
UNIVERSITY OF LATVIA 
 
 
 
 
 
 
 
 
 
 

ALINA VASIĻJEVA 
 
 
 

COMPLEXITY OF QUANTUM ALGORITHMS 

AND COMMUNICATION PROTOCOLS 
 
 
 
 

Doctoral Thesis 
 
 
 
 

Area: Computer Science 
Sub-Area: Mathematical Foundations of Computer Science 

 
 
 
 
 
 
 

Scientific Advisor: 
Dr. habil. math., Prof. 
Rūsiņš Mārtiņš Freivalds 

 
 
 
 
 

 

Riga 2011 



1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

This work has been supported by the European Social Fund 
within the project «Support for Doctoral Studies at University of Latvia». 



2 
 

Abstract 

 
Quantum computing is a method of computation based on the laws of 
quantum mechanics. This subfield of computer science aims to employ 
quantum mechanical effects for the efficient performance of 
computational tasks. The main research object of this thesis is the quantum 
query model. 

The aim of the present research study is to discover efficient quantum 
query algorithms for certain problems and to develop general techniques 
for designing algorithms. The study has produced several outcomes 
regarding different kinds of quantum algorithms: exact, bounded-error, 
and nondeterministic.  

In the first part of the thesis, exact and bounded-error quantum query 
algorithms for computing Boolean functions are presented. In the second 
part, a query model is applied for computing multivalued functions. The 
third part is devoted to nondeterministic query algorithms.  
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Anotācija 

 
Kvantu skaitļošana ir datorzinātnes apakšnozare, kas balstās uz kvantu 
mehānikas likumiem, kuru iespējas un priekšrocības tiek izmantotas, lai 
efektīvāk risinātu skaitļošanas uzdevumus. Galvenais darbā pētāmais 
objekts ir kvantu vaicājošo algoritmu modelis. 

Pētījuma galvenais mērķis ir efektīvo kvantu vaicājošo algoritmu atrašana 
konkrētām problēmām, kā arī vispārīgo algoritmu konstruēšanas metožu 
izstrādāšana. Ir iegūti rezultāti attiecībā uz dažādiem kvantu vaicājošo 
algoritmu tipiem,  kā eksaktais algoritms, algoritms ar kļūdas varbūtību un 
nedeterminētais algoritms. 

Promocijas darba pirmajā daļā ir apskatīti kvantu eksaktie algoritmi un 
kvantu algoritmi ar kļūdas varbūtību Būla funkciju rēķināšanai. Otrajā 
daļā vaicājošo algoritmu modelis ir pielietots daudzvērtīgu funkciju 
rēķināšanai. Trešā daļa ir veltīta nedeterminētiem vaicājošiem 
algoritmiem. 
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1 Introduction 

Quantum computing is a subfield of computer science based on the laws of quantum 
mechanics. It applies the quantum mechanical effects for more efficient solution of 
computational problems than in a classical way. This area of science unites disciplines 
such as physics, mathematics and computer science. In the scope of computer science and 
mathematics the theoretical aspects, the potential and the limitations of quantum 
computers are studied. At the same time, physicists are working on developing practical 
implementations of quantum computing devices. This branch of science is very topical 
because it is a proven fact that quantum computing can solve certain problems faster than 
classical computing. Quantum computing became very popular in the mid-1990s after 
Peter Shor presented the polynomial time integer factoring algorithm [1]. Another famous 
example is Grover’s search algorithm [2]. Although quantum computers are not yet 
available to everyone, many scientists all over the world are working to make them 
universally available in the future. The physical implementation is very complex; 
however, several quantum computer prototypes have been developed and are used to 
solve computational problems, e.g. [3], [4], [5]. Moreover, theoretical results in the field 
of quantum information processing are already successfully implemented in such areas as 
quantum cryptography [6], [7] and quantum teleportation [8], [9]. Several companies, for 
instance, IDQuantique (Geneva) [10], are already marketing commercial quantum key 
distribution systems. The D-Wave company even claims to offer commercial quantum 
computing systems [11]. Such rapid progress gives hope that sooner or later quantum 
computers will enter our everyday life in the same way as conventional computers did. 

Algorithm complexity theory is a sub-field of computer science investigating the 
complexity of computational problems. One of the main tasks in complexity theory is 
designing efficient algorithms. In this thesis, theoretical aspects of quantum complexity 
theory and the present results of designing quantum algorithms are considered. The main 
goal of the research is to develop new, fast and efficient quantum algorithms for solving 
specific computational problems, as well as to improve general construction techniques 
for algorithms. 

The main object of the research is the query model [12], a popular model of 
computation. In this model, the definition of the function f(X) is known, but input 

1 2( , ,..., )
N

X x x x= is hidden in a black box. Input values can be accessed only by 

querying the black box about xi values. In the process of computation, the query 
algorithm asks questions about variable values, receives answers from the black box, 
performs the computation, and finally produces the function value output. The goal is to 
develop a query algorithm that would compute the value of a certain function correctly 
for an arbitrary input. The complexity of a query algorithm is measured by the number of 
questions it asks based on worst-case input. This computational model is widely 
applicable in software engineering. For instance, a database can be considered a black 
box. To speed up application performance, the number of database queries must be 
reduced. Another application is evaluation of conditional Boolean statements in computer 
programs. 

The quantum query model differs from the quantum circuit model [13], and the 
algorithm construction techniques for this model are less developed. Although there is a 
large amount of lower and upper bound estimations of quantum query algorithm 
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complexity [14], [15], [16], [17], [18], [19] examples of non-trivial and original quantum 
query algorithms are relatively few. Moreover, there is no special technique described to 
build a quantum algorithm for an arbitrary function with complexity defined in advance. 
Some results describing the development of such techniques are published in [20]. The 
goal of this research is to find new approaches for quantum query algorithm design. 

Various types of query algorithms already exist and are actively studied. In the 
classical query model, there is a distinction among deterministic, randomized and 
nondeterministic query algorithms. The quantum query model has corresponding 
analogues, namely, exact, bounded-error and nondeterministic query algorithms. The 
goal of the present research is to study and analyze relations between different 
complexity measures, compare classical and quantum complexity of certain problems, 
and produce examples with a large separation between classical and quantum complexity. 

The thesis is structured as follows. 

In Chapter 2, the author provides the theoretical background and describes classical 
query algorithms, basics of quantum computing and the quantum query model. 

In Chapter 3, the author presents the results of designing quantum query algorithms for 
computing Boolean functions. Two different types of quantum query algorithms are 
examined: the exact, which outputs the correct result with certainty, and the bounded-
error, which outputs the correct result with some probability p >2/3. 

Summary of results: 
• Two basic exact quantum query algorithms are presented. The first algorithm 

computes the three-variable Boolean function with two queries, while classically 
three queries are required. The second algorithm computes the four-variable 
Boolean function with two queries, while classically four queries are required. 

• Exact quantum query algorithm transformation methods are introduced. These 
methods are helpful for enlarging the set of efficient exact algorithms. 

• Exact quantum query algorithm concatenation methods are formulated. The 
methods can be used for generating examples of N versus 2N gaps between 
quantum and classical query complexity of a function. 

• An exact quantum query algorithm for verification of repetition codes is 
developed. The algorithm complexity is N while classically 2N queries are 
required. 

• A method for constructing a bounded-error quantum query algorithm for 
conjunction 1 2f f f= ∧  using exact quantum query algorithms for sub-functions 

f1 and f2 is developed. The correct probability of a correct answer is p = 4/5 and 
the complexity is equal to the largest complexity of sub-algorithms: 

1 2max( ( ), ( ))E EQ f Q f . 

In Chapter 4, the author examines a more general type of a computational problem 
than Boolean functions and applies a query model to the computation of multivalued 
functions. In author’s opinion, this section contains the most interesting and important 
results. Three different approaches for computing multivalued functions in a query model 
are proposed and examples are demonstrated in which the quantum query complexity is 
lower than in the classical case. 
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The most significant complexity gaps that have been obtained are the following: 

• 
2 2

1 1( ) 2   versus  ( )GEN GEN

UD UDC M N Q M N= ≤  

• 
1 1

2 2( ) 3   versus  ( )GEN GEN

UD UDC M N Q M N≥ ≤  

• 
2 2

2 2( ) 1  versus  ( ) 1
2

GEN GEN

RD RD

N
C M Q M≥ + =  

• 
2

3( ) 6GEN
UDC M N=  versus 2

3( ) 2GEN
UDQ M N≤  

In Chapter 5, the author discusses a nondeterministic query model. In Section 5.1, the 
results of designing algorithms in a traditional nondeterministic query model are 
presented. In Section 5.2, the author proposes a new alternative model for 
nondeterministic computation. The elaborated model is demonstrated through an example 
of computing a specific Boolean function, for which the gap between deterministic and 
nondeterministic query complexity is demonstrated to be 7N versus O(3N).  

 
 

  



12 
 

2 Theoretical Background 

This section contains definitions and provides theoretical background on the subject of 
the thesis. First, the author describes the classical decision trees and shows the way of 
computation of a simple Boolean function according to this model. Next, an overview is 
provided on the basics of quantum computing. Finally, the author describes the quantum 
query model in detail. 

2.1 Classical Decision Trees 

The classical version of the query model is known as decision trees. The black box 
contains the input 1 2( ,  ,  ...,  )NX x x x=  and can be accessed by querying xi values. The 

algorithm must allow determination of the correct value of a function for an arbitrary 
input. The complexity of the algorithm is measured by the number of queries on the 
worst-case input. For more details, see the survey on decision tree complexity by 
Buhrman and de Wolf [12]. 

 

Fig. 2.1 Black-box mechanism of the query model 

There exist different types of query algorithms, each exhibiting a specific behavior and 
defining different conditions for an algorithm to produce the correct result. In the present 
study, the following algorithm types are examined: 

• deterministic; 
• probabilistic; 
• nondeterministic. 

Deterministic decision tree is a tree with internal nodes labeled with variables xi, 
arrows labeled with possible variable values and leafs labeled with function values. The 
deterministic decision tree always follows the same computational path for each input 
and produces correct result with probability p = 1. 

Definition 2.1 [12]. The deterministic complexity of a function f, denoted by D(f), is the 

maximum number of questions that must be asked on any input by a deterministic 

algorithm for f. 

Definition 2.2 [12]. The sensitivity ( )
x

s f  of f on input (x1,x2,…,xN) is the number of 

variables xi with the following property: f(x1,…,xi,…,xN) ≠ f(x1,…,1-xi,…,xN). The 

sensitivity of f is ( ) max ( )
x x

s f s f= . 

It has been proven that ( ) ( )D f s f≥  [12]. 
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Fig. 2.2 demonstrates a classical deterministic decision tree, computing Boolean 
function 3 1 2 3 1 2 1 3 2 3( , , ) ( ) ( ) ( )MAJORITY x x x x x x x x x= ∧ ∨ ∧ ∨ ∧ . In this figure, circles 

represent queries while rectangles represent the output values. It is evident that if values 
of first two queried variables are different the third query is required:

3 1 2 3( ( , , )) 3D MAJORITY x x x = . 

 

Fig. 2.2 Classical deterministic decision tree for computing 3 1 2 3( , , )MAJORITY x x x  

As in many other models of computation, the power of randomization can be added to 
decision trees [12]. A probabilistic decision tree may contain internal nodes with a 
probabilistic branching, i.e., multiple arrows exiting from the above node, each one 
labeled with a probability for algorithm to follow. The total sum of all probabilities 
assigned to arrows in a probabilistic branching is supposed not to exceed 1. The result of 
a probabilistic decision tree is not determined with certainty any more by the input X. 
Instead, there is a probability distribution over the set of leaves. The total probability to 
obtain a result {0,1}b ∈  after application of an algorithm on certain input X equals the 
sum of probabilities for each leaf labeled with b to be reached. The total probability of an 
algorithm to produce the correct result is the probability on the worst-case input. 

Fig. 2.3 demonstrates a classical probabilistic decision tree, which computes Boolean 
function 2 1 2 1 2( , )AND x x x x= ∧ . 

 

Fig. 2.3 Classical probabilistic decision tree for computing 2 1 2( , )AND x x  
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The nondeterministic decision tree differs from the deterministic one by an additional 
possibility that there can be more than one arrow labeled with the same value exiting 
each tree vertex. The interpretation of the nondeterministic computation is rather different 
from previously considered algorithm types. 

Definition 2.3 [21] The nondeterministic decision tree computes Boolean function f(X), 

if for an arbitrary input X it is true that: 

• if f(X)=1, then a path exists from the root to the leaf with result 1; 

• if f(X)=0, then a path exists from the root to the leaf with result 0; 

• there is no path from the tree root to the leaf with incorrect function value. 

Fig. 2.4 demonstrates a classical nondeterministic decision tree, which computes 
Boolean function 3 1 2 3 1 2 1 3 2 3( , , ) ( ) ( ) ( )MAJORITY x x x x x x x x x= ∧ ∨ ∧ ∨ ∧  with two 

queries. 

 

Fig. 2.4 Classical nondeterministic decision tree for computing 3 1 2 3( , , )MAJORITY x x x  

2.2 Quantum Computing 

The theory of quantum mechanics was developed during the first half of the 20th century 
by Niels Bohr, Werner Heisenberg, Max Planck and other distinguished scientists. The 
foundations of the quantum computing were established in 1982, when American 
physicist Richard Feynman [22] stated that attempts to simulate quantum mechanical 
systems on classical computers may lead to fundamental difficulties and complications, 
and suggested that these difficulties could be solved by building computers based on the 
principles of quantum mechanics. Later, in 1985, David Deutsch proposed a concrete 
computational model – the quantum Turing machine [23]. The theory of quantum 
computing became firmly established as a new and mature field of science only in the 
mid-1990s. For a long time it was unclear if it is possible to use the hypothetical power of 
quantum computer for solving practical problems more efficiently. Finally, in 1994, 
American mathematician Peter Shor presented his famous quantum algorithm for integer 
factorization [1]. The algorithm runs in polynomial time and its complexity is 

3((log ) )O n . This algorithm demonstrates an exponential gap between classical and 
quantum algorithm complexity. The next achievement in 1995 was Lov Grover’s 
algorithm for searching an unsorted database [2]. Algorithm searches an unsorted 

database with N entries in ( )O N  time, while classical complexity is O(N). Since then, 
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a number of quantum algorithms have been developed. It is worth to mention also 
algorithms based on quantum walks [24]. 

Shor’s and Grover’s algorithms are very fast; however, both algorithms are not exact 
and allow a certain error probability. The best known exact quantum query algorithm, 
always producing a correct result with probability p = 1, is an algorithm for XOR function 
[23], [25]. This algorithm uses N/2 queries to compute XOR of N bits, while classically N 
queries are required. It is a long-standing open question whether it is possible or not to 
build an exact quantum query algorithm for the total function, which would be more than 
twice faster than the best possible classical analogue. 

In the remainder of this section, the author briefly outlines the basic notions of 
quantum computing. For more details, see textbooks by Gruska [26], Nielsen and Chuang 
[13] as well as Kaye et al. [27]. 

The fundamental concept of classical computing is a bit – the basic unit of 
information. The memory of a classical computer is made up of bits, where each bit 
represents either 0 or 1. The quantum analogue of the classical bit is a qubit – a unit of 
quantum information. Qubit also has two physical computational basis states. In Dirac or 
bra-ket notation [13], quantum basis states are denoted by 0  and 1 . The main 

difference of qubit is that it can be in a superposition of the basis states. Formally, a pure 
qubit state is a linear combination of the basis states: 

10 βαψ += , 

where α  and β are complex numbers, which are called probability amplitudes of the 
basis states. So, the arbitrary quantum state can be represented in a two dimentional 

complex space 2�  as a unit vector ( )2 2
1α β+ = . When the qubit is measured in a 

standard basis, the probability of observing 0  is 
2

α , and the probability of observing 

1  is 
2

β . 

More generally, an n-dimensional quantum pure state is a unit vector in an n-

dimensional Hilbert space. Let 0 , 1 ,..., 1n −  be an orthonormal basis for n� . Then, 

any state can be expressed as 
1

0

n

ii
iψ α

−

=
=∑  for some iα ∈� . The norm of ψ  is 1: 

21

0
1

n

ii
α

−

=
=∑ . States 0 ,..., 1n −  are called basis states. Any state of the form 

1

0

n

ii
iα

−

=∑  is called a superposition of 0 ,..., 1n − . The coefficient iα  is called an 

amplitude of i .  

The state of a quantum system can be changed by applying the unitary transformation. 

The unitary transformation U is a linear transformation on n�  that maps vector of unit 
norm to another or the same vector of unit norm. Formally, unitary transformation is 

represented by a unitary matrix. A matrix U is a unitary matrix if and only if * 1U U −= , 

where *U  is the conjugate transpose of U , and 1U −  is the matrix inverse. The transpose 
of a matrix A is denoted by T

ij jiA A= . The tensor product of two matrices is denoted by

A B⊗ . 
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An important trait of the quantum system is that it is not possible to inspect the 
superposition, i.e. to figure out the values iα . This trait is disappointing in a sense, 

because on the one hand, the quantum system contains a large amount of information, but 
on the other hand, we are not able to observe and use this information in full. Limited 
information can be extracted from the quantum system by performing a measurement. 
There are various types of the quantum measurement; the quantum query model uses the 
simplest one – the full measurement in the computation basis. Performing this 
measurement on a state 0 10 ... 1n nψ α α −= + + −  produces the outcome i  with 

probability 2
iα . The measurement changes the state of the system to i  and destroys 

the original state ψ . It means that repeated measurement makes completely no sense, 

because state i  will be observed again with probability p = 1. 

2.3 Quantum Query Model 

The quantum query model is also known as the quantum black box model. This model is 
the quantum counterpart of decision trees and is intended for computing Boolean 
functions. For a detailed description, see surveys [12] and [16], textbooks by Kaye et al. 
[27], and de Wolf [14]. 

A quantum computation with T queries is a sequence of unitary transformations: 

0 0 1 1 1 1              , , , , ... , , ,T T TU Q U Q U Q U− −
. 

Ui's can be arbitrary unitary transformations not depending on input bits. Qi's are 

unitary query transformations. Computation starts in the initial state 0
�

. Then 

transformations U0, Q0,…, QT-1, UT  are applied and the final state measured. 

 Bra and ket notations [13] are used to describe state vectors and algorithm structure: 

Quantum algorithm computation process in bra notation: 0 0 10 ... T Tfinal U Q Q U−=
�

. 

Quantum algorithm computation process in ket notation: * * * *
1 0 0... 0T Tfinal U Q Q U−=

�
. 

The most important part of the model is the query. Every query has to correspond to a 
unitary transformation. There are many alternative ways to define a quantum query.  

Most traditional formalization of a query is the following [12]: query to an input 

1( ,..., ) {0,1}N
NX x x= ∈  is a unitary transformation O that maps , ,i b z  to , ,ii b x z⊕ . 

, ,i b z  is some m-qubit basis state, where i takes log N    bits, b is one bit, z denotes the 

( )log 1m N− −   -bit “workspace” of the quantum computer, which is not affected by the 

query, and ⊕  denotes XOR operation. 
In algorithms created by the present research study, a different definition of a query 

transformation is used: if the input is a state ii
iψ α=∑ , then the output is:  

( )
1

0

1
n

i
i i

i

i
ϕ

γ α
−

=

= −∑ , where 1{ ,..., ,0,1}i Nx xϕ ∈ . 
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In other words, for each query for each basis state i
 
a variable assignment 

i
ϕ  may be 

arbitrarily chosen. It is also allowed to skip the variable assignment for any particular 
basis state, i.e. to set 0

i
ϕ =  for i ; or inverse amplitude value sign by setting 1

i
ϕ =

 
for a 

particular i . Depending on the value of the assigned variable, the sign of the amplitude 

of the quantum basis state either changes to the opposite or remains unchanged. 

The query of the second type can be simulated by the query of the first type [14], [25]. 

Formally, any transformation has to be defined by a unitary matrix. The following is a 
matrix representation of a quantum black box query. 

( )

( )

( )

1

2

1 0 ... 0

0 1 ... 0

... ... ... ...

0 0 ... 1 m

Q

ϕ

ϕ

ϕ

 −
 
 −

=  
 
 

− 

 

After all query transformations Qi are applied (alternating with fixed intermediate 
unitary transformations Ui), the last remaining action is to extract the result value from 
the final quantum state. It is achieved by measuring this state and interpreting the basis 
quantum state observed after that. In fact, each quantum basis state corresponds to the 
algorithm's output. A value of a function is assigned to each basis state. The probability 
of obtaining the result {0,1}b ∈  after applying an algorithm on input X equals the sum of 
squared moduli of all amplitudes, which correspond to outputs with value b. 

Quantum query algorithms can be conveniently represented in diagrams, and this 
approach is used throughout the thesis. Fig. 2.5 demonstrates a graphical representation 
of an algorithm in a general form. 

 

Fig. 2.5 Graphical representation of a quantum query algorithm 
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The most important characteristics of the graphical representation applied, is that each 

horizontal line corresponds to the amplitude of the quantum basis state, not to a qubit. 
So, if the quantum system consists of K qubits, there are 2K horizontal lines on the 
diagram. The large rectangles represent the fixed unitary transformations. The vertical 
layers of the circles specify assignment of variables to basis states during a query. 
Finally, small squares at the end of each horizontal line define assigned function value for 
each basis state. 

Like in a classical query model, also here various types of quantum query algorithms 
exist. In the scope of this thesis, the main interest lies in exact, bounded-error and 
nondeterministic algorithm types. 

Definition 2.4 [12]. A quantum query algorithm computes f exactly if the output equals 

f(X) with a probability 1p = , for all {0,1}N
X ∈ . Complexity is equal to the number of 

queries and is denoted by QE(f). 

Definition 2.5 [12]. A quantum query algorithm computes f with bounded-error if the 

output equals f(X) with probability 2 / 3p > , for all {0,1}nX ∈ . Complexity is equal to the 

number of queries and is denoted by Qp(f). 

The notion of nondeterministic query algorithm is defined and discussed in detail in 
Section 5.1. 

2.4 Quantum Query Algorithm for XOR Function 

In this section, the author presents the simplest and at the same time the best-known exact 
quantum query algorithm to demonstrate the quantum query model in action1. This is an 
algorithm for computing the following Boolean function: 

1 2 1 2 1 2( , ,..., ) ... ... (mod 2)N N N NXOR x x x x x x x x x= ⊕ ⊕ ⊕ = + + + . 

The original quantum algorithm has been developed by Deutsch in 1985 [23], and later 
improved [25]. To compute the value of this function, the quantum query algorithm uses 
two times less queries than the best possible classical algorithm. 

Let us first consider the simplest case of two variables. The algorithm is presented in 

Fig. 2.6.  H2 is 2 2×  Hadamard transform: 2

1   11

1 12
H

 
=  

− 
. 

 

Fig. 2.6 Exact quantum query algorithm for computing XOR2(x1,x2) with one query 

                                                 
1 Exact quantum algorithm with complexity QE(f) < D(f)/2 is not yet discovered for a total Boolean function. For partial 
Boolean functions (promise problems) this limitation can be exceeded. An excellent example is the Deutsch-Jozsa 
algorithm [28], [25]. 
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The computation starts with the initial state ( )0 1,0
T

=
�

. Then, this vector is 

sequentially multiplied by the following matrices: 

2

1   11

1 12
H

 
=  

−    

1

2

( 1) 0

0 ( 1)

x

x
Q

 −
=   −    

2

1   11

1 12
H

 
=  

− 
 

Finally, the measurement is performed on the final state. 
Algorithm computation process for each input vector is presented in Table 2.1. 

Table 2.1 Quantum query algorithm computation process for XOR2 

X State after 2 0H
�

 State after 2 0QH
�

 State after 2 2 0H QH
�

 XOR2(X) 

00 
1 1

,
2 2

T
 
 
 

 
1 1

,
2 2

T
 
 
 

 (1,0)T  0 

01 
1 1

,
2 2

T
 
 
 

 
1 1

,
2 2

T
 

− 
 

 (0,1)T  1 

10 
1 1

,
2 2

T
 
 
 

 
1 1

,
2 2

T
 

− 
 

 (0, 1)T−  1 

11 
1 1

,
2 2

T
 
 
 

 
1 1

,
2 2

T
 

− − 
 

 ( 1,0)T−  0 

 
In the case of N variables, more sequential queries are carried out. A pair of variables 

is queried in each query, so the total number of queries is N/2. Algorithm is presented in 
Fig. 2.7. After all queries, the sign of the first amplitude is “+” only if among the first 
half of variables there is an even number of “1”. The same is true for the second 
amplitude and the second half of variables. Amplitude signs are equal if the total number 
of “1” is even. Only in this case after the second Hadamard transform and the 
measurement quantum system collapses to “0”. 
 

 

Fig. 2.7 Exact quantum algorithm for computing XORN(X) with N/2 queries (N = 2k) 
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3 Quantum Query Algorithms for Boolean Functions 

In this chapter, the author discusses the design and complexity of the quantum query 
algorithms for computing total functions. 

The quantum query algorithm construction is a complicated problem. Although there 
is a large number of lower and upper bound estimations of quantum algorithm 
complexity available [14], [16], [15], [17] examples of non-trivial and original quantum 
query algorithms are relatively rare. Moreover, there are no special techniques for 
building a quantum algorithm for an arbitrary function with pre-defined complexity. 

It is a rather complicated task to construct an efficient query algorithm for an arbitrary 
function. Difficulties arise even on attempts to develop a quantum algorithm saving just 
one query comparing to the classical one, for example, for the following finite functions: 

( ) ( )4 1 2 3 4 1 2 3 4( , , , )F x x x x x x x x= ¬ ⊕ ∧ ¬ ⊕ , 

6 1 2 2 3 4 5 5 6( ) ( ( ) ( )) ( ( ) ( ))F X x x x x x x x x= ¬ ⊕ ∧ ¬ ⊕ ∧ ¬ ⊕ ∧ ¬ ⊕ , 

or  

10 1 2 3 1 2 4 1 3 4 2 3 4( ) ( ) ( ) ( ) ( )F X f f f f f f f f f f f f= ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧  where 

1 1 2 3 4 2 5 6 3 7 8 8 9 4 10( ) ( );   ;   ( ) ( );   f x x x x f x x f x x x x f x= ⊕ ∨ ⊕ = ⊕ = ¬ ⊕ ∧ ¬ ⊕ = ¬ . 

Boolean functions are widely applied in the real life processes therefore the capacity of 
building a quantum algorithm for an arbitrary function appears to be extremely important. 
While working on common techniques how to achieve the above, the author was trying to 
collect examples of efficient quantum algorithms for building a base for powerful 
computation using the advantages of the quantum computer. 

In this section, the results of designing different types of quantum query algorithms are 
presented. In Section 3.1, the author examines the exact quantum query algorithms. 
Section 3.2 is devoted to bounded-error quantum query algorithms.   

3.1 Exact Quantum Query Algorithms 

This section is based on the papers 

• A. Dubrovska, T. Mischenko-Slatenkova. Computing Boolean Functions: Exact 
Quantum Query Algorithms and Low Degree Polynomials. Proc. of SOFSEM 2006, 

Student Research Forum; MatFyz Press; ISBN 80-903298-4-5; pp. 91-100, 2006 

• A. Dubrovska. Quantum Query Algorithms for Certain Functions and General 
Algorithm Construction Techniques. Quantum Information and Computation V, 
Proc. of SPIE Vol. 6573 (SPIE, Bellingham, WA) Article 65730F, 2007 

• Vasilieva. Exact Quantum Query Algorithm for Error Detection Code Verification.  
Proc. of the Fifth Doctoral Workshop on Mathematical and Engineering Methods 

in Computer Science (MEMICS), ISBN 978-80-87342-04-6, pp. 200-207, 2009 
 

In this section, the designing methods and complexity of the exact quantum query 
algorithm are discussed. Exact algorithms always produce a correct answer with 
probability p = 1. The error probability in algorithms of this kind is not allowed, the said 
limitation significantly complicating the design of the above algorithms. There are a 
significant number of efficient quantum algorithms with an error probability already 
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developed. Applying those, the quantum algorithm speedup comparing to the classical 
case is known to be quadratic [2] or even exponential [1]. However, in certain types of 
computer software, we cannot allow even a small probability of error, for example, in 
spacecraft, aircraft, or medical software. For this reason, the development of exact 
algorithms is very important. By contrast with non-exact algorithms, the largest known 
complexity separation between the quantum exact and classical deterministic algorithm is 
only N versus 2N for XOR function.  

Another category of exact quantum algorithms are algorithms for promise problems 
[28], [29]. In such problems, the domain of the function is restricted, i.e. input is 
promised to belong to a subset of all possible inputs. We are not interested in behavior of 
the algorithm outside this restriction. For promise problems, quantum versus classical 
separation is known to be exponential (for instance, Deutsch-Jozsa algorithm [28], [25]). 
Examples of exact quantum query algorithms for promise problems can be found in [30].  

A long standing open question is whether it is possible to achieve a larger gap between 
quantum exact and classical deterministic query complexity of a total function with no 
error allowed. The conjecture about relation between complexity measures is the 
following:  

( )
( )

2E

D f
Q f ≥ . 

Many authors have worked to either prove or refute this conjecture. This problem has 
been considered, for instance, in doctoral theses [31], [32]. Examples of a borderline gap 
of N versus 2N have been presented the above theses, but still nobody has been able to 
improve this result. Examples of exact quantum query algorithms can be found also in 
[33]. 

Also in the present thesis, a larger complexity separation for a total Boolean function 
has not been obtained 2. The contribution of the author consists of: 

• new examples of N versus 2N complexity separation; 
• techniques for enlarging a set of efficiently computable Boolean functions; 
• methods for generating algorithms producing instances of N versus 2N 

complexity separations. 

In the first subsection, the author presents two basic exact quantum query algorithms, 
used as a base for algorithm transformation and designing methods throughout the thesis. 
In the second subsection, the author introduces a classification of exact quantum query 
algorithms. Subsequently, quantum algorithm transformation methods are presented, 
useful for extending a set of Boolean functions efficiently computable in the quantum 
query model. Furthermore, an exact quantum query algorithm for specific problem using 
N queries as opposed to the classical 2N queries is presented. Finally, the author describes 
a universal technique for obtaining functions and algorithms with a gap of N versus 2N 
between the quantum and the classical query complexity. 

                                                 
2 In Chapter 4, computing of multivalued functions is examined. The model has different settings, but interesting 

complexity gaps (namely, N versus 3N) are achieved when computing multivalued functions in it. 
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3.1.1 Basic Exact Quantum Query Algorithms 

The author starts with exact quantum query algorithms for two simple problems of a 
finite input size. The first algorithm computes the three-argument while the second one 
computes four-argument Boolean function. Both algorithms are interesting: firstly, 
because they are better suited than the best possible classical algorithms. Secondly, 
algorithms satisfy specific properties, making them useful for computing more complex 
Boolean functions. In further sections, these algorithms are used as a base for building 
advanced algorithms. 

To avoid misunderstanding in notation, at the very beginning of thesis, basic quantum 
algorithms are presented in a very detailed form. 

To simplify calculations in the process of algorithm development and debugging, i.e. 
to automate the verification process, the author developed a simple program using 
Wolfram Mathematica software [34]. The program code for the first example is available 
in Appendix 1. A tool of this kind can also be used for generation of quantum algorithms. 

3.1.1.1 First Basic Exact Algorithm: QE(f) = 2 versus D(f) = 3 

The first example is a quantum query algorithm for a three-variable Boolean function 
saving one query in comparison with the best possible classical deterministic algorithm. 

Problem: Check if all input variable values are equal. 

A potential real life application is, for instance, an automated voting system, where the 
statement is automatically approved only if all participants have equally voted for 
acceptance/rejection. The author provides solution for a three-party voting routine. The 
author reduces the problem to computing the following Boolean function defined by the 
logical formula: 

3 1 2 2 3( ) ( ) ( )EQUALITY X x x x x= ¬ ⊕ ∧ ¬ ⊕ . 

Deterministic complexity: D(EQUALITY3) = 3, by sensitivity on any accepting input, 
for instance, on X = 000. Change of any bit inverses the function value, so it is necessary 
to query all variables. 

Quantum Algorithm 1. An exact quantum query algorithm for EQUALITY3 is 
presented in Fig. 3.1. Horizontal lines correspond to the amplitudes of the quantum basis 
states 00 , 01 , 10 , 11 . It is assumed that calculations will be performed in bra 

notation: 

0 0 1 1 20final U Q U Q U= ⋅ ⋅ ⋅ ⋅ ⋅
�

. 

 The computation starts with an initial state ( )0 1,0,0,0=
�

. Three large rectangles 

correspond to the 4 4×  unitary matrices U0, U1 and U2. Two vertical layers of circles 
specify the queried variable order for queries Q0 and Q1. Finally, four small squares at the 
end of each horizontal line define the assigned function value for each output. 
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Fig. 3.1 Exact quantum query algorithm with two queries for EQUALITY3 

For illustration, the author demonstrates the full computation process for rejecting 
input X = 011:   

ψ = ( ) 0 1 1 2

1/ 2 1 / 2 1 / 2 1 / 2

1 / 2 1 / 2 1 / 2 1 / 2
1,0,0,0

1 / 2 1 / 2 1 / 2 1 / 2

1 / 2 1 / 2 1 / 2 1 / 2

Q U Q U

 
 

− − 
 − −
 

− − 

= 

=

( )

( )

( )

( )

1

2

1 1 21

2

1 0 0 0

0 1 0 01 1 1 1
, , ,

2 2 2 2 0 0 1 0

0 0 0 1

X

X

X

X

U Q U

 −
 
 − 
  

  −
 
 − 

= 

= 1 2

1 0 0 0

1 1
0 0

1 1 1 1 2 2
, , ,

1 12 2 2 2
0 0

2 2
0 0 0 1

Q U

 
 
 
  

− −  
  −
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=

( )

( )

( )

( )
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1

22

3

1 0 0 0

0 1 0 01 1 1
,0, ,

2 22 0 0 1 0

0 0 0 1

X

X

X

X

U

 −
 
 − 

− −   
  −

 
 − 

= 

=

1/ 2 1 / 2 1 / 2 1 / 2

1 1
0 0

1 1 1 2 2
,0, ,

1 12 22 0 0
2 2

1/ 2 1 / 2 1 / 2 1 / 2

 
 
 −
  

−  
  −

 
 − − 

= 
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The computational process for each function input is presented in detail in Appendix 
2. The result always equals EQUALITY3 value with probability p = 1. 

3.1.1.2 Second Basic Exact Algorithm: QE(f) = 2 versus D(f) = 4 

Subsequently, the author presents quantum query algorithm for the computational 
problem of comparing elements of a binary string. 

Problem:  For a binary string of length 2k check if elements are equal by pairs: 

1 2 3 4 5 6 2 1 2 ...
k k

x x x x x x x x−= ∧ = ∧ = ∧ ∧ =  

The author presents an algorithm for a string of length four. The problem is reduced to 
computing the Boolean function of four variables. The Boolean function can be 
represented by the formula: 

( ) ( )4 1 2 3 4 1 2 3 4_ ( , , , )PAIR EQUALITY x x x x x x x x= ¬ ⊕ ∧ ¬ ⊕ . 

Deterministic complexity: D(PAIR_EQUALITY4)=4, by sensitivity on any accepting 
input. 

Quantum Algorithm 2. An exact quantum query algorithm for PAIR_EQUALITY4 is 
presented in Fig. 3.2. 

 

Fig. 3.2 Exact quantum query algorithm with two queries for PAIR_EQUALITY4 

The computational process for each function input is presented in detail in Appendix 3. 

3.1.2 Exact Quantum Query Algorithm Classification 

In this subsection, a quantum query algorithm classification is introduced. The 
classification is required because some of the algorithm transformation and construction 
methods presented further are applicable only to algorithm instances from specific 
classes. The classification is based on the properties of an amplitude distribution in the 
final algorithm state. 

Definition 3.1. An exact quantum query algorithm belongs to Class 1 if and only if for 

any input, the quantum system state before measurement is the following:  for exactly one 

amplitude value iα  it’s true that 
2

1iα = . For other amplitudes it’s true that 
2

0jα = , 

for j i∀ ≠ . 

XORN, EQUALITY3 and PAIR_EQUALITY4 algorithms all belong to Class 1. 
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Definition 3.2. An exact quantum query algorithm belongs to Class 2+ if and only if  

• there is exactly one accepting basic state;  

• upon any input for its amplitude α ∈�  only two values are possible before the 

final measurement: either 0α =  or 1α = . 

EQUALITY3 algorithm belongs to Class 2+, while XORN and PAIR_EQUALITY4 
algorithms do not belong to this class. 

Definition 3.3. An exact quantum query algorithm belongs to Class 2- if and only if  

• there is exactly one accepting basic state;  
• upon any input for its amplitude α ∈�  only two values are possible before the 

final measurement: either 0α = or 1α = − . 

Lemma 3.1 Any algorithm belonging to Class 2- can be transformed into an algorithm 

belonging to Class 2+ by applying an additional unitary transformation. 

Proof. Let us assume there is a quantum query algorithm belonging to Class 2- and k is 
the number of accepting basis state. To transform the algorithm to Class 2+ instance the 
following quantum gate has to be added as the last algorithm step:  

0,   if       

( ) 1,   if  

1,   if   
ij

i j

U u i j k

i j k

≠


= = = ≠
− = =  

□ 

Definition 3.4. An exact quantum query algorithm belongs to Class 3 if and only if 

• it belongs to Class 1;  

• there is exactly one accepting basic state;  

• upon any input the amplitude value of accepting state before measurement is 

{ 1,0,1}α ∈ − .  

XORN, EQUALITY3 and PAIR_EQUALITY4 algorithms all belong to Class 3. 
 

 

Fig. 3.3 Visualization of exact quantum query algorithm classes 
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3.1.2.1 Constructing Algorithms from Class 2+ 

In this subsection, an approach for designing algorithms of Class 2+ is presented. 
Algorithms of this type will be required for a method of computing conjunctions 1 2f f∧  

in Section 3.2.1.4. 
Given an arbitrary classical deterministic decision tree, it is possible to convert it into 

an exact quantum query algorithm which uses the same number of queries.  
A classical query to the black box can be simulated with a quantum query algorithm 

construction presented in Fig. 3.4. 

 

Fig. 3.4 Quantum query algorithm construction for simulating a classical query 

After the second Hadamard gate the quantum state ( )1,0
T

 is obtained if x = 0, the state 

( )0,1
T

 is obtained if x = 1. Then, querying other variables may be continued by logically 

splitting the algorithm flow into two separate parallel threads, etc. Algorithm 
constructions from Fig. 3.4 are simply concatenated one by one. 

Subsequently, a complete example of converting a classical decision tree for 
computing 1 2( , )AND x x  into an exact quantum query algorithm is demonstrated. Fig. 3.5 

shows a classical decision tree. Fig. 3.6 shows the corresponding exact quantum query 
algorithm. 

 

 

Fig. 3.5 A classical deterministic decision tree for 1 2( , )AND x x  

It should be noted that, although such conversion is possible, it is not optimal. For 
instance, it is well known that XOR can be computed in a quantum model using 50% less 
queries than required in a classical model.  
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Fig. 3.6 An exact quantum query algorithm for computing 1 2( , )AND x x   

Theorem 3.1 A set of exact quantum query algorithms satisfying the condition of Class 

2+ is infinite. 

Proof. Any deterministic decision tree having exactly one leaf with the output value “1” 
obviously might be converted into an algorithm of the class Class 2+.          □ 

3.1.3 Algorithm Transformation Methods 

In this subsection, quantum query algorithm transformation methods are introduced 
useful for enlarging a set of exactly computable Boolean functions. Each method receives 
an exact quantum query algorithm on input, processes it according to the rules producing 
as the result a slightly different exact algorithm computing another function. 

3.1.3.1 Output Value Assignment Inversion 

The first method is the simplest one. To transform an original algorithm, the assigned 
function value for each output has to be changed to the opposite. The method is described 
in Table 3.1. 
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Table 3.1 Description of the first transformation method 

First transformation method - Output value assignment inversion 

Input. An arbitrary exact quantum query algorithm that computes f(X). 

Transformation actions.  

• For each algorithm output change assigned function value to opposite. 

If original assignment was 1( 0 ,..., )mQM R m R= → → , where {0,1}iR ∈ ,  

then it is transformed to
 

1' ( 0 ,..., )mQM R m R= → → , where 1i iR R= − . 

Output. An exact quantum query algorithm that computes ( )f X . 

3.1.3.2 Output Value Assignment Permutation 

The next method is applicable only to exact quantum query algorithms with specific 
properties. The method is described in Table 3.2. 

Table 3.2 Description of the second transformation method 

Second transformation method  - Output value assignment permutation 

Input.  

• An exact quantum query algorithm that belongs to Class 1 and computes f(X). 

• Permutation σ  of the set 1 2{ , ,..., }mOutputValues R R R= . 

Transformation actions.  

• Permute function values assigned to outputs in order specified byσ . 
If original assignment was 1( 0 ,..., )mQM R m R= → → , where {0,1}iR ∈ , 

then it is transformed to 1 1' ( ( ),..., ( ))m mQM R Rα σ α σ= → → . 

Output. An exact quantum query algorithm for different function g(X). 

 
Application of the above method does not break the exactness of the quantum query 

algorithm because of the terms of Class 1 non-zero amplitude value is invariably 
obtained in exactly one output before the measurement. Since the function value is 
clearly specified for each output, the specific value will always be observed with 
probability p = 1 for any input.  

The structure of new function g(X) strictly depends on the internal properties of the 
original algorithm. To explicitly define new function it is necessary to examine the 
original algorithm behavior on each input and construct the truth table for the new output 
value assignment. 

The application of this method to the basic algorithm for computing function 
EQUALITY3 is illustrated in Fig. 3.7. 
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Fig. 3.7 Application of the second transformation method to EQUALITY3 algorithm 

3.1.3.3 Permutation of Query Variables  

Let us assume σ  is a permutation of the set {1,2,..., }N , where elements correspond to 
variable numbers. The function g(X) is obtained by permutation of f(X) variables if: 

( )(1) (2) ( )( ) , ,..., Ng X f x x xσ σ σ= . 

For example, function ( ) ( )4 1 2 3 4_ ( )PAIR EQUALITY X x x x x= ¬ ⊕ ∧ ¬ ⊕  is taken as a 

base and permutation 
1 2 3 4

2 4 1 3
σ

 
=  
 

 is applied to its definition. As a result, a slightly 

different function is obtained: 

4 4 2 4 1 3 2 4 1 3( ) _ ( , , , ) ( ) ( )G X PAIR EQUALITY x x x x x x x x= = ¬ ⊕ ∧ ¬ ⊕ . 

In the third transformation method, the idea of variable permutation is applied to the 
quantum query algorithm definition. Applying the third transformation method described 
in Table 3.3, variable values influence the new algorithm process according to the order 
specified by a permutationσ , and thus the algorithm computes g(X) instead of f(X). 
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Table 3.3 Description of the third transformation method 

Third transformation method – Permutation of query variables 

Input.  

• An arbitrary exact quantum query algorithm that computes f(X). 
• The permutation σ of variable numbers {0,1,..., }VarNum N= . 

Transformation actions.  

• Apply permutation of variable numbers σ  to all query transformations. 

If original i-th query is defined as 

1( 1) ... 0

... ... ...

0 ... ( 1)

k

km

x

i

x

Q

 
− 

 =
 
 − 

,  

then it is transformed to 

( )1

( )

( 1) ... 0

... ... ...

0 ... ( 1)

k

km

x

i

x

Q

σ

σ

 
− 

 =
 
 − 

,  

where {1,.., }ik N∈ . 

Output. An exact quantum query algorithm computing a function: 

( )(1) (2) ( )( ) , ,..., Ng X f x x xσ σ σ= . 

 

3.1.3.4 Results of Applying Transformation Methods to Basic Algorithms 

Subsequently, the author demonstrates the transformation methods’ application results for 
the basic exact algorithms from Section 3.1.1.  

Using the algorithm for EQUALITY3 function as a base it is possible to obtain a set of 
three-argument Boolean functions (denoted by QFunc3), where for each function there is 
an exact quantum query algorithm, which computes it with two queries. Algorithms for 
computing different functions are produced using the first and the second transformation 
methods. The third method (permutation of variables) does not produce algorithms for 
new functions, because all variables have identical roles in the definition of EQUALITY3. 
In total, eight different functions are obtained: 3 8QFunc = . Functions are presented in 

Table 3.4. 
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Table 3.4. Results of applying transformation methods to EQUALITY3 algorithm       
(the set QFunc3) 

X 
EQUALITY 

Output value assignment 
permutation 

Output value assignment inversion 

(1,0,0,0) (0,1,0,0) (0,0,1,0) (0,0,0,1) (0,1,1,1) (1,0,1,1) (1,1,0,1) (1,1,1,0) 

000 1 0 0 0 0 1 1 1 
001 0 0 0 1 1 1 1 0 
010 0 0 1 0 1 1 0 1 
011 0 1 0 0 1 0 1 1 
100 0 1 0 0 1 0 1 1 
101 0 0 1 0 1 1 0 1 
110 0 0 0 1 1 1 1 0 
111 1 0 0 0 0 1 1 1 
D(f) 3 3 3 3 3 3 3 2 

QE(f) 2 2 2 2 2 2 2 2 

 
Using the algorithm for PAIR_EQUALITY4 function it is possible to obtain a set of 

four-argument Boolean functions (denoted by QFunc4), where for each function there is 
an exact quantum query algorithm which computes it with two queries. This time, 
application of all three methods produces different functions. In total, 24 different 
functions are obtained: 4 24QFunc = . A half of QFunc4 set (generated by application of 

the second and third methods) is presented in Table 3.5. 

Proposed quantum query algorithm transformation methods are useful for enlarging a 
set of efficient quantum algorithms. Transformation methods can be applied to every new 
exact quantum query algorithm, thus constructing a larger set of efficiently computable 
Boolean functions. Moreover, exact algorithms obtained this way further can be used as 
building blocks for more complex algorithms (see next sections). 
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Table 3.5. Results of applying transformation methods to PAIR_EQUALITY4 algorithm 
(half of the set QFunc4) 

X 

PAIR 

EQUALITY 
2nd method 

3rd method &  
2nd method 

1234

1324VarNumσ
 

=  
 

 

3rd method &  
2nd method 

1234

3124VarNumσ
 

=  
 

 

1

0

0

0

 
 
 
 
 
 
 

 
0

1

0

0

 
 
 
 
 
 
 

 
0

0

1

0

 
 
 
 
 
 
 

 
0

0

0

1

 
 
 
 
 
 
 

 
1

0

0

0

 
 
 
 
 
 
 

 
0

1

0

0

 
 
 
 
 
 
 

 
0

0

1
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0

0

0

1

 
 
 
 
 
 
 

 
1

0

0

0

 
 
 
 
 
 
 

 
0
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0000 1 0 0 0 0 0 0 1 1 0 0 0 
0001 0 1 0 0 0 1 0 0 0 1 0 0 
0010 0 0 1 0 0 1 0 0 0 0 1 0 
0011 0 0 0 1 0 0 0 1 0 0 0 1 

0100 0 1 0 0 0 0 1 0 0 0 1 0 
0101 1 0 0 0 1 0 0 0 0 0 0 1 

0110 0 0 0 1 1 0 0 0 1 0 0 0 
0111 0 0 1 0 0 0 1 0 0 1 0 0 
1000 0 0 1 0 0 0 1 0 0 1 0 0 
1001 0 0 0 1 1 0 0 0 1 0 0 0 
1010 1 0 0 0 1 0 0 0 0 0 0 1 

1011 0 1 0 0 0 0 1 0 0 0 1 0 
1100 0 0 0 1 0 0 0 1 0 0 0 1 

1101 0 0 1 0 0 1 0 0 0 0 1 0 
1110 0 1 0 0 0 1 0 0 0 1 0 0 
1111 1 0 0 0 0 0 0 1 1 0 0 0 
D(f) 4 4 4 4 4 4 4 4 4 4 4 4 
QE(f) 2 2 2 2 2 2 2 2 2 2 2 2 
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3.1.4 Exact Quantum Query Algorithm for Verifying Repetition Code 

In this subsection, the author examines a specific problem: the verification of the 
codeword encoded by the repetition code for error detection. First, repetition codes are 
introduced and a Boolean function is defined for their verification. Secondly, the author 
shows that classically, for an N-bit message, values of all N variables must be queried in 
order to detect an error. Finally, an exact quantum query algorithm for N-bit codeword 
verification is presented that uses only N/2 queries to the black box. 

3.1.4.1 Error Detection and Repetition Codes 

In this subsection, a problem related to information transmission across a communication 
channel is investigated. The bit message is transmitted from a sender to a receiver. Over 
the transmission process, the information may be corrupted. Because of the noise in the 
channel or adversary intervention, some bits may disappear, become reverted, or even 
added. Various schemes exist to detect errors during transmission. In any case, a 
verification step is required after transmission. The received codeword is checked using 
defined rules and, as a result, a conclusion is made as to whether errors are present. 

The author examines a transmission error detection scheme known as repetition codes. 
A repetition code is a (r, N) coding scheme repeating each N-bit block r times [35]. 

Example. 

• Using a (3,1) repetition code, the message m = 101 is encoded as c = 111000111. 
• Using a (2,2) repetition code, the message m = 1011 is encoded as c = 10101111. 
• Using a (2,3) repetition code, m = 111000 is encoded as c = 111111000000. 

Verification procedure for the repetition code involves checking weather in each group 
of r the consecutive blocks of size N all blocks are equal. 

There are related steps taken in [30] for error correcting codes such as Hamming codes 
and Reed-Solomon codes. 25% complexity improvement has been achieved quantumly 
by making only 3 / 4 m⋅  queries when detecting Hamming codewords of length 

2 1nm = − . 50% complexity improvement has been demonstrated for Reed-Solomon 

codes of even length (2 1)n
m n= − . 

The author starts with the verification of the (2,1) repetition code. The verification 
process can be expressed naturally as computing a Boolean function in a query model. It 
is assumed that the codeword to be checked is located in a black box. The Boolean 
function to be computed by the query algorithm is defined as follows. 

Definition 3.5. The Boolean function ( )NVERIFY X , where 2N k= , ( )1 2 2, , ..., kX x x x=  

is defined to have a value “1” if and only if variables are equal by pairs. 

( ) ( ) ( ) ( )1 2 3 4 5 6 2 -1 2
2

1,    ...  
( )

0 ,                                                                           
k k

k

if x x x x x x x x
VERIFY X

otherwise

 = ∧ = ∧ = ∧ ∧ =
= 


 

Example. 

The Boolean function 4( )VERIFY X  has the following accepting inputs:  

{0000, 0011, 1100, 1111}. 
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3.1.4.2 Deterministic Complexity of VERIFYN 

Fig. 3.8 demonstrates a classical deterministic decision tree, which computes Boolean 
function 4 1 2 3 4( , , , )VERIFY x x x x .  

 

Fig. 3.8 A classical deterministic decision tree for computing 4VERIFY  

Theorem 3.2. ( )ND VERIFY N= . 

Proof. By function sensitivity on any accepting input, for instance, on X = 11...1. 
Inversion of any bit inverts the function value, because a pair of bits with different values 
appears:  

( ) ( )N Ns VERIFY N D VERIFY N= ⇒ =      .   

□ 

3.1.4.3 Computing the Function NVERIFY  in the Quantum Query Model 

The proposed approach to computing the Boolean function VERIFYN in a quantum query 
model is based on an exact quantum query algorithm for the XOR function.  

Theorem 3.3. There exists an exact quantum query algorithm that computes the Boolean 

function VERIFYN(X) using N/2 queries: ( ) / 2E NQ VERIFY N= . 

Proof. The definition of the VERIFYN function can be re-formulated as follows. 

( ) ( ) ( ) ( )1 2 3 4 5 6 2 -1 2
2

1,    ...  
( )

0 ,                                                                                     
k k

k

if x x x x x x x x
VERIFY X

otherwise

 ¬ ⊕ ∧ ¬ ⊕ ∧ ¬ ⊕ ∧ ∧ ¬ ⊕
= 


 

Exact quantum algorithm for computing the Boolean function 1 2 1 2( , ) ( )f x x x x= ¬ ⊕  

with one query is presented in Fig. 3.9. An algorithm for VERIFYN is composed using an 
algorithm for 1 2 1 2( , ) ( )f x x x x= ¬ ⊕  as building blocks.  
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Fig. 3.9 Exact quantum query algorithm for computing 1 2 1 2( , ) ( )f x x x x= ¬ ⊕  

First, an algorithm for 1 2 1 2( , ) ( )f x x x x= ¬ ⊕  is executed for variables x1 and x2. Then, 

the second instance of an algorithm for computing 1 2 1 2( , ) ( )f x x x x= ¬ ⊕  is concatenated 

to the accepting output of the first algorithm instance (see Fig. 3.9). This time, the 
algorithm is executed for variables x3 and x4. The process is continued until all variables 
of VERIFYN are queried. The algorithm has only one accepting output, which is the first 
output of the last sub-algorithm. 

 A schematic view of the described approach is depicted in Fig. 3.10. It is evident that 
the total number of queries is N/2.                                                                                  □ 

 

Fig. 3.10 Algorithm for computing the Boolean function VERIFYN 

 

3.1.4.4 Application of the above approach to the String Equality Problem 

The described approach can be adapted for solving the computational problem of testing 
the equality of two binary strings. This is a well-known task, which can be used as a sub-
routine in various algorithms. 

A quantum query algorithm for the Boolean function VERIFYN checks the equality of 
variables by pairs, i.e. ( ) ( ) ( )1 2 3 4 1... N Nx x x x x x−= ∧ = ∧ ∧ = . At the same time, this 
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algorithm checks also the equality of two binary strings, 1 3 5 1... NY x x x x −=  and 

2 4 6... NZ x x x x= . Therefore, the algorithm can be easily used not only to verify the 

repetition codes, but also for checking equality of the binary strings. 

3.1.4.5 Verification of the (r,1) Repetition Code 

Now, let us consider the (r,1) repetition code, where each bit is repeated r times during 
encoding. The verification procedure for a codeword encoded using the given code 
consists of checking the equality of all bits in each sequence of r bits. 

The Boolean function EQUALITYr is defined as 

( ) ( ) ( ) ( )1 2 2 3 3 4 11,  ...
( )

0 ,                                                                     
r r

r

if x x x x x x x x
EQUALITY X

otherwise

− = ∧ = ∧ = ∧ ∧ =
= 


 

The Boolean function that corresponds to the verification procedure is defined as 

( ) ( )

( )
1 1 2

( 1) 1

1,  ,..., ,..., ...

( )                               ...  ,...,

0 ,                                                                  

r r r

r
r N N r Nr

if EQUALITY x x EQUALITY x x

VERIFY X EQUALITY x x

otherwise

+

⋅ − +

∧ ∧

= ∧

         







 

Theorem 3.4. Deterministic complexity of the Boolean function ( )r
r NVERIFY X⋅  is equal 

to the number of variables: ( )r
r ND VERIFY rN⋅ = . 

Proof. By function sensitivity on any accepting input. Inversion of any bit inverts the 
function value because a pair of bits with different values appears.  

( ) ( )r r
r N r Ns VERIFY rN D VERIFY rN⋅ ⋅= ⇒ =      . 

□ 

Theorem 3.5. There exists an exact quantum query algorithm that computes the Boolean 

function ( )r
r NVERIFY X⋅ using ( 1)r N−  queries:  

( ) ( 1)r
E r NQ VERIFY r N⋅ = − . 

Proof. To speed up the verification procedure, the fact is used that XOR of two bits can 
be computed with a single quantum query. The Boolean function EQUALITYr can be 
expressed using operations ⊕ , ∧  and ¬ : 

( ) ( ) ( ) ( )1 2 2 3 3 4 1( ) ...r r rEQUALITY X x x x x x x x x−= ¬ ⊕ ∧ ¬ ⊕ ∧ ¬ ⊕ ∧ ∧ ¬ ⊕ . 

This logical formula contains (r-1) clauses consisting of XOR of two bits each. Using 
the approach described in the proof of Theorem 3.3, it is possible to compose an exact 
quantum query algorithm computing EQUALITYr using (r-1) quantum queries. This 
algorithm has a single accepting output. Next, an algorithm for EQUALITYr is used as a 

building block for composing an algorithm for computing r
r NVERIFY ⋅ . The resulting 

algorithm uses ( 1)r N−  queries to determine the value of the Boolean function 
r

r NVERIFY ⋅ exactly.                                                                                                      □ 
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3.1.5 Algorithm Concatenation Methods 

This section generalizes the previously described approaches for quantum query 
algorithm design and presents methods for generating complex quantum algorithms from 
simple building blocks. Specifically, these methods can be used for generating examples 
of N versus 2N gaps between quantum and classical query complexity of the function. 

Theorem 3.6. Given an exact quantum query algorithms 1 2,  QA QA   computing Boolean 

functions f1(X), f2(Y) with complexity 1 1( )
E

Q QA m= , 2 2( )
E

Q QA m= , it is possible to build 

a new exact quantum query algorithm 3QA  for computing the conjunction

3 1 2( ) ( ) ( )f XY f X f Y= ∧  with complexity 3 1 2( )
E

Q QA m m= + .  

Proof. The approach is similar to the one demonstrated in Section 3.1.4. This time whole 
algorithms are concatenated together. To achieve computing a conjunction 3 1 2f f f= ∧  

on the part of the resulting algorithm, it is necessary to concatenate an instance of the 
second algorithm QA2 to each accepting output of the first algorithm QA1. Amplitudes of 
all rejecting states remain unchanged until the end of the computation. 

The approach is schematically demonstrated in Fig. 3.11. The first state of the first 
algorithm QA1 has an initial amplitude value 1. In this example, algorithm QA1 has three 
accepting states. So, in the second stage of the new algorithm, there are three instances of 
the second algorithm QA2 running in parallel. Each accepting state of QA1 is connected to 
the first state of the associated second algorithm QA2. 

Let us show that obtained quantum algorithm computes a function: 

3 1 2( ) ( ) ( )f XY f X f Y= ∧ . 

If 1( ) 0f X = , then after the last transformation of QA1 only the rejecting basis states 

will have non-zero amplitude values. These amplitudes are not further modified until the 
end of the computation, so after the final measurement value “0” will be observed with 
probability p = 1. 

If 1( ) 1f X = , then after the last transformation of QA1 only the accepting basis states 

will have non-zero amplitude values. Let us assume that after the last transformation, for 
some arbitrary accepting input X there are 1k ≥  basis states with positive amplitude 

values 1,..., k
α α  (

2

1

1
k

i

i

α
=

=∑ ). Subsequently, k instances of the algorithm QA2 will be 

initialized with these amplitudes and will continue execution by applying parallelized 
transformations. 

• If 2( ) 0f Y = , then for all k instances of QA2 having received a positive amplitude 

value, after the last transformation only a subset of the rejecting states will have 
non-zero amplitude values. Amplitudes of all the accepting states of QA2 will be 
equal to zero. The final measurement produces result “0” with probability p = 1. 

• If 2( ) 1f Y = , then vice versa - only the subset of the accepting states will have 

non-zero amplitude values, while amplitudes of all the rejecting states will be 
equal to zero. The final measurement produces result “1” with probability p = 1. 
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The described behavior ensures that the obtained algorithm QA3 computes the 
conjunction of basic functions: 3 1 2f f f= ∧ . Total number of queries is m1 + m2.                                

□ 

 

Fig. 3.11 Algorithm concatenation method for computing conjunction 3 1 2f f f= ∧  

An important property of the method is the opportunity to use the obtained algorithms 
as building blocks in the repeated application of a method for constructing even more 
complex algorithms. It is even possible to apply the method recursively. 

Moreover, using the algorithm for XORN and exact quantum query algorithms for 
functions from the set QFunc4 (see Table 3.5) as building blocks, it is possible to 
construct an infinite set of exact algorithms. For all mentioned basic functions there is a 
gap of N versus 2N between the exact quantum and the classical deterministic query 
complexity. Consequently, for each algorithm with complexity K from an infinite set 
obtained by concatenation, the best possible classical deterministic algorithm for 
computing the same function requires 2K classical queries. 
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Theorem 3.7. Given an exact quantum query algorithms 1 2,  QA QA   computing Boolean 

functions f1(X), f2(X) with complexity 1 1( )
E

Q QA m= , 2 2( )
E

Q QA m= , it is possible to build 

a new exact quantum query algorithm 3QA  for computing the disjunction

3 1 2( ) ( ) ( )f XY f X f Y= ∨  with complexity 3 1 2( )
E

Q QA m m= + .  

Proof. The algorithm constructing approach is the same: algorithms are concatenated one 
by one. This time, the difference is that a separate instance of QA2 has to be connected to 
each rejecting state of the first algorithm QA1 (see Fig. 3.12). 

 

 

Fig. 3.12 Algorithm concatenation method for computing disjunction 3 1 2f f f= ∨  

If 1( ) 1f X = , then only the accepting states of QA1 will have non-zero amplitude 

values. These amplitudes are not modified anymore until the end of the computation, so 
after the final measurement value “1” will be observed with probability p = 1. 

If 1( ) 0f X = , then only the accepting states of QA1 will have non-zero amplitude 

values. Next, k instances of the algorithm QA2 will be initialized with these amplitudes. 
• If 2( ) 0f Y = , then for all k instances of QA2 only subset of the rejecting states will 

have non-zero amplitude values. The final measurement produces result “0” with 
probability p = 1. 
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• If 2( ) 1f Y = , then vice versa, only the subset of the accepting states will have non-

zero amplitude values. The final measurement produces result “1” with 
probability p = 1. 

The described behavior ensures that the obtained algorithm QA3 computes the 
disjunction of basic functions: 3 1 2f f f= ∨ . The total number of queries is m1 + m2.                                

□ 

Again, an infinite set of exact algorithms can be constructed using this method for 
which a gap between quantum exact and classical deterministic query complexity is N 
versus 2N. 

Moreover, methods for conjunction and disjunction can be used interchangeably, thus 
obtaining even a larger variety of functions.   

Theorem 3.8. Given an exact quantum query algorithms 1 2,  QA QA   computing Boolean 

functions f1(X), f2(X) with complexity 1 1( )
E

Q QA m= , 2 2( )
E

Q QA m= , it is possible to build 

a new exact quantum query algorithm 3QA  for computing XOR: 

3 1 2( ) ( ) ( )f XY f X f Y= ⊕ with complexity 3 1 2( )
E

Q QA m m= + . 

Proof. In a similar way as in case of conjunction and disjunction, instances of the 
algorithm QA2 have to be concatenated to algorithm’s QA1 outputs. However, this time 
the second algorithm has to be concatenated to all outputs – both, the accepting and the 
rejecting. Additionally, for QA2 instances concatenated to accepting outputs of QA1, the 
result values assigned to the states have to be inversed. The quantum query algorithm 
obtained in this way will compute 3 1 2f f f= ⊕  exactly and complexity will be 

3 1 2( )
E

Q QA m m= + .                                      

□ 

An example of this approach is demonstrated in Fig. 3.13. The first algorithm is an 
algorithm for computing XOR2 (see Section 0). The second algorithm is an algorithm for 
PAIR_EQUALITY4 (see Section 3.1.1.2). The resulting algorithm computes the function: 

( ) ( )( )
1 6 2 1 2 4 3 6

1 2 3 4 5 6

( ,..., ) ( , ) _ ( ,..., )

( )

f x x XOR x x PAIR EQUALITY x x

x x x x x x

= ⊕ =

= ⊕ ⊕ ¬ ⊕ ∧ ¬ ⊕
 

Algorithm complexity is ( ) 3
E

Q f = . 
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Fig. 3.13 Example of computing 2 4_f XOR PAIR EQUALITY= ⊕  
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3.1.6 Conclusion and Open Problems 

In this section, the author examined the designing of exact quantum query algorithms. 
First, two exact quantum query algorithms for three and four argument Boolean 

functions were presented. Both algorithms used less queries comparing to the best 
possible classical algorithms. Algorithms are used in further sections as a base for 
algorithm transformation and concatenation methods. The author also introduced the 
classification of exact quantum query algorithms. 

Next, the techniques were presented that enable transformation of an existing quantum 
query algorithm for a certain Boolean function so that the resulting algorithm computes a 
function with a different logical structure. Methods were illustrated by applying them to 
two basic exact algorithms. 

Subsequently, the verification of repetition codes for the error detection was examined. 
The author has presented the verification procedure as an application of a query 
algorithm to an input codeword contained in a black box. An exact quantum query 
algorithm is presented allowing verifying a codeword of length N using only N/2 queries 
to the black box. The algorithm saves exactly half the number of queries comparing to the 
classical case. For the total Boolean function, this result repeats the largest difference 
between the classical and the quantum algorithm complexity known today within the 
query model. 

Finally, algorithm concatenation methods were presented giving an opportunity to 
construct composite algorithms for 1 2f f∧ , 1 2f f∨  and 1 2f f⊕  using existing 

algorithms for sub-functions as sub-routines. The techniques presented make the task of 
building efficient exact quantum query algorithms for the arbitrary Boolean functions 
easier. Using the described approach, it is possible to generate an infinite set of examples 
of N versus 2N gaps between the quantum and the classical query complexity for various 
functions. 

There are many potential directions for the future research in the area of the exact 
quantum query algorithm design.  

Given the useful properties of the above algorithms and regarding the presented 
results, it would be interesting to introduce general methods for designing exact quantum 
query algorithms from Class 1, Class 2+, Class 3. Applying transformation and 
concatenation methods to the base algorithms would significantly enlarge a set of 
efficiently computable Boolean functions. The ultimate goal is to develop a framework 
for building ad-hoc efficient quantum algorithms for arbitrary functions. 

Then, it would be very interesting to find an example of N versus 2N complexity 
separation, where the structure of the computable Boolean function does not depend on 
XOR operation. 

Finally, the most significant open question still remaining is as follows: is it possible 
to increase an exact algorithm performance for more than twice by use of the quantum 
tools? 
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3.2 Bounded-Error Quantum Query Algorithms 

This section is based on the paper 

• A. Vasilieva, T. Mischenko-Slatenkova. Quantum Query Algorithms for 
Conjunctions. Proc. of the 9th International Conference UC 2010, Lecture Notes 
in Computer Science, Springer Berlin / Heidelberg, vol. 6079/2010, ISBN: 978-3-
642-13522-4, pp. 140-151, 2010 

 
One of the most important open problems in quantum computing is the proper 

understanding why quantum algorithms can have any advantages over probabilistic 
algorithms. The author concentrates on the case when these advantages are least 
expected, namely, when the computing device is finite and so is the computation time. In 
this section, the quantum bounded-error versus classical probabilistic query algorithms is 
discussed. 

3.2.1 Quantum Query Algorithms for Conjunctions 

In this section, the results of constructing quantum query algorithms for a set of Boolean 
functions based on the AND Boolean operation are presented. Bounded-error algorithms 
are examined, which output a correct answer with some probability.  

Every Boolean function can be presented as a logical formula in a conjunctive normal 
form (CNF). Formula is in CNF if it is a conjunction (ANDs) of disjunctions (ORs) of 
variables or negated variables. Therefore, a fast and efficient algorithm for conjunction is 
necessary. While there exists an exact quantum algorithm for XOR that goes with N/2 
queries, exact quantum algorithms for disjunction and conjunction require N queries in N-
bit case, this is a proved lower bound [14]. To enlarge the complexity gap between the 
classical and quantum algorithms it is important to work out as efficient quantum 
algorithm for conjunction as possible.  

Grover’s search algorithm [2] potentially could be adjusted to compute N-bit 

conjunction using ( )O N queries. However, such approach would be more efficient than 

the classical one just for sufficiently large N. In some tasks there is a need to evaluate 
conjunction of rather small number of variables, while the total number of such distinct 
evaluations may be huge (e.g. evaluation of conditional Boolean statements in computer 
programs). This reasoning motivated the author to search for other approaches for 
computing conjunctions, which would be preferable in cases when the number of 
variables is not very large. 

In case of computing a two-variable function 1 2( , )AND x x , the previously obtained 

results are as follows: 
1. In [36], an algorithm construction method, which allows to obtain a bounded-

error quantum algorithm with one query and probability 3 / 4p =  has been 
demonstrated. 

2. In [37] in the proof of Lemma 1, an algorithm for computing an arbitrary two-
variable Boolean function has been presented, whose probability is 11 / 14p = . It 
is also mentioned that the authors can prove that probability 9 / 10p =  is optimal. 



44 
 

3. In [32] in Theorem 3-2, a bounded-error algorithm with one query and probability 

5 / 6p =  has been presented. In the same thesis, in Theorem 2-2 approach for 

constructing an algorithm for computing 1 2( , )AND f f  with smaller probability 

2 / 3p =  has been demonstrated.  

The author presents a new bounded-error algorithm with one query for 1 2( , )AND x x , 

which improves the correct answer probability comparing to 1 and 2 till 4 / 5p = . 
Comparing to 3, probability is smaller (-1/30), but in exchange for it proposed algorithm 
has important properties that allow to generalize it for computing conjunction of sub-
functions: 2 1 2( , )AND f f . Finally, it should be noted that in the author’s joint paper with 

T. Mischenko-Slatenkova another algorithm with one query for 1 2( , )AND x x  has been 

presented, which achieves an optimum (according to [37]) probability 9 / 10p = . This 
algorithm was designed by T. Mischenko-Slatenkova. Unfortunately, it is not possible to 
generalize this algorithm for computing 2 1 2( , )AND f f . 

Within the organizational structure of this section the author discusses, first, the 
classical complexity of the two-argument Boolean function 1 2( , )AND x x . Subsequently, 

a bounded-error quantum query algorithm is demonstrated computing 1 2( , )AND x x  with 

a probability 4 / 5p = . Finally, the author generalizes the approach applied and presents a 
method for constructing efficient quantum algorithms for computing a composite function

2 1 2[ , ]AND f f , where f1 and f2 are Boolean functions.  

Definition 3.6 nAND  structure ( n ∈� ) is a composite Boolean function where 

arguments are arbitrary Boolean functions fi and which is defined as 

1 2 =1
[ , ,..., ]( ) 1      ( )

n

n n i ii
AND f f f X f X n= ⇔ =∑ , 

1 2... nX X X X= ; Xi is input for i
th

 function
3
; fi’s are called base functions. 

3.2.1.1 Classical Complexity of 1 2( , )AND x x  

The classical deterministic complexity of the Boolean function 1 2( , )AND x x  is obviously 

equal to the number of variables: 2( ) 2D AND = . 

Subsequently, the author shows that the best probability for a classical randomized 
decision tree to compute this function with one query is p = 2/3.   

Theorem 3.9 The Boolean function 2 1 2( , )AND x x  can be computed by a randomized 

classical decision tree with one query with the maximum probability p=2/3. 

Proof. The general form of the optimal randomized decision tree is shown in Fig. 3.14. 

                                                 
3 Variables may also overlap among inputs for different functions, i.e. for Xi = (xi1,...,xin) and Xj = (xj1,.,.xjm) 
there may be variables with the same indices. 
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Fig. 3.14 The general form of the optimal classical randomized decision tree for 
computing AND2(x1,x2) 

The probability to see the result {0,1}b ∈  after executing the algorithm on input X is 
denoted by Pr(" " | )b X . The correct answer probability calculation: 

1) ( )
1 1

Pr("0" | 00) 1 1
2 2

X s s s= = − + + = , 

2) ( )
1 1 1

Pr("0" | 01 10) 1 1 ( )
2 2 2

X     X s s sq s sq= ∨ = = − + + = − − , 

3) 
1 1

Pr("1" | 11) (1 ) (1 )
2 2

X s q s q s sq= = − + − = − . 

Let us denote ( )s sq z− = . Then, the total probability of the correct answer is  

1
(Pr("0"),Pr("1")) (1 , )

2
p min min z z= = − . 

The highest probability is obtained when Pr("0") Pr("1")= . 

1
1

2
2

3

z z

z

− =

=

 

3.2.1.2 Quantum Query Algorithm for 1 2( , )AND x x  

The author starts with a bounded-error quantum query algorithm for the simplest case of 
a two-variable function 1 2( , )AND x x .   

Theorem 3.10 There exists a quantum query algorithm Q1 computing the Boolean 

function 1 2( , )AND x x  with one quantum query and correct answer probability p=4/5:  

4/5 2( ) 1Q AND = . 

Proof. The algorithm is presented in Fig. 3.15. The algorithm uses 3-qubit quantum 
system. Each horizontal line corresponds to the amplitude of the basis state. Computation 
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starts with the state 
2 1

,  0,  0,  0,  ,  0,  0,  0
5 5

T

ϕ
 

=  
 

 (unitary transformation, 

converting the initial state ( )0 1,0,0,..,0
T

=
�

into ϕ , is omitted). Two large rectangles 

correspond to the 8 8×  unitary matrices 0U and 1U . The vertical layer of circles specifies 

the queried variable order for the single query 0Q . Finally, eight small squares at the end 

of each horizontal line define the assigned function value for each basis state. The main 

idea is to assign the amplitude value 1 5α =  to the basis state 100  and leave it 

invariable until the end of the execution.  

 

Fig. 3.15 Bounded-error quantum query algorithm Q1 for computing 1 2( , )AND x x  

Quantum state after the first transformation U0 becomes equal to 

2 0 0
2 1

,  0,  0,  0,  ,  0,  0,  0
5 5

1 1 1 1 1
,  ,  ,  ,  ,  0,  0,  0

5 5 5 5 5

T

T

U Uϕ ϕ
 

= = ⋅ = 
 

 
=  
 

 

Further evolution of the quantum system for each input X is shown in Table 3.6. 
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Table 3.6 Quantum query algorithm Q1 computation process for 1 2( , )AND x x  

X 3 0 0Q Uϕ ϕ=  1 0 0FINAL U Q Uϕ ϕ=  p(“1”) 

00 
1 1 1 1 1

,  ,  ,  ,  ,  0,  0,  0
5 5 5 5 5

T
 
 
 

 2 2 1
,  0,  ,  0,  ,  0,  0,  0

5 5 5

T
 
  
 

 0 

01 
1 1 1 1 1

,  ,  ,  - ,  ,  0,  0,  0
5 5 5 5 5

T
 
 
 

 2 1 1 1
,  ,  0,  - ,  ,  0,  0,  0

5 5 5 5

T
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3.2.1.3 Decomposing the 1 2( , )AND x x  Algorithm 

This section is a transitional point on the way to achieve a generalized method for 

computing the structure 2AND . Now, the author reveals the internal details of the 
algorithm Q1 allowing adaptation of its structure to compute a much wider set of Boolean 
functions. 

The fairly chaotic and asymmetric matrix U0 actually is a product of two other 
matrices. 

0 0 0 B A
U U U= ⋅ =

1 1
0 0 0 0 0 0

1 12 2 0 0 0 0 0 0
1 1 2 2

  0   0 0 0 0 0
0   1 0   0 0 0 0 02 2

1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0

2 2 2 2
1 1 0 0 0 1 0 0 0 0

0 0 0 0 0 0
0 0 0 0 1 0 0 02 2

0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

 
    
  −    
   −   • 
  − 
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Matrix U1, in turn, is a product of the following two matrices. 

1 1 1 B A
U U U= ⋅ =

1 1
0 0 0 0 0 0

1 0 0 0 0 0 0 0 2 2
1 1 1 1

0   0  0 0 0 0   0   0 0 0 0 0
2 2 2 2

0 0 1 0 0 0 0 0 1 1
0 0 0 0 0 0

1 1 2 2
0 0 0 0 0 0

1 12 2 0 0 0 0 0 0
0 0 0 0 1 0 0 0 2 2

0 0 0 0 1 0 0 00 0 0 0 0 1 0 0

0 0 0 0 0 1 0 00 0 0 0 0 0 1 0

0 0 0 0 0 0 1 00 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1


   
  − 
 
    − • 
  −   
 
     

 




















  


 

A detailed algorithm structure now looks as follows: 

0 0 0 1 1 ,   ,   ,   ,  [ ]A B A B
U U Q U U Measureϕ → →  

The final vector is calculated as 

1 1 0 0 0
B A B A

FINAL U U Q U Uϕ ϕ= ⋅ ⋅ ⋅ ⋅ ⋅ . 

The most important point – the algorithm part represented by transformations 

0 0 1 ,   ,  B A
U Q U  - actually executes two instances of an exact quantum query algorithm for 

( )f x x=  in parallel. The above significant detail is graphically demonstrated in Fig. 3.16 
and Fig. 3.17. 
 

 

Fig. 3.16. Exact quantum query algorithm for computing f(x) = x 
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Fig. 3.17. Quantum algorithm for 1 2( , )AND x x , revised 

In other words, firstly, quantum parallelism is employed to evaluate each variable. 
Secondly, the unitary transformation 1

B
U  is applied to correlate the amplitude distribution 

in such a way that the resulting quantum algorithm computes 1 2( , )AND x x  with 

acceptable error probability. 
In the next section, this approach is generalized to allow the use of other Boolean 

functions as sub-routines. 

3.2.1.4 A Method for Computing 2 1 2[ , ]AND f f  

It is possible to replace a sub-algorithm for ( )f x x=  (in an algorithm construction 
demonstrated in the previous section) with any other quantum algorithm meeting specific 
properties. The author’s method is applicable to base algorithms belonging to Class 2+. 

Theorem 3.11 Given exact quantum query algorithms A1 and A2 for computing Boolean 

functions f1(X1) and f2(X2) that belong to Class 2+, a composite Boolean function 

2 1 2[ , ]AND f f
 
can be computed with probability p=4/5 using E E

max(Q ( A1),Q ( A2 ))

queries to the black box. 

Proof. A general algorithm construction method for computing the Boolean function 

2 1 2[ , ]AND f f  is presented in the next table below.  

  



50 
 

 

A method for computing 2 1 2[ , ]AND f f  

Input. Two exact quantum query algorithms A1, A2   2Class∈ +  that compute 

Boolean functions 1 1 2 2( ),  ( )f X f X . The dimension of the Hilbert space utilized by the 

first algorithm is denoted by 1m  (the number of amplitudes), and for the second 

algorithm by 2m . The positions of accepting outputs of A1 and A2 are denoted with 

acc1 and acc2. 

Constructing steps  

1. If 1 2m m= , then utilize a quantum system with 14m  amplitudes for a new 

algorithm. First 12m  amplitudes will be used for the parallel execution of A1 and 

A2. Additional qubit is required to provide separate amplitude for storing the 

value of 1 5 . 

2. If 1 2m m≠  (without loss of generality assume that 1 2m m> ), then utilize a 

quantum system with 12m  amplitudes for a new algorithm. First ( )1 2m m+  

amplitudes will be used for the parallel execution of A1 and A2. Use the first 

remaining free amplitude for storing the value of 1 5 . 

3. Start the computation from the state 

1 2
 

2 5,  0,..., 0 , 2 5,  0,..., 0,  1/ 5,  0,..,0

T

remaining amplitudesm m

ϕ
 
 =
  
 

�������������� �������
. 

4. Combine unitary transformations and queries of A1 and A2 in the following way: 

1 2 1 1

2 1 2 1

1 1 1 2 1 2

1

2

m m m m

i m m m m

m m m m m m

U O O

U O U O

O O I

× ×

× ×

× × −

 
 

=  
  
 

, here 
i jm mO ×  are 

i jm m×  zero-matrices,  

1 2m mI − is ( ) ( )1 2 1 2m m m m− −×
 
identity matrix, 1

iU  and 2
iU  are either fixed or query 

unitary transformations of A1 and A2. 

5. Apply transformations Ui. Before the final measurement apply an additional 
unitary transformation: 

( )

1 1 2

1

1 1 2 1 2 1

1 2

  1,    if ( ) & ( ) & ( ( ))

  1/ 2,  if ( )

  1/ 2,  if ( ) & ( ( )) OR ( ( )) & ( )

1/ 2,  if ( ( ))

  0, otherwise

ij

i j i acc i m acc

i j acc

U u i acc j m acc i m acc j acc

i j m acc

= ≠ ≠ +


= =


= = = = + = + =


− = = +
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6. Define as accepting output exactly one basis state 1acc .  

Output. A bounded-error quantum query algorithm A for computing a function

1 1 2 2( ) ( ) ( )F X f X f X= ∧  with a probability 4 / 5p =  and complexity 

4/5 ( ) max( ( 1), ( 2))
E E

Q A Q A Q A= . 

The most significant advantage of this method is that the overall algorithm complexity 
does not exceed the greatest complexity of sub-algorithms. To compute a composite 
function, additional queries are not required. However, the cost for efficient computing is 
the error probability.  

A very important aspect is that author has used a specific algorithm for the two-variable 
Boolean function 1 2( , )AND x x  as a base for the constructing method. If the correct 

answer probability for the 1 2( , )AND x x  algorithm, which would also use an algorithm for 

computing f(X)=X as a sub-routine, is improved to 4 5p > , then the probability of a 
general constructing method and all further results of this section would be improved as 
well. 

According to Theorem 3.1 it is possible to place into 2AND  structure any Boolean 

function having exactly one accepting input vector. Thus, the  method is applicable to an 
infinite set of base functions. 

Theorem 3.12. For an infinite set of Boolean functions, quantum query algorithms can 

be constructed using a method for computing 2 1 2[ , ]AND f f . As a result, the following 

complexity gap can be achieved when computing the same function in quantum and 

classical deterministic models: 2 24/5 1 2 1 2

1
( ( , )) ( ( , ))

2
Q AND f f D AND f f= ⋅ . 

Proof For any Boolean function f having a single accepting vector, the sensitivity s(f) 
and, consequently, the deterministic complexity D(f) are equal to the number of variables. 
Let us suppose there are two Boolean functions f1 and f2, with the same number of 

variables N, and the task is to compute 2 1 2( , )AND f f 4. Obviously, the classical 

deterministic complexity of this function is 2 1 2( ( , )) 2D AND f f N= . For each function a 

deterministic algorithm can be converted into an exact quantum query algorithm of the 
class Class2+, using the same N queries. Finally, the method is applied for constructing 

an algorithm for 2 1 2( , )AND f f  which does not require additional queries: 

2 24/5 1 2 1 2

1
( ( , )) ( ( , ))

2
Q AND f f N D AND f f= = ⋅ . 

□ 

In the theorem above, the classical deterministic and the quantum bounded-error query 
complexity is compared. It would be interesting to compare classical probabilistic and 

quantum bounded-error complexity for 2 1 2( , )AND f f . As of today, the author does not 

have such estimation. 
                                                 
4 It is assumed that variables do not overlap this time. 
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Theorem 3.13. The Boolean function ANDN(X) ( 2 ,  N k k= ∈� ) can be computed by a 

bounded-error quantum query algorithm with a probability p = 4/5 using N/2 queries: 

4 5( ) / 2NQ AND N= . 

Proof. Boolean function ANDN(X) can be represented as  

2 /2 /2( , )N N NAND AND AND AND= . 

It means that by applying the construction method it is possible to obtain an algorithm 
with complexity 4 5 /2( ) ( )N E NQ AND Q AND= . 

The Boolean function /2N
AND  can be computed by a deterministic algorithm with 

complexity /2( ) / 2
N

D AND N= , which has exactly one accepting output. It means that 

this deterministic algorithm can be converted into Class 2+ algorithm using the same N/2 
number of queries. 

4 5 /2( ) ( ) / 2N E NQ AND Q AND N= = . 

□ 
3.2.1.5 An Example of a Larger Separation: D(f)=6 versus Q4/5(f)=2 

This subsection demonstrates an example where the quantum algorithm complexity is 
more than twice lower than the classical deterministic algorithm complexity. It is possible 
in cases when an exact quantum algorithm for a sub-function is better than the best 
possible deterministic algorithm for the same function. 

An exact quantum query algorithm for 3 1 2 2 3( ) ( ) ( )EQUALITY X x x x x= ¬ ⊕ ∧ ¬ ⊕  has 

been presented in Section 3.1.1.1. The algorithm uses only two quantum queries while 
classically all three queries are required. The algorithm belongs to class Class2+ and can 

be used as a sub-algorithm for 2AND  structure. 

To evaluate the deterministic complexity of 2 3 3[ , ]f AND EQUALITY EQUALITY= , 

function sensitivity on any accepting input is used: ( ) 6 ( ) 6s f D f= ⇒ = . 

A quantum bounded-error algorithm for 2 3[ ]f AND EQUALITY=  constructed using 

the author’s method requires only two queries: 4/5( ) 2Q f = . 

The same approach can be applied to any algorithm of Class2+ computing N-variable 
Boolean function. 

3.2.1.6 Iterative Application of a Method for Computing 2 1 2
[ , ]AND f f   

The useful properties of the algorithm construction method described in Section 3.2.1.4 
enable a repeated application of this method. 

Theorem 3.14. Let 1 2 11 12[ , ]F AND f f=  and 2 2 21 22[ , ]F AND f f=  be composite Boolean 

functions. Let Q1 and Q2 be bounded-error quantum query algorithms that have been 

constructed using a method for computing AND2[f1,f2], and that compute F1 and F2 with 

probability p=4/5. Then, a bounded-error quantum query algorithm Q can be 

constructed to compute a composite Boolean function 2 1 2[ , ]F AND F F=
 
with  probability 

p = 16/25. 
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Proof. The method for computing AND2[f1,f2]  is straightforwardly applied to algorithms 
Q1 and Q2 instead of instances of Class 2+. As a result, the obtained complex algorithm 

computes 2 1 2[ , ]F AND F F=
 
with a probability

4 4 16

5 5 25
p = ⋅ = .                                         □ 

Consequently, it is possible to compute a four-variable function AND(x1,…,x4) with a 
single quantum query with a probability p = 16/25. 

The next iteration produces quantum algorithms computing functions in a form  

2 2 2 1 2 2 3 4 2 2 5 6 2 7 8[ [ [ , ], [ , ]], [ [ , ], [ , ]]]F AND AND AND f f AND f f AND AND f f AND f f=  

with probability p = 64/125, which is just slightly more than a half. 

3.2.1.7 Enlarging a Set of Method Input Algorithms 

In the description of a general method for computing AND2[f1,f2] a set of input algorithms 
is restricted to instances of Class 2+. That was done for simplicity of description of the 
main idea and details.  However, it is possible to apply the proposed method to quantum 
algorithms outside Class 2+ as well.  

Let us consider the following case. Let A1 and A2 be two bounded-error quantum 
algorithms that compute Boolean functions f1(X1) and f2(X2), each having exactly one 
accepting output. It is possible to apply the general method also to these algorithms. 
Combined algorithm computes a composite function 1 1 2 2( ) ( ) ( )f X f X f X= ∧ , where

1 2X X X= . Suppose that the combined algorithm is executed on input X, which is 

accepting for both sub-algorithms. Let us assume that algorithm A1 executed on 
corresponding input X1 finishes with amplitude 1α  in its accepting state. A2 executed on 

corresponding input X2 finishes with amplitude 2α  in its accepting state. Additional 

condition is that signs of 1α  and 2α  must be the same. Then, combined algorithm will 

have the following amplitude value in its accepting state: 

1 2 1 2

1 2 1 2 1
( )

5 52 2 5
α α α α α= + = + . 

Thus, probability to obtain result f(X) = 1 is: 

2 2 2

1 2 1 2

1 1

55
p α α α α α= = + = + . 

Moreover, it is also possible to apply general method for computing AND2[f1,f2]  to 
basic algorithms with more than one accepting output. In such a case it is necessary to 
execute more instances of basic algorithms in parallel and join outputs between each 
other. If the first basic algorithm has N accepting outputs and second basic algorithm has 
M accepting outputs, then N⋅M parallel executions of paired algorithm instances are 
necessary. 

3.2.1.8 Improved Quantum Query Algorithm for 1 2( , )AND x x  

Lastly, the author is going to demonstrate another bounded-error quantum query 
algorithm for computing AND2(x1,x2) that achieves a higher (and optimum according to 
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[37]) correct answer probability p = 9/10. This algorithm designed by the co-author T. 
Mischenko-Slatenkova has been published in the joint paper of both authors.  
Unfortunately, the algorithm cannot be directly applied in the method for constructing an 
algorithm for the AND2[f1,f2] structure. 

Theorem 3.15. There exists a quantum query algorithm Q2 that computes Boolean 

function AND2(x1,x2) with one quantum query and the  correct answer probability 

p=9/10: Q9/10(Q2)=1. 

Proof. Algorithm is presented in Fig. 3.18. Computation process for each input X is 
shown in Table 3.7.                  □ 

 

Fig. 3.18  Bounded-error quantum query algorithm Q2 for computing AND2(x1,x2)  

The structure of the algorithm Q2 is different from the structure of the algorithm Q1 
presented in Section 3.2.1.2. The fundamental difference lies in the query behavior and 
unfortunately this difference does not allow applying the algorithm to compute 
conjunction of the sub-functions. 

On the other hand, the correct answer probability obtained by the algorithm Q2 is 
higher than that of Q1. It is closer to p = 1, so, in some applications it may be more 
advantageous to use this algorithm instead of the previous one. Algorithm Q2 also uses 
less qubits than algorithm Q1, and that may be considered an advantage as well. 
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Table 3.7. Computation process of the quantum algorithm Q2 for computing AND2(x1,x2) 

X 2 0 0 0Q Uϕ ϕ=  2 2 1 0 0 0U U Q Uϕ ϕ=  p(“1”) 

00 ( )
1

1, 1, 1, 1
2

T
−  1 1 2 1

, , ,
2 5 210

T
 

− 
 

 
1

10
 

01 ( )
1

1, 1, 1, 1
2

T
− −  1 3

0, , , 0
10 10

T
 

− 
 

 
1

10
 

10 ( )
1

1, 1, 1, 1
2

T
− − −  1 1 2 1

, , ,
2 5 210

T
 

− − 
 

 
1

10
 

11 ( )
1

1, 1, 1, 1
2

T
− − − −  3 1

0, , , 0
10 10

T
 

− − 
 

 
9

10
 

 

3.2.2 Conclusion and Open Problems 

In this section, the computing of conjunctions in the quantum bounded-error settings was 
examined. A quantum query algorithm was presented  computing  the conjunction of two 
bits by making only one query with the correct answer probability p = 4/5. Subsequently, 
the approach was extended and a general method was formulated for computing a 
conjunction of two Boolean functions with the same probability and a number of queries 
equal to 1 2max( ( ), ( ))

E E
Q f Q f . The proposed approach provides for designing of the 

quantum algorithms for complex functions based on the already known algorithms. A 
significant advantage lies in the fact that the overall algorithm complexity does not 
increase; additional queries are not required to compute a composite function.  

The proposed quantum algorithms are more efficient than the best possible classical 
deterministic or quantum exact algorithms and they provide higher accuracy than the best 
possible classical randomized decision trees. 

Regarding computing conjunctions the author would like to extend the number of 
clauses from two to N. The author would also like to improve the probability of iterative 
application of the construction method. Another fundamental goal is to develop a 
framework for building efficient ad-hoc quantum query algorithms for arbitrary Boolean 
functions.  
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4 Quantum Query Algorithms for Multivalued Functions 

This chapter is based on the papers 

• A. Vasilieva. Quantum Query Algorithms for Relations. Proc. of the MFCS & 

CSL 2010 Satellite Workshop Randomized and quantum computation, ISBN 978-
80-87342-08-4, pp. 78-89, 2010 

• A. Vasilieva. Uniformly Distributed Quantum Query Algorithms for 
Multifunctions. Proc. of the Annual Doctoral Workshop on Mathematical and 

Engineering Methods in Computer Science (MEMICS) , pp. 86-93, 2011 
 

Most often query model is used to compute Boolean functions. However, it is possible 
to apply query model to functions with larger domain and range as well. In this section, 
the author considers even more uncommon case – computing of multivalued functions. A 
multivalued function is more general type of problem than a usual function. 
Multifunction is a left-total binary relation that associates values from a domain set with 
one or more values from a range set. Function is simply a special case of a multifunction, 
where each value from a domain set is mapped to no more than one value from a range 
set.  

The study of query complexity of multifunctions has been inspired by the book on 
communication complexity by Kushilevitz and Nisan [38]. The main part of this book 
discusses communication complexity of functions, but Chapter 5 is devoted to the 
communication complexity of relations. 

The author applies traditional query model to compute multifunctions. In classical 
deterministic settings, however, it does not seem to be possible to employ the difference 
between a multifunction and a function to obtain new interesting results. A deterministic 
decision tree always follows one and the same fixed path for each certain input and 
outputs one and the same value each time. The situation is different in the quantum case. 
Quantum state before the measurement is in a superposition of the basis states, so it is not 
determined to which exactly basis state quantum system collapses after the measurement. 

Various computational problems may be represented in terms of multifunctions. Let us 
consider, for instance, an online reservation system for a large renting company. 
Company provides various products for rent, for example, cars, flats, TV-sets etc. User 
fills in a reservation form on the Web page and submits it. According to user’s request 
parameters (multifunction input) system has to find a set of satisfying and available items 
(value set for that input) and display them to user for further selection or even perform 
selection automatically. By designing an efficient algorithm for computing this kind of 
multifunction it is possible to speed-up processing significantly. Nowadays, in heavy-
loaded systems with huge amount of concurrent requests, a lot of resources could be 
saved by performance improvement at the moment of selecting appropriate value set. 

The greatest challenge in designing quantum query algorithm for a function is 
ensuring that the algorithm is exact (i.e. making it output correct result always with 
probability p = 1). The largest complexity separation between classical deterministic and 
quantum exact query algorithm complexity for the same total function known for today is 
N versus N/2 [12]. However, in the case of multifunction it is allowed to output values 
from a fixed set instead of one fixed value for a certain input. The author asserts that in 
such case the task of designing a non-trivial exact quantum query algorithm is achievable 
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more easily. That could help to construct examples, where number of queries required by 
quantum algorithm is more than two times less than required by classical algorithm. 

In this section, the query model is adapted for computing multifunctions. First, the 
author gives definitions related to multifunctions. Then, the author defines several types 
of query algorithms that compute multifunctions in different manners. Finally, examples 
of computing multifunctions in classical and quantum query models are demonstrated, 
where quantum algorithm achieves a speed-up comparing to classical algorithm. 

4.1 Multivalued Functions 

The main object studied in this section is a multivalued function. 
A multivalued function (multifunction, other names: relation, set-valued function, 

multi-valued map, correspondence) is more general type of problem than a usual 
function. Multifunction is a left-total binary relation that associates values from a domain 
set with one or more values from a range set. So, the difference from a usual function is 
in element mapping: each element from a domain set may be mapped to multiple 
elements from a range set. Function (single-valued function) is simply a special case of a 
multifunction, where each value from a domain set is mapped to no more than one value 
from a range set. The author considers the following kind of multifunctions: 

( ) :{0,1}NM X →� , where 1 2( , ,..., )
N

X x x x= , {0,1}
i

x ∈ . 

The notation is the following: 
• each value from the domain set is called – an input X; 
• each xi is called – a variable; 
• a set of associated values from the range set is called – a result set for input X 

- and is denoted by M(X).  

A function is a special case of multifunction and it uniquely associates each value 
from the domain set with one value from the range set. Fig. 4.1 graphically demonstrates 
this difference. 

 

Fig. 4.1 Example of a multifunction and a function 

Various functions can be selected in such a way from a single multifunction. Let us 
denote the set of all total functions that can be selected from multifunction M by 
Func(M). 

Example. The graph on the left side of Fig. 4.1 defines the multifunction: 

M = { (1,a),(1,c),(2,b),(3,a),(3,b),(4,c) }. 
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The set Func(M) consists of four total functions that may be selected as a subset of the 
multifunction: 

Func(M)= { f1 = { (1,a),(2,b),(3,a),(4,c) } , f2 = { (1,a),(2,b),(3,b),(4,c) } , 
f3 = { (1,c),(2,b),(3,a),(4,c) } , f4 = { (1,c),(2,b),(3,b),(4,c) }}. 

4.2 Computing Multifunctions in a Query Model 

Computation of usual functions in a query model has been studied in detail: for each 
input, algorithm has to output correct function value with a certain probability. However, 
it is not obvious how to extend a query model to compute multivalued functions. The 
author proposes three different options to describe that a query algorithm computes a 
multifunction and defines three types of query algorithms based on these options. The 
author considers total multifunction only, where result set is not empty for every input X. 

Definition 4.1. Query algorithm computes multifunction M(X) in a definite manner, if 

for each X it outputs one certain correct value from a result set with probability p = 1. 

Classical query complexity is denoted by CD(M). Quantum query complexity is denoted 

by QD(M). 

The type of classical decision tree that computes a multifunction in a definite manner 
is deterministic decision tree. In the quantum version, corresponding algorithm type is an 
exact quantum query algorithm. 

Definition 4.2. Query algorithm computes multifunction M(X) in a randomly distributed 

manner, if for each X it outputs arbitrary values from a result set with arbitrary 

probabilities (for each value such probability has to be positive) and never outputs an 

incorrect value. Classical query complexity is denoted by CRD(M). Quantum query 

complexity is denoted by QRD(M). 

This definition is more natural and takes into account the essence of multifunction as a 
mathematical object. In a classical query model, probabilistic decision trees should be 
used to produce the described behavior. Quantum query algorithms seem to be better 
suited for computing multifunctions in a distributed manner because of the superposition 
principle. To make algorithm behavior correct on certain input it is necessary to prepare 
quantum system in a superposition, where only basis states associated with values from 
the result set have non-zero amplitude values. After the measurement, quantum system 
collapses to one of these basis states with a probability determined by its amplitude value.  

Definition 4.3. Query algorithm computes multifunction M(X) in a uniformly distributed 

manner, if for each X it outputs each value from a result set with equal probability and 

never outputs an incorrect value. Classical query complexity is denoted by CUD(M). 

Quantum query complexity is denoted by QUD(M). 

This definition adds a serious constraint to design of a query algorithm. This time there 
is an important restriction – every value from the result set has to have equal probability 
to be produced by query algorithm on output. However, in author’s opinion this 
definition is the most reasonable in a sense of computing a multifunction and algorithms 
of that type have most practical applications. 

Each definition may be applied for solving specific real-world computational 
problems. Author is most interested in comparing complexity of computing 
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multifunctions in the same manners in classical and quantum query models. The goal is 
to analyze algorithm implementation special features and differences to produce 
examples with large difference between classical and quantum query complexity. 

4.2.1 A Note on Computing Multifunctions in a Definite Manner 

First, the first type of query algorithms for multifunctions is discussed, which compute 
multifunctions in a definite manner. Are there prospects to obtain a large separation 
between classical and quantum complexity?  

According to the definition, for each input X such algorithm always outputs one 
definite value. The only condition is that this value should be from the result set assigned 
to that input by multifunction M. It actually means that a definite query algorithm for 
multifunction M computes a function, which is a subset of multifunction. 

When designing a query algorithm to compute multifunction M in a definite manner, 
we may choose some arbitrary function from a set Func(M), which is better suited for 
computing in a query model, and construct an algorithm for that function. So, classical 
and quantum query complexities for computing multifunction definitely are expressed by 
formulas: 

( )
( ) min ( ( ))

f Func M
D M D f

∈
=    

( )
( ) min ( ( ))E E

f Func M
Q M Q f

∈
=  

It appears that the task of enlarging the gap between classical and quantum query 
complexity to compute multifunctions in a definite manner is completely the same as 
when computing usual functions in a query model. Even more, the interesting moment is 
that the functions selected from the set Func(M) for computing in classical and quantum 
cases may also be different. Unfortunately, it does not give us additional tool to enlarge 
the complexity gap when computing multifunction instead of function, quite contrary. 
For that reason, computing multifunctions in a distributed manner looks much more 
interesting. 

4.3 First Example of Computing a Multifunction 

In this subsection, the author illustrates the difference of computing multifunction in 
definite and distributed manners. Also a gap of N versus 2N is demonstrated between 
quantum and classical uniformly distributed query complexity of a multifunction. 

Let us consider an online banking client service system. To receive specific kind of 
bank’s services, client sends a request to the system. System has to analyze client’s 
request, determine a set of appropriate agents and assign a request to some agent from 
this set.  

In this example, four agents are assumed: Alice (id = 1), Bob (id = 2), Carol (id = 3) 
and Daren (id = 4). There are three factors that determine a set of appropriate agents for 
each client – location, client status and loan history. Table 4.1 describes these parameters. 
Second column contains a reference to the system function that has to be invoked to 
calculate parameter value. Invocation of each function can be interpreted as querying a 
black box and internal calculations may involve various database requests and other 
costly operations. Third column contains possible parameter values; fourth column 
contains corresponding numeric value returned by each function. 
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Table 4.1. Parameters that determine an agent that is able to serve client’s request 

Parameter Value 

Description System function Actual Numeric 

Client location getLocation(client_id) 
Saldus 0 

Ventspils 1 

Client status isVIP(client_id) 
Normal 0 

VIP 1 
Does client 

have an active 
loan? 

hasLoan(client_id) 

No 0 

Yes 1 

 
Table 4.2 defines the three-variable multifunction with Boolean domain and four-

valued range: 3
1 :{0,1} {1,2,3,4}M → .  

Rows of Table 4.2 have to be interpreted as the following statements: 
• If a request is received from an ordinary client from Saldus, which does not have 

an active loan (X = 000), then a request should be served by either Alice or Carol; 
• If a request is received from an ordinary client from Saldus, which has an active 

loan (X = 001), then a request should be served by either Alice or Daren; 
• If a request is received from a VIP client from Saldus, which does not have an 

active loan (X = 010), then a request should be served by either Bob or Daren; 
• etc. 

Table 4.2. Definition of the multifunction M1 

X 1( )M X  X 1( )M X  

000 { 1 , 3 } 100 { 2 , 4 } 
001 { 1 , 4 } 101 { 2 , 3 } 
010 { 2 , 3 } 110 { 1 , 4 } 
011 { 2 , 4 } 111 { 1 , 3 } 

 
Now, let us discuss the computational complexity of the multifunction M1. 

4.3.1 Definite Query Complexity of the Multifunction M1 

When computing a multifunction in a definite manner, algorithm has to output one 
arbitrary correct value from a result set with probability p = 1. It means that it is 
necessary just to ensure that client’s request is not forwarded to incompetent agent, while 
the work distribution among the competent agents is not handled. 

Theorem 4.1. CD(M1) = 2. 

Proof. It is easy to see that one query is not enough to compute this multifunction 
classically in a definite manner. However, two queries are sufficient to reach the goal – it 
is necessary to know the values of the first two variables only. Deterministic decision tree 
is shown in Fig. 4.2.  
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Actually, the task in this case it to compute XOR of the first two bits. If 

1 2( , ) 0XOR x x = , algorithm outputs “1”. Otherwise, algorithm outputs “2”.                    □ 

 

Fig. 4.2 Deterministic decision tree that computes M1 in a definite manner 

Theorem 4.2. QD(M1) = 1. 

Proof. It is well known that XOR of two bits can be computed exactly in the quantum 
query model by asking one query (see detailed description in Section 2.4). It immediately 
implies that multifunction M1 can be computed with one query in a quantum query model 
in a definite manner. Quantum algorithm adapted for computing M1 is shown in Fig. 4.3. 

        □ 

 

Fig. 4.3 Quantum query algorithm that computes M1 in a definite manner 

Although the algorithm is correct, the problem with such implementation of work 
distribution algorithm is that all requests are forwarded to Alice and Bob only, but Carol 
and Daren are bored without work. 

4.3.2 Uniformly Distributed Query Complexity of the Multifunction M1 

Now, let us consider computing M1 in a uniformly distributed manner, which seems to be 
much more practical in the context of this task. This time algorithm has to output each 
value from the result set with equal probability and should never output incorrect value. 

Obviously, one query is not enough in the classical case. However, this time again, 
two queries suffice.  

Theorem 4.3. CUD(M1) = 2. 

Proof. Classical probabilistic decision tree that computes M1 in a uniformly distributed 
manner is shown in Fig. 4.4.                         □ 
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Fig. 4.4 Probabilistic decision tree that computes M1 in a uniformly distributed manner 

Theorem 4.4. QUD(M1) = 1. 

Proof. Quantum query algorithm QM1, which computes M1 in the same uniformly 
distributed manner with one query, is presented in Fig. 4.5 and described below. 

 

 

Fig. 4.5 Quantum query algorithm QM1 for computing M1 in a uniformly distributed 
manner 

Algorithm QM1 uses two-qubit quantum system. Single query Q0 is defined by the 
unitary matrix:  

( )

( )

( )

( )

1

2

1

3

0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

x

x

x

x

Q

 −
 
 −

=  
 −
 
 − 

 

Computational process for each input X is presented in a table in Appendix 4.        □ 

This time all work items are equally distributed among agents. 
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With this basic example the author demonstrated query algorithms for computing 
multifunction in action. It is demonstrated that even in such a simple case of 
multifunction with three Boolean variables it is possible to obtain a gap between classical 
and quantum query complexity. In the next subsection, the author demonstrates a way for 
enlarging complexity gap in a uniformly distributed case. 

4.3.3 Generalizations of the Multifunction M1 

In this subsection, the author demonstrates two generalizations of the multifunction M1 

with bigger number of variables and larger complexity separation between classical and 
quantum algorithms. 

4.3.3.1 First Generalization of the Multifunction M1 

Definition 4.4. Multifunction 
1

1 :{0,1} {1,2,...,2( 1)}GEN N
M N→ −  associates each input 

element from the domain set with (N-1) output elements from the range set according to 

the following rule: 
1

1 1

1
1

 1 :  if ( 0),  then ( ) 2( 1) 1

                                               otherwise ( ) 2( 1)               

GEN
i

GEN

i N x x M X i

M X i

∀ < ≤ ⊕ = = − −

= −
 

It turns out that it is possible to compute multifunction 1
1
GEN

M  classically in a 

uniformly distributed manner using two queries. 

Theorem 4.5. CUD( 1
1
GEN

M ) = 2. 

Proof. Classical probabilistic decision tree is demonstrated in Fig. 4.6.                  □ 

 

Fig. 4.6 Classical query algorithm for computing 1
1
GEN

M  in a uniformly distributed 

manner 
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Theorem 4.6. QUD( 1
1
GEN

M ) = 1. 

Proof. To compute multifunction 1
1
GEN

M  in a quantum query settings algorithm QM1 is 

extended to query all N multifunction variables in a single query. To be able to handle all 
variables, the quantum system is extended to have 2(N-1) basis states. Fig. 4.7 shows 
quantum algorithm QM1’, which is an extended version of the algorithm QM1. H is the 
2 2×  Hadamard transformation, ⊗  denotes matrix tensor product operation. Quantum 
system consists of A qubits, where 2log (2( 1))A N= −   . 

 

Fig. 4.7 Quantum query algorithm QM1’ for computing 1
1
GEN

M  in a uniformly 

distributed manner 

Important moment is that variable x1 is assigned to all odd amplitudes, but remaining 
variables 2,..., Nx x  are sequentially assigned to even amplitudes.                  □ 

In this example, the author enlarged the number of multifunction variables, but does 
not succeeded yet in enlarging the gap between classical and quantum query complexity.  

4.3.3.2 Second Generalization of the Multifunction M1 

Subsequently, the author demonstrates another generalization of the multifunction M1. 
This time a gap 2N versus N is achieved between the classical and the quantum query 
complexity.  

The definition and behavior of multifunction 2
1
GEN

M  is similar to multifunction 
1

1
GEN

M  - it associates each input element with (N-1) output elements from the range set. 

However, this time more variables are involved in the condition of the rule, which defines 
the multifunction. 
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Definition 4.5. Multifunction 
22

1 :{0,1} {1,2,...,2( 1)}GEN N
M N→ −  associates each input 

element from the domain set with (N-1) output elements from the range set according to 

the following rule: 

1 2 ( 1) 1 ( 1) 2 ( 1)

2
1

2
1

 1 :  if (( ... ) ( ... ) 0),  

                    then ( ) 2( 1) 1

                    otherwise ( ) 2( 1)          

N i N i N i N N

GEN

GEN

i N x x x x x x

M X i

M X i

− + − + − +∀ < ≤ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ =

= − −

= −

 

To compute multifunction 2
1
GEN

M  in a classical query model 2N queries are required. 

Theorem 4.7. CUD( 2
1
GEN

M ) = 2N. 

Proof. In order to determine which range set element to include into the result set it is 
necessary to know values of all 2N variables involved into condition of the rule. A part of 
classical decision tree is depicted in Fig. 4.8. All sequentially queried variables are joined 
into one common query represented in the diagram by ellipses. Multiple arrows 
corresponding to common query outcomes are exiting these ellipses.                     □ 

 

Fig. 4.8 Classical query algorithm for computing 2
1
GEN

M  in a uniformly distributed 

manner 
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Theorem 4.8. 
2

1( )GEN
UDQ M N≤ . 

Proof. General structure of the algorithm remains the same, but more queries are added. 
Algorithm QM1’’ is presented in Fig. 4.9 . Again, odd amplitudes all have the same set                 

1,..., Nx x  of queried variables assigned. Remaining variables are sequentially assigned to 

even amplitudes.                     □ 
 

 

Fig. 4.9 Quantum query algorithm QM1’ for computing 2
1
GEN

M  in a uniformly 

distributed manner 

The author demonstrated an approach for generalization of multifunctions to a larger 
number of variables. As a result, a complexity separation N versus 2N is obtained, which 
is the same as the largest separation between quantum exact and classical deterministic 
query algorithm for total Boolean functions known today. During computing 
multifunctions in a uniformly distributed manner there is no error probability and correct 
result is obtained with probability p = 1 as well (algorithm always outputs some correct 
value from the result set). However, the structure of considered multifunction is based on 
XOR operation. All examples of N versus 2N separations for functions, that the author is 
aware of, are directly based on XOR as well. The author is interested to find different 
cases, where XOR is not involved in obtaining a speed-up. 
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4.4 Second Example of Computing a Multifunction 

Let us consider a TV company that offers minimal package and four more supplementary 
packages: movies, sports, social talk-shows and cartoons. Every client is free to choose 
any number of supplementary packages he is interested in.  Company is willing to make a 
present for each client according to client’s choice of packages. There are four different 
types of gift, let us mark them “1”, “2”, “3”, “4”.  

Rule 1. If a client has one or three packages besides minimal package, company has to 
choose one from “1”, “2”, “3”, “4” (probability to choose any gift from the scope has to 
be equally distributed between options, each having p = 1/4  to be selected). 

Rule 2. If a client has only the minimal package or all four supplementary packages, 
company presents a gift of type “1”.  

Rule 3. If a client has chosen movies and social talk-shows or sports and cartoons, 
company presents a gift of type “2”.  

Rule 4. If a client has chosen movies and sports or social talk-shows and cartoons, 
company presents a gift of type “3”.  

Rule 5. If a client has chosen movies and cartoons or social talk-shows and sports, 
company presents a gift of type “4”.  

Table 4.3 defines a multifunction with Boolean domain and four-valued range: 
4

2 : {0,1} {1,2,3,4}M → .  Let us assign an index to each type of packages: 1 for movies, 2 

for sports, 3 for social talk-shows and 4 for cartoons. Each bit in the input X gives the 
information whether i-th package is chosen by the client. 0000 means that only the 
minimal package is chosen, 1111 – full and so on. 

Table 4.3. The definition of the multifunction M2 

X 2( )M X  X 2( )M X  

0000 {1} 1000 {1,2,3,4} 
0001 {1,2,3,4} 1001 {4} 
0010 {1,2,3,4} 1010 {2} 
0011 {3} 1011 {1,2,3,4} 
0100 {1,2,3,4} 1100 {3} 
0101 {2} 1101 {1,2,3,4} 
0110 {4} 1110 {1,2,3,4} 
0111 {1,2,3,4} 1111 {1} 

 

4.4.1 Uniformly Distributed Query Complexity of the Multifunction M2 

Now, let us discuss the complexity of multifunction M2. Computing M2 is again 
examined in a uniformly distributed manner. 

Theorem 4.9. 2( ) 3
UD

C M ≥ . 

Proof. Let us assume there exists a classical decision tree where all paths from root to 
leaves contain no more than two variables. When executing an algorithm on input 
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X=0000, result "1" has to be output with probability p = 1. It means that there exists a 
path from root to leaf with output value "1", which goes through two query nodes with 
some variables: xA = 0 and xB = 0. This path is depicted in Fig. 4.10. The fact is that it is 
not possible to select indices A and B to avoid contradictions with other inputs. For any 
choice of indices A and B there are four inputs that pass through the same path depicted 
in Fig. 4.10 and finish in a leaf with output value "1". 

 

 

Fig. 4.10 Path for input X = 0000 in a potential classical randomized decision tree of 
depth d = 2 for computing M2 

Let us denote 1 2 3 4i
X x x x x= , A,B,C,D {1,2,3,4}∈ , then these four inputs are as 

follows: 
• X1: xA = 0, xB = 0, xC = 0, xD = 0 
• X2: xA = 0, xB = 0, xC = 0, xD = 1 
• X3: xA = 0, xB = 0, xC = 1, xD = 0 
• X4: xA = 0, xB = 0, xC = 1, xD = 1    

Let us consider the last input X4, which has exactly two bits equal to "1". From Table 
4.3 it is easy to see that for any input with exactly two "1" result set M2(X) consists of 
exactly one output value, which is always different from "1". 

A contradiction is obtained: input X4 passes through the path depicted in Fig. 4.10 and 
algorithm outputs incorrect value "1". 

        □ 

Theorem 4.10. QUD(M2) = 1. 

Proof. Quantum query algorithm QM2, which computes M2 in a uniformly distributed 
manner with one query, is presented in Fig. 4.11.                            □ 

The author would like to note that definition of the multifunction M2 and algorithm 
QM2 in some sense look similar to the definition and solution of the well-known 
Deutsch-Jozsa problem [25]. Careful reader could figure out this similarity by oneself. 
However, as is demonstrated further, generalization of that multifunction is not of that 
kind anymore. 
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Fig. 4.11 Quantum query algorithm QM2 for computing M2 in a uniformly distributed 
manner 

4.4.2 Generalizations of the Multifunction M2 

Subsequently, the author presents two generalizations of the quantum query algorithm 
QM2. The first algorithm computes generalized multifunction in the same uniformly 
distributed manner, while the second one performs computation in randomly distributed 
manner. 

4.4.2.1 First Generalization of the Multifunction M2 

Let us define the generalized version of multifunction 1 4
2 : {0,1} {1,2,3,4}GEN N

M → .  

Imagine that 4N variables are put on four vertical lines (v-lines) in such a way that: 

4{0,... 1}, {1,2,3,4}:
i k

i N k x +∀ ∈ − ∀ ∈ belongs to v-line number k. 

For example, 1 5 9 13, , , ,...x x x x  are placed on the 1st  v-line, 2 6 10 14, , , ,...x x x x - on the 2nd, 

and so on (see Fig. 4.12 for illustration).  
The result set for each input X of the multifunction is defined as follows: 
1. 1

2 ( ) {1}GEN
M X = , if all four v-lines of X contains either odd or even number of 

”1”. For example, for the next inputs the multifunction’s result set is {1}: 
– input X = 00000000 has zero ”1” on each v-line 
– input X = 00010001 has zero ”1” on the first, second and third v-line and two 
”1” on the fourth v- line 
– input X = 00001111 has one ”1” on each v-line 
– input X = 11111111 has exactly two ”1” on each v-line 

2. 1
2 ( ) {2}GEN

M X = , if 1st and 3rd v-lines of X have odd number of ”1” and 2nd and 4th 

have even number of ”1”, or vice versa: 1st an 3rd – even and 2nd and 4th - odd. For 
example, for inputs 00000101, 00001010, 01011111, 11011000 multifunction’s 
result set is {2}. 

3. 1
2 ( ) {3}GEN

M X = , if 1st and 2nd v-lines of X have odd number of ”1” and 3rd and 4th 

have even number of ”1”, or vice versa: 1st and 2nd – even and 3rd and 4th - odd. 
For example, for inputs 00000011, 00001100, 00111111, 10001011 
multifunction’s result set is {3}. 
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4. 1
2 ( ) {4}GEN

M X = , if 1st and 4th  v-lines of X have odd number of ”1” and 2nd and 

3rd have even number of ”1”, or vice versa: 1st and 4th - even and 2nd and 3rd - odd. 
For example, inputs 00000110, 00001001, 00111010, 10011111 multifunction’s 
result set is {4}. 

5. In all other cases, 1
2 ( ) {1,2,3,4}GEN

M X = . 

Theorem 4.11. 1
2( )GEN

UDQ M N≤ . 

Proof. Quantum algorithm that computes multifunction 1
2
GEN

M  in a uniformly distributed 

manner with N queries is presented in Fig. 4.12. Each quantum query Qi is defined by the 
following unitary matrix:                 

4 1

4 2

4 3

4 4

( 1) 0 0 0

0 ( 1) 0 0
,  {0,..., 1}

0 0 ( 1) 0

0 0 0 ( 1)

i

i

i

i

x

x

i x

x

Q i N

+

+

+

+

 −
 

− = ∈ −
 −
 

− 

. 

□ 

 

Fig. 4.12 Quantum query algorithm for computing 1
2
GEN

M  in a uniformly distributed 

manner 

Theorem 4.12. 1
2( ) 3GEN

UDC M N≥ . 

Proof. Let us assume there exists a classical decision tree that computes multifunction 
1

2
GEN

M
 
by asking 3N - 1 questions. All zeros input X = 00…0 is used to demonstrate a 

contradiction. Suppose arbitrary 3N - 1 variables are already queried, while N + 1 
variables remain unquestioned.  

On 4N-zeros input X = 00…0 algorithm has to output value "1" because all v-lines 
contain zero number of "1". Then, only such inputs are examined that have "0" in all 
queried 3N - 1 variables and exactly two "1" among remaining unquestioned variables. 
For all such inputs algorithm follows the same path in a tree and finishes in leaf with 
output value "1". However, all N + 1 unquestioned variables cannot be located on one v-
line simply because each v-line consists of N variables. So, there is an input for which 
two "1" among unquestioned variables are located on different v-lines. According to the 
definition, result set in such case is {2} or {3} or {4}. Thus, algorithm outputs incorrect 
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value for this input, this fact contradicts with the initial assumption, and implies 
1

2( ) 3GEN

UDC M N≥ .                 □ 

4.4.2.2 Second Generalization of the Multifunction M2 

Subsequently, the second way to generalize multifunction M2 is demonstrated. In 
previous generalization more queries were added. This time the quantum system is 
extended and more variables are put in single query. 

Suppose we are given a multifunction of N variables 2
2 : {0,1} {1,2,..., }GEN N

M N→ , 

where N is power of 2. This time the author does not provide full definition of the 
multifunction; it follows from properties of quantum algorithm described below. The 
author just would like to demonstrate that such generalization is technically possible. 

This time algorithm computes multifunction in a randomly distributed manner. 
Algorithm is allowed to output any value from result set with arbitrary probability, but 
probability for each value has to be positive: 0p > . 

Theorem 4.13. 2
2( ) 1GEN

RDQ M = . 

Proof. The author adds more qubits and sequentially assigns variables to amplitudes. 
Given 2 ,k

N k= ∈� , quantum algorithm starts with k-qubit zero state 0 , then applies 

N N×  Hadamard transformation, N-variable query and finally applies N N×  Hadamard 
transformation once again. Algorithm is depicted in Fig. 4.13.                 □ 

 

Fig. 4.13 Generalization of the quantum query algorithm for computing 2
2
GEN

M  

Theorem 4.14. 2
2( ) 1

2
GEN

RD

N
C M ≥ + . 

Proof. Let us analyze the multifunction that is computable by the extended quantum 
algorithm. Imagine the first element of the quantum algorithm result vector (amplitude of 
the quantum basis state 0 ) right before the quantum measurement. It can be described 

by the formula: 
1 2

1

( 1) ( 1) ... ( 1)x x xN

N
α

− + − + + −
= . 
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If all 0
i

x = , then 1 1α = , so for the input X = 00…0 algorithm outputs ”1” with 

probability p = 1. Let us suppose exactly N/2 variables are ”1” and N/2 are ”0”. In this 
case 1α  is precisely zero for all possible combinations. It means that probability to 

observe result value ”1” for any such input is p = 0. 
Classical algorithm has to behave in the same way: for input X = 00…0 value ”1” has 

to be produced with probability p = 1, but for all inputs with exactly N/2 ”1” result value 
”1” is not allowed to be output at all. This implies we are unable to recognize 
multifunction classically by asking only N/2 variable values, at least N/2+1 queries are 
required.                           □ 

4.5 Third Example of Computing a Multifunction 

In this section, the author demonstrates the last example of computing a multifunction.  
The eight-variable multifunction 8

3 : {0,1} {1,2,3,4}M →  is defined by the set of rules 

described in Table 4.4.  
To figure out the result set for a certain input X it is necessary to find a matching rule 

in a table. Each rule R(X) is described by the logical formula, which defines a condition 
that has to be satisfied by variable values. The last column contains the result set S(R). 
Formally, ( ) ( )( ) ( )  1M X S R X R X= ⇔ = . 

Table 4.4. The definition of the multifunction M3 

Rule 
group 

Suitable 
1 2 3 4, , ,x x x x  

Matching rule R(X) for 1 8( ,..., )X x x=  S(R)=M3(X) 

1 

0000, 
1111 

1 2 3 4 5 7( ) &( )x x x x x x= = = =  {1,2} 

1 2 3 4 5 7( ) &( )x x x x x x= = = ≠  
{3,4} 

0011, 
1100 

1 2 3 4 1 3 5 7( & & ) & ( )x x x x x x x x= = ≠ =  {3,4} 

1 2 3 4 1 3 5 7( & & ) & ( )x x x x x x x x= = ≠ ≠  
{1,2} 

2 

0100, 
1011 

1 2 3 4 1 3 6 7( & & ) & ( )x x x x x x x x≠ = = =  {1,4} 

1 2 3 4 1 3 6 7( & & ) & ( )x x x x x x x x≠ = = ≠  
{2,3} 

0111, 
1000 

1 2 3 4 1 3 6 7( & & ) & ( )x x x x x x x x≠ = ≠ =  {2,3} 

1 2 3 4 1 3 6 7( & & ) & ( )x x x x x x x x≠ = ≠ ≠  
{1,4} 

3 

0001, 
1110 

1 2 3 4 1 3 5 8( & & ) & ( )x x x x x x x x= ≠ = =  {1,4} 

1 2 3 4 1 3 5 8( & & ) & ( )x x x x x x x x= ≠ = ≠  
{2,3} 

0010, 
1101 

1 2 3 4 1 3 5 8( & & ) & ( )x x x x x x x x= ≠ ≠ =  {2,3} 

1 2 3 4 1 3 5 8( & & ) & ( )x x x x x x x x= ≠ ≠ ≠  
{1,4} 

4 

0101, 
1010 

1 2 3 4 1 3 6 8( & & ) & ( )x x x x x x x x≠ ≠ = =  {1,2} 

1 2 3 4 1 3 6 8( & & ) & ( )x x x x x x x x≠ ≠ = ≠  
{3,4} 

0110, 
1001 

1 2 3 4 1 3 6 8( & & ) & ( )x x x x x x x x≠ ≠ ≠ =  {3.4} 

1 2 3 4 1 3 6 8( & & ) & ( )x x x x x x x x≠ ≠ ≠ ≠  
{1,2} 
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There is certain symmetry in the definition of the multifunction M3. Input variables are 
logically split into two subsets, and values of variables in the first subset {x1, x2, x3, x4} 
determine which values from the second subset {x5, x6, x7, x8} are included in the second 
clause of the rule. 

The important property is that the structure of the multifunction and algorithm for 
computing it are not based on XOR operation. In the area of quantum query algorithms 
for computing total functions, all examples that the author is aware of, in which quantum 
query complexity is twice smaller than classical query complexity (the largest known 
gap), are directly based on XOR operation. 

Another important moment is that in this example the result set for each input consists 
of two elements and there is no input for which the result set consists of all possible 
output values. 

4.5.1 Uniformly Distributed Query Complexity of the Multifunction M3 

Theorem 4.15. 3( ) 6
UD

C M = . 

Proof. Straightforward classical algorithm with six queries is a deterministic decision tree 
with 50/50 randomization in output value after the last query. Four variables x1, …, x4 are 
sequentially queried first, and then the last two variables for each path are selected based 
on results of the first four queries. 

The lower bound proof is based on the following two properties of the multifunction. 
Property 1. For any input, value inversion of exactly one variable present in the 

second clause of the corresponding rule changes the result set to its complement in the 
range set (e.g. from {1, 2} to {3, 4} = {1, 2, 3, 4} \ {1, 2}). 

Property 2. Every two inputs with the Hamming distance between first four variable 
values equal to 1 (value of exactly one variable is different) belong to different Rule 
Groups in the table which defines logical rules of M3. Consequently, different two 
variables are included in the second clause of the rule and determine the result set. 

Let us assume there exists a randomized decision tree of depth less than 6. Let us 
examine the computation process for all zeros input X = 00…0. According to the 
assumption, every computation path contains no more than five variable nodes and 
finishes in a leaf with result value either ”1” or ”2”. The following statements ensure that 
algorithm is not able to figure out the correct result value for X = 00…0 using five 
queries only: 

1. In any case, there is no reason to include x6 and x8 in a path for X = 00...0 simply 
because these variables are not present in the rule. 

2. Let us assume that either x5 or x7 is not included in a computation path (e.g. path 
consists of x1, x2, x3, x4, x7 in arbitrary order). Then, computation for input with 
inversed value of that variable (e.g. X′ = 00001000) would pass through the same 
path and finish in incorrect leaf ”1” or ”2” (result set for X′ is {3, 4}). For all 
cases such behavior is ensured by the Property 1. 

3. Let us assume that variable x1, x2, x3 or x4 is not included in a path. According to 
the Property 2, input with exactly one inversed variable among x1, x2, x3, x4 
belongs to different Rule Group and the result set depends on two variables in the 
second clause of the rule different from x5 and x7 (e.g. for input X = 10000000 
variables x6 and x7 are present in the second clause). 
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At least one of these variables is not present in considered path, so algorithm will not 
be able to determine result set correctly without additional query. 

Above statements show that exclusion of any variable except x6 and x8 from the 
computation path for X = 00…0 results in uncertainty and break algorithm’s ability to 
output correct value. So, assumption is wrong and six queries are required to compute M3 
in a uniformly distributed manner.                          □ 

Theorem 4.16. 3( ) 2
UD

Q M ≤ . 

Proof. Quantum query algorithm QM3 that computes M3 with two queries is presented in 
Fig. 4.14.  

 

Fig. 4.14 Quantum query algorithm QM3 for computing M3 in a uniformly distributed 
manner 

Details of algorithm behavior are summarized in Table 4.5. The structure of the 
quantum algorithm completely corresponds to the rules that define multifunction M3, thus 
it invariably produces the correct result.                     □ 

Table 4.5. Details of algorithm QM3 behavior on inputs matching different groups of 
rules 

Rule 
group 

Description of the state after U1 
Variables 

in 2nd query 

1.1 Amplitudes of 1st and 3rd states have values 1 2  with equal signs 
x5 and x7 

1.2 Amplitudes of 1st and 3rd states have values 1 2  with different signs 

2.1 Amplitudes of 2nd and 3rd states have values 1 2  with equal signs 
x6 and x7 

2.2 Amplitudes of 2nd and 3rd states have values 1 2  with different signs 

3.1 Amplitudes of 1st and 4th  states have values 1 2  with equal signs 
x5 and x8 

3.2 Amplitudes of 1st and 4th  states have values 1 2  with different signs 

4.1 Amplitudes of 2nd and 4th  states have values 1 2  with equal signs 
x6 and x8 

4.2 Amplitudes of 2nd and 4th  states have values 1 2  with different signs  
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4.5.2 Generalizations of the Multifunction M3 

Quantum query algorithm for computing multifunction M3 is fairly interesting itself; 
moreover, it can be generalized to compute infinite family of multifunctions. The author 
briefly describes two methods to generalize quantum algorithm to compute multifunction 
with input of general size. Both methods can be applied to a variety of similar 
multifunctions, thus these are universal methods. 

4.5.2.1 First Generalization of the Multifunction M3 

First generalization employs quantum parallelism - N instances of algorithm for M3 are 
executed in parallel in a way depicted in Fig. 4.15. 
 

 

Fig. 4.15 First generalization of the quantum query algorithm QM3 

As a result an algorithm is obtained, which computes multifunction with 8N variables. 
Range set consists of 4N values and every input is associated with 2N range set values. 
Quantum algorithm still uses two queries only. However, it is possible to compute the 
same multifunction classically using six queries. So, the number of multifunction 
variables is enlarged, but the quantum versus the classical complexity gap is not enlarged 
yet. 

4.5.2.2 Second Generalization of the Multifunction M3 

The second generalization method is much more interesting. To generalize the 
multifunction the author associates each variable xi with a sequence of new variables

1 2, ,..., iN

i i ix x x . In the definition of the multifunction an expression 1 2 ... iN

i i ix x x⊕ ⊕ ⊕ is 

substituted for each variable xi. This way it is possible to define a multifunction with 
input of size: 

S = N1 + N2 + ... + N8. 

Result set for each input is defined the same way using rules from Table 4.4. Just to 
figure out the value of each of eight input variables in a rule for M3 first it is necessary to 
calculate XOR of the corresponding set of new variables. 
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Definition of new multifunction can be described by the following formula: 
81 2

81 2

2 1 1 1
3 1 1 2 2 8 8

1 1 1
3 1 1 2 2 8 8

( ,..., , ,..., ,......, ,..., )

( ... , ... ,......, ... ).

NN NGEN

NN N

M x x x x x x

M x x x x x x

=

= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
 

This way it is possible to generate an infinite family of multifunctions and 
corresponding quantum query algorithm for computing them. 

In next theorems, the author assumes that N1 = N2 = ... = N8 = N, so the total number 
of variables is 8N. However, complexity estimations for arbitrary Ni values can be 
performed in a similar way. 

Theorem 4.17. Uniformly distributed quantum query complexity of multifunction 2
3
GEN

M

(in case when  N1 = N2 = ... = N8 = N) is: 
2

3( ) 2GEN

UDQ M N≤ . 

Proof. Quantum query algorithm can be easily adjusted to compute the generalized 
multifunction: on the algorithm diagram replace each query circle corresponding to 
variable xi with a sequence of circles for new variables 1 2, ,..., iN

i i ix x x inside (see Fig. 4.16). 

According to the definition of the quantum query, each variable assigned to the 
horizontal line of the amplitude of the quantum basis state changes the sign of the 
amplitude to the opposite. Due to this property, sequential assignment of new variables in 
place of original variable xi has the same effect as XOR operation in the definition of 
multifunction.                    □ 

 

Fig. 4.16 Generalized quantum query algorithm for computing multifunction 2
3
GEN

M  in 

a uniformly distributed manner 

Theorem 4.18. Classical uniformly distributed query complexity of multifunction 2
3
GEN

M

(in case when  N1 = N2 = ... = N8 = N) is: 
2

3( ) 6GEN

UDC M N= . 

Proof. The same as in the case of basic multifunction M3, to figure out a matching rule 
for an arbitrary input it is needed to know the values of six sub-clauses  

1 2( ... )iN

i i ix x x⊕ ⊕ ⊕  in the rule formula. For that reason, all corresponding 6N variables 

has to influence the computation of randomized decision tree and must be queried 
sequentially. Randomization has to be used at the final step only, to output uniform 
distribution of result set values. It is also not possible to save queries using randomization 
during the calculation of XOR of sub-clauses.                □ 
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4.6 Conclusion and Open Problems 

In this section, the author examined computing multivalued functions in a query model. 
The author proposed three types of a query algorithm for computing multifunctions with 
the different output behavior. The author discussed the specifics of computing 
multifunctions in a definite manner and concluded that computing multifunctions in a 
distributed manner is more promising for enlarging a gap between classical and quantum 
query complexity. Finally, the author presented three examples of computing 
multifunctions in the classical and the quantum versions of a query model.  

The following complexity gaps were obtained and presented in this section: 
•  2 2

1 1( ) 2   versus  ( )GEN GEN

UD UDC M N Q M N= ≤  

•  1 1
2 2( ) 3   versus  ( )GEN GEN

UD UDC M N Q M N≥ ≤  

• 
2 2

2 2( ) 1  versus  ( ) 1
2

GEN GEN

RD RD

N
C M Q M≥ + =

 
 

• 
2

3( ) 6GEN
UDC M N=  versus 2

3( ) 2GEN
UDQ M N≤  

Results presented build a foundation for further investigation. The main goal, which 
the author is looking to achieve, is constructing examples with even larger gap between 
the quantum and the classical algorithm complexity for the same multifunction. Important 
work direction is to improve techniques for proving complexity lower bounds for 
computing multifunctions in a classical query model. 
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5 Nondeterministic Query Algorithms 

In this section, the nondeterministic algorithms are examined. A nondeterministic finite 
automaton, as introduced in [39], is a machine with many choices in its movements. On 
every stage it may choose one of several further internal states. The nondeterministic 
machine accepts a tape if there is at least one winning combination of choices of states 
leading to a designated final state. This is a traditional point of view on nondeterminism. 
In [40], nondeterministic algorithms are considered conceptual devices for simplifying 
the design of backtracking algorithms. The above study supports a view that algorithms 
are nondeterministic not in the sense of being random, but in the sense of having a free 
will. In [41], the authors present detailed definitions of nondeterministic finite automata, 
pushdown automata, Turing machine, and related results in complexity theory. 

This section is organized as follows. In Section 5.1, a traditional quantum query model 
is examined, a notion of dual nondeterministic query algorithm is introduced and 
algorithm complexity in this model is studied. In Section 5.2, an alternative 
nondeterministic query model is introduced. 

5.1 Traditional Nondeterministic Quantum Query Model 

This section is based on the paper 
• A. Dubrovska. Properties and Application of Nondeterministic Quantum Query 

Algorithms. SOFSEM 2007: Theory and Practice of Computer Science; Proc. 
Volume II; MatFyz Press; ISBN 80-903298-9-6; pp. 37-49, 2007 

Nondeterministic quantum query algorithms (NQQA) were examined by de Wolf in 
[42]. For instance, it was proved that it is possible to compute a function 

( ) 1 iff 1f X X= ≠  

using one query for all N, though it is proved that the best classical nondeterministic 
algorithm requires all N questions. This is the largest possible gap between complexities 
of two different kinds of algorithms permitted by the model. 

Definition 5.1. [42] A nondeterministic quantum query algorithm for f is defined to be a 

quantum algorithm that outputs 1 with positive probability if ( ) 1f X =  and that always 

outputs 0 if ( ) 0f X = .  

NQ1(f) denotes the query complexity of an optimal nondeterministic quantum 
algorithm for f.  

5.1.1 Dual Nondeterministic Quantum Query Algorithms 

The author introduces the concept of a dual nondeterministic quantum query algorithm 
and studies the relations between complexity of exact, nondeterministic and dual 
nondeterministic quantum query algorithms. 

Definition 5.2 A dual nondeterministic quantum query algorithm for f is defined to be a 

quantum algorithm that outputs 0 with positive probability if ( ) 0f X =  and that always 

outputs 1 if ( ) 1f X = . 

NQ0(f) denotes the query complexity of an optimal dual nondeterministic quantum 
algorithm for f.  
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5.1.2 Properties of NQQA 

In this section, the author discusses and demonstrates certain properties of 
nondeterministic quantum query algorithms. First, the author describes the relation 
between complexities of nondeterministic and dual nondeterministic quantum query 
algorithms. 

Lemma 5.1 A nondeterministic quantum query algorithm for a function f can be 

transformed in a dual nondeterministic algorithm for a function 
f

f  by replacing the 

assigned values for each output {0,1}j ∈  by (1 )j− . The same is true for transforming 

algorithms in the opposite direction. 

Proof. Let A1 be a dual nondeterministic algorithm for a function f(X) with complexity

0( 1)NQ A k= . The algorithm is executed on all inputs and depending on the result inputs 

are divided into three sets: 

{ | ( ( ) 1) 1}

{ | ( ( ) 0) 1}

{ | ( ( ) 0) 0 & ( ( ) 1) 0 & ( ( ) 0) ( ( ) 1) 1}

A X p f X

B X p f X

C X p f X p f X p f X p f X

= = =

= = =

= = > = > = + = =

 

According to the definition of the dual nondeterministic algorithm, the result value of 
running A1 on pertinent input is assigned to each set (see Table 5.1). 

Table 5.1. Results of running 
algorithm A1 

X  belongs to set: Result of A1 
A 1 
B 0 
C 0 

 

Table 5.2. Results of running 
algorithm A1’ 

X  belongs to set: Result of A1' 
A 0 
B 1 
C 1 

 

 
Subsequently, the value assignment for each output is changed to the opposite: 0 1→  

and 0 1→ . The author denotes a new algorithm with A1' and proves it to be a correct 
nondeterministic algorithm for

f

f . 
After running A1' author examines the same input sets A, B and C and obtains opposite 

probabilities for sets A and B: 

{ | ( ( ) 0) 1}

{ | ( ( ) 1) 1}

{ | ( ( ) 0) 0 & ( ( ) 1) 0 & ( ( ) 0) ( ( ) 1) 1}

A X p f X

B X p f X

C X p f X p f X p f X p f X

= = =

= = =

= = > = > = + = =

 

Subsequently, establishing the function value obtained by running A1' according to the 
nondeterministic algorithm definition, the results presented in Table 5.2 are obtained. 
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Comparing the results derived with values from Table 5.1 the author concludes that 

A1' computes f  as a nondeterministic algorithm. 
The proof in the opposite direction is similar.              □ 

Theorem 5.1 For an arbitrary Boolean function f, 0 1( ) ( )NQ f NQ f= . 

Proof. The proof follows from Lemma 5.1. The best existing dual nondeterministic 
algorithm can be taken for function f and easily transformed into a nondeterministic 

algorithm for f . Only the value assignment to outputs is changed; the number of 

questions 0( )NQ f  remains the same. In the opposite direction, it is possible to take the 

best existing nondeterministic algorithm for 
f

f  and transform it into a dual 

nondeterministic for 
f f≡

f  staying with the same 1( )NQ f  queries.            □ 

As the next step, the author examines composite functions and demonstrates a way to 
use an exact quantum query algorithm for a function to construct a nondeterministic 
quantum algorithm for a more complex function. 

The first structure is the composite function MULTI_AND. The author denotes: 

1 1 1 2 ( 1) 1_ ( ,..., ) ( ,..., ) ( ,..., ) ... ( ,..., )m mn n n n n n n m n mn

m

MULTI AND x x f x x f x x f x x+ − += ∧ ∧ ∧
�������������������������������������������������

 

1( ,..., )n nf x x  is called base function or sub-function. The composite function 

MULTI_AND is obtained using a base function structure as a pattern, joining several 
similar variable blocks by a logical AND operation. 

The second structure is a composite function MULTI_OR. The author denotes: 

1 1 1 2 ( 1) 1_ ( ,..., ) ( ,..., ) ( ,..., ) ... ( ,..., )m mn n n n n n n m n mn

m

MULTI OR x x f x x f x x f x x+ − += ∨ ∨ ∨
�������������������������������������������������

 

Theorem 5.2 Let Q1 be an exact quantum query algorithm that computes a Boolean 

function f with k queries. Consequently, a dual nondeterministic quantum query 

algorithm Q2 exists, computing function MULTI_ANDm(f) with the same k queries for all 

m. 

Proof. Let Q1 be an exact quantum algorithm with k queries for an N-variable function f. 
The author identifies the assignment of function values for outputs by 

1 1 2 2( , ,..., ),h hM q k q k q k= ≡ ≡ ≡  where h is a number of amplitudes. 

 

Fig. 5.1 Exact quantum algorithm Q1 for computing f 
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Further, the author constructs a quantum algorithm Q2, computing MULTI_ANDm(f) as 
a dual nondeterministic algorithm. The notation is the following: 

1 2_ ( ) ( ) ( ) ... ( )m mMULTI AND X f X f X f X= ∧ ∧ ∧ ,where 1 2 3... mX X X X X= , 

{1.. }i m∀ ∈ : ( )1 1 2 2, ,...,i i i i i iN iNX x x xα α α= = = =  and {0,1}ijα ∈ , it is allowed that 

, even if i jX X i j= ≠ . 

To establish the value for each of m occurrences of f, algorithm Q1 is executed in 
parallel. To retain the total sum of squares of amplitudes equal to 1, the initial amplitude 
distribution is separated between all m parts of Q2. All Q1 transformations are unitary 
and from the structure of the algorithm it follows that Q2 transformations are also 
unitary. Algorithm Q2 is demonstrated in Fig. 5.2. 

 

Fig. 5.2 Dual nondeterministic quantum query algorithm Q2 

The author denotes the sum of squares of all amplitudes where the output value is "0" 
in the part of Q2 corresponding to ( )

i
f X  by ( ) ("0")

if XP . In a similar way, by 

( ) ("1")
if XP , the sum of squares of all amplitudes of ( )

i
f X  parts corresponding to outputs 

with assigned "1" is identified. 
If after running Q1 on some input Xi, a final distribution of amplitudes ( )1 2, ,...,i i ihb b b  

appears, then computing 1 2( ) ( ) ... ( )mf X f X f X∧ ∧ ∧  with Q2, the following final 

distribution of amplitudes will be obtained:  

( ) ( ) ( )( )11 12 1 21 22 2 1 2

' ' ' ' ' ' ' ' ', ,..., , , ,..., ,..., , ,..., ,0,...,0
h h m m mh

b b b b b b b b b , where ' 1
ij ijb b

m
= . 
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Lemma 5.2 For an arbitrary input Xi: 

• If the result of running Q1 is f(Xi)=0, then for Q2 the outcome is ( )
1

("0")
if XP

m
=

and ( )("1") 0
if XP = . 

• If the result of running Q1 is f(Xi)=1, then for Q2 the outcome is ( ) ("0") 0
if XP =

and ( )
1

("1")
if XP

m
= . 

Proof. The proof follows from the properties of exact quantum query algorithm and the 
fact that the value assignment for outputs in each part of Q2 is the same as in Q1.        □ 

For the entire algorithm Q2: 
• If there exists at least one {1.. }i m∈  for which ( ) 0if X = , then according to 

Lemma 5.2 in the part of Q2 corresponding to ( )if X   ( )
1

("0")
if XP

m
= . The total 

probability of obtaining the result "0" is ( ( ) 0) 0p f X = >  and in the sense of a 
dual nondeterministic algorithm definition, _ ( ) 0MULTI AND X = . 

• If for all {1.. }i m∈  ( ) 1if X = , then in all Q2 parts ( )
1

("1")
if XP

m
=  and the total 

probability is ( ( ) 1) 1p f X = = , so in the sense of a dual nondeterministic 
algorithm definition, _ ( ) 1MULTI AND X = . 

The above completely conforms to the essence of a function MULTI_AND; hence, Q2 
computes this function as a dual nondeterministic algorithm.            □ 

 
The next theorem can be used for complexity estimation. 

Theorem 5.3 For an arbitrary Boolean function f,  

0 ( _ ( )) ( )m ENQ MULTI AND f Q f≤ . 

Proof. Using the approach from Theorem 5.2, it is always possible to construct a dual 
nondeterministic algorithm for _ ( )mMULTI AND f  based on the best existing exact 

algorithm for f. In this case, the equality of complexities is achieved. It may be possible 
to find a better algorithm for _ ( )mMULTI AND f  using a completely different method, 

and therefore there is an inequality in total estimation.            □ 

 
A similar result is obtained with a nondeterministic quantum query algorithm and the 

structure MULTI_OR. 

Theorem 5.4 Let Q1 be an exact quantum query algorithm that computes Boolean 

function f with k queries. Consequently, a nondeterministic quantum query algorithm Q2 

exists computing the function MULTI_ORm(f) with the same k queries for all m. 

Proof. The author uses the same algorithm Q2 from the proof of Theorem 5.2. 
This time the results of running Q2 are interpreted as follows: 
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• If there exists at least one {1.. }i m∈   for which ( ) 1if X = , then according to 

Lemma 5.2 in a part of Q2 corresponding to ( )if X  ( )
1

("1")
if XP

m
= . The total 

probability of obtaining result "1" will be ( ( ) 1) 0p f X = >  and in the sense of a 
dual nondeterministic algorithm definition, _ ( ) 1MULTI OR X = . 

• If for all {1.. }i m∈  ( ) 1if X = , then in all Q2 parts ( )
1

("0")
if XP

m
=  and the total 

probability is ( ( ) 0) 1p f X = = , so in the sense of a dual nondeterministic 
algorithm definition, _ ( ) 0MULTI OR X = . 

The above-stated completely agrees with the essence of the function MULTI_OR; 
hence, Q2 computes this function as a nondeterministic algorithm.           □ 

Theorem 5.5 For an arbitrary Boolean function f, 1( _ ( )) ( )m ENQ MULTI OR f Q f≤ . 

Proof. Similar to the proof of Theorem 5.3.                        □ 
 

In the next two theorems, the author generalizes the obtained results to enable 
operations with compositions of arbitrary Boolean functions. 

Theorem 5.6 Let fi be an arbitrary Boolean function. Let us examine a function 

1 2 ... nF f f f= ∧ ∧ ∧ . A dual nondeterministic quantum query algorithm Q exists 

computing F with 1 2E E E nmax( Q ( f ),Q ( f ),...,Q ( f ))  queries. 

Proof. All exact algorithms for f1, f2,…,fn are executed in parallel, combining the queries 
(Fig. 5.3).  

 

Fig. 5.3 Dual nondeterministic algorithm for 1 2 ... nF f f f= ∧ ∧ ∧  
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 The proposition of Lemma 5.2 is true for the algorithm Q; thus, it meets the properties 
of 1 2 ... nF f f f= ∧ ∧ ∧ . Exact algorithms are executed and questions are asked in 

parallel, so the complexity of the entire algorithm equals the largest number of queries of 
the corresponding exact algorithms.                □ 

Theorem 5.7 Let fi be an arbitrary Boolean function. Let us examine a function

1 2 ... nF f f f= ∨ ∨ ∨ . A nondeterministic quantum query algorithm Q exists computing F 

with 1 2E E E nmax( Q ( f ),Q ( f ),...,Q ( f ))  queries. 

Proof. Similar to the proof of Theorem 5.6.               □ 

5.1.3 Application of NQQA Properties 

In this section, the author provides several examples on application of nondeterministic 
quantum query algorithms and their properties for efficient computation of Boolean 
functions. 

5.1.3.1 Demonstration of the Approach 

This subsection is dedicated to demonstrating the technical performance of constructing a 
dual nondeterministic quantum algorithm for a composite function using exact quantum 
algorithms for sub-functions.  

Exact quantum query algorithms for the following two Boolean functions serve as the 
basis for the demonstration: 

3 1 2 3 1 2 1 3( , , ) ( ) ( )F x x x x x x x= ¬ ⊕ ∧ ⊕  

( ) ( )4 1 2 3 4 1 2 3 4( , , , )G x x x x x x x x= ⊕ ∧ ⊕  

The exact quantum query algorithms for these functions are presented in Fig. 5.4 and 
Fig. 5.5 and are obtained by applying transformation methods to base algorithms 
described in Section 3.1.1. 

 

Fig. 5.4 Exact quantum query algorithm for function F3 

 

Fig. 5.5 Exact quantum query algorithm for function G4 
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The author examines the composite function obtained by combining F3 and G4: 

7 1 2 3 4 5 6 7 1 2 1 3 4 5 6 7( , , , , , , ) ( ( ) ( )) (( ) ( ))H x x x x x x x x x x x x x x x= ¬ ⊕ ∧ ⊕ ∧ ⊕ ∧ ⊕ . 

The sensitivity of the base functions is 3( ) 3s F =  and 4( ) 4s G = . It is evident that the 

sensitivity of H7 is equal to the number of variables, so 7( ) 7D H = . 

According to Theorem 5.6, a dual nondeterministic algorithm exists with 

3 4max( ( ), ( )) 2E EQ F Q G =  queries only. 

Using a similar approach to one applied for the proof of Theorem 5.2, the author is 
able to completely describe a dual nondeterministic algorithm computing function H7 
(see Fig. 5.6). 

 

Fig. 5.6 Dual nondeterministic quantum query algorithm for H7 

5.1.3.2 Dual Nondeterministic Quantum Query Algorithm for ControlN Function 

The author introduces a function and proves a gap ( ) versus (1)O N O  between the 
complexity of the deterministic and the dual nondeterministic quantum algorithms. 

ControlN is defined to be a Boolean function of 2 1N k= −  variables: 

1 1 2

2 1 2 3

1 2 1 2 1

2 2 1 2 1

2 1 1 2 1

( , ,..., , ,..., ) 1     ...............................

...

...

k

k

N k k k

k k

k k k

x x x

x x x x

Control x x x x x

x x x x

x x x x x

+

+

+ −

− −

− −

= ⊕
 = ⊕ ⊕


= ⇔ 
 = ⊕ ⊕ ⊕


= ⊕ ⊕ ⊕ ⊕

 

The essence of the function is that in each accepting input X, for which ControlN(X) = 
1, values of the first j bits control the value of (k+j)’s bit. 

Theorem 5.8 ( )ND Control N= .  

Proof. Follows from the sensitivity of the function on zero input X = 00..0.        □ 

Theorem 5.9 There is a dual nondeterministic quantum algorithm computing ControlN 

with two queries for all N. 
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Proof. First, the equation system is transformed as follows: 

1 1 2 1 1 2 1 1 2

2 1 2 3 2 1 3 2 1 3

2 1 1 2 2 1 2 2

0

0

............................... .............................. ....................

...

k k k

k k k k k

k k k k k

x x x x x x x x x

x x x x x x x x x x

x x x x x x x

+ + +

+ + + + +

− − −

= ⊕ = ⊕ ⊕ ⊕ = 
 = ⊕ ⊕ = ⊕ ⊕ ⊕ = 

⇒ ⇒ 
 
 = ⊕ ⊕ ⊕ = ⊕  2 1 2 2

..........

0k k kx x x− −






 ⊕ ⊕ =

 

 It is possible to rewrite the statement: 

1 1 2

2 1 3

2 1 2 2

0

0
( ) 1

............................

0

k

k k

N

k k k

x x x

x x x
Control X

x x x

+

+ +

− −

⊕ ⊕ =
 ⊕ ⊕ =

⇔ =

 ⊕ ⊕ =

 

with equivalent logical formulas: 
1 1 2 2 1 3 2 1 2 2(( ) ( ) ... ( ))N k k k k k kControl x x x x x x x x x+ + + − −= ¬ ⊕ ⊕ ∨ ⊕ ⊕ ∨ ∨ ⊕ ⊕  

1 1 2 2 1 3 2 1 2 2( ) ( ) ... ( )N k k k k k kControl x x x x x x x x x+ + + − −= ¬ ⊕ ⊕ ¬ ⊕ ⊕ ∧ ∧ ¬ ⊕ ⊕  

3 1 3 2 3 1( ( )) ( ( )) ... ( ( ))N kControl PARITY X PARITY X PARITY X −= ¬ ∧¬ ∧ ∧¬  

1 3_ ( )N kControl MULTI AND PARITY−−−−= ¬= ¬= ¬= ¬  

From Theorem 5.2 follows that the dual nondeterministic quantum algorithm Q for the 
function ControlN exists, so that 0 3( ) ( )ENQ Q Q PARITY= ¬ . 

Fig. 5.7 demonstrates a quantum exact algorithm with two questions for a function

3 1 2 3( ) ( )PARITY X x x x¬ = ¬ ⊕ ⊕ .  Here H is Hadamard gate 
1 11

1 12
H

 
=  

− 
. 

Fig. 5.8 demonstrates the structure of a complete dual nondeterministic algorithm 
computing ControlN.                  □ 

 

Fig. 5.7 Exact quantum algorithm for ¬PARITY3(X) 
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Fig. 5.8 Dual nondeterministic quantum query algorithm for ControlN with two queries 

5.1.3.3 Dual Nondeterministic Quantum Query Algorithm for PAIR_EQUALITYN 

Function 

Using the properties of dual nondeterministic algorithms it is easy to figure out an 
efficient algorithm for the PAIR_EQUALITYN function (first defined in Section 3.1.1.2). 

The Boolean function is defined by the formula (N = 2k): 

2 1 2 3 4 2 1 2_ ( ) ( ) ( ) ... ( )
k k k

PAIR EQUALITY X x x x x x x−= ¬ ⊕ ∧ ¬ ⊕ ∧ ∧ ¬ ⊕ . 

Theorem 5.10 ( _ )ND PAIR EQUALITY N= .  

Proof. Follows from the sensitivity of the function on any accepting input.                   □ 

Theorem 5.11 There is a dual nondeterministic quantum algorithm computing 

PAIR_EQUALITYN with one query for all N. 

Proof. It is possible to rewrite the logical formula as a MULTI_AND of PARITY: 

2 1 2 1 2( , ) ( )PARITY x x x x= ¬ ⊕ , 

2 1 2 3 4 2 1 2

2 1 2 2 3 4 2 2 1 2 2

_ ( ) ( ) ( ) ... ( )

( , ) ( , ) ... ( , ) _ ( )
k k k

k k k

PAIR EQUALITY X x x x x x x

PARITY x x PARITY x x PARITY x x MULTI AND PARITY

−

−

= ¬ ⊕ ∧ ¬ ⊕ ∧ ∧ ¬ ⊕ =

= ∧ ∧ ∧ =

    It is well known that 2( ) 1
E

Q PARITY = , so from Theorem 5.2 follows: 

0 2 2( _ ) ( ) 1
k E

NQ PAIR EQUALITY Q PARITY= = . 

Algorithm structure is illustrated in Fig. 5.9.                                                                  □ 
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Fig. 5.9. Dual nondeterministic quantum query algorithm for PAIR_EQUALITYN with 
one query 

5.1.4 Conclusion and Open Problems 

In this section, nondeterministic quantum query algorithms were studied. First, a new 
concept of a dual nondeterministic quantum query algorithm was introduced followed by 
proving its relations with the complexity of nondeterministic and exact algorithms for 
several classes of Boolean functions. The results show the nondeterministic algorithms 
examined to be a powerful and an efficient model. A new function ControlN was 
introduced and a dual nondeterministic algorithm for computing it with two queries for 
all N was presented. 

The future direction of this research study is to prove stronger relations to other types 
of query algorithms, for example, to exact quantum algorithms of the same function, 
classical nondeterministic query algorithms and even classical deterministic algorithms. It 
would also be useful to discover efficient quantum nondeterministic algorithms for 
specific functions, revealing large gaps between complexities of different kinds of 
algorithms. 
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5.2 Alternative Nondeterministic Query Model 

This section is based on the paper 

• A. Vasilieva, R. Freivalds. Nondeterministic Query Algorithms. Journal of 

Universal Computer Science (J. UCS) 17(6): 859-873 (2011) 
 
In [40], nondeterministic algorithms are considered conceptual devices to simplify the 
design of backtracking algorithms. The above study supports a view that algorithms are 
nondeterministic not in the sense of being random, but in the sense of having a free will. 

The author investigates the nature of the above-mentioned nondeterministic free will. 
The author provides a way to measure the amount of nondeterminism in an algorithm. In 
the traditional nondeterministic query model the power of nondeterminism comes with no 
cost. The idea is that the algorithm must pay with additional queries for the 
nondeterministic help. The author introduces an alternative definition of the 
nondeterministic query model, which incorporates behavior described above. 

Definition of the nondeterministic quantum query algorithms as first introduced in 
[42] seems a bit counter intuitive. This is another motivation to introduce a new approach 
for nondeterminism in query algorithms.  

This section is organized as follows. In Section 5.2.1, an alternative model for 
nondeterministic query computation is introduced. In Section 5.2.2, an example of 
computing the Fano plane Boolean function in proposed model is demonstrated. 

5.2.1 Definition of the Alternative Nondeterministic Query Model 

In this subsection, the author introduces an alternative definition of a nondeterministic 
query model. The main idea is that in this variation the power of nondeterminism is not 
received free of charge, but the algorithm have to spend additional queries to obtain a 
nondeterministic help. 

Suppose that the task is to compute some arbitrary Boolean function F(X) in an 
alternative nondeterministic query model. Then, the first step is to define a 
nondeterministic helper function G(X,Y). This function has to satisfy definite conditions, 
which will be precisely specified a little bit later. The second step is to design a 
deterministic query algorithm for the function G(X,Y) . Finally, the nondeterministic 
query complexity of the function F(X) is equal to the complexity of the deterministic 
query algorithm for a nondeterministic helper function G(X,Y). 

Subsequently, the author provides formal definitions for the computational model 
informally described above. 

Definition 5.3 The nondeterministic helper function G(X,Y) for the Boolean function 

F(X) is a partial Boolean function, which satisfies the following conditions: 

1. ∀x1, ..., xn, ∃y1, ..., yk, such that G(x1, ..., xn, y1, ..., yk) = F(x1, ..., xn); 

2. ∀x1, ..., xn, ￢∃y1, ..., yk, such that G(x1, ..., xn, y1, ..., yk) ≠ F(x1, ..., xn). 

When computing G(X,Y) deterministically an algorithm will output either an answer 
that G(X, Y ) = b (b ∈ {0, 1}) or indefinite answer ”don’t know”. If some Boolean value 
b is retrieved during calculation, it implies that F(X) = b. 



90 
 

Definition 5.4 The nondeterministic query complexity of the function F(X) with the 

fixed helper function G(X,Y) is denoted with NDG(F) and is equal to the deterministic 

complexity of the G(X,Y): NDG(F) = D(G). 

An additional restriction on the deterministic query algorithm for the helper function 
G(X,Y) is that after computing this function deterministically it should be possible to re-
calculate or verify the value of F(X) independently, using variable values extracted from 
the black box during the calculation of G(X,Y). 

Definition 5.5 The nondeterministic query complexity of the function F(X) is denoted 

with ND(F) and is equal to the minimal nondeterministic query complexity of the function 

F(X) over all possible fixed helper functions G(X,Y): ND(F) = min G(X,Y ) NDG(F). 

5.2.2 Computing the Fano Plane Function 

In this section, the author demonstrates the alternative nondeterministic query model in 
action and shows that a gap between deterministic and nondeterministic query 
complexity for a certain Boolean function can be large. 

5.2.2.1 Definition of the Fano Plane Boolean Function 

The Fano plane is the two-dimensional finite projective plane with the least number of 
points and lines [43]. This plane has seven points and seven lines with three points on 
every line. Fano plane has many applications including factoring integers via quadratic 
forms [44]. The author defines a 7-variable Boolean function based on the structure of the 
Fano plane. Each vertex of the Fano plane is labeled by a variable number xi. Fig. 5.10 
represents a variant of variables assignment and this fixed definition will be used in the 
remainder of this section. 
 

 

Fig. 5.10 Fano plane with vertices labeled by function FANO(X) variables 

Definition 5.6 A line of the Fano plane with Boolean values assigned to vertices is called 

constant if all vertices in a line have the same Boolean value assigned. 

There are two important properties of the Fano plane with Boolean values assigned to 
vertices. For any variable values assignment (xi ∈ {0, 1}) there always is a constant line. 
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Second property is that for any variable values assignment there cannot be two constant 
lines assigned with the different Boolean value at the same time. These two properties 
allow to define a Boolean function based on the Fano plane. 

Definition 5.7 Boolean function FANO(x1, ..., x7) is defined as follows. For an arbitrary 

input X=(x1, ..., x7) find a constant line in the Fano plane. Value of the FANO(x1, ..., x7) 

function equals Boolean value assigned to vertices in that constant line. 

An example of FANO(X) function value assignment is illustrated in Fig. 5.11. 
 

 

Fig. 5.11 Illustration of FANO(X) Boolean function value assignment 

The Fano plane Boolean function can be represented also with a logical formula: 
FANO(x1, ..., x7) = (x1 ∧ x2 ∧ x3) ∨ (x5 ∧ x3 ∧ x7) ∨ (x7 ∧ x1 ∧ x6)∨ 
∨(x6 ∧ x2 ∧ x5) ∨ (x3 ∧ x4 ∧ x6) ∨ (x1 ∧ x4 ∧ x5) ∨ (x2 ∧ x4 ∧ x7). 

5.2.2.2 Deterministic Complexity of the Fano Plane Boolean Function 

To determine FANO(X) function value using the deterministic decision tree it is 
necessary to query all variables. 

Theorem 5.12 Deterministic complexity of the Fano plane Boolean function is equal to 

the number of function variables: D(FANO)=7 . 

Proof. To prove this lower bound the author uses a kind of adversary method. The 
computation is examined as a game between an arbitrary algorithm and an adversary, 
which is playing against that algorithm. Algorithm is querying variables in order to 
determine function value, while adversary is providing variable values trying to use a 
strategy that forces an algorithm to query all variables. The author considers all possible 
scenarios and shows that for any deterministic algorithm always exists such adversary 
strategy that forces to query all variables. In other words, it means that for any fixed 
algorithm such input X always exists on which all variables must be queried. 

First of all, the author defines a winning game state for an algorithm. In such a state 
next query will give function value for sure, either 0 or 1. We say that variable is open if 
its value is already known to an algorithm, otherwise variable is closed. 

State is winning if there are two crossing lines, where crossing point is closed, two 
points on one line are open as “0”, while two points on other line are open as “1”. Query 
about crossing point surely will be the last. See Fig. 5.12 for an example of winning state. 
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Fig. 5.12 Example of winning game state for an algorithm 

Now let us examine all possible cases. Because of the symmetry of the Fano plane, 
number of cases to consider is rather small. After first three queries, only two different in 
essence states are possible: (1) three open points are located on one line, (2) three open 
points form a triangle. In both cases adversary strategy is to open two “0” and one “1”. 
See example in Fig. 5.13. 

 

 

Fig. 5.13 Example of two possible in essence distinguishable states after three queries 

Case 1 (line). All four choices of variable for the fourth query are equivalent because 
of the symmetry. Adversary strategy in any case is to open “1”. After such fourth query 
there remain four potential constant lines: 

• L1, with two “1” already open; 
• L2, with one “0” already open; 
• L3, with one “0” already open; 
• L4, with one “1” already open. 

See example in Fig. 5.14. 
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Fig. 5.14 Case 1: illustration of potential constant lines and closed points after the 
fourth query 

At the same time there remain three closed points: 
• P1 ∈ L2, L4; 
• P2 ∈ L1, L2, L3; 
• P3 ∈ L3, L4. 

Let us examine three possible cases for an algorithm to choose variable for the fifth 
query. 

Case 1.1. If algorithm chooses point P1 for the fifth query, adversary strategy is to 
open “1”. Result - there is no winning state and thus adversary is able to force algorithm 
to query all seven variables. See Fig. 5.15.A. 

Case 1.2. If algorithm chooses point P2 for the fifth query, adversary strategy is to 
open “0”. There again is no winning state. So, adversary will be able to give non-
finishing variable value to any next query and seventh query will be required. See Fig. 
5.15.B. 

Case 1.3. For the last remaining option, point P3, adversary strategy is to open “0”. No 
winning state, so adversary again is able to force algorithm to query all seven variables. 
See Fig. 5.15.C. 

 

Fig. 5.15 Cases 1.1, 1.2, 1.3: illustration of possible states after fifth query 
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Case 2 (triangle). Four closed points that remain after third query can be divided to 

two sets. Let us examine two different cases (2.1 and 2.2) based on this separation. 
Case 2.1. There are three points (e.g. lower line in Fig. 5.13.1), opening of which after 

fourth query will bring a game to the state equivalent to that described in Case 15. 
Adversary strategy for such fourth query is to open “1”. As shown above, in such 
situation adversary is able to force querying all seven variables. 

Case 2.2. There is one point (e.g. central point in Fig. 5.13.2), after opening of which 
one line of the Fano plane will remain still fully closed. Adversary strategy is to open “0” 
for such fourth query. Otherwise, winning state would appear. Next, for any algorithm 
choice for fifth query adversary strategy is to open “1”. There will be no winning state, 
so, adversary is able to force algorithm to query all seven variables. See example in Fig. 
5.16 

 

Fig. 5.16 Case 2.2: illustration of possible states after fourth and fifth queries 

All possible cases are analyzed and it is demonstrated that for any fixed deterministic 
algorithm such input X always exists on which all seven variables must be queried. 

5.2.2.3 Nondeterministic Algorithm for the Fano Plane Boolean Function 

In this subsection, the author demonstrates the computation of the Fano plane Boolean 
function in proposed alternative nondeterministic query model. 

The first step is to define helper function GFANO(X, Y). The author adds three helper 
variables, so in total there are ten variables: 

1, 7 1 2 3( ..., , , , )FANOG x x y y y . 

Subsequently, a binary sequence number is assigned to each line of the Fano plane. 
This assignment can be arbitrary, variant presented in Table 5.3 will be used further. 
  

                                                 
5 The roles of ”0” and ”1” are interchanged in some cases. 
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Table 5.3 Binary numbering of the Fano plane lines 

Line 
variables 

Line 
number 

Line 
variables 

Line 
number 

1 2 3, ,x x x  000 3 4 6, ,x x x  100 

5 3 7, ,x x x  001 1 4 5, ,x x x  101 

7 1 6, ,x x x  010 2 4 7, ,x x x  110 

6 2 5, ,x x x  011   

 
Variables of the partial helper function GFANO(X,Y) are divided to two subsets. 

Variables of the X subset represent variable assignment of original FANO(X) Boolean 
function. Variables of the Y subset represent the Fano plane line binary number. Since 
there is no line numbered with “111”, function GFANO is not defined for all inputs where  
y1 = y2 = y3 = 1. 

Definition 5.8 Partial Boolean function GFANO(X, Y) is defined as: 

• GFANO(X, y1, y2, y3) = 1, if the Fano plane line numbered with y1y2y3 is constant 

and variables on that line are assigned Boolean value 1; 

• GFANO(X, y1, y2, y3) = 0, if the Fano plane line numbered with y1y2y3 is constant 

and variables on that line are assigned Boolean value 0; 

• otherwise, function value is not defined. 

For the illustration purpose, partial truth table for inputs X = 0000001 and X=0110110 
is given in Table 5.4. 

Table 5.4 Partial truth table for GFANO(X,Y) 

( )1 2 3 4 5 6 7, , , , , ,X x x x x x x x=  ( )1 2 3, ,Y y y y=  FANO(X) GFANO(X,Y) 

0000001 

000 

0 

0 
001 not defined 
010 not defined 
011 0 
100 0 
101 0 
110 not defined 
111 not defined 

… … … … 

0110110 

000 

1 

not defined 
001 not defined 
010 not defined 
011 1 
100 not defined 
101 not defined 
110 not defined 
111 not defined 
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Now, when the helper function GFANO(X, Y) is defined, the next step is to design an 
algorithm for computing this function. The author would like to remind that this 
algorithm has to be deterministic and variable values retrieved during computation 
process shall give us enough information to verify the value of FANO(X) function 
independently. 

The deterministic decision tree algorithm for computing GFANO(X,Y) consists of the 
following steps: 

1. Sequentially query variables y1, y2 and y3; 
2. Find the Fano plane line numbered with y1y2y3 and sequentially query all three 

variables composing this line; 
3. If all variable values retrieved in the second step are equal - output this Boolean 

value. Otherwise, output “not defined”. 

All three variables composing the line must be queried in the second step because of 
the restriction that retrieved information should allow us to verify the value of FANO(X) 
function. To perform such verification retrieved variable values are simply substituted to 
the logical formula of FANO(X) and it is ensured that it evaluates to the correct value. 

Theorem 5.13 Nondeterministic query complexity of the Fano plane Boolean function 

FANO(X) with the fixed helper function GFANO(X, Y ) is 

NDGFANO(FANO) = 6. 

Proof. Algorithm described above performs three queries to the black box in the first step 
and next three queries to the black box in the second step. 

5.2.2.4 Complexity of the Recursive Fano Plane Function 

Finally, the author shows that a gap between deterministic and nondeterministic query 
complexity can be asymptotically large. 

The definition of the Fano plane function can be applied recursively. 

Definition 5.9. Recursive Boolean function 
iFANO  is defined as follows: 

• 
1 1

1 2 7( ) ( , ,..., )FANO X FANO x x x= ; 

• 
1 1 1 1 1 1 1

1 2 7( ) ( ( ), ( ),..., ( ))i i i i i i i i
FANO X FANO FANO X FANO X FANO X

− − − − − −= ,  

where 1 1 1
1 2 7...i i i i

X X X X
− − −= . 

 
Recursively defined Boolean function FANON(X) has 7N variables. 

Theorem 5.14 Deterministic decision tree complexity of the recursive Fano plane 

Boolean function FANON  is D(FANON) = 7
N
. 

Proof. Since D(FANO1) = 7, on each recursion level it is necessary to know values of all 
seven sub-functions. So, on the last level, the total number of variables to be queried is 
equal to 7N.                            □ 

 
In a nondeterministic helper function GFANON (X,Y) for a recursive Fano plane function 

FANON three additional helper variables are defined for each recursion level. These 
helper variables indicate which three sub-functions need to be computed in order to 



97 
 

determine function value. The total complexity of the deterministic algorithm for the 
helper function evaluates to O(3N) . 

Theorem 5.15 Nondeterministic query complexity of the recursive Fano plane Boolean 

function NFANO with the fixed helper function is ( ) (3 )N N

GND FANO O= . 

Proof. For each recursion level, first, algorithm queries three helper variables to 
determine three sub-functions that compose a line. Subsequently, algorithm goes one 
level deeper and calculates value of each sub-function. Calculation of number of queries 
is presented in Table 5.5.  

Table 5.5 Calculation of nondeterministic query complexity for different recursion levels 

Recursion level Number of queries6 

i=1 1( ) 3 3 6G y xND FANO = + =  

i=2 2( ) 3 3 (3 3 ) 3 9 9 21G y y x y y xND FANO = + ⋅ + = + + =  

i=3 3( ) 3 3 (3 3 (3 3 )) 3 9 27 27 66G y y y x y y y xND FANO = + ⋅ + ⋅ + = + + + =  

… … 

i=N 1

1

( ) 3 3 ( ) 3 3
N

N N i N

G y G y x

i

ND FANO ND FANO
−

=

 
= + ⋅ = + 

 
∑  

Finally, partial sum formula is used for the term 
1

3
N

i

i=

∑  and the complexity estimation 

is derived for the case of recursion level i = N equal to ( ) (3 )N N

GND FANO O= : 

( )
1

3 5 3
( ) 3 3 3 1 3 3 (3 )

2 2 2

N
N i N N N N N

G

i

ND FANO O
=

 
= + = − + = − = 
 
∑ . 

□ 
5.2.3 Conclusion and Open Problems 

The author introduced an alternative definition of a nondeterministic query model. The 
main difference from traditional nondeterministic model is that nondeterministic behavior 
is not obtained free of charge, but additional queries must be spent to obtain 
nondeterministic help. The model proposed was demonstrated on example of computing 
the Fano plane Boolean function. When the definition of the function is applied 
recursively, a gap between deterministic and nondeterministic query complexity is 7N 
versus O(3N). 

Future work is to develop and improve the nondeterministic query model introduced in 
this paper. The scope of further investigation is very wide, from designing algorithms for 
certain problems in this model to performing a detailed complexity analysis and 
comparison to other computational models. Considering Boolean function based on 
projective finite geometries, similar to the Fano plane function, seems to be a promising 
direction for searching of interesting examples. The most important further step is to 
define a quantum counterpart of the alternative nondeterministic query model and to 
investigate its properties.  

                                                 
6 Subscript s near each number is (e.g. 3x or 3y) indicates that variable from subset S (e.g. X or Y) is queried. 
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6 Conclusion 

In the present thesis, the problems of quantum query algorithm design and complexity are 
investigated. Different types of quantum query algorithms are examined, such as exact, 
bounded-error and nondeterministic. 

In the first part of the thesis, quantum query algorithms for computing Boolean 
functions are investigated.  

Regarding exact quantum algorithms (for which the probability of a correct result is 
invariably p = 1), there is a long-standing open question and challenge: to establish 
whether a larger separation than N versus 2N can be achieved between the classical 
deterministic and the quantum exact query complexity for a total function? Even the 
design of examples with an N versus 2N complexity gap is known to be a complex task. 
The majority of such examples are directly based on the involvement of an XOR 
operation in the definition of a computable function. In the course of the present research 
study, efforts were made to improve and develop universal techniques for designing exact 
quantum query algorithms. To simplify the process of generation and verification of 
quantum algorithms, a Wolfram Mathematica software program was developed. Using 
this tool, two examples of Boolean functions were generated with a small number of 
variables, for which the complexity of the quantum exact query algorithm is lower than 
the complexity of the classical deterministic query algorithm. Subsequently, quantum 
algorithm transformation methods were proposed, providing for a significant enlargement 
of the set of efficiently computable Boolean functions.  Transformation methods were 
successfully applied to quantum algorithms for two basic Boolean functions. The 
approach demonstrated may be applied to already familiar and new exact quantum query 
algorithms. Additionally, an exact quantum query algorithm for the problem of repetition 
code verification was presented. In this example, a gap of N versus 2N between quantum 
and classical complexity is achieved. Finally, a technique for generation of examples with 
an N versus 2N complexity gap was demonstrated. In the course of the study, the answer 
to the most important question was still not found: namely, is it possible to achieve a 
larger gap than N versus 2N? However, by using the presented techniques, the task of 
designing efficient exact quantum query algorithms is significantly simplified. 

Regarding bounded-error quantum query algorithms, an algorithm for computing 
conjunctions, i.e., the Boolean function AND(x1,…,xN), was presented. This is a basic and 
widely applicable function, which requires an efficient algorithm. The quantum algorithm 
presented computes the conjunction of two bits through a single query with the correct 
answer probability 4 / 5p = . The approach was extended by formulating a general 
method for computing the conjunction of two Boolean functions with the same 
probability and the number of queries equal to 1 2max( ( ), ( ))

E E
Q f Q f . 

The second part of the thesis is devoted to computing multivalued functions in a query 
model.  In author’s opinion, this section contains the most interesting and important 
results. The author proposed three types of query algorithms for computing 
multifunctions: definite, randomly distributed and uniformly distributed query 
algorithms. Since quantum algorithms actively employ the power of parallelism and 
computing in superposition, they are naturally well suited for computing multifunctions 
in a distributed manner. The author presented three examples of computing 
multifunctions in classical and quantum versions of the query model. The most important 
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result achieved is an N versus 3N separation between the quantum and the classical 
complexity of the multifunctions examined. There is no error probability, so in some 
sense it is comparable and exceeds the largest known N versus 2N gap between the 
quantum exact and the classical deterministic complexity for the total Boolean function. 
Another important point is that the definition of multifunction is not based on an XOR 
operation. Finally, the author described universal methods to generalize finite 
multifunctions to families of multifunctions with an input of general size. 

In the third part of the thesis, the author examined nondeterministic query algorithms. 
Regarding the traditional quantum query model, the author introduced a new notion of a 
dual nondeterministic quantum query algorithm.  This type of algorithms was studied, 
and the discovered properties were applied to design efficient algorithms. For the 
Boolean function ControlN, a dual nondeterministic quantum algorithm was designed for 
computing it with two queries for all N, while classically N queries are required. 
Investigating the traditional nondeterministic query model the author realized that it is 
counter-intuitive in some sense and does not employ the full power of nondeterminism. 
As an alternative, a different definition of a nondeterministic query model was 
introduced. The model was demonstrated on the basis of an example of computing the 
Fano plane Boolean function and obtaining a 7N versus O(3N) gap between the 
deterministic and the nondeterministic query complexity. 

The results presented are mostly of theoretical importance; however, in the future it 
will be possible to implement the algorithm designing methods proposed in a quantum 
computer, therefore achieving of practical benefits is also feasible. 

The goals of the research are achieved on the whole; however, further improvements 
are possible by continuing the study in the following directions: 

• Exact quantum algorithms. It is still unclear whether it is possible or not to 
build a quantum algorithm more than two times faster than the best possible 
classical deterministic algorithm. The author’s idea for further work is to apply 
the combinatorial approach for algorithm design and to enlarge the size of the 
quantum system. 

• Computing multifunctions in the query model. In author’s opinion, this study 
direction is the most promising. To be able to build even more efficient 
algorithms, it is necessary to perform an exhaustive analysis of the properties 
of functions and algorithms discovered during the research study. A very 
important action line for further studies is development of convenient and 
efficient methods for proving the classical complexity lower bounds for 
multifunctions. 

• Nondeterministic query algorithms. The most important further step is to 
define a quantum counterpart of the alternative nondeterministic query model 
and to investigate its properties. 
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Appendix 1: Wolfram Mathematica program 

The following simple program was developed for verification and generation of quantum 
algorithms. Quantum algorithm for EQUALITY3 from Section 3.1.1.1 is simulated by this 
concrete program. However, it is very easy to simulate different algorithms by changing 
algorithm parameters in program code. 
 
Program code 
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Program output 
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Appendix 2: Computation of the quantum query algorithm for 

EQUALITY3 

The quantum query algorithm for computing Boolean function  

3 1 2 2 3( ) ( ) ( )EQUALITY X x x x x= ¬ ⊕ ∧ ¬ ⊕  

with two queries has been presented in Section 3.1.1.1. 

 
 

The following table describes the computation process for each input. 
 

X After 0 00 U Q
�

 After 0 0 10 U Q U
�

 After 0 0 1 10 U Q U Q
�

 Final 
state 

Result 

000 
1 1 1 1

, , ,
2 2 2 2

T

 
 
 

 1 1 1
, ,0,

2 22

T

 
 
 

 
1 1 1

, ,0,
2 22

T

 
 
 

 (1,0,0,0)T 
1 

001 
1 1 1 1

, , ,
2 2 2 2

T

 
 
 

 1 1 1
, ,0,

2 22

T

 
 
 

 
1 1 1

, ,0,
2 22

T

 
− − 
 

 (0,0,0,-1) T 0 

010 
1 1 1 1

, , ,
2 2 2 2

T

 
− − 

 
 1 1 1

,0, ,
2 22

T

 
− − 

 
 1 1 1

,0, ,
2 22

T

 
− 

 
 (0,0,1,0) T 0 

011 
1 1 1 1

, , ,
2 2 2 2

T

 
− − 

 
 1 1 1

,0, ,
2 22

T

 
− − 

 
 

1 1 1
,0, ,

2 22

T

 
− 
 

 (0,-1,0,0) T 0 

100 
1 1 1 1

, , ,
2 2 2 2

T

 
− − 
 

 1 1 1
,0, ,

2 22

T

 
− 
 

 1 1 1
,0, ,

2 22

T

 
− 
 

 (0,-1,0,0) T 0 

101 
1 1 1 1

, , ,
2 2 2 2

T

 
− − 
 

 1 1 1
,0, ,

2 22

T

 
− 
 

 1 1 1
,0, ,

2 22

T

 
− 

 
 (0,0,1,0) T 0 

110 1 1 1 1
, , ,

2 2 2 2

T

 
− − − − 
 

 1 1 1
, ,0,

2 22

T

 
− − − 
 

 1 1 1
, ,0,

2 22

T

 
− − 
 

 (0,0,0,-1) T 0 

111 
1 1 1 1

, , ,
2 2 2 2

T

 
− − − − 
 

 1 1 1
, ,0,

2 22

T

 
− − − 
 

 1 1 1
, ,0,

2 22

T

 
 
 

 (1,0,0,0) T 1 
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Appendix 3: Computation of the quantum query algorithm for  

PAIR_EQUALITY4 

The quantum query algorithm for computing Boolean function  

( ) ( )4 1 2 3 4 1 2 3 4_ ( , , , )PAIR EQUALITY x x x x x x x x= ¬ ⊕ ∧ ¬ ⊕  

with two queries has been presented in Section 3.1.1.2. 
 

  
The following table describes the computation process for each input. 

 

X After 0 00 U Q
�

 After 0 0 10 U Q U
�

 After 0 0 1 10 U Q U Q
�

 Final state Result 

0000 
1 1

, ,0,0
2 2

T

 
 
 

 1 1 1 1
, , ,

2 2 2 2

T

 
 
 

 1 1 1 1
, , ,

2 2 2 2

T

 
 
 

 (1,0,0,0)T 
1 

0001 
1 1

, ,0,0
2 2

T

 
 
 

 1 1 1 1
, , ,

2 2 2 2

T

 
 
 

 1 1 1 1
, , ,

2 2 2 2

T

 
− − 

 
 (0,1,0,0) T 0 

0010 
1 1

, ,0,0
2 2

T

 
 
 

 1 1 1 1
, , ,

2 2 2 2

T

 
 
 

 1 1 1 1
, , ,

2 2 2 2

T

 
− − 
 

 (0,-1,0,0) T 0 

0011 
1 1

, ,0,0
2 2

T

 
 
 

 1 1 1 1
, , ,

2 2 2 2

T

 
 
 

 1 1 1 1
, , ,

2 2 2 2

T

 
− − − − 
 

 (-1,0,0,0) T 1 

0100 
1 1

, ,0,0
2 2

T

 
− 

 
 1 1 1 1

, , ,
2 2 2 2

T

 
− − 

 
 1 1 1 1

, , ,
2 2 2 2

T

 
− − 

 
 (0,0,1,0) T 0 

0101 
1 1

, ,0,0
2 2

T

 
− 

 
 1 1 1 1

, , ,
2 2 2 2

T

 
− − 

 
 1 1 1 1

, , ,
2 2 2 2

T

 
− − 

 
 (0,0,0,1) T 0 

0110 
1 1

, ,0,0
2 2

T

 
− 

 
 1 1 1 1

, , ,
2 2 2 2

T

 
− − 

 
 1 1 1 1

, , ,
2 2 2 2

T

 
− − 
 

 (0,0,0,-1) T 0 

0111 
1 1

, ,0,0
2 2

T

 
− 

 
 1 1 1 1

, , ,
2 2 2 2

T

 
− − 

 
 1 1 1 1

, , ,
2 2 2 2

T

 
− − 
 

 (0,0,-1,0) T 0 

1000 
1 1

, ,0,0
2 2

T

 
− 
 

 1 1 1 1
, , ,

2 2 2 2

T

 
− − 
 

 1 1 1 1
, , ,

2 2 2 2

T

 
− − 
 

 (0,0,-1,0) T 0 

1001 
1 1

, ,0,0
2 2

T

 
− 
 

 1 1 1 1
, , ,

2 2 2 2

T

 
− − 
 

 1 1 1 1
, , ,

2 2 2 2

T

 
− − 
 

 (0,0,0,-1) T 0 
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1010 
1 1

, ,0,0
2 2

T

 
− 
 

 1 1 1 1
, , ,

2 2 2 2

T

 
− − 
 

 1 1 1 1
, , ,

2 2 2 2

T

 
− − 

 
 (0,0,0,1) T 0 

1011 
1 1

, ,0,0
2 2

T

 
− 
 

 1 1 1 1
, , ,

2 2 2 2

T

 
− − 
 

 1 1 1 1
, , ,

2 2 2 2

T

 
− − 

 
 (0,0,1,0) T 0 

1100 
1 1

, ,0,0
2 2

T

 
− − 
 

 1 1 1 1
, , ,

2 2 2 2

T

 
− − − − 
 

 1 1 1 1
, , ,

2 2 2 2

T

 
− − − − 
 

 (-1,0,0,0) T 1 

1101 
1 1

, ,0,0
2 2

T

 
− − 
 

 1 1 1 1
, , ,

2 2 2 2

T

 
− − − − 
 

 1 1 1 1
, , ,

2 2 2 2

T

 
− − 
 

 (0,-1,0,0) T 0 

1110 
1 1

, ,0,0
2 2

T

 
− − 
 

 1 1 1 1
, , ,

2 2 2 2

T

 
− − − − 
 

 1 1 1 1
, , ,

2 2 2 2

T

 
− − 

 
 (0,1,0,0) T 0 

1111 
1 1

, ,0,0
2 2

T

 
− − 
 

 1 1 1 1
, , ,

2 2 2 2

T

 
− − − − 
 

 1 1 1 1
, , ,

2 2 2 2

T

 
 
 

 (1,0,0,0) T 1 
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Appendix 4: Computation of the quantum query algorithm 

QM1 

Quantum query algorithm QM1 for computing multivalued function M1 in a uniformly 
distributed manner has been presented in Section 4.3.2.  

 

 
 
The following table describes the computation process for each input. 
 

X State after the query 
State before the 
measurement 

Output 

000 
1 1 1 1

2 2 2 2

T
 
 
 

 
1 1

0 0
2 2

T
 
 
 

 
Pr(“1”)=1/2 
Pr(“3”)=1/2 

001 
1 1 1 1

2 2 2 2

T
 

− 
 

 
1 1

0 0
2 2

T
 
 
 

 
Pr(“1”)=1/2 
Pr(“4”)=1/2 

010 
1 1 1 1

2 2 2 2

T
 

− 
 

 
1 1

0 0
2 2

T
 
 
 

 
Pr(“2”)=1/2 
Pr(“3”)=1/2 

011 
1 1 1 1

2 2 2 2

T
 

− − 
 

 
1 1

0 0
2 2

T
 
 
 

 
Pr(“2”)=1/2 
Pr(“4”)=1/2 

100 
1 1 1 1

2 2 2 2

T
 

− − 
 

 
1 1

0 0
2 2

T
 
 
 

 
Pr(“2”)=1/2 
Pr(“4”)=1/2 

101 
1 1 1 1

2 2 2 2

T
 

− − − 
 

 
1 1

0 0
2 2

T
 
 
 

 
Pr(“2”)=1/2 
Pr(“3”)=1/2 

110 
1 1 1 1

2 2 2 2

T
 

− − − 
 

 
1 1

0 0
2 2

T
 
 
 

 
Pr(“1”)=1/2 
Pr(“4”)=1/2 

111 
1 1 1 1

2 2 2 2

T
 

− − − − 
 

 
1 1

0 0
2 2

T
 
 
 

 
Pr(“1”)=1/2 
Pr(“3”)=1/2 

     


