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ABSTRACT 
 

The main topic of the PhD thesis is the analysis of the factors that influence the structure 

and stability of magnetohydrodynamic (MHD) flows and shallow water flows. In particular, we 

shall concentrate of the effect of the roughness of the boundary. Methods of analysis are based 

on analytic solutions which are found for some MHD flows over the roughness elements in 

strong magnetic fields in rectangular ducts. The MHD solutions described in our work facilitate 

the investigation of the redistribution of the fluid in a region where the magnetic field is strong ( 

the Hartmann number is large) . The analysis of the behavior of MHD flows at high Hartmann 

numbers is a topic of increasing interest since it is mainly applicable to MHD devices such as 

pumps, and MHD generators. The main features of MHD liquid-metal flows at large Hartmann 

number are as follows: A ‘ flat’ velocity profile in the core of a channel and thin boundary layers 

near the boundaries. Electric currents induced in the fluid modify the field of the flow. Knowing 

the path of these currents then it is possible to predict the flow structure. In our analytical 

solution of the MHD problems where wall roughness is taken into account, the length of the 

sidewalls of the channel is considered infinitely long and that is why the Hartmann number (Ha) 

is taken to be sufficiently large and even sometimes the boundary limits approaches  +∞ .  

Hydraulic engineers are effectively using Chezy formula to estimate the “lumped” effect 

of turbulent flows such as computation of flow rate and losses in channels or pipes and design of 

open channels. The roughness of the boundary is taken care of by using empirical friction 

coefficients. These coefficients are related by several empirical formulas with the Reynolds 

number of the flow as well as with the roughness of the boundary. The coherent structures in 

wake flows are believed to appear as a final product of hydrodynamic instability of the flow. 

Methods of weakly nonlinear theory have been applied in the past to different flows and usually 

lead to amplitude evolution equations for the most unstable mode. One of such equations is the 

complex Ginzburg-Landau equation. Weakly nonlinear theory is applied to quasi-two-

dimensional flows in [22] with Rayleigh friction (internal friction is assumed to be linearly 

related to the velocity distribution). It is shown in [22] that the coefficients of the Ginzburg-

Landau equation for the case where the internal friction is represented by a linear function of the 

velocity strongly depend on the shape of the base flow profile. As a result it was concluded in 

[22] that weakly nonlinear models cannot be used for such cases since it is impossible to 

determine experimentally the base flow velocity distribution with high accuracy and, therefore, 

one cannot use reliable values of the coefficients of the Ginzburg-Landau equation in the 

analysis.  However, in Part 3 of our work we show that small variations of linear stability 

characteristics do not lead to large changes in the Landau constant (the Landau constant is the 
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real part of one of the coefficients of the Ginzburg-Landau equation) when a nonlinear Chezy 

formula is used to model bottom friction.   

 
 This work consists of four parts. All of the parts are theoretical while the fourth part is 

practical dealing with corrosion of EUROFER steel in the Pb17Li flow and its application to D-T 

( Deutrium-tritium ) plasma confinement in a reactor.  

 

In the first part we state the principles of MHD flows and then we describe the influence 

of the surface roughness on the MHD flow of a conducting metal and state the governing 

equations. Since MHD flow problems are widely studied in channels of various forms and 

different boundary conditions, the results of such studies have direct applications in different 

fields of the magnetohydrodynamics [29], [38], and [58]. Since magnetohydrodynamics studies 

the motion of electrically conducting fluids in the presence of magnetic fields, it is obvious that 

the magnetic field influences the fluid motion. Usually in MHD problems electromagnetic force 

is added to the equation of motion and the magnetic field (through Ohm’s law) changes the fluid 

motion. We describe some MHD flow problems in ducts over the roughness elements in a strong 

magnetic field and analytical solutions of such problems are obtained using of the Dirac delta 

function (see [3], [4], [6], [7], [12] and [13]).  

Asymptotic analysis of these problems is performed for the case of strong magnetic fields 

and graphs of the z-components of the current are shown for different Hartmann numbers. 

Different boundary layers for the field velocity and for the z-components of the currents at large 

Hartmann numbers are analyzed. The MHD problem for fully developed flow is solved for the 

cases of a uniform and non-uniform external magnetic field where the surface roughness is taken 

into account. The distribution of fluid velocity, induced current φ(y,z) with its potential and 

external magnetic field are derived (see the following references for the analysis of similar 

problems [2], [5], [11]-[13], [17], [18], [30], [31], [42], [50], [53], [54], [57], [59], [65], [69], & 

[74]). 

  The purpose of this part is to study and examine the induced magnetic profiles and get a 

clearer idea about the behavior of such  flows of an electrically conducting fluid through 

channels (or ducts) .In fact, this problem is directly applicable to other MHD problems such as  

MHD generators, pumps, accelerators, and flowmeters [in flowmeter, a conducting fluid passes 

through an insulating pipe (duct) across which a uniform magnetic field is applied]. A potential 

gradient is created and can be measured by probes embedded in the walls of the pipe (this 

technique is used to measure the flow of blood in human bodies). In addition, the influence of the 

surface roughness on the MHD flow of a conducting metal may be useful for the techniques used 
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to set up the cooling system of the Tokamak reactor ( Tokamak is an acronym from the Russian 

words for toroidal magnetic confinement) . 

   

The second part of our work is devoted to the calculation of some classes of improper 

oscillatory integrals. It is shown that oscillatory integrals in some cases can be transformed to 

integrals of non-oscillating functions. Such integrals have direct applications to MHD flows 

analyzed in the thesis. These results are applied in order to transform the solution of some MHD 

problems arising in half space 0≥z  as a result of the roughness of the surface z=0 for various 

boundary layers (see  [3], [4], [6], [7], [17], [21] , [72] & [74]). 

  

During my seven year stay in Riga, LATVIA (one the main MHD application centers in 

EUROPE), I had the opportunity to visit some interesting sites related to MHD study such as the 

Physics Institute in Salaspils where I have seen the three recently planned experimental sessions 

(each 2000 hours long) which have been finished successfully. Results gained in these 

investigations demonstrated essential influence of magnetic field on the corrosion processes both 

in the intensity of corrosion and its character. New results concerning the profile of corrosion are 

obtained [55] & [56]. Such studies have an important implication on how to confine and control 

the burning D-T plasmas by a strong drag of magnetic fields inside a reactor [1], [9], [20],  [55], 

[56], [70] and  [73]. In addition, I had the opportunity to participate in some PAMIR MHD 

International Conferences (4th , 5th and 7th PAMIR International Conferences) . As a result of 

these activities the third part of the thesis describing practical aspects related to the effect of 

surface roughness on MHD flows ([1], [9], [20], [32]-[37], [39], [40], [48], [49], [55]-[57], [60], 

[64], [68], [70] and  [73]) was written. 

 

The fourth part is devoted to the analysis of shallow water flow in a weakly nonlinear 

regime using the complex Ginzburg-Landau equation (CGLE). It is shown in the previous 

studies [22] related to weakly nonlinear analysis of quasi-two-dimensional flows (shallow water 

flow is one of the examples considered in [22]) that the values of the Landau’s constant differ by 

a factor of 3 for two different velocity profiles with linear stability characteristics (differing by 

not more that 20%). In other words, the Landau’s constant was found to be quite sensitive to the 

shape of the base flow profile. In Part four of the thesis the bottom friction is modeled by a 

nonlinear Chezy formula [64]. The analysis of data presented in Table 1 and Table 2 shows that 

for a one-parametric family of shallow wake flows the changes in the linear stability 

characteristics resulted in even smaller changes in the coefficients of the CGLE. As a result, it is 

plausible to conclude that the complex Ginzburg-Landau equation can be used for the analysis of 
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shallow wake flows in a weakly nonlinear regime (see [8], [10], [14]-[16], [19], [22]-[24], [26], 

[43]-[47], and  [67]) for the application of weakly nonlinear models to different flows in fluid 

mechanics.. 
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INTRODUCTION 
 

Magnetohydrodynamics is a part of fluid mechanics which analyzes the dynamics of 

electrically conducting fluids and their interactions with magnetic fields. Examples of such fluids 

include plasmas and liquid metals. 

The main set of equations which describes magnetohydrodynamics (MHD) is a 

combination of the Navier-Stokes equations of fluid dynamics and Maxwell’s equations of 

electromagnetism (see [26], [27], and [50]). The corresponding differential equations have to be 

solved simultaneously. In fact, this is too complex to be done symbolically at all, except for the 

most trivial cases. For real world problems, numerical solutions are found using super 

computers. Since MHD is a fluid theory, it cannot treat kinetic phenomena (see [18], [50]). The 

interaction of a flow of an electrically conducting fluid with external magnetic field results in 

changes in the flow characteristics. These changes depend on the structure of the flow, the 

presence of conducting or non-conducting walls, the orientation of the magnetic field with 

respect to the flow and some other minor factors. For example, the presence of a magnetic field 

leads to larger pressure losses since in this case the pressure drop depends mainly on the 

Hartmann number (see [5], [28], and [53] &[54]). 

 Some studies of MHD problems in liquid metal flows have concentrated on the determination of 

the pressure drop in the flows in straight pipes perpendicular to the magnetic field [50], and [59]. 

One of the main problems in MHD that is important in applications is pressure losses in pipe 

bends. Some local variations in pipe bend and special conditions of fluids are used to reduce 

such pressure losses (see [50], [53], and [59]). 

It is known that the velocity distribution in a liquid metal blanket exerts a decisive 

influence on heat and mass transport. Therefore, since knowledge of this distribution is required, 

studies in the corrosion and tritium transport field have been conducted (see [1], [55] and [56]). 

We mention here the latest study of MHD problems in liquid metal blankets of fusion reactor 

done by I. Micheal [52] and the very recent one done by the European Fusion Development 

Agreement ( EFDA) concerning the European fusion research programme that outlooks the 

infra-structures needed towards DEMO  [37]. 

Other experiments were conducted to investigate the single phase convective heat 

transfer in a compact heat sink consisting of 26 rectangular microchannels of 300 µ m width and 

800 µ m depth. The relative roughness is estimated to be 4-6 %. Dionized water was used as the 

working fluid. Tests were performed with the Reynolds number range of 162 and 1257. The inlet 
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liquid temperature of 30, 50, and 70ºC and the heating powers of 140 to 450 w were investigated 

(see [5], [57] and [65]). The platform area was 53,10.5 × cm2. It is found that the friction factors 

significantly depart from those of conventional theories, possibly attributable to the surface 

roughness. The temperature is actually dependent on the fluid physical properties which also 

influences the heat transfer characteristics to some extent. Correlations were provided for the 

friction factors. Such pressure losses have also been discussed in pipe bends and in magnetic 

field subject to local variations. For instance, in both of the papers [57] and [65] channel flows 

with transverse magnetic field were considered. As can be seen from the cited references, it is 

important to know the influence of surface roughness on the structure of MHD flows. 

 The main results obtained in this thesis are briefly summarized below. The principles of 

MHD flows are described in the first part of the thesis. The governing equations are presented 

for the case of a conducting fluid moving in a magnetic field perpendicular to the flow of the 

form:  

  z0
e B eB =  with the boundary 0~ =z                                                  (0.1) 

along with the governing equations of Magnetohydrodynamics (MHD). These equations 

represent a combination of   the Euler’s equations of fluid dynamics and the Maxwell’s equations 

of electrodynamics: 

( )Bjp
t

rrrrr
r

×+∆+∇−=∇+
∂
∂

ρ
νν

ρ
ννν 11)(        (0.2) 

( ) BBcurl
t
B

m

rrr
r

∆+×=
∂
∂ νν          (0.3) 

0=ν
rdiv            (0.4) 

0=Bdiv
r

           (0.5) 

Previous works concerning linear approximation to the flow over roughness elements in a strong 

magnetic field [2], [28], and [50] are generalized for the case of the roughness of the surface 

considered in the form  

)2/~cos(~~
0 Lxz πχ=                                    (0.6) 

where the conducting fluid is located in the half space +∞<<−∞> yxz ~,~,0~  and  the external 

magnetic field is of the form z
c eBB 0=  and the boundary 0~ =z  is non conducting. We assume a 

steady current flow with the density xj ej 0
~
=  in the direction of the x-axis. In this case, if the 

surface 0z~ =  is ideally smooth then the flow is absent because electromagnetic force BjF
rrr

×= ~  

is constant and 0=Frot
r

. Suppose that the roughness on the surface 0z~ =  has the rectangular 

form (see Fig.1): 
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 [ ]
⎩
⎨
⎧

>

<<−
=−−+==

,~,0
,~,~

)~()~(~)~(~ ~~ 0
00 Lx

LxL
LxLxxfz

χ
ηηχχ   ( 0.7 ) 

We started part 1 of our work from the result obtained in monograph [71] where  MHD flow of 

an incompressible fluid in an infinitely long plane channel with the constant cross section with 

the walls parallel to the y-axis is considered. The problem discussed in [71] is generalized in our 

work for the case of the surface roughness in the form: 

⎩
⎨
⎧

−∉
+∞<<−∞≤≤−

=
).,(~,0

,~,~),~(
~

~
LLx

yLxLxfz        (0.8) 

We consider dimensionless MHD equations for the fluid velocity ),( zyVy , and the potential for 

the induced current ),( zyΦ in the form: 

,02 =
∂
Φ∂

+−∆
x

HaVHaV yy         (0.9) 

,
x

V
Ha y

∂

∂
=∆Φ      (0.10) 

where Ha denotes the Hartmann number.  

We note here that the fully developed MHD flow is considered in the direction of the y-axis 

while the external magnetic field and the given external current have only x and z components 

which do not depend on the y variable. There is also here the external current, which is parallel 

to boundary z=0 , and that is the case if the roughness is absent. 

Using the equation of continuity we obtain the following relationship 

 2
),(

0
0

Ddzzxjx
π

→∫
∞

 as ∞→Ha .  (0.11) 

It is shown in the thesis that when ∞→Ha  almost all of this full current flow through the cross 

section of Hartmann boundary layer 00 >= xx , 10 −<≤ Haz , so that 

 ( )∫
−1

0
0 .

Ha

x dzzxj = ( )∫
−

−

1

0
0 ,

4

Ha
zHa dzezxHaD ψπ

≈ ∫
−

−

1

02

Ha
zHadzeHaDπ

= ( )11
2

−− eDπ
.    (0.12) 

The roughness of an infinitely long prism is considered ( parallel to y as yy ezxV r),(  with 

constant arbitrary cross-section. Besides, we assert the Bio-savare law which states that the case 

of induced magnetic field does not depend on the variable y. An analytical solution of  the 

problem about MHD  flow of  a  conducting fluid in the half space ( z > 0 ) with a special form 

of roughness on boundary z = 0 is  obtained.[2], [5], [12] & [13]. Besides, the results of 

numerical calculations and streamlines of induced current are presented by graphs. In more 
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details, we investigate the asymptotic of functions ( )zxVy ,  , ),( zxjx  ),( zxjz . As a result, 

several boundary layers of functions ),( zxVy  and ),( zxjz  as ∞→Ha  are obtained. Besides, 

for the evaluation of Hartmann numbers at which the asymptotic formulae  (3.11)-(3.14) are 

correct we compare the numerical results for the component ),( zxjz , obtained by exact formula 

(2.31) and by asymptotic formula (2.70). These numerical results for Hartmann numbers Ha 

=10, 30 , 50 are shown on Fig.3 . For Hartmann numbers 10≥Ha  the results obtained by exact 

formula (2.31) and by asymptotic formula (2.70) practically coincide. The package 

“Mathematica” is used here. 

The streamlines of the current ( )zxj ,  are calculated by the formula:  

                  

( )
( )zxj

zxj
dx
dz

x

z

,
,

=
                                                                                            ( 0.13 ) 

Calculations are done for the Hartmann numbers Ha=5 and Ha=10 and for various values of 

initial conditions ( )0z . 

The solutions of  certain  problems  in  MHD  flow of  conducting  fluid in  the  half space ( z 

> 0 ) are expressed  in terms of improper integrals of the product of some meromorphic function 

and the function exp( xba λλλ coscos22 +− ) where a > 0 , b > 0 and x > 0 which is the x-

coordinate in the Cartesian coordinate system. It is difficult to calculate these integrals 

numerically since the integrands are strongly oscillating at the large x. Methods of calculation of 

such integrals are discussed in part 2 of our work. 

 

 

We considered the improper integral having the form: 

∫
∞

+−

−0
2

2
2

2

4

coscos
)(
)( 22

λ
λλ

λλ
λ
λ λ dxe

Q
P ba

m

n                                          ( 0.14 ) 

It is assumed that all the zeros of polynomial )( 2λQ  are simple and have the form: 
22

kk a−=λ , nk ,...,3,2,1 L= .        ( 0.15 ) 
Using the Fourier cosine transform of the form 

 ∫
∞

=
0

cos)(2)( xdxxfFc λ
π

λ           ( 0.16 ) 

 and evaluating the integral, we obtain 

)(cos 22
0

0
22

22

xabKdx
b

e ba

+=
+

∫
∞ +−

λλ
λ

λ

       (0.17) 

 where 0K (z) is the modified Bessel function of order zero of the second kind.  
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Differentiating (0.17) and making suitable substitutions, we get : 

)(
)(2cos2

22

22
1

0
2

22

xf
xa

xabK
dxeI ba =

+

+
== ∫

∞
+−

π
λλ

π
λ                     (0.18) 

It is shown in part 2 of the thesis that integrals (0.14) are transformed into integrals of monotone 

functions using the convolution theorem for product of two Fourier cosine transforms and the 

formulas (0.17) and (0.18). Similar examples and other applications to some MHD problems are 

provided (see [3], [6], [7], [11] and [27]). We proceed to examine the solution of this problem 

through the use of asymptotic evaluation for different Hartmann numbers with their 

corresponding graphs to showing numerical results of the current’s components.  

  

 Linear approximation to the flow over roughness elements in a strong magnetic field is a 

subject of increasing interest nowadays especially for the fact that this study is directly linked to 

other MHD phenomena such as the MHD studies on the EUROFER corrosion of Pb17-Li at 

550 ° C. Three experimental sessions had been recently done in the Physics Institute in Salaspils 

and had been completed successfully this year [56]. The surface of the corroded metal on the 

wall is described by a simplest periodic structure that reads: 

cos()( 0χ== yZZ πY ⁄ L)                       (0.19)  

where 0χ and L represent the scales of the considered roughness ([18],  [23],  [55] and [56]).   

Results gained in these investigations demonstrated essential influence of magnetic field on the 

corrosion processes both in the intensity of corrosion and its character. New results concerning 

the profile of corrosion are obtained [55], [56]. Note that the results of this study can be used to 

decide how to control the Deuterium-Tritium (D-T) burning plasmas by a strong magnetic field 

drag inside of a reactor [1], [55], [56], [70] and  [73]. Recent results are reported as well in the 

fourth section of this work.  

This  Deuterium-Tritium (D-T) Cycle is: 

 MeVnTD 58.17++→+ α                                                                          ( 0.20 ) 

The components along with the consequences of this important equation are briefly explained in 

the following papers ( [1], [9], [20], [28] ,[32]-[37], [40], [49], [56], [64], [70] and  [73]). 

Many works and experiments were done in the purpose of reducing pressure losses in MHD duct 

channels, two concepts are considered ideally practical for diminishing the pressure losses. The 

first is determined by an advantageous channel routing and the other relies on the reduction of 

the electrical conductivity of the channel. Because of the fact that an advantageous channel 

routing is depending mainly on the corrosion rate of the channel’s wall, for this reason and on  

third part of our work we overlook the investigation of corrosion phenomena in EUROFER steel 
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in Pb17-Li stationary flow exposed to a magnetic field as for being one of the candidate 

materials used for fusion reactors[1], [9], [20], [28], [32]-[37] , [40] , [49] , [51], [55] , [56] , [62] 

, [70] and  [73]  

 

 

 

The fourth part is devoted to the analysis of shallow water flow in a weakly nonlinear 

regime using the Ginzburg-Landau equation. One of the major reasons that led to the study of 

this part is the analysis performed in [22] for different quasi-two-dimensional flows (one of the 

examples of such flows is shallow water flow). Calculations presented in [22] showed that the 

values of the Landau’s constants differ by a factor of 3 for two different velocity profiles with 

very similar linear stability characteristics. The analysis in [22] is performed under the 

assumption that the internal friction is a linear function of the velocity. In particular,  for quasi-

two-dimensional flows [20] the internal friction was modelled in [19] by means of the 

Rayleigh’s formula  

uf RR
rr

λ−=                                                                                                                        (0.21)  

In our work we show that for the case where the friction force is a nonlinear function of 

the velocity the changes in the linear stability characteristics resulted in even smaller changes in 

the coefficients of the CGLE. As a result, it is plausible to conclude that the complex Ginzburg-

Landau equation can be used for the analysis of shallow wake flows in a weakly nonlinear 

regime ( [8], [10], [14], [15], [16], [19], [23], [26], [43]-[47], [66] and  [67]). 

It is assumed here that the CGLE (Complex Ginzberg-Landau equation) can be used to describe 

spatio-temporal dynamics of shallow wake flows. We consider the base flow of the form 

)0),(( yUU =
r

                                                                                                                      (0.22) 

where  

2

2 1( ) 1
1 cosh ( )

RU y
R yα

= −
−

.                                                                                                  (0.23) 

We adopt in the present study the profile of the base flow which is suggested in [61] after careful 

analysis of available experimental data for deep water flows behind circular cylinders. The 

parameter R is the velocity ratio: )/()( amam UUUUR +−= , where mU is the wake centerline 

velocity and aU is the ambient velocity, and )1(sinh 1−=α . It is shown in [10] that under the 

rigid-lid assumption the linear stability of wake flows in shallow water is described by the 

following eigenvalue problem: 
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2 2
1 1 1''( ) ' 0

2y yy
SU c SU SU k U k U kUϕ ϕ ϕ⎛ ⎞− + + + − − − =⎜ ⎟

⎝ ⎠
                              (0.24) 

,0)(1 =±∞ϕ                                                                                               (0.25) 

where the perturbed stream function of the flow, ( , , )x y tψ , is assumed to be of the form 

1( , , ) ( ) exp[ ( )] . .x y t y ik x ct c cψ ϕ= − +                                                                                     (0.26) 

Using ( )kT r is the Chebyshev polynomial of degree k , then the collocation points jr  are 

cosj
jr

N
π

= , .,...,1,0 Nj =                                                 (0.27)                 

Applying the collocation method  we obtain the following equation: 

( ) 0B C aλ− =                                                                                                (0.28)                 
where B  and C  are complex-valued matrices and  

1 2( ... ) .T
Na a a a=  

Then our problem is solved numerically by means of the IMSL routine DGVCCG. The critical 

values of the stability parameters ,k S and c for different values of R  are given in Table I (here 

SS
kc max= ). Next, we perform weakly nonlinear analysis in the neighborhood of the critical 

point. As a result, calculations presented in our paper demonstrate that the coefficients of the 

CGLE are not so sensitive to the variation of the parameter R of the base flow and not only the 

Landau constant is not so sensitive to the changes in the profile but all the coefficients of the 

CGLE do not vary too much. The results that support such conclusions are shown in Tables 1 

and 2. This contradicts to what was concluded in [22] that it would be impossible to apply 

methods of weakly nonlinear theory in practice since the base flow profile cannot be determined 

very precisely in experiments.  

 

After so many works and experiments were done in the purpose of reducing pressure losses in 

MHD duct channels, two concepts are considered ideally practical for diminishing the pressure 

losses. The first is determined by an advantageous channel routing and the other relies on the 

reduction of the electrical conductivity of the channel. Because of the fact that an advantageous 

channel routing is depending mainly on the corrosion rate of the channel’s wall, for this reason 

and on  fourth part of our work we overlook the investigation of corrosion phenomena in 

EUROFER steel in Pb17-Li stationary flow exposed to a magnetic field as for being one of the 

candidate materials used for fusion reactors[1], [9], [20], [28], [32]-[37] , [40] , [49] , [51], [55] , 

[56] , [62] , [70] and  [73]  

 ‘ 
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1. FLOW OVER THE ROUGHNESS ELEMENTS IN A STRONG MAGNETIC FIELD 

   1.1 PRINCIPLES OF MHD FLOWS 

The main MHD equations can be derived from the Navier-Stokes equations of fluid 

dynamics and the Maxwell equations. These MHD equations describe the complex couplings 

between the flow variables, i.e. the density, the velocity, the total energy, the pressure tensor, the 

gravitational force, and the magnetic field. As a matter of fact, MHD ( magnetohydrodynamics) 

has a vast range of practical applications such as control over motion of liquid metal in ducts and 

creation of new MHD pumps which do not contain movable elements. In addition to that, MHD 

has also a very important application in astrophysics for the explanation of the nature of the 

earth’s magnetic field presence .[21] & [29] 

 

 The main principles that govern MHD flows are: 

 1. Electric eddy currents flow in a plane perpendicular to the main direction of the flow.  

     They cause the thickness of the wall boundary layer to decrease and wall friction to  

     Increase, i.e. the Hartmann effects. 

 2. If the channel wall is electrically conducting, the eddy currents are back-circuited via this  

     wall. This gives rise to the electromagnetic volume forces contracting the fluid motion.  

     ( We consider here in our case that the channel wall is not electrically conducing to reduce 

      the MHD pressure losses ). 

  3. When the channel flow enters and leaves the homogeneous magnetic field zone, i.e., the 

      field boundary zones, eddy currents are generated which likewise cause pressure losses 

      counteracting the flow. 

  4. Another effect occurring both in the fluid flowing transversally and in the fluid flowing 

      parallel to the magnetic field causes turbulence suppression, this laminarization leads to  

      a  big increase in the critical Reynolds number. Here, we expand some important 

      comments on  how to reduce the MHD pressure losses  

The first concept is guaranteed when the coolant flow to be transformed from the poloidal flow 

direction, characterized by slow velocity, to a toroidal flow in narrower channels surmounting 

the original channels and characterized by a higher velocity . The flow in the poloidal direction is 

almost perpendicular to the direction of the magnetic flux density of the plasma holding field and 

is associated with MHD pressure losses. The higher flow velocity guarantees a good heat 

transfer. The abrupt change of flow direction (poloidal-toroidal-poloidal) in the magnetic field 

has two characteristics : Firstly, this elbow constitutes the point of the maximum loading of the 
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first wall. Secondly, the sharp deflection in the elbow might cause de-attachement of flow 

accompanied by the formation of hot spots. To counteract this process, guide plates of baffles 

could be installed in the deflection zone. [29], [57] and [65] . 

The second concept is insulation between liquid and wall both the required pumping power and 

the mechanical stresses in the channel wall might become inadmissibly high. Reduction in stress 

by increasing the wall thickness is not possible because in non-insulated walls the pressure loss 

in a first approximation increases linearly with the wall thickness. A way out of this problem 

could consist in providing an electric insulation between the liquid metal and the supporting 

wall. Two methods are eligible. The most obvious idea would be to coat the inner side of the 

channel wall with an insulating material. However, no suitable material and coating technique 

have been found till this day to achieve an adequate service life if wall is in contact with the 

liquid metal. Therefore, the second method is more promising under which the wall is given a 

sandwich structure. The liquid metal is in contact with a thin (about 1 mm thick) wall supported 

via an electric insulator by the load carrying channel wall. This technique is applied above all for 

the supply and return manifolds of the blanket because the radiation exposure of the insulator is 

negligibly small in these manifolds. Two mathematical models for MHD-flows in a fusion 

reactor blanket have been considered. The first one describes fully-developed flows and the 

second governs non-uniform and non-steady-state flows. This model is derived from 3-D Navier-

Stokes-Maxwell equations by their integration along the direction of the applied magnetic field. 

[1], [29],  [55], [56], [57] and [65] . 
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1.2 THE FORM OF MAGNETIC FIELD AND MHD EQUATIONS FOR FULLY DEVELOPED      

MHD FLOW CAUSED BY THE ROUGHNESS OF THE BOUNDARY 

The MHD flow of an incompressible fluid in an infinitely long channel with the constant 

cross section when the wall is taken parallel to the y~ axis is considered in [71]. It is proved that 

the velocity of a fully developed flow in such channel is: 

yy ezxVV
rr

),(= ,     (1.1) 

and the magnetic field  
→

B   is of the form     

B
r

 = yy ezyxBzxB
rr

),,(),( +⊥ ,    (1.2) 

where                                                                                 

),( zxB⊥

r
= ),( zxBx xe

r
zz ezxB
r

),(+      (1.3) 

Then by substituting (1.2) into the equation div 0=
→

B , we get : 

0=
∂

∂

y
By  , i.e. == ),( zxBB yy ),(),( zxyzxb θ+     (1.4) 

at the condition that  

),( zxBdiv θ−=⊥

→

                          (1.5) 

Further analysis shows that 

,),( constCzx ==θ   0=C  or  0≠C    (1.6) 

and that yy ezxB
→

),(   is the induced magnetic field, ),( zxB⊥

→

 is the given external magnetic field.   

We consider a similar problem about the MHD flow in half-space 0~ ≥z  caused by the 

roughness of the boundary 0~ =z  . In contrast to what is done in monograph [71] it is assumed 

here at the first that the induced magnetic field 
→

iB has the x, y and z components. After that the 

symmetry of the flow is used and it is proved that the induced magnetic field has a single y-

component, i.e. has the form of (1.4) with .0=θ  We consider uniform external magnetic field in 

subsection 1.2.1 and non uniform magnetic field in subsection 1.2.2. 
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1.2.1 THE PROBLEM IN THE CASE OF A UNIFORM EXTERNAL MAGNETIC FIELD 

The geometry of the flow is given on Fig. 1. 

 

L

j
r

{ }0,0,0 BBe =
r

x

y

z

-L

[ ])~()~(~)~(~ ~~
00 LxLxxfz −−+== ηηχχ

yy ezxVzxV rr
),(),( =

 
 

Figure 1. The geometry of the flow in rectangular form. 

 

The conducting fluid is located in the half-space 0~ >z  , +∞<<∞− yx ~,~ . The external magnetic 

field is of the form  : 

z
e eBB rr

0=        (1.7) 

A steady current flows with the density 
→→

= xejj 00  in the direction of the x-axis. If the surface  

0~ =z   is ideally smooth, then the flow is absent because the electromagnetic force 
→→→

×= eBjF  is 

constant and rot 0=
→

F . Suppose further that on the  surface 0~. =z   the roughness is of the form : 

⎩
⎨
⎧

−∉
+∞<<−∞≤≤−

=
).,(~,0

,~,~),~(~
~

LLx
yLxLxfz      (1.8) 

In this case the full current is equal to 0jj
rr

= + )~,~( zxj
r

and the flow of the fluid with velocity   

yyy ezyVV
rr

)~,~(
~

=    (1.9) 

arises in the opposite direction of the y~ -axis (see Fig.1)  



 24

 

We will prove that the induced magnetic field 
→

iB in this case has the form   

y
ii ezxBB

rr
)~,~(

~~
=    (1.10) 

and the MHD equations for the fluid velocity ),( zyVy  and for the potential of the  

induced current ),( zyΦ , using the dimensionless variables,  have the form 

,02 =
∂
Φ∂

+−∆
x

HaVHaV yy    (1.11) 

,
x

V
Ha y

∂

∂
=∆Φ

  
(1.12) 

where 2222 // zx ∂∂+∂∂=∆ , ρνσ /0 LBHa =   is the Hartmann number and where νρσ ,,  

are, respectively, the conductivity, the density and the viscosity of the fluid.  We use the MHD 

equation of incompressible fluid and the Ohm’s law (see[29], [50] and [58]) : 

⎟
⎠
⎞⎜

⎝
⎛ ×

ρ
+∆ν+

ρ
−=⎟

⎠
⎞⎜

⎝
⎛ ∇ BjVPgradVV

~~1~~1~~ rrrrr
,  (1.13) 

⎟
⎠
⎞⎜

⎝
⎛ ×+Φ−σ=⎟

⎠
⎞⎜

⎝
⎛ ×+σ= BVgradBVEj

~~~~~~~ vrvrrr
, (1.14) 

where  2

2

2

2

2

2

~~~ zyx ∂
∂

+
∂
∂

+
∂
∂

=∆ ,    
z

V
y

V
x

VV zyx ~~~
~

∂
∂

+
∂
∂

+
∂
∂

=∇
r

. 

In our case  

yy ezxVV
rr

),(~~
= ,         (1.15) 

 ,)~,~(
~

ei BzxBB
rrr

+=      (1.16) 

where iB
~r

 is the induced magnetic field. 

First , we prove that 

y
ii ezxBzxB

rr
)~,~()~,~(

~
=   (1.17) 

at the condition that the vector of the induced current has the form 

zzxx ezxjezxjzxj
rrr

)~,~()~,~()~,~(
~

+=   (1.18) 
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and it will be shown as the corollary that the vector of fluid velocity is given by (1.15). For this 

purpose we use the Bio-Savare law, according to which the induced magnetic field vector Bd
r

 

created by an element ld
r

of infinitely thin wire  directed along the current I
r

 is equal to 

3

~

MM

MM

r
rldIBd
′

′×
= r

rr
r

,  (1.19) 

where MMr ′
r

is a radius vector connecting the point ldzyxM
r

∈′′′′ )~,~,~(  and the point of 

observation )~,~,~( zyxM  (see Fig. 2): 

zyxMM ezzeyyexxr
rrrr

)~~()~~()~~( ′−+′−+′−=′ . (1.20) 

 

 

Figure 2. Magnetic induction Bd
r

 caused by elementary current lId
r

. 

 

Without loss of generality we can choose the point of observation M (0, 0, 0) in the origin. For 

each point )~,~,~( zyxM ′′′′ in the fluid we always can choose the symmetric point )~,~,~( zyxN ′′−′′  

with respect to point M (0, 0, 0). We consider the magnetic induction Bd
r

 caused by elementary 

current lId
r

 passing through the point )~,~,~( zyxM ′′′′  and by elementary current ldI
r

1  passing 

through the symmetric point )~,~,~( zyxN ′′−′′ . ( see figure 3) Here I
r

 and 1I
r

  are the currents with 

density )~,~(
~

zxj
r

 given by formula(1.18). 

Since vector )~,~(
~

zxj
r

 doesn’t depend of variable y~ we have in our case that II
rr

=1   

Then according to formula(1.19) we have 

( )MNMMM
rrlDdBd ′′ +×=
rrrr

  
(1.21) 

ld
r

M ′

I
r

Bd
r

MMr ′

r

M
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where  3−
′= MMrID , zzxx edledlld

rrr
+= ,                       (1.22)  

( )zyxMM ezeyexr
rrrr ′+′+′−=′

~~~ , ( )zyxMN ezeyexr rrrr ′+′−′−=′
~~~ .       (1.23) 

Substituting (1.22) , (1.23) into (1.21) we obtain: 

( ) ( )zxzzxx ezexedledlDBd
rrrrr
′+′×+−= ~2~2   

or 

( ) yzx edlxdlzDBd rr
′−′= ~2~2 .      (1.24) 

Summing formula (1.24) over the whole elements ld
r

 in the fluid we obtain formula (1.17), 

which completes the proof. 

In order to obtain equations (1.11), (1.12) we substitute vectors V
~r

 and iB
~r

  from (1.15), (1.16) 

and (1.17) into equations(1.13), and (1.14).  We get : 

yy ezxVV
rr

),(~~
= ,  y

i
z ezxBeBzxB

rrr
)~,~(~)~,~(

~
0 += .        (1.25) 

Consequently 

( ) xyy
i

zyy ezxVBezxBeBezxVBV
rrrrrr

),(~)~,~(~),(~~~
00 =+×=× ,      (1.26) 

( ) ( )y
i

zxy eBeBeVBgradBj
rrrvr ~~~~~

00 +×+Φ−σ=× , i.e. 

⎭
⎬
⎫

⎩
⎨
⎧

+−
∂
Φ∂

+
∂
Φ∂

−
∂
Φ∂

=× z
i

yyyx
i

z
i

y eBVBeVBeB
z

eB
x

e
x

BBj rrrrrrr ~~~~
~
~~

~
~

~
~~~

0
2

00σ
,      (1.27) 

0
~~
=⎟

⎠
⎞⎜

⎝
⎛ ∇ VV

rr

.       (1.28) 

Substituting (1.27) and (1.28) into (1.13) and projecting on the y axis we obtain : 

Figure 3. Symmetric representation needed to the proof of formula (1.24) [71] 

),,( zyxN ′′−′ ),,( zyxM ′′′
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⎥
⎦

⎤
⎢
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⎡
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∂
Φ∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂

∂
−= )~,~(~

~
)~,~(~

)~,~(~
~~~

)~,~,~(~10 2
002

2

2

2

zxVB
x

zxBzxV
zxy

zyxP
yy ρ

σν
ρ

.  (1.29) 

Since all of the terms in equation (1.29) except for the term yP ~/~
∂∂ , do not depend on variable 

y~  then term  yP ~/~ ∂∂  also must not  depend on variable y~ , i.e. it must be 

),~,~(~)~,~(~)~,~(~
~

211 zxFyzxFPzxF
y
P

+=⇒=
∂
∂   (1.30) 

where 1F  and 2F  are the arbitrary functions.  

Substituting (1.30) and (1.27) into (1.13) and projecting on the x and z axis we obtain the 

following two equations: 

0 = 
ρ
y~ ,~

~
~

1
~

21 iB
zx

F
x
F

∂
Φ∂

+
∂
∂

−
∂
∂

ρ
σ

ρ
 (1.31) 

0 =  ).~
~

(~
1

~
~

0
21

y
i VB

x
B

z
F

z
Fy

+
∂
Φ∂

−+
∂
∂

−
∂
∂

ρρ
  (1.32) 

Since all the terms located on the right hand sides of equations (1.31) and (1.32) except the first 

ones do not depend on y~ ,  then the first terms in these equations also do not depend on y~ , i.e. it 

must be 

,0~
1 =

∂
∂

x
F    ⇒=

∂
∂ 0~

1

z
F    .1 constCF ==  (1.33) 

Consequently, equations (1.30)-(1.32) are of the form: 

C
y
P
=

∂
∂

~
~

 (C is a constant)        (1.34) 

)~.~(~)~.~(
~

2 zxFyCzxP +=⇒ ,     (1.35) 

iB
zx

zxF
~

~
~

)~,~(2

∂

∂
=

∂
∂ ϕσ , (1.36) 

).
~

~
~

(~
)~,~(

0
2

y
i VB

x
B

z
zxF

−
∂
Φ∂

=
∂

∂
ρ   (1.37) 

Since in the case of our problem the external gradient of pressure is absent, then 

in equation(1.34) and (1.35) we must have : 
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C = 0, ).~,~()~,~(
~

2 zxFzxP =  (1.38) 

So, equation (1.29) becomes now of the form: 

.0)~,~(
~

~
)~,~(

~
)~,~(

~
~~

2
002

2

2

2

=
⎥
⎥
⎥

⎦

⎤

⎢
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⎣

⎡
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∂
Φ∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂
∂ zxVB

x
zxBzxV

zx yρ
σν

          

(1.39) 

We use now the dimensionless quantities by taking the values 
2

0 /,,,/, LBLL σρννσρννν as the scales of length, velocity, magnetic field, potential 

and current, respectively.  

To obtain equation (1.12) , it is enough to apply operation of divergence to equation (1.14)  

and use the equation of continuity 0
~
=jdiv

r
 and equation (1.26): 

yy ezxVdivB
r

)~,~(
~~

0 0+Φ∆−= , (1.40)

  

i.e. 

y

V
B y

~

~
~

0

∂

∂
=Φ∆ . (1.41) 

Passing in formulae (1.41) to the dimensionless variables, we obtain equation (1.12). 

To obtain pressure )~,~(
~

zxP  we must know function ),~,~(2 zxF i.e. we must use a system of the 

nonlinear equations (1.36) and (1.37). First, we can solve the linear system of equations (1.11) 

and (1.12) with the corresponding boundary conditions and obtain functions )~,~(
~

zxVy and ).~,~(
~

zxΦ  

After that we can obtain the induced magnetic field iB , using equations ,
~
Φ= gradrotBi  

.0=idivB  As a result, the right hand sides of equations (1.36) and (1.37) will be known 

functions and we get the function  2)~,~(
~

FzxP = )~,~( zx from the system  (1.36) and (1.37) up  to 

an  arbitrary constant. 
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1.2.2 THE PROBLEM IN THE CASE OF A NON UNIFORM EXTERNAL MAGNETIC FIELD 

   Assume that the external magnetic field can be represented in the form: 

→

⊥

→

= ie BB )~,~( zx = zzxx ezxBezxB
rr

)~,.~()~,~( +  (1.42)  

Since vector 
→

eB does not depend on the y variable, the formula for 
→

iB ),(
.~.~
zx has the same form as 

in section 1.3.1:  

iB
r

)~,~( zx = iB )~,~( zx .ye
r

 (1.43) 

In this section only the MHD equations and pressure )~,~(
~

zxP are changed. 

We have  

yy ezyVV
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= , (1.44) 
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~

zxBB i
rr
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r

)~,~(
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~
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Substituting (1.44), (1.45) and (1.48) into (1.13) and projecting the resulting equation on the y 

axis, we obtain: 
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As in section 1.2.1, it follows from (1.49) that  

)~,~(~
~

3 zxF
y
P
=

∂
∂  ),~,~(~)~,~(

~
43 zxFyzxFP +=⇒  (1.50) 

where 3F  and 4F  are arbitrary functions. Substituting (1.44),  (1.45)  and (1.50) into (1.13) and 

projecting the resulting equations on the x and z axes, respectively, we obtain: 

−=0 ,
~~

~
~

~~
~ 43 i

yx BVB
zx

F
x
F

y ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

∂
Φ∂

+
∂
∂

−
∂
∂

− σ  (1.51)  

z
F

z
F

y ~~
~ 43

∂
∂

−
∂
∂

− .
~

~
~

~
~ 2

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

∂
Φ∂

−
∂
Φ∂

+
→

⊥ yxz VBB
z

B
x

σ  (1.52) 

It follows from (1.51) and (1.52) that  

.0~,0~ 3
33 constCF
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Consequently, equations (1.50)-(1.52)  are of the form: 
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As in section 1.2.1  the constant C = 0, i.e.  

)~,~(
~

zxP = 4F ).~,~( zx  (1.57)  

Equation (1.49) can be rewritten in the form: 



 31

yV
zx

~
~~ 2

2

2

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂ν + ( ) .0

~
~
~

~
~

22 =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−

∂
Φ∂

−
∂
Φ∂

yzxxz VBBB
z

B
x

σ  (1.58)  

To obtain the second equation it is sufficient to apply the operation of divergence to equation 

(1.14) and use the equation of continuity :0
~

=jdiv
r
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The linear system (1.58)-(1.60) with corresponding boundary conditions on the boundary  0~ =z  

has a unique solution. For a certain form of the given functions )~,~( zxBx and zB )~,~( zx  one can 

find an analytic form of this solution. In general case, this solution may be obtained only by 

numerical methods. In this section we have considered the fully developed MHD flow in the 

direction of the y axis. The external magnetic field and the given external current has only x and 

z components, which do not depend on the variable y. The pressure gradient is absent in the y-

direction. It is proved, using the symmetry of the flow in this case, that induced magnetic field 

has only a y-component. The system of MHD equations for the velocity of fluid and for the 

potential of the induced current is obtained. Also the equations for the x and z components of 

pressure gradient are obtained. It is also proved that the pressure of fluid in the given case is a 

function depending on the x and z variables. 
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1.3 ANALYTICAL SOLUTION OF THE MHD PROBLEM TO THE FLOW OVER THE 

ROUGHNESS ELEMENTS USING THE DIRAC DELTA FUNCTION 

  

 In the designing of the present reactor Tokamak the value of the Hartmann boundary layer in a 

strong magnetic field becomes commensurable with the size of the roughness of the surface of a 

channel’s wall. Therefore, it is needed to study the influence of the roughness of the surface on 

the MHD flow of the conducting metal, which is planned to use in the system of the cooling of 

the reactor.  

The MHD problem on the flow of conducting fluid in the half space, arising due to the 

roughness of the surface in the form )~(~~~
0 xfz χ=  with the conditions that the values )~(~ xf  and 

)~(~ xf ′  are small is solved in [5]. These assumptions allow one to transfer the boundary 

condition for potential of the current )~,~(~ zxΦ  from the surface )~(
~~~

0 xfz χ= to the plane 0~ =z  

and neglect the term xxxf ~/)0,~(~)~(~
∂Φ∂′ in the boundary condition. Without this simplification 

one obtains an integral equation for unknown function xx ~/)0,~(~ ∂Φ∂ , which can be solved only 

numerically. In this section this problem is solved for the case when the roughness of surface 

xfz ~(~~~
0χ= ) has the rectangular form: =z~ 0

~χ , if ),(~ LLx −∈  and ,0~ =z  if ].,[~ LLx −∉  As a 

result the derivative xf ~(~′ ) in the boundary condition is expressed through the Dirac delta 

function and instead of an integral equation for the function xxxf ~/)0,~(~)~(~
∂Φ∂′  an unknown 

constant xL ~/)0,(~ ∂Φ∂  appears in the process of solution. This fact allows one to solve this 

problem analytically and estimate the error due to the neglected term xxxf ~/)0,~(~)~(~
∂Φ∂′  in above 

mentioned boundary condition. In addition,  the asymptotic of this problem in a strong magnetic 

field is obtained. 

 
1.3.1 THE STATEMENT OF THE PROBLEM 

 

The geometry of the flow is shown on Fig.4. The conducting fluid is located in the half 

space +∞<<∞−> yxz ~,~,0~ . The external magnetic field has the form  

 
 z0

e B eB = . (1.61) 
 

The boundary 0~ =z  is not conducting. A steady current flows with the density xj ej 0
~
=  in 

the direction of the x-axis. If the surface 0z~ =  is ideally smooth then the flow is absent because 
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the electromagnetic force BjF
rrr

×= ~  is constant and 0=Frot
r

. Suppose that on the surface 0z~ =  

there is the roughness of the rectangular form (see Fig.4): 

 

 [ ]
⎩
⎨
⎧

>

<<−
=−−+==

,~,0
,~,~

)~()~(~)~(~ ~~ 0
00 Lx

LxL
LxLxxfz

χ
ηηχχ  (1.62) 

 

where )~(xη  is the Heaviside step function:
⎩
⎨
⎧

>
<

=
.0~,1
,0~,0

)~(
x
x

xη  (1.63) 

 
In this case the full current is equal to )z~,x~(0 jjj +=  and the flow of the fluid with the velocity 

yy zyV eV )~,~(~=  arises in the direction opposite to the y~  axis (Fig.1). 

We will deduce the boundary condition for the potential )y~,x~(~Φ  of an electrical field on the 

surface )~(~~~
0 xfz χ= . The normal component of the current on this surface must be equal to zero 

because the boundary )~(~~~
0 xfz χ=  is not conducting, i.e. it must be 0=⋅nj  on the surface (n is 

the unit normal to the surface).  

Using formula )~(~~1/)]~(~~~[ 22
00 xfxfzgrad ′+−= χχn  we obtain 

 

 [ ] )~(~~1/)~(~~ 22
00 xfxf zx ′++′−= χχ een , (1.64) 

 
where                                       
                                                    [ ])~()~()~(~ LxLxxf −−+=′ δδ , (1.65) 

)~(xδ  is the Dirac delta function. 

Substituting n  from (1.64) and ( ) zzxx zxjzxjj eej )~,~(~)~,~(~~
0 ++=  into 0~

=⋅nj  and using 

formula [ ]BVΦj ~~~~
×+−= gradσ , i.e. xjx

~/~~ ∂Φ∂−= σ ,  zjz
~/~~ ∂Φ∂−= σ  on the surface, where 

0~ =V , we obtain the boundary condition for the potential )~,~(~ zxΦ : 

 

 )~(~~~
0 xfz χ= :   ⎥

⎦

⎤
⎢
⎣

⎡
′

∂
Φ∂

−′=
∂
Φ∂

− )~(~
~)~(~~

~
~

00 xf
x

xfj
z

σχσ , (1.66) 

where  function )~(~ xf ′  is given by (1.65). 

The only approximation which is made in this section is the following: we transfer the boundary 

condition (1.66) from the surface )~(~~~
0 xfz χ=  to the plane 0~ =z , i.e. we only assume that  the 

value )~(~~
0 xfχ  is small.  As a result, we obtain the boundary condition for the potential in the 

form  



 34

 0~ =z :   [ ] [ ])~()~(~/~~~/~ 1
00 LxLxxjz −−+⋅∂Φ∂+−=∂Φ∂ − δδσχ . (1.67) 

 

We do not neglect the term x~/~ ∂Φ∂  in the boundary condition (1.67) and as a result we obtain 

the new coefficient in the solution used in paper [4].  

We use the following dimensionless quantities using the values L, L/ν , 0B , L//σρνν , 

2/ Lρνσν  as  scales of length, velocity, magnetic field, potential and current, respectively. 

Here  σ , ρ , ν  are, respectively, the conductivity, the density and the viscosity of the fluid. Then 

the MHD equations and the boundary conditions have the form (see [28]): 

 

 

0x/HaVHaV y
2

y =∂Φ∂⋅+−∆ ,   x/VHa y ∂∂⋅=∆Φ  ,                                  (1.68),(1.69) 

 

:0z =   0Vy = ,  [ ] [ ])1()1()0,(/ 0 −−+⋅+−=∂Φ∂ xxxFAz δδχ , (1.70),(1.71) 

 

0,0V:zx y
22 →Φ→∞→+ , (1.72) 

 

where 2222 // zx ∂∂+∂∂=∆ , ρνσ /0 LBHa =  is the Hartmann number, )/(2
0 ρνσνLjA = , 

L/~
00 χχ =   and 

0

)0,(
=∂

Φ∂
=

zx
xF .         (1.73) 

 

 

1.3.2 THE SOLUTION OF PROBLEM (1.68)-(1.72) 

 

 In order to solve problem (1.68)-(1.72) we use the symmetry of this problem with respect 

to x: the function Vy(x,z) is an even function, ),( zxΦ  is an odd function with respect to x. This 

means that the functions Vy(x,z) and ),( zxΦ  satisfy additional boundary conditions: 

 0)0,(,0:0 =Φ=
∂

∂
= x

x
V

z y . (1.74) 

 Therefore, problem (1.68)-(1.72) can be solved by means of Fourier cosine and Fourier 

sine transforms (see[5]). Namely, we apply the Fourier cosine transform with respect to x to 

equation (1.68) and to Vy  in boundary condition (1.70) and the Fourier sine transform to 

equation (1.69) and to z∂Φ∂ /  in boundary condition (1.71), that means, by  substituting:  
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 ∫
∞

=
0

cos),(2),( dxxzxVzV y
c

y λ
π

λ , (1.75) 

 ∫
∞

Φ=Φ
0

sin),(2),( dxxzxzs λ
π

λ . (1.76) 

We obtain the following system of ordinary differential equations for unknown functions 

),( zV c
y λ , ),( zs λΦ : 

 02
2

2
2 =Φλ+−+λ− sc

y

c
y

y HaVHa
dz
Vd

V , (1.77) 

 02

2
2 =λ+

Φ
+Φλ− c

y

s
s VHa

dz
d . (1.78) 

We apply also transforms (1.75) and (1.76) to boundary conditions (1.70) and (1.71): 

[ ] λ
π

χ sin2)0,1(,0:0 0 FA
zd

dVz
s

c
y −=

Φ
== ; ,0,: →Φ∞→ sc

yVz  (1.79),(1.80) 

where  
x

F
∂
Φ∂

=)0,1(  at x=1, z=0 (1.81) 

is an unknown constant. The solution of the problem (1.77)-(1.80) has the form: 

                         [ ] ( )zkzks ekekAFz 12
2120 2

sin)0,1(2),( ++−=Φ
λ
λ

π
χλ  , (1.82) 

 [ ] ( )zkzkc eeAFzV 21

2
sin)0,1(2),( 0 −+−=
λ
λ

π
χλ ,                                   (1.83) 

 where  

                          )( 22
1 µµλ ++−=k , )( 22

2 µµλ −+−=k , Ha=µ2 .      (1.84)                     

Applying the inverse Fourier sine and cosine transforms to formulae (1.82), (1.83), we obtain the 

solution of problem (1.68)-(1.72), containing unknown constant F(1,0): 

[ ] ( ) λλ
λ
λ

π
χ

xdekekAFzx zkzk sinsin)0,1(),(
0

221
0 12∫

∞

++−=Φ ,  (1.85) 

[ ] ( ) λλ
λ
λ

π
χ xdeeAFzxV zkzk

y cossin)0,1(),(
0

0 21∫
∞

−+−= .                                        (1.86)  

The components xj  and zj  of the induced current density are obtained from the formula  
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 [ ]BVj ~~)~,~(~~
×+Φ−= zxgradσ , (1.87) 

 

where yy zxV eV )~,~(~~ = , zy eeB 0)~,~(~~ BzxB i
y += . (1.88) 

In the dimensionless quantities formula (1.87) has the form  

 

 BVj ×+Φ−= Hazxgrad ),( , (1.89) 

 

where yy zxV eV ),(= , zy eeB += ),( zxBi
y . (1.90)

  

Substituting (1.90) into (1.89) we obtain 

 

 xej ),(),( zxHaVzxgrad y+Φ−= . (1.91) 

It follows from (1.91) that 

 ),( zxHaV
x

j yx +
∂
Φ∂

−= ,  
z

jz ∂
Φ∂

−=  (1.92) 

or, using formulae  (1.85), (1.86) and (1.84),  

 ( ) λ
λ

λλ
+−= ∫

∞

dxekekDj zkzk
x

cossin

0
21

21 , (1.93) 

 ( ) λλλ+−= ∫
∞

xdeeDj zkzk
z sinsin

0

21 , (1.94) 

                                   [ ])0,1(0 FAD −=
π
χ

. (1.95) 

For the evaluation of unknown constants F(1,0) and D in formulae (1.85), (1.86), (1.93) and 

(1.94) it is necessary to use integral (1.85) and evaluate the limit 

 

                                     F(1,0)= ( ) λ
λ

λλ dekekD zkzk

z ∫
∞

+→
+

0
210

cossinlim 12 .                              (1.96)   

Differentiation with respect to x  under the integral sign in (1.85) is correct in the region 

+∞<≤+∞<≤< xzz 0,0 0  because this integral , also as the corresponding integral (1.96) of 

partial derivative with respect to x  of integrand in (1.85) is majorized in this region. However, if 

we substitute 0=z  using the integral sign in (1.96), we obtain the divergence of the integral, 

which converges only in the sense of Abel (see [5]): 
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 λ
λ
λµλλ

λ
λµλ δλ

δ
dedI 2sinlim2sin 22

00

22

0
+=+≡ −∞

+→

∞

∫∫  (1.97)  

 

or, after evident transformations 

 

∫∫
∞

−

+→

∞
−

+→
+

++
≡

0
0

0
22

2

0
.2sinlim2sin λλλ

λ
λ

λµλ

µ δλ

δ

δλ

δ
dedeimlI                                       (1.98) 

 

The first integral on the right hand side of (1.98) converges in the usual sense, but the second 

integral converges only in the sense of Abel and equal to ½ (see [5]). However, such a method 

gives the solution, which tends to zero as Hartmann number Ha tends to infinity. The last 

contradicts to the physical sense of the problem. Therefore, it is needed to transform integral 

(1.85) to such form that, after passing to the limit as 0+→z  we would obtain the integral 

converging in the usual sense.  For this purpose we use the formulae:[74] 

 

 ( )22

0
122

cos
22

azK
az

zdae z +µ
+

µ
=λλ∫

∞
µ+λ− , (1.99) 

( ) ( )∫
∞

+−
⎥
⎦

⎤
⎢
⎣

⎡
+−+

++
=+

0

22
1

22
222

2

22

22 cos
22

azKazK
az

z
az

dae z µµµµλλµλ µλ  ,   (1.100)     

 

where 0≥a , 0>z  and  )(zK ν is the modified Bessel function of the second kind of order   ν  

(ν =1, 2). As a result, we obtain (the details are found in [4]): 

 

 
( )

∫
+

− +

+µ
µ⋅µ⋅−=

1

1
22

22
1),(

x

x
y dt

tz

tzKzshzDzxV , (1.101) 

 [ ] ( )zxVxFxFzchDzxj yx ,)1()1(),( µ+−−+µ⋅= , (1.102) 

where  

 ( ) ( ) dttzKtzK
tz

z
tz

aF
a

∫ ⎥
⎦

⎤
⎢
⎣

⎡
+−+

++
=

0

22
1

22
222

2

22
)( µµµµ . (1.103) 

The evaluation of integral (1.94) gives: 

 
( ) ( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++

++
−

−+

−+
⋅=

22

22
1

22

22
1

)1(

)1(

)1(

)1(
),(

xz

xzK

xz

xzK
zchzDzxjz

µµ
µµ .   (1.104) 
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We transform ∂Φ/∂x, using formulae (1.85), (1.99) and (1.100): 

 ( ) ( ) +
⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+−+

++
−=

∂
Φ∂

∫
=

dttzKtzK
tz

z
tz

zchD
x x

2

0

22
1

22
222

2

22
1

µµµµµ  

 ( )
⎭
⎬
⎫

+
+

⋅+ ∫ dttzK
tz

zshz
2

0

22
122

2 1 µµµ . (1.105) 

 

The integrals on the right hand side of (1.105) diverge if .0=z To overcome this difficulty, we 

perform the following transformation. First we use the substitution 

 

                                      ξ= zt ,  ξ= zddt .                                                       (1.106) 

 

Then it follows from formula (1.105) that 

( ) ( )
⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−+

++
−=

∂
Φ∂

∫
=

ξξµξµ
ξ

µ

ξ

µµ dzKzKzzchD
x

z

x

2

0

2
1

2
222

1

11
11

+ 

( )
⎪
⎭

⎪
⎬

⎫
ξξ+µ

ξ+

µ
µ⋅µ+ ∫ dzKzzsh

z
2

0

2
12

1
1

. (1.107) 

In order to pass to the limit as 0+→z  in  (1.107) we use the formula 

 
n

n z
nzK ⎟

⎠
⎞

⎜
⎝
⎛−≈

2)!1(
2
1)( , ,...3,2,1=n  at 0+→z , 

i.e.                          
z

zK 1)(1 ≈ , 22
2)(
z

zK ≈  at 0+→z .                                             (1.108) 

As a result we obtain from formula (1.107) that 

 
( )

ξ
ξ+

µ⋅µ−ξ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

ξ+
−

ξ+
−=

∂
Φ∂

∫∫ +→+→
=

+→
dzshDd

z
D

x

z

z

z

z
x

z

2

0
20

2

0
2220

1
0 1

1lim
1

1
1

21limlim . (1.109) 

 

The second limit in the right hand side of formula (1.109) is equal to zero, but the  

first limit gives undefined expression of the form 
0
0  because 

 
( ) ( ) 21

2
1

1
1

2

0
22

0
222

π
−ξ

ξ+
=ξ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

ξ+
−

ξ+
∫∫
∞∞

dd =0. (1.110) 
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Consequently, from formula (1.109) we obtain 

( )
=ξ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

ξ+
−

ξ+
−=

∂
Φ∂

∫+→
=

+→
d

z
D

x

z

z
x

z

2

0
2220

1
0 1

1
1

21limlim
2

2
41

1
41

2lim 2

2

2

2

0

D
z

zz

D
z

−=⎟
⎠
⎞

⎜
⎝
⎛−

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
−

⎟
⎠
⎞

⎜
⎝
⎛ +

−=
+→

.

 (1.111) 

It follows from (1.111) and (1.95) that 

 DF
2
1)0,1( −= , i.e. [ ].)0,1(

2
)0,1( 0 FAF −

π
χ

−=  (1.112) 

 

We obtain the unknown constant F(1,0) from equation (1.112): 

 

π
χ

−π
χ

−=

2
1

1
2

)0,1(
0

0 AF . (1.113) 

Consequently, the coefficient D, which is the unknown coefficient in the  (1.101), (1.102)  

and (1.104), is given by 

 [ ]=−= )0,1(0 FAD
π
χ

0

2
1

1
0

0 >
−

π
χπ

χ
A  if π<χ 20 . (1.114) 

We remind that L/~
00 χ=χ  is the single small parameter in our problem. The inequality 

π<χ 20  gives the natural restriction at  which the y-component of the velocity ),( zxVy  in 

formula (1.86) is negative, (that is, corresponds to the physical sense of this problem (see Fig.4). 

 

 It is important to note that if we would neglect the term x∂Φ∂ /  in boundary condition 

(1.67), the way it was done in paper [4] for function f(x) of arbitrary form, we obtain the same 

solution of this problem but at the condition that coefficient D would be equal to πχ /0AD =  

instead of formula (1.114). It gives us the opportunity to evaluate the error which occurs if the 

term x∂Φ∂ /  is neglected in boundary condition (1.67). For example, if 1.02/0 =πχ , then the 

error δ  is equal to 100)19.0/1( ⋅−=δ %, i.e. 11=δ %. 

 

1.3.3 THE ASYMPTOTIC ANALYSIS OF THE PROBLEM AND NUMERICAL RESULTS 

 
 It follows from formula (1.86) that at ∞→Ha   we have −∞→zk1 , 02 →zk  

( everywhere except  the regions 10 −≤≤ Haz  and Haz > , respectively ). 
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Consequently, at ∞→Ha  in region HazHa ≤≤−1  we obtain from formula (1.86) that  

  

 ),(lim zxVyHa ∞→
 ≡ 

⎪⎩

⎪
⎨
⎧

−∉

−∈−
=++−−=

),1,1(,0

),1,1(,
2)]1()1([

2 x

xD
xxVc

π
ηηπ  (1.115)  

where cV =constant  is the  core velocity.  

The region 10 −≤≤ Haz  is the Hartmann boundary layer, where the velocity of fluid is 

changed from zero to the velocity of the flow core cV  = constant, but the region  +∞<< zHa  is 

the distant wake, where the velocity is changed from  cV   to zero: (see Figure 4): 

 

z

H

C

W

cV
r Ha

Ha-1 0=xyV

0 y  
 

Figure 4. The regions of the flow in the cross-section x=0 at ∞→Ha : 

H- the Hartmann layer, 10 −<< Haz ; 

C- the flow core, HazHa <<−1 ; 

W- the distant wake, +∞<< zHa . 

 

It is necessary to note that at large Hartmann numbers the velocity cV   in the core of  flow is 

constant  and does not  depend on  Ha.  At +∞→Ha only the height of core region 

HazHa <<−1  is increased. The asymptotic of the current’s component ),( zxjx in the region 

+∞<<− zHa 1  is obtained from formula (1.93):   

 

 ,0lim =
∞→ xHa

j  +∞<<− zHa 1 . (1.116) 
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The asymptotic of the current component ),( zxjz  at +∞→Ha   is obtained by the exact formula 

(1.104). For this purpose we use the formula that holds when ∞→µ , 0>z , 0>l : 

 zezch µµ 5.0≈ ,  .)(1
le

l
lK µ

µ
πµ −≈  (1.117) 

Then, according to (1.104), the component ),( zxjz exponentially tends to zero at ∞→µ  

everywhere, except for the two regions, bounded by the parabolas: 

 

 ( ) 11 22 =−−+ zxz µµ  and  ( ) 11 22 =−++ zxz µµ ,  ( 1.118 ) 

 

i.e.  bounded  by the parabolas: 

  

 ( )215.0
2
1

+=+ xz µ
µ

   and  ( )215.0
2
1

−=+ xz µ
µ

   ( 1.119 ) 

 

and we can put  0
2
1

≈
µ

  at   ∞→µ   in formula (1.119) . Inside of the two regions, bounded by 

parabolas (1.119), component ),( zxjz  tends to infinity as ∞→µ  by the law  

 zjz /µ≈ ,   (1.120)     

because it follows from (1.104), (1.117), (1.118)  as  ∞→µ  that 

 

( )22 1 xz −+≡l  = ( ) ,1 µµ ≈+ zz  ,1=− zl µµ  (1.121) 

)(1
1 lKzlzch µµµ − ( ) ( )( ) 5.025.0 ze

z

µπµ
µ l−

≈ =  e 1− ( ) .8
5.05.0

⎟
⎠
⎞⎜

⎝
⎛

z
µπ  (1.122) 

 

The asymptotic of functions of the functions ( )zxVy ,  , ),( zxjx  ),( zxjz  are obtained from 

integrals (1.86), (1.93) and (1.94),  using the formula, which holds at  ∞→µ : 

 

 ( ) µµµλ 222
1 +−+=− k =

µ
λµ

µµλ

λµ
2

22
2

22

2

+≈
++

+ ,  (1.123) 

 
µ
λµµλ
2

2
22

2 ≈−+=− k ,  .2 Ha=µ  (1.124) 

Substituting (1.123) and (1.124) into integrals (1.86), (1.93), (1.94) and using the Poisson  
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integral (see [5]), we obtain the asymptotic formulae, which holds for the whole region  

+∞<< z0  as ∞→Ha : 

 

   ( ) ( ),,1
4

),( zxeDzxV zHa
y ψπ −−−=                                                                     (1.125) 

 ( ) ⎥
⎦

⎤
⎢
⎣

⎡ −
+⎥

⎦

⎤
⎢
⎣

⎡ +
=

z
xerf

z
xerfzx 11, ββψ  , Ha5.0=β , (1.126) 

( ) ( )
( )

( )
( )

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−++⎟
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x exexe
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2222 11
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 ( )
( ) ( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+−=

+−−−
− z

x
z

x
zHa

z eee
z

Dj
2222 11

1
2
1 ββπβ . (1.128) 

We see from formula (1.125) that at ∞→Ha  we have: 

 1) Component DVy 2
π−

=  = constant   in region HazHa <<−1 .  

 2). Component yV  is changed from 0    till cy VDV =
−

=
2
π  in region 10 −<< Haz . 

 3). Component yV  is changed from cV  till zero in region  +∞<< zHa .   

In addition, it follows from formula (1.125) that on the lines 1±=x , +∞<< z0  the component 

cy VV 5.0→  as ∞→Ha . That means that the two new boundary layers exist in the regions: 

 εβε <
−

<−
z
x1  and  εβε <

+
<−

z
x1 , ( 1.129) 

where ε   is some  small positive number. In these regions component yV  is changed between 

cV−  and zero. It is impossible to get these two new boundary layers from formula (1.86). 

Similarly, we see from (1.128) that at  ∞→Ha : 

1. Component  zj  exponentially tends to zero everywhere except for the two regions, lying 

inside parabolas (1.119), because in this case both the exponent in the square bracket of 

formula (1.128) tends to zero. 

2. Inside the region bounded by the first or second parabola in (1.119), where one of the 

exponents in the square bracket of (1.128) does not equal to zero, component zjz
µ≈ , 

i.e. tends to infinity as ∞→µ . 

3. Finally, we see from formula (1.127) that at ∞→Ha  the current component ),( zxjx  tends 

to zero everywhere except for the region 10 −<< Haz  because in this region 
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0)exp( ≠−zHa  and the function ( )zx,ψ  tends to 2 everywhere except for the two regions in 

formula (1.129). 

 

 

 
 

 
 

 

 

For the evaluation of Hartmann numbers at which the asymptotic formulae  (1.125)-

(1.128) are correct we compare the numerical results for the component ),( zxjz , obtained by 

exact formula (1.104) and by asymptotic formula (1.128). These numerical results for Hartmann 

numbers Ha =10 , 30 , 50 are shown on Fig.6 . For Hartmann numbers 10≥Ha  the results 

obtained by exact formula (1.104) and by asymptotic formula (1.128) practically coincide. 

Calculations for functions ),( zxVy  and ),( zxjx  by exact formulae (1.86) , (1.93) and by 

asymptotic formulae (1.125) , (1.127) give coincidence at the same Hartmann numbers . 

 

 

 

 

Figure 5. The graphs of the z-component of 
current by exact formula (1.128) (             ) 
and by  formula (1.104) (                )     from 
z=1 (two upper lines) till z=3.5 (two lower 
lines) through .5.0=∆z  Function ),( zxj z  is 
odd with respect to x.  
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On  Fig.7 the numerical results of calculation of the current’s component ),( zxjx  by 

asymptotic formula (1.127) for Hartmann numbers Ha=10, 30 and 50 are shown. We can see, 

that the sign of the function ),( zxjx  is changed in the neighbourhood of the line 1=x , 

+∞<< z0 .   It means that the streamlines of current ( )zxj ,
r

 change their direction to the 

opposite in the neighbourhood of this line.   

It follows from (1.128) that the full current through the cross section 0zz = =constant is 

equal to 

 ( )∫
∞

0
0, dxzxjz  = ( ) →+− −

02
1

2
0

z
HaerfeD Hazπ

2
Dπ

−  as ∞→Ha . (1.130) 

 

The same full current flow   through the cross section 0xx = , +∞<< z0  that follows from 

(1.127) and also from the equation of continuity:  

 

 
2

),(
0

0
Ddzzxjx

π
→∫

∞

 as ∞→Ha . (1.131) 

 

Figure 6. The graphics of the x-component 
of current by asymptotic formula (1.127) 
from z=1 (the upper lines in region 

10 ≤≤ x ) till z=3.5 (the lower lines in 
region 10 ≤≤ x ) through 5.0=∆z . Function 

),( zxj x  is even with respect  to x. 



 45

One can see also from (1.27) that at ∞→Ha  almost all of this full current flow through the 

cross section of Hartmann boundary layer 00 >= xx , 10 −<≤ Haz :  

 

 ( )∫
−1

0
0 .

Ha

x dzzxj = ( )∫
−

−

1

0
0 ,

4

Ha
zHadzezxHaD ψπ ≈ ∫

−

−

1

02

Ha
zHa dzeHaDπ = ( )11

2
−− eDπ . (1.132)   

 

On Fig.8 the streamlines of current ( )zxj ,
r

, obtained by formula 

 

( )
( )zxj

zxj
dx
dz

x

z

,
,

=
  (1.133) 

 

for Hartmann numbers Ha=5 and Ha=10 and for various values of initial conditions ( )0z  are 

shown. The package “Mathematica” is used. Since the function ),( zxjx  is equal to zero in the 

neighbourhood of the point x =1 the results of calculations on Fig.8 in region 10 ≤≤ x  are 

shown . One can see from Fig.8 that when Hartmann number increases then the full current is 

concentrated near the plane z = 0. 

For calculations of streamlines in region +∞≤≤ x1  we use the differential equation 

 

( )
( )zxj

zxj
dz
dx

z

x

,
,

=
. (1.134) 

 

The streamlines of current in this region are shown on Fig.9 for the same Hartmann numbers 

Ha=5 and Ha=10 . One can see from Fig.9 that in the neighbourhood of point x =1 the 

streamlines change directions to the opposite direction in the neighbourhood of this point.    

 

 
 

Figure 7. The streamlines of current ),( zxj
r

in region 10 ≤≤ x at Ha=5 and at Ha=10. 
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Figure 8. The streamlines of current ),( zxj
r

in region +∞≤≤ x1  at Ha=5 and at Ha=10. 

 

 

CONCLUSIONS 

 

1.  The analytical solution of the two dimensional problem on the MHD flow in half space 

0≥z due to the roughness of the boundary of special form is obtained. The roughness with 

constant rectangular cross section is located along the y axis. In this case the external current 

flows parallel to x axis and the external magnetic field is parallel to z axis. The two 

dimensional MHD flow in the direction opposite to y axis arises, only if the roughness of the 

boundary is present. 

 

2. The analytical solution is obtained at the single approximate assumption that the height of 

the roughness is small .The solutions for the y component of the velocity of the fluid and for 

the x component of the induced current are obtained in the form of improper integrals of 

elementary functions. On the other hand, the z component of the induced current is 

expressed through the Bessel function. 

 

3.  The asymptotic solution of the problem at Hartmann number ∞→Ha  is obtained in the 

form of elementary functions. For Hartmann numbers Ha ≥ 10 the exact and the asymptotic 

solutions practically coincide. 

 

4.  Several boundary layers for the velocity of the fluid and for the x and z components of the 

current at large Hartmann numbers are found. 
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5.  The velocity of the fluid in the core  at large Hartmann numbers is constant; that means it 

does not depend on Ha. With the increase of Hartmann number only the height of the core 

region HazHa <<−1  is increased. 

 

6. Using the package “Mathematica” the streamlines of electrical current are presented. The 

induced current at large Hartmann numbers flow only in Hartmann boundary layer 
10 −<< Haz  and along the lines 1±=x , which are the vertical boundaries of the roughness. 

 

1.4 ANALYTICAL SOLUTION OF THE MHD PROBLEM TO THE FLOW OVER THE 

      ROUGHNESS ELEMENTS IN THE FORM OF A STEP FUNCTION 

 

In section 1.3 the MHD problem on the flow of conducting fluid in the half space, arising 

due to the roughness of the surface in the form )~(~~~
0 xfz χ=  with the conditions that the values 

)~(~ xf  and )~(~ xf ′  are small is solved. In this section similar problem for the constant cross-

section of prism bounded by step-function form is solved [3]. 

 

 

1.4.1 THE PROBLEM OVER THE ROUGHNESS ELEMENTS IN A STRONG 

MAGNETIC FIELD 

 

In this section we assume that the roughness of the surface 0~ =z has the form of the step-

function (see Fig.10): 

 

                                
⎪
⎩

⎪
⎨

⎧

>

<<

<

==

Lx

LxL

Lx

xFz
~,0

~,~

~,~

)~(~~
10

11

χ

χ

 (1.135) 

 

or )~(
~

 )~~()~(
~

 ~)~(~~
20110 xfxfxFz χχχ −+== , (1.136) 

where )~()~()~(
~

 1 LxLxxf −−+= ηη ,  )
~~()

~~()~(
~

 112 LxLxxf −−+= ηη . (1.137) 
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x1L1L−L− L

0χ

1χ

z

0
 

Figure 9. The constant cross-section of the roughness in this part 

 

We will deduce the boundary condition for the potential )~,~(~ zxΦ  of an electrical field on the 

surface )~(~~ xFz = . The normal component of the current on this surface must be equal to zero 

because the boundary )~(~~~
0 xfz χ=  is not conducting, i.e. it must be 0=⋅nj  on the surface (n is 

the unit vector of the normal to the surface).  

Using formula )~(~1/)]~(~~[ 2 xFxFzgrad +−=n  we obtain 

 

 [ ] )~(~1/)~(~ 2 xFxF zx ′++′= een , (1.138) 

where  

                   [ ] [ ])~~()
~~()~~()~()~(~)~(

~
11010 LxLxLxLxxF −−+−+−−+=′ δδχχδδχ , (1.139) 

)~(xδ  is the Dirac delta function. 

Substituting the value of n  from (1.138) and ( ) zzxx zxjzxjj eej )~,~(~)~,~(~~
0 ++=  into 0~

=⋅nj  

and using formula [ ]BVΦj ~~~~
×+−= gradσ , i.e. xjx

~/~~ ∂Φ∂−= σ ,  zjz
~/~~ ∂Φ∂−= σ  on the 

surface, where 0~ =V , we obtain the boundary condition for the potential )~,~(~ zxΦ : 

 :)~(
~~ xFz =   ,~

~
)~(

~
~
~

0
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
Φ∂

−′=
∂
Φ∂

−
x

jxF
z

σσ  (1.140) 

where  function )~(
~

xF ′  is given by (1.139). 

As in the previous section we transfer the boundary condition (1.140) from the surface 

)~(
~~ xFz =  to the plane 0~ =z , i.e. we suppose that only the value )~(

~
xF  is small.  As a result, we 

obtain the boundary condition for the potential in the form  

 0~ =z :   [ ] ).~(
~~/

~~/
~ 1

0 xFxjz ′∂Φ∂+−=∂Φ∂ −σ  (1.141) 
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We do not neglect the term x~/~ ∂Φ∂  in boundary condition (1.140) and as a result we obtain 

the new coefficient in the solution used in paper [4].  

We use the following dimensionless quantities where we use the values L, L/ν , 0B , 

L//σρνν , 2/ Lρνσν  as  scales of length, velocity, magnetic field, potential and current, 

respectively. Here  σ , ρ , ν  are, respectively, the conductivity, the density and the viscosity of 

the fluid.  

Then the MHD equations and the boundary conditions have the form (see [3]): 

 

0x/HaVHaV y
2

y =∂Φ∂⋅+−∆ ,      (1.142) 

  x/VHa y ∂∂⋅=∆Φ ,                                        (1.143) 

  0:0 == yVz        (1.144)               

),()]0,([/ xFxFAz ′+−=∂Φ∂     (1.145)               

               =′ )(xF )],()()[()]1()1([ 11010 LxLxxx −−+−++−+ δδχχδδχ                        (1.146) 

0,0V:zx y
22 →Φ→∞→+ ,                                                                           (1.147) 

where 2222 // zx ∂∂+∂∂=∆ , ρνσ /0 LBHa =  is the Hartmann number, 

)/(2
0 ρνσνLjA = , L/~

00 χχ = , L/~
11 χχ =   and 

 
0

)0,(
=∂

Φ∂
=

zx
xF .      (1.148) 

 

1.4.2 The solution of the problem over the roughness in a strong magnetic field   

 

In order to solve problem (1.142)-(1.147) we use the symmetry of this problem with respect 

to x: the function Vy(x,z) is an even function, ),( zxΦ  is an odd function with respect to x. This 

means that functions Vy(x,z) and ),( zxΦ  satisfy additional boundary conditions: 

 0)0,(,0:0 =Φ=
∂

∂
= x

x
V

z y .        (1.149) 

Therefore problem (1.142)-(1.147) can be solved by means of Fourier cosine and Fourier 

sine transforms (see[4]). We apply the Fourier cosine transform with respect to x to equation 

(1.142) and to Vy  in boundary condition (1.144) and the Fourier sine transform to equation 

(1.143) and to z∂Φ∂ /  in boundary condition (1.145), substituting:  
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∫
∞

=
0

cos),(2),( dxxzxVzV y
c

y λ
π

λ ,     (1.150) 

∫
∞

Φ=Φ
0

sin),(2),( dxxzxzs λ
π

λ .     (1.151) 

As a result we obtain the following system of ordinary differential equations for unknown 

functions ),( zV c
y λ , ),( zs λΦ : 

02
2

2
2 =Φλ+−+λ− sc

y

c
y

y HaVHa
dz
Vd

V ,     (1.152) 

02

2
2 =λ+

Φ
+Φλ− c

y

s
s VHa

dz
d .     (1.153) 

We apply also transforms (1.150) and (1.151) to boundary conditions (1.144) and (1.145): 

,121 sin2sin2,0:0 LDD
zd

dVz
s

c
y λπλπ +=

Φ
== ;                                     (1.154) 

 ,0,: →Φ∞→ sc
yVz       (1.155) 

where  ),0,([)],0,1([ 1
01

2
0

1 LFADFAD −
−

=−=
π
χχ

π
χ

                                                    (1.156) 

 
x

LF
∂
Φ∂

=)0,( 1   at  ,1Lx =  z=0, 
x

F
∂
Φ∂

=)0,1(     at    x=1,   z=0,     (1.157) 

are the unknown constants.  

The solution of the problem (1.152)-(1.155) is represented in the form: 

( )zkzks ekekz 12
2122

1),( +=Φ
λ

λ  ],sin2sin2[ ,121 LDD λπλπ +    (1.158)  

( )zkzkc eezV 21

2
1),( −=
λ

λ ]sin2sin2[ ,121 LDD λπλπ + ,   (1.159) 

where  

       )( 22
1 µµλ ++−=k   (1.160) 

 

 )( 22
2 µµλ −+−=k ,    (1.161) 
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and Ha=µ2 .   (1.162)

   

Applying the inverse Fourier sine and cosine transforms to formulae (1.158) and (1.159), we  

obtain the solution of problem (1.142)-(1.147), containing unknown constants F(1,0) and )0,( 1LF  

as : 

( ) ++=Φ ∫
∞

λλ
λ
λ xdekekDzx zkzk sinsin),(

0
2211

12

( ) λλ
λ
λ

xd
L

ekekD zkzk sin
sin

0
2

1
212

12∫
∞

++ ,  (1.163) 

( ) +−= ∫
∞

λλ
λ
λ xdeeDzxV zkzk

y cossin),(
0

1
21  

+ ( ) .cos
sin

0

1
2

21 λλ
λ
λ

xd
L

eeD zkzk∫
∞

−  (1.164) 

The components xj  and zj  of the induced current density are obtained using the formula:  

  [ ]BVj ~~)~,~(~~
×+Φ−= zxgradσ , (1.165) 

where   yy zxV eV )~,~(~~ =  , and (1.166) 

zy eeB 0)~,~(~~ BzxB i
y += . (1.167) 

In the dimensionless quantities, formula (1.165) is of the form : 

            BVj ×+Φ−= Hazxgrad ),( , (1.168) 

where yy zxV eV ),(=  (1.169) 

and zy eeB += ),( zxBi
y . (1.170) 

Substituting  (1.169) and (1.170) into (1.168) we get: 

xej ),(),( zxHaVzxgrad y+Φ−= . (1.170) 

It follows from (1.168), (1.169) and (1.170 ) that  

),( zxHaV
x

j yx +
∂
Φ∂

−=                (1.171) 

 and 
z

jz ∂
Φ∂

−=    (1.178) 

Now using formulae  (1.160), (1.161), (1.162), (1.163) , (1.164)  and (1.171) we get:  
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         ( ) 2
0

211
cossin

21 DdxekekDj zkzk
x −+−= ∫

∞

λ
λ

λλ ( ) ,
cossin 1

0
21

21 λ
λ

λλ
d

xL
ekek zkzk∫

∞

+  (1.173) 

  and    ( ) 2
0

1 sinsin21 DxdeeDj zkzk
z −+−= ∫

∞

λλλ ( ) λλλ xdLee zkzk sinsin 1
0

21∫
∞

+ .                 (1.174) 

For the evaluation of unknown constants )0,(),0,1( 1LFF  or 21, DD  in formulae (1.163), (1.164) 

(1.173) and (1.174) it is necessary to use integral (1.163) and evaluate the limit as: 

   =)0,1(F ( ) 2
0

2101
cossinlim 12 DdekekD zkzk

z
++∫

∞

+→
λ

λ
λλ ( ) λ

λ
λλ

d
L

ekek zkzk

z ∫
∞

+→
+

0

1
210

cossin
lim 12  

                                                                                                                                            (1.175) 

and a similar limit for ).0,( 1LF  Note that the partial derivatives with respect to x  to equation 

(1.163) can be obtained under the integral sign of (1.163) in the region 

+∞<≤+∞<≤< xzz 0,0 0 . This integral, also as corresponding to the integral (1.175) of partial 

derivative with respect to x  of integrand in (1.164) is majorized in this region. However, if we 

substitute 0=z  under the same integral sign in (1.175), we obtain the divergent integral. In fact 

this integral converges only in the sense of Abel (see [5]). For example, for the first integral in 

the right hand side in (1.175), we obtain: 

  λ
λ
λµλλ

λ
λµλ δλ

δ
dedI 2sinlim2sin 22

00

22

0
+=+≡ −∞

+→

∞

∫∫  (1.176) 

or, after evident transformations 

∫∫
∞

−

+→

∞
−

+→
+

++
≡

0
0

0
22

2

0
.2sinlim2sinlim λλλ

λ
λ

λµλ

µ δλ

δ

δλ

δ
dedeI  (1.177) 

The first integral in the right hand side of (1.177) converge in the usual sense, but the second 

integral converge only in the sense of Abel and equal to ½ (see [5]). However, such method 

gives the solution, which tends to zero as Hartmann number Ha tends to infinity. But this 

contradicts the physical sense of the problem. Therefore, it is necessary to transform integral 

(1.163) to such form that after passing to the limit as 0+→z  we would obtain the convergence 

of this integral in the usual sense.   

For this purpose we use the following formulae: 

 ( )22

0
122

cos
22

azK
az

zdae z +µ
+

µ
=λλ∫

∞
µ+λ− , (1.178) 

( ) ( )∫
∞

+−
⎥
⎦

⎤
⎢
⎣

⎡
+−+

++
=+

0

22
1

22
222

2

22

22 cos
22

azKazK
az

z
az

dae z µµµµλλµλ µλ  ,   (1.179) 
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where 0≥a , 0>z  and  )(zK ν is the modified Bessel function of the second kind of order   ν  

(ν =1, 2). As a result, we obtain (for the full details see  [6] and [7]): 

  

        
( )

+
+

+
⋅−= ∫

+

−

1

1
22

22
1

1[),(
x

x
y dt

tz

tzK
DzshzzxV

µ
µµ

( )
],

1

1
22

22
1

2 ∫
+

− +

+Lx

Lx

dt
tz

tzKD µ  (1.180) 

        

       [ ] ( )zxVxLFxLFDxFxFDzchzxj yx ,)]}()([)1()1({),( 1121 µµ +−−++−−+= , (1.181) 

 

where  

        ( ) ( ) dttzKtzK
tz

z
tz

aF
a

∫ ⎥
⎦

⎤
⎢
⎣

⎡
+−+

++
=

0

22
1

22
222

2

22
)( µµµµ . (1.182) 

 

The evaluation of integral (1.174) gives: 

  

     [ ]),,()1,,(),( 121 LzxGDzxGDzchzzxjz +⋅= µµ ,   (1.183) 

 

where                                                                                                                             
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                            (1.184) 

We transform ∂Φ/∂x, using formulae (1.174), (1.178), and  (1.179) :  

  

( ) ( ) +
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⎪
⎨
⎧

⎥
⎦
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⎣
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           ( ) −
⎭
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+
+

⋅+ ∫ dttzK
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⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
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⎣
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⎪
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1
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2
1

1

1 µµµ . (1.185) 
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The integrals located to the right hand side of formula (1.185)  diverge if .0=z  

In order to overcome this difficulty, we perform the following transformation. First we use  

the following substitution: 

 

ξ= zt ,  ξ= zddt .               (1.186) 

 

Then from formula (1.185) it follows that : 
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To pass to the limit at 0+→z  in formula (1.185) we now use the following formula : 
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As a result we obtain from formula (1.187) that 
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The second and the last limits on the right hand side of formula (1.189) are equal to zero, but 

the first and the third limits gives undefined expression of the form 
0
0  and that is mainly because 

of the following equality : 
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Consequently, from formula (1.189) we get: 
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It follows from(1.156) and (1.191) that : 
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Similarly for )0,( 1LF  we obtain: 

 

 =)0,( 1LF .
21

2

1

2
2

1

1

L
D

L
D

−
−

                                                            (1.193) 

We remind that [see formula(1.156)]  
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Consequently formulae(1.192) and (1.193) represent the system of two equations for the two 

unknown constants )0,1(F  and )0,( 1LF ,  i.e. for the two unknown constants 1D  and  ..2D  

Substituting these constants into formulae (1.163), (1.164), (1.173) and (1.174), we obtain the 

solution of problem (1.142)-(1.147). 

 
2. EVALUATION OF IMPROPER INTEGRAL  
 

The solutions of certain problems about MHD flow of conducting fluid in the half space are 

expressed in terms of improper integrals of the product of some meromorphic function and the 

function xba λλλ coscos)exp( 22 +− . Here 0>a  and 0>b  are some parameters, 0>x  is the 

x-coordinate in Cartesian coordinate system (see [7], [4]). It is difficult to calculate these 

integrals numerically since the integrands are strongly oscillating at large x.  

In this chapter these integrals are transformed into integrals of monotone functions using the 

convolution theorem for product of two Fourier cosine transforms. 

 

 

2.1 THE TRANSFORMATION OF INTEGRAL OF PRODUCT OF THE MONOTONE 

FUNCTION AND THE FUNCTION  xba λλλ coscos)exp( 22 +−  

 

We consider the improper integral of the form 

λ
πλ

λλ
λ
λ λ dxe

Q
P ba

m

n

4

coscos
)(
)(

2
20

2

2
22

−

+−
∞

∫ ,                                                                         (2.1) 

where )( 2λnP , )( 2λmQ  are polynomials of degrees n and m, respectively, 0,0, >>≥ banm , 

0>x  are some positive parameters. The point 2/πλ =  is the removable singularity of the 

integrand in (2.1), because in the numerator of this integrand 0cos =λ  at 2/πλ = . At large x 

the integrand in formula (2.1) strongly oscillate what make it difficult to calculate of this integral 

using package “Mathematica”. 

We suppose that all zeros of polynomial )( 2λQ  are simple and have the form: 22
kk a−=λ , 

nk ,...,3,2,1 L= . 
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∫
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=
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 57

is the Fourier cosine transform of function f(x).  

We use the theorem (see [23]): 

if )(λcF  and )(λcΦ  are the Fourier cosine transforms of functions )(xf and )(xϕ , respectively, 

then 
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1cos)()( .                            (2.3) 

in formula (2.3) we make the following substitution: 
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To obtain the functions )(xϕ , )(xf  it is necessary to evaluate the integrals: 

)(

4

coscos
)(
)(2

0
2

2
2

2

1 xdx
Q
P

I
m

n ϕ
πλ

λλλ
λ
λ

π
=

−
= ∫

∞

,                                                           (2.5) 

)(cos2

0
2

22

xfdxeI ba == ∫
∞

+− λλ
π

λ .                                                                   (2.6) 

For evaluation of 2I  we use the known integral in the literature: 
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where )(0 zK  is the modified Bessel function of order 0 of the second kind. 

Differentiating formula (2.7) with respect to a we evaluate integral 2I : 
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where )(1 zK  is the modified Bessel function of order 1 of the second kind. 

For evaluation of integral 1I  we use the residue method (from [6]): 
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at the condition, that )(zϕ  and )(zψ  are the analytical functions in point 0z  and on some small 

neighborhood where 0)( 0 =zψ , 0)( 0 ≠′ zψ . It follows from (2.9), (2.10) that 
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where )1( xsign −  means the sign of )1( x− . 

 Substituting (2.8) and (2.11) into (2.3), using (2.1) and (2.4) and taking into account that  
22 )1(1 xx −=− , we transform integral (2.1) into integral of non-oscillating function: 
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where )(ξϕ  is given by formula (2.11). 

Similarly, we can transform each integral of the form 
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into the right-hand side of formula (2.12) under the condition, that integral (2.13) converges and  
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For example, if we consider the integral  
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with oscillating function xλcos at large x. 

Here  x>0, z>0 are some positive parameters. In this case it follows from  
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(2.4), (2.8), (2.11) that: 
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is the Heavy-side step function, 
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Substituting (2.16), (2.17) and (2.19) into (2.3) we obtain: 
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Integral  (2.20) can be easily evaluated using package “Mathematica” for all values of the 

parameters 0≥x  and 0≥z . As it can be seen from formula (2.20), the advantages of these 

transformations are: 

1. The parameter x goes from an argument of oscillating function cosine into the 

argument of the monotone Bessel function 1K ; 

2. The limits of the integration are changed in the bounded region 10 ≤≤ ξ . 

 

a. APPLICATIONS TO SOME MHD PROBLEMS 

 

The integrals (2.12) and (2.20) are used to evaluate or transform the solution of problems 

about MHD flows arising due to the roughness of the surface (see [4], [2]). 

Consider the following problem. 
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The conducting fluid is located in the half space +∞<<∞−> yxz ~,~,0~ . The external 

magnetic field has the form  

z
e eBB rr

0= .                                                                                                             (2.21) 

The boundary 0~ =z  is not conducting. A steady current flows with the density xejj rr
0=  in 

the direction of the x axis. If the surface 0~ =z  is ideally smooth then the flow is absent. Suppose 

that the roughness on the surface 0~ =z  has the form  

( )xLxfz ~)~(~~~
0 −= ηχ ,  +∞<<∞− y~ ,                                                              (2.22) 

where the height of the surface 0
~χ  is small and )( xL −η  is the Heaviside step function (see 

Fig.1)  where is shown the particular case of )~(~ xf  given by formula 

)()2/~cos(~~
0 xLLxz −⋅= ηπχ ). In this case the full current is equal to )z,x(jjj ~~

0

rrr
+=  and the 

flow of the fluid with the velocity yy e(y,z)VV rr
=  arises in the direction opposite to the y~  axis 

(see Fig.10.). 
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Figure 10. The geometry of the flow in the case of full current 

 

In the dimensionless quantities the MHD equations and boundary conditions, which we 

transform from the surface )~(~~ xfz =  to the surface 0~ =z  at the condition that 0
~χ  is small, have 

the form (see [2]): 

 

0/2 =∂Φ∂⋅+−∆ xHaVHaV yy ,                                                                       (2.23) 

xVHa y ∂∂⋅=∆Φ /  ,                                                                                             (2.24) 

:0=z 0=yV , [ ] ( )dxdfxFAz /)0,(/ 0 ⋅+−=∂Φ∂ χ ,                                      (2.25) 
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0,0:22 →Φ→∞→+ yVzx ,                                                                    (2.26) 

 

where 2222 // zx ∂∂+∂∂=∆ , ),( zxΦ  is the potential of current, ρνσ /0 LBHa =  is the 

Hartmann number, )/(2
0 ρνσνLjA = , L/~

00 χχ =   and νρσ ,,  are, respectively, the 

conductivity, the density and the viscosity of the fluid and  
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In paper [4]) the problem (2.23) – (2.26) is solved when neglecting  the product function 

dxdfxF /)0,(  in boundary condition (2.25), i.e. at the assumption that this product also is small. 

However, in the case when: 
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the solution has the form 
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We can transform ),( zxVy , xj  and zj  using integral (2.20): 

ξξπξµχ
π
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where 
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Integrals (2.34), (2.36), (2.37) are more suitable for calculations using package 

“Mathematica”, than integrals (2.29), (2.32), (2.33). 

In paper [2] the problem (2.23) – (2.26) is solved taking into account the product 

dxdfxF /)0,(  in boundary condition (3.5) but for the case, that 

[ ])1()1()( 0 −−+= xxxf ηηχ .                                                                         (2.38) 

Then  
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where )~(xδ  is the Dirac delta function. 

In this case the solution of the problem (2.23) – (2.26) has the form: 
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Components of current xy ezxHaVgradj rr
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For transformation of given solution it is necessary use the integral which we obtain by 

differentiating formula (2.28) with respect to parameter a and substituting za = , µ=b , ax = : 
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where )(2 zK  is the modified Bessel function of second kind. 

substituting ta =  in (2.45) and integrating after that with respect to t from 0=t  till at = ,  

we obtain: 
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Similar transformations with formula (2.28) give: 
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Using formulae (2.46), (2.48) we transform integrals (2.39), (2.43) to the form of integrals of 

non-oscillating functions: 
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[ ] ),()1()1(),( zxVxFxFzchDzxj yx µµ +−−+= ,                                                   (2.50) 

where )(aF  is given by formula (2.47). Using formula (2.28) one can evaluate integral (2.44): 
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Formula (2.51) gives an opportunity to obtain the asymptotic of component ),( zxjz  at 

∞→= Ha5.0µ . We now use the formulae which hold at ∞→µ , 0>z , 0>l : 
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Then, according to (2.51), component ),( zxjz  decreases at ∞→µ  everywhere, except two 

regions bounded by the parabolas: 

( ) 11 22 =−−+ zxz µµ ;   ( ) 11 22 =−++ zxz µµ , (2.53) 

i.e. by parabolas 

2)1(5.0
2
1

+=+ xz µ
µ

;       2)1(5.0
2
1

−=+ xz µ
µ

 (2.54) 

and we can replace 02/1 ≈µ  at ∞→µ  in formula (2.54). Inside the regions bounded by 

parabolas (2.54), the component ),( zxjz  tends to infinity in accordance with formula: 

zjz /µ≈ , (2.55) 

and it follows from (2.51) – (2.53) that: 

zzxzl ≈+=−+≡ µµ /)1()1( 22 , 

z
e

z
elKlzz lz µπ

µ
πµµµµ µ

822
1)(ch 1)(

1
1 −−− =≈   . 

 
 

The convolution theorem for product of two Fourier cosine transforms can be used for 

transformation of one class of integrals containing oscillating functions to integrals of monotonic 

functions. These results are applied for transformation of solution of some MHD problems 

arising in half space 0≥z  in the consequence of the roughness of the space z=0. The various 

boundary layers for induced current in a strong magnetic field are found in this problem. 

 

 

3. CORROSION OF EUROFER STEEL AND MAGNETIC CONFINEMENT 
    OF PLASMA IN REACTORS  

     

Search of new energy sources draws the increasing attention of scientists of many 

countries and 

that is why they are trying to drag and control the fusion of D-T (Deutrium-Tritium) plasma 

inside of a    Tokamak-Reactor. (Tokamak is a device used in nuclear fusion research for 

magnetic confinement of plasma and it consists of a complex system of magnetic fields that 
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confine the plasma in a hollow doughnut-shaped container). The D-T reaction and its related use 

in reactors are briefly described. 

         During my seven year staying period in Riga, LATVIA ( One of the main MHD 

application centers currently existing in EUROPE), I have had access to some interesting sites 

related to MHD study such as the Physics Institute in Salaspils where I have seen the three 

recently planned experimental sessions (each 2000 hours long) which have been performed 

successfully. New results concerning the profile of corrosion are obtained. I had the opportunity 

to participate in some PAMIR MHD International Conferences (4th and 5th and the 7th PAMIR 

International Conferences). This led to the writing of the third section illustrating the mentioned 

above. [1], [32], [34], [35], [36], [37], [40], [49], [56] and [64] 

   

3.1 Deuterium-Tritium reaction and its use in Reactors. 

During this century, the world's population will double from six billion people and it will 

rise to ten billions by 2050. More importantly, a lot more energy will be used than we do today, 

energy consumption will probably be two times higher by the middle of the century with an even 

stronger increase in electricity consumption. ( Table 1 below) 

 

 

 

 

 

 

 

 

Table 1. Energy consumption by the year 2007 [Mtoe (Million Tonnes Of Oil Equivalent)] 

(The exact values are respectively 3500, 2200, 2100, 1200, 700, and 200) 

 

Fusion is the nuclear process that powers the sun and other stars. Under the very high 

temperature conditions, hydrogen atom becomes separated into its fundamental components- 

electrons and nuclei, and form a new state of matter called "Plasma". Finally the nuclei fuse 

producing Helium and giving energy. Scientists from all European member states and G8 

countries associated with the EURATOM fusion program have been trying to reproduce this 

process on Earth. The fusion of Deutrium and Tritium, two Hydrogen isotopes would need a 

temperatue of 100 million ºC. This procedure can be done inside of a reactor using a Magnetic 

confinement  that consists  of heating on the Plasma by Joule effect and by injection of energetic 
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particle beams and radio-frequency waves into the plasma and its thermal isolation from the 

material walls by strong magnetic fields [1], [32], [33], [57], [49]. 

 Mainly, three types of liquid metal blankets are proposed for this purpose: 

1) ( SCLL), the Self-Cooled Lithium-Lead blanket  

2) (WCLL), the Water-Cooled Lithium-Lead blanket  

3) (HCLL), the Helium-Cooled Lithium-Lead blanket  [1], [33], [57], [49]. 

 

EUROFER-97 steel has been tested as the best structural materials of the blanket in a 

reactor. It is supposed to be used as the basic construction material for the production of the 

HCLL (Helium-Cooled Lithium-Lead) Blanket.(Figure 13 below)  

  
 Figure 11. HCLL Blanket image:  596 x 954 - 52k – jpg 

 

3.1.1 The Deuterium-Tritium (D-T) reaction and its products : 

                                                                         (3.1)  

and simply represented in figure 12 below as: 

 

 

 
Figure 12. Deuterium-Tritium (D-T) reaction and its products 
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The fusion energy ( 17.6 MeV ) appears as Kinetic energy of neutrons (14.1 MeV ) that need to 

be saved inside of a reactor using lead, and of Alphas ( 3.5MeV ) that are evacuated as ashes 

from the chimney of a certain reactor [1], [36], [37], and [64].   

Deutrium is generously present in seawater but Tritium is a radioactive element rarely existent 

naturally on Earth. However it can be bred inside the reactor using the reaction of the neutrons in 

a blanket containing lithium, an abundant light metal in the nature as: 

Li6 + n ---- T + He4 + 4.8 MeV        

  (3.2) 

Li7 + n ---- T + He4 – 2.5 MeV        

  (3.3) 

Ten grams of deuterium which can be extrated from 500 litres of water and 15 gr of tritium 

produced from 30 gr the lithium would produce enough fuel for the lifetime electricity needs of a 

person in an industrialised country. In other words, these two resources are practically available. 

This is another advantage of D-T Fusion. [1], [29], [32], [39], [35], [49], [55], [56], [64]    

 

3.1.2 Progress of the D-T plasmas confinement inside of Reactors. 

Europe, the world leader in this field, has already undertaken several research and development 

projects dealing with Fusion. Among these, the JET project, for the Joint European Torus which 

is the largest Tokamak in the world constructed in Culham (UK). Despite the progress 

continuously achieved on JET, it is clear that a larger and more powerful device would be 

necessary to demonstrate the feasibility of nuclear fusion energy on a reactor scale. The future of 

fusion lies on ITER (The International Thermonuclear Experimental Reactor) whose purpose is 

to produce a detailed, complete, and fully integrated engineering design of ITER and all 

technical data necessary for future decisions and results that come out of ITER. [1], [22], [33], 

[34], [37], [57], [49], [64]. 

ITER will be constructed using the results of JET with the same concepts and the same Toroidal 

shape  but on a much larger scale ( see figure 13 below). 



 68

 
Figure 13 The relative sizes of JET and ITER devices. [1] 

 

The plasma volume of JET and ITER are 100 m2 and 800 m2 respectively.  In the case of 

JET, losses of energy are compensated by a source of outside energy. One of the advantages of 

ITER that it will not depend on power supply from the outside. The deuterium-tritium (D-T) 

experiments on the Tokamak Fusion Test Reactor (TFTR) have yielded unique information on 

the confinement, heating and alpha particle physics of reactor scale D-T plasmas as well as the 

first experience with tritium handling and D-T neutron activation in an experimental 

environment. Toroidal and poloidal field coils are used and these generate the strong magnetic 

field (typically about 5 tesla, which is about 100,000 times the earth’s magnetic field) that 

confines the plasma and stops it touching the walls of the vacuum vessel. The D-T plasmas 

produced and studied in TFTR have peak fusion power of 10.7 MW with central fusion power 

densities of 2.8 MWm-3 which is similar to the 1.7 MWm-3 fusion power densities projected for 

1,500 MW operation of (ITER). Detailed alpha particle measurements have confirmed alpha 

confinement and heating of the D-T plasma by alpha particles as expected. Advanced tokamak 

operating modes have been produced in TFTR which have the potential to double the fusion 

power to ∼20 MW which would also allow the study of alpha particle effects under conditions 

very similar to those projected for ITER. TFTR is also investigating two new innovations, alpha 

channeling and controlled transport barriers, which have the potential to significantly improve 

the standard advanced tokamak.  

This strategy included three steps beyond JET [35], [36], [37], [61]:  

1) ITER,  A Liquid lithium self-cooled breeding blanket aiming at demonstrating the controlled 

burn  

    of deuterium-tritium plasmas with steady state as an ultimate goal on a scale of a power plant 

and  of 
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    a number of key technologies. ITER project will be ready approximately by the end of year 

2050 in 

    Caradache, south of France.  

2) DEMO, The water cooled blanket reactor aiming at the final demonstration of all the relevant  

    technologies, tritium self-sufficiency and electricity production. Under the assumption that its 

design 

    and construction would be started in 2035s and its operation in 2060s. A steady-state tokamak 

is  

    minimized to have 5.8 m of major radius with 2.3 GW of fusion power with energy 

amplification  

    Q exceeding 30. 

3) PROTO, The first proto-type power station with complete reactor and ancillary systems that 

would  

    include all the remaining technological developments as well as generating electricity on a  

    commercial scale, under the assumption that its design and construction would be started in 

2050s  

   and its operation in 2070s. [1], [33], [35], [49], [49],  [57], [64]  

 
 
3.1.2 Major reasons of the use of fusion energy 
 
  Maybe at the end of this century, fusion would be considered as a new reliable long-term 

energy source that become a part of humans’ lives with such important reasons: 

1. The fuels are abundant everywhere and for a much very cheaper price in comparison to the 

present  

     price.    

2. The fusion process is very clean since it does not contribute to the greenhouse effect, to the 

spread  

     of acid rain, or to radioactive particles that could take many years to remove. 

3. D-T fusion power station can be made very safe due to two main reasons: 

     (i) a large uncontrolled release of energy would be impossible since the amounts of deuterium  

         and tritium fuels inside the reactor will be very small;  

    (ii) the fusion reactions can be stopped in a very short time if an accident occurs, since the 

fuels  

          are introduced inside the reactor while they are burned.  
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3.2 Analysis of MHD Phenomena Influence on the Corrosion of EUROFER 

Steel  

      in  the Pb-17Li Flow  
 In the second part of this thesis (section 2.2) the MHD flow with the roughness of the 

surface in the form )2/~cos(~~
0 Lxz πχ=  of a conducting fluid is located in the half space 

+∞<<−∞> yxz ~,~,0~  is considered. The external magnetic field is z
c eBB 0= . Corrosion of 

EUROFER Steel in the Pb-17Li flow can be considered as a consequence of roughness on the 

surface  of the walls where the Hartmann surfaces flows are perpendicular to the flow as well. 

The roughness is not smooth but its equation is of the form:  

yyZZ αχ cos)( 0== ,         

       (3.4) 

where 0χ  is the amplitude, α = La /π characterize the scale, L is the width of hills and 

depressions, and Ha is the Hartmann number. The value a=3 mm is chosen as a typical 

dimension. Here v =1.1× sm /10 27− ; mS /1073.0 6×=σ  and thus for the mass transfer problem 

DFe = (6.4) ×  10-9m2/s   more than 6×  10-9m2/s as it was assumed in [1], [55], and [56]) .  

 

 In spite of the fact that Corrosion of Steel in the Pb-17Li  flow is a small but important part 

of the reactor work, we notify the importance and newest results attained of the corrosion 

process done in the Physics Institute-LATVIA [55], [56]. For instance, the first experimental 

2000 hours’ session for investigating the magnetic field influence on the corrosion of EUROFER 

steel in the flow of Pb-17Li has been completed successfully. During the whole session the 

following conditions were maintained at the experimental facility: the minimum temperature in 

the cold part of the loop Tmin = (350 ± 20) 0C; the temperature in the test section TTS = (550 ± 10) 
0C; the mean flow velocity in the test section Umean = (5 ± 0.5) cm/s; the magnetic field strength 

B = 1.7 T. The samples removed from the test section were washed off the residue of the melt in 

a pure Li melt at the temperature of 4000C and further weighed. These measurements showed 

that mass losses for corroded samples located in the zone with a magnetic field are 

approximately over two times greater if compared with those located in the zone outside the 

magnetic field (B = 0) that evidences to a significant intensification of the corrosion by the 

magnetic field, see fig. 16. Moreover, it should be stressed that due to insufficient heat isolation 

of the test section the temperature of the molten metal varied over the length of the test section: 

at the zone (B = 0) inlet it was by ~ 15 °C higher than at the test section outlet with the magnetic 
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field, where T = 550 °C. This experiment was performed on different samples with flow 

velocities of 2,5 cm/s and 5cm/s and magnetic current of 0, 1,5 and 1.7 T. Results gained in these 

investigations demonstrated essential influence of magnetic field on the corrosion processes both 

in the intensity of corrosion and its character. ( Figure 14) 
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Figure 14. Comparison of corrosion rate of EUROFER samples in magnetic field and without 
magnetic 
                   field. 

  
Visual observations of the test samples showed sufficient distinctions in relief on the 

sample surfaces, suffering corrosion from the zone with B = 0 are rather smooth and, on the 

contrary, the sample surfaces from the zone exposed to the magnetic field resemble a regular 

enough wave-like pattern with furrows oriented in the melt flow direction. Such pattern is typical 

only of the Hartmann (perpendicular to the magnetic field) walls. The side walls remain rather 

smooth. The same can be attributed to the outer sample surfaces, which exhibit traces of 

corrosion caused by the EUROFER interaction with the melt that penetrated the gaps between 

the samples and the outer channel.  

 

The second experimental (2000 hours’ session) has been completed successfully and 

showed that the magnetic field not only generally enhanced the corrosion rate, but showed that 

magnetic field badly influences corrosion. In the case for samples located in zone (B = 0)  all 

inner surfaces of samples being subjected to the Pb-17Li flow were maintained sufficiently 

smooth, then in zone with magnetic field (B = 1.7 T) all Hartman surfaces of samples were 

covered with grooved structure oriented in the  flow direction. [1], [49], [55], [56], [64]  led  to  

the  appearance of regular wave-like patterns on the corroding surfaces perpendicular to the 



 72

magnetic field, which were oriented in the melt flow direction and that the corrosion processes 

on the EUROFER surfaces washed over by Pb-17Li and were determined by the surface 

orientation about the magnetic field direction     [55] & [56]  

( See figure 15 below) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a) B = 1,7 T, T = 5500C;  b) B = 0, T = 5700C. 
 

 

 
Figure 15.  Surface relief of EUROFER samples subjected to corrosion in Pb17Li during 2000 
hours.  
 

Moreover, in the third experimental session [56] the corrosion rate h0 caused by Pb-17Li 

on the EUROFER steel was investigated and its results of the corrosion rate are shown in the 

table below)  

Corrosion rate h0 without and with magnetic field. 

N B0=0 B0=1.8T 

h0, µ meter/year 

1 523 967 

2 458 877 

3 381 694 

 4 293 846 

5 388  726 

Table 2. Corrosion rate of EUROFER steel by Pb-17Li flow [55], [56] 
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Hoping that before the end of this century, scientists with all the technologies ans studies 

available, would be able to achieve success of The ITER project will provide the physics and 

technological basis for the construction of a demonstration electrically generating power plant in 

thr future like DEMO and PROTO . Then a new clean and cheap source of energy would be a 

part of humans’ life. [1], [9], [20], [28], [32]-[37] , [40] , [49] , [51], [55] , [56] , [62] , [70] and  

[73]  

 

4. Ginzburg-Landau equation for stability analysis of shallow water in a  

    weakly non-linear regime  
 

Losses due to turbulent friction are often described in hydraulics by means of empirical 

(or semi-empirical) formulas like Chezy of Manning’s formulas [22]. In particular, the Chezy 

formula is used to represent the bottom friction force F
r

in the form 

                                             vv
h

gAc
F f rrr ρ
= ,                                                                             

where ρ is the density of the fluid, g is the acceleration due to gravity, A is the cross-sectional 

area, h is water depth, fc is the friction (or roughness) coefficient, vr is the velocity vector and 

F
r

is the friction force. The coefficient fc is estimated by means of several empirical formulas 

which can be found in the literature. One example is Colebrook formula [67] which relates fc to 

the Reynolds number of the flow.  

   Chezy formula is effectively used by hydraulic engineers for many years to estimate the 

“lumped” effect of a turbulent flow. Examples include computation of flow rate and losses in 

channels or pipes and design of open channels. Chezy formula is also widely used in cases where 

more detailed knowledge of the flow field is required [50]. The coherent structures in wake 

flows are believed to appear as a final product of hydrodynamic instability of the flow [45]. 

Classical method of analysis of hydrodynamic stability is the linear stability analysis [26]. Linear 

theory can be used to find the value of the parameters of the problem for which a particular flow 

becomes unstable. However, the development of instability beyond the threshold cannot be 

described by the linear theory. Methods of weakly nonlinear theory have been applied in the past 

to different flows [8, 10, 14-16, 19, 22, 23, 26, 43, 44, 47, and 67] and usually lead to amplitude 

evolution equations for the most unstable mode. One of such equations is the complex Ginzburg-

Landau equation. Weakly nonlinear theory is applied to quasi-two-dimensional flows in [22] 

with Rayleigh friction (internal friction is assumed to be linearly related to the velocity 

distribution). It is concluded in [26] that small variations of linear stability characteristics (in 
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particular, small variations in the base flow profile) led to large changes in the Landau constant 

(the Landau constant is the real part of one of the coefficients of the Ginzburg-Landau equation).  

 

4.1 Shallow flows behind obstacles 
 

Wake flows are quasi-two-dimensional flows behind obstacles (such as islands) in which 

the horizontal components of the velocity vector are much stronger than the vertical component. 

A typical measure of shallowness of the flow is the ratio of the transverse length scale of the 

flow, D , and water depth, H . The flow is assumed to be shallow if the ratio HD /  is large 

enough: 1/ >>HD . An excellent example of shallow wake flow is shown in [47] where the 

leaking oil from the tanker Argo Merchant shows a von Karman vortex street flow pattern. Other 

examples of aeronautical photographs of island wakes in shallow waters are presented in [37] 

and [82]. Experimentally observed coherent structures in shallow wakes are believed to appear 

as a result of flow instability [43], [67]. Linear stability of shallow flows is studied 

experimentally in [19], [45], [77]. It is shown in [19] that three different flow regimes can be 

observed in shallow wake flows: steady bubble, unsteady bubble and vortex street. It was found 

in [24] and [43] that flow patterns behind obstacles depend on shallow wake stability parameter 

HbcS f /= , where fc is the bottom friction coefficient and b is length scale (the diameter of the 

cylinder in [8]).  

Theoretical investigation of linear stability of shallow wake flows is performed in [19], 

[45], [47], and [67].  Linear stability analyses confirm that the stability characteristics of shallow 

water flows depend on the magnitude of the stability parameter S . In particular, a flow becomes 

more stable as the parameter  S increases. 

The linear stability theory can be used to determine when a particular flow becomes 

unstable. The “fate” of the disturbance just above the threshold cannot be predicted by the linear 

theory. Methods of weakly nonlinear theory are often applied to describe the evolution of the 

most unstable linear mode when the flow becomes unstable [26], and [67]. Relatively simple 

amplitude evolution equations such as the Complex Ginzburg-Landau Equation (CGLE) are used 

in the literature to analyze spatio-temporal dynamics of complex flows [10], [19].  The 

popularity of the CGLE is based on the following factors: (1) the model is relatively simple but 

includes such physical effects as nonlinearity and diffusion, (2) the CGLE is a scalar equation, 

(3) the CGLE can be derived (in some cases) from the equations of motion, (4) the coefficients 

of the CGLE can be obtained in closed form (in terms of integrals containing the characteristics 

of the corresponding linear stability problem), (5) the CGLE can exhibit a rich variety of 

solutions depending on the values of its coefficients.  
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In many applications (see, for example, the analysis of the dynamics of the flow behind 

bluff rings [59] and spatio-temporal dynamics in the wakes of a row of 16 circular cylinders 

placed close to each other in an incoming flow [46]) the CGLE (or the Landau equation) is used 

as a phenomenological model equation. In such cases the coefficients of the CGLE are obtained 

from experimental data.   

On the other hand, the CGLE can be derived from the equations of motion.  Examples 

include weakly nonlinear analyses of plane Poiseuille flow [67] and problems related to 

generation of waves by wind [10], shallow flows behind obstacles such as islands [45], and [46] 

and in the nearshore [44], rapidly decelerated flows in pipes [43] and channels [47].  

Despite the fact that the CGLE was successfully applied in practice to model spatio-

temporal dynamics of complex flows [46], [47], other sources in the literature suggest that the 

use of weakly nonlinear theory should be limited. One such an example is introduced in paper 

[23] where linear and weakly nonlinear theory is applied to the stability analysis of quasi-two-

dimensional shear flows such as shallow water flows. It is assumed in [25] that the term 

representing friction in fluid system is of the form uf RR
rr

λ−= , where Rλ  is the coefficient of 

Rayleigh friction and ur is the velocity vector. The authors compared their theoretical predictions 

from the linear stability analysis with experimental data. Reasonable agreement was found. On 

the other hand, it is found in [23] that the Landau constant (the real part of one of the coefficients 

of the CGLE) is quite sensitive to the shape of the base flow velocity profile. As a result, it is 

concluded in [23] that it would be impossible to compare directly the theory with experiments 

since it would be difficult to determine the base flow velocity profile with accuracy up to the 

third derivative (as it is required by a weakly nonlinear theory). In particular, it is found in [23] 

that the values of the Landau constant differ by a factor of 3 for two base flow velocity profiles 

whose linear stability characteristics differ by not more than 20%.  

In the present section, linear and weakly nonlinear stability of a one-parametric family of 

shallow wake flows is investigated [15] and [16].  The parameter used in the study represents a 

slow longitudinal variation of shallow wake flow behind obstacles such as islands. In contrast to 

[22] where the internal friction is linearly related to the velocity  

distribution, a nonlinear Chezy formula [67] is used to model bottom friction.  The base flow  

profile used in [19] is adopted in our study. Calculations show that the Landau constant as well 

as other coefficients of the CGLE are not so sensitive to the shape of the base flow  

profile. Thus, it is plausible to assume that the CGLE can be used to describe spatio-temporal 

dynamics of shallow wake flows.    

4.2 Linear stability analysis 
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Consider the base flow of the form 

)0),(( yUU =
r

                                                                                                           (4.1) 

where  

2

2 1( ) 1
1 cosh ( )

RU y
R yα

= −
−

.                                                                                       (4.2) 

The base flow (4.2) is suggested in [67] after careful analysis of available experimental data for 

deep water flows behind circular cylinders. The profile (4.2) is also adopted in the present study.  

The parameter R is the velocity ratio: )/()( amam UUUUR +−= , where mU is the wake 

centerline velocity and aU is the ambient velocity, and )1(sinh 1−=α . It is shown in [10] that 

under the rigid-lid assumption the linear stability of wake flows in shallow water is described by 

the following eigenvalue problem: 

2 2
1 1 1''( ) ' 0

2y yy
SU c SU SU k U k U kUϕ ϕ ϕ⎛ ⎞− + + + − − − =⎜ ⎟

⎝ ⎠
                                                 (4.3) 

,0)(1 =±∞ϕ                                                                                                                  (4.4) 

where the perturbed stream function of the flow, ( , , )x y tψ , is assumed to be of the form 

1( , , ) ( ) exp[ ( )] . .x y t y ik x ct c cψ ϕ= − +                                                                          (4.5) 

Here 1( )yϕ is the amplitude of the normal perturbation, k  is the wavenumber, c is the wave 

speed of the perturbation, and . .c c means “complex conjugate”. The linear stability of the base 

flow (4.2) is determined by the eigenvalues, ,imrmm iccc += ,...2,1=m  of the eigenvalue 

problem (4.3), (4.4).  The flow (4.2) is linearly stable if 0<imc  for all m and linearly unstable if 

0>imc  for at least one value of m .  

   The linear stability problem (4.3), (4.4) is solved by means of a pseudospectral collocation 

method based on Chebyshev polynomials. The computational procedure is briefly described 

below (details of the numerical method can be found in [44]). The interval y−∞ < < +∞ is 

mapped onto the interval 1 1r− < <  by means of the transformation 2 arctanr y
π

= . The solution 

to (4.3), (4.4) is sought in the form 

2
1

0
( ) (1 ) ( ),

N

k k
k

r a r T rϕ
=

= −∑                                                                                    (4.6) 

where ( )kT r is the Chebyshev polynomial of degree k .The collocation points jr  are 

cosj
jr

N
π

= , .,...,1,0 Nj =                                                                                    (4.7) 

The derivatives are transformed by the chain rule: 
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21 1

2 2
4 31 1 1

2 2 2

2 cos ,
2

4 4cos sin cos
2 2 2

d dr
dy dr
d d dr r r

drdy dr

ϕ ϕπ
π

ϕ ϕ ϕπ π π
ππ

=

= −
                                            (4.8) 

 

Substituting (4.6), (4.8) into (4.3), (4.4) and evaluating the function 1( )rϕ and its derivatives at 

the collocation points (4.7) we obtain the following generalized eigenvalue problem: 

( ) 0B C aλ− =               

(4.9) 

where B  and C  are complex-valued matrices 

and  

1 2( ... ) .T
Na a a a=     

Problem (4.9) is solved numerically by means of the 

IMSL routine DGVCCG. The critical values of the stability parameters ,k S and c for different values of R  are 

given in Table 3 ( There SS
kc max= ). 

 

 

 

 

 

 

 
Table 3. Critical values of of the stability parameter S  

 

4.3 Weakly nonlinear analysis 
 

Following [67], in this section the main steps of the derivation of the amplitude evolution 

equation for the most unstable mode are briefly described. Consider the two-dimensional shallow 

water equations of the form : 

,0=
∂
∂

+
∂
∂

y
v

x
u                                                                                                             (4.10) 

2 2 0,
2

fcu u u pu v u u v
t x y x H

∂ ∂ ∂ ∂
+ + + + + =

∂ ∂ ∂ ∂
                                                                (4.11) 

 

R  k  cS  c  

-0.3 0.892      0.11819            0.69814 
-0.4 0.909      0.15689            0.65964
-0.5 0.926      0.19548            0.62394 
-0.6 0.944         0.23409            0.59083 
-0.7 0.962      0.27286            0.55925 
-0.8 0.980      0.31189            0.52882 
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2 2 0,
2

fcv v v pu v v u v
t x y y H
∂ ∂ ∂ ∂

+ + + + + =
∂ ∂ ∂ ∂

                                                               (4.12) 

where u and v are the depth-averaged velocity components in the x and y directions, 

respectively, H is water depth, p is the pressure.  

Suppose that  

,
y

u
∂
∂

=
ψ

x
v

∂
∂

−=
ψ ,                                                                                                   (4.13) 

where ( , , )x y tψ  is the stream function of the flow. Eliminating the pressure and using 

 (4.13) one can rewrite the system (4.10) – (4.12) in the form 

( ) ( ) ( )

( )

2 2

2 2

2 2

2

2 0
2

f
y x x yt x y

f
y yy x y xy x xx

x y

c
h

c

h

ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ
ψ ψ

∆ + ∆ − ∆ + ∆ +

+ + + =
+

                                                               (4.14) 

Consider a perturbed solution to (4.14) of the form 
2

0 1 2( ) ( , , ) ( , , ) ...y x y t x y tψ ψ εψ ε ψ= + + +                                                            (4.15) 

The parameter ε describes a small deviation of the shallow wake stability parameter S from  

the critical value cS : 

2(1 )cS S ε= −                                                                                                        (4.16) 

Weakly nonlinear theory is applicable in a small neighborhood of the critical point  

(see Fig. 16): 

 

 

 

 

 

 

 

 

 

Figure 16.  Neighborhood of the critical point in a weakly nonlinear Region in the ),( Sk -plane 

                   (shown as dashed rectangle) where weakly nonlinear theory is  applicable. 

 

The amplitude evolution equation for the most unstable mode is derived by means of the 

method of multiple scales.  Following [67], the following slow time and longitudinal variables 

are introduced: 

kkc

stable S

unstable 

Sc
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),(,2 tcxt g−== εξετ                                                                                    (4.17) 

where gc is the group velocity.   

   The function 1ψ in [15] is sought in the form 

1 1( , , ) ( , ) ( ) exp[ ( )] . .x y t A y ik x ct c cψ ξ τ ϕ= − +                                                       (4.18) 

where A  is a slowly varying amplitude.  

    The linear stability problem (4.3), (4.4) is obtained by substituting (4.15) – (4.18) into (4.14), 

collecting the terms containing ε  and using (4.5). Collecting the terms containing 2ε the 

following equation is obtained: 

 

2 1 1 1 0 1 1

1 1 1 1 1 1 1 0

1 1 1 1 0 1 1 0 0

1 1

( ) 2 (3 )

( ) ( )

[( ) 2 2

2 ]

g xx yy x t y xx yy

y xxx yyx x xxy yyy yyy

xx yy y x y yy y y yy

x xy

L c
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ξ ξ ξ ξ ξ

ξ

ξ

ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ

= + − − +

− + + + +

− + + + −

+

                                               (4.19)                             

Here  

0 0

0 0

( )

( 2 ) 2 .
2

xxt yyt y xxx yyx yyy x

f
xx yy y y yy

L

c
h

ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ

= + + + −

⎡ ⎤+ + +⎣ ⎦
 

 

Similarly, the equation of order 3ε has the form 

 

3 2 1 2 1 1 2

1 0 2 1 1 2 1

2 1 1 1 2 1 0 2

2 1 1 1 1 2 1 1 1 2

2 1 1 1 2 0

( 2 ) 2

3 ( ) ( 3 )

( ) ( )
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t y xx x y xxx xx
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ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ

= + + − − −

− − + − +

− + − − −

+ + + + +

+ + +
2

2 1 1 2 1 1 1 0

2 1 1 1 0 2 1 0 1 0

0 1 0 1 1 2 1 2 1 2

1 1 2 1 1 1

[ ( ) 2 1.5 /

2 2

2 2 2

2 2 2 ]

yyy

y xx yy yy y xx x y

xx y x y y x y xx y

yy y y yy yy y y yy x xy

x yy x xy xy

S

ξ ξ ξξ

ξ

ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ

− + + +

+ + + + −

− − + − +

+ + +

 

                                                                                                                               (4.20) 

The function 2ψ is sought in the form 

* (0) (1)
2 2 2

2 (2)
2

( ) ( ) exp[ ( )]

( )exp[2 ( )] . .

AA y A y ik x ct

A y ik x ct c c
ξψ ϕ ϕ

ϕ

= + −

+ − +
                                                            (4.21) 
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The function (0)
2 ( )yϕ is the solution of the following boundary value problem 

(0) (0) * *
0 2 0 2 1 1 1 1

* * 2 * 2 *
1 1 1 1 1 1 1 1

* *
1 1 1 1

2 [ ] [

] [

2 2 ],

y y yy y yy y yy

yyy yyy y y

y yy yy y

S u u ik

S k k

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

+ = −

+ − − +

+ +

                                                               (4.22) 

(0)
2 ( ) 0.ϕ ±∞ =                                                                                                            (4.23) 

The function (1)
2 ( )yϕ satisfies the equation 

(1) 3 3 (1)
0 2 0 0 2

(1) (1) 2 (1)
0 2 0 2 0 2

2 2 2
0 1 0 0

0 1

( ) ( )

[2 2 ]

( ) [ 2 3

] ,

yy yy

yy y y

g yy yy g

iku ikc ik c ik u iku

S u u k u

c u k c k u u k c

iku S

ϕ ϕ

ϕ ϕ ϕ

ϕ

ϕ

− + − −

+ + −

= − + − + + −

−

                                                        (4.24) 

(1)
2 ( ) 0.ϕ ±∞ =                                                                                                             (4.25) 

The function (2)
2 ( )yϕ  is the solution of the boundary value problem 

(2) 3 3 (2)
0 2 0 0 2

(2) (2) 2 (2)
0 2 0 2 0 2

2
1 1 1 1 1 1 1 1

2( ) (8 8 2 )

[2 2 4 ]

( ) (2 3 ),

yy yy

yy y y

yyy y yy y yy y

iku ikc ik c ik u iku

S u u k u

ik S k

ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

− + − −

+ + −

= − − −

                                                     (4.26) 

(2)
2 ( ) 0.ϕ ±∞ =                                                                                                           (4.27) 

The amplitude evolution equation for A  is obtained from the solvability condition for equation 

(4.20) and has the form of the complex Ginzburg-Landau equation (the equation is derived in 

detail in [46]): 
2

2
2

A AA A Aσ δ µ
τ ξ
∂ ∂

= + −
∂ ∂

                                                                                    (4.28) 

The coefficients of equation (3.28) are given by 

,,, 11

γ
µµ

γ
δ

δ
γ
σ

σ ===                                                                                       (4.29) 

where   

2
1 1 1 1( )a

yy k dyγ ϕ ϕ ϕ
+∞

−∞

= −∫ ,                                                                                       (4.30) 

2
1 1 0 1 0 1 0 1(2 2 )a

yy y yS u u k u dyσ ϕ ϕ ϕ ϕ
+∞

−∞

= + −∫ ,                                                            (4.31) 
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(1) (1) 2 2
1 1 2 0 2

2
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∫
                                                         (4.32) 
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ϕ ϕ ϕ ϕ ϕ ϕ ϕ
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+ + + +

                                                     (4.33) 

In addition, one needs to calculate the adjoint eigenfunction a
1ϕ of the linear stability problem: 

0 0 1 0 0 1

3 2 2
0 0 1 1 1

( 2 )( ) '' (2 2 )( ) '

( ) [( ) '' ] 0

a a
y y

a a a

iku Su iku Su

ik u u k S ikc k

ϕ ϕ

ϕ ϕ ϕ

+ + +

− + + − =
                                                           (4.34) 

1 ( ) 0aϕ ±∞ = .                                                                                                            (4.35) 

 The group velocity gc is given by 

,
2

1

I
Icg =                                                                                                                  (4.36) 

where 

2
1 0 1 1 0 0

2
0 1

[ (3

2 2 )]

yy yy

a

I u k u u

k c iku S dy

ϕ ϕ

ϕ

+∞

−∞

= − +

− −

∫  

2
2 1 1 1( )a

yyI k dyϕ ϕ ϕ
+∞

−∞

= −∫ . 

Solving boundary value problems (4.22) – (4.27), calculating a
1ϕ and gc  and evaluating integrals 

in (4.30) – (4.33) numerically, the coefficients of the CGLE (4.28) are obtained for different 

values of R . The results are summarized in Table II. 

One of the major conclusions drawn from weakly nonlinear analysis applied to quasi-two-

dimensional flows in [22] was the effect of strong dependence of the Landau constant rµ on the 

form of the base flow profile. Calculations presented in [22] showed that the values of the 

Landau constant differed by a factor of 3 for two base flow velocity profiles whose linear 

stability characteristics differed by only 20%. As a result, it was concluded in [22] that it would 

be impossible to apply methods of weakly nonlinear theory in practice since the base flow profile 
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cannot be determined very precisely in 

experiments. In other words, it was concluded 

in [22] that the problem of determination of the 

Landau constant from weakly nonlinear theory 

is ill-posed so that small variations of the base 

flow profile lead to large changes in the 

Landau constant.  

 

 

 

 

 

 

 

 

The calculations presented in Table 3 and 4 in our paper demonstrate that the coefficients 

of the CGLE are not so sensitive to the variation of the parameter R of the base flow profile (2) 

as claimed in [22]. In fact, not only the Landau constant is not so sensitive to the changes in the 

profile (3.2) but all the coefficients of the CGLE do not vary too much. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

R  σ  δ  µ  

-0.3 0.063 + 0.004i 0.060 – 0.206i 4.673 + 13.294i 
-0.4 0.078 + 0.003i 0.090 – 0.195i 3.796 + 10.938i
-0.5 0.090 + 0.000i 0.115 – 0.184i 3.895 + 10.119i 
-0.6 0.100 – 0.003i 0.136 – 0.172i 4.375 + 10.109i 
-0.7 0.109 – 0.007i 0.153 – 0.161i 5.149 + 10.590i 
-0.8 0.116 – 0.012i 0.167 – 0.152i 6.302 + 11.448i 

 
TABLE 4 

Coefficents of the CGLE (4.28) 
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CONCLUSIONS 

       The present thesis is a  theoretical work dealing with  the roughness elements of MHD  

problems in  strong  magnetic  fields  when  taken  in  rectangular  duct  and  the behavior  and 

conductivities  of  wall channels  in  ducts . Besides, we solve the problem that the solutions of 

certain problems about MHD flow of conducting fluid in the half space are expressed in terms of 

improper integrals of the product of some strongly oscillating functions at the large x by 

transforming those functions into integrals of monotone functions using the convolution theorem 

for product of two Fourier cosine transforms. Besides, we support application to some of the 

MHD problems. Moreover, we study the stability analysis of shallow water flows in a weakly 

non-linear regime and that by using the complex form of Ginzberg-Landau equation to getting 

calculations that showed that the values of the Landau’s constants in [12] was found to be quite 

sensitive to the shape of the base flow profile. In our work we showed that the bottom friction is 

modeled by a nonlinear Chezy formula [14]. The coefficients of the CGLE do not change much 

in the interval 3.08.0 −≤≤− R . This interval of the R values corresponds to convectively 

unstable regime [8]. As a result, it is plausible to conclude that the complex Ginzburg-Landau 

equation can be used for the analysis of shallow wake flows in a weakly nonlinear regime. In 

addition to that, we report the newest results of the three recently planned experimental sessions 

(each 2000 hours long) which have been finished successfully in Salaspis LATVIA, where 

results gained in these investigations demonstrated essential influence of magnetic field on the 

corrosion processes both in the intensity of corrosion and its character. Besides, new results 

concerning the profile of corrosion are obtained [56]. The process of investigation of EUROFER 

corroded samples showed the existence of sufficient distinction of corrosion processes between 

samples located in the zone outside magnetic field (B = 0) and those located in zone with 

magnetic field (B = 1.7 T). Such investigations are done for the purpose of fusion control in 

reactors.  Especially, of D-T ( Deutrium- Tritium) plasma fusion concept. One of the main things 

in this program is the problem of liquid metals breeder blanket behavior. Structural material of 

blanket should meet high requirements because of extreme operating conditions. Therefore the 

knowledge of the effect of metals flow velocity, temperatures and also a neutron irradiation and 
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a magnetic field on the corrosion processes are necessary. At the moment the eutectic lead –

lithium (Pb-17Li) is considered as the most suitable tritium breeder material of the reactor. [1], 

[55], &[56].  

    

   The first part is devoted for the description of the principles of MHD flows and to 

describe two terms that are considered effective to reduce the MHD pressure losses in duct 

channels, to solve problems  of  the  flow  in  a  strong  magnetic field  with  suitable  boundary 

conditions , to provide  an asymptotic evaluation of each problem , to attain numerical results, 

and to graph the z-components  for different Hartmann numbers (low and high values are 

considered). Besides, Ohm’s law was used for describing the equations of Laplacian, fluid 

velocity, induced current φ(y,z) with its potential and external magnetic field. For example, in 

the problem introduced in part (1.3.1) we proved that the two dimensional MHD flow arises in 

the direction opposite to y axis, only if the roughness of the boundary is present. The solutions 

for the y component of the velocity of the fluid and for the x component of the induced current 

are obtained in the form of improper integrals of elementary functions. On the other hand, the z 

component of the induced current is expressed through the Bessel function. The asymptotic 

solution of the problem at Hartmann number ∞→Ha  is obtained in the form of elementary 

functions. For Hartmann numbers Ha ≥ 10 the exact and the asymptotic solutions practically 

coincide. 

Moreover, in the problem introduced in this section, it is proved that the induced magnetic field 

has only a y-component. Solutions for the system of MHD equations for the velocity fluid and 

for the potential of the induced current are obtained. Also the equations for the x and z 

components of pressure gradients are obtained. The velocity of the fluid in the core flow at large 

Hartmann numbers is constant. That means that it does not depend on Ha. With the increase of 

Hartmann number only the height of the core region is increased. The MHD solutions described 

in our work facilitate the investigation of the redistribution of the fluid in a region where the 

magnetic field is strong (The Hartmann number is large). These conclusions are important and 

can be helpful to other problems dealing with electrically conducting fluid through ducts in 

various area of Technology and Engineering such as MHD power generation, MHD flow-meters, 

MHD pumps, etc… 

 

        The second part mainly deals with the problem that the solutions of certain problems about 

MHD flow of conducting fluid in the half space are expressed in terms of improper integrals of 

the product of some meramorphic function and the function xba λλλ coscos)exp( 22 +− . Here 

0>a  and 0>b  are some parameters, 0>x  is the x-coordinate in Cartesian coordinate system. 
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But these functions are strongly oscillating at the large x, what make difficult the calculation of 

these integrals using package “Mathematica”. In this part these integrals are transformed into 

integrals of monotone functions using the convolution theorem for product of two Fourier cosine 

transforms. Besides, we support application to some of  the MHD problems. The gotten results 

facilitate the evaluation of some problems in the field of Mathematics, Engineering, and 

Engineering Mathematics .  

 

The third part is devoted to the stability analysis of shallow water flows in a weakly non-

linear regime and that by using the complex form of Ginzberg-Landau equation to getting the 

results and conclusion of our study. Calculations presented in [12] showed that the values of the 

Landau’s constants differ by a factor of 3 for two different velocity profiles with linear stability 

characteristics In other words, the Landau’s constant in [12] was found to be quite sensitive to 

the shape of the base flow profile. In our work we showed that the bottom friction is modeled by 

a nonlinear Chezy formula [13]. The analysis of data from Table 1 and Table 2 shows that for 

shallow wake flows of the form (3) the changes in the linear stability characteristics resulted in 

even smaller changes in the coefficients of the CGLE. The coefficients of the CGLE do not 

change much in the interval 3.08.0 −≤≤− R . This interval of the R values corresponds to 

convectively unstable regime [2]. As a result, it is plausible to conclude that the complex 

Ginzburg-Landau equation can be used for the analysis of shallow wake flows in a weakly 

nonlinear regime. 

 

       The fourth and last part is devoted of the practical study investigation of EUROFER 

corrosion in the Pb17Li flow where we introduce the results of the three recently planned 

experimental sessions which have been finished successfully. Results gained in these 

investigations demonstrated essential influence of magnetic field on the corrosion processes both 

in the intensity of corrosion and its character. Besides, new results concerning the profile of 

corrosion are obtained [56]. The process of investigation of EUROFER corroded samples 

showed that magnetic field both sufficiently influence on corrosion: visual observation of test 

samples removed from the test section after experiments showed sufficient distinction of 

corrosion processes between samples located in the zone outside magnetic field (B = 0) and 

those located in zone with magnetic field (B = 1.7 T). Search of new energy sources draws the 

increasing attention to use for this purpose of reactors. EUROATOM program scientists are 

designing how fusion reactors might properly operate using D-T plasma fusion concept. Starting 

by JET power plant passing by ITER in the process of DEMO, then reaching PROTO which will 

be the power plant that all nations around the world longing for, as for being the plant that will 
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be purely generating a fully controlled power of energy that will be directly connected to 

electricity networks. Besides, it is one of the very few options potentially acceptable from the 

environmental safety (Totally free from CO2 emissions) and economic points of view. 

         Future work can be devoted for the study of liquid metal flow in a cusped spherical 

magnetic field with the main objective of a better control of the sidewalls of the flow in strong 

magnetic fields. Morover, another work can be done to proof that the use of the velocity of the 

fluid in the core flow at large Hartmann numbers is constant. Thus, it does not depend on Ha. 

With the increase of Hartmann number directly affects only the height of the core region. 

Besides, some problems in Engineering Mathematics involve the use of the convolution theorem 

along the Fourier sine and cosine transforms, these theorems can be used for making up a new 

book in transforming one class of integrals containing oscillating functions to integrals of 

monotonic functions. These results are also applicable for transformation of solution of some 

MHD problems arising in half space 0≥z  in the consequence of the roughness of the space 

z=0. The various boundary layers for induced current in a strong magnetic field can be found 

and graphed with the use of package  

“Matematica” . 

At last, the classified information listed in the last part when describing the results of the new 

experiments done in Salaspils on the magnetic field influence on the corrosion of EUROFER 

steel in the flow of Pb-17Li and its related D-T plasma confinement in a reactor can be used as a 

reference for future work related to the use of fusion nuclear energy.  

 

 

 

 
 
 
 

 
Appendix 1 

 
NOMENCLATURE 

 
List of  Latin Symbols 

A      The cross-sectional area 

z0
e B eB = .the form of the external magnetic field 

0B    
0Be =B

The potential of  the magnetic field 

B
r

     Complex-valued amplitude magnetic induction vector  
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B
r~      Magnetic induction vector, B

r~ jwteB
r

=  

 c      Euler conctant,  c = 0.577215… 

 C     The flow core, HazHa <<−1 ; 

. .c c    Complex conjugate 

fc     The friction (or roughness) coefficient, 

C r     The Chromium element (Atomic Number 24)  

CGLE  The Complex Ginzburg-Landau Equation  

E
r

      Complex-valued amplitude electric field vector 

E
r~       Electric field vector E

r~ jwteE
r

=     

EFDA The European Fusion Development Agreement 

erf(x) = ∫ ξ
π

ξ−
x

0

2
de2     The probability integral. ( Gauss error function) 

F
r

  The bottom friction force of water flows 

uf RR
rr

λ−=  the friction in fluid system g   The acceleration due to gravity  

)(zKν  The modified Bessel function of the second kind of order   ( 1=ν , 2 ) 

h       The water depth 

H      The Hartmann layer, 10 −<< Haz ; 

Ha     The Hartmann number 

ITER The International Thermonuclear Experimental Reactor  

j     Imaginary unit, 1−=j  

L     Length scale 

Li   The Lithium element ( Atomic number 3) 

Pb   The  lead element ( Atomic number 82) 

Ni    The Nickel element ( Atomic number 28) 

Nu   The Nusselt number 

nr      The unit normal vector to the surface 

Re    The Reinholds number 

S      The stability parameter  

Sc      The critical stability value 

Si      The Silicon Element ( Atomic number 14) 

T       The temperature in Kelvin. 
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ur  & vr  Velocity vectors 

v       The velocity scale 

cV       The  core velocity constant 

X        Real part of Z 

Y        Imaginary part of Z 

)(sYν  Bessel function of the second kind of order ν  

W       The distant wake, +∞<< zHa . 

)~(~~~
0 xfz χ=  The roughness of the surface of a channel’s wall 

 

List of  Greek Symbols 
 

)(xΓ  Euler Gamma function 

∆  Laplacian , 2

2

2

2

2

2

),,(
z

f
y

f
x

fzyxf
∂
∂

+
∂
∂

+
∂
∂

=∆  

                  2

2

2

2

2

11),,(
z

ff
rr

fr
rr

zrf
∂
∂

+
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=∆
φ

φ   

)~(xδ    The Dirac delta function 

Rλ        The coefficient of Rayleigh friction  

0µ        Magnetic constant 

ρ         Density of fluid 

ν         The Viscosity of fluid 

ρ~         Charge density 

σ         Conductivity 

ψ         Scalar electric potential intensity 

ψ~         Scalar electric potential, jwteψψ =~  

ω         Frequency  

⎩
⎨
⎧

>
<

=
.0~,1
,0~,0

)~(
x
x

xη       The Heaviside step function 

,~(~ xΦ

φ       Potential of current 

∫
∞

=
0

cos),(2),( dxxzxVzV y
c

y λ
π

λ    The Fourier cosine transform 

∫
∞

Φ=Φ
0

sin),(2),( dxxzxzs λ
π

λ . The Fourier sine transforms  
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Coordinate systems 
 

( x,y,z)  Cartesian coordinates, x,y,z ℜ∈  

 

(r, φ ,z)  Cylindrical polar coordinates , ,0≥r  ,20 r≤≤ φ   ℜ∈z   

 

),,( φθρ  Spherical coordinates , 0≥ρ , πθ 20 ≤≤ , πφ ≤≤0 ,  

 

Classes of definite integrals 

λ
πλ

λλ
λ
λ λ dxe

Q
P ba

m

n

4

coscos
)(
)(

2
20

2

2
22

−

+−
∞

∫ ,    )(

4

coscos
)(
)(2

0
2

2
2

2

1 xdx
Q
P

I
m

n ϕ
πλ

λλλ
λ
λ

π
=

−
= ∫

∞
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