation family.

61

• initializeGetNext(Class Cl) and getNext(Class Cl)

operations can be mapped to first c:Cl and next c commands. These

commands return all instances of a given class. In the beginning the first

c:Cl command must be called to initialize the iteration through required

instances and afterwards the next c must be called to iterate through

• initializeGetNextByLink(Association as, Cl1 inst,

Class Cl2) and getNextByLink(Association as, Cl1

inst, Class Cl2) operations can be mapped to the first c:Cl2 from

inst by as and next c commands. These commands return all instances of a

given meta-class navigable by links of the given type from a fixed

instance. The iteration must be done similarly as in the previous case

In fact, the first ... suchthat command can be used instead of pair of first and

next. Actually the first ... suchthat is compiled to these commands. Thus, MOLA

compiler can use a closer construct to pattern as a target.

• checkLink(Cl1 inst1, Cl2 inst2, Association as)

operation can be mapped to the link inst1.as_rolename.inst2 command.

The semantics of this command is the same as the semantics of this

operation – check the existence of a link of the given type between two

fixed instances.

• eval(Cl inst, Expr exp) operation is an expression interpreter

and the MOLA realization to L3 must implement a generator of sequences

of L3 commands that interprets the given expression. The core elements of

such expressions are attribute or variable value checks. These operations

can be mapped to attr inst.<attrname><relation><expression> and var

<varname><relation><expression> commands accordingly. Arithmetic

expressions can be mapped to expressions introduced by the L0’ language.

Constraints that are complex (Boolean) expressions where conjunction,

disjunction and negation are used can be mapped to a sequence of

commands which interprets the given expression.

62

5.4 Mapping from MOLA to L3

This section contains a detailed description of the mapping from MOLA to L3.

That includes a mapping of metamodelling language constructs and a mapping of MOLA

procedure and its elements to constructs of the L3 language.

5.4.1 Mapping of Metamodelling Languages

Both MOLA metamodelling language and the Lx family metamodelling language

are based on EMOF. So the mapping is straightforward. For describing this mapping we

will use the meta-class names from MOLA and Lx family metamodelling language

metamodels shown in Fig. 3 and Fig. 18. The MOLA related meta-class names are

prefixed by the Kernel prefix, but the Lx related meta-class names are prefixed by the Lx

prefix.

• Each Kernel::Class instance is transformed to Lx::Class with the same

name, but since there are no packages in Lx, the Lx::Class name is

prefixed by all parent package names.

• Both languages have pre-defined primitive types. All primitive types that

are in MOLA - String, Integer, Boolean – are also in Lx.

• Each Kernel::Enumeration instance is transformed to Lx::Enumeration

instance and each Kernel::EnumerationLiteral instance is transformed to

Lx::EnumerationLiteral instance owned by the appropriate enumeration.

• Each Kernel::Generalization instance is transformed to Lx::Generalization

instance. Of course, general and specific links are set to the appropriate

classes.

• Each Kernel::Association instance is transformed to Lx::Association and

appropriate association ends that are represented as Kernel::Property

instances linked by memberEnd link to the association are transformed to

Lx::AssociationEnd instances. They are linked to the appropriate class

instances. Multiplicity, ordering and composition information of

association ends are also transformed directly to Lx.

63

• Each Kernel::Property instance that is an attribute is transformed to an

Lx::Attribute instance. Since MOLA allows only primitive or

enumeration-typed attributes the correspondence is direct.

An example of the transformation is given in Fig. 20.

class Kernel::Classifier;

class Kernel::Class;

class Kernel::Property;

enum VisibilityKind : {public,private,package};

 compos Kernel::Class.[0..1]class/ownedAttribute[*]. Kernel::Property;

attr Kernel::Classifier.isAbstract:Boolean;

attr Kernel::Property.isDerived:Boolean;

attr Kernel::Property.isReadOnly:Boolean;

attr Kernel::Property.AggregationKind:AggregationKind;

attr Kernel::Property.VisibilityKind:VisibilityKind;

rel Kernel::Class.subClassOf.Kernel::Classifier;

Fig. 20. An example of MOLA and Lx metamodelling languages.

5.4.2 Mapping of the Procedure Headers

MOLA procedures form the executable part of a MOLA transformation. The L3

language also has procedures. Both MOLA and L3 procedures may have parameters that

may be in (passed by value) or in-out (passed by reference). Both languages may have

variables declared. In L3 the class-typed variables and parameters are called pointers and

have a different syntax, so compiler must distinguish class-typed variables from

enumeration and primitive-typed variables. Each non-reference class element that is used

in rules in a MOLA procedure is transformed to a pointer declaration. Actually, the

transformation of procedure header is straightforward and does not need a detailed

description. An example of the transformation of a MOLA procedure header is shown in

64

Fig. 21 (the L3 code in all examples is used to better illustrate the result of compilation.

Actually, the compiler produces instances of the model of an L3 program)

main procedure

ExampleProcedure (

Param:String,

Param1 :& Interactions::Lifeline

);

var Var : Enumeration1;

pointer

Var1 : Interations::Message;

pointer

ClElem: Interactions::Message;

Fig. 21. An Example of MOLA Procedure header transformation to L3

5.4.3 Mapping of the Execution Control Flows

The basic statements of MOLA are rule and foreach loop. There are also other

MOLA statements - text-statement, call-statement, etc. Control flows are used to

determine the order of execution of MOLA statements within one MOLA procedure.

There is exactly one start symbol in a MOLA procedure. It defines the entry point

of the MOLA procedure. Other statements may pass the execution control to another

statement or terminate the execution of the procedure. End symbols are used to terminate

the execution of the procedure. They define the exit points of the MOLA procedure. The

65

execution of the procedure may be terminated also by a text-statement or a rule, if the

corresponding control flow is not present. Actually, a text-statement and a rule are used as

traditional branching constructs (they may have two outgoing control flows, one of them

labelled ELSE). A foreach loop contains nested MOLA statements (loop body) that are

executed in each iteration. It has a special statement - loophead (rule-based loophead),

which defines the entry point to the loop-body. There may be any other MOLA statement

in the loop (except start-statement) – nested loops are also allowed. A statement that has

no outgoing control flow terminates the current iteration of the loop. A branching

statement also may terminate the current iteration of the loop, if one of outgoing control

flows is not present. Other statements (call-statement, etc.) just pass the execution control

to the next statement. Control flows in MOLA procedure may connect statements in an

almost arbitrary way, there are only few restrictions. Incoming control flows are not

allowed to the start symbol and loophead. Outgoing control flows are not allowed from

end symbol. Also it is not allowed to jump into a loop from an outside statement (it is

allowed to jump out).

Control flows and MOLA statements form a directed graph, where some nodes

(loops) may contain a nested graph. This graph is the control flow graph (CFG) of a

MOLA procedure. The control flow graph is a data structure used by traditional compilers

for analysis and optimization of a program execution [85].

The most natural way to code a control flow graph in a textual language is to use a

labelled block of code for every node and a jump command for every edge. Thus each

node of the MOLA control flow graph will compile to a block of L3 code. The block of

code starts with a label command that unambiguously identifies the block. The execution

control is passed to another code block using a goto command. If the execution of a

MOLA procedure must be terminated, then a return command is used.

According to the different types of statements described above we can distinguish

five types of nodes in the control flow graph of a MOLA procedure and define the

mapping to L3 language for these types:

• Entry node (start symbol) is a unique and mandatory node. Here we do a little

optimization – no L3 code block is created for start-statement. The outgoing

control flow determines the first MOLA statement that in turn determines the first

code block of the procedure.

66

• Exit node (end symbol) is compiled to the following code block (in what follows,

a simple template language is used – L3 keywords are bolded, other parts of code

are shown in angular braces containing an intuitive description):

label <label name> ;
return;

• Simple node (e.g. call statement) haven’t an outgoing ELSE control flow. It is

compiled to a simple code block – a sequence of commands depending on the

actual type of MOLA statement and the goto command to the label command of

the code block that is created from the MOLA statement connected by the

outgoing control flow.

label <label name> ;
<sequence of commands> ;
goto <next label name> ;

• Branching node (e.g. rule) may have two outgoing control flows, where one of

them may be an ELSE control flow. It is compiled to an if-then-else command.

The if-block contains the condition, then-block contains the action part of the

MOLA rule or text-statement and else-block contains a goto command to the label

command of the code block that is created from the MOLA statement connected

by the outgoing ELSE control flow. The last command in the main code block is

the goto command to the label command of the code block that is created from the

MOLA statement connected by the other (non-ELSE) outgoing control flow.

label <label name> ;
if
begin
<condition commands> ;
end
then
begin
<action commands> ;
end
else
begin
goto <next else label name> ;
end;
goto <next label name> ;

• Loop node (e.g. foreach loop) contains a nested control flow graph. Since a loop

and its loophead cannot be used separately, a common L3 code block is created

for both nodes. A loop is compiled to a foreach command. The suchthat block

contains the condition, the do block contains the action part of the loophead. The

do block contains also a goto command to the label command of the code block

67

that is created from the MOLA statement connected by the outgoing from the

loophead control flow. The last command in the do block is a label command.

This label is used to receive back the execution control from the code blocks that

terminate an iteration of the loop. Thus a MOLA statement which terminates the

execution of the current iteration of the loop passes the execution control to this

label command instead of terminating the execution of the whole procedure. In

fact, the execution control is passed away from the do block of a foreach

command, but it is received back just at the end of an iteration. Thus, the code

blocks that are created from MOLA statements within the loop body are included

in the corresponding L3 loop body indirectly - using goto and label commands.

The last command in the main code block is a goto command to the label

command of the code block that is created from the MOLA statement connected

by the outgoing control flow of the loop.

label <label name> ;
foreach < loop variable name > suchthat
begin
<loophead condition commands> ;
end
do
begin
label < loophead label name >;
<loophead action commands >;
goto <loophead next label name> ;
label <loop iteration end label name> ;
end
goto <next label name> ;

The complete code of the procedure is assembled using code blocks obtained in

the way just described. The first code block is determined by the start-statement. All other

code blocks may be added to the procedure in an arbitrary order, because the order of

execution is determined only by label and goto commands – not by the order in which

command blocks are added to the procedure.

The result will be likely a sort of spaghetti code [95], but this causes no danger

because the L3 code is just an intermediate code which is compiled further. This code is

not read by a transformation developer. The wide usage of the goto commands does not

cause any loss in the overall performance.

68

5.4.4 Mapping of MOLA Statements

The control structure aspect of the mapping of MOLA statements to L3

commands has already been described in the previous section. This section contains a

detailed description of the mapping for each MOLA statement including data processing

and pattern matching aspects.

The mapping for start and end statements has already been described. The start-

statement is used to determine the first MOLA statement and end-statement is

transformed to the return command.

The call statement is transformed to the call command. Since the mapping from a

MOLA procedure to L3 procedure is one-to-one, the called L3 procedure is the same that

is mapped from the MOLA procedure called by the MOLA call-statement. The L3

language allows only binary expressions to be used as actual parameters of the call

command. MOLA allows arbitrary expressions (of appropriate type) to be used as actual

parameters (the same problem is for functions in an expression). Our solution is to use

temporary variables or pointers (depending on the actual type of a parameter) and setVar

or setPointer commands to calculate the values of expressions. These commands must be

executed before the call command. If the actual parameter is a MOLA variable, parameter

or class element identifier, then a temporary variable is not used. An example of the

compilation is shown in Fig. 22.

var temp_var1 : String;
var temp_var2 : Integer;
begin
…
label id_lab1 ;
setVar temp_var1 =” constant ”;
setVar
temp_var2= 564+ c.intAttr : Integer;
call test (a,temp_var1,temp_var2);
goto id_labx ;
…

Fig. 22. Compilation of call statement

As it was described before, the text statement is transformed to the if-then-else

command. MOLA text-statement has two main parts – a condition (constraint) which is

expressed using OCL-style expression and a list of assignments. The condition holds if

the expression evaluates to true. The condition is compiled to the if block of the if-then-

else command. Assignments are compiled to the then block of the if-then-else command.

69

Assignments are used in the text statement to assign values to elementary

variables and pointers. The L3 commands that are used for this task are setVar and

setPointer. In MOLA the value that is being assigned is expressed using a simple

expression of an appropriate type. A simple expression of Integer type may contain

Integer-typed variable, parameter or attribute specifications, Integer constants, pre-

defined functions (size, indexOf, toInteger) and arithmetic operations (addition,

subtraction, multiplication). A simple expression of String type may contain String-typed

variable, parameter or attribute specifications, String constants, pre-defined functions

(toLower, toUpper, substring, and toString) and a concatenation operation. A simple

expression of Boolean type may contain Boolean-typed variable, parameter or attribute

specifications, Boolean constants (true and false) or pre-defined function (isTypeOf,

isKindOf, toBoolean). A simple expression of enumeration type may contain

enumeration-typed variable, parameter or attribute specification, enumeration literals or a

pre-defined function toEnum. A simple expression of class type may contain a class-

typed variable or parameter specification (pointer), null constant or typecast.

In L3 similar expressions are allowed, but there are few differences. They are:

there is no direct typecast of a pointer, actual parameters in a function call may be only a

binary expression of an appropriate type. The list of pre-defined functions in L3 also does

not match all the pre-defined functions of MOLA language. The solutions of these

problems are rather simple. In addition, some kinds of expressions in L3 allow more

features than in MOLA, but these features are not relevant for MOLA compiler.

Table 2. Correspondence of elements used in expressions in MOLA and L3

MOLA L3

String, Integer, Boolean, enumeration-
typed constants, NULL constant

+

elementary variables, pointers +

attribute specification +

+,-,*,concatenation +

direct typecast (class-typed)
temporary variable and extra
setPointer command used

function call
temporary variables and extra

setVar commands for complex
parameters used

70

MOLA L3

pre-defined functions
extended library of native

functions used

toEnum, toInteger, toString, toBoolean +

indexOf, toLower, toUpper extended library used

size, substring +

isTypeOf, isKindOf
temporary variable and type

command used
The complete table of correspondence is shown in Table 2. The left column

describes features used in MOLA expressions and the right column shows the

correspondence in L3. The plus sign means that the mapping is direct. If there is no direct

mapping the basic principles of a solution are shown. It may be the usage of a temporary

variable (typecast and function call) or the usage of an extended library of native

functions (indexOf, toLower, toUpper functions).

Though L3 expressions allow Boolean operations, they cannot be used with

relational operators (<, >, etc.). Relational operators may be used only in var and pointer

commands. That makes the compilation of Boolean expressions used in MOLA more

difficult.

In MOLA the simplest condition is a simple expression of the Boolean type (no

relational operators, no Boolean operations). Then it is compiled using a temporary

variable and a var command in the following way:

Condition:

<simple boolean expression>

if
begin
[<extra commands>]
setVar temp_var=<simple boolean
expression>;
var temp_var==true;
end
…

The extra commands may be needed when the extra calculations are needed, e.g.

to compute argument values for Boolean-typed function call.

Usually a condition contains also a relation (>, <, >=, <=, =, <> operators can be

used). Since the left and the right operands may be arbitrary expressions of the same type,

the value of each expression is computed and stored in a temporary variable. Then these

variables are compared using a var or pointer command depending on the type of

expressions.

71

Condition:

<expression1><relation>

<expression2>

i f
begin
[<extra commands >]
setVar/setPointer temp_var1=<expression1> ;
[<extra commands >]
setVar/setPointer temp_var2=<expression2> ;
var/pointer temp_var1 <relation >temp_var2 ;
end
...

A condition in MOLA may contain also Boolean operations - conjunction (and),

disjunction (or) and negation (not) – together with relational operators. The L3 has no

such features, but it is shown [16] that it is possible to construct L3 code that implements

the Boolean operations. The algorithm implemented in MOLA to L3 compiler uses the

same principles.

An example of the compilation of a MOLA text statement is shown in Fig. 23.

if begin
 setVar _mvar_6=false;
 setVar _mvar_9=s;
 setVar _mvar_10="Star";
 var _mvar_9==_mvar_10 else _mlabel_8;
 setVar _mvar_6= true ;
 label _mlabel_8;
 setVar _mvar_7= false ;
 setVar _mvar_12=par;
 setVar _mvar_13=0;
 var _mvar_12 >_mvar_13 else _mlabel_11;
 setVar _mvar_7= true ;
 label _mlabel_11;
 setVar _mvar_4= false ;
 var _mvar_6== true else _mlabel_5;
 var _mvar_7== true else _mlabel_5;
 setVar _mvar_4= true ;
 label _mlabel_5;
 var _mvar_4== true ;
end then begin
 setVar _mvar_14= c.name: String+"Star";
 setVar s= toUpper(_mvar_14);
 setVar par= Length(s)+1;
end else begin
 return ;
end ;

Fig. 23. Compilation of text statement.

72

Another and the most important decision statement in MOLA is a rule. It is also

compiled to the if-then-else command. The condition of the rule is expressed using a

pattern. The implementation of pattern matching typically is the most demanding

component to implement and also the key factor determining the implementation

efficiency.

The most obvious way to compile a MOLA pattern to L3 commands is to start

from one (chosen by some algorithm) class element and traverse the pattern graph. The

result of such compilation is a first command created for the initial class element and

nested first commands for other class elements. It is obvious that the same pattern can be

matched in different ways using the basic L3 commands. Finding the most efficient way

(the optimal search plan) is the main task for pattern matching. The pattern matching

implementation in details is discussed in next sections.

An example of the compilation of a pattern is given in Fig. 25.

if
begin
 first p:Kernel::Property from c
by ownedAttribute suchthat
 begin
 setVar _mvar3=p.name: String;
 setVar _mvar4=”value”;
 var _mvar3 ==_mvar4;
 first t:Kernel::Type from p
by type;
 end ;
end
then
…

Fig. 24. Compilation of MOLA rule - pattern.

The action part of a rule consists of class elements, association links and

assignments that are included in class elements. Create and delete class elements are used

to create and delete particular instances. Create and delete association links are used to

create and delete links. The assignment is used to assign the value of an attribute of a

particular instance. The value is specified using expressions that have been already

described in previous sections. The correspondence between MOLA and L3 constructs is

shown in Table 3.

73

Table 3. Correspondence of constructions used in action part of the rule.

MOLA L3

create, delete class-elements addObj, deleteObj commands

create, delete association-links addLink , deleteLink commands

attribute value assignments setAttr commands

The L3 code that is created for the action part of the rule is placed in the then

block of the if-then-else command. An example of the compilation of the action part of a

rule is shown in Fig. 25.

i f begin …end
then begin
 addObj pr:Kernel::Property;
 addLink pr.type.c;
 setAttr c.name="Student";
 setAttr pr.name="attendant";
 deleteLink c.owningPackage.pack;
 deleteObj pack;
end else
…

Fig. 25. The compilation of the rule – action part.

The last MOLA statement described in this section is the foreach loop. The

implementation of a loop is one of the crucial issues in the realization of the MOLA

compiler. An incorrectly chosen search structure may cause serious efficiency problems.

The condition of a loop is expressed using the pattern of the loophead, which contains a

special class-element – the loop variable. The iteration is performed over all instances

that correspond to the loop variable.

The loop is compiled to the foreach command. The condition of the loop is

compiled to the suchthat block of the foreach command. The compilation of the loophead

pattern is similar to the compilation of the rule pattern and is also discussed in next

sections. The action part of the loophead is being compiled in the same way as the action

part of a rule. The created code is added to the do block of the foreach command.

For example, it is possible to compile the loop, depicted in Fig. 11, in the

following way:

foreach as:BinaryAssociation suchthat
 first subjEnd:Property from as by sourceEnd suchthat
 first subjCl:Class from subjEnd by class suchthat

74

 first domOWLCl:OWLClass from subjCl by #owlClassForCl suchthat
 first objEnd:Property from as by targetEnd suchthat
 first objCl:Class from objEnd by class suchthat
 first ranOWLCl:OWLClass from objCl by #owlClassForCl
do
 addObj op:OWLObjectProperty;
 addLink as.#obj_prop_For_Assoc.op;
 addLink op.RDFdomain.domOWLCl;
 addLink op.RDFrange.ranOWLCl;
 setAttr op.localName:=as.name;

As we see, foreach loop is naturally compiled to command foreach … suchthat

command. The first ... suchthat commands are nested in each other according to the

navigation order of the elements corresponding to the pattern- searching begins from the

loop variable, continues along the both branches of the pattern, that consist from the class

elements and links. The commands first from by are included in the block of the prior

suchthat command. If any of these commands is not executed, that is, the corresponding

first instance is not found, then backtracking takes place – the next instance, which

corresponds to the previous operation, is taken. Accordingly, the main task of MOLA

compiler is to arrange the first … suchthat commands in the order that makes pattern

matching the most efficient.

5.5 The Simple Pattern Matching Strategy

Implementation of pattern matching for MOLA uses the local search plan

generation strategy. This is one of the most popular strategies, however typically it

requires a sophisticated analysis of pattern or even underlying model to choose the best

search plan. A simple algorithm (in the sense of how complex is the implementation) is

proposed which is efficient for the typical MOLA patterns used in MDSD-related tasks (it

is efficient also for others if appropriate constructs are used). The simple algorithm uses

the following principles:

• if the pattern contains a reference class element, then the pattern matching starts from

the reference (if there are more than one, then an arbitrary is chosen).

• otherwise the pattern matching starts from the loop variable in a loophead or from

arbitrary chosen element in a normal rule.

• pattern matching is continued with class elements accessible from already traversed

class elements by association links.

75

If rule pattern contains several independent pattern fragments, then these

fragments are processed independently by the same principles – such fragments can be

treated as separate patterns.

Pattern matching in a regular rule is started from the reference class element, if

such class element exists in the pattern. Though MOLA does not require the presence of a

reference class element in the pattern, the practical usage of MOLA has shown that most

of the regular rules contain it. It is because the usage of imperative control structures

causes reuse of the previously matched instances, which are represented by the reference

class elements in MOLA. This is one of the main reasons why such simple optimization

technique works almost as well as more sophisticated approaches.

Use of reference class elements is natural also in loopheads. It is common to have

a loop over, for example, all properties of a given class. This task can be easily described,

using a single MOLA loop, where the pattern in the loophead is given using the reference

class element and the loop variable. See the loophead of the inner loop in Fig. 26 for the

typical case. In this case the pattern matching is started from the reference element

(@pack) reducing the search space dramatically. Of course, the path from the reference

class element to the loop variable may be longer. The only restriction is that cardinalities

of associations along the path (except one directly before the loop variable) should be "1"

or "0..1".

For foreach loop statements without a reference in the loophead, pattern matching

is started from the loop variable in the loophead. Practical usage of MOLA has shown

that typical tasks are naturally programmed using patterns, where cardinalities of

association links leading from the loop variable are "1" or "0..1". This causes the

execution of the loop to work in a linear time dependant on the number of the instances

corresponding to the loop variable. Of course, this does not apply for every example, but

if an appropriate metamodelling (UML-like, using composition hierarchy) and imperative

algorithms are used, then this condition holds for most cases.

76

Fig. 26. Transformation example - MOLA procedure building package hierarchy.

Note the loophead of the outer loop in Fig. 26. Though cardinalities of association

links leading from the loop variable are "0..*", the pattern matching started from loop

variable is still efficient. Since class elements other than the loop variable provide the

"existence semantics" (find first valid match), in practice this loop works also in linear

time because almost all requirements are described using scenarios. In fact, this additional

constraint is used to filter out those few cases where requirements are described using

different means.

Note that this strategy does not even require the analysis of the cardinalities of

metamodel elements at the same time remaining efficient in the practical usage. A similar

pattern matching strategy is used also by Fujaba. The bound variable (reference class

element in terms of MOLA), is even required by the pattern in Fujaba. However, the

benchmark tests [52] have shown that this strategy performs as well as more sophisticated

strategies. The same tests also have shown that an appropriate usage of the language

constructs (improvement of Fujaba transformation) causes a significant positive impact

on the performance. The same holds also for MOLA, however the feature which

distinguishes both languages is the loop variable in the MOLA foreach loop. First of all,

the transformation becomes more readable for human reader; secondly, it gives slight

77

advantage in the performance of the pattern matching. It allows iterating through the

instances corresponding to the loop variable only, while other patterns elements are

checked just for the existence. On the contrary, Fujaba is forced to examine

corresponding instances to all pattern elements in the foreach loop.

5.6 Benchmark Results

The simple pattern matching strategy has been implemented in the MOLA Tool

for MOLA language. The benchmark tests for this implementation have been carried out.

The example described in the Section 4.4 has been reused. The same tests have been

repeated for MOLA implementations for MIIREP, JGraLab and EMF repositories.

Table 4. Benchmark results of MOLA implementation for different repositories.

 Transformation execution time (ms)

Model size (N) MIIREP EMF JGraLab

1750 134 78 277

3500 266 106 388

17500 1349 378 1366

35000 2856 659 2601

87500 6872 1926 6288

175000 15222 3221 11609

350000 27614 7348 23420

The benchmark results are shown in Table 4. Since the transformation which is

shown in Fig. 15 has been tested, similar measures are used. The first column depicts the

size of model used for tests. The model size (N) is a total number of class instances in a

source model. Transformation execution times for MOLA implementation have been

shown in the next three columns. The times have been measured in milliseconds rather

seconds as it was done in the previous test (see Table 1). It should be noted that the

performance has been much better than for previous implementation. For example, the

models of size N=3500 have been processed in less than one second in the new

implementation, while the old (SQL-based) implementation executes the same

transformation in 65 seconds (see Table 1).

78

The MOLA implementation through Lx language family and simple pattern

matching strategy perform in less than 1 second for models of size N≤10000 which is a

typical size of model used in MDSD. Since the example used in the benchmark is a

typical MDSD transformation (all instances in a model of tree-like structure are

processed), benchmark tests show that MOLA implementation is efficient for MDSD-

related tasks.

It is interesting to compare also the performance of MOLA on different model

repositories. For all repositories the execution times grow almost linearly against the size

of a model. The EMF repository has shown the best results. Two other repositories

(MIIREP and JGraLab) perform equally strong. MIIREP is better for small models, but

JGraLab is better for larger models (the execution times grow slower for JGraLab).

However, the difference between results is quite narrow. It should be noted, that all

implementations have been tested on large source models (N=350000). They have been

processed in less than a half minute. Note that in the example every source model element

must be processed and target element created.

It should be noted that the performance of a repository has a great impact on

overall performance of transformation technology. For example, the loading and saving

EMF-based models are quite inefficient compared to the execution of transformations.

For a model of size N=350000 the loading data took ~16 seconds and saving data took

more than 10 minutes, while execution of transformation took just ~7 seconds. JGraLab

has much better results – loading model took ~1 second and saving model after

transformation took ~3 seconds. However, for all repositories the saving time of model

increases non-linearly. This problem should be taken into account, but typically MDSD-

related transformations are used within some modeling tool and model is saved only

when a work with the tool has been ended.

5.7 Local Search Planning Using Annotated Metamodels

MOLA language can be used not only in the MDSD-like domains, where patterns

are similar to those described in the previous section, but also in others. A more advanced

pattern matching technology should be used to support efficient matching of these

patterns. The classical local search planning approach is used in MOLA for these cases.

This algorithm uses similar principles as the implementations of the languages

79

PROGRES [48], VIATRA [49] and GrGen [50]. It should be noted that this algorithm

hasn’t been fully implemented in the MOLA Tool yet. At first a search graph (host

graph) is built corresponding to the pattern. By using the association cardinalities,

existing in the metamodel and additional annotations, the weights are placed on the edges

of the search graph. The weight of the edge reflects the priority with which the operation,

corresponding to this edge, is chosen in LSP. The way, how the weights of the edges of

the search graph are chosen, is the essential difference among all implementations of LSP

generation algorithms. Subsequently in the search graph the minimal spanning tree is

located, from which LSP is read in the final step.

5.7.1 Local Search Plan Generation

The search graph is built for a pattern in the following way (see Fig. 27):

• One vertex is added to the search graph for each class element in the

pattern.

• Two oriented edges, which connect the corresponding vertices, are added

to the search graph for each association link in the pattern. These edges

represent a possible navigation options from class instances which

correspond to class elements in the pattern. The first option is to check the

existence of corresponding link using L0 command link. It can be done in

a constant time and it requires that both instances at the ends of the

corresponding association link have been matched. The second option is to

match a class instance using L0 command first from by. In this case only

an instance corresponding to source vertex in the search graph (class

element in the pattern) has to be known.

• A special vertex – a root vertex – is added to the search graph. Edges are

added outgoing from the root vertex to every other vertex. They represent

a possibility to match a class instance corresponding to a class element

using first command.

80

Fig. 27. Search graph without weights for the pattern in Fig. 11

A local search plan corresponds to a spanning tree in a search graph. The root of the

spanning tree is the root vertex. Every edge in the spanning tree corresponds to a first

suchthat command. Those pairs of edges (corresponding to the same association link)

which are out of spanning tree are compiled to link commands. The first suchthat

commands are nested accordingly to a traversal order of the spanning tree.

There are many ways to construct a spanning tree in a search graph.

Consequently, there are many local search plans which implement the pattern matching

for the given pattern. For example, one can take all edges from the root vertex and it will

be a spanning tree. However, this search plan can be hardly called efficient. Every set of

instances which corresponds to the class elements in the pattern should be examined in

the worst case. A local search plan is more efficient if class instances are matched using

links from already found instances. It implies checking of less model fragments which

means less execution of backtracking step of first suchthat commands. Thus, the best

search plan is one which requires the smallest number of basic lookup operations

executed – the smallest number of backtracking steps of first suchthat commands in the

case of MOLA. Let’s call the number of basic lookup operations performed during the

execution of a local search plan the cost of the search plan.

A pattern matching algorithm has to find out how expensive are each first

command for every edge in a search graph. Basically it means to find out how many

instances in the worst case should be examined to find a valid one. The nature of patterns

81

in model transformation languages is such that pattern elements (class elements in

MOLA) represents instance of a given class. A first suchthat command also iterates

through instances of a particular class, therefore an appropriate measure to estimate the

potential number of instances to be checked is the total number of instances of the given

class. A first from by command reduces the number of possible checks to the number of

connected class instances by links of particular association. If one can provide the number

of instances needed to be checked by operations corresponding to edges in the search

graph (cost of operation), then these numbers can be put on the corresponding edges as

weights. Now in the weighted search graph we can try to find the cost of particular search

plan.

Since for every search plan there is a spanning tree representing it in the search

graph, let us assume that in the spanning tree there are edges with weights c1, c 2… cn,

where n is a number of class elements in a pattern. These weights correspond to the

largest possible number of operations, which are executed in order to find a

corresponding instance. As the commands are executed successively and backtracking

takes place, then in the worst case the cost of a local search plan is

Ci =c i1 +c i1 c i2 +…+ci1 c i2 …cin .

The best search plan is a plan with the lowest cost – the lowest Ci . We must take

into notice that for every search plan Ci <nc i1 c i2 …cin , therefore to find the best search

plan means to find a search plan having the smallest c i1 c i2 …cin . It means that we must

find a spanning tree in the search graph which has the lowest product of all weights of

corresponding edges. It can be found by using, for example, the efficient Chu-

Liu/Edmonds algorithm [96], which finds the minimal spanning tree in the directed graph.

We must note that this algorithm is searching a spanning tree with the smallest sum. Since

all weights in the search graph are positive (they are number of instances), they can be

replaced with their logarithms. In such way the Chu-Liu/Edmonds algorithm can be used

to find minimum product spanning tree (because lg(ab)=lg(a)+lg(b)). When the

search plan is found, the appropriate L3 commands must be created which is a quite

simple task.

As it was mentioned, similar algorithms have been implemented in several model

transformation languages [48], [49], [50]. The main difference is in the way the costs of

operations (weights of edges) are determined. In [50] the runtime analysis of a model is

82

performed before every execution of a pattern. In [49] the analysis of models is performed

in the design time which works if there are models available. In [48] the information from

pattern and metamodel is used (basically the cardinalities of association ends).

In MOLA we are using only information which is available at the design

(compile) time. In fact, pattern and metamodel is available only. So, what useful

information about number of instances can be obtained from a pattern specification?

Patterns in MOLA may contain a reference – in a previous rule already found instance.

Such instance is not searched at all – it has been already found! The corresponding edges

in the search graph can have weight 1 – this instance can be found in a constant time. No

other information about operation costs is in pattern. However, a metamodel shows

cardinalities of associations corresponding to association links in a pattern. When

navigating from an already located instance, the number of the class instances to be

checked, depends on the cardinalities of the corresponding associations. If the cardinality

is 0..1 or 1, the navigation takes place in constant time, therefore the weight of the

corresponding edge is 1. If the cardinality is 1..* or * , then in the worst case all

instances of the certain class must be reread. However, the practice shows that the real

models are rarely full graphs and the majority of the real association cardinalities are less

by a number of times compared to the total number of the class instances. Since there is

no more information on actual cardinalities in a model, the cost estimation for operations

navigating by * or 1..* associations can be based on these assumptions only. Therefore in

MOLA a simple cost model can be used:

• For an edge to a vertex representing a reference c i =1

• For an edge from the root vertex c i =1000 . Of course, it is not a precise

number, but all other weights (in fact, a weight for edges representing *

associations) can be adjusted accordingly to represent a proportion of

instances in typical models

• For an edge if it corresponds to the end of MOLA association with

cardinality * or 1..* c i =100 .

• For an edge if it corresponds to the end of MOLA association with

cardinality 1 or 0..1 c i =1

83

Fig. 28. Search graph with weights and minimum spanning tree depicted for the pattern in
Fig. 11

See Fig. 28 where weights are added to the search graph for the pattern (see Fig.

11). The red edges denote the minimum product spanning tree – the best local search

plan. In the parenthesis the logarithms of weights are shown which are actually used by

the Chu-Liu/Edmonds algorithm. In this case, there are several equally efficient search

plans (it is possible to start pattern matching also from subjEnd or objEnd nodes).

It should be noted, that the simple pattern matching algorithm described in the

previous sections generates the same local search plan as just presented. It shows that the

simple pattern matching algorithm works as efficiently as more sophisticated algorithm

for such MDSD-related task. However, the simple algorithm has been designed taking

into account the specifics of MDSD-related tasks. Of course the algorithm described in

this section will perform better (or at least as well) for other tasks. But the main value of

this algorithm is the possibility to integrate it with the annotation mechanism which

allows using domain knowledge in the pattern matching in a simple and elegant way. The

annotation mechanism is described in the next section.

5.7.2 Annotation Mechanism

The search algorithm described above optimizes the search plan selection using

only data from the metamodel and pattern specification. Other approaches that are based

on the statistical analysis of the model collect actual cardinalities for classes and

associations (the number of instances of the given class in the model) give very efficient

84

results, however there are situations where such analysis cannot be made (e.g. the runtime

repository does not support the required statistics for runtime analysis or there are no

models created yet in the case of offline analysis). Therefore we propose an approach

which allows using developer’s knowledge of model constraints that otherwise could be

obtained only by analysis of existing models. A part of actual cardinalities can be already

predicted at the design time of a transformation. Development of a transformation

requires a good knowledge of the corresponding domain. Therefore, the transformation

developer should be able to predict prospective cardinalities. Of course, the precise

number of the instances cannot be predicted, except for singleton classes. However, the

proportion of instances for different classes is frequently known. For example, the

number of properties in UML model is several times greater than the number of classes.

Since neither the metamodelling standard MOF, nor UML class diagrams provide

convenient means for the specification of the prospective cardinalities, we propose to

annotate the metamodel and patterns in MOLA. Our goal is to have a simple, handy

annotation mechanism that helps to select an efficient search plan for the pattern

matching.

We allow annotating classes and association ends in the metamodel and class

elements and association link ends in patterns. An annotation predicts the number of

instances for classes and the number of instances reachable by links for association ends.

Pattern matching algorithm takes into account the annotations, and edge weights in the

search graph are adjusted accordingly. In fact, an annotation sets the priority on the

pattern element. The lower the predicted number of instances is for the pattern element,

the higher priority it gets for the pattern matching. Annotations made in the metamodel

affect the pattern matching algorithm in every rule where pattern elements of the

corresponding type are used. Annotations made in the pattern affect the pattern matching

algorithm only in the scope of the rule. The developer annotates metamodel elements

during the development process of the metamodel. Since metamodelling requires the

knowledge of the modeled domain, typically there are no problems to resolve actual

cardinalities. It should be noted that annotations are optional - they are additional means

to improve the efficiency of transformations. The following annotations can be used:

SINGLE - denotes that the class (or navigation result) has at most one instance.

Such instances and links as well as references are preferred for the pattern matching.

85

FEW - denotes that the class (or navigation result) has a nearly constant number

of instances, or it is relatively low compared to the total number of instances in the model.

For example, we can expect that in a UML class diagram a typical class will have about

5-10 properties, and this number is independent of the model size. Such links will be

preferred over links that are not annotated for the pattern matching.

MANY - denotes that the class (or navigation result) has a relatively large number

of instances, and this number grows together with the size of the model. For example, in a

UML class diagram the number of typed elements for every type grows as the size of the

class diagram increases. Links that are not annotated will be preferred over links with the

MANY annotation for the pattern matching.

As annotations do not show a precise number of instances, but only the number of

the corresponding class (or the result of navigation) instances against the total number of

instances in the model, then in the cost model we choose weights, which correspond to a

probable number of instances in the underlying models:

• For the edge from the root vertex if it

o is to SINGLE annotated vertex or to a vertex corresponding to the reference,

then its weight is c i =1,

o is to the vertex without annotations, then c i =1000 . Let us assume that this

is a typical number of instances in the model, and the rest of weights we

choose proportionate to this weight,

o is on FEW annotated vertex, then c i =100,

o is on MANY annotated vertex, then c i =10000 .

• For the edge if it corresponds to the end of MOLA association, which

o is with a cardinality 0..1 or SINGLE annotated, then c i =1.

o is without annotation with cardinality * or 1..* , then c i =100 .

o is FEW annotated, then c i =10,

o is MANY annotated, then c i =1000 .

Therefore, by using only information from the metamodel, which is supplemented

with the corresponding annotations, the real cardinalities of the model elements are taken

into notice. Although they are not denoted absolutely precisely, it is enough that there is

information available about the proportion of number of instances in a model. The chosen

weights seem to be appropriate.

86

Fig. 29. Pattern example - annotation use case.

Fig. 29 shows a pattern in a loophead where annotations help to find the best

search plan. This loop iterates trough every property (p) of the given class (@c) having

the given type (@t). The problem is that associations ownedAttribute and typed both have

cardinality "*" and without additional information both are treated equally (un)efficient

for pattern matching. However, in practice the average number of owned attributes for a

class is by magnitude less than typed properties for a type. Therefore, adding annotations

FEW and MANY to ownedAttribute and typed association ends accordingly gives the

desired result (see Fig. 30). The pattern matching is started from the reference @c and

continued with the loop variable.

Fig. 30. Search graph with minimum spanning tree depicted for pattern in Fig. 29

87

CHAPTER 6

Use Cases of MOLA

MOLA language and tool have been used practically in several projects. This

chapter describes two main use cases of MOLA – the typical MDSD tasks in the

ReDSeeDS project [23] and specification of functionality for tools built with the

METAclipse framework [8].

6.1 ReDSeeDS

MOLA language has been used in the EU 6th framework project ReDSeeDS

(Requirements-Driven Software Development System). The goal of ReDSeeDS project is

to create framework (languages and tools) for MDSD based development. ReDSeeDS

framework includes the basic reuse approach. This approach is case-based, where a

reusable case is a complete set of closely linked (through traceability links created by

model transformations) software development technical artefacts - models and code.

ReDSeeDS project took place between years 2006 and 2009. Universities from

Germany, Poland and Latvia, as well as, industrial partners from Poland, Germany,

Lithuania and Turkey were participants of the project. Author of this thesis has actively

participated in activities of ReDSeeDS project related to MDSD.

The ReDSeeDS approach covers a complete chain of models for MDSD – from

requirements to code. Each transition in this chain is to a great degree assisted by formal

model transformations. Requirements are specified in the requirement specification

language RSL [97], which has been developed as part of the ReDSeeDS project. A

significant part of RSL is the specification of requirements for system behavior in a

controlled natural language. The next models in the model chain are obtained using model

transformations which are specified using MOLA language. Transformed models are

described using a ReDSeeDS-specific subset of UML. This subset together with RSL

forms the ReDSeeDS Software Development Specification Language (SDSL). Updates

after every transformation step can be made also manually. A UML modeling tool Sparx

Enterprise Architect (EA) [98] is used within ReDSeeDS project. It is a commercial tool

88

which allows creating and updating UML models. The interoperability between

ReDSeeDS engine and EA is implemented also using model transformations.

During the ReDSeeDS project two model-based methods [97], [99] have been

proposed and the corresponding sets of transformations in MOLA developed. Both

methods use the RSL and SDSL (UML) to specify models and ReDSeeDS engine to store

and process them. However, the essential difference is the set of design patterns

(architecture style) used by both methods.

6.1.1 Description of Keyword-Based Approach

The keyword-based approach [99] has been developed by IMCS, University of

Latvia. Starting from requirements, a chain of models (see Fig. 31) for a MDSD of the

software system is used. To a great degree, this chain is inspired by the classical MDA

approach. However, the specific structure and construction principles of models in this

approach are determined by the chosen architecture style, which includes the set of

selected design patterns. All the models are built in UML using an appropriate profile.

Specific keywords are preserved by the keyword-based approach. If the pre-

defined keywords (e.g. select, show) are used in the requirement specification, then they

become the specific constructs in the target model (e.g. selection from a list, calling

appropriate user interface method).

Fig. 31. Model chain for keyword-based approach.

89

Initially the Analysis model is extracted by transformations from requirements.

This model has no direct counterpart in the classical MDA chain. In the Analysis Model

the most important part is a class diagram describing the main concepts of the software

system to be created. Stereotypes are used to distinguish different types of concepts

according to the Analysis Profile.

The next model in this chain is the Architecture model. In this model, the

implementation structure is represented according to the behavior extracted from use case

scenarios. This model is platform-independent and could be used as a basis for

development of a code on any enterprise platform (Enterprise Java, .NET, etc.). This is

the model where the selected design patterns and sophisticated analysis of requirements

permit to generate a non-trivial part of solution behavior.

The final model in the chain is the Detailed Design model. From this model code

fragments for the selected platform can be generated. Currently the chosen platform is

Java in the Spring/Hibernate framework [100], [101]. In this model stereotypes

corresponding to Spring-specific annotations are used. In the final step the data from this

model are transformed to Java code with Spring/Hibernate annotations.

6.1.2 Description of ReDSeeDS Basic Approach

The ReDSeeDS Basic approach [97] has been developed by Warsaw University of

Technology. Just like in the keyword-based approach a chain of models (see Fig. 32) for a

MDSD of the software system is used. The ReDSeeDS Basic approach includes three

transformations steps.

The first transformation step creates the architecture model from the requirements

written using RSL. This approach concentrates on automatically generating the

components of the system and interactions between various parts of the system and user.

A set of sequence diagrams is generated in the architecture model. Methods are added to

the appropriate interfaces for each call in the sequence diagrams.

After the architecture is ready (generated from requirements and enhanced by an

architect), it can be transformed into the detailed design. The transformation process uses

only the information contained in the architectural model, assuming that transformation

from requirements to architecture extracted all the possible information for generating the

detailed design model. The specific rules to a large degree are based on the chosen design

patterns (e.g. DTO, DAO and Factory). The rules assume a Java and ORM facility (e.g.

90

Hibernate) to be used as the basis of the platform, but no specific details of the platform

appear in the rules. Therefore they could be applicable to other kinds of platforms as well.

Fig. 32. ReDSeeDS basic approach.

Detailed design of a software system is the lowest level of its specification. It

contains all the logical elements - classes and relations between them for each component

in the architectural specification. The detailed design model is the basis for

implementation in a specific programming language (e.g. Java, C#).

The EA code generation templates are applied to detailed design model in the last

step. The package hierarchy, declarations for all classes (DAO, DTO, etc.) and methods

are included in the generated code. Bodies of obtained methods should be filled in

manually, since the detailed design model in this style in fact contains no behavior.

6.1.3 Empirical Study of Pattern Matching Cases in ReDSeeDS

In this section the analysis of typical patterns in the ReDSeeDS project is done. As

it was mentioned before, one of the goals of the project is MDSD using RSL and UML

91

languages. The main idea is to obtain a part of the software system automatically from

requirement specification using model transformations.

To approximately estimate the volume of the transformations written during the

ReDSeeDS project we are giving some statistics. The model-based methodologies used in

the project cover quite a large subset of UML being generated - UML class, activity,

component and sequence diagrams are being generated. Both methodologies include

several transformation steps. The first step for both methodologies is the transformation

of requirements. The next steps are generating new UML models adding more specific

details. ∼350 MOLA procedures have been developed during the ReDSeeDS project.

They include ∼200 loops and ∼800 rules that give ∼1000 pattern specifications. We have

investigated the structure of patterns used in the project and most of them are fit to the

simple pattern matching strategy used by MOLA.

Fig. 26 refers to the typical usage of loops in ReDSeeDS project - the MDSD

tasks are compilation-like jobs where every element of the source model is processed and

corresponding elements in the target model are created. Since RSL and UML model

elements form a tree-based hierarchy, the transformation algorithms traverse model

elements in the top-down style starting from the top elements of the hierarchy. Therefore,

the most natural way to describe such traversing is by using nested foreach loops

referencing the previous loop variables. The pattern may contain additional class elements

for collection of all necessary neighborhood instances or specifying additional constraints

on the existence of appropriate nearby instances.

Fig. 33. Pattern example - collecting nearby instances.

Another typical pattern used in the ReDSeeDS project is depicted in Fig. 33. This

pattern finds the name of an actor (names are coded as noun phrases in RSL). Note, that

all associations leading from the Actor class to the Noun have cardinality "1" or "0..1" -

each actor has exactly one name (represented by noun phrase), there is only one noun link

for each noun phrase and every noun link is connected to exactly one noun. Therefore this

pattern is matched in constant time when the simple pattern matching strategy is applied.

This is a typical case where MOLA rule is used to collect the nearby instances.

92

A variation of the previous pattern is shown in Fig. 34. This pattern describes the

collecting of nearby elements of a UML interaction. The owning classifier and the

component corresponding to the lifeline named "UIComponent" should be matched.

Unlike in the previous example there is an association with cardinality "*" leading from

the referenced element (to Lifeline). However, as we see in practice, typically there is

only one model element in the model satisfying the given constraint and the suspicious

association has low cardinality in practice. In this case there are no more than 5-10

lifelines per interaction. Thus this pattern matches in linear time with regard to the

number of lifelines in the given interaction, which is relatively low.

Fig. 34. Pattern example - collecting nearby instances using additional constraints

We have tested the transformations on several sufficiently large software cases

developed within the ReDSeeDS project. The patterns described above are the most

typical patterns used in MOLA transformations for the ReDSeeDS project. The total

amount of such patterns is about 95% of all patterns. Some specific sub-tasks require non-

typical patterns which theoretically may cause insufficient pattern matching performance,

however in practice they are performed on elements which are relatively low in number

compared to the number of constrained language sentences. Thus, they do not affect the

overall performance of pattern matching.

There was made a conjecture that a transformation program in MOLA written in

an appropriate style becomes efficient at the same time [67]. Our empirical analysis of

typical patterns in the ReDSeeDS project confirms that this holds also in praxis and

MOLA is a suitable model transformation language for MDSD-related tasks. In this case

the simple pattern matching algorithm gives efficient results.

The ReDSeeDS basic approach has been implemented in MOLA and executed on

various requirements specifications. For example, the requirement specification

containing 8 scenarios, 42 constrained language sentences has been transformed to

architecture model in ~6 seconds. The target model has 662 UML elements in total

including 24 packages, 10 components, 31 classes, 17 interfaces, 71 methods, 8 sequence

diagrams. The detailed design model has been generated in ~5 seconds from the

93

architecture model. The target model contains 451 UML elements including 16 packages,

44 classes, 17 interfaces, 169 methods.

This approach has been tried also for a real-life example. The requirements

specification of simple internet banking system containing 19 scenarios, 102 constrained

language sentences has been transformed to architecture model in ~10 seconds. The target

model has 2114 UML elements including 27 packages, 12 components, 72 classes, 59

interfaces, 218 methods, 19 sequence diagrams. The detailed design model has been

generated in ~16 seconds from architecture model. The target model has 1425 UML

elements including 18 packages, 116 classes, 59 interfaces, 507 methods.

It should be noted that total time of transformations execution turns out to be

almost linear with regard to the total number of constrained language sentences in the

requirement scenarios specified in the RSL for the case. The total transformation

execution time seems to be reasonable for such a real-life example, because these

experiments considered regeneration of the whole model. In fact, the importing and

exporting models from and to the UML modeling tool (EA) have executed significantly

longer then transformations itself. It is also possible to specify transformations

regenerating just a part of the model which requires to be updated accordingly to changes

made in source models.

6.2 ReDSeeDS Integration with Sparx Enterprise Architect

As it has been already mentioned in the previous section, Sparx Enterprise

Architect (EA) is a UML modelling tool, which was used in ReDSeeDS project. It is a

popular modelling tool (also in Latvia), which allows creating UML models and

generating a code for many programming languages (for example, Java, C#, C++). In

ReDSeeDS tool (engine) UML models are stored in JGraLab [66] model repository, but

the tool itself does not provide possibility of editing and graphical viewing. Therefore it

was necessary to provide a model transfer between EA and ReDSeeDS tool. For this

purpose the model transformation language MOLA is used.

In order to provide the exchange of models between the mentioned tools, the

format, in which EA stores UML models, was investigated. It was described by using

metamodelling means, that is, a metamodel was built, which directly reflected the inner

structure of the EA models. Thus, in a simple way a universal tool is built, which

94

transfers UML models from the EA database to JGraLab, and vice versa. The whole

logically complicated work- model transformation between EA and ReDSeeDS formats

(metamodels) in this case is possible to execute by means of the model transformations,

which is a more suitable manner of model processing than the programs written in

programming languages are.

The general scheme of model exchange between the mentioned tools can be seen

in Fig. 35. A similar manner can be used also in other cases when the model exchange

between different modelling tools is necessary.

Fig. 35. EA and JGraLab model exchange schema.

Also in this use case of MOLA the use of pattern matching was sufficiently

efficient. The task of model exchange is rather similar to the typical MDSD tasks that

require processing of all elements of one corresponding type and creating appropriate

elements in the target model. Thus the suitability of the chosen algorithms for this type of

tasks was shown once again. It must be noted that in the tool integration tasks also high

performance is important. However, it depends not only on efficiency of model

transformations, but on the efficiency of underlying tool, the EA in this case. The API of

EA has been used to import and export models to and from the tool, however it causes the

major slowdown of overall performance. Unfortunately there are no better ways to

collaborate with EA, but this approach seems to be more efficient for tools with more

efficient implementation.

95

6.3 Tool Building in METAclipse

MOLA Tool has been built on the basis of METAclipse tool building framework

[8], which also has been developed by the University of Latvia, IMCS. METAclipse is a

metamodel and transformation based tool building platform, which is specially fit for the

support of complicated graphical domain specific languages, and MOLA is such a

language. From the technical point of view, METAclipse is a set of Eclipse plug-ins

which extends the functionality of standard Eclipse components EMF, GEF and partially,

GMF [26] [102] [63]. It contains advanced presentation engines, which support graphical

diagram building, property editing and all other diagram and model related facilities.

More precisely, the engines perform all the various visualization and user interaction

related tasks in a standard way typical to Eclipse environment, they do these jobs on the

basis of a fixed presentation metamodel. However, the main functionality of a tool based

on METAclipse is defined by transformations, which link the domain and presentation

(visualization) models in the tool, fill up property dialogs, and process the updated

property values. In METAclipse framework these tool-specific transformations are built

in MOLA language. Architecture of METAclipse framework is shown in Fig. 36.

Fig. 36. Architecture of the METAclipse platform.

Each of the METAclipse engines exposes its functionality to transformations

through a strictly defined metamodel that serves as an interface through the

transformations and engines. The set of commands that can occur in the given engine as a

result of user actions is also part of the metamodel of the engine. Commands are used to

invoke the transformations. Each instance of a command represents an atomic user action

and is the smallest piece of an action in METAclipse platform. All actions that require

96

purely graphical changes are processed directly in the METAclipse engines. Only the

semantic actions (the ones that trigger changes in the domain model or changes in the

presentation model that are unique to a specific tool) are triggering commands and passed

to the transformations for processing. METAclipse platform immediately filters out the

commands that do not require the invocation of transformations and invokes the

mechanisms of the corresponding engines in order to make the changes in the models.

Therefore, listeners that do not require the invocation of transformations are implemented

already in the platform. Command listeners for processing of semantic actions have to be

implemented in the transformation library as branches of the main model transformation

with branching conditions that depend on the passed command.

The latest version of MOLA Tool has been built using the MOLA Tool itself.

Initially source procedures of MOLA tool have been built using the previous version of

MOLA Tool. Currently the source procedures of the MOLA editor have been completely

transferred from Generic Modeling Tool environment to the MOLA editor implemented

with the METAclipse platform. The current functionality of the editor is defined by ~450

MOLA procedures.

The efficiency of model transformations is even more important in the context of

tool building than in MDSD-related tasks. Transformations are executed reacting on

actions performed by user. Response must be as fast as possible. Practical usage of

MOLA Tool has been shown that transformations are being executed efficiently. To

verify it, the transformation execution time is measured for user actions which require

significant effort of transformation compared to the effort of METAclipse framework

itself. For example, a class name is shown on every class element in a MOLA program. If

the name of a class is changed (user changes it) then every occurrence of this class in

class elements must be updated. To test the performance of transformation implementing

such action we created a MOLA project having 800 class elements corresponding to the

same class. Changing the name of the class took less than a second.

Similar results are shown in the transformation project implementing the

ReDSeeDS methodologies. The total number of class elements in the model

transformations for ReDSeeDS is greater than in the previously described project- ~2700.

But in the same time there are at most 180 class elements having the same type and it is

much less than in the previous example. The same class renaming action has been

executed also in ReDSeeDS transformations project. It took less than a second too.

97

Similar results are observed also for other user actions which rely mainly on the

model transformations written in MOLA. It proves that the MOLA Tool (in fact, model

transformations used in METAclipse framework) scales well also for larger projects and

is usable practically. It should be mentioned, that the model saving problem described in

section 5.6 is actual also in MOLA Tool (METAclipse framework). For larger

transformation projects (like ReDSeeDS) the saving takes a significant amount of time

(~20 seconds). Although it is inconvenient, it affects just the frequency a transformation

developer uses the save button. However, this issue should be solved in the future.

A screenshot of MOLA Tool is shown in Fig. 37.

Fig. 37. MOLA2 Tool.

98

CHAPTER 7

Conclusions

The main goal of the research was to develop a simple and efficient

implementation of pattern matching for model transformation languages. In order to

achieve this goal, the following tasks are accomplished:

• A new pattern matching algorithm has been developed for model transformation

languages. The algorithm uses relational database and SQL queries. The main

advantage of the algorithm is the simple mapping from pattern to single SQL

query. The implementation of this mapping is easy thus enabling fast

development of an efficient model transformation language prototype. In this

case the hardest part, the actual pattern matching, is done by query optimization

features of a relational database management system.

• The developed algorithm has been practically implemented for model

transformation language MOLA. An interpreter for MOLA has been built which

works on most popular relational database management systems. The MOLA

interpreter has been used for academic and research goals. How MOLA language

is fit for MDSD has been tested using the interpreter.

• A new simple pattern matching algorithm which uses local search plan

generation has been developed. It works on metamodel-based repositories which

are commonly used to store models in popular modelling environments. The

algorithm is efficient for MDSD transformations, which are typically dealing

with models of tree-like structure where every element of source model should

be processed and an element in a target model should be built.

• The developed algorithm has been practically implemented for MOLA language.

A MOLA compiler has been built to lower-level model transformation language

L3. MOLA transformations can process models stored in several metamodel-

based repositories, including EMF, JGraLab and MIIREP. The compiler is part

of MOLA Tool which has been successfully used in the EU 6th framework

project ReDSeeDS for development of MDSD transformations.

99

• An efficient algorithm has been developed which is more universal (it is efficient

not for MDSD-related tasks only). It is based on classical local search plan

generation strategy and together with a new metamodel annotation mechanism

allows building efficient model transformations without any complicated runtime

model analysis. Comparing to other implementations it allows utilize knowledge

of particular domain to build efficient transformations.

A review of pattern matching mechanisms for the most popular model

transformation languages has been presented in this thesis. There are several pattern

matching approaches, but the most popular is the local search planning. In fact, it is the

most universal strategy - it gives efficient results for different types of patterns. However,

implementations of more advanced approaches are rather complex, although simpler

strategies (like in case of MOLA and Fujaba) frequently give similar results. Of course,

that holds not for every use case, but mostly for the domain the transformation language

is designed for. For example, MOLA is efficient for MDSD-related tasks, as the empirical

analysis of typical MOLA patterns in the ReDSeeDS project has shown. Other languages

are efficient in other domains, e.g. VIATRA in the simulation of complex systems or

Fujaba in the program refactoring domain.

A great role for efficient pattern matching is played also by the constructs of the

pattern used in the language. MOLA offers very natural means for describing MDSD-

related tasks, the foreach loops combined with reference mechanism. At the same time

even the simple pattern matching algorithm which has been implemented for MOLA

works efficiently in these cases. Thus, for the compiler-like tasks, where every element of

a structured model (like UML) should be processed, MOLA can be used with a high

efficiency, but with very simple implementation of pattern matching. Of course, the

certain design patterns briefly discussed in the thesis should be ensured in MOLA

programs, but they are very natural and easy to use.

MOLA is used not only for MDSD-related tasks (though it is designed for that).

Therefore more universal pattern matching strategy based on analysis of the pattern and

underlying metamodel have been developed. It hasn’t been fully implemented in the

MOLA Tool yet. So the benchmark tests haven’t been done for this algorithm. We have

introduced the metamodel annotation mechanism, which captures the domain knowledge

of actual cardinalities in the metamodel. It permits to make pattern matching more

100

efficient, that otherwise could be achieved only by runtime analysis of models which may

itself be costly at runtime or not available at design time.

The future work is to identify model transformation domains - the areas where

typical patterns are used. The most appropriate pattern matching approaches should be

addressed for each domain. Since most of the model transformation language developers

provide information on pattern matching implementation for their languages; that would

make the choice of the most appropriate model transformation language easier for a

concrete task. Of course, the pattern matching implementation is not the only condition

helping to make the decision. However, usually, if the language constructs are fit for the

task, then it is a great chance that pattern matching will be also appropriate. We believe

that practically the appropriate pattern matching algorithms can be developed for specific

tasks (domains) despite pattern matching being an NP-complete problem in general.

A domain specific annotation language may be developed to use other knowledge

of domain than cardinalities. In fact, it means extending metamodelling languages with

special features which capture information crucial for pattern matching.

Currently there is an ongoing work on implementation of algorithm described in

the section 5.7. The implementation of the algorithm will allow using MOLA efficiently

also for other kinds of tasks not just for MDSD. It is an important aspect also in the

context of integration of MOLA transformations into the Eclipse ecosystem. Eclipse EMF

has become a de facto standard of model repository in the modelling community. A

significant part of models are stored in EMF. There are also lots of metamodels written in

EMF Ecore metamodelling language. One of the problems the EMF-based model

transformation implementations are dealing with is the association navigability -

associations in EMF (references) are navigable in one direction only. The simple pattern

matching algorithm described in section 5.5 requires that associations are navigable in

both directions. Therefore the model pre-processing step is performed before

transformation runtime. In the pre-processing step a model is transformed to an

intermediate model containing missing references. The algorithm described in the section

5.7 can solve the navigability problem without any additional model pre-processing steps

in the same time maintaining sufficient efficiency. Solving this problem would allow

direct integration of model transformations in a wide range of Eclipse (EMF) -based

modelling tools.

101

There are no doubts that an efficient implementation of model transformation

language offers many new possible directions of research. Model transformation

languages are used in the software development (MDSD) or tool building (METAclipse

framework). These research fields offer still unanswered questions. Models, metamodels

and model transformations can be used in many other areas of research. For example,

model transformations may be used for complex data processing in frameworks for

classical information systems. The task is to find appropriate use cases where the usage of

model transformations (and model transformation languages) fits at most.

The great potential of models in the field of software development is not realized

yet; however a significant leap is expected in the near future.

102

REFERENCES

1. Kleppe, A.G, Warmer, J.B., and Bast, W. MDA explained: The model driven
architecture: Practice and Promise, Boston: Addison-Wesley, 2003

2. Object Management Group. MDA Guide Version 1.0.1., 2001, (on-line, 04.06.2010)
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf

3. Object Management Group. Meta Object Facility Core Specification, version 2.0,
2006. (on-line, 04.06.2010) http://www.omg.org/spec/MOF/2.0/PDF/

4. Object Management Group. Object Constraint Languege (OCL) Version 2.2. (on-
line, 20.06.2010) http://www.omg.org/spec/OCL/2.2/PDF

5. Object Management Group. Unified Modeling Language (UML) 2.3: Infrastructure
and Superstructure, 2010 (on-line, 04.06.2010) http://www.omg.org/spec/UML/2.3/

6. Object Management Group. Meta Object Facility (MOF) 2.0
Query/View/Transformation (QVT). Version 1.1 - Beta 2, 2009. (on-line,
04.06.2010) http://www.omg.org/spec/QVT/1.1/Beta2/

7. Object Management Group. Metamodel and UML Profile for Java and EJB
Specification Version 1.0. (on-line, 20.06.2010) http://www.omg.org/cgi-
bin/doc?formal/2004-02-02

8. Kalnins A., Vilitis O., Celms E., Kalnina E., Sostaks A., Barzdins J. Building Tools
by Model Transformations in Eclipse. Proceedings of the 7th OOPSLA Workshop
on Domain-Specific Modeling (DSM’07), Sprinkle, J., Gray, J., Rossi, M., Tolvanen,
J.-P., (eds.), Computer Science and Information System Reports, Technical Reports,
TR-38, University of Jyväskylä, Finland, 2007. pp. 194. - 207.

9. Rath, I., Varro, D. Challenges for advanced domain-specific modelling frameworks.
Proc. of Workshop on Domain-Specific Program Development (DSPD), ECOOP
2006, France

10. Ermel, C., Ehrig, K., Taentzer, G., Weiss, E. Object Oriented and Rule-based
Design of Visual Languages using Tiger. Proceedings of GraBaTs'06, 2006, pp. 12

11. Object Management Group. Request for Proposal: MOF 2.0 Query / Views /
Transformations, 2002, OMG document ad/2002-04-10.

12. IKV++ Technologies AG. medini QVT Project. (on-line, 04.06.2010)
http://projects.ikv.de/qvt/

13. SmartQVT: SmartQVT - A QVT implementation, (on-line, 07.06.2010)
http://sourceforge.net/projects/smartqvt/

14. Jouault, F., Kurtev, I.: Transforming Models with ATL. In Bruel, J.M., ed.:
Proceedings of MoDELS. Volume 3844 of LNCS., Springer (2006) 128–138Rīks:
ATL Project. (on-line, 04.06.2010) http://www.eclipse.org/m2m/atl/

15. Csertan, G., Huszerl, G., Majzik, I., Pap, Z., Pataricza, A., Varro, D. VIATRA -
visual automated transformations for formal verification and validation of UML
models. In: Proceedings of 17th IEEE International Conference on Automated
Software Engineering, IEEE Comput. Soc (2002) 267–270 Rīks: The Eclipse
Foundation. VIATRA2 Home page. (on-line, 04.06.2010)
http://www.eclipse.org/gmt/VIATRA2/

16. Barzdins, J., Kalnins, A., Rencis, E., Rikacovs, S. Model Transformation
Languages and Their Implementation by Bootstrapping Method. In Avron, A.,
Dershowitz, N., Rabinovich, A., eds.: Pillars of Computer Science. Volume 4800 of
LNCS., Springer (2008) 130–145. Rīks: IMCS, The Lx transformation language set
home page. (on-line, 05.06.2010), http://lx.mii.lu.lv/

103

17. Fischer, T., Niere, J., Torunski, L., Zündorf, A. Story Diagrams: A New Graph
Rewrite Language Based on the Unified Modeling Language and Java. In Ehrig,
H., Engels, G., Kreowski, H.J., Rozenberg, G., eds.: Proceedings of TAGT. Volume
1764 of LNCS., Springer (1998) 296–309 Rīks: University of Paderborn. Fujaba
Tool Suite. (on-line, 04.06.2010) http://www.fujaba.de

18. Agrawal A., Karsai G, Shi F. Graph Transformations on Domain-Specific Models.
Technical report, Institute for Software Integrated Systems, Vanderbilt University,
ISIS-03-403, 2003. Rīks: Vanderbilt University. GReAT. (on-line, 04.06.2010)
http://repo.isis.vanderbilt.edu/tools/get_tool?GReAT

19. Kalnins, A., Barzdins, J., Celms, E.: Model Transformation Language MOLA. In
Aßmann, U., Aksit, M., Rensink, A., eds.: Model Driven Architecture, European
MDA Workshops: Foundations and Applications, MDAFA 2003 and MDAFA 2004,
Twente, The Netherlands, June 26-27, 2003 and Linköping, Sweden, June 10-11,
2004, Revised Selected Papers. Volume 3599 of LNCS., Springer (2004) 62–76.
Rīks: IMCS. MOLA pages. (on-line, 04.06.2010) http://mola.mii.lu.lv

20. Taentzer, G. AGG: A Tool Environment for Algebraic Graph Transformation. In
Nagl, M., Schürr, A., Münch, M., eds.: Proceedings of AGTIVE. Volume 1779 of
LNCS., Springer (1999) 481–488 Rīks: TU Berlin. The <AGG> Homepage. (on-line,
04.06.2010) http://user.cs.tu-berlin.de/~gragra/agg/

21. Schürr, A., Winter, A.J., Zündorf, A. The PROGRES approach: language and
environment. Volume 2. World Scientific Publishing Co. (1999) 487–550

22. Cook, S. A. The complexity of theorem-proving procedures. Proc. 3rd Ann. ACM
Symp. on Theory of Computing 151–-158 (1971).

23. The European IST 6th framework project ReDSeeDS – Requirements-Driven
Software Development System. (on-line, 04.06.2010) http://www.redseeds.eu

24. Rothenberg, J. The Nature of Modeling. In L. Widman et al., eds., Artificial
Intelligence,Simulation, and Modeling, Wiley, New York, 1989.

25. Jouault, F., Bezivin, J. KM3: A DSL for metamodel specification. In Gorrieri, R.,
Wehrheim, H., eds.: FMOODS’06: Proceedings of the 8th IFIP WG 6.1 International
Conference on Formal Methods for Open Object-Based Distributed Systems,
Bologna, Italy. Volume 4037 of Lecture Notes in Computer Science., Springer
(2006) 171–185

26. The Eclipse Foundation. Eclipse Modeling Framework (EMF). (on-line,
04.06.2010) http://www.eclipse.org/emf/

27. Parreiras, F.S.; Staab, S.; Winter, A. On Marrying Ontological and Metamodeling
Technical Spaces. In: Proceedings of the 6th joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2007, Dubrovnik, Croatia, September 3-7.
ACM Press.

28. Object Management Group. Business Process Modeling Notation. (on-line,
04.06.2010) http://www.bpmn.org/

29. AUTOSAR Consortium. The AUTOSAR Standard. (on-line, 04.06.2010)
http://www.autosar.org/.

30. Kelly, S., Tolvanen,J-P. Domain-Specific Modeling. Wiley, 2008.
31. Willink E.D. A concrete UML-based graphical transformation syntax - The UML

to RDBMS example in UMLX. Workshop on Metamodelling for MDA, University
of York, England, 24-25 November, 2003. Rīks: The Eclipse Foundation. UMLX
Subproject. (on-line, 05.06.2010), http://dev.eclipse.org/viewcvs/indextech.cgi/gmt-
home/subprojects/UMLX/index.html

104

32. Lawley, M.J., Steel, J. Practical Declarative Model Transformation With Tefkat In
Satellite Events at the MoDELS 2005 Conference, LNCS Vol. 3844. Jamaica,
October 2-7, 2005. Rīks: DSTC. Tefkat: The EMF Transformation Engine.(on-line,
05.06.2010) http://tefkat.sourceforge.net/

33. IBM. Model Transformation Framework (MTF). (on-line, 05.06.2010),
http://www.alphaworks.ibm.com/tech/mtf

34. De Lara, J., Vangheluwe, H. AToM3: A tool for multi-formalism and
metamodelling. In R.-D. Kutsche and H. Weber (eds.), 5th Intern. Conference, FASE
2002: Fundamental Approaches to Software Engineering, Grenoble, France, April8-
12, 2002, Proceedings, vol. 2306 of LNCS, pp. 174-188. Springer, 2002. Rīks:
McGill University, Modelling, Simulation and Design Lab. ATOM3 A Tool for Multi-
formalism Meta-Modelling. (on-line, 05.06.2010) http://atom3.cs.mcgill.ca

35. Levendovszky T., Lengyel L., Mezei G., Charaf H. A Systematic Approach
toMetamodeling Environments and Model Transformation Systems in VMTS, 2nd
International Workshop on Graph Based Tools (GraBaTs); workshop at ICGT 2004,
Rome, Italy, 2004. Rīks: Budapest University of Technology and Economics,
Department of Automation and Applied Informatics. Visual Modeling and
Transformation System (VMTS) (on-line, 05.06.2010)
http://www.aut.bme.hu/Portal/Vmts.aspx

36. Marschall, F., Braun,P. Model Transformations for the MDA with BOTL,
Proceedings of the Workshop on Model Driven Architecture: Foundations and
Applications, Enschede, The Netherlands (2003), pp. 25–36. Rīks: Institut fur
Informatik der Technischen Universitat Munchen.The Bidirectional Object Oriented
Transformation Language (BOTL). (on-line, 05.06.2010) http://botl.sourceforge.net/

37. Cuadrado, J.S., Molina, J.G., Tortosa, M.M. RubyTL: A Practical, Extensible
Transformation Language. Model Driven Architecture - Foundations and
Applications, Second European Conference, ECMDA-FA 2006, Bilbao, Spain, July
10-13, 2006. LNCS 4066, Springer 2006. Rīks: Universidad de Murcia. Agile
Generative Environment (AGE). (on-line, 05.06.2010), http://gts.inf.um.es/trac/age

38. Kolovos, D.S., Paige, R.F., Polack, F.A.C. The epsilon transformation language. In:
Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp.46–
60. Springer, Heidelberg (2008) Rīks: The Eclipse Foundation. Epsilon.
(on-line, 04.06.2010) http://www.eclipse.org/gmt/epsilon/

39. The Eclipse Foundation, Henshin. (on-line, 05.06.2010)
http://www.eclipse.org/modeling/emft/henshin/

40. Schurr, A. Specification of graph translators with triple graph grammars. In
Tinhofer, editor, Proc. WG’94 Int. Workshop on Graph-Theoretic Concepts in
Computer Science, number 903 in LNCS, pages 151–163. Springer-Verlag, 1994.

41. Geiß, R., Batz, G.V., Grund, D., Hack, S., Szalkowski, A. Grgen: A fast SPO-based
graph rewriting tool. In Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L.,
Rozenberg, G., eds.: Proceedings of ICGT. Volume 4178 of LNCS., Springer (2006)
383–397 Rīks: IDP Goos. GrGen.NET. (on-line, 04.06.2010)
http://www.info.uni-karlsruhe.de/software/grgen/

42. The Eclipse Foundation. Model To Model (M2M), (on-line, 05.06.2010)
http://www.eclipse.org/m2m/

43. Kalnins, A., Barzdins, J., Celms, E. Basics of Model Transformation Language
MOLA. ECOOP 2004 (Workshop on Model Transformation and execution in the
context of MDA) , Oslo, Norway, June 14-18, 2004

105

44. Kalnins, A., Barzdins, J., Celms, E. MOLA Language: Methodology Sketch.
Proceedings of EWMDA-2, Canterbury, England, September 7-8, 2004, pp.194-203.

45. Institute of Mathematics and Computer Science, University of Latvia MOLA pages,
(on-line, 05.06.2010) http://mola.mii.lu.lv

46. Celms, E., Kalnins, A., Lace, L. Diagram definition facilities based on metamodel
mappings. Proceedings of the 3rd OOPSLA (Workshop on Domain-Specific
Modeling) , University of Jyvaskyla, 2003, pp.23-32.

47. Kalnins, A., Kalnina, D., Kalis, A. Comparison of Tools and Languages for
Business Process Reengeneering. Proceedings of the Third International Baltic
Workshop on Databases and Information Systems, Riga, 1998, pp. 24-38

48. Zündorf, A. Graph Pattern Matching in PROGRES. In Cuny, J.E., Ehrig, H.,
Engels, G., Rozenberg, G., eds.: Proceedings of ICGT. Volume 1073 of LNCS.,
Springer (1994) 454–468

49. Varro, G., Friedl, K., Varro, D. Adaptive Graph Pattern Matching for Model
Transformations using Model-sensitive Search Plans. Electronic Notes in
Theoretical Computer Science 152 (2006) 191–205

50. Batz, G.V., Kroll, M., Geiß, R. A First Experimental Evaluation of Search Plan
Driven Graph Pattern Matching. In Schürr, A., Nagl, M., Zündorf, A., eds.:
Proceedings of AGTIVE. Volume 5088 of LNCS., Springer (2008) 471–486

51. Fischer, T., Niere, J., Torunski, L. Konzeption und Realisierung einer integrierten
Entwicklungsumgebung für UML. Master thesis, University of Padeborn (1998)

52. Geiß, R., Kroll, M. On Improvements of the Varro Benchmark for Graph
Transformation Tools, Technical Report, 2007

53. Sostaks A. Pattern Matching in MOLA. Proceedings of the 9th International Baltic
Conference on Databases and Information Systems (Baltic DB&IS’2010), Riga,
Latvia, July 5-7, 2010, University of Latvia Press, Riga, Latvia, 2010, pp. 309-324.

54. Varró, G., Friedl, K., Varró, D. Implementing a Graph Transformation Engine in
Relational Databases. Software & Systems Modeling 5(3) (2006) 313–341

55. Kalnins A., Celms E., Sostaks A. Simple and Efficient Implementation of Pattern
Matching in MOLA Tool. Proceedings of the 7th International Baltic Conference on
Databases and Information Systems (Baltic DB&IS’2006), Vilnius, Lithuania, July 3-
6, 2006, pp. 159-167.

56. Simonis, H. Sudoku as a constraint problem. In CP Workshop on Modeling and
Reformulating, Constraint Satisfaction Problems, 2005, pages 13

57. Kumar, V. Algorithms for Constraint Satisfaction Problems: A Survey, AI
Magazine 13(1): 32-44,1992

58. Rudolf, M.: Utilizing Constraint Satisfaction Techniques for Efficient Graph
Pattern Matching. In Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G., eds.:
Proceedings of TAGT. Volume 1764 of LNCS., Springer (1998) 238–251

59. Bergmann, G., Ökrös, A., Ráth, I., Varró, D., Varró, G. Incremental pattern
matching in the viatra model transformation system. In: Proceedings of GraMoT,
ACM (2008) 25–32

60. C. L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence, 19(1):17–37, September 1982.

61. Bergmann, G., Horváth, A., Ráth, I., Varró, D. Efficient Model Transformations by
Combining Pattern Matching Strategies. In Paige, R.F., ed.: Proceedings of ICMT.
Volume 5563 of LNCS., Springer (2009) 20–34

62. Kalnins, A., Celms, E., Sostaks, A. MOLA Tool. ECMDA Tools Session, 2005.

106

63. The Eclipse Foundation. Eclipse Graphical Modeling Framework (GMF). (on-line,
20.06.2010) http://www.eclipse.org/gmf/

64. IBM. Rational Software Architect (RSA). (on-line, 05.06.2010) http://www-
306.ibm.com/software/awdtools/architect/swarchitect/index.html

65. Barzdins, J., Barzdins, G., Balodis, R., Cerans, K., Kalnins, A., Opmanis, M.,
Podnieks, K. Towards Semantic Latvia. In Vasilecas, O., ed.: Proceedings of
DB&IS, Vilnius, Technika (2006) 203–218

66. Kahle, S. JGraLab: Konzeption, Entwurf und Implementierung einer Java-
Klassenbibliothek für TGraphen. Master thesis, University of Koblenz-Landau,
Institute for Software Technology (2006)

67. Kalnins, A., Barzdins, J., Celms, E. Efficiency Problems in MOLA Implementation.
19th International Conference, OOPSLA’2004 (Workshop "Best Practices for
Model-Driven Software Development") , Vancouver, Canada, October 2004, p. 14.

68. Oracle Corporation. MySQL – The world’s most popular open source database. (on-
line, 05.06.2010) http://www.mysql.com/

69. Date, C. J. An Introduction to Database Systems, Chapter 17, Optimisation,
Addison-Wesley, 7th Edition, 2000

70. W3C. Web Ontology Language (OWL). (on-line, 20.06.2010)
http://www.w3.org/2004/OWL/

71. Oracle Corporation. MySQL Reference Manual. (on-line, 05.06.2010)
http://dev.mysql.com/doc/mysql/en/index.html

72. Katchaounov, T. An Overview of the MySQL 5.0 Query Optimizer. The MySQL
Users Conference, 2005.

73. Dubois, P. MySQL, Chapter 4, Query Optimization. Sams, 3rd Edition, 2005.
74. Microsoft. Microsoft SQL Server 2000 Desktop Engine (MSDE 2000). (on-line,

05.06.2010) http://www.microsoft.com/downloads/details.aspx?familyid=413744d1-
a0bc-479f-bafa-e4b278eb9147&displaylang=en

75. PostgreSQL Global Development Group. PostgreSQL - Open Source Database
Server. (on-line, 05.06.2010) http://www.postgresql.org/

76. Microsoft. Microsoft SQL Server 2005 Express Edition (on-line, 05.06.2010)
http://www.microsoft.com/sqlserver/2005/en/us/express.aspx

77. Elmasri, R., Navathe, R. Fundamentals of Database Systems, Chapter 18, Query
Processing and Optimisation, Addison-Wesley, 3rd Edition, 2000.

78. Microsoft. The SQL Server 2000 Workload Governor. (on-line, 20.06.2010)
http://msdn.microsoft.com/library/default.asp?url=/library/enus/architec/8_ar_sa2_0c
iq.asp

79. Varro, G., Schurr, A., Varro, D. Benchmarking for Graph Transformation,
Proceedings of IEEE Symposium on Visual Languages and Human-Centric
Computing 2005 (VL/HCC 05), Dallas, Texas, USA, September 2005, IEEE Press,
pp 79-88.

80. Kalnins A., Celms E., Sostaks A. Model Transformation Approach Based on
MOLA. ACM/IEEE 8th International Conference on Model Driven Engineering
Languages and Systems (MoDELS/UML '2005). (MoDELS/UML'05 Workshop:
Model Transformations in Practice (MTIP)) , Montego Bay, Jamaica, October 2 -7,
2005

81. Kalnins, A., Vitolins, V. Use of UML and Model Transformations for Workflow
Process Definitions. Communications of the 7th International Baltic Conference on
Databases and Information Systems (Baltic DB&IS’2006). , Vilnius, Lithuania, July
3-6, 2006, pp. 3-14.

107

82. Sostaks A., Kalnins A. The Implementation of MOLA to L3 Compiler. Articles of
the University of Latvia, “Computer Science and Information Technologies”, Riga,
Latvia, 2008, pp. 140-178.

83. Kalnins, A., Sostaks, A., Kalnina, E., Celms, E., Vilitis, O.: MOLA 2 Tool. ECMDA
Tools and Services Session, 2008.

84. Efron, B., Tibshirani, R.J. An Introduction to the Bootstrap, Chapman & Hall/CRC,
1994, 436 p.

85. Aho, A., Sethi, R., Ullman, J. Compilers: Principles, Techniques, and Tools. Bell
Laboratories, 1986

86. Rencis, E. Model Transformation Languages L1, L2, L3 and their Implementation.
Scientific Papers, University of Latvia, Computer Science and Information
Technologies, 2008, pp. 103-139.

87. Kalnins A., Celms E., Sostaks A. Tool support for MOLA. Proceedings of
International Workshop on Graph and Model Transformation (GraMoT), Tallin,
Estonia, September 2005. p.12

88. The Eclipse Foundation, Eclipse.org, (on-line, 05.06.2010) http://www.eclipse.org/
89. Jouault, F., Bezivin, J., Consel, C., Kurtev, I., Latry, F. Building DSLs with

AMMA/ATL, a Case Study on SPL and CPL Telephony Languages. In:
Proceedings of the 1st ECOOPWorkshop on Domain-Specific Program Development
(DSPD), July 3rd, Nantes, France. (2006)

90. The Eclipse Foundation. ATL Use Case - Compiling a new formal verification
language to LOTOS (ISO 8807)
http://www.eclipse.org/m2m/atl/usecases/FIACRE2LOTOS/

91. Jouault, F., Allilaire, F. An introduction to the ATL Virtual MachineV1.0 draft (on-
line, 20.06.2010)
http://www.eclipse.org/m2m/atl/doc/ATL_VM_Presentation_%5B1.0%5D.pdf

92. W3C. Extensible Markup Language (XML) 1.1 (Second Edition). (on-line,
20.06.2010) http://www.w3.org/TR/xml11/

93. Slonneger, K., B. Kurtz. Formal Syntax and Semantics of Programming
Languages. A Laboratory Based Approach, Addison-Wesley Publishing Company,
1995.

94. Rikacovs, S. The Base Transformation Language L0+ and Its Implementation.
Papers, University of Latvia, Computer Science and Information Technologies, 2008,
pp. 75-102

95. Dijkstra, E. W. GOTO Statement Considered Harmful, Letter of the Editor,
Communications of the ACM, March 1968, pp. 147-148.

96. Edmonds, J. Optimum Branchings. Journal of Research of the National Bureau of
Standards 71B (1967), 233–240.

97. Smialek, M., Bojarski, J., Nowakowski, W., Ambroziewicz, A., Straszak, T.
Complementary use case scenario representations based on domain vocabularies.
In Engels, G., Opdyke, B., Schmidt, D.C., Weil, F., eds.: Proceedings of MoDELS.
Volume 4735 of LNCS., Berlin, Heidelberg, Springer (2007) 544–558

98. Sparx Systems. UML tools for software development and modelling – Enterprise
Architect UML modeling tool, (on-line, 05.06.2010) http://www.sparxsystems.com/

99. Smialek, M., Kalnins, A., Kalnina, E., Ambroziewicz, A., Straszak, T., Wolter, K.
Comprehensive System for Systematic Case-Driven Software Reuse. In: J. van
Leeuwen, A. Muscholl, D. Peleg, J. Pokorny, B. Rumpe: In Proceedings of SOFSEM
2010: Theory and Practice of Computer Science, Vol 5901, LNCS, Springer,
Berlin/Heidelberg, 2010, pp. 697-708.

108

100. SpringSource.org, (on-line, 05.06.2010) http://www.springsource.org/
101. JBoss Comunity. Hibernate. (on-line, 05.06.2010)http://www.hibernate.org
102. The Eclipse Foundation. Eclipse Graphical Editing Framework (GEF). (on-line,

20.06.2010) http://www.eclipse.org/gef/

