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Abstract

The connection between the classical computation and mathematical logic has had
a great impact in the computer science which is the main reason for the interest in the
connection between the quantum computation and mathematical logic.

The thesis studies a connection between quantum finite state automata and logic.
The main research area is a quantum finite state automaton and its different notations
(measure-once quantum finite state automaton, measure-many quantum finite state
automaton, and Latvian quantum finite state automaton), more precisely, the languages
accepted by the various models of the quantum finite state automaton and its connection
to languages described by the different kinds of logic (first order, modular etc.).
Additionally, a quantum finite state automaton over infinite words is introduced.

The first part of the thesis is devoted to the connection between such quantum
finite state automata as measure-once quantum finite state automata, measure-many
quantum finite state automata, and Latvian quantum finite state automata and first
order logic, modular logic, and generalized quantifiers - Lindström quantifier and group
quantifier. For measure-once quantum finite state automata, we have characterized the
language class accepted by measure-once quantum finite state automata in terms of logic
using generalized quantifiers - Lindström quantifier and group quantifier, studied the
relationship between the language class accepted by measure-once quantum finite state
automata and the language class described by first order logic and modular logic. For
measure-many quantum finite state automata, the connection between language classes
accepted by quantum finite state automata and first order logic and modular logics has
been studied, as well as the connection between acceptance probability of quantum finite
state automata and logic. We also examined the language class accepted by Latvian
quantum finite state automata in terms of logic.

The second part is devoted to the quantum finite state automata over infinite words. We
extend the notation of quantum finite automata for infinite words. The class of languages
accepted by Büchi quantum finite state automata has been studied and we examine the
closure properties of Büchi quantum finite state automata.



Anotācija

Matemātiskās loǧikas un klasiskās skaitļošanas saistı̄bai ir bijusi liela nozı̄me da-
torzinātnes attı̄stı̄bā. Tas ir galvenais iemesls, kas raisı̄jis interesi pētı̄t kvantu skaitļošanas
un loǧikas saistı̄bu.

Promocijas darbs aplūko saistı̄bu starp galı̄giem kvantu automātiem un loǧiku. Pamatā
pētı̄jumi balstās uz galı̄gu kvantu automātu un tā dažādiem veidiem (galı̄gu kvantu
automātu ar mērı̄jumu beigās, galı̄gu kvantu automātu ar mērı̄jumu katrā solı̄, galı̄go
"latviešu" kvantu automātu), precı̄zāk, valodām, ko akceptē dažādie kvantu automātu
modeļi, un to saistı̄bu ar valodām, ko apraksta dažādie loǧikas veidi ( pirmās kārtas loǧika,
modulārā loǧika u.c.). Darbā ir arı̄ aplūkoti galı̄gi kvantu automāti, kas akceptē bezgalı̄gus
vārdus.

Promocijas darba pirmā daļa ir veltı̄ta galı̄ga kvantu automāta ar mērı̄jumu beigās,
galı̄ga kvantu automāta ar mērı̄jumu katrā solı̄ un galı̄gā "latviešu" kvantu automāta
saistı̄bai ar pirmās kārtas loǧiku, modulāro loǧiku un loǧiku, kas izmanto vispārinātus
kvantorus - Lindstroma kvantoru un grupas kvantoru. Galı̄giem kvantu automātiem
ar mērı̄jumu beigās ir aprakstı̄ta valodu klase, ko tie atpazı̄st, izmantojot vispārinātus
kvantorus - Lindstroma kvantoru un grupas kvantoru, kā arı̄ apskatı̄ta galı̄ga kvantu
automāta ar mērı̄jumu beigās saistı̄ba ar pirmās kārtas loǧiku un modulāro loǧiku.
Galı̄giem kvantu automātiem ar mērı̄jumu katrā solı̄ ir apskatı̄ta to saistı̄ba ar pirmās kārtas
loǧiku un modulāro loǧiku ne tikai no valodas atpazı̄šanas viedokļa, bet arı̄ no galı̄ga
kvantu automāta ar mērı̄jumu katrā solı̄ akceptēšanas varbūtı̄bas viedokļa. Darbā aplūkota
arı̄ galı̄gā "latviešu" kvantu automāta saistı̄ba ar pirmās kārtas loǧiku un modulāro loǧiku,
un aprakstı̄ta valodu klase, izmantojot grupas kvantoru.

Otrā darba daļa ir veltı̄ta kvantu automātiem bezgalı̄giem vārdiem. Autors paplašina
kvantu galı̄gā automāta definı̄ciju bezgalı̄giem vārdiem. Darbā aplūko valodu klasi, ko
atpazı̄st Büchi galı̄gs kvantu automāts, kā arı̄ Büchi galı̄ga kvantu automāta slēgtı̄bu pret
apvienojumu, šķēlumu un papildinājumu.
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Chapter 1

Introduction

The rapid development of the quantum computation and the huge impact of mathe-
matical logic in the classical computation were the main reasons to study the relationship
between quantum finite state automata and mathematical logic.

The connection between logic and the classical automata theory started with the work
of Büchi [17] and Elgot [22]. They showed how a logical monadic second-order formula
can effectively be transformed into a finite state automaton accepting the language defined
by the formula and vice versus - how a finite state automaton can be transformed to
a logical monadic second order formula which specifies the language accepted by the
automaton. The logical description of the computation models’ behaviour also influenced
complexity theory. In 1974, Fagin [23] gave a characterization of non-deterministic
polynomial time (NP) as the set of properties expressible in the second order existential
logic.

The above results inspired us to study the connection between the quantum automata
theory and logic. The goal of the research was to describe language classes recognized by
different quantum automaton models using logical formulas, to find properties of quantum
automata that can be connected to logics. We have achieved the following:

• characterized the language class accepted by measure-once quantum finite state
automata with bounded error in the terms of logic;

• proved that intersection of the language class accepted by measure-once quantum
finite automata with bounded error and languages defined by FO[<] contains only
trivial languages, i.e., an empty language and Σ∗;

• proved that languages described by modular logic using only modular quantifiers
are recognized by measure-once quantum finite state automata;
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• studied the connection between languages accepted by measure-many quantum
finite state automata and first order logic, as well as, the connection between
acceptance probability of measure-many quantum finite state automata and first
order logic was examined;

• studied the connection between acceptance probability of measure-many quantum
finite state automata and modular logic using first order quantifiers;

• studied the connection between Latvian quantum finite state automata and logic.

The theory of classical automata over infinite strings has been applied in the various
research areas, including the verification of reactive systems, reasoning about infinite
games, and decision problems for certain logics. Our research of the connection between
finite state automata and logic lead us to automata over infinite words. We devoted the
second part of the thesis to quantum finite state automata over infinite words. We have
achieved the following:

• extended definitions of group automata and measure-once quantum finite state
automata to infinite words;

• defined Büchi, Streett, and Rabin acceptance conditions for quantum case;

• proved that our Büchi quantum finite state automata over infinite words with
bounded error recognize the limit of the group languages;

• proved that our Büchi quantum finite state automata is closed under union;

• showed that our Büchi quantum finite state automata is not closed under intersection
and complementation;

• defined a measure-many quantum finite state automaton over infinite input.

In the Chapter 1, the background to the quantum computation and to the connection
between mathematical logic and classical computation is presented. We give a brief
history of development of the quantum computation, quantum Turing machine, and
quantum automata. The section "Logics and classical computation" is devoted to the
main results in the connection between classical computation and logic. And an overview
of automata over infinite words is presented in the section "Automata over infinite words".

The Chapter 2 contains main notations and definitions used in the thesis - probabilistic
systems, brief introduction to quantum mechanics, notations of quantum finite state
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automata used in the thesis, a brief overview to mathematical logic, algebra, and classical
computation, as well as, introduction to automata over infinite words.

The Chapter 3 is devoted to connection between measure-once quantum finite state
automata and logic - first order logic, modular logic, and logic using generalized
quantifiers - Lindström quantifier and group quantifier. The connection between measure-
many quantum finite state automata and first order logic and modular logic is studied in
the Chapter 4. In the Chapter 5, we study Latvian quantum finite state automata and its
connection to logic.

The Chapter 6 is devoted to the quantum finite state automata over infinite words,
where we give a definition of quantum finite state automata over infinite words and
obtained results.

1.1 Quantum Computation

Over the past half century, the power of computers has doubled every year and a half.
This phenomena is known as "Moore’s law", named after Gordon Moore, who had stated
the exponential advance in the 1960’s [39]. If the Moore’s law is to be sustained then
we must learn to build a computer based on the quantum physics (quantum computers
represent the ultimate level of miniaturization) and study quantum computation.

Quantum computation investigates the computation power and other properties of the
computers based on quantum mechanic principles. The concept of quantum computing
dates back to the early 80’s, to the speech of Nobel Prize winner Richard P. Feynman
and accompanying paper "Simulating physics with computers" [24]. His paper was the
first work that explicitly discussed the construction of machine operating according to the
laws of quantum physics. Feynman discussed the idea of a universal simulator - a machine
using quantum effects to explore other quantum effects and run simulations.

In 1982 [13], Benioff described a quantum mechanical computation model. However,
his model did not use any quantum mechanical effects, it was a hybrid Turing machine
storing qubits on the tape instead of classical bits and measuring each qubit from the
tape at each step. A year later in [3], David Albert described a self measuring quantum
automaton that performed tasks which no classical computer could simulate. However,
the machine was largely unspecified. By instructing the automaton to measure itself, it
can obtain ’subjective’ information that is absolutely inaccessible by measurement from
the outside. Finally in 1985 [20], Deutsch introduced a fully quantum computational
model and gave the description of a universal quantum computer. Later [14], Bernstein
and Vazirani introduced the construction of a universal quantum Turing machine capable
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of simulating any other quantum Turing machine with polynomial efficiency.
After the Deutsch paper [20] in the following years, there was a small interest in

quantum computation. However during these years, one of the first examples of a
quantum algorithm (The Deutsch - Jozsa algorithm [21]) that is more efficient than any
possible classical algorithm has been presented, and Dan Simon [50] invented an oracle
problem for which a quantum computer would be exponentially faster than a conventional
computer. The main ideas of the algorithm were later developed in Shor’s factoring
algorithm [49].

Interest in the quantum computation increased dramatically, when in 1994 Peter Shor
discovered efficient quantum algorithms for the problems of integer factorization and
discrete logarithms [49]. The importance of the Shor’s algorithm for finding factors
is in fact that reliability of the widely used public-key cryptography schema RSA is
based on the assumption that factoring large numbers is computationally infeasible. Shor
demonstrated that it is not the case if we could build a quantum computer. Shor’s
results are the powerful evidence, that quantum computers are more powerful than
Turing machines, even probabilistic Turing machines. Further evidence of the quantum
automata’s power came in 1996 when Grover showed, that the problem of conducting a
search through some unstructured search space could be sped up by a quantum computer
[26]. Although Grover’s algorithm did not had as powerful speed-up as Shor’s algorithm,
the widespread applications of search-based methodologies has excited considerable
interest in the algorithm of Grover.

However, the theory of quantum computers is far more developed than the practice: a
large scale quantum computer has not been built yet. In 1998, the first working 2-qubit
Nuclear magnetic resonance (NMR) quantum computer was demonstrated by Jonathan
A. Jones and Michele Mosca at Oxford University. In the same year, the first working 3-
qubit quantum computer has been developed and the first execution of Grover’s algorithm
on an NMR computer has been performed. In 2006, the theorists and experimentalists at
the Institute for Quantum Computing and Perimeter Institute for Theoretical Physics in
Waterloo, along with MIT, Cambridge, have presented an operational control method in
quantum information processing extending up to 12 qubits.

The more developed field of quantum theory is quantum cryptography. Although large
scale quantum computers are not built, the quantum devices for cryptography have been
provided. Quantum cryptography was first proposed by Stephen Wiesner, who, in the
early 1970s, introduced the concept of quantum conjugate coding. His paper "Conjugate
Coding" was rejected by IEEE Information Theory, but it was eventually published in
1983 in SIGACT News (15:1 pp. 78-88, 1983). In the early 1980s, Charles H. Bennett
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and Gilles Brassard proposed a method for secure communication based on Wiesner’s
"conjugate observables". In 1990, independently and initially unaware of the earlier work,
Artur Ekert developed a different approach to quantum cryptography based on peculiar
quantum correlations known as quantum entanglement. Quantum cryptography is also
used in practice.

• Quantum encryption technology provided by the Swiss company Id Quantique was
used in the Swiss canton of Geneva to transmit ballot results to the capitol in the
national election in 2007.

• In 2004, the world’s first bank transfer using quantum cryptography was carried out
in Austria. An important cheque, which needed absolute security, was transmitted
from the Mayor of the city to an Austrian bank.

• The world’s first computer network SECOQC (Secure Communication Based on
Quantum Cryptography) protected by quantum cryptography was implemented in
October 2008, at a scientific conference in Vienna. The network used 200 km of
standard fibre optic cable to interconnect six locations across Vienna and the town
of St Poelten located 69 km to the west.

For more information about quantum computation please refer to [28], [27], and [41],
but now we are going to consider the main models of quantum computation - a quantum
Turing machine and a quantum automaton. In comparison with quantum Turing machine,
a quantum automaton has finite memory and the computation steps does not exceed the
length of the input.

1.1.1 Quantum Turing Machine

The beginnings of the modern computer science goes back to a remarkable paper
[54] of Alan Turing, known as father of modern computer science, written in 1936. He
developed an abstract notation of computation now known as Turing machine. Turing
showed that there is a Universal Turing machine that can be used to simulate any other
Turing machine. The Turing machine later evolved into the modern computer.

Quantum computation also has its Turing machine - quantum Turing machine.
Quantum Turing machine is an abstract machine which is used to model the effect of
the quantum computation. Any quantum algorithm can be expressed using a particular
quantum Turing machine. We may say that quantum Turing machines have the same
relation to the quantum computation as Turing machines have in the classical computation.
As already mentioned, the first quantum computational model (quantum Turing machine)



1.1 Quantum Computation 6

was proposed by Deutsch [20]. Afterwards [14], Bernstein and Vazirani introduced the
construction of a universal quantum Turing machine capable of simulating any other
quantum Turing machine with polynomial efficiency.

However, quantum Turing machines are not always used for the quantum computation
analysis, in quantum information theory a quantum circuit is more commonly used
model. It has been proved that quantum Turing machines and quantum circuits are
computationally equivalent. [19]

Iriyama, Ohya, and Volovich have developed a model of a Linear Quantum Turing
Machine [31]. This is a generalization of a classical quantum Turing machine that
has mixed states and that allows irreversible transition functions. The quantum Turing
machine with postselection was defined by Scott Aaronson, who showed that the class
of polynomial time on such a machine is equal to the classical complexity class PP (the
class of decision problems solvable by a probabilistic Turing machine in polynomial time)
[2]. Another model of quantum Turing machine is the classically-controlled quantum
Turing machine - a Turing machine with a quantum tape for acting on quantum data,
and a classical transition function for a formalized classical control was introduced by
Perdrix and Jorrand in [43], where they showed that any classical Turing machine can be
simulated by a classically-controlled quantum Turing machine without loss of efficiency.

1.1.2 Quantum Automata

A natural model of classical computing with finite memory is a finite state automaton,
likewise a quantum finite state automaton is a natural model of quantum computation.
Quantum finite state automata refer to the quantum computers in a similar way as finite
state automata are related to Turing machines. An automaton reads input symbols from
the given input and performs a transition function defined for the input symbol, after the
input is read, the automaton accepts or rejects an input word. A quantum automaton can
reject or accept a word with a probability between zero and one.

Different notations of quantum finite state automata are used. The most simple and
one of the most popular notation of quantum finite state automata is a definition of
a quantum finite state automaton introduced by Moore and Crutchfield [38] known as
measure-once quantum finite state automaton (MO-QFA). The measure-once quantum
finite state automata performs unitary transformation for each input symbol and makes
the only measurement when the whole word is read obtaining the result whether the input
is accepted or rejected. MO-QFA is pure state model of quantum finite state automata.
Brodsky and Pippenger have proved [16], that MO-QFA with bounded error recognize
the same language class as group automata [52]. In the same paper [16], Brodsky and
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Figure 1.1 The forbidden construction of [16].

Pippenger showed that measure-once quantum finite state automaton can be simulated
by a probabilistic finite state automaton and described an algorithm that determines if
two measure-once quantum finite state automata are equivalent. However, if we consider
the measure-once quantum finite state automata with unbounded error it can recognize
non-regular languages, for example, L1 = {ω|ω ∈ {0, 1}∗, |ω|0 = |ω|1}.

Another widely used notation of quantum finite state automata is a measure-many
quantum finite state automaton (MM-QFA) introduced by Kondacs and Watrous [32].
MO-QFA and MM-QFA have seemingly small difference, the definition of measure-once
quantum finite state automata allows the measurement only at the end of the computation,
but the definition of measure-many quantum finite state automata allows the measurement
at every step of the computation (the measurement provides a probabilistic decision
on every input symbol by projecting a state on the subspace of accepting states, the
subspace of rejecting states, and the subspace of the automaton’s non-halting states). The
computation of MM-QFA halts when an accepting state or a rejecting state is reached.
While a measure-many quantum finite state automaton is in a non-halting state, the
computation continues. Although MM-QFA is more powerful than MO-QFA, measure-
many quantum finite state automata with bounded error recognise only the subset of the
regular languages. The several attempts have been made to define the language class of
measure-many quantum finite state automata. Brodsky and Pippenger [16] introduced the
first forbidden construction of MM-QFA (see the figure 1.1) - if a minimal deterministic
finite state automaton of a language contains such construction then the language cannot
be recognized by a measure-many quantum finite state automaton. Later Ambainis,
Ķikusts and Valdats [7] have shown another forbidden construction (the figure 1.2) for
measure-many quantum finite state automata, but it is still an open question how to
characterize the language class accepted by measure-many quantum finite state automata.

In the thesis, we also consider a notation of Latvian quantum finite automata
which was introduced in [1]. A Latvian quantum finite state automaton uses mixed
states, at every step of the computation an automaton performs a unitary transformation
and a projection defined for each input symbol. It has been provided an algebraic
characterization of the languages recognized by Latvian quantum finite state automata.
Enhanced quantum finite state automata is the measure-many version of Latvian quantum
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Figure 1.2 The forbidden construction of [7].

finite state automata, it was defined in [8], where it was shown that there are languages
for which enhanced quantum finite automata take exponentially more states than those of
the corresponding classical automata.

There are also other notations of quantum finite state automata as:

• one-way quantum finite automata with control language [15] - the accepting
behaviour is controlled by the result of the projective measurement performed at
each step in the computation, it was proved that one-way quantum finite automata
with control language with bounded error recognize exactly regular languages [36];

• one-way quantum finite automata together with classical states with bounded error
accepting all regular languages [46];

• ancilla quantum finite state automata, where an ancilla quantum part is imported,
and then the internal control states and the states of the ancilla part together evolve
by a unitary transformation [42];

• measure-once one-way general quantum finite state automata and measure-many
one-way general quantum finite state automata [33] instead of a unitary transforma-
tion a trace-preserving quantum operation is used.

1.2 Logics and Classical Computation

The connection between automata theory and logic dates back to the early sixties to
the work of Büchi [17] and Elgot [22], who showed that the finite automata and monadic
second order logic (interpreted over finite words) have the same expressive power, and that
the transformation from logical monadic second order formulas to finite state automata
and vice versus are effective. Later, the equivalence between finite state automata and
monadic second order logic over infinite words and trees were shown in the works of
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Büchi [18], McNaughton [35], and Rabin [47]. The reduction of formulas to finite state
automata was the key to prove decidability results in mathematical theories.

The next important step in the connection between automata theory and logic
was Pnueli’s work [45]. It was proposed to use temporal logic for reasoning about
continuously operating concurrent programs. In the eighties, temporal logics and fixed-
point logics took the role of specification languages and more efficient transformations
from logic formulas to automata were found. This led to powerful algorithms and software
systems for the verification of finite state programs (“model-checking"). The research of
the equivalence between automata theory and logic formalism also influenced language
theory itself. For example, the logical approach helped generalizing the domain of words
to more general structures like trees and partial orders.

The logical description of the computation models’ behaviour also influenced com-
plexity theory. In 1974, Fagin [23] gave a characterization of non-deterministic polyno-
mial time as the set of properties expressible in the second order existential logic. Later,
Immerman [29] and Vardi [55] characterized polynomial time as the set of properties
expressible in the first order inductive definition, which is defined by adding the least
point operator to the first order logic. In the similar way, polynomial space has also
been characterized [30] as second order logic with transitive closure. These results led
to the development of a new field - Description complexity - a sub field of computational
complexity theory and mathematical logic, which seeks to characterize complexity classes
by the type of logic needed to express the language in them.

A merge of techniques and results from automata theory, logic, and complexity was
achieved in circuit complexity theory, which studies the computational power of boolean
circuits, regarding restrictions in their size, depth, and types of allowed gates. Natural
families of circuits can be described by generalized models of finite state automata as
well as by appropriate systems of the first order logic.

1.3 Automata over Infinite Words

The study of finite state automata working on infinite words was initiated by Büchi
[17]. Büchi discovered connection between formulas of the monadic second order logic
of infinite sequences (S1S) and ω-regular languages, the class of languages over infinite
words accepted by finite state automata. The complexity of theory of automata over
infinite words was evident from the inital work of Büchi, where he showed that non-
deterministic automata over infinite words are strictly more powerful than deterministic
automata over infinite words.
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Few years later after Büchi paper, Muller proposed an alternative definition of finite
automata on infinite words [40]. McNaughton proved that with Muller’s definition,
deterministic automata recognizes all ω-regular languages [35]. Later, Rabin extended
decidability result of Büchi for S1S to the monadic second order of the infinite binary tree
(S2S) [47]. Rabin’s theorem can be used to settle a number of decision problems in logic.

A theory of automata over infinite words has started from these studies. It can
be applied in the various research areas, including the verification of reactive systems,
reasoning about infinite games, and decision problems for certain logics.

Recently probabilistic variants of finite state automata over infinite words have been
introduced and studied in [12], [10], and [11].



Chapter 2

Preliminaries

The chapter provides the main notations, definitions, and results of the quantum
computation and connection between logic and classical computation which are going
to be helpful for the rest of the thesis. Additionally, we give definitions of the classical
finite state automata over infinite words.

The most of the definitions we refer to [28], [27], and [41] for Quantum Computation.
For the main results and definitions of the connection between logic and automata and
automata over infinite words, we refer to [25] and [53].

2.1 Probabilistic Systems

A system admitting probabilistic nature means that we do not know for certain the
state of the system, but we know that the system is in the states x1, ..., xn with probabilities
p1, ..., pn that sum up to 1.

Definition 2.1.1. Notation

p1[x1] + p2[x2] + ...+ pn[xn] (2.1)

where pi ≥ 0 and p1 + p2 + ... + pn = 1 stands for a probability distribution, meaning

that the system is in state xi with probability pi.

We also call distribution 2.1 a mixed state. States xi are called pure states.

Example 2.1.1. Tossing a fair coin will give head h or tail t with a probability of 1
2
. The

notation 1
2
h+ 1

2
t is the mixed state of a fair coin tossing.

Instead of dealing with only one possible "reality" of how the process might evolve
under time, in probabilistic system, there is some indeterminacy in its future evolution
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described by the probability distributions. There are many possibilities the process might
go to, but some paths are more probable and others are less.

The time evolution of a probabilistic system develops each state xi into distribution

xi 7→ p1i[x1] + p2i[x2] + ...+ pni[xn], (2.2)

such that p1i + p2i + ...+ pni = 1 for each i. In the notation 2.2, pji is the probability that
the system xi into xj . Thus a distribution

p1[x1] + p2[x2] + ...+ pn[xn] (2.3)

evolves into

p1(p11[x1] + ...+ pn1[xn]) + ...+ pn(p1n[x1] + p2i[x2] + ...+ pnn[xn]) =

= (p11p1 + ...+ p1npn)[x1] + ...+ (pn1p1 + ...+ pnnpn)[xn] =

= p′1[x1] + ...+ p′n[xn],

where p′i = p1ip1 + ...+ p1ipn. Therefore the probabilities pi and p′i are related by
p11 p12 ... p1n

p21 p22 ... p2n

...
... . . . ...

pn1 pn2 ... pnn




p1

p2

...
pn

 =


p′1

p′2
...
p′n

 . (2.4)

The matrix in the equation 2.4 is a stochastic matrix, also called Markov matrix, it has
non-negative entries and p1i + p2i + ... + pni = 1 for each i, which guaranties that p′1 +

p′2 + ...+ p′n = p1 + p2 + ...+ pn.

Definition 2.1.2. A real (n x n) matrix A = [aij] is called a Markov matrix or stochastic

matrix if

• aij > 0 for 1 ≤ i, j ≤ n

•
n∑
i=0

aij = 1 for 1 ≤ j ≤ n.

A probabilistic system with a time evaluation described above is called a Markov
chain.
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2.2 Quantum Mechanics

Here, we give a brief introduction to quantum mechanics. The term "quantum me-
chanics" is used for the mathematical structure describing "quantum physics". Quantum
mechanics was born in the beginnings of the twentieth century, when experiments on
atoms and radiations could not be fully explained by classical physics even by using the
Markov chain described in the previous section. At first, we introduce the formalism of
quantum mechanics in a basic form on state vectors and we assume that the quantum
system is a finite - dimensional.

2.2.1 Superposition

The quantum mechanical description of a physical system looks similar to description
of a probabilistic system in 2.1. However, they differ essentially. In quantum mechanics,
a state of an n-level system is described as a unit-length vector in an n-dimensional
complex vector space Hn called Hilbert space (see Subsection 2.2.2). Hn is called the

state space of the system. To define a quantum state we choose an orthonormal basis
{|x1〉, |x2〉, ..., |xn〉} 1 for the Hilbert space Hn.

Definition 2.2.1. A pure quantum state |φ〉 is a superposition of a classical states, written

|φ〉 = α1|x1〉+ α2|x2〉+ ...+ αn|xn〉, (2.5)

where αi are complex numbers called amplitudes (with respect to the chosen basis) and

|α1|2 + |α3|2 + ... + |αn|2 = 1, where |αj|2 is the squared norm of the corresponding

amplitude αj (|ai+ b| =
√
a2 + b2).

The quantum state 2.5 can be also seen as the n-dimensional column vector
α1

α2

...

αn

 . (2.6)

Example 2.2.1. A two-level quantum system can be used to represent a bit. Such a system

is called a quantum bit or qubit. The system has an orthonormal basis {|0〉, |1〉}. A

general state of the system is represented by α0|0〉+ α1|1〉, where |α1|2 + |α2|2 = 1. The

probability to see the system to have the property 0 is |α0|2, and 1 - |α1|2.
1Notation like ’|x〉’ is standard notation for states in quantum mechanics and is called "ket" notation or

Dirac notation.
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2.2.2 Hilbert Space

Hilbert space is a mathematical framework suitable for describing the concepts and
principles of quantum system. In this subsection, we will define Hilbert space.

Definition 2.2.2. An inner-product space H is a complex vector space, equipped with

an inner product 〈·|·〉 : H × H → C satisfying the following axioms for any vectors

φ, ψ, φ1, φ2 ∈ H , and any c1, c2 ∈ C.

1. 〈φ|ψ〉 = 〈ψ|φ〉∗2,

2. 〈ψ|ψ〉 ≥ 0 and 〈ψ|ψ〉 = 0 if and only if ψ = 0,

3. 〈ψ|c1φ1 + c2φ2〉 = c1〈ψ|φ1〉+ c2〈ψ|φ2〉.

The inner product introduces on H the norm or length ‖ψ‖ =
√
〈ψ|ψ〉 and the metric

(Euclidean distance) dist(φ, ψ) = ‖φ− ψ‖.

Definition 2.2.3. An inner-product vector space H is called complete if for each vector

sequence ψi such that limm,n→∞ ‖ψm − ψn‖ = 0, there exists a vector ψ ∈ H such that

limn→∞ ‖ψn − ψ‖ = 0. A complete inner-product space is called a Hilbert space.

An n-dimensional complex vector Hilbert space is denoted by Hn or Cn.
A vector ψ of an n-dimensional Hilbert space is denoted by |ψ〉, and is referred as a

ket-vector, and it can be seen as an n-dimensional column vector 2.6. The 〈ψ| is referred
to as bra-vector and can be seen as an n-dimensional row vector(

α∗1 α∗2 ... α∗n

)
, (2.7)

where αi are complex numbers. The transformation |ψ〉 ↔ 〈ψ| corresponds to
transposition and conjunction.

The inner product 〈ψ|φ〉 is then "row vector × column vector" product, which
produces a complex number as output. The outer product |ψ〉〈φ| is an n × n matrix -
"column vector × row vector" product.

Example 2.2.2. Let us consider a two states of the H2: |ψ1〉 =

(
α0

α1

)
and |ψ2〉 =(

β0

β1

)
. The inner product of ψ1 and ψ2 is

〈ψ1|ψ2〉 =
(
α∗0 α∗1

)( β0

β1

)
= α∗0β0 + α∗1β1

2Notation z∗ denotes the complex conjugate of the complex number z: (a+ bi)∗ = a− bi.



2.2 Quantum Mechanics 15

and the outer product is

|ψ1〉〈ψ2| =

(
α0

α1

)(
β∗0 β∗1

)
=

(
α0β

∗
0 α0β

∗
1

α1β
∗
0 α1β

∗
1

)
.

2.2.3 Observables and Measurement

In order to extract quantum information from a quantum system, we have to observe
the system to perform a measurement.

At first, we consider a measurement in the computational basis. Suppose, that a
quantum system is in a state

|φ〉 = α1|x1〉+ α2|x2〉+ ...+ αn|xn〉.

We cannot "see" a superposition itself, but only classical states. The basis state |xj〉
is observed with probability of |αj|2, which is the squared norm of the corresponding
amplitude αj (|ai + b| =

√
a2 + b2). Observing |φ〉 collapses the quantum state |φ〉 to

the classic state |xj〉 and all the "information" that might have been contained in the αj is
gone.

We may generalize the measurement as follows:

Definition 2.2.4. An observable E = {E1, E2, ..., Em} (m ≤ n) is a collection of

mutually orthogonal subspaces of the Hilbert space Hn such that

Hn = E1 ⊕ E2 ⊕ ...⊕ Em.

We equip the subspaces Ei with distinct real number "labels" θ1, θ2, ..., θm. Each
vector |x〉 ∈ Hn can be decomposed in a unique way as |x〉 = |x1〉 + |x2〉 + ... + |xm〉
such that |xi〉 ∈ Ei. Instead of observing subspaces Ei, we can talk about observing the
labels θi: by observing E, value θi will be seen with a probability of ‖xi‖2.

Example 2.2.3. The observable E can be defined as E = {E1, E2, ..., En}, where each

Ei is the one-dimensional subspace spanned to xi. Now, we equip the subspaces Ei with

the label i. If the subspace is in the state 2.5, the value i is observed with a probability of

‖αixi‖ = |αi|2.

Another way of viewing the observables is using projectors. The measurement is
described by projectors P1, P2, ..., Pm (m ≤ n), which sum to identity. The projectors
are orthogonal (PiPj = 0, if i 6= j). The projector Pj projects on the subspace Ej of
the Hilbert space Hn, and every vector |x〉 ∈ Hn can be decomposed in a unique way as
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|x〉 = |x1〉+ |x2〉+ ...+ |xm〉 such that |xj〉 = Pj|x〉 ∈ Ej . We will get outcome θj with
probability ‖xj‖2 = Tr(Pj|x〉〈x|) and the state will collapse to the new state

|x′〉 =
|xj〉
‖xj‖

=
Pj|x〉
‖Pj|x〉‖

.

Example 2.2.4. If we consider the previous example using projectors, then n = m and

Pi = |xi〉〈xi|. Applying our measurement to ψ we will get output i with probability

‖Pi|ψ〉‖2 = ‖αi|xi〉‖2 = |αi|2 and the state collapses to αi|xi〉
‖αi|xi〉‖ = αi

|αi| |xi〉.

2.2.4 Unitary Evolution

We have measured a quantum state, but what about the time evaluation of the quantum
system? For quantum systems, the time evaluation of probabilistic systems via Markov
matrices is replaced by matrices with complex number entries that preserve the constraint∑n

i=1 |αi|2 = 1. Thus, the quantum system state

|φ〉 = α1|x1〉+ α2|x2〉+ ...+ αn|xn〉

evolves into the state

|φ′〉 = α′1|x1〉+ α′2|x2〉+ ...+ α′n|xn〉,

where amplitudes α1, α2, ..., αn and α′1, α
′
2, ..., α

′
n are related by

α11 α12 ... α1n

α21 α22 ... α2n

...
... . . . ...

αn1 αn2 ... αnn




α1

α2

...
pn

 =


α′1

α′2
...
α′n

 (2.8)

and
∑n

i=1 |αi|2 =
∑n

i=1 |α′i|2 = 1. Thus, the quantum systems time evaluation should be
unitary transformation.

Definition 2.2.5. A complex matrix U is called unitary if UU † = U †U = In, where In is

identity matrix in n dimensions and U † is conjugate transpose of U .

As unitary transformation always has inverse, it follows that time evaluation (non-
measurement) must be reversible. The measurement is not reversible.

Example 2.2.5. Let us consider a quantum coin flipping. We have a quantum system with
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two basis states |0〉 and |1〉 and time evolution
1√
2

1√
2

1√
2
− 1√

2

 .

Notice that if we start either in state |0〉 or |1〉 after the first toss we can observe both

options with probability
1

2
, but if we do not observe the system with the second toss we

return to the starting state.

Definition 2.2.6. A Hermitian matrix or self-adjoint matrix is a square matrix with

complex entries which is equal to its own conjugate transpose (A = A†).

2.2.5 Mixed States and Density Matrices

Pure states are fundamental objects for quantum mechanics in the sense that evolution
of any closed system can be seen as a unitary evolution of pure states. However, to deal
with opened and composed quantum systems the concept of mixed state is important.

Definition 2.2.7. A probability distribution {(pi, φi)|1 ≤ i ≤ n} on pure states {φi}ni=1,

with probabilities 0 < pi ≤ 1, where
∑n

i=1 pi = 1, is called a mixed state or probabilistic

mixture, and denoted by [ψ〉 = {(pi, φi)|1 ≤ i ≤ n} or

[ψ〉 = p1φ1 ⊕ ...⊕ pnφn =
n⊕
i=1

piφi.

The result of the measurement of a pure state ψ =
∑n

i=1 αi|φi〉 with respect to the
observable given by an orthonormal basis {φ}ni=1 can be consider as the mixed state

[ψ〉 =
n⊕
i=1

|αi|2φi.

Definition 2.2.8. To each mixed state [ψ〉 =
⊕n

i=1 piφi corresponds a density matrix or

density operator

ρ[ψ〉 =
n∑
i=1

pi|φi〉〈φi|.

However, the density operator of a mixed state does not capture all the information
about a mixed state. Different mixed states can have the same density operator. For
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example, if

[ψ1〉 =
1

2
|0〉 ⊕ 1

2
|1〉 and [ψ2〉 =

1

2
(|0〉+ |1〉)⊕ 1

2
(|0〉 − |1〉)

the corresponding density matrix for both mixed states is

ρψ1 = ρψ2 =

 1

2
0

0
1

2

 .

Now, we list some important properties of density matrices ρ = |x〉〈x|:

• matrices ρ have a unit trace 3.

• ρ is Hermitian.

• Eigenvalues of ρ are non-negative.

• ρ = ρ2 if and only if ρ is a density matrix of a pure state. If ρ is a density matrix of
mixed state then ρ2 < ρ and Tr(ρ2) < 1.

• If ρ is a density matrix of a pure state then it has one eigenvalue equal to 1 and all
other eigenvalues equal to 0.

Evaluation of density operator

For a pure state |ψ〉, the evaluation can be described with unitary transformation as
U |ψ〉, where U is a unitary matrix. For the mixed state, if the system was in the state |ψi〉
with probability pi then after the evaluation it will be in the state U |ψi〉 with probability
pi. Thus, the evaluation of the density operator can be described by the equation

ρ =
∑
i

pi|ψi〉〈ψi|
U−→
∑
i

piU |ψi〉〈ψi|U † = UρU †. (2.9)

Measurement

Suppose we perform measurements with projectors P1, P2, ..., Pm. If the initial state
is ψi, then the probability of obtaining the result j is

p(j|i) = Tr(Pj|ψi〉〈ψi|). (2.10)

3Trace of the matrix ρ denoted by Tr(ρ) is the sum of the diagonal elements.
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Using the law of total probability the probability of getting result j is

p(j) =
∑
i

p(j|i)pi =
∑
i

Tr(Pj|ψi〉〈ψi|) = Tr(Pjρ) (2.11)

Using the techniques of the probability theory we can obtain that the density operator after
obtaining measurement j is

ρj =
PjρPj
Tr(Pjρ)

. (2.12)

2.3 Quantum Finite State Automata

A classical finite state automaton servers as a basic model of a classical finite size
machine. Similarly, a quantum finite state automaton can be seen as a basic quantum
model of finite state quantum machines.

2.3.1 Models of Classical Finite State Automata

Different models of finite state automata have been developed and investigated
in the classical computation. We consider the very basic notation of finite state
automata - deterministic finite state automata, non-deterministic finite state automata, and
probabilistic finite state automata.

Definition 2.3.1. A deterministic finite state automaton (DFA) is a tupleA = (Q,Σ, δ, q0, Qa)

where:

• Q is a finite set of states.

• Σ is a finite set of input symbols. It is said to be alphabet of the automaton.

• δ : Q× Σ→ Q is a transition function.

• q0 ∈ Q is an initial state (the state of the automaton when no input has been

processed).

• Qa ⊆ Q is a set of accepting states.

An automaton reads a finite string of input letters a1a2...an (ai ∈ Σ), which is called
an input word. Set of all words is denoted by Σ∗. Sometimes a special character is used
to denote the end of the word. The automaton starts the computation at the initial state
q0 and performs the transition function corresponding to the current state and the current
input symbol.
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a

a

q0 q1
b

a,b
q2

b

Figure 2.1 The deterministic finite state automaton A1.

Definition 2.3.2. A run of the automaton A = (Q,Σ, δ, q0, Qa) on the input word

a1a2...an ∈ Σ∗ is a sequence of states q0q1...qn, where qi ∈ Q and qi = δ(qi−1, ai).

(qn is the final state of the run.)

Definition 2.3.3. We say, the automaton A = (Q,Σ, δ, q0, Qa) accepts or recognizes an

input word a1a2...an if qn ∈ Qa.

Definition 2.3.4. We say, the automaton A = (Q,Σ, δ, q0, Qa) recognizes the language

L(A), if L(A) contains all the words recognized by the automaton A.

Example 2.3.1. Let us consider the automaton A1 = (Q,Σ, δ, q0, Qa), where

• Q = {q0, q1, q2}

• Σ = {a, b}

• δ can be described by

a b

q0 q1 q0

q1 q1 q2

q2 q1 q1

• q0 is the initial state

• Qa = {q1}

The automaton can also be characterized using the state diagram (see the figure 2.1),

where it has three states labelled q0, q1, and q2. The initial state is indicated by the arrow

pointing to it from nowhere, for the current example - it is the state q0. The accepting

states are indicated by double circle (in the example - {q1}). The arrow from the state qi
to the state qj with label ak denotes transition qj = δ(qi, ak).

In our example, the automaton A1 recognizes language L2 = { w | w has at least 1 a

and even number of b’s following the last a}.
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a
b

q0 q1 a

a

q2

b b

Figure 2.2 The group finite state automaton recognizing the language a3n.

Besides deterministic finite state automaton there are also other variations in different
components of automata (input, transition, acceptance). For example, an automata can
accept finite or infinite words (the infinite words will be consider later in the section 2.6),
or tree structures.

Let us consider three other variations of finite state automata - group finite state
automata, non-deterministic finite state automata, and probabilistic finite state automata.

Definition 2.3.5. A group finite state automaton (GFA) is a deterministic finite automaton

AQFA = (Q,Σ, δ, q0, Qa) with the restriction that for every state q ∈ Q and every input

symbol σ ∈ Σ there exists exactly one state q′ ∈ Q such that δ(q′, σ) = q.

In other words, δ is a complete one-to-one function and the automaton derived from
AGFA by reversing all transitions is deterministic. The automaton in the figure 2.1 is not a
group automaton as there are three states q0, q1, and q2 from which we can reach the state
q1 with input letter a.

In the figure 2.2, a group finite state automata recognizing the language {a3n|n > 0}
is displayed.

Definition 2.3.6. A non-deterministic finite state automaton (NFA) is a tuple ANFA =

(Q,Σ, δ, q0, Qa) where:

• Q is a finite set of states.

• Σ is a finite set of input symbols. It is said to be alphabet of the automaton.

• δ : Q× (Σ∪ {ε})→ P (Q) is a transition function, where P (Q) denotes the power

set 4 of Q.

• q0 ∈ Q is an initial state (the state of the automaton when no input has been

processed).

• Qa ⊆ Q is a set of accepting states.

4P (Q)
def
= {X : X ⊆ Q} is the power set of Q.
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aq0 q1 b q2

a,b

Figure 2.3 The non-deterministic automaton.

We may think of a non-deterministic automaton as a kind of parallel computing, where
all possible transitions from a current state are followed simultaneously. If at least one of
these is accepting, then the entire computation is accepted.

Definition 2.3.7. A non-deterministic finite state automaton ANFA = (Q,Σ, δ, q0, Qa)

accepts the word w = w1w2....wn (wi ∈ Σ) if there exists a run qi1qi2 ..qik (qij ∈ Q) and

y1y2...yk (yi ∈ Σ ∪ {ε}) such that:

• w = y1y2...yk,

• qi1 = q0,

• qik ∈ Qa,

• for every j (1 6 j 6 k): qij ∈ δ(qij−1
, yj).

Example 2.3.2. Let us consider a non-deterministic finite state automaton of the figure

2.3. It recognizes words ending with the string ab. The accepting state can be reached

only if the last two symbols are ab.

For finite input, the language class accepted by non-deterministic finite state automata
is equal to the language class accepted by the deterministic finite state automata.

Definition 2.3.8. A probabilistic finite state automaton (PFA) is a tuple APFA =

(Q,Σ, δ, q0, Qa) where:

• Q is a finite set of states.

• Σ is a finite set of input symbols. It is said to be an alphabet of the automaton.

• δ : Q×{Σ∪{#}∪{$}}×Q→ R[0,1] is a transition function, where for each state

q ∈ Q
∑

q′∈Q δ(q, a, q
′) = 1, and # is the left end-marker denoting the start of the

input word and $ is the right end-marker denoting the end of the input word.

• q0 ∈ Q is an initial state (the state of the automaton when no input has been

processed).
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• Qa ⊆ Q is a set of accepting states.

The transition function for each input symbol σ ∈ Σ can be described as a Markov
matrix Aσ = [aij], where aij = δ(qi, σ, qj) - the probability of going from the qi to the
state qj by reading a symbol σ. The computation of a probabilistic finite state automaton
starts in the initial state q0 and the transition corresponding to the current input symbol
is performed. The computation process of a probabilistic finite state automaton can be
viewed as Markov chain. The computation on an input word w = #w1w2...wn$ is
described by

A$AwnAwn−1 ...A2A1A#


1

0

...

0

 , (2.13)

where


1

0

...

0

 corresponds to probability distribution 1[q0].

Definition 2.3.9. We say that a probabilistic automatonAPFA = (Q,Σ, δ, q0, Qa) accepts

or recognizes a word w = #w1w2...w3$ with probability p if
∑

qj∈Qa pj > p, where
p0

p1

...

pn−1

 = A$AwnAwn−1 ...A2A1A#


1

0

...

0

 (2.14)

Similarly, we can define rejection with probability p. In this case, we consider the
probability

∑
qj /∈Qa pj > p.

Definition 2.3.10. A probabilistic finite state automaton APFA is said to accept a

language L with probability p if it accepts any x ∈ L with probability at least p and

rejects any x /∈ L with probability at least p.

Definition 2.3.11. A language L is said to be accepted by a probabilistic finite state

automaton with bounded error if there is ε > 0 such that any x ∈ L is accepted with

probability at least p+ ε and rejects any x /∈ L is rejected with probability at least p+ ε.
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q4#
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Figure 2.4 The probabilistic finite state automaton.

Example 2.3.3. Let us consider a probabilistic finite state automaton of the figure 2.4.

It recognizes language containing words of the length 6n with probability
2

3
. If an input

word is of the length 6n it is accepted with probability
2

3
. If an input word is of the length

3n, but not 2n it is rejected with probability
2

3
, the automaton rejects the word with the

same probability if it is of the length 2n but not 3n. If the word is neither with length 2n

nor with length 3n it is rejected with probability 1.

2.3.2 Measure-Once Quantum Finite State Automata

Definition 2.3.12. A measure-once quantum finite state automaton (MO-QFA) is defined

by a tuple as follows [38]

AMO−QFA = (Q; Σ; δ; q0;Qacc;Qrej)

where

• Q is a finite set of states,

• Σ is an input alphabet and Γ=Σ ∪ {$ } is working alphabet of AMO−QFA, and $ is

the right end-marker, denoting the end of a word,

• q0 ∈ Q is a initial state,

• Qacc ⊆ Q andQrej ⊆ Q are sets of accepting and rejecting states (Qacc∩Qrej = ∅),

• δ is the transition function δ : Q×Γ×Q→ C[0,1], which represents the amplitudes

that follows from the state q to the q′ after reading symbol σ.

For all states q1, q2, q
′ ∈ Q and symbols σ ∈ Γ, the function δ must be unitary, thus

the function satisfies the condition



2.3 Quantum Finite State Automata 25

∑
q′

δ(q1, σ, q′)δ(q2, σ, q
′) =

{
1 (q1 = q2)

0 (q1 6= q2)
(2.15)

And it is assumed that an input word ends with the right end-marker.

The linear superposition of the automaton’s AMO−QFA states is represented by an
n-dimensional complex unit vector, where n = |Q|. The vector is denoted by |φ〉 =∑n

i=1 αi |qi〉, where {|qi〉} is the set of orthonormal basis vectors corresponding to the
states of the automaton AMO−QFA.

The transition function δ is represented by a set of unitary matrices {Vσ}σ∈Γ, where
Vσ is the unitary transition of the automaton AMO−QFA after reading the symbol σ and is
defined by Vσ(|q〉) =

∑
q′∈Q δ(q, σ, q

′) |q′〉.
A computation of AMO−QFA on input σ1σ2...σn$ proceeds as follows. It starts in

the superposition |q0〉. Then a transformation corresponding to the first input symbol is
performed, followed by the transformations corresponding to the proceeding symbols of
the input word and the right end-marker $. After reading the right end-marker $, the final
superposition is observed with respect to Eacc and Erej where Eacc = span{|q〉 : q ∈
Qacc} and Erej = span{|q〉 : q ∈ Qrej}. It means if the final superposition is |ψ〉 =∑

qi∈Qacc αi |qi〉+
∑

qj∈Qrej βj |qj〉 then the measure-once quantum finite state automaton
AMO−QFA accepts the input word with probability

∑
α2
i and rejects

∑
β2
j .

Example 2.3.4. Let us consider a measure-once quantum finite state automaton AL3 =

({q0, q1}, {a}, {Ua, U$}, q0, {q0}, {q1}) accepting language L3 = {a3n|n ∈ Z}.

Ua =

 cos
2π

3
sin

2π

3

−sin2π

3
cos

2π

3

 , U$ = I2.

The automaton starts the computation in the superposition |q0〉, after the first input

symbol it changes the superposition to cos
2π

3
|q0〉 − sin

2π

3
|q1〉, after the next symbol the

automaton is in the superposition cos
4π

3
|q0〉−sin

4π

3
|q1〉. Reading the next input symbol,

the automaton returns to the superposition |q0〉. The automaton accepts a word belonging

to language L3 with probability 1, and rejects a word if it does not belong to L3 with

probability
3

4
.

Theorem 2.1. [16] A language L is recognized by a measure-once quantum finite state

automaton if and only if it is recognized by a group finite state automaton.
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2.3.3 Measure-Many Quantum Finite State Automata

Definition 2.3.13. A measure-many quantum finite state automaton (MM-QFA) is defined

by a 6-tuple as follows [32]

AMM−QFA = (Q; Σ; δ; q0;Qacc;Qrej)

where

• Q is a finite set of states,

• Σ is an input alphabet and Γ=Σ ∪ { ]; $ } is working alphabet ofAMM−QFA, where

] and $ (/∈ Σ) are the left and the right end-markers, denoting the start and the end

of an input,

• δ is the transition function δ : Q×Γ×Q→ C[0,1], which represents the amplitudes

that flows from the state q to the state q′ after reading symbol σ,

• q0 ∈ Q is the initial state,

• Qacc ⊆ Q andQrej ⊆ Q are sets of accepting and rejecting states (Qacc∩Qrej = ∅).

The states in Qacc and Qrej are halting states and the states in Qnon = Q \ (Qacc ∪Qrej)

are non-halting states.

For all states q1, q2, q
′ ∈ Q and symbols σ ∈ Γ, the function δ must be unitary (the

equation 2.15 should be satisfied). And it is assumed that an input word starts with the

left end-marker and ends with the right end-marker.

The linear superposition of the automaton’s AMM−QFA states is also represented by
an n-dimensional complex unit vector, where n = |Q|. The vector is denoted by |φ〉 =∑n

i=1 αi |qi〉, where {|qi〉} is the set orthonormal basis vectors corresponding to the states
of the automatonAMM−QFA and the transition function δ is represented by a set of unitary
matrices {Vσ}σ∈Γ, where Vσ is the unitary transition of the automaton AMM−QFA after
reading the symbol σ and is defined by Vσ(| q〉) =

∑
q′∈Q δ(q, σ, q

′) | q′〉.
A computation of the automaton AMM−QFA on the input word ]σ1σ2...σn$ proceeds

as follows:

• it starts in the superposition |q0〉;

• a unitary transition corresponding to the current input symbol is performed;
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• after every transition, the automaton A measures its state with respect to the
observable Eacc ⊕ Erej ⊕ Enon where Eacc = span{|q〉 : q ∈ Qacc}, Erej =

span{|q〉 : q ∈ Qrej} and Enon = span{|q〉 : q ∈ Qnon}. If the observed state
of the automaton AMM−QFA is in Eacc subspace, then it accepts the input; if the
observed state of AMM−QFA is in Erej subspace, then it rejects the input, otherwise
the computation continues.

After every measurement, the superposition collapses to the measured subspace. A
measurement is represented by a diagonal zero-one projection matrices Pacc, Prej and
Pnon which project the vector onto Eacc, Erej and Enon.

Since the automatonAMM−QFA can have a non-zero probability of halting, it is useful
to keep a track of the cumulative accepting and rejecting probabilities. Therefore, the state
of the automaton AMM−QFA is represented by a triple (φ, pacc, prej), where pacc and prej
are the cumulative probabilities of accepting and rejecting. The transition of AMM−QFA

on reading the symbol σ is denoted by (Pnon |φ′〉 , pacc + ‖Paccφ′‖2 , prej + ‖Prejφ′‖2),
where φ′ = Vσφ.

Example 2.3.5. As the example we consider a measure-many quantum finite state

automaton recognizing the language La∗b∗ = {a∗b∗} in the alphabet {a, b} [5].

Aa∗b∗ = ({q0, q1, qacc, qrej}, {a, b}, δ, {qacc}, {qrej}, {q0, q1}),

where δ :
V]|q0〉 =

√
(1− p)|q0〉+

√
p|q1〉,

Va(|q0〉) = (1− p)|q0〉+
√
p(1− p)|q1〉+

√
p|qrej〉,

Va(|q1) =
√
p(1− p)|q0〉+ p|q1〉 −

√
1− p|qrej〉,

Vb(|q0〉) = |qrej〉, Vb(|q1〉) = |q1〉,
V$(|q0〉) = |qrej〉, V$(|q1〉) = |qacc〉,

where p is the root of p3 + p = 1.

The automaton starts the computation in the superposition |q0〉, the automaton

changes the superposition to
√

1− p|q0〉+
√
p|q1〉. Now we consider several input cases:

• The input is a∗. While the current input symbol is a, the automaton does not change

its superposition
√

1− p|q0〉+
√
p|q1〉 and when the automaton reads the right end-

marker, it accepts the word with probability p.

• The input is a∗bb∗. While the current input symbol is a, the automaton does not

change its superposition
√

1− p|q0〉 +
√
p|q1〉. However, when the automaton

reads the input symbol b, it rejects the input word with probability 1 − p and with
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probability p is in the superposition |q1〉. While the automaton reads the input

symbol b, it stays in the superposition |q1〉 with probability p. After the automaton

reads the right end-marker, the automaton changes its state to |qacc〉 and accepts

the word with probability p.

• The input is not in La∗b∗ , it means that after a∗bb∗ we have at least one a. After

reading a∗bb∗ when the automaton is in |q1〉 with probability p. When the automaton

receives an a, then the rejecting probability becomes (1 − p) + p(1 − p) = 1 − p2

and the automaton is in the superposition
√

1− p|q0〉 +
√
p|q1〉 with probability

p2, by receiving next b or the right end-marker, the rejecting probability becomes

1− p2 + p2(1− p) = 1− p3 = p3 + p− p3 = p.

A measure-once quantum finite state automaton A1 = (Q1; Σ; δ1; q1;Qacc1 ;Qrej1)

with n states can be easily simulated by a measure-many quantum finite state automaton
A2 = (Q2; Σ; δ2; q1;Qacc2 ;Qrej2), where Q2 = {q1, ..., q2n}, states q1, ..., qn are non-
halting states, the state qn+i is accepting if the state qi of the automaton A1 is accepting,
otherwise qn+i ∈ Qrej2 , the transition function δ2 is defined as follows:

• V2#(|q〉) = |q〉 for q ∈ {q1, ..., q2n}

• V2σ(|q〉) = V1σ(|q〉) for q ∈ {q1, ..., qn} and σ ∈ Σ

• V2σ(|q〉) = |q〉 for q ∈ {qn+1, ..., q2n} and σ ∈ Σ

• V2$(|q〉) =
∑

qn+j∈{qn+1,..,q2n} δ(q, $, qj+n) |qj+n〉 if
V1$(|q〉) =

∑
qj∈Q1

δ(q, $, qj) |qj〉 for q ∈ {q1, ..., qn}.

2.3.4 Latvian Quantum Finite State Automata

Definition 2.3.14. A Latvian quantum finite state automaton (LQFA) is defined by a tuple

as follows [1]

ALQFA = (Q; Σ; {Aσ}; {Pσ}; q0;Qacc)

where

• Q is a finite set of states,
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• Σ is an input alphabet and Γ = Σ ∪ { ]; $ } is working alphabet of ALQFA, where

] and $ (/∈ Σ) are the left and the right end-markers,

• {Aσ} are unitary matrices defined for each working symbol,

• {Pσ} are measurements for each working symbol, each Pσ is defined as a set

{E1, ..., Ej} of orthogonal subspaces,

• q0 ∈ Q is the initial state,

• Qacc ⊆ Q and Qrej = Q \Qacc are sets of accepting and rejecting states.

A Latvian quantum finite state automatonALQFA starts a computation in the state |q0〉.
By reading each input letter σ, the automaton transforms the current state by a unitary
matrix Aσ and performs a measurement Pσ. At the end of the computation automaton
ALQFA accepts or rejects the input according to the output of P$ measurement, where
P$= Eacc ⊗ Erej (Eacc = span{|q〉|q ∈ Qacc} and Erej = span{|q〉|q ∈ Qrej}). As a
Latvian quantum finite state automaton uses mixed states, it is convenient to use a density
matrix to identify the state of the automaton.

Example 2.3.6. A Latvian quantum finite state automaton for language Σ∗aΣ∗ in the

alphabet Σ = {a, b} is ALQFA1 = (Q,Σ, {Aσ}, {Pσ}, q0, Qacc) : Q = {q0, q1, q2, q3},
Σ = {a, b}, Qacc = {q1, q2, q3}, P] = Pa = Pb = E0⊗E1⊗E2⊗E3 (Ei = span{|qi〉}),

A] = A$ = Ab = I4, Aa =



−1

2

1

2

1

2

1

2
1

2
−1

2

1

2

1

2
1

2

1

2
−1

2

1

2
1

2

1

2

1

2
−1

2


The computation of the automaton ALQFA1 on the input bbaab is following:

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 →]


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 →b


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 →b


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 →a



1

4
0 0 0

0
1

4
0 0

0 0
1

4
0

0 0 0
1

4


→a



1

4
0 0 0

0
1

4
0 0

0 0
1

4
0

0 0 0
1

4


→b



1

4
0 0 0

0
1

4
0 0

0 0
1

4
0

0 0 0
1

4


.

The automaton ALQFA1 correctly rejects the input with probability 1 and correctly

accepts the input with probability
3

4
.
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Theorem 2.2. [1] Latvian quantum finite state automata recognize exactly those lan-

guages whose syntactic monoid is in BG.

2.4 Monoids

In the thesis, we also refer to an algebraic structure with a single associative binary
operation and an identity element called a monoid. The section contains the definitions
which will be later used in the thesis.

Definition 2.4.1. A monoid is a tupleM = (M, •M , 1M) consisting of a non-empty set

M , an associative binary operation •M and a unit element 1M ∈ M , i.e., the following

has to be satisfied:

• closure: ∀x, y : x •M y ∈M

• associativity: ∀x, y, z ∈M : (x •M y) •M z = x •M (y •M z)

• unit element: ∀x : 1M •M x = x = x •M 1M .

Definition 2.4.2. A monoidM = (M, •M , 1M) is finite if and only if M is finite.

Definition 2.4.3. LetM, N be monoids. The mapping φ : M → N is a homomorphism

if and only if:

• φ(x •M y) = φ(x) •N φ(y),

• φ(1M) = 1N .

Example 2.4.1. For an alphabet Σ, the set of Σ∗ with concatenation as binary operation

and empty word ε as unit element is a monoid.

Definition 2.4.4. LetM be a monoid, Σ an alphabet, and φ : Σ∗ →M a homomorphism.

Every subset N of M defines a subset of Σ∗:

φ−1(N) = {w ∈ Σ∗|φ(w) ∈ N}.

Definition 2.4.5. The monoid M accepts the language L ⊆ Σ∗ if and only if there is

N ⊆M and a homomorphism φ : Σ∗ →M such that L = φ−1(N).

Example 2.4.2. The monoid accepting the language of the deterministic finite state

automata in the figure 2.1 is M = {δε, δa, δb, δab} with binary operation:
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δε δa δb δab

δε δε δa δb δab

δa δa δa δab δab

δb δb δa δε δab

δab δab δa δa δab

and N = {δa}.

Definition 2.4.6. For a regular language L, the transition monoid of the minimal

automaton is called the syntactic monoid of L.

Theorem 2.3. Let L ⊆ Σ∗. Then the following is equivalent:

1. L is accepted by a finite monoid.

2. L is regular.

Definition 2.4.7. The finite monoidM is called aperiodic if and only if it is a monoid and

there exists a non-negative integer n, such that mn+1 = mn for all m ∈M .

Example 2.4.3. Let us look at the monoid accepting the language containing a substring

aba - M = {δε, δa, δb, δab, δba, δbb, δaba, δabb, δbab, δbba, δbabb, δbbab}, where binary operation

is defined as follows:

δε δa δb

δε δε δa δb

δa δa δa δab

δb δb δba δbb

δab δab δaba δabb

δba δba δba δbab

δbb δbb δbba δbb

δaba δaba δaba δaba

δabb δabb δa δabb

δbab δbab δaba δbabb

δbba δbba δbba δbbab

δbabb δbabb δba δbabb

δbbab δbbab δaba δbb

where N = {δaba}. The monoid is aperiodic as for all δ ∈M δm = δm+1, where m > 2.

Definition 2.4.8. A group is a monoid G = (G, •G, 1G) with an inverse element: ∀a ∈ G
there exists an element b ∈ G such that a •G b = b •G a = 1G. The inverse element of an

element a is denoted by a−1.
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The monoid of the example 2.4.2 is not a group. However, let us consider the monoid
accepting the language of the group finite state automata in the figure 2.2.

Example 2.4.4. M = {δε = δb, δa, δaa} with binary operation:

δb δa δaa

δb δb δa δaa

δa δa δaa δb

δaa δaa δb δa

and N = {δb}. It can be seen that it forms the group, the inverse element of δb is δb, δa -

δaa, and δaa - δa.

Definition 2.4.9. We say that some subset H of G is a subgroup of G = (G, •G, 1G) if H

also forms a group under the operation •G.

If we look at the group of the example 2.4.4, then we can see that H = {δb} forms a
subgroup of M . However, let us consider an example of group which contains a bigger
subgroup.

Example 2.4.5. We construct a group recognizing the language described by a regular

expression b∗ab(a∗ ∨ b(ab∗a)∗b)∗. The group consists of G = {δε, δa, δb, δab, δba, δaba},
N = {δab, δaba} and binary operation:

δε δa δb δab δba δaba

δε δε δa δb δab δba δaba

δa δa δε δab δb δaba δba

δb δb δba δε δaba δa δab

δab δab δaba δa δba δε δb

δba δba δb δaba δε δab δa

δaba δaba δab δba δa δb δε

This group has several subgroups {δε, δa}, {δε, δb}, {δε, δaba}, {δε, δab, δba}.

Definition 2.4.10. A subgroupN of a groupG is called a normal subgroup if it is invariant

under conjugation, that is, for each element n ∈ N and each g ∈ G, the element g •G
n •G g−1 is still in N. We write N / G⇐⇒ ∀n ∈ N,∀g ∈ G, g •G n •G g−1 ∈ N .

Now, let us consider the subgroups of the previous example, if they are normal
subgroups:

• {δε, δa} is not a normal subgroup as δbδaδb = δaba, which is not in the subgroup
{δε, δa}.
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• {δε, δb} is not a normal subgroup as δaδbδa = δaba, which is not in the subgroup
{δε, δb}.

• {δε, δaba} is not a normal subgroup as δaδabaδa = δb, which is not in the subgroup
{δε, δaba}.

• {δε, δab, δba} is a normal subgroup, as δaδabδa = δba, δbδabδb = δba, δabaδabδaba =

δba, δaδbaδa = δab, δbδbaδb = δab, and δabaδbaδaba = δab.

Definition 2.4.11. A subnormal series of a group G is a sequence of subgroups, each a

normal subgroup of the next one.

Definition 2.4.12. A group is said to be an abelian groupA if for all g, h ∈ A g•h = h•g.

The group M in the example 2.4.4 is an abelian group.

Definition 2.4.13. If G is a group, H is a subgroup of G, and g is an element of G, then

a left coset of H in G is gH = {gh|h ∈ H}, and a right coset of H in G is defined as

Hg = {hg|h ∈ H}.

Example 2.4.6. Let us consider the group of the example 2.4.5 and the subgroup H =

{δε, δab, δba}. The left cosets of H in G are:

• δεH = H

• δaH = {δa, δb, δaba}

• δbH = {δa, δb, δaba}

• δabH = H

• δbaH = H

• δabaH = {δa, δb, δaba}

Definition 2.4.14. IfN is a normal subgroup ofG then the quotient group or factor group

G/N is defined to be the set of cosets

G/N = {gN |g ∈ G}

together with the binary operation given by gN • hN = g • hN .

The quotient or factor group of the example 2.4.6 is {{δa, δb, δaba}, {δε, δab, δba}}.
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Definition 2.4.15. A groupG is called solvable if it has a subnormal series whose quotient

groups are all abelian, that is, if there are subgroups {1G} = G0 /G1 /G2 / ... / Gk = G

such that Gj−1 is normal in Gj , and Gj/Gj−1 is an abelian group, for j = 1...k.

The group G of the example 2.4.5 is also solvable group as it has a subnormal series
{δε} / {δε, δab, δba} / G.

Example 2.4.7. As another example of a group, let us consider a symmetric group. A

symmetric group on set X is the group consisting of all bijections of the set (all one-

to-one and onto functions from the set to itself) with function composition as the group

operation.

The elements of the symmetric group on a set are the permutations of that set. The

permutations can be described in a number of ways. Two most common ways of describing

permutations are the one-line notation and the cycle decomposition. For instance, the

two-line notation for a permutation on the set {1, 2, 3, 4, 5}:(
1 4 2 3 5

3 5 2 1 4

)
.

The two-line notation for a permutation is not unique, because the order of elements in

the first row is arbitrary. If we fix the order of elements in the first row of the permutation,

then we can omit the first row of the permutation and simply write the second row. This is

termed the one-line notation for permutations. For instance, for the set 1,2,3,4,5, we can

fix the first row to have 1, 2, 3, 4, 5 in that order. In this case, the two-line notation is:(
1 2 3 4 5

3 2 1 5 4

)
,

thus we get the one-line notation: (
3 2 1 5 4

)
.

Any permutation can be expressed uniquely as a product of disjoint cycles (a cycle

is a permutation of the elements of some set X which maps the elements of some

subset S to each other in a cyclic fashion, while fixing (i.e., mapping to themselves) all

other elements.). A cycle (a1, a2, ..., an) being in a permutation means that under the

permutation, ai is mapped to ai+1, and an is mapped to a1. Two cycles are disjoint if they

do not have any element in common. In our case, cycles are (1, 3)(4, 5).

The symmetric group S5 is the group of all permutations on a set of five elements. It
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has 120 elements and the generating set of S5 is (1, 2)(1, 2, 3, 4, 5) using which we can

get every element in S5. It is known that S5 forms a non-solvable group.

Definition 2.4.16. An element σ of the monoid M is called idempotent if σ = σ •m σ.

The set of idempotents of a monoid M is devoted by E(M). In the example 2.4.2,
E(M) = {δε, δa, δab}, but in example 2.4.4, E(M) = {δb}.

Definition 2.4.17. A monoid M is block group if and only if for any e and f in E(M)

eM = fM or Me = Mf implies e = f .

The monoid of the example 2.4.4 is a block group. For languages recognized by block
groups we have the following theorem:

Theorem 2.4. [44] For any language L, its syntactic monoid M(L) is a block group if

and only if L is a Boolean combination of languages of the form L0a1L1a2...anLn, where

ai ∈ Σ and Li is the language recognized by a finite group.

2.5 Logic

The section contains the notations and results of logic the connection classical
computation.

Definition 2.5.1. A signature or vocabulary is defined by a triple δ = (F,R, ar), where

F and R are disjoint sets not containing any other logic symbols, F is function symbols

and R is relation symbols, and ar : F ∪ R → N0, which assigns non-negative integer

called arity to every function and relation symbol. A function or relation symbol is called

n-ary if it has an arity n. 0-ary function is called a constant.

In other words, a signature is a set of non-logical constants together with additional
information identifying each symbol as either a constant symbol, or a function symbol
(for example: 0, +) of a specific arity n or a relation symbol (<, ∈) of a specific arity.

Definition 2.5.2. A structure is defined by a triple A = (A, δ, I), consisting of a domain

A (an arbitrary set), a signature δ, and an interpretation function I that indicates how the

signature should be interpreted on the domain.

Example 2.5.1. Let us consider a structure A1 = (Z, δ+, IZ), where Z are a set of

integers, δ+ consists of a binary function symbol +, an unary function symbol − and

constant symbols 0, 1, and interpretation:
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• I+(+) : Z × Z → Z - addition of integers,

• I+(−) : Z → Z - function that transforms each integer x to −x,

• I+(0) ∈ Z is the number 0,

• I+(1) ∈ Z is the number 1.

2.5.1 First Order Languages

Definition 2.5.3. Thewordmodel for the word ω = a1a2...an be a word over the alphabet

Σ is represented by the relational structure

ω = (dom(ω), <, (Qa)a∈Σ)

where dom(ω) = {1, 2, ..., n} is the set of the letters “positions" of ω (the “domain" of

ω), < is the order relation on dom(ω), and Qa = {i ∈ dom(ω) | ai = a} (“position

carries letter a").

We consider word models over the finite alphabet Σ. The corresponding first order

language FO[<] has variables x, y, ... ranging over positions in the word models, and is
built from atomic formulas of the form

x = y, Qa(x), x < y

by means of the connectivities ¬,∨,∧,→,↔ and quantifiers ∃ and ∀. We may also use
the successor relation S(x, y), which can be expressed as first order formula x < y ∧
¬∃z(x < z ∧ z < y). The notation ϕ(x1, x2, ..., xn) indicates that in the formula ϕ at
most the variables x1, x2, ..., xn are free, i.e. they are not in the scope of a quantifier. A
sentence is a formula with no free variables. If p1, p2, ..., pn are positions from dom(ω)

then (ω, p1, p2, ..., pn) |= ϕ(x1, x2, ..., xn) means that ϕ is satisfied in the word model ω
when p1, p2, ..., pn serve as an interpretation of x1, x2, ..., xn. The language defined by the
sentence ϕ is L(φ) = {ω ∈ A∗ | ω |= ϕ}. Languages defined by such sentences are
the first order FO[<] languages. For example, the sentence ∀x(Qa(x)) over the alphabet
A = {a, b} defines the language containing all words having only letters a. This language
is a FO[<] language.

The classical equivalence result of the first order logic is result by Schützenberg [48]:

Theorem 2.5. For a language L ∈ A∗ the following are equivalent

1. L is star-free (the smallest class that satisfies the following: all finite languages

over A belong to star-free languages, if languages L1, L2 are star-free then so are

L1 · L2, L1 ∪ L2, L1 ∩ L2 and L̄1 = A∗ \ L).
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2. L is recognizable by a finite aperiodic monoid.

3. L is defined by a first order formula.

2.5.2 Modular Logic

We will consider a new quantifier called modular quantifier [51].

Definition 2.5.4. A modular quantifier is ∃m,nxϕ(x) that means ϕ(x) is true for a number

of x equal to n mod m.

Definition 2.5.5. Let us denote by MOD[<] the class of languages defined by first order

atomic formulas (x = y, Qa(x), x < y) by means of the connectivities ¬,∨,∧,→,↔ and

the modular quantifier.

An example of MOD[<] is the language containing all words that has even number
of symbol a, the corresponding formula for this language is ∃2,0xQa(x).

Theorem 2.6. [51] Let L ⊆ A∗ be a regular language, then L ∈ MOD[<] if and only if

the syntactic monoid of language L is a solvable group.

2.5.3 Generalized Quantifier

Logical framework can also be extended with generalized quantifiers; they have been
introduced by Mostowski [9]. One of such quantifiers is Lindström quantifier.

Definition 2.5.6. Consider a language L over the alphabet Σ = (a1, a2, ..., as). Let x̄

be a k-tuple of variables (each ranging from 1 to the input length n). In the following,

we assume the lexical ordering on {1, 2, ..., n}k, and we write X1, X2, ..., Xnk for this

sequence of the potential values taken on by x̄. Let φ1(x̄), φ2(x̄), ..., φs−1(x̄) be s-1 Γ-

formulas for some alphabet Γ. The

QLx̄[φ1(x̄), φ2(x̄), ..., φs−1(x̄)]

holds on string ω = ω1ω2...ωn, if and only if the word of length nk whose i-th letter

(1 ≤ i ≤ nk) is 

a1 if ω |= φ1(Xi),

a2 ifω |= ¬φ1(Xi) ∧ φ2(Xi),

a3 ifω |= ¬φ1(Xi) ∧ ¬φ2(Xi) ∧ φ3(Xi),

...

as ifω |= ¬φ1(Xi) ∧ ¬φ2(Xi) ∧ ... ∧ ¬φs−1(Xi),
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belongs to L.

Example 2.5.2. Consider alphabet Σ = {0, 1} and a language L which is defined by

regular expression(0, 1)∗0(0, 1)∗, then formula QL(φ(x)) is equal to the classical first

order existential quantifier applied to some quantifier-free formula φ with free variable x,

i.e. ∃xφ(x). It is easy to see, that the formula will be true if there is at least one position

of x for which φ(x) will be true.

Let us consider another type of generalized quantifier - a group quantifier [37].

Definition 2.5.7. Fix a finite group G and a mapping from {0, 1}k onto g for a fixed

integer k. Let 〈ψ1(x), ..., ψk(x)〉 be a vector of the first order formulas with a single

common free variable x. For each x, let g(x) be the element of G denoted by the vector

of truth values of 〈ψ1(x), ..., ψk(x)〉. For an element g ∈ G and an input of length n,

we define (ΓG,gx)〈ψ1(x), ..., ψk(x)〉 to be true if and only if the element of G obtained by

multiplying g(1)g(2)...g(n) is g.

Example 2.5.3. We can define a modular quantifier ∃(m,l)ψ(x) in terms of group

quantifier. We have a cyclic group (a group that can be generated by a single element)

G = {1G, σ1, σ2, ..., σm}, then we define mapping 0 onto 1G and 1 onto σ1. (ΓG,σl)〈ψ(x)〉
is equal to ∃(m,l)ψ(x), as (ΓG,σl)〈ψ(x)〉 is true if and only if g(1)g(2)...g(n) = σl

(g(i) = 1G or g(i) = σ1). g(1)g(2)...g(n) = σl is satisfied if and only if l mod m

number of elements g(i) are σ1 so ψ(x) must be true l mod m times.

2.6 Finite State Automata over Infinite Words

At first, we give the main notations for infinite words.

Definition 2.6.1. Σω is the set of all infinite words over alphabet Σ. For infinite word α

we write α = α(0)α(1)α(2)... with α(i) ∈ Σ. A set of infinite words over a given alphabet

is called an ω-language.

The number of occurrences of the symbol a in an infinite word (ω-word) α is denoted
by |α|a.

Definition 2.6.2. For a given ω-word α ∈ Σω, let Occ(α) = {a ∈ Σ|∃iα(i) = a} be the

finite set of letters occurring in α and Inf(α) = {a ∈ Σ|∃ωjα(j) = a} where ∃ω denotes

the quantifier "there exists infinite many".

Definition 2.6.3. Limit languages Let U ⊆ Σ∗ be a language of finite strings. The limit

U is defined as lim(U) = {α ∈ Σω|∃ωn ∈ N0 : α[0..n] ∈ U}.
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A word belongs to lim(U) if and only if it has infinitely many prefixes in U. For
example, U = {aba∗}, then lim(U) = {abaω}.

2.6.1 Classical Automata over Infinite Words

In this section, the basic concepts of finite state automata over infinite words or ω-
automata are presented (for more details refer to [25], [53]).

Definition 2.6.4. An finite state automata over infinite words or ω-automaton is a

quintuple A = (Q,Σ, δ, q0, Acc), where

• Q is a finite set of states,

• Σ is a finite alphabet,

• δ : Q× Σ→ 2Q is the state transition function,

• q0 ∈ Q is the initial state,

• Acc is the acceptance component.

In a deterministic ω-automaton, a transaction function δ : Q× Σ→ Q is used.

The acceptance component can be given in different ways, and it will be explained
below.

Definition 2.6.5. LetA = (Q,Σ, δ, q0, Acc) be an ω-automaton. A run of A on an ω-word

α = α1α2... ∈ Σω is an infinite state sequence ρ = ρ(0)ρ(1)ρ(2)... ∈ Qω, such that the

following holds:

1. ρ(0) = q0

2. ρ(i) ∈ δ(ρ(i− 1), αi) for i > 0 if A is non-deterministic and ρ(i) = δ(ρ(i− 1), αi)

for i > 0 if A is deterministic.

The acceptance conditions Acc defines which of the infinite runs are accepting. In the
thesis, we consider the three types of acceptance conditions.

Definition 2.6.6. A Büchi acceptance condition Acc is a subset F of Q, where the

elements of F are called accepting states. An infinite run ρ = ρ(0)ρ(1)... is called Büchi

accepting if Inf(ρ) ∩ F 6= ∅, it means that run ρ visits states of F infinitely often.
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Figure 2.5 The deterministic Büchi automaton.

b

q0 q1
b

a,b

Figure 2.6 The non-deterministic Büchi automaton.

Definition 2.6.7. A Streett acceptance conditionAcc is a finite set of pairs (Hi, Ki) where

Hi and Ki are subsets of Q (Acc = {(H1, K1), ..., (Hs, Ks)}). An infinite run ρ =

ρ(0)ρ(1)... is called Streett accepting if for each i ∈ {1, 2, ..., s} Inf(ρ) ∩ Hi 6= ∅ or

Inf(ρ) ∩Ki = ∅.

Definition 2.6.8. A Rabin acceptance conditionAcc is a finite set of pairs (Hi, Ki) where

Hi and Ki are subsets of Q (Acc = {(H1, K1), ..., (Hs, Ks)}). An infinite run ρ =

ρ(0)ρ(1)... is called Rabin accepting if there is some i ∈ {1, 2, ..., s} for which Inf(ρ) ∩
Hi = ∅ and Inf(ρ) ∩Ki 6= ∅.

The Streett condition is dual to the Rabin condition. It is therefore sometimes called
complemented pair condition. Büchi acceptance condition can be considered as the
special case of Streett {(F,Q)} and Rabin acceptance {(∅, F )} conditions.

ω-automata with Büchi acceptance condition are called Büchi automata, with Streett
acceptance condition - Streett automata, and with Rabin acceptance condition - Rabin
automata.

The accepted language of the ω-automaton A (L(A)) is defined as a set of infinite
words α ∈ Σ which have accepting run in A.

Example 2.6.1. Let the language L ⊆ Σω consist of all infinite words such that there are

infinite many occurrences of the symbol a. The Büchi automaton recognizing the language

is displayed in the figure 2.5 (the acceptance condition is {q0}). The state q0 can be

reached only with the symbol a, so the good state will occur infinity often only if the symbol

a will have infinitely many occurrences. However, if we consider the complement of the

language L - containing all infinite words such that there are only finite many occurrences

of the symbol a. It cannot be recognized by deterministic Büchi automaton, but it can be

done by non-deterministic Büchi automaton (the figure 2.6). Using the transitions of the



2.6 Finite State Automata over Infinite Words 41

automaton in the figure 2.5 we can built the Rabin and Streett automata recognizing the

complement of L. The acceptance condition for Streett automaton would be (∅, {q0}), to

accept the word the condition Inf(ρ)∩{q0} = ∅ should be satisfied, that means that there

is only finitely many symbols a. The Rabin acceptance condition would be ({q0}, {q1}).

It is known that the classes of languages accepted by non-deterministic Büchi au-
tomata (NBA), deterministic Streett automata (DSA), non-deterministic Streett automata
(NSA), deterministic Rabin automata (DRA), non-deterministic Rabin automata (NRA)
are the same. These are ω-regular languages and can be represented by ω-regular
expressions (finite sums of expressions in the form αβω, where α and β are regular
expressions over finite words, and language defined by β is non-empty and does not
contain empty string). Deterministic Büchi automata (DBA) are less powerful, the class
of DBA is a proper subclass of the ω-regular languages, it recognizes limit languages.



Chapter 3

Measure-Once Quantum Finite State
Automata and Logic

In this chapter, we study the connection between language class recognized by
measure-once quantum finite state automata and languages defined by first order logic,
modular logic, and logic using generalized quantifiers - Lindström quantifier and group
quantifier.

3.1 Measure-Once Quantum Finite State Automata and
First Order Logic

The most popular notations of quantum finite state automata with bounded error
recognize only regular languages but not all regular languages. The logical description
of these language classes should be weaker than monadic second order logic described
by Büchi, which follows from the theorem of Büchi - languages defined in monadic
second order are regular languages. The first intention was to study “natural" subclasses
of monadic second order logic. The most ”natural" subclass of monadic second-order
logic is FO[<].

Theorem 3.1. If a language in alphabet Σ can be recognized by a measure-once quantum

finite state automaton and it is FO[<] definable, then it is trivial, i.e. an empty language

or Σ∗.

Proof. Let us suppose that there exists a language L which is not trivial, it can be
recognized by MO-QFA, and it is first order definable. If the language L is recognized
by a MO-QFA, it can also be recognized by a group finite state automaton (GFA). As L
is not trivial, the corresponding minimal GFA has both accepting and rejecting states. Let
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us look at the accepting states qa. The state qa can be reached by a word ω, and there
exists a symbol σ, such that after reading the word σk (k > 1) the GFA returns in the
state qa. (As the automaton accepts non-trivial language, it means it has both accepting
and rejecting states, that means we have a symbol σ which goes from accepting state to
rejecting. As the automaton is a group automaton, after reading finite number of symbols
σ the automaton returns to the accepting state.)

Now, we consider the syntactic monoid of the group automaton, which recognizes
the language. As the automaton accepts words ω and ωδk, it means that the monoid has
subgroup {1M , δσ, δσk−1}, but from this follows that this monoid is not aperiodic, so the
language cannot be first-order definable.

3.2 Measure-Once Quantum Finite State Automata and
Modular Logic

The next "natural" logic which describes a sub-class of regular languages is modular
logic. If we consider languages in a single letter alphabet, it is easy to see that all such
languages accepted by measure-once quantum finite state automaton can be defined by
modular logic.

Lemma 3.1. Languages in a single letter alphabet recognized by measure-once quantum

finite state automata are definable by modular logic.

Proof. If the language L is recognized by a MO-QFA, it can also be recognized by a group
finite state automaton. Let us consider the group automaton recognizing the language
AQFA = (Q,Σ, δ, q0, Qacc) (assume that Q = {q0, q1, ..., qn} and δ(qi, a) = qi+1, it
can be easily assumed as the function should be reversible). Now, we can construct
the formula recognizing the language. The words accepted by the accepting state qi can
be described as ∃(n+1,i)(Qa(x)), and the language is the union of all accepted states -
∨qi∈Qacc∃(n+1,i)(Qa(x)).

Lemma 3.2. There exists a language that can be recognized by a measure-once quantum

finite automaton, but cannot be defined by modular logic.

Proof. To prove the lemma we will use the theorem of [51] - a regular language L is in
MOD[<] if and only if the syntactic monoid of language L is a solvable group. It is
known that the symmetric group S5 forms a non-solvable group. We will construct an
automaton whose syntactic monoid forms the symmetric group S5. In the figure 3.1, we
show a group automaton whose syntactic monoid forms the symmetric group S5. The



3.2 Measure-Once Quantum Finite State Automata and Modular Logic 44

a

q0

q1

q3

q2

a

a

q4

a,b

b

a

b

b
b

Figure 3.1 The group automaton whose syntactic monoid forms the symmetric group
S5.

input symbol a works as generation set (1, 2, 3, 4, 5) and the symbol b as generation set
(1, 2). We can easily transform it to the measure-once quantum finite state automaton
A = (Q,Σ, δ, q0, Qa, Qr), where Q = {q0, q1, q2, q3, q4}, Σ = {a, b, }, Qa = {q0},
Qr = {q1, q2, q3, q4}, for letter a corresponds transformation with matrix

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

, and


0 1 0 0 0

1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

,

for letter b.

Theorem 3.2. Every regular language L in MOD[<] can be recognized by a measure-

once quantum finite state automaton.

Proof. Let us consider language L ∈MOD[<], its syntactic monoid is a solvable group.
Let ψ : Σ∗ → M be a homomorphism and L = ψ−1(N) for N ⊆ M , where M is
the syntactic monoid of the language L. Now we show that the deterministic automaton
A(M,Σ, 1M , δ, N) with transition function δ(m,σ) = m•mψ(σ) accepts the language L.

For every input word w ∈ Σ∗ (w = w1w2...wk) and every state m ∈ M we
have δ(m,w) = m •M ψ(w), as δ(m,w1) = m •M ψ(w1) by the definition of
transition function and if δ(m,w1..wk−1) = m •M ψ(w1...wk−1) then δ(m,w1..wk) =

δ(δ(m,w1...wk−1), wk) = δ(m,w1...wk−1) •M ψ(wk) = m •M ψ(w1...wk−1) •M ψ(wk) =

m •M ψ(w1...wk). Consequently, δ(1M , w) = 1M •M ψ(w) = ψ(w), it means w ∈ L =

ψ−1(N) if and only if ψ(w) ∈ N (by definition), if and only if δ(1M , w) ∈ N , if and only
if w is accepted by the automaton.
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As monoid M is a solvable group the automaton A will be a group automaton (the
equation δ(m1, σ) = δ(m2, σ) holds only if and only if m1 = m2, as m1 •M ψ(σ) •
ψ(σ)−1 = m2•Mψ(σ)•ψ(σ)−1). And the language will also be recognized by a measure-
once quantum finite state automaton.

However, if we extend our modular logic with additional successor function S(x)

which denotes the next positioned after x, and MOD[S,<] denotes the language class
defined by modular logic with additional successor function, then we get a language class
which is not fully recognized by a measure-once quantum finite state automata.

Theorem 3.3. Languages defined by the modular formula of the form ∃(n,m)x(Qa(x) ∧
Qb(S(x))) cannot be recognized by a measure-once quantum finite state automaton nor

with a measure-many quantum finite state automaton.

Proof. The minimal deterministic finite state automaton recognizing the language is
displayed in the figure 3.2. The minimal deterministic finite state automaton is not a
group finite automaton, therefore the language cannot be recognized by a measure-once
quantum finite state automaton. As the minimal deterministic finites state automaton
contains forbidden constructions [6] nor the language can be recognized by a measure-
many quantum finite state quantum automaton.

3.3 Measure-Once Quantum Finite State Automata and
Generalized Quantifiers

The whole class of MO-QFA recognizable languages could not be described by using
these “natural" subclasses of monadic second order logic, so less standard logic should be
considered, one of extensions could be use of generalized quantifiers. Using Lindström
quantifier, the following theorem has been proved:

Theorem 3.4. A language can be recognized by a measure-once quantum finite au-

tomaton if and only if this language can be described by Lindström quantifier formula

corresponding to the group languages using atomic formulas Qa(x).

Proof. As group languages are those languages that are recognized by a group finite
state automaton, these languages are also recognized by a measure-once quantum
finite state automaton. So for given MO-QFA, that recognizes a language L in
alphabet Σ = {a1, ..., ak} the corresponding formula with Lindström quantifier the
Lindström quantifier is over the language L in the same alphabet and the formula is
QLx(Qa1(x), Qa2(x), .., Qak−1(x)).
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Figure 3.2 The deterministic finite state automaton recognizing language defined by
∃(n,m)x(Qa(x) ∧Qb(S(x))).
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For a given formula QLGx(Qa1 , Qa2 , .., Qas−1) in alphabet Σf = {b1, ..., bk} and ai ∈
Σf over a group language LG in alphabet ΣL = {δ1, δ2, ..., δs} consider the language, that
it defines. And look at mapping from Σf to ΣLG. If the letter bi is in the position x, then
there are three possibilities:

1. Lindström quantifier has exactly one Qbi then for the letter bi the corresponding
letter is δj , where j is occurrence of Qbi .

2. Lindström quantifier contains more than one Qbi then for the letter bi the corre-
sponding letter is δj , where j is first occurrence of Qbi .

3. Lindström quantifier has none Qbi then for the letter bi the corresponding letter is
δs.

The transformation of MO-QFA that recognizes the given language for a letter
bi corresponds to transformation of MO-QFA that recognizes language LG for bi

mapping.

Theorem 3.5. A language accepted by a measure-once quantum finite state automaton if

and only if it can be described the formula using only group quantifier.

Proof. If a language L is accepted by a measure-once finite state automaton, let us
consider its syntactic monoid M(L). The syntactic monoid M(L) forms a group so
we can define the language as ∨g∈ψ(N)(Γ

M(L),gx)a1(x), Qa2(x), ..., Qan(x)〉, where |i〉 is
mapped to σai ((100...0) is mapped to σa1 , (010...0) is mapped to σa2 and so on).

A measure-once quantum finite state automaton accepts the language if the transition
monoid of the language forms a group. It has already been proved that the formula using
only group quantifiers describes a language recognized by a group [37].



Chapter 4

Measure-Many Quantum Finite State
Automata and Logic

In the chapter, the connection between measure-many quantum finite state automata
with bounded error and first order logic and modular logic has been studied with respect
to language recognition and acceptance probability of measure-many quantum finite state
automata.

4.1 Measure-Many Quantum Finite State Automata and
First Order Logic

In this section, we look at the connection between first order logic and measure-many
quantum finite state automata. It was shown in the previous chapter that the languages
described by a first order formula cannot be recognized by measure-once quantum finite
state automata and vice versus except trivial languages. As measure-many quantum finite
state automata recognize all languages that are accepted by measure-once quantum finite
automata, it is clear there are such languages which are recognized by measure-many
quantum finite state automata but not describable by first order logics. For example, the
language that contains all words with length multiple of 3, is recognized by a measure-
many quantum finite state automaton, but cannot be described by the first order formula.

Do we have a language that can be defined by first order logic, but cannot be
recognized by a measure-many quantum finite state automaton? Yes, there are such
languages. It is known [32] that the language {{a, b}∗ b} cannot be recognized by a
measure-many quantum finite state automaton, but the language can be defined by first
order formula ∀x(last(x) → Qb(x)). There are also languages which can be described
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... ...

Figure 4.1 A DFA for a language in the single letter alphabet.

by the first order formula and can be recognized by measure-many quantum finite state
automata, for example, the language containing all words starting with a symbol a. Our
aim is to show constructions of first order formulas for whom there exists a measure-many
quantum finite state automaton recognizing the language defined by the formula or there
is no such measure-many quantum finite state automaton recognizing the language.

Theorem 4.1. The languages in the single letter alphabet defined by a first order formula

can be recognized by measure-many quantum finite state automata, but not vice versus.

Proof. The deterministic finite state automaton for a regular language in the single letter
alphabet is displayed in the figure 4.1.

We can construct the measure-many quantum finite state automaton for the language.
The regular language in a single letter alphabet contains the words of the form - ak′anm′ ,
where k′ (k′ > 0) is the length of the constant part and m′ (m′ > 0) is the length of the
cycle. Let us assume, that a deterministic finite state automaton recognizing a language in
the single letter alphabet has k states for the constant part and m states for the cycle. The
measure-many quantum finite state automaton has k + m + 1 non-halting states (k + 1

states are used for the first k letters and m are used for the cycle) and k + m + 3 halting
states. The transition function is defined as follows

V#(|q0〉) = 2
3
|q0〉+ 1

3

∣∣qk+1+m−k(mod m)

〉
(k 6= m),

V#(|q0〉) = 2
3
|q0〉+ 1

3
|qk+1〉 (k = m),

Va(|qi〉) = |qi+1〉, where i ∈ {0, 1, ..., k − 1, k + 1, k +m− 1},
Va(|qk〉) = 1

2
|q2k+2m+2〉+ 1

2
|q2k+2m+3〉,

Va(|qk+m〉) = |qk+1〉, V$(|qi〉) = |qi+k+m+1〉 (i ∈ {0, 1, ..., k +m}).

|q2k+2m+2〉 is an accepting state, |q2k+2m+3〉 is rejecting state, if |qi〉 (i < k + 1) is an
accepting state in the deterministic finite state automaton, then |qi+k+m+1〉 is an accepting
state in the measure-many quantum finite automaton and vice versus. If |qi〉 (i > k) is an
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accepting state in the deterministic finite state automaton, then |qi+k+m+2〉 is an accepting
state in the measure-many quantum finite automaton and vice versus.

Consider a word ω ∈ L if it is accepted by the measure-many quantum finite state
automaton. We can look at two cases -

1. the length of ω is less or equal with k, then ω will be accepted with probability
at least 2

3
. It means that after reading ω the measure-many quantum finite state

automaton will be in the state q|ω|−1 with probability 2
3

and after reading the right
end-marker the automaton passes from the state q|ω|−1 to the accepting state with
probability 2

3
.

2. the length of ω is greater then k, then ω will also be accepted with probability at least
2
3
, after reading the first k letters the measure-many quantum finite state automaton

is in the state qk+1 with probability 1
3

and in the state qk with probability 2
3
, after

reading the next symbol the automaton proceeds in the state qk+2 with probability 1
3

and it is in the accepting state |q2k+2m+2〉 with probability 1
3
. After reading the rest

of symbols a, the automaton is in the state qk+1+(|ω|−k)mod m with probability 1
3

and
it is in the accepting state |q2k+2m+2〉 with probability 1

3
. When the automaton reads

the right end-marker, the word is accepted with probability at least 2
3
.

In the same way we can show, that if the input word ω /∈ L, then the measure-many
quantum finite state automaton will reject it with probability at least 2

3
.

As languages defined by the first order logic are subclass of the regular languages,
measure-many quantum finite state automata can recognize languages defined by the first
order logic. All regular languages in the single letter alphabet are not first order definable,
and it means that all languages in the single letter alphabet recognized by measure-many
quantum finite state automata cannot be defined by the first order logic. It can be proved
by the following lemma.

Lemma 4.1. The language in a single letter alphabet is defined by the first order logic

if and only if its minimal deterministic finite state automaton contains a cycle with the

length 1.

Proof. It is easy to construct a first order formula defining the language recognized by
the deterministic finite state automaton containing a cycle with the length 1. We will
enumerate the states of the deterministic finite state automaton so that q0 is the initial
state, from the state qi the automaton passes to the state qi+1. For each accepting state the
formula is made in the following way -
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• if the state qi is not the last state (i 6= n, n + 1 - the number of the states),
then the words accepted by the state qi can be defined by first order formula
∃x1x2...xi(first(x1) ∧ S(x1, x2) ∧ ... ∧ S(xi−1, xi) ∧ last(xi))

• if the state qn is the last state then the words accepted by the state qn can be defined
by first order formula ∃x1x2...xn(first(x1) ∧ S(x1, x2) ∧ ... ∧ S(xn−1, xn))

We enumerate all the formulas φ of the accepting states from 1 to j, then the first order
formula φ1 ∨ φ2... ∨ φj defines the language accepted by the deterministic finite state
automaton.

Let us assume, that it is possible to construct the first order formula also for the
unary deterministic finite state automaton containing a cycle with the length greater
then 1. We will use the same notation as in the previous proof - the regular language
in a single letter alphabet is given as akanm, where k is the length of the constant
part and m is the length of the cycle. The monoid M recognizing the language is
M = {1M , δa, δa2 , ..., δak , δak+1 , ..., δak+m−1} and it is easy to see that for the monoid
M there is no such n for which an = an+1. Thus the monoid is not aperiodic and the
assumption is wrong. It is not possible to construct the first order formula for the unary
deterministic finite state automaton containing a cycle with the length greater then 1.

Now, let us examine the forms of the first order logic using a larger alphabet, which
are and which are not recognized by a measure-many quantum finite state automaton.

Lemma 4.2. The languages defined by first order logic in the form ∀x(Qσ(x)) (σ ∈ Σ)

can be recognized by a measure-many quantum finite state automaton.

Proof. The measure-many quantum finite state automaton recognizing the language
defined by formula in the form ∀x(Qσ(x)) (σ ∈ Σ) consists of three states - two halting
{q1, q2}, where q1 is an accepting state and q2 - a rejecting state and one non-halting state
q0 which is also the initial state. The transition function for the left end-marker and σ is
defined by unit matrix, the transition function for a letter γ (γ ∈ Σ and γ 6= σ) is defined

by the matrix

 0 0 1

0 1 0

1 0 0

 and the transition for the right end marker is defined by the

matrix

 0 1 0

0 0 1

1 0 0

.

Lemma 4.3. The languages defined by a first order formula in the form

∃x1x2...xn(first(x1)∧φ1 ∧S(x1, x2)∧φ2 ∧S(x2, x3)∧ ...∧S(xn−1, xn)∧φn) (σ ∈ Σ)
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where φi is in the form

Qσ1(xi) ∨Qσ2(xi) ∨ ... ∨Qσs(xi)

(σj ∈ Σ, i ∈ {1, , 2..., n− 1}) and φn is in the form Qσ1(xn) ∨ Qσ2(xn) ∨ ... ∨
Qσs(ni) [∧last(xn]) (σj ∈ Σ) can be recognized by a measure-many quantum finite state

automaton.

Proof. The language defined by the first order formula in the given form is accepted by
the measure-many quantum finite state automaton

A = (Q,Σ, δ, q0, Qacc, Qrej),

where Q = {q0, q1, ..., q2n+1, q2n+2}, Qacc = {q2n+2} if the formula φn contains last(xn),
Qacc = {qn, q2n+2} otherwise, Qrej = {qn+1, ..., q2n+1}, the transition for the left end-
marker is defined by a unit matrix, for the letter σi it is defined by Vσi(|qj−1〉) = |qj〉, if
the formula φj contains Qσi(xj) and j < n + 1, Vσi(|qj−1〉) = |qn+j〉, if the formula φj
does not contain Qσi(xj). If φn contains last(xn) then Vσ(|qn〉) = |q2n+2〉. It is easy to
see that the automaton accepts the language described by the formula.

Theorem 4.2. The languages defined by the first order formula in the form φ1∨φ2∨...∨φn
where φ is in the form of the first order formula in the lemma 4.3.

Proof. The language L defined by the formula is the union of the languages Li defined by
the formulas φi. The non-deterministic finite state automaton recognizing the language L
is displayed in the figure 4.2, where Lφi is language defined by the first order formula φi
and in the figure is used to identify the deterministic finite state automaton recognizing
language Lφi .

It is easy to proof that a state qi of the deterministic automaton recognizing the
language is reachable from different state qj and ql by a letter a if qi = qj or qi = ql

and for all input symbols σ ∈ Σ δ(qi, σ) = qi.

Theorem 4.3. The language defined by the first order formula in the form

∃x1x2...xn(Qσ1 ∧ S(x1, x2) ∧Qσ2 ∧ S(x2, x3) ∧ ... ∧ S(xn−1, xn) ∧Qσn)

where σj ∈ Σ and n > 2 cannot be recognized by a measure-many quantum finite state

automaton.
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...

L1

L 2

L n−1

L n

Figure 4.2 A non-deterministic automaton of φ1 ∨ φ2 ∨ ... ∨ φn .

...
   

≠ ≠

≠



q0 q1 qn−1 qn

Figure 4.3 A deterministic automaton of ∃x1x2...xn(Qσ1∧S(x1, x2)∧Qσ2∧S(x2, x3)∧
... ∧ S(xn−1, xn) ∧Qσn) .

Proof. At first we assume that σi = σj for all i, j. The deterministic finite state
automaton is shown in the figure 4.3. As the deterministic finite state automaton contains
the "forbidden" construction [16], the language defined by the formula in the form
∃x1x2...xn(Qσ ∧ S(x1, x2) ∧Qσ ∧ S(x2, x3) ∧ ... ∧ S(xn−1, xn) ∧Qσ) is not recognized
by a measure-many quantum finite state automaton.

Now, we will look at the case when there exist σi such that σ1 6= σi. We enumerate the
states of the minimal deterministic finite state automaton accepting the language so that
the automaton passes from the state qi to the state qj with symbol σj . Assume that the first
symbol of the formula different from σ1 is σi (i 6= n). It means that reading the symbol σ1

the automaton passes from the state qi−1 to qi−1 and from qi−2 to qi−1. At the same time,
the automaton passes from the state qi to q1 reading symbol σ1 (as σ1 6= σi). Thus we get
that the automaton contains the "forbidden" construction [16]. If the first symbol of the
formula different from σ1 is σn, then with σn the automaton goes from q0 to q0, from q1 to
q0 (as n > 2), and with the symbol σ1 from q0 to q1. Thus we again get that the automaton
contains the "forbidden" construction [16].

However, if we replace the operator S(x, y) by x < y in the theorem 4.3 we get
a formula which describes a language accepted by measure-many quantum finite state
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automata.

Lemma 4.4. The language defined by the first order formula in the form

∃x1x2...xn(Qσ1(x1) ∧ x1 < x2 ∧Qσ2(x2) ∧ x2 < x3 ∧ ... ∧ xn−1 < xn ∧Qσn(xn))

where σj ∈ Σ is recognized by a measure-many quantum finite state automaton.

Proof. The language defined by the formula is Σ∗σ1Σ∗σ2Σ∗...Σ∗σnΣ∗, it is known that
it is accepted by Latvian quantum finite state automaton, and the languages accepted by
Latvian quantum finite state automata, are also accepted by measure-many quantum finite
state automaton.

Additionally, we study the connection between accepting probabilities of quantum
finite state automata and FO[<] considering accepting probability of automata. From
the fact that intersection of languages recognized by measure-once quantum finite state
automata and languages defined by FO[<] contains only trivial languages follows that
there are languages recognized by measure-many quantum finite state automata which
cannot be defined by FO[<]. However, there are FO[<] languages recognized by
measure-many quantum finite state automata with probability 1.

Let us look at the language class CL1, which contains all languages defined by the
following rules:

1. ai ∈ Σ, {a1a2...ak} ∈ CL1, k ∈ N

2. ai ∈ Σ, {a1a2...akΣ
∗} ∈ CL1, k ∈ N

3. if Li ∈ CL1 and Lj ∈ CL1, then Li ∈ CL1, Li ∪ Lj ∈ CL1 and Li ∩ Lj ∈ CL1.

These languages can be defined by the FO[<] formula. FO[<] formula describing
the language can be constructed as follows:

1. ∃x1, x2, ..., xk(first(x1) ∧ Qa1(x1) ∧ S(x1, x2) ∧ Qa2(x2) ∧ S(x2, x3) ∧ ... ∧
Qak−1

(xk−1) ∧ S(xk−1, xk) ∧Qak(xk){∧last(xk)}∗)

2. if φi defines language Li ∈ CL1 and φj recognizes the language Lj ∈ CL1, then
¬φi recognizes Li, φi ∨ φj - Li ∪ Lj ∈ CL1, and φi ∧ φj - Li ∩ Lj ∈ CL1.

Lemma 4.5. The languages in CL1 can be recognized by a measure-many quantum finite

state automaton with probability 1.

Proof. Lets look at the language Li ∈ CL1 to construct the measure-many quantum finite
state automaton for the language Li, we need to represent the language Li in the tree view.
The representation tree is constructed in the following way:



4.1 Measure-Many Quantum Finite State Automata and First Order Logic 55

a1
a2
a3

ak−1

...

ak
$

≠a1
≠a2
≠a3
≠a4

≠ak−1
≠ak
≠$

a1
a2
a3

ak−1

...

ak

≠a1
≠a2
≠a3
≠a4

≠ak−1
≠ak

Figure 4.4 A representation tree of {a1a2...ak} (on the left) and {a1a2...akΣ
∗} (on the

right).

• The representation tree for the language {a1a2...ak}. The representation tree has
k + 2 levels. The edges of the tree are labelled with the letters from the alphabet
Σ ∪ $. The nodes of the representation tree are coloured in three colours - white,
grey, and black. White and grey nodes are leaves. Each black node has |Σ| + 1

children, one outgoing edge for each letter. The parent node of the tree is black, and
it is the first level of the tree. A node of level 1 < j ≤ k + 1 is coloured black if
the ingoing edge is labelled with aj−1 and white otherwise. A node of level k+ 2 is
coloured grey if the ingoing edge is labelled with $ and white otherwise.

• The representation tree for the language {a1a2...akΣ
∗}. The representation tree has

k + 1 levels. The edges of the tree are labelled with the letters from the alphabet
Σ∪$. The nodes of the representation tree are painted in three colours - white, grey,
and black. White and grey nodes are leaves. Each black node has |Σ|+ 1 children,
one outgoing edge for each letter. The parent node of the tree is black, and it is the
first level of the tree. A node of level 1 < j ≤ k is coloured black if the ingoing
edge is labelled with aj−1 and white otherwise. A node of level k + 1 is coloured
grey if the ingoing edge is labelled with ak and white otherwise.

• For Li the Li tree grey nodes are coloured white and the white nodes in grey.

• The tree of Li ∪Lj is union of the trees for Li and Lj . If the edge with label a from
the level k to k + 1 in one of the trees goes to white leaf, then the sub-tree of the
other tree is chosen in the final tree, if the leaf in the one of the trees is grey, then
the final tree will have this edge.
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• The tree of Li ∩ Lj is intersection of the trees for Li and Lj . If the edge with label
a from the level k to k + 1 in one of the trees goes to white leaf, then the final tree
will have this edge, if the leaf in the one of the trees is grey, then the sub-tree of the
other tree is chosen in the final tree.

The measure-many quantum finite state automaton accepting the language Li with
probability 1 is the automaton A = (Q; Σ; δ; q0;Qa;Qr), where Q = {q0, q1, ..., qn},
where n is the count of nodes in the representation tree of Li. Qa contains the states
which correspond to nodes coloured in grey, Qr contains the states which correspond to
nodes coloured white. The transition function are defined by the representation tree. The
edge (i, j, al) defines the transition |qi〉 = |qj〉 for letter al. As each node has exactly one
ingoing edge, the transition function of the automaton is unitary.

From the above lemma follows:

Theorem 4.4. FO[<] contains languages which can be recognized by a measure-many

quantum finite state automaton with probability 1.

Lets look at the languages that can be recognized by MM-QFA with accepting
probability 1 and which cannot be recognized by measure-once quantum finite state
automata. Currently we have shown a specific class of languages which can be recognized
by MM-QFA with probability 1 and which are first order definable. Naturally, questions
arise:

• Are there other FO[<] languages which can be recognized by MM-QFA with
probability 1, but are not in the language class L1?

The answer to which is yes, for example, a language ab∗a can be recognized by
MM-QFA with probability 1 and it is FO[<] definable.

• Is it possible to give a characteristics of the languages which can be recognized by
measure-many quantum finite state automata with probability 1, but which cannot
be recognized by measure-once quantum finite state automata and are not FO[<]

definable?

It is clear that such languages exist, for example, a2kb where k ∈ Z.

• What about recognition probability less than 1 - can we present FO[<] languages
which cannot be recognized by a measure-many quantum finite state automaton
with probability 1?
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FO[<] contains such languages which can only be recognized by a measure-many
quantum finite automaton with probability less than 1. One of examples is the
language a∗b∗.

However, can we present a probability p, such that every measure-many quantum finite
state automaton accepts language in FO[<] with probability at least p.

Theorem 4.5. There is no such probability p greater than 1
2

for which the following holds:

• any measure-many quantum finite automaton accepts FO[<] languages ( recog-

nized by MM-QFA) at least with probability p.

Proof. Lets assume that it is possible to provide such probability p. We can express p as
1
2

+ l. It is possible to find such n so that l > 3√
n−1

. At the same time it is known [4], that
language Ln ( Ln is defined as a∗1a

∗
2a
∗
3...a

∗
n) cannot be recognized with probability greater

then 1
2

+ 3√
n−1

. At the same time, the language Ln can be defined by a first order formula

∀x1, x2, ..., xn(∧n−1
i=1 (Qai(xi)→ ∀y(S(xi, y)→ (Qai(y) ∨Qai+1

(xn)))

∧Qan(xn)→ ∀y(S(xn, y)→ Qan(y)))

We got a contradiction which means that such p does not exist.

4.2 Measure-many quantum finite state automata and
modular logic

In this section, we consider the connection between measure-many quantum finite
automata and the modular logic. From the results of the previous chapter, we can get the
following:

Theorem 4.6. Languages in the language class MOD[<] can be recognized by a

measure-many quantum finite state automaton with probability 1.

Now we extend the language classMOD[<] by FO[<] formulas, denoted byMOD+

FO.

Lemma 4.6. Languages in the language class MOD + FO defined by the formula of

the form ∃(n,m)x(Qa(x)∧∀y(S(x, y)∧Qb(y))) cannot be recognized by a measure-many

quantum finite state automata.
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Proof. The minimal deterministic finite state automaton (DFA) recognizing the language
is displayed in the Figure 3.2. The automaton is minimal DFA as we need to remember n
fragments of ab, that means we have 2n states. As the minimal DFA contains forbidden
constructions [6] (an automaton has the following transitions qi

x→ qj , qj
x→ qj , and

qj
y→ qi) the language cannot be recognized by a measure-many quantum finite state

automaton.

However, we have obtained also positive results for languages belonging to the
language class MOD[<] + FO, but not to MOD[<].

Lemma 4.7. The language defined by the formula ∃x(Qb(x) ∧ ∃2,1y((x < y) ∧ Qa(y)))

is accepted by a measure-many quantum finite state automaton.

Proof. The measure-many quantum finite state automaton accepting the language is
following A = (Q; Σ; δ; q0;Qacc;Qrej), where Q = {q0, q1, q2, qacc1 , qacc2 , qrej1 , qrej2},
Qacc = {qacc1 , qacc2}, Qrej = {qrej1 , qrej2}, Σ = {a, b}, and δ is defined as:

V#(|qi〉) = |qi〉for all qi ∈ Q
Va(|q0〉) = |q0〉, Va(|q1〉) = |q2〉, Va(|q2〉) = |q1〉

Vb(|q0〉) = 2
3
|q0〉+

√
2

3
|q1〉+ 1√

3
|qacc1〉

Vb(|q1〉) =
√

2
3
|q0〉+ 1

3
|q1〉 −

√
2√
3
|qacc1〉

Vb(|q2〉) = |qacc2〉
V$(|q0〉) = |qrej1〉, V$(|q1〉) = |qrej2〉, V$(|q2〉) = |qacc2〉

Now, let us look at input words, if an input is:

• a∗. The left end-marker does not changes the initial superposition |q0〉. By reading
a∗ automaton stays in the superposition |q0〉, when the right end-marker is read, the
word is rejected with a probability 1.

• a∗bb∗. After reading a∗, the automaton is in the superposition |q0〉, when the
first b is read, the automaton changes its superposition to

√
2√
3
|q0〉 + 1√

3
|q1〉 with

probability 2
3

and accepts the input with probability 1
3
. While the automaton reads b

the superposition is not changed, it stays
√

2√
3
|q0〉+ 1√

3
|q1〉 with probability 2

3
, when

the left end-marker is read the input is rejected with the probability 2
3
.
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• ab(b∗a2n)∗. After reading a∗b the automaton is in the superposition
√

2√
3
|q0〉+ 1√

3
|q1〉

with probability 2
3

and acceptance probability is 1
3
, while reading b the superposition

does not change. When an input symbol a is read the superposition is changed to
√

2√
3
|q0〉+ 1√

3
|q2〉, and the second a changes the superposition back to

√
2√
3
|q0〉+ 1√

3
|q1〉.

As in the previous case, the input is rejected with 2
3
.

• ab(b∗a2n)∗a. As we have already identified - after reading ab(b∗a2n)∗, the automaton
is in the superposition

√
2√
3
|q0〉+ 1√

3
|q1〉with probability 2

3
and acceptance probability

is 1
3
, by reading a the superposition is changed to

√
2√
3
|q0〉+ 1√

3
|q2〉, and after reading

the left end-marker the input is accepted by 5
9
.

• ab(b∗a2n)∗aba, b∗. After reading ab(b∗a2n)∗a is in the superposition
√

2√
3
|q0〉+ 1√

3
|q2〉

and accepts the input with 1
3
, when the b is read the word is accepted with probability

5
9
, that means input will be accepted with probability at least 2

3
.



Chapter 5

Latvian Quantum Finite State
Automata and Logic

The chapter contains the results obtained in the connection between Latvian quantum
finite state automata and logic. The language recognition power of Latvian quantum finite
state automata has been compared with the languages recognized by first order languages
and languages recognized by modular logic.

5.1 Latvian Quantum Finite State Automata and First
Order Logic

Measure-once quantum finite state automata are special case of Latvian quantum finite
state automata and at the same time Latvian quantum finite state automata recognizes a
strict subclass of the languages accepted by measure-many quantum finite state automata
[1]. In the previous chapters, we illustrated a relation between languages accepted by
measure-once quantum finite state automata, measure-many quantum finite state automata
and first order definable languages. The aim of this section is to illustrate where the
language class recognized by Latvian quantum finite automata is located.

Lemma 5.1. Languages defined by the first order formula in the form

∃x1, x2, ..., xk(Qa1(x1) ∧Qa2(x2) ∧ ... ∧Qa3(x3) ∧ (x1 < x2 < .... < x3))

where ai ∈ Σ can be recognized by a Latvian quantum finite state automaton.

Proof. The formula of the lemma describes the language Σ∗a1Σ∗a2Σ∗...Σ∗anΣ∗, which
is known to be recognized by Latvian quantum finite state automata [1] Theorem 5.
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Theorem 5.1. There exists languages which belongs to the intersection of FO[<] and

languages recognized by measure-many quantum finite state automata, but cannot be

recognized by a Latvian quantum finite state automaton.

Proof. To prove the theorem we will prove the following lemma:

Lemma 5.2. Languages described by the first-order formulas of the form

∃x1, x2, ..., xn(first(x1) ∧Qa1(x1) ∧Qa2(x2) ∧ ... ∧Qan(xn) ∧ (x1 < x2 < ... < xn))

(5.1)
can be recognized by a measure-many quantum finite state automaton, but it cannot be

recognized by a Latvian quantum finite state automaton.

The language described by the first order formula 5.1 can be described as

a1Σ∗a2Σ∗a3...anΣ∗.

As
a1Σ∗a2Σ∗a3...anΣ∗ ∪ ¬Σ∗a2Σ∗a3...anΣ∗ = a1Σ∗

and the language Σ∗a2Σ∗a3...anΣ∗ is accepted by Latvian quantum finite state automata
and languages accepted by Latvian quantum finite state automata are closed under union
and complement, but the language a1Σ∗ is not recognized by LQFA, the language
a1Σ∗a2Σ∗a3...anΣ∗ is not accepted by Latvian quantum finite state automaton. However,
it can be accepted by measure-many quantum automaton. It can be easily constructed
from the automaton recognizing the language Σ∗a1Σ∗a2...anΣ∗, where we change the
transition of the initial state and all symbols except a1, so that the initial state is changed
to a rejecting state.

In fact, the languages described by the first order formulas of the form ∀x(first(x) ∧
ψ(x)) and ∀x(last(x) ∧ ψ(x)), where ψ(x) is a first order formula containing Qa(x)

(a ∈ Σ) cannot be accepted by Latvian quantum finite state automata.

5.2 Latvian Quantum Finite State Automata and Modu-
lar Logic

Similarly to the previous section in this section, we want to locate languages
recognized by Latvian quantum finite state automata in connection to the relation between
measure-once quantum finite state automata, measure-many quantum finite state automata
and languages defined by modular logic.
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b b

a a ,b

q0 q1 q2 qn

b
a
a

Figure 5.1 The deterministic finite state automaton recognizing the language defined
by the formula ∃x(Qb(x) ∧ ∃2,1y((x < y) ∧Qa(y))).

As measure-once quantum finite state automata are special case of Latvian quantum
finite state automata we can conclude the following:

Lemma 5.3. Languages in MOD[<] are recognized by Latvian quantum finite state

automata.

Lemma 5.4. Languages in the language class MOD[S,<] defined by the formula of the

form ∃(n,m)x(Qa(x) ∧ Qb(S(x))) cannot be recognized by Latvian quantum finite state

automata.

Lemma 5.5. The language defined by the formula ∃x(Qb(x) ∧ ∃2,1y((x < y) ∧ Qa(y)))

is accepted by a Latvian quantum finite state automaton.

Proof. In the figure 5.1 is displayed a deterministic finite state automaton recognizing
the language defined by the formula. Now, we examine the monoid M accepting the
language. M = {1M , δa, δb, δab, δba, δaba, δbab} and the binary operation is defined in the
following table:

1M δa δb δab δba δaba δbab

1M 1M δa δb δab δba δaba δbab

δa δa 1M δab δb δaba δba δbab

δb δb δba δb δbab δba δbab δbab

δab δab δaba δab δbab δaba δbab δbab

δba δba δb δbab δbab δbab δba δbab

δaba δaba δaba δbab δab δbab δaba δbab

δbab δbab δbab δbab δbab δbab δbab δbab

and N = {δba, δaba, δbab}. E(M) = {e, b, aba, bab} and the monoid M is a block group,
it means that the language is recognized by Latvian quantum finite state automaton.

We have shown that Latvian quantum finite state automaton also recognizes languages
inMOD+FO, but not inMOD[<]. However, not all languages recognized by measure-
many quantum finite state automata in MOD + FO is also recognized by a Latvian
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quantum finite state automaton. For example, language described by ∀x(first(x) →
(Qb(x) ∧ ∃(2,1)(Qa(y) ∧ x < y))) can be recognized by a measure-many quantum finite
state automaton, but cannot be recognized by a Latvian quantum finite state automaton.

5.3 Latvian Quantum Finite State Automata and Gener-
alized Quantifiers

The language class accepted by Latvian quantum finite state automata can be similarly
characterized as languages recognized by measure-once quantum finite state automaton
using group quantifier.

Theorem 5.2. A language L is recognized by Latvian quantum finite state automaton

if and only if it is described by the formula built from the formulas of the form

∃x1, x2, ..., xn(ψ0(x1)∧Qa1(x1)∧ψ1(x1, x2)∧Qa2(x2)...Qan(xn)∧ψn(xn)) by means of

connectivities ∨,∧,¬, where ψi(xi, xi+1) is a formula containing only group quantifiers

and denoting "the input fragment starting with xi+1 and ending with xi+1−1 satisfies ψi"

(1 6 i 6 n− 1), ψ0(x1) is a formula containing only group quantifiers and denotes "the

initial fragment before x1 (ending at x−1) satisfies ψ0, and ψn(xn) is a formula containing

only group quantifiers and denotes "the final input fragment starting with xn + 1 satisfies

ψn".

Proof. We have already stated that Latvian quantum finite state automaton recognizes
Boolean combination of the languages in the form L0a1L1...Ln−1anLn, where Li is a
group language. The connectivities of the formula is equivalent to the Boolean combina-
tions of the languages, so its enough to consider languages in the formL0a1L1...Ln−1anLn

and formulas of the form ∃x1, x2, ..., xn(ψ0(x1)∧Qa1(x1)∧ψ1(x1, x2)∧Qa2(x2)...Qan(xn)∧
ψn(xn)).

From the theorem 3.5, we can conclude that ψ(xi, xi+1) describes that the fragment
between xi + 1 and xi+1− 1 is a group language, ψ(x1) describes that the initial fragment
before x1 is a group language, and ψ(xn) describes that the fragment after xn forms a
group language. It means that the formula ∃x1, x2, ..., xn(ψ0(x1)∧Qa1(x1)∧ψ1(x1, x2)∧
Qa2(x2)...Qan(xn) ∧ ψn(xn)) describes the languages in the form L0a1L1...Ln−1anLn,
where Li is a group language. Thus the language can be recognized by Latvian quantum
finite state automata.

The language Li is a group language, we can conclude that it can be described by
a formula ψi() using only group quantifiers. Thus L0a1L1...Ln−1anLn can be described
as ∃x1, x2, ..., xn(ψ0(x1) ∧ Qa1(x1) ∧ ψ1(x1, x2) ∧ Qa2(x2)...Qan(xn) ∧ ψn(xn)), where
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ψi(xi, xi+1) is a formula containing only group quantifiers and denoting "the input
fragment starting with xi + 1 and ending with xi+1 − 1 satisfies ψi" (1 6 i 6 n − 1),
ψ0(x1) is a formula containing only group quantifiers and denotes "the initial fragment
before x1 (ending at x − 1) satisfies ψ0, and ψn(xn) is a formula containing only group
quantifiers and denotes "the final input fragment starting with xn + 1 satisfies ψn".



Chapter 6

Quantum Automata over Infinite Words

This chapter is devoted to the study of the quantum finite state automaton over infinite
words. We adapt the definition of the automata for infinite input and study languages
accepted by a quantum Büchi automaton.

6.1 Definition of Quantum Finite State Automata over
Infinite Words

In this section, we will adapt definition of quantum finite state automata [38] for
infinite words.

Definition 6.1.1. A quantum finite state over infinite words or quantum ω-automaton is

a quintuple A = (Q,Σ, δ, q0, Acc)

• Q is a finite set of states,

• Σ is a finite input alphabet,

• δ is the transition function δ : Q×Σ×Q→ C[0,1], which represents the amplitudes

that flows from the state q to the state q′ after reading symbol σ,

• q0 ∈ Q is the initial state,

• Acc is the acceptance component.

For all states q1, q2, q
′ ∈ Q and symbols σ ∈ Σ, the function δ must be unitary, thus the

function satisfies the condition

∑
q′ δ(q1, σ, q′)δ(q2, σ, q

′) =

{
1 (q1 = q2)

0 (q1 6= q2)
.
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The linear superposition of the automaton’s A states is represented by an n-dimensional
complex unit vector, where n = |Q|. The vector is denoted by |φ〉 =

∑n
i=1 αi |qi〉, where

{|qi〉} is the set orthonormal basis vectors corresponding to the states of the automaton A.
We will use the density matrix to represent the state of the automaton ρ = |ψ〉〈ψ|.

The transition function δ is represented by a set of unitary matrices {Vσ}σ∈Σ, where
Vσ is the unitary transition of the automaton A after reading the symbol σ and is defined
by Vσ(| q〉) =

∑
q′∈Q δ(q, σ, q

′) | q′〉.
A computation of the automaton A on an input word α = a1a2a3.... ∈ Σω proceeds as

follows:

• It starts computation in the superposition ρ0 =| q0〉〈q0 |.

• An unitary transition corresponding to the current input letter is performed.

Definition 6.1.2. Let A = (Q,Σ, δ, q0, Acc) be a quantum ω automaton. A run of A

on an ω-word α = a1a2... ∈ Σω is an infinite sequence of density operators ρω =

ρ(0)ρ(1)ρ(2)..., where ρ(j) = |ψj〉〈ψj| (|ψj〉 =
∑n

i=1 αi |qi〉 and {|qi〉} is the set of

the automaton’s A states), such that the following holds:

1. ρ(0) = ρ0

2. ρ(i) = Uaiρ(i− 1)U †ai for i > 0.

The acceptance conditions can be viewed in the similar way as for classical ω-
automata. We examine quantum ω-automata with Büchi, Streett and Rabin acceptance
condition and we use the abbreviations: QBA for Büchi quantum automata, QSA for
Streett quantum automata, and QRA for Rabin quantum automata.

Definition 6.1.3. A density matrix ρ = |ψ〉〈ψ| (|ψ〉 =
∑n

i=1 αi |qi〉 〈qi|) is called F

accepting (F ⊆ Q) with probability p if∑
qi∈F |αi|

2 > p,

which is acceptance probability of the superposition.

Definition 6.1.4. A Büchi acceptance condition for quantum caseAcc is a subset F ofQ,

where the elements of F are called accepting states. An infinite run ρω = ρ(0)ρ(1)ρ(2)...

is called Büchi accepting with probability p if run ρω contains infinitely many F accepting

density matrices.
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Definition 6.1.5. A Streett acceptance condition Acc is a finite set of pairs (Hi, Ki)

where Hi and Ki are subsets of Q (Acc = (H1, K1), ..., (Hs, Ks). An infinite run rhoω =

ρ(0)ρ(1)ρ(2)... is called Streett accepting with probability p if for each i ∈ {1, 2, ..., s}
ψρ contains infinite number of Hi accepting density matrices or ψω contains only finite

number of Ki accepting density matrices.

Definition 6.1.6. A Rabin acceptance condition Acc is a finite set of pairs (Hi, Ki)

where Hi and Ki are subsets of Q (Acc = (H1, K1), ..., (Hs, Ks). An infinite run

ρω = ρ(0)ρ(1)ρ(2)... is called Rabin accepting with probability p if there is some

i ∈ {1, 2, ..., s} for which ρω contains only finite number ofHi accepting andKi accepting

density matrices.

The language accepted by a quantum ω-automata A with the alphabet Σ and cut-point
λ, denoted Lλ(A), is defined as set of infinite words σ ∈ Σ that has accepting run with
probability p > λ in A. A quantum ω-automaton accepts language with bounded error if
there exists an ε > 0 such that for all accepting runs probability is greater than λ+ ε.

Example 6.1.1. Let us consider QBA A recognizing the ω-language L1 = (L′1)ω, where

L′1 = {a3n|n ≤ 0} in the alphabet {a, b}. The automaton has:

• Q = {q0, q1},

• Vb is identity matrix, Va =

(
cos2π

3
sin2π

3

−sin2π
3

cos2π
3

)
,

• Acc = {q0}.

The automaton can be in three different states | ψ0〉 =| q0〉, | ψ1〉 = cos2π
3
| q0〉 −

sin2π
3
| q1〉, and | ψ2〉 = cos4π

3
| q0〉 − sin4π

3
| q1〉, from which the accepting density

matrix is for state | q0〉. By reading an a automaton changes the superposition, reading

input symbol b the super position stays the same, to have an infinitely many superpositions

| q0〉 the input should be in the language L1. The automaton recognizes the language with

probability equal to 1. We assume that the cut point of the language is 1
2
.

Example 6.1.2. Let us consider another example with Streett acceptance condition

recognizing the language containing infinite words with finite number of b.

The automaton has:

• Q = {q0, q1},

• Va is identity matrix, Vb =

(
0 1

1 0

)
,
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a a

q0 q1
b

b

Figure 6.1 The group Büchi automaton recognizing the language consisting of the
words which have only finite number of b.

• Acc = {∅, |q1〉〈q1|}.

The run of automaton can have in two different superpositions | q0〉 and | q1〉. As the

first condition is always false for each run, we have to consider the second condition, that

means, that there is only finite number of q1 accepting superpositions, in other words, we

can have only finite number of bs. The automaton recognizes the language with probability

equal to 1.

6.1.1 Group Automata over Infinite Words

As the language class recognized by measure-once quantum finite state automata over
finite words with bounded error is exactly the class of languages accepted by group finite
automaton, we are also considering group automata over infinite words.

Definition 6.1.7. A group automata over infinite words is a deterministic ω - automata

with the restriction that for every state q ∈ Q and every input symbol σ ∈ Σ there exists

exactly one state q′ ∈ Q such that δ(q′, σ) = q.

We consider group ω-automata with Büchi (GBA), Strettt (GSA) and Rabin accep-
tance condition (GRA).

Example 6.1.3. The figure 6.1 contains GSA for the language consisting of the words

which have only finite number of b with the same acceptance condition as in quantum

case.

6.2 Quantum Finite State Automata over Infinite Words
with Büchi Acceptance Condition

In this section, we consider languages recognized by quantum finite state ω - automata
with Büchi acceptance condition with bounded error.
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Lemma 6.1. A language Lω ⊆ Σω is recognized by a Büchi quantum finite state

automaton if and only if Lω is a limit language of L ⊆ Σ∗ and L is recognized by a

measure-once quantum finite state automaton.

Proof. Let L be a language recognizable by a measure-once quantum finite state
automaton AMO−QFA1 = (Q1,Σ, δ1, q0, Qacc1) with acceptance probability p. A word
is accepted by AMO−QFA1 if after reading the last symbol it is in accepting superposition
(
∑

qi∈Qacc1
|αi|2 ≥ p).

Let us consider a Büchi quantum finite state automatonAQBA1 = (Q1,Σ, δ1, q0, Acc1),
where Acc1 = Qacc1 . Now, we look at the infinite word α ∈ lim(L), it means that α has
infinitely many prefixes in L. It is easy to see that if AQBA1 reads α it has infinitely many
Qaccp-accepting superpositions. AQBA1 recognizes lim(L).

Let Lω be a language recognized by a Büchi quantum finite state automaton AQBA2 =

(Q2,Σ, δ2, q0, Acc2). We will also study a measure-once quantum finite state automaton
AMO−QFA2 = (Q2,Σ, δ2, q0, Qacc2), whereQacc2 = Acc2. Now if an infinite input α ∈ Lω
is considered, then it is easy to see if it is recognized by AQBA2 , then infinitely many
prefixes are recognized by AMO−QFA2 . It means that Lω = lim(L) and L is recognized
by AMO−QFA2 .

Similarly we can prove the following lemma:

Lemma 6.2. A language Lω ⊆ Σω is recognized by a Büchi group finite state automaton

if and only if Lω is a limit language of a group language (language recognized by a group

finite state automaton).

As measure-once quantum finite state automata recognize exactly group languages,
from the previous results we get the following:

Theorem 6.1. A language Lω can be recognized by a QBA with bounded error if and

only if it can be accepted by GBA.

Lemma 6.3. QBA with bounded error can’t recognize whole language class accepted by

DBA.

Proof. Let us consider ω-language La = {α|α has infinitely many a} in the alphabet
Σ = {a, b}. First assume that QBA with bounded error can recognize the language La.
In this case, we can construct the GBA for the language. Now, let us consider a word
w ∈ Σ∗ by which we reach an accepting state, it is clear that there exists a word bk

(k > 0) such that wbk also will be in the accepting state, it means that the word w(bk)ω

will be accepted, but it does not contain infinitely many a. So the language La cannot be
accepted by QBA with bounded error, but La is recognized by a DBA (the figure 6.2).
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a
a

q0 q1
b

b

Figure 6.2 The deterministic Büchi automaton recognizing the language La.

From the above mentioned results we get the following:

Theorem 6.2. QBAwith bounded error accepts the proper subset ofDBAwhich is equal

to the languages accepted by GBA.

It is known that deterministic Rabin automata and deterministic Streett automata can
recognize larger language class than deterministic Büchi automata. What about quantum
case?

Theorem 6.3. The language class accepted by QBA with bounded error is the proper

subset of the languages accepted by QSA.

Proof. Let us consider language containing only finitely many input symbols b. It is
known that this language cannot be recognized by DBA, so it cannot also be recognized
by QBA with bounded error. However, it can be recognized by QSA, see Example 6.1.2.
At the same time, as we have already mentioned Büchi finite state automata can be seen
as special case of Streett finite state automata.

6.3 Closure Properties of Quantum Finite State Automata
over Infinite Words with Büchi Acceptance Condi-
tion

In this section, we consider a basic closure properties of the language accepted by
Büchi quantum finite state automata with bounded error. We will study the standard
set operations - union, intersection, and complementation. It turns out that the class of
languages accepted by a Büchi quantum finite state automata with bounded error is closed
under a union, but not under intersection and complementation.

Theorem 6.4. If ω-languages Lω1 and Lω2 are recognized by some QBA then Lω1 ∪ Lω2

is also recognized by a QBA.
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q0 q1

bb

Figure 6.3 The deterministic Büchi automata recognizing the language La and Lb.

Proof. Let us consider ω-languages Lω1 and Lω2 recognized by Büchi quantum finite state
automata. From the results of the previous section, we get that Lω1 = lim(L1) and Lω2 =

lim(L2) and the languages L1 and L2 are recognized by group finite state automata. It is
known that group finite state automata are closed under a union, that means we have a GFA
AL1∪L2 = (Q,Σ, δ1, qinit, Qacc) which recognizes L1∪L2, from the lemma 6.2 we get that
Alim(L1∪L2) = (Q,Σ, δ1, qinit, Acc), where Acc = Qacc is Büchi acceptance condition,
recognizes the limit language of L1∪L2. Let us prove that Alim(L1∪L2) recognizes a union
of Lω1 and Lω2 . It is obvious that Lω1 = lim(L1) ⊆ lim(L1 ∪ L2).

Now to prove the theorem we have to show that if a word α is accepted byAlim(L1∪L2),
then α is inLω1 = lim(L1) or inLω2 = lim(L2). Let us examine word α. As it is accepted
by GBA, we have a state qi ∈ Acc which occurs infinity often in α. If we consider a group
automaton AL1∪L2 for finite input on the prefixes of α which reaches the accepting state
qi, each of these prefixes belongs to L1 or L2, as there are infinitely many such accepted
prefixes, then there will be infinitely many prefixes belonging to L1 or L2, from it follows
that α belongs to L1 or L2.

Theorem 6.5. The class of languages recognized by QBA is not closed under intersection.

Proof. Let us assume the contrary - it is closed under intersection, it means the class
of languages accepted by GBA is also closed under intersection. Let us consider two
GBA given in the figure 6.3 (Acc = {q1}). One of GBA accepts the language La =

lim(w|odd number of ′a′) other accepts the language Lb = lim{w|odd number of ′b′).
Assume there is a GBA recognizing La ∩ Lb.

Now let us examine a Büchi group finite state automaton AGBA = (Q,Σ, δ1, q0, Acc)

recognizing the language La ∩Lb. Let us look at the set of states Qa containing the states
of AGBA reachable from the initial state q0 reading only the symbol a. As AGBA is group
finite state ω-automaton, there is a word ak by reading which the automaton returns to the
initial state. If qi ∈ Qa, then qi /∈ Acc otherwise the word aω will be accepted, but it does
not belong in Lb. Similarly for the symbol b, Qb denotes the set of states containing the
states of AGBA reachable from the initial state q0 reading only the symbol b. As AGBA is
group finite state ω-automaton, there is a word bl by reading which the automaton returns
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to the initial state. If qi ∈ Qb, then qi /∈ Acc otherwise the word bω will be accepted, but it
does not belong in L1. However, the automatonAGBA should accept the word (akbl)ω, but
it does not. Our assumption was wrong there is no GBA accepting the intersection of La
and Lb. It means - the class of languages accepted by Büchi quantum finite state automata
with bounded error is not closed under intersection, as Büchi quantum finite state automata
recognize exactly the same language class as Büchi group finite state automata.

Theorem 6.6. The class of languages recognized by QBA is not closed under complemen-

tation.

Proof. In the proof, we consider the same language La as in the proof of the above
theorem. Assume there is a Büchi quantum finite state automaton accepting the
complement of La, then there is also a Büchi group finite state automaton ALa =

(Q,Σ, δ1, q0, Acc) accepting the complement of the language La. Since aabω ∈ L1 there
is an accepting state qi1 ∈ Acc which is reachable by reading a word aabk1 (k1 > 0) from
the initial state q0. Since aabk1aabω ∈ L1 there is accepting state qi2 ∈ Acc which is
reachable by reading a word aabk2 (k2 > 0) from the state qi1 . Using this argument, we
obtain infinitely many k1, k2, ...k3 > 0, such that aabk1aab

k
2aab

k
3aab

k
4... is accepted by the

automaton. However, aabk1aab
k
2aab

k
3aab

k
4... ∈ La. Thus, the class of languages accepted

by Büchi quantum finite state automata is not closed under complement.

6.4 Measure-Many Quantum Finite State Automata over
Infinite Words

In this section, we extend a definition of a measure-many quantum finite state
automaton and define a Büchi acceptance criteria for this kind of automata.

Definition 6.4.1. A measure-many quantum finite state over infinite words is a quintuple

A = (Q,Σ, δ, q0, QH , Acc)

• Q is a finite set of states,

• Σ is a finite input alphabet,

• δ is the transition function δ : Q × Σ ∪ {]} × Q → C[0,1], which represents the

amplitudes that flows from the state q to the state q′ after reading symbol σ, and ] is

the left end-marker, which denotes the start of the word,

• q0 ∈ Q is the initial state,
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• QH ⊆ Q are halting states of the automaton,

• Acc is the acceptance component.

For all states q1, q2, q
′ ∈ Q and symbols σ ∈ Σ, the function δ must be unitary, thus the

function satisfies the condition

∑
q′ δ(q1, σ, q′)δ(q2, σ, q

′) =

{
1 (q1 = q2)

0 (q1 6= q2)
.

The linear superposition of the automaton’s states is also represented by an n-
dimensional complex unit vector, where n = |Q| and the transition function δ is
represented by a set of unitary matrices {Vσ}σ∈Γ, where Vσ is the unitary transition of
the automaton AMM−QFA after reading the symbol σ and is defined by Vσ(| q〉) =∑

q′∈Q δ(q, σ, q
′) | q′〉.

A computation of the automaton on the input word ]σ1σ2... ∈ Σω proceeds as follows:

• it starts in the superposition ρ0;

• a unitary transition corresponding to the current input symbol is performed;

• after every transition, the automaton A measures its state with respect to the
observable

⊕|Qh|
i=1 Ei ⊕ Enon where Ei = span{|qi〉} for each qi ∈ QH and

Enon = span{|q〉 : q /∈ QH}. If the observed state of the automaton is in Ei

subspace, then the input halts, otherwise the computation continues.

After every measurement, the superposition collapses to the measured subspace.
We keep track of halting probabilities for each halting state, therefore, the state of the
automaton is represented by a tuple (φ, p1, p2, ..., p|QH |), where pi is the cumulative
probabilities of halting to the state qi ∈ QH . The transition of the automaton on reading
the symbol σ is denoted by (Pnon |φ′〉 , p1+‖P1φ

′‖2 , p2+‖P2φ
′‖2 , ..., p|QH |+

∥∥P|QH |φ′∥∥2
),

where φ′ = Vσφ and Pi is a diagonal zero-one projection matrix projecting onto Ei

subspace.

Definition 6.4.2. A Büchi acceptance condition for a measure-many quantum finite state

automaton Acc is a subset F ⊆ QH , where the elements of F are called accepting states.

The computation of an automaton on the input ]σ1σ2... ∈ Σω is called accepting, if after

reading an input the probability to be in states qi ∈ F is 1.

Example 6.4.1. Let us consider an example of a Büchi measure-many quantum finite state

automaton recognizing the limit of the language containing the words of odd number of

a. The automaton has:
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• a set of states {q0, q1, q2},

• the halting set of states is QH = {q2},

• an input alphabet is {a, b},

• the accepting component Acc = QH ,

• V] = Vb = I3, Va =

 0 1 0
1√
2

0 1√
2

1√
2

0 − 1√
2


If a word belongs to the language, then the state q1 has been visited infinite often it means

that the probability to be in Acc is 1
2

+ 1
4

+ 1
8

+ ... = 1, if the word does not belong to the

language then there is only finite number k of prefixes having odd number of a. In this

case the probability to be in Acc is 1
2

+ 1
4

+ 1
8

+ ...+ 1
2k

= 1− 1
2k
< 1.

Theorem 6.7. The language class recognized by quantum Büchi automata is proper

subset of the language class accepted by measure-many quantum finite state automata

with Büchi acceptance criteria.

Proof. We transform a group Büchi automaton to equivalent Büchi measure-many
quantum finite state automaton. The group Büchi automaton AGBA = (Q,Σ, δ, q1, Acc)

accepts language L, the equivalent Büchi measure-many quantum finite state automaton
has:

• a set of states Q = {q1, ..., q|Q|+|Acc|},

• an input alphabet Σ,

• q0 as initial state,

• Acc′ = QH = {q|Q|+1, ..., q|Q|+|Acc|},

• a transition function is defined as follows:

– Vσ(|qi〉) = 1√
2
|qj〉+ 1√

2
|q′j〉 (q′j ∈ QH) if δ(qi, σ) = qj and qj ∈ Acc,

– Vσ(|qi〉) = |qj〉 if δ(qi, σ) = qj and qj /∈ Acc.

Each time when the group Büchi automaton visits an accepting run, Büchi measure-many
quantum finite state automaton sends a half of the non-halting probability to the halting
state. If a word is accepted by group Büchi automaton, then accepting states have been
visited infinite often it means that the probability to be in Acc is 1

2
+ 1

4
+ 1

8
+ ... = 1, if
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an input word is not recognized by the group Büchi automaton, then there is only finite
number k of prefixes having odd number of a. In this case the probability to be in Acc is
1
2

+ 1
4

+ 1
8

+ ...+ 1
2k

= 1− 1
2k
< 1.

At the same time, the infinite language containing words starting with symbol a can
be accepted by Büchi measure-many quantum finite state automaton, which has:

• a set of states Q = {q1, q2, q3},

• an input alphabet Σ,

• q0 as initial state,

• QH = {q2, q3},

• Acc = {q2}

• a transition function for symbol a is defined as Va(|q1〉) = |q2〉 and for the rest of
symbols V 6=a(|q1〉) = |q3〉.

This language cannot recognized by a quantum Büchi automaton as it does not belong to
the limit languages of measure-once quantum finite state automata.



Chapter 7

Conclusion

In the thesis, we investigated the connection between quantum finite state automata
and logic. We investigated three different notations of quantum finite state automata
- measure-once quantum finite state automata [38], measure-many quantum finite state
automata [32], and Latvian quantum finite state automaton [1] and its connection to first
order logic, modular logic, and logic using generalized quantifiers - Lindström quantifier
and group quantifier. We have obtained the following:

• characterized the language class accepted by measure-once quantum finite state
automata with bounded error in the terms of logic;

• proved that intersection of the language class accepted by measure-once quantum
finite automata with bounded error and languages defined by FO[<] contains only
trivial languages, i.e., an empty language or Σ∗;

• proved that languages described by MOD[<] are recognized by measure-once,
measure-many and Latvian quantum finite state automata;

• studied the connection between languages accepted by measure-many quantum
finite state automata and first order logic, as well as, the connection between
acceptance probability of measure-many quantum finite state automata and first
order logic was examined;

• studied the connection between acceptance probability of measure-many quantum
finite state automata and modular logic using the first order quantifiers;

• studied the connection between Latvian quantum finite state automata and logic.

The further research in the connection between quantum finite state automata and
logic requires to study new kinds of logic, the use of generalized quantifiers could help
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to characterize the languages accepted by quantum finite state automata. The study of
other notations of quantum finite state automata from logic point of view could help to get
relationship between these notations of quantum finite state automata.

The second part of the thesis was devoted to the quantum finite state automata over
infinite words. We studied the class of languages accepted by Büchi measure-once
quantum finite state automata with bounded error and proved its closure under union,
as well as, showed that the class of languages accepted by Büchi measure-once quantum
finite state automata is not closed under two other standard set operations - intersection
and complementation. Similarly to classical case also in the quantum case, the Rabin and
Streett acceptance conditions are more powerful than Büchi acceptance condition. We
have also defined a Büchi measure-many quantum finite state automaton, which is more
powerful then quantum Büchi automaton. However, the started research is a small step in
this research area. We examined the simplest model of the quantum finite state automata,
there are other models such as already mentioned Latvian quantum finite state automata
and others. We have not studied quantum finite state automata using other acceptance
condition just showed that Rabin and Streett conditions are more powerful, so it is another
potential research area, as well as, study of acceptance probabilities and other properties
of automata.
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