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1 ANOTACIJA

Kvantu modelis ar gcatlasi tiek defigts Scott Aaronson daibBeigu sivoklu kopa,
kas parasti sast no akcepijoSiem un noraidoSiem @tokliem, tiek papildiata ar
parametru, kas nada, vai dotais beigu @toklis ietilpst atlases kap Merijumi tiek
veikti tikai atlases kopas beiguagbklos. Tiek ieviests papildusasbklis g, , un ja
visu pecatlases avoklu amplitidas ir 0, tady, amplitida saem \ertibu 1.
Pecatlasdau pEtit ne tikai kvantu, bet atradiciorilo algoritumuipasbas.
Petijuma nerkis ir saldzinat varhiatisko un kvantu gadjo pecatlases autoiu klases
un aprakst valodu klases, ko atpat kvantu gabs autorats ar gcatlasi.
Petijuma proces iegati Sadi rezulsti:

e Defincts kvantu gaba autonata ar [gcatlasi gdziens;

e Apraksita valoda PALINDROMES, ko atpst galgs kvantu autoats ar
pecatlasi ar rarijumu katd soli un gaigs kvantu autoats ar [gcatlasi ar
merfjjumu beigs;

e Apraksita valoda, kuru nevar atpazyaligs kvantu auto#tis ar @catlasi ar

merfjjumu katé sol un gaigs kvantu auto&ts ar @catlasi ar rarjumu beigs:
L={w|we{01} * and there existx,y,u,z such thatw= xly=uz and

X =2

Viens no promocijas darba uzdevumiem ira@pt kvantu vaigjoSos algoritmus Bula
funkciju rekinaSanai. Darba akuma tiek pie&diti kvantu algoritmu apak§e
nowertejumi dazdam funkcijam, kas apraksta grafu prebias. Ir izveidoti efekvi
kvantu vaiajoSie algoritmi. Saj sada iegati rezulti sekojodm funkcijam:

e 3-sum prokdma,

e Hamiltona cés,

e Hamiltona aplis,

e CdojoSais ardevjs.
Vel promocijas darb tiek apskata reila laika Tfiringa maghas kvantu anafga.
Tiek pagdits, ka eksigt valoda, kuru past reala laika kvantu Tjringa maa un

nepazst reala laika determigta Tjaringa mama.



2 ABSTRACT

Postselection quantum model is defined by ScotbAswn. A new parameter is added
to a halting set of states, that consists of acwg@@nd rejecting states, which defines
if the state is in postselection set. Only statepastselection set are measured. New

state g, is added and if all postselection states amplituales equal to O, then
g, amplitude is set to 1.

Postelection appears to be very useful to studyoniyt quantum, but also traditional
algorithms .
Paper goal is to compare probabilistic and quarftoite automata with postselection
and define language class, that can be recognigeguéntum finite automata with
postselection.
The following results are obtained:

e The notion of quantum finite automata with postsida is given;

e Language PALINDROMES is defined, that can be reasyhby MO- and

MM- quantum finite automata with postselection;

e Language is defined, that cannot be recognized By Bihd MM- quantum
finite automata with postselectioh:={w|we{01} * and there exisk, y,u, z

such thatw= xly = ulz and|x = |z}

One of the research object of this work is findmjuen query algorithms to compute
Boolean functions. At first we prove highdéower bounds of quantum query
algorithms for some of graph problems. Effectiveampum query algorithms are
created with complexity lower than deterministiceorResults for the following
functions are obtained:

e 3-sum problem,

e Hamiltonian path,

e Hamiltonian circuit,

e Travelling salesman.
Another aim of this paper is to introduce a quantgmnterpart for real — time Turing
machine. The recognition of a special kind of laamggs that can’t be recognized by a

deterministic real — time Turing machine, is shown.
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3 Introduction

The quantum computation theory started to evoleentty, and it has become a fact
that the quantum mechanism gives us a certain &ingower, which cannot be
achieved by the deterministic or probabilistic aygmh.

The possibility of performing computations in a gtuan system was first explicitly
pointed out independently by Paul Benioff [1] anadtHard Feynman [2] in 1982.
While Benioff work was more concerned with the tteof the minimization that
exists in the area of the computing devices, sunat their size can eventually
approach the border where quantum effects can periexnced, Feynman motivation
was quite different and more interesting for us.

He supposed that it might require exponential ttmaimulate quantum mechanical
processes on classical computers. This servedbasia to the opinion that quantum
computers might have the advantages versus th&adbenes.

The first impressive result obtained in 1994, thade quantum computing theory the
area of great interest, was Peter Shor quantunritdgofor factorization of integers
in polynomial time [3] while all known classicalgalrithms are exponential.

Any quantum computation is performed by means dafamn operators. One of the
simplest properties of these operators shows thett & computation is reversible.
The result always determines the input uniquely.

While researching quantum computing many count&sparthe basic conceptions of
the classical computation theory (such as Turinglime, finite automata etc.) have

been defined and researched (see [4] page 150).

First part of this work presents postselection dquanfinite automata. Postselection
for quantum computing devices was introduced byafAson [5] as an excitingly
efficient tool to solve long standing problems ofputational complexity related to
classical computing devices only. This was a ssnpgi usage of notions of quantum
computation.

We introduce MO- and MM - postselection quantunitéimutomata notion and prove
that PALINDROMES can be recognized by MM-quantumitéi automata with
postselection. This result distinguish quantum m@uatia with postselection from

probabilistic automata with non-isolated cut-poilitbecause probabilistic finite



automata with non-isolated cut-point O can recagrimly regular languages but
PALINDROMES is not a regular language.

Proofs of nonrecognizability of languages by pdstse®n quantum automata are
much more difficult than similar proofs for probkdtic finite automata with non-
isolated cut-points. This is because the latteofsr@are always based on property
Turakainen [6] named linearity of probabilisticifanautomata. However, the work of
guantum automata (including MM-quantum finite auédan with postselection)
involves measurement which makes the automatanearli "Naive" techniques are
capable to prove nonrecognizability of languagepdstselection quantum automata
only in cases when the languages are far from rezagle by these automata, e.g.
when they demand exponential time on Turing machiMe have introduced a novel
technique for nonrecognizability proofs. This teicue allowed us to prove
nonrecognizability of a context-free language by Miantum finite automata with

postselection.

Second part of the paper presents quantum quepyithlgys to compute Boolean
functions and their lower bounds. We consider grgpbblems, such as 3-sum,
Hamiltonian path, Hamiltonian circuit, Travellinglessman. We know that sometimes
it is possible to create quantum algorithms, tmatraore efficient than their classical
(deterministic and probabilistic) couterparts. Fo@ample, Grover [7Hiscovered a

remarkableguantumalgorithm that, making queries in superpositican be used to compute

OR function with small error probability using orﬂ;(\/ﬁ) queries, while both deterministic
and probabilistic algorithms require O(N) queri@s. the other hand, quantum algorithms are
in a sense more restricted. For instance, onlyagnitransformations are allowed for state
transitions. Hence rather often a problem arisetmér or not the needed quantum
automaton exists. In such a situation lower bowfd=omplexity are considered. It is proved
in [8] that Grover database search algorithm is blest possible. We use a result by
A.Ambainis [9] to prove lower complexity bounds fguantum query algorithms. Currently,
this is the most powerful method to prove lower g1 of complexity for quantum query
algorithms. In some cases there still remains abg#ipeen the upper and the lower bounds of
the complexity. In these cases it is proved aolditily that Ambainis’ method cannot provide

a better lower bound for this problem.



The third part of this paper introduces a quantwunterpart for real — time Turing
machine of the classical computation theory, nammebl — time quantum Turing
machine, and compares its capabilities with deteistic case.

It was in 1985, when D. Deutsch introduced theamtf quantum Turing machine
[10] and proved that quantum Turing machines complueé same recursive functions
as classical deterministic Turing machines do. Buit possible to find quantum
Turing machine advantages over deterministic thaetsome limitations, such as, for
example, time, tape space or the quantity of tlael lherns?

Such subclasses, that are weaker that generalglonachine, are defined and studied
for deterministic Turing machines. They give usoaputational model that is more
realistic.

The limitation is, that if the input word consistsn symbols, than the computation is
to be performed fon steps, one step for one input symbol. Such cormtipates called

real — time computatian

There are some results about real — time computatideterministic case [11,12,13],

mainly about real — time computation possibility.

For quantum counterpart, we show, that there ianguage that is accepted by a
guantum real — time Turing machine, but can’'t beepted by a deterministic real —

time Turing machine.



4 Preliminaries

The model of the quantum computing will be desatibere to introduce the notation
used further. To get more information on the spedibpic please refer to Josef
Gruska [4].
The indivisible unit of classical information isethvit that can take any of two values:
true or false The probabilistic counterpart of the classicdl dan betrue with the
probability a. andfalsewith probability3, wherea + 3 = 1. The corresponding unit of
guantum information is the quantum bitqubit For a qubit the possibility to deue
or falseis stated asi* + B> = 1, wherax andp are the arbitrary complex numbers. If
we observe qubit, we gétue with probability §f* and false with probability pJ.
However, if we modify a quantum system without olesg it (this will be explained
further), the set of transformations that one camfgom is larger than in the
probabilistic case.
We consider quantum systems with m basis staies ||aqp>,..., | ¢>. Let y be a
linear combination of them with complex coefficient

W = ou|Gh> + op|tp> + ... +0m| 0>

The norm ofy is

ly 1l |+, B +.+a, [

The state of quantum system can bewamwith |\y|| = 1.y is called asuperpositiorof

>, | @>,..., | > aq, ao, ... ,an are callecamplitudesof |q>, | @>,..., | G>.
There are two types of transformations that capdréormed on a quantum system.
The first types areunitary transformations A unitary transformation is a linear

transformation U that preserves norm (anwith |jy|| = 1 is mapped tg’ with |[y’||
=1).

Second, there ameasurements he simplest measurement is obserwing o |g> +
aolp> + ... +am|gn> in the basis |&, [&>, ..., |G=>. It gives |¢> with probabilityo;?.
After the measurement, the state of the systemgdsaito |g> and repeating the

measurement gives the same state |q



5 Postselection finite quantum automata

Scott Aaronson [5] introduced an interesting notafpostselection for quantum

computing devices. It is clear from the very begignthat they can never be

implemented because they contradict laws of Quamf@chanics.

However, this notion appears to be extremely usfydrove properties of existing

types of algorithms and machines.

The definition of postselection by S.Aaronson [&dnnot be used for finite automata
directly because his construction needs unlimitachaunt of memory.

Definition 1.
A postselection quantum finite automaton is a quanfinite automaton (MO- or

MM-quantum automaton) with a set of states cafledtselection set of stataad a

special stateg, . At the very end of the work of the automaton wherend-marker is

already read but before the measurement of acogpéind rejecting states the

amplitudes of all the states outside the postselectet are mechanically made to

equal zero.

If at least one of the postselection states isegptal zero, then the amplitudes of all
the postselection statesare normalized, i.e. middpo a positive real number such

that in the result of this normalization the totafl squares of the modulos of the
amplitudes of the postselection states equals 4t the moment of postselection all
the amplitudes of the postselection states areldquaero, then these amplitudes stay

equal to zero but the statq, gets amplitude 1. This way, at the result of the

postselection the total of squares of the modufoth® amplitudes of all the states

equals 1.

Postselection is the power of discarding all ruhs @omputation in which a given
event does not occur. To illustrate, suppose wegiaen a Boolean formula in a large
number of variables, and we wish to find a settfighe variables that makes the
formula true. Provided such a setting exists, fhigblem is easy to solve using
postselection: we simply set the variables randoithign postselect on the formula
being true.

We study the power of postselection in a quantumpding context. S. Aaronson
[5] defines a new complexity class call&bstBOQP (postselected bounded-error
guantum polynomial-time), which consists of all lplems solvable by a quantum



computer in polynomial time, given the ability tmgtselect on a measurement
yielding a specific outcome. The main result ist thastBQPequals the well-known
classical complexity cla€8P (probabilistic polynomial-time). HeréP is the class of
problems for which there exists a probabilisticypoimial-time Turing machine that
accepts with probability greater than 1/2 if andiyaohthe answer iges For example,
given a Boolean formula, AP machine can decide whether the majority of sgstin
to the variables make the formula true. Indeeds thioblem turns out to beP -
complete (that is, among the hardest probleni&in

S. Aaronson himself describes his aim as follows:

"The motivation for thed?ostBQP=PPresult comes from two quite different sources.
The original motivation was to analyse the compateatl power offantasyversions
of quantum mechanics, and thereby gain insight whg quantum mechanics is the

way it is. In particular, 4 will show that if we ahged the measurement probability
rule from |1//|2 to |y|" for some p= 2, or allowed linear but non-unitary evolution,

then we could simulate postselection, and thereltyesPP-complete problems in
polynomial time. If we consider such an ability mxiagant, then we might take these

results as helping to explain why quantum mechamcsinitary, and why the
measurement rule |&|2.

A related motivation comes from an idea that mightcalledanthropic computing
arranging things so that we are more likely to eXia computer produces a desired
output than if it does not. As a simple examplejarnthe many-worlds interpretation
of quantum mechanics, we might kill ourselves ihwaliverses where a computer
fails! My result implies that, using thikechnique we could solve not onl|\P-
complete problems efficiently, b&P-complete problems as well.

However, thePostBQP=PPresult also has a more unexpected implication. One
reason to study quantum computing is to gain a meare general perspective on
classical computer science. By analogy, many fanresslts in computer science
involve only deterministic computation, yet it iard to imagine how anyone could
have proved these results had researchers notagotaken aboardthe notion of
randomness.

Likewise, taking quantum mechanics aboard has dyrded to some new results
about classical computation [Eror! Reference source not found.,Error!

Reference sour ce not found.].



What this paper will show is that, even when claasresults are already known,

guantum computing can sometimes provide new anglsirproofs for them."

5.1 Definitions
A quantum finite automaton (QFA) is a theoreticaddal for a quantum computer

with a finite memory. If we compare them with thalassical (non-quantum)
counterparts, QFAs have both strengths and weaése3se strength of QFAs is
shown by the fact that quantum automata can berexpially more space efficient
than deterministic or probabilistic automata [IAe weakness of QFAs is caused by
the fact that any quantum process has to be réler@initary). This makes quantum
automata unable to recognize some regular languages

We start by reviewing the concept of probabiligingte state transducer.For a finite
setX we denote by* the set of all finite strings formed froX) the empty string is
denotede .

Definition 2.
A probabilistic finite state transducer (pfst) isuple

T=(QZXZ,Z,.V, {00, Quc: Q)
where Q is a finite set of states;;,~, is the input/ output alphabet, € @@ the
initial state, andQ,..,Q,; € Qare (disjoint) sets of accepting and rejectingtasa
respectively. (The other states, forming set Q catked non--halting). The transition

function V : £, xQ — Q is such that for allac £, the matrix(V,),, is stochastic,

and f,:Q— ¥, is the output function. If all matrix entries aeither O or 1 the

machine is called a deterministic finite state sduacer (dfst).

The meaning of this definition is that, being iatetq, and reading input symbd,
the transducer printsf, q( )on the output tape, and changes to staptewith

probability (Va) moving input and output head to the right. Aach such step,

ap’
if the machine is found in a halting state, the patation stops, accepting or rejecting
the input.

Definition 3.
Let Rc 2, xX, .



For a >1/2 we say thafl computes the relatiof® with probability « if for all v,
whenever (v,w)e R, then T(w|v)>a, and whenever (v,w)g R, then
Tw|Vv)<l-«a.

For O<a <1 we say thatT computes the relatioRwith isolated cutpointe if

there existse >0 such that for allv, Whenever(v,w)e R, thenT(w|V)>a+¢,

but whenevefv,w)¢ R, thenT(w |V)<a -«

The following definition is modelled after the onies pfst for quantum finite state
automata [15]:

Definition 4.
A quantum finite state transducer (gfst) is a tuple

T=(Q,2,Z,V, f,d5,Quc: Qej)
where Q is a finite set of states;,,X, is the input/output alphabetj, € @ the
initial state, andQ,.,Q,; € Qare (disjoint) sets of accepting and rejectingtata
respectively. The transition functiovi:Z, xQ — Q is such that for allae X, the

matrix (V,),, is unitary, andf, :Q — £ is the output function.

Probabilistic and quantum finite automata are serases of the transducers where
the result can be only 0 or 1. Nothing needs toallded for the definition of
probabilistic automata. However, the case of quan@utomata is much more

complicated.

5.2 Specifics of quantum finite automata

Quantum finite automata (QFA) were introduced iretefently by Moore and
Crutchfield [16] and Kondacs and Watrous [15]. Thiffer in a seemingly small
detail. The first definition allows the measurememily at the very end of the
computation process. Hence the computation is pagd on the quantum
information only. The second definition allows theasurement at every step of the
computation. In the process of the measuremergubatum information (or rather, a
part of it) is transformed into the classical imf@tion. The classical information is

not processed in the subsequent steps of the catigput However, we add the



classical probabilities obtained during these mam@asurements. We will see below
that this leads to unusual properties of the quanawtomata and the languages
recognized by these automata.

To distinguish these quantum automata, we call themmrespondingly, MO-QFA
(measure-once) and MM-QFA (measure-many).

Definition 5.
An MM-QFA is a tuple

M = (Q’Z’V’qO’Qacc’Qrej)
where Q is a finite set of stateg; is an input alphabety is a transition function,

g, € Q is a starting state, an@® € Q@re sets of accepting and rejecting states

acc’ “<rej

(Qacc M Qy; =0). The states iQ,.. andQ,; are called halting states and the states

acc rej
in Q, =Q-(Q.. vQ,) are called non halting statexand $ are symbols that do
not belong toX. We usexand $ as the left and the right endmarker, respebti
The working alphabet dfl is T = £ U{«x; $}.

The state oM can be any superposition of states in Q (i. ey, larear combination
of them with complex coefficients). We 1,|$)eto denote the superposition consisting

of stateq only. |,(Q) denotes the linear space consisting of all supsitpms, with
|, -distance on this linear space.

The transition function V is a mapping froimx|,(Q)to 1,(Q) such that, for every
ael’, the functionV, :1,(Q) —»1,(Q) defined byV,(x)=V(a,x) is a unitary

transformation (a linear transformation dg(Q) that preserves, norm).

The computation of a MM-QFA starts in the superti)osi|qo>. Then transformations

corresponding to the left endmarker, the letters of the input word and the right
endmarker $ are applied. The transformation coording toa <" consists of two
steps.

1. First, V, is applied. The new superpositiop is V,(y) where y is the

superposition before this step.

2. Then,y 'is observed with respect 6, ., E

acc’?

E.., Wwhere

rej

E.cc = SPad|q):qe Q,},



Erej = Spar{|q> : q € Qrej} ’
Enon = Spafﬂ q> ‘qe Qnon} .

It means that if the system'’s state before the umeasent was

y'= Zai|qi>+ Z ﬂi‘qi>+ 27k|qk>

0i€Qacc 0 €Qxej € Qhon
then the measurement acceptswith probability S, rejects with probabilityZ,Bj2
and continues the computation (applies transfoomatcorresponding to next letters)
with probability =y with the system having state=>y,|q,) .
We regard these two transformations as readinttex le. We useV', to denote the
transformation consisting oW, followed by projection toE, . This is the
transformation mappings to the non-halting part o¥, (v .)We useV', to denote
the product of transformations', =V', V', ..V', V', , wherea is the i-th letter of
the word w. We also usey, to denote the non-halting part of QFA's staterafte

reading the left endmarker and the wordy e ¥ * From the notation it follows that

l//w = ka(| qO >) .

We will say that an automaton recognizes a languagéth probability p(p>1/2)

if it accepts any wordk € L with probability > p and accepts any wordg L with
probability < p.

The MO-QFA differ from MM-QFA only in the additiohaequirement demanding

that non-zero amplitudes can be obtained by thepitg and rejecting states no
earlier than on reading the end-marker of the impard.

A probability distribution{( p,,# ) [1<i <k }on pure state§s },_, with probabilities

0<p, <1z, (p,)=1), is called anixed stater mixture

Definition 6.
A quantum finite automaton with mixed states igpet

(Q!Z’ ¢init1 {Ts}' Qa’Qr ’Qnon) !



whereQ is finite a set of state& is an input alphabetg,, is an initial mixed state,

nit
{T,} is a set of quantum transformations, which cdasef defined sequence of
measurements and unitary transformatio@g,c , @ < Q andQ,,, < Q are sets

of accepting, rejecting and non-halting states.

Comment 1.
For quantum finite automata the term rejection isleading. One can imagine that if

an input word is accepted with a probabilif} then this word is rejected with

probability 1= P Instead the reader should imagine that the oaBsiple result of

our automata is acception. The counterpart of ation in recursive function theory
is recursive enumerability but not recursivity. oobabilistic automata all the results
by M.O.Rabin [11] are valid for both possible défoms but for quantum automata

the difference is striking.

Sometimes even MO-QFA can be size-efficient congpaii¢h the classical FA.

Theorem 1.
[14]

1. For every primep the languagel , ={ the length of the input word is a multiple
of p} can be recognized by a MO-QFA with no more ticanstiog  states.

2. For everyp a deterministic FA recognizing, needs at leasp states.
3. For every p a probabilistic FA with a bounded error recognigirL, needs at

least p states.

The first results on MM-quantum finite automata everbtained by Kondacs and
Watrous [15]. They showed that the class of langeagcognized by QFAs is a
proper subset of regular languages.

Theorem 2. [15]
1. All languages recognized by 1-way MM-QFAs agtar.

2. There is a regular language that cannot be rexoed by a 1-way MM-QFA with
probability % +¢ foranye >0.

Brodsky and Pippenger [17] generalized the secartl gf Theorem 2 by showing
that any language satisfying a certain propertyoisrecognizable by an MM-QFA.



Theorem 3.[17]
Let L be a language and M be its minimal automgtbe smallest DFA recognizing

L). Assume that there is a word x such that M dostatatesq, , g, satisfying:
1. G # 0y,

2. If M starts in the state, and reads x, it passes g,

3. If M starts in the state, and reads x, it passes tp, and

4. There is a word y such that if M startsgnand reads vy, it passes ty,

then L cannot be recognized by any 1-way quantoite fautomaton (Fig.1).

_ Y, _
./.f' '=\‘:,.--""_ "--.._?_,-f - - T
O Gﬂp
l‘x‘--._-r’ﬁ""--.-.;_l...-—-""ﬂ"-—

Fig. 1.
Theorem 4.
[18] The class of languages recognizable by a MMAQ$-not closed under union.

Corollary 1.
[18] The class of languages recognizable by a MMAQE not closed under any

binary boolean operation where both arguments ageicant. Another direction of
research is studying the accepting probabilitieQ&fAs.

Theorem 5.

[14] The language &:-is recognizable by an MM-QFA with probability O.@it not

with probability 7/9 +¢& for any¢ > 0.

This shows that the classes of languages recodeirath different probabilities are
different. Next results in this direction were ab&d by [19] where the probabilities

with which the languages..a, can be recognized are studied.

There is also a lot of results about the numbestaties needed for QFA to recognize
different languages. In some cases, it can be exyj@ily less than for deterministic
or even for probabilistic automata [14]. In othases, it can be exponentially bigger

than for deterministic automata [20].



Summarizing these results we can see that in spgeeming naturality of the notion
of MM-quantum finite automata with isolated cut#pbithis class of recognizable
languages has rather specifical properties.

On the other hand, there have been many resultprobabilistic and quantum
algorithms working with non-isolated cut-point ao relations between recognition
of languages with isolated and non-isolated cub{pdi]. However, it needs to be
added that most of these papers when describingityua automata restrict
themselves to MO-quantum automata. MM-quantum aatarare the most popular
ones among the papers studying recognition witlated cut-point, and MO-quantum
automata are the most popular ones among the psipeigng recognition with non-

isolated cut-point.

5.3 Co-PALINDROMES can be recognized by postselection finite
quantum automata
There exist nonregular languages recognizable bigtilistic finite automata with

non-isolated cut-point (they are calledtochastic laguages) and languages
recognizable by quantum finite automata with nadaed cut-point. Since MO-
guantum finite automata differ from MM-quantum faiautomata, it is possible that
these classes are different as well. However, maisiral problems on these automata
are still open. We concentrate here on a very apecibclass of these languages,
namely, on classes of languages recognizable witpaint O.

In the case of probabilistic recognition this ig aa interesting notion because in this
case the input word is declaradceptedf the probability of acception exceeds 0, and
it is declaredrejectedif the probability of acception equals 0. It isvadus that such
automata are equivalent to nondeterministic autanmtt nondeterministic finite
automata recognize the same regular languagesesndl@stic automata do.

The case of quantum finite automata is differente \Wonsider the language
PALINDROMES, i.e. the language

PALINDROMES = {x| x {01} * and x= x""}
The first unexpected result on languages recogl@zap MM-quantum postselection
finite automata with probability 1 was the followjitheorem.

Theorem 6.
The complement of PALINDROMES is recognizable yayl-MM-quantum finite

automata with non-isolated cut-point O.



Sketch of proof. We denote a real number
0.000 ... Ox(1)x(2)x(3) ... x(n)
n zeros

by
0.0{n}OX(1)x(2)x(3) ... x(n).

The main idea is to have at every moment of thecgmsing the input word
O{nx(X)x(2)x(3) ... x(n)2 special states of the automaton (sagy, and q,) the

amplitudes of which are, respectively, 0.0{n}Ox(@X(3) ... x(n) and
0.0{n}x(n) ... X(3)x(2)x(1).
We have

0.0{n+1x WX (2xS...x(n+1) =

= (0.0{n+ 1x WX (2)x (J...x(n)) x % +Enag

where

We have also
0.0{n+1}x(n+1) ... x(3)x(2)x(1)=

— (00{n+1} x(n+ D.. X BX(2)X() x % ‘5.,

Where

2n n+l
Two states ¢, and q,) are used to have amplitud%j and (%j , respectively,

in order to produce the currest and J,. It is not possible to half unlimitedly the



amplitudes in a quantum automaton but we have anddihtum automaton, and we

use the Hadamard operation

11
NG

11
NERNG

instead, and we follow Hadamard operation by meagypart of the amplitude to
REJECT.

We consider below the part of the statgs, §,q:,d,,0s), among which the first one
is g, and the third one ig. The rest of them are auxiliary states used torenthat

during the processing input symbok(n) the amplitudes are changed from
z,o,z—ln 00... to z,o,% 00... wherez= 0.0{n}x(n) ... x(3)x(2)x(1)

If x(n)=1then we use the following operation:

11 1 1
—~ = 0 o0 0o/l 0o — 0 O
V2 42 J2 V2
1 1 0 0 0 0o 1
— -—— 0 0 0
2 2 1 o L o o
o o L L gf|¥2 V2 =
J2o 2 o ~ o L o
o o L 1 V2 V2
J2 2 o ~ o -Lg
0 o0 0 0 1 V2 J2
1 1 1
- 0 = 0o =
2 2 J2
1 1 1
-0 = 0 -——
2 2 J2
i 11,
2 2 2 2
i1 1
2 2 2 2
0 — 0 -—— 0
V2 J2

If x(n)=0 then we use the following operation:



i _ﬁ 0 0O O
2 2
E 1 0 0O O
2 2
0 0 1 _ﬁ 0
2 2
0 0 E i 0
2 2
0 0 0 0

Now we consider the part of the states
(909, 4» Ghos Gy Chos Ohsr Ohar Ohs» e Chy» Ghs), @MoONg which the first one i, and

the third one isg,. The rest of them are auxiliary states used torenthat during the

n 1

processing input symbol x(n) the amplitudes areghdnfrom z,o,2i 00... to

z,0 L 0,0... wherez= 0.0{n}x(n) ... x(3)x(2)x(1)

! 2n+1 !

If x(n)=1 then we use the following operation
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1 90 00001 2 1o 0o o
2 2 2 2
I 0 oo L1 0
2 2 2 2
0 0O 0 O




0O 00O0OOODO

o

o

0O 00O0OOODO

o

o

0 00O0DO

o

|~
YNNI

— N

00 0O0O0ODO

0 00O0O0ODO

0 00O0O
100000

0O 01 00O0O
0O 0010O00O0
0O 000100
0O 000O0OT1O
0O 00O0OOTI1

o

NN §o
_ _
N [N

| _ ©

— |
_

| N

1_21_

o

| NH | N |[NH | NO

_&72
—“|N O ©o o o o
[

1_2@72 o

o o o O

0
0
0
0
0

being the product of

and

o O O
o O O

O o-H|N

0 00O

o o o

o
o
—
o
o
o 41 O O O
o

—A|NO O «H|N

o™ _21_2 o o o
01_21_21_2 o o o
01“21_21_2 o o o
oo o o 1_21_20
oo o o 1“21_20
oo o o 1_21_20
4 0o o o o o o
oo o o o o o
Od|NH|NH|N ©O O O
oo o o o o +
oo o o o o o
OO O O dlNdAlNO




If x(n)=0 then we use the following operation

% —% 0 0 0O 0O0O0OOODO
@ % 0 0 0O 0O0OO0OOODO
0 E —@ 0 00O0OOOOO
4 2

0 0 ? % 0 00O0OOOOO
0 0 0 0 1 000O0O0O0O
0 0 0 0 01 000O0O0CO
0 0 0 0 00100O0O0OO
0 0 0 0 000O100O00O0
0 0 0 0 000O0O1O0O00O0
0 0 0 0 000O0OO1O00
0 0 0 0 000O0OOO0OT10
0 0 0 0 0 00OOOTOI121

When all the input word is read, the operation egponding to the end-marker

confronts the stateg, and g, with the Hadamard operation

Y
V2 2
T
V2 42

and the resulting amplitude @f, is sent by measuring to ACCEPT. If the amplitudes
for g, and g, have been equal before this operation, the woréjésted; otherwise it

is accepted.

We are interested in recognition of PALINDROMES B@ineorem 6. considers only
the complement of this language.

It is not at all true that recognizability of a tarage implies the recognizability of the
complement as well. It is so for deterministic t@niautomata and even for
nondetermninistic finite automata. However, for determninistic automata the size

of the recognizing automaton may differ even exptialy. For probabilistic and



guantum finite automata with isolated cut-poinsiso but in the case of non-isolated
cut-point this has been an open problem for a tong.

We study the case of non-isolated cut-point O héiheere is no problem for
probabilistic automata because in this case prébtbiautomata are equivalent to
nondeterministic automata and they recognize ombular languages but regular
languages are closed to complementation. We preleatthat PALINDROMES can
be recognized by MM-quantum finite automata witim+ieolated cut-point O.

Theorem 7.

Co-PALINDROMES can be recognized by an MM-quantwstsplection finite

automaton with probability 1.

Proof. The MM-quantum finite automaton recognizg-PALINDROMES

after the final application of Hadamard operation

11
V2o 2
1 1
J2 42

measures the resulting amplitudepf
If the amplitudes forq, and g, have been equal before this operation, the word is

rejected; otherwise it is accepted.
The MM-quantum postselection finite automaton makestselection after the
Hadamard operation but before the final measuring.

The posselection set of states consists of one etdy, namely, the state, . If the
amplitudes forg, and g, have not been equal before the Hadamard operdhen,
postselection normalizes the amplitude to 1 orltolf-If the amplitudes forg, and

g; have been equal before the Hadamard operatiopotselection does not change

the amplitude 0.

Theorem 8.



If a language L can be recognized by an MM-quanpasiselection finite automaton
with probability 1 then the complement of the laaxgel L can also be recognized by
an MM-quantum postselection finite automaton witbbability 1.

Proof. Obvious.

Corollary
PALINDROMES can be recognized by an MM-quantum splesttion finite

automaton with probability 1.

5.4 A context-free language that cannot be recognized by
postselection finite quantum automata

We consider the following language.

L ={w|we{01} * and there exisk, y,u,z such thatw= xly = ulz and|x = |z}

To paraphrasel. is the set of all strings for which there is a fn@md such that the
d th symbol from the left and theé th symbol from the right, are 1.

We start with two geometrical lemmas.

Lemma 1.
The two following assertions are equivalent:

1) Given ar -dimensional real Euclidean space, there exiét distinct (r —1)-
dimensional hyperplanes dividing the space i2tonon-empty regions;

2)N<r,

For instance, one line divides a plane into 2 negjidwo lines can divide the plane

into 22 = 4 regions, but no 3 lines can exist dividing thenglinto 2° = 8 regions.
Proof. < Immediate.

= Assume thatN > r . We denote théN hyperplanes by
A X + 8%t A Xy = dl

A,y X, + 850X, + ot Ay Xy =0,

Ay X + Ay X, ot Ay Xy =dy
N >r implies that the rank,, of the matrix of this system of equalities is abshn

r < N . Hence in the system of vectors



(a1 85,08y )

(a21' a22""’a'2N )

(aNllaNZ""’aNN)

all the vectors can be represented as linear catibis ofr,, of them. (With no
restriction of generality we can assume that thesethe firstr,, vectors in this
system.) Then the system of linear equations

8y,% +a,X, +.. A Xy =d;
Ay Xy + 850X, + ot Ay Xy =0,
&, Xt X .t Xy = d "
has exactly one solutioft,,C,,...,Cy, ).

we can change variables, x,,...,X,, into X ,X,,...,X, by a linear transformation in
such a way that the system of the first equations becomes a subsystem

Y, =0

y2 =

Yy, =0

The point(c,,c,,...,.C, ) becomes the poir(t00,...0) . The hyperplanes defined by the
abovementioned,, linear equations indeed divide tiN-dimensional space inta™
distinct nonempty regions. However, for every otingperplanes

a;,Y, +8;,Y, +..tay Yy =C;

we can assert that there is at least one oR2theabovementioned nonempty regions
which is not divided by this hyperplane. For ins@nif the pointB; = (e,,e,,...,ey)

is the point of this hyperplane with the minimunstdnce form the poin([0,0,...,O)
then the hyperplane does not divide the regionasoimy the point(—el,—ez,...,—eN )

Hence the hyperplanes cannot divide the space2iitdistinct nonempty regions.
Contradiction.

Lemma 2.



The two following assertions are equivalent:

1) Given ar -dimensional real Euclidean space, there exiét distinct (r —1)-
dimensional hyperplanesi,,H,,...,.H, and 2" points such that for arbitrary word
we{01} * if w=w,w,..w, then the corresponding point belongs to the hylpee

H, iff w,=1

2)N<r,

Proof. < Immediate.

= Assume thatN >r .

Consider a setl of N points of a reak -dimensional space corresponding to words

W, W,,...,W, containing exactly 1 symbol 1 arld—1 symbols 0. The assertion 1) of

our Lemma implies that every point from the sét belongs to exactlyN - 1

hyperplanesH,, and each hyperpland, contains all points of the sét but exactly

one. An elementary theorem of linear algebra asgbetr +1 elements of arr -
dimensional space cannot be linearly independesckl at least one point of the set
J can be represented as a linear combination ofrémeaining N — 1 points.
However, there is a hyperplarié— nbt containing this point but containing all the
other points. On the other hand, any linear contlwnaof points in a hyperplane also
belongs to this hyperplane.

Contradiction.

Now we proceed to prove

Theorem 9.

The languagelL cannot be recognized by an MM-quantum postselectioite
automaton with probability 1.

Proof. Assume from the contrary that can be recognized. In the first part of the
proof we consider the case when the quantum autome an MO-quantum
postselection finite automaton with probabilityltLaccepts all the words ih with
probability 1, and rejects all the words notlinwith probability 1.

We denote the number of states of this automatok.by

We take a natural numbed > 4k and for all 2" binary wordsx we consider the

distribution of amplitudes

(PL(X), P2 (X),.- Py (X))



to be in the corresponding states after input &f word x. This distribution of
amplitudes can be represented as a pointkndamensional unit cube over the field
of complex numbers.

We denote byy,,y,,....yy binary words consisting of many zeros and only one
symbol 1, namely, only the symbol numbein the wordy, equals 1. We denote by
Z(x) the set of all the natural numberssuch that tha -th symbol of the wordx
(counted from the right to the left) equals 1sleasy to see that

Xy, eL<ieZ(x)

Hence there are exactl2® words x nonequivalent with respect to the set
Vi ¥Yoi- Yy - We denote the set of these wordsThy

For everyi,j,te{l2..k} we consider the amplitudes'(y,) describing the
transition from the statg to the staté during the processing of. .

Since our automaton works with probability 1, aftdre postselection and

measurement of all accepting statesany worng is accepted either with the

probability 1 or with the probability O.

With no restriction on generality we can assume i@ accepting states aig,...,u .

Then the probability to accept XYy, equals
; 1 2 k 2
P(,)=[p.(9SH(Y)) + Po (9T (V) + -t P (RSE ()] +

[P (98 (y) + P (9 () +..t P (9SS ()| +

+..+

[P (98 (y) + P, (9SE(Y) +..t P (9]

where|a|2 is square of modulo of the complex number

Now we consider two distinct binary words and x, of the lengthN . Since they
are distinct, there is at least one valug afuch thatZ(x,) differs from Z(x,) in the
numberi . Hence eitheiP(x,,i)=1 and P(x,,i)= 0, or P(x,,i)=0 and $P(x,,i)=1.
For everyv e {12,...,u }we denote the real part and the imaginary patti@complex
number p,(Xst(y; )+ p,(RSZ(Y, ) +...+ p, (¥s(x) by Re(x,i,v) andIim(xj v).
Equality P(x,i) = 0 implies Re(x,i,v) = 0 and Im(x,i,v) = Oforall1<v<u.



Inequality P(x,i)= 0 implies eitherRe(x,i,v) = 0 or Im(x,i,v) # 0 (or both of them)
for everyl<v<u.

We considered above

(P, P (¥),--p (X))

as a point in a complex-valued unit cube. In orleuse our Lemma2 we wish to
transform this complex-valued unit cube into anikary real-valued space at the
expense of slight loosing the connection with ausrtum finite automaton.

For every xeT, (independently of all other values of) we consider ak-
dimensional spac&, and for the fixedx we replace the poir(tp, (X), p,(X),...p, (X))
by a real poinir, (x),r,(X),..r, (X)) where

r(X) =4, Rep,(X))+ 4, Re(p, (X)) +...+ 4, Re(p, (X)) +

2, 1M (p, (X)) + 1, 1m(p, (X)) + ...+ 1, .Im(p, (X))

and

are specially chosen (irrational) numbers.
Notice that

pl(X)Sll(yi)+ p2()()812(yi)+"-+ pk(X)Sf(x)z 0

is equivalent to
Re(p, ()RSt (v,))-1m(p, () Im(si(y,))+
+Re(p, (%))Res?(y,)) - Im(p, (X)) Im(s2(y, )+

+..t

+Re(p, ())Rest (y,))- Im(p, () Im(sk (y;))= 0

and
Re(p,())IM (st (y;))+ Im(p, (X)) Relst (v;))+
+Re(p, (%))Im(s?(y,))+ Im(p, (X)) Re(s (v, )+

+... +

+ Re(p, () Im(s* (y))+ Im(p, (x))Relsk (v;))=0

We have N possible choices for and 2" choices forx. For each pairx(i, Wwe

consider the linear combinations



B Re(p,())Re(s!(y;))- Im(p, (3))Im(st(y,))+
+Re(p, (x))Res?(y,)) - Im(p, () Im(s2(y,))+

+ ...+

+Re(p, ())Resk (v,))- Im(p, () Im(s (y,)) ]+
+ 7] Re(p, ()M (s} (y,))+ Im(p, () Relst(y,))+
+Re(p, (x)Im(s?(y,))+ Im(p, (x))Rels2 (y,))+

+... +

+Re(p, (9)Im(s(y,))+ Im(p, (X)) Refst (v,)) ].

In this paragraph we define the valyésand y, depending orx but the dependence
is such that we have a continuum choicesforand y,. For a finite number of pairs
(x,i) (namely, for those pairs Wher@(x,i):l) we demand that these linear
combinations are not equal zero. Now we choosevahe for everys, andy, such
that all the needed inequalities hold. Now our galof g, and »;, no more depend on

X.

Notice that for those pairs wheR{x,i)= 0 the equality holds
£.] Re(p,(¥)Resi(y,)- Im(p, () Im(s}(y,))+
+Rel(p, (0)Rels? (v,)) - IM(p, () Im($? (y,))+

+ ...+

+Re(p, ())Relst (v;)) - Im(p, (x))Im(st (y,)) ]+
+Re(p_k(x))Re(sk_1(y_i)-Im(p_k(x))Im(s"k_1(y_ipn]
+ 7.0 Re(p,(0)m(sH(y))+ Im(p, (x))Relst (¥,)) +

+ Re(p, ())Im(s?(y,))+ Im(p, (x))Rels? (v;))+

+... +

+Re(p, (X)) Im(sk(y,))+ Im(p, (x))Refst (v,)) ]=0.

Every such equality may be re-written as
R P, (0)8, Rels(y))+ 2 (s} (y)) +
+Re(p, ()8, Re(s () + 7, Im(s? ()] +



+ ...+
+Re(p, 00)|3 Relst (v;))+ 7 Im(s (y) )]+
+1m(p, () A, Im(sH(y,) )+ 7, Relst(y,) )|+

+1m(p, ()= B, Im(s2(y,))+ 7, Re(s(y)))]+
+ ...+
+1m(p, ()= £, Im(sk (v))+ 7, Relst (v))] =0

This equality can be interpreted ag2k —1) -dimensional hyperplane in a reak -
dimensional space

(Re(p, ) Re(p,(x)).....Re(p, (X)), Im(p, (x)). Im(p, (x)).....Im(p, (X))

and the coefficients of the hyperplane do not ddpenx.

We have2" points in this space corresponding to pais ( I,f)P(x,i)= 0 then the
point is on the corresponding hyperplaneP(fx,i)zl then the point is not on the

corresponding hyperplane. Now for each of ti' points separately and

independently one from another we construct nemtpoR,,R,,....R., 1;,1,,...,1
such that all2" new points are outside thed¢ hyperplanes. IfP(x,i)=1 then we

have an inequality of type#' "0 Hence we alway haveN hyperplanes an®"
points in a2k -dimensional space such that they all are inrdistiegions divided by
these hyperplanes. Since we assumed from the cpntinat N > 2k this is a
contradiction with Lemma2 proving the first caseooifr theorem (for MO-quantum
automata).

In the second part of the proof we consider the edsen the quantum automaton is
an MM-quantum postselection finite automaton witbhability 1.

The proof differs from the proof in the first pashly by additional step which
precedes the old proof.

We replace the MM-quantum automaton by an automatah is neither quantum
nor probabilistic. The states of the old automdtorction as before but there are two
new states: one to accumulate acceptation probahifie other one to accumulate
rejection probability before the end of the proaegsThis computation cannot be
done by matrix multiplication but this does notlirgince the remaining part of the

proof.



5.5 Probabilistic VS quantum finite automata with postselection

In this section some results about quantum finurmmata with postselection are
shown, that are obtained Byuzer Yakary_Imaz and A.C. Cem Say. [22].

It turns out that QFAs with Aaronson postselectitrave the same computational
power as the recently introduced one-way QFAs va#tart [23], and that QFAs with
postselection are strictly more powerful than dtadsprobabilistic finite automata
(PFAs) with postselection.

We call the class of languages recognized by 1FéstRvith bounded error PostS
(post-stochastic languages).

Bounded error language recognition of 1PostQFAsnslar to those of 1PostPFAs.
We call the class of languages recognized by 1HossQuith bounded error PostQ
(post-quantum languages).

Abuzer Yakarylmaz and A.C. Cem Sagll QFA with postselection that is defined in
Definition 1. Latvian 1PostQFAs or Latvian quantum finite auttemawith
postselection. The bounded-error classes corresppn the 1LPostPFA and
1LPostQFA models are called LPostS and LPostQemsely.

Here are some results obtainedAmyizer Yakarylmaz and A.C. Cem Say:

Theorem 10.
NQLuU coNQLc LPostQ,

where NQL is a class of languages recognized byetenministic finite automata.

Theorem 11.
LPostQc UQL,

where class of unbound-error quantum languagd®L =QLu coQthere

QL(coQL) are class of languages recognized by 1Qm#k cutpoint (nonstrict

cutpoint) called quantum languages (co-quantum Ueggs).

Here is a summary of results:

CQL
PostS = LPostS C PostQ”
C LPost) C UQL



6 Quantum algorithms and lower bounds

6.1 Graph problems
Boolean decision trees model is the simplest mtmlebmpute Boolean functions. In

this model the primitive operation made by an atbar is evaluating an input
Boolean variable. The cost of a (deterministicpalpm is the number of variables it
evaluates on a worst-case input. It is easy to tiveddeterministic complexity of all

explicit Boolean functions (for most functionsstequal to the number of variables).

The black-boxmodel of computation arises when one is giveraaksbox containing
anN-tuple of Boolean variable$=(xo,Xy,...,%-1.)- The box is equipped to outpton

inputi. We wish to determine some property)Xgfaccessing thg only through the
black-box. Such a black-box access is callegiery A property ofX is any Boolean
function that depends ox i.e. a property is functioh:{0,1}" —{ 0,1}. We want to

compute such properties using as few queries ashpes

Consider, for example, the case where the goab idetermine whether or not
contains at least one 1, so we want to comput@rbgerty OR(X)= % v ... v Xn-1. It

is well known that the number of queries requireccompute OR by anglassical
(deterministic or probabilistic) algorithm is O(N).

Grover [7] discovered a remarkabtpiantum algorithm that, making queries in

superposition, can be used to compute OR with seratlr probability using only

O(+/N) queries.

On the other hand, quantum algorithms are in aesemwe restricted. For instance,
only unitary transformations are allowed for statnsitions. Hence rather often a
problem arises whether or not the needed quantutmmaton exists. In such a
situation lower bounds of complexity are consideléds proved in [8] that Grover

database search algorithm is the best possible. gtoved in [8] that no quantum

query algorithm exists for PARITY witf2(N) queries, etc.

We use a result by A.Ambainis [9] to prove lowemgaexity bounds for quantum
guery algorithms. Currently, this is the most pdwemethod to prove lower bounds

of complexity for quantum query algorithms. In son@ses there still remains a gap



between the upper and the lower bounds of the caxitpl In these cases we prove
additionally that

Ambainis’ method cannot provide a better lower lbtor this problem.

6.1.1 Query model

In the query model, the inpug,x..Xy is contained in a black box and can be accessed
by queries to the black box. In each query, we giteethe black box and the black
box outputsg; . The goal is to solve the problem with the minimuamber of queries.

The classical version of this model is knowrdasision tree$24].

[ 1> —> — |i>

X X XN
|a>—> —> |at®

Fig. 2. Quantum black box.

There are two ways how to define the query boxhanquantum model. The first is
the extension of the classical query (Fig. 2).ds ltwo inputsi, consisting of [logN]
bits andb consisting of 1 bit. If the input to the query bisxa basic state)|p), the
output is |ijb®x;). If the input is a superpositioli, apli)|b), the output is
Yipap|iY|bDxi ). Notice that this definition applies both to cagieen x are binary and
to the case when they are k-valued. In the k-vatieesd, we just maketo consist of

[logok | bits and take ®x; to be bitwise XOR ob andx;.

In the second form of quantum query (which onlyleggpto problems with {0,1}-

valued x), the black box has just one inputf the input is a stat®; ali), the output

is D" (-1)*ai). While this form is less intuitive, it is very ceenient for the use in

guantum algorithms, including Grover’s search atbar [7]. A query of second type

can be simulated by a query of first type [7].

A quantum query algorithm withT queries is just a sequence of unitary

transformations



U-> 0> U;—> O-... 5Ur1—> 0> Ut

on some finite- dimensional space® QJo, U, ..., Ur can be any unitary
transformations that do not depend on the hifs x,xy inside the black boxO are
guery transformations that consist of applying gloery box to the first logN+1 bits
of the state. That is, we represent basic stat& af |i,b,z. Then,O maps |i,b,zto
[i,b®xi,2). We useOx to denote the query transformation correspondingndanput

X=(X1, ... %)-

The computation starts with state. [Then, we applyo, Ox ,..., Q, Uy and measure
the final state. The result of the computatiorhis tightmost bit of the state obtained
by the measurement (or several bits if we are denisig a problem where the answer

has more than 2 values).

The quantum algorithm computes a functi¢q,...,») if, for everyx=(xy,...,x) for
which f is defined, the probability that the rightmost bftUr Oy Ut.;... O Uo|O)

equalsf(xy,...,)q) is at least k< Y.

The query complexity of is the smallest humber of queries used by a quantu

algorithm that computefs We denote iQ(f).
Our proofs use the following results by A.Ambainis.

Theorem 12[9].

Let Ac{0,1}", B < {0,1}" be such that f(A)=1, f(B)=0 and for every xz(x,) €A,
there are at least m valueg{dl,...,n}such that (x...,%1,1-%,%+1,...,%) €B, for every
x=(X1..%,) €B, there are at least m’ value&{d,...,n}such that

(X1 XK1, 1%, %41, ... 00) EA.

Then Q(f)=(/mn).

Theorem 13[9].
Let f(x,%, ... %) be a function of n {0, 1} - valued variables akdY be two sets of

inputs such that f(3f(y) if xe X and ye Y. Let R X* Y be such that



For every xe X there exist at least m differentyY such that (x, y¥ R,

For every ye Y there exist at least m’ differentexX such that (X, y¥ R,

For every xe X and ie {1, ..., n} there are at mostdifferent ye Y such that (x, y¥
R and x=V,,

For every ye Y and ie {1, ..., n} there are at most Idifferent xe X such that (x, y)
€ R and x=V,

Then, any quantum algorithm computing f uses

mmi .
Q( W) gueries.

Definition. For any Boolean function f :{0,Y}5{ 0,1} and any x=(x.x,), ND(f,x) is

the number of queries needed by nondeterminiggiorahms on the values x=(xx,).

Definition. For any Boolean function f :{0,¥}-{ 0,1} :
NDo(f)= rfP%ND(f,X) and NDQ(f)= rfpexND(f,X).

Theorem 14 [25].
Whatever the sets A and B, Theorem 1 cannot provettar lower bound for the

qguery complexity Q(f) than\/NDO( f)-ND,(f) .

6.1.2 Graph problems

We consider the following graph problems:

Problem 1. Hamiltonian circuit

INSTANCE: Graph G=(V,E).

QUESTION: Does G contain Hamiltonian circuit?
Problem 2. Directed Hamiltonian circuit

INSTANCE: Directed graph G=(V,A).

QUESTION: Does G contain directed Hamiltonian dif2u
Problem 3. Hamiltonian path

INSTANCE: Graph G=(V,E).

QUESTION: Does G contain Hamiltonian circuit?



Problem 4. Travelling salesman

INSTANCE: Set C of m cities, distance @)  Z* for each pair of cities, ¢ € C,
positive integer B.

QUESTION: Is there a tour of C having length B esd, i.e. a permutation

<C,a)sCr()1---Crm > Of C such that

"r(m

[Z d(Cﬂ'(I) ’ Cﬂ(i+l) )j + d(cﬂ'(m) ' Cﬂ(l)) < B 9
i=1

Lemma 3.
If a graph G=(V,E), |V|=5n, satisfes the followingquirements:

there are n mutually not connected (red) vertices,

there are 2n green vertices not connected withamegls, green vertices are grouped
in pairs and each pair is connected by edge,

subgraph induced by the rest 2n vertices (blaclkd momplete graph and all black
vertices are connected to all red and green vestice

thenHamiltonian circuit problem is solvable.

Proof: We denote black vertices;no mp,. Red vertices are denotedté k,, pairs of
green with k.1 to k. Sequence ik .. My Kn Mys1 Kns1 .. Mpn Kon My (i€, black, red,
..black, red, black, green, green, ...,black, grgeeen, black) satisfiddamiltonian
circuit problem.

]

Lemma4.
If graph G=(V,E), |V|=5n, satisfies the followingquirements:

there are n+2 mutually not connected (red) vesice

there are 2n-2 green vertices not connected withames, green vertices are grouped
in pairs and each pair is connected by edge,

subgraph induced by the rest 2n vertices (blaclkd momplete graph and all black
vertices are connected to all red and green vestice

thenHamiltonian circuit problem is not solvable.



Proof: The red vertices and the pairs of green verticesrartually not connected.

The only way to get from one red vertice to anotfar from one green pair to

another) is through some black vertice.

There are 2n black in the graph, but n+2 red westiand n-1 green pair makes
altogether 2n+1. So at least one of the black eestvill be used twice, which is not
allowed in Hamiltonian circuit.

U

Theorem 15.
Hamiltonian circuit problem requires £(n™°) quantum queries.

Proof: We construct the sefsandB for the usage of Theorem 9.

The setA consists of all graphG satisfying the requirements of Lemma 1. The value
of the function corresponding to thkamiltonian circuit problem is 1. (This follows
from Lemma 3.) B consists of all graphG satisfying the requirements of Lemma 4.
The value of the function corresponding thamiltonian circuit problem is 0. (This

follows from Lemma 4.)

From each grapls A, we can obtairs’ eB by disconnecting any one of the edges,
which connect the green vertices. Hence m=n=0(mmFeach grapls B, we can

obtainG’ €A by connecting any two red vertices. Hence m’'=(r2))=0(If).

By Theorem 129]., the quantum query complexityGsyn - n? =Q(n*).
U]

The same idea proves Theorem 16.

Theorem 16.
Directed Hamiltonian circuit requires (X(n*°) quantum queries.

U

Lemma 5.
If graph G=(V,E), |V|=5n, satisfies the requirement Lemma 4., thedamiltonian

path problem is solvable.



Proof: We denote black vertices;no np,. Red vertices are denotedt& k.., pairs
of green with k.3 to kon+1. Sequence km; .. Kyi2 Mpsz Knez Mies.. Mo konss (i.€.1€d,
black, .. red, black, green, green, black, ...,blacgkeen, green satisfies
Hamiltonian path problem.

U]

Lemma 6.
If graph G=(V,E), |V|=5n, satisfies the followingquirements:

there are n+4 mutually not connected (red) vedjce

there are 2n-4 green vertices not connected witharees, green vertices are grouped
in pairs and each pair is connected by edge,

subgraph induced by the rest 2n vertices (blacky momplete graph and all black
vertices are connected to all red and green vestice

thenHamiltonian path problem is not solvable.

Proof: The proof is analogical to that of Lemma 4.

0

Theorem 17.
Hamiltonian path requires (Xn*? quantum queries.

Proof: We construct the sets A and B for the usage of fémed.2[9].

The set A consists of all graphs G satisfying #guirements of Lemma 4. The value
of the function corresponding to th&amiltonian path problem is 1. (This follows
from Lemma 3.) B consists of all graphs G satigfyihe requirements of Lemma 4.
The value of the function corresponding tHamiltonian path problem is 0. (This

follows from Lemma 4.)

From each graph &A, we can obtain GB by disconnecting any one of the edges,
which connect the green vertices. Hence m=n-1=@{m@yn each graph €B, we can
obtain G'A by connecting any two red vertices. Hence m’=(xir43)=0(If).

By Theorem 129]., the quantum query complexity@/n-n? =Q(n*9).

U]



Theorem 18.
Travelling salesman requires (X(n"°) quantum queries.

Travelling salesman problem can be easily reduced H@miltonian circuit problem, by
taking all the distances equal to 1 &hdqual to number of cities.

[

Theorem 19.
The lower bound foHamiltonian circuit cannot be improved by Ambainis’ method.

Proof: We use Theorem 14 [25]. Let the Boolean functiatescribeHamiltonian
circuit.

ND;(f) = O(n) , because it suffices to guess the secgi®f vertices and ask the edge
for every pair of subsequent vertices.

NDo(f) = O() , because it suffices to check that a graph sasisfionditions of

Lemma 4.

Hence/ND,(f)-ND,(f) = O(n9) .

U

6.2 3-Sum problem

We observe the following problem, called 3-Sum peob
Definition 1. Given the set S of N numbers, detect whether Hreréhree numbers a

eS;:beS;ceS,suchthata+b+c=0.

Alternative model, often called 3-sum’, is:

Definition 2. Given the 3 sets A, B and C each of N numbersctdstesther there are
three numbers & A; b e B; c € C, such thata + b =c.

There is a big cluster of problems in computatiogedmetry that are called 3-Sum
Hard. Gajentaan and Overmas [26] described thepnaddems that can be reduced to
the 3-Sum problem. The example is, for instand8eamBase problem: given points



on three equally spaced horizontal lines, are tpemets, one from each line, that are

collinear.

In classical computation the best currently knovgoathm for any 3-Sum Hard
problem takesO(N? Yime, while the best lower bound for the time ctewjty is Q
(NlogN), which is very low and unreachable. It is bel@veat 3-Sum lower bound is

the same as upper boun@(N? , sp 3-Sum hard problems in classical computation

sometimes callN*hard For some of 3-Sum hard proble$N?* loyver bound has

been proved.

6.3 Quantum algorithm for the 3-Sum problem

This section show algorithm and lower bound, thgiresented in [27].
In this algorithm we make use of quantum amplitadeplification method, which
generalizes Grover quantum search. Here is an @ssémmplitude amplification:

Theorem 20.
There exists the quantum algorithm QSearch withftlewing property. Let A be

any quantum algorithm that uses no measurements,leiny : Z —{01} be any
boolean function. Let a denote the initial sucqasdability of A of finding a solution

(i.e. the probability of outputting z such tha(z) = 1). Algorithm QSearch finds a

solution using an expected numberCMl/\/E) applications of A andA™ if a > 0,

and otherwise runs forever.

The algorithm QSearch does not need to know theevaf a in advance, but if a is

known, it can find a solution in worst-ca€g1/ \/5) applications.

Theorem 21.
There exists a quantum algorithm that solves 3-Buablem in O(NlogN).

Proof. The algorithm works as follows:

1. Sort set C classically, that takes O(NlogN) time

2. Construct an algorithm that can solve the problath small probability.

The algorithm takes an input of two random elememite from set A and the other
from set B and outputs whether these two elemeasts@anming up to some element
from C:

(a) Compute a+b, a A; b € B.



(b) Check whether a+b can be found in C. Ne@(sgN) time, because C is sorted.

3. Construct quantum superposition over all the|b) and use amplitude

amplification on that superposition with the alglom just described as a kernel.
Amplitude amplification method uses Grover algaritidea to speed up computation.
The maximum speedup it allows to get is quadrdtiour case, classically we must
repeat algorithm kernel ste@3(N® times. Amplitude amplification method allows
us to get the same result, using only O(N) steps.
So the total time the algorithm uses is O(NIogN).

There are several approaches for estimating losends for quantum algorithms.

Theorem 22. 3-Sum problem has quantum lower boéﬁ(&/ﬁ)

Proof. The proof is based on A. Ambainis adversary metsfquroving quantum

lower bounds. We use hiheorem 13.

That means, that we need to find all the variaonts the input x can be modified.

For our case, we’ll take X to contain only one ed@tn A consisting of all zeros; B -
all 1s, C - all 2s. It is an input, on which oundétion returns 0. Let Y contain all
inputs made of X, with one element in any of sefBAand C changed so, that the
function returns 1 (e.g., any element of A changed; any element of B - to 2; any
element of C - to 1). LeR < X xY consist of suchX xY pairs where vy differs
from x in exactly one position. According to thednem, m = 3N, because for every
X € X there are exactly 3N different & Y , which differs from x in exactly one
position. m’ = 1, because for everyeyY there is only one x X, which differs from

y in exactly one position. | = I' = 1 that follovilom our definition of R.

Using this formula we get a lower bouﬁb(«/3N )

Unfortunately, this method gives almost trivialuksn this case. The better idea was

to try the same method as in classical case.

6.4 Improved lower bound for 3-Sum problem
Classical lower bound(NlogN) follows from the technique of Dobkin and Lipton

[28] in the linear decision tree model. They obsedrthat the set of inputs following a

fixed computational path through a linear decidi@e is connected. Since the set of
nondegenerate inputs has8™ connected components, any linear decision tree must

have n®™ leaves and therefore must have de@tiiNlogN). As quantum algorithm



cannot give any speedup on a linear decision tweemust conclude, that quantum
lower bound for 3-Sum iQ (NlogN).

6.5 3-sum generalization

The most natural generalization of 3-Sum problertsis-Sum:
Definition 7. Given a set S of N numbers, detect whether there mumbers

in S which sum to zero.

Alternative definition called r-Sum’ is the follong:
Definition 8. Given r sets S..., $ of N numbers, detect whether there are r

numbers one from each set that sum to zero.

Similarly we can define the class of r-Sum Hardobems.

In deterministic case these problems have a lowent on(N log N) and
best known deterministic algorithm can solve tiseim problem irO(N”l’z)

when r is odd an(ﬂ)(N”2 Iog(r)) when r is even.

Theorem 23.

Quantum algorithm can solve r-Sum problerr()'fN [rra] log N) time.

Proof. We will further divide sets ..., S in two more groups of sets: First

group will contain x sets of data - let’s call th€h)..., G and the second will
contain remaining (r-x) sets of data - let’'s chétmn Q,..., Q.

The algorithm itself consists of two parts - classiand the quantum one.

First, we execute the classical part of the alpariand then execute the quantum part
of it.

Classical part of algorithm works as follows: w&kedasets G..., G and perform
following operations on them:

1. Make all the possible groups of elements piclang from each of sets;C., G
and sum them up. (Call this new set CSum)

2. Sort the summary set Csum

After classical part of algorithm finishes its wonle will get the sorted set of all the

possible element combinations in sets.C G. This will takeO(Nx log N) time.



Then starts the quantum part of the algorithm, tisais sets Q.., Q.x as well as the
set CSum. The quantum part of r-sum algorithm &b generalized

version of quantum 3-sum algorithm:

1. Construct the probabilistic algorithm that cardfthe solution of the problem
with a small probability. The algorithm will takevd steps: This algorithm

will randomly take one element from each of sefs.QQ. and

sum those elements. Then it will take the sum abthand search for it in
CSum sorted set.

The first algorithm step can be accomplished irstamt time that depends

only on r. The second algorithm part takggogN) time to search element

in sorted database. So the total running time ef&igorithm iso(logN).

However this algorithm will find the solution wiftrobability only N

2. To boost the probability of success we use aogsiamplification technique.

We prepare the starting quantum superpositi®ho,)Q,).|Q_,) and call the
amplitude amplification with algorithm from the pté embedded in it.

Then, afterO(N“‘x)’z) steps the algorithm will give an answer with hjgiobability
of success. So the running time of quantum paatgdrithm is

O(N (=2 10g N).

The total running time of this algorithm i@(ma>(NX logN, N2 |og N))

so we should minimize this function. This is theeahen x = (r-x)/2. So we

get the value of x = 1/3r and total algorithm rungntime O(N[”ﬂ log N).

Theorem 24. r-Sum problem has quantum lower boun(zl/ﬁ).

Proof. The proof is the same as for 3-Sum problem.



7 Real-time quantum Turing machine

Here we observe another model of computation cadlelitime Turing machine

7.1 Definitions
Here we’ll discuss some definitions that comparal re time Turing machine in

deterministic and quantum case. The first definitweas taken from Rabin [11] and
the second one is investigated by the author aatd@ésbased on Rabin and a common

pattern of quantum basic constructions (see mo@ruska [4]).

Definition 9.
Real - time deterministic Turing machine (TM) iset M = <3, 3., Q, &, &, I>,

where:

2~ finite alphabet (of input symbols), including $ois # and $;
2w — finite alphabet (work tape symbols), includizgnbol 4;

Q — set of states;

Jo— initial state;

g - final state;

{«,—,¥} — movements of the head (left, right, stop);

| — set of instructions. Instruction is a rek¥ 2,*Q — Q*2*{ «,—, J}.

First three symbols of the instruction are called left side, and the last four are the
right side. It may be one and the only one instounctvith the same left side in | for
every>* 2w (QYqo}).

Such a machine has one endless input tape andndiesg work tape with one head
moving on each tape. At the beginning machine thénstate gthe input tape head is
on the first symbol of the word from the left. Waikpe is empty and TM reads the
first symbol of the word from the input tape. Asecond step, it reads the second
symbol, then the third etc. After the last symbbltloe word the machine reads
symbols $.

Let it be the instruction of I: xyg~> gz—, where current state is ¢ Q, the machine

is reading symbol x . and the work tape head is observing symbel ¥,,.. Then
the machine moves to the staiergplacing the symbol y with z, and moves to the

right.



Real — time TM every moment reads a new symbol.mbment, when the symbol $
has been read, the work is finished.

Real - time TM accepts the word, if the work isigheed, the working tape contains
one symbol “1”, the rest of the tape is filled with” and the head observes the
symbol “1”. It rejects the word, if the work is fghed, the working tape contains one
symbol “0”, the rest of the tape is filled witi’*and the head observes the symbol
“0”. Real - time TM recognizes the language L imei t(x), if for every word xL
exists a set of instructions from I, that needs mote than t(x) steps to obtain the
result 1, and there isn’t any worek that a set of instructions from | for x leads to

the result 1.

—_

#010011&111111&100011&10000%

I~

Input tap:

Work tap
Fig. 3

The definition of real — time quantum Turing maahis a compilation of the quantum

Turing machine definition [10] and the real — tifgring machine [11].

Definition 10

Real - time quantum Turing machif@TM) is a set M = 2, 3,, Q, @, G, &>,

where:

2’ - finite alphabet (of input symbols), includingrgyols # and $;

2w — finite alphabet (work tape symbols), includiggbol 4,

Q — set of states;

(o— initial state;

g - final state;

transition amplitude mapping : Q* X * 3u* S *Q*{ «,—, v} — Co,17 Is required to
be such, that quantum evolution of M is unitaryaflimeans that quantum evolutions

of M can be defined as unitary matrices U, where* U and U* is a conjugate



transpose of U, i.e. the transposition of U andjagation of its elements, and | is the
unit matrix.

To be quantum Turing machine, it has to meet siedalell-formedness conditions
(see more about unitarity conditions in [4]):

Local probability condition.

zg’q’d|5(q1’011q,0-,d)|2 =1

Separability condition 1. For any two differentigac, o1 un @, o

za,q,d 5 (&, 0,,9,0,d)5(q,,0,,9,0,d) =0
Separability condition 2: For any two different paty, o1, dh un @, oz, th
Zo,’qé‘*(q ,0 ,0,0,,d,)6(q ,0 ,0,,0,,d,)=0

Separability condition 3: For anyigoi, o» Un @, o3, oz Un d <>d,

Zq5*(q1,01,q ,02,d1)5(q2,03,q,a4,d2) =0

Here o, g, d are the symbol, that is printed out on tr@lkmape, new state of the
QTM and the direction of the work tape head movérten—, ).

After each step the measurement is performed.elfréisult of the measurement is
neither positive nor negative, then the measuremderstn’t change the state of the
machine and the process goes on. As a result oindesurement, the word can be

accepted or rejected.

Such a machine has one endless input tape andndiesg work tape with one head
moving on each tape. At the beginning machine ihénstate gywork tape is empty,
and it reads the first symbol of the word from ithgut tape. As a second step, it reads
the second symbol, then the third etc. After tis¢ &ymbol of the word the machine

reads symbols $.
Let it bed: quyzq—>—>1/\/§, where current state is g Q, the machine is reading

symbol xe 2 and the head is observing symbot ¥',,. Then the machine moves to

the state g replacing the symbol y with z, and moves to tigatr Real — time QTM



every moment reads a new symbol. The moment, whesymbol $ has been read,
the work is finished and the measurement is madéewmde, whether the word
belongs to the language or not. Real - time QTMygeizes the language L with
amplitudeA (A > %), if M working on any word x with amplitude nkess tham

accepts x, if x L, and rejects x, if x L.



7.2 Deterministic versus Quantum real - time TM

We are going to show that real — time QTM with aertlimitations can be more
powerful than its classical counterpart. To prolattwe need to show a language,
that can be recognized by the first one, but cd® tecognized by the last one. That
gives us the following theorem.

Theorem 25.
The language L = {x&y&X"'&y""}, where x, y = {0,1}* can be recognized by a real

time QTM.

Proof. The idea is that the only way to comparehboaand X' and y and Y" is to
divide the computational process into brancheg, woak simultaneously.

The first step is to split the process into thrieges (see Matrix 1), one of which is
rejecting state g and g and g compare x and'X’ and y and " respectively.

Than the word belongs to the language L, if both ltlanches ;gand g say “yes”,
and doesn't, if any of the branches says “no”.

Qo — initial state;

{ga gt — @ set of accepting states;

{ar, g} — a set of rejecting states.

Q0 G ¢ q 0 9 G 4 g d, g 9,

11 o 0 o0 o o o o o0 o 1

0o — — —
g, NeEE NE
Matrix 1
All the other transitions of this matrix are arbity such that the matrix is unitary (see

more in [4]).

Then the first branch moves like that:

0. — reads x and writes it down to the work tape, mg\o the right;
gs— waits while y is read;

gs— reads X' and goes to the left the work tape, comparingdat;
07— waits while ¥ is read.



The second branch:

02— waits while x is read;

gs— reads y and writes it down to the work tape, mg\o the right;

ges— Waits while X' is read;

gs— reads §¥ and goes to the left the work tape, comparingdy .

If the branch finds the difference between x aliior y and ¥, then it goes to one

of the rejecting states. Otherwise after the syn®hdb read it goes to one of the

accepting states.

Here are all the matrices that describe the evanutf the QTM. Each matrix is

defined by two symbols in the upper left cornerclematrix describes the transitions,

where the first symbol is that one that is readanfithe input tape, and the second one

is read from the work tape. Symbal‘means, that it can be any symbol.
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If going backward the work tape (statesagd @) the symbol read from the work tape

doesn’t match the symbol read from the input t&pEM goes to the rejecting states

(see Matrix 2). Otherwise QTM doesn’t change iatest



Matrix 3

If going backward the work tape (statesagd @) the symbol read from the work tape

doesn’t match the symbol read from the input t&pEM goes to the rejecting states

(see Matrix 3). Otherwise QTM doesn’t change itdest
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Matrix 4

When the symbol ‘&’ is read from the input tapee tQTM changes its state (see
Matrix 4). That means, that the whole word has besd, and QTM is ready to
accept the next word. The branches switch fromimgito moving states and vice

versa.
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When the symbol ‘$’ is read from the input tapes tQTM finishes its work (see
Matrix 5). Then the working states;(gnd @) go to the accepting states. For all other
states it's impossible to read symbol ‘$’, so trsate changes are arbitrary to meet

unitarity criteria.

All the matrices, that don’t change the state ef @rI'M, look like Matrix 6 and are
not shown separately. That is, going backward tbhe&kwape, the symbol read from

the input tape matches the symbol read from thé vege.
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So if the word is from L, then both of the branckayg “yes” with probability 2/3;
If the word is not from L, then it is rejected bilaast one branch, and in total the

word is rejected with probability >= 2/3.

Theorem 26.

Language L = {x&y&<'&y"™"}, where x, y = {0,1}*, can’t be recognized by ale-

time deterministic Turing machine

Proof. Our proof is based on Rabin [11] and standarafsrm [29], [30], [31], and
uses the idea of bottleneck, though which infororatan’t flow fast enough.

We'll observe machine M, which recognizes L in redime. Number of states is m
and number of letters in work alphabet is n.

If w — input sequence, themork zonet(w) is the set of the cells of the tape, which
have been visited by the machine when input w wad.r

If x — sequence of cells or symbols, then I(Xength of x(number of elements).

If X — input sequence, therode of xis a sequence of symbols in the work zone t(x),

state of M and its position on the tape after x been read.



Lemma.

There is a constant ¢ > 0 such that for every X07}* and every integer i > 0 exists
y ={0,1}* such that I(y) = i and cKI(t(x&y)).

Proof. There is 2sequences y = {0,1}* such that I(y) = i. If ¥ Yy, then x&y and
x&y, must have different codes, otherwise both &¥*'&y," and
x&Yy-&x"*'&y 1" will be accepted by M.
Let I(t(x&Yy)) < k for all y, I(y) = i. Then there are no more ith& * k * m different
codes for input x&y. It means! 2 f** k * m. If i is large, then k is large too, so we
can assume km n* (we assume 2 n). So, 2< n*, and

%:E—ii <k.

1lin2 . : ,
We can take = 2inn This g will work for any i greater than somg for ¢ small
nn

enough lemma will work for every i.

Lemma 8.

There is an integer d>0 (which depends only on Mhsthat for every x and every
integer i>1(x) there is a sequence vy, I(y) =i, such that¢a<I(t(x&y)) and (b) no

more than 1/5 of the work zone t(x&y) cells aretedsby M more than d times.

Proof. We'll find the sequence vy, I(y) = i, where (a)tige. Let d be a number such
that more than 1/5 of t(x&y) cells are visited byrivbre than dtimes. Then number
of M steps is greater than*@L/5)*I(t(x&y)) > (1/5)* dici. But M is real — time, so the
number of M steps is exactly I(x) + I(y) +<12i. Then (1/5)* dci < 2i and d < 10/c.
So, d = [10/c +1] meets (b).

Let x, y = {0,1}*. Cell B € t(x&y) is called bottleneck celbf t(x&y), if (1) during
input x&y M passes through B no more then d timelsefe d is from Lemma 2), (2)
B is outside work zone t(x), (3) the length of the&y) segment, which is divided by

B and doesn’t contain t(x), is greater than I(x)+1.



Lemma9.

For every x there is y such that zone t(x&y) h&mtleneck cell.

Proof. Let i be a natural number, such that 5I(x) + 5 ard [(X) < i. By Lemma 2,
there is a sequence y such thakd(t(x&y)) and no more than 1/5 of work zone
t(x&y) cells are visited by M more than d times. Wet I(t(x)) < I(x) + 1 < ci/5<
I(t(x&y))/5. Dividing t(x&y) into five equal partswe can see, that either on the left,
or on the right end of t(x&y) there is a segmentlarigth (2/5)*I(t(x&y)), which
doesn’t contain t(x) cells. In this segment consit#® part of t(x&y), that doesn’t
contain the end of the zone. As less than 1/5x&hyf) cells are visited more than d
times, there is a cell B, that is situated in alested segment, that is visited by M no
more than d times. And finally, between B and thd ef t(x&y) there are at least
(2/5)*I(t(x&y)) > ci/5 > 1(x) + 1 cells. Thus, B is a bottlenecklcel

Let x, y be such, that zone t(x&y) has a bottleneek Let's assume, that B is to the
right of the zone t(x). When input word x&y is bginead, the machine comes to the
last cell E of the zone t(x&y) for the first timeet w € Z be the first segment of
sequence y, such that after input x&w machine M esmo E for the first time. Thus
t(x&y) and t(x&w) have the same last cell E andsBhe bottleneck cell for t(x&w) as
well.

Let the first cell to the right from B be R passage through Bvill be either

movement from B to R, or movement from R toNBachine state after passage

state, to which the machine comes after coming {@Rhe first case) or to B (the
second case). If the machine begins and finisheslkmentary operation in B, we
will not consider this as a passage through B.

Let p, p2, ...,  be sequential passages through Bmpans going from B to R, p-
from R to B and so on. Let M state during passade s 1< | <r. Theschemen B
isaset(es$s, ..., 5 Where e = 1, if B is to the right of t(x), or e% if B is to the
left of t(x), and g, S, ..., s are defined above.

The number of passages through B r is no moredhd@han there are no more than

N =2m + 2m + ... + 2nf different schemes in B, where m is number of stafd\.



Let g be a number such that N & Bor every x, I(x) = g let y be a sequence suelh th
t(x&y) has a bottleneck cell,Band let w be a segment of the input sequencéey, a
which the cell E is visited for the first time. Theemust be two different sequences x
Xz, I(X1) = 1(X2) = g, such that bottleneck cells;Band B, have the same schemes.
Let X&W1 = X1&E1 ... €n1 +.. €n2 -+-Enr -+- Enr+1y

X2aW2 = Xo& 01 ... Om1 ... Om2 ... Omr ... Omr+1,
wheree, & € {0, 1}, en1 — input symbol during first M passage through, B> — input
symbol during second M passage through Bnd so on. The same is &1, om2, ...
for the sequence&w . After inputenr+1 Or dmr+1 M Visits cell K or B, respectively.

In sequence @&w; replace for each odd4 | <r — 2 segment, , +1.&, ,with

sequenced, Om.,a- Then replaces, ,..&, with 5 O, - We'll call this new

mi1eOm. a1 Om
sequence §&w’ ;. We can notice, that all the alterations were madegment w\We
get, that x&w, andx,&w, have the same schemes i Bnd B, and our alterations
were made only in segments between passages thByugiwvhen M was to the right
of Bxy) or after the last passage through. Bo x&w’ 1 has the same scheme (1,5,

..., §) and for every input symba},;, where j is odd and 21 <r + 1, tape segment to
the right of By looks the same as the i&w,) tape segment to the right of.Bwith
input symboldny; , and M states are the same on the correspondmgs. Zones
t(xa&w’' 1) and t(x&w,) have bottleneck cells ;B8 and B, with the following
properties:

Zone t(x) is to the right from B, i=1,2;

The segments of zones i@w’ ;) and t(x&w,) which are situated to the right of,B
and B has the length greater thani)(x 1(x2) = g.

So, after input 3@&w’ ; and %&w, M is in the last cell G and B, tape segments
between B, and E; and betweeBy, and B, look the same, states of M in both cases
are the same.

Assume, that after both&w’ ; and %&w, there is input &xe,, and after that &w'ey
and &Wrey . AS X # Xp, then after ¥&w’ 1&X1ev M must not accept the word, no
matter what input will follow. But (&%) = g+1 is less, than the distance between
Ex and B, 1=1,2. As M is real — time and performs no mdrant 1 movement for
every input symbol, after input &%, it will remain to the right of B. So, M in both
cases starts working in the same state with theessmpe. And after input

X1&W' 1&X 1rev AN %&W 2&X 11ey Machine also in both cases will be in the samie,sta



and after reading &wey and &wsrey both of the sequences will be either accepted or

rejected. It's a contradiction.



8 Conclusion

Main purpose of this paper was to study differemargum computational models.

This work was based on the following publications:

1. Oksana Scegulnaja:
Quantum Real-Time Turing Machine.
Lecture Notes in Computer Science 2138 Springef 2002-415

2. Aija Bérzina, Andrej Dubrovsky, BsinS Freivalds, Lelde 4ce, Oksana
Scegulnaja: Quantum Query Complexity for Some GirRaqailems. Lecture
Notes in Computer Science 2932 Springer 2004, 154D-

3. Andrej Dubrovsky and Oksana Scegulnaja
Quantum algorithms and lower bounds for 3-Sum bl
ERATO Conference on Quantum Information Scienc320
September 4-6, 2003, Kyoto, Japan.

4. Andrej Dubrovsky, Oksana Scegulnaja-Dubrovska
Improved Quantum Lower Bounds for 3-Sum Problem.
Proceedings of Baltic DB&IS 2004, vol. 2, Riga, Latvia, pp.40-45.

5. RasinS Freivalds, Lelde d4ce, Oksana Scegulnaja-Dubrovska
“Two lower bounds for quantum query complexity” T8id
International conference on Quantum Communicatiteasurement and
Computing (QCMC), 28th November - 3rd Decembef&0

Tsukuba, Japan.

6. Andrej Dubrovsky and Oksana Schegulnaja-Dubrovska
Hopcroft's problem in quantum setup
The Ninth Workshop on Quantum Information Proceg$paris, January 16-
20, 2006



7. Lelde Lace, Oksana &&gunaja-Dubrovska. Nondeteministic and postselection
guantum query algorithms Proceedings of the 26@8national Conference
on Foundations of Computer Science (FCS'2008)0p-1D5.

8. Lelde Lace, Oksana&gunaja-Dubrovska, Bsins Freivalds.
Languages Recognizable by Quantum Finite Autométacumt-point O.
SOFSEM 2009, January 24-30, 2009, Spiridlévlyn, Czech Repubilic.

9. Oksana Scegulnaja-Dubrovska, Leldaé and RsinS Freivalds
Postselection finite quantum automata
9" international conference on Unconventional comparia Tokyo, Japan,
June 21-25, 2010.

10.Oksana Scegulnaja-Dubrovska, antsigS Freivalds
A context-free language not recognizable by postsiein finite quantum
automata.
MFCS 2010, August 22, 2010. Brno, Czech Republic.

The next promising task will be study quantum medselth postselection and its

properties.
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