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Abstract

In this thesis, a model-driven software architecture for interactive systems (systems con-

sisting of multiple interoperating components) is proposed. This architecture, called the

Transformation-Driven Architecture (TDA), advances the ideas of the Model-Driven Ar-

chitecture (MDA). Unlike MDA, which uses models and model transformations at software

development time, TDA uses them at runtime.

The following important TDA modules are also described in the thesis: TDA Ker-

nel (provides the communication mechanism, the undo/redo mechanism, and the multi-

repository mechanism), Environment Engine (a replaceable engine for using TDA in dif-

ferent environments), Dialog Engine (for specifying and displaying dialog windows), and

Error Engine (for de�ning and visualizing error messages).

TDA proved its viability, when used as a foundation for building domain-speci�c tools.

Keywords: Model-Driven Architecture, Transformation-Driven Architecture, interactive
systems, model-driven software development, domain-speci�c tools.
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* * *

Note on the usage of the pronouns �we� and �I� in this thesis. Depending on

the context, the pronoun �we� will mean �humans�, �computer scientists�, or

�the author and the reader�. In no case �we� will mean �I and colleagues�.

To emphasize the personal contribution and to avoid awkward sentences, the

pronoun �I� will be used. Arguments for using �I� can be found in �Handbook

of Technical Writing� [16, pp. 405�406].

Note on the language. Mainly, I use British English in my prose. For certain

words I make the choice in favour of their forms traditionally used in Computer

Science (like �program� and �dialog�). Whenever I quote other authors or refer

to widely-accepted terms, I use original syntax (usually, in American English).

This explains why sometimes the word �modelling� is written as �modeling�.

* * *
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Introduction

Earlier we had written programs in machine code,

then in assembler.

Afterwards translators appeared,

then tools.

And now we have tools for creating tools.

What will be the next?

�prof. J. Borzovs at a seminar for doctoral students of Computer Science,

University of Latvia, December 2008

� Dad, what computers are for?

� Computers, son, are intended to solve problems

that did not exist before invention of computers.

(humour)

From tally sticks and abacus, the history of computing leads us to modern programmable

computers intended to aid the humanity in solving numerous tasks. However, in order

the computer could solve the task, we have to overcome the gap between the idea in the

human mind and its implementation in machine code. That is why programmers are

required.

To automate the programmers' job, assembly languages were invented in the late

1940-ties. Instead of writing the machine code directly, a programmer could express the

idea at a bit higher level of abstraction, and the assembler could automatically gener-

ate the machine code. This increased the productivity of programmers, but not very

much. In the late 1950-ties so called third generation programming languages (3GLs)

appeared. According to SPR 2006 [17, as cited by [18]], 3GLs increased the productivity

of programmers by 450%. Other types of languages were introduced later, which include

8



special-purpose languages (e.g., SQL, MATLAB, etc.) as well as functional (e.g., Haskell,

ML, F#) and declarative languages (e.g., Prolog, Lisp). Besides languages, there are a

number of software libraries, which factor out common recurring tasks.

Still, all these attempts to improve the productivity of the programmers cannot reach

the horizon, since the horizon moves away. The increasing power of computers as well as

their proliferation create new problems to be solved by computers, the problems that did

not exist earlier. The demand for software increases more drastically than the productivity

of programmers (compare: 100 times versus 2 times in the period 1965�1985 [19, as cited

by [20]]). Furthermore, programmers today need to solve far more complex tasks than the

tasks some �fty years ago. V. Parondzhanov even uses the term �intellectual terrorism�

to describe the pressure the information age puts on programmers [20].

Besides the horizon moving away, there seems to be a kind of �force of friction� asso-

ciated with software. Frederick P. Brooks in his famous �No silver bullet� paper (1987)

[21] pointed that besides accidental di�culties in software development (arti�cial barri-

ers, which can eventually be overcome) there are also essential di�culties �inherent in the

nature of software� . He claimed:

�Not only are there no silver bullets now in view, the very nature of software

makes it unlikely that there will be any�no inventions that will do for software

productivity, reliability, and simplicity what electronics, transistors, and large-

scale integration did for computer hardware. We cannot expect ever to see

twofold gains every two years2.�

To raise the productivity of programmers and to help them to deal with an ever-growing

complexity of the software systems being built we should search for concepts that are

close to our mind, the concepts that can be used to raise the level of abstraction. It

is noteworthy that all the techniques used by programmers mentioned in the second

paragraph are based on the abstraction principle (the principle of raising the level of

abstraction).

Two inter-related concepts that are close to our mind are models and transformations.

Models (in a broad sense) have been used by humans all the time. Probably, models are

at the root of our cognition [22, pp. 105�106]. Like models, transformations (in a broad

sense) are also all around us. A caterpillar transforms into a butter�y [23]. A mustard

2Here Brooks alludes to Moore's law, an observation that the number of transistors in computers
doubles every two years, � a note by S. Kozlovi�cs.

9



grain, which is a very small seed, while growing, transforms into a big tree [24]. A fertilized

ovum transforms to an embryo, and then to a newborn infant [25]. El	�na Kalni�na noticed

that �the occurrence and the way of transformation is prede�ned somewhere in nature,

most probably in DNA� [26].

Hereinafter I focus on models and transformations that can be processed by computers.

That means that these models and transformations have to be formally de�ned.

In 2001, Object Management Group (OMG) launched a widely-recognizable initiative

called the Model-Driven Architecture, MDA [27, 28, 29]. MDA is a software development

approach that uses models and model transformations. MDA is a starting point for

and a subset of the research area called Model-Driven Engineering, MDE.3 In MDA and

MDE, models are not just technical sketches � they are �rst-class citizens, which shift the

traditional object-oriented paradigm with the main principle �Everything is an object� to

a model-driven paradigm with the main principle �Everything is a model� [30].

Although there are certain use cases, where the principles of MDA have been success-

fully applied, MDA faces certain objections now (see Chapter 2). Even in the MDE area

a kind of a crisis is being observed. Jean B�ezivin, a famous professor and researcher in

the MDE area, thinks that �if we measure success in terms of adoption by the industry

and the start of large modeling projects, MDE has reached a standstill� (from notes by

Jean-Jacques Dubray [31]). During my work on this thesis, B�ezivin travelled with the

talk entitled �Why did MDE miss the boat?�, where he pointed to various di�culties that

MDE is facing now [32, 31]. Nevertheless, he thinks this is not the end of MDE, but only

a �temporary failure�.

If there indeed is a failure within MDE, then I would agree with B�ezivin that this

failure is temporary. We need new ideas leading to new research directions, which could

eventually help to realize the bene�ts of models and to put them into mainstream. The

Transformation-Driven Architecture, TDA, is such a new idea. Based on the MDA found-

ation, TDA advances some MDA ideas and takes a new direction in MDE. In Chapter

2 I will show that in MDA it is di�cult to describe the dynamics of interactive systems

(systems, consisting of multiple interoperating components). The main purpose of TDA

is to extend MDA ideas and provide a software architecture that is suitable for describing

such systems. An important application of TDA is development of domain-speci�c tools,

which form a considerable subset of interactive systems. TDA brings certain additional

3There are also other abbreviations related to MDE (MDSD, MDD, DSM, etc.). Section 1.3 (from
Chapter 1) clari�es them.
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bene�ts to interactive systems, e.g., automatic undo/redo mechanism and the ability to

use di�erent technologies for di�erent components of a system. Unlike MDA, which refers

to the software development process, TDA is a real software architecture. Besides, in

TDA models and transformations are used at runtime, although TDA can replace MDA

at software development time as well. TDA is able to eliminate also many of the MDE

di�culties mentioned by B�ezivin in his talk. I believe that TDA is an important step that

can help MDE to reach the missed boat.

* * *

The introduction is now being continued by formal sections.

The Aim and Tasks of the Research

The main aim of the thesis is:

� to propose a software architecture that would simplify development of complex

interactive systems. By using formal models and their transformations at runtime,

the proposed architecture can raise the level of abstraction, at which the business

logic of a system is described. This would allow the productivity of developers to

increase.

Other goals of the thesis:

� To identify problems that are commonly found in interactive systems and related to

internal communication and graphical user interface; to o�er solutions that would

�t into the overall architecture.

� To motivate the use of TDA; to describe existing TDA usages as well as the potential

of TDA.

Tasks for reaching the goals:

� To study model-driven and related technologies.

� To describe the Transformation-Driven Architecture and its parts (models, trans-

formations, and system components).

� To formalize the communication mechanism of TDA.

11



� To formalize TDA abstraction layers, which allow TDA to use di�erent types of

models, transformations, and components (e.g., components written in di�erent

programming languages), when building an interactive system.

� To describe and formalize important graphical components that ensure the commu-

nication between the user and TDA.

� To o�er solutions for the most essential TDA-level mechanisms: the undo/redo

mechanism and the multi-repository mechanism.

� To explore the state-of-the-art in the area of domain-speci�c tool building (domain-

speci�c tools form an important subset of interactive systems); to study the prin-

ciples and technologies behind tool-building platforms.

� To demonstrate TDA usability for building domain-speci�c tools. To compare TDA

with other existing tool-building platforms and to explore TDA advantages.

The Clause and Research Directions

The main clause of the thesis is:

It is possible to de�ne and formalize a software architecture for interactive

systems, where components are described by models, while system dynamics

and business logic are described by model transformations. When describing

business logic, we can abstract away from internal implementation details of

components. This raises the level of abstraction, at which the system is being

described, and facilitates the reuse of third-party components. As a result,

the productivity of software developers increases.

Research directions:

� What are the main parts of such an architecture?

� What abstraction layers are needed to be able to work with di�erent model repos-

itories, transformation languages, and di�erent kinds of components?

� Which common problems can be solved in a universal way taking into a consideration

capabilities and restrictions of the overall architecture?

12



Research Methods Used

One of the main research methods used is logical deduction. It helped to choose the most

suitable solution from various alternatives.

When searching for solutions, the priority was given to solutions that were easier

to use (as contrasted to solutions that were easier to implement). For instance, the

implementation of Dialog Engine uses a complex algorithm for quadratic optimization.

However, once implemented, this solution lets the developer not to specify coordinates of

dialog components, since these coordinates can be computed automatically.

When multiple alternatives were possible, the priority was given to the solutions that �t

into the overall architecture. For instance, the undo/redo mechanism can be implemented

for a transformation language. However, this approach wouldn't work for components that

are not transformations. A better solution is to implement the undo/redo mechanism as

a TDA-level mechanism.

When working on TDA speci�cation, I used generally accepted metamodelling and

model formalization techniques.

Several tools that have been developed using TDA as a foundation can be thought of

as a proof-by-demonstration of TDA practical applicability. Those tools have been used

to verify TDA principles experimentally. The received feedback helped to improve TDA

speci�cation as well as to make TDA more suitable for practical needs.

The thesis also contains a comparative analysis of existing TDA-related solutions.

The Main Results of the Thesis

The most signi�cant result of the thesis is:

� the speci�cation of the Transformation-Driven Architecture, TDA. It formally

de�nes TDA components and their interoperability. Units that implement auxil-

iary functionality (graphical presentations and certain services) are called engines.

Although when implementing engines di�erent programming languages and speci�c

technologies can be used, all engines are described in a uni�ed platform-independent

way by means of interface metamodels. The business logic is described by model

transformations, which can be written in di�erent transformation languages. TDA

models and metamodels are stored in a model repository. TDA Kernel is the

central TDA component. Its speci�cation de�nes certain abstraction layers (uni-

13



versal interfaces) that allow TDA Kernel to operate with components of di�erent

types (e.g., engines written in di�erent programming languages, or various model

repositories).

Other important results are:

� A universal (but adjustable) TDA-based solution for undo/redo.

� The TDA multi-repository mechanism, which allows TDA to work with multiple

model repositories simultaneously. Some repositories may be virtual; they can be

used, for example, to implement views on other repositories.

� The concept of Environment Engine, which is a universal means for adapting TDA

to di�erent platforms and for plugging-in TDA to other programs. Environment

Engine has been described by means of Environment Engine Metamodel.

� The concept of Dialog Engine, which is a universal model-based means for de�ning

user interface dialog windows and displaying them on the screen. Dialog Engine has

been described by means of Dialog Metamodel.

� An algorithm for computing coordinates of dialog window components. The al-

gorithm transforms a Dialog Metamodel instance to the quadratic optimization

problem instance.

� The concept of Error Engine, which is a universal model-based means for visualizing

and grouping error messages. Error Engine has been described by means of a meta-

metamodel4 and a base metamodel.

� A demonstration of TDA practical applicability for building domain-speci�c tools.

Validation of the Results

Applying the results in practice

TDA ideas were approbated in several experimental and semi-industrial domain-speci�c

tools developed at IMCS-UL. For example, by means of a TDA-based tool-building plat-

form GRAF [7, 4] the following tools were built: ProMod and BiLingva (business process

management tools), GradeTwo (a UML tool), ViziQuer (a graphical semantic data query

4Error Engine uses the third ontological meta-level, see Section 1.1 .
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tool), and OwlGrEd (a graphical OWL ontology editor) [3, 33, 34, 35]. ProMod and

BiLingva are being used in production environment in Latvia. The OWLGrEd tool is a

free tool, which is being used worldwide.

My publications on the topic of the thesis

I have 14 refereed publications related to the topic of the thesis; 10 of them are published

in international editions/conference proceedings, while the other four are published in

local editions (Scienti�c Papers, University of Latvia). Among all of the publications,

four are published in editions with recognized citation index (SCOPUS, ACM). The main

principles of TDA are described in a journal paper published in two languages.

The following table describes my personal contribution to each of the publications

(publications are ordered by year).

Table 1: Author's publications on the topic of the thesis.

Authors Publication My

contri-

bution

Description of the

contribution

J. Barzdins,

S. Kozlovics,

E. Rencis

�The Transformation-Driven

Architecture,� in Proceedings of

DSM'08 Workshop of OOPSLA

2008, Nashville, Tennessee, USA,

2008, pp. 60�63. [1]

70% � Concretization of the initial
TDA idea

� A description of the initial
TDA communication
mechanism

� A description of the initial

idea for the undo/redo

mechanism

J. Barzdins,

K. Cerans,

S. Kozlovics,

E. Rencis,

A. Zarins

�A Graph Diagram Engine for the

Transformation-Driven

Architecture,� in Proceedings of

MDDAUI 2009 Workshop of

International Conference on

Intelligent User Interfaces 2009,

Sanibel Island, Florida, USA, 2009,

pp. 29�32. [2]

20% � A description of the
communication between
TDA and Graph Diagram
Engine

� Participation in the

development of metamodels

J. Barzdins,

K. Cerans,

A. Kalnins,

M. Grasmanis,

S. Kozlovics,

L. Lace,

R. Liepins,

E. Rencis,

A. Sprogis,

A. Zarins

�Domain speci�c languages for

business process management: a

case study,� in Proceedings of

DSM'09 Workshop of OOPSLA

2009, Florida, USA, 2009, pp.

34�40. [3]

10% � Adapting TDA for
industrial applications

� Word Engine development
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Authors Publication My

contri-

bution

Description of the

contribution

J. Barzdins,

K. Cerans,

S. Kozlovics,

L. Lace,

R. Liepins,

E. Rencis,

A. Sprogis,

A. Zarins

�MDE-based Graphical Tool

Building Framework,� in Scienti�c

Papers, University of Latvia, vol.

756, 2010, pp. 121�138. [4]

10%
� Using TDA in graphical tool

building

J. Barzdins,

K. Cerans,

S. Kozlovics,

E. Rencis,

A. Zarins

�A Graph Diagram Engine for the

Transformation-Driven

Architecture,� in Scienti�c Papers,

University of Latvia, vol. 756, 2010,

pp. 139�149. [5]

15% � A description of the
communication between
TDA and Graph Diagram
Engine

� Participation in the

development of metamodels

S. Kozlovics �A Dialog Engine Metamodel for

the Transformation-Driven

Architecture,� in Scienti�c Papers,

University of Latvia, vol. 756, 2010,

pp. 151�170. [6]

100% � Developing Dialog Engine
Metamodel and describing
its semantics

� Dialog Engine Metamodel
extensions

� Comparing Dialog Engine

Metamodel and other ways

of specifying dialogs

A. Sprogis,

R. Liepins,

J. Barzdins,

K. Cerans,

S. Kozlovics,

L. Lace,

E. Rencis,

A. Zarins

�GRAF: a graphical tool building

framework,� in Proceedings of the

Tools and Consultancy Track of

ECMFA 2010, S. Gerard, Ed. CEA

LIST, 2010. [7]

10%

(poster:

90%)

� Using TDA in graphical tool

building

S. Kozlovics,

E. Rencis,

S. Rikacovs,

K. Cerans

�Universal UNDO mechanism for

the Transformation-Driven

Architecture,� in Proceeding of the

Ninth International Baltic

Conference, DB&IS 2010. Riga,

Latvia: University of Latvia Press,

2010, pp. 325�340. [8]

70% � Participation in the
development of base ideas of
the undo/redo mechanism

� The extensions of the

undo/redo mechanism
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Authors Publication My

contri-

bution

Description of the

contribution

S. Kozlovics,

E. Rencis,

S. Rikacovs,

K. Cerans

�A kernel-level UNDO/REDO

mechanism for the

Transformation-Driven

Architecture,� in Proceedings of the

2011 conference on Databases and

Information Systems VI: Selected

Papers from the Ninth International

Baltic Conference, DB&IS 2010, ser.

Frontiers in Arti�cial Intelligence

and Applications, vol. 224.

Amsterdam, The Netherlands: IOS

Press, 2011, pp. 80�93. [9] [ACM]

80% Aforementioned +

� introducing TDA Kernel; its

relation to the undo/redo

mechanism

S. Kozlovics �A universal model-based solution

for describing and handling errors,�

in Perspectives in Business

Informatics Research, ser. Lecture

Notes in Business Information

Processing, vol. 90. Springer Berlin

Heidelberg, 2011, pp. 190�203. [10]

[SCOPUS]

100% � Error Engine
Meta-Metamodel and its
semantics

� Automated error handling

E. Rencis,

J. Barzdins,

S. Kozlovics

�Towards open graphical

tool-building framework,� in

Scienti�c Journal of Riga Technical

University (Special issue for the

10th International Conference on

Perspectives in Business Informatics

Research), ser. Computer Science:

Applied Computer Systems, vol. 46,

no. 5. Riga, Latvia: RTU Press,

2011, pp. 80�87. [11]

30%
� Participation in the

development of ideas of the

tool-building approach

based on the metamodel

specialization concept

S. Kozlovics �Calculating The Layout For Dialog

Windows Speci�ed As Models,� in

Scienti�c Papers, University of

Latvia, vol. 787, 2012, pp.

106�124. [12]

100%
� The quadratic optimization

based dialog window layout

algorithm

S. Kozlovics �The orchestra of multiple model

repositories,� in SOFSEM 2013:

Theory and Practice of Computer

Science, ser. Lecture Notes in

Computer Science, vol. 7741.

Springer Berlin Heidelberg, 2013,

pp. 503�514. [13] [SCOPUS]

100%
� The main idea and a

description of the

multi-repository mechanism

17



Authors Publication My

contri-

bution

Description of the

contribution

Ñ. Êîçëîâè÷,

ß. Áàðçäèíüø

(S. Kozlovics,

J. Barzdins)

�Óïðàâëÿåìàÿ òðàíñôîðìàöèÿìè
àðõèòåêòóðà äëÿ èíòåðàêòèâíûõ
ñèñòåì,� Àâòîìàòèêà è
âû÷èñëèòåëüíàÿ òåõíèêà, ò. 47,
�1, 2013. Ñ. 39�52. [14]

The English translation: �The

Transformation-Driven Architecture

for interactive systems,� Automatic

Control and Computer Sciences, vol.

47, no. 1/2013, Allerton Press, Inc.,

2013, pp. 28�37. [15] [SCOPUS]

90% � A description of the
Transformation-Driven
Architecture in its new
variant

� Using

Transformation-Driven

Architecture for developing

interactive systems

Table 2 links the chapters of the thesis with the corresponding publications (the �rst

two chapters are introductory chapters, thus, they do not appear in the table).

Table 2: Mapping the main results to the corresponding publications.
Chapter Main results and the corresponding publications

3 The concept of the Transformation-Driven Architecture; the TDA
communication mechanism [1, 14, 15, 2, 5]

4 TDA use cases [3, 7, 4]
5 TDA Kernel and its abstraction layers [14, 15, 9, 13, 11]
6 The TDA Undo/Redo Mechanism [8, 9]
7 The TDA Multi-Repository Mechanism [13]
8 Environment Engine and its metamodel [14, 15]
9 Dialog Engine, its metamodel, and an algorithm for laying out dialog

components by means of quadratic optimization [6, 12]
10 Error Engine and its metamodel [10]

Presentations at scienti�c conferences

The results of the thesis have been presented at the following international conferences5:

� S. Kozlovics, J. Barzdins and E. Rencis:
�The Transformation-Driven Architecture�
The 8th OOPSLA Workshop on Domain-Speci�c Modeling, Nashville, TN, USA,
October 19-20, 2008

� S. Kozlovics*, E. Rencis, S. Rikacovs, K. Cerans:
�Universal UNDO Mechanism for the Transformation-Driven Architecture"
Ninth Conference on Databases and Information Systems, 2010, Riga, Latvia, July
5-7, 2010

� S. Kozlovics*:
�A Universal Model-Based Solution for Describing and Handling Errors�
10th International Conference on Perspectives in Business Informatics Research,
Riga, Latvia, October 6-8, 2011

5my presentations are marked with the �*� symbol
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� J. Barzdins, K. Cerans, M. Grasmanis, A. Kalnins, S. Kozlovics, L. Lace, R. Liepins,
E. Rencis, A. Sprogis and A. Zarins:
�Domain Speci�c Languages for Business Process Management: a Case Study�
The 9th OOPSLA Workshop on Domain-Speci�c Modeling, 25-26 October, 2009

� J. Barzdins, K. Cerans, S. Kozlovics, E. Rencis, A. Zarins:
�A Graph Diagram Engine for the Transformation-Driven Architecture�
Fourth International Workshop on Model Driven Development of Advanced User
Interfaces (MDDAUI 2009), Sanibel Island, Florida, USA, February 8th, 2009

� E. Rencis, J. Barzdins and S. Kozlovics:
�Towards Open Graphical Tool-Building Framework�
10th International Conference on Perspectives in Business Informatics Research,
Riga, Latvia, October 6-8, 2011

� A. Sprogis, R. Liepins, J. Barzdins, K. Cerans, S. Kozlovics, L. Lace, E. Rencis and
A. Zarins:
�GRAF: a Graphical Tool Building Framework�
6th European Conference on Modelling Foundations and Applications (ECMFA
2010), Paris, France, June 15-18, 2010

� S. Kozlovics*:
�The Orchestra of Multiple Model Repositories�
39th International Conference on Current Trends in Theory and Practice of Com-
puter Science, �Spindler�uv Ml�yn, Czech Republic, January 26�31, 2013

I was the main author of the poster �GRAF: a graphical tool-building framework�,

which was presented at the ECMFA 2010 conference in Paris, France.

Besides, I reported on the results of the thesis at annual conferences of University of

Latvia in 2008, 2009, 2011, and 2013.

The Structure of the Thesis

The thesis is divided into two parts:

� Part I presents the Transformation-Driven Architecture, TDA. TDA is the core of

this thesis.

� Part II describes certain TDA components in detail � a central component called

TDA Kernel, which implements the core functionality of TDA, and three auxiliary

components (called engines) that implement essential graphical presentations and

services.

Part I starts with Chapter 1, which sets theoretical background for later chapters of the

thesis. In Chapter 2, MDA ideas are used to set up the foundation for TDA. Problematic
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issues to be solved by TDA are also identi�ed in this chapter. Chapter 3 presents the

overall view on TDA. Chapter 4 describes domain-speci�c tool building as an important

use case for TDA, where signi�cant results have been achieved.

Part II starts with Chapters 5�7, which present TDA Kernel in detail. These chapters

describe how TDA Kernel:

� ensures communication between TDA components, which can be written using dif-

ferent technologies and di�erent programming languages (Chapter 5);

� is able to work with di�erent model repositories simultaneously (Chapter 6);

� implements the undo/redo mechanism (Chapter 7).

The next three chapters (Chapters 8�10) in Part II present three essential TDA engines

authored by me. They are:

� Environment Engine, which manages the main application window and takes away

environment-speci�c aspects from TDA (Chapter 8);

� Dialog Engine capable of displaying graphical dialog windows generated at runtime

(Chapter 9);

� Error Engine, which is a universal engine for displaying errors to the user (Chapter

10).

The Discussion chapter (on page 137) underlines the signi�cance of TDA, explains its

limitations, and presents an interesting relationship between TDA and the architecture

of the human brain. The Conclusion summarizes the results.
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Part I

The Transformation-Driven

Architecture
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Chapter 1

Theoretical Background

This chapter sets the background for the thesis: it introduces fundamental de�nitions used

throughout the monograph and identi�es the research areas related to the main topic.

1.1 Models and Abstraction

In his article in the �Software and Systems Modeling� journal Jochen Ludewig pointed

that although we, humans, use models all the time, it is di�cult to de�ne what a model

is. �Endless discussions have proven that there is no consistent common understanding of

models�, � he writes [36]. For the purpose of this thesis models must have one essential

property, namely, the ability to be automatically processed by a computer. Thus, I will

use the following de�nition of a model found in the book by A. Kleppe et al. [29]. The

de�nition consists of the two parts:

A model is a description of (part of) a system written in a well-de�ned language.

A well-de�ned language is a language with well-de�ned form (syntax) and meaning

(semantics), which is suitable for automated interpretation by a computer.

For other possible de�nitions the reader can refer to the thesis by El	�na Kalni�na, where

she has done extensive work on investigating various sources, while seeking for a model

de�nition [26].

Another important notion related to models is the notion of abstraction. Although

it is a general term, in Computer Science it has a quite concrete sense. A Dictionary of

Computing by Oxford University Press gives the following de�nition:

Abstraction [is] the principle of ignoring those aspects of a subject that are not relev-

ant to the current purpose in order to concentrate solely on those that are. The
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application of this principle is essential in the development and understanding of all

forms of computer system [37].

Thus, abstraction removes irrelevant details. The number of details is related to the

notion of abstraction level. The following de�nitions can be found in the book by A.

Kleppe et al. [29]:

Abstraction Level [is] the inverse of the (relative) amount of details that are in a model.

High Abstraction Level [means] a (relative) low amount of details.

Low Abstraction Level [means] a (relative) high amount of details.

In this thesis, �higher level of abstraction� will usually mean �closer to human mind�, while

�lower level of abstraction� will mean �closer to computer hardware�.

Although mainly I will use the de�nition of abstraction from above, there is another

(general) meaning of that term, which is also used in Computer Science, and which is

particularly important, when we speak about models. The Encyclopædia Britannica

describes it as follows:

Abstraction [is] the cognitive process of isolating, or �abstracting,� a common feature or

relationship observed in a number of things, or the product of such a process [38].

Abstraction in this sense appears, for instance, in object-oriented programming (OOP): a

class de�nes common features for its objects and a superclass factors out common features

of its subclasses.

A model and abstraction are the two main notions used in this thesis.

Models, Metamodels, and Meta-Metamodels

In the de�nition of a model from above a well-de�ned language is a language for describing

models. That language can be considered a model by its own. Thus, it is a model for

describing other models, or a metamodel. Saying that a metamodel MM describes a

model M is the same as saying that M conforms to MM.

Example A. The Java grammar can be considered a metamodel for describing

models in the form of Java programs. Every syntactically correct Java program

conforms to the Java grammar.

23



A metamodel is also a model, thus, it is also written in some well-de�ned language. We

can think of that language as of a metamodel for describing metamodels, or a meta-

metamodel.

Example B. Extended Backus-Naur Form (EBNF), a notation for context-free

grammars, can be considered a meta-metamodel for grammars [39]. Grammars

themselves can be considered metamodels (as in Example A) that conform to

EBNF.

Although we can continue to add other meta-s, in many cases a meta-metamodel is able

to describe itself. This observation is called the three-level conjecture, where the three

meta-levels are the model level (M1), the metamodel level (M2), and the meta-metamodel

level (M3); the fourth level is not needed, since it equals to M3. These levels are sometimes

called layers [40].

Example C. A Java program lies at Level M1, the Java grammar lies at M2,

and EBNF lies at M3. EBNF can be described in EBNF.

Technical Spaces

In 2002 I. Kurtev, J. B�ezivin and M. Aksit have made an observation that the three-level

conjecture can be applied to numerous technologies. The concept of technical space

was introduced to identify such technologies [41, 40]. In a technical space, usually a

�xed meta-metamodel at Level M3 provides a basis for de�ning metamodels at Level M2,

which, in their turn, de�ne models at Level M1. This chain can be extended by saying that

models at Level M1 de�ne objects at Level M0, which are real-world objects or runtime

objects of a system being modelled. For instance, UML (Uni�ed Modeling Language)

Infrastructure is based on such Four-level Metamodel Hierarchy [42, Sections 7.9�7.12].

At the same time, the border between M1 and M0 is where modelling either �nishes

(when M1 elements describe real objects), or changes its form (when, for example, M1

elements describe data in a database representing real world objects). In accordance with

J. B�ezivin and I. Kurtev, I will consider Level M0 lying outside the concept of technical

space [40].

Having three meta-levels, a technical space must also de�ne the �conforms to� relation

between them. This relation is de�ned di�erently in di�erent technical spaces, but usually

there are tools to check this relation. For instance, in the EBNF technical space (from
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Example B above), the �conforms to� relation between M1 and M2 is checked by language

parsers.

Technical spaces are not just three meta-levels and the �conforms to� relation.

J. B�ezivin and I. Kurtev say:

�A technical space is a working context with a set of associated concepts,

body of knowledge, tools, required skills, and possibilities. Apparently, there

are human related components in this de�nition since most technologies have

emerged in a given community that has knowledge, performs research, and

even may have dedicated conferences. In addition, a technology allows creation

and manipulation of artifacts.� [40]

The motivation to investigate di�erent technical spaces (TS's) and to support them is

driven by the following considerations:

� One TS can be more suitable and more convenient for the given purpose than

another. That resembles how one programming language can be more suitable for

a particular purpose than another.

� A person can be more familiar with (i.e., have skills and knowledge in) one TS than

with another. If the e�orts to study a new TS are big enough, it may be reasonable

to stay in a more familiar TS.

� A capability not available in a desired TS can be borrowed from another TS, which

implements that capability. This encourages �more cooperation than competition

among alternative technologies� [40].

Technical spaces need to store models somewhere. The term model repository (or

simply: repository) will denote a store, where models can be saved. It can be a speci�c

data store, a simple text �le, or an XML-�le1. Di�erent types of repositories (even within

one TS) have to be accessed di�erently. In some cases a repository is accessed by means

of a speci�c parser, while in other cases � via certain API (Application Programming

Interface).

Table 1.1 summarizes my research on technical spaces and their repositories.

1XML = Extensible Markup Language; XML-�les are text �les formatted according to the XML
standard [43]
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Table 1.1: Technical spaces (TS's) and their repositories.

MOF TS

Characteristics: Models are graphs with attributed nodes and labelled edges.

Inspired by CDIF2 [44] and IRDS3 [45], the MOF4 standard

[46] by OMG is central in this TS. MOF consists of the two

main variants: Essential MOF (EMOF) and Complete MOF

(CMOF). OMG is working also on Semantic MOF (SMOF),

which will contain features not available in MOF TS, but

available in the RDF/OWL TS (see below) [47].

The de facto standard in this TS, however, is ECore from

EMF5 [48, 49]6. ECore implements MOF concepts in Java..

There is also the KM37 language for de�ning MOF-like

metamodels. I combine all these standards into a single TS

called MOF TS.

Meta-levels: model 99K metamodel 99K meta-metamodel (MOF, ECore,

KM3)

Repositories: EMF/Ecore [48, 49]; Enhanced Model Repository [50];

NetBeans MDR8 [51]; MOF 2 for Java [52]; MetaMart

Metadata Repository [53]; CDO9 [54]; JR10 [55]

XML TS

Characteristics: Models are trees with attributed nodes.

Meta-levels: XML-�le [43]99KXML schema [56, 57] 99K XML meta-schema

(XSD.xsd)11

Repositories: XML �les (there are numerous libraries for parsing/saving

XML �les)

Microsoft DSL

Tools TS

Characteristics: Similar to MOF, but classes have to be arranged into a tree

by means of compositions. Relationships may act as classes,

and it is possible to de�ne inheritances between relationships.

Meta-levels: model 99Kdomain model (metamodel) 99K implicit

meta-metamodel, which can be rei�ed [40]

2CASE Data Interchange Format
3Information Resource Dictionary System
4Meta-Object Facility
5Eclipse Modeling Framework
6At the Transformation-Tool Contest (TTC) event, a satellite to TOOLS conference, solutions had to

accept ECore models as input and produce ECore models as output.
7Kernel Meta Meta Model
8Meta Data Repository
9Connected Data Objects
10New Repository (�Jaunais Repozitorijs� in Latvian)
11XSD stands for XML Schema De�nition
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Repositories: In-Memory Store (models are serialized as customizable

XMLs) [58, p. 89]

Grammarware TS

Characteristics: A model is a string, which can be parsed into an abstract

syntax tree.

Meta-levels: text/string 99K grammar 99K EBNF (or similar

meta-grammar)

Repositories: usually text �les (tools such as bison or javacc can be used to

generate parsers)

GOPPRR

(MetaEdit+) TS

Characteristics: Similar to MOF. N-ary relationships between concepts are

possible. Relationships and their ends (roles) may have

properties associated with them.

Meta-levels: model 99K metamodel 99K GOPPRR12

Repositories: a proprietary GOPPRR repository [59, 60]

RDF/OWL TS

Characteristics: This TS consists of knowledge representation systems, where

all data are encoded in triples (subject, predicate, object).

These triples form a graph (subjects and objects are nodes,

while predicates are edges). Elements are identi�ed by URIs

(uniform resource identi�ers).

Meta-levels: RDF13/OWL14 individuals[61, 62, 63]99K RDF

vocabulary/OWL ontology99K RDFS15/some OWL variant16

Repositories: Sesame [65]; Virtuoso [66]; OWLIM [67]; OWL API [68];

Apache Jena [69]; JR [55]; AllegroGraph [70]

Relational

Database TS

Characteristics: A classical way to encode entities and relationships by means

of tables. No support for generalizations (although they can

be simulated).

Meta-levels: database rows 99K database schema (ER-model) 99K system

tables for storing database schemas

12Graph-Object-Property-Port-Role-Relationship
13Resource Description Framework
14Web Ontology Language (the �rst two initial letters are swapped)
15RDF Schema, a language, which extends RDF and permits describing taxonomies of classes as RDF

vocabularies
16There are the following OWL variants: OWL Lite, OWL DL, OWL Full, OWL 2 (direct semantics

and RDF-based semantics), OWL 2 EL, OWL 2 QL, OWL 2 RL (EL/QL/RL can be combined). They
di�er by expressive power, decidability, and computational complexity for decidable variants [64]. Besides,
pure RDF and OWL Full permit having multiple meta-levels and mixing them.
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Repositories: numerous database management systems from SQLite to

ORACLE; the LINQ17 technology [71]; ORM18 technologies

[72, 73]

Typed Attributed

Graphs (TAG) TS

Characteristics: Typed graphs, where nodes and edges may have attributes.

Meta-levels: graph 99K graph schema 99K typed attributed graph de�nition

Repositories: JGraLab [74] and others

Note. The grouping of di�erent technologies into technical spaces is not strict. Some of TS's are similar

(e.g., I combined OMG/MDA TS and EMF TS into MOF TS; I also combined RDF and all OWL

variations into RDF/OWL TS). Furthermore, in some cases one TS can be used from another (or, they

can be bridged) [75, 76, 77, 78, 47, 79]. This makes the border between TS's even more vague.

Linguistic vs. Ontological Metamodelling

While the �conforms to� relation holds between a model and its metamodel, there is

another relation called �instance of �, which holds between model elements (objects)

and the corresponding metamodel elements (types, or classes)19. The �conforms to� and

�instance of� relations go between two adjacent meta-levels.

With a help of the �instance of� relation it is quite easy to demonstrate, how the need

for more than three meta-levels (o�ered by technical spaces) arises. Douglas Hofstadter

in his famous book �G�odel, Escher, Bach� (1979) mentions the following example [80]:

(Level n + 5) a publication

(Level n + 4) a newspaper

(Level n + 3) The San Francisco Chronicle

(Level n + 2) the May 18 edition of the The San Francisco Chronicle

(Level n + 1) my copy of the May 18 edition of the The San Francisco

Chronicle

17Language-Integrated Query
18object-relational mapping
19Sometimes �instance of� is used instead of �conforms to�, when speaking about a model and its

metamodel.
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(Level n) my copy of the May 18 edition of the The San Francisco

Chronicle as it was when I �rst picked it up (as contrasted with

my copy as it was a few days later: in my �replace, burning)

In this example, an element at Level n + i is instance of the element at Level n + i + 1,

i∈[0,1,2,3,4]. The question arises how such multiple meta-levels can be put within the

three-level conjecture?

Atkinson and K�uhne [81, 82, 83] noticed that actually there are two variants of the

�instance of� relation: �linguistic instance of� and �ontological instance of�. Thus, meta-

levels can also be linguistic and ontological. To see the di�erence between these two

types of meta-levels, refer to Figure 1.1. Figure 1.1(a) is an example of UML Four-level

Metamodel Hierarchy [42]. Although Level M0 (a level of real world objects) lies outside

MOF TS, it is depicted for informative purposes. ECore is a possible meta-metamodel

for Level M3 (only a small part of it is depicted in Figure 1.1(a)). Level M2 contains

a UML-like metamodel described in ECore. For this example it is essential that the

M2 Level metamodel is able to describe both classes and objects, see classes Class and

Object. Level M1 contains a sample model, which conforms to the UML-like metamodel

from Level M2.

All the three levels (M1-M3) are linguistic meta-levels, since the meta-metamodel

from Level M3 can be considered a language for specifying metamodels at Level M2,

and each metamodel from M2 can be considered a language for specifying models at M1.

However, if we look at Level M1 more narrowly, we can see that it can be split into two

levels, where UML-style objects occupy one level, and UML-style classes occupy another

level (Figure 1.1(b)). The borderline is de�ned by the �type� relation from Level M2.

These new levels are called ontological meta-levels. They are denoted Oj and Oj+1

in Figure 1.1(b), while linguistic meta-levels (M1-M3) have been renamed to Li, Li+1,

and Li+2. The pivot indices i and j have been introduced here to be independent on any

particular absolute numbering20. For the purposes of this thesis, only relative arrangement

of (both linguistic and ontological) meta-levels will matter.

Figure 1.1(c) adds one more ontological meta-level Oj+1 by introducing the MetaClass

concept at Li+1. However, in order to express the six-meta-level example by D. Hofstadter,

we must add at least three more meta-classes at Li+1 (in order the total number of

ontological meta-levels become six). Figure 1.1(d) shows that instead of introducing meta-

20Di�erent authors may use di�erent absolute numbering. For instance, Ga�sevi�c et al. use L1 and L2

for Li and Li+1 [84], while Atkinson and K�uhne use L0 and L1 [81].
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Figure 1.1: Linguistic and ontological meta-levels. (a) UML Four-level Metamodel Hier-
archy. (b) Ontological meta-levels Oj andOj+1 realized. (c) An ontological meta-level
Oj+2 added by introducingMetaClass at Li+1. (d) An ontological meta-level Oj+2 without
introducing MetaClass.
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Figure 1.2: Mixing ontological meta-levels. The �favourite breed� relation between Person
and Breed as well as the link between Peter and Collie cross two adjacent meta-levels.

class(es), multiple ontological levels can be described by means of the �type� relation from

Class to Class at Li+1. This relation can be used as many times as needed, thus, creating

a chain of ontological meta-levels as in the example by D. Hofstadter (the �lowest� meta-

level can be linked to the chain by the �type� relation between Object and Class).

In Figure 1.1(d), Class can also be made a subclass of Object at Li+1 (Atkinson and

K�uhne [85] introduce the term �clabjects� [from class+object] for such classes). In this

case, the �type� relation between Object and Class is not needed any more, since its role

is played by the �type� relation from Class to Class.

In some cases ontological meta-levels can be mixed. In Figure 1.2, a class Person has

been added. A person can be linked to a dog by means of the �owner� relation de�ned

at Level Oj+1. A person can also be linked to a breed by means of the �favourite breed�

relation, which crosses levels Oj+1 and Oj+2. Having a particular person Peter at Oj, we

can see that the �owner� link lies in the same Oj level, while the �favourite breed� link

crosses two levels Oj and Oj+1.

The theory behind the �instance of� relation goes even further. Ga�sevi�c, Kaviani, and

Hatala show that the (ontological) �instance of� relation can be inferred from the two

other relations. They suggest to treat each class as consisting of two parts: intentional

and extensional [84]. Intentional part speci�es common features of objects (e.g., �has

long hair�) and is used for building abstractions; the relation between elements and the

intentional part is called �conformant to�21. Extensional part represents a class as a

set, to which certain elements (objects) belong; the relation between elements and the

extensional part is called �element of�. For the purposes of this thesis I do not need the

�conformant to� and �element of� relations. Still, I will need both variants (linguistic and

ontological) of the �instance of� relation.

21This is not the same as �conforms to� de�ned above.
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On the one hand, multiple ontological meta-levels and (usually) the three linguistic

meta-levels give power to describe and organize models. On the other hand, it appears

that it is di�cult for a human to concentrate at more than two meta-levels at a time.

While working on a generator for higher order model transformations22, where multiple

meta-levels are involved, A. �Sostaks came to the following conclusion (I call it �Sostaks'

conjecture):

It is di�cult for a human to think at more than two meta-levels at a time.

Still, it is fairly easy for a human to focus on any two adjacent meta-levels23.

One of the arguments in favour of this conjecture is as follows. Students learning Java can

work with classes and objects easily (two meta-levels are used). Java is an object-oriented

language, and it has the Object class, which is a common superclass for all other classes

� an easy-to-understand OOP construction. At the same time, Java has the re�ection

mechanism, which permits considering Java classes as objects. The class named Class

has been introduced for that. Actually, it is a meta-class (i.e., it brings an additional

meta-level to Java), but represented as an ordinary Java class. At this point students

encounter di�culties, since three meta-levels are involved24.

Certain RDF/OWL meta-levels can be considered either linguistic, or ontological. In

Table 1.1, RDF can be considered as spanning three linguistic meta-levels: the RDFS

level (M3), the RDF vocabulary level (M2), and the RDF individuals level (M1). Still,

RDFS permits breaking this level hierarchy, since classes may be individuals at the same

time. RDFS also allows meta-levels to be mixed (as in Figure 1.2). The same refers to

OWL Full and OWL 2 with RDFS semantics. Thus, we can think of RDF/OWL TS

as occupying only two linguistic meta-levels: L2 containing RDFS/OWL Full de�nition,

and L1 containing the pool of ontological classes and instances (L1 conforms to L2). In

this case, L1 consists of two or more ontological meta-levels, which can be mixed. To

deal with di�erent interpretations of meta-levels (whether the given level is linguistic or

ontological), I introduce quasi-meta-levels in Section 5.1 of this thesis.

22this term is explained below
23This conjecture has been mentioned by Agris �Sostaks during a personal conversation. The conjecture

has been published in one of my papers [13].
24Personal conversations with Edgars Celms.
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Figure 1.3: A model-to-model transformation: its de�nition and execution.

1.2 Model Transformations

The concept of model transformation is closely related to the concept of model. A trans-

formation takes some source artefact and transforms it to some target artefact. In a

model transformation, at least one of these artefacts is a model.

Di�erent Types of Model Transformations

A transformation that transforms a model to a model is called amodel-to-model trans-

formation (Figure 1.3). Usually, the distinction is being made between the transform-

ation de�nition (a set of rules that describe how to transform a source model into a

target model [29]) and the transformation execution (a process of applying the rules

at runtime). While transformation de�nition lies at Level M2 and is described in terms

of the source and target metamodels, transformation execution is performed on models

(conforming to those metamodels) at Level M125.

Traditionally, it is considered that some transformation tool is needed to execute a

transformation de�nition [29]. However, it depends on a language, in which the given

transformation de�nition is written. For some languages, transformation de�nitions can

be deployed as precompiled binaries. In this case an additional supporting tool is not

required. Here we can see an analogy between a program and its execution, where the

program can be executed either by its own, or by a supporting virtual machine or an

25M1 and M2 can be either two adjacent linguistic, or ontological meta-levels.
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interpreter. For short, I will use the term transformation to refer to a transformation

de�nition. In this sense, a transformation is like a program, while the source and target

metamodels are like source and target data formats.

If the result of a transformation has to be put into the source model (that is, the target

model coincides with the source model), then such transformation is an in-place trans-

formation. In-place transformations can be applied, for example, to perform incremental

changes (updates) on models.

Generally speaking, transformations can take multiple models as inputs and produce

multiple models as outputs. Moreover, these models can lie in di�erent technical spaces.

Besides model-to-model transformations, there are also �something-to-model� and

�model-to-something� transformations. Here, �something� can be26:

� Text or code (useful for code parsing and code generation). In this case the corres-

ponding metamodel is replaced by a grammar or a text template.

� XML. In this case, XML schema plays the role of a metamodel.

� Database rows. A metamodel is substituted by a database schema.

� Some binary representation of a model. The data format speci�cation replaces the

metamodel.

Noteworthily, repositories from Table 1.1 perform such �something-to-model� and �model-

to-something� transformations, when loading and saving models. These transformations

are tailored for storing models and are not applicable for a general case.

In the context of TDA, we can talk also about �something-to-model� and �model-to-

something� transformations, where �something� is a graphical presentation or a service.

This subsection presented only basic classi�cation of model transformations. For a

more detailed taxonomy of model transformations, refer to works by Czarnecki, Helsen,

Mens, and Van Gorp [87, 88, 89].

Transformation Languages

When OMG introduced MDA in 2001, there were no speci�c model transformation lan-

guages in MOF TS [28, 29]. That is why in 2002 OMG issued a request-for-proposal

called MOF QVT (Query/View/Transformation) to seek for MOF-compatible transform-

ation languages [90]. The �rst version of the MOF QVT standard appeared only in 2008

26See also the �About model transformations� discussion at Models Everywhere [86].
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[91]; the current version is 1.1 (appeared in 2011) [92]. Having the standard, tools that

support it are also needed. Currently, MOF QVT is supported by such tools as Ec-

lipse M2M [93] (implementing the QVT Operational and QVT Declarative27 languages),

SmartQVT [94] (QVT Operational), and medini QVT [95] (QVT Relational).

When the MOF QVT standard was in the development stage, many independent

transformation languages appeared, and they continue to appear even now. There is a

wide variety of transformation languages: textual and graphical, operational and declar-

ative, unidirectional and bidirectional. As a rule of thumb, supporting tools for the given

language are developed by the institution that developed the language. Some examples

are: ATL [96, 97, 98], the Epsilon family consisting of several languages for di�erent needs

[99, 100], MOLA [101, 102], the Lx family [103, 104], lQuery [105], IBM Model Trans-

formation Framework [106], GReAT [107, 108], GreTL [109], Tefkat [110, 111], VIATRA2

[112, 113], PTL [114], BOTL[115, 116], RubyTL [117, 118], etc. Some transformation lan-

guages such as COPE [119] and Epsilon Flock [120] are tailored for the model migration

task.

It can be noted that ATL, Epsilon and MOLA have certain abstraction layers that

allow them to be independent on the underlying model repository. Still, these abstraction

layers are di�erent, since they come from di�erent projects.

It is interesting that even before the MOF QVT request-for-proposal, model trans-

formation languages already existed in non-MOF technical spaces. In 1990-ties and in

the very beginning of the XX century, the Typed Attributed Graph technical space already

had graph transformation languages such as AGG [121, 122], PROGRES [123], TGG/-

FUJABA [124, 125, 126], and VIATRA [127, 113]28. In 1999, XML TS got the standard

for the XSLT 1.0 language (Extensible Stylesheet Language Transformations) intended to

transform XML documents (the current version is XSLT 3.0, a working draft) [130, 131].

Even stored procedures in the Relational Database technical space can be used to de-

scribe transformations on data from database tables. In this thesis by �transformation

languages� I mean all such transformation languages from all technical spaces (not just

from MOF).

Mapping languages can be considered as an abstraction of transformation lan-

guages. They can be viewed as specialized (�domain-speci�c�) languages for specifying

model transformations. Instead of directly specifying the instructions how to transform

27consisting of QVT Core and QVT Relational
28The GrGen.NET project with its own graph rewrite language (as well as other languages) appeared

in 2003, approximately two years after MOF QVT [128, 129].
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a source model to a target model, a mapping speci�es relations between these models,

usually, at a higher level of abstraction than transformation de�nitions do. For instance,

with MALA4MDSD, a graphical mapping language developed at IMCS-UL29 with major

contribution by E. Kalni�na [26], a mapping between two UML models can be speci�ed

easily. Languages such as D2RQ [132, 133], RDB2OWL [134], R2RML [134], and D2R

MAP [135] are mapping languages between two TS's � RDB TS and RDF/OWL TS.

Mappings can be interpreted directly or translated into a lower-level transformation

language for execution as ordinary transformations. The latter use-case is related to

high-order transformations (HOT's), which are model transformations that perform

certain actions on other model transformations. For instance, a HOT can be used for

transformation synthesis from mappings (see the paper by M. Tisi et al. for applications

of HOT's [136]). HOT's treat model transformations they work with as models conforming

to some metamodel representing some transformation language. To provide better support

for HOT's, existing transformation languages can be extended, or new languages can be

invented. For example, in Template MOLA, a language for de�ning HOT's, the constructs

for what to generate and the constructs for how to generate are expressed graphically in a

MOLA-like syntax. There is no need to think about MOLA metamodel and its numerous

technical details in order to specify what to generate (that would be necessary, if the

ordinary MOLA was used).

In this thesis I assume that the term �transformation language� encompasses also

mapping languages and languages for de�ning HOT's.

Other Languages

In many cases a language that describes a path from one model element to other element(s)

is useful. Such languages are called model navigation languages. A well-known nav-

igation language in XML TS is XPath [137]. Microsoft DSL Tools use a similar language

[58].

A navigation language can be a part of another language. For instance, the OCL lan-

guage (Object Constraint Language) from MOF TS has constructs to express navigation

between model elements [138]. OCL itself is a constraint language, i.e., a language for

expressing constraints on model elements. OCL constraints are being used in Atlas Trans-

29The Institute of Mathematics and Computer Science, University of Latvia
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formation Language (ATL) [97]. Epsilon Validation Language (EVL) uses constraints that

are �quite similar to OCL constraints� [139].

Semantic Reasoners as Model Transformations

Semantic Web is a broadening research area, which is parallel to MDE, but tightly related

to it. OWL ontologies and RDF graphs can be considered as models (see RDF/OWL TS in

Table 1.1). Besides, OWL has semantic reasoners � programs that can infer certain data

from ontologies. These reasoners can be considered as specialized model transformations

that are executed on models from RDF/OWL TS.

Classical types of tasks performed by reasoners are [140]:

� Consistency checking: whether the given ontology is not contradictory.

� Concept satis�ability: whether the given class can have at least one instance.

� Classi�cation: computes the complete class hierarchy.

� Realization: �nd the most speci�c class for the given instance.

Reasoners are based on impressible Math such as description logic. There are various OWL

variations, and there is a trade-o� between what can be inferred and how fast that can

be done (if that can be done at all). For instance, a reasoner for OWL Lite terminates

in polynomial time, a reasoner for OWL DL terminates in exponential time, reasoners

for certain OWL 2 variations terminate in double-exponential time, while OWL full is

undecidable [64]. Examples of commercial reasoners are OntoBroker30, and RacerPro31.

Examples of free reasoners are Pellet32 (with an option to obtain a commercial license),

Fact++33, and Hoolet34.

Semantic reasoners infer data according to the open world assumption (in contrast

to the closed world assumption used, for example, in Prolog). Stefano Mazzocchi

explains the di�erence between both assumption in one sentence [141]:

�[The closed] world assumption implies that everything we don't know is false,

while the open world assumption states that everything we don't know is

unde�ned.�

30http://www.semafora-systems.com/en/products/ontobroker/
31http://www.racer-systems.com/
32http://clarkparsia.com/pellet
33http://owl.man.ac.uk/factplusplus/
34http://owl.man.ac.uk/hoolet/
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Figure 1.4: Research areas in the �model-driven� world, and their relationships.

The closed world is based on the �negation as failure� principle, while the open world

is based on the �negation as contradiction� principle [142]. An OWL ontology can be

processed by a semantic reasoner according to the closed world assumption by adding

some additional OWL statements that �close� the world of the ontology.

In this thesis, semantic reasoners will be considered as in-place transformations that

append existing models with inferred data. The main di�erence from ordinary model

transformations is that a reasoner implements a set of prede�ned model transformations

(like from the list above). Reasoners are usually written in third generation programming

languages (3GLs) and are deployed in a binary form. The reasoning process can be ruled

only in a declarative way by means of data stored in an ontology. Thus, no speci�c

transformation language is needed in this case.

1.3 The World of �Model-Driven�

This section presents the relations between various research areas in the �model-driven�

world. The survey is based on e�orts of several people, including Jordi Cabot, David

Ameller, Jean B�ezivin, Markus V�olter, and El	�na Kalni�na, who tried to clarify terms such

as MDD, MDE, etc. [143, 144, 145, 146, 147, 26]. Refer to Figure 1.4, while reading.
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Model-Driven Architecture (MDA) and Architecture-Driven Mod-

ernization (ADM)

In 2001 OMG launched the Model-Driven Architecture, MDA, � an approach for software

development that encourages the usage of models and their transformations [27, 28, 29,

148]. The word �architecture� in MDA does not refer to a software architecture (i.e., the

architecture of the system being built), but rather to the software development process

according to OMG standards (including UML and MOF [42, 46]). According to MDA,

a model that describes a system at a high level of abstraction is created �rst. Then, by

means of a sequence of model transformations, this model is specialized, and �nally an

executable code is obtained. MDA is explained more in detail in Chapter 2.

Architecture-Driven Modernization, ADM (the reverse of MDA), is a process of mod-

ernization/reverse engineering of existing non-built-with-MDA software to leverage earlier

investments in software development [149]. Currently, OMG's Architecture-Driven Mod-

ernization Task Force is developing standards and speci�cations to support ADM35.

Model-Driven Engineering (MDE)

Model-Driven Engineering, MDE, is a broad research area, where models are �rst-class

citizens. MDE is not tied to MDA standards. Neither MDE is tied to the software

development process. In 2010, J. B�ezivin tried to identify the application scope of MDE

[145]. He listed three subsets of MDE:

� Model-Driven Software Development (MDSD)36. MDA is a special case of MDSD

(MDA ≈ [MDSD according to OMG standards]).

� Model-Driven Reverse Engineering (MDRE). ADM is a special case of MDRE.

MoDisco is an exemplary project, which can be used in practice for applying MDRE

techniques to legacy systems [150, 151, 152].

� Run-Time Modelling (RTM). In RTM, models are used at run-time, not at the

development/maintenance stage.

Markus V�olter introduced the common moniker MD* to denote numerous model-driven

approaches [147]. Following E. Kalni�na, I will use MD* to denote �Model-Driven

35See web-page http://adm.omg.org.
36MDSD is also called MDD (Model-Driven Development)
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Everything�, i.e. all possible (even yet unknown) applications of models at software de-

velopment time or at runtime [26].

Jordi Cabot mentions also Model-Based Engineering, MBE. He de�nes MBE as �a

process in which software models play an important role although they are not necessarily

the key artifacts of the development (i.e. they do NOT �drive� the process as in MDD)�

[143]. Thus, we can think of MBE as a superset of MD*. This thesis focuses on models

that �drive� software or software development process. Thus, the thesis stays within the

MD* area. Current applications of TDA, the topic of this thesis, are linked to the three

MDE subsets listed above. Thus, I consider that TDA belongs to the MDE area.

Domain-Speci�c Modelling

A domain-speci�c language, DSL, is a specialized language for a particular problem

domain. A DSL uses terms native to this domain [58]. A DSL needs some tool for

specifying problems in this DSL and for solving them. Such tools are called domain-

speci�c tools or DSL tools. Chapter 4 explains DSLs and DSL tools more in detail.

Domain-Speci�c Modelling (DSM) is an approach, when models are used in domain-

speci�c tools [18]. Although domain-speci�c tools can be created without using models (at

least explicitly, see �DSL-approach� in Figure 1.4), models bring certain bene�ts to these

tools. A model can describe the abstract syntax of a DSL (the domain). Models can even

describe textual and graphical presentations of DSL's. Model-to-model transformations

can be used to establish the link between the domain and the presentation, while model-

to-code transformations can be used to generate code from the domain.

DSM is the area, where TDA, the topic of this thesis, has been approbated.
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Chapter 2

Motivation

This chapter prepares the ground for the Transformation-Driven Architecture, TDA, using

the Model-Driven Architecture, MDA.

2.1 The MDA Idea

In MDA, the development process starts not with code, but with a model called com-

putation independent model, CIM. This is a model at a high level of abstraction. As

MDA Guide 1.0.1 states, �A CIM is sometimes called a domain model and a vocabulary

that is familiar to the practitioners of the domain in question is used in its speci�cation�

[28, Section 2.2.11]. Then, CIM is transformed into a platform independent model, PIM,

which �is a view of a system from the platform independent viewpoint. A PIM exhibits

a speci�ed degree of platform independence so as to be suitable for use with a number

of di�erent platforms of similar type� [28, Section 2.2.12]. Thus, whether new platforms

appear, or existing platforms change, CIMs and PIMs can be reused.

PIM is transformed into one or more platform speci�c models, PSM's, by taking into a

consideration additional information such as platform-speci�c aspects. If a system being

built makes use of several platforms, the interoperability between these platforms can be

ensured by introducing so called bridges during PIM-to-PSM transformation. At the �nal

stage, PSMs are transformed into an executable system (code). There can be certain

exceptions in this chain of transformations. PIM can be transformed directly to code.

Or, there may be multiple PIM's/PSM's in the chain, where one PSM can be considered

a PIM for a more detailed PSM. In some cases the process starts not with a CIM, but

with a PIM.

41



MOLAMOLA L3L3 L0L0 L0L0 C++C++

DLLDLL

MOLA 
MM
MOLA 
MM

L3 
MM

L0 
MM

L3 
MM

L0 
MM

L0 
MM
L0 
MM

Java

MIIREP

JAR

JGraLab

EMF

Figure 2.1: Compilation of a MOLA program. The process corresponds to MDA prin-
ciples. (By kind permission of Agris �Sostaks, the author of the drawing.)

Models in MDA are not just sketches on a sheet paper, but primary artefacts used

to build a system. Such models do not lose their value throughout the life cycle of the

system, even when the underlying platform changes. Obviously, it is more convenient

to make changes in source code written in some high-level programming language than

in machine code. Similarly, when using MDA, it is more convenient to make changes in

models, transform them, and then to obtain (generate) code. Ideally, it should be possible

to automate all MDA transformations. In reality, this is not usually the case.

An important research is being made under the direction of professor J	anis Osis at

Riga Technical University. This research group presented a way of specifying the whole

system, including its functional cycles, in CIM, with a possibility to automate other MDA

steps [153, 154].

2.2 MDA: Pros and Cons

MDA ideas indeed are usable. The OMG homepage lists numerous success stories of using

MDA [155]. The principles behind MDA are also used by the MOLA compiler developed

at IMCS-UL [101, 156]. An initial PIM that describes a MOLA program is transformed

into a chain of intermediate PIMs/PSMs. Finally, C++/Java code (being able to work

with a particular model repository) is obtained, see Figure 2.1.

Still, pure MDA is not applicable everywhere. Scott W. Ambler, a notable MDA critic,

provides a check-list to consider, when deciding on moving to MDA [157]. Nowadays,

MDA is also being questioned by argumented objections such as practical usage of the
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PIM-PSM chain, prescribed usage of UML, misuse of terms �platform-independent� and

�architecture�, and whether MDA will work [158, 159, 160, 32]. Some even consider MDA

obsolete [161].

Nevertheless, there are attempts to get something useful out of MDA. Scott W. Ambler

stands for �Agile MDA� [162, 163]. Microsoft, which did not support OMG standards for

a certain period of time [164], currently is working with OMG on improving UML and

bringing modelling into mainstream [165, 166]. Many agree that MOF, which �nds its

roots in UML/MDA, is a valuable standard by its own. Furthermore, MDA and the

subsequent request for proposal on MOF QVT (Query/View/Transformation) became an

impetus for the emergence of model transformation languages [90].

2.3 Why to Advance MDA Ideas?

Notwithstanding all the pros and cons, MDA is a noticeable step in incorporating models

into the software development process. I would like to mention just some points in favour

of using models.

� A model provides an overall view to objects, where each object is placed within its

context. Models are associated with the �Everything is a model� principle, which

extends the classical �Everything is an object� principle [30].

� Models are programming language neutral.

� Models can act as artefacts and as documentation at the same time.

� Models are �exible � they can describe data at di�erent levels of abstraction: from

low-level processor commands to high-level business processes. Transformations

between models can be used to establish the link between di�erent abstraction

levels.

� Models provide a convenient way for describing domain data in domain-speci�c

languages.

Modern software consists of multiple interrelated components, which need to communic-

ate. I call such systems interactive. Although models are a convenient means to describe

individual components, it is di�cult to describe the dynamics of an interactive system

(including the communication between its components) in a model. If we describe the
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dynamics in a model, this description, in essence, would still correspond to some program.

The only di�erence would be that this program would be encoded in a model (as con-

trasted to code in some programming language). This would complicate the model and

nullify the bene�ts o�ered by the model-driven approach.

According to MDA, the whole system (including its dynamics) has to be described

in a model. Then, transformations are used (at development time) to obtain the code.

Thus, the classical MDA is not suitable for developing interactive systems. Consider the

following modi�cations to MDA, tailored to interactive systems. Let models describe the

components of an interactive system. Let transformations (not models!) describe the

dynamics. This brings transformations to runtime and leads to a software architecture

called the Transformation-Driven Architecture, TDA.

There are numerous acknowledged technologies in the model-driven world, e.g., model

repositories, transformation languages, etc. TDA makes use of them. There are also nu-

merous technologies in the traditional code world, such as dynamic link libraries (DLLs),

the .NET platform, the Java platform, functional languages, etc. It is more convenient

to implement certain functionality (e.g., platform-speci�c functionality) directly in these

technologies, without the need to develop models for each such technology (Dave Thomas

provides interesting arguments that this would require Herculean e�orts, and even then

such models would be practically unusable, since it would be di�cult to maintain them

[158]). TDA does not insist on moving all to the model-driven world. Traditional tech-

nologies can be used within TDA as well. Thus, TDA can be used to combine the best

of the model-driven world and the traditional-code world. Having certain components

developed in traditional-code world, the business logic still can be implemented in a

platform-independent way by means of model transformations.

The next chapter (Chapter 3) presents the essence of TDA (details are provided in

Part II).

An important application of TDA is development of domain-speci�c tools. The pro-

ductivity increase being brought by domain-speci�c tools can be compared to the pro-

ductivity increase brought by third generation programming languages (3GLs) [18]. Since

domain-speci�c tools can be classi�ed as interactive systems, TDA is a suitable approach

to develop them. Chapter 4 explains this more in detail. As we will see, TDA has certain

advantages over other approaches for creating DSL tools.
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Chapter 3

The Transformation-Driven

Architecture

This chapter introduces the Transformation-Driven Architecture, a model-driven ap-

proach for building interactive systems. In this chapter TDA elements and features are

identi�ed, and certain design-choices are explained.

3.1 The Outline View on TDA

The outline view on TDA is depicted in Figure 3.1. The following subsections explain

elements from that �gure.

Engines

When using the TDA approach, the auxiliary functionality that is required to implement

the main functionality (business logic) has to be identi�ed �rst. Auxiliary functionality

refers to:

� graphical or textual presentations of data (such as graph-like diagrams, dialog win-

dows, tree-like explorers, text/code editors, music score editors, etc.);

� common services (such as generation of documents, sending e-mails, printing ser-

vices, cloud services, multimedia services, etc.).

Modules implementing the auxiliary functionality are called engines in TDA. Engines

are usually platform-dependent. They can rely on the operating system functionality, or

on a particular platform such as Java or .NET. An engine may depend on some library

45



Engine 4 

Model
transformations

Interface 
metamodel 2 

Interface metamodel 3 

Interface 
metamodel 4 

Interface 
metamodel 1 
(Environment 
metamodel) 

Engine 2 Engine 3 

Engine N 

Engine 1 

A
i:Integer

D

B

Interface 
metamodel N 

Transformation-specific 
metamodels;

domain metamodel

Interface 
metamodel 5

Engine 5 

Engine 4 

generates

plays

Figure 3.1: The outline view on the Transformation-Driven Architecture, TDA.

written in a particular programming language, thus, the library may force the engine

to be written in the same language. Certain engines may be easier to implement in a

functional or declarative programming language. TDA does not put restrictions on how

engines are implemented. The only requirement is that engines have to be associated with

their interface metamodels.

Interface Metamodels

The main functionality (business logic) of a system does not need to be aware of how

engines are implemented internally. Thus, for each engine only the essence (from the

business logic point of view) has to be identi�ed. In TDA these essences are described by

means of interface metamodels. Each interface metamodel contains:

� a description of data related to the functionality of the corresponding engine;

� a description of points of communication between the engine and the business logic

(the communication mechanism is explained in Section 3.3).

Each engine must be able to work with models conforming to its interface metamodel

(interface models; not depicted in Figure 3.1).

Since interface models contain only essential (and, thus, usually platform-independent)

data, they can be compared to PIM's in MDA. Engines can be viewed as runtime trans-

formations between these PIM's and actual (usually platform-speci�c) presentations and

services. Notice that unlike MDA, TDA has multiple �PIM's�.
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Engines, their presentations/services, and interface metamodels can also be compared

to the three-tier architecture [167], which makes a distinction between data, their pro-

cessing, and their presentation. In this analogy, interface metamodels stand for the data

tier, presentations/services o�ered by engines stand for the presentation tier, and engines

stand for the logic tier, which is a mediator between the data tier and the presentation

tier. The three-tier pattern can be observed for each presentation engine used within

TDA.

Interface metamodels in TDA can serve as bridges between the traditional code world

(where engines are usually implemented) and the model-driven world (where model trans-

formations reside).

Model Transformations

In TDA, model transformations (in the middle of Figure 3.1) implement the main function-

ality (business logic) of a system. These are model-to-model transformations. However, a

transformation in TDA can work with multiple models, some of them being source mod-

els, some being target models, and some being source and target models at the same time

(i.e., when these models are being modi�ed). This design choice permits using di�erent

kinds of transformations in TDA, for instance:

� If a transformations reads from one model and creates another model, then it is a

classical model-to-model transformation from a source model to a target model.

� If a transformation performs incremental changes in a single model, then it is an

in-place transformation.

In TDA, transformations are executed at runtime.

Transformations can be de�ned using

� traditional programming languages;

� specialized transformation and mapping languages (mentioned in Section 1.2);

� OWL constructions. A semantic reasoner uses these constructions to update the

model with inferred data. Thus, OWL constructions correspond to a transformation

de�nition, while the process of launching a reasoner corresponds to transformation

execution, see Section 1.2.
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Engine�) and its interface metamodel (�Presentation MM�) are shown in this example.
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transformations.

Other Metamodels

In addition to interface metamodels, TDA permits de�ning other metamodels as well.

Transformations can de�ne metamodels that are useful for implementing the business

logic. For instance, if the interface metamodel of some engine contains too many details,

a simpli�ed interface metamodel can be introduced. This simpli�ed metamodel could act

as a �view� to the full interface metamodel, and a special helper transformation could

establish the link between them.

For domain-speci�c tools, a domain metamodel can be introduced. This metamodel

could act as a pivot metamodel for describing data by means of domain concepts. If we

recall the three-tier architecture mentioned above, then adding a domain metamodel to

TDA allows us to establish the three-tier pattern also w.r.t. this domain metamodel (see

Figure 3.2).

3.2 The Technical View on TDA

Figure 3.3 depicts the technical view on TDA. This section only identi�es new TDA ele-

ments presented in this view. Technical details of these elements are provided in Chapter 5.

TDA models and metamodels have to be stored in some repository (see Table 1.1

from Section 1.1). To be independent on a particular repository, TDA introduces a

common repository abstraction layer called Repository Access API1, RAAPI. Since

each repository uses its own API, some adapter is required to translate RAAPI calls to

1Application Programming Interface
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Figure 3.3: The technical view on TDA.

calls of that particular repository. Such adapters for repositories are denoted by the

letter �R� in Figure 3.3.

Engines and transformations use RAAPI to access models and metamodels. RAAPI

calls are passed to an adapter of a particular repository through a special component called

TDA Kernel. This design choice allows TDA Kernel to intercept RAAPI calls, which is

very useful for implementing the communication mechanism, the undo/redo mechanism,

the multi-repository mechanism and other features. TDA Kernel has its own (technical)

interface metamodel called Kernel Metamodel (not depicted in Figures 3.1 and 3.3).

Engines and transformations can be written using di�erent languages and technologies.

To be able to call engines and transformations in a uniform and platform-independent

way, adapters for engines and adapters for transformations are introduced in TDA

(denoted by the letters �E� and �T� in Figure 3.3, respectively). These adapters can

introduce RAAPI wrappers. For instance, if an engine or a transformation needs to

use ECore API instead of RAAPI, a wrapper that implements ECore API and forwards

its calls to RAAPI can be developed.

Having all TDA elements identi�ed, the communication mechanism of TDA can now

be explained.
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3.3 The Communication Mechanism in TDA

TDA needs a communication mechanism. Transformations implementing the business

logic need to access presentations and services implemented in engines. Besides, one

engine may need to use the functionality provided by another engine (this is the case with

Environment Engine, to which other engines attach their windows; see Chapter 8). Also,

one transformation may need to call another transformation.

Each communication step involves two parts, each part being either a transformation or

an engine. First, I discuss the communication, when one of the parts involved is an engine.

Then, I explain the communication between two transformations. Finally, I provide an

example of several communication steps, where two engines and three transformations are

involved.

Communication Between Two Engines, or Between an Engine and

a Transformation

The communication with an engine is bi-directional:

� an engine may be commanded to perform some actions (e.g., to refresh the present-

ation to re�ect the changes in the corresponding interface model, or to execute some

service the engine provides);

� an engine may produce certain events (e.g., events about certain changes in the

presentation, or user interface events), in which other parts (engines or transform-

ations) may be interested.

I call these two concepts in communication, respectively, commands and events. One

of the possible solutions to implement events and commands is by means of MOF-like

operations. However, this solution has the following shortcomings:

� The underlying repository has to support operations. While ECore supports opera-

tions, RDF and OWL repositories (and certain model repositories such as JR [55])

do not, and additional e�orts are required to store operations there.

� We must be able to call operations somehow. This is a non-model-based element

in the communication, since calls have to be implemented in native code. Although
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certain model transformation languages support calling operations, it may be a non-

trivial job (if accomplishable) to redirect these calls to engines. Since engines, in

their turn, may produce events, a way to specify callback operations is also needed.

A simpler solution, which does not use operations is as follows: commands and events

are classes (subclasses of the special classes Command and Event, de�ned in Kernel

Metamodel). Parameters are described by means of attributes, or associations to other

classes (these classes de�ne the context of an operation).

Note. This design choice is not my personal contribution. It was proposed

by other colleagues, when working on the GrTP and Metaclipse platforms

at IMCS-UL in 2006-2008. Andris Zari�n�s implemented the initial variant of

the event/command mechanism. The text below presents my additions and

modi�cations to it.

When a particular command needs to be called, the corresponding command class instance

is created. Then, parameters (attribute values and association links to the context) are

speci�ed. In order to process this command, the command has to be linked to a special

singleton object called the submitter (de�ned in Kernel Metamodel). When a command

object has been prepared and linked to the submitter, we can say that the command has

been issued. At this moment TDA Kernel intercepts the action of creating a link to the

submitter, and calls the corresponding engine to process the command. When the engine

�nishes executing the command, TDA Kernel deletes the command from the repository.

This design choice does not require introducing new constructs in transformation lan-

guages to be able to pass commands to engines. Similarly, RAAPI is su�cient for engines

to be able to execute commands. Besides, it is unnecessary to specify which engine to call,

since the engine can be uniquely identi�ed from the command class (this class belongs to

only one interface metamodel).

When an engine is active, it can inform transformations and other engines about

certain events (e.g., the user has entered the data, some job has been �nished, etc.). In

this case the engine creates an instance of the corresponding event class and sets the

parameters. Then, the engine links the event to the submitter. We can say that the event

has been emitted. TDA Kernel intercepts this and calls engines and transformations

registered as listeners to this event.

To register event listeners the following design choice is used. For each event type

of the given engine the corresponding on-attribute has to be de�ned somewhere in the
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interface metamodel of that engine, preferably, in the context of the event. The name of an

on-attribute is a concatenation of the pre�x �on� and the corresponding event class name,

e.g., onClickEvent for the ClickEvent class. The value is a string that encodes which

engines and transformations have to be called, when this event occurs (the encoding is

explained in Chapter 5).

Communication Between Two Transformations

When a transformation needs to call another transformation (perhaps, written in another

transformation language), it needs to issue a LaunchTransformationCommand. This com-

mand is de�ned in Kernel Metamodel and has only one attribute, uri, which encodes the

name of the transformation to call (the encoding is similar to the encoding of on-attributes;

it will be explained in Section 5.3 of Chapter 5).

It is up to transformations how to specify their parameters. One option is to de�ne

parameters in the domain metamodel. Another option is to introduce a subclass of

LaunchTransformationCommand, and de�ne parameters in that subclass.

Since TDA does not put restrictions on internal implementation details of engines, one

can consider an option to create an engine implemented by a set of transformations. In

this case the communication is the same as described in the previous subsection.

An Example of Communication

Assume we are developing a tool that is able to edit some kind of activity diagrams, e.g.,

business process diagrams. The auxiliary functionality would include Graph Diagram

Engine [2, 5] for editing graph-like diagrams and Dialog Engine [6, 12] for entering certain

data, e.g., names of actions. Figure 3.4 depicts fragments of interface metamodels of these

two engines.

Assume there already exists a graph diagram represented in a model as a GraphDia-

gram instance. Assume that this diagram already has a Palette with some PaletteEle-

ment-s, where one of the elements (an element of type PaletteBox ) is responsible for

adding a new action to the diagram. When a user adds a new action to a diagram, Graph

Diagram Engine creates a NewBoxEvent and attaches it to the PaletteBox element used

to create the box (action). If a new box is created within some other box, a link to that

parent box is also created. Then the event instance is attached to the submitter. At this

moment, TDA Kernel calls the event handler speci�ed in the onNewLineEvent attribute
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of the GraphDiagramEngine class. Let this event handler be a transformation that creates

a dialog window for entering the action name.

To create a dialog window, the event handling transformation creates a dialog Form,

to which components such as a Label (with caption =�Please, enter the action name:�),

an InputField, and two Button-s (with captions �OK� and �Cancel�) are attached. For

each of the two buttons the onClickEvent value is set to denote the transformation for

processing the click. To show the form, a ShowModalCommand is issued by attaching it

to the submitter. TDA Kernel calls Dialog Engine, which displays the form and waits for

the user input.

When the user clicks the �OK� button, the corresponding �OK�-transformation is

called. It creates a Box instance followed by a Compartment instance that is attached to

this box. Then, the transformation sets the value for the compartment (according to the

text entered in the InputField), creates and initializes a CompartmentStyle object (this ob-

ject stores the text colour, the font size, etc.), and attaches this style to the compartment.

After that, the transformation issues a RefreshDiagramCommand to repaint the diagram

with the newly created box. Finally, the transformation closes the form with CloseCom-

mand and deletes the form from the repository. The �OK� transformation can delegate

some steps to other sub-transformations by means of LaunchTransformationCommand.

The �Cancel�-transformation just closes the form and deletes its model from the re-

pository.
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Chapter 4

Creating Domain-Speci�c Tools

In 1986, Jon Bentley noticed that programmers, while performing their work, usually

invent and use �little languages� [168]. Bentley suggests to consider the problem of printing

a �oating point number occupying six characters. These characters include a decimal point

and the two decimal digits after it. To specify what to print we could use the format F6.2

in FORTRAN or 999.99 in COBOL. Today C/C++ and Java are more widely used, and

there we can use the %6.2f format, which can be handled by the printf function. Each

of the formats just described is an expression in some �little language�. While Bentley

calls these language �little� (in contrast to the �big� ones like FORTRAN, COBOL, or

Pascal), nowadays we would call them domain-speci�c languages, DSLs (in contrast

to the general-purpose ones), since each such language is tied only to one particular class

of problems.

4.1 Domain-Speci�c Languages and Tools

In their excellent book, four specialists, who worked on Microsoft DSL Tools, a toolset

from Microsoft supporting development of DSLs, provide the following de�nition [58]:

�A Domain-Speci�c Language is a custom language that targets a small

problem domain, which it describes and validates in terms native to the

domain.�

DSLs may be textual or graphical. Here are some examples.

� Textual (in addition to those mentioned above):

� regular expressions;
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� a language for querying a database (e.g., SQL or SPARQL [169]);

� languages for describing context-free grammars (e.g., EBNF or its derivatives

like the language used in Yacc1 [39, 170]).

� Graphical:

� a language for specifying states of mobile applications graphically (a good

example is provided by S. Kelly and J.-P. Tolvanen [18]);

� a language for specifying GUI (Graphical User Interface) forms (e.g., a form

editor in the NetBeans or Microsoft Visual Studio environment);

� �ow charts describing certain business processes (e.g., BPMN [171]).

When third generation programming languages (3GLs) replaced assembler, the productiv-

ity of programmers increased drastically. The same is true for DSLs. There are two main

factors making that possible: 1) a better level of abstraction, and 2) a possibility to map

it automatically to the existing lower level techniques.

Certain DSLs may be designed so close to the problem domain and use the exact

notions from the domain, that domain experts, who are not programmers, can understand

and express problems in a DSL. A problem description in a DSL is like source code at a

very high level of abstraction, where it is easier to make changes and perform validations.

When a problem has been described in a DSL, this description can be used to perform

the required task, for instance, to generate certain artefacts (e.g., code or documents).

A DSL needs some tool for specifying problems in this DSL and for solving them.

Such tools are called domain-speci�c tools or DSL tools. Since DSLs are domain-

speci�c, no universal tool exists for them. More DSLs will require more DSL tools. To

minimize the cost of developing and maintaining DSL tools, DSL tool-building platforms

have emerged. These platforms are, in e�ect, DSL tools for creating other DSL tools.

The syntax of a DSL usually consists of two parts: the concrete syntax (textual

or graphical presentation) and the abstract syntax (describing the essence without

unnecessary details). The concrete syntax is a notation that is more convenient for a DSL

user. The abstract syntax, in its turn, is more convenient to access and automatically

process the data expressed in a DSL.

1Yet Another Compiler Compiler
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Example. The C++ language constructs de�ne a concrete syntax for pro-

grams. Taking a program as an input, a C++ parser produces an abstract

syntax tree, which is a convenient data structure for further processing of the

code (e.g., performing code optimizations and generating the binaries).

Metamodels are a universal means to encode the abstract syntax. Modern DSL tool-

building platforms use some kind of meta-metamodel to de�ne metamodels for domain

data (domain metamodels)2. In some platforms, presentations (concrete syntax) are

also de�ned as metamodels.

Let us look at several tool-building platforms and their approaches for creating DSL

tools. Then, I explain how TDA can be used to build DSL tools.

4.2 Existing Model-Driven Tool-Building Platforms

To get some insight on typical ways of developing and executing DSLs by means of these

platforms, let us look �rst at the three big players in the area � GMF, MetaEdit+ and

Microsoft DSL Tools.

In GMF[172, 173] (Figure 4.1(a)), three models have to be speci�ed �rst. They are

a domain model, a diagram de�nition model, and a diagram mapping model. The lat-

ter model establishes mappings between the �rst two. Then, from these three models

(which together may be viewed as a platform-independent model, PIM, according to

MDA principles) are transformed to the Generator model (which may be considered a

platform-speci�c model, PSM). The generation parameters in the Generator model may

be adjusted, and then Java code is generated. Common features are not generated; they

lay in the GMF Runtime library. The generated Java code can be manually edited3 to

enhance the functionality of the generated DSL tool. The tool is executed in the Eclipse

environment and uses EMF (for modelling support [48]) and GEF (for editing graphical

diagrams [174]) as well as GMF Runtime, which also uses EMF and GEF.

In MetaEdit+ Workbench [59] (Figure 4.1(b)) the domain model is speci�ed by means

of dialog windows in the GOPPRR4 syntax. Then, graphical symbols (palette elements)

for domain concepts are created. Reports and generators for the DSL can also be spe-

ci�ed. Then, by pressing the �Generate� button, the tool is generated and stored in the

2The domain model corresponds to CIM in MDA.
3Modi�ed regions are marked, thus, they will not be lost, if the generation process is relaunched.
4Graph-Object-Property-Port-Role-Relationship
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(a) GMF

(b) MetaEdit+

(c) Microsoft DSL Tools

Figure 4.1: Creating DSLs in a) GMF, b) MetaEdit+, and c) Microsoft DSL Tools.
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repository. The generated tool can be executed in the MetaEdit+ Workbench itself, or in

the MetaEdit+ Modeller environment, which is a lite runtime version of the MetaEdit+

Workbench. Although MetaEdit+ has only �nite customization capabilities, these cap-

abilities are very convenient, easy-to-use and have a good coverage of business-speci�c

needs. In case some additional functionality is required, it may be implemented outside

MetaEdit+. In this case, the model may be accessed through MetaEdit+ API, which is

a reasonable way to access data in a closed-source platform.

In Microsoft DSL Tools, MS DSL [58] (Figure 4.1(c)), the domain model and the cor-

responding diagram elements are speci�ed side-by-side in one graphical view. Mapping

associations between model elements and diagram elements are also speci�ed there. MS

DSL allows the DSL developer to customize some aspects of the generated tool (such

as validation and XML serialization) by means of graphical interface. If the built-in

customization capabilities are not su�cient, lacking features can be speci�ed in the C#

language5. After the generation process, compiler error messages can be used to see,

where the required C# code is to be inserted. At runtime, MS DSL uses the precompiled

Framework Assemblies, which include Domain Model Framework, Design Surface Frame-

work (for handling diagrams, shapes and connectors), frameworks for model validation

and code generation, and a framework for hosting the generated tool in the Microsoft

Visual Studio environment during runtime.

All three platforms from my short survey provide a set of basic elements for creating

typical graphical DSLs. DSL users bene�t from entering information in concrete graphical

syntax, while the tool automatically maintains the mapping between the concrete and

abstract syntaxes. All three platforms provide facilities for code generation from the

domain model (the abstract syntax) at runtime.

Now I will brie�y discuss other platforms.

KOGGE [175] is a generator for CASE tools that are described declaratively at high

level of abstraction. KOGGE appeared in mid-nineties, and its architecture is quite

limited.

The Generic Modeling Environment (GME) is a platform for creating tools, where

the presentation needs to be close to the domain [176, 177]. GME has a mechanism for

5In order not to mix the hand-written code with the generated code, MS DSL uses partial classes, i.e.,
classes, whose parts can be spread among several �les.
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checking domain constraints. GME also permits adding new components via the COM

technology6.

Meta-tools DiaGen and DiaMeta [178] are focused on building tools that are based on

graph diagrams.

Pounamu is a meta-tool that allows the user to prototype graphical tools rapidly [179].

The Pounamu team has also developed a set of Eclipse plugins called Marama intended

to support DSM in the Eclipse platform. Marama Meta-Tools are intended to replace

Pounamu 7.

DoME (Domain Modeling Environment) is a quite old project [180], which coincides

with TDA in the intention to provide a platform-neutral modelling environment. DoME

has limited capabilities. It seems that the project is not being maintained now.

There are also transformation-based platforms such as ViatraDSM Framework [127],

Tiger [181], and ATOM3 [182]. In these platforms, the domain is mapped to the presenta-

tion by means of model transformations. This gives more freedom for de�ning mappings,

while keeping the mappings in the model-driven world. The ViatraDSM team is now

maintaining the project called VIATRA2 [112, 113].

From numerous transformation-based platforms, METAclipse [183] has to be emphas-

ized, since it was developed at IMCS-UL. METAclipse is an Eclipse plugin and uses

four �xed engines provided by Eclipse. METAclipse de�nes a presentation metamodel

that describes the functionality of these four engines. On certain presentation events,

METAclipse calls MOLA transformations, which implement the business logic of the

tool. METAclipse has been successfully used to implement the MOLA editor, which has

been used to de�ne transformations for the RedSeeDS project. Section 4.5 explains the

historical relation between METAclipse and TDA.

The MOFLON framework [184] is intended to be fully compliant with the MOF [46]

standard. MOFLON uses Triple Graph Grammars (TGG) to de�ne transformations in a

declarative way.

AMMA [185] and openArchitectureWare [186] provide useful �bricks� for model-driven

development. As TDA, these platforms put model transformations to the centre of model-

driven development, although in a di�erent context: they are mainly focused on code

generation. There are interesting ideas of megamodelling and model weaving in AMMA

[187]. Megamodelling is aimed to describe connected models within one terminal model

6COM stands for Component Object Model, a Microsoft technology that allows components to com-
municate via binary interfaces.

7https://wiki.auckland.ac.nz/display/csidst/Marama+Meta-tools
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called a megamodel. The model weaving, in its turn, allows to establish links between

metamodels (to �weave� them).

4.3 Extensibility and Customization Obstacles

While existing tool-building platforms try to factor out certain functionality for certain

classes of DSLs, they cannot factor out all possible functionality. That is why extensibility

and customization of such platforms is an important issue. Considering this issue, the

following three obstacles can be identi�ed:

1. Extended functionality is intended to be implemented either in the OOP �world�, or

in the model-driven �world�, but not in both. However, a DSL may require features

from both �worlds�. For instance, features like model validation and complex map-

pings can naturally be implemented in the model-driven �world�, while features like

connection to the database is easier to implement in the traditional OOP �world�.

2. A deep understanding of the platform is required, when a new feature not provided

by the platform is to be added. Assume, that we are going to create some music

notation-based DSL. While we are ready to provide a module for displaying sheet

music (which most likely is not provided by tool-building platforms), we want to

utilize other already existing features and the infrastructure of the chosen platform.

Incorporating the sheet music presentation into an existing platform either requires

the deep knowledge of the internals of this platform, or the presentation has to

reside outside the platform, and the communication between the platform and the

presentation has to be ensured.

3. A certain environment is involved. For example, GMF uses GMF Runtime on top

of the Eclipse platform, MS DSL uses Microsoft DSL Tools Framework Assemblies

on top of Visual Studio, and MetaEdit+ uses itself or its lite runtime version called

MetaEdit+ Modeller. The platform prescribes which modelling (and other) techno-

logies to use (e.g., GMF uses EMF and Java; MS DSL uses �the Store� and .NET),

and the DSL tool becomes environment-dependent. Also, if some feature has been

implemented for one environment (like an excellent TwoUse toolkit for bridging

models and ontologies [78]), it is di�cult to reuse it in another environment.

TDA overcomes these obstacles in the following way.
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[Obstacle 1] TDA acts as a hub by connecting features implemented in both traditional

code world (engines) and model-driven world (transformations). To ensure

this, TDA provides a common communication mechanism.

[Obstacle 2] In TDA, engines are described by interface metamodels that represent their

essential functionality. Interface metamodels can be used as documenta-

tion. When a new engine is added, it must have the corresponding interface

metamodel de�ned. Developing an interface metamodel and establishing the

link between it and the engine requires additional e�orts, but this task, when

once accomplished, gives continuous bene�ts. All the engines can be accessed

in a uniform way, without diving into their technical details.

[Obstacle 3] TDA lies outside a particular environment (e.g., Eclipse or Microsoft Visual

Studio). The main window (application), to which other windows are at-

tached, is not prescribed; it is provided by a replaceable Environment Engine

(explained in Chapter 8 of this thesis). TDA uses abstraction layers to call

engines and transformations, and to access repositories in an environment-

independent way.

Using abstraction layers to factor out environment-speci�c aspects resembles how the

operating system factors out device management. Besides, TDA provides useful services

for components � this resembles how the operating system provides useful services for

applications. That is why TDA may be viewed as an operating system superstructure for

model-driven software.

4.4 TDA as a Foundation for DSL Tools

Figure 4.2 depicts three possible ways of building a model-driven tool based on the TDA

foundation. These ways are:

� Write all the transformations implementing the functionality of a tool manually

(Tool 1 in Figure 4.2). This is the most e�ort-consuming way.

� Develop a tool de�nition framework, TDF, implementing typical functionality for

certain class of tools (e.g., tools based on graph-like diagrams). Tool-speci�c aspects

can be expressed as an instance of some tool de�nition metamodel.
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Figure 4.2: TDA as a foundation for building domain-speci�c tools.

� In addition to TDF, write a special DSL tool (the �Con�gurator� in Figure 4.2),

which can be used to con�gure TDF graphically for the needs of the DSL tool being

developed. Then, the con�gured tool (e.g., Tool 3 or Tool 4) is interpreted by TDF.

The last approach have been implemented in the TDA-based tool-building platform GRAF

for developing DSL tools based on graph-like diagrams [4, 7]. GRAF was developed at

IMCS-UL. GRAF consists of TDA, TDF and the Con�gurator. If the business logic

implemented in TDF needs to be augmented, the extension point mechanism can be used

to extend the default behaviour of a con�gured tool.

The topic of building model-driven world on the TDA foundation is beyond the scope

of this thesis.

TDA proved to be a good foundation for building domain-speci�c tools. By means

of GRAF [7, 4] several tools including ProMod and BiLingva (business process manage-

ment tools), GradeTwo (a UML tool), ViziQuer (a semantic data graphical query tool)

and OwlGrEd (graphical OWL editor) have been developed [3, 33, 34, 35]. J. B	arzdi�n�s,

K. �Cer	ans, L. L	ace, R. Liepi�n�s, E. Rencis, S. Rika�covs, A. Sprog̀is, A. Zari�n�s, M. Zviedris,

and others (including myself) have contributed to these tools as well as to GRAF itself.

An interesting approach for building domain-speci�c tools has been presented in the

paper �Towards Open Graphical Tool-Building Framework� (I am a co-author) [11]. The

paper introduces the metamodel specialization operation. This operation is used to

de�ne sub-metamodels of a given metamodel in a way similar to de�ning subclasses of

a given class. Metamodel specialization can be used to de�ne a metamodel that is a

sub-metamodel of one or more interface metamodels in TDA. When carefully designed,

this sub-metamodel can be used as a de�nition of a domain-speci�c tool. Although I and
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the co-authors believe that by using this approach tools can be easily de�ned, metamodel

specialization has certain limitations, e.g., a sub-metamodel must follow the design of the

base metamodel(s).

4.5 The History of TDA

In 1964 IBM announced System/360, a family of mainframes, where the architec-

ture was separated from the implementation. The Soviet Union copied the architec-

ture and developed machines known as �ÅÑ ÝÂÌ� (�Åäèíàÿ ñèñòåìà ýëåêòðîííûõ

âû÷èñëèòåëüíûõ ìàøèí�). Soviet Secret Service managed to obtain also �owcharts and

source code of IBM software, including Conversational Remote Job Entry (CRJE), a part

of the IBM System/360 operating system. Printing out such �owcharts on a text printer

by means of �x� symbols was the �rst experience of working with graphics in IMCS-UL.

It was in 1970-ties.

By that time, J. Bi�cevskis and others worked on the system called �Ñèñòåìà

ìàêðîêîìàíä îáðàáîòêè äàííûõ� (�ÑÌÎÄ�) [188, 189]. Nowadays we would say that

this was a textual domain-speci�c language. In the late 1980-ties IMCS-UL had an ex-

perience of building a graphical editor by means of SDL (Speci�cation and Description

Language), a language for specifying reactive and distributed systems [190].

One of the most known tools developed at IMCS-UL is GRADE. Although research

and development of GRADE started in 1986, the GRADE history page states [191]:

�GRADE origins can be traced back to work done by C. Everhart at Bell

Laboratories and Teledyne Brown Engineering, Rudolf Duschl of Siemens and

Professor Manfred Broy at the University of Munich for which he received the

prestigious Leibniz Prize in 1994.�

On October 2, 1990, J	anis Gobi�n�s, a founder of Infologistik, Inc., presented GRADE ideas

at IMCS-UL. The work on the �real� GRADE began (there were already some GRADE

prototypes before 1990).

In 1994, IMCS-UL cooperated with Exigen Services, when developing the Exigen

Business Modeler tool.

In 2003, after OMG initiated MDA, IMCS-UL started to develop the MOLA trans-

formation language.
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In 2006-2008 two tool building platforms (with di�erent purposes in mind) have been

developed at IMCS-UL. One of them was METAclipse [183] and another was GrTP [192].

In 2008, at a seminar, where me, J	anis B	arzdi�n�s and Edgars Rencis discussed GrTP,

the idea of TDA was born. I was fascinated with the idea, and became the main author

of the �rst publication on TDA [1]. Then I started to develop the idea, which can now be

read in this thesis. It must be noted that the birth and recognition of TDA in 2008 would

be impossible without the previous experience hold by IMCS-UL and the laborious work

performed by IMCS-UL sta� (see the Acknowledgements section in this thesis).

In the �rst half of 2009, the �rst version of TDA has been implemented. It was based

on the GrTP platform. Currently, the work on the next major TDA version, TDA 2.0, is

in progress. This thesis describes TDA 2.0. For the status of TDA 2.0 development, refer

to http://tda.lumii.lv.
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Part II

TDA Kernel And Engines
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Chapter 5

The Kernel Of TDA

As was depicted in Figure 3.3 on page 49, TDA Kernel is an intermediate between model

repositories and their clients (transformations and engines). TDA Kernel implements

RAAPI and forwards RAAPI calls to actual repositories. This gives TDA Kernel the

ability to intercept RAAPI calls and to implement certain useful services.

Section 5.1 presents RAAPI. Section 5.2 explains three APIs used by adapters for

repositories, adapters for engines, and adapters for transformations, respectively. Section

5.3 presents the core of TDA Kernel Metamodel and explains the basic services provided

by TDA Kernel.

The next two chapters (Chapters 6 and 7) explain two advanced TDA Kernel services

and the corresponding extensions of TDA Kernel Metamodel. These two services are the

undo/redo mechanism and the multi-repository mechanism.

5.1 The Fundamentals of RAAPI

RAAPI is an API for accessing model elements. As was mentioned in Section 1.1, models

are usually organized in multiple meta-levels. There can be linguistic and ontological

meta-levels. First, I explain how to organize those di�erent meta-levels. Then, I give a

summary on RAAPI.

Organizing Meta-Levels into Quasi-Meta-Levels

To deal with numerous meta-levels in a common way, I organize meta-levels into two

groups. The �rst group will contain the �xed (and, thus, read-only) linguistic meta-

metamodel (at Level M3) of some technical space. The second group will contain all
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Figure 5.1: The organization of meta-levels into the two quasi-linguistic meta-levels M3
and MΩ, where MΩ contains several quasi-ontological meta-levels.

other meta-levels that are possible in that technical space. The meta-levels from the

second group are not �xed.

Example. In the Grammarware technical space, there is a �xed meta-

metamodel at M3 called EBNF [39]. EBNF is able to describe grammars

at M2 (variable w.r.t. M3), and grammars at M2 are able to describe char

sequences at M1 (variable w.r.t. M2). Thus, EBNF belongs to the �rst group,

while grammars (Level M2) and the corresponding char sequences (Level M1)

belong to the second group.

I call these two groups the quasi-linguistic meta-level M3 and the quasi-linguistic

meta-level MΩ, respectively. The quasi-linguistic level M3 is �xed. In most cases, it will

contain the linguistic meta-metamodel of some technical space (hence, the name �M3�).

The level MΩ will contain all other meta-levels that are variable w.r.t. to M3 (either

directly, or via other meta-levels). I call these variable levels quasi-ontological meta-

levels (in reality, they may be either linguistic, or ontological meta-levels; see below).

Figure 5.1 illustrates the organization of quasi-meta-levels. Figure 5.1 is similar to meta-

levels depicted in Figures 1.1(c) and (d) on page 30. The di�erence is that now we have

exactly two quasi-linguistic meta-levels.

Such an organization of quasi-meta-levels has the following bene�ts:

� It separates the �xed part (M3) from the variable part. The �xed part does not need

to be stored in a model repository. Model repositories from Table 1.1 on page 28

usually provide a means to store only the variable part, i.e., models lying at MΩ.
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Figure 5.2: Levels M1-M3 from the three-level conjecture represented as quasi-meta-levels.

� The three linguistic meta-levels (from the three-level conjecture) used by technical

spaces can be easily re-organized as quasi-meta-levels as depicted in Figure 5.2 on

the following page.

� Depending on a particular technical space, the meta-model at M3 can describe either

M2 only (M2 then describes M1), or both M2 and M1 at the same time. Examples

for the �rst case, where M2 and M1 are strictly separated, are EMOF, ECore, EBNF,

and XML. Examples for the second case, where M2 and M1 co-operate, are the JR

repository (which contains the meta-classes Class and Object directly at M3) and

the OWL language, which can be used to describe ontologies containing classes and

individuals at the same time (individuals may be required to specify certain OWL

restrictions). Quasi-meta-levels are suitable for both cases.

� When a particular repository or technical space supports in�nitely many meta-levels

(e.g., JR or OWL Full), all these variable meta-levels can be considered quasi-

ontological meta-levels. This ensures the same organization of meta-levels for OWL

Full (that supports multiple ontological meta-levels) as well as for strict OWL vari-

ants, where classes (at M2) and individuals (at M1) are disjoint (Figure 5.3).

The Essentials of RAAPI

RAAPI is a procedural API consisting of primitive operations on model elements such as

creating a class with the given name, creating an instance of the given class, creating an

association between two classes, creating a link (corresponding to the given association)

between the two given objects, etc. Taking into a consideration �Sostaks' conjecture,
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Figure 5.3: The organization of multiple ontological meta-levels of OWL Full.

RAAPI mainly consists of functions, which can access two adjacent meta-levels (either

quasi-linguistic, or quasi-ontological).

The essence of primitive operations working on two adjacent meta-levels is borrowed

from APIs found in the repositories developed by K. Podnieks (the MII_REP model

repository [193]1) and M. Opmanis (the JR repository [55]). Besides numerous adaptations

and cosmetic changes, for certain functions I assigned new semantics to support the

quasi-linguistic level M3. I have also added functions for managing relations between

the elements at M3 and the elements at MΩ. The RAAPI documentation can be found

in Appendix A. The up-to-date version of RAAPI can be found at http://tda.lumii.

lv/raapi.html.

The points below summarize the main characteristics of RAAPI.

� In RAAPI, model elements are referenced by 64-bit integers, which may represent

indexes or pointers to elements.

� Every repository adapter (which implements RAAPI) has to support at least two

quasi-ontological meta-levels: usually they are the levels M1 and M2 of the cor-

responding technical space. Additional supported meta-levels (not counting M3)

become additional quasi-ontological meta-levels (as in the case of RDF and OWL

Full).

� Switching between meta-levels can be performed by passing a reference to an element

at one meta-level to an RAAPI function, which expects a reference to an element at

another meta-level. For instance, a reference to a class may be passed to an RAAPI

1codenamed �OUR� in this paper

69

http://tda.lumii.lv/raapi.html
http://tda.lumii.lv/raapi.html


operation, which expects a reference to an object. This trick can also be used to

mix multiple meta-levels (where the underlying repository supports that).

� RAAPI supports multiple classi�cation and dynamic reclassi�cation found in OWL

and SMOF (i.e., one object can belong to many classes). Multiple inheritance is

supported as well.

� To create an adapter implementing RAAPI for a particular repository, only essen-

tial functions have to be implemented. For instance, the given repository may be

able to iterate either through proper attributes of a class, or through all attributes

(including derived). An adapter may implement only one of these cases, and TDA

Kernel will implement the other. Also, if the given repository does not support some

capability (e.g., support for multiple classi�cation), the adapter may either simulate

it, or to discard it. The latter case resembles how certain �le system operations are

discarded for some �le systems in UNIX (e.g., when UNIX-style �le permissions are

not supported on a mounted �le system).

� Repository adapters are not required to provide access to M3, when implementing

RAAPI operations. However, M3 may be useful, if there is a need to access technical-

space-speci�c features that are de�ned at M3, but are not directly supported by

RAAPI.

� If a repository adapter provides access to M3, it has to implement RAAPI functions

in such a way that M3 behaves like a quasi-ontological instance of itself (see M3 in

Figure 5.1 on page 67). This can be used to access M3 features that would not be ac-

cessible otherwise. For instance, RAAPI does not support EMOF-like operations in

classes directly. Still, RAAPI can be used to access the meta-class EMOF::Operation

at M3. By traversing quasi-ontological instances of this meta-class, operations found

in EMOF itself can be discovered. To create/obtain operations for classes at MΩ,

linguistic instances of EMOF::Operation can be created/traversed.

The same approach can be used to support generics found in ECore since EMF 2.42.

� If a repository adapter provides access to M3, it is assumed that each element from

MΩ may have only one linguistic type at M3. This type cannot be dynamically

changed.

2See http://www.kermeta.org/docs/org.kermeta.ecore.documentation/build/html.chunked/

Ecore-MDK/ch02.html.
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� RAAPI is technically simple: it is procedural and uses a restricted set of data types.

Thus, RAAPI can be easily adapted to and used from di�erent platforms and pro-

gramming languages. Currently, RAAPI is available for the Java platform, C/C++

(dynamic library calls), the .NET platform, and for the CORBA middleware plat-

form.

5.2 Adapters

This section presents APIs used by adapters for repositories, adapters for engines and

adapters for transformations.

Adapters for Repositories

For each repository type (ECore, JR, JGraLab, OWLIM, etc.) that needs to be used

within TDA, an adapter must be created. Each adapter for repository must implement

the IRepository interface. This interface is a union of two interfaces:

� RAAPI, which consists of operations on elements in the repository;

� IRepositoryManagement3, which contains operations related to the repository itself,

e.g., open, close, and operations for performing save. The two important highlights

of the IRepositoryManagement interface are:

� TDA Kernel can work with multiple repositories, and a failure can occur in

each of them during save. For this reason, there are three functions for saving

the repository, namely, startSave, �nishSave, and cancelSave. Having these

functions, the save process is performed in two steps. First, for each repository

startSave is called. If a failure occurs, repositories are rolled-back via can-

celSave calls. Otherwise, �nishSave is called for each repository. This process

is similar to the two-phase commit protocol [194].

� TDA Kernel uses URIs (Uniform Resource Identi�ers) to specify locations of

repositories [195]. A repository URI is a string consisting of the corresponding

adapter name, followed by a colon that is then followed by the repository-

speci�c location, for instance, �jr:/repositories/data1/� (�jr� is an adapter

3For a detailed description of this interface, refer to Appendix A or to the TDA homepage at http:
//tda.lumii.lv/raapi.html.
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name, and �/repositories/data1� is a location in a �le system). When a

repository is accessed via TDA Kernel, the location has to be speci�ed as a full

URI. TDA Kernel then extracts the adapter name and passes the remaining

part (the repository-speci�c location) to the corresponding adapter.

Note. TDA Kernel also implements the IRepository interface.

Adapters for Engines

For each technology platform (Java, DLL, .NET, etc.) used to implement engines, an ad-

apter must be created. Each such adapter must implement the IEngineAdapter interface,

which consists of the following functions:

� boolean load (String name, RAAPI rappi);

Finds the engine with the given name and loads it4. The search is platform-speci�c:

a Java adapter should search for a jar implementing the engine, a DLL5 adapter

should search for a DLL, and so on. The adapter has to use certain technologies to

ensure the communication with the engine. For instance, Java Native Interface (JNI)

can be used to access DLLs from Java. Or, some kind of inter-process communication

can be used to access engines running as parallel processes. The adapter has to pass

a pointer to RAAPI (or to an RAAPI wrapper) to the engine. The engine will use

this pointer to access its own interface metamodel and the corresponding model in

the repository. If the engine is being loaded for the �rst time, then its interface

metamodel (and, probably, some instances) have to be put into the repository. The

engine can associate itself with certain events (e.g., with ProjectOpenedEvent from

Environment Engine Metamodel explained in Chapter 8).

� boolean executeCommand (long r);

Executes the command speci�ed as a 64-bit reference r to the corresponding com-

mand object.

� boolean handleEvent(long id);

Handles an event speci�ed as a 64-bit reference r to the corresponding event object.

This function is used only when the engine speci�es itself as event handler in an

on-attribute for some event.

4Engines are identi�ed by their names (not URIs).
5dynamic-link library
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� void unload ();

Unloads the engine in a platform-speci�c way.

Adapters for Transformations

Each transformation language used within TDA needs an adapter. Each adapter for

transformations must implement the ITransformationAdapter interface consisting of the

following functions:

� boolean load (RAAPI raapi);

Loads the corresponding tool or library for launching model transformations written

in the language the adapter supports.

� boolean launchTransformation (String location, long argument);

Launches the transformation at the given location. The argument speci�es either

the event object the transformation needs to handle, or an ExecuteTransformation-

Command instance used to launch this transformation.

� void unload();

Unloads the infrastructure used to launch transformations.

Like repositories, transformations are identi�ed by means of URIs. A transforma-

tion URI is a string consisting of the corresponding adapter name, followed by a

colon, which is then followed by the location (name) of the transformation, for in-

stance, �atl:/transformations/copy_model.atl� (�atl� is the adapter name and

�/transformations/copy_model.atl� is the location of the transformation code). Such

URIs are used in on-attributes to specify event handling transformations. Note: when

an engine is used to handle an event, the value of the on-attribute must be con-

structed from a special adapter name �engine� and the engine name, for instance,

�engine:DialogEngine�.

5.3 The Basic Services of TDA Kernel

The core of TDA Kernel Metamodel is depicted in Figure 5.4, where the basic services of

TDA Kernel are described. The undo/redo mechanism and the multi-repository mechan-

ism, which are also implemented in TDA Kernel, extend this core.
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Figure 5.4: The core of TDA Kernel Metamodel.

TDA Kernel Metamodel de�nes the Command and Event classes, which are the main

superclasses for commands and events used in the TDA communication mechanism. As

was explained in Section 3.3, to manage events and commands, TDA Kernel intercepts

the link creation operation between them and the submitter.

When a TDA Kernel command is issued, TDA Kernel simply executes that command.

Figure 5.4 lists three TDA Kernel commands:

� The AttachEngineCommand is used to attach an engine. Each engine needs to

be attached only once. After closing and re-opening the repository, TDA Kernel

will load previously attached engines automatically. To simplify this process, the

following convention has to be followed: each engine in its interface metamodel

should de�ne a singleton class representing the engine. It has to be a subclass of

Engine, with the name equal to the engine name. TDA Kernel maintains the list

of attached engines by means of the attachedEngine association between the classes

TDAKernel and Engine.

To attach an engine, TDA Kernel consequently passes the engine name to all known

adapters for engines until some adapter eventually �nds the engine and loads it and

its interface metamodel.

� The LaunchTransformationCommand can be used to launch the given transforma-

tion, which is speci�ed by its URI.

� The SaveCommand is used to save the repository (repositories) on demand. This

command emits SaveStartedEvent, then saves all active repositories, and, �nally,

emits a SaveFinishedEvent or a SaveFailedEvent depending on whether all the re-

positories indicated that the save was successful.
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When a command for some engine is issued, TDA Kernel passes it to the adapter of the

corresponding engine (when a command is issued, the engine and its adapter are already

loaded).

When an event is emitted (it may be either a TDA Kernel event, or an event of some

engine), TDA Kernel passes this event to the corresponding transformation or engine

speci�ed in the on-attribute for this event. First, the adapter name is extracted from

the value of the on-attribute. If the adapter name is �engine�, then the event is passed

to the engine, whose name is taken from the remaining part of the attribute value (the

aforementioned function handleEvent is used to handle this event). Otherwise, the ad-

apter is a transformation adapter. In this case, the adapter-speci�c transformation name

is taken from the on-attribute value and passed to the launchTransformation function

of the corresponding adapter for transformations.

5.4 Related Work

The need for a common API for accessing di�erent types of repositories has already

been realized by some teams. For example, ATL Virtual Machine [98], Epsilon Model

Connectivity level (EML) [99, 100], and the CDO [54] repository use some kind of common

API, which plays the same role as RAAPI in the proposed multi-repository mechanism.

In contrast to ATL and EML (which use a few API functions being able to work with

lists) as well as ECore (which uses object-oriented API), RAAPI is procedural and uses

only primitive data types. Also, RAAPI was designed to support SCMOF capabilities.

Repository adapters used by TDA Kernel resemble how ModelBus uses tool adapters

to connect multiple modelling tools [196, 197]. In ModelBus, adapters are mainly used

to access data according to the check-in/check-out principle, while RAAPI adapters are

intended to perform their functions on-the-�y. To implement repository adapters for

certain technical spaces, numerous existing technologies such as ORM6-technologies (Java

Persistence API7, .NET Persistence API8), D2RQ [132, 133], object-oriented databases

[198], etc. can be utilized. If on-the-�y data access is impossible, the check-in/check-out

principle can be used as well.

6object-relational mapping
7http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
8http://www.npersistence.org/
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Chapter 6

The Multi-Repository Mechanism

The motivation to support multiple model repositories from di�erent technical spaces

(TS) is driven by the following considerations:

� One TS and its repositories can be more suitable for the given purpose and more

convenient than another. This resembles how one programming language can be

more suitable for certain applications than another.

� A person can be more familiar with (i.e., have skills and knowledge in) one TS

than with (in) another. If the e�orts to study a new TS are big enough, it may be

reasonable to stay in a more familiar TS.

� A capability not available in a desired TS can be borrowed from another TS that

implements that capability. This encourages �more cooperation than competition

among alternative technologies� [40].

To ensure interoperability between di�erent technical spaces, B�ezivin et al. suggest using

projectors and extractors � o�ine transformations of models between TS's. In this thesis

I propose a mechanism for working with multiple repositories (which may belong to the

same or di�erent TS's) online. The idea is to mount several repositories into packages in

the same way as �le systems are mounted into directories in UNIX. Deep copying of the

data is not required, and all the changes in models become visible immediately.

While mounted repositories can be accessed from their packages (with the possibility

to create relations between their elements), certain manipulations with packages can be

performed as well (for instance, two packages may be merged). Mounting into packages

and manipulating the packages � these are the two pillars of the proposed multi-repository

mechanism.
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6.1 Multiple Repositories as a Single Repository

TDA Kernel represents multiple repositories as a single repository to model transform-

ation and engines (I call them clients of the multi-repository mechanism). One of the

repositories (called the pivot repository) is used to store the information about inter-

repository relations. The pivot repository acts as a fully �edged repository as well.

This design choice is based on the following considerations:

� Clients can access multiple repositories in a uniform way using a single RAAPI.

� Clients do not need to switch between di�erent repositories or to specify the desired

repository as an argument for each operation on a model. For example, to create a

link between two objects from di�erent repositories, a client may assume that the

objects are in the same repository: it is the responsibility of TDA Kernel to store

and handle this inter-repository link correctly.

6.2 Packages as Mount Points

A package is a group of model elements similar to a UML package.1 I will consider only

the case when all the packages form a tree. This resembles how directories are usually

organized as trees in a �le system.

TDA Kernel maintains a rooted tree of packages called the kernel package tree.

Each kernel package is associated with a package in some repository. The simple (unqual-

i�ed) names of kernel packages are usually equal to the simple names of the corresponding

repository packages, but can be changed at runtime. The names of kernel packages are

used by the clients: to refer to a package, a client speci�es its fully quali�ed name con-

sisting of simple names starting from the root kernel package.

Initially, the kernel package tree corresponds to the package structure of the pivot

repository. When an additional repository is mounted, a new package (a mount point)

is added to the kernel package tree. The content of the repository will be available via this

mount point. For instance, a class can be accessed by concatenating the fully quali�ed

mount point name with the fully quali�ed class name in the mounted repository.

If a repository can store several models, there are two options:

� treat each model as a separate repository and mount it into a separate package;

1If packages are not supported by a particular repository, they can be encoded directly in class names
(e.g., �Package::SubPackage::Class�).
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� mount the whole repository with all its models at once, but treat each model as

a package inside that repository. While it may seem more convenient, there are

two shortcomings. First, the repository adapter becomes more complex since it has

to perform all necessary actions to represent models as packages. Second, if the

repository does not support relations between models, TDA Kernel will not support

them as well.

6.3 Proxy References

TDA Kernel deals with elements from di�erent repositories, but needs to represent them

as if they were in a single (multi-packaged) repository. This can be performed by in-

troducing proxy references to elements. In RAAPI, model elements are referenced by

64-bit integers, which may represent indexes or pointers to elements. Proxy references

are also 64-bit RAAPI references, but TDA Kernel ensures they are unique among all the

repositories. TDA Kernel maps each proxy reference to the corresponding repository and

to the corresponding reference in that repository (proper repository references are called

domestic references). However, the mapping to the repository is not direct: each proxy

reference maps to a package in the kernel package tree, and each package maps to a re-

pository. Such design choice permits changing the repository associated with a package

at runtime.

When a particular repository returns a domestic reference, TDA Kernel either cre-

ates a new proxy reference, or returns a previously created one. For this, TDA Kernel

maintains a reverse map, which maps pairs <package, domestic reference> to proxy ref-

erences. Translation between proxy and domestic references is performed by TDA Kernel

automatically, thus, repositories do not need to be aware of proxy references (although,

they can, if they need to).

The clients assume that there is only one (multi-packaged) repository like UNIX pro-

grams assume there is only one �le system. When TDA Kernel processes an RAAPI

operation, the following simple algorithm is used to determine, in which repository the

changes are to be stored:

� if all the elements involved are from the same repository, TDA Kernel forwards the

call to that repository through the corresponding adapter;
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Figure 6.1: An extension to TDA Kernel Metamodel for the multi-repository mechanism.

� if the elements involved are from di�erent repositories (e.g., an association between

two classes from di�erent repositories is being created), TDA Kernel treats this

operation as an inter-repository change and stores it in the pivot repository.

TDA Kernel stores information about the kernel package tree, mounted repositories and

inter-repository relations according to the extension of TDA Kernel Metamodel depicted

in Figure 6.1. Notice that the two additional TDA Kernel commands are introduced

for the multi-repository mechanism: MountRepositoryCommand and UnmountReposit-

oryCommand.

TDA Kernel performs only minimal constraint checking for inter-repository relations.

More sophisticated constraint checking can be performed by introducing an additional

layer over RAAPI, or by means of external model transformations (constraint checking

lies beyond the scope of this thesis).

6.4 Manipulating the Packages

Instead of forwarding RAAPI calls to a particular physical repository, a repository adapter

can also represent a computable (or virtual) repository, which does not exist physically,

but relies on the data from other repositories. When a virtual repository is mounted into

some kernel package, its repository adapter transforms RAAPI operations to operations

on other kernel packages on-the-�y. I use the term on-the-�y model transformation to
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denote such translations of RAAPI operations performed by virtual repositories. On-the-

�y model transformations can be used to implement certain manipulations with packages.

Here are some examples.

Virtual Copy. Having an existing package P , the �virtual copy� manipulation creates

a virtual package P ′, which acts as a copy of P . However, in reality, no data are copied!

This manipulation can be implemented by mounting two special virtual repositories into

P and P ′, but keeping pointer to the old package P . When the old data are accessed, both

repositories forward the call to the old P . At the same time, both virtual repositories

record changes in new P and P ′, and provide an illusion that P and P ′ are being modi�ed

independently. One of the use cases for �virtual copy� is implementing transactions. First,

a virtual copy of a package is created to �x its state without deep copying of the data.

Then, some transactional changes are performed, and, �nally, these changes are either

discarded, or stored in (committed to) the old P . Another use case is providing the space

for semantic reasoning. If a package contains an ontology, its virtual copy can be created,

and a semantic reasoner can be launched on that copy. When the reasoner �nishes, the

original package and its copy will contain the data before and the data after the reasoning,

respectively.

Virtual Merge. A virtual repository can be mounted into an existing package P ,

keeping a pointer to the old P and a pointer to some other package Q. The repository

provides an illusion that P and Q are merged (in the sense of UML package merge).

Introducing derived (calculated) properties and relations. To create a calculated rela-

tion between classes A and B from a package P , another virtual repository is introduced.

This repository contains classes with the same names as A and B, and also adds the re-

quired calculated association, which is computed on-the-�y, when this virtual repository

is accessed via RAAPI. To complete the picture, the repository has to be mounted into

some package Q, and then P and Q have to be virtually merged.

Symbolic links. Although the kernel package tree is a tree, packages can be organized

into a graph-like structure by means of UNIX-style symbolic links. A symbolic link L on

package P may be implemented by introducing a virtual repository, which is mounted

into L, but forwards all RAAPI calls to P .

Using volatile temporary data in models. A volatile temporary repository, whose con-

tent is lost on exit, may be introduced. Temporary data can be transparently combined

with the persistent data by means of �virtual merge�.
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Indexing of model elements. Certain calculated relations can just reorder the elements

from the relations they rely on. Thus, when traversing the corresponding calculated

element list, elements will appear in the desired order. To implement this behaviour, the

virtual repository can use indexes internally.

Views on metamodels. One metamodel (say, a complex one) can be represented as

another metamodel (e.g., simpler) by means of views. Like �le systems can be read-write

and read-only (e.g., CD-ROM), views can be read-write (implementing bi-directional on-

the-�y transformations) and read-only (implementing unidirectional on-the-�y transform-

ations). Read-only views simply discard modi�cating RAAPI operations.

6.5 Using Multiple Repositories in DSL Tool-Building

Besides o�ering powerful manipulations with packages (such as manipulations listed

above), the multi-repository mechanism can be useful for the following use-cases.

� A tool-building platform (such as TDA-based platform GRAF [7]) can de�ne a

tool T and store its de�nition in a repository RT . Without the multi-repository

mechanism, for each task (project), the tool de�nition and the actual task-speci�c

data have to share the same repository. Thus, the content of RT needs to be copied

for each new task (project)2. With the multi-repository mechanism, the content of

RT does not need to be copied; it can be mounted. If certain modi�cations to the

de�nition of T are required, they have to be made only in RT .

� Assume there is a need to implement a tool o�ering a multi-user mechanism, where

� the model is logically split into multiple shared parts (e.g., a model representing

multiple graph diagrams);

� at times, some user can take some shared part (e.g., a diagram) for modi�cation

(this part is being marked as locked during the modi�cation).

Such multi-user mechanism can be implemented by storing each shared part in its

own repository on a shared server3.

2The current implementation of GRAF uses this approach.
3The current implementation of the multi-user mechanism used in the TDA-based tool ProMod serial-

izes parts of a model as text �les, which are transferred to/from the SVN server. With the multi-repository
mechanism, it would be possible to store those parts in true model repositories. Such repositories could
be accessed either directly at a server, or via check-in/check-out without the need to serialize them as
text �les.
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6.6 Related Work

Certain research on model merge is being performed, but in a di�erent context than the

proposed �virtual merge� operation. For instance, Epsilon Merge Language is an excel-

lent language intended for describing merge-like operations on models. These operations

are then executed in the o�ine mode (not on-the-�y) [99, 100]. MOF 2 for Java imple-

ments the merge capability, but the goal was MOF 2 compliance, not merging di�erent

repositories [52].

The live model transformation framework proposed by the VIATRA team treats com-

plex model changes as elementary changes [199, 113]. This resembles on-the-�y trans-

formations, which could be considered split into a set of elementary RAAPI operations.

The �virtual copy� operation is based on the concept of worlds, which is a way to

control side e�ects arising of using the same data from di�erent parts of the program

[200].

Interesting ideas about read-only views have been presented by E. Rencis [201]. His

mechanism modi�es the code of a model transformation in such a way that the view is

executed on-the-�y. On-the-�y transformations mentioned in this paper are intended to

perform the same job, but without modifying client code (thus, on-the-�y transformations

are not tied to a particular transformation language, but only to RAAPI). Ideas and code

fragments provided by E. Rencis can be adapted to generate code for virtual repositories

implementing views through RAAPI.
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Chapter 7

The Undo/Redo Mechanism

The TDA undo/redo mechanism is common for all systems and tools using TDA as a

foundation. When a TDA-based system is being developed, usually there is no need

to think about undo. The undo/redo capabilities are �miraculously� provided by TDA

Kernel at runtime. In certain cases, however, the built-in undo mechanism has to be

adjusted or extended. For instance, an engine dealing with exotic presentations may need

a peculiar way of storing its states. There may also be multiple undo streams (e.g., in

case of multiple diagrams). Furthermore, changes in one diagram may depend on changes

in another. TDA undo/redo mechanism solves these issues.

The undo/redo mechanism bene�ts from the following TDA design choices:

� Since access to the model data is by means of TDA Kernel, it is easy to intercept

model changes and to store them for undo.

� Since usually several model actions are performed at once, they should also be

undone/redone at once. TDA communication mechanism helps to infer when a new

�bundle� of actions starts (in most cases it starts on certain user events).

� Since engines and transformations rely on references pointing to model elements,

these references should remain the same when undo and then redo are performed

(and objects are deleted and re-created). The undo/redo mechanism can bene�t of

using proxy references (introduced in Chapter 6) to provide an illusion that deleted

and re-created elements have always stayed in the repository.
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7.1 Basics Notions

When a user works with a system, the system changes its states. In TDA, the system

state includes states of repositories, states of engines and, perhaps, other external states.

When a �bundle� of logically bound actions is applied to the system, the system goes to a

new state. For example, the user adds a new class to a class diagram. This invokes several

actions, which include creating a box for representing the class (i.e., adding a box object

to the repository) and attaching it to the diagram (i.e., creating a repository link from

the box object to the diagram object). Intermediate states such as the state, when the

class has been created, but has not been attached to the diagram yet, are not considered.

The undo/redo mechanism allows the user to revoke the last �bundle� of actions to

be able to return the system to the state, which is equivalent to the previous (non-

intermediate) state. The system state after undo may be not the same as the original

one, that is why I use the word �equivalent� here. For instance, during undo/redo, deleted

objects may be re-created, and their identi�ers in the repository may change. The trans-

formations and engines can still assume that the recreated objects are the same as the

original ones, since transformations and engines do not address these objects directly, but

by means of proxy references. TDA Kernel ensures that these proxy references remain

the same after undo/redo. However, they may point to other (recreated) objects.

I call the actions that change the state of the system modi�cating actions. Modi-

�cating actions can be divided into two groups:

� repository modi�cating actions such as creating/deleting a class, an object, an asso-

ciation, a link, etc., in a model repository; these are RAAPI modi�cating operations;

� external modi�cating actions: these can be actions that modify states of engines

(outside the repository), actions that save information to external �les, etc.

The �rst group of actions can be handled in a common (universal) way by TDA Kernel.

It simply acts as a proxy by hooking repository modi�cating actions and storing them

in the undo history (to describe the undo history, TDA Kernel Metamodel is extended

by Undo Metamodel). The second group of actions cannot be handled universally, since

new engines with new modi�cating actions not known in advance may be added to TDA.

However, these engines can inform TDA about their changes that need to be registered

in the undo history. To avoid the in�nite recursion, the changes in the undo history itself

are not traced.
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Modi�cating actions are �bundled� in transactions. Since transactions represent

di�erences between the system states, executing inverse actions of a transaction in reverse

corresponds to undo. Re-executing the transaction in the original direction corresponds

to redo.

TDA Kernel itself cannot determine to which states undo must be able to revert

the system. Thus, the CreateUndoCheckPointCommand is de�ned in TDA Kernel

Metamodel. This command can be used by engines and transformations to mark the

current state as a checkpoint, i.e., the state, to which the system will be able to revert.

At this moment, a new transaction is started, and the following modi�cating actions are

being attached to this new transaction. The CreateUndoCheckPointCommand command

is usually issued by engines on certain user events (e.g., events, which start some modi-

�cation of a diagram). Thus, if the way the engines create checkpoints is satisfactory, the

transformations do not need to set the checkpoints at all.

7.2 Undo Metamodel: the First Approximation

Having the basic notions explained, it is time to introduce the basic metamodel for storing

the undo history (Figure 7.1).1 In its basic variant, the UndoHistory is an ordered list of

Transaction-s. The currentTransaction link speci�es the transaction, to which modi�c-

ating actions are being added. When neither undo, nor redo has been performed yet, the

current transaction is the one that was created when the last checkpoint was set. During

undo and redo the current transaction changes. In this �rst approximation we can assume

that if some transactions have been undone, and a new transaction is being started, the

undone transactions (the �tail�) are deleted from the undo history.

Each transaction consists ofModi�catingActions. In the �rst approximation, I consider

only the repository modi�cating actions (these actions correspond to RAAPI modi�cating

actions) represented by the common superclass RepositoryAction2. Each modi�cating

action can either create or delete some element in the repository. During undo, an inverse

of a delete-action is a create-action, and vice versa. Since each action can be undone and

redone, information for both creation and deletion needs to be stored. Thus, in Undo

1The initial variant of this metamodel has been o�ered by E. Rencis. Then, certain discussions on
that metamodel and other undo-related topics were held. The participants of those discussions were me,
E Rencis, S. Rika�covs, and K. �Cer	ans. Although I am not the only contributor to the initial variant of the
undo mechanism, the extensions to the undo mechanism (see Sections 7.3�7.5) as well as its integration
with TDA make up my personal contribution.

2Only the major modi�cating RAAPI actions have been re�ected in Figure 7.1.
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Figure 7.1: The basic variant of Undo Metamodel.

Metamodel, each repository action is grouped with its inverse in a single class, having

a dual nature. The created attribute in the RepositoryAction class speci�es whether the

original action created or deleted something.

When some object is being deleted, TDA Kernel does not delete the corresponding

ProxyReference instance. This ensures that after undo or redo the proxy reference will be

the same, although, it can be later redirected to another (recreated) object.

When storing delete-actions in the undo history, an important precaution has to be

taken. If some object is deleted, its attributes, links, and probably other objects (in case

of composition) can also be deleted. TDA Kernel has to store all these cascade deletions

in the undo history to be able to revoke all of them.

The description attribute of the Transaction class is used to describe the transaction.

This description may be shown to the user as a hint before he is going to perform undo

or redo.

In the next three sections, I introduce extensions to the basic undo metamodel.
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Figure 7.2: An extension to the basic undo metamodel introducing history streams.

7.3 Non-linear Undo: Multiple Undo History Streams

and Dependencies Between Them

The need for non-linear undo may arise, for example, when working with several presenta-

tions (e.g., graph diagrams). On the one hand, it is reasonable to provide a separate undo

history stream for each presentation. On the other hand, changes in one presentation

may a�ect other presentations, and dependencies can occur. For instance, one diagram

may contain an element that is referenced from another diagram. When the transaction

that created the element is being undone, the transaction that created a reference to this

element should also be undone. This section describes a generic solution for sharing the

common undo history between several presentations that may depend on each other.

Let us look more narrowly at the TDA-based system. It may contain di�erent present-

ations (e.g., diagrams), which may be created and destroyed at runtime. Each such

presentation contributes some data to the system state. When the system state changes

during some transaction, this may a�ect also some presentation states, but leave other

presentation states unchanged. That is, the presentation state may remain the same while

transactions being performed do not a�ect it, until some transaction eventually changes

the presentation state transforming it to a new state. A sequence of di�erent states for the

given presentation is called an undo history stream. Each presentation state (stream

state) except the initial one, is associated with exactly one transaction, which led to it.

Figure 7.2 depicts how the notion of history stream is added to the basic undo

metamodel. The UndoHistory now may contain several HistoryStreams. Each history

stream consists of StreamState-s. Each stream state in the history stream (except the

initial one) is associated with a Transaction, which led to that stream state. Stream
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Figure 7.3: Transaction T (consisting of modi�cating actions T1-T6) is associated with
several history streams (chains of circles). Circles correspond to stream states, and the
arrows between them show the order. Transaction T led the topmost stream to State 3,
the leftmost stream to State 4 and the rightmost stream to State 2.

states are ordered according to the sequence of their appearance. One of the states is the

current (currentState).

Undo now is invoked not at the level of the whole undo history, but at the level of

one history stream (a �global� history stream, which trails all the transactions, can be

introduced, when needed). Positions in the undo history for each history stream are now

determined by the corresponding currentState links, and the ordering is now speci�ed by

the composition between the HistoryStream and StreamState classes. Transactions are

simply appended to UndoHistory, and the currentTransaction link now simply points to

the transaction, to which modi�cating actions are added. If the transaction changes some

stream state, a new stream state is associated with that transaction.

To handle dependencies, a distinction has to be made between implicit and explicit

dependencies.

Implicit dependencies are dependencies implied from the association between transac-

tions and stream states. For instance, all three undo streams from Figure 7.3 depend on

each other, since undo in one history stream will cause undoing transaction T, and, thus,

the other two history streams will change their states.

Explicit dependencies are dependencies between di�erent transactions. For that reason

the undoDependency/redoDependency association is introduced. The semantics is as fol-

lows: when some transaction T is being undone, then all undo-dependent transactions

(role undoDependency) are also undone (if not undone earlier). Similarly, when T is
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being redone, the corresponding redo-dependent transactions (role redoDependency) are

also redone.

Explicit dependencies are always bi-directional: in one direction they are undo-

dependencies, while in another direction they are redo-dependencies. Explicit depend-

encies can be added manually or automatically. Automatically added dependencies allow

the developer not to think much (or at all) about specifying dependencies for correct undo

behaviour. In this section I describe automatic explicit dependencies reasoned from repos-

itory actions. The next section will introduce automatic explicit dependencies reasoned

from external states.

When TDA Kernel is processing repository modi�cating actions, it can reason about

certain relations between transactions, and add corresponding explicit dependencies. For

example, when a link between two objects is added in the current transaction C, TDA

Kernel can �nd transactions A and B, where those two objects were created. Then,

evidently, there are two dependencies: between C and A, and between C and B. If, for

example, A is being undone, then C also has to be undone, since the link cannot exist

without its end object. Similarly, when C is redone, A also has to be redone: A has to

re-create the end object for the link, which will be re-created in C.

Table 7.1 lists, which dependencies can be reasoned automatically. Only redo-

dependencies, which refer to earlier transactions that have to be redone when the current

transactions is redone are shown (the corresponding undo-dependencies will be added

automatically, since dependency links are bi-directional). If there are several transactions

with the given criteria, the redo-dependent is the most recent transaction.

When TDA Kernel is processing a repository modi�cating action, it simply �nds the

corresponding redo-dependent transactions (if any), and creates the corresponding de-

pendencies between those transactions and the current transaction. To be able to �nd

redo-dependent transactions easily, TDA Kernel maintains a map that maps descriptions

of the actions (as in Table 7.1) to the corresponding transactions.

7.4 External Actions and States

This section extends the undo mechanism with the ability to register external actions and

states in the undo history. The need for such actions and states may occur, when an

engine makes changes outside the repository, for instance, in some external database or

in a graphical window with visualization that needs to be updated after undo or redo.
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Repository action Redo-dependent transactions (if can be found in the history)

ClassAction (created) When the class with the same name was deleted.

ClassAction (deleted) When this class was created.

ObjectAction (created) When the class with the given classReference was created.

ObjectAction (deleted) When this object was created.

AttributeAction (created) When the class with the given classReference has been created. When

the attribute of the given class with the same name was deleted.

AttributeAction (deleted) When this attribute was created.

AttributeValueAction

(created)

When the attribute was created. When the object was created.

AttributeValueAction

(deleted)

When this attribute value was set/created.

AssociationAction

(created)

When the class corresponding to the sourceClassReference was created.

When the class corresponding to the targetClassReference was created.

When the association from the class corresponding to the

sourceClassReference with the same sourceRole was deleted.

AssociationAction

(deleted)

When this association was created.

LinkAction (created) When the association with the given associationReference was created.

When the object corresponding to the sourceObjectReference was

created. When the object corresponding to the targetObjectReference

was created. When the link corresponding to the associationReference

was deleted between objects corresponding to sourceObjectReference and

targetObjectReference.

LinkAction (deleted) When this link was created.

GeneralizationAction

(created)

When the class corresponding to the superClassReference was created.

When the class corresponding to the subClassReference was created.

When the same generalization was deleted.

GeneralizationAction

(deleted)

When this generalization was created.

Table 7.1: Dependencies: how they can be reasoned automatically.
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When some engine creates a new presentation (e.g., a diagram) on the screen, it can

also create an undo history stream for that presentation. When the presentation changes,

the engine has to inform TDA Kernel about that change. There are two options:

� Inform that a state has been changed. This option is suitable, when it is more

convenient to store the whole previous state instead of the delta between the previous

and the next state. For instance, for a graph diagram, it is more convenient to store

the coordinates of all elements at once, since the whole diagram needs to be repainted

during undo.

� Inform that some undoable action has been performed. This is suitable, for example,

if the memory size to store the action is much smaller than the memory size required

to store the whole previous state.

In order to describe external states (the �rst option), engines have to create subclasses of

the StreamState class. For each such subclass, the following commands have to be also

de�ned (let StateName denote the name of the subclass):

� RevokeStateNameCommand � this command is issued by TDA Kernel, when the

given state has to be removed from the presentation.

� RevertStateNameCommand � this command is issued by TDA Kernel, when the

presentation has to renew its state. Commands RevokeStateNameCommand and

RevertStateNameCommand are issued in a pair: the �rst one for the old state and

the second one for the new state.

� DestroyStateNameCommand � this command is issued, when the memory occupied

by the state has to be freed (i.e., when the state is being removed from the undo

history, or the user closes the system).

For external actions (the second option), engines have to create subclasses of theModi�cat-

ingAction class (let ActionName denote the name of this subclass). Similarly, commands

UndoActionNameCommand, RedoActionNameCommand, and DestroyActionNameCom-

mand have to be de�ned for each subclass. However, unlike RevokeStateNameCommand

and RevertStateNameCommand, which are called in a pair when the state changes, for

actions only one command (either UndoActionNameCommand, or RedoActionNameCom-

mand) is issued depending on whether the action is being undone or redone.
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Reasoning Automatic Dependencies from External States. Assume a diagram,

which initially was in State 1, has been brought by transaction T1 to State 2, and then,

by transaction T2, to State 3. Thus, State 1 contains changes neither from T1, nor from

T2, State 2 contains changes from T1, but not from T2, while State 3 contains changes

from both T1 and T2. Then it is impossible to undo T1 independently of T2 since there

is no state with changes from T2, but without changes from T1 in the undo history. This

observation allows TDA Kernel to create another kind of automatic explicit dependencies:

when TDA Kernel is noti�ed about changes from State 1 to State 2 and from State 2 to

State 3, it automatically creates a dependency between the transactions T1 and T2.

7.5 Adding Support for Multiple Redo Branches

An important property of the undo mechanism is the ability to revert to any recent state.

However, in classical undo implementation, where the history stream is an ordered list, a

modi�cation after undo causes the �tail� of the history to be cleared, thus, the user may

loose the ability to revert to certain states. Instead of clearing the �tail�, a new history

branch can be created for new modi�cations. If the user reverts to the same state several

times, and starts new modi�cations, then several branches may arise.

One of these branches is marked as current. The modi�cations from this branch will

be applied, if the user clicks the redo button. I call the state, to which the current branch

leads, the next state. The branches before the current branch lead to the early next

states, and the branches after the current branch lead to the late next states. According

to these notions, the composition between HistoryStream and StreamState in the undo

metamodel is replaced by three forward unidirectional associations earlyNext, next and

lateNext. The backward unidirectional association previous is added as well (Figure 7.4).

In Figure 7.5, if the history stream is in State 2 (state numbers correspond to time

moments when the state has been initially reached before undo or redo), and if the current

next state is State 8, then the early next states are State 3 and State 5, while State 10 is

the late next state.

One may think that in order to support branching, we have to add additional buttons

to the standard two �Undo� and �Redo� buttons. Yes, we can do that. However, we can

still continue using only two buttons, but they will change their behaviour slightly. I call

them �Smart Undo� and �Smart Redo� buttons.
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StreamState

HistoryStream
id: Integer

earlyNext
* {ordered}

previous
0..1

currentState 1
*
{ordered}

lateNext
* {ordered}

next
0..1

Figure 7.4: Replacing the composition between HistoryStream and StreamState with uni-
directional associations to support redo branching.

Figure 7.5: Redo branching (transactions are not shown) and the behaviour of the �Smart
Undo� and �Smart Redo� buttons.

If there are early redo branches, the �Smart Undo� button goes to the most recent

state among the states in these early branches (see Figure 7.5(a)). If there are no early

redo branches, the �Smart Undo� goes back like the ordinary �Undo� button.

If there is the current branch, the �Smart Redo� button simply goes forward like the

ordinary �Redo� button. If there are no branches, the �Smart Redo� button goes to the

state before the next nearest branch (see Figure 7.5(b)). This behaviour of the �Smart

Undo� and the �Smart Redo� buttons ensures that the user can traverse all the states.

Besides, the same state may be visited several times depending on the number of branches

outgoing from that state.
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7.6 Related Work

Microsoft DSL Tools [58] use the domain model framework, which supports undo and

redo. Although undo/redo logs the changes of the model (similar to repository modi�cat-

ing actions in TDA), it supports also propagation of changes. However, when describing

rules for propagation of changes, the developer needs to distinguish between repository

changes and external changes: repository changes must not be propagated during un-

do/redo, while external changes still have to be propagated. In TDA, external changes

are added to the undo history as external actions. TDA Kernel will issue the corres-

ponding command (UndoActionNameCommand or RedoActionNameCommand) to undo

(redo) external changes, while no such command is required for repository changes.

A good example of a though-out solution to the undo problem is Eclipse [202]], on

which a graphical tool building platform GMF is based [172, 173]. The undo history

contains operations, and a context can be associated with each operation. Similarly,

in TDA, history streams (≈contexts) are associated with transactions (≈operations).

In Eclipse, an operation approver may be assigned to an operation. This approver is

consulted before undoing/redoing that operation. The approver, for example, can forbid

undoing an earlier operation, if later operations have not been undone yet. In TDA,

undo within the same history stream is linear, while, at the level of the global undo

history, earlier transactions can be undone without undoing later transactions. One may

choose between creating the single history stream for totally linear undo and creating

an individual history stream for each transaction. To force several transactions to be

undone/redone at once, dependencies between transactions can be created.

An interesting implementation of undo in Collaborative Modeling Tool is described

by D. English [203]. Two special commands are introduced there: Save and Cancel. The

Cancel command returns the system to the state, when the last Save was performed. A

remarkable point is that Cancel itself is added to the undo stack, and, as a consequence,

the Cancel action by itself can be undone. This allows �forks� of user actions, starting

from the last saved state, to be created. This resembles redo branching in TDA. The

process of undoing the Cancel command resembles the behaviour of the �Smart Undo�

button.

S. Rika�covs presented a solution for implementing the undo functionality in a trans-

formation language [204]. Although worth by its own, this solution is not applicable to

TDA, since undo/redo must be available not just to transformations, but also to engines.

94



In the AToM3 tool [182], undo is implemented by simply saving the model. This

seems to be a good solution speci�cally for that tool, since undo support was not there

originally.

An interesting application of undo for debugging purposes is described in the paper

of Hartmann and Sadilek [205]. Assume some model (e.g., Petri net) is being executed

and at some step an incorrect behaviour is found. When the execution semantics has

been corrected, undo can be used to revert the model to the last correct state, and the

execution may be re-started from that state instead of performing all the execution from

the beginning.

The concept of worlds is a way of controlling the scope of side-e�ects. In this approach,

states of the system form a tree, where each node (except the initial one) handles access

to its parent's data and stores read and modi�ed values [200]. Undo can be performed

by switching from a child world to its parent world. Since worlds form a tree, a redo

branching is also supported in this concept.

An noteworthy application of constraint evaluation in order to determine undo de-

pendencies has been proposed by Groher and Egyed [206]. This approach allows inferring

the dependencies at the time of undo depending on the model elements the user wants

to revert to previous states. In TDA, dependencies have to be set before undo, although

they can be calculated based on some constraints.
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Chapter 8

Environment Engine

TDA can potentially be used in di�erent environments such as:

� integrated development environments (IDEs), e.g., Eclipse or Visual Studio;

� large legacy or new applications requiring certain model-driven functionality to be

integrated within them;

� tablet devices (with a multi-touch screen). In this case some TDA engines may need

to be adapted to accept gestures from such multi-touch devices;

� a web-based application, where the main window is inside the web browser. This

also may require certain modi�cations in engines, since engines will need to send

their presentation to the user's device via the network.

To deal with multiple environments, I propose the following solution. One of the inter-

face metamodels in TDA is designated to abstract environment-speci�c aspects. This

metamodel is called Environment Metamodel. To launch TDA in a particular envir-

onment, an engine implementing Environment Metamodel within that environment is

required. This engine is called Environment Engine. When I speak about Environment

Engine, I actually mean the whole class of such engines: one engine for each environment.

When deploying a system, an appropriate engine is selected. Thus, Environment Engine

is replaceable. Other engines have to deal with a particular Environment Engine through

Environment Metamodel.

Environment Engine is a module that launches TDA Kernel. TDA Kernel requires at

least one repository to operate, but it may use other data stores as well. Hereinafter the

term project will denote a logically united set of data stores used by TDA Kernel. In
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its minimal variant a project consists of a single model repository. A more complex case

could involve multiple repositories as well as links to external �les (images, documents,

etc.) and, perhaps, links to some shared databases. A project is TDA �memory�. It can

be compared to a document in a text processor. TDA Kernel works with only one project

at a time, but it is possible to initialize multiple TDA Kernels for dealing with multiple

projects at a time.

When launching TDA Kernel, Environment Engine calls the open function of TDA

Kernel to open the project (TDA Kernel implements the IRepositoryManagement API

containing the open function, see Appendix A.3). When the project is being closed,

Environment Engine calls the close function.

Besides launching TDA Kernel, Environment Engine is responsible for the following:

� It stores system-speci�c paths (e.g., a path to the �bin� directory) in the repository

in order TDA Kernel, other engines, and transformations could rely on these paths,

when needed.

� It informs transformations and engines when the user creates a new project, opens

an existing one, or closes a project, by emitting corresponding events. It is up to

Environment Engine how to implement the user interface for these user actions.

One option is to provide menu items (e.g, File→Create, File→Open, File→Close)

to the user. Buttons or a toolbar can be used as well. If TDA is used in a task that

does not require user intervention, Environment Engine may emit project-related

events automatically.

� It saves the project, when necessary (e.g., when the user chooses the �save� menu

item). To save the project, Environment Engine has two options: either to issue a

SaveCommand de�ned in TDA Kernel Metamodel, or to invoke the startSave/�n-

ishSave functions of TDA Kernel. Transformations and engines do not use the

IRepositoryManagement API. They can assume that the project has already been

open. If they need to save the project programmatically, they can issue a SaveCom-

mand to TDA Kernel.

� It provides access to the main window, to which other engines can attach their

graphical presentations.

� It provides a means to include/exclude certain choice options (e.g., copy/paste,

undo/redo, and others) at runtime. Usually, such options are available via the main

97



Engine

AttachFrameCommand

FrameActivatedEvent

FrameDeactivatingEvent

CloseFrameRequestedEvent

DetachFrameCommand

RefreshOptionsCommand

OptionSelectedEvent

ProjectCreatedEvent

ProjectOpenedEvent
CloseProjectCommand

silent:boolean

ProjectClosingEvent

FrameResizedEvent

Option
caption:string
id:string
location:string
onOptionSelectedEvent:String

Event

Command

Frame
caption:string
contentURI:String
location:String
isResizeable:boolean
isClosable:boolean
onFrameActivatedEvent:String
onFrameDeactivatingEvent:String
onFrameResizedEvent:String
onCloseFrameRequestedEvent:String

<<singleton>>

EnvironmentEngine
language:String
country:String
anyUnsavedChanges:boolean
commonBinDirectory:String
specificBinDirectory:String
projectDirectory:String
onProjectOpenedEvent:String
onProjectClosingEvent:String

0..1

{ordered}*

1

*

1

1

1

1

1

1

parent
0..1

child{ordered}
*

* 0..1

Figure 8.1: Environment Metamodel.

menu bar, or from the toolbar. Options may be global (e.g., an option to validate

the entire project) or speci�c to a particular presentation (e.g., undo/redo may be

di�erent for di�erent presentations).

These functions of Environment Engine are re�ected in Environment Metamodel (also

called Environment Engine Metamodel) depicted in Figure 8.1.

The central singleton class is EnvironmentEngine. This is a TDA convention: each

engine should use a singleton class named as the engine. The instance of this class is

usually used as a starting point to access certain engine-speci�c information encoded by

means of attributes or links to other objects.

The main points of Environment Metamodel are explained below.

Locale-speci�c information. The language and country attributes of the Environ-

mentEngine class encode the locale according to the ISO-639 and ISO-3166 standards

(e.g., language=�en� and country=�GB�). These attributes can be used by other engines

to adapt their behaviour according to country-speci�c settings and to translate their user

interface.
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Asking for a con�rmation. The anyUnsavedChanges attribute is a common place

where engines and transformation can inform Environment Engine that they have unsaved

changes. When �nalizing TDA Kernel, Environment Engine can ask for user con�rmation

depending on the value of this attribute. When Environment Engine saves the project

(e.g., by issuing a SaveCommand to TDA Kernel, when the user chooses File→Save), it

resets the value of anyUnsavedChanges to false.

Storing system-speci�c paths. The following three attributes of the

EnvironmentEngine class encode system-speci�c paths:

� commonBinDirectory - the directory, where TDA binaries reside;

� speci�cBinDirectory - the directory, where TDA-based systems can put their speci�c

binaries (e.g., tool-speci�c transformations)1;

� projectDirectory - the directory, where the current project resides.

These attributes are re-written each time a project is being created/opened.

Informing TDA Kernel when the project is being created, opened, saved

or closed. Events ProjectCreatedEvent, ProjectOpenedEvent, and ProjectClosingEvent

are used to inform TDA Kernel and other interested parties (transformations and en-

gines) when the project has been created, opened, or is being closed, respectively. On

ProjectClosingEvent, engines, for example, may perform some clean-up.

Notice that the on-attribute onProjectCreatedEvent does not exist. The reason for

that is simple: when a project is being created, no transformation or engine has been

called yet. Thus, there was no possibility to set the desired value for this attribute. Thus,

when Environment Engine emits ProjectCreatedEvent, TDA calls a transformation with

the prede�ned name �main�2. This transformation brings TDA to life: it can attach other

engines, set values for on-attributes, call other transformations, and so on.

When a transformation or an engine needs to close the project, it may issue a

CloseProjectCommand. If the value of the silent attribute is true, then Environment

Engine must not ask for the user con�rmation. Otherwise, it is up to a particular En-

vironment Engine. After CloseProjectCommand (and the user con�rmation, if it was

1If Environment Engine is specially designed to work only with one particular tool, commonBinDir-

ectory and speci�cBinDirectory may point to the same location.
2Technically, this name is sequentially passed to all adapters for transformations until some adapter

eventually �nds the transformation and launches it.
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requested) Environment Engine emits a ProjectClosingEvent. Processing of this event is

the last possibility to access the repository (repositories) before closing it (them).

Attaching graphical presentations to the main window. Engines can create

graphical presentations. The term frame denotes a surface, where a presentation is

visualized. Usually, a frame is a container, where graphical user interface (GUI) compon-

ents are placed. Unlike dialog boxes, a frame may be without the border and it may be

attached to other windows, including the main window provided by Environment Engine.

Each frame is represented as an instance of the Frame class in the model repository. It

is up to an engine whether to attach a presentation to the main window of Environment

Engine, or to simply store in the repository a Frame instance, which then can be used

by a model transformation to attach the presentation somewhere else (e.g., to a Dialog

Engine window).

Frames may be identi�ed di�erently, for example:

� by means of operating system window handles (e.g., in Windows OS there is a

special type called HWND for such handles);

� as components in some object-oriented programming languages (e.g., subclasses of

java.awt.Component in Java);

� as HTML documents (for frames to be displayed in web browsers).

To distinguish between di�erent ways of identifying frames, the URI syntax is used

[195]. The URI of the frame is a string starting with the name of the way of identi-

fying frames (the �protocol�), followed by a colon, after which the frame is described

in a �protocol�-speci�c manner. For instance, the URI hwnd:123456789 may be used

to identify the frame by means of an operating system window handle, while the URI

like html:http://www.example.org/html_with_javascript.html may be used to identify

frames described as HTML documents3.

When an engine needs to attach a frame to the main window, it creates an instance

of the class Frame and speci�es the URI as a value for the attribute contentURI. Also, a

caption (attribute caption) for the frame may be speci�ed as well as the �ags whether this

frame is resizeable (isResizeable) and closable (isClosable). Then, an AttachFrameCom-

mand is created, linked to the frame, and executed (via the TDA submitter object). The

3C++ objects may be identi�ed by the memory address. Addressing Java objects is not so trivial, but
still that can be performed by using Java Native Interface, JNI, and its global references [207]. Another
solution is to introduce a global hash map for indexing Java objects passed to Environment Engine.

100



parameter location speci�es where to put the frame within the main window. A special

location value ``MODAL'' means that the frame will be displayed as a modal window.

Other values mean that the frame is non-modal and that it has to be attached somewhere

within the main window (possible values are �WEST�, �EAST�, �NORTH�, �SOUTH�,

�CENTER�; particular Environment Engine implementations may accept other speci�c

values as well). Environment Engine takes care of adding a border to the frame, when

the border is needed.

For a modal window, Environment Engine only prepares the environment for the

frame, but does not execute the modal cycle waiting for user actions within the frame.

The engine that created the AttachFrameCommand is responsible for that. After the

modal cycle �nishes, a DetachFrameCommand instance must be issued to Environment

Engine to turn the environment back into the non-modal state.

DetachFrameCommand may be created also for non-modal frames, when they are not

have to be displayed any more.

If the frame is closable, Environment Engine provides the close button (e.g., the �X�

button). However, Environment Engine does not closes the frame by its own. Envir-

onment Engine creates a CloseFrameRequestedEvent instead. The engine that owns the

frame should catch this event and decide whether to close and detach the frame, or not.

Such a behaviour allows the engine, for example, to ask for user con�rmation, or not to

close the window at all, if there are reasons for that.

The FrameActivated and BeforeFrameDeactivated events may be used, for example,

to change options (e.g., main menu items, see below) depending on the active window.

The FrameResized event is useful, when the content of a frame needs to be repainted

on resize.

Including/excluding choice options. There may be di�erent choice options, which

may be used to perform certain actions with presentations or to access services provided

by engines. For example,

� cut/copy/paste;

� undo/redo;

� �Export as...� (for exporting the given presentation into a di�erent format);

� �Validate� (for validating the data in the given presentation);
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� �Generate code� (for generating domain-speci�c code from a description in a given

DSL).

These options may be introduced by engines or transformations.

Choice options are described by means of the Option class. The location attribute

speci�es where the option should be placed, e.g., the value �MENU� can be used to

denote the main menu, while the value �TOOLBAR� denotes the main toolbar.

Environment Engine is allowed to change the list of possible locations it supports.

If Environment Engine does not support some value of the location attribute, it should

replace it by another reasonable value (this may be actual for touch screen devices, where

menus and toolbars can be replaced by other location types).

When the user chooses an option, Environment Engine emits an OptionSelectedEvent.

The following two chapters present Dialog Engine and Error Engine. Like other graph-

ical presentation engines, they depend on Environment Engine, since they need to attach

their windows to the main window.
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Chapter 9

Dialog Engine

It is hard to imagine a graphical DSL tool without graphical user interface (GUI). Thus,

when thinking about the graphical presentation, we have to think not only about visual-

izing the main functionality, but also about dialog windows.

This chapter describes Dialog Engine. Like other TDA engines, Dialog Engine also

has its interface metamodel, by means of which dialog windows can be speci�ed. Given

an instance of a dialog window, Dialog Engine is able to visualize it automatically at

runtime. Exact coordinates do not need to be speci�ed � Dialog Engine will calculate

the coordinates by its own. Thus, transformations may generate dialog windows on-the-

�y, and Dialog Engine will �nd the appropriate coordinates. However, transformations

can specify certain constrains on coordinates, should such a necessity occur.

Besides visualizing dialog windows, Dialog Engine passes user events (such as button

clicks) to model transformations. Model transformations, in their turn, issue commands

(such as �Close� and �Refresh�) to Dialog Engine.

In order to calculate coordinates, Dialog Engine reduces a dialog window speci�ed by

means of Dialog Engine Metamodel to an instance of the quadratic optimization prob-

lem, which is then passed to the quadratic optimization solver. When a solution to the

quadratic optimization problem is found, Dialog Engine can easily translate it to the co-

ordinates of GUI components, and to position these components accordingly. Coordinates

need to be calculated in these cases:

� when a dialog window is being displayed for the �rst time;

� when a dialog window is being resized;
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� when a transformation asks Dialog Engine to refresh a dialog window or a signi�cant

portion of it (e.g., to update certain data in the dialog window, or to show/hide

certain GUI components).

The next section (Section 9.1) presents Dialog Engine Metamodel. Section 9.2 explains

how a dialog instance can be laid out by means of the quadratic optimization technique.

9.1 Dialog Engine Metamodel

The core of Dialog Engine Metamodel is depicted in Figure 9.1. The metamodel is able

to describe simple dialog components such as the button, the check box, and the list

box. There are two additions to the core metamodel called Tree Metamodel (Figure 9.9)

and Table Metamodel (Figure 9.10) to express non-trivial components (the tree and the

table), which may also be put within dialog windows. The components found in these

metamodels are supported by a wide range of GUI toolkits, thus, there should be no

problem to use any of those toolkits for handling instances of Dialog Engine Metamodel.

The following subsection describes the core of Dialog Engine Metamodel. The next

two subsections brie�y describe Tree Metamodel and Table Metamodel.

The Core of Dialog Engine Metamodel

The tree of components

The main notion in Dialog Engine Metamodel is the notion of the component (see class

Component in Figure 9.1). There are two types of components:

� terminal components (like the button, the combo box, and the list box), which,

from the metamodel point of view, do not contain other components (for a detailed

description of these components, refer to my paper on Dialog Engine Metamodel

[6]);

� containers (see class Container in Figure 9.1), which are components that may

contain other terminal components and containers.

The generalization and the composition between the Component and Container classes

de�ne a tree structure, which is used to specify dialog windows. A dialog window is such

a tree, rooted at an instance of the class Form.
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From Kernel Metamodel From Environment Metamodel

Component
enabled:Boolean=true
readOnly:Boolean=false
hint:String=""
 
horizontalSpan:Integer=1
verticalSpan:Integer=1 
minimumWidth:Integer
preferredWidth:Integer
maximumWidth:Integer
minimumHeight:Integer
preferredHeight:Integer
maximumHeight:Integer 
leftMargin:Integer
rightMargin:Integer
topMargin:Integer
bottomMargin:Integer 
onFocusGainedEvent:String
onFocusLostEvent:String

Container
horizontalAlignment:HorizontalAlignment
verticalAlignment:VerticalAlignment
horizontalSpacing:Integer
verticalSpacing:Integer
leftBorder:Integer
rightBorder:Integer
topBorder:Integer
bottomBorder:Integer
leftPadding:Integer
rightPadding:Integer
topPadding:Integer
bottomPadding:Integer

Command

DialogEngineCommand

EventDialogEngineEvent

Engine
<<singleton>>

DialogEngine
interfaceMetamodelVersion:String

HorizontalRelativeInfo
minimumRelativeWidth:Real
preferredRelativeWidth:Real
maximumRelativeWidth:Real
minimumHorizontalShrinkFactor:Real
maximumHorizontalGrowFactor:Real

VerticalRelativeInfo
minimumRelativeHeight:Real
preferredRelativeHeight:Real
maximumRelativeHeight:Real
minimumVerticalShrinkFactor:Integer
maximumVerticalGrowFactor:Integer

RelativeInfoGroup RelativeInfo

<<enumeration>>
HorizontalAlignment
LEFT
CENTER
RIGHT

<<enumeration>>
VerticalAlignment
TOP
CENTER
BOTTOM

VerticalBox VerticalSplitBox

GroupBox
caption:String
hasBorder:Boolean=true

Tab
caption:String

HorizontalBox HorizontalSplitBox

VerticalScrollBox

HorizontalScrollBox

VerticalScrollBoxWrapper

HorizontalScrollBoxWrapper

ScrollBox ScrollBoxWrapper

Column

Row

Stack

TabContainer

TabChangeEvent

Form
caption:String
clickEventOnClose:Boolean=true
hasMinimizeButton=false
hasMaximizeButton=false
left:Integer
top:Integer
width:Integer
height:Integer
onFormCloseEvent:String

ShowCommand

ShowModalCommand

CloseCommand

DeleteCommand

Button
caption:String
closeOnClick:Boolean
deleteOnClick:Boolean
onClickEvent:String

RefreshCommand

Label
caption:String

CheckBox
caption:String
checked:Boolean
onChangeEvent:String

RadioButton
caption:String
selected:Boolean
onClickEvent:String

InputField
text:String
onChangeEvent:String

MultiLineTextBox
onMultiLineTextBoxChangeEvent:String

TextLine
text:String
inserted:Boolean
deleted:Boolean
edited:Boolean

Image
location:String
onChangeEvent:String

ComboBox
text:String
editable:Boolean
onChangeEvent:String
onDropDownEvent:String

ListBox
multiSelect:Boolean
onListBoxChangeEvent:String
onRightClickEvent:String

Item
value:String

MultiLineTextBoxChangeEvent

ChangeEvent

ListBoxChangeEvent

ClickEvent

FormCloseEvent

DropDownEvent

FocusGainedEvent

FocusLostEvent

RightClickEvent

Frame
uri:String
caption:String
isResizeable:Boolean
isClosable:Boolean
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0..1orderedFocusableComponent

*
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1
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Figure 9.1: Dialog Engine Metamodel.
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Interactivity

Dialog windows are interactive � the user may click on the components, and certain

actions may be expected to process these user events. Besides, transformations can is-

sue certain commands related to a dialog window, e.g., a command to refresh a part of

that window. For that reason, Dialog Engine Metamodel contains certain events and

commands assigned to certain components. For example, a click event (a ClickEvent in-

stance) may be linked to a Button or to a RadioButton, and a RefreshCommand may be

issued to update data in the given component, or to update all the components within

the given container. In Figure 9.1, events (descendants of the Event class) are depicted

as rounded rectangles, and commands (descendants of the Command class) are depicted

as ellipses.

Laying out components

One of the important features of Dialog Engine Metamodel is the possibility to specify the

layout of dialog elements. If we sketch a dialog box on a sheet of paper, we usually don't

worry about exact coordinates, but we think about the mutual layout of components for

grouping them and for aesthetics. Just the same kind of layout information is expected

in instances of the proposed metamodel.

When imaging a dialog box, I assume that all begins with the form, which is the

top-level (root) container. This container can be logically divided into several parts, or

cells. Each cell may be divided again, and so on, recursively. Some cells are occupied

by visible components or containers, while other are simple invisible �borders� used as

intermediate cells for further division. Because of this recursive division, dialog windows

are represented as a trees in Dialog Engine Metamodel.

There are several ways how the given cell can be divided. They are represented by 13

classes in the rounded dashed rectangle on the right of Figure 9.1.

The two natural ways of laying out the components is laying them horizontally and

vertically. Thus, HorizontalBox and VerticalBox appear. Also, one or two scrollbars

may be presented. To handle the single scrollbar case, I added HorizontalScrollBox (the

children are put �rst vertically and then horizontally; see Figure 9.2 (a)) and Vertic-

alScrollBox (the children are put �rst horizontally and, when there is not enough space,

the next �row� is added; see Figure 9.2 (b)).
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(a) (b)

Figure 9.2: Examples of (a) a horizontal scroll box and (b) a vertical scroll box.

To handle the case with both scrollbars, I introduced only one container, ScrollBox,

where the children are put vertically. If the components need to be laid out horizontally,

a horizontal box can be put inside a scroll box.

The container types mentioned so far do not allow creating structures like in Fig-

ure 9.4 (a). Besides, they cannot be used to create grid-like structures. So, two more

container types appear: the row (class Row) and the column (class Column). In fact,

a way for specifying grids could be borrowed from HTML, where tables (tag <TABLE>)

consist of rows (tag <TR>), and rows consist of cells (tag <TD>). However, in order not to

overwhelm the metamodel, I do not introduce the classes Table and Cell. Instead, rows

and columns are allowed to lay in any container (which will play the role of the <TABLE>

tag), and the components put within a row or a column can themselves be considered

cells. If there are several rows (columns) inside the same container, the components inside

these rows (columns) are aligned to form the grid structure (see Figure 9.3).

(a) (b)

Figure 9.3: Examples of (a) horizontal boxes with components that are not aligned to
grid, and (b) rows where the children have been aligned to grid.

In order to be able to create structures like in Figure 9.4 (a), the components have to

be allowed to span several rows or columns. This may be done by specifying corresponding

values to the attributes horizontalSpan and verticalSpan1, see Figure 9.4 (b).

A special kind of container type is needed to implement the tabs (see Figure 9.5).

Since tabs occupy the same space, we may think that the components are put one

over another like cards. So, I introduce the Stack container type where all the children

occupy the same space.

1These attributes are available for all components, but have the meaning only for components that lie
inside a row or a column, and form a grid-like structure.
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(a) (b)

Figure 9.4: (a) An example of �ve containers that cannot be laid out using horizontal
and vertical boxes only. (b) The arrangement of the same �ve containers using rows. The
�rst row contains two components: the �rst one spans two columns (horizontally), and
the second one spans two rows (vertically). The �rst component of the second row spans
two rows; neither rows nor columns are spanned by the second component (or, we may
say, one row and one column are spanned). The third row has only one component that
spans two columns.

Figure 9.5: An example of tabs (pages).

In a majority of cases there is no need for using other types of containers than the just

mentioned. However, to support splitters, which allow the size of one component to be

increased at the expense of decreasing the size of another component in the same container,

I add also the HorizontalSplitBox and VerticalSplitBox classes. The splitters appear

automatically between components lying in these split boxes. Also, I add three wrappers:

HorizonalScrollBoxWrapper, VerticalScrollBoxWrapper, and ScrollBoxWrapper. They are

intended to wrap a single large component inside a scroll box (with a horizontal, a vertical,

or with both scrollbars).

Table 9.1 summarizes the types of the containers I described and tells which containers

are visible and which are invisible. In case a visible analogue for an invisible container

is required, a GroupBox can be used (it has a visible border with an optional caption).

A group box is also used to group radio buttons (only one of the radio buttons can be

selected within a group).

Figure 9.6 shows a sample Dialog Engine Metamodel instance (a component tree) and

the corresponding form on the screen.
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:Form
caption="Sample form"

:HorizontalBox

:HorizontalBox
horizontalAlignment=RIGHT

:VerticalBox
:VerticalBox

verticalAlignment=TOP:HorizontalBox

:Label
caption="E-mail:"

:InputField
text="eve@example.org"

:ListBox :Item
value="alice@example.org"

:Item
value="bob@example.org"

:Button
caption="Add"

:Button
caption="Remove"

:Button
caption="OK"

:Button
caption="Cancel"

selected

defaultButton

cancelButton

a)

b)

Figure 9.6: (a) An instance of Dialog Engine Metamodel for the sample form. (b) The
sample form: the rectangles (in reality invisible, but shown here) outline horizontal and
vertical boxes.
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Invisible container types Visible container types
VerticalBox VerticalSplitBox

HorizontalBox HorizontalSpllitBox
Column VerticalScrollBox
Row VerticalScrollBoxWrapper
Stack HorizontalScrollBox

HorizontalScrollBoxWrapper
ScrollBox

ScrollBoxWrapper

Table 9.1: Container types.

Specifying dimensions for components

There is a dilemma regarding the usage of exact sizes and/or coordinates for components.

On the one hand, exact coordinates tell Dialog Engine the desired sizes of components

in case the components with the default (or somehow calculated) sizes do not look well.

On the other hand, the system font and depth-per-inch (DPI) settings may di�er from

one computer to another, thus, it may be preferred to avoid exact absolute sizes and

coordinates. Dialog Engine Metamodel has features that may help dealing with this

dilemma:

� The metamodel permits specifying absolute sizes, including minimal, preferred, and

maximal sizes. But all these sizes are optional, and when they are not speci�ed,

Dialog Engine selects the values by itself. These values are speci�c to a particular

platform and/or widget toolkit. They have to be chosen to form nice look and feel,

and to allow resizeable components to be resized. When applicable, the DPI settings

and the size of the font used have to be taken into an account.

� The metamodel allows specifying also relative sizes for components. Thus, one can

specify, for example, that the given input �eld has to be twice wider than the given

button. Or, that the aspect ratio of the dialog form should be 4:3.

Absolute dimensions. Absolute dimensions are set by the six attributes from minim-

umWidth to maximumHeight of the Component class. The maximumWidth and max-

imumHeight values are allowed to be increased to satisfy other constraints. Thus,

maximumWidth= 0 means that the width of the component should be as small as possible

(maximumWidth value will be no less than the minimumWidth value).

The horizontalAlignment and verticalAlignment attributes of the Container class refer

to the child components. If a child is resizeable, then it is docked to the border of the
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parent container. However, if the child reaches its maximum width (or height) when the

parent container is being resized, the child will be aligned according to the values of the

horizontalAlignment and verticalAlignment attributes. If there are several children in a

horizontal box, the horizontalAlignment refers to all of them as one component. The same

is true for the vertical box and the verticalAlignment attribute.

The meaning of attributes for specifying margins (in Component class) as well for

specifying borders, padding and spacing (in the Container class) is revealed in Figure 9.1.

The margins specify the extra space outside the component (i.e., this space is not con-

sidered to be a part of the component). The borders in the Container class specify the

size of the border (e.g., bevel). The border is a part of the container. Paddings are like

margins, but lay inside the area bounded by the border. In non-scrollable containers the

notions of padding and border are interchangeable. In scrollable containers, the border is

outside the scrollable area, while the padding is inside.

Figure 9.7: An example illustrating what do values for margins, borders, paddings and
spacings mean.

Relative dimensions. The relative dimensions are related to the notion of the relative

information group (see class RelativeInfoGroup). The group consists of widths and/or

heights that depend on each other according to the given ratio of the lengths. To specify

a ratio for widths and heights of the given components, the corresponding HorizontalRe-

lativeInfo and VerticalRelativeInfo instances have to be linked to a RelativeInfoGroup

instance. There is no need for a particular HorizontalRelativeInfo or VerticalRelativeInfo

instance to be in several groups (otherwise, the groups depend on each other and may be

replaced by one group by adjusting the ratio).

Example. To specify the relative width ratio 2:3:4 between the three compon-

ents, a HorizontalRelativeInfo instance has to be attached for each of these

components and the corresponding values preferredRelativeWidth attribute
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have to be set to 2, 3, and 4, respectively. Finally, these three HorizontalRel-

ativeInfo instances have to be linked to the same RelativeInfoGroup instance

to form a group. The relative heights may be speci�ed in a similar way.

The minimum and maximum relative width and heights are useful for resizing. An ex-

ample is given in Figure 9.8.

button1:Button
caption="1"
minimumWidth=80
maximumWidth=80

button2:Button
caption="2"

:HorizontalRelativeInfo
minimumRelativeWidth=1
preferredRelativeWidth=1
maximumRelativeWidth=1

:HorizontalRelativeInfo
minimumRelativeWidth=0.5
preferredRelativeWidth=1
maximumRelativeWidth=2

:RelativeInfoGroup

(a)

(b) (c)

Figure 9.8: An instance (a) demonstrating the usage of minimum and maximum relative
sizes. The minimum (b) and the maximum (c) sizes of button 2.

Button 1 is not resizeable, and the preferred width of Button 2 is the same as the

width of Button 1. However, if the preferred ratio could not be met, Button 2 is allowed

to be up to two times wider or shorter than Button 1.

Tree Metamodel

Figure 9.9 depicts Tree Metamodel, which describes �trees� (like a tree in a �le system

explorer). The TreeNodeSelectEvent is emitted when the user clicks on a tree item. This

previous link denotes which tree node was selected last. A TreeNodeExpandedEvent is

emitted when the user clicks on the expand sign (�+�) of a collapsed tree node to see the

children of that node. A TreeNodeCollapsedEvent occurs, when the user clicks on the

collapse sign (���) of an expanded node to hide the children of that node. A TreeNode-

MoveEvent occurs when the user moves a tree node to a di�erent position in the tree. This

event may occur only when the value of the movableNodes attribute of the corresponding

Tree instance is true.
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Component

Tree
movableNodes:Boolean

TreeNode
text:String
expanded:Boolean

TreeNodeSelectEvent

DialogEngineEvent

TreeNodeExpandedEvent

TreeNodeCollapsedEvent

TreeNodeMoveEvent

TreeEvent

* selected 0..1

childNode
*

parentNode
0..1

previous
0..1

source
0..1

1

1

1

1
previousParent
0..1
previousSiblingBefore
0..1
previousSiblingAfter
0..1

source
1

Figure 9.9: Tree Metamodel (an addition to Dialog Engine Metamodel)

Table Metamodel

Figure 9.10(a) depicts Table Metamodel used to express vertical tables, i.e., tables, where

columns have labels, and data are shown in rows. Figure 9.10(b) depicts the semantics.

Some comments on Table Metamodel:

� The lazyLoadRows attribute means that the table rows should not be loaded all at

once. Only visible rows have to be loaded �rst. Then, when the user scrolls the

table, other rows may be loaded. Although this may speed up the table, not all cells

are taken into a consideration when calculating preferred widths for the columns.

� The insertButtonCaption and deleteButtonCaption are useful only for non-read-only

tables (when the readOnly value is false). These are captions for the buttons for

inserting and deleting rows.

� The hasCells association is marked as derived since it can be calculated. The

order of VerticalTableCell-s in a VerticalTableRow corresponds to the order of

VerticalTableColumnType-s of the given VerticalTable.

� The defaultValue attribute values are used for the corresponding cells when the new

row is added.

� The VerticalTableComponent can be linked either to a VerticalTableColumnType or

to a VerticalTableCell. In case there is no particular component linked to a cell, it
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VerticalTable
lazyLoadRows:Boolean=false
 
insertButtonCaption:String
deleteButtonCaption:String
 
minimumHeightInRows:Integer 
preferredHeightInRows:Integer
maximumHeightInRows:Integer
minimumWidthInColumns:Integer
preferredWidthInColumns:Integer
maximumWidthInColumns:Integer
 
onInsertButtonClickEvent:String
onDeleteButtonClickEvent:String

Component

VerticalTableColumnType
caption:String
defaultValue:String
 
horizontalAlignment:HorizontalAlignment

VerticalTableComponent

VerticalTableRow
inserted:Boolean
deleted:Boolean
edited:Boolean

VerticalTableCell
value:String

Button

InputField

Label

CheckBox

ComboBox

Image

Item

InsertRowEvent DeleteRowEvent

0..1

*

selected
0..1

*

active
0..1

/hasCells

*

0..1

selected
0..1

source1 source1

*

(a)

<selected> 

<verticalTableComponent> 

<verticalTableColumnType> 

<verticalTableRow> 
<verticalTableCell> 

<active> 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

:DeleteRowEvent

:InsertRowEvent

(b)

Figure 9.10: a) Table Metamodel (an addition to Dialog Engine Metamodel) and b) its
semantics.
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is considered that the cell is occupied by the component linked to the corresponding

VerticalTableColumnType. This component is also used as a default component for

new rows.

� Since a component linked to the VerticalTableColumnType corresponds to several

cells in the same column, the input value for each cell has to be taken from the value

attribute of the VerticalTableCell class. For the ComboBox, there is also the selected

association from the cell to the item. This association has to be used instead of the

original selectedItem association of the ComboBox class.

9.2 Applying Quadratic Optimization

This section explains how, given a dialog instance speci�ed according to Dialog Engine

Metamodel, the quadratic optimization can be used to lay out GUI components in the

corresponding dialog window.

The QMDC and the Extended QMDC Problems

The problem of quadratic minimization subject to di�erence constraints (QMDC) is as

follows. Given n variables x0, x2, . . . , xn−1, minimize the quadratic function

∑
0≤i<n

aix
2
i +

∑
0≤i<j<n

bijxixj +
∑

0≤i<n

cixi

subject to di�erence constraints

xi − xj ≥ dij, where 0 ≤ i, j < n.

If also the constraints in the form

xi − xj ≥ dij ≥ mij, (9.1)

are allowed, then we get the Extended QMDC problem (EQMDC). Here dij are the desired

values andmij are the minimum values. In case the constraints taking into a consideration

only dij are unsatis�able, one or more of dij values may be decreased preserving dij ≥ mij,

i.e., dij cannot be decreased by more than by dij −mij.
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There exists a method for solving QMDC in a quite moderate time [208]. The EQMDC

problem can be reduced to the QMDC in the following way. First, a constraint graph

G = (V,E) is created [209, Section �Di�erence constraints and shortest paths�]. Here

V = {s, v0, v1, . . . , vn−1}, where all vi correspond to variables xi and s is a special start

vertex. Edge set E is

E = {(vi, vj) : xi − xj ≥ dij ≥ mij is a constraint}

∪{(s, v0), (s, v1), . . . , (s, vn−1)}.

In the beginning, consider only dij values. Rewriting (9.1), we have:

xj − xi ≤ −dij.

Then, we can assign the weight of the edge (vi, vj) to the value −dij, while the edges

(s, vi) have the weight 0.

Now, if G does not contain a negative cycle, then the system is solvable, and mij can

be removed leaving only dij. If G does contain a negative cycle, then the weights of the

edges in the cycle are increased to meet the constraints on mij (corresponding dij values

are decreased). If the cycle cannot be eliminated, there is no solution. Otherwise, we

continue until all the negative cycles are eliminated.

Note. To achieve practically good execution time, I use the Bellman-Ford-Tarjan

algorithm with the subtree disassembly method for �nding the negative cycles [210]. Since

for directed acyclic graphs negative cycle detection can be performed in linear time, the

strongly-connected components are searched in advance. So, the non-linear Bellman-Ford-

Tarjan algorithm is executed only on strongly-connected components while considering

the edges between these components takes linear time as these edges do not form a cycle.

The Application of EQMDC

This section explains how to transform a dialog instance to the input of the EQMDC

problem.

The variables I need are as follows. For each component C four variables are introduced

to specify the left, right, top and bottom coordinates: xC
L , x

C
R, y

C
T and yCB . The variables
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that bound the component with its margins are xC
LM , x

C
RM , y

C
TM and yCBM . If C is a

container, then the variables for storing C bounds without its border are xC
LB, x

C
RB, y

C
TB

and yCBB. Finally, the variables for bounding the inner area of C (without padding) are

xC
LP , x

C
RP , y

C
TP , y

C
BP .

The following subsections explain which constraints and terms to be minimized are

introduced for 1) absolute sizes; 2) relative sizes; 3) margins, borders, padding and spacing,

and 4) gravity and alignment. I provide the constraints for the x-dimension only since

the constraints for the y-dimension are similar.

Constraints and minimization terms for absolute sizes

The constraint concerning minimum width, obviously, is:

xC
R − xC

L ≥ minimumWidth;

But the constraint for the maximum width is being written in the extended form:

xC
L − xC

R ≥ −maximumWidth

≥ −MAXIMUM_COMPONENT_SIZE.

This is the same as

xC
R − xC

L ≤ maximumWidth

≤ MAXIMUM_COMPONENT_SIZE,

but written in the form of (9.1). Here MAXIMUM_COMPONENT_SIZE is a big constant, which

ensures that the components will not be very large since very large components, which

extend far beyond the screen size, are practically unusable.

The preferred sizes are speci�ed not by means of constraints, but as terms of the

function to be minimized. I add to the minimization the term

c ·
(
(xC

R − xC
L )− preferredWidth

)2
.

Here the penalty for the actual width (xC
R − xC

L ) to be distinct from the preferred width

grows quadratically. This ensures that even the component cannot have the preferred

size (due to constraints), the actual size will be close to the preferred. The constant c
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Figure 9.11: An example of the unsatis�able constrains on relative sizes. The ratio of the
widths in the �rst row is 1:1. The ratio of the widths in the second row is 1:2. Since the
components have to be aligned to grid, the ratio constraints become unsatis�able, if all
the components have positive minimum widths.

may be determined in the experimental way taking into a consideration other terms to

be minimized.

The minimization terms for relative sizes

Figure 9.11 shows that specifying relative sizes may easily lead to an unfeasible dialog

model.

There are two rows, each consisting of two components. The components have to be

aligned to grid. All relative widths (minimum, preferred and maximum) for the �rst two

components are set to 1, i.e., the widths of the �rst row components should be equal. The

second component in the second row must be two times wider than the �rst component in

the same row. Obviously, the only solution is when all the components have zero widths.

By specifying some positive minimumWidth values for all these components, the dialog

model becomes unfeasible. To make the layout engine �exible, I use the method described

below, which will �nd an approximate solution, should such a situation as in Figure 9.11

occur.

Assume there are two components, A and B, in the same relative width group (for the

heights the method is similar). Let them have preferred relative widths r1 and r2, and let

xA
L and xA

R be variables for the left and the right bounds of the �rst component as well as

xB
L and xB

R for the second. Then, obviously, the desired equation is:

r2 · (xA
R − xA

L ) = r1 · (xB
R − xB

L ). (9.2)
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Since not always this equation may be satis�ed by the reasons mentioned above, it is

better to replace it with the approximate equation. Let's write (9.2) in this form:

r2 · (xA
R − xA

L )− r1 · (xB
R − xB

L ) ≈ 0.

This form may be rewritten as a term to be minimized by quadratic optimization al-

gorithm: (
r2 · (xA

R − xA
L )− r1 · (xB

R − xB
L )
)2

. (9.3)

In case all the constraints can be satis�ed, this term will be zero, and, thus, the desired

relation will hold. Otherwise, the di�erence between the desired and the actual relation

will tend to be zero (with a quadratic penalty).

Since for any positive k the relative widths k · r1 and k · r2 denote the same relation

as r1 and r2, the quadratic term (9.3) has to be the same if r1 and r2 are multiplied by k.

So, prior to creating the term (9.3), the following normalization has to be performed:

 r1

r2

←
 r1

r1+r2

r2
r1+r2


If minimum/maximum relative sizes are also speci�ed, then they are used as follows.

Let (C1, r1, s1), (C2, r2, s2), . . . , (Cn, rn, sn) be the triples where ri denote minimum relative

widths and/or heights contained in the same group. Ci are the corresponding components

and si are equal to corresponding (absolute) minimum width and/or height values.

A coe�cient k is calculated �rst:

k ← max

{
si
ri

}
.

Then, for each Ci the corresponding minimumWidth or minimumHeight are adjusted to

the value k · ri.

The same refers to maximum sizes with the following di�erences:

� For all the triples (Ci, ri, si) with the ri set to maximum relative width/height and

si set to maximum width/height, ri and si must be de�ned.

� To calculate k, we have to min {si/ri} instead of max {si/ri}.
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Constraints for margins, borders, padding and spacing

The following constraints have to be used for the margins:

xC
L − xC

LM ≥ leftMargin,

xC
RM − xC

R ≥ rightMargin.

If C is a container, the borders are speci�ed by these constraints:

xC
LB − xC

L ≥ leftBorder ,

xC
R − xC

RB ≥ rightBorder .

Finally, if C is a non-scrollable container, then the following constraints are introduced

for padding:

xC
LP − xC

LB ≥ leftPadding ,

xC
RB − xC

RP ≥ rightPadding .

In case of a scrollable container the second constraint is not added.

The spacing between two components A and B (A on the left of B) is introduced by

the constraint

xB
LM − xA

RM = horizontalSpacing

(equation can be replaced by two inequalities).

Gravity and alignment

Assume there are nested components (see Figure 9.12).

Figure 9.12: The nested components. There exists gravity between the borders that forces
the inner component to be resized (unless it has the maximum size speci�ed) when the
outer component is resized.
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If Component C is not resizeable, Component B should still follow Component A,

when A is being resized. Thus, the gravity between components B and C should be less

than between A and B.

Referring to Figure 9.12, gravity tends to minimize the following di�erences: xC
L −xB

L ,

xB
R − xC

R, x
B
L − xA

L , and xA
R− xB

R . The �rst two di�erences must be �weaker�. That is, if C

is not resizeable, then there should be no gravity between B and C. In order to achieve

this, I use the following linear terms to be minimized:

k · (xC
L − xB

L ) + k · (xB
R − xC

R) + l · (xB
L − xA

L ) + l · (xA
R − xB

R),

where k < l. Assume C is not resizeable, and A has just been stretched. That means

the the sum (xC
L − xA

L ) + (xA
R − xC

R) has been �xed. If k < l, then the sum of the four

terms will reach its minimum, when the last two terms are zero. That is also the desired

behaviour for the gravity. If B is a vertical box with n children, the �weight� k should be

divided by n since the minimization terms involved by all the children sum up.

The following inequalities have also to be speci�ed:

xC
L − xB

L ≥ 0,

xB
R − xC

R ≥ 0,

xB
L − xA

L ≥ 0,

xA
R − xB

R ≥ 0.

If the children have to be left-aligned, then instead of gravity between the left container

border and the �rst child the constraint

xB
L − xA

L = 0,

is introduced (here A is a container and B is the left child). The same approach is used,

when the children have to be right-aligned. However, if the children are to be centred,

the term

c ·
(
(xB

L − xA
L )− (xA

R − xB
R)
)2

121



is added to the minimization. This makes the distances from the component to the left

and right borders of the parent equal. Finally, the constraints

xB
L − xA

L ≥ 0

xA
R − xB

R ≥ 0

have to be added.

9.3 Related Work

There are several ways of specifying dialog boxes. One is to use graphical designers,

which may be either stand-alone programs (like GLADE [211]), or parts of IDEs (Integ-

rated Design Environments) such as Borland C++ Builder, Microsoft Visual Studio, and

NetBeans. Such designers are usually developed for a speci�c widget toolkit or library

(e.g., GLADE is tailored for the GTK+ library, Borland C++ Builder uses VCL (Visual

Component Library), Microsoft Visual Studio uses the Windows::Forms library, while

NetBeans uses the Swing library).

There are also user interface (UI) libraries that do not have designers. In this case

dialog boxes are speci�ed in program code that uses the routines of the particular library.

Such code can also be written for the libraries that do have graphical designers.

Another way for specifying dialogs is using textual languages. HTML (Hyper Text

Markup Language) is an example of such language, since it allows GUI components to

be placed to web pages. Other examples include User Interface Markup Language, UIML

[212] and UsiXML [213].

Many toolkits allow the developer to specify absolute coordinates (like coordinates of

the left-top corner) and dimensions (i.e., width and height) GUI components. Sometimes,

absolute coordinated can be avoided by using tables (HTML), boxes (GLADE), or other

mechanisms (NetBeans UI designer uses horizontal and vertical groups to lay out the

components by means of the GroupLayout manager [214]).

Java Swing library contains several layout managers for laying out and resizing GUI

components [215]. A layout manager is associated with a container, so the elements inside

that container are laid out depending on the layout manager.

As of specifying resizeable components, some tools (Borland C++ Builder and Delphi,

Microsoft Visual Studio) have a possibility to set up anchors, i.e., to �x the distance
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between the component and one or several window borders. When a window is resized,

the component is relocated or resized to keep these distances constant. This is useful when

there is one large component that has to be resized along with the window. However, if

several components have to be resized simultaneously, anchors can lead to the problem

depicted in Figure 9.13: when the form is resized, the buttons overlap.

(a) (b)

Figure 9.13: (a) A form with two buttons where left and right anchors are set. (b) The
form after resizing.

The Windows Presentation Foundation (WPF) [216] is a platform for creating rich user

interfaces in Windows applications. WPF uses panels to lay out child components (panels

are similar to containers). WPF uses alignments (similar to horizontalAlignment and

verticalAlignment properties), padding (similar to borders and padding) and margins. The

di�erence is in stretching the components: in Dialog Engine Metamodel, the component

is stretched until it reaches the maximum size, while in WPF a special alignment constant

�Stretch� is introduced to denote that the component has to be stretched.

An interesting idea for specifying both absolute and relative sizes is based on usage of

linear constraints [217]. By means of constraints, the layout and behaviour of components

can be speci�ed in a more �exible way. However, de�ning the constraints explicitly by

means of equations and inequalities is not a natural way for specifying properties of

UI components. Moreover, the question arises concerning what to do if the constraints

are unsatis�able. UI may be generated at runtime, and the components should be laid

out despite inconsistent constraints. Dialog Engine solves this problem by allowing the

maximum sizes to be increased, when needed.

Several web-based techniques with very rich capabilities for creating user interfaces are

available for developers today. AJAX is an approach, where modern web technologies are

used to provide fast responses to the user [218]. If the client-side AJAX engine can handle

the user request by its own, it does so. Otherwise, a request (usually, asynchronous) to

the server is performed. Google Web Toolkit, GWT [219] is a framework that uses the

AJAX principles. Its feature is that web-based applications are developed in Java, while

at runtime web-based technologies such as JavaScript and HTML are used.

Microsoft Silverlight [220] and Adobe Flash [221] are two other platforms for providing

enhanced user-interface experience including interactivity and animations.
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The XForms XML format can be used for specifying user interfaces along with data

processing at the client side. XForms is �the next generation of forms technology for the

world wide web� [222].

Since there exist algorithms for user interface layout that use linear constraints

[223, 224], one may be interested why the quadratic (and not linear, or, possible, cu-

bic) optimization is used in Dialog Engine. The two reasons can be mentioned:

1. It is impossible to implement some constraints (like constraints for preferred sizes)

by means of a linear function only.

2. Optimizing other non-linear (cubic et al.) functions can be very time-consuming.

Regarding the implementation of QMDC, any method can be used here. While the

current implementation of Dialog Engine uses the method by Freivalds and �Kikusts [208],

one could use the method by Hosobe, for instance [225].

There is an interesting di�erence in resizing policy between the approach used by Dia-

log Engine and the approach used in the QT library [226]. In QT, when a layout (such as

vertical, horizontal, or grid layout) for a container is set, components inside this container

are resizeable by default. To prevent resizing, special components called horizontal and

vertical spacers can be used. Spacers act as springs that produce a counterforce for res-

izing. In contrast, my approach uses maximum width and height constraints to prevent

resizing.

Model-driven graphical tool building platforms such as Eclipse GMF [172, 173], Mi-

crosoft DSL Tools [58], Metaclipse+ [183], and others, usually provide a standard mech-

anism for creating dialog boxes such as property editors. These standard mechanisms

permit only limited customizations of a dialog box (e.g., we can specify the names of

properties and their values, but we cannot add some extra buttons). While the express-

iveness of such simple dialogs is su�cient for most cases, some platforms (like Microsoft

DSL Tools) permit also specifying dialogs of arbitrary complexity in an object-oriented

programming language (e.g., C#). But the additional knowledge and skills are required

here. Moreover, the model-driven approach is lost.

As noticed by Dmitrijs Logvinovs, the number of variables used in quadratic optimiz-

ation can be reduced up to two times by combining them (e.g., variables for margins can

be combined with the corresponding component coordinates). He also started an altern-

ative Java implementation that reduces the number of variables and takes an advantage

of using Java re�ection mechanism for loading GUI elements at runtime.
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Chapter 10

Error Engine

Even when a system is model-driven, it needs some mechanism to display error messages

to the user. �The connection to the network has been lost�; �The �le already exists�; �The

inheritance loop is detected (in the class diagram)� � these are just some of the examples.

Error messages can contain variable parts, e.g., �le names, numbers, etc. Thus, a way to

describe the �xed message text and its variable parts is needed. When multiple similar

errors occur, it may be reasonable to accumulate them in a single error message (so the user

does not need to click �OK� 100 times). When an error was caused by other (technical)

errors, developers and advanced users may need to obtain the detailed information about

those technical errors, thus, some way to form error hierarchies is needed.

In TDA, a universal way for handling errors and to deal with the issues just mentioned

is provided by Error Engine1. An interesting property of Error Engine is that Error Engine

uses the meta-meta level of abstraction. Since for repositories in a given technical space

the linguistic meta-metamodel is usually �xed, it is impossible to de�ne new meta-classes

there. Thus, when speaking about meta-meta level in this chapter, I refer to the quasi-

ontological meta-level, Ω3. Error Engine de�nes certain meta-classes and meta-properties

there. Thus, a repository that supports (or is able to simulate) at least three quasi-

ontological meta-levels is required by TDA Error Engine.

1Although I call this engine Error Engine, it can be used as a noti�cation engine as well.
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Object
from java.lang

Throwable
from java.lang
message: String

IOException
from java.io

FileNotFoundException
from java.io

ParseException
from java.text
errorOffset: Integer

Exception
from java.lang

Error
from java.lang

cause
0..1

Figure 10.1: A fragment of the Java exception hierarchy.

10.1 Error Handling and the Quasi-Ontological Meta-

Meta Level

Modern languages and environments supporting object-oriented programming (OOP)

have the notion of exception. Usually, all exception types are de�ned as classes, which

form some exception hierarchy. Figure 10.1 shows a fragment of Java exception hierarchy

in the form of a metamodel [227].

As we can see, exceptions are subclasses of the java.lang.Exception class.2 Each excep-

tion class may have attributes describing details of the exception (see attribute errorO�set

in class ParseException, for example). The cause property allows exceptions to be chained,

since one exception may cause another exception to be thrown.

The .NET Framework [228] also has its own exception hierarchy. Exceptions are

derived from the System.Exception class, which has the InnerException property similar

to the cause property in Java.

Exception classes naturally correspond to the quasi-ontological meta-level (Level Ω2),

in which metamodels are described. Particular occurrences of exceptions are instances

(objects) of those classes. These instances correspond to Level Ω1.

To be able to de�ne error types in TDA, I introduce the Error class in TDA Kernel

Metamodel � a root class for the error hierarchy. The Error class is similar to the

Throwable class in Java. The Error class can be extended in interface metamodels of

2The class Exception is derived from Throwable, because there exists another subclass derived from
Throwable � the class Error, and Java di�erentiates exceptions from errors.
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Figure 10.2: Adding Error Engine to TDA.

engines by de�ning types of errors the engines can produce. Thus, de�ning new types of

errors is similar to de�ning new types of events and commands in TDA.

However, there is also a di�erence between events/commands and errors. Commands

are processed by engines, and each particular engine has to be aware of a �nite number of

command types. The same is true for events. When some transformation is assigned to

handle certain events, the number of events the transformation has to be aware of is also

�nite. But errors are processed by Error Engine, which cannot foresee which engines will

be plugged in, and which errors types they will de�ne. Thus, Error Engine has to deal

with a potentially unbounded number of error types.

Still, Error Engine is aware of certain aspects. It can assume that error types form

a hierarchy. Besides, it can assume that error messages for the same class of errors are

similar (possibly, with some variations like �File <�lename> not found.�). Thus, some

class-level attribute for each error message would come in handy. Since the notion of the

class hierarchy and the notion of the class-level attribute are from the meta-meta level

(Level Ω3), it can be reasoned that what Error Engine could be aware of in advance is

not a metamodel (like in case of ordinary TDA engines), but a meta-metamodel.

Figure 10.2 depicts, how Error Engine embeds into TDA. Error Engine Metamodel

consists of the whole TDA error hierarchy (class Error and all its descendants) as well as

of the two events, which will be introduced later. Error Engine Metamodel is not simply

yet another interface metamodel, since it contains error classes from several interface

metamodels, and it is not known in advance how many error classes will be in the hierarchy.

To deal with Error Engine Metamodel, Error Engine needs Error Meta-Metamodel, which

can be used to discover the actual Error Engine Metamodel. Then, given a particular
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To

Figure 10.3: Error Meta-Metamodel (on top of the bold dashed line) and some Level
Ω2 classes (such as CurrentErrorParentPointer, Error and RootError) de�ned by Error
Engine.

error instance (at Level Ω1, not shown in Figure 10.2) and Error Meta-Metamodel (Level

Ω3), Error Engine can obtain the required information from the error type residing in

Error Engine Metamodel (Level Ω2) and display the error message.

Error Meta-Metamodel contains metaclasses (types for error types) that de�ne certain

class-level properties. These properties are used by Error Engine to decide how to display

errors of each particular type. Since errors of the same type have to be displayed in

the same way, it is reasonable to specify these properties only once for each error type

(that is why these properties are class-level properties). The next section explains Error

Meta-Metamodel.

10.2 Error Meta-Metamodel for Describing Errors

Error Meta-Metamodel for describing error types is depicted in Figure 10.3.

Classes with shadows are metaclasses for de�ning error classes at Level Ω2. Error types

(error classes) will be instances of metaclassesWaitingErrorClass, NonWaitingErrorClass,

and AccumulatingErrorClass, which all inherit from the common abstract super-metaclass

ErrorClass. Error types will also be direct or indirect subclasses of the common superclass
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CardBlocked

Error
Common superclass 
for all errors

GenericSVNError
textToDisplay:String

CommitError
location:String

FileNotFoundError
fileName:String

IOError CreditCardError

IncorrectPIN
triesRemaining:Integer

parent
0..1

child*

(a)

:GenericSVNError
textToDisplay="Failed to commit file.txt"

:CommitError
location="file.txt"

:FileNotFoundError
fileName="file.txt"

parentchild

parent
child

:IncorrectPIN
triesRemaining=2

:IncorrectPIN
triesRemaining=1

:IncorrectPIN
triesRemaining=0

:CardBlocked

child

child

child

(b) (c)

Figure 10.4: (a) A sample error metamodel (an instance of Error Meta-Metamodel).
(b) Sample error instances and the parent-child links. (c) Sample error instances, where
the parent-child links form a tree.

Error, which is an ordinary class at Level Ω2. The inheritance relationship between error

types can be used to form error hierarchies like in Figure 10.4(a).

The parent-child relationship of the Error class is used to navigate to deeper errors,

which caused the particular error object to be created, see Figure 10.4(b). The parent-

child relationship is similar to the Java cause property and to the .NET InnerException

property, but it can be used not just for chains of �inner� errors like in .NET and Java,

but also for trees, since several consecutive errors, not just one, could lead to the �outer�

error (see Figure 10.4(c)).

The following subsections will explain more in detail classes found in Error Meta-

Metamodel.

ErrorClass

The ErrorClass class de�nes common properties for all error types.
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The class-level attribute errorMessageTemplate is intended for storing the error mes-

sage common to all errors of the given type. For example, there may be an error class

called FileNotFoundError having the errorMessageTemplate value equal to:

File not found! .

Sometimes it is reasonable to include some details of a particular error instance, e.g.,

a particular �le name:

File document.txt not found! .

Such variations could be allowed by making the errorMessageTemplate attribute com-

putable. However, this is not convenient, since de�ning an error type would mean de�ning

also a function to compute the value of an error message. A parametrized string could do

the job as well. For example, we could write:

File ${fileName} not found. ,

where ${fileName} denotes the value of the attribute �leName of a particular

FileNotFoundError instance (this attribute must exist). And, if computable attributes

are supported, the �leName value can also be calculated, when needed.

Another way of introducing variations in error messages is by means of OCL-like

expressions, e.g.,

File ${self.fileName} not found

on the remote computer ${self.computer.name}.

(assume that it is possible to navigate from the error instance by the �computer� role

and take the value of the name attribute then). For convenience, self pointer could be

omitted, so one could write ${fileName} instead of ${self.fileName}. OCL-like ex-

pressions do not deny computable attributes, but provide additional �exibility in de�ning

error messages.

Sometimes errors are also requests to the user for an action. For example, when copying

several �les, some �le may already exist, and the user should choose between options like

`Yes', `Yes for all', `No', `No for all', etc., when asked for a con�rmation to overwrite
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an existing �le. In the proposed Error Meta-Metamodel, such options are speci�ed as

ResolvingAction-s. When the user selects an option, the corresponding resolvingFunction

is invoked (this function may be a model transformation or some other function; it must

take an Error instance as an argument). The forAll attribute denotes that the given

resolving action has to be invoked for all errors of the same type. The displayedName

attribute contains the name of the operation shown to the user (e.g., �Yes for all�).

In certain cases it is not obligatory to wait for the user to choose the action, e.g., the

system may continue copying other �les. However, the error object should contain all

necessary information (the context) in order the chosen action could be performed later.

Depending on whether the user interaction is required before the processing can be

continued I divide all error types into two disjoin sets � waiting error types and non-

waiting error types. The following two subsections describe the corresponding metaclasses

WaitingErrorClass and NonWaitingErrorClass.

WaitingErrorClass

Waiting errors require user interaction before the processing can be continued. The ex-

pected behaviour3 of Error Engine is to display a modal window with possible choices

(resolving actions) how to resolve the error. The canRememberChoice attribute denotes

whether Error Engine has to provide an option (e.g., a check box) for applying the same

choice for further errors of the same type.

NonWaitingErrorClass

When a non-waiting error occurs, the processing can continue without waiting for the

user interaction. The expected behaviour of Error Engine on such an error is to append

it to some error list shown to the user (compiler warnings and errors are usually shown

in this way). The maximumErrorsToShow attribute may be used to limit the number of

error messages shown in the list: the older messages will automatically disappear from

the screen, when the number of errors exceeds the value of maximumErrorsToShow.

If a non-waiting error has resolving actions, Error Engine displays the corresponding

options (e.g., some buttons near the error message), but does not wait for the user to click

3Although I mention the expected behaviour, there may be di�erent variations of Error Engine, and
certain features may be implemented there in some other manner.
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on them. When the user clicks on some option, the corresponding resolving function is

placed into the queue � it will be executed after the main processing �nishes.

The error list mentioned above actually can be a table. In compiler messages, �le

names and line numbers containing errors are usually shown in separate columns. Such

columns can be instances of the DisplayedErrorProperty metaclass. Each such column

has a caption and a valueTemplate. Each value template is a string, which describes

the values for the corresponding column. It can also contain OCL-like expressions, e.g.,

${this.source.fileName} and ${this.token.lineNumber}.

When too many similar errors occur, some cumulative error may be shown to the user

(either appending, or replacing the errors that are being accumulated). For example, a

compiler may summarize how many errors and warnings were there in code, or a function

for copying �les may show only one error message for 100 �les instead of 100 messages,

one message per �le. For dealing with such error types, I have introduced the Accumulat-

ingErrorClass class in Error Engine Meta-Metamodel, which is explained in the following

subsection.

AccumulatingErrorClass

For errors that are allowed to be accumulated there is the metaclass AccumulatingError-

Class. The value of the accumulateCount attribute speci�es the threshold for the number

of errors, when errors are to be grouped. Until the threshold is reached, accumulating

errors are shown as non-waiting errors. The accumulateOnlySequentialErrors value spe-

ci�es whether the threshold can be reached only by sequential errors of the given kind, or

errors of other kinds may intervene without restarting the counter. When the threshold

has been reached, the corresponding accumulateCount−1 error messages are replaced or

appended (depending on the replaceAccumulatedErrors value) by the accumulated error

message speci�ed as a value of the accumulatedErrorMessageTemplate attribute.

Example 1. The value of replaceAccumulatedErrors for compiler errors may

be set to false, and the value for accumulatedErrorMessageTemplate may be:

�Too many syntax errors.�.

If several kinds of errors need to be accumulated, a common supertype may be introduced.

Example 2. Having two error types FileCopyError and FolderCopy-

Error, a common superclass CopyError can be introduced. The
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errorMessageTemplate for FileCopyError and FolderCopyError may

be, respectively, �Could not copy the file ${fileName}.� and

�Could not copy the folder ${folderName}.�, while the accumu-

latedErrorMessageTemplate for the superclass CopyError may be:

�Could not copy ${FileCopyError.allInstances->size()} files

and ${FolderCopyError.allInstances->size()} folders.� .

10.3 Handling Errors

This section explains how error instances are created by model transformations and en-

gines, and how such error instances are handled by Error Engine.

When TDA undo/redo is invoked, a bundle of actions is being undone/redone at once

(see Chapter 7). Each such bundle of actions is a single logical action from the user's

point of view. When a new logical action is started, the user usually is not interested in

errors from previous logical actions. Thus, I assume that only errors within one logical

action have to be managed and stored in the model repository according to Error Engine

Metamodel4.

Since TDA Kernel knows when a new bundle of actions (a new logical action) starts,

it performs some clean-up by deleting previous error objects from the model repository.

Before each new bundle of actions TDA Kernel also re-creates a singleton instance of the

RootError class (see Figure 10.3) and sets the current error parent pointer (a singleton

instance of the CurrentErrorParentPointer class) to the root error object.

When transformations and engines perform their tasks and communicate by means

of events and commands, errors may occur. To report an error an engine/transforma-

tion simply creates an instance of the corresponding error type and attaches it to the

current parent. If the current parent is the root error object, Error Engine displays the

error. Errors not attached to the root error directly are not displayed5. The following

scenario explain the motivation behind this design choice. Assume that an engine or a

transformation needs to call some subroutine, which can produce error objects. If those

errors are too technical and should not be shown to the user, the engine/transformation

creates a stub parent error object and moves the current error parent pointer to this stub

4Error Engine may still display the whole history of error messages, but other engines and transform-
ations work only with errors within the current logical action.

5Actually, Error Engine may provide access to these nested errors for developers and advanced users,
but for simplicity I assume that nested errors are not shown.
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object. From this moment errors created by the subroutine will be attached to the stub

object. Since these errors are not directly connected to the root error (e.g., IncorrectPin

errors from Figure 10.4(c)), they will not be shown. When the subroutine �nishes, the

engine/transformation may replace the stub object with some more suitable error object

(depending on the nested errors produced by the subroutine), keeping the nested error

hierarchy, when needed (e.g., for providing additional details). Then, the current parent

pointer should be moved back to the previous parent.

Each time a new error object is created, Error Engine is triggered6. Error Engine tracks

the CurrentErrorParentPointer links to determine which errors have to be displayed and

which not. When an error has to be displayed, Error Engine retrieves the corresponding

class-level information stored according to Error Meta-Metamodel, and automatically

displays the error (e.g., via a modal message box, or by appending it to the list of errors).

When displaying an error, Error Engine can use some internationalization library

to display the error message in the language preferred by the user. To determine that

language, Error Engine should use the language and country attributes, de�ned in En-

vironment Engine Metamodel. Since Error Engine uses templates for messages, only one

string for each error type has to be translated.

For certain errors it is not su�cient to simply show error messages. Some error visu-

alization may be expected, when the user clicks on an error message. For example, if an

error is related to a diagram, the corresponding graphical element may be marked in red.

If the error is a syntax error in some code, the caret may go to the corresponding line.

Error Engine uses the standard TDA communication mechanism to inform trans-

formations, when the errors should be visualized. The two event classes, namely, Visu-

alizeErrorEvent and CancelErrorVisualizationEvent, are introduced for that (see Fig-

ure 10.3). When some error has to be visualized, a VisualizeErrorEvent instance is created

by Error Engine and linked to the corresponding error instance. When there is no more

need to have the error visualized, Error Engine creates a CancelErrorVisualizationEvent

instance.

6Technically, this triggering can be implemented by introducing a virtual repository that de�nes classes
Error, RootError, and CurrentErrorParentPointer with the corresponding associations. This repository
then can be merged with the main repository. Each time a parent-child link is created, the virtual
repository gets the control. Other solutions for implementing triggers are possible as well.
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10.4 Related Work

Windows API [229] is an excellent example of detecting and displaying errors in a pro-

cedural world. Windows functions usually do not display error messages, but in case of

an error some error-indicating value (like zero, NULL, -1, false, etc.) is returned. Such a

value only indicates that some error has occurred. More details (e.g., the kind of the error)

can be obtained by calling the GetLastError function, which returns the corresponding

integer value. The programmer may decide, whether to format and show the error mes-

sage depending on that integer value, or to handle the error in some other way, perhaps,

also returning some error-indicating value. Returning and checking such values is very

fast � each of these values usually occupies a single machine word. However, a single

integer value may be insu�cient to provide all the details about the error. Certain func-

tions can be introduced for providing additional details, but then this approach becomes

not so elegant since the programmer has to know which of these additional functions to

call for each error type. In contrast, the TDA error mechanism is not so fast: instead of

dealing with machine words, it deals with error objects in a model repository. However,

this brings the following bene�ts:

� The detailed information about the error can be speci�ed in properties of the error

object. Thus, no additional functions are needed for that.

� The programmer does not have to format the message: each error class has a message

template, which can be automatically transformed to a real error message by Error

Engine.

In the object-oriented world, error handing is usually based on exception hierarchy. Ex-

ceptions are classes, which may have properties for encoding detailed information about

errors. My solution also uses similar principles � error types correspond to classes, which

form error hierarchies. Besides, the proposed Error Meta-Metamodel allows the tools-

mith to specify possible actions for resolving errors (such as �Yes�, �No�, �Yes for all�,

etc.). Properties that should be displayed in a tabular form can also be de�ned. TDA

Error Engine automatically formats and displays the corresponding error message freeing

the programmer from that job. In addition, the proposed solution allows several errors of

the same kind to be grouped together.

There are also some model-based solutions for managing errors. For example, the work

of Brambilla et al. [230] introduces two classes for handling errors: the ExceptionType class
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with the name attribute and the ExceptionInstance class with three speci�c attributes.

Each exception instance is linked to exactly one exception type. Another example can

be found in the presentation metamodel of the MOLA tool based on the Metaclipse

platform [183]. There exists a CompilerMessage class with two attributes � one for

the error message, and another for the error type (warning or error). There is also a

transformation that is used to visualize errors graphically. Although both mentioned

model-based approaches are excellent for particular purposes, they are not as universal

as the proposed TDA error mechanism.
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Discussion

Scienti�c and Practical Signi�cance of the Research

The main principle behind TDA is the use of models and transformations at runtime.

The scienti�c novelty of the research is re�nement and formalization of this principle in

the form of TDA speci�cation. There is no known software architecture similar to TDA.

TDA uses models as a universal encoding for data, and it uses model transformations

as a universal means to describe the business logic of a system. This refers to the practical

value of the thesis: the use of models and transformations increases the abstraction level,

at which the system components and business logic are described. This increases the pro-

ductivity of programmers and speeds up the development process. Interface metamodels,

which are used for describing engines, are important documentation artefacts that (when

represented graphically) improve the readability of speci�cations of engines and reduce

the size of the required written documentation. The IMCS-UL experience shows that

even undergraduate students can work with TDA and use documentation expressed in

the form of metamodels.

The fact that TDA ensures interoperability between components of di�erent types

allows system developers to choose programming and transformation languages as well

as model repositories according to the actual needs. In addition, it reduces software

development costs, since newly created TDA engines can be reused in other systems.

O�-the-shelf third-party engines (when available) can be reused as well.

A scienti�c signi�cance of the TDA undo/redo mechanism is based on the fact that it

is a universal solution for all TDA-based systems. In addition, this mechanism has also

a practical value: since it is automatic, developers do not have to think about undo/redo

(except for speci�c cases).

TDA ability to work with multiple model repositories of di�erent types is also im-

portant: it can be used to combine knowledge and tools from di�erent technical spaces
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(technologies such as XML, formal grammars, relational databases, semantic web techno-

logies, MOF-like modelling techniques, etc. [41, 40]).

The concept of Environment Engine is an abstraction layer that allows TDA to be

launched in di�erent ways: as a PC application, as an application on a touch screen

device, or as a component of another program. Thus, TDA has a potential to be used on

tablet computers and smartphones.

Dialog Engine Metamodel is a new way of specifying dialog windows (usually they are

described in the program code, XML �les, or by means of graphical designers). Exact

dimensions and positions of dialog elements may be omitted, since they can be com-

puted automatically by a special layout algorithm proposed in the thesis. From the

practical point of view, this is a convenient solution to generating graphical user interface

at runtime.

Error Engine Meta-Metamodel is a new universal meta-language for describing tax-

onomies of error and information messages of di�erent types.

TDA has proven its e�ectiveness in practical applications, including uses in state

agencies SEDA7 and SSIA8 [3] (see Section �Applying the results in practice� on page 14

and Section 4.4).

Limitations of TDA

Probably, the most obvious TDA limitation is its performance slowdown. Since data

have to be stored as models in a model repository, the repository-related overhead is

involved. Programming tricks with direct memory access are not available any more, if

data are accessed via RAAPI. Furthermore, TDA Kernel introduces additional slowdown

via the undo/redo mechanism and indirections such as proxy references and repository

adapters. Model transformations are also subject to these e�ciency issues, since in TDA

they are executed at runtime. Nevertheless, the performance slowdown involved in current

applications is not essential: TDA works without observable delay on modern PC's. Thus,

that is a reasonable price for the bene�ts o�ered by TDA. Taking into a consideration

the ever increasing power of computers, it can be said that current performance issues in

TDA are not issues tomorrow. On the other hand, taking into a consideration the �No

Silver Bullet� conjecture by Frederick P. Brooks, the problem of raising the productivity

7State Education Development Agency (SEDA, Latvian - VIAA)
8The State Social Insurance Agency (SSIA, Latvian - VSAA)

138



of programmers will be the problem also tomorrow [21, 231, 232]. TDA aids here by

allowing to raise the level of abstraction as well as by solving certain accidental problems

(such as interoperability of di�erent system components).

In TDA, interface metamodels are important artefacts that have to be thoroughly

designed. The process of designing an interface metamodel for a TDA engine is similar

to de�ning a cross-platform and cross-language API for a particular software library. In-

terface metamodels have to be created by skilled developers. TDA does not aid here.

Besides, TDA does not specify how to map interface metamodels to particular function-

ality o�ered by engines. This process can be non-trivial (as in the case of Dialog Engine,

which uses quadratic optimization). Still, when an engine has been developed, it can be

reused in di�erent tools (including third-party tools).

On the one hand, the requirement to use interface metamodels in TDA (as opposed to

native APIs and direct access to data structures) is a limitation: all operations must be

performed via a model, even the communication (by means of events and commands). On

the other hand, this approach makes TDA independent on any particular implementation

of engines and transformations.

The requirement to use a particular interface for accessing models (RAAPI) can be

neglected by the fact that RAAPI can be mapped to di�erent programming languages and

used from di�erent platforms. Higher-level wrappers over RAAPI can also be created.

Moreover, it is possible to generate, for example, Java or C++ classes that re�ect the

structure of the repository and use RAAPI internally, while the user can work with the

generated classes as with native Java or C++ classes.

TDA as Foundation for Other Research

Along with TDA, this thesis presented three important engines � Environment Engine,

Dialog Engine, and Error Engine. These engines have a potential to be included in most

TDA-based systems having graphical user interface. TDA, its kernel, and these three

engines de�ne the core of such systems. From this point of view, the thesis is a �nished

research.

By extending the core presented in this thesis, the whole model-driven world can

be built. For instance, Art	urs Sprog̀is is doing the research on building domain-speci�c

tools on the TDA foundation. M	arti�n�s Zviedris and Ren	ars Liepi�n�s use the results of
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A. Sprog̀is to build particular tools for the semantic web area. The model-driven world

is indeed being built.

To provide some idea on possible types of engines that can be used within TDA, I

would like to mention three engines developed at IMCS-UL9:

� Graph Diagram Engine is a complex engine for visualizing and editing graph dia-

grams [2, 5]10. Currently, all domain-speci�c tools developed at IMCS-UL are based

on graph-diagrams, thus, they use this engine. Like Dialog Engine, Graph Diagram

Engine uses quadratic optimization to lay out diagrams, although in a di�erent way

[208].

� Word Engine is a simple engine for generating Word documents on-the-�y via the

Microsoft O�ce automation mechanism.

� Multiuser Engine is an engine for managing shared graph diagrams via the subver-

sion system.

TDA and Its Relation to the Human Brain Architecture

There is an interesting relation between TDA and the architecture of the human brain.

Although we do not know how exactly our brain stores information, we know something

about the structure of the brain [233]. The fact is that senses from the external world are

transformed by sense organs to electrical impulses that are transferred to certain areas of

the brain. That resembles how engines synchronize data between the �external� traditional

code world and certain areas (represented by interface metamodels) of the model-based

world. If we rearrange TDA components from Figures 3.1 on page 46 and 3.3 on page 49,

we can see this more clearly (Figure 10.5).

The thalamus residing at the core of the brain is a �relay station� for signals coming

from all the senses except smell. This resembles how TDA Kernel ensures the commu-

nication between engines and transformations by means of events and commands. The

TDA analogue for smell could be a background engine that does not have its own events

or commands, e.g., an autosave engine.

Transformations, with their ability to access the data from all interface metamodels

and command the engines, can be associated with the prefrontal areas (see �thinking�

9The last two engines were developed by me.
10A part of Graph Diagram Engine Metamodel has been presented in Section 3.3.
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Figure 10.5: TDA and the structure of the human brain.

in Figure 10.5) that are responsible for making decisions and combining the information

from di�erent sense organs. As a result, a signal to the motor cortex can be given. This

resembles how transformations issue commands in TDA. Like the hippocampus, which is

responsible for forming and retrieving memory in the brain, RAAPI and the underlying

repositories are responsible for memory in TDA. The corpus callosum (not shown in Figure

10.5), which links two cerebral hemispheres, resembles how TDA Kernel manages links

between di�erent repositories.
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Conclusion

The thesis presented TDA speci�cation and three graphical engines. Successful applica-

tions of TDA prove that system building technology, where system dynamics and business

logic are described by means of model transformations working at runtime, is viable.

The following conclusions can be derived from the research:

� Formal models and their transformations are powerful artefacts that can be used to

develop software systems. There are numerous technologies and standards support-

ing model-driven software development and model-driven engineering. On the one

hand, this allows TDA to be built on the foundation of existing, well-established

technologies. On the other hand, in order not to tie TDA to any particular tech-

nology, certain abstraction layers are needed. In TDA, these layers are represented

by adapters for models repositories, adapters for transformations, and adapters for

engines.

� By using abstraction layers as well as a universal communication mechanism, TDA

can be used as a means to connect software components written in di�erent pro-

gramming languages and using di�erent technologies. Developers are able to choose

a more suitable modelling technology (technical space) and transformation language

for each particular task or part of a system.

� The Model-Driven Architecture (MDA) proposed by OMG uses models and trans-

formations at development time. The Transformation-Driven Architecture moves

them to runtime. This facilitates the development of interactive systems consisting

of multiple interoperating components, since models can be used to describe com-

ponents of a system, while runtime transformations can be used to describe business

logic.

� By hiding less important technical and platform-dependent details behind inter-

face metamodels, TDA increases the level of abstraction, at which business logic
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is described. By raising the level of abstraction and by reusing engines (some of

which can be developed by third-parties), TDA facilitates more e�cient software

development.

� Since TDA is a common infrastructure for interactive systems, certain functionality

can be implemented at the level of infrastructure for all TDA-based systems. The

undo/redo mechanism and the multi-repository mechanism are examples of such

functionality.

� TDA engines are a �exible means to ensure the communication between the user

and TDA. They can be used to de�ne graphical presentations (e.g., Graph Diagram

Engine11 and Dialog Engine) and provide a common way for de�ning and handling

error messages and information messages (e.g., Error Engine). To consolidate all

graphical presentations, a special engine (Environment Engine) is needed.

� The bene�ts o�ered by TDA have their price: extensive access to model reposit-

ories and the prescription to encode data in models involves certain performance

slowdown. In practical applications, however, this slowdown is non-observable by a

human eye.

� TDA has proven its e�ectiveness in developing domain speci�c tools. Some of them

are being used in production environment in Latvia. The OWLGrEd tool is being

used worldwide. The comparison of TDA with the architecture of the human brain

suggests that TDA is suitable also for developing much more complex systems.

Obviously, the thesis could not address all aspects of interactive systems. That is why I

concentrated on the core of such systems. The proposed core consists of TDA, TDA Kernel

(implementing TDA-level functionality), and the three engines that have a potential to be

included in most TDA-based systems. Having such a core, numerous interactive systems

as well as meta-tools (like TDA-based meta-tool GRAF) can be built upon TDA. Since

models and transformations have a potentially unlimited number of applications, there

is hope that TDA could �nd its way to a wide range of areas. As was mentioned in the

Discussion chapter, M. Zviedris, R. Liepi�n�s, and A. Sprog̀is base their research on TDA.

Certain work is being done at IMCS-UL to apply TDA-based tools in medicine [234]. Like

a microprocessor architecture with its instructions set and technical design is a physical

11This engine is not a contribution of this thesis, but it is described in two papers (I am a co-author)
[2, 5].
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foundation for software, TDA with its abstraction layers (∼ instructions sets) and its

design based on the notions of models, transformations, events, and commands, can be

viewed as a logical foundation for model-driven software. When George Boole introduced

his algebra (now called Boolean algebra) in 1854, he was not able to realize the impact

his algebra would have on modern computers [235]. Perhaps, the potential of models

and model transformations will also be realized later, when more information about our

thinking processes and cognitive abilities becomes available.
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Appendix A

Repository Access Application
Programming Interface (RAAPI)
Documentation

The documentation below has been generated by Doxygen from the RAAPI source code
developed by me (S. Kozlovi�cs). The source code license is as follows:

Copyright (C) 2010-2012 by University of Latvia

Copyright (C) 2012-2013 by the Institute of Mathematics and Computer Science,

University of Latvia

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to

deal in the Software without restriction, including without limitation the

rights to use, copy, modify, merge, publish, distribute, sublicense, and/or

sell copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS

IN THE SOFTWARE.

The up-to-date version of RAAPI can be found at tda.lumii.lv/raapi.html.

A.1 IRepository Interface Reference
Inheritance diagram for IRepository:

IRepository

IRepositoryManagement RAAPI
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Detailed Description
The IRepository interface is a union of RAAPI containing operations on model elements
and IRepositoryManagement containing technical operations on repositories such as op-
erations for opening, closing, saving, etc.

A.2 RAAPI Interface Reference
Inheritance diagram for RAAPI:

RAAPI

IRepository

Public Member Functions
Operations on primitive data types

� Reference �ndPrimitiveDataType (in UnicodeString name)
� UnicodeString getPrimitiveDataTypeName (in Reference rDataType)
� boolean isPrimitiveDataType (in Reference r)

Operations on classes

� Reference createClass (in UnicodeString name)
� Reference �ndClass (in UnicodeString name)
� UnicodeString getClassName (in Reference rClass)
� boolean deleteClass (in Reference rClass)
� Iterator getIteratorForClasses ()
� boolean createGeneralization (in Reference rSubClass, in Reference rSuperClass)
� boolean deleteGeneralization (in Reference rSubClass, in Reference rSuperClass)
� Iterator getIteratorForDirectSuperClasses (in Reference rSubClass)
� Iterator getIteratorForDirectSubClasses (in Reference rSuperClass)
� boolean isClass (in Reference r)
� boolean isDirectSubClass (in Reference rSubClass, in Reference rSuperClass)
� boolean isDerivedClass (in Reference rDirectlyOrIndirectlyDerivedClass, in Ref-
erence rSuperClass)

Operations on objects

� Reference createObject (in Reference rClass)
� boolean deleteObject (in Reference rObject)
� boolean includeObjectInClass (in Reference rObject, in Reference rClass)
� boolean excludeObjectFromClass (in Reference rObject, in Reference rClass)
� boolean moveObject (in Reference rObject, in Reference rToClass)
� Iterator getIteratorForAllClassObjects (in Reference rClassOrAdvanced-
Association)

� Iterator getIteratorForDirectClassObjects (in Reference rClassOrAdvanced-
Association)

� Iterator getIteratorForDirectObjectClasses (in Reference rObjectOrAdvanced-
Link)
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� boolean isTypeOf (in Reference rObject, in Reference rClass)
� boolean isKindOf (in Reference rObject, in Reference rClass)

Operations on attributes

� Reference createAttribute (in Reference rClass, in UnicodeString name, in Refer-
ence rPrimitiveType)

� Reference �ndAttribute (in Reference rClass, in UnicodeString name)
� boolean deleteAttribute (in Reference rAttribute)
� Iterator getIteratorForAllAttributes (in Reference rClass)
� Iterator getIteratorForDirectAttributes (in Reference rClass)
� UnicodeString getAttributeName (in Reference rAttribute)
� Reference getAttributeDomain (in Reference rAttribute)
� Reference getAttributeType (in Reference rAttribute)
� boolean isAttribute (in Reference r)

Operations on attribute values

� boolean setAttributeValue (in Reference rObject, in Reference rAttribute, in
UnicodeString value)

� UnicodeString getAttributeValue (in Reference rObject, in Reference rAttribute)
� boolean deleteAttributeValue (in Reference rObject, in Reference rAttribute)
� Iterator getIteratorForObjectsByAttributeValue (in Reference rAttribute, in
UnicodeString value)

Operations on associations

� Reference createAssociation (in Reference rSourceClass, in Reference rTarget-
Class, in UnicodeString sourceRoleName, in UnicodeString targetRoleName, in
boolean isComposition)

� Reference createDirectedAssociation (in Reference rSourceClass, in Reference r-
TargetClass, in UnicodeString targetRoleName, in boolean isComposition)

� Reference createAdvancedAssociation (in UnicodeString name, in boolean nAry,
in boolean associationClass)

� Reference �ndAssociationEnd (in Reference rSourceClass, in UnicodeString
targetRoleName)

� boolean deleteAssociation (in Reference rAssociationEndOrAdvancedAssociation)
� Iterator getIteratorForAllOutgoingAssociationEnds (in Reference rClass)
� Iterator getIteratorForDirectOutgoingAssociationEnds (in Reference rClass)
� Iterator getIteratorForAllIngoingAssociationEnds (in Reference rClass)
� Iterator getIteratorForDirectIngoingAssociationEnds (in Reference rClass)
� Reference getInverseAssociationEnd (in Reference rAssociationEnd)
� Reference getSourceClass (in Reference rTargetAssociationEnd)
� Reference getTargetClass (in Reference rTargetAssociationEnd)
� UnicodeString getRoleName (in Reference rAssociationEnd)
� boolean isComposition (in Reference rTargetAssociationEnd)
� boolean isAdvancedAssociation (in Reference r)
� boolean isAssociationEnd (in Reference r)

Operations on links

� boolean createLink (in Reference rSourceObject, in Reference rTargetObject, in
Reference rAssociationEnd)

� boolean createOrderedLink (in Reference rSourceObject, in Reference rTarget-
Object, in Reference rAssociationEnd, in long targetPosition)
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� boolean deleteLink (in Reference rSourceObject, in Reference rTargetObject, in
Reference rAssociationEnd)

� boolean linkExists (in Reference rSourceObject, in Reference rTargetObject, in
Reference rAssociationEnd)

� Iterator getIteratorForLinkedObjects (in Reference rObject, in Reference r-
AssociationEnd)

� long getLinkedObjectPosition (in Reference rSourceObject, in Reference rTarget-
Object, in Reference rAssociationEnd)

Operations with iterators

� Reference resolveIteratorFirst (in Iterator it)
� Reference resolveIteratorNext (in Iterator it)
� long getIteratorLength (in Iterator it)
� Reference resolveIterator (in Iterator it, in long position)
� void freeIterator (in Iterator it)

Operations on references

� void freeReference (in Reference r)
� UnicodeString serializeReference (in Reference r)
� Reference deserializeReference (in UnicodeString r)

Operations with quasi-linguistic meta-metamodel at Level M3

� Iterator getIteratorForLinguisticClasses ()
� Iterator getIteratorForDirectLinguisticInstances (in Reference rClass)
� Iterator getIteratorForAllLinguisticInstances (in Reference rClass)
� Reference getLinguisticClassFor (in Reference r)
� boolean isLinguistic (in Reference r)

Calling repository-speci�c operations

� UnicodeString callSpeci�cOperation (in UnicodeString operationName, in
UnicodeString arguments)

Detailed Description
RAAPI is a common abstraction layer for accessing models stored in di�erent repositories
associated with di�erent technical spaces.

Member Function Documentation
Reference RAAPI::findPrimitiveDataType ( in UnicodeString name )

Obtains a reference to a primitive data type with the given name.

Parameters
name the type name. Each repository must support at least four standard

primitive data types: "Integer", "Real", "Boolean", and "String".
Certain repositories may introduce additional primitive types. To denote
a repository-speci�c additional primitive data type, prepend the mount
point of that repository, e.g., MountPoint::PeculiarDataType.
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Returns
a reference to a primitive data type with the given name, or 0 on error.
Note (TDA Kernel): TDA Kernel returns a proxy reference, which is usable even
when there are multiple repositories mounted or non-standard primitive data types
are used.

UnicodeString RAAPI::getPrimitiveDataTypeName ( in Reference rDataType )

Returns the name of the given primitive data type.

Parameters
rDataType a reference to a primitive data type, for which the name has to be obtained

Returns
the name of the given primitive data type, or null on error.

See Also
RAAPI::�ndPrimitiveDataType

boolean RAAPI::isPrimitiveDataType ( in Reference r )

Checks whether the given reference is associated with a primitive data type.

Parameters
r a reference in question

Returns
whether the given reference is associated with a primitive data type. On error, false
is returned.

See Also
RAAPI::�ndPrimitiveDataType
RAAPI::getPrimitiveDataTypeName

Reference RAAPI::createClass ( in UnicodeString name )

Creates a class with the given fully quali�ed name.

Parameters
name the fully quali�ed name of the class (packages are delimited by double

colon "::"); this fully quali�ed name must be unique

Returns
a reference to the class just created, or 0 on error.

Reference RAAPI::findClass ( in UnicodeString name )

Obtains a reference to an existing class with the given fully quali�ed name.
Note (M3): If the underlying repository provides access to its quasi-linguistic meta-
metamodel, quasi-linguistic classes can be accessed by appending the package name "M3"
to the mount point of that repository, e.g., SomePath::MountPoint::M3::SomeMetaType
Note (adapters): This function is optional for repository adapters. If not implemented
in an adapter, TDA Kernel implements it through getIteratorForClasses and get-

IteratorForLinguisticClasses.
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Parameters
name the fully quali�ed name of the class (for quasi-linguistic classes, append

package "M3" to the mount point of the corresponding repository)

Returns
a reference to a (quasi-ontological or quasi-linguistic) class with the given fully qual-
i�ed name.

UnicodeString RAAPI::getClassName ( in Reference rClass )

Returns the fully quali�ed name of the given class.
Note (M3): If the reference points to a quasi-linguistic class, then the package name
"M3" is also included in the return value, e.g., MountPointForTheCorresponding-

Repository::M3::ClassName.

Parameters
rClass a reference to the class, for which the class name has to be obtained

Returns
the fully quali�ed name of the given class, or null on error.

boolean RAAPI::deleteClass ( in Reference rClass )

Deletes the class and frees the reference.

Parameters
rClass a reference to the class to be deleted

Returns
whether the operation succeeded.

Iterator RAAPI::getIteratorForClasses ( )

Obtains an iterator for all classes (all quasi-ontological classes at all quasi-ontological
meta-levels).
Note (M3): Linguistic classes are not traversed by this iterator. Use getIteratorFor-
LinguisticClasses instead.

Returns
an iterator for all classes, or 0 on error.

See Also
RAAPI::getIteratorForLinguisticClasses

boolean RAAPI::createGeneralization ( in Reference rSubClass, in Reference rSuperClass )

Creates a generalization between the two given classes.
The given subclass can be a derived class of the given superclass, but the direct general-
ization between them must not exist.
The generalization relation being created must not introduce inheritance loops.

Parameters
rSubClass a class that becomes a subclass

rSuperClass a class that becomes a superclass
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Returns
whether the operation succeeded.

boolean RAAPI::deleteGeneralization ( in Reference rSubClass, in Reference rSuperClass )

Deletes the generalization between the given two classes.

Parameters
rSubClass a class that was a subclass

rSuperClass a class that was a superclass

Returns
whether the operation succeeded.

Iterator RAAPI::getIteratorForDirectSuperClasses ( in Reference rSubClass )

Obtains an iterator for all direct superclasses of the given subclass.
Note (M3): If the given subclass is a quasi-linguistic class, then an iterator for its direct
quasi-linguistic superclasses is returned.

Parameters
rSubClass a subclass for which to obtain direct superclasses

Returns
an iterator for all direct superclasses of the given subclass, or 0 on error.

Iterator RAAPI::getIteratorForDirectSubClasses ( in Reference rSuperClass )

Obtains an iterator for all direct subclasses of the given superclass.
Note (M3): If the given superclass is a quasi-linguistic class, then an iterator for direct
quasi-linguistic subclasses is returned.

Parameters
rSuperClass a superclass for which to obtain direct subclasses

Returns
an iterator for all direct subclasses of the given superclass, or 0 on error.

boolean RAAPI::isClass ( in Reference r )

Checks whether the given reference is associated with a class.
Note (M3): A reference at Level M3 can also be passed.

Parameters
r a reference in question

Returns
whether the given reference is associated with a class. On error, false is returned.

boolean RAAPI::isDirectSubClass ( in Reference rSubClass, in Reference rSuperClass )

Checks whether the generalization relation between the two given classes holds.
Note (M3): Both classes may be either quasi-ontological, or quasi-linguistic.
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Parameters
rSubClass a reference to a potential subclass

rSuperClass a reference to a potential superclass

Returns
whether the generalization relation holds. On error, false is returned.

boolean RAAPI::isDerivedClass ( in Reference rDirectlyOrIndirectlyDerivedClass, in
Reference rSuperClass )

Checks whether one class is a direct or indirect subclass of another.
Note (M3): Both classes may be either quasi-ontological, or quasi-linguistic.

Parameters
rDirectlyOr-
Indirectly-

DerivedClass

a reference to a potential subclass or derived class

rSuperClass a reference to a potential (direct or indirect) superclass

Returns
whether the �rst class derives from the second. On error, false is returned.

Reference RAAPI::createObject ( in Reference rClass )

Creates an instance of the given class.
Note (M3): If the given class is a quasi-linguistic class, then its quasi-linguistic instance
at Level MΩ is being created.

Parameters
rClass a reference to a class (either quasi-ontological, or quasi-linguistic)

Returns
whether the operation succeeded.

boolean RAAPI::deleteObject ( in Reference rObject )

Creates the given object.

Parameters
rObject a reference to the object to be deleted

Returns
whether the operation succeeded.

boolean RAAPI::includeObjectInClass ( in Reference rObject, in Reference rClass )

Adds the given object to the given (quasi-ontological) class. The function works, if the
underlying repository supports multiple classi�cation and dynamic reclassi�cation.
Note (M3): It is assumed that an element from a quasi-ontological level can be associ-
ated with only one quasi-linguistic type (quasi-linguistic class), thus, includeObjectIn-
Class is meaningless in this case.

Parameters
rObject a reference to the object to be included in the given class
rClass a reference to the class, where to put the object (in addition to classes,

where the object already belongs)
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Returns
whether the operation succeeded.

boolean RAAPI::excludeObjectFromClass ( in Reference rObject, in Reference rClass )

Takes out the given object from the given (quasi-ontological) class.
The function works, if the underlying repository supports multiple classi�cation and dy-
namic reclassi�cation. If the object currently is only in one class, then the operation fails
(it is assumed that each object must be at least in one class).
Note (M3): It is assumed that an element from a quasi-ontological level can be associ-
ated with only one quasi-linguistic type (quasi-linguistic class), thus, excludeObjectIn-
Class as well as includeObjectInClass are meaningless in this case.

Parameters
rObject a reference to the object to be excluded from the given class
rClass a reference to the class, which to exclude from the classi�ers of the given

object

Returns
whether the operation succeeded.

boolean RAAPI::moveObject ( in Reference rObject, in Reference rToClass )

Moves (reclassi�es) the given object into the given (quasi-ontological) class, removing it
from its current class (classes).
The function is similar to calling
includeObjectInClass(rObject, rToClass); followed by calling
excludeObjectInClass(rObject, c) for all other current classi�ers c of the given object.
The distinction is that it may be possible to implement this function even when multiple
classi�cation is not supported.
Note (adapters): This function is optional for repository adapters. If not implemented
in an adapter, TDA Kernel implements it by recreating the object (with the new type),
while also recreating all attributes and links.
Note (M3): It is assumed that an element from a quasi-ontological level cannot dy-
namically change its quasi-linguistic type (quasi-linguistic class), thus, moveObject is
meaningless in this case.

Parameters
rObject a reference to the object to be reclassi�ed

rToClass a reference to the class, to which the object will belong

Returns
whether the operation succeeded.

Iterator RAAPI::getIteratorForAllClassObjects ( in Reference rClassOrAdvancedAssociation
)

Obtains an iterator for all quasi-ontological instances of the given class or advanced as-
sociation.
Note (adapters): A repository adapter may implement only one of the functions get-
IteratorForAllClassObjects and getIteratorForDirectClassObjects. The unim-
plemented function will be implemented via another by TDA Kernel.
Note (M3): If the given class or advanced association is quasi-linguistic, then an iterator
for the quasi-linguistic elements it describes is returned, e.g., for the EMOF class "Class",
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an iterator for all classes found in EMOF is returned; for the EMOF class "Property", an
iterator for all properties found in EMOF is returned, etc.

Parameters
rClassOr-
Advanced-

Association

a reference to a class or an advanced association

Returns
an iterator for all quasi-ontological instances (objects) of the given class or advanced
association. On error, 0 is returned.

See Also
RAAPI::getIteratorForDirectClassObjects

Iterator RAAPI::getIteratorForDirectClassObjects ( in Reference
rClassOrAdvancedAssociation )

Obtains an iterator for direct quasi-ontological instances of the given class or advanced
association.
Note (adapters): A repository adapter may implement only one of the functions get-
IteratorForAllClassObjects and getIteratorForDirectClassObjects. The unim-
plemented function will be implemented via another by TDA Kernel.
Note (M3): If the given class or advanced association is quasi-linguistic, then an iterator
for the quasi-linguistic elements it describes is returned, e.g., for the EMOF class "Class",
an iterator for all classes found in EMOF is returned; for the EMOF class "Property", an
iterator for all properties found in EMOF is returned, etc.

Parameters
rClassOr-
Advanced-

Association

a reference to a class or an advanced association

Returns
an iterator for direct quasi-ontological instances (objects) of the given class or ad-
vanced association. On error, 0 is returned.

See Also
RAAPI::getIteratorForAllClassObjects

Iterator RAAPI::getIteratorForDirectObjectClasses ( in Reference rObjectOrAdvancedLink )

Obtains an iterator for direct quasi-ontological classes of the given object or advanced
link.
Note (M3): The function works also if the given object or advanced link is quasi-
linguistic and the underlying repository provides access to quasi-linguistic elements. To
get the quasi-linguistic class for the given element at some quasi-ontological level, use
getLinguisticClassFor.

Parameters
rObjectOr-
Advanced-

Link

a reference to an object or advanced link
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Returns
an iterator for direct quasi-ontological classes of the given object or advanced link.
On error, 0 is returned.

See Also
RAAPI::getLinguisticClassFor

boolean RAAPI::isTypeOf ( in Reference rObject, in Reference rClass )

Checks whether the given object is a direct (quasi-ontological or quasi-linguistic) instance
of the given class.
Note (M3): The function works also when one or both of rObject and rClass is/are
quasi-linguistic. If the object is at a quasi-ontological meta-level, but the class is quasi-
linguistic, then the function checks whether the object is a direct quasi-linguistic instance
of the given class.

Parameters
rObject a reference to an object
rClass a reference to a class

Returns
whether the given object is a direct instance of the given class. On error, false is
returned.

See Also
RAAPI::isKindOf

boolean RAAPI::isKindOf ( in Reference rObject, in Reference rClass )

Checks whether the given object is a direct or indirect, quasi-ontological or quasi-
linguistic, instance of the given class.
Note (M3): The function works also when one or both of rObject and rClass is/are
quasi-linguistic. If the object is at a quasi-ontological meta-level, but the class is quasi-
linguistic, then the function checks whether the object is a quasi-linguistic instance of the
given class or one of its subclasses.

Parameters
rObject a reference to an object
rClass a reference to a class

Returns
whether the given object is a (direct or indirect) instance of the given class. On error,
false is returned.

See Also
RAAPI::isTypeOf

Reference RAAPI::createAttribute ( in Reference rClass, in UnicodeString name, in
Reference rPrimitiveType )

Creates (de�nes) a new attribute for the given class. The default cardinality is the widest
cardinality supported by the repository (e.g., "0..∗", if multi-valued attributes are sup-
ported; or "0..1", otherwise). The cardinality can be looked up and changed by using the
quasi-linguistic meta-metalevel.
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Parameters
rClass a reference to an existing class, for which to de�ne the attribute
name the name of the attribute being created; it must be unique within all the

attributes de�ned for this class, including derived ones
rPrimitive-

Type
a reference to a primitive data type for attribute values

Returns
a reference to the attribute just created, or 0 on error.

Reference RAAPI::findAttribute ( in Reference rClass, in UnicodeString name )

Obtains a reference to an existing attribute with the given name of the given class.
Note (M3): The class reference may point also to a quasi-linguistic class.

Parameters
rClass a reference to a class, where the attribute in question belongs; rClass

may be also one of its subclasses, since the attribute is available for
subclasses, too

name the name of the attribute

Returns
a reference to the desired attribute, or 0 on error; the reference returned is the same
reference for the class, for which the attribute was de�ned, as well as for derived
classes.

boolean RAAPI::deleteAttribute ( in Reference rAttribute )

Deletes the given attribute.

Parameters
rAttribute a reference to the attribute to be deleted

Returns
whether the operation succeeded.

Iterator RAAPI::getIteratorForAllAttributes ( in Reference rClass )

Obtains an iterator for all (including inherited) attributes of the given class.
Note (adapters): A repository adapter may implement only one of the functions get-
IteratorForAllAttributes and getIteratorForDirectAttributes. The unimplemen-
ted function will be implemented via another by TDA Kernel.
Note (M3): The function works also for quasi-linguistic classes.

Parameters
rClass a reference to a class, whose attributes we are interested in

Returns
an iterator for all attributes (including inherited) of the given class. On error, 0 is
returned.See Also
RAAPI::getIteratorForDirectAttributes

Iterator RAAPI::getIteratorForDirectAttributes ( in Reference rClass )

Obtains an iterator for direct (without inherited) attributes of the given class.
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Note (adapters): A repository adapter may implement only one of the functions get-
IteratorForAllAttributes and getIteratorForDirectAttributes. The unimplemen-
ted function will be implemented via another by TDA Kernel.
Note (M3): The function works also for quasi-linguistic classes.

Parameters
rClass a reference to a class, whose attributes we are interested in

Returns
an iterator for direct attributes of the given class. On error, 0 is returned.

See Also
RAAPI::getIteratorForAllAttributes

UnicodeString RAAPI::getAttributeName ( in Reference rAttribute )

Returns the name of the given attribute.
Note (M3): The function works also for attributes of quasi-linguistic classes.

Parameters
rAttribute a reference to the attribute in question

Returns
the name of the given attribute, or null on error.

Reference RAAPI::getAttributeDomain ( in Reference rAttribute )

Obtains a class, for which the given attribute was de�ned.
Note (M3): The function works also for attributes of quasi-linguistic classes.

Parameters
rAttribute a reference to the attribute in question

Returns
a reference to a class, for which the given attribute belongs, or 0 on error.

Reference RAAPI::getAttributeType ( in Reference rAttribute )

Returns the (primitive) type for values of the given attribute.
Note (M3): The function works also for attributes of quasi-linguistic classes.

Parameters
rAttribute a reference to the attribute in question

Returns
a reference to a primitive data type for values of the given attribute.

boolean RAAPI::isAttribute ( in Reference r )

Checks whether the given reference is associated with an attribute.
Note (adapters): If a repository adapter does not implement this function, TDA Ker-
nel will implement it by means of getAttributeDomain, getAttributeName and find-

Attribute.
Note (M3): A reference at Level M3 can also be passed.
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Parameters
r a reference in question

Returns
whether the given reference is associated with an attribute. On error, false is
returned.

boolean RAAPI::setAttributeValue ( in Reference rObject, in Reference rAttribute, in
UnicodeString value )

Sets the value or the ordered collection of values (encoded as a string) of the given attribute
for the given object.
Note (adapters): Repository adapters may assume that the value is not null and not
a string encoding null, since for those cases TDA Kernel forwards the call to delete-

AttributeValue.
Note (M3): The attribute reference can be a reference at the M3 level. In this case the
object can be any element at the MΩ level.

Parameters
rObject the object, for which to set the attribute value (values)

rAttribute the attribute, for which to set the value; this attribute must be associated
either with a quasi-ontological class or the quasi-linguistic class of the
given object

value the attribute value (values) encoded as a string

Returns
whether the value(s) has (have) been set. On error, false is returned.

UnicodeString RAAPI::getAttributeValue ( in Reference rObject, in Reference rAttribute )

Gets the value or the ordered collection of values (encoded as a string) of the given
attribute for the given object.
Note (M3): The attribute reference can be a reference at the M3 level.

Parameters
rObject the object, for which to get the attribute value (values)

rAttribute the attribute, for which to obtain the value; this attribute must be asso-
ciated either with a quasi-ontological class or the quasi-linguistic class of
the given object

Returns
the attribute value (values) encoded as a string, or null on error.

boolean RAAPI::deleteAttributeValue ( in Reference rObject, in Reference rAttribute )

Deletes the value (all the values) of the given attribute for the given object.
Note (M3): The attribute reference can be a reference at the M3 level. In this case the
object can be any element at the MΩ level.

Parameters
rObject the object, for which to get the attribute value (values)

rAttribute the attribute, for which to obtain the value; this attribute must be asso-
ciated either with a quasi-ontological class or the quasi-linguistic class of
the given object
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Returns
whether the operation succeeded.

Iterator RAAPI::getIteratorForObjectsByAttributeValue ( in Reference rAttribute, in
UnicodeString value )

Obtains an iterator for objects, for whose the value of the given attribute equals to the
given value. The value has to be encoded as a string (it may encode an ordered collection
of multiple values).
Note (M3): The attribute reference can be a reference at the M3 level. In this case the
objects traversed by the returned iterator are elements at the MΩ level.

Parameters
rAttribute the attribute to check

value the value to check

Returns
the iterator for objects with the given attribute value, or 0 on error.

Reference RAAPI::createAssociation ( in Reference rSourceClass, in Reference
rTargetClass, in UnicodeString sourceRoleName, in UnicodeString targetRoleName, in
boolean isComposition )

Creates a bidirectional association (or two directed associations, where each is an inverse
of the other). The default value for the source and target cardinalities should be "∗".
Note (M3): The M3 level can be used to get/set the cardinality, if the repository sup-
ports constraints and the M3 level operations. Cardinality constraints must be accessible
via M3 for that.

Parameters
rSourceClass the class, where the association starts
rTargetClass the class, where the association ends
sourceRole-

Name
the name of the association end near the source class

targetRole-
Name

the name of the association end near the target class

is-
Composition

whether the association is a composition, i.e., the source class objects are
containers for the target class objects

Returns
a reference for the target association end of the association just created, or 0 on error.

Reference RAAPI::createDirectedAssociation ( in Reference rSourceClass, in Reference
rTargetClass, in UnicodeString targetRoleName, in boolean isComposition )

Creates a directed association. The default value for the source and target cardinalities
should be "∗".
Note (adapters): If a repository adapter does not implement this function, TDA kernel
will simulate it by means of createAssociation (a stub inverse role will be generated).
Note (M3): The M3 level can be used to get/set the cardinality, if the repository sup-
ports constraints and the M3 level operations. Cardinality constraints must be accessible
via M3 for that.
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Parameters
rSourceClass the class, where the association starts
rTargetClass the class, where the association ends
targetRole-

Name
the name of the association end near the target class

is-
Composition

whether the association is a composition, i.e., the source class objects are
containers for the target class objects

Returns
a reference for the target association end of the association just created, or 0 on error.

Reference RAAPI::createAdvancedAssociation ( in UnicodeString name, in boolean nAry,
in boolean associationClass )

Creates an n-ary association, an association class, or an n-ary association class.
An advanced association behaves likes a class (although it might not be a class internally)
with n bidirectional associations attached to it. To specify all n association ends, call
createAssociation n times, where a reference to the n-ary association has to be passed
instead of one of the class references. N-ary association links can be created by means
of createObject, and n-ary link ends can be created by calling createLink n times and
passing a reference to the n-ary link instead of one of the object references.
Note (adapters): The underlying repository is allowed to create an n-ary association
class, even when nAry or associationClass is false.
Note (adapters): If a repository adapter does not implement this function, TDA kernel
will implement this function by introducing an additional class.
Note (M3): The M3 level can be used to get/set the cardinality, if the repository sup-
ports constraints and the M3 level operations. Cardinality constraints must be accessible
via M3 for that.

Parameters
name the name of the advanced association (the class name in case of an asso-

ciation class)
nAry whether the association is an n-ary association

association-
Class

whether the association is an association class

Returns
a reference to the n-ary association just created (not the association end, since no
association ends are created yet), or 0 on error.

Reference RAAPI::findAssociationEnd ( in Reference rSourceClass, in UnicodeString
targetRoleName )

Obtains a reference to an association end (by its role name) starting at the given class.
Note (adapters): If not implemented in the adapter, TDA kernel will implement it by
means of getIteratorForAllOutgoingAssociationEnds.
Note (M3): The function works also, when searching for association ends at Level M3.

Parameters
rSourceClass a class that is a source class for the association, or one of its subclasses
targetRole-

Name
a role name associated with the target association end
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Returns
a reference to an association end corresponding to the given target role name.

boolean RAAPI::deleteAssociation ( in Reference rAssociationEndOrAdvancedAssociation )

Deletes the given association. Directed and bidirectional associations are speci�ed by
(one of) their ends. Advanced associations have their own references. If the association
is bidirectional, the inverse association end is deleted as well. For advanced associations,
all association parts are deleted.

Parameters
rAssociation-

EndOr-
Advanced-

Association

a reference to an association end (if the association is directed or bidirec-
tional) or a reference to an advanced association

Returns
whether the operation succeeded.

Iterator RAAPI::getIteratorForAllOutgoingAssociationEnds ( in Reference rClass )

Obtains an iterator for all (including inherited) outgoing association ends of the given
class.
Note (adapters): A repository adapter may implement only one of the functions
getIteratorForAllOutgoingAssociationEnds and getIteratorForDirectOutgoing-

AssociationEnds. The unimplemented function will be implemented via another by
TDA Kernel.
Note (M3): The function works also for associations at Level M3.

Parameters
rClass a reference to a class, whose outgoing associations (including inherited)

have to be traversed

Returns
an iterator for all (including inherited) outgoing association ends of the given class.
On error, 0 is returned.

See Also
RAAPI::getIteratorForDirectOutgoingAssociationEnds

Iterator RAAPI::getIteratorForDirectOutgoingAssociationEnds ( in Reference rClass )

Obtains an iterator for direct (without inherited) outgoing association ends of the given
class.
Note (adapters): A repository adapter may implement only one of the functions
getIteratorForAllOutgoingAssociationEnds and getIteratorForDirectOutgoing-

AssociationEnds. The unimplemented function will be implemented via another by
TDA Kernel.
Note (M3): The function works also for associations at Level M3.

Parameters
rClass a reference to a class, whose direct outgoing associations have to be tra-

versed
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Returns
an iterator for direct (without inherited) outgoing association ends of the given class.
On error, 0 is returned.

See Also
RAAPI::getIteratorForAllOutgoingAssociationEnds

Iterator RAAPI::getIteratorForAllIngoingAssociationEnds ( in Reference rClass )

Obtains an iterator for all (including inherited) ingoing association ends of the given class.
Note (adapters): A repository adapter may implement only one of the
functions getIteratorForAllIngoingAssociationEnds and getIteratorForDirect-

IngoingAssociationEnds. The unimplemented function will be implemented via another
by TDA Kernel.
Note (M3): The function works also for associations at Level M3.

Parameters
rClass a reference to a class, whose ingoing associations (including inherited)

have to be traversed

Returns
an iterator for all (including inherited) ingoing association ends of the given class.
On error, 0 is returned.

See Also
RAAPI::getIteratorForDirectIngoingAssociationEnds

Iterator RAAPI::getIteratorForDirectIngoingAssociationEnds ( in Reference rClass )

Obtains an iterator for direct (without inherited) ingoing association ends of the given
class.
Note (adapters): A repository adapter may implement only one of the
functions getIteratorForAllIngoingAssociationEnds and getIteratorForDirect-

IngoingAssociationEnds. The unimplemented function will be implemented via another
by TDA Kernel.
Note (M3): The function works also for associations at Level M3.

Parameters
rClass a reference to a class, whose direct ingoing associations have to be tra-

versed

Returns
an iterator for direct (without inherited) ingoing association ends of the given class.
On error, 0 is returned.

See Also
RAAPI::getIteratorForAllIngoingAssociationEnds

Reference RAAPI::getInverseAssociationEnd ( in Reference rAssociationEnd )

Obtains a reference to the inverse association end of the given association end (if associ-
ation is bidirectional or a bidirectional part of an advanced association).
Note (M3): The function works also for association ends at Level M3.

Parameters
rAssociation-

End
a reference to a known association end, for which the inverse end has to
be obtained
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Returns
a reference to the inverse association end. On error or if the association end does not
have the inverse, 0 is returned.

Reference RAAPI::getSourceClass ( in Reference rTargetAssociationEnd )

Obtains a reference to the source class of the given directed or bidirectional association
(or part of an advanced association) speci�ed by its target end. Any of the association
ends can be considered a target end, when calling this function.

Parameters
rTarget-

Association-
End

an association end of some association; this association end will be con-
sidered a target end

Returns
a reference to the source class of the given association speci�ed by its target end.

Reference RAAPI::getTargetClass ( in Reference rTargetAssociationEnd )

Obtains a reference to the class corresponding to the given association end of some direc-
ted, bidirectional, or advanced association. For bidirectional and advanced associations,
any of the two association ends can be considered a target end, when calling this function.

Parameters
rTarget-

Association-
End

an association end of some association; this association end will be con-
sidered a target end

Returns
a reference to the class corresponding to the given association end.

UnicodeString RAAPI::getRoleName ( in Reference rAssociationEnd )

Returns the role name of the given association end.

Parameters
rAssociation-

End
an association end of some directed, bidirectional, or advanced association

Returns
the role name of the given association end, or null on error.

boolean RAAPI::isComposition ( in Reference rTargetAssociationEnd )

Returns, whether the directed or bidirectional association (or a part of an advanced
association) speci�ed by its target association end is a composition (i.e., whether the
source class objects are containers for the target class objects).
Note (M3): A reference at Level M3 can also be passed.

Parameters
rTarget-

Association-
End

an association end of some association; this association end will be con-
sidered a target end
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Returns
whether the directed or bidirectional association (or a part of an advanced association)
is a composition.

boolean RAAPI::isAdvancedAssociation ( in Reference r )

Checks, whether the given reference corresponds to an advanced association.
Note (M3): A reference at Level M3 can also be passed.

Parameters
r a reference in question

Returns
whether the given reference corresponds to an advanced association. On error, false
is returned.

boolean RAAPI::isAssociationEnd ( in Reference r )

Checks, whether the given reference corresponds to an association end.
Note (adapters): If not implemented in a repository adapter, TDA Kernel will imple-
ment it by means of getSourceClass, getRoleName and findAssociationEnd.
Note (M3): A reference at Level M3 can also be passed.

Parameters
r a reference in question

Returns
whether the given reference corresponds to an association end. On error, false is
returned.

boolean RAAPI::createLink ( in Reference rSourceObject, in Reference rTargetObject, in
Reference rAssociationEnd )

Creates a link of the given type (speci�ed by rAssociationEnd) between two objects.
Note (M3): An association end at Level M3 can also be passed. In this case, at least
one of the source and target objects must be an element at the MΩ level. The semantics
of such link then depends on a particular quasi-linguistic metamodel at Level M3.

Parameters
rSource-
Object

a start object of the link; this object must be an instance of the source
class for the given association end

rTarget-
Object

an end object of the link; this object must be an instance of the target
class for the given association end

rAssociation-
End

a target association end that speci�es the link type

Returns
whether the operation succeeded.

boolean RAAPI::createOrderedLink ( in Reference rSourceObject, in Reference
rTargetObject, in Reference rAssociationEnd, in long targetPosition )

Creates a link of the given type (speci�ed by rAssociationEnd) between two objects at
the given position. The target position normally should be from 0 to n, where n is the
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number of currently linked objects at positions from 0 to n-1. If the target position is
outside [0..n], then the link is appended to the end.
Note (M3): An association end at Level M3 can also be passed. In this case, at least
one of the source and target objects must be an element at the MΩ level. The semantics
of such link then depends on a particular quasi-linguistic metamodel at Level M3.

Parameters
rSource-
Object

a start object of the link; this object must be an instance of the source
class for the given association end

rTarget-
Object

an end object of the link; this object must be an instance of the target
class for the given association end

rAssociation-
End

a target association end that speci�es the link type

target-
Position

the position (starting from 0) of the target object in the list of linked
objects of the source object;

Returns
whether the operation succeeded.

boolean RAAPI::deleteLink ( in Reference rSourceObject, in Reference rTargetObject, in
Reference rAssociationEnd )

Deletes a link of the given type (speci�ed by rTargetAssociationEnd) between the given
two objects.
Note (M3): An association end at Level M3 can also be passed. In this case, at least
one of the source and target objects must be an element at the MΩ level. The semantics
of such link then depends on a particular quasi-linguistic metamodel at Level M3.

Parameters
rSource-
Object

a start object of the link; this object must be an instance of the source
class for the given association end

rTarget-
Object

an end object of the link; this object must be an instance of the target
class for the given association end

rAssociation-
End

a target association end that speci�es the link type

Returns
whether the operation succeeded.

boolean RAAPI::linkExists ( in Reference rSourceObject, in Reference rTargetObject, in
Reference rAssociationEnd )

Checks whether the link of the given type (speci�ed by rTargetAssociationEnd) between
the given two objects exists.
Note (adapters): If not implemented in a repository adapter, TDA Kernel will imple-
ment this function through getIteratorForLinkedObjects.
Note (M3): An association end at Level M3 can also be passed. In this case, at least
one of the source and target objects must be an element at the MΩ level. The semantics
of such link then depends on a particular quasi-linguistic metamodel at Level M3.
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Parameters
rSource-
Object

a start object of the link; this object must be an instance of the source
class for the given association end

rTarget-
Object

an end object of the link; this object must be an instance of the target
class for the given association end

rAssociation-
End

a target association end that speci�es the link type

Returns
whether the link exists. On error, false is returned.

Iterator RAAPI::getIteratorForLinkedObjects ( in Reference rObject, in Reference
rAssociationEnd )

Returns an iterator for objects linked to the given start object by links of the given type.
Note (M3): The type of links may also be an association end at Level M3.

Parameters
rObject a start object, for which the iterable objects are linked this object must

be an instance of the source class for the given association end
rAssociation-

End
a target association end that speci�es the type of links

Returns
an iterator for objects, linked to the given object by links of the given type, or 0 on
error.

long RAAPI::getLinkedObjectPosition ( in Reference rSourceObject, in Reference
rTargetObject, in Reference rAssociationEnd )

Returns the index (numeration starts from 0) of the target object in the list of objects
linked to the source object by links of the given type.
Note (M3): The type of links may also be an association end at Level M3.

Parameters
rSource-
Object

a source object; this object must be an instance of the source class for
the given association end

rTarget-
Object

a target object; this object must be an instance of the target class for the
given association end

rAssociation-
End

a target association end that speci�es the type of links

Returns
the index (numeration starts from 0) of the given target object in the list of objects
linked to the source object. On error or when the source and target objects are not
linked by the given association, -1 is returned.

Reference RAAPI::resolveIteratorFirst ( in Iterator it )

Places the iterator to the position 0 and gets the element there.

Parameters
it an iterator reference
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Returns
the element at position 0 in the iterable list. If there are no elements or if an error
occurred, 0 is returned.

See Also
RAAPI::resolveIteratorNext
RAAPI::freeIterator

Reference RAAPI::resolveIteratorNext ( in Iterator it )

Moves the iterator forward and gets the element at that position.

Parameters
it an iterator reference

Returns
the element the iterator points to, after the iterator has been moved one step forward.
If there are no elements or if an error occurred, 0 is returned.

See Also
RAAPI::resolveIteratorFirst
RAAPI::freeIterator

long RAAPI::getIteratorLength ( in Iterator it )

Places the iterator to the position 0 and returns the total number of elements to iterate
through. Call resolveIteratorFirst or resolveIterator to move the iterator.
Note (adapters): If not implemented in a repository adapter, TDA Kernel traverses all
the elements and stores them in a temporary list. Thus, the �rst call will take the linear
execution time, while all subsequent calls will take the constant time. The same refers to
the resolveIterator function. If both getIteratorLength and resolveIterator are
used, the temporary list is created only once.

Parameters
it an iterator reference

Returns
the total number of elements to iterate through. On error returns 0 (thus, the return
value still represents the number of iterations, which can be performed with this
iterator).

See Also
RAAPI::resolveIterator
RAAPI::freeIterator

Reference RAAPI::resolveIterator ( in Iterator it, in long position )

Returns a reference to the element at the given position (numeration starts from 0) and
forwards the iterator to position+1.
Note (adapters): If not implemented in a repository adapter, TDA Kernel traverses all
the elements and stores them in a temporary list. Thus, the �rst call will take the linear
execution time, while all subsequent calls will take the constant time. The same refers
to the getIteratorLength function. If both getIteratorLength and resolveIterator

are used, the temporary list is created only once.

Parameters
it an iterator reference

position the position in the iterable list, where the interested element is located
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Returns
a reference to the element at the given position, or 0 if the position is out of bounds,
or if an error occurred.

See Also
RAAPI::getIteratorLength
RAAPI::freeIterator

void RAAPI::freeIterator ( in Iterator it )

Frees the memory associated with the given iterator reference.

Parameters
it an iterator reference

void RAAPI::freeReference ( in Reference r )

Decrements the counter of the given reference. When the counter reaches 0, frees the
memory associated with the given reference (if necessary).

UnicodeString RAAPI::serializeReference ( in Reference r )

Creates a string representation of the given reference, which survives the current session.
For the next session, TDA kernel will use this string to get another reference to the same
element by means of deserializeReference. This is essential for storing inter-repository
relations.

Parameters
r the reference to serialize

Returns
a string representation of the given reference, which survives the current session, or
null on error.

See Also
RAAPI::deserializeReference

Reference RAAPI::deserializeReference ( in UnicodeString r )

Obtains a reference to a serialized element from the given serialization. This is essential
for loading inter-repository relations.

Parameters
r the serialization of an element, for which to obtain a reference

Returns
a reference corresponding for the given serialization, or 0 on error.

See Also
RAAPI::serializeReference

Iterator RAAPI::getIteratorForLinguisticClasses ( )

Returns an iterator for all quasi-linguistic classes at Level M3.
Note (M3): This function works only at Level M3.

Returns
an iterator for all quasi-linguistic classes at Level M3.
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Iterator RAAPI::getIteratorForDirectLinguisticInstances ( in Reference rClass )

Returns an iterator for direct quasi-linguistic instances (not including instances of sub-
classes) at Level MΩ of the given class at Level M3.
Note (M3): This function takes a class at Level M3 and returns an iterator for elements
at Level MΩ.

Parameters
rClass a Level M3 class

Returns
an iterator for direct quasi-linguistic instances at Level MΩ of the given class at Level
M3, or 0 on error.

Iterator RAAPI::getIteratorForAllLinguisticInstances ( in Reference rClass )

Returns an iterator for all quasi-linguistic instances (including instances of subclasses) at
Level MΩ of the given class at Level M3.
Note (M3): This function takes a class at Level M3 and returns an iterator for elements
at Level MΩ.

Parameters
rClass a Level M3 class

Returns
an iterator for direct quasi-linguistic instances at Level MΩ of the given class (and
its subclasses) at Level M3, or 0 on error.

Reference RAAPI::getLinguisticClassFor ( in Reference r )

Returns a reference to the Level M3 class of the given quasi-ontological (Level MΩ)
element. It is assumed that there may be at most one quasi-linguistic class at M3 for each
quasi-ontological element at MΩ.

Parameters
r a quasi-ontological (Level MΩ) element

Returns
a reference to the Level M3 class of the given quasi-ontological (Level MΩ) element.
On error or if M3 is not supported by the underlying repository, 0 is returned.

boolean RAAPI::isLinguistic ( in Reference r )

Checks, whether the given reference is associated with a Level M3 element. Can be used
together with isClass, isAssociationEnd, etc. to get more details about the element.

Parameters
r a reference in question
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Returns
whether the given reference is associated with a Level M3 element. On error, false
is returned.

UnicodeString RAAPI::callSpecificOperation ( in UnicodeString operationName, in
UnicodeString arguments )

Calls a repository-speci�c operation (e.g., or MOF/ECore-like operation, an SQL state-
ment, or a SPARQL statement). Arguments (if any) are encoded as a string delimited by
means of the Unicode character U+001E (INFORMATION SEPARATOR TWO). For
no-argument methods arguments must be null.
For instance, a repository may accept the following calls:
callSpecificOperation("SQL", "SELECT ∗ FROM MY TABLE");

callSpecificOperation("myMethod", "<object-reference>\u001-
E<argument1>...");
callSpecificOperation("", null);

For static MOF/ECore-like operations, the �rst argument should point to a class. For
non-static operations the �rst argument should point to an object (that resembles this
pointer in Java).

Parameters
operation-

Name
a repository-speci�c operation name

arguments operation-speci�c arguments encoded as a string
Returns

the return value of the call encoded as a string, or null on error.

A.3 IRepositoryManagement Interface Reference
Inheritance diagram for IRepositoryManagement:

IRepositoryManagement

IRepository

Public Member Functions
� boolean exists (in UnicodeString location)

� boolean open (in UnicodeString location)

� void close ()

� boolean startSave ()

� boolean �nishSave ()

� boolean cancelSave ()

� boolean drop (in UnicodeString location)

Detailed Description
The IRepositoryManagement interface contains technical operations on repositories such
as operations for opening, closing, saving, etc. This interface is a complement to RAAPI.
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Member Function Documentation
boolean IRepositoryManagement::exists ( in UnicodeString location )

Checks whether the given location is already occupied by some repository of the same
type. This can be used to ask for the user con�rmation to drop an existing repository,
when creating a new one at the same location.

Parameters
location a string denoting the location to check. The location string is is speci�c

to the type of the repository, e.g., for ECore this is the .xmi �le name, for
JR this is the folder name, etc. TDA Kernel requires a URI, containing
the repository name followed by a colon followed by a repository-speci�c
location, e.g., "jr:/path/to/repository".

Returns
whether the given location is already occupied by some repository of the same type.

boolean IRepositoryManagement::open ( in UnicodeString location )

Opens or creates (if the repository does not exist yet) the repository at the given location.
This can be used to ask for the user con�rmation to drop an existing repository, when
creating a new one at the same location.

Parameters
location a string denoting the location of the repository. The location string is

is speci�c to the type of the repository, e.g., for ECore this is the .xmi
�le name, for JR this is the folder name, etc. TDA Kernel requires a
URI, containing the repository name followed by a colon followed by a
repository-speci�c location, e.g., "jr:/path/to/repository".

Returns
whether the repository has been opened or created.

void IRepositoryManagement::close ( )

Closes the repository without save.
See Also

IRepositoryManagement::startSave
IRepositoryManagement::�nishSave
IRepositoryManagement::cancelSave

boolean IRepositoryManagement::startSave ( )

Starts the two-phase save process of the repository. The save process can be rolled back
by calling cancelSave or commited by calling finishSave.

Returns
whether the operation succeeded. If false is returned, neither cancelSave, nor
finishSave must be called.

See Also
IRepositoryManagement::�nishSave
IRepositoryManagement::cancelSave
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boolean IRepositoryManagement::finishSave ( )

Finishes the two-phase save process of the repository. After �nishing, the save process
cannot be rolled back anymore.

Returns
whether the operation succeeded.

See Also
IRepositoryManagement::startSave
IRepositoryManagement::cancelSave

boolean IRepositoryManagement::cancelSave ( )

Rolls back the started save process. The repository content on the disk (or other media)
is returned to the previous state. The repository content currently loaded in memory is
not changed.

Returns
whether the operation succeeded.

See Also
IRepositoryManagement::startSave
IRepositoryManagement::�nishSave

boolean IRepositoryManagement::drop ( in UnicodeString location )

Deletes the repository at the given location. The repository must be closed.

Parameters
location a string denoting the location of the repository. The location string is

speci�c to the type of the repository, e.g., for ECore this is the .xmi
�le name, for JR this is the folder name, etc. TDA Kernel requires a
URI, containing the repository name followed by a colon followed by a
repository-speci�c location, e.g., "jr:/path/to/repository".

Returns
whether the operation succeeded.
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