
University of Latvia

Institute of Mathematics and Computer Science

Rubens Agadžanjans

A Complexity of Quantum Query

Algorithms

Doctoral Thesis

Area: Computer Science

Sub-Area: Mathematical Foundations of Computer Science

Scientific Advisor:

Dr. habil. math., Prof.

Rūsiņš Freivalds

Riga 2010

Abstract

The query algorithms are a very convenient model for quantum com-

plexity studies. In the thesis we study query algorithms for functions

based on full Hamming codes and Reed-Solomon codes.

We show a way to construct exact quantum query algorithms for the

both sets of functions and compare their complexity to the complexity

of the most efficient deterministic algorithms.

Our algorithm for a Hamming code function of m = 2n − 1 argu-

ments needs 3/4 ·m queries to return the value of the function, which

is 25% less than the classical complexity.

We achieve even better complexity improvement for the functions

based on Reed-Solomon code. We show how to construct exact quan-

tum query algorithm which needs only m/2 queries when the function

has an even number m of arguments. This is a 50% improvement

against the classical complexity and this repeats the best known im-

provement by exact quantum query algorithms.

We also prove a polynomial lower bound for the both sets of func-

tions. For Hamming code this bound is 2n−2, for Reed-Solomon code

it is n · 2n−2.

We find an optimal adversary lower bound of Hamming code func-

tions of three and seven arguments. This gives us a tight lower bound of

two queries for the former function and a lower bound of three queries

for the latter. Both these lower bounds are higher then the respective

polynomial lower bounds.

Anotācija

Vaicājošie algoritmi ir viens no ērtākiem modeļiem kvantu sarežǵ̄ıt̄ıbas

pēt̄ı̌sanai. Promocijas darbā ir pēt̄ıti vaicājošie algoritmi funkcijām,

kuras ir bāzētas uz pilniem Heminga un R̄ıda-Solomona kodiem.

Mēs rādām kā uzkonstruēt eksaktos kvantu vaicājošos algoritmus

abām funkciju kopām un sal̄ıdzinām viņu sarežǵ̄ıt̄ıbu ar visefekt̄ıvāko

determinēto algoritmu sarežǵ̄ıt̄ıbu.

Heminga koda funkcijai no m = 2n − 1 argumentiem mūsu algo-

ritmam pietiek ar 3/4 · m kvantu vaicājumiem lai atgrieztu funkcijas

vērt̄ıbu, kas ir par 25% mazāk nekā klasiskā sarežǵ̄ıt̄ıba.

Mēs sasniedzam vēl lielāku sarežǵ̄ıt̄ıbas uzlabojumu funkcijām bāzē-

tām uz Rı̄da-Solomona kodiem. Mēs parādam kā uzkonstruēt ek-

sakto kvantu vaicājošo algoritmu, kuram pietiek ar m/2 vaicājumiem

kad funkcijai ir pāra skaits m argumentu. Tas ir 50% uzlabojums

sal̄ıdzinājumā ar klasisko sarežǵ̄ıt̄ıbu un tas atkārto vislabāko zināmo

uzlabojumu eksaktiem kvantu vaicājošiem algoritmiem.

Mēs pierādām ar̄ı polinomiālo apakšējo novērtējumu abām funkciju

kopām. Heminga kodiem šis novērtējums ir 2n−2, Rı̄da-Solomona kodiem

– n · 2n−2.

Mēs atrodam optimālo apakšējo novērtējumu ar ”adversary” metodi

Heminga koda funkcijām no trim un septiņiem argumentiem. Pirmajai

funkcijai tas dod ciešo apakšējo novērtējumu, ka ir nepieciešami divi

vaicājumi. Apakšējais novērtējums otrai funkcijai ir tr̄ıs vaicājumi. Abi

šie novērtējumi ir labāki, nekā attiec̄ıgie novērtējumi ar polinomiālo

metodi.

Preface

This thesis assembles the research performed by the author and re-

flected in the following publications:

1. Rubens Agadžanjans, Rūsiņš Freivalds and Juris Smotrovs. An

Exact Quantum Query Algorithm for a Hamming Code Function.

Proceedings of EQIS 2005: ERATO Conference on Quantum In-

formation Science, pp. 197-198, 2005.

2. Rubens Agadžanjans and Juris Smotrovs. Efficient Quantum

Query Algorithms Detecting Hamming and Reed-Solomon Codes.

Proceedings of SOFSEM 2006: Theory and Practice of Com-

puter Science, 32nd Conference on Current Trends in Theory

and Practice of Computer Science pp. 64-73, 2006.

3. Māris Ozols, Laura Mančinska, Ilze Dzelme-Bērziņa, Rubens

Agadžanjans and Ansis Rosmanis. Principles of Optimal Prob-

abilistic Decision Tree Construction. FCS 2006: 2006 Interna-

tional Conference of Foundations of Computer Science, CSREA

Press, pp. 214-218, 2006.

4. Rubens Agadžanjans. Query algorithms for detecting Hamming

and Reed-Solomon codes. Proceedings of CiE 2008: Logic and

1

2

Theory of Algorithms, Fourth Conference on Computability in

Europe, 2008.

5. Rubens Agadžanjans, Rūsiņš Freivalds. Finite state transduc-

ers with intuition. Unconventional Computation 2010, Lecture

Notes in Computer Science vol. 6079, pp. 11-20, 2010.

6. Abuzer Yakaryılmaz, Rūsiņš Freivalds, A. C. Cem Say and Rubens

Agadžanjans. Quantum computation with devices whose con-

tents are never read. Unconventional Computation 2010, Lecture

Notes in Computer Science vol. 6079, pp. 164-174, 2010.

The results of the thesis were presented at the following interna-

tional conferences and workshops:

1. 5th ERATO Conference on Quantum Information Systems (EQIS

2005), Tokyo, Japan, August 24-31, 2005. Poster ”An Exact

Quantum Query Algorithm for a Hamming Code Function”.

2. 32nd International Conference on Current Trends in Theory and

Practice of Computer Science (SOFSEM 2006). Merin, Czech

Republic, January 21-27, 2006. Poster ”Efficient Quantum Query

Algorithms Detecting Hamming and Reed-Solomon Codes”.

3. The 2006 International Conference on Foundations of Computer

Science (FCS 2006). Las Vegas, Nevada, USA, June 26-29, 2006.

Presentation ”Principles of Optimal Probabilistic Decision Tree

Construction”.

4. Logic and Theory of Algorithms, Fourth Conference on Com-

putability in Europe (Cie 2008). Athens, Greece, June 15-20,

3

2008. Presentation ”Query algorithms for detecting Hamming

and Reed-Solomon codes”.

5. 9th International Conference on Unconventional Computation

(UC 2010). Tokyo, Japan, June 21-25, 2010. Presentation ”Fi-

nite state transducers with intuition”.

6. 9th International Conference on Unconventional Computation

(UC 2010). Tokyo, Japan, June 21-25, 2010. Presentation ”Quan-

tum computation with devices whose contents are never read”.

The research was supported by the European Social Fund.

Acknowledgements

I gratefully thank my supervisor Prof. Rūsiņš Freivalds, whose support

and ideas were one of the key factors for me to pursue and complete

the research.

Thanks to Andris Ambainis who by his example encouraged me to

dive into the area of quantum computation. Thanks to Juris Smotrovs

for help in proving the polynomial lower bounds. Many thanks to

Andrew Childs for familiarization with spectral adversary methods and

advises in calculating adversary lower bounds for Hamming codes.

My gratitude to Alina Vasilieva for helping me with some admin-

istrative tasks and to Aleksandrs Rivosh and Nikolajs Nahimovs for

sharing interesting ideas and concepts.

I greatfully thank my parents and family whose support was critical

for writing up the thesis.

Also my gratitude to other colleagues, friends, and relatives who in

one or other way helped me while working on this research.

4

Contents

1 Introduction 9

2 Preliminaries 13

2.1 Notation . 13

2.2 Quantum Computing 14

2.2.1 Quantum States 14

2.2.2 Unitary Evolution 14

2.2.3 Measurements 15

2.3 Query Models . 15

2.3.1 Deterministic Decision Tree 15

2.3.2 Quantum Query Model 16

2.4 The Deutsch Algorithm 18

2.5 Lower Bound Methods 19

2.5.1 Lower Bound by Polynomials 19

2.5.2 Spectral Adversary 20

2.6 Galois Fields . 21

3 Hamming Codes 27

3.1 Deterministic Query Algorithm for Hamming Codes . . 30

3.2 Quantum Query Algorithm for Hamming Codes 31

5

CONTENTS 6

3.3 Lower Bound by Polynomials 33

3.4 Adversary Bounds for Hamming Codes 37

3.4.1 Optimal Bounds for The 3 Arguments Code . . 44

3.4.2 Optimal Bounds for The 7 Arguments Code . . 46

4 Reed-Solomon Codes 50

4.1 Constructing a codeword 51

4.1.1 The Field GF(8) 52

4.1.2 Sample Codewords 54

4.2 Deterministic Query Algorithm for Reed-Solomon Codes 56

4.3 Quantum Query Algorithm for Reed-Solomon Codes . 57

4.4 Lower Bound by Polynomials 63

5 Conclusion 65

Bibliography 67

A The Matlab Program 71

List of Figures

3.1 A deterministic query algorithm for the Hamming code

function of seven arguments. 32

3.2 A quantum query algorithm for the Hamming code func-

tion of seven arguments. 34

4.1 A deterministic query algorithm for the Reed-Solomon

code function RS(7, 5) of 21 arguments. 57

4.2 A quantum query algorithm for the Reed-Solomon code

function RS(7, 5) of 21 arguments. 62

7

List of Tables

2.1 GF(2). 22

2.2 GF(3). 22

2.3 GF(4). 23

2.4 The primary polynomials over GF(2) 24

3.1 The valid Hamming codewords of size three. 28

3.2 The valid Hamming codewords of size seven. 28

4.1 The summary of GF(8). 52

4.2 Multiplication matrices of GF(8) 54

4.3 The addition table of GF(8). 55

4.4 The multiplication table of GF(8). 55

8

Chapter 1

Introduction

We will be researching quantum algorithms and their complexity. Al-

most all known quantum algorithms can be expressed in a query model

where the input is given by a black box which answers queries in a cer-

tain form.

Classical algorithms also can be expressed in a query form. This

gives us a possibility to compare the two models and see whether we

can get any improvements by allowing quantum operations.

Query algorithms may be of different types. The main classifica-

tion is in probability of returning a correct result. There are exact and

probabilistic algorithms. Exact algorithms always return correct re-

sult. Probabilistic algorithms, in contrast, either return a result which

is correct with some probability or always return a correct result, but

there is a probability of returning ”unknown”.

The best improvements were achieved with probabilistic algorithms.

This is actually one of the main reasons why quantum computation

become popular and got a lot of support. The other reason is cryp-

tography and secure communication, but this is out of scope of this

9

CHAPTER 1. INTRODUCTION 10

research.

The most attractive and most referenced improvements were pre-

sented by Peter Shor [Sh 97] and Lov Grover [Gr 96]. We’re not going

to talk much about these algorithms, but I still think that it’s worth

to explain what problems they are solving.

Shor’s algorithm solves integer factorization problem in a polyno-

mial time of integer’s size. You may already know that this is an

exponential improvement over a best known classical algorithm. So,

it’s practically impossible to factorize a large integer by a classical

computer and modern cryptography heavily relies on this fact. The

Shor’s algorithm gained its popularity by the fact that it can break

current cryptography model and make our digital communication in-

secure. Quantum cryptography addresses this issue, but again, I will

not go into much details as it is out our scope.

Now consider a problem of searching. The setup is that we have

an unsorted database of N entries and want to find a specific entry in

this database. Classically, in the worst case, we need to check value of

each element before we find the one we are looking for. Grover found

an algorithm which will use just O(
√
N) queries to solve this problem

in a quantum setting.

As I already mentioned, the algorithms above are of a probabilistic

nature, most of the time they will return correct result, but there will

be a probability of error.

In the thesis we are going to concentrate on the exact algorithms.

There are surprising results in this area also.

The most interesting and attractive result was achieved for the fol-

lowing algorithmic problem introduced by Deutsch [De 85]. Informally

it is a very simple problem of guessing whether a given coin is genuine

CHAPTER 1. INTRODUCTION 11

(with head on one side and tail on the other) or fake (with both sides

the same). The question is how many times we need to look at the coin

to find out which case it is. In the classical world twice, to both sides.

In the quantum world only once, but to a quantum superposition (of

both sides).

Cleve, Ekert, Macchiavello and Mosca [CE+98] were the first who

presented how to solve the above problem with one quantum query.

We will use their result for constructing our algorithms.

This was the first result which achieved a 50% improvement for an

exact algorithm. You may notice that this improvement is not as big

as for probabilistic algorithms. So the question is whether we can do

better? The reality is that since that time nobody provided a better

gap, and there are not many algorithms achieving even the same result.

You may ask if it possible at all? At least this is the question

which motivates this thesis. Nobody has the answer. There are sev-

eral methods to calculate lower bounds for specific functions: poly-

nomial [BB+01], adversary [Am 02], and different variations of adver-

ary [BSS 03, HLS 07]. For many functions even the first polynomial

method provides high enough lower bounds being above the thresh-

old of 50%, but for some functions lower bounds are below it. The

Deutsch’s problem is one of the former functions, so it is not interest-

ing any more to try to improve its algorithm.

Obviously we are interested in the latter functions when trying to

find an algorithm with a better improvement. In fact there is not

so many of them known (see [NS 94, Am 03, NW 95, AF 03] for the

examples).

We will introduce functions based on Hamming and Reed-Solomon

error correcting codes. We will construct exact query algorithms for

CHAPTER 1. INTRODUCTION 12

them and compare complexities between quantum and classical ver-

sions. We will find lower bounds by polynomials and for some spe-

cial cases also adversary lower bounds. We’ll see the calculated lower

bounds are below 50% threshold and so the functions are promising in

the sense of existence of faster algorithm for processing them.

We will get 25% complexity improvement for Hamming code func-

tions and 50% for Reed-Solomon functions. The latter repeats the

result of solving the Deutsch’s problem and still leaves a possibility of

further improvement.

Chapter 2

Preliminaries

In this chapter we consider notations, definitions and well-known or

elementary facts, referenced directly or indirectly further in the thesis.

We refer to [Am 04] for the wording of most definitions in sections 2.1,

2.2 and 2.3.

2.1 Notation

[N] denotes the set {1, . . . , N}.
We use ⊕ to denote XOR (exclusive OR). If x1 ∈ {0, 1}, x2 ∈ {0, 1},

x1⊕x2 denotes XOR of bits x1, x2. If x1 ∈ {0, 1}n, x2 ∈ {0, 1}n, x1⊕x2

denotes bitwise XOR of n-bit strings x1 and x2. We use + to denote

the usual addition of integers.

We use the O and Θ notation [CLR 90] standard in computer sci-

ence. Let f(N) and g(N) be functions defined on positive integers N

and taking positive values. We say that f = O(g) if there exists a

constant c such that f(N) ≤ cg(N). We say that f = o(g) if, for any

c > 0, there exists N0 such that f(N) ≤ cg(N) for all N > N0. We say

13

CHAPTER 2. PRELIMINARIES 14

that f = Ω(g) if there exists c > 0 and N0 such that f(N) ≥ cg(N)

for all N > N0.

2.2 Quantum Computing

We introduce the basic model of quantum computing. For more details,

see textbooks by Gruska [Gr 99] and Nielsen and Chuang [NC 00].

2.2.1 Quantum States

We consider finite dimensional quantum systems. An n-dimensional

pure quantum state is a vector |ψ〉 ∈ Cn of norm 1. We use |0〉, |1〉, . . .,
|n− 1〉 to denote an orthonormal basis for Cn. Then, any state can be

expressed as |ψ〉 =
∑n−1

i=0 ai |i〉 for some a0 ∈ C, a1 ∈ C, . . . , an−1 ∈ C.

Since the norm of |ψ〉 is 1,
∑n−1

i=0 |ai|2 = 1.

We call the states |0〉 , . . . , |n− 1〉 basis states. Any state of the form∑n−1
i=0 ai |i〉 is called a superposition of |0〉 , . . . , |n− 1〉. The coefficient

ai is called amplitude of |i〉. A quantum system can undergo two basic

operations: a unitary evolution and a measurement.

2.2.2 Unitary Evolution

A unitary transformation U is a linear transformation on Ck that pre-

serves the l2 norm (i.e., maps vectors of unit norm to vectors of unit

norm). If, before applying U , the system was in a state |ψ〉, then the

state after the transformation is U |ψ〉.

CHAPTER 2. PRELIMINARIES 15

2.2.3 Measurements

In the thesis, we just use the simplest case of quantum measurement.

It is the full measurement in the computational basis. Performing

this measurement on a state |ψ〉 = a0 |0〉 + . . . + an−1 |n− 1〉 gives

the outcome i with probability |ai|2. The measurement changes the

state of the system to |i〉. Notice that the measurement destroys the

original state |ψ〉 and repeating the measurement gives the same i with

probability 1 (because the state after the first measurement is |i〉).

2.3 Query Models

Query algorithms are used for computing functions of form f : {0, 1}n →
{0, 1}m. We will mostly consider boolean functions, that is those func-

tions where m = 1.

In this model the boolean function is known, but arguments are

kept in ”black box”. The aim is to compute the value of function

making as less queries to ”black box” as possible.

In the classical computation query algorithms are usually referenced

as decision trees [Pa 94, BW 02]. The decision trees notation is not

widely used for quantum algorithms as they don’t have an explicit tree

structure in most cases.

2.3.1 Deterministic Decision Tree

A deterministic decision tree is a rooted ordered binary tree T . Each

internal node of T is labeled with a variable xi and each leaf is labeled

with a value 0 or 1. For given input x ∈ {0, 1}n the evaluation starts

at the root. If the current node is a leaf then the evaluation stops.

CHAPTER 2. PRELIMINARIES 16

Otherwise the variable xi that labels the current node is queried. If

xi = 0, then left subtree will be recursively evaluated, if xi = 1 then

the right one. The output of the tree is the value (0 or 1) of the leaf

that is eventually reached. A deterministic decision tree computes f

if its output equals f(x), for every x ∈ {0, 1}n. The complexity of

the decision tree is its depth, i.e., the number of queries made on the

worst case input. It usually coincides with the number of arguments

of function f and it never exceeds this number.

Definition 2.1. The decision tree computes Boolean function

f : {0, 1}n → {0, 1} if for each input tuple X = (x0, x1, ..., xn−1),

computation goes to accepting leaf if f(X) = 1 and the computation

ends in the rejecting leaf, if f(X) = 0.

Definition 2.2. Decision tree computes Boolean function f(X) with

complexity k if k is the number of oracle queries in the worst case (k

is the depth of decision tree).

Definition 2.3. The decision tree complexity D(F) of the Boolean

function f(X) is complexity of the best decision tree that computes

f(X).

2.3.2 Quantum Query Model

There are two ways to define the query box in the quantum model.

The first is an extension of the classical query. It has two inputs i,

consisting of dlogNe bits and b consisting of 1 bit. If the input to the

query box is a basis state |i〉 |b〉, the output is |i〉 |b⊕ xi〉. If the input is

a superposition
∑

i,b ai,b |i〉 |b〉, the output is
∑

i,b ai,b |i〉 |b⊕ xi〉. Notice

that this definition applies both to the case when the xi are binary and

CHAPTER 2. PRELIMINARIES 17

to the case when they are k-valued. In the k-valued case, we just make

b consist of dlog2ke bits and take b⊕xi to be bitwise XOR of b and xi.

In the second form of quantum query (which only applies to prob-

lems with {0, 1}-valued xi), the black box has just one input i. If the

input is a state
∑

i ai |i〉, the output is
∑

i ai(−1)xi |i〉. While this form

is less intuitive, it is very convenient for use in quantum algorithms.

We will mostly use this second form in the thesis. This is possi-

ble to do because a query of the second type can be simulated by a

query of the first type [Gr 96]. Conversely, an oracle of the first type

can be simulated by a generalization of the sign oracle which receives∑
i ai,b |i〉 |b〉 as an input and outputs

∑
i ai(−1)b·xi |i〉 |b〉.

A quantum query algorithm with T queries is just a sequence of

unitary transformations

U0 → O → U1 → O → . . .→ UT−1 → O → UT

on some finite-dimensional space Ck. U0, U1, . . . , UT can be any unitary

transformations that do not depend on the bits x1, . . . , xN inside the

black box. O are query transformations that consist of applying the

black box to the first logN + 1 bits of the state. That is, we represent

basis states of Ck as |i, b, z〉. Then, O maps |i, b, z〉 to |i, b⊕ xi, z〉. We

use Ox to denote the query transformation corresponding to an input

x = (x1, . . . , xN).

The computation starts with the state |0〉. Then, we apply

U0, Ox, . . . , Ox, UT and measure the final state. The result of the com-

putation is the rightmost bit of the state obtained by the measurement

(or several bits if we are considering a problem where the answer has

more than two values).

CHAPTER 2. PRELIMINARIES 18

The quantum algorithm computes a function f(x1, . . . , xN) if, for

every x = (x1, . . . , xN) for which f is defined, the probability that the

rightmost bit of UTOxUT−1 . . . OxU0 |0〉 equals f(x1, . . . , xN) is at least

1− ε for some fixed ε < 1/2. The exact quantum algorithm computes

a function with probability 1, i.e. ε = 0.

The complexity of the quantum algorithm that computes f is a

number of queries used by the algorithm. The quantum query com-

plexity of function f is the complexity of the best quantum algorithm

that computes f . We denote it by Q(f). We denote the exact quantum

query complexity by QE(f).

2.4 The Deutsch Algorithm

Our quantum query algorithms employ the Deutsch algorithm [De 85,

CE+98] solving the XOR problem in a single query, where any classical

algorithm makes at least two. This algorithm is exact. It can be

described by the one qubit scheme→ H → O(x1, x2)→ H → where H

is the Hadamard gate, and O(x1, x2) is the (only) oracle query encoding

the answer in the phase:

H =

(
1√
2

1√
2

1√
2
−1√

2

)
, O(x1, x2) =

(
(−1)x1 0

0 (−1)x2

)

If given |0〉 in the input, this scheme produces |x1 ⊕ x2〉 in the

output with probability 1.

CHAPTER 2. PRELIMINARIES 19

2.5 Lower Bound Methods

We consider the both main techniques for proving lower bound on

quantum query complexity.

The first technique is the polynomial method introduced in [BB+01].

This approach is algebraic and follows earlier very successful work on

classical lower bound by polynomials [Be 93, Re 97].

The other technique is the adversary method originally developed

by Ambainis [Am 02] with roots in the hybrid method of [BB+97].

It has proven to be a versatile technique, with formulations given by

various authors in terms of spectral norms of matrices [BSS 03], weight

schemes [Am 03, Zh 04], and Kolmogorov complexity [LM 04]. Spalek

and Szegedy showed that all these versions of the adversary method are

in fact equivalent [SS 05]. In 2007, Hoyer, Lee, and Spalek developed

a new version of the adversary method using negative weights which

is always at least as powerful as the standard adversary method, and

can sometimes give better lower bounds [HLS 07].

We will use the spectral formulation of the adversary bound as this

version best expresses similarity between the standard and negative

adversary methods.

2.5.1 Lower Bound by Polynomials

The quantum complexity of f is related to representing Boolean func-

tions by polynomials.

For any Boolean function f(x1, . . . , xN), there is a unique multilin-

ear polynomial p(x1, . . . , xN) such that f(x1, . . . , xN) = p(x1, . . . , xN)

for all x1, . . . , xN ∈ {0, 1}. For example, the function f(x1, x2) =

CHAPTER 2. PRELIMINARIES 20

x1 OR x2 has polynomial x1 + x2− x1x2. The exact degree of f is just

the degree of the corresponding polynomial p. We denote it by deg(f).

The degree can be used to determine a lower bound of f . It’s proved

that D(f) ≥ deg(f) and QE(f) ≥ deg(f)/2 [BB+01].

2.5.2 Spectral Adversary

We refer to the method’s definition in [CL 08].

In this formulation the value of the adversary method for a function

f is given by

ADV (f) := max
Γ≥0
Γ 6=0

||Γ||
maxi||Γ ◦Di||

, (2.1)

where Γ is a square matrix with rows and columns indexed by the

possible inputs x ∈ S ⊆ {0, 1}n, constrained to satisfy Γ[x, y] = 0 if

f(x) = f(y); Di is a zero/one matrix with Di[x, y] = 1 if xi 6= yi and

0 otherwise; A ◦ B denotes the Hadamard (i.e. entrywise) product of

matrices A and B; and Γ ≥ 0 means that the matrix Γ is entrywise

non-negative.

The negative adversary method is of the same form, but removes

the restriction to non-negative matrices in the maximization. Thus the

value of the negative adversary method for a function f is given by

ADV ±(f) := max
Γ6=0

||Γ||
maxi||Γ ◦Di||

. (2.2)

The relation of these adversary bounds to exact quantum query

complexity is the following: QE(f) ≥ 1
2ADV

±(f) ≥ 1
2ADV (f).

CHAPTER 2. PRELIMINARIES 21

2.6 Galois Fields

We refer to [Bl 83] for the definitions of Galois Fields, associated terms

and facts.

Definition 2.4. A field is a set F together with two operations over

this set - addition and multiplication, denoted accordingly by + and ·,
such that the following axioms hold:

� Closure of F under addition and multiplication:

∀a, b ∈ F : a+ b ∈ F & a · b ∈ F

� Associativity of addition and multiplication:

∀a, b, c ∈ F : a+ (b+ c) = (a+ b) + c & a · (b · c) = (a · b) · c

� Commutativity of addition and multiplication:

∀a, b ∈ F : a+ b = b+ a & a · b = b · a

� Additive and multiplicative identity:

∃! 0 ∈ F∀a ∈ F : a+ 0 = a

∃! 1 ∈ F∀a ∈ F : a · 1 = a

� Additive and multiplicative inverses:

∀a ∈ F∃ − a ∈ F : a+ (−a) = 0

∀a 6= 0 ∈ F∃a−1 ∈ F : a · a−1 = 1

CHAPTER 2. PRELIMINARIES 22

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

Table 2.1: GF(2).

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

Table 2.2: GF(3).

� Distributivity of multiplication over addition:

∀a, b, c ∈ F : a · (b+ c) = (a · b) + (a · c)

The most common field examples are:

� Real numbers

� Rational numbers

� Complex numbers

Definition 2.5. Finite or Galois field is a field with finite number of

elements. If the number of elements in the field is q then the field is

denoted by GF (q).

See tables 2.1, 2.2, 2.3 for examples of Galois fields.

Notice that in the GF(4) addition is not by modulus 4, and multi-

plication is also not by modulus 4.

CHAPTER 2. PRELIMINARIES 23

+ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

· 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 3 1
3 0 3 1 2

Table 2.3: GF(4).

In order to construct Galois fields we need to know how to con-

struct addition and multiplication tables. First we can begin with the

definition of a polynomial over a Galois field and associated definitions.

Definition 2.6. Polynomial over GF (q) is a mathematical expression

f(x) = fn−1x
n−1 + fn−2x

n−2 + . . .+ f1x+ f0, where x is a free variable,

coefficients belong to GF (q), indices and powers are integers.

Zero polynomial is a polynomial f(x) = 0.

Reduced polynomial is a polynomial with higher coefficient fn−1 is

equal to 1.

Two polynomials are equal if all their coefficients fi are equal.

Definition 2.7. Sum of polynomials is defined as

f(x) + g(x) =
∞∑
i=0

(fi + gi)x
i

Definition 2.8. Multiplication of polynomials is defined as

f(x)g(x) =
∑
i

(
i∑

j=0

fjgi−j)x
i

Definition 2.9. Primary polynomial is a reduced polynomial which

can be divided only by itself or by 1.

CHAPTER 2. PRELIMINARIES 24

Degree Primary polynomial Degree Primary polynomial
2 x2 + x+ 1 14 x14 + x10 + x6 + x+ 1
3 x3 + x+ 1 15 x15 + x+ 1
4 x4 + x+ 1 16 x16 + x12 + x3 + x+ 1
5 x5 + x2 + 1 17 x17 + x3 + 1
6 x6 + x+ 1 18 x18 + x7 + 1
7 x7 + x3 + 1 19 x19 + x5 + x2 + x+ 1
8 x8 + x4 + x3 + x2 + 1 20 x20 + x3 + 1
9 x9 + x4 + 1 21 x21 + x2 + 1

10 x10 + x3 + 1 22 x22 + x+ 1
11 x11 + x2 + 1 23 x23 + x6 + 1
12 x12 + x6 + x4 + x+ 1 24 x24 + x7 + x2 + x+ 1

Table 2.4: The primary polynomials over GF (2). All the polynomials
are primitive.

Table 2.4 lists primary polynomials over GF(2). These polynomials

can be used to construct larger fields GF (2m), where m is the degree

of a polynomial.

To get Galois field from the table 2.4 it’s needed to take a polyno-

mial of degree m (let’s denote it by pm) and to make a set consisting

of polynomials by modulus pm.

All the polynomials p(x) from the table 2.4 are primitive - that

means that x can be used as a primitive element in a field constructed

as a polynomials by modulus p(x). We define a primitive element

below.

Definition 2.10. GF (q) primitive element is such an element α that

all field’s elements except zero can be expressed as a power of α.

For instance, 2 is a primitive element of GF (5): 21 = 2, 22 = 4,

23 = 3, 24 = 1.

CHAPTER 2. PRELIMINARIES 25

Another example of a primitive element x (now it’s in a polynomial

form) for fieldGF (4), constructed as polynomials by modulus x2+x+1.

The calculations below are by modulus x2 + x+ 1:

x1 = x

x2 = x+ 1

x3 = x(x+ 1) = 1

Definition 2.11. Let GF (Q) be an extension of GF (q) and β ∈
GF (Q). The polynomial f(x) of a lowest degree over GF (q) with prop-

erty that f(β) = 0 is called an element’s β minimal polynomial over

GF (q).

The main properties of Galois fields:

1. Elements count in any Galois field is a power of prime number.

2. For any prime number p and positive integer m the smallest

GF (pm) subfield is the field GF (p). Elements of GF (p) are called

a field’s GF (pm) integers, and p - a characteristic.

3. For Galois fields of characteristic 2, it is true for each element β

that −β = β.

4. For any prime number p and positive integer m always exists a

Galois field of pm elements.

5. Every Galois field contains at least one primitive element.

6. There is always at least one primitive polynomial of any positive

power over each Galois field.

CHAPTER 2. PRELIMINARIES 26

7. Each primitive element has a primary minimal polynomial over

any subfield.

8. Two Galois fields with the same number of elements are isomor-

phic.

9. for any q which is a power of a prime number, and any positive

integer m field GF (q) is a subfield in GF (qm), but GF (qm) is an

extension of field GF (q).

10. If n is not dividing m then GF (qn) is not a subfield of GF (qm)

11. For any element of GF (qm) the power of minimal polynomial

over GF (q) divides m.

Chapter 3

Hamming Codes

Hamming codes were introduced in [Ha 50] and very soon they became

common knowledge for everybody in computer science. They contain

many symmetries and other good properties, and so are used widely

in the theoretical computer science.

Hamming distance between two n-bit vectors a and b is the number

of the positions at which these vectors differ. Hamming weight of a

vector is defined as the number of 1’s in it.

In this thesis we will use Hamming codes correcting one error. They

can be defined as 0-1 N -vectors where N equals 2n−1 for some integer

n > 1, with the following property: i1 ⊕ i2 ⊕ . . . ⊕ im = 0 where

i1, i2, . . . , im ∈ [2n−1] are the positions (or indices) of 1’s in the vector,

and ⊕ is the bitwise addition modulo 2 of the binary representations

of numbers from [2n− 1]. In total there are 22n−n−1 such code vectors.

See tables 3.1 and 3.2 for the valid Hamming codewords of size three

and seven.

Another way of checking whether a 0-1 N -vector (x1, . . . , xN) is a

correct Hamming code is to verify whether n checksums are equal to

27

CHAPTER 3. HAMMING CODES 28

X1 X2 X3

0 0 0
1 1 1

Table 3.1: The valid Hamming codewords of size three.

X1 X2 X3 X4 X5 X6 X7

0 0 0 0 0 0 0
1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 1 1 1 0 0
0 1 0 1 0 1 0
1 0 1 1 0 1 0
1 1 0 0 1 1 0
0 0 1 0 1 1 0
1 1 0 1 0 0 1
0 0 1 1 0 0 1
0 1 0 0 1 0 1
1 0 1 0 1 0 1
1 0 0 0 0 1 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1
1 1 1 1 1 1 1

Table 3.2: The valid Hamming codewords of size seven.

CHAPTER 3. HAMMING CODES 29

0. Let jnjn−1 . . . j1 be the binary representation of a variable index j.

The variable xj is present in the m-th checksum iff jm = 1. This gives

us the following checksums:

x1 ⊕ x3 ⊕ . . .⊕ x2n−3 ⊕ x2n−1 = 0− the first checksum
x2 ⊕ x3 ⊕ . . .⊕ x2n−2 ⊕ x2n−1 = 0− the second checksum

. . .

x2n−1 ⊕ x2n−1+1 ⊕ . . .⊕ x2n−2 ⊕ x2n−1 = 0− the nth checksum

We will need one more representation of the same verification schema

to prove lower bound by polynomials of Reed-Solomon code functions

in the section 4.4.

Lemma 3.1. Hamming code can be verified by multiplying the input

variable vector [x1 . . . xN] by a checking matrix Λ of N rows and n

columns. The code is correct if the multiplication’s result is equal to

zero-vector.

Moreover, each row of the matrix Λ is unique and the rows are all

possible n-bit vectors except zero-vector.

Proof. We construct the checking matrix based on the variable indexes.

It has N rows and n columns. Its jth row corresponds to an index j

by representing it in a binary form in such a way that the value in

column m equals to jm from the binary representation of j. In other

words it can be written as Λj,m = jm, where j = jnjn−1 . . . j1, j > 0.

Multiplying a code-word vector by Λ and verifying that the result is

a zero-vector is exactly the same as verifying the checksums in the

verification method above.

CHAPTER 3. HAMMING CODES 30

Since each row of Λ represents a distinct j all the rows are unique.

Presence of all possible n-bit vectors follows from the fact that N =

2n − 1, which is exactly the number of distinct n-bit non-zero vectors.

The following is a sample checking matrix for Hamming code of

seven arguments:

Λ =



100

010

110

001

101

011

111


3.1 Deterministic Query Algorithm for

Hamming Codes

In this and the following sections we denote N = 2n − 1.

We define a Boolean function f(b1, . . . , bN) equal to 1 on Hamming

code vectors and equal to 0 otherwise.

Theorem 3.2. D(f) = N .

Proof. The all-zero vector is a correct Hamming code (all checksums

are 0), while any vector containing exactly one 1 is not a Hamming

code (the checksums containing the only 1 are equal to 1). Thus,

receiving only zeroes in answers to the queries for variable values, the

CHAPTER 3. HAMMING CODES 31

deterministic algorithm needs to query allN variables before producing

result 1: to ascertain that no argument is equal to 1.

The visualization of the deterministic algorithm for the function of

seven arguments can be seen on figure 3.1.

3.2 Quantum Query Algorithm for

Hamming Codes

Theorem 3.3. There is an exact quantum query algorithm with com-

plexity 3 · 2n−2 − 1 for the function f .

Proof. We use verification of checksums to construct the algorithm.

Each checksum consists of 2n−1 variables. So we need 2n−2 queries

to compute it using the Deutsch 1-query algorithm for XOR of two

variables. For example, we query x1 ⊕ x3, x5 ⊕ x7, . . . , xN−2 ⊕ xN to

compute the first checksum x1 ⊕ x3 ⊕ . . .⊕ xN .

While calculating checksums, we query for XOR of pairs of vari-

ables. Some pairs will occur in more than one checksum. We will save

several queries by asking such pairs only once and by remembering

results of these queries. It remains to calculate how many queries we

save in such way.

Let us analyze checksums starting with the second one, i.e. the

checksums which control variables whose index binary representation

contains 1 in positions 2, 3,

If a variable with even index 2i belongs to such checksum, then the

variable with index 2i + 1 also belongs to this checksum (because the

binary representations of the indices of these variables differ only in

the last bit).

CHAPTER 3. HAMMING CODES 32

X1

X2

0

X2

1

X3

0

X3

1

X4

0

X4

1

X5

0
1

X6

 0
1

0

X7

 0
1

0

 0
1

01

X5

X6

 1
0

0

X7

 1
0

0

 1
0

01

X5

0
1

X6

 1
0

0

X7

 1
0

0

 0
1

01

X5

X6

 0
1

0

X7

 0
1

0

 1
0

01

...

...

Figure 3.1: A deterministic query algorithm for the Hamming code
function of seven arguments.

CHAPTER 3. HAMMING CODES 33

In total we have (2n − 2)/2 = 2n−1 − 1 such pairs (2i and 2i + 1).

Thus we can compute XOR of all these pairs with 2n−1 − 1 queries,

and knowing their XOR we can verify all checksums starting from

the second one. Additionally we make 2n−2 queries to verify the first

checksum. So we make 2n−1 − 1 + 2n−2 = 3 · 2n−2 − 1 queries to verify

all checksums and thus evaluate the function.

As an example, let us construct such algorithm for the function

f(x1, . . . , x7). Valid keywords are:

0000000 1110000 1001100 0111100

0101010 1011010 1100110 0010110

1101001 0011001 0100101 1010101

1000011 0110011 0001111 1111111

Checksums to be verified:

x1 ⊕ x3 ⊕ x5 ⊕ x7 = 0

x2 ⊕ x3 ⊕ x6 ⊕ x7 = 0

x4 ⊕ x5 ⊕ x6 ⊕ x7 = 0

Variable pairs to be asked: x2 ⊕ x3; x4 ⊕ x5; x6 ⊕ x7; x1 ⊕ x3;

x5 ⊕ x7.

Figure 3.2 visualizes the quantum algorithm for the Hamming code

of size seven.

3.3 Lower Bound by Polynomials

Now we will find the degree of f which helps us to prove the lower

bound by polynomials.

CHAPTER 3. HAMMING CODES 34

X1 ⊕ X3

X5 ⊕ X7

X5 ⊕ X7

0

1

0

1

0

X2 ⊕ X3

X6 ⊕ X7

X6 ⊕ X7

0

1

1
0

1

0

00

X4 ⊕ X5
0

1

0

X2 ⊕ X3

0

1

0X6 ⊕ X7

X6 ⊕ X7

0

1

1

0

10

1

0

0

X4 ⊕ X5

0

1 0

1

X4 ⊕ X5

0

1

0

1

X4 ⊕ X5

0

1

0

1

Figure 3.2: A quantum query algorithm for the Hamming code func-
tion of seven arguments.

CHAPTER 3. HAMMING CODES 35

Theorem 3.4. deg(f) = 2n−1.

Proof. The polynomial of f can be expressed as p(x1, . . . , xN) =∑
b:f(b)=1

∏
i:bi=1 xi

∏
i:bi=0 (1− xi). In the following we will refer to the

elements of this sum as “the summands”. Thus each summand corre-

sponds to a particular Hamming code vector b.

Now, let us open all the parentheses (1− xi) expressing each sum-

mand as a sum of one or more monomials (referred so in further) of

the kind
∏
xi with (non-zero) coefficients. Let us investigate in which

summands can a particular monomial occur. If a monomial from a

summand does not contain a particular variable xj, it means that the

summand contained a factor (1−xj) (otherwise all its monomials would

contain xj). And, vice versa, the presence of the factor (1− xj) in the

summand means that the summand’s monomials can be split into pairs

which differ only in the presence/absence of the variable xj.

Thus, for I ⊆ [N], the monomial
∏

i∈I xi occurs exactly in the

summands with such b that ∀j ∈ [N] \ I (bj = 0), and the coefficient

of the monomial in each occurrence is 1 or −1.

Suppose that card(I) > 2n−1. We will show that, in the whole sum,

the monomial has coefficient 1 exactly as many times as coefficient

−1, resulting in the canceling of the monomial. How is the sign of a

monomial obtained? When opening parentheses in a summand, −1

appears only when we pick the −xi from a factor (1 − xi) to obtain

the monomial. If there is an even number of such −xi picked, the

coefficient of the monomial is 1, otherwise it is −1. We must pick −xi
from (1− xi) iff i ∈ I. Thus, coefficient is −1 iff the number of zeroes

among bi, i ∈ I is odd. Since, as we established, bi = 0 for i /∈ I, two

possible monomial coefficients 1 and −1 correspond to two opposite

CHAPTER 3. HAMMING CODES 36

parities of the number of 1’s in the code vector of the summand.

Thus, it is enough to prove that among the Hamming codes with 0’s

in all the positions not from I, the number of codes with even Hamming

weight must coincide with the number of codes with odd Hamming

weight. It is enough to prove that among these there is a code c with

Hamming weight 3, since then, due to the linearity of Hamming codes,

all these codes can be split into pairs (b, b⊕c), with opposite Hamming

weight parities. By definition, a 0-1 vector with weight 3 and 1’s in

positions i, j, k is a Hamming code iff i⊕ j ⊕ k = 0. Select an i ∈ I.

Now all the positions from [N] \ {i} are split into 2n−1 − 1 pairs (j, k)

with the property i ⊕ j ⊕ k = 0. Since card([N] \ I) ≤ 2n−1 − 2, at

least one of these pairs (j, k) gives a triple i, j, k ∈ I with i⊕ j⊕k = 0.

Upper bound proved.

It remains to show that there is a monomial with card(I) = 2n−1

and non-zero coefficient. A Hamming code b must satisfy b1 ⊕ b3 ⊕
. . . ⊕ bN = 0. Hence the number of 1’s in the positions from I =

{1, 3, . . . , N} must be even. Since card(I) = 2n−1 is even, also the

number of 0’s in positions from I is even, and the corresponding mono-

mial occurs in the sum only with coefficients +1 and thus cannot cancel

(and it occurs at least once - for the all-zero Hamming code).

Corollary 3.5. The lower bound by polynomials for Hamming code

function is: QE(f) ≥ 2n−2.

We continue the research with finding adversary bounds for Ham-

ming codes.

CHAPTER 3. HAMMING CODES 37

3.4 Adversary Bounds for Hamming Codes

We will be following the principles from [CL 08] when applying the

adversary method to Hamming codes.

Finding the value of the adversary method is as an optimization

problem. To analyze the adversary bound for hamming codes, we will

use symmetry to simplify this problem. The same simplification applies

to both the standard and negative adversary bounds, so we treat the

two cases simultaneously.

Suppose we are trying to design a good adversary matrix Γ, and

are deciding what weight to assign the (x, y) entry. Intuitively, it

seems that if (x, y) and (x′, y′) are related by an automorphism, then

they should look the same to an adversary, and hence should be given

the same weight. The automorphism principle states that there is an

optimal adversary matrix with this property. Although this principle

does not provide any advice about what weight to give a particular

pair (x, y), it can vastly reduce the optimization space by indicating

that the adversary matrix should possess certain symmetries.

Definition 3.6. ([HLS 07]) Let G be a group of automorphisms for a

function f . We say that G is f -transitive if for every x, y such that

f(x) = f(y), there is π ∈ G such that π(x) = y.

Theorem 3.7. (Automorphism principle [HLS 07]) Let G be a group

of automorphisms of f . There is an optimal adversary matrix Γ for

which Γ[x, y] = Γ[π(x), π(y)] for all π ∈ G and x, y. Furthermore,

if G is f -transitive then Γ has a principal eigenvector β for which

β[x] = β[y] whenever f(x) = f(y).

There are two types of automorphisms in the automorphism group

CHAPTER 3. HAMMING CODES 38

of Hamming code function:

1. ”Linear” automorphism. Linearity of the Hamming codes means

that we can add one Hamming codeword to another and the

result will still be a valid Hamming codeword. Each valid Ham-

ming codeword h forms an automorphism which maps vector v

to another vector v ⊕ h. If v is a valid Hamming code, then and

only then v ⊕ h is also a valid Hamming code.

2. ”Cyclic” automorphism. It’s well known that the Hamming

codes are cyclic codes ([Bl 83]). This means that there is a cyclic

operator φ which maps a Hamming code h of length N to another

Hamming code φ(h) and by applying this operator N times we

get the h again: φN(h) = h.

Theorem 3.8. The group G of ”linear” and ”cyclic” automorphisms

of a Hamming code function of N arguments is f -transitive.

Proof. We get N+1 distinct groups of code vectors. The first group F0

consists of all valid Hamming codewords. This group can be generated

by applying each of the ”linear” automorphisms to codeword of all-

zeros. Obviously, we can transform a codeword s ∈ F0 to another

codeword t ∈ F0 by applying sequentially two automorphisms which

are accordingly based on s and t: s⊕ s⊕ t = t.

The rest N groups Fi are generated by applying the ”linear” auto-

morphisms to code vector containing just one ”1” in position i and all

zeros in other positions. These groups are distinct as they are based

on distinct starting vectors and we can’t get another vector with ham-

ming weight 1 by applying the ”linear” automorphisms to the starting

CHAPTER 3. HAMMING CODES 39

vector (just because there is no any valid Hamming codeword of weight

2).

Since we have a ”cyclic” automorphism then for each i, j we can

transform elements from Fi into elements of Fj by applying a ”shift”

automorphism necessary number of times.

This means that we can transform any element fi ∈ Fi into element

fj ∈ Fj which together with the transitivity of F0 elements is the

condition for the automorphism group G to be f -transitive.

By following the automorphism principle 3.7 we can assume with-

out loss of generality that the number of distinct entries in matrix Γ is

at most the number of elements in F0, which is number of distinct valid

codewords. Hamming code of N = 2n − 1 arguments has 2n − n− 1

valid codewords. Let’s denote this number by size(N). So we will have

at most size(N) distinct entries in Γ.

Let’s take a look into the structure of Γ.

Lemma 3.9. The row Γ[z,], corresponding to all-zeros codeword, con-

sists of size(N) zeros and size(N) distinct elements each of them ap-

pearing exactly N times.

Proof. The row z has size(N) zeros in the columns corresponding to

valid codewords, because by definition Γ has a constraint that if f(x) =

f(y), then Γ[x, y] = 0.

Some of the columns correspond to cyclically isomorphic code vec-

tors. By cyclically isomorphic code vectors I mean such code vectors

which can be got from one another by applying the ”cyclic” automor-

phism.

Entries corresponding to columns of cyclically isomorphic code vec-

tors will be equal between one another. We can see this by having

CHAPTER 3. HAMMING CODES 40

x = 0 . . . 0 and π equal to ”cyclic shift” operator when applying the

equation from the automorphism principle:

Γ[0 . . . 0, y] = Γ[shift(0 . . . 0), shift(y)] = Γ[0 . . . 0, shift(y)]

Lemma 3.10. The row Γ[v,], corresponding to a valid codeword v,

consists of exactly the same elements as the row Γ[z,], permuted across

columns.

Proof. We can use the ”linear” automorphisms to see the structure

for the other rows corresponding to valid codewords. For a valid code-

word v and corresponding ”linear” automorphism we have the following

equation: Γ[v, x] = Γ[v ⊕ v, x⊕ v] = Γ[z, x⊕ v].

Lemma 3.11. The rows of Γ corresponding to not valid code vectors

consist of N · size(N) zeros and size(N) distinct elements.

Proof. These rows will have zeros in all columns corresponding to not

valid code vectors. The columns which correspond to valid codewords

will have size(n) distinct entries.

Theorem 3.12. If u is not a valid code vector of a Hamming code of

N arguments, then sum of the entries in the uth row of Γ is equal to

σ =
∑
i∈S

Γ[u, i] =
∑
j∈H

γj, where S is a set of all possible code vectors;

H is a set of all valid codewords.

For the valid codeword v the sum of the entries in the vth row of Γ

is equal to σ ·N .

Proof. The proof follows from lemmas 3.9, 3.10, and 3.11.

CHAPTER 3. HAMMING CODES 41

Following is the sample Γ matrix for the Hamming code of size

three:

Γ =

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

0 γ1 γ1 γ2 γ1 γ2 γ2 0

γ1 0 0 0 0 0 0 γ2

γ1 0 0 0 0 0 0 γ2

γ2 0 0 0 0 0 0 γ1

γ1 0 0 0 0 0 0 γ2

γ2 0 0 0 0 0 0 γ1

γ2 0 0 0 0 0 0 γ1

0 γ2 γ2 γ1 γ2 γ1 γ1 0



000

001

010

011

100

101

110

111

Theorem 3.13. Matrix Γ of a Hamming code function of N arguments

has a principal eigenvector β for which β[x] =
√
N whenever f(x) = 1,

and β[x] = 1 whenever f(x) = 0.

Proof. Since we proved theorem 3.8 we can follow the second part of

the automorphism principle 3.7 and construct the principal eigenvector

β. It will have distinct entries a and b corresponding accordingly to

valid and invalid Hamming code vectors.

By the definition of eigenvector it needs to satisfy the following

equality:

Γβ = λβ, (3.1)

where λ is the corresponding eigenvalue.

CHAPTER 3. HAMMING CODES 42

We have

Γβ = Γ


a

b
...

b

a

 =


bσN

σa
...

σa

bσN

 = σ


bN

a
...

a

bN

 (3.2)

and

λβ = λ


a

b
...

b

a

 (3.3)

We get the following dependency for a and b if we put 3.2 and 3.3

into 3.1:

{
σbN = λa

σa = λb
⇒

{
σbN = λ2b

σ

a = λb
σ

⇒

{
σ2bN = λ2b

a = λb
σ

⇒

{
b(σ2N − λ2) = 0

a = λb
σ

λ = ±σ
√
N (3.4)

a = ±b
√
N

Since in this case sign of entries doesn’t affect modulus of λ we can

chose both a and b to have the same sign:

a = b
√
N

CHAPTER 3. HAMMING CODES 43

We construct β, by having a =
√
N, b = 1.

Theorem 3.14. ||Γ|| = |σ
√
N |.

Proof. The proof follows from the fact that Γ is symmetric by design:

Γ[x, y] = Γ[y, x].

Since Γ is symmetric, its norm is equal to the modulus of eigenvalue

of a principal eigenvector, which we already expressed in the equation

3.4.

Now we know the value of the numerator in formula 2.2. Let’s now

take a look on the denominator maxi||Γ ◦Di||.
Transitivity of the automorphism group implies that all matrices

Γ ◦ Di have the same norm ([HLS 07]), so it is sufficient to consider

Γ ◦D1. Considering the example of N = 3, we have

Γ ◦D1 =



0 0 0 0 γ1 γ2 γ2 0

0 0 0 0 0 0 0 γ2

0 0 0 0 0 0 0 γ2

0 0 0 0 0 0 0 γ1

γ1 0 0 0 0 0 0 0

γ2 0 0 0 0 0 0 0

γ2 0 0 0 0 0 0 0

0 γ2 γ2 γ1 0 0 0 0


This matrix consists of two disjoint, symmetrical blocks, so its spec-

tral norm is simply the spectral norm of one of those blocks.

CHAPTER 3. HAMMING CODES 44

3.4.1 Optimal Adversary Bounds for Hamming Code

of Three Arguments

We can find the norm of the Γ ◦D1 for the case when N = 3.

Theorem 3.15. For the Hamming code of three arguments (N = 3)

the norm of Γ ◦D1 =
√
γ2

1 + 2γ2
2

Proof. First we can reverse the order of columns. This operation

doesn’t change the norm, but it makes the matrix to be symmetric. For

symmetric matrix the norm is just the biggest eigenvalue (by absolute

value).

In order to find the eigenvalues we need to solve the the following

equation:∣∣∣∣∣∣∣∣∣∣
−λ γ2 γ2 γ1

γ2 −λ 0 0

γ2 0 −λ 0

γ1 0 0 −λ

∣∣∣∣∣∣∣∣∣∣
= −γ2

∣∣∣∣∣∣∣
γ2 0 0

γ2 −λ 0

γ1 0 −λ

∣∣∣∣∣∣∣− λ
∣∣∣∣∣∣∣
−λ γ2 γ1

γ2 −λ 0

γ1 0 −λ

∣∣∣∣∣∣∣
= −γ2

2λ
2 + λ4 − λ2γ2

1 − λ2γ2
2

= λ4 − 2λ2γ2
2 − λ2γ2

1 = 0

This equation has four solutions. Two of them are λ1,2 = 0. The other

two solutions are the following:

λ3,4 = ±
√
γ2

1 + 2γ2
2

Which means that the norm of the matrix is
√
γ2

1 + 2γ2
2 .

Theorem 3.16. The optimal adversary and optimal negative adver-

sary bounds of Hamming code function of three arguments are equal to

CHAPTER 3. HAMMING CODES 45

3√
2
:

ADV ±(Hamming(3)) = ADV (Hamming(3)) =
3√
2

Proof. The formula for the standard adversary bound is (2.1):

ADV (f) := max
Γ≥0
Γ 6=0

||Γ||
maxi||Γ ◦Di||

,

From the transitivity of automorphism group and from theorems 3.14

and 3.15 it follows that without loss of generality the formula can be

reduced to a more simple form:

ADV (Hamming(3)) = max
Γ≥0
Γ6=0

(γ1 + γ2)
√

3

||Γ ◦D1||
= max

Γ≥0
Γ 6=0

(γ1 + γ2)
√

3√
γ2

1 + 2γ2
2

.

In this case we cannot get any improvement from allowing negative

entries in Γ, so we can safely assume that ADV ± = ADV .

The formula reaches it’s maximum when γ1 = 2γ2:

ADV ±(Hamming(3)) = ADV (Hamming(3)) =
(2γ2 + γ2)

√
3√

(2γ2)2 + 2γ2
2

=
3√
2
.

The same result can be achieved by solving a positive semidefinite

optimization problem of maximizing γ1 + γ2 subject to constraint that

I − Γ ◦D1 and I + Γ ◦D1 are positive semidefinite.

Now, knowing the adversary bound we can tell the lower bound for

quantum exact algorithm.

CHAPTER 3. HAMMING CODES 46

Corollary 3.17.

QE(Hamming(3)) =
ADV (Hamming(3))

2
=

3

2
√

2
≈ 1.06...

This means that minimal number of queries for an exact algorith is

2, so our algorithm for Hamming code of three arguments is optimal.

3.4.2 Optimal Adversary Bounds for Hamming Code

of Seven Arguments

Γ for the Hamming code of seven arguments consists of 16 distinct

non-zero entries γ1 . . . γ16. This fact follows from lemmas 3.9, 3.10,

and 3.11.

So the optimization problem for finding the adversary bounds can

be formulated as following:

maximize
∑

i∈{1,...,16} γi

subject to constraint that I − Γ ◦ D1 and I + Γ ◦ D1 are positive

semidefinite, and γi ≥ 0

Let’s try to simplify the problem. First of all because of its symmet-

ric structure, if Γ◦D1 has an eigenvalue λ, then it also has an eigenvalue

−λ. This means that we don’t need both conditions I − Γ ◦ D1 and

I + Γ ◦ D1. It’s enough to have just one of them. If one of them is

true, then the other one is also true.

As a second simplification we can reduce the number of distinct

entries by proving that some of γi are equal. We can prove that there

is an automorphism which can permute bits in a code vector in such

CHAPTER 3. HAMMING CODES 47

a way that we can get all code vectors of the same weight just by

applying a permutation to one of them.

We can permute parity bits and according data bits of a valid code-

word and still get another valid codeword. If we permute two parity

bits then we also need to permute those data bits which are checked by

the two parity bits. This gives us the new automorphism group with

the following permutations:

abucvwx→ baucwvx

abucvwx→ cbwavux

abucvwx→ acvbuwx

abucvwx→ cavbwux

abucvwx→ bcwauvx

It’s just a matter of checking case by case to see that with these

automorphisms it’s possible to get any not valid code vector of the same

size from any other not valid vector of the same size. The same is true

for valid codewords, but we already knew it before as the code is cyclic.

This property means that if hammingWeight(i) = hammingWeight(j)

then Γ[0, i] = Γ[0, j]. Since there are only 6 distinct weights of code

vectors, we can reduce number of distinct entries of Γ to six.

Now the optimization problem is reduced to the following:

maximize γ1 + 3γ2 + 4γ3 + 4γ4 + 3γ5 + γ6

subject to constraint that I − Γ ◦ D1 is positive semidefinite, and

γi ≥ 0

CHAPTER 3. HAMMING CODES 48

For the negative adversary the constraint for entries to be not neg-

ative is removed:

maximize γ1 + 3γ2 + 4γ3 + 4γ4 + 3γ5 + γ6

subject to constraint that I − Γ ◦D1 is positive semidefinite

We will find the solutions for the both problems by using Matlab

together with Sedumi package. The program’s source code is attached

to the thesis in appendix A.

We get the following results for standard adversary:

γ1 = 2/
√

10

γ2 = 1/
√

10

γ3 = γ4 = γ5 = γ6 = 0

The norm of Γ ◦ D1 is equal to 1 when applying the calculated

values.

We can find the optimal standard adversary by using the calculated

values:

ADV (Hamming(7)) = (γ1 + 3γ2 + 4γ3 + 4γ4 + 3γ5 + γ6)
√

7

= (2/
√

10 + 3/
√

10)
√

7

= (5/
√

10)
√

7

≈ 4.18...

This gives the lower bound of quantum exact complexity of QE ≥
2.09

The values for negative adversary are also calculated, they are not

CHAPTER 3. HAMMING CODES 49

in so nice form though:

γ1 ≈ 0.6412

γ2 ≈ −0.0042

γ3 ≈ −0.0283

γ4 ≈ 0.2572

γ5 ≈ 0.0902

γ6 ≈ −0.0287

The optimal negative adversary is a little bit bigger than the stan-

dard one:

ADV ±(Hamming(7)) = (γ1 + 3γ2 + 4γ3 + 4γ4 + 3γ5 + γ6)
√

7

≈ (0.6412− 4 ∗ 0.0042− 3 ∗ 0.0283 + 3 ∗ 0.2572

+ 4 ∗ 0.0902− 0.0287)
√

7

= 1.6432
√

7

≈ 4.3475

It means that QE ≥ 2.17.

Chapter 4

Reed-Solomon Codes

Reed-Solomon codes were introduced in [RS 60]. These codes are be-

ing used widely in communication, storage devices (CD, DVD) etc.

Reed-Solomon codes are a subset of BCH codes and are linear block

codes [BC 60, Ho 59]. A Reed-Solomon code is specified as RS(l, k)

with n-bit symbols. Here l = 2n − 1. RS(l, k) codeword consists of k

data symbols and l − k parity symbols (all symbols consist of n bits):

A Reed-Solomon decoder can correct up to t erroneous symbols per

codeword, where 2t = l − k.

The simplest example of such code is the RS(7, 5) code. It has

l = 7, k = 5, n = 3, t = 1.

In the thesis we will investigate functions based on Reed-Solomon

codes correcting one error. It means that t = 1.

50

CHAPTER 4. REED-SOLOMON CODES 51

4.1 Constructing a codeword

In this section we will learn how to construct Reed-Solomon codewords.

Assuming we have data to encode, how do we calculate parity symbols?

The short answer is that parity symbols are obtained by getting

remainder of dividing data symbols with the generating polynomial

of Galois field GF (2n). GF arithmetics is used for dividing. Let’s go

ahead and learn it in more details.

Each symbol in the code is considered as an element from Galois

Field. Any word A1A2A3A4 . . . An can be expressed as a polynomial

A1X
n−1A2X

n−2 . . . An, where Xi are just formal multipliers to denote

different types of variables which cannot be added to one another.

Polynomial operations, such as addition, multiplication and deletion

happen the same way as in case of normal polynomials, the only differ-

ence is that coefficients are added and multiplied following the Galois

Fields rules.

If we have word D and we want to get a codeword in Reed-Solomon

RS(n, k) encoding then we will do the following:

1. Add r = n − k zeros to the word D from the right side. In the

terms of polynomials, we are multiplying the polynomial by Xr.

So as the result of this step we get a new polynomial DXr.

2. Divide the polynomial DXr by generating polynomial G and get

a remainder R, such that DXr = GQ+R, where Q is a quotient

which we will ignore as we are interested only in the remainder.

3. Add remainder R to the initial word D. As a result we get

a codeword C which data symbols are stored separately from

parity symbols R.

CHAPTER 4. REED-SOLOMON CODES 52

Power of Polynomial Binary Decimal Minimal
primitive element represent. represent. polynomial

0 0 000 0
α0 1 001 1 x+ 1
α1 z 010 2 x3 + x+ 1
α2 z2 100 4 x3 + x+ 1
α3 z + 1 011 3 x3 + x2 + 1
α4 z2 + z 110 6 x3 + x+ 1
α5 z2 + z + 1 111 7 x3 + x+ 1
α6 z2 + 1 101 5 x3 + x2 + 1

Table 4.1: The summary of GF(8).

The Galois Fields arithmetics is explained in section 2.6.

Let’s construct the field GF (23) and use it for getting sample code-

word of code RS(7, 5).

4.1.1 The Field GF (23)

The field GF (23) is a superfield of GF(2), which means that it’s char-

acteristic is two and for each β it’s true that −β = β. We will use the

primitive polynomial of degree three from table 2.4: x3 + x + 1. We

will use x as a primitive element.

In [Bl 83] there is a very convenient way of representing the prop-

erties of Galois fields . We will use the same representation here. It is

shown in table 4.1

The table is constructed in the following way. We get polynomials

by raising z to respective power by modulus z3 + z + 1. Binary rep-

resentation is obtained from the polynomials as a concatenation of its

coefficients. Decimal representation is just an equivalent of binary rep-

resentation in decimal system. Finally, minimal polynomial is taken in

CHAPTER 4. REED-SOLOMON CODES 53

such a way that by applying it to according polynomial its value is 0

(by modulus z3 + z + 1).

For instance element z+1 has a minimal polynomial x3+x2+1. We

get the following result when evaluating the polynomial by substituting

x with z + 1. The calculation done is by modulus z3 + z + 1:

(z + 1)3 + (z + 1)2 + 1 = (z + 1)(z2 + 1) + (z2 + 1) + 1

= z3 + z2 + z + 1 + z2 + 1 + 1

= z3 + z + 1 = 0

When having such a representation, the multiplication and deletion

can be done as easy as:

αiαj = αi+ j(mod7)

αi/αj = αi− j(mod7)

Addition is equivalent to XOR.

Multiplication can also be represented as a vector multiplication by

matrix ([Ma 89]). The list of multiplication matrices is shown in table

4.2.

For instance multiplication 011 · 101 can be performed in the fol-

lowing way:

[
100
]0 1 0

0 0 1

1 0 1

 =
[
100
]

CHAPTER 4. REED-SOLOMON CODES 54

·
[
000
]

·
[
001
]

(α0) ·
[
010
]

(α1) ·
[
011
]

(α3)0 0 0
0 0 0
0 0 0

 1 0 0
0 1 0
0 0 1

 0 1 1
1 0 0
0 1 0

 1 1 1
1 1 0
0 1 1



·
[
100
]

(α2) ·
[
101
]

(α6) ·
[
110
]

(α4) ·
[
111
]

(α5)1 1 0
0 1 1
1 0 0

 0 1 0
0 0 1
1 0 1

 1 0 1
1 1 1
1 1 0

 0 0 1
1 0 1
1 1 1


Table 4.2: Multiplication matrices of GF(8)

4.1.2 Sample Codewords

Before continuing further investigation, let’s consider two examples

of Reed-Solomon codewords. The first example will be for the code

RS(7, 5), the second - for the code RS(7, 3).

Let’s take a data to be 12345. Now we will find the codeword

for RS(7, 5) code. To get the parity symbols we need to divide the

data symbols by the generating polynomial of GF(8). The generating

polynomial of GF(8) is x2 + 6x + 3. The codeword will be in format

12345XX, where XX is the remainder of diving 1234500 by 163. We

will use the long division procedure to find the remainder. For easier

application of the division we will use the addition and multiplication

tables of GF(8) (see tables 4.3 and 4.4 accordingly).

1 2 3 4 5 0 0 |1 6 3

1 6 3 |1 4 5 0 1

4 0 4

CHAPTER 4. REED-SOLOMON CODES 55

+ 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 0 3 2 4 5 7 6
2 2 3 0 1 6 7 4 5
3 3 2 1 0 7 6 5 4
4 4 5 6 7 0 1 2 3
5 5 4 7 6 1 0 3 2
6 6 7 4 5 2 3 0 1
7 7 6 5 4 3 2 1 0

Table 4.3: The addition table of GF(8).

· 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 4 6 3 1 7 5
3 0 3 6 5 7 4 1 2
4 0 4 3 7 6 2 5 1
5 0 5 1 4 2 7 3 6
6 0 6 7 1 5 3 2 4
7 0 7 5 2 1 6 4 3

Table 4.4: The multiplication table of GF(8).

CHAPTER 4. REED-SOLOMON CODES 56

4 5 7

5 3 5

5 3 4

0 1 0 0

1 6 3

6 3

We got the remainder 63. So the codeword is 1234563.

Now let’s take a word 123 and find a codeword for the RS(7, 3)

code. We do it by getting the remainder of dividing 1230000 by 13123:

1 2 3 0 0 0 0 |1 3 1 2 3

1 3 1 2 3 |1 1 1

1 2 2 3 0

1 3 1 2 3

1 3 1 3 0

1 3 1 2 3

1 3

We got the remainder 13 which means that the codeword is 1230013.

4.2 Deterministic Query Algorithm for Reed-

Solomon Codes

In this and the following sections we denote N = n(2n − 1).

We define a Boolean function f(b1, . . . , bN) equal to 1 on Reed-

Solomon code vectors and equal to 0 otherwise.

Theorem 4.1. D(f) = N .

CHAPTER 4. REED-SOLOMON CODES 57

X1

X2

0

X2

1

X3

1

Xn-2

0
1

Xn-1 0

Xn 0

01

Xn-2

Xn-1 0

Xn 0

01

...

...

...

Figure 4.1: A deterministic query algorithm for the Reed-Solomon
code function RS(7, 5) of 21 arguments.

Proof. The proof is identical to the proof of Theorem 3.2.

The visualization of the deterministic algorithm for the function of

21 arguments can be seen on figure 4.1

4.3 Quantum Query Algorithm for Reed-

Solomon Codes

Lemma 4.2. Reed-Solomon code can be verified multiplying the input

variable vector [x1 . . . xN] by matrix Λ of N rows and n columns. The

code is correct if the multiplication’s result is equal to zero-vector.

CHAPTER 4. REED-SOLOMON CODES 58

Proof. We can find out from [Pe 60], that syndrome can be used to ver-

ify Reed-Solomon code. This syndrome’s formula is: S = X1α
2n−2 +

. . .+X2n−1α
0 where Xi are codeword’s n-bit symbols, α is GF’s prim-

itive element.

The code is correct if S = 0.

To prove the lemma we can represent the syndrome as a multipli-

cation of matrices:

[
X1 . . . X2n−1

]
×

 α2n−2

...

α0


Here we can replace Xi with its binary representation. It is known

from [Ma 89] that multiplication in GF (2n) can be represented as a

multiplication with matrix (See table 4.2 for the list of multiplication

matrices in GF (8)). So we can also replace αi with multiplication ma-

trix n × n for this αi. As a result we get matrix Λ which consists of

multiplication matrices for each element of GF. Here is the multiplica-

tion we obtain after all replacements:

[
x1 . . . xn . . . xN−n+1 . . . xN

]
×



λN
...

λN−n+1
...

λn
...

λ1


If a result of this multiplication is zero-vector then the syndrome

S = 0 and so [x1 . . . xN] is a correct Reed-Solomon codeword.

CHAPTER 4. REED-SOLOMON CODES 59

Lemma 4.3. The rows of the matrix Λ are all possible n-bit vectors

except zero-vector, moreover each vector occurs exactly n times.

Proof. If we take the rows with indices 1, n+ 1, 2n+ 1, . . . , N − n+ 1

of the matrix Λ we will meet between them each vector from [00...01]

to [11...11]. It is implied by the fact that if we multiply [10...00] with

all elements of GF, we should get the same elements exactly once as a

result. The same is true for each row sequence i, n + i, . . . , N − n + i

where i ∈ [n]

For example, let’s take Reed-Solomon code RS(7, 5). Here n = 3,

l = 7 and k = 5. Each codeword consist of l × s = 7 × 3 = 21

bits (function f is of 21 variables). Matrix Λ will be of 21 rows and

3 columns. Rows of the matrix are all possible 3-bit vectors except

zero-vector, and each vector occurs exactly 3 times:

Λ =

 0

1

0

0

0

1

1

0

1

0

0

1

1

0

1

1

1

1

1

0

1

1

1

1

1

1

0

1

1

1

1

1

0

0

1

1

1

1

0

0

1

1

1

0

0

0

1

1

1

0

0

0

1

0

1

0

0

0

1

0

0

0

1


T

Theorem 4.4. There is an exact quantum query algorithm for function

f with complexity N/2 for even n.

Proof. We will use the method described in Lemma 4.2 and Lemma 4.3

for constructing the algorithm. We have a codeword and the matrix Λ

for Reed-Solomon code of N variables. First we take multiplication of

matrices

[x1 . . . xN]×

 λN
...

λ1

 ,

CHAPTER 4. REED-SOLOMON CODES 60

then we permute rows of the matrix Λ (and accordingly the codeword’s

bits xi) in the following way (it’s possible because of Lemma 4.3):

0 . . . 01
...

0 . . . 01

}
n

...

1 . . . 11
...

1 . . . 11

}
n


Now the task is to multiply the matrices and to check if we have

zero-vector as a result. It is equivalent to verifying the following check-

sums:

y1 =
∑

λi[1]=1 xi
...

yn =
∑

λi[n]=1 xi

λi[j] denotes the j-th element in vector λi. The sums are calculated

modulo 2.

If each yi is equal to 0, then the result of the multiplication is

zero-vector.

Let’s evaluate the complexity (i.e. the number of queries) for even

n.

For any i, we take input variables x2i−1 and x2i and calculate x2i−1⊕
x2i. We use this result in those checksums where this pair occurs. It is

easy to see that if one variable of the pair belongs to some checksum

then also the other variable belongs to the same checksum. So we need

CHAPTER 4. REED-SOLOMON CODES 61

N/2 queries to evaluate the function.

Theorem 4.5. There is an exact quantum query algorithm for function

f with complexity n · (2n − 1)/2 + (2n−1 − 1)/2− 2n−2 for odd n.

Proof. In the case of odd n we begin like we did when n was even. So

we represent the task as multiplication of matrices and then permute

rows of a matrix Λ in the following way:

0 . . . 01
...

0 . . . 01

}
n− 1

...

1 . . . 11
...

1 . . . 11

}
n− 1


A

0 . . . 01
...

1 . . . 11

B


We use the algorithm from the previous theorem to calculate those

parts of the checksums which contain the first (n−1)(2n−1) variables

(see part A above) of the codeword. The remaining variables represent

subsums equivalent to the Hamming code checksums (see part B above)

which can be calculated with 2n − 1 − 2n−2 queries. In total we have

(n− 1)(2n − 1)/2 + 2n− 1− 2n−2 = n · (2n− 1)/2 + (2n−1− 1)/2− 2n−2

queries for odd n.

CHAPTER 4. REED-SOLOMON CODES 62

X6 X8

X9 X10

0

X11 X13

X3 X5

X17 X19

X7 X15

X1 X12

X14 X16

X18 X20

X12 X21

X7 X10

X2 X4

0

0

0

0

0

0

0

0

0

0

0

0

1

X2 X4

1

01 1

0 1

X7 X10

X2 X4

1

0

0

0

1

X2 X4

1

01 1

0 1

0

1

X18 X20

X12 X21

X7 X10

X2 X4

1

0

0

0

0

0

1

X2 X4

1

01 1

0 1

X7 X10

X2 X4

1

0

0

0

1

X2 X4

1

01 1

0 1

0

1

...

...

...

...

...

...

...

Figure 4.2: A quantum query algorithm for the Reed-Solomon code
function RS(7, 5) of 21 arguments.

CHAPTER 4. REED-SOLOMON CODES 63

Figure 4.2 visualizes the quantum algorithm for the Reed-Solomon

code of 21 arguments.

4.4 Lower Bound by Polynomials

We will begin with finding the degree of f which helps us to prove the

lower bound by polynomials.

Theorem 4.6. deg(f) = n · 2n−1.

Proof. We prove this fact using Dirichlet principle and by constructing

Reed-Solomon code from several Hamming codes. It is similar to proof

for degree of Hamming code function. It is based on linearity of Reed-

Solomon codes.

Similarly as in the proof of Theorem 3.4 we will express the poly-

nomial of f as p(x1, . . . , xN) =
∑

b:f(b)=1

∏
i:bi=1 xi

∏
i:bi=0 (1− xi). In

this formula each summand corresponds to a particular Reed-Solomon

code vector b.

Similarly as for the Hamming code proof we open all the parenthe-

ses (1−xi) to get sum of monomials and investigate in which summands

a particular monomial occurs. First we need to prove that for I ⊆ [N]

the same monomial
∏

i∈I xi of size more than n ·2n−1 appears the same

number of times with positive sign as with negative sign. This reduces

to the prove that among the Reed-Solomon codes with 0’s in all the

positions not from I, the number of codes with even Hamming weight

coincides with the number of codes with odd Hamming weight. Reed-

Solomon codes are also linear, so similarly like we did for Hamming

codes it is enough to prove that among the above codewords there is

a code c with Hamming weight 3.

CHAPTER 4. REED-SOLOMON CODES 64

We proved in Lemma 4.3 that rows of the matrix Λ are all possible

n-bit vectors except zero-vector and each vector occurs exactly n times.

This means that we can split all these rows into n sets of size n in such

a way that each set contains all possible n-bit vectors. According to

Lemma 3.1 each of the sets represents a checking matrix for verifying

a Hamming code.

We can divide all the arguments of the Reed-Solomon code into

groups which correspond to the Hamming code checking matrices. We

denote this set of groups by G. Since there are only n distinct groups

and I > n · 2n−1 then by Dirichlet principle one of the groups will have

at least 2n−1 + 1 representatives in I. We already proved in Theorem

3.4 that there is a codeword with Hamming weight 3 in such a group.

Now we similarly as in Theorem 3.4 need to prove that there is a

monomial with card(I) = n · 2n−1 and non-zero coefficient. We use

the same grouping G as above. In each of the groups g ∈ G we can

find such set of indices Jg of size 2n−1, where if h is a valid Hamming

code then ⊕j∈Jhj = 0. Now we make the set I = ∪g∈GJg. The number

of 0’s and 1’s in positions from I is even because they need to satisfy

the checksum ⊕i∈Ibj = 0 for b to be a valid Reed-Solomon code and

because card(I) = n·2n−1 is an even number. Monomial corresponding

to this set of indices appears only with coefficients +1 and thus cannot

cancel (and it occurs at least once - for the all-zero Reed-Solomon

code).

Corollary 4.7. The lower bound by polynomials for Reed-Solomon

code function is: QE(f) ≥ n · 2n−2.

Chapter 5

Conclusion

In the conclusion we will summarize all the items which were discussed

in the thesis.

We investigated possibilities to implement quantum algorithms for

the Hamming and Reed-Solomon code functions. We investigated com-

plexity of the algorithms and their possible implementations.

Several results were achieved in this area. I think the most impor-

tant result is that we found a better quantum algorithm for evaluating

Hamming code functions. The algorithm reduces number of queries

by 25% compared to the best possible classical algorithm. It’s not the

world best achievement for reducing classical complexity by an exact

quantum algorithm. The best known achievement is an algorithm for

XOR (Deutsch’s) function which reduces the number of queries by one

half. From the other hand there is not so many algorithms known

which achieve improvement similar to what we got for the Hamming

codes functions.

For the Reed-Solomon functions we were able to reduce queries

count by one half. This is the same improvement as for the XOR. I

65

CHAPTER 5. CONCLUSION 66

think that the main value of the investigation is in showing how to

reduce Reed-Solomon function to use XOR as a subroutine.

We have found a polynomial lower bound for the both function

classes. The bound is not tight, but it is tight enough to see that the

classical deterministic algorithms can be improved only by a constant

factor.

We also found a lower bound by spectral adversary methods for

Hamming code function of seven arguments. Positive adversary gave

us lower bound of 2.09 and negative adversary increased it to 2.17.

Both these numbers mean that at least three queries are required for

an exact algorithm to evaluate them. This lower bound is higher than

the polynomial one for the same function.

Obviously there is an additional work possible in this area. The

immediate desire is to apply adversary method to Hamming code func-

tions of more arguments and also for Reed-Solomon code functions.

Some investigations still possible to minimize the gap between lower

bounds and algorithms complexity.

There is a related work done for other error correcting codes in

[Va 09]. It may be of interest to find a lower bound for the functions

in that work by applying the techniques from this research.

Another activity could be to extend this approach to a broader class

of error correcting codes and define which of them can be reduced to

using XOR as a subroutine.

All these activities may lead either to improvement of lower bound

estimations or even provide some idea for implementing more efficient

exact quantum algorithms.

Bibliography

[AF 03] A. Ambainis, R. Freivalds. Boolean function with a low poly-

nomial degree. in Proc. of the Latvian Academy of sciences, vol.

57, pp. 74–77, 2003.

[Am 02] A. Ambainis. Quantum lower bounds by quantum arguments.

Journal of Computer and System Sciences, 64:750–767, 2001.

[Am 03] A. Ambainis. Polynomial degree vs. quantum query complex-

ity. in Proc. of the 44th IEEE FOCS, 2003.

[Am 04] A. Ambainis. Quantum query algorithms and lower bounds

(survey article). Proceedings of FOTFS III, Trends on Logic, vol.

23, pp. 15–32, 2004.

[Be 93] R. Beigel. The polynomial method in circuit complexity. in

Proc. of the 8th Annual Structure in Complexity Theory Confer-

ence, IEEE Computer Society Press, pp. 82–95, 1993.

[BB+97] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani.

Strengths and weaknesses of quantum computing. SIAM Journal

on Computing 26, pp. 1510–1523, 1997.

67

BIBLIOGRAPHY 68

[BB+01] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de

Wolf. Quantum lower bounds by polynomials. Journal of the ACM,

48(4):778–797, 2001.

[Bl 83] R. Blahut. Theory and Practice of Error Control Codes. Mass.:

Addison-Wesley, 1983.

[BC 60] R. C. Bose, D. K. Ray-Chaudhuri On a class of error correct-

ing binary group codes. Inf. and Contr., v.3, p. 68–79, 1960.

[BSS 03] H. Barnum, M. Saks, and M. Szegedy. Quantum query com-

plexity and semi-definite programming. in Proc. of the 18th IEEE

Conference on Computational Complexity, pp. 179–193, 2003.

[BW 02] H. Buhrman, R. de Wolf. Complexity measures and decision

tree complexity: a survey. Theoretical Computer Science, 288:21–

43, 2002.

[CL 08] A. M. Childs and T. Lee. Optimal Quantum Adversary Lower

Bounds for Ordered Search. Lecture Notes in Computer Sciense,

v.5125, pp. 869-880, 2008.

[CE+98] R. Cleve, A. Ekert, C. Macchiavello, M. Mosca. Quan-

tum Algorithms Revisited. in proc. of the Royal Society, London,

A454:339–354, 1998.

[CLR 90] T. Cormen, C. Leiserson, R. Rivest. Introduction to Algo-

rithms. MIT Press, 1990

[De 85] D. Deutsch. Quantum theory, the Church-Turing principle and

the universal quantum computer. in proc. of the Royal Society,

London, A400:97–117, 1985.

BIBLIOGRAPHY 69

[Gr 96] L. K. Grover. A fast quantum mechanical algorithm for

database search. In Proc. of 28th ACM STOC, pp. 212–219, 1996.

[Gr 99] J. Gruska. Quantum Computing, McGraw Hill, 439 p, 1999

[Ha 50] R. W. Hamming. Error detection and error correcting codes.

Bell System Technical Journal, 26(2):147–160, 1950.

[Ho 59] A. Hochquenghem. Codes correcteurs d’erreurs. Chiffres, t.2.,

p. 147–156, 1959.

[HLS 07] P. Hoyer, T. Lee, R. Spalek. Negative weights make adver-

saries stronger. in Proc. of 39th ACM Symposium on Theory of

Computing, 2007.

[LM 04] S. Laplante and F. Magniez. Lower bounds for randomized

and quantum query complexity using Kolmogorov arguments. in

Proc. of 19th IEEE Conference on Computational Complexity, pp.

294–304, 2004.

[Ma 89] E. D. Mastrovito. VLSI Designs for Multiplication over Finite

Fields GF (2m) Lecture Notes in Computer Science 357, p. 297–309,

1989.

[NC 00] M. Nielsen, I. Chuang. Quantum Computation and Quantum

Information. Cambridge University Press, 675 p.,2000.

[NS 94] N. Nisan, M. Szegedy. On the degree of Boolean functions as

real polynomials. Computational Complexity, 4, pp. 301–313, 1994.

[NW 95] N. Nisan, A. Wigdersonn. On rank vs. Communication com-

plexity. Combinatorica, 15, p. 557–565, 1995.

BIBLIOGRAPHY 70

[Pa 94] C. Papadimitriou. Computational Complexity. Addison-

Wesley, Reading, 500pp., 1994.

[Pe 60] W. W. Peterson. Encoding and error-correction procedures for

the Bose-Chaudhuri codes. IEEE Trans. Inf. Theor. v.IT-6, p.459–

470, 1960.

[Re 97] K. Regan. Polynomials and combinatorial definitions of lan-

guages. In Complexity Theory Retrospective II, Springer-Verlag, pp

261–293, 1997.

[RS 60] I. S. Reed,G. Solomon. Polynomial codes over certain finite

fields. J. Soc. Indust. Appl. Math., v.8, p.300–304, 1960.

[Sh 97] P. W. Shor. Polynomial-time algorithms for prime factorization

and discrete logarithms on a quantum computer. SIAM Journal of

Computing, 26(5):1484–1509, 1997.

[SS 05] R. Spalek, M. Szegedy. All quantum adversary methods are

equivalent. In Proceedings of 32nd International Colloquium on Au-

tomata, Languages and Programming , Lecture Notes in Computer

Science 3580, pp 1299–1311, 2005.

[Va 09] A. Vasilieva. Exact Quantum Query Algorithm for Error De-

tection Code Verification. in Proc. of MEMICS, 2009.

[Zh 04] S. Zhang. On the power of Ambainis’s lower bounds. in Proc.

of 31st International Colloquium on Automata, Languages and Pro-

gramming, Lecture Notes in Computer Science 3142, pp 1238–1250,

2004.

Appendix A

The Matlab Program

Following is the source code of a Matlab program calculating the opti-

mal adversary lower bound of a Hamming code function. The program

uses sedumi package for solving semidefinite programming problems.

Visit

http://sedumi.ie.lehigh.edu for more information about the pack-

age.

function x = hammingAdversary(N, positive)

% N - length of the code vectors

% positive - if true then the positive adversary will be returned,

% otherwise will return the negative adversary

% count of variables to be optimized.

% We have one variable for each set of code vectors of the

% same size.

% This is based on conjecture that all not valid code vectors

% of the same size

71

http://sedumi.ie.lehigh.edu

APPENDIX A. THE MATLAB PROGRAM 72

% can be get from one another by a permutation of bits.

% This conjecture is proved for the code of size seven

variablesCount = N-1;

% entry (of not reversed) D(i,j) is equal to entry

% Gamma(i,j+indent);

indent = 2^(N-1);

% columns count in D

colsCount = 2^(N-1);

% supporting structure for constructing input of sedumi

rows = [];

cols = [];

s = [];

b = [];

% by D we denote Gamma * D1, where "*" is entrywise

% multiplication

D = zeros(N,N);

for i=1:colsCount

for j=1:colsCount

iG = i; %row index in Gamma

jG = (indent + j); %column index in Gamma

if (isHamming(iG-1) == isHamming(jG-1))

% reversing columns order of D, we need it to have

% all zeros on the diagonal

APPENDIX A. THE MATLAB PROGRAM 73

% this operation doesn’t change the norm

D(i,colsCount-j+1) = 0;

else

codeVector = bitxor(j-1,(indent + i)-1);

dec2bin(codeVector);

% reversing columns order of D, we need it to have

% all zeros on the diagonal

% this operation doesn’t change the norm

D(i,colsCount-j+1) = sum(dec2bin(codeVector) == ’1’);

end

end

end

% I-D>0 - the constraint that I-D is positive semidefinite

for i=1:colsCount

for j=1:colsCount

if (D(i,j)==0)

rows = [rows (i-1)*colsCount+j];

cols = [cols (i-1)*colsCount+j+variablesCount];

s = [s 1];

if (i == j)

b = [b 1];

else

b = [b 0];

end

else

rows = [rows (i-1)*colsCount+j (i-1)*colsCount+j];

cols = [cols D(i,j) (i-1)*colsCount+j+variablesCount];

APPENDIX A. THE MATLAB PROGRAM 74

s = [s 1 1];

b = [b 0];

end

end

end

A=sparse(rows, cols, s);

weightsDistribution = wordsDistributionByWeight(N);

c = -1*ones(1,variablesCount);

for i=1:variablesCount

% optimizing the sum of free variables

c(i) = -1 * (nchoosek(N,i)-weightsDistribution(i+1))/N;

end

c = [c zeros(1,colsCount*colsCount)];

if(positive)

K.l = variablesCount;

else

K.f = variablesCount;

end

K.s = colsCount;

x = sedumi(A, b, c, K);

APPENDIX A. THE MATLAB PROGRAM 75

The function for detecting valid hamming codewords. The code

words are reversed, but it doesn’t have impact on the result.

function x = isHamming(codeVector)

codeVectorLength = length(dec2bin(codeVector));

result = 0;

for i=1:codeVectorLength

if (bitget(codeVector,i) == 1)

result = bitxor(result,i);

end

end

x = (result == 0);

APPENDIX A. THE MATLAB PROGRAM 76

The function for determining valid codewords distribution by weight.

function x = wordsDistributionByWeight(N)

result = zeros(1,N+1);

totalCodeVectors = 2^N;

for i=0:totalCodeVectors-1

if(isHamming(i))

weight = sum(dec2bin(i) == ’1’);

result(weight+1) = result(weight+1) + 1;

end

end

x = result;

	Introduction
	Preliminaries
	Notation
	Quantum Computing
	Quantum States
	Unitary Evolution
	Measurements

	Query Models
	Deterministic Decision Tree
	Quantum Query Model

	The Deutsch Algorithm
	Lower Bound Methods
	Lower Bound by Polynomials
	Spectral Adversary

	Galois Fields

	Hamming Codes
	Deterministic Query Algorithm for Hamming Codes
	Quantum Query Algorithm for Hamming Codes
	Lower Bound by Polynomials
	Adversary Bounds for Hamming Codes
	Optimal Bounds for The 3 Arguments Code
	Optimal Bounds for The 7 Arguments Code

	Reed-Solomon Codes
	Constructing a codeword
	The Field GF(8)
	Sample Codewords

	Deterministic Query Algorithm for Reed-Solomon Codes
	Quantum Query Algorithm for Reed-Solomon Codes
	Lower Bound by Polynomials

	Conclusion
	Bibliography
	The Matlab Program

