
University of Latvia 

AGRIS ŠOSTAKS 

IMPLEMENTATION OF MODEL TRANSFORMATION 
LANGUAGES 

Thesis for the PhD Degree 
at the University of Latvia 

Field: Computer Science 
Section: Programming Languages and Systems 

Scientific Advisor:  
Prof., Dr. Habil. Sc. Comp.  

AUDRIS KALNINS 

Riga – 2010 
 



 

2 

TABLE OF CONTENTS 

INTRODUCTION ............................................................................................................. 4 
CHAPTER 1 MOTIVATION - MDSD AND MODEL TRANSFORMATIO N 

LANGUAGES ....................................................................................................... 8 
1.1 Modelling, Models and Metamodels ......................................................................... 8 

1.2 Model Driven Software Development .................................................................... 10 

1.3 Model Transformation Languages .......................................................................... 12 

CHAPTER 2 MOLA LANGUAGE .............................................................................. 15 
2.1 MOLA Overview .................................................................................................... 15 

2.2 Simple MOLA Example .......................................................................................... 19 

CHAPTER 3 PATTERN MATCHING IN MODEL TRANSFORMATION 
LANGUAGES ..................................................................................................... 27 

3.1 Patterns in Model Transformation Languages ........................................................ 27 

3.2 Related Pattern Matching Implementations ............................................................ 28 

CHAPTER 4 IMPLEMENTATION OF MOLA USING RELATIONAL 
DATABASES AND SQL .................................................................................... 32 

4.1 Overview of Architecture ........................................................................................ 32 

4.2 Implementing Patterns by Natural SQL Queries ..................................................... 35 

4.3 Database Performance Issues .................................................................................. 38 

4.4 Benchmark Results .................................................................................................. 43 

4.5 Summary ................................................................................................................. 46 

CHAPTER 5 IMPLEMENTATION OF MOLA USING L3 LANGUAGE ............. 48 
5.1 Architecture of MOLA Compiler ............................................................................ 49 

5.2 Model-Driven Compiling ........................................................................................ 53 

5.3 L3 from Lx Language Family ................................................................................. 55 

5.4 Mapping from MOLA to L3 ................................................................................... 62 

5.4.1 Mapping of Metamodelling Languages ........................................................ 62 

5.4.2 Mapping of the Procedure Headers ............................................................... 63 

5.4.3 Mapping of the Execution Control Flows ..................................................... 64 



 

3 

5.4.4 Mapping of MOLA Statements ..................................................................... 68 

5.5 The Simple Pattern Matching Strategy ................................................................... 74 

5.6 Benchmark Results .................................................................................................. 77 

5.7 Local Search Planning Using Annotated Metamodels ............................................ 78 

5.7.1 Local Search Plan Generation ....................................................................... 79 

5.7.2 Annotation Mechanism ................................................................................. 83 

CHAPTER 6 USE CASES OF MOLA ......................................................................... 87 
6.1 ReDSeeDS ............................................................................................................... 87 

6.1.1 Description of Keyword-Based Approach .................................................... 88 

6.1.2 Description of ReDSeeDS Basic Approach .................................................. 89 

6.1.3 Empirical Study of Pattern Matching Cases in ReDSeeDS .......................... 90 

6.2 ReDSeeDS Integration with Sparx Enterprise Architect ........................................ 93 

6.3 Tool Building in METAclipse ................................................................................. 95 

CHAPTER 7 CONCLUSIONS ...................................................................................... 98 
REFERENCES .............................................................................................................. 102 



 

4 

INTRODUCTION 

Model transformations play an important role in the Model-Driven Software 

Development (MDSD). The main idea of MDSD is a systematic use of models as 

primary software engineering artefacts throughout the software development lifecycle. 

Model-Driven Software Development refers to a range of development approaches that 

are based on the use of software modelling. A model expresses a particular aspect of a 

software system in a certain level of detail. A code of the software system is generated 

from models built by a system developer. The generated code varies ranging from a 

system skeleton to a complete product. It depends on an abstraction level of models used 

as a source for the generator. If the created models are at high level of abstraction, then 

model transformations are applied to create more detailed models that can be used for 

code generation. The model transformation is the automatic generation of a target model 

from a source model, according to a transformation definition [1]. Model transformation 

languages are used to define model transformations. Models that are used by model 

transformations must conform to metamodels. A metamodel defines a language, which 

specifies a model. A model transformation language uses metamodels to define the model 

transformation. A meta-language specifies the metamodels.  

The best known Model-Driven Software Development initiative is the Object 

Management Group’s (OMG) Model-Driven Architecture (MDA) [2], which is a 

registered trademark of OMG. The OMG has developed a set of standards related to 

MDA including the Meta-Object Facility (MOF) [3] (a meta-language), Object Constraint 

Language (OCL) [4], Unified Modelling Language (UML) [5] (a software modelling 

language) and MOF Queries/Views/Transformations (MOF-QVT) [6] (a model 

transformation language). 

The MDA approach defines system functionality using a platform-independent 

model (PIM), which is written in an appropriate modelling language (for example, UML). 

Then, the PIM is transformed to one or more platform-specific models (PSMs), which 

include platform or language specific details. For example, the UML Profile for Java [7] 

can be used to specify the PSM. Then, the PSM is translated to the code written in the 

appropriate to the PSM language.  

Nowadays the application area for model transformation languages is much 

broader. One such area is generic meta-model-based modelling tool building. The model 
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transformation languages can be used (and are used [8][9][10]) as a much more effective 

domain specific substitute for the general purpose languages which are used up to now for 

tool building. 

The OMG was the first to state precisely the requirements what should be a model 

transformation language [11]. The MOF-QVT language which is an answer by OMG 

itself to these requirements is becoming the OMG standard for model transformations [6]. 

In MOF-QVT source and target meta-models conform to the MOF. There are two 

variants of MOF defined – the EMOF (Essential MOF) and the CMOF (Complete MOF). 

The MOF can be viewed as a general standard to write metamodels, but, more 

specifically, EMOF is used for metamodel definition in MOF-QVT. The MOF-QVT 

standard defines two languages for transformation development – the Relations and the 

Operational Mappings. The Relations language is at the highest level of abstraction and 

uses patterns and a declarative transformation definition style whenever possible.  There 

are several realizations of the MOF-QVT language. The Relations textual language is 

implemented in the medini QVT [12]. The Operational Mappings language is 

implemented in the SmartQVT [13], several less complete implementations are also 

available. 

There are many other model transformation languages which also satisfy the 

OMG requirements. There are textual model transformation languages – ATL [14], 

VIATRA2 [15], the Lx language family (L0-L3) [16] and also graphical model 

transformation languages – Fujaba [17], GReAT [18], MOLA [19]. In fact, model 

transformation languages existed even before the OMG coined this concept. There are 

several such graph transformation languages that are now being used as the model 

transformation languages, for example, AGG [20] and PROGRES [21]. 

Model transformation languages are becoming increasingly mature in recent years 

and range of the areas where transformation languages are being used is widening. The 

growing popularity of transformation languages puts stricter requirements on their 

efficiency. Most of the popular transformation languages are using declarative pattern 

definition constructs. The main implementation problem of such languages is the pattern 

matching. This problem, in fact, is the subgraph isomorphism problem which is known 

to be NP-complete [22]. However, in practice typical patterns can be matched efficiently 

using relatively simple methods. The use of different means of pattern definition results 

into different implementations of pattern matching for every language. The more 
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sophisticated constructs a language use, the more complicated becomes the 

implementation of the pattern matching. 

Research carried out by the author seeks for relatively simple but efficient 

algorithms for pattern matching in model transformation languages used in the MDSD 

area. The main results of this research are algorithms which allow building efficient 

implementation of pattern matching for typical model transformation languages. 

Solutions for implementation of model transformation language MOLA demonstrate 

applications of these algorithms. 

The most straightforward proof of the practical significance of research is the 

successful use of MOLA language and tool in EU 6th framework project ReDSeeDS [23] 

(Requirements-Driven Software Development System) which is aimed to develop 

methodology and supporting tools for a model-driven software development. 

Transformations in ReDSeeDS are specified using MOLA language and represent typical 

MDSD transformations. 

Another main use case of MOLA language and tool is the transformation based 

tool building framework METAclipse [8]. Transformations are used to define the logic of 

a tool built by METAclipse framework. In fact, MOLA Tool itself has been built using 

MOLA language. 

The research results presented in the thesis have achieved the desired efficiency in 

implementation of pattern matching for model transformation languages. Thus it has 

become possible to apply MDSD technology in research projects and verify these 

technologies in industrial cases. 

Following chapters give an in-depth description of the developed pattern matching 

algorithms and its implementations for model transformation language MOLA: 

• CHAPTER 1 briefly describes the main ideas besides MDSD and the role 

of model transformation languages in this process of software 

development. The reader is thus given the basic knowledge needed for 

understanding the research carried out by the author, as well as the 

significance of the results achieved. 

• CHAPTER 2 briefly describes the model transformation language MOLA. 

The algorithms developed in thesis are used in the implementation of 

MOLA language. 
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• CHAPTER 3 sketches existing algorithms of pattern matching in model 

transformation languages. The applicability of these approaches to MOLA 

language is also discussed in this chapter. 

• CHAPTER 4 introduces a new algorithm which uses relational database 

with fixed schema and translates patterns to SQL queries. The 

implementation of this algorithm for MOLA language is described here. 

• CHAPTER 5 introduces two new algorithms of pattern matching which 

uses local search plan generation strategy. The first algorithm is effective 

for typical MDSD tasks and is based on few simple rules. Therefore the 

implementation of this algorithm for MOLA language is rather simple 

using an Lx model transformation language family. The second algorithm 

is based a classical local search plan generation, but introduces a new 

metamodel annotation mechanism which allows to enhance the efficiency 

of pattern matching without complicated analysis of underlying models. 

This chapter provides also details of MOLA implementation through L3 

language. 

• CHAPTER 6 demonstrates practical applications of the developed 

implementation of MOLA language: typical MDSD transformations in the 

EU 6th framework project ReDSeeDS and defining tool logic in tool 

building framework METAclipse. 

• CHAPTER 7 lists the conclusions accumulated during the development of 

the thesis. Also, possible future directions of the research in 

implementation of model transformation languages. 
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CHAPTER 1 

Motivation - MDSD and Model Transformation Languages 

Nowadays software becomes more and more complicated. Software development 

and management has become more challenging, especially if it refers to large-scale 

systems which are developed and used by hundreds, even thousands of people. In order to 

ease the development of software, particular models are used which describe different 

aspects of the system which is to be developed. 

At first models were used as demonstrative documentation which would help to 

develop the system. MDSD (Model-Driven Software Development) is a rather new 

approach (emerged around the year 2000) which uses models in a broader context. This 

chapter explains the basic principles of MDSD and the role of metamodels, models and 

model transformations in this process. 

1.1  Modelling, Models and Metamodels 
What is a model? Let us look at this issue in a little broader context, not only as a 

part of the software development process. There are many definitions available, but in the 

author’s opinion the most adequate definition of modelling is the following – modelling 

means using something instead of something else with a definite purpose [24]. Therefore, 

it allows using a model, which is simpler, safer, and also cheaper, instead of something 

else that is more complicated, dangerous or more expensive.   

Regarding the processes of software development the term model is usually 

applied to the abstraction of a computer system or real world in a specific context, for 

example, a requirements specification of the system or description of business processes 

of a company can be regarded as a model of the system and the company. These models 

let judge and draw conclusions about the system or the company. The requirements 

specification allows evaluating the complexity of the system and serves as the basis for 

software development. However, the model of business processes allows understanding 

the processes that take place in the company and optimizing business activities of the 

company. Usually we use a language as a mean for writing models, and this mean is 

specific for a certain type of models. It means, when we use a modelling language, it is 
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possible to describe different things of one type in a similar way. For example, when 

using the business process modelling language it is possible to describe various business 

processes in a number of companies.  

In order to be able to process the models by using computers, it is necessary to 

formalize the way of model definition, which means that there must be some means 

(preferably universal ones) available how to define modelling languages. And these 

means are called metamodels. Generally speaking, a metamodel describes a modelling 

language- it is a model of a modelling language. A metamodel and a model together form 

two levels of metamodelling abstraction or meta-levels, where the higher meta-level 

describes the means which help in forming the lower level. Theoretically, there could be 

an unlimited number of such meta-levels, but only four are used in practice.  

As it has been previously stated, a metamodel is also a model, so, in order to 

describe metamodels, we use a modelling language. This language is usually called a 

metamodelling language and it is defined by making use of a metamodel which is 

commonly called a meta-metamodel. Thus models reside at the first level of 

metamodelling or Level M1, the system that they describe, resides at the zero level or 

Level M0. The metamodel describing a model, resides at the second level or Level M2, 

but at the top-level, that is the third level or Level M3, the meta-metamodel resides. 

At present the most popular metamodelling standard (language) is MOF (Meta-

Object Facility), developed by the international standards organisation OMG, which 

describes four meta-levels (see Fig. 1). Currently the actual MOF version is 2.0 [3]. 

In practice many models are described by using one of versions of the modelling 

language UML [5], developed by OMG, (in Fig. 1 UML language is used to illustrate the 

MOF standard). Naturally, UML metamodel is defined by using MOF metamodelling 

language. It must be noted that MOF does not define the visible part of the language 

(concrete syntax), but it defines its abstract syntax. Of course, this is not the only 

metamodelling language. There exist other ways of defining metamodels, such as KM3 

[25] and EMF Ecore [26] - the metamodelling languages which are compatible with 

EMOF [3], a subset of MOF. In order to define a modelling language, one can use also 

ontology [27]. 
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Fig. 1. Example of OMG MOF meta-level hierarchy. 

There exist not only graphical, but also many textual modelling languages 

(actually, any OO programming language can be considered to be a modelling language).  

In order to illustrate what models can be encountered during the software 

development process there are some typical examples of the models: 

- UML class diagrams- the system analysis model, 

- UML activity diagrams- the business process model, 

- UML use case and activity diagrams- the system requirements specification, 

- UML class diagrams where J2EE stereotypes are used- the detailed design 

model, 

- BPMN diagrams [28] - workflow definition. 

1.2  Model Driven Software Development 
Until 2000, when OMG launched a new initiative Model Driven Architecture 

(MDA), many MDA ideas were already being used in practice. However, it was 

happening more intuitively rather than systematically. In 2001 OMG published the first 

version of MDA manual [2] which described basis and applications of MDA. 



 

11 

The essential MDA idea is the following: in order to develop complicated 

software, it is necessary to exploit various metamodelling principles systematically. An 

important conclusion followed that models had different roles during the development 

process of software. The following three roles of models were offered: 

- Computation Independent Model – CIM , a model which describes what system 

must do (requirements) and in what environment the system must work (for 

example, business processes), but it does not imply any information about 

implementation of the system. 

- Platform independent model – PIM , a model which describes the architecture of 

the system, but does not imply any details about the platform, in which system is 

going to be built (for example, .NET, EJB, CORBA specific details). 

- Platform Specific Model – PSM, a model which contains specific details for the 

platform. 

These models are used successively, that is, at first CIM model is made, and then 

it is supplemented or transformed, so that PIM is obtained, after that PIM is supplemented 

with specific details for the platform, and finally the software code is obtained from PSM. 

In practice similar models were already used, but MDA offered to automate this process, 

that is, to perform automatic model transformations. In this way the models become an 

essential part of the software development process. Software developers are able to 

operate at a higher level of abstraction, which has a radical influence on quality and speed 

of development of complicated systems. It should be noted that this process does not 

require an absolute automation, and it is hardly possible here. Each model is updated 

manually and then it is changed by means of model transformation.  

Thus, a model transformation is an automatic process when the source model, 

which corresponds to a fixed metamodel, is transformed into a target model, which 

corresponds to another (or the same) fixed metamodel (see Fig. 2). It must be noted that 

the model transformation itself is defined by using source and target metamodels. 

In the classical MDA approach the software is developed in such a manner that 

there exist one PIM model and one or more PSM models from which a code for different 

platforms is generated, depending on needs of the developer. MDA allows using only 

UML language for model description. 
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Fig. 2. An implementation scheme for model transformations. 

However, MDSD (Model Driven Software Development) views this issue in a 

broader context. The development process does not fix the usable modelling languages 

and allows applying also arbitrary formalized means of metamodelling. However, the 

majority of metamodels is set by means of MOF or compatible metamodelling language. 

MDSD does not strictly regard the roles of models and views the development process as 

a successive development of models by taking advantage of model transformations. Thus 

one can consider that MDA is a specific case of MDSD that is worth mentioning because 

it is the basis of all these ideas. It must be noted that the specialized modelling languages- 

DSL (Domain Specific Language), have become exceedingly popular. They are used for 

modelling specific fields, for example, a language for automobile servicing software 

development (AUTOSAR [29]), mobile telephone software development [30], and many 

other. These languages increase efficiency of software development in these fields. Also 

models and model transformations are increasingly used in implementation of the DSL 

languages. 

1.3 Model Transformation Languages 
The previous chapter concluded that automatic model transformations are one of 

the most essential parts in the process of model driven software development (MDSD). 

Model transformation turns one model into another in accordance with a specific 

definition of model transformation (see Fig. 2). The definition of model transformation 

can be stated as a program which is written by using one of the existing software 

languages, however, operating with models, which are described by means of 

metamodels, creates specific requirements for this language. It turned out that in practice 
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the existing software languages are not really suitable for defining model transformations. 

Therefore, in 2002 OMG announced a request for proposals about development of a 

standard for a new type of software language, model transformation language- QVT 

(Queries/ Views/ Transformations) [11]. 

What and how can we describe with a model transformation language? The 

essential requirement for the model transformation language is the ability to process the 

models, which are set by means of the metamodels (in concept of OMG- only with 

MOF), that is, by means of this language one must be able to work with a set of instances 

of the metamodels (classes), as well as recognise and change them. It is also essential that 

definitions of model transformations must be understandable for both the human and 

computer- they must be as declarative as possible. Of course, there must be an appropriate 

tool support available for a successful application of the language. 

As a part of OMG request for proposals there were submitted several language 

standard projects. However, over the years they have merged, and now there is one 

standard project left- MOF QVT. In the development of this project 16 institutions 

participate, including IBM, Sun and four universities. Although according to the plan the 

standard language had to be ready by March 2005, the first version of the standard MOF 

QVT 1.0 was issued only in April 2008. At the moment the actual version is MOF QVT 

1.1 Beta 2 [6], which has been issued in December 2009.  

Simultaneously with MOF QVT, a number of model transformation languages are 

being developed, not directly related to the OMG request for proposal - MOLA [19], Lx 

[16], GReAT [18], UMLX [31], ATL [14], Tefkat [32], MTF [33], ATOM3 [34], VMTS 

[35], BOTL [36], Fujaba [17], RubyTL [37], Epsilon [38], Henshin [39]. Also graph 

transformation languages turned out to be suitable for solving MDSD tasks, therefore, 

such languages as AGG [20], PROGRES [21], TGG [40], GrGen [41], VIATRA2 [15] 

were used for defining model transformations. In Chapter 2 of the thesis one can find out 

about the model transformation language MOLA. In this research MOLA is particularly 

emphasised, because the author of the thesis has participated in the development process 

of this language.  

The significant number of various model transformation languages might seem 

surprising, however, there must be regarded several conditions, which initiated the 

development of these languages. Firstly, lots of tasks emerged that were easier to solve by 

means of model transformations. Therefore, each of the previously mentioned 
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transformation languages is suitable for solving a particular class of tasks. For example, 

MOLA is suitable for MDSD tasks, but VIATRA2- for development of model driven 

simulation software. Secondly, the model transformation standard MOF-QVT does not 

have a completely developed implementation. Now MOF-QVT Operational is supported 

by SmartQVT tool [13] and Eclipse M2M QVT Operational project [42]. But MOF-QVT 

Relational is partly implemented by MediniQVT [12] tool. Therefore, the standard is 

mostly used as documentation, but in practice other model transformation languages are 

being used. 

One of the most popular means, which is used in model transformation languages, 

is a model pattern. The pattern is a declarative means. It helps in setting the metamodel 

fragment, to which a corresponding model fragment must be found. The located model 

fragment is supplemented, corrected or deleted according to the proper transformation 

algorithm. The pattern and the executable operations together form the rule of 

transformation. Consequently, the definition of model transformation is made by a set of 

rules written in the model transformation language. Patterns are used by many 

transformation languages, such as MOF-QVT, MOLA, GReAT, ATOM3, Fujaba, AGG, 

PROGRES, VIATRA2, and GrGen. However, the means that are used in them to provide 

the order of execution of rules is the essential factor that differentiates languages and 

states their suitability for solving different tasks.  

Pattern matching is a process in the result of which a fragment of a model (a set 

of instances) is found which corresponds to the particular pattern. In general it is an NP-

complete problem [22]; therefore an efficient implementation of pattern matching is an 

essential (even the most essential) precondition for an efficient implementation of the 

model transformation language. 
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CHAPTER 2 

MOLA Language 

Model transformation language MOLA is described in this chapter. The author of 

this thesis has actively taken part in the development of MOLA language and its 

implementation. Pattern matching algorithms developed by the author have been used in 

the implementation of MOLA. More about MOLA language can be found in [19], [43], 

[44] and in the web page of MOLA project [45]. 

MOLA is a graphical model transformation language, which is being developed 

by the Institute of Mathematics and Computer Science, University of Latvia, since 2003. 

Metamodels have been already used by IMCS [46], [47]; however the request of OMG 

for model transformation language proposal (QVT RFP [11]) was the determinant to start 

the development of a new language. The goal of MOLA project is to provide a simple and 

easy readable (therefore graphical) model transformation language, which would cover 

the typical transformation applications in Model Driven Software Development (MDSD). 

The declarative rules are commonly used in MOLA transformations together with simple 

procedural control structures governing the order in which rules are applied to the model. 

2.1 MOLA Overview 

MOLA is a graphical model transformation language, which is used for 

transforming an instance of a source metamodel (the source model) into an instance of the 

target metamodel (the target model). A transformation definition in MOLA consists of the 

source and target metamodel definitions and one or more MOLA procedures. 
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Source and target metamodels are jointly defined in the MOLA metamodelling 

language, which is quite close to the OMG EMOF specification [3]. These metamodels 

are defined by means of one or more class diagrams, packages may be used in a standard 

way to group the metamodel classes. Actually, the division into source and target parts of 

the metamodel is quite semantic, as they are not separated syntactically (the complete 

metamodel may be used in transformation procedures in a uniform way). Typically, 

additional mapping associations link the corresponding classes from source and target 

metamodels; they facilitate the building of natural transformation procedures and 

document the performed transformations. The source and target metamodel may be the 

same – that is the case for in-place model update transformations. The MOLA 

metamodelling language is defined formally in the Kernel package of the MOLA 

metamodel (see Fig. 3). 

MOLA procedures form the executable part of a MOLA transformation. One of 

these procedures is the main one, which starts the whole transformation. MOLA 

 

Fig. 3.  The metamodel of the MOLA metamodelling language 
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procedure is built as a traditional structured program, but in a graphical form. Similarly to 

UML activity diagrams (and conventional flowcharts), control flow arrows determine the 

order of execution of MOLA statements. Call statements are used to invoke sub-

procedures. However, the basic language statement of MOLA procedures is specific to 

the model transformation domain – it is the rule. Rules embody the pattern matching 

paradigm, which is typical of model transformation languages. Each rule in MOLA has 

the pattern and the action part. Both are defined by means of class-elements and 

association-links. A class-element is a metamodel class, prefixed by the element (role) 

name (graphically shown in a way similar to UML instance). An association-link 

connecting two class-elements corresponds to an association linking the respective classes 

in the metamodel. A pattern is a set of class-elements and -links which are compatible to 

the metamodel for this transformation. A pattern may simply be a metamodel fragment, 

but a more complicated situation is also possible – several class-elements may reference 

the same metamodel class – certainly, their element names must differ (these elements 

play different roles in the pattern, e.g., the start and end node of an edge). A class-element 

may also contain a constraint – a Boolean expression in a simplified subset of OCL. The 

main semantics of a rule is in its pattern match –a model fragment must be found, where an 

instance of the appropriate class is allocated to each class-element so that all required 

links are present in this fragment and all constraints evaluate to true. If such a match is 

found, the action part of the rule is executed. The action part also consists of class-

elements and links, but typically these are create-actions – the relevant instances and links 

must be created. An end of a create-link may also be attached to a class-element included 

in pattern. Assignments in class-elements may be used to set the attribute values of the 

instances. Instances may also be deleted and modified in the action part. Thus a rule in 

MOLA typically is used to locate some fragment in the source model and build a required 

corresponding fragment in the target model. If several model fragments satisfy the rule 

pattern, the rule is executed only once (on an arbitrarily chosen match). Such a situation 

should be addressed by another related construct in MOLA – the loop construct. In 

addition, the reference mechanism (a class-element may be a reference to an already 

matched or created instance in a previous rule) is used to restrict the available match set. 

Thus, rules are typically used in MOLA in situations where at most one match is possible. 

Certainly, there may be a situation when no match exists – then the rule is not executed at 

all. To distinguish this situation, a rule may have a special ELSE-exit (a control flow 
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labelled ELSE), which is traversed namely in this situation. Thus, a rule plays in MOLA 

the role of an if-then-else construct as well. 

Another essential construct in MOLA is the loop (more concretely, foreach loop). 

The loop is a rectangular frame, which contains one special rule – the loophead. The 

loophead is a rule which contains one specially marked (by a bold border) element – the 

loop variable. The semantics of a foreach loop is that it is executed for all possible 

matches for the loophead, which differ by instances allocated to the loop variable 

(possible variations for other loophead elements are not taken into account). In fact, a 

foreach loop is an iterator which iterates through all possible instances of the loop 

variable class that satisfy the constraint imposed by the pattern in the loophead. With 

respect to other elements of the pattern in the loophead, the existential semantics is in use 

– there must be a match for these elements, but it does not matter whether there are one or 

several such matches. Thus a foreach loop is the main MOLA construct, which is used to 

code a situation: “for each instance of ... which satisfies ... perform the following 

transformation ...”. Namely such situations in informal descriptions of model 

transformations are frequently called transformation rules, but in MOLA they must be 

formalised as foreach loops. In addition to the loophead, a loop typically contains the loop 

body – other MOLA statements whose execution order is organised by control flows. The 

loop body is executed for each iteration of the loop. Since the loophead is a rule, it may 

also contain create actions, thus simple transformations of source model elements may be 

coded in MOLA by loops consisting of the loophead only. For nested loops the main 

organising feature is the possibility to reference the loop variable (and other elements) of 

the main loop in the pattern of the nested loophead, thus specifying an iteration over all 

related instances (to the current instance in the main loop). 

There also are other available constructs in MOLA procedures. Procedures may 

have parameters (of type of a metamodel class or a primitive type) and local variables 

(also of both types). These elements may be used in MOLA rules. In addition, text-

statements (consisting of a constraint and assignments) may be used to process these 

elements more directly. For primitive-typed variables the text statement is the only 

option. A text statement containing a constraint (a Boolean expression) may also have an 

ELSE-exit and serve as an if-then-else construct (in addition to rule). Besides MOLA 

procedures, external (coded in an OOPL) procedures can also be invoked; this feature is 

used for low-level data processing (e.g., model data import). It should be noted that 
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MOLA has no built-in UI support (MOLA is oriented towards behind-the-scenes 

transformations), therefore diagnostic messages and similar situations should be 

addressed via a library of external procedures. All MOLA procedure elements are defined 

formally in the MOLA package of the MOLA metamodel (see Fig. 4). 

The execution of a MOLA transformation on a source model starts from the main 

procedure. A loop is executed while there are instances to iterate over. Then the next 

construct according to the control flow is executed. If a rule without a valid match is to be 

executed, and this rule has no ELSE-exit, then the current procedure is terminated (if this 

occurs outside a loop) or the next iteration of the loop is started (within a loop body). 

When the main procedure reaches its end, the transformation is completed. 

2.2 Simple MOLA Example 

In order to illustrate the basic MOLA concepts, briefly listed in the previous 

section, a simple MOLA transformation example is provided. It is the classical example 

from an abstract MDA area – simplified UML class diagram to simplified database 

schema definition. 

Let us assume that we have to build an initial part of the database schema 

definition – tables and columns from a class diagram. The source model (simple class 

diagrams) is described by a significantly simplified fragment of Classes package in the 

UML 2 metamodel (see Fig. 5). Though only the very basic elements in this source 

metamodel are retained, still it has the feature that a class attribute is represented by the 

Property  metamodel class, and so are the association ends. Therefore each Property  

has to be analyzed, whether it really represents an attribute. All metamodel classes in this 

fragment are placed in the Kernel  package. The Class  metamodel class has one 

additional tag – the Boolean isPersistent , which is treated in this example as a 

normal attribute. 

The target metamodel is even simpler – it contains only two classes Table  and 

Column , both in the SQL package (see Fig. 5). The association cols  expresses the 

ownership of Column  by a Table , the association pkey  – that the corresponding 

Column  is a primary key for the Table . 
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Fig. 4.  The metamodel of the MOLA procedure elements 
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Two mapping associations link the source and target metamodels – 

classToTable  goes from Class  to Table  and attributeToColumn  from 

Property . 

The transformation to be specified is the following – for each persistent class (i.e., 

Class  instance) we have to build a Table  and its primary key Column  (with a 

specifically defined name and type String). For each attribute of such a class, whose type 

is a primitive one, we have to build a Column  in the corresponding Table  with the 

same type, but for an attribute with an Enumeration  type – a Column  with type 

String. The Column  name coincides with the attribute name. Associations in this 

oversimplified example are not taken into account.    

 

Fig. 5. The metamodel of the example 

The metamodel example shows that metamodels are defined in MOLA in a 

standard way, by class diagrams, but only EMOF level facilities are permitted. 

Generalization is used in a standard way. 

The transformation itself consists of two MOLA procedures – Main  (which is 

really the main one) and ProcessAttribute , which is invoked by Main . Fig. 6 

shows the procedure Main . 
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tbl : Table
 (SQL)
name:=@cl.name

cl : Class
 (Kernel)
{isPersistent = true}

{Process all 
atributes}

@cl : Class
 (Kernel)

prop : Property
 (Kernel)

{NOT}
assoc : Association
 (Kernel)

ProcessAttribute(@prop, @tbl)

cl : Class
 (Kernel)

tbl : Table
 (SQL)

@tbl : Table
 (SQL)

col : Column
 (SQL)
name := @tbl.name + "_PK"
type := "String"

{Generate primary key}

classToTable

classToTable

pkey

ow nedAttribute
class

association

 

Fig. 6. The MOLA procedure Main 

The start and end symbols of a MOLA procedure are represented in the same way 

as in UML activity diagrams. Control flows are drawn by dashed lines. The first element 

to be executed in this procedure is a foreach loop (a rectangle with bold lines). This loop 

consists of the sole loophead rule (a rule is visualized by a grey rounded rectangle). The 

pattern part of this rule (elements with black borders) contains only one class element – 

the loop variable cl  corresponding to the metamodel class Class  (loop variables are 

distinguished from ordinary elements by bold borders). This class element contains also a 

constraint specifying that the attribute isPersistent  must have the value true . 

Thus, the semantics of this simple loop (and included pattern) is – the loop is executed for 

every instance of Class  in the source model, where isPersistent  has the value true. 
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The action part of the rule contains one class element tbl :Table  and one link. The class 

element is of create type (red dashed borders), and it contains one assignment – the value 

@cl.name  (the value of the attribute name in the matched element cl ) must be 

assigned to the attribute name (of the Table  instance to be created). The sole link in the 

rule is of create type too (a red dashed line) and corresponds to the mapping association in 

the metamodel (between the Class  and Table  classes). The correspondence between 

links in MOLA rules and associations in the metamodel visually is shown via role names, 

at least one of the role names must be present for a link and UML syntax rules for classes 

guarantee that a unique specification is possible (the MOLA reference shows that 

internally a link is directly related to an association). Thus, the first loop is iterated over 

all persistent Class  instances in the source model and for each such instance a new 

instance of Table  is created and its name attribute is set to the same String value as the 

name of the class. In addition, these two instances are linked by the classToTable  

link. 

This first loop is a typical design pattern for simple transformations in MOLA – 

loop through the instances of a class in the source model and for each valid instance build 

something in the target model. 

The control flow from the first loop leads to the next foreach loop, which again 

iterates over all classes in the source model (the loop variable is based on Class ). 

However, this time the pattern is more interesting – it contains one more class element 

(tbl:Table ) and one link connecting these elements. The semantics is very natural – 

only these instances of Class , which have a classToTable  link to a Table  instance, 

qualify as valid for iteration. Since this loophead has no actions, for each iteration 

immediately the first construct of the loop body – the next rule is executed. It should be 

noted, that actually the second loop is iterated over literally the same instances as the first 

loop (persistent classes), since namely for these instances the first loop has built the 

Table  instance and the required link. Therefore in an optimized program for this 

example both loops could be merged in one. The two loops are retained in this example 

for demo reasons (to demonstrate a pattern for a loop) and because in a more realistic 

version (where associations also need to be transformed) namely this two pass approach 

can provide a solution. 
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The next rule in the loop body builds a Column  instance (the primary key 

column), assigns the required values to its attributes and links this new instance to the 

Table  instance located by the loophead. Note the use of element reference - 

@tbl:Table  in the rule. The reference construct (an element notation prefixed by the 

"@" character) says that namely the instance found by a previous rule (here the loophead) 

must be used. The previous rule means the last (according to the execution order) rule, 

where the referenced element (without the "@" character) was matched in the rule pattern, 

or created in the action part. If a reference is used in a pattern, it means that no matching 

is done for this element, simply the known instance is used to build a constraint for other 

pattern elements, or the instance is used as an end point for the link to be built (this is the 

given case). The use of the reference as a qualifier for an attribute in an expression has the 

natural meaning – the attribute value of this instance is taken. 

The next construct to be executed in the loop body is a nested loop. It uses the 

Property  class for its loop variable and is meant to loop over the attributes of the 

current Class  instance. The loophead contains a pattern, where the reference 

@cl:Class  says that only the Property  instances linked to this known instance must 

be iterated upon, in addition there must be no Association  instance linked to a valid 

Property  (by the association  link). The cardinality constraint NOT  is used in a 

pattern element to specify that an appropriately linked instance must not exist at all in the 

model (a NOT-constraint is available also on links in MOLA, but there it says only that a 

link must not exist). Let us remind that the NOT-constraint is required here to filter these 

Property  instances, which are association ends. The initial part of the loop pattern – 

the loop variable linked to a reference from the owning loop pattern – is very typical to 

nested loops in MOLA. 

The nested loop in its body has only one construct – the call of the subprocedure 

ProcessAttribute  (which builds the required columns), using references to the 

known instances prop  and tbl  as parameters. Certainly, the types (classes) of these 

parameters must match the parameter definitions in the invoked procedure. Here the 

classes coincide, but subclass instances may also be supplied (as in OO programming). 

This concludes the definition of the Main  procedure. When all the relevant 

iterations are completed, this simple transformation has built the required tables and 

columns. 
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It remains to give some comments on the subprocedure ProcessAttribute , 

which is shown in Fig. 7.   

@tbl : Table
[2]

(SQL)

@prop : Property
 (Kernel)

en : Enumeration
 (Kernel)

@prop : Property
 (Kernel)

pt : PrimitiveType
 (Kernel)

@tbl : Table
 (SQL)

col : Column
 (SQL)
name := @en.name
type := "String"

@prop : Property
 (Kernel)

show Msg("Inconsistent class model: 
Class attribute has nonprimitive type")

@prop : Property
[1]

(Kernel)

@tbl : Table
 (SQL)

col : Column
 (SQL)
name := @prop.name
type := @pt.name

@prop : Property
 (Kernel)

type

{ELSE}

type

{ELSE}

cols cols

attributeToColumnattributeToColumn

 

Fig. 7. The subprocedure ProcessAttribute  

The two top symbols in the diagram are parameter definitions (their positions 

must be numbered, since calls use the positional notation). Parameters can be freely used 

in patterns, as element references would be. 

This MOLA procedure has no loops, since the parameters already provide the 

exactly required instances. The first rule serves as a typical if-condition  in an if-then-else 

construct. It is used to distinguish whether the attribute type is primitive or an 

enumeration. If the rule pattern matches (the type is primitive), the next rule (followed to 

via the unlabelled flow) builds the Column  instance and sets its attributes. Note that in 

this rule the reference @pt is legal, since the previous rule has matched and located this 

instance (it would not be legal to use this reference in the other branch). 

If the first pattern fails, the alternative rule (accessed via ELSE-flow) is executed. 

If its pattern matches, the alternative building rule for the enumeration case is executed. If 

the second condition fails too (e.g., the attribute type is another class), the external 
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procedure showMsg is invoked. This external procedure is built-in in MOLA 

environment and it is used to display a simple message box with the provided text. 
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CHAPTER 3 

Pattern Matching in Model Transformation Languages 

Besides MOLA there are many model and graph transformation languages which 

use declarative patterns to specify transformation rules. The language specific pattern 

features of several popular languages are described in this chapter. An overview of the 

most popular approaches for pattern matching implementation is also given in this 

chapter. 

3.1 Patterns in Model Transformation Languages 

The closest relative to MOLA in the world of model transformation languages is 

Fujaba Story Diagrams from Fujaba Tool Suite [17]. Fujaba is a graphical model 

transformation language which uses imperative control structures and declarative 

patterns. The specification of patterns in Fujaba is almost identical to MOLA. There is a 

restriction on patterns in Fujaba - the pattern must contain at least one bound (previously 

matched) element. The graphical syntax, of course, differs for both languages, but that is 

obvious for independently developed languages. The most significant difference between 

the two is the foreach loop. Fujaba does not specify the loop variable and loops are 

executed through all of the possible matches of the pattern. In MOLA only the distinct 

instances that correspond to the loop variable are iterated over. MOLA foreach loop is 

more readable and easier to use, because of the loop variable. 

A different programming paradigm is used in the graph transformation language 

AGG [20], which is a typical example of a declarative transformation language. AGG 

does not have any imperative control structures, and rules that describe patterns are being 

executed independently. The only way to affect the execution order is to use layering. 

Each rule in AGG includes a pattern which is specified by LHS graph and NACs. NACs 

are used by declarative transformation languages mainly to distinguish already processed 

model elements. Negative patterns are used differently in MOLA because of the specific 

loop construct. MOLA also has negative pattern elements, but they are used to express a 

logical negative condition.  
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The graph transformation language PROGRES [21] is a textual graph 

transformation language where patterns (graph queries) are specified graphically. Patterns 

allow using similar and even richer options than previously noted transformation 

languages. The ordering of statements is managed by algebraic structures and PROGRES 

follows declarative PROLOG-like execution semantics.  

Graph transformation language VTCL (Viatra Textual Command Language), 

which is part of the VIATRA2 framework [15], defines patterns using textual syntax. 

VIATRA offers broad possibilities for the pattern definition: negative patterns may be at 

arbitrary deep level; the call of a pattern from another pattern and even recursive patterns 

are allowed; the language may work both with model and metamodel. The execution 

order of rules is managed by ASM (Abstract State Machine) language constructs which 

are purely imperative. VIATRA has a rudimentary graphical syntax of patterns, however 

it seems that whole expressiveness of the language may not be available there. 

 Another textual graph transformation language, which has appeared in recent 

years, is GrGen [41]. The expressiveness of patterns in this transformation language is 

close to VIATRA. Transformation rules are combined using similar algebraic constructs 

to PROGRES (except the PROLOG-like execution semantics). 

3.2 Related Pattern Matching Implementations 

The authors of the graph transformation language PROGRES already in 1998 [48] 

were the first ones who examined the pattern matching issue in the context of 

transformations. Since then this issue has been solved in several graph and model 

transformation languages. Let us look at the most popular ways how pattern matching is 

being implemented in different transformation languages. 

One of the most popular ways of implementation of pattern matching is by 

generating the local search plans. The basic idea of this approach is the following: in the 

optimal way finding a fragment, which corresponds to the pattern, by using the basic 

lookup operations (such as to find the first instance of a certain class; to find the instance 

of a certain class when navigating the link; to check the attribute value of a certain 

instance, etc., that actually is executed in almost constant time). By means of the basic 

operations a model fragment corresponding to the pattern is built. Usually the process 

starts from a potentially suitable class instance, and gradually the fragment of the model 
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is supplemented in correspondence with the pattern, that is, the rest of the instances are 

chosen so that they form a suitable component of the fragment wanted. If it is impossible 

to find a suitable instance, backtracking takes place. The search continues until a suitable 

fragment is found, or all potential fragments are checked, but none of them is suitable. 

The local search plan (LSP) is the order in which the basic operations are applied. The 

aim of LSP generation is to find such an optimal order which uses the basic operations as 

few as possible in order to find a model fragment corresponding to the pattern. 

So, to find the best LSP, typically different heuristics are used which help to 

choose the optimal implementation order of the operations. The most typical version is to 

use cardinalities (multiplicities) of a metamodel element, usually an association, for 

example, the instances matching the pattern are navigated in such a way that mostly 

navigation takes place along the link towards the end of the association with a cardinality 

0 or 0..1 . In this way the set of instances that should be checked is radically diminished. 

Implementation of the graph transformation language PROGRES [48] is based exactly on 

this principle. However, the cardinalities of the metamodel elements do not depict in full 

the real cardinalities in a specific model. For example, the cardinality * of the association 

end indicates that there can be more than one link to match, but it does not provide more 

precise information. It is possible to obtain more detailed evaluation of the cardinalities of 

certain model elements by analysing typical models where transformations with given 

patterns are used. This type of analyses can be performed in VIATRA language 

implementation [49]. This approach is suitable when a proper amount of corresponding 

models is available. However, in practice there are frequent situations when 

transformations must be built before any model is available. It is possible to obtain more 

precise values of the certain cardinalities exactly before the execution of the 

transformation, by examining the model which is going to be changed. In this case this 

information must be provided by the model repository, but it is not always done. In this 

case also the search plan must be generated during the execution process that can 

diminish the efficiency of the method and make the implementation more complicated. 

This method is used in the implementation of the transformation language GrGen [50]. 

The transformation language Fujaba uses a simpler LSP generation strategy. 

Pattern matching always starts from an instance corresponding to the bound pattern 

element (it exists always). Searching continues along the links in accordance with the 
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pattern [51]. Despite this approach being simple, it works almost as well as the already 

mentioned approaches [52]. 

Also in MOLA implementation a similar approach is used [53], described in detail 

in Chapter 5 of the thesis. MOLA uses also a more complicated LSP generation algorithm 

which employs the cardinalities of the metamodel elements and the mechanism of the 

metamodel annotations which lets the transformation writer use his knowledge about the 

real cardinalities in the models [53]. Also this approach is discussed in detail in Chapter 5 

of the thesis. 

LSP generation is not the only way of solving the pattern matching problem. In 

order to solve this problem it is possible to use other popular technologies and methods. 

One of these technologies is the relational databases. The basic idea of the method is to 

save the model in the relational database in accordance with some database scheme and 

carry out pattern matching by means of SQL queries. In this way the optimization 

mechanisms of query execution are exploited which are accessible in all well-known 

relational database management systems. Implementation of this method is rather simple, 

as it is possible to build an SQL query correspondent to the pattern or a chain of queries. 

Its execution, that is, the most complicated part, can be left to the query optimization 

algorithms. This approach is used in one of implementations of the transformation 

language VIATRA [54]. The model is saved in the relational database whose schema 

corresponds to the metamodel which describes this model. Thus the schema of the 

database is generated corresponding to each metamodel. For each pattern several SQL 

views are generated which correspond to the pattern and negative conditions. Pattern 

matching reduces to execution of SQL queries corresponding to the views. Relational 

database is used also in implementation of MOLA language [55], which is discussed in 

detail in Chapter 4 of the thesis. Unlike the previously mentioned implementation of 

VIATRA language, in this case the fixed database schema is used and exactly one SQL 

query for each pattern. 

It is possible to reduce pattern matching to CSP (Constraint Satisfaction 

Problem). CSP has ready-made solutions which make solution of pattern matching 

possible. CSP is defined as a set of variables which must find a state, satisfactory for 

number of constraints. The typical examples are game Sudoku [56] and map colouring 

problem [57]. The search of such condition is called variable ordering and this process is 

rather similar to generation of the search plan in LSP methodology. Thus pattern elements 
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receive the corresponding CSP variables and a set of constraints, and if they are solved, 

also the corresponding pattern matching problem is solved. This solution is used in 

implementation of AGG language [58].   

The previously described solutions are trying to find the corresponding model 

fragment in time, which depends on the size of the model (number of instances) and on 

the size of the pattern (number of pattern elements). Incremental pattern matching 

allows finding the corresponding model fragment for a pattern in constant time. The basic 

idea of this method is cache the fragments corresponding to the pattern, and when model 

changes, update this information. But cache requires additional memory resources. In this 

case changing the model is inefficient, because in case of any change, the information 

about the model fragments corresponding to the pattern must be updated. The typical 

MDSD transformation model is being changed constantly. There must be created the 

corresponding element in the target model practically for each element of the source 

model. It must be noted that before the execution of the transformation, when loading the 

model into the memory, the cache process must be performed and it needs a definite time 

of execution. Because of these reasons incremental pattern matching is not suitable for 

MOLA language. This approach is implemented in VIATRA language [59] and it works 

very successfully in solving tasks when the number of transformations is small and local. 

VIATRA incremental pattern matcher is built by using RETE networks [60]. 

The authors of VIATRA offer also hybrid pattern matching  [61] which is able 

to combine different approaches, for example, LSP generation and incremental pattern 

matching. This approach offers to choose which method to use for a specific pattern. The 

choice can be made during transformation development or execution. It is based on the 

statistics of the available memory. 

Patterns in the popular model transformation language ATL [14] are hidden 

within Boolean expressions of OCL language and helper functions widely used by ATL.   

ATL and MOF QVT [6] are not addressed here, because to our knowledge no pattern 

matching implementation details are available for them. 
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CHAPTER 4 

Implementation of MOLA using Relational Databases and SQL 

The pattern matching algorithm which uses relational database is described in this 

chapter. The implementation of this algorithm for model transformation language MOLA 

is one of the main results of these thesis. The results have been published in [55] and 

MOLA Tool has been presented in the Tool Session [62] of the European Conference on 

Model Driven Architecture – Foundations and Applications (ECMDA-FA 2005).  

This version of MOLA tool has been developed with mainly academic goals – to 

test the MOLA usability, teach the use of MDSD for software system development and 

perform some real life experiments. This has influenced some of the language design 

requirements, though with easy usability as one of the goals and sufficient efficiency for 

research purposes as the second. 

4.1 Overview of Architecture 

Similarly to many model transformation environments, MOLA environment 

consists of two major parts: MOLA Transformation Definition Environment (TDE)  

and Transformation Execution Environment (TEE). TDE is completely related to the 

metalevel M2 according to MOF terminology, while TEE is at M1 level. TDE is used by 

expert users, who define new model transformations in MOLA for the adopted MDSD 

technology or modify the existing ones from a transformation library to better suit the 

needs of a specific project. Since MOLA is a graphical language, TDE is a set of 

graphical editors built on the basis of Generic Modelling Tool [46] (a generic metamodel 

based modeling framework (GMF1), developed by University of Latvia, IMCS together 

with the Exigen Company). The execution environment (related to M1 level) is intended 

for use by system developers, who according to the selected MDSD methodology 

perform the automated development steps and obtain the relevant target models. Two 

forms of TEE are available. The form closer to an industrial use is an Eclipse plug-in, 

                                                 
1 Do not confuse with Eclipse Graphical Modeling Framework [63] 
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which can be used as a transformation plug-in for UML 2.0 modeling tools, including the 

commercial IBM Rational tool RSA [64]. Another form is a more experimental one. It is 

based on Generic Modelling Tool as a generic modeling environment and is intended for 

various domain specific modeling and design notations. 

MOLA Transformation Definition Environment (TDE)

MOLA Transformation Execution Environment (TEE)

MOLA-MM-
editor

MOLA-diag-
editor

MOLAcompiler

Transformation
{in EBM MOLA}

SourceModel-
Tables

Eclipse Plug-in Transformation 
Execution 

Environment
{runtime,Eclipse-based}

Model-Import
{from EMF XMI}

TargetModel-
Tables

Model-Export
{to EMF XMI}

TargetMMTables

SourceModel
{XMI} TargetModel

{XMI}

SourceMMTables

MOLA-
interpreter

MOLA-MM
{Tables}

MOLA-prog-Tables

Source-MM
{GMF}

Transformation 
Execution 

Environment
{runtime, GMF-
based}

Target-MM
{GMF}

TargetModel
{GMF}SourceModel

{GMF}

ModelEditor
{GMF}
Graphical editor/
Model browser

Model-Import
{GMF}

Model-Export
{GMF}

ModelEditor
{GMF}
Graphical editor/
Model browser

MOLA Transformation 
Definition Environment
{GMF based}

Metamodel

Source-MM Target-MM

basedOn
basedOnbasedOnbasedOn

basedOn

specifiedIn

basedOn

specifiedIn

 

Fig. 8. MOLA Tool environment architecture. 

 Fig. 8 shows both the components of the MOLA tool (rounded rectangles) and 

the used data objects (rectangles). Besides the traditional class diagram notation, arrows 

represent the possible data flows. Data objects in MOLA runtime repository are annotated 

as tables because it is SQL based. Now some more comments on the MOLA TDE. It 

contains graphical editors for class diagrams (EMOF level) and MOLA diagrams. Both 
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the source and target metamodels are shown in the same class diagram, together with 

possible mapping associations. A transformation is typically described by several MOLA 

diagrams, one of which is the main. Since the graphical editors are implemented on the 

basis of Generic Modelling Tool, they have professional diagramming quality, including 

automatic layout of elements. In addition to editors, TDE contains the MOLA compiler 

which performs the syntax check and converts both the combined metamodel and MOLA 

diagrams from the Generic Modelling Tool repository format to the MOLA runtime 

repository format. 

The main component of MOLA TEE  is the MOLA Virtual machine  (VM)  

(interpreter), which actually performs the transformation of the source model to the target 

model. As it was already mentioned, the goal of this implementation is to provide a 

simple and sufficiently efficient implementation of MOLA. The key factor in reaching 

this goal is an appropriate implementation of MOLA VM, since the implementation cost 

and efficiency of all the service components is nearly the same for all considered 

solutions to MOLA VM. And in turn, a crucial point of MOLA VM implementation is an 

appropriate repository and execution environment for pattern matching. This is due to the 

fact that the implementation of control structures and executable actions in MOLA (due 

to their procedural nature) is very straightforward in all cases. It should be noted that the 

choice of repository and execution environment are closely linked ones, thus the rest of 

the section actually will be devoted to these issues. 

Typically model transformation languages are implemented on metamodel based 

repositories, the most typical of which is Eclipse EMF [26]. Several model transformation 

tools have been built using EMF as a repository [14], [38], [39]. The EMF API in Java 

provides the most basic actions for building a pattern matcher. The next version of 

MOLA implementation is also implemented on such repositories- MIIREP [65], JGraLab 

[66] and also the mentioned EMF. 

It has been already shown [67] that a very efficient MOLA pattern matching 

implementation is possible on such a basis. However, the available low level operations 

in these APIs (even lower level than analyzed in [67]) make the implementation 

sufficiently complicated. Therefore another solution was considered – to what degree an 

SQL database can be used as a repository for pattern matching. On the one hand, the 

repository structure must match closely enough to EMOF – similarly as EMF does. On 

the other hand, the desire was to use the powerful capabilities of SQL for a simple high 
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level implementation of pattern matching. Such a solution was found, which is described 

in the next section. The only remaining concern was performance issues – whether the 

query optimization in SQL databases can at least be not very far from the optimal 

performance described in [67]. 

4.2 Implementing Patterns by Natural SQL Queries 

MOLA VM operates with models – MOF level M1. However, for each model 

element its metaclass must be known – for pattern matching or any other MOLA action. 

Therefore MOLA VM has to know the complete metamodel (M2 level) for the 

transformation. As it was described in CHAPTER 2 the metamodelling facilities in 

MOLA are approximately those of EMOF. The most natural way is to store the 

metamodel in tables which correspond to EMOF metamodel classes. However, due to 

efficiency reasons, the plain old class metamodel containing Classes , 

Associations  and Attributes  (but not Properties  as association ends) 

occurred to be more convenient to be coded by the corresponding SQL tables (see the left 

column of Fig. 9). It can be easily seen, that in fact it is equivalent to EMOF, therefore 

MOLA compiler can easily store the metamodel in these tables. In addition, there are 

tables for identifying metamodels and models themselves.  

The storage of model elements – instances of metamodel classes, associations and 

attributes is completely straightforward in the corresponding three tables (see the right 

column of Fig. 9). The MOLA program is also naturally stored in tables according to the 

MOLA metamodel, but since we here are mainly concerned with pattern matching, this 

coding is not so important. The only fact to be mentioned here is that the MOLA compiler 

for each program element (loop, rule, pattern class element, pattern link etc.) generates a 

unique identifier. This fixed database schema is much easier to implement than the 

metamodel-specific one used in [54]. 

Let’s find out how a MOLA pattern can be naturally mapped to an SQL Select 

statement. The idea is that each class element in the pattern corresponds to an occurrence 

of the table class_inst  (actually an alias of it) in the From clause. Similarly, each 

pattern link corresponds to an alias of the asoc_inst  table in the From clause. Next 

the Where clause is formed. Firstly, each pattern element (i.e., the corresponding alias of 

class_inst ) must mandatory have the specified class, i.e., its meta_class_id  
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column must have the given value (metamodel elements are fixed during MOLA 

execution). Similarly it is for links (association instances) in the pattern. 

 

Fig. 9. SQL Tables for storing metamodels and models. 

A more non-trivial part of the Where clause must specify that each link does link 

the relevant instances, i.e., src_class_inst_id  is equal to the class_inst_id  of 

the corresponding (association source) alias of class_inst , similarly for the 

trg_class_inst_id . For reference elements (@p:Package  in Fig. 10) it must be 

specified, that their class_inst_id  has the given value (reference elements always 

correspond to a fixed instance in MOLA). The most complicated part in the Where 

clause are the attribute constraints, which already are Boolean expressions. However, the 

simple attribute names used in MOLA constraints must be substituted by additional 

aliases of attr_inst  in the From clause, in addition, the transformed expression must 

be added to the Where clause. 

Fig. 10 illustrates the generation of an SQL query from a pattern. The pattern is a 

very simple one – a foreach loop head containing the loop variable (of type Class,  with 

a constraint) and a reference (to the instance of Package ) linked by the package  link.  

Lines illustrate the described above mapping graphically, the color coding (or levels of 

gray in the black-and-white version) shows which parts of the query were obtained from 
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one pattern element. The alias names are generated from the pattern element identifiers 

built by the MOLA compiler and therefore are unreadable. 

 

Fig. 10. Generation of an SQL query from a pattern. 

The result of the query (a virtual table) is defined in such a way that each row 

represents (identifiers of) class instances forming a valid match. 

Now it can be easily seen, that the built SQL query indeed expresses the pattern 

match semantics, which for the given example asserts that instances of the metaclass 

Class  must be sought, which have the link package  to the fixed instance of Package  

and which have the given value of the attribute kind . Since the pattern is inside a 

foreach loop, all such instances (all matches returned by the query in this simple case) 

must be processed. A similar argument applies to any MOLA pattern. 

Thus the simplicity of the pattern mapping to SQL query has been shown, it 

remains to show that this SQL Select can easily be built by the MOLA VM (actually it is 

a sort of JIT-compiling). It is being done in several steps. First, the class elements of the 

pattern are picked up and for each of them an element in the Select  list and in the 

From list (the table class_inst  with a new alias) is added, with the MOLA compiler-

generated unique element identifier used as the alias name. In addition, a term in the 

Where condition is added, which specifies that the instance must be of the relevant class 

(or that the instance is the given one for reference elements). Then in a similar manner 

each link of the pattern is processed. Here the term added to the Where part is more 

complicated, it has to state both that the link's association is the relevant one and that the 

endpoints are the corresponding class instances. The latter fact is easily to state due to the 

fact that the MOLA compiler has documented this via references to the relevant element 
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identifiers and namely these identifiers are used as aliases for the element selection. Then 

pattern constraints are processed, each adding to the From part (the required attribute 

instance) and to the Where part (the expression itself). Simple OCL expressions having a 

direct counterpart in SQL and some simple OCL set expressions are supported. 

Finally, some remarks on the negative patterns. A negative part can be added as a 

NOT EXISTS subquery to the Where condition. In the case of a NOT-element, the 

subquery has just one alias of the class_inst  in the From list plus aliases for the links 

connecting the element with the positive part of the pattern. The Where part of the 

subquery is generated similarly as for positive patterns. 

4.3 Database Performance Issues 

In this section the performance of the generated queries in several databases, 

which are relevant for MOLA tool, is analyzed. A query generated from a pattern is 

somewhat special in the sense that it is a so-called self-join – aliases of the tables 

class_inst and asoc_inst  are repeated in the From clause as many times as 

there are elements and links in the pattern respectively. Large self-join queries are non-

typical for standard database applications and therefore may be processed by some 

engines not so optimally. 

The first natural choice for an experimental tool was the open source database 

MySQL, the version 5.0.12 [68]. The first intuitive performance evaluations were also 

encouraging, but it was clear that a more thorough analysis of query optimization is 

required. 

Since it has been shown [67] that pattern matching in MOLA can be performed 

very efficiently as a sequence of small queries on a reasonable model repository (and the 

database schema described in previous section is such), it is clear that potentially the 

generated large queries can also be executed efficiently. Since the performance of a join 

type SQL query is mostly dependent on the join order of tables in WHERE part [69], the 

right order in which the tables in a complicated self-join are joined must be found that is 

equivalent to the sequence of small queries. 

Let us explain the situation in detail on an example (Fig. 11). This example is a 

fragment of the MOLA transformation transforming a class model to OWL notation [70] 

(used as a benchmark in Section 4.4), namely, the foreach loophead is shown, which 
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generates an OWL object property for each UML association instance (for classes the 

corresponding OWL Classes are already built). It was shown in [67], that for cases such 

as in Fig. 11, the optimal order is to start from the loop variable (the element 

as:BinaryAssociation , all instances of which must be tested anyway), and to 

proceed along the paths leading away from the loop variable. In the example there are two 

such paths – one leading via the link targetEnd  to objEnd:Property  and further, 

and another one starting with the link sourceEnd . Even without seeing the metamodel, 

it is clear that in a valid class model this is an optimal order – a UML binary association 

has just one targetEnd  (i.e., just one row in the table asoc_inst , where the join 

condition is true), which in turn is followed by just one objEnd  (one row in 

class_inst) and so on. Fig. 11 illustrates this order by numeric tags. The generated 

query corresponding to this pattern is shown in Fig. 12. 

Certainly, there are other optimal orders – any of the paths could be traversed first, 

and the paths can be traversed intermittently. Similar easy-to-be-explained optimal join 

orders exist for more complicated patterns, where paths may have cross-links and where 

reference (fixed) elements exist (see more in [67]). 
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Fig. 11. Optimal pattern matching order 

Further, it was to be found, how close the MySQL query execution plans are to an 

optimum, and at what expenses such a plan is found. Fortunately, MySQL has the 

Explain  statement [71], which reveals some details of the execution plan. Fig. 13 

shows the join order of query shown in Fig. 12, exposed by the Explain  statement. 

Actually, two experiments are merged there – one with order tags in squares has been 



 

40 

performed on a small source model (29 rows in class_inst , 39 rows in 

asoc_inst ). 

Another one has been performed on a large source model (725 rows in 

class_inst , 975 rows in asoc_inst ), the join order (where different from the first 

one) is shown in circles. For the large model the join order is equivalent to the optimal 

one, only another starting point has been selected, and paths are traversed intermittently. 

For the small one the deviation is larger, but also not critical.  

However, if the number of elements and links in a pattern is increased, the query 

execution time also increases. The query (discussed above) having a pattern with 7 

elements and 6 links executes in 200ms on a model with 3000 class instances and 4000 

links, a query with 8 elements and 7 links in 600 ms on the same model, 9 elements and 8 

links in 3200ms, but 10 elements and 9 links in 43000ms that is a significant jump. There 

are only few papers on MySQL optimization [72], [73], and they do not explain the 

optimization of the specific self-join queries used in MOLA pattern matching. Another 

observation should be mentioned – the Explain  statement execution itself requires 

nearly as much time as the query execution, so we can assert that MySQL query 

optimization in case of large self-join queries is not optimal – it itself is too time 

consuming. 

Thus we have to rely on our black box experiments, which say that MySQL 

optimization is acceptable when there are limits on the pattern size (no more than 8 

elements), but the query execution time increases too much for larger patterns, to make 

sense in using this RDBMS for pattern matching. 

Thus the current version of MySQL can be used for MOLA runtime repository, 

but with restrictions on MOLA transformation patterns. The hope is for versions to come 

(the current version performs better than those tested earlier), but next versions could only 

raise the limit for pattern size – not remove this restriction completely. 

Due to the mentioned above problem other alternatives were sought. Possible 

alternatives are MSDE 2000 [74] – the free small version of MS SQL 2000 server, 

PostgreSQL [75] – another popular open source RDBMS, MSSQL Server 2005 Express 

[76] – the free small version of MS SQL 2005 server. 
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Fig. 12. Generated query example 

 

SELECT cli20000020780.class_inst_id cli20000020970.class_inst_id  , 
cli20000021040.class_inst_id  , cli20000021110.class_inst_id  , 
cli20000021180.class_inst_id  , cli20000021260.class_inst_id  , li20000021330.class_inst_id 

FROM class_inst cli20000020780 , class_inst cli20000020970 , class_inst cli20000021040 , 
class_inst cli20000021110 , class_inst cli20000021180 , class_inst cli20000021260 , 
class_inst cli20000021330 , asoc_inst asi20000021080 , asoc_inst asi20000021150 , 
asoc_inst asi20000021300 , asoc_inst asi20000021400 , asoc_inst asi20000021700 , 
asoc_inst asi20000021760 
WHERE cli20000020780.meta_class_id=2000001847 AND 
cli20000020780.meta_model_id=0000000000 AND cli20000020780.model_id=0 AND 
cli20000020970.meta_class_id=2000001790 AND 
cli20000020970.meta_model_id=0000000000 AND cli20000020970.model_id=0 AND 
cli20000021040.meta_class_id=2000001721 AND 
cli20000021040.meta_model_id=0000000000 AND cli20000021040.model_id=0 AND 
cli20000021110.meta_class_id=2000001723 AND 
cli20000021110.meta_model_id=0000000000 AND cli20000021110.model_id=0 AND 
cli20000021180.meta_class_id=2000001790 AND 
cli20000021180.meta_model_id=0000000000 AND cli20000021180.model_id=0 AND 
cli20000021260.meta_class_id=2000001721 AND 
cli20000021260.meta_model_id=0000000000 AND cli20000021260.model_id=0 AND 
cli20000021330.meta_class_id=2000001723 AND 
cli20000021330.meta_model_id=0000000000 AND cli20000021330.model_id=0 AND 
asi20000021080.meta_asoc_id=2000001835 AND 
asi20000021080.meta_model_id=0000000000 AND 
asi20000021080.src_class_inst_id=cli20000021040.class_inst_id AND 
asi20000021080.trg_class_inst_id=cli20000020970.class_inst_id AND 
asi20000021080.model_id=0 AND asi20000021150.meta_asoc_id=2000001725 AND 
asi20000021150.meta_model_id=0000000000 AND 
asi20000021150.src_class_inst_id=cli20000021040.class_inst_id AND 
asi20000021150.trg_class_inst_id=cli20000021110.class_inst_id AND 
asi20000021150.model_id=0 AND asi20000021300.meta_asoc_id=2000001835 AND 
asi20000021300.meta_model_id=0000000000 AND 
asi20000021300.src_class_inst_id=cli20000021260.class_inst_id AND 
asi20000021300.trg_class_inst_id=cli20000021180.class_inst_id AND 
asi20000021300.model_id=0 AND asi20000021400.meta_asoc_id=2000001725 AND 
asi20000021400.meta_model_id=0000000000 AND 
asi20000021400.src_class_inst_id=cli20000021260.class_inst_id AND 
asi20000021400.trg_class_inst_id=cli20000021330.class_inst_id AND 
asi20000021400.model_id=0 AND asi20000021700.meta_asoc_id=2000001858 AND 
asi20000021700.meta_model_id=0000000000 AND 
asi20000021700.src_class_inst_id=cli20000020780.class_inst_id AND 
asi20000021700.trg_class_inst_id=cli20000020970.class_inst_id AND 
asi20000021700.model_id=0 AND asi20000021760.meta_asoc_id=2000001852 AND 
asi20000021760.meta_model_id=0000000000 AND 
asi20000021760.src_class_inst_id=cli20000020780.class_inst_id AND 
asi20000021760.trg_class_inst_id=cli20000021180.class_inst_id AND 
asi20000021760.model_id=0 
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Fig. 13. MySQL query plan (table join order). 

Similar performance experiments on large queries have been performed with these 

engines too. Single pattern query execution times for these alternatives were significantly 

better (Microsoft products) or similar (PostgreSQL). The join order was nearly optimal. It 

can be concluded from available references [77] that both MS SQL and MSDE use 

instance data for query optimization in a more sophisticated way. However, experiments 

show that execution of a complete transformation is much slower than by using MySQL. 

MySQL was faster by an order of magnitude. It seems that MSDE 2000 and MSSQL 

Server 2005 Express engines have major problems with completing large sequences of 

SQL queries, because of built-in features such as workload governor [78] in MSDE 2000, 

which decreases the server performance. 

Thus, MySQL is a satisfactory implementation for MOLA runtime repository if 

the pattern size does not exceed 8-9 elements (actually, only the free pattern elements 

count – those which are class elements, but not references or parameters, in Fig. 13 all 

pattern elements are free). The existing experience of using MOLA tool on some nearly 

real life examples has confirmed this. The transformation execution times in these 

examples testify that apparently close-to-optimal join order was used by MySQL in most 

cases. Nearly all patterns in these examples were below the size limit.  In practice it is 

also possible to bypass the limit by decomposing a pattern into several smaller ones 

(actually, even without sacrificing the transformation readability). 

An alternative approach would be to enforce the optimal join order manually, 

since MySQL has such possibilities. Unfortunately, these features are vendor-specific 
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extensions of SQL. In addition, finding of this order during query generation is a 

significant part of implementing the pattern via small queries and therefore much more 

complicated. 

4.4 Benchmark Results 

The previous section demonstrated that usage of MySQL database server as model 

repository and pattern matching engine has proven to be sufficient. To estimate MOLA 

Tool performance the experiments have been done.  

A simple task and appropriate model transformation tool for comparison have 

been chosen. The choice – AGG [20] is a popular graph transformation language that uses 

pattern constructs similar to MOLA, only explicit NAC’s (negative application 

conditions) must be added. AGG rules have no explicit control structures, but in simple 

cases MOLA control structures can be adequately emulated by AGG rule layering. AGG 

has already been used for benchmark testing [79], thus allowing ensuring certain 

correctness of the experiment. The transformation was executed on both MOLA Tool and 

AGG for models of various size and complete execution times were measured. Both 

MOLA Tool and AGG were used with configurations recommended by developers. The 

example transforms simplified UML class diagram to simplified OWL diagram. 

Metamodels are shown in Fig. 14. 

The transformation creates an OWLClass instance for every Class  instance and 

OWLDataTypeProperty  for every Property  which is an owned attribute of the 

Class . This task is done using nested loops. The first foreach loop iterates through all 

Class  instances and the nested foreach loop iterates through appropriate Property  

instances. The third foreach loop creates OWLDataTypeProperty  for each 

BinaryAssociation  (Fig. 15). Though this transformation is very simple it is a 

typical representative of MDSD tasks where frequently a model has to be transformed to 

a semantically equivalent one in another notation. 
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Fig. 14. Metamodels of UML Class Diagram and OWL Diagram 

The transformation was executed on a hyper-threaded Intel Pentium4 3GHz, 1 GB 

RAM Windows XP workstation. No additional performance tuning was done to MySQL 

database server or operating system configuration. Identical models of various sizes were 

prepared for MOLA Tool and AGG. The first column of Table 1 contains model data size 

N – the number of class instances in the model. Second and third columns contain 

complete transformation time for MOLA and AGG measured in seconds.  
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Fig. 15. Transformation UML Class Diagram to OWL Diagram 

Both MOLA Tool and AGG showed sufficient performance on models with size 

below N=175. MOLA Tool execution time grows nearly linearly up to model size 

N=3500, but starts to grow faster above this value. Thus the current MOLA Tool 

implementation performs well in this range, but real examples could be also larger – there 

are ontologies containing more than 5000 OWL Classes. Real transformations are also 
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more complicated. AGG has problems similar to MOLA Tool, but both tools are usable 

for tasks they are designed for. 

The main relational database engine feature, which enables fast search, is table 

indexing [77]. The MOLA Tool uses table indexes in the most appropriate way; 

apparently this ensures the nearly linear time growth for queries. 

The reason for faster complete transformation time growth for large N lies in the 

fact that the model size grows while transformation is being executed.  

A proportional to N number of insert and update operations must be done in this 

MOLA program and each operation time grows due to the need of refreshing indexes (but 

indexes are crucial for fast pattern matching). A similar problem is the main reason for 

AGG slowdown, even to a larger degree, as it is shown in [79]. 

Table 1. Benchmark Results 

  
Transformation 

ExecutionTime (s) 
Model size 

(N) MOLA AGG 
42 1 4 
56 1 6 
70 2 9 
84 3 14 
175 5 62 
400 10 334 
1050 19 8280 
1750 36   
3500 65   
17500 1781   

For real MDSD tasks it is typical that a new model must be built of size 

proportional to the source model. Thus not only the pattern match time influences the 

performance, but still it seems to be the key factor. 

4.5 Summary 

Both simple and sufficiently efficient implementation of pattern matching via 

SQL queries has been built. Thus this is a viable solution at least for an experimental tool 

(what this version of MOLA tool is). Several model transformations supporting real 

MDSD style development (automated use of Hibernate persistence framework in Java – a 

plug-in for the RSA tool, conversion of UML activity diagrams to BPMN notation and 
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other) have been built and tested on examples of realistic size [80], [81]. In none of these 

examples the natural pattern size in MOLA programs exceeded 8 – the critical value up 

to which the given MOLA implementation is efficient. These experiments and benchmark 

tests described in the paper have shown that the implemented MOLA VM performs 

satisfactorily and MOLA is a suitable transformation language for typical MDSD tasks – 

transforming a UML model to another one closer to the system implementation. 

However, for an industrial usage of MOLA a special in-memory repository and a 

compiler/interpreter that implements the principles described in [67] could be required. 

The main reason could be the desire to get rid of any limits on pattern size; also the 

general performance for large models is expected to be better. Such a solution is 

discussed in the next Chapter. 

Certainly, these results obtained for MOLA implementation have value also for 

other transformation languages, where the pattern match semantics is similar. 
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CHAPTER 5 

Implementation of MOLA Using L3 Language 

The pattern matching algorithm which uses L3 language and local search plan 

generation is described in this chapter. The implementation of this algorithm for model 

transformation language MOLA is one of the main results of these thesis. The results 

have been published in [82] [53] and MOLA Tool has been presented in the Tool Session 

[83] of the European Conference on Model Driven Architecture – Foundations and 

Applications (ECMDA-FA 2008). 

The most critical part of the implementation of a pattern-based transformation 

language is the implementation of the pattern matching. It has been already shown [67] 

that an efficient MOLA pattern matching implementation is possible. In fact, some kind 

of local search plans are generated and executed by this approach. It is based on only few 

basic lookup operations needed to iterate over a model. They are: 

• getNext(Class Cl)  - returns the next instance of a class Cl  upon each call. 

There is also an initialization for it - initializeGetNext(Class Cl)  

• getNextByLink(Association as, Cl1 inst, Class Cl2)  - 

returns one by one instances of a class Cl2  that can be reached by links 

corresponding to association as  from a fixed instance inst . There is also an 

initialization for it, with similar parameters - 

initializeGetNextByLink(Association as, Cl1 inst, C lass 

Cl2)  

• checkLink(Cl1 inst1, Cl2 inst2, Association as)  - checks 

whether a link of required type is between instances 

• eval(Cl inst, Expr exp)  - evaluates a local constraint on attributes 

Thus, the target language of the MOLA compiler or the API of a repository that is 

used for implementation of the MOLA interpreter (Virtual Machine) must contain similar 

operations. This approach requires the implementation of the pattern matching algorithm 

using such low-level constructs. That is a sufficiently complicated task. 
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The Lx language family [16] (L0, L0`, L1, L2, L3) is an appropriate target for 

MOLA compiler. Each next language of Lx family has been built extending the previous 

(see Section 5.3).  L0 language as well as MOLA has such concepts as procedure, 

parameter, variable, sub-procedure call. These concepts can be mapped directly from 

MOLA to L0 language. These basic features along with basic lookup operations are 

included in the L0 language, but commands introduced in the following languages L0`-L3 

(imperative pattern matching, looping and branching commands) allow much easier 

implementation of the MOLA compiler than API of repositories. That is possible because 

these commands are at an abstraction layer much closer to MOLA concepts, such as 

foreach loop and rule, than lower level languages or API of metamodel based 

repositories. Thus L3 language provides all necessary features that allow us to build an 

efficient MOLA compiler. 

5.1 Architecture of MOLA Compiler 

An efficient compiler has been already built [16] for the Lx language family. 

Actually, an efficient implementation of the L0 language has been built and a compiler 

for each next language is built using the bootstrapping method [84]. It means that the 

previous language in the family is used to build the compiler for the next one (L0 for L0’ 

compiler, L0’ for L1 compiler and so on). 

Several metamodel-based in-memory repositories MIIREP [65], EMF [26] and 

JGraLab [66] have been chosen to store metamodel and its instances for the 

implementation of L0 language. These repositories have appropriate low-level API’s 

implemented as a C++ (MIIREP) or Java (EMF and JGraLab) function libraries. 

Therefore an intermediate result of the L0 compilation is a C++ or Java program. The 

final result of the L0 compilation is a dynamic link library (DLL file) or JAR file that can 

be executed over a repository instance which contains the appropriate metamodel and 

model.  

The bootstrapping method used to build compilers for the rest of the Lx family 

languages requires that programs written in L0’ to L3 must be stored in the repository that 

is used by L0 language. Thus the metamodel of these languages is required. All languages 

of the Lx family are described by the same metamodel because each next language is 
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derived from the previous one by adding some new features. Therefore the metamodel of 

the last language in the chain (L3) describes also all the previous languages.  

The first step in the compilation of a L3 program is to obtain a model - an instance 

of the L3 metamodel. It is a representation of the L3 program in the metamodel-based 

repository. This step is a separate step in the whole process of the compilation which 

requires parsing of the text file and building a model. It is implemented using a traditional 

programming language (C++). Obtained lexemes [85] are stored in the repository as a 

very simple lexeme model [86]. Next, the transformation language L0 is used to obtain 

the L3 program model from the lexeme model. 

When a program model has been built the actual compilation is being performed. 

The L3 (also L2, L1, L0’) compiler actually is a model transformation. In this case, an in-

place transformation is used – the L3 program model is overwritten by a semantically 

equivalent L2 program model (also L2 by L1, etc.). The final result of the chain of 

compilation steps is an L0 program model which is semantically equivalent to the initial 

L3 program given as the input file. The chain of compilation steps (from L3 to L0) can be 

treated as one step (the corresponding transformations are invoked one after another). 

The last step in the compilation process is the code generation (a model to text 

transformation). An L0 language text file is generated. Also this step is done using the L0 

language extended with native functions for file handling written in C++. Actually, only 

one write to file function is needed. 

Since the whole L3 compilation process has been divided into three separate steps, 

there is a possibility to start with any step if the appropriate model has been prepared. 

This fact is used by MOLA to L3 compiler – MOLA program is being compiled directly 

to an L3 model. This allows decreasing significantly the complexity of the 

implementation of MOLA to L3 compiler. Actually, it allows using transformation 

language L3 to build MOLA to L3 compiler. 

The first MOLA Transformation Definition Environment (MOLA Editor) [87] 

was built on the basis of Generic Modelling Tool [46] – a domain specific modelling 

framework, developed by UL IMCS together with the Exigen Company. The models 

(MOLA program and metamodel) were stored in a compatible format to the repository 

used by the L0 language. Thus the input for the MOLA to L3 compiler, a model of a 

MOLA transformation, already could be obtained. In fact, no other natural representation 

of a MOLA program than a model can be obtained, because MOLA is a graphical 
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transformation language. The most appropriate way to implement MOLA compiler to any 

suitable language is using model transformations. Thus, the first MOLA compiler was 

implemented using L3 language. 

Since the MOLA Editor required more sophisticated features than the Generic 

Modelling Tool domain specific modelling framework could offer, the next MOLA 

Editor- MOLA2 Tool, has been built. MOLA2 Tool uses the METAclipse framework [8], 

which is based on Eclipse platform [88] and model transformations. It should be noted 

that METAclipse uses the same repository as the L0 implementation. Therefore it was 

possible to develop transformations for MOLA2 Tool using MOLA itself and the first 

MOLA compiler. The second version of MOLA to L3 compiler has been built for 

MOLA2 Tool, using L3 language too. 

Although there are two implementations of MOLA to L3 compiler, there are no 

significant differences in the architecture and general ideas of implementations of both 

compilers. The main difference between these two implementations is the MOLA 

metamodel. The MOLA metamodel for MOLA2 Tool was improved by eliminating 

metamodel restrictions enforced by Generic Modelling Tool and by making it more 

suitable for compilation. The experience and a significant part of the code from the first 

version of MOLA to L3 compiler is reused in the second version. This work is based on 

the second version of MOLA to L3 compiler. 

Compilation of a MOLA transformation is divided into four steps. Each of them is 

performed by a separate component – compiler. These components are: 

• MOLA to L3 compiler  

• L3 to L0 compiler 

• L0 to C++ or Java compiler 

• C++ or Java to executable file compiler 

The general architecture of MOLA compiler is shown in Fig. 16. There may be a 

question – why such a large number of compilers are used? Why do not use direct 

compilation from MOLA to repository API? The answer is in the low complexity and 

reusability of the each step. Each compiler transforms a higher-level language to a lower-

level language. It is much easier to build compiler to a language that is at a closer 

abstraction level to the source language. Especially it is so if the general concepts of both 
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languages are similar. This is the reason why L3 (and not L0) is used as the target 

language for MOLA. 

 

Fig. 16. The general architecture of MOLA compiler 

Another issue is the reusability. The compiler of L3 language had been already 

built and this implementation was efficient. The efficiency of the generated code does not 

suffer if MOLA compiler is built on top of the compiler chain. It has allowed 

implementing MOLA on other EMOF compatible repositories, EMF [26] or JGraLab 

[66], and then only L0 compiler must be rewritten. Even less, only the actual code 

generator in L0 compiler must be rewritten – lexical and syntax analyzers can be reused. 

The last compiler (L0 to code) is dependent of the API of the model repository. 

 The only disadvantage of a long compiler chain is a longer compilation time. To 

deal with this issue a program has to be structured. The most common approach is to use 

code units. Each unit is compiled to a separate object. Next, a linker is used to obtain a 

single executable. A similar idea is used also in the MOLA2 Tool. Packages are used to 

structure a MOLA program. A package may be defined as a MOLA unit. That means that 

all MOLA procedures that are contained by the unit are compiled to a separate L0 unit. 

This allows using L0 compiler as a linker that assembles all L0 units into one C++ or Java 

project. Thus model transformations (MOLA and L3-L0’compilers) can work with 

smaller models that helps to improve the overall performance of the compilation process. 
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5.2 Model-Driven Compiling 

The usage of models and transformation languages in the process of compilation 

is not new. The ATL model transformation language [14] has already been used to 

compile CPL to SPL [89] and FIACRE to LOTOS [90]. The ATL language itself is also 

compiled using a domain specific only for this purpose created language - ACG (ATL 

Code Generation language) [91]. All these are textual languages and the model-to-model 

transformation is used for actual compilation similarly to the way it was used in the 

example of the L3 to L0 compilation [86]. A similar idea is used also in the SmartQVT 

[13] implementation. The QVT code is parsed to obtain the model representation of a 

QVT transformation and the actual compilation to the Java file is performed using this 

model. 

A similar pattern of the compilation is used in all examples. Three basic steps are 

performed: 

• parse an input program and obtain the model of it 

• compile the model of the input program to a model of an output program 

• generate the code of the output program from the model 

This approach may be called model-driven compiling – models are used as core 

elements of the compilation process (see Fig. 17). 

 

Fig. 17. Model-driven compiling 

These steps are similar to phases of a compilation in the traditional compilation 

technique [85]. The lexical and syntax analysis are performed by the parser. The semantic 

analysis, intermediate code generation (target program model) and optimization are 

performed by compiler (model transformation). The code generation is done in the last 
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step. A model of a source program is stored according to the language metamodel. 

Actually, the parse trees used in traditional compilation technique can be treated as a sort 

of models. Thus, the similarity is obvious. 

All three steps of the model-driven compiling require appropriate metamodels 

already built for both input and output languages and a transformation written using a 

model transformation language suitable for the compilation tasks. Actually, text-to-model 

(T2M), model-to-model (M2M) and model-to-text (M2T) languages are needed. An 

exporter or importer written in a general purpose programming language can be used 

instead of the T2M and M2T transformations. Certainly, the choice of the programming 

language depends on the repository used to store models. 

The model-driven compiling is even more appropriate for graphical languages 

such as MOLA. Since programs of graphical languages are stored as models, the first step 

can be omitted – the model-to-model transformation that implements a compiler can be 

applied directly. 

The main gains of using model-driven compiling are: 

• The higher level of abstraction that is provided by model transformation 

languages allows reducing the complexity of compiler implementation.  

• This is the most appropriate way to compile graphical languages, because 

they are mostly implemented using some metamodel [26] or graph-based 

[66] repository. Actually, programs (diagrams) of such languages are 

models and the usage of a model transformation language is the most 

natural approach. 

• If the concrete syntax of the input language is based on some general 

coding language, like XML [92], then model transformations can be 

applied to obtain a model of the program from its coding. In this case, a 

standard parser can be used to obtain the model of the coding. Next, the 

model transformation can be used to obtain the model conforming to the 

input language metamodel. A similar approach is applicable also for the 

output language. 

• Since attribute grammars have been used to specify the semantics of 

programming languages [93], a precise definition of the model 
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transformation between source language and target languages can be used 

to define the semantics of the source language even in more readable way. 

The first experience using model-driven compiling was quite promising. The 

MOLA to L3 and L3 to L0 [86] compilers have been developed. The implementation of 

both compilers has shown that using transformation language for compilation tasks 

reduces the complexity of the implementation. However, the best practice of model-

driven compiling has yet to be developed and a comparison to the traditional compilation 

techniques [85] must be done. 

5.3 L3 from Lx Language Family 

The Lx language family as any other model transformation language uses some 

sort of metamodelling language. It is quite close to the OMG EMOF specifications. The 

main difference is that there are no packages in this metamodelling language. The 

metamodel of this language is shown in Fig. 18. 

 

Fig. 18. The metamodel of Lx metamodelling language 

Classes and binary associations are core elements of this language. Classes can 

have attributes which can be primitive or enumeration-typed. There are four pre-defined 

primitive types – String, Integer, Boolean and Real. There are no possibilities to define 

new ones. 

The basic commands (constructs for a textual definition of a metamodel) of the Lx 

family metamodelling language are the following: 
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• class <className>; - defines class with a given name. 

• attr  <className>.<attrName>:<ElementaryTypeName>; - defines attribute with a 

given name and type.  

• assoc <className>. [ {ordered} ]<cardinality> 

<roleName>/<roleName><cardinality> [ {ordered} ] . <className>; - defines 

association with corresponding properties. 

• compos <compositeClassName>.  [ {ordered}  ] <card><roleName> / 

<roleName><card> [ {ordered}  ] .<partClassName>;  - defines compositions with 

corresponding properties.  

• rel <subClassName>.subClassOf.<superClassName>; - defines a generalization 

relationship between given classes. 

• enum <enumName>:{  <enumLiteral1>,< enumLiteral2>, … };  - defines enumeration 

with given elements. 

An elementary unit of L0 transformation is a command (an imperative statement). 

L0 transformation contains several parts: 

• global variable definition part 

• native subprogram (function or procedure) declaration part (used C++ or Java library 

function headers) 

• L0 subprogram definition part. Exactly one subprogram in this part is the main. The 

main subprogram defines the entry point of the transformation. An L0 subprogram 

definition also consists of several parts: 

o Subprogram header 

� procedure <procName>(<paramList>); Subprogram header, the (formal) 

parameter list can be empty. Parameter list consists of formal parameter 

definitions separated by “,”. A parameter definition consists of its name, 

the parameter type (the type can be an elementary type or a class from the 

metamodel), and the passing method (parameters can be passed by 

reference or by value). If the parameter is passed by reference, its type 

name is preceded by the &  character. 

� function funcName>(<paramList>): <returnType>; - return type name can 

be an elementary type name or class name. 

o Local variable definitions  
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� pointer <pointerName> : <className>; - defines a pointer to objects of 

class <className>. 

� var <varName> : <ElementaryTypeName>; - defines a variable of 

elementary type. <ElementaryTypeName> is one of elementary types.  

o Keyword begin - starts subprogram body definition 

o Subprogram body definition 

o Keyword end - ends subprogram body definition. 

The subprogram body definition may contain the following commands: 

1. return;  - returns execution control to caller procedure or function.  

2. call <subProgName>(<actPrmList>); – calls a subprogram. Actual parameters list 

can be empty. Actual parameter list consists of binary expressions separated by “,”. 

3. label <labelName>; - defines a label with the given name. 

4. goto <labelName>; - unconditionally transfers control to label <labelName>. The 

label <labelName> should be located in the current subprogram. 

5. first  <pointer> : <className> else <label>; - positions <pointer> to an arbitrary 

object of class <className>. Typically, this command in combination with the next 

command is used to traverse all objects of the given class (including subclass 

objects). If the class does not have objects, <pointer> becomes null , and execution 

control is transferred to the <label>. The class in this command must be the same as 

(or a subclass of) the class used in pointer definition. If it is a subclass, then the 

pointer value set is narrowed (for the subsequent executions of next). 

6. first  <pointer1> : <className> from  <pointer2> by <roleName> else <label>; - 

similar to the previous command. The difference is that it positions <pointer1> to an 

arbitrary class object, which is reachable from <pointer2> by the link <roleName>. 

Similarly, this command in combination with the next command is used to traverse 

all objects linked to an object by the given link type. 

7. next <pointer> else <label>; - gets the next object, which satisfies conditions, 

formulated during the execution of the corresponding first  and which has not been 

visited (iterated) with this variable yet. If there is no such object, the <pointer> 

becomes null , and execution control is transferred to <label>. 

8. addObj <pointer>:<className>; - creates a new object of the class <className>. 
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9. addLink  <pointer1>.<roleName>.<pointer2>; - creates a new link (of type specified 

by <roleName>) between the objects pointed to by the <pointer1> and <pointer2> , 

respectively. 

10. deleteObj <pointer>; - deletes the object, which is pointed to by <pointer>. 

11. deleteLink <pointer1>.<roleName>.<pointer2>; - deletes link, whose type is 

specified by <roleName>, between objects pointed to by <pointer1> and <pointer2>, 

respectively. 

12. setPointer <pointer1>=<pointer2>; - sets <pointer1> to the object, which is pointed 

to by <pointer2>. In place of <pointer2> the null constant can be used.  

13. setVar <variable> = <binExpr>; - sets <variable> to <binExpr> value. <binExpr> is 

a binary expression consisting of the following elements: elementary variables, 

subprogram parameters (of elementary types), literals, object attributes and 

standard operators (+,-,*,/,&&,||,! ). 

14. setAttr  <pointer>.<attrName>=<binExpr>; - sets the value of attribute <attrName> 

(of the object,  pointed to by <pointer>) to the <binExpr> value. 

15. type <pointer> == <className> else <label>; - if the type of the pointed object is 

identical to the class <className>, then control is transferred to the next command, 

else control is transferred to <label>. In place of the equality symbol == an inequality 

symbol != can be used. This command is used for determining the exact class of an 

object. 

16. var <variable>==<binExpr> else <label>; - if the condition is true , then control is 

transferred to the next command, else control is transferred to <label>. In place of 

equality symbol other (<, <=, >, >=, !=) relational operators compatible with 

argument types can be used. 

17. attr  <pointer>.<attrName> == <binExpr> else <label>; - if the condition is true then 

control is transferred to the next command, else control is transferred to <label>. 

Other relational operators (<, <=, >, >=, !=) can be used too. 

18. link  <pointer1>.<roleName>.<pointer2> else <label>; - checks whether there is a 

link (with the type specified by <roleName>) between the objects pointed to by 

<pointer1> and <pointer2>, respectively. 

19. pointer <pointer1>==<pointer2> else <label>; - checks whether the objects pointed 

to by <pointer1> and <pointer2> are the same. Instead of <pointer2> null constant 

can be used. The inequality symbol (!=) can be used too. 
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It is easy to see that the language L0 contains only the very basic facilities for 

defining transformations [94]. 

Language L0’ - model transformation language L0’ is based on the language L0. 

The new feature of L0’ is the possibility to make long arithmetic expressions (in L0, only 

unary and binary expressions were allowed). 

Language L1 - is supplemented with an imperative pattern matching feature 

(suchthat block), so that it is possible to search for instance that match some condition. 

The suchthat block may be used with first and next commands. The suchthat block can 

contain conditions on values of variables or attributes, links between instances and other. 

In fact, all L1 commands can be used to specify pattern condition, including the nested 

first  commands. 

The textual syntax for the pattern (such-that block) is as follows: 

( first |  next )  <pointerName1> : <className> [ from  
<pointerName2> by  <roleName> ] [  
suchthat  
begin  
<L1Commands> 
end; ] 
The condition holds if it is possible to successfully [86] reach the end of the block 

(i.e., successfully execute its last command). If the condition fails then the next instance is 

examined. The conditional commands in L0 (commands that have an else branch) may be 

used without the else branch in the suchthat block. If in such a command the undefined 

else branch is to be executed then the condition defined by the pattern fails. 

Language L2 - has the possibility to make loops. A special command exists in L2 

with which it is possible either to visit all instances of the specified class or just those 

instances of the class that match the given pattern. The textual syntax for the loop is as 

follows: 

foreach  <pointerName1> :  <className> [ from  <pointerName2> by  <roleName> 
] [ suchthat  

begin 
 <L2Commands> 
end ] 
do 
begin 
 <L2Commands> 
end; 

Language L3 - has the branching command – a standard if-then-else construct can 

be used. The textual syntax of the branching command is as follows: 

if 
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begin 
<L3Commands> 

end 
then 

begin 
<L3Commands> 

end 
[ else  

begin 
<L3Commands> 

end ] ; 

The L3 metamodel (the Lx language family metamodel) is shown in Fig. 19. 

 

Fig. 19. The metamodel of L3 language 

It has already been shown [67] that MOLA language can be implemented 

efficiently using a set of low-level operations for patterns. There is a direct mapping from 

the required operations to the commands of Lx model transformation family. 
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• initializeGetNext(Class Cl) and getNext(Class Cl)  

operations can be mapped to first  c:Cl and next c commands. These 

commands return all instances of a given class. In the beginning the first  

c:Cl command must be called to initialize the iteration through required 

instances and afterwards the next c must be called to iterate through 

• initializeGetNextByLink(Association as, Cl1 inst, 

Class Cl2)  and getNextByLink(Association as, Cl1 

inst, Class Cl2)  operations can be mapped to the first  c:Cl2 from  

inst by as and next c commands. These commands return all instances of a 

given meta-class navigable by links of the given type from a fixed 

instance. The iteration must be done similarly as in the previous case 

In fact, the first ... suchthat command can be used instead of pair of first  and 

next. Actually the first ... suchthat is compiled to these commands. Thus, MOLA 

compiler can use a closer construct to pattern as a target.  

• checkLink(Cl1 inst1, Cl2 inst2, Association as)  

operation can be mapped to the link  inst1.as_rolename.inst2 command. 

The semantics of this command is the same as the semantics of this 

operation – check the existence of a link of the given type between two 

fixed instances. 

• eval(Cl inst, Expr exp)  operation is an expression interpreter 

and the MOLA realization to L3 must implement a generator of sequences 

of L3 commands that interprets the given expression. The core elements of 

such expressions are attribute or variable value checks. These operations 

can be mapped to attr  inst.<attrname><relation><expression> and var 

<varname><relation><expression> commands accordingly. Arithmetic 

expressions can be mapped to expressions introduced by the L0’ language. 

Constraints that are complex (Boolean) expressions where conjunction, 

disjunction and negation are used can be mapped to a sequence of 

commands which interprets the given expression. 
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5.4 Mapping from MOLA to L3 

This section contains a detailed description of the mapping from MOLA to L3. 

That includes a mapping of metamodelling language constructs and a mapping of MOLA 

procedure and its elements to constructs of the L3 language. 

5.4.1 Mapping of Metamodelling Languages 

Both MOLA metamodelling language and the Lx family metamodelling language 

are based on EMOF. So the mapping is straightforward. For describing this mapping we 

will use the meta-class names from MOLA and Lx family metamodelling language 

metamodels shown in Fig. 3 and Fig. 18. The MOLA related meta-class names are 

prefixed by the Kernel prefix, but the Lx related meta-class names are prefixed by the Lx 

prefix. 

• Each Kernel::Class instance is transformed to Lx::Class with the same 

name, but since there are no packages in Lx, the Lx::Class name is 

prefixed by all parent package names. 

• Both languages have pre-defined primitive types. All primitive types that 

are in MOLA - String, Integer, Boolean – are also in Lx.  

• Each Kernel::Enumeration instance is transformed to Lx::Enumeration 

instance and each Kernel::EnumerationLiteral instance is transformed to 

Lx::EnumerationLiteral instance owned by the appropriate enumeration. 

• Each Kernel::Generalization instance is transformed to Lx::Generalization 

instance. Of course, general and specific links are set to the appropriate 

classes. 

• Each Kernel::Association instance is transformed to Lx::Association and 

appropriate association ends that are represented as Kernel::Property 

instances linked by memberEnd link to the association are transformed to 

Lx::AssociationEnd instances. They are linked to the appropriate class 

instances. Multiplicity, ordering and composition information of 

association ends are also transformed directly to Lx. 
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• Each Kernel::Property instance that is an attribute is transformed to an 

Lx::Attribute instance. Since MOLA allows only primitive or 

enumeration-typed attributes the correspondence is direct.  

An example of the transformation is given in Fig. 20. 

 

class Kernel::Classifier; 

class Kernel::Class; 

class Kernel::Property; 

enum VisibilityKind : {public,private,package}; 

      compos Kernel::Class.[0..1]class/ownedAttribute[*]. Kernel::Property; 

attr  Kernel::Classifier.isAbstract:Boolean; 

attr  Kernel::Property.isDerived:Boolean; 

attr  Kernel::Property.isReadOnly:Boolean; 

attr  Kernel::Property.AggregationKind:AggregationKind; 

attr  Kernel::Property.VisibilityKind:VisibilityKind; 

rel Kernel::Class.subClassOf.Kernel::Classifier;  

Fig. 20. An example of MOLA and Lx metamodelling languages. 

5.4.2 Mapping of the Procedure Headers 

MOLA procedures form the executable part of a MOLA transformation. The L3 

language also has procedures. Both MOLA and L3 procedures may have parameters that 

may be in (passed by value) or in-out (passed by reference). Both languages may have 

variables declared. In L3 the class-typed variables and parameters are called pointers and 

have a different syntax, so compiler must distinguish class-typed variables from 

enumeration and primitive-typed variables. Each non-reference class element that is used 

in rules in a MOLA procedure is transformed to a pointer declaration. Actually, the 

transformation of procedure header is straightforward and does not need a detailed 

description. An example of the transformation of a MOLA procedure header is shown in 
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Fig. 21 (the L3 code in all examples is used to better illustrate the result of compilation. 

Actually, the compiler produces instances of the model of an L3 program) 

 

 

 

main procedure 

ExampleProcedure ( 

Param:String, 

Param1 :& Interactions::Lifeline 

); 

 

 

var Var : Enumeration1;  

pointer 

Var1 : Interations::Message;  

pointer  

ClElem: Interactions::Message; 

 

Fig. 21. An Example of MOLA Procedure header transformation to L3 

5.4.3 Mapping of the Execution Control Flows 

The basic statements of MOLA are rule and foreach loop. There are also other 

MOLA statements - text-statement, call-statement, etc. Control flows are used to 

determine the order of execution of MOLA statements within one MOLA procedure. 

There is exactly one start symbol in a MOLA procedure. It defines the entry point 

of the MOLA procedure. Other statements may pass the execution control to another 

statement or terminate the execution of the procedure. End symbols are used to terminate 

the execution of the procedure. They define the exit points of the MOLA procedure. The 
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execution of the procedure may be terminated also by a text-statement or a rule, if the 

corresponding control flow is not present. Actually, a text-statement and a rule are used as 

traditional branching constructs (they may have two outgoing control flows, one of them 

labelled ELSE). A foreach loop contains nested MOLA statements (loop body) that are 

executed in each iteration. It has a special statement - loophead (rule-based loophead), 

which defines the entry point to the loop-body. There may be any other MOLA statement 

in the loop (except start-statement) – nested loops are also allowed. A statement that has 

no outgoing control flow terminates the current iteration of the loop. A branching 

statement also may terminate the current iteration of the loop, if one of outgoing control 

flows is not present. Other statements (call-statement, etc.) just pass the execution control 

to the next statement. Control flows in MOLA procedure may connect statements in an 

almost arbitrary way, there are only few restrictions. Incoming control flows are not 

allowed to the start symbol and loophead. Outgoing control flows are not allowed from 

end symbol. Also it is not allowed to jump into a loop from an outside statement (it is 

allowed to jump out). 

Control flows and MOLA statements form a directed graph, where some nodes 

(loops) may contain a nested graph. This graph is the control flow graph (CFG) of a 

MOLA procedure. The control flow graph is a data structure used by traditional compilers 

for analysis and optimization of a program execution [85]. 

The most natural way to code a control flow graph in a textual language is to use a 

labelled block of code for every node and a jump command for every edge. Thus each 

node of the MOLA control flow graph will compile to a block of L3 code. The block of 

code starts with a label command that unambiguously identifies the block. The execution 

control is passed to another code block using a goto command. If the execution of a 

MOLA procedure must be terminated, then a return command is used. 

According to the different types of statements described above we can distinguish 

five types of nodes in the control flow graph of a MOLA procedure and define the 

mapping to L3 language for these types: 

• Entry node (start symbol) is a unique and mandatory node. Here we do a little 

optimization – no L3 code block is created for start-statement. The outgoing 

control flow determines the first MOLA statement that in turn determines the first 

code block of the procedure. 
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• Exit node (end symbol) is compiled to the following code block (in what follows, 

a simple template language is used – L3 keywords are bolded, other parts of code 

are shown in angular braces containing an intuitive description ): 

label <label name> ;  
return; 

• Simple node (e.g. call statement) haven’t an outgoing ELSE control flow. It is 

compiled to a simple code block – a sequence of commands depending on the 

actual type of MOLA statement and the goto command to the label command of 

the code block that is created from the MOLA statement connected by the 

outgoing control flow. 

label <label name> ;  
<sequence of commands> ;  
goto <next label name> ;  

• Branching node (e.g. rule) may have two outgoing control flows, where one of 

them may be an ELSE control flow. It is compiled to an if-then-else command. 

The if-block contains the condition, then-block contains the action part of the 

MOLA rule or text-statement and else-block contains a goto command to the label 

command of the code block that is created from the MOLA statement connected 

by the outgoing ELSE control flow. The last command in the main code block is 

the goto command to the label command of the code block that is created from the 

MOLA statement connected by the other (non-ELSE) outgoing control flow. 

label <label name> ;  
if  
begin 
<condition commands> ;  
end 
then  
begin 
<action commands> ;  
end 
else 
begin 
goto <next else label name> ; 
end; 
goto <next label name> ;  

• Loop node (e.g. foreach loop) contains a nested control flow graph. Since a loop 

and its loophead cannot be used separately, a common L3 code block is created 

for both nodes. A loop is compiled to a foreach command. The suchthat block 

contains the condition, the do block contains the action part of the loophead. The 

do block contains also a goto command to the label command of the code block 
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that is created from the MOLA statement connected by the outgoing from the 

loophead control flow. The last command in the do block is a label command. 

This label is used to receive back the execution control from the code blocks that 

terminate an iteration of the loop. Thus a MOLA statement which terminates the 

execution of the current iteration of the loop passes the execution control to this 

label command instead of terminating the execution of the whole procedure. In 

fact, the execution control is passed away from the do block of a foreach 

command, but it is received back just at the end of an iteration. Thus, the code 

blocks that are created from MOLA statements within the loop body are included 

in the corresponding L3 loop body indirectly - using goto and label commands. 

The last command in the main code block is a goto command to the label 

command of the code block that is created from the MOLA statement connected 

by the outgoing control flow of the loop. 

label <label name> ;  
foreach < loop variable name > suchthat 
begin 
<loophead condition commands> ; 
end 
do 
begin 
label < loophead label name >;  
<loophead action commands >; 
goto <loophead next label name> ; 
label <loop iteration end label name> ;  
end 
goto <next label name> ; 
 

The complete code of the procedure is assembled using code blocks obtained in 

the way just described. The first code block is determined by the start-statement. All other 

code blocks may be added to the procedure in an arbitrary order, because the order of 

execution is determined only by label and goto commands – not by the order in which 

command blocks are added to the procedure. 

The result will be likely a sort of spaghetti code [95], but this causes no danger 

because the L3 code is just an intermediate code which is compiled further. This code is 

not read by a transformation developer. The wide usage of the goto commands does not 

cause any loss in the overall performance. 
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5.4.4 Mapping of MOLA Statements 

The control structure aspect of the mapping of MOLA statements to L3 

commands has already been described in the previous section. This section contains a 

detailed description of the mapping for each MOLA statement including data processing 

and pattern matching aspects. 

The mapping for start and end statements has already been described. The start-

statement is used to determine the first MOLA statement and end-statement is 

transformed to the return command. 

The call statement is transformed to the call command. Since the mapping from a 

MOLA procedure to L3 procedure is one-to-one, the called L3 procedure is the same that 

is mapped from the MOLA procedure called by the MOLA call-statement. The L3 

language allows only binary expressions to be used as actual parameters of the call 

command. MOLA allows arbitrary expressions (of appropriate type) to be used as actual 

parameters (the same problem is for functions in an expression). Our solution is to use 

temporary variables or pointers (depending on the actual type of a parameter) and setVar 

or setPointer commands to calculate the values of expressions. These commands must be 

executed before the call command. If the actual parameter is a MOLA variable, parameter 

or class element identifier, then a temporary variable is not used. An example of the 

compilation is shown in Fig. 22. 

 

var temp_var1 : String;  
var temp_var2 : Integer;  
begin 
… 
label id_lab1 ;  
setVar temp_var1 =” constant ”; 
setVar 
temp_var2= 564+ c.intAttr : Integer; 
call test ( a,temp_var1,temp_var2 ); 
goto id_labx ;  
… 

Fig. 22. Compilation of call statement 

As it was described before, the text statement is transformed to the if-then-else 

command. MOLA text-statement has two main parts – a condition (constraint) which is 

expressed using OCL-style expression and a list of assignments. The condition holds if 

the expression evaluates to true. The condition is compiled to the if block of the if-then-

else command. Assignments are compiled to the then block of the if-then-else command. 
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Assignments are used in the text statement to assign values to elementary 

variables and pointers. The L3 commands that are used for this task are setVar and 

setPointer. In MOLA the value that is being assigned is expressed using a simple 

expression of an appropriate type. A simple expression of Integer type may contain 

Integer-typed variable, parameter or attribute specifications, Integer constants, pre-

defined functions (size, indexOf, toInteger) and arithmetic operations (addition, 

subtraction, multiplication). A simple expression of String type may contain String-typed 

variable, parameter or attribute specifications, String constants, pre-defined functions 

(toLower, toUpper, substring, and toString) and a concatenation operation. A simple 

expression of Boolean type may contain Boolean-typed variable, parameter or attribute 

specifications, Boolean constants (true and false) or pre-defined function (isTypeOf, 

isKindOf, toBoolean). A simple expression of enumeration type may contain 

enumeration-typed variable, parameter or attribute specification, enumeration literals or a 

pre-defined function toEnum. A simple expression of class type may contain a class-

typed variable or parameter specification (pointer), null constant or typecast. 

In L3 similar expressions are allowed, but there are few differences. They are: 

there is no direct typecast of a pointer, actual parameters in a function call may be only a 

binary expression of an appropriate type. The list of pre-defined functions in L3 also does 

not match all the pre-defined functions of MOLA language. The solutions of these 

problems are rather simple. In addition, some kinds of expressions in L3 allow more 

features than in MOLA, but these features are not relevant for MOLA compiler. 

Table 2. Correspondence of elements used in expressions in MOLA and L3 

MOLA L3 

String, Integer, Boolean, enumeration-
typed constants, NULL constant 

+ 

elementary variables, pointers + 

attribute specification + 

+,-,*,concatenation + 

direct typecast (class-typed) 
temporary variable and extra 
setPointer command used 

function call 
temporary variables and extra 

setVar commands for complex 
parameters used 
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MOLA L3 

pre-defined functions 
extended library of native 

functions used 

toEnum, toInteger, toString, toBoolean + 

indexOf, toLower, toUpper extended library used 

size, substring + 

isTypeOf, isKindOf 
temporary variable and type 

command used 
The complete table of correspondence is shown in Table 2. The left column 

describes features used in MOLA expressions and the right column shows the 

correspondence in L3. The plus sign means that the mapping is direct. If there is no direct 

mapping the basic principles of a solution are shown. It may be the usage of a temporary 

variable (typecast and function call) or the usage of an extended library of native 

functions (indexOf, toLower, toUpper functions). 

Though L3 expressions allow Boolean operations, they cannot be used with 

relational operators (<, >, etc.). Relational operators may be used only in var and pointer 

commands. That makes the compilation of Boolean expressions used in MOLA more 

difficult. 

In MOLA the simplest condition is a simple expression of the Boolean type (no 

relational operators, no Boolean operations). Then it is compiled using a temporary 

variable and a var command in the following way: 

Condition: 

<simple boolean expression> 

if  
begin 
[<extra commands>] 
setVar  temp_var=<simple boolean 
expression>; 
var  temp_var==true; 
end 
… 

The extra commands may be needed when the extra calculations are needed, e.g. 

to compute argument values for Boolean-typed function call. 

Usually a condition contains also a relation (>, <, >=, <=, =, <> operators can be 

used). Since the left and the right operands may be arbitrary expressions of the same type, 

the value of each expression is computed and stored in a temporary variable. Then these 

variables are compared using a var or pointer command depending on the type of 

expressions. 



 

71 

Condition: 

<expression1><relation> 

<expression2> 

 

i f  
begin 
[ <extra commands >]  
setVar/setPointer temp_var1=<expression1> ; 
[ <extra commands >]  
setVar/setPointer temp_var2=<expression2> ; 
var/pointer temp_var1 <relation >temp_var2 ;  
end 
... 
 

A condition in MOLA may contain also Boolean operations - conjunction (and), 

disjunction (or) and negation (not) – together with relational operators. The L3 has no 

such features, but it is shown [16] that it is possible to construct L3 code that implements 

the Boolean operations. The algorithm implemented in MOLA to L3 compiler uses the 

same principles. 

An example of the compilation of a MOLA text statement is shown in Fig. 23. 

 

 

if  begin  
  setVar  _mvar_6=false; 
  setVar  _mvar_9=s; 
  setVar  _mvar_10="Star"; 
  var  _mvar_9==_mvar_10 else  _mlabel_8; 
  setVar  _mvar_6= true ; 
  label  _mlabel_8; 
  setVar  _mvar_7= false ; 
  setVar  _mvar_12=par; 
  setVar  _mvar_13=0; 
  var  _mvar_12 >_mvar_13 else  _mlabel_11; 
  setVar  _mvar_7= true ; 
  label  _mlabel_11; 
  setVar  _mvar_4= false ; 
  var  _mvar_6== true  else  _mlabel_5; 
  var  _mvar_7== true  else  _mlabel_5; 
  setVar  _mvar_4= true ; 
  label  _mlabel_5; 
  var  _mvar_4== true ; 
end  then  begin  
  setVar  _mvar_14= c.name: String+"Star"; 
  setVar  s= toUpper(_mvar_14); 
  setVar  par= Length(s)+1; 
end  else  begin  
  return ; 
end ; 

 

Fig. 23. Compilation of text statement. 
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Another and the most important decision statement in MOLA is a rule. It is also 

compiled to the if-then-else command. The condition of the rule is expressed using a 

pattern. The implementation of pattern matching typically is the most demanding 

component to implement and also the key factor determining the implementation 

efficiency. 

The most obvious way to compile a MOLA pattern to L3 commands is to start 

from one (chosen by some algorithm) class element and traverse the pattern graph. The 

result of such compilation is a first command created for the initial class element and 

nested first commands for other class elements. It is obvious that the same pattern can be 

matched in different ways using the basic L3 commands. Finding the most efficient way 

(the optimal search plan) is the main task for pattern matching. The pattern matching 

implementation in details is discussed in next sections. 

An example of the compilation of a pattern is given in Fig. 25. 

 

 

if   
begin  
  first  p:Kernel::Property from  c  
by  ownedAttribute suchthat  
  begin 
    setVar  _mvar3=p.name: String; 
    setVar  _mvar4=”value”; 
    var  _mvar3 ==_mvar4; 
    first  t:Kernel::Type from  p 
by  type; 
  end ; 
end 
then 
… 

Fig. 24. Compilation of MOLA rule - pattern. 

The action part of a rule consists of class elements, association links and 

assignments that are included in class elements. Create and delete class elements are used 

to create and delete particular instances. Create and delete association links are used to 

create and delete links. The assignment is used to assign the value of an attribute of a 

particular instance. The value is specified using expressions that have been already 

described in previous sections. The correspondence between MOLA and L3 constructs is 

shown in Table 3. 
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Table 3. Correspondence of constructions used in action part of the rule. 

MOLA L3 

create, delete class-elements addObj, deleteObj commands 

create, delete association-links  addLink , deleteLink commands 

attribute value assignments  setAttr  commands 

The L3 code that is created for the action part of the rule is placed in the then 

block of the if-then-else command. An example of the compilation of the action part of a 

rule is shown in Fig. 25. 

 

i f  begin  …end  
then  begin  
  addObj  pr:Kernel::Property; 
  addLink  pr.type.c; 
  setAttr  c.name="Student"; 
  setAttr  pr.name="attendant"; 
  deleteLink  c.owningPackage.pack; 
  deleteObj  pack; 
end  else  
… 

 

Fig. 25. The compilation of the rule – action part. 

The last MOLA statement described in this section is the foreach loop. The 

implementation of a loop is one of the crucial issues in the realization of the MOLA 

compiler. An incorrectly chosen search structure may cause serious efficiency problems. 

The condition of a loop is expressed using the pattern of the loophead, which contains a 

special class-element – the loop variable. The iteration is performed over all instances 

that correspond to the loop variable. 

The loop is compiled to the foreach command. The condition of the loop is 

compiled to the suchthat block of the foreach command. The compilation of the loophead 

pattern is similar to the compilation of the rule pattern and is also discussed in next 

sections. The action part of the loophead is being compiled in the same way as the action 

part of a rule. The created code is added to the do block of the foreach command. 

For example, it is possible to compile the loop, depicted in Fig. 11, in the 

following way: 

foreach as:BinaryAssociation  suchthat 
  first subjEnd:Property from as  by sourceEnd  suchthat 
  first subjCl:Class  from subjEnd  by class  suchthat 
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  first domOWLCl:OWLClass from subjCl  by #owlClassForCl suchthat 
  first objEnd:Property  from as  by targetEnd  suchthat 
  first objCl:Class  from objEnd  by class  suchthat 
  first ranOWLCl:OWLClass  from objCl by #owlClassForCl  
do 
  addObj op:OWLObjectProperty;  
  addLink as.#obj_prop_For_Assoc.op;  
  addLink op.RDFdomain.domOWLCl; 
  addLink op.RDFrange.ranOWLCl;  
  setAttr op.localName:=as.name;  

As we see, foreach loop is naturally compiled to command foreach … suchthat 

command. The first ... suchthat commands are nested in each other according to the 

navigation order of the elements corresponding to the pattern- searching begins from the 

loop variable, continues along the both branches of the pattern, that consist from the class 

elements and links. The commands first from by are included in the block of the prior 

suchthat command. If any of these commands is not executed, that is, the corresponding 

first instance is not found, then backtracking takes place – the next instance, which 

corresponds to the previous operation, is taken. Accordingly, the main task of MOLA 

compiler is to arrange the first … suchthat commands in the order that makes pattern 

matching the most efficient. 

5.5 The Simple Pattern Matching Strategy 

Implementation of pattern matching for MOLA uses the local search plan 

generation strategy. This is one of the most popular strategies, however typically it 

requires a sophisticated analysis of pattern or even underlying model to choose the best 

search plan. A simple algorithm (in the sense of how complex is the implementation) is 

proposed which is efficient for the typical MOLA patterns used in MDSD-related tasks (it 

is efficient also for others if appropriate constructs are used). The simple algorithm uses 

the following principles: 

• if the pattern contains a reference class element, then the pattern matching starts from 

the reference (if there are more than one, then an arbitrary is chosen).  

• otherwise the pattern matching starts from the loop variable in a loophead or from 

arbitrary chosen element in a normal rule.  

• pattern matching is continued with class elements accessible from already traversed 

class elements by association links.  
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If rule pattern contains several independent pattern fragments, then these 

fragments are processed independently by the same principles – such fragments can be 

treated as separate patterns. 

Pattern matching in a regular rule is started from the reference class element, if 

such class element exists in the pattern. Though MOLA does not require the presence of a 

reference class element in the pattern, the practical usage of MOLA has shown that most 

of the regular rules contain it. It is because the usage of imperative control structures 

causes reuse of the previously matched instances, which are represented by the reference 

class elements in MOLA. This is one of the main reasons why such simple optimization 

technique works almost as well as more sophisticated approaches. 

Use of reference class elements is natural also in loopheads. It is common to have 

a loop over, for example, all properties of a given class. This task can be easily described, 

using a single MOLA loop, where the pattern in the loophead is given using the reference 

class element and the loop variable. See the loophead of the inner loop in Fig. 26 for the 

typical case. In this case the pattern matching is started from the reference element 

(@pack) reducing the search space dramatically. Of course, the path from the reference 

class element to the loop variable may be longer. The only restriction is that cardinalities 

of associations along the path (except one directly before the loop variable) should be "1" 

or "0..1". 

For foreach loop statements without a reference in the loophead, pattern matching 

is started from the loop variable in the loophead. Practical usage of MOLA has shown 

that typical tasks are naturally programmed using patterns, where cardinalities of 

association links leading from the loop variable are "1" or "0..1". This causes the 

execution of the loop to work in a linear time dependant on the number of the instances 

corresponding to the loop variable. Of course, this does not apply for every example, but 

if an appropriate metamodelling (UML-like, using composition hierarchy) and imperative 

algorithms are used, then this condition holds for most cases. 
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Fig. 26. Transformation example - MOLA procedure building package hierarchy. 

Note the loophead of the outer loop in Fig. 26. Though cardinalities of association 

links leading from the loop variable are "0..*", the pattern matching started from loop 

variable is still efficient. Since class elements other than the loop variable provide the 

"existence semantics" (find first valid match), in practice this loop works also in linear 

time because almost all requirements are described using scenarios. In fact, this additional 

constraint is used to filter out those few cases where requirements are described using 

different means. 

Note that this strategy does not even require the analysis of the cardinalities of 

metamodel elements at the same time remaining efficient in the practical usage. A similar 

pattern matching strategy is used also by Fujaba. The bound variable (reference class 

element in terms of MOLA), is even required by the pattern in Fujaba. However, the 

benchmark tests [52] have shown that this strategy performs as well as more sophisticated 

strategies. The same tests also have shown that an appropriate usage of the language 

constructs (improvement of Fujaba transformation) causes a significant positive impact 

on the performance. The same holds also for MOLA, however the feature which 

distinguishes both languages is the loop variable in the MOLA foreach loop. First of all, 

the transformation becomes more readable for human reader; secondly, it gives slight 
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advantage in the performance of the pattern matching. It allows iterating through the 

instances corresponding to the loop variable only, while other patterns elements are 

checked just for the existence. On the contrary, Fujaba is forced to examine 

corresponding instances to all pattern elements in the foreach loop.  

5.6 Benchmark Results 

The simple pattern matching strategy has been implemented in the MOLA Tool 

for MOLA language. The benchmark tests for this implementation have been carried out. 

The example described in the Section 4.4 has been reused. The same tests have been 

repeated for MOLA implementations for MIIREP, JGraLab and EMF repositories. 

Table 4. Benchmark results of MOLA implementation for different repositories. 

 Transformation execution time (ms) 

Model size (N) MIIREP EMF JGraLab 

1750 134 78 277 

3500 266 106 388 

17500 1349 378 1366 

35000 2856 659 2601 

87500 6872 1926 6288 

175000 15222 3221 11609 

350000 27614 7348 23420 

The benchmark results are shown in Table 4. Since the transformation which is 

shown in Fig. 15 has been tested, similar measures are used. The first column depicts the 

size of model used for tests. The model size (N) is a total number of class instances in a 

source model.  Transformation execution times for MOLA implementation have been 

shown in the next three columns. The times have been measured in milliseconds rather 

seconds as it was done in the previous test (see Table 1).  It should be noted that the 

performance has been much better than for previous implementation. For example, the 

models of size N=3500 have been processed in less than one second in the new 

implementation, while the old (SQL-based) implementation executes the same 

transformation in 65 seconds (see Table 1).  
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The MOLA implementation through Lx language family and simple pattern 

matching strategy perform in less than 1 second for models of size N≤10000 which is a 

typical size of model used in MDSD. Since the example used in the benchmark is a 

typical MDSD transformation (all instances in a model of tree-like structure are 

processed), benchmark tests show that MOLA implementation is efficient for MDSD-

related tasks.  

It is interesting to compare also the performance of MOLA on different model 

repositories. For all repositories the execution times grow almost linearly against the size 

of a model. The EMF repository has shown the best results. Two other repositories 

(MIIREP and JGraLab) perform equally strong. MIIREP is better for small models, but 

JGraLab is better for larger models (the execution times grow slower for JGraLab). 

However, the difference between results is quite narrow. It should be noted, that all 

implementations have been tested on large source models (N=350000). They have been 

processed in less than a half minute. Note that in the example every source model element 

must be processed and target element created. 

It should be noted that the performance of a repository has a great impact on 

overall performance of transformation technology. For example, the loading and saving 

EMF-based models are quite inefficient compared to the execution of transformations. 

For a model of size N=350000 the loading data took ~16 seconds and saving data took 

more than 10 minutes, while execution of transformation took just ~7 seconds. JGraLab 

has much better results – loading model took ~1 second and saving model after 

transformation took ~3 seconds. However, for all repositories the saving time of model 

increases non-linearly. This problem should be taken into account, but typically MDSD-

related transformations are used within some modeling tool and model is saved only 

when a work with the tool has been ended.   

5.7 Local Search Planning Using Annotated Metamodels 

MOLA language can be used not only in the MDSD-like domains, where patterns 

are similar to those described in the previous section, but also in others. A more advanced 

pattern matching technology should be used to support efficient matching of these 

patterns. The classical local search planning approach is used in MOLA for these cases. 

This algorithm uses similar principles as the implementations of the languages 
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PROGRES [48], VIATRA [49] and GrGen [50]. It should be noted that this algorithm 

hasn’t been fully implemented in the MOLA Tool yet. At first a search graph (host 

graph) is built corresponding to the pattern. By using the association cardinalities, 

existing in the metamodel and additional annotations, the weights are placed on the edges 

of the search graph. The weight of the edge reflects the priority with which the operation, 

corresponding to this edge, is chosen in LSP. The way, how the weights of the edges of 

the search graph are chosen, is the essential difference among all implementations of LSP 

generation algorithms. Subsequently in the search graph the minimal spanning tree is 

located, from which LSP is read in the final step.  

5.7.1 Local Search Plan Generation 

The search graph is built for a pattern in the following way (see Fig. 27): 

• One vertex is added to the search graph for each class element in the 

pattern. 

• Two oriented edges, which connect the corresponding vertices, are added 

to the search graph for each association link in the pattern. These edges 

represent a possible navigation options from class instances which 

correspond to class elements in the pattern. The first option is to check the 

existence of corresponding link using L0 command link. It can be done in 

a constant time and it requires that both instances at the ends of the 

corresponding association link have been matched. The second option is to 

match a class instance using L0 command first from by.  In this case only 

an instance corresponding to source vertex in the search graph (class 

element in the pattern) has to be known. 

• A special vertex – a root vertex – is added to the search graph. Edges are 

added outgoing from the root vertex to every other vertex. They represent 

a possibility to match a class instance corresponding to a class element 

using first command. 
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Fig. 27. Search graph without weights for the pattern in Fig. 11 

A local search plan corresponds to a spanning tree in a search graph. The root of the 

spanning tree is the root vertex. Every edge in the spanning tree corresponds to a first 

suchthat command. Those pairs of edges (corresponding to the same association link) 

which are out of spanning tree are compiled to link commands. The first suchthat 

commands are nested accordingly to a traversal order of the spanning tree.  

There are many ways to construct a spanning tree in a search graph. 

Consequently, there are many local search plans which implement the pattern matching 

for the given pattern. For example, one can take all edges from the root vertex and it will 

be a spanning tree. However, this search plan can be hardly called efficient. Every set of 

instances which corresponds to the class elements in the pattern should be examined in 

the worst case. A local search plan is more efficient if class instances are matched using 

links from already found instances. It implies checking of less model fragments which 

means less execution of backtracking step of first suchthat commands. Thus, the best 

search plan is one which requires the smallest number of basic lookup operations 

executed – the smallest number of backtracking steps of first suchthat commands in the 

case of MOLA. Let’s call the number of basic lookup operations performed during the 

execution of a local search plan the cost of the search plan. 

A pattern matching algorithm has to find out how expensive are each first 

command for every edge in a search graph. Basically it means to find out how many 

instances in the worst case should be examined to find a valid one. The nature of patterns 
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in model transformation languages is such that pattern elements (class elements in 

MOLA) represents instance of a given class. A first suchthat command also iterates 

through instances of a particular class, therefore an appropriate measure to estimate the 

potential number of instances to be checked is the total number of instances of the given 

class. A first from by command reduces the number of possible checks to the number of 

connected class instances by links of particular association. If one can provide the number 

of instances needed to be checked by operations corresponding to edges in the search 

graph (cost of operation), then these numbers can be put on the corresponding edges as 

weights. Now in the weighted search graph we can try to find the cost of particular search 

plan.   

Since for every search plan there is a spanning tree representing it in the search 

graph, let us assume that in the spanning tree there are edges with weights c1, c 2… cn, 

where n is a number of class elements in a pattern. These weights correspond to the 

largest possible number of operations, which are executed in order to find a 

corresponding instance. As the commands are executed successively and backtracking 

takes place, then in the worst case the cost of a local search plan is 

Ci =c i1 +c i1 c i2 +…+ci1 c i2 …cin .  

The best search plan is a plan with the lowest cost – the lowest Ci . We must take 

into notice that for every search plan Ci  <nc i1 c i2 …cin , therefore to find the best search 

plan means to find a search plan having the smallest c i1 c i2 …cin . It means that we must 

find a spanning tree in the search graph which has the lowest product of all weights of 

corresponding edges. It can be found by using, for example, the efficient Chu-

Liu/Edmonds algorithm [96], which finds the minimal spanning tree in the directed graph. 

We must note that this algorithm is searching a spanning tree with the smallest sum. Since 

all weights in the search graph are positive (they are number of instances), they can be 

replaced with their logarithms. In such way the Chu-Liu/Edmonds algorithm can be used 

to find minimum product spanning tree (because lg(ab)=lg(a)+lg(b) ). When the 

search plan is found, the appropriate L3 commands must be created which is a quite 

simple task. 

As it was mentioned, similar algorithms have been implemented in several model 

transformation languages [48], [49], [50]. The main difference is in the way the costs of 

operations (weights of edges) are determined. In [50] the runtime analysis of a model is 
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performed before every execution of a pattern. In [49] the analysis of models is performed 

in the design time which works if there are models available. In [48] the information from 

pattern and metamodel is used (basically the cardinalities of association ends). 

In MOLA we are using only information which is available at the design 

(compile) time. In fact, pattern and metamodel is available only. So, what useful 

information about number of instances can be obtained from a pattern specification? 

Patterns in MOLA may contain a reference – in a previous rule already found instance. 

Such instance is not searched at all – it has been already found! The corresponding edges 

in the search graph can have weight 1 – this instance can be found in a constant time. No 

other information about operation costs is in pattern. However, a metamodel shows 

cardinalities of associations corresponding to association links in a pattern. When 

navigating from an already located instance, the number of the class instances to be 

checked, depends on the cardinalities of the corresponding associations. If the cardinality 

is 0..1  or 1, the navigation takes place in constant time, therefore the weight of the 

corresponding edge is 1. If the cardinality is 1..*  or * , then in the worst case all 

instances of the certain class must be reread. However, the practice shows that the real 

models are rarely full graphs and the majority of the real association cardinalities are less 

by a number of times compared to the total number of the class instances. Since there is 

no more information on actual cardinalities in a model, the cost estimation for operations 

navigating by * or 1..* associations can be based on these assumptions only. Therefore in 

MOLA a simple cost model can be used: 

• For an edge to a vertex representing a reference c i =1 

• For an edge from the root vertex c i =1000 . Of course, it is not a precise 

number, but all other weights (in fact, a weight for edges representing * 

associations) can be adjusted accordingly to represent a proportion of 

instances in typical models 

• For an edge if it corresponds to the end of MOLA association with 

cardinality * or 1..* c i =100 . 

• For an edge if it corresponds to the end of MOLA association with 

cardinality 1 or 0..1 c i =1 
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Fig. 28. Search graph with weights and minimum spanning tree depicted for the pattern in 
Fig. 11 

See Fig. 28 where weights are added to the search graph for the pattern (see Fig. 

11). The red edges denote the minimum product spanning tree – the best local search 

plan. In the parenthesis the logarithms of weights are shown which are actually used by 

the Chu-Liu/Edmonds algorithm. In this case, there are several equally efficient search 

plans (it is possible to start pattern matching also from subjEnd or objEnd nodes).  

It should be noted, that the simple pattern matching algorithm described in the 

previous sections generates the same local search plan as just presented. It shows that the 

simple pattern matching algorithm works as efficiently as more sophisticated algorithm 

for such MDSD-related task. However, the simple algorithm has been designed taking 

into account the specifics of MDSD-related tasks. Of course the algorithm described in 

this section will perform better (or at least as well) for other tasks. But the main value of 

this algorithm is the possibility to integrate it with the annotation mechanism which 

allows using domain knowledge in the pattern matching in a simple and elegant way.  The 

annotation mechanism is described in the next section.                

5.7.2 Annotation Mechanism 

The search algorithm described above optimizes the search plan selection using 

only data from the metamodel and pattern specification. Other approaches that are based 

on the statistical analysis of the model collect actual cardinalities for classes and 

associations (the number of instances of the given class in the model) give very efficient 
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results, however there are situations where such analysis cannot be made (e.g. the runtime 

repository does not support the required statistics for runtime analysis or there are no 

models created yet in the case of offline analysis). Therefore we propose an approach 

which allows using developer’s knowledge of model constraints that otherwise could be 

obtained only by analysis of existing models. A part of actual cardinalities can be already 

predicted at the design time of a transformation. Development of a transformation 

requires a good knowledge of the corresponding domain. Therefore, the transformation 

developer should be able to predict prospective cardinalities. Of course, the precise 

number of the instances cannot be predicted, except for singleton classes. However, the 

proportion of instances for different classes is frequently known. For example, the 

number of properties in UML model is several times greater than the number of classes. 

Since neither the metamodelling standard MOF, nor UML class diagrams provide 

convenient means for the specification of the prospective cardinalities, we propose to 

annotate the metamodel and patterns in MOLA. Our goal is to have a simple, handy 

annotation mechanism that helps to select an efficient search plan for the pattern 

matching. 

We allow annotating classes and association ends in the metamodel and class 

elements and association link ends in patterns. An annotation predicts the number of 

instances for classes and the number of instances reachable by links for association ends. 

Pattern matching algorithm takes into account the annotations, and edge weights in the 

search graph are adjusted accordingly. In fact, an annotation sets the priority on the 

pattern element. The lower the predicted number of instances is for the pattern element, 

the higher priority it gets for the pattern matching. Annotations made in the metamodel 

affect the pattern matching algorithm in every rule where pattern elements of the 

corresponding type are used. Annotations made in the pattern affect the pattern matching 

algorithm only in the scope of the rule. The developer annotates metamodel elements 

during the development process of the metamodel. Since metamodelling requires the 

knowledge of the modeled domain, typically there are no problems to resolve actual 

cardinalities. It should be noted that annotations are optional - they are additional means 

to improve the efficiency of transformations. The following annotations can be used: 

SINGLE - denotes that the class (or navigation result) has at most one instance. 

Such instances and links as well as references are preferred for the pattern matching. 
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FEW - denotes that the class (or navigation result) has a nearly constant number 

of instances, or it is relatively low compared to the total number of instances in the model. 

For example, we can expect that in a UML class diagram a typical class will have about 

5-10 properties, and this number is independent of the model size. Such links will be 

preferred over links that are not annotated for the pattern matching. 

MANY  - denotes that the class (or navigation result) has a relatively large number 

of instances, and this number grows together with the size of the model. For example, in a 

UML class diagram the number of typed elements for every type grows as the size of the 

class diagram increases. Links that are not annotated will be preferred over links with the 

MANY annotation for the pattern matching. 

As annotations do not show a precise number of instances, but only the number of 

the corresponding class (or the result of navigation) instances against the total number of 

instances in the model, then in the cost model we choose weights, which correspond to a 

probable number of instances in the underlying models: 

• For the edge from the root vertex if it 

o is to SINGLE annotated vertex or to a vertex corresponding to the reference, 

then its weight is c i =1, 

o is to the vertex without annotations, then c i =1000 . Let us assume that this 

is a typical number of instances in the model, and the rest of weights we 

choose proportionate to this weight,  

o  is on FEW annotated vertex, then c i =100,  

o is on MANY annotated vertex, then c i =10000 . 

• For the edge if it corresponds to the end of MOLA association, which 

o is with a cardinality 0..1  or SINGLE annotated, then c i =1. 

o is without annotation with cardinality *  or 1..* , then c i =100 . 

o is FEW annotated, then c i =10,  

o is MANY annotated, then c i =1000 . 

Therefore, by using only information from the metamodel, which is supplemented 

with the corresponding annotations, the real cardinalities of the model elements are taken 

into notice. Although they are not denoted absolutely precisely, it is enough that there is 

information available about the proportion of number of instances in a model. The chosen 

weights seem to be appropriate.  
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Fig. 29. Pattern example - annotation use case.  

Fig. 29 shows a pattern in a loophead where annotations help to find the best 

search plan. This loop iterates trough every property (p) of the given class (@c) having 

the given type (@t). The problem is that associations ownedAttribute and typed both have 

cardinality "*" and without additional information both are treated equally (un)efficient 

for pattern matching. However, in practice the average number of owned attributes for a 

class is by magnitude less than typed properties for a type. Therefore, adding annotations 

FEW and MANY to ownedAttribute and typed association ends accordingly gives the 

desired result (see Fig. 30). The pattern matching is started from the reference @c and 

continued with the loop variable. 

 

Fig. 30. Search graph with minimum spanning tree depicted for pattern in Fig. 29 
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CHAPTER 6 

Use Cases of MOLA 

MOLA language and tool have been used practically in several projects. This 

chapter describes two main use cases of MOLA – the typical MDSD tasks in the 

ReDSeeDS project [23] and specification of functionality for tools built with the 

METAclipse framework [8].  

6.1 ReDSeeDS 

MOLA language has been used in the EU 6th framework project ReDSeeDS 

(Requirements-Driven Software Development System). The goal of ReDSeeDS project is 

to create framework (languages and tools) for MDSD based development. ReDSeeDS 

framework includes the basic reuse approach. This approach is case-based, where a 

reusable case is a complete set of closely linked (through traceability links created by 

model transformations) software development technical artefacts - models and code. 

ReDSeeDS project took place between years 2006 and 2009. Universities from 

Germany, Poland and Latvia, as well as, industrial partners from Poland, Germany, 

Lithuania and Turkey were participants of the project. Author of this thesis has actively 

participated in activities of ReDSeeDS project related to MDSD. 

The ReDSeeDS approach covers a complete chain of models for MDSD – from 

requirements to code. Each transition in this chain is to a great degree assisted by formal 

model transformations. Requirements are specified in the requirement specification 

language RSL [97], which has been developed as part of the ReDSeeDS project. A 

significant part of RSL is the specification of requirements for system behavior in a 

controlled natural language. The next models in the model chain are obtained using model 

transformations which are specified using MOLA language. Transformed models are 

described using a ReDSeeDS-specific subset of UML. This subset together with RSL 

forms the ReDSeeDS Software Development Specification Language (SDSL). Updates 

after every transformation step can be made also manually. A UML modeling tool Sparx 

Enterprise Architect (EA) [98] is used within ReDSeeDS project. It is a commercial tool 
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which allows creating and updating UML models. The interoperability between 

ReDSeeDS engine and EA is implemented also using model transformations. 

During the ReDSeeDS project two model-based methods [97], [99] have been 

proposed and the corresponding sets of transformations in MOLA developed. Both 

methods use the RSL and SDSL (UML) to specify models and ReDSeeDS engine to store 

and process them. However, the essential difference is the set of design patterns 

(architecture style) used by both methods.    

6.1.1 Description of Keyword-Based Approach 

The keyword-based approach [99] has been developed by IMCS, University of 

Latvia. Starting from requirements, a chain of models (see Fig. 31) for a MDSD of the 

software system is used. To a great degree, this chain is inspired by the classical MDA 

approach. However, the specific structure and construction principles of models in this 

approach are determined by the chosen architecture style, which includes the set of 

selected design patterns. All the models are built in UML using an appropriate profile. 

Specific keywords are preserved by the keyword-based approach. If the pre-

defined keywords (e.g. select, show) are used in the requirement specification, then they 

become the specific constructs in the target model (e.g. selection from a list, calling 

appropriate user interface method). 

 

Fig. 31. Model chain for keyword-based approach. 
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Initially the Analysis model is extracted by transformations from requirements. 

This model has no direct counterpart in the classical MDA chain. In the Analysis Model 

the most important part is a class diagram describing the main concepts of the software 

system to be created. Stereotypes are used to distinguish different types of concepts 

according to the Analysis Profile.  

The next model in this chain is the Architecture model. In this model, the 

implementation structure is represented according to the behavior extracted from use case 

scenarios. This model is platform-independent and could be used as a basis for 

development of a code on any enterprise platform (Enterprise Java, .NET, etc.). This is 

the model where the selected design patterns and sophisticated analysis of requirements 

permit to generate a non-trivial part of solution behavior. 

The final model in the chain is the Detailed Design model. From this model code 

fragments for the selected platform can be generated. Currently the chosen platform is 

Java in the Spring/Hibernate framework [100], [101]. In this model stereotypes 

corresponding to Spring-specific annotations are used. In the final step the data from this 

model are transformed to Java code with Spring/Hibernate annotations. 

6.1.2 Description of ReDSeeDS Basic Approach 

The ReDSeeDS Basic approach [97] has been developed by Warsaw University of 

Technology. Just like in the keyword-based approach a chain of models (see Fig. 32) for a 

MDSD of the software system is used. The ReDSeeDS Basic approach includes three 

transformations steps. 

The first transformation step creates the architecture model from the requirements 

written using RSL. This approach concentrates on automatically generating the 

components of the system and interactions between various parts of the system and user. 

A set of sequence diagrams is generated in the architecture model. Methods are added to 

the appropriate interfaces for each call in the sequence diagrams. 

After the architecture is ready (generated from requirements and enhanced by an 

architect), it can be transformed into the detailed design. The transformation process uses 

only the information contained in the architectural model, assuming that transformation 

from requirements to architecture extracted all the possible information for generating the 

detailed design model. The specific rules to a large degree are based on the chosen design 

patterns (e.g. DTO, DAO and Factory). The rules assume a Java and ORM facility (e.g. 
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Hibernate) to be used as the basis of the platform, but no specific details of the platform 

appear in the rules. Therefore they could be applicable to other kinds of platforms as well. 

 

Fig. 32. ReDSeeDS basic approach. 

Detailed design of a software system is the lowest level of its specification. It 

contains all the logical elements - classes and relations between them for each component 

in the architectural specification. The detailed design model is the basis for 

implementation in a specific programming language (e.g. Java, C#). 

The EA code generation templates are applied to detailed design model in the last 

step. The package hierarchy, declarations for all classes (DAO, DTO, etc.) and methods 

are included in the generated code. Bodies of obtained methods should be filled in 

manually, since the detailed design model in this style in fact contains no behavior. 

6.1.3 Empirical Study of Pattern Matching Cases in ReDSeeDS 

In this section the analysis of typical patterns in the ReDSeeDS project is done. As 

it was mentioned before, one of the goals of the project is MDSD using RSL and UML 
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languages. The main idea is to obtain a part of the software system automatically from 

requirement specification using model transformations.  

To approximately estimate the volume of the transformations written during the 

ReDSeeDS project we are giving some statistics. The model-based methodologies used in 

the project cover quite a large subset of UML being generated - UML class, activity, 

component and sequence diagrams are being generated. Both methodologies include 

several transformation steps. The first step for both methodologies is the transformation 

of requirements. The next steps are generating new UML models adding more specific 

details. ∼350 MOLA procedures have been developed during the ReDSeeDS project. 

They include ∼200 loops and ∼800 rules that give ∼1000 pattern specifications. We have 

investigated the structure of patterns used in the project and most of them are fit to the 

simple pattern matching strategy used by MOLA. 

Fig. 26 refers to the typical usage of loops in ReDSeeDS project - the MDSD 

tasks are compilation-like jobs where every element of the source model is processed and 

corresponding elements in the target model are created. Since RSL and UML model 

elements form a tree-based hierarchy, the transformation algorithms traverse model 

elements in the top-down style starting from the top elements of the hierarchy. Therefore, 

the most natural way to describe such traversing is by using nested foreach loops 

referencing the previous loop variables. The pattern may contain additional class elements 

for collection of all necessary neighborhood instances or specifying additional constraints 

on the existence of appropriate nearby instances.  

 

Fig. 33. Pattern example - collecting nearby instances.  

Another typical pattern used in the ReDSeeDS project is depicted in Fig. 33. This 

pattern finds the name of an actor (names are coded as noun phrases in RSL). Note, that 

all associations leading from the Actor class to the Noun have cardinality "1" or "0..1" - 

each actor has exactly one name (represented by noun phrase), there is only one noun link 

for each noun phrase and every noun link is connected to exactly one noun. Therefore this 

pattern is matched in constant time when the simple pattern matching strategy is applied. 

This is a typical case where MOLA rule is used to collect the nearby instances.  
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A variation of the previous pattern is shown in Fig. 34. This pattern describes the 

collecting of nearby elements of a UML interaction. The owning classifier and the 

component corresponding to the lifeline named "UIComponent" should be matched. 

Unlike in the previous example there is an association with cardinality "*" leading from 

the referenced element (to Lifeline). However, as we see in practice, typically there is 

only one model element in the model satisfying the given constraint and the suspicious 

association has low cardinality in practice. In this case there are no more than 5-10 

lifelines per interaction. Thus this pattern matches in linear time with regard to the 

number of lifelines in the given interaction, which is relatively low.  

 

Fig. 34. Pattern example - collecting nearby instances using additional constraints 

We have tested the transformations on several sufficiently large software cases 

developed within the ReDSeeDS project. The patterns described above are the most 

typical patterns used in MOLA transformations for the ReDSeeDS project. The total 

amount of such patterns is about 95% of all patterns. Some specific sub-tasks require non-

typical patterns which theoretically may cause insufficient pattern matching performance, 

however in practice they are performed on elements which are relatively low in number 

compared to the number of constrained language sentences. Thus, they do not affect the 

overall performance of pattern matching. 

There was made a conjecture that a transformation program in MOLA written in 

an appropriate style becomes efficient at the same time [67]. Our empirical analysis of 

typical patterns in the ReDSeeDS project confirms that this holds also in praxis and 

MOLA is a suitable model transformation language for MDSD-related tasks. In this case 

the simple pattern matching algorithm gives efficient results.  

The ReDSeeDS basic approach has been implemented in MOLA and executed on 

various requirements specifications. For example, the requirement specification 

containing 8 scenarios, 42 constrained language sentences has been transformed to 

architecture model in ~6 seconds. The target model has 662 UML elements in total 

including 24 packages, 10 components, 31 classes, 17 interfaces, 71 methods, 8 sequence 

diagrams. The detailed design model has been generated in ~5 seconds from the 
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architecture model. The target model contains 451 UML elements including 16 packages, 

44 classes, 17 interfaces, 169 methods. 

This approach has been tried also for a real-life example. The requirements 

specification of simple internet banking system containing 19 scenarios, 102 constrained 

language sentences has been transformed to architecture model in ~10 seconds. The target 

model has 2114 UML elements including 27 packages, 12 components, 72 classes, 59 

interfaces, 218 methods, 19 sequence diagrams. The detailed design model has been 

generated in ~16 seconds from architecture model. The target model has 1425 UML 

elements including 18 packages, 116 classes, 59 interfaces, 507 methods.  

It should be noted that total time of transformations execution turns out to be 

almost linear with regard to the total number of constrained language sentences in the 

requirement scenarios specified in the RSL for the case. The total transformation 

execution time seems to be reasonable for such a real-life example, because these 

experiments considered regeneration of the whole model. In fact, the importing and 

exporting models from and to the UML modeling tool (EA) have executed significantly 

longer then transformations itself. It is also possible to specify transformations 

regenerating just a part of the model which requires to be updated accordingly to changes 

made in source models. 

6.2 ReDSeeDS Integration with Sparx Enterprise Architect 

As it has been already mentioned in the previous section, Sparx Enterprise 

Architect (EA) is a UML modelling tool, which was used in ReDSeeDS project. It is a 

popular modelling tool (also in Latvia), which allows creating UML models and 

generating a code for many programming languages (for example, Java, C#, C++). In 

ReDSeeDS tool (engine) UML models are stored in JGraLab [66] model repository, but 

the tool itself does not provide possibility of editing and graphical viewing. Therefore it 

was necessary to provide a model transfer between EA and ReDSeeDS tool. For this 

purpose the model transformation language MOLA is used.  

In order to provide the exchange of models between the mentioned tools, the 

format, in which EA stores UML models, was investigated. It was described by using 

metamodelling means, that is, a metamodel was built, which directly reflected the inner 

structure of the EA models. Thus, in a simple way a universal tool is built, which 
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transfers UML models from the EA database to JGraLab, and vice versa. The whole 

logically complicated work- model transformation between EA and ReDSeeDS formats 

(metamodels) in this case is possible to execute by means of the model transformations, 

which is a more suitable manner of model processing than the programs written in 

programming languages are. 

The general scheme of model exchange between the mentioned tools can be seen 

in Fig. 35. A similar manner can be used also in other cases when the model exchange 

between different modelling tools is necessary. 

 

Fig. 35. EA and JGraLab model exchange schema. 

Also in this use case of MOLA the use of pattern matching was sufficiently 

efficient. The task of model exchange is rather similar to the typical MDSD tasks that 

require processing of all elements of one corresponding type and creating appropriate 

elements in the target model. Thus the suitability of the chosen algorithms for this type of 

tasks was shown once again. It must be noted that in the tool integration tasks also high 

performance is important. However, it depends not only on efficiency of model 

transformations, but on the efficiency of underlying tool, the EA in this case. The API of 

EA has been used to import and export models to and from the tool, however it causes the 

major slowdown of overall performance. Unfortunately there are no better ways to 

collaborate with EA, but this approach seems to be more efficient for tools with more 

efficient implementation.  
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6.3 Tool Building in METAclipse 

MOLA Tool has been built on the basis of METAclipse tool building framework 

[8], which also has been developed by the University of Latvia, IMCS. METAclipse is a 

metamodel and transformation based tool building platform, which is specially fit for the 

support of complicated graphical domain specific languages, and MOLA is such a 

language. From the technical point of view, METAclipse is a set of Eclipse plug-ins 

which extends the functionality of standard Eclipse components EMF, GEF and partially, 

GMF [26] [102] [63]. It contains advanced presentation engines, which support graphical 

diagram building, property editing and all other diagram and model related facilities. 

More precisely, the engines perform all the various visualization and user interaction 

related tasks in a standard way typical to Eclipse environment, they do these jobs on the 

basis of a fixed presentation metamodel. However, the main functionality of a tool based 

on METAclipse is defined by transformations, which link the domain and presentation 

(visualization) models in the tool, fill up property dialogs, and process the updated 

property values. In METAclipse framework these tool-specific transformations are built 

in MOLA language. Architecture of METAclipse framework is shown in Fig. 36. 

 

Fig. 36. Architecture of the METAclipse platform. 

Each of the METAclipse engines exposes its functionality to transformations 

through a strictly defined metamodel that serves as an interface through the 

transformations and engines. The set of commands that can occur in the given engine as a 

result of user actions is also part of the metamodel of the engine. Commands are used to 

invoke the transformations. Each instance of a command represents an atomic user action 

and is the smallest piece of an action in METAclipse platform. All actions that require 
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purely graphical changes are processed directly in the METAclipse engines. Only the 

semantic actions (the ones that trigger changes in the domain model or changes in the 

presentation model that are unique to a specific tool) are triggering commands and passed 

to the transformations for processing. METAclipse platform immediately filters out the 

commands that do not require the invocation of transformations and invokes the 

mechanisms of the corresponding engines in order to make the changes in the models. 

Therefore, listeners that do not require the invocation of transformations are implemented 

already in the platform. Command listeners for processing of semantic actions have to be 

implemented in the transformation library as branches of the main model transformation 

with branching conditions that depend on the passed command. 

The latest version of MOLA Tool has been built using the MOLA Tool itself. 

Initially source procedures of MOLA tool have been built using the previous version of 

MOLA Tool. Currently the source procedures of the MOLA editor have been completely 

transferred from Generic Modeling Tool environment to the MOLA editor implemented 

with the METAclipse platform. The current functionality of the editor is defined by ~450 

MOLA procedures. 

The efficiency of model transformations is even more important in the context of 

tool building than in MDSD-related tasks. Transformations are executed reacting on 

actions performed by user. Response must be as fast as possible. Practical usage of 

MOLA Tool has been shown that transformations are being executed efficiently. To 

verify it, the transformation execution time is measured for user actions which require 

significant effort of transformation compared to the effort of METAclipse framework 

itself. For example, a class name is shown on every class element in a MOLA program. If 

the name of a class is changed (user changes it) then every occurrence of this class in 

class elements must be updated. To test the performance of transformation implementing 

such action we created a MOLA project having 800 class elements corresponding to the 

same class. Changing the name of the class took less than a second.  

Similar results are shown in the transformation project implementing the 

ReDSeeDS methodologies. The total number of class elements in the model 

transformations for ReDSeeDS is greater than in the previously described project- ~2700. 

But in the same time there are at most 180 class elements having the same type and it is 

much less than in the previous example. The same class renaming action has been 

executed also in ReDSeeDS transformations project. It took less than a second too.  
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Similar results are observed also for other user actions which rely mainly on the 

model transformations written in MOLA. It proves that the MOLA Tool (in fact, model 

transformations used in METAclipse framework) scales well also for larger projects and 

is usable practically. It should be mentioned, that the model saving problem described in 

section 5.6 is actual also in MOLA Tool (METAclipse framework). For larger 

transformation projects (like ReDSeeDS) the saving takes a significant amount of time 

(~20 seconds). Although it is inconvenient, it affects just the frequency a transformation 

developer uses the save button. However, this issue should be solved in the future.    

A screenshot of MOLA Tool is shown in Fig. 37. 

 

Fig. 37. MOLA2 Tool. 
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CHAPTER 7 

Conclusions 

The main goal of the research was to develop a simple and efficient 

implementation of pattern matching for model transformation languages. In order to 

achieve this goal, the following tasks are accomplished: 

• A new pattern matching algorithm has been developed for model transformation 

languages. The algorithm uses relational database and SQL queries. The main 

advantage of the algorithm is the simple mapping from pattern to single SQL 

query. The implementation of this mapping is easy thus enabling fast 

development of an efficient model transformation language prototype. In this 

case the hardest part, the actual pattern matching, is done by query optimization 

features of a relational database management system. 

• The developed algorithm has been practically implemented for model 

transformation language MOLA. An interpreter for MOLA has been built which 

works on most popular relational database management systems. The MOLA 

interpreter has been used for academic and research goals. How MOLA language 

is fit for MDSD has been tested using the interpreter. 

• A new simple pattern matching algorithm which uses local search plan 

generation has been developed. It works on metamodel-based repositories which 

are commonly used to store models in popular modelling environments. The 

algorithm is efficient for MDSD transformations, which are typically dealing 

with models of tree-like structure where every element of source model should 

be processed and an element in a target model should be built. 

• The developed algorithm has been practically implemented for MOLA language. 

A MOLA compiler has been built to lower-level model transformation language 

L3. MOLA transformations can process models stored in several metamodel-

based repositories, including EMF, JGraLab and MIIREP. The compiler is part 

of MOLA Tool which has been successfully used in the EU 6th framework 

project ReDSeeDS for development of MDSD transformations. 
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• An efficient algorithm has been developed which is more universal (it is efficient 

not for MDSD-related tasks only). It is based on classical local search plan 

generation strategy and together with a new metamodel annotation mechanism 

allows building efficient model transformations without any complicated runtime 

model analysis. Comparing to other implementations it allows utilize knowledge 

of particular domain to build efficient transformations. 

A review of pattern matching mechanisms for the most popular model 

transformation languages has been presented in this thesis. There are several pattern 

matching approaches, but the most popular is the local search planning. In fact, it is the 

most universal strategy - it gives efficient results for different types of patterns. However, 

implementations of more advanced approaches are rather complex, although simpler 

strategies (like in case of MOLA and Fujaba) frequently give similar results. Of course, 

that holds not for every use case, but mostly for the domain the transformation language 

is designed for. For example, MOLA is efficient for MDSD-related tasks, as the empirical 

analysis of typical MOLA patterns in the ReDSeeDS project has shown. Other languages 

are efficient in other domains, e.g. VIATRA in the simulation of complex systems or 

Fujaba in the program refactoring domain. 

A great role for efficient pattern matching is played also by the constructs of the 

pattern used in the language. MOLA offers very natural means for describing MDSD-

related tasks, the foreach loops combined with reference mechanism. At the same time 

even the simple pattern matching algorithm which has been implemented for MOLA 

works efficiently in these cases. Thus, for the compiler-like tasks, where every element of 

a structured model (like UML) should be processed, MOLA can be used with a high 

efficiency, but with very simple implementation of pattern matching.  Of course, the 

certain design patterns briefly discussed in the thesis should be ensured in MOLA 

programs, but they are very natural and easy to use.  

MOLA is used not only for MDSD-related tasks (though it is designed for that). 

Therefore more universal pattern matching strategy based on analysis of the pattern and 

underlying metamodel have been developed. It hasn’t been fully implemented in the 

MOLA Tool yet. So the benchmark tests haven’t been done for this algorithm. We have 

introduced the metamodel annotation mechanism, which captures the domain knowledge 

of actual cardinalities in the metamodel. It permits to make pattern matching more 
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efficient, that otherwise could be achieved only by runtime analysis of models which may 

itself be costly at runtime or not available at design time. 

The future work is to identify model transformation domains - the areas where 

typical patterns are used. The most appropriate pattern matching approaches should be 

addressed for each domain. Since most of the model transformation language developers 

provide information on pattern matching implementation for their languages; that would 

make the choice of the most appropriate model transformation language easier for a 

concrete task. Of course, the pattern matching implementation is not the only condition 

helping to make the decision. However, usually, if the language constructs are fit for the 

task, then it is a great chance that pattern matching will be also appropriate. We believe 

that practically the appropriate pattern matching algorithms can be developed for specific 

tasks (domains) despite pattern matching being an NP-complete problem in general.  

A domain specific annotation language may be developed to use other knowledge 

of domain than cardinalities. In fact, it means extending metamodelling languages with 

special features which capture information crucial for pattern matching. 

Currently there is an ongoing work on implementation of algorithm described in 

the section 5.7. The implementation of the algorithm will allow using MOLA efficiently 

also for other kinds of tasks not just for MDSD. It is an important aspect also in the 

context of integration of MOLA transformations into the Eclipse ecosystem. Eclipse EMF 

has become a de facto standard of model repository in the modelling community. A 

significant part of models are stored in EMF. There are also lots of metamodels written in 

EMF Ecore metamodelling language. One of the problems the EMF-based model 

transformation implementations are dealing with is the association navigability - 

associations in EMF (references) are navigable in one direction only. The simple pattern 

matching algorithm described in section 5.5 requires that associations are navigable in 

both directions. Therefore the model pre-processing step is performed before 

transformation runtime. In the pre-processing step a model is transformed to an 

intermediate model containing missing references. The algorithm described in the section 

5.7 can solve the navigability problem without any additional model pre-processing steps 

in the same time maintaining sufficient efficiency. Solving this problem would allow 

direct integration of model transformations in a wide range of Eclipse (EMF) -based 

modelling tools. 



 

101 

There are no doubts that an efficient implementation of model transformation 

language offers many new possible directions of research. Model transformation 

languages are used in the software development (MDSD) or tool building (METAclipse 

framework). These research fields offer still unanswered questions. Models, metamodels 

and model transformations can be used in many other areas of research. For example, 

model transformations may be used for complex data processing in frameworks for 

classical information systems. The task is to find appropriate use cases where the usage of 

model transformations (and model transformation languages) fits at most. 

The great potential of models in the field of software development is not realized 

yet; however a significant leap is expected in the near future. 
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