
 

UNIVERSITY OF LATVIA 

 

 

 

 

 

OKSANA ŠČEGUĻNAJA-DUBROVSKA 

 

 

MODELS OF QUANTUM COMPUTATION 

 
PHD THESIS  

 

Nozare: datorzinātnes 

Apakšnozare: datorzinātņu matemātiskie pamati 

 

 

Promocijas darba vadītājs:  

prof. ,  Dr.habil.math. RŪSIŅŠ MĀRTIŅŠ FREIVALDS 

 

 

Rīga – 2010 



1 ANOTĀCIJA 
 

Kvantu modelis ar pēcatlasi tiek definēts Scott Aaronson darbā. Beigu stāvokļu kopa, 
kas parasti sastāv no akceptējošiem un noraidošiem stāvokļiem, tiek papildināta ar 
parametru, kas norāda, vai dotais beigu stāvoklis ietilpst atlases kopā. Mērījumi tiek 
veikti tikai atlases kopas beigu stāvokļos. Tiek ieviests papildus stāvoklis +q , un ja 

visu pēcatlases stāvokļu amplitūdas ir 0, tad +q  amplitūda saņem vērtību 1. 

Pēcatlase ļauj pētīt ne tikai kvantu, bet arī tradicionālo algoritumu īpašības. 
Pētījuma mērķis ir salīdzināt varbūtisko un kvantu galīgo pēcatlases automātu klases 
un aprakstīt valodu klases, ko atpazīst kvantu galīgs automāts ar pēcatlasi. 
Pētījuma procesā iegūti šādi rezultāti: 

• Definēts kvantu galīgā automāta ar pēcatlasi jēdziens; 

• Aprakstīta valoda PALINDROMES, ko atpazīst galīgs kvantu automāts ar 
pēcatlasi ar mērījumu katrā solī un galīgs kvantu automāts ar pēcatlasi ar 
mērījumu beigās; 

• Aprakstīta valoda, kuru nevar atpazīt galīgs kvantu automāts ar pēcatlasi ar 
mērījumu katrā solī un galīgs kvantu automāts ar pēcatlasi ar mērījumu beigās: 

*}1,0{|{ ∈= wwL  and there exist zuyx ,,,  such that zuyxw 11 ==  and 

}zx =  

Viens no promocijas darba uzdevumiem ir aplūkot kvantu vaicājošos algoritmus Bula 

funkciju rēķināšanai. Darba sākumā tiek pierādīti kvantu algoritmu apakšējie 

novērtējumi dažādām funkcijām, kas apraksta grafu problēmas. Ir izveidoti efektīvi 

kvantu vaicājošie algoritmi. Šajā sadaļā iegūti rezultāti sekojošām funkcijām: 

• 3-sum problēma, 

• Hamiltona ceļš, 

• Hamiltona aplis, 

• Ceļojošais pārdevējs. 

Vēl promocijas darbā tiek apskatīta reāla laika Tjūringa mašīnas kvantu analoģija. 

Tiek parādīts, ka eksistē valoda, kuru pazīst reāla laika kvantu Tjūringa mašīna un 

nepazīst reāla laika determinēta Tjūringa mašīna. 



2 ABSTRACT 
 

Postselection quantum model is defined by Scott Aaronson. A new parameter is added 

to a halting set of states, that consists of accepting and rejecting states, which defines 

if the state is in postselection set. Only states in postselection set are measured. New 

state +q is added and if all postselection states amplitudes are equal to 0, then 

+q amplitude is set to 1. 

Postelection appears to be very useful to study not only quantum, but also traditional 

algorithms . 

Paper goal is to compare probabilistic and quantum finite automata with postselection 

and define language class, that can be recognized by quantum finite automata with 

postselection. 

The following results are obtained: 

• The notion of quantum finite automata with postselection is given; 

• Language PALINDROMES is defined, that can be recognized by MO- and 

MM- quantum finite automata with postselection; 

• Language is defined, that cannot be recognized by MO- and MM- quantum 
finite automata with postselection: *}1,0{|{ ∈= wwL  and there exist zuyx ,,,  

such that zuyxw 11 ==  and }zx =  

One of the research object of this work is find quantum query algorithms to compute 

Boolean functions. At first we prove higher lower bounds of quantum query 

algorithms for some of graph problems. Effective quantum query algorithms are 

created with complexity lower than deterministic one. Results for the following 

functions are obtained: 

• 3-sum problem, 

• Hamiltonian path, 

• Hamiltonian circuit, 

• Travelling salesman. 

Another aim of this paper is to introduce a quantum counterpart for real – time Turing 

machine. The recognition of a special kind of language, that can’t be recognized by a 

deterministic real – time Turing machine, is shown. 
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3 Introduction 
 

The quantum computation theory started to evolve recently, and it has become a fact 

that the quantum mechanism gives us a certain kind of power, which cannot be 

achieved by the deterministic or probabilistic approach.  

The possibility of performing computations in a quantum system was first explicitly 

pointed out independently by Paul Benioff [1] and Richard Feynman [2] in 1982. 

While Benioff work was more concerned with the trend of the minimization that 

exists in the area of the computing devices, such that their size can eventually 

approach the border where quantum effects can be experienced, Feynman motivation 

was quite different and more interesting for us. 

He supposed that it might require exponential time to simulate quantum mechanical 

processes on classical computers. This served as a basis to the opinion that quantum 

computers might have the advantages versus the classical ones. 

The first impressive result obtained in 1994, that made quantum computing theory the 

area of great interest, was Peter Shor quantum algorithm for factorization of integers 

in polynomial time [3] while all known classical algorithms are exponential. 

Any quantum computation is performed by means of unitary operators. One of the 

simplest properties of these operators shows that such a computation is reversible. 

The result always determines the input uniquely. 

While researching quantum computing many counterparts of the basic conceptions of 

the classical computation theory (such as Turing machine, finite automata etc.) have 

been defined and researched (see [4] page 150). 

 

First part of this work presents postselection quantum finite automata. Postselection 

for quantum computing devices was introduced by S.Aaronson [5] as an excitingly 

efficient tool to solve long standing problems of computational complexity related to 

classical computing devices only. This was a surprising usage of notions of quantum 

computation.  

We introduce MO- and MM - postselection quantum finite automata notion and prove 

that PALINDROMES can be recognized by MM-quantum finite automata with 

postselection. This result distinguish quantum automata with postselection from 

probabilistic automata with non-isolated cut-point 0 because probabilistic finite 



automata with non-isolated cut-point 0 can recognize only regular languages but 

PALINDROMES is not a regular language.  

Proofs of nonrecognizability of languages by postselection quantum automata are 

much more difficult than similar proofs for probabilistic finite automata with non-

isolated cut-points. This is because the latter proofs are always based on property 

Turakainen [6] named linearity of probabilistic finite automata. However, the work of 

quantum automata (including MM-quantum finite automata with postselection) 

involves measurement which makes the automata nonlinear. "Naive" techniques are 

capable to prove nonrecognizability of languages by postselection quantum automata 

only in cases when the languages are far from recognizable by these automata, e.g. 

when they demand exponential time on Turing machines. We have introduced a novel 

technique for nonrecognizability proofs. This technique allowed us to prove 

nonrecognizability of a context-free language by MM-quantum finite automata with 

postselection. 

 

Second part of the paper presents quantum query algorithms to compute Boolean 

functions and their lower bounds. We consider graph problems, such as 3-sum, 

Hamiltonian path, Hamiltonian circuit, Travelling salesman. We know that sometimes 

it is possible to create quantum algorithms, that are more efficient than their classical 

(deterministic and probabilistic) couterparts. For example, Grover [7] discovered a 

remarkable quantum algorithm that, making queries in superposition, can be used to compute 

OR function with small error probability using only O( N ) queries, while both deterministic 

and probabilistic algorithms require O(N)  queries. On the other hand, quantum algorithms are 

in a sense more restricted. For instance, only unitary transformations are allowed for state 

transitions. Hence rather often a problem arises whether or not the needed quantum 

automaton exists. In such a situation lower bounds of complexity are considered. It is proved 

in [8] that Grover database search algorithm is the best possible. We use a result by 

A.Ambainis [9] to prove lower complexity bounds for quantum query algorithms.  Currently, 

this is the most powerful method to prove lower bounds of complexity for quantum query 

algorithms. In some cases there still remains a gap between the upper and the lower bounds of 

the complexity.  In these cases it is proved additionally that Ambainis’ method cannot provide 

a better lower bound for this problem. 

 



The third part of this paper introduces a quantum counterpart for real – time Turing 

machine of the classical computation theory, namely real – time quantum Turing 

machine, and compares its capabilities with deterministic case.  

It was in 1985, when D. Deutsch introduced the notion of quantum Turing machine 

[10] and proved that quantum Turing machines compute the same recursive functions 

as classical deterministic Turing machines do. But is it possible to find quantum 

Turing machine advantages over deterministic that have some limitations, such as, for 

example, time, tape space or the quantity of the head turns? 

Such subclasses, that are weaker that general Turing machine, are defined and studied 

for deterministic Turing machines. They give us a computational model that is more 

realistic. 

The limitation is, that if the input word consists of n symbols, than the computation is 

to be performed for n steps, one step for one input symbol. Such computation is called 

real – time computation. 

There are some results about real – time computation in deterministic case [11,12,13], 

mainly about real – time computation possibility. 

For quantum counterpart, we show, that there is a language that is accepted by a 

quantum real – time Turing machine, but can’t be accepted by a deterministic real – 

time Turing machine. 



 

4 Preliminaries 
 
The model of the quantum computing will be described here to introduce the notation 

used further. To get more information on the specific topic please refer to Josef 

Gruska [4]. 

The indivisible unit of classical information is the bit that can take any of two values: 

true or false. The probabilistic counterpart of the classical bit can be true with the 

probability α and false with probability β, where α + β = 1. The corresponding unit of 

quantum information is the quantum bit or qubit. For a qubit the possibility to be true 

or false is stated as |α|2 + |β|2 = 1, where α and β are the arbitrary complex numbers. If 

we observe qubit, we get true with probability |α|2 and false with probability |β|2. 

However, if we modify a quantum system without observing it (this will be explained 

further), the set of transformations that one can perform is larger than in the 

probabilistic case. 

We consider quantum systems with m basis states |q1>, | q2>,..., | qm>. Let ψ be a 

linear combination of them with complex coefficients 

  ψ = α1|q1> + α2|q2> + ... + αm|qm>. 

The norm of ψ is 

  22
2

2
1 ||...|||||||| nαααψ +++=  

The state of quantum system can be any ψ with ||ψ|| = 1. ψ is called a superposition of  

|q1>, | q2>,..., | qm>. α1, α2, ... , αm are called amplitudes of  |q1>, | q2>,..., | qm>. 

There are two types of transformations that can be performed on a quantum system. 

The first types are unitary transformations. A unitary transformation is a linear 

transformation U that preserves norm (any ψ with ||ψ|| = 1 is mapped to ψ’ with ||ψ’|| 

= 1). 

Second, there are measurements. The simplest measurement is observing ψ = α1|q1> + 

α2|q2> + ... + αm|qm> in the basis |q1>, |q2>, ... , |qm>. It gives |qi> with probability αi
2.  

After the measurement, the state of the system changes to |qi> and repeating the 

measurement gives the same state |qi>. 



5 Postselection finite quantum automata 
 

Scott Aaronson [5] introduced an interesting notion of postselection for quantum 

computing devices. It is clear from the very beginning that they can never be 

implemented because they contradict laws of Quantum Mechanics.  

However, this notion appears to be extremely useful to prove properties of existing 

types of algorithms and machines. 

The definition of postselection by S.Aaronson [5]  cannot be used for finite automata 

directly because his construction needs unlimited ammount of memory.  

Definition 1. 
A postselection quantum finite automaton is a quantum finite automaton (MO- or 

MM-quantum automaton) with a set of states called postselection set of states and a 

special state +q . At the very end of the work of the automaton when the end-marker is 

already read but before the measurement of accepting and rejecting states the 

amplitudes of all the states outside the postselection set are mechanically made to 

equal zero. 

If at least one of the postselection states is not equal zero, then the amplitudes of all 

the postselection statesare normalized, i.e. multiplied to a positive real number such 

that in the result of this normalization the total of squares of the modulos of the 

amplitudes of the postselection states equals 1. If at the moment of postselection all 

the amplitudes of the postselection states are equal to zero, then these amplitudes stay 

equal to zero but the state +q gets amplitude 1. This way, at the result of the 

postselection the total of squares of the modulos of the amplitudes of all the states 

equals 1.  

 

Postselection is the power of discarding all runs of a computation in which a given 

event does not occur. To illustrate, suppose we are given a Boolean formula in a large 

number of variables, and we wish to find a setting of the variables that makes the 

formula true. Provided such a setting exists, this problem is easy to solve using 

postselection: we simply set the variables randomly, then postselect on the formula 

being true. 

We study the power of postselection in a quantum computing context. S. Aaronson 

[5] defines a new complexity class called PostBQP (postselected bounded-error 

quantum polynomial-time), which consists of all problems solvable by a quantum 



computer in polynomial time, given the ability to postselect on a measurement 

yielding a specific outcome. The main result is that PostBQP equals the well-known 

classical complexity class PP (probabilistic polynomial-time). Here PP is the class of 

problems for which there exists a probabilistic polynomial-time Turing machine that 

accepts with probability greater than 1/2 if and only if the answer is yes. For example, 

given a Boolean formula, a PP  machine can decide whether the majority of settings 

to the variables make the formula true. Indeed, this problem turns out to be PP -

complete (that is, among the hardest problems in PP). 

S. Aaronson himself describes his aim as follows: 

"The motivation for the PostBQP=PP result comes from two quite different sources. 

The original motivation was to analyse the computational power of fantasy versions 

of quantum mechanics, and thereby gain insight into why quantum mechanics is the 

way it is. In particular, 4 will show that if we changed the measurement probability 

rule from 
2

ψ  to 
p

ψ  for some 2≠p , or allowed linear but non-unitary evolution, 

then we could simulate postselection, and thereby solve PP-complete problems in 

polynomial time. If we consider such an ability extravagant, then we might take these 

results as helping to explain why quantum mechanics is unitary, and why the 

measurement rule is 
2

ψ . 

A related motivation comes from an idea that might be called anthropic computing - 

arranging things so that we are more likely to exist if a computer produces a desired 

output than if it does not. As a simple example, under the many-worlds interpretation 

of quantum mechanics, we might kill ourselves in all universes where a computer 

fails! My result implies that, using this technique, we could solve not only NP-

complete problems efficiently, but PP-complete problems as well. 

However, the PostBQP=PP result also has a more unexpected implication. One 

reason to study quantum computing is to gain a new, more general perspective on 

classical computer science. By analogy, many famous results in computer science 

involve only deterministic computation, yet it is hard to imagine how anyone could 

have proved these results had researchers not long ago taken aboard the notion of 

randomness. 

Likewise, taking quantum mechanics aboard has already led to some new results 

about classical computation [18,Error! Reference source not found.,Error! 

Reference source not found.].  



What this paper will show is that, even when classical results are already known, 

quantum computing can sometimes provide new and simpler proofs for them."  

5.1 Definitions 

A quantum finite automaton (QFA) is a theoretical model for a quantum computer 

with a finite memory. If we compare them with their classical (non-quantum) 

counterparts, QFAs have both strengths and weaknesses. The strength of QFAs is 

shown by the fact that quantum automata can be exponentially more space efficient 

than deterministic or probabilistic automata [14]. The weakness of QFAs is caused by 

the fact that any quantum process has to be reversible (unitary). This makes quantum 

automata unable to recognize some regular languages. 

We start by reviewing the concept of probabilistic finite state transducer.For a finite 

set X we denote by X* the set of all finite strings formed from X, the empty string is 

denoted ε . 

Definition 2. 
A probabilistic finite state transducer (pfst) is a tuple 

),,,,,,,( 021 rejacc QQqfVQT ΣΣ=  

where Q  is a finite set of states, 21,ΣΣ   is the input/ output alphabet, Qq ∈0  is the 

initial state, and QQQ rejacc ∈,  are (disjoint) sets of accepting and rejecting states, 

respectively. (The other states, forming set Q , are called non--halting). The transition 

function QQV →×Σ1:  is such that for all 1Σ∈a  the matrix ( )qpaV  is stochastic, 

and *
2: Σ→Qfa  is the output function. If all matrix entries are either 0 or 1 the 

machine is called a deterministic finite state transducer (dfst). 

 

The meaning of this definition is that, being in state q , and reading input symbol a , 

the transducer prints )(qfa  on the output tape, and changes to state p  with 

probability ( )qpaV , moving input and output head to the right. After each such step, 

if the machine is found in a halting state, the computation stops, accepting or rejecting 

the input. 

Definition 3. 
Let *

2
*
1 Σ×Σ⊂R . 



For 2/1>α  we say that T  computes the relation Rwith probability α  if for all v , 

whenever ( ) Rwv ∈, , then α≥v)|T(w , and whenever ( ) Rwv ∉, , then 

α−≤1v)|T(w . 

For 10 <<α  we say that T  computes the relation Rwith isolated cutpoint α  if 

there exists 0>ε   such that for all v , whenever ( ) Rwv ∈, , then εα +≥v)|T(w , 

but whenever ( ) Rwv ∉, ,  then εα −≤v)|T(w . 

 

The following definition is modelled after the ones for pfst for quantum finite state 

automata [15]: 

Definition 4. 
A quantum finite state transducer (qfst) is a tuple  

),,,,,,,( 021 rejacc QQqfVQT ΣΣ= , 

where Q  is a finite set of states, 21,ΣΣ  is the input/output alphabet, Qq ∈0  is the 

initial state, and QQQ rejacc ∈,  are (disjoint) sets of accepting and rejecting states, 

respectively. The transition function QQV →×Σ1:  is such that for all 1Σ∈a  the 

matrix ( )qpaV  is unitary, and *
2: Σ→Qfa  is the output function. 

 

Probabilistic and quantum finite automata are special cases of the transducers where 

the result can be only 0 or 1. Nothing needs to be added for the definition of 

probabilistic automata. However, the case of quantum automata is much more 

complicated. 

 

5.2 Specifics of quantum finite automata 

 

Quantum finite automata (QFA) were introduced independently by Moore and 

Crutchfield [16] and Kondacs and Watrous [15]. They differ in a seemingly small 

detail. The first definition allows the measurement only at the very end of the 

computation process. Hence the computation is performed on the quantum 

information only. The second definition allows the measurement at every step of the 

computation. In the process of the measurement the quantum information (or rather, a 

part of it) is transformed into the classical information. The classical information is 

not processed in the subsequent steps of the computation. However, we add the 



classical probabilities obtained during these many measurements. We will see below 

that this leads to unusual properties of the quantum automata and the languages 

recognized by these automata. 

To distinguish these quantum automata, we call them, correspondingly, MO-QFA 

(measure-once) and MM-QFA (measure-many). 

Definition 5. 
An MM-QFA is a tuple  

),,,,,( 0 rejacc QQqVQM Σ=  

where Q  is a finite set of states, Σ  is an input alphabet, V  is a transition function, 

Qq ∈0  is a starting state, and QQQ rejacc ∈,  are sets of accepting and rejecting states 

( 0=∩ rejacc QQ ). The states in accQ  and rejQ  are called  halting states and the states 

in )( rejaccnon QQQQ ∪−=  are called non halting states. κ and $ are symbols that do 

not belong to Σ . We use κ and $ as the left and the right endmarker, respectively. 

The working alphabet of M  is ;{κ∪Σ=Γ $}. 

The state of M  can be any superposition of states in Q  (i. e., any linear combination 

of them with complex coefficients). We use q  to denote the superposition consisting 

of state q  only. )(2 Ql  denotes the linear space consisting of all superpositions, with 

2l -distance on this linear space.  

The transition function V  is a mapping from )(2 Ql×Γ to )(2 Ql  such that, for every 

Γ∈a , the function )()(: 22 QlQlVa →  defined by ),()( xaVxVa =  is a unitary 

transformation (a linear transformation on )(2 Ql  that preserves 2l norm). 

 

The computation of a MM-QFA starts in the superposition 0q . Then transformations 

corresponding to the left endmarker κ , the letters of the input word x  and the right 

endmarker $ are applied. The transformation corresponding to Γ∈a  consists of two 

steps. 

1. First, aV  is applied. The new superposition 'ψ  is )(ψaV  where ψ  is the 

superposition before this step. 

2. Then, 'ψ  is observed with respect to nonrejacc EEE ,,  where  

}:{ accacc QqqspanE ∈= , 



}:{ rejrej QqqspanE ∈= , 

}:{ nonnon QqqspanE ∈= . 

It means that if the system's state before the measurement was  

∑ ∑∑
∈ ∈∈

++=
rejj nonkacci Qq Qq

kkjj
Qq

ii qqq γβαψ '  

then the measurement accepts 'ψ  with probability 2
iαΣ , rejects with probability 2

jβΣ  

and continues the computation (applies transformations corresponding to next letters) 

with probability 2
kγΣ  with the system having state ∑= kk qγψ . 

We regard these two transformations as reading a letter a . We use aV '  to denote the 

transformation consisting of aV  followed by projection to nonE . This is the 

transformation mapping ψ  to the non-halting part of )(ψaV . We use wV '  to denote 

the product of transformations 
121

''...''' aaaaw VVVVV
nn −

= , where ia  is the i-th letter of 

the word w . We also use yψ  to denote the non-halting part of QFA's state after 

reading the left endmarker κ  and the word *Σ∈y . From the notation it follows that 

)( 0
' qVkww =ψ . 

 

We will say that an automaton recognizes a language L  with probability p ( 2/1>p ) 

if it accepts any word Lx∈  with probability p>  and accepts any word Lx∉  with 

probability p≤ . 

The MO-QFA differ from MM-QFA only in the additional requirement demanding 

that non-zero amplitudes can be obtained by the accepting and rejecting states no 

earlier than on reading the end-marker of the input word. 

 

A probability distribution }1|),{( kip ii ≤≤φ  on pure states 1}{ =iiφ  with probabilities 

( )( )110 1 =Σ≤≤ = i
k
ii pp , is called a mixed state or mixture.  

 

Definition 6. 
A quantum finite automaton with mixed states is a tuple  

),,},{,,,( nonrainit QQQTQ δφΣ , 



 where Q  is finite a set of states, Σ  is an input alphabet, initφ  is an initial mixed state, 

}{ δT  is a set of quantum transformations, which consists of defined sequence of 

measurements and unitary transformations, QQa ⊆ , QQr ⊆  and QQnon ⊆  are sets 

of accepting, rejecting and non-halting states. 

 

Comment 1. 
For quantum finite automata the term rejection is misleading. One can imagine that if 

an input word is accepted with a probability p  then this word is rejected with 

probability p−1 . Instead the reader should imagine that the only possible result of 

our automata is acception. The counterpart of our notion in recursive function theory 

is recursive enumerability but not recursivity. For probabilistic automata all the results 

by M.O.Rabin [11] are valid for both possible definitions but for quantum automata 

the difference is striking. 

 

Sometimes even MO-QFA can be size-efficient compared with the classical FA. 

Theorem 1. 
[14] 

1. For every prime p  the language =pL { the length of the input word is a multiple 

of p } can be recognized by a MO-QFA with no more than pconstlog  states. 

2. For every p  a deterministic FA recognizing pL  needs at least p  states. 

3. For every p  a probabilistic FA with a bounded error recognizing pL  needs at 

least p  states. 

The first results on MM-quantum finite automata were obtained by Kondacs and 

Watrous [15]. They showed that the class of languages recognized by QFAs is a 

proper subset of regular languages. 

Theorem 2. [15] 
1. All languages recognized by 1-way MM-QFAs are regular. 

2. There is a regular language that cannot be recognized by a 1-way MM-QFA with 

probability ε+
2

1
 for any 0>ε . 

Brodsky and Pippenger [17] generalized the second part of Theorem 2 by showing 

that any language satisfying a certain property is not recognizable by an MM-QFA. 

 



Theorem 3. [17] 
Let L be a language and M be its minimal automaton (the smallest DFA recognizing 

L). Assume that there is a word x such that M contains states 1q , 2q  satisfying: 

1. 21 qq ≠ , 

2. If M starts in the state 1q  and reads x, it passes to 2q , 

3. If M starts in the state 2q  and reads x, it passes to 2q , and 

4. There is a word y such that if M starts in 2q  and reads y, it passes to 1q , 

then L cannot be recognized by any 1-way quantum finite automaton (Fig.1). 

 

Fig. 1. 
Theorem 4. 
[18] The class of languages recognizable by a MM-QFA is not closed under union. 

Corollary 1. 
[18] The class of languages recognizable by a MM-QFA is not closed under any 

binary boolean operation where both arguments are significant. Another direction of 

research is studying the accepting probabilities of QFAs. 

Theorem 5. 

[14] The language a∗b∗ is recognizable by an MM-QFA with probability 0.68, but not 

with probability 7/9 + ε  for any ε  > 0. 

 

This shows that the classes of languages recognizable with different probabilities are 

different. Next results in this direction were obtained by [19] where the probabilities 

with which the languages **
1 ... naa   can be recognized are studied. 

There is also a lot of results about the number of states needed for QFA to recognize 

different languages. In some cases, it can be exponentially less than for deterministic 

or even for probabilistic automata [14]. In other cases, it can be exponentially bigger 

than for deterministic automata [20]. 



Summarizing these results we can see that in spite of seeming naturality of the notion 

of MM-quantum finite automata with isolated cut-point this class of recognizable 

languages has rather specifical properties. 

On the other hand, there have been many results on probabilistic and quantum 

algorithms working with non-isolated cut-point and on relations between recognition 

of languages with isolated and non-isolated cut-point[21]. However, it needs to be 

added that most of these papers when describing quantum automata restrict 

themselves to MO-quantum automata. MM-quantum automata are the most popular 

ones among the papers studying recognition with isolated cut-point, and MO-quantum 

automata are the most popular ones among the papers studying recognition with non-

isolated cut-point. 

5.3 Co-PALINDROMES can be recognized by postselection finite 

quantum automata 

There exist nonregular languages recognizable by probabilistic finite automata with 

non-isolated cut-point (they are called stochastic laguages) and languages 

recognizable by quantum finite automata with non-isolated cut-point. Since MO-

quantum finite automata differ from MM-quantum finite automata, it is possible that 

these classes are different as well. However, most natural problems on these automata 

are still open. We concentrate here on a very special subclass of these languages, 

namely, on classes of languages recognizable with cut-point 0.  

In the case of probabilistic recognition this is not an interesting notion because in this 

case the input word is declared accepted if the probability of acception exceeds 0, and 

it is declared rejected if the probability of acception equals 0. It is obvious that such 

automata are equivalent to nondeterministic automata but nondeterministic finite 

automata recognize the same regular languages as deterministic automata do. 

The case of quantum finite automata is different. We consider the language 

PALINDROMES, i.e. the language 

*}1,0{|{ ∈= xxSPALINDROME  and }revxx =  

The first unexpected result on languages recognizable by MM-quantum postselection 

finite automata with probability 1 was the following theorem.  

Theorem 6. 
The complement of PALINDROMES is recognizable by 1-way MM-quantum finite 

automata with non-isolated cut-point 0. 



 

Sketch of proof. We denote a real number  

0.000 ... 0x(1)x(2)x(3) ... x(n) 

n zeros 

by 

0.0{n}0x(1)x(2)x(3) ... x(n). 

 

The main idea is to have at every moment of the processing the input word 

0{n}x(1)x(2)x(3) ... x(n) 2 special states of the automaton (say, 2q  and 3q ) the 

amplitudes of which are, respectively, 0.0{n}0x(1)x(2)x(3) ... x(n) and  

0.0{n}x(n) ... x(3)x(2)x(1). 

We have 
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We have also 

0.0{n+1}x(n+1) ... x(3)x(2)x(1)= 
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Two states ( 4q  and 5q ) are used to have amplitudes 
n2
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, respectively, 

in order to produce the current nε  and nδ . It is not possible to half unlimitedly the 



amplitudes in a quantum automaton but we have an MM-quantum automaton, and we 

use the Hadamard operation  
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instead, and we follow Hadamard operation by measuring part of the amplitude to 

REJECT. 

We consider below the part of the states ( 87563 ,,,, qqqqq ), among which the first one 

is 3q  and the third one is 5q . The rest of them are auxiliary states used to ensure that 

during the processing input symbol )(nx  the amplitudes are changed from 

,...0,0,
2

1
,,

n
oz  to ,...0,0,

2

1
,,

1+n
oz  where z= 0.0{n}x(n) ... x(3)x(2)x(1). 

If x(n)=1 then we use the following operation: 
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If x(n)=0 then we use the following operation: 
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Now we consider the part of the states  

( 181716151413121110492 ,,,,,,,,,,, qqqqqqqqqqqq ), among which the first one is 2q  and 

the third one is 4q . The rest of them are auxiliary states used to ensure that during the 

processing input symbol x(n) the amplitudes arechanged from ,...0,0,
2

1
,,

n
oz  to 

,...0,0,
2

1
,,

1+n
oz  where z= 0.0{n}x(n) ... x(3)x(2)x(1). 

If x(n)=1 then we use the following operation 
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being the product of 
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and 
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If x(n)=0 then we use the following operation 
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When all the input word is read, the operation corresponding to the end-marker 

confronts the states 2q  and 3q with the Hadamard operation 
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and the resulting amplitude of 3q  is sent by measuring to ACCEPT. If the amplitudes 

for 2q  and 3q have been equal before this operation, the word is rejected; otherwise it 

is accepted. 

We are interested in recognition of PALINDROMES but Theorem 6. considers only 

the complement of this language. 

It is not at all true that recognizability of a language implies the recognizability of the 

complement as well. It is so for deterministic finite automata and even for 

nondetermninistic finite automata. However, for nondetermninistic automata the size 

of the recognizing automaton may differ even exponentially. For probabilistic and 



quantum finite automata with isolated cut-point it is so but in the case of non-isolated 

cut-point this has been an open problem for a long time. 

We study the case of non-isolated cut-point 0 here. There is no problem for 

probabilistic automata because in this case probabilistic automata are equivalent to 

nondeterministic automata and they recognize only regular languages but regular 

languages are closed to complementation. We prove below that PALINDROMES can 

be recognized by MM-quantum finite automata with non-isolated cut-point 0. 

Theorem 7. 
 
Co-PALINDROMES can be recognized by an MM-quantum postselection finite 

automaton with probability 1. 

  

Proof. The MM-quantum finite automaton recognizing Co-PALINDROMES 

after the final application of Hadamard operation  
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measures the resulting amplitude of 3q . 

If the amplitudes for 2q  and 3q  have been equal before this operation, the word is 

rejected; otherwise it is accepted. 

The MM-quantum postselection finite automaton makes postselection after the  

Hadamard operation but before the final measuring. 

The posselection set of states consists of one state only, namely, the state 3q . If the 

amplitudes for 2q  and 3q  have not been equal before the Hadamard operation, the 

postselection normalizes the amplitude to 1 or to -1. If If the amplitudes for 2q  and 

3q  have been equal before the Hadamard operation, the postselection does not change 

the amplitude 0.  

 

Theorem 8. 



If a language L can be recognized by an MM-quantum postselection finite automaton 

with probability 1 then the complement of the language L can also be recognized by 

an MM-quantum postselection finite automaton with probability 1.  

  

 Proof. Obvious. 

 

Corollary 

PALINDROMES can be recognized by an MM-quantum postselection finite 

automaton with probability 1.  

5.4 A context-free language that cannot be recognized by 

postselection finite quantum automata 

 
We consider the following language. 

*}1,0{|{ ∈= wwL  and there exist zuyx ,,,  such that zuyxw 11 ==  and }zx =  

To paraphrase, L  is the set of all strings for which there is a number d  such that the 

d th symbol from the left and the d th symbol from the right, are 1. 

We start with two geometrical lemmas. 

Lemma 1. 
The two following assertions are equivalent: 

1) Given a r -dimensional real Euclidean space, there exist N  distinct )1( −r -

dimensional hyperplanes dividing the space into N2  non-empty regions; 

2) rN ≤ . 

For instance, one line divides a plane into 2 regions, two lines can divide the plane 

into 422 =  regions, but no 3 lines can exist dividing the plane into 823 =   regions. 

Proof.  ⇐  Immediate. 

⇒  Assume that rN > . We denote the N  hyperplanes by 

11212111 ... dxaxaxa NN =+++  

22222121 ... dxaxaxa NN =+++  

... 

NNNNNN dxaxaxa =+++ ...2211  

rN >  implies that the rank Mr  of the matrix of this system of equalities is at most 

Nr < . Hence in the system of vectors 



( )Naaa 11211 ,...,,  

( )Naaa 22221 ,...,,  

... 

( )NNNN aaa ,...,, 21  

all the vectors can be represented as linear combinations of Mr  of them. (With no 

restriction of generality we can assume that these are the first Mr  vectors in this 

system.) Then the system of linear equations 

11212111 ... dxaxaxa NN =+++  

22222121 ... dxaxaxa NN =+++  

... 

MMMM rNNrrr dxaxaxa =+++ ...2211  

has exactly one solution ( )Nccc ,...,, 21 .  

we can change variables Nxxx ,...,, 21   into Nxxx ,...,, 2  by a linear transformation in 

such a way that the system of the first Mr  equations becomes a subsystem 

01 =y  

02 =y  

... 

0=
Mr

y  

The point ( )Nccc ,...,, 21  becomes the point ( )0,...,0,0  . The hyperplanes defined by the 

abovementioned Mr  linear equations indeed divide the N -dimensional space into Mr2   

distinct nonempty regions. However, for every other hyperplanes  

jNjNjj cyayaya =+++ ...2211  

we can assert that there is at least one of the Mr2  abovementioned nonempty regions 

which is not divided by this hyperplane. For instance, if the point ( )Nj eeeB ,...,, 21=   

is the point of this hyperplane with the minimum distance form the point ( )0,...,0,0   

then the hyperplane does not divide the region containing the point ( )Neee −−− ,...,, 21 . 

Hence the hyperplanes cannot divide the space into N2  distinct nonempty regions.  

Contradiction. 

Lemma 2. 
 



The two following assertions are equivalent: 

1) Given a r -dimensional real Euclidean space, there exist N  distinct )1( −r -

dimensional hyperplanes NHHH ,...,, 21  and N2  points such that for arbitrary word 

*}1,0{∈w  if Nwwww ...21=  then the corresponding point belongs to the hyperplane 

vH  iff 1=vw  

2) rN ≤ . 

Proof.  ⇐  Immediate. 

⇒  Assume that rN > .  

Consider a set J  of N  points of a real r -dimensional space corresponding to words 

Nwww ,...,, 21  containing exactly 1 symbol 1 and 1−N  symbols 0. The assertion 1) of 

our Lemma implies that every point from the set J  belongs to exactly 1−N  

hyperplanes vH , and each hyperplane vH  contains all points of the set J  but exactly 

one. An elementary theorem of linear algebra asserts that 1+r  elements of an r -

dimensional space cannot be linearly independent. Hence at least one point of the set 

J  can be represented as a linear combination of the remaining 1−N  points. 

However, there is a hyperplane 1−N  not containing this point but containing all the 

other points. On the other hand, any linear combination of points in a hyperplane also 

belongs to this hyperplane.  

Contradiction. 

Now we proceed to prove  

Theorem 9.  
 
The language L  cannot be recognized by an MM-quantum postselection finite 

automaton with probability 1.  

Proof. Assume from the contrary that L  can be recognized. In the first part of the 

proof we consider the case when the quantum automaton is an MO-quantum 

postselection finite automaton with probability 1. It accepts all the words in L  with 

probability 1, and rejects all the words not in L  with probability 1. 

We denote the number of states of this automaton by k . 

We take a natural number kN 4>  and for all N2  binary words x  we consider the 

distribution of amplitudes 

( ))(),...(),( 21 xpxpxp k  



to be in the corresponding states after input of the word x . This distribution of 

amplitudes can be represented as a point in a k -dimensional unit cube over the field 

of complex numbers. 

We denote by Nyyy ,...,, 21  binary words consisting of many zeros and only one 

symbol 1, namely, only the symbol number i  in the word iy  equals 1. We denote by 

)(xZ  the set of all the natural numbers i  such that the i -th symbol of the word x  

(counted from the right to the left) equals 1. It is easy to see that  

)(xZiLxyi ∈⇔∈  

Hence there are exactly N2  words x  nonequivalent with respect to the set 

Nyyy ,...,, 21 . We denote the set of these words by NT .  

For every },...,2,1{,, ktji ∈  we consider the amplitude ( )i
j

t ys  describing the 

transition from the state j  to the state t  during the processing of iy .  

Since our automaton works with probability 1, after the postselection and 

measurement of all accepting statesany word ixy  is accepted either with the 

probability 1 or with the probability 0.  

With no restriction on generality we can assume that the accepting states are u,...,2,1 . 

Then the probability to accept ixy  equals 

( ) ++++=
2

1
2
12

1
11 )()(...)()()()(, i

k
kii ysxpysxpysxpixP  

+++++
2

2
2
22

1
21 )()(...)()()()( i

k
kii ysxpysxpysxp  

+ ... + 

22
2

1
1 )()(...)()()()( i

k
ukiuiu ysxpysxpysxp ++++ , 

where 
2

α  is square of modulo of the complex number α . 

Now we consider two distinct binary words 1x  and 2x  of the length N . Since they 

are distinct, there is at least one value of i  such that ( )1xZ  differs from ( )2xZ  in the 

number i . Hence either ( ) 1,1 =ixP  and ( ) 0,2 =ixP , or ( ) 0,1 =ixP  and $ ( ) 1,2 =ixP . 

For every },...,2,1{ uv∈  we denote the real part and the imaginary part of the complex 

number ( ) ( ) ( )xsxpysxpysxp k
vkiviv )(...)()( 2

2
1

1 +++   by ),,Re( vix  and ),,Im( vix . 

Equality ( ) 0, =ixP  implies 0),,Re( =vix  and 0),,Im( =vix  for all uv ≤≤1 . 



Inequality ( ) 0, ≠ixP  implies either 0),,Re( ≠vix  or 0),,Im( ≠vix  (or both of them)  

for every uv ≤≤1 . 

We considered above  

( ))(),...(),( 21 xpxpxp k  

as a point in a complex-valued unit cube. In order to use our Lemma2 we wish to 

transform this complex-valued unit cube into an auxiliary real-valued space at the 

expense of slight loosing the connection with our quantum finite automaton. 

For every NTx∈  (independently of all other values of x ) we consider a k -

dimensional space xS  and for the fixed x  we replace the point ( ))(),...(),( 21 xpxpxp k  

by a real point ( ))(),...(),( 21 xrxrxr k   where  

( ) ( ) ( )++++= )(Re....)(Re.)(Re.)( 2211 xpxpxpxr kkm λλλ  

( ) ( ) ( ))(Im....)(Im.)(Im. 2211 xpxpxp kkµµµ +++  

and  

kk µµµλλλ ,...,,,,...,, 2121  

are specially chosen (irrational) numbers.  

Notice that  

( ) ( ) ( ) 0)(...)()( 1
2
12

1
11 =+++ xsxpysxpysxp k

kii  

is equivalent to 

( ) ( ) ( ) ( )+− )(Im)(Im)(Re)(Re 1
11

1
11 ii ysxpysxp  

( ) ( ) ( ) ( )+−+ )(Im)(Im)(Re)(Re 2
12

2
12 ii ysxpysxp  

+ ... + 

( ) ( ) ( ) ( ) 0)(Im)(Im)(Re)(Re 11 =−+ i
k

ki
k

k ysxpysxp  

and 

( ) ( ) ( ) ( )++ )(Re)(Im)()(Re 1
11

1
11 ii ysxpysIMxp  

( ) ( ) ( ) ( )+++ )(Re)(Im)(Im)(Re 2
12

2
12 ii ysxpysxp  

+... + 

( ) ( ) ( ) ( ) 0)(Re)(Im)(Im)(Re 11 =++ i
k

ki
k

k ysxpysxp  

 

We have N  possible choices for i  and N2  choices for x . For each pair ),( ix  we 

consider the linear combinations 



[ ( ) ( ) ( ) ( )+− )(Im)(Im)(Re)(Re. 1
11

1
11 iii ysxpysxpβ  

( ) ( ) ( ) ( )+−+ )(Im)(Im)(Re)(Re 2
12

2
12 ii ysxpysxp  

+ ... + 

( ) ( ) ( ) ( ) ]+−+ )(Im)(Im)(Re)(Re 11 i
k

ki
k

k ysxpysxp  

[ ( ) ( ) ( ) ( )+++ )(Re)(Im)()(Re. 1
11

1
11 iii ysxpysIMxpγ  

( ) ( ) ( ) ( )+++ )(Re)(Im)(Im)(Re 2
12

2
12 ii ysxpysxp  

+... + 

( ) ( ) ( ) ( ) ])(Re)(Im)(Im)(Re 11 i
k

ki
k

k ysxpysxp ++ . 

 

In this paragraph we define the values iβ  and iγ  depending on x  but the dependence 

is such that we have a continuum choices for iβ  and iγ . For a finite number of pairs 

),( ix  (namely, for those pairs where ( ) 1, =ixP ) we demand that these linear 

combinations are not equal zero. Now we choose one value for every iβ  and iγ   such 

that all the needed inequalities hold. Now our values of iβ  and iγ  no more depend on 

x . 

Notice that for those pairs where ( ) 0, =ixP  the equality holds 

[ ( ) ( ) ( ) ( )+− )(Im)(Im)(Re)(Re. 1
11

1
11 iii ysxpysxpβ  

( ) ( ) ( ) ( )+−+ )(Im)(Im)(Re)(Re 2
12

2
12 ii ysxpysxp  

+ ... + 

( ) ( ) ( ) ( ) ]+−+ )(Im)(Im)(Re)(Re 11 i
k

ki
k

k ysxpysxp  

+Re(p_k(x))Re(s^k_1(y_i))-Im(p_k(x))Im(s^k_1(y_i))]+ 

[ ( ) ( ) ( ) ( )+++ )(Re)(Im)(Im)(Re. 1
11

1
11 iii ysxpysxpγ  

( ) ( ) ( ) ( )+++ )(Re)(Im)(Im)(Re 2
12

2
12 ii ysxpysxp  

+... + 

( ) ( ) ( ) ( ) ] 0)(Re)(Im)(Im)(Re 11 =++ i
k

ki
k

k ysxpysxp . 

  

Every such equality may be re-written as 

( ) ( ) ( )[ ]++ )(Im)(Re.)(Re 1
11

1
111 ii ysysxp γβ  

( ) ( ) ( )[ ]+++ )(Im)(Re.)(Re 2
12

2
122 ii ysysxp γβ  



+ ... + 

( ) ( ) ( )[ ]+++ )(Im)(Re.)(Re 11 i
k

ki
k

kk ysysxp γβ  

( ) ( ) ( )[ ]++−+ )(Re)(Im.)(Im 1
11

1
111 ii ysysxp γβ  

( ) ( ) ( )[ ]++−+ )(Re)(Im.)(Im 2
12

2
122 ii ysysxp γβ  

+ ... + 

( ) ( ) ( )[ ] 0)(Re)(Im.)(Im 11 =+−+ i
k

ki
k

kk ysysxp γβ  

 

This equality can be interpreted as a )12( −k -dimensional hyperplane in a real k2 -

dimensional space  

( ) ( ) ( ) ( ) ( ) ( )( ))(Im,...,)(Im,)(Im,)(Re,...,)(Re,)(Re 2121 xpxpxpxpxpxp kk  

and the coefficients of the hyperplane do not depend on x .  

We have N2  points in this space corresponding to pairs ),(ix . If ( ) 0, =ixP  then the 

point is on the corresponding hyperplane. If ( ) 1, =ixP   then the point is not on the 

corresponding hyperplane. Now for each of the N2  points separately and 

independently one from another we construct new points kRRR ,...,, 21 , kIII ,...,, 21   

such that all N2  new points are outside these N  hyperplanes. If ( ) 1, =ixP  then we 

have an inequality of type " 0≠ ". Hence we alway have N  hyperplanes and N2  

points in a k2 -dimensional space such that they all are in distinct regions divided by 

these hyperplanes. Since we assumed from the contrary that kN 2>  this is a 

contradiction with Lemma2 proving the first case of our theorem (for MO-quantum 

automata). 

In the second part of the proof we consider the case when the quantum automaton is 

an MM-quantum postselection finite automaton with probability 1.  

The proof differs from the proof in the first part only by additional step which 

precedes the old proof.  

We replace the MM-quantum automaton by an automaton which is neither quantum 

nor probabilistic. The states of the old automaton function as before but there are two 

new states: one to accumulate acceptation probability, the other one to accumulate 

rejection probability before the end of the processing. This computation cannot be 

done by matrix multiplication but this does not influence the remaining part of the 

proof. 



5.5 Probabilistic VS quantum finite automata with postselection 

 

In this section some results about quantum finite automata with postselection are 

shown, that are obtained by Abuzer Yakary_lmaz and A.C. Cem Say. [22]. 

It turns out that QFAs with Aaronson postselection  have the same computational 

power as the recently introduced one-way QFAs with restart [23], and that QFAs with 

postselection are strictly more powerful than classical probabilistic finite automata 

(PFAs) with postselection. 

We call the class of languages recognized by 1PostPFAs with bounded error PostS 

(post-stochastic languages).  

Bounded error language recognition of 1PostQFAs is similar to those of 1PostPFAs. 

We call the class of languages recognized by 1PostQFAs with bounded error PostQ 

(post-quantum languages). 

Abuzer Yakarylmaz and A.C. Cem Say call QFA with postselection that is defined in 

Definition 1. Latvian 1PostQFAs or Latvian quantum finite automata with 

postselection. The bounded-error classes corresponding to the 1LPostPFA and 

1LPostQFA models are called LPostS and LPostQ, respectively. 

Here are some results obtained by Abuzer Yakarylmaz and A.C. Cem Say: 

Theorem 10. 
LPostQcoNQLNQL ⊆∪ , 

where NQL is a class of languages recognized by nondeterministic finite automata. 

Theorem 11. 
UQLLPostQ⊆ , 

where class of unbound-error quantum languages coQLQLUQL ∪= , where 

QL(coQL) are class of languages recognized by 1QFAs with cutpoint (nonstrict 

cutpoint) called quantum languages (co-quantum languages). 

 

Here is a summary of results: 

 

 

 



6 Quantum algorithms and lower bounds 

6.1 Graph problems 

Boolean decision trees model is the simplest model to compute Boolean functions. In 

this model the primitive operation made by an algorithm is evaluating an input 

Boolean variable. The cost of a (deterministic) algorithm is the number of variables it 

evaluates on a worst-case input. It is easy to find the deterministic complexity of all 

explicit Boolean functions (for most functions it is equal to the number of variables). 

 

The black-box model of computation arises when one is given a black-box containing 

an N-tuple of Boolean variables X=(x0,x1,...,xN-1.). The box is equipped to output xi  on 

input i. We wish to determine some property of X, accessing the xi only through the 

black-box. Such a black-box access is called a query. A property of X is any Boolean 

function that depends on X, i.e. a property is function f :{0,1}N →{ 0,1}. We want to 

compute such properties using as few queries as possible. 

 

Consider, for example, the case where the goal is to determine whether or not X 

contains at least one 1, so we want to compute the property OR(X)= x0 ∨ ... ∨ xN-1. It 

is well known that the number of queries required to compute OR by any classical 

(deterministic or probabilistic) algorithm is O(N). 

Grover [7] discovered a remarkable quantum algorithm that, making queries in 

superposition, can be used to compute OR with small error probability using only 

O( N ) queries. 

On the other hand, quantum algorithms are in a sense more restricted. For instance, 

only unitary transformations are allowed for state transitions. Hence rather often a 

problem arises whether or not the needed quantum automaton exists. In such a 

situation lower bounds of complexity are considered. It is proved in [8] that Grover 

database search algorithm is the best possible. It is proved in [8] that no quantum 

query algorithm exists for PARITY with Ω(N) queries, etc. 

 

We use a result by A.Ambainis [9] to prove lower complexity bounds for quantum 

query algorithms.  Currently, this is the most powerful method to prove lower bounds 

of complexity for quantum query algorithms. In some cases there still remains a gap 



between the upper and the lower bounds of the complexity.  In these cases we prove 

additionally that 

Ambainis’ method cannot provide a better lower bound for this problem. 

6.1.1 Query model 
 
In the query model, the input x1,…xN is contained in a black box and can be accessed 

by queries to the black box. In each query, we give i to the black box and the black 

box outputs xi . The goal is to solve the problem with the minimum number of queries. 

The classical version of this model is known as decision trees [24]. 

 

 
 
| i >                                                             |i>    
 
 
| a >                                                             |a+xi>

 
 
 
   x1   x2                         xN 

0     1      … …   0 

 
                       Fig. 2. Quantum black box. 

 
There are two ways how to define the query box in the quantum model. The first is 

the extension of the classical query (Fig. 2). It has two inputs: i, consisting of [logN] 

bits and b consisting of 1 bit. If the input to the query box is a basic state |i〉|b〉, the 

output is |i〉|b⊕xi〉. If the input is a superposition ∑i,b ai,b|i〉|b〉, the output is 

∑i,bai,b|i〉|b⊕xi 〉. Notice that this definition applies both to case when xi  are binary and 

to the case when they are k-valued. In the k-valued case, we just make b to consist of 

log2k bits and take b⊕xi to be bitwise XOR of b and xi. 

 

In the second form of quantum query (which only applies to problems with {0,1}-

valued  xi), the black box has just one input i. If the input is a state ∑i ai|i〉, the output 

is ia)1(
i i

ix∑ − . While this form is less intuitive, it is very convenient for the use in 

quantum algorithms, including Grover’s search algorithm [7]. A query of second type 

can be simulated by a query of first type [7].  

 

A quantum query algorithm with T queries is just a sequence of unitary 

transformations 

 



              U0→ O→ U1→ O→… →UT-1→ O→ UT 

 

on some finite- dimensional space Ck. U0, U1, …, UT can be any unitary 

transformations that do not depend on the bits x1, …,xN inside the black box. O are 

query transformations that consist of applying the query box to the first logN+1 bits 

of the state. That is, we represent basic states of Ck as |i,b,z〉. Then, O maps |i,b,z〉 to 

|i,b⊕xi,z〉. We use Ox to denote the query transformation corresponding to an input 

x=(x1,…xN). 

 

The computation starts with state |0〉. Then, we apply U0, Ox ,…, Ox, UT and measure 

the final state. The result of the computation is the rightmost bit of the state obtained 

by the measurement (or several bits if we are considering a problem where the answer 

has more than 2 values). 

 

The quantum algorithm computes a function f(x1,…,xN) if, for every x=(x1,…,xN) for 

which f is defined, the probability that the rightmost bit of UT Ox UT-1… Ox U0|0〉 

equals f(x1,…,xN) is at least 1-ε < ½. 

 

The query complexity of f is the smallest number of queries used by a quantum 

algorithm that computes f. We denote it Q(f). 

 

Our proofs use the following results by A.Ambainis.  

 

Theorem 12 [9].   
 
Let A ⊂ {0,1}n, B ⊂ {0,1}n be such that f(A)=1, f(B)=0 and for every x=(x1..xn)∈A, 

there are at least m values i∈{1,…,n}such that (x1,…,xi-1,1-xi,xi+1,…,xn) ∈B, for every 

x=(x1..xn)∈B, there are at least m’ values i∈{1,…,n}such that  

(x1,…,xi-1,1-xi,xi+1,…,xn) ∈A.  

Then Q(f)= )'( mmΩ . 

 

Theorem 13 [9].  
Let f(x1,x2, ... ,xn)  be a function of n {0, 1} - valued variables and X, Y be two sets of 

inputs such that f(x)≠ f(y)  if  x ∈ X  and y ∈ Y. Let R ⊂ X* Y be such that 



For every x ∈ X  there exist at least m different y ∈ Y such that (x, y) ∈ R, 

For every y ∈ Y there exist at least m’ different x ∈ X such that (x, y) ∈ R, 

For every x ∈ X and i ∈ {1, ..., n} there are at most li different y ∈ Y such that (x, y) ∈ 

R and xi ≠ yi, 

For every y ∈ Y and i ∈ {1, ..., n} there are at most li'  different x ∈ X such that (x, y) 

∈ R and xi ≠ yi, 

Then, any quantum algorithm computing f uses  

)
)'*max(

'
(

i
l

i
l

mm
Ω  queries.  

 

Definition. For any Boolean function f :{0,1}N →{ 0,1} and any  x=(x1..xn), ND(f,x) is 

the number of queries needed by nondeterministic algorithms on the values x=(x1..xn). 

 

Definition. For any Boolean function f :{0,1}N →{ 0,1} : 
ND0(f)= 

0f(x)
max

=
ND(f,x) and ND1(f)= 

1=f(x)
maxND(f,x).   

 

Theorem 14 [25].   
Whatever the sets A and B, Theorem 1 cannot prove a better lower bound for the 

query complexity Q(f) than   )()( 10 fNDfND ⋅  . 

 

6.1.2 Graph problems 
 
We consider the following graph problems: 

 

Problem 1. Hamiltonian circuit 

INSTANCE: Graph G=(V,E). 

QUESTION: Does G contain Hamiltonian circuit? 

Problem 2. Directed Hamiltonian circuit 

INSTANCE: Directed graph G=(V,A). 

QUESTION: Does G contain directed Hamiltonian circuit? 

Problem 3.  Hamiltonian path 

INSTANCE: Graph G=(V,E). 

QUESTION: Does G contain Hamiltonian circuit? 



 

Problem 4. Travelling salesman 

INSTANCE: Set C of  m cities, distance d(ci, cj) ∈ Z+ for each pair of cities, ci cj ∈ C, 

positive integer B. 

QUESTION: Is there a tour of C having length B or less, i.e. a permutation 

>< )()2()1( ,...,, mccc πππ  of C such that  

Bccdccd m

m

i
ii ≤+







∑
=

+ ),(),( )1()(
1

)1()( ππππ ? 

 

Lemma 3.  
If a graph G=(V,E), |V|=5n, satisfes the following requirements: 

there are n  mutually not connected (red) vertices, 

there are 2n  green vertices not connected with red ones, green vertices are grouped 

in pairs and each pair is connected by edge, 

subgraph induced by the rest 2n vertices (black) is a complete graph and all black 

vertices are connected to all red and green vertices, 

then Hamiltonian circuit  problem is solvable. 

 

Proof: We denote black vertices m1 to m2n. Red vertices are denoted k1 to kn, pairs of 

green with kn+1 to k2n. Sequence m1 k1 .. mn kn mn+1 kn+1 .. m2n k2n m1 (i.e. black, red, 

..black, red, black, green, green, …,black, green, green, black) satisfies Hamiltonian 

circuit problem.                                                                    

 

 

Lemma 4. 
If graph G=(V,E), |V|=5n, satisfies the following requirements: 

there are n+2  mutually not connected (red) vertices, 

there are 2n-2 green vertices not connected with red ones, green vertices are grouped 

in pairs and each pair is connected by edge, 

subgraph induced by the rest 2n vertices (black) is a complete graph and all black 

vertices are connected to all red and green vertices, 

then Hamiltonian circuit  problem is not solvable. 

 



Proof:    The red vertices and the pairs of green vertices are mutually not connected. 

The only way to get from one red vertice to another (or from one green pair to 

another) is through some black vertice.  

There are 2n black in the graph, but n+2 red vertices, and n-1 green pair makes 

altogether 2n+1. So at least one of the black vertices will be used twice, which is not 

allowed in Hamiltonian circuit.  

 

 

Theorem 15. 
Hamiltonian circuit problem requires  Ω(n1.5) quantum queries.  

 

Proof: We construct the sets A and B for the usage of Theorem 12 [9]. 

The set A consists of all graphs G satisfying the requirements of Lemma 1. The value 

of the function corresponding to the Hamiltonian circuit problem is 1. (This follows 

from Lemma 3.)  B consists of all graphs G satisfying the requirements of Lemma 4.  

The value of the function corresponding the Hamiltonian circuit problem is 0. (This 

follows from Lemma 4.) 

 

From each graph G∈A, we can obtain G’∈B by disconnecting any one of the edges, 

which connect the green vertices. Hence m=n=O(n). From each graph G∈B, we can 

obtain G’∈A by connecting any two red vertices. Hence m’=(n+2)(n+1)=O(n2 ). 

By Theorem 12 [9]., the quantum query complexity is Ω 2nn ⋅ =Ω(n1.5).   

 

                                                                       

The same idea proves Theorem 16. 

Theorem 16. 
Directed Hamiltonian circuit requires  Ω(n1.5) quantum queries.  

 

 

Lemma 5. 
If graph G=(V,E), |V|=5n, satisfies the requirements of  Lemma 4., then Hamiltonian 

path problem is solvable. 

 



Proof: We denote black vertices m1 to m2n. Red vertices are denoted k1 to kn+2, pairs 

of green with kn+3 to k2n+1. Sequence k1 m1 .. kn+2 mn+2 kn+3 mn+3.. m2n k2n+1  (i.e. red, 

black, .. red, black, green, green, black,  …,black, green, green) satisfies 

Hamiltonian path problem.   

 

 

Lemma 6. 
If graph G=(V,E), |V|=5n, satisfies the following requirements: 

there are n+4  mutually not connected (red) vertices, 

there are 2n-4 green vertices not connected with red ones, green vertices are grouped 

in pairs and each pair is connected by edge, 

subgraph induced by the rest 2n vertices (black) is a complete graph and all black 

vertices are connected to all red and green vertices, 

then Hamiltonian path  problem is not solvable. 

 

Proof: The proof is analogical to that of Lemma 4. 

 

 

Theorem 17.                                                                  
Hamiltonian path requires  Ω(n1.5) quantum queries.  

 

Proof: We construct the sets A and B for the usage of Theorem 12 [9].  

The set A consists of all graphs G satisfying the requirements of Lemma 4. The value 

of the function corresponding to the Hamiltonian path problem is 1. (This follows 

from Lemma 3.)  B consists of all graphs G satisfying the requirements of Lemma 4.  

The value of the function corresponding the Hamiltonian path problem is 0. (This 

follows from Lemma 4.) 

 

From each graph G∈A, we can obtain G’∈B by disconnecting any one of the edges, 

which connect the green vertices. Hence m=n-1=O(n). From each graph G∈B, we can 

obtain G’∈A by connecting any two red vertices. Hence m’=(n+4)(n+3)=O(n2 ). 

By Theorem 12 [9]., the quantum query complexity is Ω 2nn ⋅ =Ω(n1.5).   

 



 

Theorem 18. 
Travelling salesman  requires  Ω(n1.5) quantum queries.  

 

Travelling salesman problem can be easily reduced to Hamiltonian circuit problem, by 

taking all the distances equal to 1 and B equal to number of cities. 

 

 

Theorem 19. 
The lower bound for Hamiltonian circuit  cannot be improved by Ambainis’ method. 

 

Proof: We use Theorem 14 [25]. Let the Boolean function f describe Hamiltonian 

circuit. 

ND1(f) = O(n) , because it suffices to guess the sequence of vertices and ask the edge 

for every  pair of subsequent vertices. 

ND0(f) = O(n2) , because it suffices to check that a graph satisfies conditions of 

Lemma 4.  

 

Hence )f(ND)f(ND 01 ⋅ = O(n1.5) .                       

 

 

6.2 3-Sum problem 

 
We observe the following problem, called 3-Sum problem: 

Definition 1. Given the set S of N numbers, detect whether there are three numbers a 

∈ S; b ∈ S; c ∈ S, such that a + b + c = 0. 

 
Alternative model, often called 3-sum’, is: 

Definition 2. Given the 3 sets A, B and C each of N numbers, detect whether there are 

three numbers a ∈ A; b ∈ B; c ∈ C, such that a + b = c. 

There is a big cluster of problems in computational geometry that are called 3-Sum 

Hard. Gajentaan and Overmas [26] described them as problems that can be reduced to 

the 3-Sum problem. The example is, for instance, a GeomBase problem: given points 



on three equally spaced horizontal lines, are there points, one from each line, that are 

collinear. 

In classical computation the best currently known algorithm for any 3-Sum Hard 

problem takes )( 2NO  time, while the best lower bound for the time complexity is Ω 

(NlogN), which is very low and unreachable. It is believed that 3-Sum lower bound is 

the same as upper bound, )( 2NΩ , so 3-Sum hard problems in classical computation 

sometimes call - 2N hard. For some of 3-Sum hard problems )( 2NΩ  lower bound has 

been proved. 

6.3 Quantum algorithm for the 3-Sum problem 

 
This section  show algorithm and lower bound, that is presented in [27]. 

In this algorithm we make use of quantum amplitude amplification method, which 

generalizes Grover quantum search. Here is an essence of amplitude amplification: 

Theorem 20.  
There exists the quantum algorithm QSearch with the following property. Let A be 

any quantum algorithm that uses no measurements, and let }1,0{: →Zχ  be any 

boolean function. Let a denote the initial success probability of A of finding a solution 

(i.e. the probability of outputting z such that )(zχ  = 1). Algorithm QSearch finds a 

solution using an expected number of )/1( aO  applications of A and  
1−A  if a > 0, 

and otherwise runs forever. 

The algorithm QSearch does not need to know the value of a in advance, but if a is 

known, it can find a solution in worst-case )/1( aO  applications. 

 

Theorem 21.  
There exists a quantum algorithm that solves 3-Sum problem in O(NlogN). 

Proof. The algorithm works as follows: 

1. Sort set C classically, that takes O(NlogN) time. 

2. Construct an algorithm that can solve the problem with small probability. 

The algorithm takes an input of two random elements, one from set A and the other 

from set B and outputs whether these two elements are summing up to some element 

from C: 

(a) Compute a+b, a ∈ A; b ∈ B. 



(b) Check whether a+b can be found in C. Needs O(logN) time, because C is sorted. 

3. Construct quantum superposition over all the ba  and use amplitude   

amplification on that superposition with the algorithm just described as a kernel. 

Amplitude amplification method uses Grover algorithm idea to speed up computation. 

The maximum speedup it allows to get is quadratic. In our case, classically we must 

repeat algorithm kernel steps )( 2NO  times. Amplitude amplification method allows 

us to get the same result, using only O(N) steps. 

So the total time the algorithm uses is O(NlogN). 

There are several approaches for estimating lower bounds for quantum algorithms. 

Theorem 22. 3-Sum problem has quantum lower bound ( )NΩ  

Proof. The proof is based on A. Ambainis adversary method of proving quantum 

lower bounds. We use his Theorem 13. 

That means, that we need to find all the variants how the input x can be modified. 

For our case, we’ll take X to contain only one element: A consisting of all zeros; B - 

all 1s, C - all 2s. It is an input, on which our function returns 0. Let Y contain all 

inputs made of X, with one element in any of sets A, B and C changed so, that the 

function returns 1 (e.g., any element of A changed to 1; any element of B - to 2; any 

element of C - to 1). Let YXR ×⊂  consist of such YX ×  pairs where y differs 

from x in exactly one position. According to the theorem, m = 3N, because for every 

x ∈ X there are exactly 3N different y ∈ Y , which differs from x in exactly one 

position. m’ = 1, because for every y ∈ Y there is only one x ∈ X, which differs from 

y in exactly one position. l = l’ = 1 that follows from our definition of R. 

Using this formula we get a lower bound ( )N3Ω . 

Unfortunately, this method gives almost trivial result in this case. The better idea was 

to try the same method as in classical case. 

6.4 Improved lower bound for 3-Sum problem 

Classical lower bound Ω(NlogN) follows from the technique of Dobkin and Lipton 

[28] in the linear decision tree model. They observed that the set of inputs following a 

fixed computational path through a linear decision tree is connected. Since the set of 

nondegenerate inputs has )(nnΩ
 connected components, any linear decision tree must 

have )(nnΩ
 leaves and therefore must have depth Ω (NlogN). As quantum algorithm 



cannot give any speedup on a linear decision tree, we must conclude, that quantum 

lower bound for 3-Sum is Ω (NlogN). 

 

6.5 3-sum generalization 

 
The most natural generalization of 3-Sum problem is its r-Sum: 

Definition 7. Given a set S of N numbers, detect whether there are r numbers 

in S which sum to zero. 

 

Alternative definition called r-Sum’ is the following: 

Definition 8. Given r sets S1, ..., Sr of N numbers, detect whether there are r 

numbers one from each set that sum to zero. 

 

Similarly we can define the class of r-Sum Hard problems. 

In deterministic case these problems have a lower bound of ( )NN logΩ  and 

best known deterministic algorithm can solve the r-sum problem in ( )2/1+Ο rN  

when r is odd and ( ))log(2/ rN rΟ   when r is even. 

Theorem 23.  

Quantum algorithm can solve r-Sum problem in  ( )NN r log3/Ο  time. 

Proof. We will further divide sets S1, ..., Sr in two more groups of sets: First 

group will contain x sets of data - let’s call them C1,..., Cx and the second will 

contain remaining (r-x) sets of data - let’s call them Q1,..., Qr-x. 

The algorithm itself consists of two parts - classical and the quantum one. 

First, we execute the classical part of the algorithm and then execute the quantum part 

of it. 

Classical part of algorithm works as follows: we take sets C1,..., Cx and perform 

following operations on them: 

1. Make all the possible groups of elements picking one from each of sets C1,..., Cx 

and sum them up. (Call this new set CSum) 

2. Sort the summary set Csum 

 

After classical part of algorithm finishes its work we will get the sorted set of all the 

possible element combinations in sets C1,..., Cx. This will take ( )NN x logΟ  time. 



Then starts the quantum part of the algorithm, that uses sets Q1,..., Qr-x as well as the 

set CSum. The quantum part of r-sum algorithm is in fact generalized 

version of quantum 3-sum algorithm: 

 

1. Construct the probabilistic algorithm that can find the solution of the problem 

with a small probability. The algorithm will take two steps: This algorithm 

will randomly take one element from each of sets Q1,..., Qr-x and 

sum those elements. Then it will take the sum obtained and search for it in 

CSum sorted set. 

The first algorithm step can be accomplished in constant time that depends 

only on r. The second algorithm part takes ( )NlogΟ  time to search element 

in sorted database. So the total running time of the algorithm is ( )NlogΟ . 

However this algorithm will find the solution with probability only 
xrN −

1
 . 

2. To boost the probability of success we use amplitude amplification technique. 

We prepare the starting quantum superposition ∑ −xrQQQ ...21
 and call the 

amplitude amplification with algorithm from the step 1 embedded in it. 

Then, after ( )2/)( xrN −Ο  steps the algorithm will give an answer with high probability 

of success. So the running time of quantum part of algorithm is 

( )NN xr log2/)( −Ο . 

The total running time of this algorithm is: ( )( )NNNN xrx log,logmax 2/)( −Ο , 

so we should minimize this function. This is the case when x = (r-x)/2. So we 

get the value of x = 1/3r and total algorithm running time  ( )NN r log3/Ο . 

Theorem 24. r-Sum problem has quantum lower bound ( )NΩ . 

Proof. The proof is the same as for 3-Sum problem. 



7 Real-time quantum Turing machine 
 
Here we observe another model of computation called real-time Turing machine 

7.1 Definitions 

Here we’ll discuss some definitions that compare real – time Turing machine in 

deterministic and quantum case. The first definition was taken from Rabin [11] and 

the second one is investigated by the author and is also based on Rabin and a common 

pattern of quantum basic constructions (see more in Gruska [4]). 

 
Definition 9. 
Real - time deterministic Turing machine (TM) is a set M = <∑, ∑w, Q, q0, qf, I>, 

where: 

∑- finite alphabet (of input symbols), including symbols # and $; 

∑w – finite alphabet (work tape symbols), including symbol λ; 

Q – set of states; 

q0 – initial state; 

qf  - final state; 

{←,→,↓} – movements of the head (left, right, stop); 

I – set of instructions. Instruction is a row ∑*∑w*Q → Q*∑w*{ ←,→,↓}.  

 

First three symbols of the instruction are called the left side, and the last four are the 

right side. It may be one and the only one instruction with the same left side in I for 

every ∑*∑w*(Q\{q 0}). 

Such a machine has one endless input tape and one endless work tape with one head 

moving on each tape. At the beginning machine is in the state q0, the input tape head is 

on the first symbol of the word from the left. Work tape is empty and TM reads the 

first symbol of the word from the input tape. As a second step, it reads the second 

symbol, then the third etc. After the last symbol of the word the machine reads 

symbols $. 

Let it be the instruction of I: xyqk → qjz→, where current state is qk ∈ Q, the machine 

is reading symbol x ∈ ∑ and the work tape head is observing symbol y ∈ ∑w. Then 

the machine moves to the state qj, replacing the symbol y with z, and moves to the 

right.  



Real – time TM every moment reads a new symbol. The moment, when the symbol $ 

has been read, the work is finished. 

Real - time TM accepts the word, if the work is finished, the working tape contains 

one symbol “1”, the rest of the tape is filled with “λ” and the head observes the 

symbol “1”. It rejects the word, if the work is finished, the working tape contains one 

symbol “0”, the rest of the tape is filled with “λ” and the head observes the symbol 

“0”. Real - time TM recognizes the language L in time t(x), if for every word x∈L 

exists a set of instructions from I, that needs not more than t(x) steps to obtain the 

result 1, and there isn’t  any word x∉L that a set of instructions from I for x leads to 

the result 1. 

 
 
 
 
 
 
 
 
 
Fig. 3 
 

The definition of real – time quantum Turing machine is a compilation of the quantum 

Turing machine definition [10] and the real – time Turing machine [11]. 

 
Definition 10 
 
Real - time quantum Turing machine (QTM) is a set M = <∑, ∑w, Q, q0, qf, δ>, 

where: 

∑ - finite alphabet (of input symbols), including symbols # and $; 

∑w – finite alphabet (work tape symbols), including symbol λ; 

Q – set of states; 

q0 – initial state; 

qf  - final state; 

transition amplitude mapping δ : Q*∑ *∑w*∑w*Q*{ ←,→,↓} → C[0,1]  is required to 

be such, that quantum evolution of M is unitary. That means that quantum evolutions 

of M can be defined as unitary matrices U, where UU* = I and U* is a conjugate 

#010011&111111&100011&10000$ 

 

Input tape 

Work tape 



transpose of U, i.e. the transposition of U and conjugation of its elements, and I is the 

unit matrix. 

To be quantum Turing machine, it has to meet so-called well-formedness conditions 

(see more about unitarity conditions in [4]): 

Local probability condition.  

 

Separability condition 1:  For any two different pairs q1, σ1 un q2, σ2 

 

Separability condition 2: For any two different pairs q1, σ1, d1 un q2, σ2, d2 

 

Separability condition 3: For any q1, σ1, σ2 un q2, σ3, σ4 un d1 <> d2 

 

Here σ, q, d are the symbol, that is printed out on the work tape, new state of the 

QTM and the direction of the work tape head movement (←,→,↓). 

After each step the measurement is performed. If the result of the measurement is 

neither positive nor negative, then the measurement doesn’t change the state of the 

machine and the process goes on. As a result of the measurement, the word can be 

accepted or rejected.  

 

Such a machine has one endless input tape and one endless work tape with one head 

moving on each tape. At the beginning machine is in the state q0, work tape is empty, 

and it reads the first symbol of the word from the input tape. As a second step, it reads 

the second symbol, then the third etc. After the last symbol of the word the machine 

reads symbols $. 

Let it be δ: qkxyzqj→→1/ 2 , where current state is qk ∈ Q, the machine is reading 

symbol x ∈ ∑ and the head is observing symbol y ∈ ∑w. Then the machine moves to 

the state qj, replacing the symbol y with z, and moves to the right. Real – time QTM 
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every moment reads a new symbol. The moment, when the symbol $ has been read, 

the work is finished and the measurement is made to decide, whether the word 

belongs to the language or not. Real - time QTM recognizes the language L with 

amplitude ∆ (∆ > ½), if M working on any word x with amplitude not less than ∆ 

accepts x, if x ∈ L, and rejects x, if x ∉ L. 



 

7.2 Deterministic versus Quantum real – time TM 

 
We are going to show that real – time QTM with certain limitations can be more 

powerful than its classical counterpart. To prove that, we need to show a language, 

that can be recognized by the first one, but can’ t be recognized by the last one. That 

gives us the following theorem. 

Theorem 25. 
The language L = {x&y&xrev&yrev}, where x, y = {0,1}* can be recognized by a real – 

time QTM. 

 

Proof. The idea is that the only way to compare both x and xrev and y and yrev is to 

divide the computational process into branches, that work simultaneously. 

The first step is to split the process into three states (see Matrix 1), one of which is 

rejecting state qrr, and q1 and q2 compare x and xrev and y and yrev respectively. 

Than the word belongs to the language L, if both the branches q1 and q2 say “yes”, 

and doesn’t, if any of the branches says “no”.  

q0 – initial state; 

{qa, qaa} – a set of accepting states; 

{q r, qrr} – a set of rejecting states. 
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
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3
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q

qqqqqqqqqqqqq
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ε  

Matrix 1 

All the other transitions of this matrix are arbitrary such that the matrix is unitary (see 

more in [4]). 

 

Then the first branch moves like that: 

q1 – reads x and writes it down to the work tape, moving to the right; 

q3 – waits while y is read; 

q5 – reads xrev and goes to the left the work tape, comparing x and xrev; 

q7 – waits while yrev is read. 

 



The second branch: 

q2 – waits while x is read; 

q4 – reads y and writes it down to the work tape, moving to the right; 

q6 – waits while xrev is read; 

q8 – reads yrev and goes to the left the work tape, comparing y and yrev. 
 

If the branch finds the difference between x and xrev or y and yrev, then it goes to one 

of the rejecting states. Otherwise after the symbol $ is read it goes to one of the 

accepting states. 

 

Here are all the matrices that describe the evolution of the QTM. Each matrix is 

defined by two symbols in the upper left corner. Each matrix describes the transitions, 

where the first symbol is that one that is read from the input tape, and the second one 

is read from the work tape. Symbol “ε” means, that it can be any symbol. 
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Matrix 2 

 

If going backward the work tape (states q5 and q8) the symbol read from the work tape 

doesn’t match the symbol read from the input tape, QTM goes to the rejecting states 

(see Matrix 2). Otherwise QTM doesn’t change its state. 
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Matrix 3 

 

If going backward the work tape (states q5 and q8) the symbol read from the work tape 

doesn’t match the symbol read from the input tape, QTM goes to the rejecting states 

(see Matrix 3). Otherwise QTM doesn’t change its state. 
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Matrix 4 

 

When the symbol ‘&’ is read from the input tape, the QTM changes its state (see 

Matrix 4). That means, that the whole word has been read, and QTM is ready to 

accept the next word. The branches switch from waiting to moving states and vice 

versa. 
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Matrix 5 

 

When the symbol ‘$’ is read from the input tape, the QTM finishes its work (see 

Matrix 5). Then the working states (q7 and q8) go to the accepting states. For all other 

states it’s impossible to read symbol ‘$’, so their state changes are arbitrary to meet 

unitarity criteria. 

 

All the matrices, that don’t change the state of the QTM, look like Matrix 6 and are 

not shown separately. That is, going backward the work tape, the symbol read from 

the input tape matches the symbol read from the work tape. 
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Matrix 6 

 

So if the word is from L, then both of the branches say “yes” with probability 2/3; 

If the word is not from L, then it is rejected by at least one branch, and in total the 

word is rejected with probability >= 2/3. 

 

Theorem 26. 
 
Language L = {x&y&xrev&yrev}, where x, y = {0,1}*, can’t be recognized by a real – 

time deterministic Turing machine 

 

Proof.  Our proof is based on Rabin [11] and standard proofs in [29], [30], [31], and 

uses the idea of bottleneck, though which information can’t flow fast enough. 

We’ll observe machine M, which recognizes L in real – time. Number of states is m 

and number of letters in work alphabet is n. 

If w – input sequence, then work zone t(w) is the set of the cells of the tape, which 

have been visited by the machine when input w was read. 

If x – sequence of cells or symbols, then l(x)  - length of x (number of elements). 

If x – input sequence, then code of x is a sequence of symbols in the work zone t(x), 

state of M and its position on the tape after x had been read. 

 



Lemma 7. 
 
There is a constant c > 0 such that for every x = {0,1}* and every integer i > 0 exists 

y = {0,1}* such that l(y) =  i and ci ≤ l(t(x&y)). 

 

Proof. There is 2i sequences y = {0,1}* such that l(y) = i. If y1 ≠ y2 then x&y1 and 

x&y2 must have different codes, otherwise both x&y1&x rev&y1
rev and 

x&y2&x rev&y1
rev will be accepted by M.  

Let l(t(x&y)) ≤ k for all y, l(y) =  i. Then there are no more than nk * k * m different 

codes for input x&y. It means, 2i ≤ nk * k * m. If i is large, then k is large too, so we 

can assume km ≤ nk (we assume 2 ≤ n). So, 2i ≤ n2k, and 

  ki
n

≤
ln

2ln

2

1
. 

We can take c1 = 
nln

2ln

2

1
. This c1 will work for any i greater than some i0; for c small 

enough lemma will work for every i. 

 

Lemma 8. 
 

There is an integer d>0 (which depends only on M) such that for every x and every 

integer i ≥ l(x) there is a sequence y, l(y) = i, such that (a) ci ≤ l(t(x&y)) and (b) no 

more than 1/5 of the work zone t(x&y) cells are visited by M more than d times. 

 

Proof. We’ll find the sequence y, l(y) = i, where (a) is true. Let d1 be a number such 

that more than 1/5 of t(x&y) cells are visited by M more than d1 times. Then number 

of M steps is greater than d1*(1/5)*l(t(x&y)) ≥ (1/5)* d1ci. But M is real – time, so the 

number of M steps is exactly l(x) + l(y) + 1 ≤ 2i. Then (1/5)* d1ci ≤ 2i and d1 ≤ 10/c.  

So, d = [10/c +1] meets (b). 

 

Let x, y = {0,1}*. Cell B ∈ t(x&y) is called  bottleneck cell of t(x&y), if (1) during 

input x&y M passes through B no more then d times (where d is from Lemma 2), (2) 

B is outside work zone t(x), (3) the length of the t(x&y) segment, which is divided by 

B and doesn’t contain t(x), is greater than l(x)+1. 

 



Lemma 9. 
 
For every x there is y such that zone t(x&y) has a bottleneck cell. 

 

Proof. Let i be a natural number, such that 5l(x) + 5 < ci and l(x) ≤ i. By Lemma 2, 

there is a sequence y such that ci ≤ l(t(x&y)) and no more than 1/5 of work zone 

t(x&y) cells are visited by M more than d times. We get l(t(x)) ≤ l(x) + 1 < ci/5 ≤ 

l(t(x&y))/5. Dividing t(x&y) into five equal parts, we can see, that either on the left, 

or on the right end of t(x&y) there is a segment of length (2/5)*l(t(x&y)), which 

doesn’t contain t(x) cells. In this segment consider 1/5 part of t(x&y), that doesn’t 

contain the end of the zone. As less than 1/5 of t(x&y) cells are visited more than d 

times, there is a cell B, that is situated in our selected segment, that is visited by M no 

more than d times. And finally, between B and the end of t(x&y) there are at least 

(1/5)*l(t(x&y)) ≥ ci/5 > l(x) + 1 cells. Thus, B is a bottleneck cell. 

 

Let x, y be such, that zone t(x&y) has a bottleneck cell. Let’s assume, that B is to the 

right of the zone t(x). When input word x&y is being read, the machine comes to the 

last cell E of the zone t(x&y) for the first time. Let w ∈ Z be the first segment of 

sequence y, such that after input x&w machine M comes to E for the first time. Thus 

t(x&y) and t(x&w) have the same last cell E and B is the bottleneck cell for t(x&w) as 

well. 

Let the first cell to the right from B be R. M passage through B will be either 

movement from B to R, or movement from R to B. Machine state after passage is 

state, to which the machine comes after coming to R (in the first case) or to B (the 

second case). If the machine begins and finishes the elementary operation in B, we 

will not consider this as a passage through B. 

Let p1, p2, …, pr be sequential passages through B. p1 means going from B to R, p2 – 

from R to B and so on. Let M state during passage pi be si, 1 ≤ I ≤ r. The scheme in B 

is a set (e, s1, s2, …, sr) where e = 1, if B is to the right of t(x), or e = -1, if B is to the 

left of t(x), and s1, s2, …, sr are defined above. 

The number of passages through B r is no more than d. Than there are no more than  

N = 2m + 2m2 + … + 2md different schemes in B, where m is number of states of M. 

 



Let g be a number such that N < 2g. For every x, l(x) = g let y be a sequence such that 

t(x&y) has a bottleneck cell Bx, and let w be a segment of the input sequence y, after 

which the cell E is visited for the first time. There must be two different sequences x1, 

x2, l(x1) = l(x2) = g, such that bottleneck cells Bx1 and Bx2 have the same schemes. 

Let  x1&w1 = x1&ε1 … εn1 … εn2 …εnr … εnr+1, 

 x2&w2 = x2&δ1 … δm1 … δm2 … δmr … δmr+1, 

where ε, δ ∈ {0, 1}, εn1 – input symbol during first M passage through Bx1, εn2 – input 

symbol during second M passage through Bx1, and so on. The same is for δm1, δm2, … 

for the sequence x2&w2. After input εnr+1 or δmr+1 M visits cell Ex1 or Ex2 respectively. 

In sequence x1&w1 replace for each odd 1 ≤ I ≤ r – 2 segment 11 1
...1 −+ +

+
ii nn εε with 

sequence 11 1
... −+ +ii mm δδ . Then replace 

1
...1 ++ rr nn εε with 

1
...1 ++ rr mm δδ . We’ll call this new 

sequence x1&w’ 1. We can notice, that all the alterations were made in segment w1. We 

get, that x1&w1 and x2&w2 have the same schemes in Bx1 and Bx2, and our alterations 

were made only in segments between passages through Bx1 (when M was to the right 

of Bx1) or after the last passage through Bx1. So x1&w’ 1 has the same scheme (1, s1, s2, 

…, sr) and for every input symbol εnj, where j is odd and 2 ≤ I ≤ r + 1, tape segment to 

the right of Bx1 looks the same as the t(x2&w2) tape segment to the right of Bx2 with 

input symbol δmj , and M states are the same on the corresponding inputs. Zones 

t(x1&w’ 1) and t(x2&w2) have bottleneck cells Bx1 and Bx2 with the following 

properties: 

Zone t(xi) is to the right from Bxi, i=1,2; 

The segments of zones t(x1&w’ 1) and t(x2&w2) which are situated to the right of Bx1 

and Bx2 has the length greater than l(x1) = l(x2) = g. 

So, after input x1&w’ 1 and x2&w2 M is in the last cell Ex1 and Ex2, tape segments 

between Bx1 and Ex1 and between Bx2 and Ex2 look the same, states of M in both cases 

are the same. 

Assume, that after both x1&w’ 1 and x2&w2 there is input &x1rev, and after that &w’1rev 

and &w2rev . As x1 ≠ x2, then after x2&w’ 1&x 1rev M must not accept the word, no 

matter what input will follow. But l(&x1rev) = g+1 is less, than the distance between 

Exi and Bxi, I=1,2. As M is real – time and performs no more than 1 movement for 

every input symbol, after input &x1rev it will remain to the right of Bxi. So, M in both 

cases starts working in the same state with the same tape. And after input 

x1&w’ 1&x 1rev and x2&w2&x 1rev machine also in both cases will be in the same state, 



and after reading &w’1rev and &w2rev both of the sequences will be either accepted or 

rejected. It’s a contradiction. 

 



8 Conclusion 
 
Main purpose of this paper was to study different quantum computational models. 
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