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Abstract 

In the PhD thesis, original mathematical models are developed using and gene-
ralizing the conservative averaging method to study heat flux in electric wires, 
automotive fuses and electro-welding, which is a new process of joining wires. In 
statements, quasi-linear differential equations are used, and non-linearity of physical 
parameters is taken into account. Implemented in software, the models are solvable 
in a short time interval and easily adaptable for new materials and changes in the 
dimensions of the object. The theoretical basis of conservative averaging is 
generalized for a polar/cylindrical coordinate system and supplemented with 
exponential approximation. All the tasks are related to topical problems of industry 
and come from major German companies. The research has been carried out together 
with Munich Bundeswehr University. 
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Introduction 

The contents of this Ph.D. thesis reflect the collaboration of the University of 
Latvia’s Faculty of Physics and Mathematics and a science group based at the 
Munich Bundeswehr University’s Department of Electrical Engineering and 
Information Technology (Universität der Bundeswehr München, Fakultät für 
Elektrotechnik und Informationstechnik), led by Prof. Dr. Ing. Hans-Dieter Liess 
(Ließ). 

In the Ph.D. thesis, original mathematical models are developed for various 
electrical systems, which describe how they heat up under the influence of current, 
thermal conductivity and other physical processes. The problems being studied are 
primarily related to vehicle-safety issues, e.g., stability of fuses and estimation of the 
thermal endurance of wire insulation. In the mathematical models, quasi-linear 
differential equations are used, and the non-linearity of physical parameters is taken 
into account in describing such processes as heat convection with the surrounding 
environment or surface heat radiation. 

The first chapter contains a general overview of the conservative averaging 
method, which is used for the formation of all the models considered in the Ph.D. 
thesis. Using this method, it’s possible to reduce the full three-dimensional problem 
with complex geometry to a simpler mathematical model which is easier to use in 
practice. 

The conservative averaging method was developed in the 1980's by A. Buikis for 
partial differential equations with discontinuous coefficients, when he was modelling 
processes in environments with a layered structure [1]-[3]. There are various 
mathematical models of physical processes which use the method, made mostly by 
A. Buikis together with co-authors, e.g., cooling fin systems: [4]-[6]; plywood 
production [7]; convective diffusion process in aquifer for oil pumping [8]; and steel 
quenching: [9], [10]. The conservative averaging is also used to construct several 
types of the integral splines for heat or filtration processes in general multi-layer 
domains (e.g. [11]-[14]). 

Originally, the method was created for the Cartesian coordinate system, using 
polynomial approximation. In his Master's thesis [15], the author already presented 
the general form of the approximation by exponential functions (such type of 
approximation was used only for several particular models before, e.g. [4]). In order 
to use additionally the method in a polar or cylindrical coordinate system, inferences 
were made in the Ph.D. thesis using both polynomial and exponential approximation. 

The necessity to use the polar coordinate system arose during the first joint 
assignment realised together with the Bundeswehr University and Vilnius Technical 
University, in which the safety of electrical wire insulation in vehicles (trams, 
trolleybuses) was studied within the framework of the Eureka Project. 

The second chapter considers a mathematical model that makes it possible to 
calculate the distribution of time-dependent temperature within the wire and its 
insulation. Similar problems have been numerically solved with the finite element 
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method throughout the whole domain before, e.g. [16], [17]. In this thesis, the 
properties of that sub-domain that characterise the electrical conductor (metal) with 
the conservative averaging method are transferred to the inner side of the insulation 
as a non-classical boundary condition. As a result, it is only necessary to do 
numerical calculations in the insulation sub-domain – afterwards, the temperature in 
the metal is restored analytically. 

The task to research electrical fuses arose during the continuation of the 
collaboration with Bundeswehr University of Munich, which in turn collaborates 
with German car manufacturers. The essence of the problem is that the functioning 
and overheating of fuses does not always occur as expected and tested in 
technological laboratories, e.g., after a slight electrical overload, fuses tend to break 
faster than specified in the standards. The goal of the study was, firstly, to model and 
understand how current car fuses heat up, and secondly, to formulate 
recommendations for the elimination of shortcomings and for the development of 
new fuses. Models known to the author and previously studied in literature were one-
dimensional and utilised the chain principle, where the element is replaced with a 
range of thermal resistors, capacitors and heat sources: [18], [19]. 

The third chapter documents the development of a three-dimensional 
mathematical model for the fuse within the Cartesian coordinate system. Since the 
formulation of the problem is too complex to calculate many variations, the 
conservative averaging method is used to transform the mathematical model into a 
more easily usable form. From the initial three-dimensional system, mathematical 
models are obtained, which are based on a one-dimensional system of partial 
differential equations (time and single space dimension), as well as models that only 
contain the time-dependent ordinary differential equation system. The numerical 
results that were obtained from these mathematical models are mutually compared. 
The Ph.D. thesis demonstrates the use of the conservative averaging system for 
domains of a more complex form, not just for layered systems. 

Calculating the developed models, it turned out that a significant quantity of heat 
from the fuse flows further into the electrical system if the strength of the electric 
current is near or slightly above the nominal value of the fuse. To model this 
situation, mathematical models were developed in which the flow of heat from the 
fuse to the wires attached to it was also taken into consideration. Geometry 
consisting of bodies of cylindrical form was admitted to be suitable, and, therefore, 
the cylindrical coordinate system was used. The mathematical models obtained are 
considered in the fourth chapter of the Ph.D. thesis. As before, they are based on 
quasi-linear three-dimensional or one-dimensional partial differential equations or 
ordinary differential equations. Numerical results from the varying models are 
compared among each other. Publication that reflected this research won an award of 
the best student paper in the 3rd WSEAS int. conference on Applied and Theoretical 
Mechanics in 2007 ([20], [21]). 

In the fifth and final chapter of the Ph.D. thesis, the first mathematical models are 
developed for a new industrial process, which is called electro-welding. The ends of 
two electrical wires consisting of various metals are connected and subjected to a 
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strong current, while they heat up and melt together. Since various metals were used, 
e.g., aluminium and brass, the task is to find out how long the free end of each wire 
should be to begin melting in the place where the connection occurs, rather than on 
the inside of the metal. At the time of writing the Ph.D. thesis, the numerical results 
obtained have been sent to a company that develops this technological process.  

Collaboration with our foreign partners is due to continue in the future, improving 
the existing mathematical models and developing new ones. The main results of the 
Ph.D. thesis have been published in scientific journals and conference proceedings. 
The style of the text and sub-chapter structure has been retained as in the 
publications. 

Together with co-authors, the author has 5 publications on the subject of the Ph.D. 
thesis. The author has reported on 6 international and 5 local conferences. 

Importance of the Subject 

Development of all the mathematical models referred in the Ph.D. thesis is related to 
problems which are currently topical in the industry. Industrial companies that think 
about the future and innovations collaborate with scientists and search for ways to 
improve existing technologies and implement new ones. 

Studies of automotive fuses and electrical wires are conducted to increase the 
safety of vehicle electrical systems, as well as to reduce production costs; for 
example, needlessly oversized cables are often attached to electrical devices. Finding 
out what is a sufficient wire diameter would make it possible to save resources. In 
turn, in fuses, problems such as their overheating and degradation of an insulation of 
attached wire, which is not permissible from a safety perspective, have been 
observed. 

In designing new vehicles, development of electrical systems requires even 
greater precision. Cars with hybrid engines and light emitting diode (LED) lamps 
encountered problems that were not relevant for vehicles of former generations. 

Today, when introducing new materials and technologies, numerical calculations 
are important not only before their introduction in production, but already at the 
sample construction stage. For a new polymer insulation material whose physical 
properties are non-linearly dependent on temperature, heat flow modelling makes it 
possible to find appropriate dimensions of an electrical conductor that will not pose a 
threat to safety. Calculations for an electro-welding task, which is a new electrical 
wire connection method, reduce the number of practical experiments and save power 
resources. 

Even though general modelling software of physical processes exists, 
development of a single specific model using such computer programs often requires 
too much time. In contrast, use of an effective and quickly calculated mathematical 
model makes it possible to reach the desired result faster. 
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The Objective of the Thesis 

The objective of this Ph.D. thesis is to develop original and practical mathematical 
models using the conservative averaging method to study the thermal processes in 
electrical system elements, as well as to make calculations with real physical 
property values. The tasks to be carried out arise from formulated, practical problems 
in vehicle equipment and electro-welding. 

Research Methodology 

At first, the theoretical basis of the conservative averaging method is studied, 
generalizing it for polar/cylindrical coordinate system, as well as supplementing the 
method with exponential approximation. Researching particular problem, a three-
dimensional mathematical model of the object and its physical properties is created. 
Using the conservative averaging method, the initial task is reduced to an ordinary or 
partial differential equation system with a reduced number of dimensions. Numerical 
results are compared among the mathematical models developed and experimental 
measurements. 

Scientific Novelty and the Main Results 

• The conservative averaging method for the polar/cylindrical coordinate system 
has been developed. 
• The conservative averaging method has been supplemented with exponential 
approximation in both Cartesian and polar/cylindrical coordinate systems. 
• An analytical transformation of the mathematical model of insulated electrical 
wire to a new problem, which contain only insulation domain, has been carried out. 
Finding its solution, temperature in conductor could be obtained analytically. 
• An analytical reduction of the three-dimensional mathematical model of the 
automotive fuse to a one-dimensional mathematical problem (time and single space 
dimension) has been carried out, as well as a reduction to an ordinary differential 
equation system, which is solely time-dependent. Cylindrical and Cartesian 
(parallelepiped) geometries have been studied. 
• Numerical results from various developed mathematical models have been 
mutually compared. The results of numerical calculations correspond to the 
experimental observations of real objects and confirm the adequacy of the developed 
mathematical models.  
• The first mathematical models for electro-welding have been developed. Similar 
as before, the formulation of a three-dimensional problem has been transformed into 
several mathematical models with a smaller number of dimensions. 
• The optimal lengths of the free ends of two metal wires have been discovered, 
which ensures maximum temperature during welding at the place where the 
connection occurs. 
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• The mathematical models developed can be numerically solved in a short time 
interval. Implemented in computer software, they can be easily adapted for new 
materials and changes in the dimensions of the object. 
• To reduce the initial number of dimensions of the mathematical models, the 
conservative averaging method is used in all instances. The methodology studied in 
the Ph.D. thesis can also be used to develop other more complex mathematical 
models of thermal systems. 

Applications 

The developed mathematical models have helped to provide a better understanding 
of physical processes in the problems studied. Results of calculations are used to 
forecast the properties of real car fuses and electrical wires, as well as in developing 
the technological process of electro-welding. Conservative averaging made it 
possible to create such mathematical models whose numerical solution does not 
require much time, thus making it possible to calculate many examples quickly, 
which is not insignificant when collaborating with companies. 

The techniques containing conservative averaging, which have been developed to 
obtain mathematical models in this thesis, make it possible to create models for other 
physical processes related to heat flows and electric current in a similar manner. In 
fact, the general overview of the conservative averaging method makes it possible to 
use the method for any problem involving second-order partial differential equations. 
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1 Conservative Averaging Method 

The conservative averaging method was developed as approximate analytical and 
numerical method for solving partial differential equations with piecewise 
continuous coefficients: [1]-[3]. The usage of this method for a separate relatively 
thin sub-domain or for a sub-domain with a large heat conduction coefficient leads to 
the reduction of the domain in which the solution must be found. The method can be 
applied for several sub-domains simultaneously. To apply this method for all sub-
domains of the layered media, a special type of spline is constructed: the integral 
averaged values interpolating spline. Usage of this spline allows diminishing 
dimensions of the initial problem one by one. There are other sources containing 
information about the conservative averaging method and its applications, e.g., [15], 
[22]-[25]. 

1.1 Main Concept 

Built on a concrete steady-state heat conduction example, the main idea of the 
method is given in this section. 

 
Fig. 1.1: Visualization of the domain 

Let us assume that we have domain D that consists of two sub-domains (rectangles) 
G0 and G1 (Fig. 1.1): 
 { }0 ( , ) | (0, ), (0, )G x y x l y h= ∈ ∈ , 

 { }1 ( , ) | ( , ), (0, )G x y x l L y h= ∈ ∈ , 

 { }0 1 ( , ) | , (0, )D G G x y x l y h= ∪ ∪ = ∈ . 

The objective is to find function 0( , )U x y  (continuous in domain 0G ) and function 
1( , )U x y  (continuous in domain 1G ) that fulfils the following equations: 
a) heat transfer differential equations: 

 0 0
0 0 0 ( , ) 0U Uk k F x y

x x y y
⎛ ⎞∂ ∂∂ ∂⎛ ⎞+ + =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

,  (1) 

 1 1
1 1 1( , ) 0U Uk k F x y

x x y y
⎛ ⎞∂ ∂∂ ∂⎛ ⎞ + + =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

;  (2) 

G1G0

x

y 

0 l L

h 
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b) conjugation conditions at x = l (i.e. continuity of temperature and heat flux): 
 0 1x l x l

U U
= =
= ,  (3) 

 0 1
0 1

00 x lx l

U Uk k
x x = += −

∂ ∂
=

∂ ∂
;  (4) 

c) boundary conditions: 

 0

0

0
x

U
x =

∂
=

∂
, (5) 

 1 0
x L

U
x =

∂
=

∂
,  (6) 

 
0

0i

y

U
y =

∂
=

∂
,     0,1i = , (7) 

 ( ) 0i
i i i

y h

Uk U
y

α
=

⎡ ⎤∂
− −Θ =⎢ ⎥∂⎣ ⎦

.  (8) 

We require that all derivatives of the equations (1) and (2) are continuous in 
corresponding sub-domains. The solution of this mathematical problem can be 
treated as temperature in two layer media for heat transfer process. Coefficient k is 
heat conductivity, and α is heat convection to the environment then. We assume that 
all coefficients are constant here. Temperature dependent coefficients are considered 
in the next chapters where conservative averaging is applied to specific models. 
Let us assume that domain 0G  is thin in x-direction or it is made from material that 
has relatively better heat conductivity than the other one (or both conditions take 
place). We can obviously assume that temperature is almost constant in x-direction 
then. If this assumption was not reasonable, we could assume that distribution of the 
temperature differs from some other curve only slightly, i.e., polynomial or function 
of the exponential behaviour. Therefore, the first thing is to understand in which 
domain and in which direction the behaviour of the unknown function is predictable. 
Before we choose a specific representative (i.e. approximation) function, we 
introduce integral averaged value function over chosen interval. If we take domain 

0G  and interval [0, ]x l∈ , the definition of this function is 

 0 0
0

1( ) ( , )
l

u y U x y dx
l

= ∫ . (9) 

In our case, function 0u  represents averaged temperature in interval [0, ]x l∈  on 
given line y. 
Next, we select a function that will approximate our unknown function in chosen 
domain and segment. It should describe a particular physical situation. This means 
that the better view of the situation we have, the more appropriate function we can 
choose. For example, let us use exponential approximation in x-direction. Then, 
general form of the function 0U  is 
 0 ( , ) ( ) ( )e ( )ex xU x y a y b y c y −= + + .  (10) 
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The representation of the function U0 contains unknown functions a(y), b(y), c(y). 
These are obtained in such a way that they fulfil conditions on the boundaries 0x =  
and x l= , and integral equality (9). 
Practically, hyperbolic functions could be used instead of exponent: 

 0 ( , ) ( ) ( ) cosh sinh(1) ( ) sinh cosh(1) 1x xU x y a y b y c y
l l

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= + − + − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
.(11) 

Taking into account derivative of this function: 

 0 1 1( )sinh ( )coshU x xb y c y
x l l l l

∂ ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠
;  (12) 

and boundary condition on the border 0x =  (5), we obtain that ( ) 0c y ≡ . If we apply 
integral (9) to the approximation formula (11), we obtain that 
 0( ) ( )a y u y= .   

Conjugation condition (4) on the boundary x l= of the domain 0G  gives unknown 
function ( )b y : 

 1 1( )
sinh(1) x l

lk Ub y
x =

∂
=

∂
 .  

After unknown functions are found, we can rewrite approximation of the function 0U : 

 1 1
0 0( , ) ( ) cosh sinh(1)

sinh(1) x l

lk UxU x y u y
l x =

∂⎛ ⎞⎛ ⎞= + −⎜ ⎟⎜ ⎟ ∂⎝ ⎠⎝ ⎠
.  (13) 

The next step of the conservative averaging method is integration of the main 
differential equation (1) over the interval [0, ]x l∈ : 

 0 0
0 0 0

0

1 ( , ) 0
l U Uk k F x y dx

l x x y y
⎡ ⎤⎛ ⎞∂ ∂∂ ∂⎛ ⎞ + + =⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ .   

Let us take a look at the first addend:  

 0 0 0 0 0 1 1
0

00

1 0
l

x lx l x

U k U k U k Uk dx
l x x l x l x l x == =

∂ ∂ ∂ ∂∂ ⎛ ⎞ = − = −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠∫ .   

We used conditions (4) and (5) on the borders of the domain 0G  to make analytical 
transformations here. On the other hand, we could use representation (13) and it also 
would lead to the same result. 
Order of the integration and derivation could be swapped for the other derivatives in 
the integral because of the assumption of continuity of the solution. After that, 
integral formula (9) is applied: 

 0 0
0 0 0 0

0 0

1 1l lU dudk dx k U dx k
l y y y y l dy dy

⎛ ⎞ ⎛ ⎞∂∂ ∂ ∂
= =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

∫ ∫ .    

Consequently, differential equation for the unknown averaged value function 0( )u y  
is the following: 

 0 1 1
0 ( ) 0

x l

du k Ud k f y
dy dy l x =

⎛ ⎞ ∂
+ + =⎜ ⎟ ∂⎝ ⎠

 ; (14)  
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where ( )f y  is averaged value of the source function:   

 0
0

1( ) : ( , )
l

f y F x y dx
l

= ∫ .    

We have transformed initial problem to the new one. Differential equation (2) for the 
function 1( , )U x y  in the domain 1G  remains the same. The second differential 
equation (14) is for the averaged value function 0( )u y  in interval [0, ]y h∈ . 

 
Fig. 1.2: Domain after conservative averaging 

If we take into account representation of the averaged function (13), the conjugation 
condition (3) gives condition between functions 0u  and 1U : 

 ( ) 1
0 1 1 1 tanh(1)

x l
x l

Uu U lk
x=

=

∂
= + −

∂
.  (15)  

This equation together with the equation (14) could be considered as non-classical 
boundary condition for the border x l=  in domain 1G . 
Boundary conditions when 0y =  and y h=  for the function 0u  are similar as for the 
function 0U : 

 0

0

0
y

du
dy =

= ,  (16)  

 ( )0
0 0 0y

y h

duk h u
dy

=

⎛ ⎞
+ −Θ =⎜ ⎟

⎝ ⎠
.  (17)  

To be accurate, these equalities are obtained after integral is applied to boundary 
conditions (7), (8). Transformations are similar to those that were done for the main 
differential equation (1). Boundary conditions (6)-(8) remain the same for the 
function 1( , )U x y  of the domain 1G . 
We have transformed original problem and reduced dimensions of the domain (Fig. 
1.2). Usually, it is impossible to find analytical solution of mathematical problem – 
the only choice is to solve it numerically. It takes less computer power to calculate 
such mathematical model because of reduced dimensions. 
It is possible to reconstruct temperature distribution 0( , )U x y  in domain 0G  from the 
representation (13) after functions 0( )u y  and 1( , )U x y are calculated. Note that it is 
possible to get value at any point of averaged interval – not only in some discrete 
points as it would be after applying finite difference method to initial problem. 

G1

x

y 

0  l L

h 
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Mathematical problem is reduced by one dimension for whole system if conservative 
averaging method is applied for the domain 1G  in x-direction over interval [ , ]x l L∈ . 
Averaging procedure can be applied continuously in several directions, reducing 
dimensions of the problem one by one. Numerical calculations are also reduced by 
order. 
Let us look back to the original problem (1)-(8). For both domains, conservative 
averaging could be applied in y-direction at first (Fig. 1.3). 

 
Fig. 1.3: Domain after reduction of one dimension 

Boundary conditions at 0y =  and y h=  transfer to the new differential equations 
then. If constant approximation in y-direction is used: 
 0 0( , ) ( )U x y u y= ,  1 1( , ) ( )U x y u y= ,    

following differential equations are obtained: 

 ( )i i
i i i
dud k u f

dx dx h
α⎛ ⎞− −Θ = −⎜ ⎟

⎝ ⎠
,     ( ) ( , )i if x F x y= ,  0,1i = . (18)  

Remaining boundary and conjugation conditions actually stay the same: 

 0

0

0
x

du
dx =

= ,   1 0
x L

du
dx =

= ,  (19)  

 0 1x l x l
u u

= =
= ,   0 1

0 1
00 x lx l

du duk k
dx dx = += −

= . (20)  

In conclusion, main steps of the conservative averaging method are summarized. 
First, choose function of the approximation. Second, integrate main differential 
equation. Third, use boundary and conjugation conditions. 

1.2 Description of Conservative Averaging Method for Rectangular 
TwoLayer Domain in Cartesian Coordinate System  

1.2.1 Original Problem with Neumann Boundary Condition 

More general description of the method is given in this section. We start with 
statement of the problem again. 
Let us look at domain D where 

 1( , ) nx y D R +∈ ⊂ , x R∈ , 1( ,..., ) n
ny y y R= ∈ . 

Domain D consists of several sub-domains (for simplicity, we can imagine it as 
(n+1)-dimensional parallelepiped, see Fig. 1.4): 
 0D G G H= ∪ ∪ ,  0G G H∩ ∩ =∅ , 
 { }0 ( , ) | ( ,0),G x y x y Dδ= ∈ − ∈ ,   { }( , ) | 0,G x y x y D= > ∈ . 

x
0  l L



17 
 

By notation x > 0, we understand that domain G is located to the right of the domain 
G0. We denote hyper-plane – shared border of domains G0 and G – as H: 
 { } ( )0( , ) | 0, \H x y x y D G G D= = ∈ ≡ ∩ ∂ . 

Right border of the domain G0 is denoted as H0: 
 { }0 0( , ) | ,H x y x y Gδ= = − ∈ . 

We will use notation x = 0 and x = –δ for hyper-planes H and H0. 

 
Fig. 1.4: General geometry of the domain 

Let us call functions 0( , )U x y  and ( , )U x y  as solution of original problem if they are 
continuous in corresponding domains 0G , G  and fulfil following equations: 

a) differential equations: 

 ( )0
0 0 0 0 ( , )Uk U F x y

x x
∂∂ ⎛ ⎞ + = −⎜ ⎟∂ ∂⎝ ⎠

L , (21) 

 ( ) ( , )Uk U F x y
x x
∂ ∂⎛ ⎞ + = −⎜ ⎟∂ ∂⎝ ⎠

L , (22) 

 where 0L  and L  are differential operators; 
b) conjugation conditions: 

 0 0 0x x
U U

= =
= , (23) 

 0
0

00 xx

U Uk k
x x =+=−

∂ ∂
=

∂ ∂
; (24) 

c) Neumann boundary condition on border H0: 

 00
0 ( )

x

Uk y
x δ

φ
=−

∂
− =

∂
; (25) 

d) boundary conditions on the rest borders that are not necessary to concretize at 
this moment: 

 ( ) ( , )U x y= Ψl , 0( , ) \x y D D H∈∂ = ∂ . (26) 

Here, l  is differential operator; function ( , )U x y  is defined to be equal to function 
0( , )U x y  in domain 0G  and – to be equal to ( , )U x y  in domain G . It is continuous in 

D  because of equation (23). 
We require that all derivatives of equation (21) are continuous in domain G0 and 
derivatives of equation (22) – in domain G. Derivative U x∂ ∂  is continuous 

GG0

H0  H 

x

y 

0–δ
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function in domain D except hyper-plane H where it has the first kind discontinuity 
and condition (24) is fulfilled. Note that value δ is comparatively small but still finite 
– averaging will not be made by tending it to the limit 0δ → . 
We assume that coefficient k0 and coefficients of the differential operator 0L  are not 
dependent on argument x but could be dependent on argument y. Besides, operator 

0L  is linear and it do not contain derivatives regarding the argument x. 
Let us see two examples of operators 0L  and L : 

1) operators for 1D (in space) heat transfer problem: 

 ( ) 0
0 0 0 0

UU c
t

ρ ∂
= −

∂
L , (27) 

 ( ) UU c
t

ρ ∂
= −

∂
L ; (28) 

2) operators for steady-state 3D heat transfer: 

 ( ) 0 0
0 0 0 0

U UU k k
y y z z
⎛ ⎞∂ ∂∂ ∂ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

L , (29) 

 ( ) 1 1
U UU k k

y y z z
⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞= +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

L . (30) 

Let us obtain estimate of derivative 0U x∂ ∂ . We expand it to Taylor series near 
point 0x =  and take into account conjugation condition (24): 

 
2

20 0
2

0 00

( )
xx

U Uk U x O x
x k x x

=−=+

∂ ∂∂
= + +

∂ ∂ ∂
,   [ ,0]x δ∈ − . 

From here, such estimate is valid [3]: 

 
2

20 0
2[ ,0] [ ,0]

00

max max ( )
x x

x

U Uk U O
x k x xδ δ

δ δ
∈ − ∈ −

=+

∂ ∂∂
≤ + +

∂ ∂ ∂
. 

It shows that alteration of values of the solution 0U  is comparatively small in the 
direction of argument x if coefficient k0 is significantly larger than k or if δ is small 
(or both conditions take place). That means that function 0( , )U x y  could be 
approximately substituted by constant regarding argument x with accuracy 
( )2

0O k kδ δ+ . Otherwise, substitution by constant in the x-direction could be 
inappropriate – polynomial or exponential approximation should be used. 

1.2.2 Transformed Problem with NonClassical Boundary Condition 

We will convert differential equation (21) to non-classical boundary condition for the 
equation (22). It means that we will have other mathematical problem instead of the 
problem (21)-(26). To make difference between these two problems clearer, we 
denote the new solution of the equation (22) as ( , )u x y  instead of the function 

( , )U x y . 
We rewrite equation (22): 

 ( ) ( , )uk u F x y
x x
∂ ∂⎛ ⎞ + = −⎜ ⎟∂ ∂⎝ ⎠

L , ( , )x y G∈ ; (31) 
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and introduce integral averaged value function: 

 
0

0 0
1( ) ( , )u y U x y dx

δδ −

= ∫ . (32) 

After integrating equation (21) over the segment [ ,0]δ−  and taking into account 
conjugation condition (24), we obtain: 

 ( )0
0 0 0 0

0x x

Uuk k u f
x x δ

δ δ
=+ =−

∂∂
− + = −

∂ ∂
L , (33) 

where 0( )f y  is averaged value of the source function: 

 
0

0 0
1( ) ( , )f y F x y dx

δδ −

= ∫ . (34) 

Equation (33) is not a valid boundary condition yet because it has two unknown 
functions: 0( , )U yδ−  and 0( )u y . We use boundary condition (25) to exclude 
function U0 from the equation (33): 

 ( ) ( )0
0 0 0

0x

uk u f
x

δ φ δ
=+

∂
+ = − +

∂
L . (35) 

1.2.2.1 Approximation by Constant 
To move forward, we need to approximate function 0( , )U x y in respect to argument 
x. Accuracy of this depends on particular task. We start with simplest one – 
approximation by constant. Taking into account expressions (23) and (32), we get: 
 ( )0 0, ( ) (0, )U x y u y u y= = . (36) 

New boundary condition is found if we put this equality into equation (15): 

 ( ) ( )0
0 00

0
x

x

uk u f
x

δ φ δ
=

=+

∂
+ = − +

∂
L . (37) 

So, the transformed problem consists of differential equation (31), non-classical 
boundary condition (37) on the border H and original boundary conditions (26) on 
the other borders. New problem is defined in the sub-domain G of the initial domain 
D (Fig. 1.5). 
 

 
Fig. 1.5: Domain of the transformed problem 

 

G

H 

x

y 

0–δ
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To be correct, we need also to add boundary condition on the borders of the hyper-
plane H: 
 ( )0 0 ( )u yψ=l , y H∈∂ ; (38) 

where operator 0l  is defined in domain 0D G∂ ∩  and is equal to operator l  here; ψ0 
is analogue of averaged value integral (32) for the function Ψ0: 

 
0

0 0
1( ) : ( , )y x y dx

δ

ψ
δ −

= Ψ∫ .   

Ψ0 in its turn is G0 part of the function Ψ . 
If function 0φ  is not identical to zero, boundary condition (25) and assumption of 
independency of x are true only for 0 .k =∞  That means that approximation of 
argument x of function U0 by constant is applicable if values of coefficient k0 is 
relevantly large. 

1.2.2.2 Linear Approximation 
If we apply linear approximation to the function 0( , )U x y in direction of x axis 
 0 1 2( , ) ( ) ( )U x y u y xu y= +  (39) 

and use conjugation condition (23) and boundary condition (25), we obtain 

 0
0

0

( , ) (0, ) ( )xU x y u y y
k
φ= + . (40) 

Now we apply integral (32) to the expression (40) and put the result into equation 
(35) to get boundary condition on the border H: 

 ( )0 10
0

x
x

uk u
x

δ φ
=

=+

∂
+ = −

∂
L ; (41) 

where ( )0 2 01
1 0 0 02f kφ φ δ δ φ= + + L . (42) 

After finding solution ( , )u x y , we can approximately restore function 0( , )U x y  by 
formula (40). 

1.2.2.3 Approximation by Second‐Degree Polynomial  
We assume representation of the function U0 as follows: 

 
2

0 1 2( , ) (0, ) ( ) ( )x xU x y u y u y u y
δ δ

⎛ ⎞= + + ⎜ ⎟
⎝ ⎠

. (43) 

Conjugation condition (24) gives: 

 0
1

0

( )
x

kuk u y
x δ=+

∂
=

∂
. (44) 

From the condition (25) and integral (32), we obtain: 

 ( )
0

0
2 12k u u φ

δ
− = , (45) 

 1 1
0 1 22 30x

u u u u
=

= − + . (46) 
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After writing down u1 and u2 in terms of u0, we can transform equation (44): 

 ( )
0

0
00

0

3
2x

x

kuk u u
x

φ
δ =

=+

∂
= − +

∂
. (47) 

Now, we need only to express u0 from this equation and put it into (35) to get 
boundary condition on the border H: 

 0 2
03

u k uk u
x k x

δδ φ
⎛ ⎞∂ ∂

+ − = −⎜ ⎟∂ ∂⎝ ⎠
L  (48) 

where 0 2 01
2 0 0 06 ( )f kφ φ δ δ φ= + + L . (49) 

For calculating purposes, it could be useful to leave boundary condition in the form 
of the system. Then it would contain equations (35) and (47). If we put formula (47) 
into (35), we could use following form for the second equation of the system as well: 

 ( ) ( )00 3
0 0 0 020

3( )
x

ku u u fδ φ δ
δ =

+ − = − +L . (50) 

We can also use formulae (47) and (50) together as the system of equation on the 
boundary x = 0. 

1.2.2.4 Exponential Approximation 
Let us assume another representation for the function U0: 
 ( ) ( )0 1 2( , ) (0, ) e 1 ( ) 1 e ( )qx qxU x y u y u y u yδ δ−= + − + −  (51) 

where parameter q > 0 is arbitrary (positive) constant. It could be freely chosen 
taking into account physical and geometrical properties of particular problem. 
Simplest way is to take q = 1. 
We get boundary condition on the border H using similar mathematical modification 
as in previous case: 

 0 1 30
0 00

x
x x

u k uk u C
x k x

δδ φ
=

=+ =+

⎛ ⎞∂ ∂
+ − = −⎜ ⎟∂ ∂⎝ ⎠
L  (52) 

where 
0

0 2
3 0 2 0

0

f C
k
φφ φ δ δ
⎛ ⎞

= + + ⎜ ⎟
⎝ ⎠
L . (53) 

Values of the parameters C1, C2 depend on choice of parameter q: 

 ( )
2

1 2 2

e ( 1) 1( )
e 1

q

q

q qC q
q

− + +
=

−
, (54) 

 ( )
2

2 2 2

e 2 e 1( )
e 1

q q

q

qC q
q
− −

=
−

. (55) 

Again, we can use system on the boundary x = 0. First equation of the system is (35) 
and the second is the following: 

 ( ) 00 2
00

0 1 1
x

x

k Cuk u u
x C C

φ
δ =

=+

∂
= − +

∂
 (56) 
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or ( ) 00 2
0 0 0 00

1 1

( ) 1
x

k Cu u u f
C C

δ φ δ
δ =

⎛ ⎞⎛ ⎞
+ − = − + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

L . (57) 

1.2.3 Error Estimates for Transformed Problem 

Let us obtain an error estimate that occurs when initial problem is replaced with 
transformed problem. We decompose function U0 (x, y) to Taylor series at the point 
x = 0 under fixed argument y and take first three additives. Let us denote this by 0U : 

 
22

0 0
0 0 2

0

( , )
2 x

U UxU x y U x
x x

=−

⎡ ⎤∂ ∂
= − +⎢ ⎥∂ ∂⎣ ⎦

. (58) 

If we apply conjugation conditions (23), (24) to the first two additives of expression 
(58) and differential equation (21) to the third additive, we obtain: 

 ( )
2

0 0 00 0
00 0

( , ) ( )
2x x

x

k u xU x y u x u F
k x k= =−

=+

∂
= − − +

∂
L . (59) 

We define error in interval ( , 0)x δ∈ − : 

 0 0 0( , ) ( , ) ( , )U x y U x y U x yΔ = −  (60) 

where 0U  is approximate solution of 0U  what we obtain after solving transformed 
problem. If we use constant approximation in conservative averaging method, 
function 0U  is expressed by equality (36). In case of linear approximation, formula 
(40) is used. If we continue, expression for the second-degree polynomial 
approximation is 

 
0

2
0 0

00 0

( , ) 1
2 2x

x

k x uU x y u x x
k x k

φ
δ δ=

=+

∂⎛ ⎞= + + +⎜ ⎟ ∂⎝ ⎠
 (61) 

and – for exponential approximation (when q = 1): 

 
2

2 0
0 20

00

e 2e 1e (1 e ) e 1
(e 1) 2

x x

x
x

uU u k
k x

δ δδ φ
−

=
=+

⎛ ⎞⎛ ⎞∂ − −
= + − − + − +⎜ ⎟⎜ ⎟− ∂⎝ ⎠⎝ ⎠

. (62) 

Let us estimate an error at the point x δ= −  if approximation with constant is used: 

 0 0 0
0 0

( )
2 x

uU k u F
k x
δ δ

=

⎡ ∂ ⎤
Δ ≤ + +⎢ ⎥∂⎣ ⎦

L . (63) 

Similarly, we can obtain estimates for other kinds of approximation, for example, 
second-degree polynomial: 

 0 0
0 0

0 0

3 ( )
2 x

uU k L u F
k x
δ δ φ

=

⎡ ∂ ⎤
Δ ≤ + + +⎢ ⎥∂⎣ ⎦

; (64) 

or exponential approximation: 

 
3

0 0
0 0

0 0

2 (e 1)( )
e 1 2 e 1 x

k uU L u F
k x
δ δ φ

=

⎡ ⎤∂ −
Δ ≤ + + +⎢ ⎥+ ∂ +⎣ ⎦

. (65) 

We can see from estimates that error of averaging reduces if increases discontinuity 
of coefficients k and k0. Error decreases also if thickness of the layer δ is decreased. 
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This is unlike other – classical methods where increasing of discontinuity of 
coefficients leads to additional difficulties and greater error. 

1.2.4 Usage of the Method in the Case of the Dirichlet Boundary Condition 

Consider Dirichlet condition instead of (25) on the boundary H0: 
 0

0 ( )
x

U y
δ

ϕ
=−

= . (66) 

1.2.4.1 Approximation by Constant 
If we directly transfer boundary condition from boundary H0 to H: 0(0, ) ( )u y yϕ= , 
we lose solution dependence on parameters k0, F0 and δ. Therefore, we use equation 
(33) to obtain boundary condition on H. The second additive of the equation is zero 
because U0 is not dependent on argument x, but, in the third additive, we replace 0u  
by 0ϕ . We get: 

 ( )0
0 0 ( )uk f

x
δ ϕ∂

= − +
∂

L . (67) 

Evidently, Dirichlet boundary condition on the boundary H0 changed to Neumann 
condition on the boundary H. Condition (67) changes to non-classical form if we, 
instead of 0

0u ϕ= , use averaged value ( )01
0 2u u ϕ= +  in operator 0L  of equation (33): 

 0
0 0 0

1( ) ( )
2 2

uk u f
x

δ δ ϕ∂ ⎛ ⎞+ = − +⎜ ⎟∂ ⎝ ⎠
L L . (68) 

1.2.4.2 Linear Approximation 
Approximation of U0 by linear function over argument x gives such obvious 
expressions: 
 ( )01

0 2 (0, )u u y ϕ= − , (69) 

 ( )00 0
0 (0, ) ( )

x

U kk u y y
x δ

ϕ
δ=−

∂
= −

∂
. (70) 

If we use them in equation (33), we get following boundary condition on H: 

 
2 2

0 0
0 0 0

0 0 0

1( ) ( )
2 2

k uu u f
k x k k

δ δδ ϕ ϕ∂ ⎛ ⎞− + = + +⎜ ⎟∂ ⎝ ⎠
L L . (71) 

It is visible that this condition is close to Dirichlet condition if δ is small and k0 is 
relatively large in comparison with k. 

1.2.4.3 Approximation by Polynomial 
If we approximate U0 by polynomial expression (43), we can obtain unknown 
coefficients u1(y), u2(y) using conjugation condition (23), boundary condition (66) 
and integral (32): 
 0

1 00
4 2 6

x
u u uϕ

=
= + − , 0

2 00
3 3 6

x
u u uϕ

=
= + − . (72) 
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It is possible to express 0u  using u x∂ ∂ : 

 0
0

0 0

1 2
3 2

x

k uu u
k x
δϕ

=

⎡ ⎤∂
= + −⎢ ⎥∂⎣ ⎦

. (73) 

From here, we get required boundary condition on the boundary H of the 
transformed problem: 

 
2 2

0 0
0 0 0

0 0 0 0

1 ( )
3 4 2 3

k u k uu u f
k x k k x k

δ δ δδ ϕ ϕ
⎛ ⎞∂ ∂ ⎛ ⎞− − − = + +⎜ ⎟ ⎜ ⎟∂ ∂ ⎝ ⎠⎝ ⎠
L L . (74) 

Similarly as in section 1.2.2.3, condition on the boundary H could be left in the form 
of system: 

 0
0

0

2 3
2

k u u u
k x
δ ϕ∂

= − +
∂

, (75) 

 ( )
2 2

0 0
0 0 0 00

0

2 ( )
6 2

u u u f
k k
δ δϕ ϕ− − + = −L . (76) 

1.2.4.4 Exponential Approximation 
We assume that function U0 is in form (51). We can obtain unknown functions u1 and 
u2 if we use expressions (24), (32), (66). After that, equation (33) can be transformed 
to the boundary condition on the border H. If parameter q = 1, condition is: 

 ( )( )
32 2

0 03 4
0 0 3 0 5 02

0 0 3 0 0

2 2 ( )kC kCu uu u C f C
k x k C k x k
δ δδ δϕ ϕ∂ ∂⎛ ⎞− − − = + +⎜ ⎟∂ ∂⎝ ⎠

L L L  (77) 

where constants are as follows:  
 3 (e 1) (e 1)C = − + , 2 2

4 (e 4e 3) (e 1)C = − + − , 2 2
5 (e 2e 1) (e 1)C = − − + . 

Error estimates could be obtained similarly as above – using Taylor series. The 
exception is the case of constant approximation: 

 0
0 (0, ) ( )U u y yϕΔ ≤ − . (78) 

1.2.5 Usage of the Method in the Case of the Robin Boundary Condition 

Consider such condition on boundary H0: 

 00
0 0 0 ( )

x

Uk h U y
x δ

ϕ
=−

∂⎛ ⎞− + =⎜ ⎟∂⎝ ⎠
. (79) 

Approximation of function U0 by constant, expression (33) and fact that 
0 0( ) ( , ) (0, )u y U x y u y= = , gives: 

 0
0 0 ( )uk h u u f

x
δ ϕ δ∂

− + − = +
∂

L . (80) 

If we assume linear dependence of function U0 on argument x: 
 0 1( , ) (0, ) ( )U x y u y xu y= + ; (81) 
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and take into account formulae (32), (33) and (79), new boundary condition is: 

 0 0 0
0 11

2
k h huk u u

x k k
δδ ϕ⎛ ⎞∂ ⎛ ⎞− + − − =⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠

L ; (82) 

where 0 0k k hδ= +  and  

 
2

0 00
1 0 0 2

k f
k k

δϕ ϕ δ ϕ
⎛ ⎞

= + + ⎜ ⎟
⎝ ⎠

L . (83) 

Approximation of function U0 by polynomial of the second order leads to the 
following equation: 

 ( ) 0
0 0 0 0 2

0 0 0

3 1
3 4

hkk u uh u k h u k
k x k k x

δδ δ δ ϕ
⎡ ⎤⎛ ⎞∂ ∂

− + − + − + =⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠⎣ ⎦
L ; (84) 

where 
2

0 00
2 0 0

0 0

1 ( )
2 6

h f
k k

δ δϕ ϕ δ ϕ
⎛ ⎞

= + + +⎜ ⎟
⎝ ⎠

L . (85) 

As before, boundary condition in case of polynomial approximation can be written as 
system of two equations that contain averaged value function u0. 
If exponential approximation (51) is used, equation (33) gives condition on 0x = : 

 ( ) ( )0 1 2 0 0 0e eq quk k u u u f
x

δ δ−∂
− + + = −

∂
L . (86)  

We find unknown functions 1( )u y  and 2( )u y  from boundary condition (79) and 
conjugation condition (24): 

 ( )( ) 0
1 0 0 0

0

1( ) e 1 eq q k uu y h u qk h
qk x
δδ δϕ

γ
− −⎛ ⎞∂

= − + + − +⎜ ⎟∂⎝ ⎠
, (87) 

 2 1
0

( ) ( ) k uu y u y
qk x
δ⎛ ⎞∂

= − +⎜ ⎟∂⎝ ⎠
, (88) 

 ( )( )0 02 sinh( ) cosh( ) 1qk q h qγ δ= + − . 

Average value function 0( )u y  is obtained by integral (32): 

 0 1 20

1 e 1 e1 1
q q

x
u u u u

q q

−

=

⎛ ⎞ ⎛ ⎞− −
= − + + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. (89) 

1.3 Polar and Cylindrical Coordinate System 

1.3.1 Original Problem 

Let us take cylindrical domain 0D G G H= ∪ ∪ , 0G G H∩ ∩ =∅ (Fig. 1.6): 

 4( , )r y D R∈ ⊂ , r R∈ , 3( , , )y z t Rφ= ∈ ,  
 { }0 0 0( , ) | ( , ),G r y r r r y D= ∈ ∈ ,   { }0 1( , ) | ( , ),G r y r r r y D= ∈ ∈ , 

 { }0 0 0( , ) | ,H r y r r y G= = ∈ ,   { } ( )0 0( , ) | , \H r y r r y D G G D= = ∈ ≡ ∩ ∂ . 
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Argument r represents radius, but y could be also with less dimensions, depending on 
particular mathematical model, e.g., ( , )y z t= , ( , )y zφ=  or ( )y z= . Similarly as in 
previous section, we denote domain (surface) H0 as 0r r=  and domain H – as r = r0. 

 
Fig. 1.6: Circular domain of the original problem 

We have: 
a) differential equations for domains G0 and G: 

 ( )0
0 0 0 0

1 ( , )Urk U F r y
r r r

∂∂ ⎛ ⎞ + = −⎜ ⎟∂ ∂⎝ ⎠
L , (90)  

 ( )1 ( , )Urk U F r y
r r r
∂ ∂⎛ ⎞ + = −⎜ ⎟∂ ∂⎝ ⎠

L ; (91)  

 where 0L  is linear differential operator that is not dependent on argument r; 
b) conjugation conditions: 

 
0 0

0 r r r r
U U

= =
= , (92)  

 
00

0
0

00 r rr r

U Uk k
r r = += −

∂ ∂
=

∂ ∂
; (93)  

c) boundary condition at 0r r= : 

 
0

0
0 ( )

r r

Ur y
r

ϕ
=

∂
=

∂
. (94)  

 This condition is used in such form if domain is a ring or cored cylinder. 
 Boundary condition is homogeneous if 0 0r =  (Fig. 1.7): 

 0

0

0
r

Ur
r =

∂
=

∂
; (95)  

 
Fig. 1.7: Domain with a full core 

0r 1r r

G0
G1

0

0r 1r r0r

G0 G1

0
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 d) boundary conditions on other borders: 

 ( ) ( , )U r y=Ψl , 0( , ) \r y D D H∈∂ = ∂ ; (96)  

 where function ( , )U r y  is defined similarly as in previous section, i.e., it is 
equal to 0( , )U r y  or ( , )U r y  in corresponding sub-domains. 

1.3.2 Transformed Problem 

Let us apply conservative averaging method to the sub-domain G0 that is located 
closer to the center of the domain D. Solution of transformed problem we denote as 
u(r, y) that is defined in domain G . We rewrite equation (92) with new notation: 

 ( )1 ( , )urk u F r y
r r r
∂ ∂⎛ ⎞ + = −⎜ ⎟∂ ∂⎝ ⎠

L . (97)  

Again, we introduce integral averaged value function that is different from equation 
(12) because of cylindrical coordinates: 

 
0

0

0 02 2
0 0

2( ) ( , )
r

r

u y rU r y dr
r r

=
− ∫ . (98)  

For simplicity, we will consider only the case 0 0r =  in further transformations. 
We integrate equation (90) over the segment [0, r0] and take into account conjugation 
condition (93): 

 
0

0 0 0
00

2 ( ) ( )
r r

k u u f y
r r = +

∂
+ = −

∂
L ; (99)  

where 0f  is averaged value function of source function 0F : 

 
0

0 02
0 0

2( ) ( , )
r

f y rF r y dr
r

= ∫ . (100)  

We will use equality (99) to obtain non-classical boundary condition for the equation 
(97) on the border r = r0. (Fig. 1.8) 
 

 
Fig. 1.8: Ring-shaped domain of the transformed problem 

1.3.2.1 Approximation by Constant 
Let us assume that function U0 is constant over argument r. Taking into account 
conjugation condition (92), we find boundary condition on the border r = r0: 

0r 1r r

G1

0
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0

0

0 0
00

2 ( ) ( )
r r

r r

k u u f y
r r =

= +

∂
+ = −

∂
L . (101)  

Approximation with linear function leads to the same equation because of boundary 
condition (95) at the point r = 0. 

1.3.2.2 Approximation by Second‐Degree Polynomial 
We assume such representation for the function U0: 
 2

0 1 2 3( , ) ( ) ( ) ( )U r y u y ru y r u y= + + . (102)  

Conjugation conditions (92), (93) and boundary condition (95) allow us to find 
unknown functions u1, u2, u3. This allows rewriting the expression for the 
temperature U0 as follows: 

 ( )
0

2

0 0 02
0

2( , ) 1
r r

rU r y u u u
r =

⎛ ⎞
= + − −⎜ ⎟

⎝ ⎠
. (103)  

Here 
0

0

0
0

00

( )
4r r

r r

r k uu y u
k r=

= +

∂
= −

∂
. (104)  

The equality (99) gives the first boundary equation: 

 ( )
0

0
0 0 0 02

0

8 ( )
r r

k u u u f
r =

− + = −L . (105) 

Derivation of function (103) by argument r and putting the result into conjugation 
condition (93) gives the second equation on the boundary r = r0: 

 ( )
0

0

0
0

0 0

4
r r

r r

kuk u u
r r =

= +

∂
= −

∂
. (106) 

New formulation of the problem consists of differential equation (97), boundary 
conditions (105), (106) on the border r = r0 and original boundary conditions on the 
other borders of the domain G. After solving this problem, we can find 
approximation for the function U0(r, t) from (103). 

1.3.2.3 Exponential Approximation 
We assume following representation for function U0: 
 0 0

0 1 2 3( , ) ( ) (e 1) ( ) (1 e ) ( )r r r rU r y u y u y u y−= + − + − . (107) 

We can obtain unknown functions u1, u2, u3 and write down function U0 after using 
boundary condition (70) and both conjugation conditions: 

 ( )
0

0

0
0 0

00

( , ) cosh( ) cosh(1)
sinh(1)r r

r r

r k uU r y u r r
k r=

= +

∂
= + −

∂
. (108) 

In this case, integral averaged value function is given by expression 

 
0

0

0
0

00 0

( )
r r

r r

r k uu y u
C k r=

= +

∂
= −

∂
, (109) 

where constant 2 2
0 (e 1) (e 4e 5)C = − − + . (110) 
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This is the first equation on the border r = r0. We find the second one by using 
equality (99): 

 ( )
0

0 0
0 0 0 02

0

2 ( )
r r

C k u u u f
r =

− + = −L . (111) 

After finding solution, we can approximately reconstruct values in the domain G0 by 
formula (108). Function U0 could be expressed also in terms of u0 that is more 
convenient for calculation purposes: 

 ( )
0 0

0 0 0( , ) ( )
r r r r

U r y u r u uβ
= =

= + −   (112) 

where 0 2
0

2e( ) cosh cosh(1)
e 4e 5

rr
r

β
⎛ ⎞

= −⎜ ⎟− + ⎝ ⎠
. (113) 

1.4 Conclusions 

The theoretical basis of the conservative averaging method was considered in this 
chapter. At the beginning, the main concept with an example was given. It was 
written as a simple introduction of the method for interested persons, and could also 
be used as teaching aid for students. Next, a general description of conservative 
averaging in Cartesian and polar coordinates using polynomial, exponential and 
constant approximation was presented. Although the conservative averaging method 
has been used for several decades, there are still many theoretical aspects that wait to 
be researched. 
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2 Heat Transfer in Cylindrical Wire with Insulation 

Calculation of heat transfer and heat emission in electrical wires is a vital issue in 
many industries. Electric circuitry is used in cars, houses, consumer electronics, etc. 
Damage and accidents are possible if insulation melts because of heightened 
temperature in the wires. The thermal properties of conductor and insulation 
significantly differ, which makes calculation of critical temperatures more difficult. 
In this chapter, a single round wire is considered. Since the length of the wire is 
much larger than diameter, 1D model is used as in [17]. The heat conductivity 
coefficient of the conductor is substantially greater in comparison with the 
coefficient of the insulation of the wire. In this situation, it is possible to use 
conservative averaging as a mesh reduction method which diminishes the domain of 
numerical calculation. In other words, it is sufficient to make calculations on the 
insulation of the wire, but the temperature distribution for the wire itself is estimated 
in an analytical way. If we compare with the mentioned paper [17], the finite volume 
method was used there to calculate the temperature in both regions – conductor and 
insulation. 

2.1 Statement of the Problem 

We have two-layer domain (Fig. 2.1) that consists of electrical conductor and 
insulation. We denote radius of metallic wire by r0 and – outer radius of insulation by 
r1. We have: 

 
Fig. 2.1: Geometry of an insulated wire 

a) heat transfer equation for conductor: 

 0 0
0 0 0

1 ( , )U Uc rk F r t
t r r r

∂ ∂∂ ⎛ ⎞= +⎜ ⎟∂ ∂ ∂⎝ ⎠
,   0(0, )r r∈ ; (1) 

and homogeneous non-linear heat conduction equation for the insulation: 

 1U Uc rk
t r r r

∂ ∂ ∂⎛ ⎞= ⎜ ⎟∂ ∂ ∂⎝ ⎠
,   0 1( , )r r r∈ ;    (2) 

b) conjugation conditions at r = r0: 
 

0 0
0 r r r r

U U
= =

= , (3) 

0r 1r r
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00

0
0

00 r rr r

U Uk k
r r = += −

∂ ∂
=

∂ ∂
; (4) 

c) boundary conditions: 

 0r = :  0

0

0
r

U
r =

∂
=

∂
; (5) 

 1r r= :  
1

1

( ) 0
r r

r r

Uk h U
r

θ
=

=

∂
+ − =

∂
 (6) 

d) initial conditions: 
 0t = :   0U θ= , U θ= . (7) 

Here c0, c, k0, k, h – temperature dependant coefficients which correspond to 
volumetric heat capacity, heat conductivity and heat exchange on the surface; θ  – 
temperature of environment. 

2.2 Transformed problem 

We use conservative averaging method to exclude wire from definition domain – we 
will inspect heat transfer in the insulation only. We denote solution of the problem, 
which is transformed by conservative averaging method, as u(r, t). New statement of 
the problem consists of differential equation (2) (replacing U by u), boundary 
condition (6), initial condition (7) and condition on the boundary 0r r=  that we will 
obtain from previous chapter. Differential operator 0L  in our case is 

 ( )0 0( )u c u
t
∂

= −
∂

L .   

Boundary condition comes from formula (101) of the Chapter 1.3.2 if we use 
approximation by constant: 

 ( )
0

0

0 0
00

2 ( )
r r

r r

k u c u f y
r r t =

= +

∂ ∂
− = −

∂ ∂
; (8)  

formulae (105) and (106) are used for polynomial approximation: 

 ( )
0

0 0
0 0 02

0

8
r r

k uu u c f
r t=

∂
− − = −

∂
, (9) 

 ( )
0

0

0
0

0 0

4
r r

r r

kuk u u
r r =

= +

∂
= −

∂
; (10) 

and formulae (109)-(111) – for exponential approximation: 

 
0

0

0
0

00 0

( )
r r

r r

r k uu y u
C k r=

= +

∂
= −

∂
, (11) 

 ( )
0

0 0 0
0 0 02

0

2
r r

C k uu u c f
r t=

∂
− − = −

∂
, (12) 

 
2

0 2

e 1
e 4e 5

C −
=

− +
. (13) 
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2.3 Numerical Solution 

Since it is not possible to obtain analytical solution for the stated problem because of 
non-linearity, we solve it in numerical way. We construct standard difference scheme 
with second order approximation regarding to r and first order approximation 
regarding to t. 
As an example, we take wire of copper with polyvinylchloride (PVC) insulation. 
Coefficients in this case are as follows: 

a) heat conductivity coefficient k0 and k (W/m K) 
 0 401k = ,  0.2k = ; 

b) specific heat capacity coefficient c0, c (W/m3 K) as suggested in [16] 
 0( ) 8960(381 0.17 )c T T= + , 

 2( ) 1350(920 1.3 0.074 )c T T T= − + ; 
c) heat generation is achieved by electric current; direct current and ohm 

resistance is considered: 

 ( )
2

20
0 202( ) 1 ( 20)If T T

A
ρ α= + −     (14) 

 where I – electric current, A – cross sectional area of the metallic conductor, 
20ρ  – specific resistance of copper at reference temperature 20°C 

8
20 1.75 10ρ −= ⋅ Ω , 20α  – temperature coefficient of copper resistance 

3
20 3.9 10 1 Kα −= ⋅ ⋅ ; 

d) h(T) – coefficient of the laminar unforced convection to air of the horizontal 
cylindrical surface is obtained from [26]. Computer subroutine from [16] was 
used for calculations. Range of coefficient’s values is 3–20 if temperature range 
is 0–100°C and temperature of environment θ = 0°C. All mentioned 
coefficients are valid in the temperature range of our interest. Temperature is 
given in centigrade degrees. 

 
Fig. 2.2: Final temperature of Example 1 

 
Fig. 2.3: Final temperature of Example 2 

Fig. 2.2 shows temperature distribution after it becomes stable. Values of the 
parameters were used as follows: 3

0 0.7 10r −= ⋅ m, 3
1 1.2 10r −= ⋅ m, 0θ = °C, 20I = A. 

Graphics of solutions matches even if we use different approximations for function 
U0. Largest difference is in the center of the wire, but only starting with fifth 
significant digit (see Table 2.1).  
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Approximation Temperature 
Constant approx. 42.6646°C 

Polynomial approx. 42.6657°C 
Exponential approx. 42.6656°C 

Table 2.1: Temperature in the centre of a wire 

Note that conservative averaging method does not make solution U linear as it is 
visually observed in Fig. 2.2. As an example, we can take outer radius 3 times larger: 
r1 = 3.6⋅10-3 (Fig. 2.3). It is also numerically verified that we could choose such 
coefficients for stated problem that choice of approximation of U0 by polynomial or 
exponential instead of constant is significant, but such parameters are useless from 
practical point of view. 

2.4 SteadyState Analytical Solution 

If the heat-up time of the wire is not important, a steady-state mathematical problem 
can be considered. Taking into account the results of the previous section, let us 
assume that the temperature in the wire is constant. It is equal to the temperature of 
the inner boundary of insulation if we assume continuity of temperature on that 
boundary. The domain of the problem corresponds to the insulation (Fig. 2.1). 
Let us write down statement of the problem: 

a) heat transfer equation in the insulation of the wire: 

 
1 0d dUrk
r dr dr

⎛ ⎞ =⎜ ⎟
⎝ ⎠

, ( )U U r= , 0 1( , )r r r∈ ;   (15) 

b) inner boundary receives heat that is generated by electric current in the 
conductor ( 0f  as  in formula (14) of the previous section): 

 0r r= :  0
0 0

2
rdUk f

dr
+ = ;  (16) 

c) the same heat goes out from the outer surface of insulation: 

 1r r= :  ( ) 0dUk h U
dr

θ+ − =    (17) 

We can find analytical solution of the problem if coefficients k and h are constants. 
General solution of the ordinary differential equation is 
 1 2( ) ln( )U r C C r= +     (18) 

We can find unknown constants 1C  and 2C  by boundary conditions (16) and (17): 

 1 2 1
1

ln( ) kC C r
r h

θ
⎛ ⎞

= − + +⎜ ⎟
⎝ ⎠

,   (19) 

 
( )( )3 20

2
1

3 20
0 1

1 20

ln

C
C

r kC k
r r

α θ

α
α

+ −
=

⎛ ⎞⎛ ⎞
+ −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

 ,   
2

20
3 2 2

02
IC

r
ρ
π

=     (20) 
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In reality, heat convection coefficient h has non-linear dependence on the 
temperature of the surface, although it is possible to calculate temperature 
numerically by iterations. At first, coefficient h is calculated at an approximate 
temperature. The solution (18) gives a new value of the surface temperature which is 
used to calculate coefficient h again. The iterations are repeated while the result 
changes. The sufficient conditions to apply this procedure are stated in [27]. 
If we compare the steady-state solution with the example of the previous section, the 
results match (Fig. 2.2). A difference appears only with the 5th significant digit, 
which is negligible. For example, the temperature in the wire and on the inner 
surface of the insulation is 42.6648 °C that can be compared with results of the Table 
2.1. 
A steady-state solution does not exist if the generated heat is more than that given 
away by convection on the surface. 

2.5 Conclusions 

The conservative averaging method can be applied to stationary and non-stationary 
mathematical problems with transient coefficients. It enables the exclusion of a part 
of the original domain to reduce calculations. This model easily allows adding 
surface radiation by incorporating it in coefficient h(T). 
Experience shows that approximation by constant is sufficient in many practical heat 
transfer problems if one material has relatively large heat conductivity in comparison 
with the other one as was observed in the example of insulated wire. The numerical 
solution in the described model shows good conformity with recent results at Munich 
Bundeswehr University obtained by commercial software COMSOL that uses a 2D 
finite element method. Calculation of the mathematical model of conservative 
averaging is fast, and it allows the finding of solutions for different dimensions and 
materials quickly. 
More complex electrical systems like wires combined in bundles are used in 
industrial applications often, and their mathematical models could be developed 
applying the conservative averaging in the future. Such and similar composed 
domains are examined using other mathematical methods, e.g., in the following 
recent papers: [28]-[31]. 
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3 Cartesian Model of Automotive Fuse 

Safety fuses are crucial elements of modern vehicles which preserve the safety of 
electrical equipment and car as a whole. Industrial companies have initiated research 
on this matter to meet tomorrow’s demands of the precision of electric systems. 
Mathematical models are made to understand the existing behaviour of the fuses and 
to improve their design in the future. 
Usually, mathematical modelling of fuses and similar objects is implemented by 
making one dimensional assumptions: [18], [32]-[34]. Here, the conservative 
averaging method is used to transform a 3D statement of the problem into a new type 
of statement that consists of three ordinary differential equations. An approximate 
analytical 3D solution is obtainable from the solution of the transformed problem 
afterwards. The number of dimensions corresponds to the count of space dimensions 
here. The additional time dimension is always present. The conservative averaging 
method is theoretically well founded for linear partial differential equations. As with 
[23] and the previous chapter, a quasi-linear mathematical problem is considered 
here.  

3.1 Geometry of the Model 

We start with geometric assumptions of typical car fuse (Fig. 3.1 and Fig. 3.2). We 
seemingly straighten out the fuse and use the geometry of the model as shown in Fig. 
3.3. Because of the symmetry, it is enough to use only the shaded part of the model 
(Fig. 3.4 and Fig. 3.5). 

Fig. 3.1: Example of an automotive fuse with
and without a plastic shell 

Fig. 3.2: Examples of different 
automotive fuses 

Fig. 3.3: Full geometry of the model Fig. 3.4: Symmetry of the model 
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3.2 Mathematical Statement of the Original Problem 

We continue with an accurate formulation of the three-dimensional mathematical 
model of the transient heat conduction problem for a fuse. 

 
Fig. 3.5: Geometry of the domain 

Let us treat main domain (Fig. 3.5) as two connected sub-domains G0 and G1: 
 { }0 ( , , ) | [0, ], [0, ], [0, ] ,G x y z x l y b z h= ∈ ∈ ∈  

 { }1 ( , , ) | [ , ], [0, ], [0, ] .G x y z x l l L y b z H= ∈ + ∈ ∈  

If temperature in the domain Gi is denoted as function Ui (x, y, z, t), differential 
equation for the heat transfer is 

 ( ) ( ),i i i
i i i

U U UU k k k F U
t x x y y z z
γ

⎛ ⎞∂ ∂ ∂∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
 (1) 

 ( , , , ), ( , , ) , 0, 0,1.i i iU U x y z t x y z G t i= ∈ > =  

Source term Fi (heat produced by electric current) is approximated by linear function: 
 ( )( )( ) 1i i i r i rF U B U Uα= + − ; (2) 

where 
2 2

0 12 2 2 2,ref refI I
B B

h b H b
ρ ρ

= = . 

Parameter ρref is resistivity of the material at the reference temperature rU , αr is 
temperature coefficient of electric resistivity; I – electric current. Heat conductivity k  
and volumetric heat capacity γ  depend on temperature. 
Besides main equations (1), we add symmetry conditions: 

 0 0 0

0 00

0, 0, 0,
x zy

U U U
x y z= ==

∂ ∂ ∂
= = =

∂ ∂ ∂
 (3) 

 1 1 1

00

0, 0, 0
x l L zy

U U U
x y z= + ==

∂ ∂ ∂
= = =

∂ ∂ ∂
; (4) 

and heat exchange conditions on outer surfaces: 

 ( ) ( )0 1
0 0 1 10, 0,

y b y b

U Uk h U k h U
y y

= =

⎛ ⎞ ⎛ ⎞∂ ∂
+ −Θ = + −Θ =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (5) 

 ( ) ( )0 1
0 0 1 10, 0,

z Hz h

U Uk h U k h U
z z ==

∂ ∂⎛ ⎞ ⎛ ⎞+ −Θ = + −Θ =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
 (6) 

 ( )1
1 1

0, [ , ]

0
x l z h H

Uk h U
x = + ∈

∂⎛ ⎞− + −Θ =⎜ ⎟∂⎝ ⎠
;  (7) 
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where Θ = Θ(t) is temperature of environment, but 0h , 1h  are heat convection 
coefficients for surfaces of corresponding sub-domains that also depend on 
temperature. 
We also add conjugation conditions, i.e. continuity of the temperature and heat fluxes 
between both parts of the fuse: 

 0 1
0 1

00

, , [0, ], [0, ].
x l x l

x lx l

U UU U y b z h
x x= =

= += −

∂ ∂
= = ∈ ∈

∂ ∂
 (8) 

Finally, we add initial conditions: 
 0

0 10 0t t
U U U const

= =
= = =  (9) 

3.3 Conservative Averaging in ydirection 

We introduce the integral average value of the functions Ui (x, y, z, t) in the 
y-direction:  

 
0

1( , , ) ( , , , )
b

i iV x z t U x y z t dy
b

= ∫ . (10) 

In praxis, firstly, the thickness b is very small in comparison with the width of the 
fuse. Secondly, the material of the fuse (metal) has high heat conductivity. These 
features allow us to use the simplest form of the conservative averaging method – 
approximation by a constant. The detailed procedure of the analytical 
transformations is given in Chapter 1. In short, we integrate the main equation (1) 
over the segment y ∈ [0,b] and then we use boundary conditions (5) and linear 
representation of the source function (2). Finally, we take into account integral 
equality (10) and obtain differential equations with new functions ( , , )iV x z t :  

 ( ) ( ) ( ), 0,1.i i i
i i i i

V V hV k k V F V i
t x x z z b
γ ∂ ∂∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + − −Θ + =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (11) 

Additional boundary conditions of new problem are the same as in the statement of 
the original problem (1)-(9): 

 0 1

0 0

0, 0,i

x l Lx z

V VV
x x z= += =

∂ ∂∂
= = =

∂ ∂ ∂
  0,1i = , (12) 

 
( )

( )

0
0 0

1
1 1

0,

0,

z h

z H

Vk h V
z

Vk h V
z

=

=

∂⎛ ⎞+ −Θ =⎜ ⎟∂⎝ ⎠

∂⎛ ⎞+ −Θ =⎜ ⎟∂⎝ ⎠

 (13) 

 ( )1
1 1

0, [ , ]

0
x l z h H

Vk h V
x = + ∈

∂⎛ ⎞− + −Θ =⎜ ⎟∂⎝ ⎠
. (14) 

We add also conjugation conditions at z ∈ [0,h]: 

 0 1
0 10 0

00

,
x l x l

x lx l

V VV V
x x= − = +

= += −

∂ ∂
= =

∂ ∂
; (15) 
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and initial conditions: 
 0

0 10 0t t
V V U const

= =
= = = . (16) 

3.4 Conservative Averaging in xdirection 

As the next step, we will make conservative averaging in x-direction. We define one 
averaged value function over domain 0G  and two separate functions for the domain 

1G  – the first for interval (0, )z h∈  and the second for interval ( , )z h H∈  because of 
different conditions on the line x l= : 

 

0 0
0

1 1

2 1

1( , ) ( , , ) , (0, ),

1( , ) ( , , ) , (0, ),

1( , ) ( , , ) , ( , ).

l

l L

l
l L

l

W z t V x z t dx z h
l

W z t V x z t dx z h
L

W z t V x z t dx z h H
L

+

+

= ∈

= ∈

= ∈

∫

∫

∫

 (17) 

In this case, we use exponential approximation in the following form: 

 0 0 0( , , ) ( , ) ( , ) cosh sinh(1) ,xV x z t W z t p z t
l

⎡ ⎤⎛ ⎞= + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (18) 

 1( , , ) ( , ) ( , ) cosh sinh(1) , 1,2i i
x l LV x z t W z t p z t i

L
⎡ − − ⎤⎛ ⎞= + − =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

. (19) 

Equalities (18), (19) are chosen in such a way that they fulfil integral equalities (17) 
(conservation of the heat energy) and boundary conditions (12) at 0x =  and 
x l L= + . We use conjugation conditions (15) to find unknown functions 0p  and 1p , 
and, afterwards, we obtain functions 0V , 1V : 

 ( )0 0 0 0 1( , , ) ( , ) ( , ) ( , ) cosh sinh(1) ,xV x z t W z t C l W z t W z t
l

⎡ ⎤⎛ ⎞= − − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (20) 

 ( ) ( )1 1 0 0 1( , , ) ( , ) ( , ) ( , ) cosh sinh 1 ,x l LV x z t W z t C L W z t W z t
L

⎡ − − ⎤⎛ ⎞= + − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (21) 

 0
eC

l L
=

+
,    (0, )z h∈ . 

We find function 2p  and representation of the function 1V  in interval ( , )z h H∈  from 
the expression (19) by means of the boundary condition (14): 

 ( ) ( )1 2 1 2( , , ) ( , ) ( , ) ( ) cosh sinh 1 ,x l LV x z t W z t C W z t t
L

⎡ − − ⎤⎛ ⎞= − −Θ −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (22) 

 ( )
1

1 2
1

2e
e 1 2

LhC
k Lh

=
− +

,   ( , )z h H∈ . 

Discontinuity for the temperature field could appear on the line z h= . This kind of 
discontinuities was considered also in paper [23]. 
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We integrate differential equations (11) and we use representations (20), (21), (22) of 
the functions 0V , 1V  and integral equalities (17) to perform approximate analytical 
reduction of 2D system to 1D system of partial differential equations. 

 ( ) ( )0 0 0
0 1 0 0 0 0( ) ( )W D hW k W W W F W

t z z l b
γ ∂∂ ∂ ⎛ ⎞= + − − −Θ +⎜ ⎟∂ ∂ ∂⎝ ⎠

, (23) 

 ( ) ( )01 1
1 0 1 1 1 1( ) ( ),DW hW k W W W F W

t z z L b
γ ∂∂ ∂ ⎛ ⎞= + − − −Θ +⎜ ⎟∂ ∂ ∂⎝ ⎠

 (24) 

 ( ) ( )2 1
2 1 2 2 1 2( ) ( ),W hW k D W W F W

t z z b
γ ∂∂ ∂ ⎛ ⎞= − −Θ − −Θ +⎜ ⎟∂ ∂ ∂⎝ ⎠

 (25) 

 1
0 0 1 2

sinh(1)sinh(1), .C kD C k D
L

= =  

Again, boundary and initial conditions are the same as in the original problem: 

 0 1

00

0, 0,
zz

W W
z z ==

∂ ∂
= =

∂ ∂
 (26) 

 
( )

( )

0
0 0

2
1 2

0,

0,

z h

z H

Wk h W
z

Wk h W
z

=

=

∂⎛ ⎞+ −Θ =⎜ ⎟∂⎝ ⎠

∂⎛ ⎞+ −Θ =⎜ ⎟∂⎝ ⎠

 (27) 

 0
0 1 20 0 0t t t

W W W U const
= = =
= = = = . (28) 

We also ask for continuity of the averaged temperature and fluxes on the line z h= . 
That gives additional conjugation conditions: 

 1 2
1 20 0

0 0

,
z h z h

z h z h

W WW W
z z= − = +

= − = +

∂ ∂
= =

∂ ∂
. (29) 

An additional remark should be made about the current averaging step. As mentioned 
at the beginning of this chapter, we are considering a quasi-linear problem here. This 
situation significantly differs from the problems considered in Chapter 1 or in paper 
[24], where the averaging procedure was done over a sub-domain with a linear 
differential equation. Therefore, we will explain in a deeper way the averaging 
procedure for the left hand side of the equation (23) (the procedure can be 
accomplished for the equations (24) and (25) in the same way). Here, we use the 
enthalpy form of the heat equation (see, e.g. [35], Chapter 7). This form is 
substantially more suitable for the use of the mean value theorem:  

 [ ]0 0
0

1 ( )
h

V V dz
h t

γ∂
=

∂∫ [ ]0 0 0
0

1( )
h

V V dz W
t h t
γ γ
⎡ ⎤∂ ∂

=⎢ ⎥∂ ∂⎣ ⎦
∫ , 

 ( )0 0 0( ), , , .V V V x z tγ γ= =  

It is possible to choose mean value more or less freely. We propose to use 
corresponding middle point, i.e. 2, 2x l x x L= = = , or averaged temperature: 

0 1 2( ), ( ), ( ).W W Wγ γ γ γ γ γ= = =  The latter is more convenient for calculations. 
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3.5 Conservative Averaging in zdirection 

Finally, we will make conservative averaging procedure in z-direction. We introduce 
three new functions for this purpose: 

 

0 0
0

1 1
0

2 2

1( ) ( , ) ,

1( ) ( , ) ,

1( ) ( , ) .

h

h

H

h

u t W z t dz
h

u t W z t dz
h

u t W z t dz
H h

=

=

=
−

∫

∫

∫

 (30) 

We use exponential approximation in the form as follows: 

 ( )0 0 0( , ) ( ) ( ) cosh sinh 1zW z t u t q t
h

⎡ ⎤⎛ ⎞= + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
, 

 ( )1 1 1( , ) ( ) ( ) cosh sinh 1zW z t u t q t
h

⎡ ⎤⎛ ⎞= + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
, (31) 

 
( )

( )

2 2 2

3

( , ) ( ) ( ) cosh sinh 1

( ) sinh cosh 1 1 .

z hW z t u t q t
H h

z hq t
H h

⎡ − ⎤⎛ ⎞= + − +⎜ ⎟⎢ ⎥−⎝ ⎠⎣ ⎦
⎡ − ⎤⎛ ⎞+ − +⎜ ⎟⎢ ⎥−⎝ ⎠⎣ ⎦

 

We fulfil the integral equalities (conservation of the heat energy (30)) and the 
symmetry conditions (26) at 0z =  by this representation. Using boundary conditions 
(27) and conjugation conditions (29), we can find four unknown parameters in the 
representation (31). This gives: 

 ( ) ( )0 0 0 0( , ) cosh sinh 1zW z t u e u
h

⎡ ⎤⎛ ⎞= + −Θ −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
, 

 ( ) ( ) ( )1 1 1 1 2 2 2( , ) cosh sinh 1 ,zW z t u e u u e u
h

⎡ ⎤⎛ ⎞= + − + −Θ −⎡ ⎤ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦
 (32) 

 
( ) ( ) ( )

( ) ( ) ( )

2 2 3 1 2 4 2

5 1 2 6 2

( , ) cosh sinh 1

sinh cosh 1 1 ,

z hW z t u e u u e u
H h

z he u u e u
H h

⎡ − ⎤⎛ ⎞= + − + −Θ − +⎡ ⎤ ⎜ ⎟⎢ ⎥⎣ ⎦ −⎝ ⎠⎣ ⎦
⎡ − ⎤⎛ ⎞+ − + −Θ − +⎡ ⎤ ⎜ ⎟⎢ ⎥⎣ ⎦ −⎝ ⎠⎣ ⎦

 

 0 0 1 1 2 2( ), ( ), ( )u u t u u t u u t= = = ; 

where constants ie  are the following: 

 0
0 2

0

2 e
(e 1) 2

hhe
k hh

−
=

− +
, 

 ( )2
1 1 7e (e 1) 2 ( )e h k h H h e= − − + − , 

 2
2 1 72e ( )(e 2e 1)e hh H h e= − − − , 
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 ( )2 2
3 1 7( )(e 1) (e 1) 2 (e 1)( ) 2e H h k h H h e= − − + + − − , 

 ( )2 2
4 1 7( ) 2e (e 1)(e 1) ( )e h H h h H h e= − − + − − − , 

 ( )2 2
5 1 7( )(e 1) (e 1) 2 (e 1) 2e H h k h e= − − − + + − , 

 2 2 2
6 1 7( ) (e 1)(e 2e 1)e h H h e= − − − − , 

 ( )2 2
7 1(e 1)(2 ) ( ) 2 (e 1)(e 3)(e 1)( )e k H h h H h h H h= − − + − − − − − − . 

Finally, we obtain system of ordinary differential equations after integration of 
equations (23)-(25): 

 ( ) ( )0
0 1 0 0 0 0 0( ) ( ),Dd u u u E u F u

dt l
γ = − − −Θ +  (33) 

 ( ) ( ) ( ) ( )0 1
1 0 1 1 1 1 1 2 2 2 1 1( ) ( )D hd u u u u E e u u e u F u

dt L b
γ = − − −Θ + − + −Θ +⎡ ⎤⎣ ⎦ , (34) 

 ( ) ( )2 2 1 2 3 1 2 1 2ˆ( ) ( )yhd u E u u E D u F u
dt b

γ
⎡ ⎤

= − − − + + −Θ +⎢ ⎥
⎣ ⎦

. (35) 

Here, constants 0 1 2 3, , ,E E E E  and coefficients γ  are as follows: 

 0 0 0
0 1 ,

e
h h eE
b h

⎛ ⎞= + +⎜ ⎟
⎝ ⎠    

1 2

sinh(1) ,kE
h

=
   

( )
( )

3 5
2 2

sinh(1) (cosh(1) 1)k e e
E

H h
+ −

=
−

, 

 
( )

( )
4 6

3 2

sinh(1) (cosh(1) 1)k e e
E

H h
+ −

=
−

, 

 ( ) ( ) ( )0 1 1ˆ ˆ( , ) , ( , ) , ( , ) ,W z t W z t W z tγ γ γ γ γ γ= = =  ˆ2 , ( ) 2z h z H h= = + ; 

 or ( ) ( ) ( )0 1 2ˆ( ) , ( ) , ( ) ,u t u t u tγ γ γ γ γ γ= = =  

This zero-space-dimensional (0D) system of three ordinary differential equations 
must be supplemented with initial conditions: 
 0

0 10 0t t
u u U

= =
= = . (36) 

3.6 Simplified Averaged System of Ordinary Differential Equations 

The main goal of this mathematical model is to predict the time before the melting of 
the material in the thinnest sub-domain 0G  caused by an unwithstandably strong 
current. According to the expression (2), the density of the electric current is 2 2H h  
times larger in this sub-domain. This allows us to propose another model besides the 
first one. As the second step of the averaging, we use the simplest approximation in 
the z-direction – approximation by constant.  
We introduce averaged values: 

 
0 0

0

1 1
0

1( , ) ( , , ) ,

1( , ) ( , , ) ;

h

H

w x t V x z t dz
h

w x t V x z t dz
H

=

=

∫

∫
 (37) 
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and assume that temperature is constant in z-direction because it changes only 
slightly in comparison with x-direction: 

 0 0

1 1

( , ) ( , , ),
( , ) ( , , ).

w x t V x z t
w x t V x z t

=

=
 (38) 

Integration of the differential equations (11) immediately gives system of two 1D 
partial differential equations: 

 
( ) ( )

( ) ( )

0
0 0 0 0 0 0

1
1 1 1 1 1 1

1 1( ) ( ),

1 1( ) ( ).

ww w k h w F w
t x x b h

ww w k h w F w
t x x b H

γ

γ

∂∂ ∂ ⎛ ⎞ ⎛ ⎞= − + −Θ +⎜ ⎟⎜ ⎟∂ ∂ ∂ ⎝ ⎠⎝ ⎠
∂∂ ∂ ⎛ ⎞ ⎛ ⎞= − + −Θ +⎜ ⎟⎜ ⎟∂ ∂ ∂ ⎝ ⎠⎝ ⎠

 (39) 

Boundary conditions remain the same: 

 0 1

0

0.
x l Lx

w w
x x = +=

∂ ∂
= =

∂ ∂
 (40) 

The second conjugation condition changes substantially because of convective heat 
losses over the surface { }, [ , ]x l z h h H= ∈ + : 
 0 10 0

,
x l x l

w w
= − = +

=  (41) 

 ( )( )0 1
1 1

0 0

.
x l x l

w whk Hk h H h w
x x= − = +

∂ ∂⎡ ⎤= − − −Θ⎢ ⎥∂ ∂⎣ ⎦
 

Integration of the boundary condition and conjugation conditions was made to obtain 
previous equation. Such type of the second conjugation condition was used also in 
paper [34]. The initial conditions remain the same: 
 0

0 10 0
.

t t
w w U

= =
= =  (42) 

As the last step, we apply the conservative averaging method in x-direction. We use 
exponential approximation in the form used earlier: 

  
( )

( )

0 0 0

1 1 1

( , ) ( ) ( ) cosh sinh 1 ,

( , ) ( ) ( ) cosh sinh 1 .

xw x t u t p t
l

x l Lw x t u t p t
L

⎡ ⎤⎛ ⎞= + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ − − ⎤⎛ ⎞= + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (43) 

We have introduced the average integral values again: 

 
0 0

0

1 1

1( ) ( , ) ,

1( ) ( , ) .

l

l L

l

u t w x t dx
l

u t w x t dx
L

+

=

=

∫

∫
 (44) 

We obtain parameters 0( )p t  and 1( )p t  of the representations (43) out of the conju-
gation conditions (41): 

 
( ) ( )1 1 0 2 0

0
3

( ) ,
g u u g u

p t e
g

− − −Θ
=

   

( ) ( )0 0 1 2 1
1

3

( ) .
g u u g u

p t e
g

− − −Θ
=  
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Here, ( ) ( )2 2
0 1e 1 , e 1h Hg k g k

l L
= − = − ,  ( )2 1 3 0 1 22 , .g h H h g g g g= − = + +  

Finally, we integrate partial differential equations (39) and obtain system of ordinary 
differential equations: 

 ( ) ( )( ) ( ) ( )0 1 2 1 0 2 1 0 0 0 02

1 1 ( )d Gu g g u u g u h u F u
dt l b h

γ ⎛ ⎞= + − − −Θ − + −Θ +⎡ ⎤ ⎜ ⎟⎣ ⎦ ⎝ ⎠
, (45)  

 ( ) ( ) ( ) ( )1 0 0 1 2 1 1 1 1 12

1 1 ( )d Gu g u u g u h u F u
dt L b H

γ ⎛ ⎞= − − −Θ − + −Θ +⎡ ⎤ ⎜ ⎟⎣ ⎦ ⎝ ⎠
; (46) 

where ( ) ( )0 0( , ) or ( ) , 2,w x t u t x lγ γ γ γ= = =  

 ( ) ( )1 1( , ) or ( ) , 2,w x t u t x lγ γ γ γ= = =  

 
( )2

3

1
2

k e
G

g
−

= . 

It remains to add the initial conditions for the completeness of the full statement of 
the 0D problem: 
 0

0 10 0
.

t t
u u U

= =
= =  (47) 

3.7 Numerical Example of 50A Fuse 

An automotive fuse of the nominal current 0 50AI =  (Fig. 3.6) is taken as a sample.  
Geometry is transferred to our mathematical model (Fig. 3.5). One eighth of the fuse 
is considered because of the symmetry. Notations of the dimensions are as before in 
this chapter: 13l mm= , 27L mm= , 0.2b m m= , 1.9h mm= , 8H mm= . Dimensions 
are obtained by measuring the fuse. 

 
Fig. 3.6: 50A fuse without shell 

Fuse is made of zinc. Properties of the material depend on temperature. Values are 
known at some reference temperatures [26], and spline is constructed from them. It is 
satisfactory to use linear spline (Fig. 3.7, Fig. 3.8). 
Fig. 3.9 shows heat convection coefficient 0h  and 1h . Solid line is for the thinnest 
part of the fuse (0, )x l∈ ; dash line is for the interval ( , )x l L∈ . Temperature of 
environment is 65°C. 
Next figures show how much heat is produced by electric current in the thinner part 
of the fuse 0F  (Fig. 3.10) and in the blades 1F  (Fig. 3.11) at different current values.  
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( ) in Wk T
mK

 

 in CT °  
Fig. 3.7: Heat conductivity of zinc 

3( ) in JT
m K

γ

 in CT °  
Fig. 3.8: Volumetric heat capacity of zinc 

2( ) in i
Wh T

m K

 in CT °  
Fig. 3.9: Heat convection to air 

0 3( ) in WF T
m

 

 in CT °  
Fig. 3.10: Heat release-rate F0 in the thinner part of the fuse 

It is visible from the figures that heat production in the thinner part is more than 10 
times larger than in the other part of the fuse. 
Numerical calculations are done in 3 different ways. First, solution is obtained from 
the system of 3 ODE-s (33)-(35). Second, calculations are done from the system of 2 
ODE-s (45)-(46). Third, 1D mathematical problem that consists of PDE-s (39) and 
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1 3( ) in WF T
m

 in CT °  
Fig. 3.11: Heat release-rate F1 in the blades of the fuse 

additional conditions (40)-(42) is solved by applying finite difference method 
together with factorization method. Results are compared altogether and with the 
standard DIN 72581-3 that define time interval of the burn-out of fuses (Table 3.1). 
 

I / I0 Min. Max. 
600 % 0.04 s 1 s 
350 % 0.2 s 7 s 
200 % 2 s 60 s 
135 % 60 s 1800 s 

Table 3.1: Burn-out interval of fuses defined by the standard DIN 72581-3 

Maximal temperature is reached in the middle of the fuse. Time to reach melting 
temperature is calculated and compared among all three mathematical models (Table 
3.2, Fig. 3.12). Dash lines are time limits from the DIN standard. 
 

I / I0 1D PDE-s 3 ODE-s 2 ODE-s 
600 % 0.25 s 0.24 s 0.24 s 
350 % 0.78 s 0.74 s 0.76 s 
200 % 3.4 s 2.9 s 3.7 s 
135 % 19 s 11.6 s 23 s 

Table 3.2: Time to reach the melting temperature 

0

 in %I
I

 in t s  
Fig. 3.12: Time-current curve of a 50A fuse 
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Numerical results are appropriate if current is greater than 200% of the rating. Heat 
conduction through the blades, which is not considered in this particular model, plays 
a greater role only if current is close to the nominal value. This is the reason why the 
curve inclines to the left at the bottom of the figure – the real fuse breaking time is 
larger. This and also the heat radiation of a surface could be added to the original 3D 
mathematical model. Conservative averaging could be applied in the same manner. 
For example, if we take into account heat radiation, additional term should be added 
to the boundary conditions (5)-(7): 

 ( ) ( )4 4 0,i
i i i

y b

Uk h U U
y

εσ
=

⎛ ⎞∂
+ −Θ + −Θ =⎜ ⎟∂⎝ ⎠

 (48)   

 
( ) ( )

( ) ( )

4 40
0 0 0

4 41
1 1 1

0,

0,

z h

z H

Uk h U U
z

Uk h U U
z

εσ

εσ

=

=

∂⎛ ⎞+ −Θ + −Θ =⎜ ⎟∂⎝ ⎠

∂⎛ ⎞+ −Θ + −Θ =⎜ ⎟∂⎝ ⎠

 (49)  

 ( ) ( )4 41
1 1

0, [ , ]

0.i
x l z h H

Uk h U U
x

εσ
= + ∈

∂⎛ ⎞− + −Θ + −Θ =⎜ ⎟∂⎝ ⎠
 (50) 

3D temperature distribution could be reconstructed whomever averaging is chosen. It 
is enough to show temperature only in ( , )x z  plane because we have assumption 
about constant temperature distribution over y-dimension. Fig. 3.13 shows 
temperature reconstruction in the fuse when the melting point is reached after system 
of 2 ODE-s is solved in the case of 100A (200%) electric current. 
 
 

 in CiV °  

 

 
 in z m

 
  in x m   in x m  

Fig. 3.13: Temperature distribution. 100A 
current (200%). 2 ODE-s model 

 Fig. 3.14: Temperature distribution. 100A 
current  (200%). 3 ODE-s model 

Similar graphic (Fig. 3.14) could be obtained for the solution of 3 ODE-s by 
formulae (20)-(22), (31). Solution is discontinuous because discontinuous approxi-
mation function 1( , , )V x z t  was used ((21)-(22)). 
Solution of 1D PDE-s should be used if temperature distribution in the fuse is also 
important and not only fuse breaking time. Fig. 3.15 shows temperature on the line 

[0, ]x L∈ . 
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 in Ciw °  

 in x m  
Fig. 3.15: Temperature distribution on x axis. 100A  current (200%).  1D PDE-s model 

Next figure (Fig. 3.16) contains temperature distribution on the line [0, ]x L∈  for all 
mathematical models used. 

 
Fig. 3.16: Temperature distribution on x-axis. All models compared 

It takes about one minute on modern desktop computer to calculate particular 
example at given current. Calculation of ODE-s is even quicker. It is more efficient 
to calculate averaged mathematical problems rather than full 3D problems. 

3.8 Conclusions 

We have approximated a 3D problem and reduced its solution to the solution of the 
time-dependent non-linear system of two or three ordinary differential equations. 
Reduction was realized in two different ways by different assumptions. Both systems 
have a similar structure, but different coefficients. To keep higher calculation 
precision for temperature distribution in a fuse, a 1D PDE model could be used.  The 
systems of differential equations developed are solvable with standard techniques 
and in a short time. An approximate analytical 3D solution could easily be obtained 
from the solution of the transformed problem afterwards. 
 

   
1D PDE 

   
   

2 ODE-s 
   
   

3 ODE-s 
   

 

in  C°  

  in x m  
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4 Cylindrical Model of Automotive Fuse 

Continuation of the research on automotive fuses led to new mathematical models 
that are described in this chapter. Geometry of a fuse is represented by cylindrical 
bodies in this case. As before, 3D problem is stated and then altered by conservative 
averaging method. 
Although, every proper fuse brakes at short circuit, problem with heat up rises when 
current is around nominal. Fuse generates extra heat that goes into wires and quicker 
degrades insulation if current is close to nominal or slightly above. Improved models 
take into account heat generation and conduction in wires that are connected to fuse. 

4.1 Geometry of the Model 

The same type of fuses as in the previous chapter are considered (Fig. 3.1, Fig. 3.2). 
We straighten out the fuse and use the geometry of the model as shown in Fig. 4.1 
(half is used because of the symmetry in the middle). Sub-domain 1 represents the 
thinnest part of the fuse – the “fuse element”. The second part we shall call the “fuse 
socket”. This consists of fuse blades and the fuse box. Sub-domain 3 is the wire that 
is connected to the fuse (Fig. 4.2). 
In reality, the geometry of the fuse socket is not the same for every car model. That 
makes it difficult to make universal calculations even for specific fuse. The goal is to 
find rules which would make fuse design easier and fuse behaviour more stable and 
predictable.  

Fig. 4.1: Geometry of the model in 3D Fig. 4.2: Geometry of the model 

Besides geometry, this model takes into account connected wire (sub-domain 3) and 
heat radiation in comparison with the parallelepiped model in the Cartesian 
coordinate system presented in Chapter 3. 

4.2 Original Problem and its Approximation by Conservative 
Averaging Method 

4.2.1 Mathematical Statement of Full Problem 

We continue with formulation of three-dimensional mathematical model of the 
transient heat conduction in a fuse body. As in previous chapter, count of dimensions 
corresponds to the space dimensions. 



49 
 

Let us treat main domain (Fig. 4.2) as three connected sub-domains G1, G2 and G3: 

 { }1( , , ) | [ , ], [0, ], [0,2 ]i i i iG x r x x x r rϕ ϕ π−= ∈ ∈ ∈ ,  1,3i = . 

Index i indicate corresponding sub-domain throughout the text. 
Temperature distribution does not depend on angle ϕ; and we have two space 
dimensions to consider. If temperature in domain Gi is denoted as function 

( , , ),iU x r t  differential equation for heat transfer is as follows: 

 ( ) 1 ( ),i i
i i i i i i

U UU k rk F U
t x x r r r
γ ∂ ∂∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (1) 

 ( , ) , 0, 1,3.ix r G t i∈ > =   

Heat conductivity ( )i ik U  and volumetric heat capacity ( )i iUγ  depend on 
temperature. Source function iF  represents heat produced by electric current. It is 
approximated by linear function: 

 ( )( )
2

,
, 2 4( ) 1 , ref i

i i i r i i r i
i

I
F U B U U B

r
ρ

α
π

= + − = .  (2)  

Parameter ρref,i is resistivity of the material at the reference temperature rU ; ,r iα  is 
temperature coefficient of electric resistivity; I – electric current.  
Besides main equations (1), we add symmetry (no flux) conditions on x axis and at 
the endings of the model: 

 
0

0;i

r

U
r =

∂
=

∂
  (3) 

 
1

0

0,
x

U
x =

∂
=

∂
 (4) 

 3

3 0.
x x

U
x =

∂
=

∂
 (5) 

It is acceptable to assume that there is no heat flux also on the free parts of the 
joining surfaces of the cylinders: 

 1 1 2 2 2 3

2 2

, [ , ] , [ , ]

0, 0.
x x r r r x x r r r

U U
x x= ∈ = ∈

∂ ∂
= =

∂ ∂
 (6) 

We also add heat exchange conditions on the outer surfaces in r-direction: 

 
( )

1

0,i
i i i i

r r

Uk U
r

α
=

∂⎛ ⎞+ −Θ =⎜ ⎟∂⎝ ⎠
 (7) 

where iα  is non-linear heat exchange coefficient that depend on temperature; iΘ  is 
ambient temperature that could be different for each sub-domain of the model. 
Coefficient iα  is the sum of two components: 
 conv radα α α= + . 

Convection coefficient αconv is usually obtained from reference books e.g. [26], [36]. 
Heat radiation coefficient αrad comes from Stefan–Boltzmann law: 
 ( )( )2 2

rad i i i iU Uα εσ= +Θ +Θ . 
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Conjugation conditions are added to the statement of the mathematical problem, i.e. 
continuity of the temperature and heat fluxes between cylinders: 

a) 1 1, [0, ]x x r r= ∈ : 
 

1 1
1 2x x x x

U U
= =

= , (8) 

 
1 1

1 2
1 2

0 0x x x x

U Uk k
x x= − = +

∂ ∂
=

∂ ∂
; (9) 

b) 2 3, [0, ]x x r r= ∈ : 
 

2 2
2 3x x x x

U U
= =

= , (10) 

 
2 2

32
2 3

0 0x x x x

UUk k
x x= − = +

∂∂
=

∂ ∂
. (11) 

Finally, we add initial conditions: 
 0

0i t
U U const

=
= = . (12) 

4.2.2 Conservative Averaging in rdirection 

We introduce the integral average value of the function ( , , )iU x r t  over the radius r: 

 
2

0

2( , ) ( , , )
ir

i i
i

V x t rU x r t dr
r

= ∫ . (13) 

General description of conservative averaging in polar coordinates is given in 
Chapter 1.3. 
Temperature gradients in r-direction are very small in comparison with x-direction. 
This allows us to use the simplest form of the conservative averaging method – 
approximation by the constant: 

 ( , ) ( , , )i iV x t U x r t= . (14) 

Next, we apply the same integral as in formula (13) to the differential equation (1): 

 ( )2 2
0 0

2 2 1 ( ) .
i ir r

i i
i i i i i i

i i

U UU dr k rk F U dr
r t r x x r r r

γ ⎡ ∂ ∂ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ ∫  

We change the order of the integration and differentiation and take into account 
integral (13) to substitute function Ui by Vi: 

 
( ) 2

0

2 ( ).
ir

i i
i i i i i i

i

V UV k rk F V
t x x r r
γ ∂ ∂∂ ∂ ⎛ ⎞= + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠  

Source function is the same because of its linear representation (2). We use boundary 
conditions (3) and (7) to substitute derivatives of r and obtain new partial differential 
equation of averaged function ( , )iV x t : 

 
( ) ( )2 ( ).i

i i i i i i i i
i

VV k V F V
t x x r
γ α∂∂ ∂ ⎛ ⎞= − −Θ +⎜ ⎟∂ ∂ ∂⎝ ⎠

 (15) 

It has one dimension less than in original problem (1). Coefficients are calculated 
from averaged values because of constant approximation (14): 
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 ( )i i ik k V= , ( )i i iVγ γ=  and ( )i i iVα α= . 

We need to add also conjugation conditions between cylinders. First, we ask for 
temperature continuity: 

 1 1
1 2 ,

x x x x
V V

= =
=  (16) 

 2 2
2 3 .

x x x x
V V

= =
=  (17) 

Second, we ascertain that heat power is the same on both sides of connection point: 

 1 1

2 21 2
1 1 2 2

x x x x

V Vr k r k
x x= =

∂ ∂
=

∂ ∂
 (18) 

 2 2

2 2 32
2 2 3 3

x x x x

VVr k r k
x x= =

∂∂
=

∂ ∂
 (19) 

Remaining boundary and initial conditions of new problem are similar as in the 
statement of the original problem (1)-(12): 

 
1

0

0,
x

V
x =

∂
=

∂
 (20) 

 3

3 0,
x x

V
x =

∂
=

∂
 (21) 

 
0

0i t
V U const

=
= = . (22) 

Instead of (1)-(12), we obtained new mathematical problem (15)-(22) that has one 
space dimension less. Solution could be calculated by numerical methods. 
Description of building finite differences for such mathematical problem is given in 
Appendix 1.  

4.2.3 Conservative Averaging in xdirection 

As the next step, we will make conservative averaging in x-direction. We define 
averaged value functions over each domain iG : 

 0

1( ) ( , )
il

i i
i

u t V x t dx
l

= ∫ . (23) 

Here, we will use exponential approximation over x in the following form: 

 

( )

( )

1

1
1

( , ) ( ) ( ) cosh sinh 1

( ) sinh cosh 1 1 , , 1,3.

i
i i i

i

i
i i i i

i

x xV x t u t p t
l

x xq t l x x i
l

−

−
−

⎡ ⎤⎛ ⎞−
= + − +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞−

+ − + = − =⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 (24) 

Equalities (24) are chosen in such a way that they fulfil integral (23) (conservation of 
heat energy). We obtain system of six equations from boundary and conjugation 
conditions (16)-(21): 
 ( ) ( )1

1 1 2 2 2e 1 sinh(1) 1 cosh(1) ,u p u p q−+ = + − + −  
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( ) ( ) ( )

( )

1 1
2 2 2 3 3 3

2 1 2 1
1 1 1 1 2 2 2 2

2 1 2 1
2 2 2 2 2 3 3 3 3

3 3

1

e 1 e 1 sinh(1) 1 cosh(1) ,

sinh(1) ,

sinh(1) cosh(1) ,
sinh(1) cosh(1) 0,

0;

u p q u p q

r k l p r k l q

r k l p q r k l q
p q

q

− −

− −

− −

+ + − = + − + −

=

+ =

+ =
=

 

where coefficients are as follows: 
 1 1 1 2 2 1 2 2 2 3 3 2( ( , )), ( ( , )), ( ( , )), ( ( , )).k k V x t k k V x t k k V x t k k V x t= = = =  

Functions V1, V2, V3 are determined by solving the system and finding unknown 
functions ,i ip q : 

 

( )( ) ( )

( )

23
2 2 3 1 2

2323 21

1( ) sinh(1) 1 ( ) ( ) ( ) ( )
e

1(1 ) cosh(1) 1 sinh(1) 1 1 ,
e esinh(1) e tanh(1) e

Gq t u t u t u t u t

GG G

+⎡ ⎤= − − − −⎢ ⎥⎣ ⎦
⎤⎡ ⎛ ⎞⎛ ⎞+

+ − − − + − ⎥⎢ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦  

 2 21 1 2
2

( ) ( ) ( )( ) cosh(1) 1 ,
sinh(1) 1 esinh(1) sinh(1) 1

q t G u t u tp t ⎛ ⎞− −
= + − −⎜ ⎟− −⎝ ⎠  

 

( )3 23 2 2

3 3

1 2 21

( ) ( )sinh(1) ( )cosh(1) ,
( ) ( ) / tanh(1),
( ) ( ) / sinh(1);

q t G p t q t
p t q t
p t q t G

= +

=
=

 

where 
2

2 2 1
21 2

1 1 2

r k lG
r k l

= , 
2

2 2 3
23 2

3 3 2

r k lG
r k l

= . 

Next, we integrate differential equations (15): 

 ( ) ( )
1 1

2 ( ) .
i i

i i

x x
i

i i i i i i i i
ix x

VV dx k V F V dx
t x x r
γ α

− −

⎡ ⎤∂∂ ∂ ⎛ ⎞= − −Θ +⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦
∫ ∫  

We use representations (24) of the functions iV  and integral equalities (23) to make 
approximate analytical reduction of 1D system to the system of three ordinary 
differential equations: 

 
( )1

1 1 1 1 1 1 1 12
1 1

sinh(1) 2( ) ( ),kd u p u F u
dt l r

γ α= − −Θ +  (25) 

 

( )2 2 2
2 2 2 2 2 2 2 2 22 2

2 2 2

sinh(1) cosh(1) 2( ) ( ),k k kd u p q u F u
dt l l r

γ α+ −
= + − −Θ +  (26) 

 
( )3

3 3 3 3 3 3 3 32
3 3

2( ) ( ).kd u q u F u
dt l r

γ α= − − −Θ +  (27) 

Coefficients iγ  and iα  are mean values of γi and α i. In general, it is not possible to 
determine them analytically. We propose to use averaged temperature for calculations: 
 ( ) ( ( )), ( ) ( ( )), 1,3i i i i it u t t u t iγ γ α α= = = . 
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It remains to add an initial condition to complete the 0D mathematical statement: 

 
0

0i t
u U const

=
= = . (28)  

After solving (25)-(28), approximated solution of the original problem could be 
obtained by formulae (14) and (24). 

4.3 Comparison of Finite Element and Conservative Averaging 
Methods 

We will compare numerical results of original 3D model and two simplified models 
from previous chapter: (15)-(22) and (25)-(28). Finite elements approach is used to 
calculate temperatures in 3D model. For 1D PDE-s, finite difference method is used. 

 
Fig. 4.3: 3D model of the example 

Let us take the following parameters as an example (Fig. 4.3): 
 1 2 3 1 2 30.355 , 1.6 , 6 , 0.07, 0.93,ir mm r r mm l mm ε ε ε= = = = = = =  

 

7
, ,1.045 10 , 0, 65 , 1,3;ref i ref i im C iρ α−= ⋅ Ω = Θ = =

 and the temperature dependant coefficients k, γ of zinc [26]. A fixed value is used for 
the resistivity. The melting temperature of zinc is 419.5°C. Simplified fuse geometry 
is used but not a concrete existing sample. 
The maximum temperature is reached in the middle of the fuse. Time to reach the 
melting temperature at a given electric current is calculated and compared among all 
three mathematical models (Table 4.1, Fig. 4.4). 
 

Current 3D model 1D PDE-s ODE-s 
180A 0.050s 0.056s 0.040s 
105A 0.15s 0.18s 0.14s 
60A 0.84s 1.0s 1.3s 

40.5A 21s 25s 27s 
Table 4.1: Time to reach melting point at given current 

 
Fig. 4.4: Time-current curve 

   
3D PDE-s 

   
   

1D PDE-s 
   
   

ODE-s      
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Distribution of temperature on x axis is shown in Fig. 4.5 – Fig. 4.8 at time moment 
when 3D model reaches melting point. 

 
Fig. 4.5: Temperature at 40.5A current 

 
Fig. 4.6: Temperature at 60A current 

 
Fig. 4.7: Temperature at 105A current 

 
Fig. 4.8: Temperature at 180A current 

It is visible from curve (Fig. 4.4) that 0D model is sufficient to determine time-
current characteristics of the fuse. Solution of the 1D PDE-s should be used if 
temperature distribution in the fuse is also important and not only fuse breaking time. 
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4.4 Numerical Example of 25A Fuse 

An automotive fuse of the nominal current 0 25AI =  is taken as a sample (Fig. 4.9).  

 
Fig. 4.9: 25A fuse 

The geometry is transferred to our mathematical model (Fig. 4.2). We assume that 
wires of cross-section 2.4mm2 are connected to the fuse. Dimensions are obtained by 
measuring the fuse: 

 
1 2 3 1 2 3

1 2 3

0.38 , 1.1 0.87 , 5.7 , 17 , 20 ,

65 , 1,3, 0.07, 0.93.i

r mm r mm r mm l mm l mm l mm

C i ε ε ε

= = = = = =

Θ = = = = =
 

The fuse is made of zinc, and the wire – of a copper alloy called CuETP. Properties 
of these materials (heat conductivity and capacity) depend on temperature [26]. 
The dimensions of the insulation of the wires and the fuse socket are taken into 
account when calculating heat convection coefficient αconv. Outer radius of the wire 
is 1.4mm; for fuse socket – 2.1mm. Computation of the coefficient αconv was done as 
suggested in [16]. 
1D mathematical model (15)-(22) was taken for numerical calculations of this fuse. 
Results are compared with standard DIN 72581-3 that define time interval of the 
burn-out of the fuses of this type (Table 4.2, Fig. 4.10). Dash lines are time limits of 
DIN standard. 
 

% of Rated
Current 

25A fuse 
model 

DIN 
Min. 

DIN 
Max. 

600 % 0.099 s 0.02 s 0.1 s 
350 % 0.34 s 0.04 s 0.5 s 
200 % 3.9 s 0.15 s 5 s 
135 % 110 s 0.75 s 1800 s 

Table 4.2: Time to reach the melting point at given current 

0

 in %I
I

Fig. 4.10: Time-current curve of a 25A fuse 
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Temperature distribution in a fuse along x-axis is shown in Fig. 4.11. Fig. 4.12 shows 
steady-state temperature in the fuse at rated current of 25A. 

 
Fig. 4.11: Temperature distribution at different current values 

 
Fig. 4.12: Steady-state temperature at 25A current 

It can be seen that the temperature is too high in the wire when the current is closer 
to nominal. Although we have isolation conditions on the right side of the model, that 
means that too much heat goes into the wires. Heat is generated not only by the fuse 
element but also by the fuse socket. Its heat generation power is higher than for 
wires. 
Our proposal for future fuse design is to make a fuse socket with a larger cross-
section and better heat convection properties on the surface. That will ensure that 
connected wires are not overheated and their insulation is not degraded. 

4.5 Conclusions 

In two steps, we approximated a cylindrical 3D mathematical model of the fuse and 
reduced it to a non-linear time-dependent system of three ordinary differential 
equations. This system is solvable with standard techniques. An approximate 3D 
solution could be analytically obtained from the solution of the transformed problem 
afterwards. 
It is more efficient to calculate averaged mathematical problems rather than full 3D 
problems. A mathematical model could be used to calculate fuse breaking time and 
temperature distribution in the fuse. The geometry of a fuse-socket should be 
changed to improve fuse behaviour at nominal electric current. 

   
600% 

   
   

350% 
   
   

200% 
   
   

135% 
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5 Electrowelding 

Industrial progress demands more and more raw material resources nowadays. 
Because they rise in price, new ways of saving resources are looked for, e.g., less 
expensive metal like aluminium is used in uncritical parts of long wires. Since 
aluminium is not suitable for mechanical contacts due to corrosion, materials like 
copper or brass have to be left in endings of the wires to use them in junctions and 
switches. 
Electro-welding with a strong electric current is one of the original and most 
promising methods of joining two wires of different metals. Electric current is 
applied to wires that are put together until they melt and merge. It is important to 
reach melting temperature at the connection point in this process. To achieve this, the 
optimal length of both wire endings should be found. 

5.1 Mathematical Model 

The bare ends of wires are grabbed and held by clamps. A small part of the wire 
endings is left free, and they are put together to allow electric current to flow through 
and heat the material up. The temperature in holders is controlled by cooling them to 
a fixed temperature. The region of the wires between the clamps is considered. 

 
Fig. 5.1: Geometry of the model 

Mathematical model consists of two joined cylinders 0G  and 1G  (Fig. 5.1) that 
represent connected wires: 
 { }0 ( , , ) | [ ,0], [0, ], [0,2 ]G x r x l r Rϕ ϕ π= ∈ − ∈ ∈ ,  

 { }1 ( , , ) | [0, ], [0, ], [0, 2 ]G x r x L r Rϕ ϕ π= ∈ ∈ ∈ .  

We denote temperature in domain Gi as function ( , , )iU x r t , 0t > , 0,1i = . We assume 
rotational symmetry, i.e., temperature does not change over angle ϕ. Index i indicate 
corresponding sub-domain throughout this chapter. 
Heat-up process is described by quasi-linear heat transfer equations: 

 ( ) 1 ( )i i
i i i i i i

U UU k rk F U
t x x r r r
γ ∂ ∂∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 ,   0,1i = ; (1) 

source functions iF  are linear and they describe heat generation by electric current: 

 
( )( ) 2

,
2

1
( ) ( ( , , )) i r i i r

i i i i

U U I
F U F U x r t

A
ρ α+ −

= = . (2) 

0G
1G

0-l 
L
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Parameter iρ  is resistivity of the material at the reference temperature rU ; ,r iα  is 
temperature coefficient of electric resistivity; I – electric current; A – cross-section 
area of wire. Heat conductivity ( )i ik U  and volumetric heat capacity ( )i iUγ  are 
temperature dependent values. 
We add conjugation conditions between cylinders, assuming continuity of 
temperature and heat flux: 
 0 10 0x x

U U
= =
= , (3) 

 0 1
0 1

00 xx

U Uk k
x x =+=−

∂ ∂
=

∂ ∂
. (4) 

Let us fix temperature at the endings 
 0 x l

U θ
=−

= , (5) 

 1 x L
U θ

=
= ; (6) 

and add boundary conditions on outer surface: 

 ( ) ( )4 4 0i
i i i i i

r R

Uk U U
r

α θ ε σ θ
=

∂⎡ ⎤+ − + − =⎢ ⎥∂⎣ ⎦
,   0,1i = ; (7) 

where iα  is temperature-dependant non-linear heat convection coefficient, ε –
emissivity of metal, σ – Stefan-Boltzmann constant, θ – ambient temperature.  
We include also boundary conditions that define symmetry in the centre: 

 
0

0i

r

U
r =

∂
=

∂
,   0,1i = ; (8) 

and, after all, we add initial conditions: 

 
0i t

U θ
=
= ,   0,1i = .   (9)  

5.2 Averaging over Radius r 

Let us apply conservative averaging over radius r. We define integral averaged value 
in interval [0, ]R : 

 2
0

2( , ) ( , , )
R

i iw x t rU x r t dr
R

= ∫ ,   0,1i = ;   (10) 

and assume constant temperature distribution in r-direction: 
 ( , , ) ( , )i iU x r t w x t= . (11) 

Next, we integrate both sides of main differential equations (1): 

 ( )2 2
0 0

2 2 1 ( )
R R

i i
i i i i i i

U Ur U dr r k rk F U dr
R t R x x r r r

γ ⎡ ∂ ∂ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ ∫  (12) 

Let us look at the integration of the addends one by one. 

     1) ( ) ( )2 2 2
0 0 0

2 2 2R R R

i i i i i i i ir U dr r U dr rU dr w
R t t R t R t

γ γ γ γ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂

= = =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∫ ∫ ∫ . 
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 First, the order of the integration and derivation could be switched because of 
the continuity of iγ  and iU . Next, parameter iγ  could be brought outside 
integral because we assumed constant distribution of temperature over radius. 
Last, we obtain derivative of averaged function iw using integral formula (10). 
Here, coefficient ( )i i iwγ γ= . 

2) Similar transformations are done for the first addend of the right hand side: 

 2 2
0 0

2 2 ,

( ).

R R
i i

i i i i

i i i

U wr k dr k rU dr k
R x x x x R x x

k k w

⎛ ⎞⎛ ⎞∂ ∂∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
=

∫ ∫  

3) Next term contains derivative in r-direction: 

 ( ) ( )( ) ( ) ( )( )

2 2
00

4 4 4 4

2 2 2

2 2 ,

( ).

RR
i i i

i i i
r R

i i i i i i i i

i i i

U U Urk dr r k k
R r r R r R r

U U w w
R R

w

α θ ε σ θ α θ ε σ θ

α α

=

∂ ∂ ∂∂ ⎛ ⎞ = = =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

= − − − − = − − + −

=

∫

 

 Boundary condition (7) was used to substitute derivative, and function iU  could 
be substituted by iw  afterwards because of constant approximation (11). 

4) Last term contains source function: 

 2
0

2 ( ) ( )
R

i i i irF U dr F w
R

=∫ . 

Consequently, differential equations (1) are the following after integration: 

 ( ) ( )i
i i i i i

ww k F w
t x x
γ ∂∂ ∂ ⎛ ⎞= +⎜ ⎟∂ ∂ ∂⎝ ⎠

,   0,1i = ;   (13) 

where ( ) ( )( )4 42( ) ( )i i i i i i i iF w w w F w
R

α θ ε σ θ= − − + − + . (14) 

Additional conditions are also integrated and result is similar to conditions of the 
original problem. We have conjugation conditions: 
 0 10 0x x

w w
= =
= , (15) 

 0 1
0 1

00 xx

w wk k
x x =+=−

∂ ∂
=

∂ ∂
; (16) 

boundary conditions at the endings: 
 0 x l

w θ
=−

= , (17) 

 1 x L
w θ

=
= ; (18) 

and initial conditions: 

 
0i t

w θ
=
= ,   0,1i = .   (19)  

Brand new statement of the 1D mathematical problem (Fig. 5.2) consists of 
differential equations (13) and additional conditions (15)-(19). Commonly, it is not 
possible to find analytical solution because of non-linearity. Numerical solution 
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could be found using standard numerical techniques, e.g., methods of finite 
differences and factorization [37]. 

5.3 Averaging in xdirection Using Exponential Approximation 

We have 1D mathematical problem now (Fig. 5.2). It is possible to reduce also the 
last space dimension by applying conservative averaging again. 

 
Fig. 5.2: Domain of a 1D mathematical problem 

At first, we define integral averaged value function over each rod: 

 1 1
0

1( ) ( , )
L

u t w x t dx
L

= ∫ , (20) 

 
0

0 0
1( ) ( , )

l

u t w x t dx
l −

= ∫ . (21) 

Let us assume exponential temperature distribution in x-direction as follows: 

 0 0 0 0( , ) ( ) ( ) cosh sinh1 ( ) sinh cosh1 1x xw x t u t p t q t
l l

⎛ ⎞ ⎛ ⎞= + − + + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, (22) 

 1 1 1 1( , ) ( ) ( ) cosh sinh1 ( ) sinh cosh1 1x xw x t u t p t q t
L L

⎛ ⎞ ⎛ ⎞= + − + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. (23) 

Expressions are written in such a way that they already fulfil integrals (20) and (21). 
0p , 1p , 0q , 1q  are functions of time t that we will find from boundary and 

conjugation conditions. Parentheses around argument of hyperbolic functions are 
omitted from here onward, e.g., 
 sinh( ) sinhx x= ;     cosh(1) 1 cosh1 1− = − ;     ( ) ( )sinh(1) sinh1a b a b+ = + . 

Let us write down derivatives by argument x that we will use afterwards: 

 0
0 0

( , ) 1 1( ) sinh ( ) coshw x t x xp t q t
x l l l l

∂
= +

∂
, (24) 

 1
1 1

( , ) 1 1( ) sinh ( ) coshw x t x xp t q t
x L L L L

∂
= +

∂
. (25) 

For simplicity, we omit also arguments of the functions in the next expressions. 
From conjugation condition (15), we obtain: 
 ( ) ( ) ( ) ( )0 0 0 1 1 11 sinh1 cosh1 1 1 sinh1 cosh1 1u p q u p q+ − + − = + − − − . (26) 

The second conjugation condition (16) gives the following: 

 0 1
0 1

k kq q
l L

= ; (27) 

where coefficients ik  are at the point 0x =  here: ( (0, )).i i ik k w t=  
 

0 L-l 

w0(x,t) w1(x,t)

x
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From boundary conditions (17) and (18), we obtain: 
 ( ) ( )0 0 0cosh1 sinh1 sinh1 cosh1 1u p q θ+ − + − + − = , 

 ( ) ( )1 1 1cosh1 sinh1 sinh1 cosh1 1u p q θ+ − + − + = . 

Let us convert constants with hyperbolic functions to exponential functions: 

 0 0 0
1 11
e e

u p q θ⎛ ⎞+ − − =⎜ ⎟
⎝ ⎠

, (28) 

 1 1 1
1 11
e e

u p q θ⎛ ⎞+ + − =⎜ ⎟
⎝ ⎠

. (29) 

We obtain unknown functions by solving the system of four equations (26)-(29): 
 ( )0 0 1 0( ) ( ) ( )q t D u t u t= − , (30) 

 ( )1 1 1 0( ) ( ) ( )q t D u t u t= − , (31) 

 ( )( ) ( )0 0 1 0 0( ) e 1 ( ) ( ) e ( )p t D u t u t u t θ= − − − − , (32) 

 ( ) ( ) ( )1 1 1 0 1( ) e 1 ( ) ( ) e ( )p t D u t u t u t θ= − − − − − ; (33) 

where 1
0

0 1

e 1
3 e

k lD
k L k l

−
=

− +
, 

 0
1

0 1

e 1
3 e

k LD
k L k l

−
=

− +
. 

We can write down 0w  and 1w  now: 

 
( )( ) ( )( )

( )

0 0 0 1 0 0

0 1 0

( , ) e 1 e cosh sinh1

sinh cosh1 1 ,

xw x t u D u u u
l

xD u u
l

θ ⎛ ⎞= + − − − − − +⎜ ⎟
⎝ ⎠

⎛ ⎞+ − + −⎜ ⎟
⎝ ⎠

 (34) 

 
( ) ( ) ( )( )

( )

1 1 1 1 0 1

1 1 0

( , ) e 1 e cosh sinh1

sinh cosh1 1 .

xw x t u D u u u
L

xD u u
L

θ ⎛ ⎞= − − − + − − +⎜ ⎟
⎝ ⎠

⎛ ⎞+ − − +⎜ ⎟
⎝ ⎠

 (35) 

In fact, coefficients 0D  and 1D  also depend on time t, because they contain heat 
conduction coefficients 0k  and 1k .  
Integration of differential equations (13) is the next step. The first integral is in 
interval ( , 0)l− ; the second one – in interval (0, )L : 

 ( )
0 0

0
0 0 0 0 0

1 1 ( )
l l

ww dx k F w dx
l t l x x

γ
− −

⎡ ∂ ⎤∂ ∂ ⎛ ⎞= +⎜ ⎟⎢ ⎥∂ ∂ ∂⎝ ⎠⎣ ⎦
∫ ∫ , (36) 

 ( ) 1
1 1 1 1 1

0 0

1 1 ( )
L L ww dx k F w dx

L t L x x
γ ⎡ ∂ ⎤∂ ∂ ⎛ ⎞= +⎜ ⎟⎢ ⎥∂ ∂ ∂⎝ ⎠⎣ ⎦

∫ ∫ .    (37) 

Let us look at the integration of the addends one by one again. 
1) On the left hand side, we change order of derivation and integration and use 

mean value theorem as described at the end of Section 3.4: 
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 ( ) ( )
0 0 0

0 0 0 0 0 0 0 0
1 1 1

l l l

d d dw dx w dx w dx u
l t dt l dt l dt

γ γ γ γ
− − −

⎡ ⎤ ⎡ ⎤∂
= ≅ =⎢ ⎥ ⎢ ⎥∂ ⎣ ⎦ ⎣ ⎦

∫ ∫ ∫ ;
 

 where averaged value is used to calculate heat capacity: 0 0 0( ) ( )t uγ γ= . 

2) We use our approximating functions (34) and (35) to change derivatives of x in 
the first term of the right hand side: 

 

00
0 0 0 0

0 0 0 0
0

1 1 1

x x ll l

w w w wk dx k k k
l x x l x l x x= =−− −

⎛ ⎞⎡ ∂ ⎤ ∂ ∂ ∂∂ ⎛ ⎞ ⎛ ⎞= = − =⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎝ ⎠
∫

 
 ( ) ( )0 0 0 0 0 0 0 1 02 2

1 1sinh1 cosh1k q k p q k D u u
l l
⎡ ⎤ ⎡= − − + = − −⎣ ⎦ ⎣  

 ( ) ( ) ( )( ) ( )( )0 0 1 0 0 0 1 0sinh1 e 1 e cosh1k D u u u D u uθ ⎤− − − − − − + − =⎦  

 ( )( )( )( ) ( )0 0 0 1 0 0 02

1 cosh1 sinh1 e 1 e sinh1D k k u u k u
l

θ⎡ ⎤= − − − − − −⎣ ⎦ ;
 

 where 0 0 0( ) ( (0, ))k t k w t=  and 0 0 0( ) ( ( , ))k t k w l t= − . 
3) Last term to integrate is source function 0F . In general, it is non-linear and it is 

impossible to find integral analytically. Suggestion is to use averaged value for 
calculations. Additional research should be done to find more precise procedure 
for calculation of coefficients; and how does it influences solution: 

 
0

0 0 0 0 0
1( ) : ( ) ( )

l

f t F w dx F u
l −

= ≅∫ . 

Similar conversions could be done to the second differential equation (37); and we 
can write down our new 0D mathematical problem. It consists of two ordinary 
differential equations (38)-(39) that depend only on time t: 

 ( ) ( ) ( )0 0 1 1 0 2 0 0
d u E u u E u f
dt

γ θ= − + − + , (38) 

 ( ) ( ) ( )1 1 3 1 0 4 1 1
d u E u u E u f
dt

γ θ= − + − + ; (39) 

and initial conditions: 
 

0i t
u θ

=
= ,   0,1i = .  (40)  

Here, ( )( )( )2 21 0 0 0 2 0
1 1cosh1 sinh1 e 1 , e sinh1,
l l

E D k k E k= − − − = −  

 ( )( )( )2 23 1 1 1 4 1
1 1cosh1 sinh1 e 1 , e sinh1,
L L

E D k k E k= − − − − = −  

 ( ) ( (0, ))i i ik t k w t= ,   0 0 0( ) ( ( , ))k t k w l t= − ,   1 1 1( ) ( ( , ))k t k w L t= . 

When solution of these equations is found, approximated solution of the original 
problem can be obtained by formulae (11), (22), (23). 
 



63 
 

5.4 Alternative Averaging in xdirection Using Polynomial 
Approximation 

Let us use another approximation functions over x instead of functions (22) and (23): 

 
2

0 0 0 0
1 1ˆ ˆ( , ) ( ) ( ) ( )
2 3

x xw x t u t q t p t
l l

⎛ ⎞⎛ ⎞ ⎛ ⎞= + + + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
, (41) 

 
2

1 1 1 1
1 1ˆ ˆ( , ) ( ) ( ) ( )
2 3

x xw x t u t q t p t
L L

⎛ ⎞⎛ ⎞ ⎛ ⎞= + − + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
. (42) 

These equations already fulfil integrals (20) and (21). We can obtain unknown 
functions using boundary conditions (15)-(18): 

 ( )1 0
0

6
ˆ ( )

1
u u

q t
m
−

=
+

,   
( ) ( )1 0

0 0

33ˆ ( )
2 1

u u
p t u

m
θ

−⎛ ⎞
= − −⎜ ⎟+⎝ ⎠

, 

 ( )1 0
1

6
ˆ ( )

1
m u u

q t
m
−

=
+

,   
( ) ( )0 1

1 1

33ˆ ( )
2 1

m u u
p t u

m
θ

−⎛ ⎞
= − −⎜ ⎟+⎝ ⎠

,   0

1

Lkm
lk

= . 

Integration of differential equations (13) over corresponding intervals gives system 
of ordinary differential equations: 

 ( ) ( ) ( )0 0
0 0 1 0 0 0 02

23
1
k kd u u u k u f

dt l m
γ θ

⎛ ⎞−
= − − − +⎜ ⎟+⎝ ⎠

, (43) 

 ( ) ( ) ( )1 1
1 1 0 1 1 1 12

23
1
k kd u m u u k u f

dt L m
γ θ

⎛ ⎞−
= − − − +⎜ ⎟+⎝ ⎠

. (44) 

Adding initial conditions (40) to the last two equations gives another system of 
ordinary differential equations besides (38)-(40). These systems of equations are 
simplified mathematical models of our original problem. 

5.5 Numerical Results 

Research in the field of electro-welding began only recently and there is no 
experimental praxis how this could be done in the most efficient way (in terms of 
dimensions, applied current etc.). One of the demands in industry is joining brass and 
aluminium wires. The latter material is cheaper and it is used in longer parts of wires, 
while the first has better properties and is used in more complex parts of electric 
systems. 
Let us take aluminium wire of radius 0.895AlR mm=  and join it with brass wire of 
radius 1.175R mm= . The end of the aluminium wire is covered by a brass sleeve in 
such a way that the radius is the same as for the brass wire. In our model (Fig. 5.1), 
we assume that aluminium is on the left hand side, but brass – on the right hand side. 
Because aluminium wire has a brass sleeve, mixed properties should be taken for that 
part of the model. Coefficients are calculated in proportion to cross-section areas (for 
electric resistivity – in inverse proportion): 
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 0 0 0 1 0( ) ( ) (1 ) ( )Alk U pk U p k U= + − , 

 0 0 0 1 0( ) ( ) (1 ) ( )AlU p U p Uγ γ γ= + − , 

 
( )( ) ( )( )

2

0 0 2
, 0 1 ,1 0

(1 )( )
1 1Al r Al r r r

I p pF U
A U U U Uρ α ρ α

⎛ ⎞−
= +⎜ ⎟⎜ ⎟+ − + −⎝ ⎠

; 

where 2 2
Alp R R= , 2A Rπ= . 

Physical properties of aluminium and brass are as follows [26]: 
a) heat conductivity Alk  and 1k : Fig. 5.3; 
b) volumetric heat capacity Alγ  and 1γ : Fig. 5.4 (constant value is used for brass); 

 

 
Fig. 5.3: Heat conductivity of aluminium and 

brass 

 
Fig. 5.4: Volumetric heat capacity of 

aluminium and brass 

c) resistivity at the reference temperature 20 CrU = ° : 
 82.668 10 mAlρ = ⋅ Ω , 8

1 6.667 10 mρ = ⋅ Ω ; 

d) temperature coefficient of electric resistivity: 
 3

, 4.31 10 1 Kr Alα −= ⋅ ⋅ , 3
,1 1.7 10 1 Krα

−= ⋅ ⋅ ; 

e) free convection coefficient 0 1( ) : ( ) ( )T T Tα α α= =  for round wire of radius R in 
air ( 20 Cθ = ° ): 

 
Fig. 5.5: Free convection coefficient for the surface of a round wire 

f) surface emissivity (because of the sleeve, we need it only for brass): 
 0 1: 0.035ε ε ε= = = ,   8 2 45.6704 10 W m Kσ −= ⋅ ; 

g) temperature to reach (aluminium melting temperature because it is lower than 
for brass):   660 CAlT = ° ; 
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Let us apply 900A strong electric current to our connected wires. If the length of 
each part is equal to 10mm, melting temperature is reached inside the brass wire and 
not at the connection point (Fig. 5.6 – 1D PDE model used. Vertical line shows 
where maximum temperature is). To shift the maximum point, the dimensions should 
be changed, e.g., aluminium part could be made longer. 

 
Fig. 5.6: Temperature profile if length of wire endings is equal 

At first, let us neglect heat convection and radiation and use other parameters as 
constants. Table 5.1 shows how long should be the length of aluminium part of the 
model to reach melting temperature at the connection point. Results are obtained by 
1D PDE model and two ODE models from previous sections of this chapter. 
Parameters are calculated at average temperature of 327°C (600 K). 
 

Model Length l Time t 
1D PDE system 14.4 mm 0.67 s 
ODE system with exponential approx. 14.3 mm 0.56 s 
ODE system with polynomial approx. 14.7 mm 0.52 s 

Table 5.1: Length of the endings to start melting at the connection. Constant parameters 

Calculated lengths are almost the same among models, while time value of ODE 
systems differs by 16-22% from 1D model. 
Fig. 5.7 shows temperature distribution along x-axes at the time moments when 
melting point is reached for each considered mathematical model. 

 
Fig. 5.7: Temperature profile by different mathematical models. Constant parameters 

Next, we use temperature-dependent coefficients and take into account heat 
convection and radiation. PDE model gives length of 15.8 mm of aluminium wire 
that is by 10% more than before. Time to reach melting temperature stays the same: 
t = 0.67 s.  

   t = 0.76 s
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Finding optimal length by ODE systems fails. Maximum point tends to junction of 
the wires but do not reach it however large the length l is. Such effect is caused 
mostly by calculation of transient heat conductivity coefficient k. If it is computed 
from averaged values, i.e. ( ( ))i i i ik k k u t= =  in formulae (38)-(39) and (43)-(44), 
solution for optimal length can be found (Table 5.2). If we compare results with 1D 
solution, length is longer by 5% in case of exponential approximation and by 20% in 
case of polynomial approximation. 
 

Model Length l Time t 
1D PDE system 15.8 mm 0.67 s 
ODE system with exponential approx. 16.6 mm 0.63 s 
ODE system with polynomial approx. 19.0 mm 0.59 s 

Table 5.2: Length of the endings to start melting at the connection. Transient parameters 

Fig. 5.8 shows temperature distribution in wires obtained by all three models at the 
moment of reaching melting temperature. 

 
Fig. 5.8: Temperature profile by different mathematical models. Transient parameters 

5.6 Conclusions 

For the presented physical situation, a mathematical model was constructed that 
consisted of two 3D cylinders and a description of electro-thermal properties. Using 
the conservative averaging approach, it was approximated and reduced to a one-
dimensional model and also to two kinds of zero-dimensional mathematical models. 
Since experimental data from manufacturer was not available at the time of writing 
this thesis, approbation and improvement of the current mathematical model will 
take place at a later collaboration stage. For example, a more complex geometry of 
the model could be considered because initially it was not known that the ending of 
the aluminium wire has a brass sleeve. 
Additional research should be done to determine the observed behaviour of 
numerical solutions of ODE systems, i.e., whether the significant influence of 
parameter approximation is due to averaging over an interval where the coefficient is 
not monotone (Fig. 5.3), or due to the usage of a difference scheme, or another 
reason. 
This chapter could be used as an example for applying the conservative averaging 
method to other cylindrical mathematical models, e.g., cooling systems with 
cylindrical fins. 

   
1D PDE 

   
    ODE 

exp. approx.    
    ODE 

polyn. approx.      
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Conclusion 

Efficient mathematical models of several industrial problems were developed during 
this research, fulfilling the goal of the Ph.D. thesis. International collaboration with 
Munich Bundeswehr University gave an opportunity to work on the topical issues of 
today. The conservative averaging method allowed the creation of fast mathematical 
models and the accomplishment of many calculations in a short period of time. 
Quick computation helped to better form a sort of sense about processes in the 
considered problems, and to create ideas for their further development. 
Specialists from different fields contributed to the problems researched – 
mathematicians, engineers, physicists. Multidisciplinary cooperation is needed 
nowadays because the investigated problems often are too complicated to be solved 
with the knowledge of a single person’s specialisation. Another important connection 
is the link between scientists and industry, turning research results into innovations. 
This should be the main reason that drives the progress and development of countries 
including Latvia. Above all, let us hope that, through helping to obtain a deeper 
understanding of natural laws, science in general will remain friendly to the earth and 
humanity. 
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Appendix 1   Finite Difference Method for 1D Problem  

Systems of quasi-linear partial differential equations in a one space dimension were 
considered in chapters 3 to 5. A finite difference method was used to calculate them 
numerically. The mathematical models consisted of several sub-domains that were 
connected by conjugation conditions. This chapter shows how to obtain finite 
differences with a second order of approximation in space, including a conjugation 
point.  

App 1.1  Statement of the 1D Problem 

The system of quasi-linear 1D heat equations has the form as follows: 

 ( ) 1( ) ( ) ( , , ), ( , ), [ , ]j
j j j j j j j j j j j

w
w w k w f x t w w w x t x x x

t x x
γ +

∂⎛ ⎞∂ ∂
= + = ∈⎜ ⎟∂ ∂ ∂⎝ ⎠

; (1) 

where j is the index of the equation. Source functions ( , , )j jf x t w  play the role of the 
heat sources or heat sinks. 
As an example, let us take mathematical model of the automotive fuse (39)-(42) from 
Chapter 3.6. Then: 

 0 1 2 0 1 0 10, , , ,x x l x l L k k k γ γ γ= = = + = = = = ,   0,1j = ; 

and source functions are the following: 

 
( )( ) ( )

( )( ) ( )

0 0 0 0 0 0

1 1 1 1 1 1

1 1( , , ) 1 ,

1 1( , , ) 1 .

r r

r r

f x t w B w U h w
b h

f x t w B w U h w
b H

α

α

⎛ ⎞= + − − + −Θ⎜ ⎟
⎝ ⎠
⎛ ⎞= + − − + −Θ⎜ ⎟
⎝ ⎠

 (2) 

Boundary conditions are taken as the generalization of the homogeneous boundary 
conditions (40): 

 0 1
0 1

0

( ), ( ).
x l Lx

w wk q t k q t
x x = +=

∂ ∂
= =

∂ ∂
 (3) 

Conjugation conditions differ from the ideal thermal contact conditions as well as 
from non-ideal thermal contact conditions: 
 0 10 0

,
x l x l

w w
= − = +

=  (4) 

 ( )( )0 1
1 1

0 0

.
x l x l

w whk Hk h H h w
x x= − = +

∂ ∂⎡ ⎤= − − −Θ⎢ ⎥∂ ∂⎣ ⎦
 (5) 

Initial conditions can be non-homogeneous: 
 0

0 10 0
( ).

t t
w w U x

= =
= =  (6) 

From mathematical point of view, important is a fact that the functions ( , , )j jf x t w  
(as well as functions ( )jwγ ) fulfil following estimations:  
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( , , )

, , 0,1, .j j

j j

f x t w
M M j M R

w w
γ∂ ∂

≤ ≤ = ∈
∂ ∂

 

These constraints guarantee the uniqueness of the solution of the problem (1)-(6).  

App 1.2  Construction of the Finite Difference Scheme 

Finite difference method for heat transfer problems are well explained in literature, 
e.g. [38]. The finite difference solution of the 1D problem will be denoted as 

, ( , )n
j i j i nv w x t≈ . We will use uniform time step: nt nτ= , 0,n N= ; the space step will 

be piece-wise constant: 

 0 0 0
0

, 0, , ;i
lx i x i i x
i

= Δ = Δ =  

 0 1 0 1 1
1 0

( ) , , , .i
L lx l i i x i i i x
i i
−

= + − Δ = Δ =
−

 

We approximate heat conductivity term of the equation (1) by difference operator as 
follows (temporarily, we omit the notation of the time-level n and function index j): 
 0 1[ ( ) [ ] ] , 0, , .i i i x xv k v v i i i= ≠Λ  (7) 

Here, we have used traditional notation, e.g. [38]: 

 1 1[ ] , [ ]i i i i
i x i x

v v v vv v
x x

− +− −
= =

Δ Δ
; 

where 0 0 1 0 1, 0 ; , .x x i i x x i i iΔ =Δ < < Δ =Δ < <  

Difference operator (7) could be rewritten in the following form: 

 1 1 1 1
2

( ) ( ( ) ( ) ) ( )[ ( ) [ ] ] i i i i i i i
i i x x

k v v k v k v v k v vk v v
x

+ + + −− + +
=

Δ
. (8) 

For coefficient ( ) ik v , several equivalent expressions can be applied in the sense of 

the order of approximation 2( )O xΔ , e.g. 

 1( )
2

i i
i

v vk v k −+⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (9) 

or 1( ) ( )( )
2

i i
i

k v k vk v − +
= . (10) 

Now, we can propose two-step predictor-corrector-type finite difference scheme for 
the differential equations (1) (it is important to show the time-level here again): 

 

( )

1
1

1
1 1 1

0 0 1 0 1

( ) [ ( ) [ ] ] ( , , ) ,

( ) [ ( ) [ ] ] ( , , ) ;

0 , 0, , .

n n
n n n ni i
i i i x x i

n n
n n n ni i
i i i x x i

v vv k v v f x t v

v vv k v v f x t v

i i i i i i i i i i

γ
τ

γ
τ

+
+

+
+ + +

−
= +

−
= +

< < < < ≠ ≠ ≠

 (11) 

Next, we will pay special attention to obtain approximation of the boundary 
conditions (3) and conjugations conditions (4), (5) with the same order of 
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approximation 2( )O xΔ  as the finite difference equations (11). To guaranty the 
second order of the approximation, we employ the idea of using the main differential 
equation on the border [37]. We start with Taylor series expansions for the functions 

,
n
j iv  as differentiable functions of arguments x and t: 

 
2 2

3
1 2 ( ); : .

2
i

i i i i i i
i i x xi

v x v v vk v k v xk k O x
x x x x±

=

∂ Δ ∂ ∂ ∂
= ±Δ + + Δ =

∂ ∂ ∂ ∂   
   

Important nuance is that the heat conductivity coefficient k is taken at the fixed point 
ix x= : ( )i ik k x= . This assumption allows us to rewrite the last formula as follows: 

 
2

3
1 ( ).

2i i i i i
i i

v x vk v k v x k k O x
x x x±
∂ Δ ∂ ∂⎛ ⎞= ± Δ + + Δ⎜ ⎟∂ ∂ ∂⎝ ⎠

 (12) 

 Next two equalities follow from (12): 

 21 ( ),
2

i i
i i

i i

v vv x vk k k O x
x x x x

−−∂ Δ ∂ ∂⎛ ⎞= + + Δ⎜ ⎟∂ Δ ∂ ∂⎝ ⎠
  

 21 ( ).
2

i i
i i

i i

v vv x vk k k O x
x x x x

+ −∂ Δ ∂ ∂⎛ ⎞= − + Δ⎜ ⎟∂ Δ ∂ ∂⎝ ⎠
 

The assumption that functions ( , )v x t  fulfil differential equations (1) gives next 
expressions for the first-order derivatives: 

 ( ) 21 ( , , ) ( ),
2

i i
i i

i i

v vv xk k v f x t v O x
x x t

γ−−∂ Δ ∂⎡ ⎤= + − + Δ⎢ ⎥∂ Δ ∂⎣ ⎦
 (13) 

 ( ) 21 ( , , ) ( ).
2

i i
i i

i i

v vv xk k v f x t v O x
x x t

γ+ −∂ Δ ∂⎡ ⎤= − − + Δ⎢ ⎥∂ Δ ∂⎣ ⎦
 (14) 

It remains to apply these equations to the boundary conditions (3), and, in accordance 
with difference scheme (11), we obtain second order finite difference approximation 
of both boundary conditions. We have the following difference equations for the 
predictor step: 

 
1 1

1 1 1 1 1

1
0,0 0,0 10 0

0,0 0,0 0,0 0 0 0,0 0

1
1, 1, 11 1

1, 1, 1, 1 1, 1

( ) ( )[ ] ( , , ) ( ),
2 2

( ) ( )[ ] ( , , ) ( );
2 2

n n
n n n n

x n n

n n
i in n n n

i i i x i n i n

v vx xv k v v f x t v q t

v vx xv k v v f x t v q t

γ
τ

γ
τ

+
+

+
+

−Δ Δ
− = −

−Δ Δ
+ = +

   (15) 

and difference equations for the corrector step: 

 
1 1

1 1 1 1 1

1
0,0 0,01 1 1 10 0

0,0 0,0 0,0 0 0 1 0,0 0 1

1
1, 1,1 1 1 11 1

1, 1, 1, 1 1 1, 1 1

( ) ( )[ ] ( , , ) ( ),
2 2

( ) ( )[ ] ( , , ) ( ).
2 2

n n
n n n n

x n n

n n
i in n n n

i i i x i n i n

v vx xv k v v f x t v q t

v vx xv k v v f x t v q t

γ
τ

γ
τ

+
+ + + +

+ +

+
+ + + +

+ +

−Δ Δ
− = −

−Δ Δ
+ = +

 (16) 

We make similar construction of the second order approximation on the border 
between both parts (at the point 0i i= ). Here we need to be careful with notation and 
to use different indexes for differences to the left and right from the border point. 
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The second conjugation condition (5) can be rewritten in the following equivalent 
form: 

 
( )

( )

0 1
1

0 0

(1 ) ,

, .

z
x l x l

w wk k h w
x x

H hh
H H

μ μ

μ η

= − = +

∂ ∂⎡ ⎤= − − −Θ⎢ ⎥∂ ∂⎣ ⎦

−
= =

 (17) 

Using equation (13), we approximate the left hand side flux of the equation (17) for 
the predictor stage as follows: 

 
1

0, 0,1 0
0, 0, 0, 0 0, 0 0( )[ ] ( ) ( , , ) : , .

2

n n
i in n n n

i i x i i n i

v vxk v v v f x t v J i iμ μ γ
τ

+
+ ⎡ ⎤−Δ

+ − = =⎢ ⎥
⎣ ⎦

  

We obtain similar expression for the right hand side by formula (14): 

 ( )
1

1, 1,1 11
1, 1, 1, 1 1, 1, 1( )[ ] ( ) ( , , ) (1 ) : .

2

n n
i in n n n n

i i x i i n i z i

v vxk v v v f x t v h v Jγ μ
τ

+
+ +⎡ ⎤−Δ

− − − − −Θ =⎢ ⎥
⎣ ⎦

  

Taking into account the first conjugation condition (4), i.e., continuity 
0 01, 0,i iv v= , we 

have equality on the border: 
 0 1J J= ;  

or the following equation for the predictor stage: 

 

( )

1
0, 0,1 0

0, 0, 0, 0 0,

1
1, 1,1 11

1, 1, 1, 1 1, 1,

( )[ ] ( ) ( , , )
2

( )[ ] ( ) ( , , ) (1 ) .
2

n n
i in n n n

i i x i i n i

n n
i in n n n n

i i x i i n i z i

v vxk v v v f x t v

v vxk v v v f x t v h v

μ μ γ
τ

γ μ
τ

+
+

+
+ +

⎡ ⎤−Δ
+ − =⎢ ⎥

⎣ ⎦
⎡ ⎤−Δ

= − − − − −Θ⎢ ⎥
⎣ ⎦

 (18) 

We have following equation for the corrector stage: 

 ( )

1
0, 0,1 1 1 10

0, 0, 0, 0 0,

1
1, 1,1 1 1 1 11

1, 1, 1, 1 1, 1,

0

( )[ ] ( ) ( , , )
2

( )[ ] ( ) ( , , ) (1 ) ,
2

.

n n
i in n n n

i i x i i n i

n n
i in n n n n

i i x i i n i z i

v vxk v v v f x t v

v vxk v v v f x t v h v

i i

μ μ γ
τ

γ μ
τ

+
+ + + +

+
+ + + + +

⎡ ⎤−Δ
+ − =⎢ ⎥

⎣ ⎦
⎡ ⎤−Δ

= − − − − −Θ⎢ ⎥
⎣ ⎦

=

(19) 

The difference equations (15)-(19) together with self evident initial conditions: 

 
0 0
0, 0

0 0
1, 0 1

( ), 0 ,

( ), ;
i i

i i

v U x i i

v U x i i i

= ≤ ≤

= ≤ ≤
 (20) 

 are complete difference scheme of the second order of approximation. 
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