UNIVERSITY OF LATVIA
FACULTY OF COMPUTING

Guntars Bumans

Relational Database information
availability to Semantic Web
technologies

DOCTORAL THESIS
FOR DR.SC.COMP ACADEMIC DEGREE

FIELD: COMPUTER SCIENCE
SUB-FIELD: PROGRAMMING LANGUAGES AND SYSTEMS

SCIENTIFIC ADVISOR: DR.SC.COMP. PROF. KARLIS CERANS

RIGA, 2011

* X %

Es ESF .) # R LATVIJAS
[/ | * * :
EIROPAS i‘%(s:IALAIS e S X B HNIYERS ITATE

EIROPAS SAVIENIBA
IEGULDIJUMS TAVA NAKOTNE

This work has been supported by the European Social Fund within
the project «Support for Doctoral Studies at University of Latviay.

Contents

1

2

INErOAUCLION ..ottt 5
1.1 Semantic Web and Semantic Technologiesccceveververiierireienrannnnns 5
RDB-t0-RDF/OWL mapping task.........cccecceevieeeiercienienienieie e eveseeesiens 11
2.1 Need for RDB-to-RDF/OWL mapping solutionsccccceeveeveeennen. 11
2.2 RDB and semantic format COmMpariSoncceecververieesreesreesvesnenenes 12
2.3 WOrKing eXamplesc.eecverierieniieiieieeieeeeseeseesseeneeeseenessaessaesseens 12
2.3.1 Mini-university €Xampleccccvevveviieienienienieneeie e 12
2.3.2 Far table linking eXxampleccceeveeiiniinienieeee e 14
2.3.3 Simple genealogy example........coccoeveeiiriinieniieeee e 15
Existing RDB-to-RDF/OWL mapping approachesccccceevvevieeveneennene 17
3.1 Relational. OWL platformcoccoveeiieiiiniiieeeeeeeeeee e 17
3.2 Database to target OWL ontology mapping using SPARQL................ 18
33 D2RQ PlatfOormmcoueeeieiieieeece et 20
34 R20 Database-to-ontology Mapping language and platform 26
3.5 DB20OWL- a tool for Automatic Ontology-to-Database Mapping 31
3.6 Vitruos0o RDF VIEWSoouiiuiriiiiiiieieniiniesieeieeteee et e 32
3.7 URTAWEAP ..vevveiieeiieiieiteieetesteseesteesteeaeensesssesssesseesseesseesseensesssesssessnas 35
3.8 TEIPIEY ottt ettt eneas 36
3.9 DaATTGIIA ...t 38
3.10 A Direct Mapping of Relational Data to RDF (W3C)c.cceceevennee. 38
3.11 R2RML: RDB to RDF Mapping Language (W3C)....c.cevverrrennnnnen. 39
312 SPYAET t0OL. . ittt 42
3.13 Issues not considered in RDB-to-RDF/OWL mapping approaches...... 44
RDB2OWL mapping specification 1anguagecccoeceevierieneenenceneenen. 45
4.1 RDB2OWL Raw Mapping Language...........cceeeveevereereenreenreevennenenns 47
4.1.1 RDB2OWL Raw metamodel..........ccccocererieienenienineneeieeeeeene 47
4.1.2 RDB2OWL RaW SYNtAX c..eeeririeiiieiieeiieeiieeiieenee e esine e esene e 50
4.1.3 RDB2OWL Raw mapping specification usageecveevervennenns 53
4.1.4 RDB2OWL Raw annotations for Mini-University example 58
4.1.5 RDB2OWL Raw Mapping Semantics..............ccervverreeruerveereesueseeans 60
4.2 RDB2OWL COTE ...ttt 62
43 RDB2OWL COre PIUSoooiiiieiiiieeeee et e 66
4.3.1 Multiclass Conceptualizationccecceeeeereerieneeneene e eieseeieens 66
4.3.2 Auxiliary Database ODJECtS........cccceerieiierierieiiereereeeie e 67
4.3.3 RDB2OWL functions in generalccceceeiereenienienieieeiesceienns 68
4.3.4 Built-in funCtionS.........coouieiieiiriesieeeie et 69
4.3.5 User defined functions...........cceeererenenenieienieneneseseeeeee e 69
4.3.6 Aggregate fUNCHONS.ccvierieeiieeiieeiie ettt e sere s 71
4.3.7 Extended mapping eXample..........ccceeviienieerieenieeie e 73
RDB2OWL mapping implementation using relational schema 75
5.1 The mapping execution frameworkcceeeveerciieeiieeniiieniieeiieeeieenns 75
5.2 Mapping schema description and its semantics for triple generation.... 76
53 Advanced mapping schema features.........c..ceceeevevererinienenieceencnennens 78

NelioJBEN o)

54 RDF triple generationcccccueveerieneenieenieeie et 78

5.4.1 Class instance triple generationccecceveereereeeeeneeneenieeieeee e 78
5.4.2 OWL datatype property value triple generationcceceeeueeeeenee. 80
543 OWL object property value triple generationcceeceeveecueenennee. 81
544 The result of RDF triple generation for Mini-university example.... 85
5.5 Mapping Validationcceeeverierierieniieie et 86
5.6 Implementation as java appliCation............cceecveecveeceereenienieereeeiesne e 86
5.7 Latvian Medicine Registries: A Case Studycccecevvevveniieneecienneenn. 88
Overall implementation architecture RDB2OWL language.............cccuvenenn. 90
CONCIUSION ...ttt st ettt 92
RETEICICES ..euveeiiiiieieete ettt 93
F N 11S] 1T 1o RS 97
9.1 Relational. OWL platformccccoveeiieiiiniiceeeeeeeeee e 97
9.1.1 DDL SQL transformation patterns to Relational. OWL instances 97
9.1.2 RDB schema transformation to OWLcccccoooiiiiiiiniiniinee, 100
9.1.3 RDB data transformation to RDFc.cccoccoiiiiiiniiiiiieeee, 102

9.1.4 Relationa.OWL ontology for mini-university example database
schema 103
9.1.5 Relational. OWL ontology instance data for mini-university example

107
9.1.6 SPARQL scripts to map ROWL (Relational. OWL instance) to target
ontology and listing for mini-university eXxample...........ccccovveverenierienenenene. 110
9.2 D2RQ Platformmcccueeeiiieiieieeeeee e 114
9.2.1 D2RQ mapping script for mini-university example [2.3.1]............ 114
9.2.2 D2RQ mapping script for far-table-linking example [2.3.2] 117
9.2.3 D2RQ mapping code for genealogy example [2.3.3]......cccceeeeenee. 118
9.3 Virtuoso RDF Views mapping code for mini-university example [2.3.1]
119
9.4 D20 mapping code for mini-university example [2.3.1].................... 124
9.5 R2RML mapping code for mini-university examplec...u...... 132
9.6 RDB2OWL SQL codes for tripple generationsccccceevverveennenne. 136
9.7 RDB20OWL grammar in BNF notation............ccceceeeveecieneeneenieennennn, 140
9.8 RDB2OWL full semantic metamodel..........c.ccccoeerenienininnienieniennne. 143

1 Introduction

This work is concerned with ensuring the data availability for the semantic layer of
the World Wide Web and with use of semantic technologies in data integration on the
World Wide Web scale, as well as on enterprise level. In particular, we are interested
in connecting the relational database data to the semantic technology landscape in the
context of semantic re-engineering of existing relational data sets.

We start by reviewing the basic ideas behind the semantic web and semantic
technologies. Then we outline for task of semantic re-engineering of relational
databases and discuss the challenges and benefits for relational data mapping into the
semantic technology format. We conclude the introduction by briefly presenting the
existing solutions in the area of relational data to semantic technologies mappings,
sketching the need for our solution and its basic characteristics, as well as by
providing the overall structure of the theses.

1.1 Semantic Web and Semantic Technologies

Semantic Web is group of methods, technologies and tools to make the huge
information in the World Wide Web to be processable by machines and semantic
understandable also by machines. The main technologies for this purpose are RDF[1],
RDFS[2], OWL][3] among others.

RDF is language to describe information about resourses in the World Wide Web.
The information is described as a list of statements each statement being Subject-
Predicate-Object triple. Subject- resource about which the statement is made,
Predicate- some property of the subject and Object is value of the property for the
subject. Subject and Predicate must be resources (URI), Object can be either resource
or literal value. Subject of some statement can be resource- another statement
therefore triple set (described in RDF language) can be viewed as oriented graph with
nodes denoting Subjects and Objects of the triple and arcs standing for Predicates
directed from Subject to Object.

As an example, consider a simple statement “Population of Riga a capital of Latvia
is 706413”. Below is shown RDF graph holding this information using fictious
vocabulary http://geography obtained from RDF Validation Service [5]:

http://geography/

http://Latvia.places#riga

w3.org 1999 (02 22 rdf-syntax-ns #type http:/fgeography#capital Cf

http:ffgeography#population

gerud:A 17475 706413

vI.org /1996 02 22 rdf-syntax-ns #type

http:/jgeograp hy# Latvia

Fig. 1. Sample RDF graph containing information about population of capital of
Latvia

http:jjzeography#City

Blank nodes (genid:A17475 in the example) are referencable only from within RDF
graph. In the example http://Latvia.places#riga is capital of something and this
something is of type http.//geography#Latvia. This something is of no meaning
outside the graph.

Triple set expressing the same information as in the sentence:

Subject Predicate Object
<http://ILatvia.places#riga> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://geography#City>
<http://ILatvia.places#riga> <http://geography#capitalOf> <genid:A17475>
<genid:A17475> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://geography#Latvia>
<http://Latvia.placesttriga> <http://geography#population> "706413"

The same can be expressed in RDF/XML serialization
<?xml version="1.0"?2>
<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:geography="http://geography#">

<geography:City rdf:about="http://Latvia.places#riga">
<geography:capitalOf>
<geography:Latvia/>
</geography:capitalOf>
<geography:population> 706413 </geography:population>
</geography:City>

</rdf :RDF>
RDFS (RDF schema)[2] is language that allows semantical extension of RDF by
introducing grouping of resources and relations between them. This is done by classes
and properties. RDF document can use RDFS vocabularies to specify types of
resources and properties (eg, http://geography#City, http://geography#capitalOf).
Web Ontology Language OWL[3] extends RDFS capabilities even further by
introducing more features on classes and properties (cardinalities, property types:
functional, inverse functioal, transitive, inverse of, ..., class expressions etc).

In short Semantic Web technologies RDF, RDFS, OWL and others enables
information to be coded in globally accessable, machine processable way and also
more conforming to semantic of domain of discourse and logic than some other
information coding systems (eg, relational tables).

http://latvia.places/#riga
http://geography/#Latvia
http://geography/#City

With the advent of Semantic Web technologies and the need to enable those to
access the massive amount of data that are existing in the form of relational databases
(RDB) both in public domain and proprietary in companies and organizations, the
need of bridging the RDB and semantic RDF/OWL data formats has become apparent
and has been widely studied.

1.2 RDB-to-RDF/OWL mapping solutions

Some of the most notable approaches dealing with RDB to RDF/OWL data mapping
are Relationa.OWL[6, 7], R20 [8], D2RQ [9], Virtuoso RDF Views [10] and
DartGrid [11], Ultrawrap [12], Triplify[13]. There is W3C RDB2RDF Working
Group [14] related to standardization of RDB to RDF mappings, as well as a related
published survey of mapping RDBs to RDF [15].

We distinguish two mapping types between RDB and RDF/OWL. We call
mapping a “direct mapping” if it defines a mapping from data in a relational
database to RDF Graph representation with structure and vocabulary (ontology)
directly corresponding to schema of the database. In short: triples from mapped RDF
are instances of ontology with classes and attributes resembling design of database
tables and columns. The direct mappings can be used when data that resides in
relational databases are to be made available in the global scope of the World Wide
Web in form of RDF triples (This is case for Open Government initiative TODO: link
[but resources are short to make appropriate restructuring of data. When raw data
are exposed in RDF form any one is free to write appropriate processing code and
thus open development is promoted.

The other type of mapping called a “mapping language” defines customized
mappings from RDB to RDF datasets expressed in structure and vocabulary of
author’s choice. In typical cases RDF dataset consist of triples that are instances of
ontology that is preexistant independently from database. We say that the source
database is mapped to the target ontology (thought as conceptual model for the
database).

Relationa. OWL is a direct mapping platform that enables transformation of
relational schema and data to OWL and RDF coding and therefore to be accessable
from SPARQL endpoint. It gives base for mapping solutions between OWL
ontologies, eg. expressing mappings by SPARQL. R20 platform consists of
declarative mapping language between relational DB and OWL ontology and of tools
(Mapster) to process these mappings. RO2 language requires rather leanghty writing
if done by hand, but some help for this is in user interface of Mapster. R20 is suitable
when mapping code is automatically generated. D2RQ is platform constisting with
mapping language between RDB and OWL ontology and tools (D2R server) to
process these mappings to enable SPARQL execution using relational data as virtual
RDF graphs. The D2RQ mapping language is RDF based (typically written in n3
format) is easier to write and more readable than R20, supports any SQL expressions
usage (not the case with R20). Virtuoso RDF Views also has language to express
mapping between RDB and OWL ontologies and also has tools to process SPARQL
accessing reational data on the fly through these mappings. Virtuoso RDF RDB-to-
OWL mapping language is more complicated than R20 and D2RQ thas giving option

to specify more execution details (eg, functions for URI patterns). Ultrawrap and
Triplify platforms use SQL elaboration to enable triple generation from RDB data.
Week point is that SQL for triple generation need to be written manually. Triplify has
olso small plugin (PHP) which added to web application root enables triplifying of
relational data when triplifying SQLs and configuration (connections) are provided.

There is upcoming W3C standard R2RML [16] for RDB-to-RDF mapping
specification, as well as a standard for direct (technical) mapping [17] of RDBs to
RDF format. In the case of the latter approach the obtained data that correspond to the
“technical” data schema can be afterwards transformed into a conceptual one either
by means of SPARQL Construct queries, as in Relational. OWL [6, 7] approach, or by
means of some RDF-to-RDF mapping language such as R2R [18], or some model
transformation language (see e.g. [19] for an example approach).

The initial RDB-to-RDF mapping definition by means of hand-coded SQL
statements as outlined in [20] has appeared less than satisfactory in practice, as did the
approach of hand-coding the mappings in a low-level model transformation language
over the intermediate data representation forms in a MOF-based repository.

1.3 Semantic Re-engineering of Relational Databases

The development of Semantic Web has been for more than a decade. As a result
there are many semantic tools for semantic data management but few data in semantic
form (eg., RDF triple stores) because most of them still resides in relational databases,
closed for public access. Therefore the need of high importance is to migrate or
publish data from relational databases to RDF triple stores. The development
community and organizations have responded to this need. The W3C SWEO Linking
Open Data community project [21] is about extending the Web with data by
publishing open data sets as RDF on the Web and by establishing RDF links between
data items from different data sources to enable navigation. The project homepage
[21] reports “Collectively, the 295 data sets consist of over 31 billion RDF triples,
which are interlinked by around 504 million RDF links (September 2011)”. A notable
part of these published data has come from relational databases but more ar still to
come. To publish relational data as RDF corresponding to target ontology can be done
by using some mapping specification techniques.

The possibility to define RDB-to-RDF/OWL mappings efficiently has emerged as
an issue of primary importance also in Semantic Latvia approach [22] and its
application to the practical semantic re-engineering of medical domain data in Latvia
[23, 24]. This approach proposes creating ontology (ontologies) for data that are
available in a specific domain (e.g., government data, or medical data), using visual
graphical notation offered by OWLGrEd [25,26] or UML/OWL profile [27], followed
by RDB data integration into the format of the defined conceptual ontology, then
followed by providing tools that are able to access the semantic data by means of a
visual SPARQL query endpoint [23,28].

Organizations and governments from many countries have agreed on Transparency
and Open Government memorandum. For example, the US Open Government
Directive of December 8, 2009 [29] demands that all agencies should publish at least

three high-value data sets online and register them on data.gov. The UK government
promotes raw data publishing as RDF on the Web. In UK public data website
launched by Tim Berners-Lee [30] everybody can browse the published open linked
data, use SPARQL endpoints or search engine to query them. Taking into
consideration that relational databases schemas differ from ontologies and
vocabularies for RDF to which data should be published the task can be time
consuming. A reasonable approach is to publish raw data as they are in databases. So
from data.gov.uk raw data can be accessable as RDF. People can build applications
over those raw data or write code to transform them into meaningfull ontologies. In
this scenarious the burden of re-engeneering of relational databases is left on open
development community. This is in accordance to what Tim Berner-Lee said on talk
in TED2009 conference [31] “Raw Data Now”. Re-engeneering thus is spluit into two
phases: in the first one the data publisher technically publises the raw data and in the
other phase the open community makes data thansforation into various domain
ontologies. In order to do these tasks more effectively methods and tools for semantic
re-engeneering are needed.

1.4 Main Results

We offer a soundly motivated and practically efficient approach for RDB-to-
RDF/OWL mapping that is suitable to cope with the motivating practical examples, as
well as is extensible beyond those. Our solution contains a mapping language and
implementation framework briefly described below.

We prepose a high level, human readable and machine processable declarative
RDB-to-RDF/OWL mapping specification language RDB2OWL that is based on re-
using the target ontology structure as a backbone where mapping expressions can be
written in form of annotations to ontology classes and properties, as well as to the
ontology itself. The RDB20OWL mapping specification language allows keeping the
mapping definition fully human-comprehensible also in the case of complex mapping
structure. It has simple MOF-style mapping metamodel (that can be re-phrased easily
also into a mapping OWL ontology). Some RDB2OWL language features are:

- reuse of RDB table column and key information, whenever that is available;

- concrete human readable syntax for mapping expressions that is very simple

and intuitive in the simple cases, and can also handle more advanced cases;

- Dbuilt-in and user defined scalar and aggregate functions (including column-
valued functions); function definition expressions can include references to
source and auxiliary database tables and columns to enhance expressiveness;

- advanced mapping definition primitives, e¢.g. multiclass conceptualization that
avoids the need of specifying long filtering conditions arising due to fixing a
missing conceptual structure on large database tables;

- a possibility to resort to auxiliary structures defined on SQL level (e.g. user
defined permanent and temporary tables, as well as SQL views), still
maintaining the principle that the source RDB is to be kept read only.

The user readability and attachement of mapping expressions as annotations to

ontology classes and properties allows the use of RDB20OWL language also as

documentation means in describing the mappings from conceptual model onto the
database design model.

The RDB20OWL execution environment is technically based on a designated
relational database schema to store the mapping information, and the triple generation
is done by two-phase SQL processing. The first phase SQL execution processes
mapping information to generate SQL sentences for triple creation from source
database and the second phase execute the SQL scripts generated in the first phase.
This approach benefits from SQL processing speed of modern RDBMS, combining a
high level specification language with efficient implementation structure.

On a practical side, we report on the experience of building RDB-to-OWL
mapping for real life case of six Latvian medical registries [23], [24] within the
presented simple mapping specification structure.

The RDF triple generation on the basis of an intermediate RDB-to-RDF mapping
encoding within a relational database schema (the RDB2OWL mapping DB schema)
has been successfully implemented by re-engineering the Latvian Medical registry
databases (42,8 million triples have been generated in 20 minutes from mappings
stored in special RDB schema). On the other hand, the Latvian Medical registry
ontology has been successfully annotated with RDB2OWL annotations.
Implementation of full set of RDB2OWL constructs is in progress including syntax
level parsing, syntax model transformation to semantic model and to the intermediate
execution model (RDB2OWL mapping DB schema).

The novelty of our approach is:

- human readability and conciseness of mapping expressions of RDB20WL

mapping language grammar;

- MOF-style RDB20OWL mapping metamodel;

- mapping pattern observations from real life examples that is supported by

RDB2OWL mapping language;

- execution architecture with mappings stored in relational database and two

phase SQL execution.

10

2 RDB-to-RDF/OWL mapping task

2.1 Need for RDB-to-RDF/OWL mapping solutions

The recent years are characterized by increasing use of semantic technologies both
in a global scale (Semantic Web) and locally within enterprises, supported by the
development of open definitions and standards such as RDF [1], SPARQL 1.1 [47],
OWL 2.0 [4] and many others. The number and performance of tools for semantic
content management has grown and continue to grow. But majority of data still
continue to reside in relational databases. Some reasons: relational databases are
efficienct in terms of processing time and data volume, they have precise definition,
many SQL based tools and application development environments, a lot of existing
applications use data in relational databases.

In this situation the need of high importance is for efficient information integration
between “the old world” of relational databases and “the new information world” with
semantic standards and supporting tools. For this purpose research and technology
development has been aimed at bridging relational databases (RDB) to RDF/OWL by
mapping languages and techniques, starting with paper “Relational Databases on the
Semantic Web” by T.Berners-Lee [32] back in 1998 and continuing with a number of
successful approaches including R,O [8], D2RQ [9], Virtuoso RDF Views [10],
DartGrid [33] as well as on UltraWrap [12], Triplify [13] and Spyder [34].

Most of these approaches are concentrating on efficient machine processing of the
mappings, often preferably querying RDBs on-the-fly from an SPARQL-enabled
endpoint. Much less attention, however, has been given to creating high-level
mapping definitions that are oriented towards readability for a human being and that
have a capacity to handle complex database-to-ontology/RDF schema relations.

The concise and human readable RDB-to-RDF/OWL mappings in a situation of an
involved schema correspondence is essential e.g. for relational database semantic
reengineering task, where a possibly legacy database is to be mapped to RDF/OWL.
As an existing approach in this area Semantic SQL [35] can be mentioned, still its
relations to the open SPARQL standard, as well as its abilities to handle complex
dependencies within a mapping are unclear.

Defining human readable mappings has been long an issue within MOF-centered
[36] model transformation community. A model transformation languages such as
MOF QVT [37], MOLA [38] or AGG [39] (there are many other languages available)
may be used for structural presentation of a mapping information; however, these
languages are not generally designed to benefit from the mapping specifics that arise
in RDB-to-RDF/OWL setting, partially due to simple target model structure (RDF
triples). We note an interesting practical experience report of this kind in [19].

Human readable RDB-to-RDF/OWL mapping language can be used as a
documentation means where database tables and columns are mapped to conceptual
classes and attributes. This approach has notable advantages over textual and
graphical documentation means. Possible advantages are: documentation is human

11

readable and formal at the same time, precise, machine processable (eg, for
validation, reporting, etc) and tracable in both directions.

2.2 RDB and semantic format comparison

There are substantial differences comparing RDB vs. RDFS/OWL data models

listed below.

- Naming of entities and relations in relational databases are technically oriented
but in RDF/OWL conceptual names are used from specifid domain;

- relational databases are not aware of subclass relation but this is one of most
basic relation used in ontologies.

- It is not possible to have n:n relation between two database tables (third table
needs to be used) but RDFS/OWL ontologies has not such problem.

- Relations (foreign key) between database tables does not have means to
express qualifier constraints, stating, for example, that number of linked rows
is between 1 and 2 but RDF/OWL can naturally express cardinality cnstraints
on domain or range classe. Databases can easily express 0..1 cardinality by
using NOT NULL constraint The other constraints can be dealt by trigger
programming but then qualifier information is burried in code and not easily
seen in model.

2.3 Working examples

In this section we introduce three examples that will be used to explain in detail the
existing related RDB-to-RDF/OWL mapping approaches and the ideas of this work.

2.3.1 Mini-university example

To better explain various approaches for bridging relational databases and
OWL/RDFS ontologies, a simple example database reflecting a miniature study
registration system and the related OWL ontology will be used. It is taken from [20].
Below in fig.2. and fig.3. are shown sample database schema and a corresponding
ontology (OWL class Thing is omitted for simplicity). Note that we do not focus on
the integrity constraints in the OWL ontology here.

Observe the table splitting (COURSE, TEACHER) and table merging (Person from
STUDENT and TEACHER) in the ontology using the subclass relations; OWL class
PersonID that is based on non-primary key columns in each of Student and Teacher
tables; and the n:n relation takes that reflects a student-to-course association that in
the RDB is implemented using Registration table.

12

E

T
|
|
|
|
|
|

COURSE

~ 7/COURSE_ID : NUMBER(10, 0)
TEACHER_ID : NUMBER(10, 0) =— —— - TEACHER_ID : NUMBER(10, 0)
PROGRAM_ID : NUMBER(10, 0) = —
NAME : VARCHAR2(40)
REQUIRED : NUMBER(1, 0)

=

E ReGISTRATION

REGISTRATION_ID : NUMBER(

’—<STUDENT_ID : NUMBER(10, 0)

[
|

=

STUDENT

~ -|STUDENT_ID : NUMBER(10, 0)
PROGRAM_ID : NUMBER({10, 0)= — —
IDCODE : VARCHAR2(30)

NAME : VARCHAR2(80)

TEACHER

PROGRAM

1
|
|
|
|
|
|
|
|
|
|
COURSE_ID : NUMBER{10, 0) } — -PROGRAM_ID : NUMBER(10, 0)
|
|
|
|
|
|
|
|
|
|

NAME : VARCHAR2(80)

E TEACHER_LEVEL
LEVEL _CODE : VARCHAR2(30) = - LEVEL_CODE : VARCHAR2(30)
IDCODE : VARCHAR2(30)
NAME : VARCHAR2(40)

Fig. 2. Mini-university relational database schema

enrolled

AcademicProgram

Student

programName : string

0.1

includes

takes Course

isTaken By

courseName : string

AssocProfessor

Asistant

isTaughtBy

Professor

Teacher

T 1

teaches

0.1

OptionalCourse

MandatoryCourse

For example, the classes Student and Course in this sample ontology have
corresponding tables student and course in the sample database. To get instance data
for OWL object property fakes the table link path is needed: tables student and

e

Person

personMName : string

<

0.1

PersonlD

personiD | IDvalue : string

Fig. 3. Mini-university ontology

registration joined on student_id and registration and course joined on course_id.

Class personID instances are populated from student and teacher tables (idcode

column).

Classes Asistant, AssocProfessor and Professor all get instance data from common
table TEACHER but each has a different filtering expressed by ‘level code=...’.
Similarly instances for two subclasses of Course class are determined by table row

filtering COURSE.required=1/0.

13

In following tables we show the actual data tables of our sample database. This
specific data set will be used as an example.

Table 1. Table program data Table 2. Table teacher level data
program _id | name level code
1 Computer Science Assistant
2 Computer Engeneering Associate Professor
Professor

Table 3. Table course data

course id | name program_id teacher_id | Required
1 Programming Basics 2 3 0
2 Semantic Web 1 1 1
3 Computer Networks 2 2 1
4 Quantum Computations 1 2 0

Table 4. Table student data

student_id | name idcode program_id
1 Dave 123456789 1
2 Eve 987654321 2
3 Charlie 555555555 1
4 Ivan 345453432 2

Table 5. Table teacher data

teacher id | name idcode level code
1 Alice 999999999 Professor
2 Bob 777777777 Professor
3 Charlie 555555555 Assistant

Table 6. Table registration data

registration_id | student id course_id
1 1 2
2 1 4
3 2 1
4 2 3
5 3 2

2.3.2 Far table linking example

Suppose we have data’base with far linking tables with schema and data as below.

14

Something
localName:String
farName: String
farPath: String

ElTaBLE EtaBLE2 E TABLE3 E 1aBLE4
TABLE1_D | .--TABLE2_ID | .--TABLE3_ID - TABLE4_ID
TABLEZ2_ID > |TABLE3_D ' TABLE4_ID = NAME
NAME NAME NAME

Fig. 4. Far Table linking example- ontology and database schema

Table 7. Table tablel data Table 8. Table table2 data

tablel _id | table2 id | name table2_id | table3 id | name

1 1 tablel rowl 1 1 table2 rowl

2 2 tablel row2 2 2 table2 row?2
Table 9. Table table3 data Table 10. Table table4 data

table3 id | tabled id name table4 id | name

1 1 table3 rowl 1 table4 rowl

2 2 table3 row2 2 table4 row2

We use table and column names without any semantic only to illustrate the design
pattern. Tables tablel to table2 are linked by two intermediate tables, so four tables
are involved. Suppose that OWL ontology consists of one class Something that has 3
datatype properties: localName, farName and farPath. The class Table gets its data
from database table tablel, localName property gets data from tablel.name field,
property farName gets data from “far” table fable4 and property farPath gets data
from name field of all tables on travel path from tablel to table4.

2.3.3 Simple genealogy example

In this section we illustrate D2RQ mapping for an example where a table is linked
to itself- by two foreign keys based on columns father id and mother_id. Figure Fig.
[Fig. 5] below shows this simple Database shema (one table only) and corresponding
OWL ontology presented in MOF style.

= arent
L~ <FATHER_ID i Person gender.| Gender
MOTHER_ID >--* personName:string 1
NAME hirthYear:integer
GENDER QeathYegr:Integer I female:Gender l
BIRTH_YEAR lifeSpan:integer =
DEATH_YEAR

| male:Gender |

15

Fig. 5. A RDB schema and ontology of simple Genealogy
Table below lists table data that corresponds to Adam and Eve’s posterity taken

from [40]

Table 11. Table person data (empty cells- null values)

person_id | father_id | mother_id | name gender | birth- | death_
year | year

1 Adam m 0 930

2 Eve f

3 1 2 Cain m

4 1 2 Abel m

5 1 2 Seth m 130 1042

6 5 Enos m 235 1140

7 6 Cainan m 325 1235

8 7 Mahalaleel | m 395 1290

9 7 Enan m

10 7 Mered m

11 7 Adah m

12 7 Zillah m

13 8 Jared m 460 1422

14 11 Jabal m

15 11 Jubal m

16 12 Tubal-cain | m

17 12 Naamah m

In this example Database has higher granularity- for persons specified who the
fathes or mother is. The ontology has only object property parent. The mother or

father can be deduced:

Mother (x,y) = parent(x,y) & Gender (y)=female

Father (x,vy) parent (x,y) & Gender (y)=male

16

3 Existing RDB-to-RDF/OWL mapping approaches

In this section we explain some of the existing RDB-to-RDF/OWL mapping
approaches together with their benefits and shortcomings.

3.1 Relational. OWL platform

Cristian P’erez de Laborda, Stefan Conrad from Heinrich-Heine Diseldorf
University in DIGAME project (2004.) introduced a technology which enables to
represent relational schema/data as OWL ontology/RDF triples [6, 7].

The main purpose of the platform is to give means to look on relational data as
RDF dataset and to query them by appropriate query language, eg, SPARQL.
Relational database data representation in RDF should correspond to relational model.
For this purpse relational schema is described in terms of OWL, a central OWL
ontology called Relational OWL is created to serve as reference vocabulary.
Relational. OWL ontology corresponds to relational schema metamodel. It contains
classes such as Database, Table, Column, PrimaryKey and others. It has OWL object
properties such as hasTable, hasColumn, isldentifiedBy and other. With the help of
this central ontology a relational schema can be described.

Table 12. Correspondence between elements of Relational schema and Relational. OWL

element or relation of Relational
schema

element of Relatinal. OWL ontology

Schema Class Database
Table Class Table

Table column Class Column
Primary key Class PrimaryKey
One element belongs to other Property has

Table or Primary Key has column Property hasColumn

Database contains table

Inverse functional property hasTable
(a table can belong to no more than
one relational schema)

Primaras atslégas piesaiste tabulai

Funkcionala propertija

»isldentifiedBy”

Foreign key Functional property references
(domain and range being class
Column)

Maximal data length of column Property length

Precision (decimal digits) Property scale

Most often used classes and propereties of Relationa. OWL ontology is illustrated in
picture below taken from [45]:

17

hasTable

isldentifiedBy

hasColumn PrimaryKey

hasColumn

references

Fig. 6. Relational. OWL Ontology

Full source code for Relational. OWL ontology is given in [44].

It must be noted that Relationa. OWL ontology does not allow description of
foreign keys based on more than one column because one column references one
column. Class ForeignKey should be implementated in similar way as of class
PrimaryKey to allow description of multiple column foreign keys. A relational
schema can be expressed in OWL format first describing namespace to
Relationa.OWL and then tables belonging to database and columns belonging to
tables, see appendix [9.1.2] for details on this and appendix [9.1.3] about RDB data
transformation into RDF format.

Benefits of Relational. OWL platform:

1. automatic transformation (ETL) of relational DB schema into OWL
ontology denoted by ROWL (a technical one 1:1 corresponding to DB
design);

2. automatic transformation (ETL) of relational data into RDF triple set that
are instances of ontology ROWL,;

3. capability to use SPARQL to query information about relational schema;

capability to use SPARQL to query relational data;
5. gives base to map relational schema(s) to target ontology by mapping
ROWL to target ontology by SPARQL (this is described in section [3.2]).

>

3.2 Database to target OWL ontology mapping using SPARQL

We describe in this section a technology to establish a mapping between relational
Database and target ontology using RDF query language (SPARQL) presented by
Christian Perez de Laborda and Stefan Conrad in paper their paper [6]. The mapping
is done as follows. Examples in this section and Fig. 7 are taken from [6].

18

Instance of Instance of

v
. RDF Schema RDF Data
Re\aétlotn?I-OWL Representation | | Representation RDF Query
ntology of the Relational | |of the Relational Language
- Databse Databse -
"
b v S
Q°<\" ’.\65‘5
G 2
? RN
& o %
J o %
& P
Relational Target Target Data
Database Ontology - Representation
A
Instance of

Fig. 7 Mapping process

First Relational Database (RDB) schema is automatically exported into
Relational. OWL reprezentation denoted by ROWL (OWL ontology/RDF schema that
is instance of Relational. OWL). Then relational data is automatically exported into
RDF triple set of ROWL instances. This automatical export can be performed once by
using Relational. OWL application [41] or on the fly by using RDQuery application
[42]. This exported ontology lacks real semantics because it is in 1:1 correspondence
with relational schema. Nevertheless it can be queried by RDF query language
(SPARQL) and analyzed by semantic Web reasoning tools, eg, Pellet [43]. To bring
the relational schema/data into target ontology, mappings between the two ontologies
need to be estasblished. This can be done by any RDF query language that is closed
(meaning the resulting query response in valid RDF graph) SPARQL being
appropriate for this. The mapping queries are to read ROWL ontology data and have
to return data that is instance of target ontology. For details about these queries and
for full query list for mini-university example see appendix [9.1.6].

RDQuery java application [42] enables some kind of online DB data retrieval.
Relational data are not loaded into RDF store but SPARQL queries to read data from
ROWL instances are translates into SQL online and executed:

o translate SPARQL query into SQL

e execute SQL in source database (only MySQL and IBM DB2 supported)

o translate SQL execution result back to RDF.

The aproach of defining mapping as SPARQL queries has some drawbacks.

e First, writing SPARQL mapping queries can be a tedious manual effort.

e Second, SPARQL at present time is not as mature as SQL counterpart. It
was not possible to use aggregations and function calls to express non
direct mappings. However, SPARQL develops, averages and function

19

calls are included into SPARQL vl1.1 [47] and several tools support them
in various degrees [48].

e If new blank nodes are created in one mapping script it is not possible to
reference them from some other mapping script.

After translation relation schema and data to ROWL ontology, we have two
ontologies- a technical one corresponding 1:1 to a database schema and a target one.
There are various studies about mapping between ontologies. For example,
Konstantinos Makris, Nikos Bikakis, Nektarios Gioldasis, Chrisa Tsinaraki, Stavros
Christodoulakis in paper “Towards a Mediator based on OWL and SPARQL” [49]
present a framework where mappings between ontologies are established and
SPARQL queries are reformulated.

3.3 D2RQ platform

D2RQ [9], [50] is platform- Treating Non-RDF Relational Databases as Virtual
RDF Graphs (Prof. Dr. Chris Bizer form Freie Universitdt Berlin and colleges). The
initial version 0.1 of the framework was issued in June, 2004, the current at the
moment of writing is version 0.7 from August, 2009. D2RQ is a declarative language
to define mappings between relational database schemas and OWL ontologies or RDF
Schemas. The overall architecture is shown in figure below (taken from [9]).

SPARQL
Clients

SPAREL

Linked Data e D2R

i Server
Clients J —

HTML

Browsers i
. D2AQ

Mapping
File

Local Java
Application
b Jena/Sesome D2RQ Non-RDF
ROF dumg Engine Database

Triple Store

Fig. 8. The architecture of the D2RQ Platform
The mappings are written in D2RQ- a declarative mapping language expressed in
RDF and most often written in N3 format. D2RQ Engine is implementated as Jena
[51] graph and enables using Jena or Sesame API [52] to get RDF triples by RDF
graph processing or executing SPARQL queries. D2RQ mappings are used to
translate queries to SQL and translating SQL execution result back as RDF graph.
D2R server enables to use web application as SPARQL endpoint or browsing RDF
data.
Benefits of D2RQ platform:
1. enables to declaratively define mapping between relational database
schema and target ontology;

20

2. execution SPARQL queries over RDF- instance set of target ontology
getting data on the fly from relational database;
3. java API to use benefits 1. and 2. from java program code;
4. web based SPARQL endpoint.
The main features of D2RQ mapping language are illustrated by code examples
below. We start with mini-university example.
D2RQ mapping scripts can specify one or more source relational databases for the
target OWL/RDEFS ontology, eg.

map:database a d2rg:Database;

d2rqg:jdbcDriver "oracle.jdbc.driver.OracleDriver";
d2rqg:jdbcDSN "jdbc:oracle:thin:@guntars-PC:1521:gun";
d2rg:username "schooll";

d2rqg:password "s";

There are 2 type of maps: ClassMap and PropertyBridge. The ClassMaps specifies
how to get OWL/RDFS class instance triples. Mapping code for Course class to all
rows from COURSE table:

map:Course a d2rqg:ClassMap;

d2rg:dataStorage map:database;
d2rg:uriPattern "course@E@COURSE.COURSE ID@E";
d2rqg:class ex:Course;

URI for subject and predicate are specified by pattern in d2rq:uriPattern. There is
no separate property in ClassMap where one can specify a table name for the class
map. The table name in written in d2rq:uriPattern property value together with
pattern expression (pattern between two “@@”). This makes the language more
complicated.

PropertyBridge specifies how to get instance triples for datatype or object
properties. Property bridge uses d2rg:belongsToClassMap to specify classMap for
domain. Mapping code for OWL data property className specifies that values are to
be taken from column COURSE.NAME:

map:courseName a d2rqg:PropertyBridge;
d2rqg:belongsToClassMap map:Course;
d2rqg:property ex:courseName;
d2rg:column "COURSE.NAME";
d2rqg:datatype xsd:string;

Object properties uses also d2rq:refersToClassMap to specify classMap for range.
Mapping for OWL object property teaches specifies class maps for domain
(belongsToClassMap) and range (refersToClassMap) that are based on tables

TEACHER and COURSE:

map:teaches a d2rqg:PropertyBridge;
d2rqg:belongsToClassMap map:Teacher;
d2rqg:property ex:teaches;
d2rg:refersToClassMap map:Course;
d2rg:join "TEACHER.TEACHER _ID <= COURSE.TEACHER ID";

Domain class maps are used to generate subject part of triples. Range class maps
are used to generate object part of triples. d2rq:join Or d2rg.condition can specify
table row linking or filtering conditions.

OWL object property takes links classes Student and Course in many to many
relation, in DB there correspont two linking steps
STUDENT DPREGISTRATION ?COURSE:

21

map:takes a d2rqg:PropertyBridge;
d2rqg:belongsToClassMap map:Student;
d2rqg:property ex:takes;
d2rqg:refersToClassMap map:Course;
d2rg:join "XSTUDENT.STUDENT ID <= XREGISTRATION.STUDENT ID ";
d2rg:join "XREGISTRATION.COURSE ID => XCOURSE.COURSE_ ID";

One would ask why class map for Course class was defined but not for subclasses
MandatoryCourse and OptionalCourse setting filters on column
COURSE.REQUIRED:

map:MandatoryCourse a d2rqg:ClassMap;
d2rqg:dataStorage map:database;
d2rqg:uriPattern "course@ERCOURSE.COURSE ID@R";
d2rg:condition "required=1";
d2rqg:class ex:MandatoryCourse;

map:OptionalCourse a d2rg:ClassMap;
d2rqg:dataStorage map:database;
d2rg:uriPattern "course@E@COURSE.COURSE ID@E";
d2rg:condition "required=0";
d2rqg:class ex:0OptionalCourse;

The answer is: to avoid duplicate class map and property map code blocks
(courseName property for both subclasses MandatoryCourse and OptionalCourse). It
is possible to use a better design pattern (taken from D2RQ documentation): specify
class maps for sublcasses as Property Bridges for propety rdf:type refering to class
map for common superclass map:Course. Instances of each subclass is determined by
row filtering expression. The same design pattern is appropriate for all three

subclasses of Teacher class (Assistant, Professor, AssocProfessor).
property bridge for OptionalCourse
map:0OptionalCourse a d2rqg:PropertyBridge;
d2rqg:belongsToClassMap map:Course;
d2rqg:property rdf:type;
d2rqg:condition "required=0";
d2rg:constantValue ex:0OptionalCourse;

property bridge for MandatoryCourse class
map:MandatoryCourse a d2rqg:PropertyBridge;
d2rqg:belongsToClassMap map:Course;
d2rqg:property rdf:type;
d2rg:condition "required=1";
d2rqg:constantValue ex:MandatoryCourse;

One class can have more than one corresponding table (STUDENT and TEACHER
tables for class PersonID) so two class maps are needed. Two property bridges are
needed for property /Dvalue:

1. class map for PersonlID

map:PersonID teacher a d2rqg:ClassMap;
d2rqg:dataStorage map:database;
d2rg:uriPattern "personID@ETEACHER.IDCODEQR@";
d2rqg:class ex:PersonlD;

1. property bridge for IDValue
map:IDValuel a d2rqg:PropertyBridge;
d2rg:belongsToClassMap map:PersonID_ teacher;
d2rqg:property ex:IDValue;

22

d2rg:column "TEACHER.IDCODE";

2. class map for PersonID

map:PersonID student a d2rqg:ClassMap;
d2rqg:dataStorage map:database;
d2rqg:uriPattern "personID@ESTUDENT.IDCODEQRR@";
d2rqg:class ex:PersonID;

2. property bridge for IDValue

map:IDValue?2 a d2rqg:PropertyBridge;
d2rg:belongsToClassMap map:PersonlID student;
d2rqg:property ex:IDValue;
d2rg:column "STUDENT.IDCODE";

Full D2RQ mapping code for mini-university exampe is given in apendice [9.2].

Now we shown how to use D2RQ mappings to base ontology mapping on far table
linking, eg, tables linked by chain of more than 2 foreign key links. The database and
target ontology example is described in section [2.3.2].

Several d2rg.joins are used to describe table joining. Datatype property value is
specified by d2rq.column if table field contains required value and
d2rq.sqlExpression is used if SQL espression is needed to evaluate to get property
value (in this example Oracle DB string concatenation operator “||” is used). Full
mapping code for the example is given in section [9.2.2]. The code fragment below
shows how to fill OWL datatype property farName value with column value in table
that is reacher by chain of several foreign key links starting from the current table.
Property farPath records also all values from columns in all middle linking steps. The
solution uses multiple d2rq.join parameters:

map:ClassForTable a d2rqg:ClassMap;

d2rqg:dataStorage map:database;

d2rqg:uriPattern "table@@TABLE1l.TABLEl ID@@R";
d2rqg:class ex:ClassForTable;

map: farName a d2rqg:PropertyBridge;
d2rqg:belongsToClassMap map:ClassForTable;
d2rqg:property ex:farName;
d2rg:join "TABLE1l.TABLE2 ID => TABLE2.TABLE2 ID ";
d2rg:join "TABLEZ.TABLE3 ID => TABLE3.TABLE3 ID ";
d2rg:join "TABLE3.TABLE4 ID => TABLE4.TABLE4 ID ";
d2rg:column "TABLE4.NAME";

map:farPath a d2rqg:PropertyBridge;
d2rqg:belongsToClassMap map:ClassForTable;
d2rqg:property ex:farPath;
d2rg:join "TABLE1l.TABLE2 ID => TABLE2.TABLE2 ID ";
d2rg:join "TABLEZ.TABLE3 ID => TABLE3.TABLE3 ID ";
d2rg:join "TABLE3.TABLE4 ID => TABLE4.TABLE4 ID "
d2rqg:sglExpression "TABLE1.NAME || '->' || TABLEZ2.NAME

|| '"->'" || TABLE3.NAME || '->' || TABLE4.NAME";

The result of retrieving the triples by simple SPARQL in d2r Server:
PREFIX ex: http://lumii.lv/ex#

PREFIX db: http://localhost:2020/resource

PREFIX rdf: http://www.w3.0rg/1999/02/22-rdf-syntax-ns#
SELECT ?s ?p 20

WHERE

{

?s ?p 2?0

23

http://lumii.lv/ex
http://localhost:2020/resource
http://www.w3.org/1999/02/22-rdf-syntax-ns

Table 13. SPARQL execution result to get all triples for far table linking example

s p 0

db:tablel |rdfitype ex:Table

db:table2 |rdfitype ex:Table

db:tablel |ex:farPath |“tablel rowl->table2 rowl-> table3 rowl->table4 row1”

db:table2 |ex:farPath |“tablel row2->table2 rowl->table3 row2 ->table4 row2”

db:tablel |ex:farName |“table4 row1”

db:table2 |ex:farName |“table4 row2”

Next we show how D2RQ mapping for a case when a table is linked to itself.
Database and target ontology example are from genealogy example described in
section [2.3.3]. PERSON table is linked to itself by two foreign keys based on
columns father id and mother_id.

D2RQ mapping fragments follows (full code is given in apendice [9.2.3]):

Property bridge for lifespan property shows that any SQL expressions can be
specified for OWL data property value calculation.

Person class

map:Person a d2rqg:ClassMap;

d2rqg:dataStorage map:database;

d2rqg:uriPattern "person@EPERSON.PERSON_ IDER";
d2rg:class ex:Person;

lifeSpan property

map:lifeSpan a d2rg:PropertyBridge;

d2rg:belongsToClassMap map:Person;

d2rqg:property ex:lifeSpan;

d2rqg:sglExpression "PERSON.DEATH YEAR - PERSON.BIRTH YEAR";
d2rqg:datatype xsd:integer;

There are two PropertyBridges for OWL object property parent as two foreign
father _id and mother id keys are corresponding in the database. Those two
PropertyBridges connects the same class Person (for domain and range) meaning that
the same database table person is being joined to itself. This is done by using
d2rq.alias to use different alias for second person table reference. Then d2rq.join
joins person to person. Such aliasing for joining is appropriate for tables used for
range (used in ClassMap referenced from d2rq.refersToClassMap). Table used in
ClassMap for domain of the property (d2rq.belongsToClassMap) should not be
changed by aliasing, meaning the table for domain ClassMap is starting point for
linking.

map:parent father a d2rqg:PropertyBridge;

d2rg:belongsToClassMap map:Person;

d2rqg:property ex:parent;

d2rqg:refersToClassMap map:Person;

d2rg:alias "PERSON AS PARENT";

d2rg:join "PERSON.FATHER ID => PARENT.PERSON ID ";

map:parent mother a d2rqg:PropertyBridge;
d2rg:belongsToClassMap map:Person;
d2rqg:property ex:parent;
d2rqg:refersToClassMap map:Person;
d2rg:alias "PERSON AS PARENT";

24

d2rg:join "PERSON.MOTHER ID => PARENT.PERSON ID ";

The D2RQ mapping script can use also translation tables where concrete values
coming from database are translates to concrete values (URI or literals) of
OWL/RDFS ontology (eg, f>ex:female).

map:Gender a d2rqg:ClassMap;

d2rqg:dataStorage map:database;
d2rg:uriColumn "PERSON.GENDER";
d2rqg:containsDuplicates "true";
d2rqg:class ex:Gender;
d2rqg:translateWith map:GenderTable

map:GenderTable a d2rg:TranslationTable;

d2rqg:translation [d2rg:databaseValue "f"; d2rg:rdfvValue "ex:female";
17

d2rqg:translation [d2rg:databaseValue "m"; d2rg:rdfvalue "ex:male";]

map:gender a d2rqg:PropertyBridge;
d2rg:belongsToClassMap map:Person;
d2rqg:property ex:gender;
d2rqg:refersToClassMap map:Gender;

We note that D2RQ has some drawbacks. D2RQ mapping is declarative language
to specify rdf triple generation in terms of relational database schema but is unaware
of target ontology content. Therefore it must be hand coded that could otherwise be
infered from the target ontology. For exampe, for object property it is necessary to
specify referenced ClassMaps for domain and range. If D2RQ mapping language
would allow to use the ‘target ontology structure then clauses
d2rq.belongsToClassMap and d2rq.rfersToClassMap could be omitted in typical
situations. In exmple below these are odd if OWL object domain and range classes of

property enrolled (Student, AcademicProgram) has one ClassMap each.
map:enrollod a d2rqg:PropertyBridge;
d2rg:belongsToClassMap map:Student;
d2rqg:property ex:enrolled;
d2rqg:refersToClassMap map:AcademicProgram;
d2rqg:join "XSTUDENT.PROGRAM ID => XPROGRAM.PROGRAM ID ";

Another drawback of D2RQ platform is superfluous triple generation in the
folowing scenarios. Suppose we have class ¢ with subclasses C/, C2, ..., Cn and
property P that have ¢ as domain. The D2RQ mappings it this case can be
implemented in two ways.

The first way is to define PropertyBridges of property P for each sublclass Ci
referencing its ClassMap.

map:Cl a d2rqg:ClassMap;

d2rqg:dataStorage map:database;
d2rg:uriPattern "..";
d2rqg:class ex:Ci;

map:P1l a d2rg:PropertyBridge;
d2rg:belongsToClassMap map:Ci;

d2rqg:property ex:P;
d2rg:column "..";

This solution requires much repeated typing: n ClassMaps and n PropertyBridges.

25

Another mapping solution is to define one ClassMap for superclass ¢, define one
PropertyBridge for property p and then define n PropertyBridges for rdf:type property

instead of ClassMaps of sublclasses ¢/, ...cn as previously.
map:C a d2rg:ClassMap;
d2rqg:dataStorage map:database;
d2rqg:uriPattern "..";
d2rqg:class ex:C;

map:P a d2rqg:PropertyBridge;
d2rqg:belongsToClassMap map:C;
d2rqg:property ex:P;
d2rg:column “..”;

For ecah i=1,2,...n

map:Cl a d2rqg:PropertyBridge;
d2rqg:belongsToClassMap map:Course;
d2rqg:property rdf:type;
d2rg.condition “..”
d2rg:constantValue ex:Ci;

This solution is more elegant that the previous one (no repeated typing) but
generates superfluous triples for superclasses. It would be desirable if ClassMap had
option to tell if specified triples are to be physically generated. Then we would
specify ClassMap for superclass C as not for triple generation (only for
PropertyBridge reference).

Suppose further that the target ontology has class C with many properties P/, P2,
...Pn, having C as domain. Suppose further that ClassMap for C maps to source
database table T, PropertyBridge for property P/ maps to column 7.C/, for property
P2 maps to column 7.C2,... for property Pn maps to column 7.Cn. In case when
database schema design is not good one, n can be large (>100). In this situation
ClassMap for C would normally generate instances for all rows of table 7 when no
d2rq.condition is set. To specify condition when at least one property instance triple
exist for instance of C, one would specify lenghty condition which is a tedious work

without what superfluous triples would be generated.
T.Cl is not null and T.C2 is not null .. and T.Cn is not null

3.4 R20 Database-to-ontology Mapping language and platform

R20 [Barrasa et al., 2006] [8] is declarative language to express mappings between
source RDB schema and target ontology (OWL or XML Schema). The language is
XML based in syntax being described in BNF notion. The mappings describe how to
obtain ontology class and property instances in terms of source database schema
elements. ODEMapster [53] uses R20 mapping document to enable RDF triple
generation in two possible modes: on the fly executing query or as a batch process to
dump all tripless in needed. The engine in implemented as a plugin to NeOn toolkit
[54] application, a java desktop Eclipse based application. To enable global access a
Web application using ODEMapster should be created.

Both- a source database and target ontology are meant to be independent (pre-
existant). Below is picture taken from [8] that illustrate R20 mapping architecture.

26

Modelling E/R model ‘ Ontology conceptual model ‘

Implementation |

¥ ¥
A Declarative Mapping
SQL relational D escrict 0 OWL RDF({S)
model esGription R2 <::| implemnentation implementation

4

4 4

Dalabase
Instance data (rec

instance set for instance set for
rdS|T]t:> ODEMapster |::> ontology in QWL ontology nRDFS | .

Fig. 9. R20 mapping architecture

R20 language will not be described here, as it is done in [8].The main features will be
shortly presented and illustrated by R20 mapping code for mini university example
[2.3.1].

R20 mapping contain main structural element description of source RDB (can be
more than 1) in <dbschema-descr> tag where information about relational DB tables,
columns, primary/foreign key are written. Ontology class-to-database mappings are
described in <conceptmap-def> tag (correspond to class map in D2RQ) with name
parameter holding class’ name (full URI), <uri-as> describing how to generate
instance URIs in terms of table columns, <applies-if> describing filter condition on
row selection. Expressions are 2 type: transformations (used for URI formation and
datatype property values) and condition expressions used, for example, fro <applies-
if>. All expressions are described in R20 language, having predefined list of
conditions (lo_than, lo_than_str, equals, equals_str, date before, between, etc) and
predefined list of functions (get_nth_char, get substring, concat, Multiply type, etc)
and list of logical operators (AND, OR). No SQL functions or expression invocation
can be used.

OWL/RDEFS properties descriptions are included in class mapping desctiption of
the domain class- as subtags under <conceptmap-def>. Datatype properties are
descriped in <attributemap-def> tag and Object properties in <dbrelationmap-def>
where table linking can be described in <joins-via> tag which can be omited if
mapped tables for classes of domain and range are linked by unique foreign
key/primary key link in database.

Below is screenshot of ODEMapster window where part of mapping for simple
university example are defined by UL Only simplest mapping could be defined, no
filter (applies-if), more than 2 table linkings. These and other custom mappings are to
be written manually. ODEMapster supports a subset of the R20 language however it
did not open and execute custom mappings written manually.

27

type filter text Delete mapping ltype filter text

= gun [© personiiame Al
= @ PROGRAM < - @ personiD
PKi PROGRAM_ID 20— _— o o D takes
G nave P —— % @ enrolled
= @ STUDENT R e P = @ Teacher
PK) STUDENT_ID P " = @ asistant
FK) PROGRAM_ID = @ personiame
© navE @ persond
@ IDCoDE @ teaches
= @ COURSE = @ assocProfessor
PK) COURSE_ID @ persontiame
FK) TEACHER_ID———— (2) @ personid
FK) PROGRAM_ID g @ teaches
G nave- N E @ Professor
© REQUIRED @ personame
& @ TEACHER N @ personid
PK) TEACHER_ID————— {1} \ @ teaches
FK) LEVEL_CODE T @ personhiame
G nave — . @ personid
@ 1CoDE S S O 3
£ @ TEACHER_LEVEL — @ < @ personiiame
PK) LEVEL_CODE @ persond

= @ Course
= @ MandatoryCourse
O courseName
@ isTakenBy
@ isTaughtBy
= @ optionalCourse
€ % @ courseName
@ isTakenBy po|
@ isTaughtBy
@ U courseName.
@ isTakenby

= @ REGISTRATION
PK) REGISTRATION_ID
FK) COURSE_ID > ®
FK) STUDENT_ID 3

@ isTaughtsy
= (3 py n =
. ol S8 jJ

Mapping | R20 source |

Fig. 10. ODEMapster screenshot for simple university examle mappings
We illustrate now the main points by code fragments for mini-university example.
D20 mappings code is longer comparing to D2RQ code for the same example. Full

D20 code for the example is given in apendice [9.3].
Mapping code begins with RDB schema description- tables, primary key columns

(keycol-desc), foreign key columns (forkeycol-desc), regular colums (nonkeycol-desc)
<r2o>
<dbschema-desc name="db">

<has-table name="PROGRAM">
<keycol-desc name="PROGRAM ID"/>
<nonkeycol-desc name="NAME"/>

</has-table>

<has-table name="STUDENT">
<keycol-desc name="STUDENT ID"/>
<forkeycol-desc name="PROGRAM ID">

<refers-to>PROGRAM.PROGRAM ID</refers-to>

</forkeycol-desc>
<nonkeycol-desc name="NAME"/>
<nonkeycol-desc name="IDCODE"/>

</has-table>

The mapping code is followed by list of <conceptmap-def> for each class of
ontology. Some has condition description <applies-if> (eg, for classes
MandatoryCourse, OptionalCourse, Professor). For class Teacher mapping are as

follows
<conceptmap-def name="http://lumii.lv/ex#Teacher">
<uri-as>
<operation oper-id="concat">
<arg-restriction on-param="stringl">
<has-value>http://lumii.lv/ex#Teacher</has-value>
</arg-restriction>
<arg-restriction on-param="string2">

28

<has-column>db.TEACHER.TEACHER ID</has-column>
</arg-restriction>
</operation>
</uri-as>
<described-by>

<attributemap-def name="http://lumii.lv/ex#personName">
<selector>
<aftertransform>
<operation oper-id="constant">
<arg-restriction on-param="const-val">
<has-column>gun.TEACHER.NAME</has-column>
</arg-restriction>
</operation>
</aftertransform>
</selector>
</attributemap-def>

<dbrelationmap-def name=http://lumii.lv/ex#teaches
toConcept="http://lumii.lv/ex#Course">

<joins-via>
<condition oper-id="equals">
<arg-restriction on-param="valuel">
<has-column>db.TEACHER.TEACHER ID</has-column>
</arg-restriction>
<arg-restriction on-param="value2">
<has-column>db.COURSE.TEACHER ID</has-column>
</arg-restriction>
</condition>
</joins-via>
</dbrelationmap-def>
</described-by>
</conceptmap-def>

First URI pattern (“Teacher” concatenated with value of TEACHER.TEACHER ID

field.) As code shows functions (eg, concat) are defined on D20 level and no SQL
expresion can be used. Mapping for OWL datatype property (personName) is
described in attributemap-def tag. Next mapping for OWL object property feaches is
described in db_relationmap-def with domain class in toConcept attribute and DB
table joining described in joins-via tag. Mappings for properties are embedded into

mappings for classes for domain.
Mapping for OWL Object property fakes shows multiple table linking example

(STUDENT ?REGISTRATION 2COURSE) eg,
(mapped to domain class) to COURSE table (mapped to range class) through
intermediate REGISTRATION table by means of two column comparison (eguals):

<conceptmap-def name="http://lumii.lv/ex#Student">

<dbrelationmap-def name="http://lumii.lv/ex#takes"
toConcept="http://lumii.lv/ex#Course">
<joins-via>
<AND>
<condition oper-id="equals">

<arg-restriction on-param="valuel">
<has-column>db.STUDENT.STUDENT ID</has-column>

</arg-restriction>

<arg-restriction on-param="value2">
<haS-COlumn>db.REGISTRATION.STUDENTiID</has—COlumn>

</arg-restriction>

29

how to link STUDENT table

http://lumii.lv/ex#teaches

</condition>
<condition oper-id="equals">
<arg-restriction on-param="valuel">
<has-column>db.REGISTRATION.COURSE ID</has-column>
</arg-restriction>
<arg-restriction on-param="value2">
<has-column>db.COURSE.COURSE ID</has-column>
</arg-restriction>
</condition>
</AND>
</joins-via>
</dbrelationmap-def>
</described-by>
</conceptmap-def>

For Person and PersinID class there are two mapping definitions by conceptmap-
def (at end part of the script) for each as two tables STUDENT and TEACHER are

corresponding data tables for them.
<conceptmap-def name="http://lumii.lv/ex#Person">

<described-by>
<dbrelationmap-def name="http://lumii.lv/ex#personID"
toConcept="http://lumii.lv/ex#PersonID">
<joins-via>
<!-- Problem to make join as both classes for domain and range
uses the same table.
R20 language does not has facilities to assign
aliases to tables
-—>
<condition oper-id="equals">
<arg-restriction on-param="valuel">
<has-column>db.STUDENT.STUDENT ID</has-column>
</arg-restriction>
<arg-restriction on-param="value2">
<has-column>db.STUDENT.STUDENT_ ID</has-column>

</arg-restriction>
</condition>
</joins-via>
</dbrelationmap-def>
</described-by>
</conceptmap-def>
A problem is seen there joining table to itself- defining mappings for personiD
object property between classes Person and PersonID. 1t is up to tool implementation
to manage such cases otherwise unwanted SQL can be generated:
select .. from STUDENT, STUDENT
where STUDENT.STUDENT ID=STUDENT.STUDENT ID

We note that D20 mapping language use only functions and condition expressions
defined on D20 language level. That means no possability to use SQL expressions
(RDBMS supported) and use RDB engine to calculate them for row filtering and
property value calculation.

D2R mapping language enables to stores RDB shema structure information but no
information about the target ontology. Therefore no domain/range information,
subclass relation and other ontology information can be used for mapping purposes.

The ODEMapster v.2.2.7 of 02.07.2010 [53] is not mature enough for real life
applications- impossible to define row filters, far table links, instability (often crashes

30

with uncatched java Exceptions). The further development of D20 language in
unclear. Language specification available is from the original paper [8] from 2004.

3.5 DB2OWL- a tool for Automatic Ontology-to-Database Mapping

Nadine Cullot, Raji Ghawi, and Kokou Yétongnon from Universit de Bourgogne,
Dijon, FRANCE in 2007. at Italian Symposium on Advanced Database Systems
(SEBD 2007) presented RD2OWL tool for automantic Database-to-Ontology
Mapping [55]. Here we briefly describe the main points from this paper.

DB20OWL starting point is Relational Database schema structure- Tables, Columns
and mainly relations between tables. This structure is analyzed by defined alghoritm
to infer appropriate OWL ontology that conform source database design.

The architecture of DB2OWL implementation is shown below in [Fig. 11] taken
from [56].

JDBC algornithm
Untolog
DB Muodel ¥
et OWL Ontology
Mapping Mapping
Muordel document

Fig. 11. RDB20OWL framework architecture

Mapping algorithm analyzes database tables and relation types between them and
decides about corresponding OWL class and property creation. 3 cases are taken into
account:

1) Table T relate two other tables T1 and T2 in many-to-many relation;

2) Table T relate other table T1 by foreign key which is also primary key of T;

3) All other cases (not occurring case 1. or 2.).

To illustrate table cases we use database example from mini-university example
[2.3.1]

Table REGISTRATION is in case 1- it relates tables STUDENT and COURSE in
many-to-mane relation.

There are no tables in case 2. If there would be table PERSON with primary key
column IDCODE and table STUDENT having foreign key to PERSON table by
column IDCODE then STUDENT table would be in case 2.

The mapping algorithm is described by the following steps.

1) Database tables in case 3 are mapped to OWL classes.

2) The tables in case 2 are mapped to subclasses of classes corresponding to their

related tables. For example, STUDENT table are mapped to subclass of a class
mapped to PERSON table in case described above.

31

3) Tables in case 1 are mapped not to OWL classes but to two object properties
with domain and range determined by T1 and T2. For example, for table
REGISTRATION two object properties are created student2course and
inverse courseZstudent (Student and Course classes for domain and range).

4) If table T is in case 3 and relates to table T1 by foreign key and c, cl being
classes corresponding to T and T1 respectively. Create object propery op that
has domain ¢ and range cl and create inverse object property op’ To preserve
the original direction (from foreign key to primary) property op is marked as
functional property. For example, for TEACHER ID in COURSE table object
properties courselteacher and teacher2course are created the first one being
marked as functional.

5) For tables in case 2 that have other foreign key than the ones used to create the
subclass, such key is mapped to object properties as in the previous step 4)

6) For all tables their columns that are not foreign keys are mapped to datatype
properties.

Execution of the above mentioned algorithm automatically generates a R20 [8]
document that hold the generated mappings between original database and generated
ontology. It can be used to translate queries against generated ontology into SQL
queries to retrieve corresponding instances.

The described in this section DB2OWL aproach is not appropriate if source
database is not well designed (foreign/primary keys not explicitely defined, large
tables corresponding to many concept, etc). It should be noted that the
correspondence of ontology generated with DB20OWL method is not so strictly
conforming to relational model as that generated with Relationa. OWL approach [1].

3.6 Vitruoso RDF views

Virtuoso RDF views (C. Blakeley, OpenLink Software, 2007, [10]) is framework
that has a mapping specification language between relational database and target
OWL/RDEFS ontology. Relational database schema/data mapping to OWL/RDF is
expressed in “Meta Schema Language”-mapping definition language where quad map
patterns are described using SPARQL notion. In typical cases tables are mapped to
RDFS classes, table columns to OWL datatype properties and foreign keys to OWL
object properties. The mapping language is expressive enough to cope with non-direct
custom mapping cases.

RDF datasets are not physically stored. Stored mapping definitions comprise so
called RDF views over relational data. These mappings are calculated on-the-fly
when triples are demanded. When relational data change, results of queries over target
ontology through RDF views also change.

32

RDF Views execution RDF Views definition

- M i i
Mappings Relation R%pr {2%9\:\:2
(RDF Views) al data form
Virfuoso Don’t define, Defines and
server references to references
elements(table;
cilumns)
SPARQL query to
data of target RDB shema o-r:?c:?c? t
ontology >

Fig. 12. Virtuoso RDF views architecture

Below some features of the languaga are ilustrated for mini-university example
[2.3.1]. The full code are given in appendix [9.3]

The mapping language has means to describe the target ontology. The code
belowillustrate description of RDF class, OWL datatype and object property as well

as subclass relation:
@prefix
@prefix

@prefix rdfs:

@prefix
@prefix

owl: <http://www.w3.0rg/2002/07/owl#>
rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

<http://www.w3.0rg/2000/01/rdf-schema#>

xsd: <http://www.w3.0rg/2001/XMLSchema#>
virtrdf: <http://www.openlinksw.com/schemas/virtrdf#>

@prefix DB: <http://lumiiex/school/>

DB:

DB:
DB:
DB:

DB:
DB:
DB:

DB:
DB:

Course a rdfs:Class

courseName
courseName
courseName

isTaughtBy
isTaughtBy
isTaughtBy

a owl:DatatypeProperty
rdfs:range xsd:string
rdfs:domain DB:Course

a owl:0ObjectProperty
rdfs:domain DB:Course
rdfs:range DB:Teacher

MandatoryCourse a rdfs:Class
MandatoryCourse rdfs:subClassOf DB:Course

Next IRI classes are defined that are used for URI calculation for triple instances.
The classes are like functions and uses ¢ language format style for IRI patterns (%d-
integer, %s- string, etc):

SPARQL
prefix DB: <http://lumiiex/school/>

create iri class DB:teacher iri "http://lumiiex/school/teachersd"
(in _TEACHER ID numeric not null) . ;

SPARQL
prefix DB: <http://lumiiex/school/>
create iri class DB:course iri "http://lumiiex/school/course%d"
(in COURSE ID numeric not null) . ;

33

The mapping specifications for classes and properties are both defined in one triple
pattern) and reference the defined IRI patterns (course iri). Code below specifies
mapping for class Course and OWL data property courseName and object property
isTaughtBy:

SPARQL

prefix DB: <http://lumiiex/school/>

create quad storage virtrdf:school

from DB.DBA.COURSE as course_s

from DB.DBA.TEACHER as teacher s

where (“{course s.}”.TEACHER ID = "{teacher s.}”.TEACHER ID)

{

create DB:gm-course as graph <http://lumiiex/school/#>

{

DB:course iri(course s.COURSE ID) a DB:Course ;

DB:courseName course_s.NAME ;
DB:isTaughtBy DB:teacher iri(teacher s.TEACHER ID)

}

bi

Mappings for subclasses (MandatoryCourse as subclass of Course) typically
reference the same URI patterns as the mappings for superclass (course iri).

Additional SQL filter course.required=1 is added:
SPARQL
prefix DB: <http://lumiiex/school/>
alter quad storage virtrdf:school
from DB.DBA.COURSE as course_ s mand
where ("{course s mand.}”.REQUIRED = 1)
{
create DB:gm-mandatory course as graph <http://lumiiex/school/#>
{
DB:course iri (course s mand.COURSE ID) a DB:MandatoryCourse
}
i
Mapping for OWL object property takes need to specify link chain of 3 tables
student>registration—> course. It is done in a similar way as one would join tables in

SQL code:
SPARQL
prefix DB: <http://lumiiex/school/>
alter quad storage virtrdf:school
from DB.DBA.STUDENT as student_s
from DB.DBA.REGISTRATION as registration_s
where ("“{registration s.}".STUDENT ID = "{student s.}".STUDENT ID)
from DB.DBA.COURSE as course s taken
where ("“{course_s_taken.}".COURSE_ID =
“{registration_s.}”.COURSE_ID)
{
create DB:gm-student as graph <http://lumiiex/school/#>
{
DB:student iri (student s.STUDENT ID) a DB:Student ;
DB:personName student s.NAME as DB:dba-student-name ;
DB:takes DB:course_iri(registration_s.COURSE_ID)
}
bi
Finally, to execute SPARQL queries using RDF views, SPARQL endpoint should
be directed to Virtuoso server where mappings are loaded. The input:storage clause

specifies over which named RDF Views SPARQL should be executed:

34

o

2 Hel p

Query Saved Queries

Default Graph IRI

Query
define input:storage virtrdf:school
prefix DB: <http://lumiiex/school/>
select ?studentMName ?courseName
where {
?student DB:takes ?course ;
DB:personName ?studentMName .
?course DB:courseName ?courseName

}
Execute | Save | Load | Clear|

||studentName courseName

(Dave Semantic Web

||Dave Quantum Computations
||Eve Programming Basics
([Eve Computer Networks
([Charlie Semantic Web

Fig. 13. SPARQL execution over RDF Views

We make some conclusions about mapping language of Virtuoso RDF views. The
mapping language is rather technical one, it takes some effort to learn it (in examples
above used only simplest constructions). Custom mapping are more complex, the case
when structure database schema and ontology differs significantly. It is not clear how
to use SQL expressions for DatatypeProperty value calculation.

Virtuoso opensource version doesn’t allow usage of external RDBs with jdbc
connections (only built in database can be used).

3.7 Ultrawrap

Ultrawrap (Ultrawrap: Using SQL Views for RDB2RDF by Sequeda, J.F.,
Cunningham, C., Depena, R., Miranker, D.P. [12]) is a direct RDB-to-RDF mapping
framework that enable dynamic SPARQL endpoint over data in legacy relational
databases. The main benefits of Ultrawrap are:

1. Automatic publication of relational databases to Semantic Web;

2. Virtual RDF presentation by SPARQL-to-SQL transforming and execution on

the fly;

3. Maximal use of existing SQL infrastructure and power of RDBMS.

The central element af Ultrawrap architecture is technical ontology called Putative
Ontology (PO) that is obtained by syntactic translation of relational schema to OWL
ontology (Tables correspond to ontology classes, table columns- to properties, etc).
The RDF triples that correspond to PO ontology are implementated virtually as
manually written three column SQL view TripleView over relational data for subject,

35

predicate and object values. For our Mini-University database example, TripleView
fragment may be written as follows (no target ontology names used, eg, ,,name” not

,personName” property name used):

CREATE VIEW TripleView(s,p,0) AS
SELECT 'Teacher' + t.teacher id as s,
'rdf:type' as p, 'Teacher' as o
FROM TEACHER t

UNION

SELECT 'Teacher' + teacher id as s,
'name' as p, t.name as o
FROM TEACHER t

UNION

SELECT 'Student' + s.student id as s,
'rdf:type' as p, 'Student' as o
FROM STUDENT t

UNION

SELECT 'Student' + s.student id as s,
'name' as p, t.name as o
FROM TEACHER t

UNION

Further, information from RDF triples is demanded as SPARQL query over
TripleView which after syntax driven SPARQL-to-SQL translation is executed on
relational database to get the live result. Example of SPARQL and corresponding
SQL:
SPARQL:
SELECT ?person ?personName
WHERE { ?person rdf:type ?TEACHER.
?person name ?personName.
}
SQL:
SELECT tl.s as person, t2.o0 as personName,
FROM tripleview t1, t2, t3
WHERE tl.p ='rdf:type’
AND tl.s = t2.s AND t2.p=‘name’

One of Ultrawrap priorities is performance therefore SQL optimizer techniques are
used such as parametrized SQL queries and query rewrite by splitting queries into
simpler ones. But SQL optimization techniques are somehow dependable on concrete
RDBMS therefore ultrawrap may not be tuned well for all legacy databases. Users of
Ultrawrap should be familiar with legacy database design in orded to formulate
correct SPARQL queries.

3.8 Triplify

Triplify [13] is a simple approach to publish Linked Data from relational databases
that are hidden behind web applications. Triplify offers an adapter and configuration
that can be integratted into existing web applications to enable RDF and Linked Data
generation by executing defined database SQL views.

The Triplify Web site [57] includes a repository of various Triplify congurations
for popular Web applications part of which is third party contributed showing that
Triplify is widely used in the industry.

36

SQL is used as a mapping language where each mapping is expressed as SQL view
with special structure (the first columns returns identifiers for instance URIs, columns
names are taken for property URI generation, etc). Triples are demanded by means
HTTP requests with special URL patterns (for example, a Student instance URL
could be in the form Attp://lumii.ex/mini-university/triplifv/student/3). Triple
extraction can be performed on demand or in ETL(Extract-Transform-Load)
scenarious. For ETL performance improvement some kind of update logs are
integrated to enable incremental RDF update.

Keyword-based
Search Engines

Semantic-based
Search Engines

HTML pages

RDF triple-based descriptions
(Linked Data, RDF, JSON)

Webserver

’ \ Endpoint
Web Application | | Triplify script | [egisty
Triplify
: \ Configuration
. Relational > repository
Database

Fig. 14. Triplify overview: the Triplify script is accompanied with a conguration repository
and an endpoint registry (picture taken from [13]).

The code below shows mapping from URL patterns to SQL query sets in the
Triplify configuration (PHP code) for the Mini-University example fragment with
instance RDF for Student class and subclases of Course, personName and
courseName datatype properties and takes object property. Mapping burden is laid on

column namings (with arrow -> specifying object property instances creation):
Striplify['queries']=array (
'student'=>array(
"SELECT student id,
name AS 'personName””“xsd:string',
‘Student with name:’ || name AS 'rdfs:label@Ren'
FROM STUDENT ",
"SELECT student id,
course_id AS ‘takes->mandatoryCourse’
FROM REGISTRATION r, course c ON c.course id=r.course id
WHERE c.required=1",
"SELECT student_id,
course_id AS ‘takes->optionalCourse'
FROM REGISTRATION r, course c ON c.course id=r.course id
WHERE c.required=0",
) r
'mandatoryCourse’'=>
"SELECT course_id,
name AS 'personName””"xsd:string'

37

http://lumii.ex/mini-university/triplify/student/3

FROM COURSE WHERE required=1",
'optionalCourse'=>
"SELECT course id,
name AS 'personName””“xsd:string'
FROM COURSE WHERE required=0",
)i
The Triplify mapping expressiveness and readability is that of SQL. SQL as a
mapping language is used for performance purpose: to generate more triples faster

power of relational databases could be used.

3.9 DartGrid

Dartgrid is a Semantic Web toolkit [33] for mapping and querying of relational
database data as RDF using SPARQL language. Mappings are essentially table based
where mapped elements from database and ontology are linked. No special mapping
specification language is used. The mappings are defined by help of visual tool.
Visual tools also help users to construct correct SPARQL queries. For query
execution SPARQL-to-SQL transformation algorithm uses mapping definitions.
Datrtgrid tools offer an application development framework that allows
interconnection of distributed relational databases for semantic querying, search and
navigation services. Full-text search capability with concept ranking is provided.

3.10 A Direct Mapping of Relational Data to RDF (W3C)

There is upcoming W3C standard for direct (technical) mapping [60] of RDBs to
RDF format. Relational databases proliferate because they are efficient, have precise
definition, have many SQL based tools and are most widespread comparing with
other data technologies. The need has occurred to make data of relational databases
globally accessable. One possible solution is to expose data in relational databases as
RDF graphs that has web scalable architecture. The direct mapping defines a
transformation from relational schema and data into RDF graph (called direct graph)
whose target RDF vocabulary directly reflects the names of database schema
elements.

The direct mapping takes into consideration database table data and design: tables,
columns, primary/foreign key columns and data in row fields determine how to
format IRI for triple parts (subject, predicate and object). For example, if table X has
primary key consisting of n columns C 1, C 2, ...C n and row has values for these
columns V_1,V 2, ..., V_n then subject IRI (called RoORDB w RDF Node for a row)
takes form:

base TRI/X/C_1=V_1,C_ 2=V 2,...,C_n=V_n

We will not dive into technical details, thye are described in document [60]. Literal
values of table row fields are transformed into triple as object value with predicate
representing column name. Foreign key link is transformed into triple with subject
and object containing Row DRF nodes of referenced rows on both sides. Also some
corner cases of relational schema are taken into consideration eg. foreign keys

38

referencing candidate (unique) keys and hierarchical tables (sharing common primary
keys). For tables that miss primary keys, blank nodes are created for Row DRF nodes.

We illustrate main points of direct mapping by fragment of direct graph for mini-
university example [2.3.1] for tables Student and Program:

@base <http://lumii.example/school/>
@prefix xsd: <http://www.w3.o0rg/2001/XMLSchema#>

<Student/student id=1><rdf:type><Student>

<Student/student id=1><Student#student id> 1

<Student/student id=1> <Student#name> “Dave”

<Student/student id=1><Student#idcode>"“123456789"

<Student/student id=1><Student#program id> <Program/program id=1>

<Student/student id=2> <Student#student id> 2

<Student/student id=2> <Student#name> “Eve”
<Student/student id=2> <Student#idcode> "“987654321"
<Student/student id=2> <Student#program id> <Program/program_id=2>

<Student/student id=3> <Student#student id> 3

<Student/student id=3> <Student#name> “Charlie”
<Student/student id=3> <Student#idcode> "“555555555”
<Student/student id=3> <Student#program id> <Program/program_id=1>
<Student/student id=4> <Student#student id> 4
<Student/student id=4> <Student#name> “Ivan”
<Student/student id=4> <Student#idcode> “345453432"
<Student/student id=4> <Student#program id> <Program/program_id=2>

<Program/program id=1> <rdf:type> <Program>
<Program/program id=1> < Program#program _id> 1
<Program/program id=1> < Program#name> “Computer Science”

<Program/program_ id=2> <rdf:type> <Program>
<Program/program_id=2> < Program#program _id> 2
<Program/program id=2> < Program#name> “Computer Engeneering”

One can notice that similar approach of just described direct mapping is also used
in Relational. OWL platform [3.1]. But direct mapping as a W3C standard is desirable
for integration purposes- many tools can be developed that transform relational data
into RDF all complying with common W3C standard.

3.11 R2RML: RDB to RDF Mapping Language (W3C)

There is upcoming W3C standard R2RML [59] for RDB-to-RDF mapping
language. The latest version at the moment of writing is W3C Working Draft 24
March 2011. The purpose of R2ZRML language is to express customized mappings
from relational databases to RDF datasets whose structure and target vocabulary can
be chosen any, need not conform to relational schema. Vendors are welcomed to
produce tools for RZRML language to enable view of relational data in RDF form for
conceptual ontology.

39

R2RML mapping constructs specify how to produce RDF triple components
subject, predicate and object in terms of source relational database table structure and
data expressed in language structures. By table is meant a logical table- it can be view
or SQL query. The main mapping constructs are:

e TriplesMap

o SubjectMap

o PredicateObjectMap
= PredicateMap
= ObjectMap

o RefPredicateObjectMap
= RefPredicateMap
= RefObjectMap

It is clear from names of the constructs what they stand for. With
RefPredicateObjectMap one can specify mapping for predicate, object pair that
corresponds in database to link between two tables. We will illustrate the main
features and design patterns of RZRML language with mappings fragments for mini-
university example [2.3.1]. For full mapping source code, see appendix [9.5].

If target ontology class and property is mapped to database table and column,
mappings are rather straightforward, eg, for class Program and programName
property:

<#TriplesMap Program>

a rr:TriplesMapClass;
rr:tableName "PROGRAM";

rr:subjectMap [rr:template "ex:program{program id}";
rr:class ex:Program;

1

rr:predicateObjectMap

[

rr:predicateMap [rr:predicate ex:programName];

rr:objectMap [rr:column "name"]

17
If mapping can not be expressed simply in terms of simple tables and columns but

row filters or calculated values are needed then manual SQL coding is needed. For

example, required column of COURSE table determine instance of which Course

subclass should be created (OptionalCourse or MandatoryCourse). The example

shows dynamic instance type calculation (using rdf-type property):
<#TriplesMap Course>
a rr:TriplesMapClass;
rr:SQLQuery """
Select course id
teacher id
program id
name
case when required=1 then 'MandatoryCourse'
else 'OptionalCourse'

end as subclass name
from COURSE

LLRIRIEN
’

~ S 0~ 0~

rr:subjectMap [rr:template "ex:course{course id}";
rr:class ex:Course;

40

1

rr:predicateObjectMap

[

rr:predicateMap [rr:predicate rdf:type];

rr:objectMap [rr:template "ex:{subclass_name}"

17
The language contains means to avoid duplicate coding. For example, tripleMaps

for all 3 subclasses of Teacher class has the same predicateObjectMap. It can be

defined in one place and reused many times:
<#PredicateObjectMap personName>
a rr:PredicateObjectMapClass
[
rr:predicateMap [rr:predicate ex:personName];
rr:objectMap [rr:column "name"]

1i

<#TriplesMap Assistant>
a rr:TriplesMapClass;
rr:SQLQuery """
Select teacher id

, nhame
from TEACHER
where level code='Assistant'

mwrew .,

rr:subjectMap [rr:template "ex:teacher{teacher id}";

rr:class ex:Assistant;

1

rr:predicateObjectMap <#PredicateObjectMap personName> ;

<#TriplesMap Professor>

<#TriplesMap AssocProfessor>

R2RML has no means to express mapping for property that is based on link chain
of more than 2 tables. Manual SQL coding is to be used for these cases (as for other
non direct mapping cases). For example for OWL object property takes (many to
many relation between Student and Course classes) correspond link of 3 tables
STUDENT-REGISTRATION- COURSE. Two TripleMaps are joined by means of

course_id column from REGISTRATION table:
<#TriplesMap Student>
a rr:TriplesMapClass;
rr:SQLQuery """
Select s.student id
, s.program_ id
, S.name
, r.course id
from STUDENT s, REGISTRATION r
where s.student id=r.student id

www .,
’

rr:subjectMap [rr:template "ex:student{student id}";
rr:class ex:Student;

41

1

rr:refPredicateObjectMap
[
rr:refPredicateMap [rr:predicate ex:takes];
rr:refObjectMap
[
rr:parentTriplesMap <#TriplesMap Course>;
rr:joinCondition
"{childAlias.}course id = {parentAlias.}course id"
1
]

We note that RZRML is rather low level language for RDB-to-RDF mappings. Its
expressivness relies much on SQL language. Typical cases when data properties are
mapped to table columns and object properties- on foreign keys then mappings can be
specifies without manual SQL coding. R2ZRML mapping language is not aware of
target ontology therefore ontology structure (eg, domain/range of properties) can not
be used to simplify mapping code or enhance expressiveness. RZRML might be
thought as a low level SQL oriented technical language. If R2ZRML eventually has
tools for mapping processing ant triple generation then user oriented higher order
mapping languages need not to have tools for triple generation. All they need is to
have compiler to translate to R2ZRML.

3.12 Spyder tool

A new emerging mapping language approach is Spyder tool by Revelytix [61]. It is
application that allows users to query the relational database in terms of target
(domain) ontology with SPARQL. The mappings from source database to target
ontology can be expressed in Revelytix RDB Mapping Language (native language) or
in R2ZRML- the new W3C standard RDB-to-OWL mapping language. RDF triples can
be obtained from relational data “on the fly” therefore changes in relational data are
seen in subsequent SPARQL query executions.

Some of the Revelytix RDB Mapping Language features are:

- describes the source relational database schema (this info is imported

automatically);

- describes the target ontology;

- mapping expressions typically use explicit reference to both target ontology

entities and source relational database constructs;

- can minimize repetitions (by using references to constructs, URI formats, etc)

- can use full power of SQL when needed for complex transformations

- simple mapping cases can be expressed simply

- shorter forms of mapping expressions can be obtained by using implicit

information (eg., primary/foreign key column list)

The Revelytix RDB Mapping Language shares some ideas with D2RQ but differs
from D2RQ in the details. As in D2RQ the Revelytix RDB mapping language
specifications are expressed in RDF and written in N3 format. It has also MOF type
metamodel which allows model usability. The structure of source database schema
and target ontology are written in mapping specification document which allows to

42

perform dependency and impact analyses relative to changes in the target ontology or
source database schema. The mapping constructs allows using SQL expressions
which means that complex mapping cases can be solved by expressiveness provided
by concrete RDBMS. Example of Revelytix RDB Mapping Language for Mini-
University example fragment (classes Student, Course and properties courseName
and takes (domain: references target ontology entities and db: references source
database schema objects)
:StudentCM a map:ClassMap;
map:source db:STUDENT;

map:subjectString "ex:/student/STUDENT ID";
map:class domain:Student;

:CourseCM a map:ClassMap;
map:source db:COURSE;
map:subjectString "ex:/course/COURSE ID";
map:class domain:Course;

:courseNamePM a map:PropertyMap;
map:propertyOf :CourseCM;
map:predicate domain:courseName;
map:literalValue db:name;

:takesPM a map:PropertyMap;
map:propertyOf :StudentCM;
map:source db:REGISTRATION;
map:source db:COURSE;
map:criteriaString " STUDENT.STUDENT ID=REGISTRATION.STUDENT ID
AND REGISTRATION.COURSE ID=COURSE.COURSE ID";
map:predicate domain:takes;
map:resourceValueString "ex:/course/<COURSE.COURSE ID>".

We note that Revelytix RDB Mapping Language allows for shorter expressions by
implicitly using information from database schema, for example, foreign key column
list:

renrolledPM a map:PropertyMap;
map:propertyOf :StudentCM;
map:predicate domain:enrolled;
map:subject db:student program FK.

Revelytix RDB Mapping Language references database schema objects and target
ontology elements by links (URIs) allowing validation or analytics evaluations done
by SPARQL (mapping specifications are RDF triples). It should be noted that not all
database references are expressed by links, for example, criteria strings or join
expressions can be written as hand coded SQL text. Although Revelytix RDB
mapping language is designed to be user friendly (shorter forms, less repetitions- less
errors) it is rather complicated language because it tries to cover models as fully as
possible (eg., classes Table, Column, KeyColumn, PrimaryKey, and properties
between them). The technically complicated part can be imported while mappings
author writes references by hand.

43

3.13 Issues not considered in RDB-to-RDF/OWL mapping approaches

Most of existing RDB-to-RDF/OWL mapping approaches such as D2RQ, Virtuoso
RDF Views are concentrating on efficient machine processing of the mappings, often
preferably querying RDBs on-the-fly from an SPARQL-enabled endpoint. Much less
attention, however, has been given to creating high-level mapping definitions that are
oriented towards readability for a human being and that have a capacity to handle
complex database-to-ontology/RDF schema relations.

Many RDB-to-RDF/OWL mapping languages such as D2RQ, Virtuoso RDF
Views and R2RML refers to database information in SQL strings without explicit
links to the database schema elements. This makes almost impossible to do mapping
code analysis by machines with respect to database schema structure (eg, which tables
are not mapped to the target ontology classes, which not key table columns are not
mapped to datatype properties). Parsing of SQL strings are passed over to RDBMS
therefore it is not possible to find syntax errors before execution of the mappings to
generate RDF triples.

Many RDB-to-RDF/OWL mapping languages are typically not aware of the source
database schema structure (as exceptions can be mentioned R20 and Revelytix RDB
Mapping Language). Therefore mapping author needs to repeat in the mapping code
the information that can be obtained from the database schema (eg. primary key
columns; how tables are joined by foreign keys).

Many RDB-to-RDF/OWL mapping languages don’t use information about
structure of the target ontology (eg, subclass relation) and therefore mapping author
needs to repeat that information. For example, information about domain class of
some property could allow not to specify the predicate part for that property mapping
(eg. not specify belongsToClassMap in D2RQ propertyBridge specification)

In other RDB-to-RDF/OWL mapping languages high level language construct
such as user defined functions for class-to-table joining and value calculation is not
used. This can lead to repetitions in mapping code.

44

4 RDB2OWL mapping specification language

RDB2OWL is a high level declarative RDB-to-RDF/OWL mapping specification
language that aimes at solving problems left unsolved or solved partly by other
approaches as described in section 3.13.

High level goals of RDB20OWL mapping language are:

- define how elements of target ontology are related to metadata constructs in a

source relational database;

- define how instances for target ontology (RDF triples) are gererated from data
in source relational database;

- explicit references to elements of source database schema and target ontology
are used to make validation, influence and dependency analysis possible;

- provide means for avoiding repetitions (eg, referencing named class maps,
usage of implicit foreign key information);
support to deal with some mapping patterns occurring in real life cases.

RDB20WL mapping language features are:

- reuse of RDB table column and key information, whenever that is available,

- concrete human readable syntax for mapping expressions that is very simple
and intuitive in the simple cases, and can also handle more advanced cases,

- built-in and user defined functions (including column-valued functions and
aggregate functions),

- advanced mapping definition primitives, e.g. multiclass conceptualization that
avoids the need of specifying long filtering conditions arising due to fixing a
missing conceptual structure on large database tables,

- possibility to resort to auxiliary structures defined on SQL level (e.g. user
defined permanent and temporary tables, as well as SQL views), still
maintaining the principle that the source RDB is to be kept read only.

RDB2OLWL mapping language is designed with primary aim to be user readable
and be capable to deal with mapping patterns occurring in real life cases. It is a high
level declarative RDB-to-RDF/OWL mapping specification language that is based on
re-using the target ontology structure as a backbone where mapping expressions are
written as annotations (we use DBEXxpr annotations) to OWL ontology classes and
properties, as well as to ontology itself (in most places OWL can be substituted with
RDFS). In a typical case mapping expression expr specifies that OWL class ¢ is
mapped to database table and expr is written as DBEXxpr (we use this name)
annotation to class c; mapping expression expr specifies the correspondence of OWL
data property p to database table column and expr is written to annotation to property
p, expression expr specifies the correspondence of OWL object property p to relation
between tables (eg, foreign key) and expr is written to annotation to property p.

RDB2OWL mapping language has grammar and MOF-style mapping metamodel
(that can be re-phrased easily also into a mapping OWL ontology). RDB2OWL
implementation is designed as relational database schema (RDB2OWL mapping RDB
schema) where mappings are stored and executed by means of automatically
generating SQL statements that create (dump) RDF triples corresponding to the target
OWL ontology from source RDB data.

45

RDB2OWL mapping language is designed to be compilable to RDB20WL
mapping RDB schema for execution by multistep process (parsing mapping
expressions into instances of mapping metamodel, then applying transformation steps
and finally transformation into mapping RDB schema). RDB20OWL mapping
expressions that are declarative and high level could be compiled also to the other
mapping languages such as in D2RQ [9], Virtuoso RDF Views [10] or R2ZRML [16]
in order to use tools that support them or will support in the future.

The simple structure of the RDB20OWL mapping metamodel allows treating its
models also as documentation of the correspondence between the RDB and
RDF/OWL schemas (accessible at least to technically literate user); this is important
when the semantically re-engineered RDF/OWL models are themselves regarded as
user-level documentation of the technical RDB schemas.

We note that our approach is not looking for automated mapping generation from
field-to-property correspondences in the style of CLIO [62] (on a practical note, we
need a richer join filtering language than CLIO permits). We are not primarily
looking at applying the defined mappings in retrieving the data from source RDB on-
the-fly when the data are requested by queries in a RDF model environment, as in [9],
[10]. This saves us at least the considerations for efficiency of integrating queries over
RDB into those over RDF data stores, as well as allows for a greater freedom in
mapping construction techniques. The closest approach to ours is that of R20 [8],
where the same principal schema of employing the SQL engine for implementing the
declaratively specified mappings is used.

We identify a few typical mapping patterns and propose solutions for their
transparent (user-friendly) encoding into a mapping definition, including the cases
when this leads to “meta-level” operations over the RDB schema and/or OWL
ontology definition (e.g., analyzing all properties with a fixed specified domain,
necessary to succinctly reflect a conceptualization by means of subclasses; or meta-
level information tables for grouping table fields into a single multi-valued datatype
or object property). Yet another “non-common” point in RDB20OWL is “virtual”
class-to-table mappings that do not generate class instances, but can be referred to in
object or datatype property mappings.

The RDB2OWL mapping language is devided into 3 levels: The RDB20OWL Raw
level contains the basic language constructs. The RDB2OWL Core include additional
constructs that allows to write mapping expressions concise omitting information that
can be deduced from model structures of the source database schema and target
ontology (eg, foreign key column names). The RDB20OWL Core Plus contain
additional advanced constructs (eg, function definition, introduction of auxiliary
database objects)

46

4.1 RDB2OWL Raw Mapping Language

4.1.1 RDB20OWL Raw metamodel

A RDB20OWL mapping is a relation between a source relational database schema S
and target OWL ontology O. The mapping specifies the correspondence between the
concrete source database data (table row cell values) and RDF triples “conforming” to
the target ontology. We present the abstract syntax structure of a raw RDB20OWL
mapping in a form of MOF-style [36] metamodel in Fig. 15, with additional
expression and filter metamodel in Fig. 16.

The metamodel refers to RDB schema and OWL ontology structure descriptions,
presented here as the RDB MM fragment and the OWL metamodel fragment. The
RDB2OWL mapping classes themselves are shown in the middle part of Fig. 15.

We note that in the RDB20OWL Raw metamodel only the table and column
structure of the source RDB is reflected, disregarding any primary and foreign key
information (this information will be used in RDB2OWL Core language described in
section [4.2] in order to provide a more succinct mapping specification). Therefore all
information about table linking has to be stated explicitly in the mapping expressions
itself. This approach is appropriate for legacy databases without presuming any
normalization features in them.

The OWL metamodel fragment includes domain resp. range information for an
OWL object or datatype property, if the property can be identified to have a single
domain resp. range that is a named class or a data range (a subset of a known
datatype). In the case of raw mapping the only “structure” from the OWL part needed
is URI associated to OWL entities (OWL classes, OWL datatype and object
properties). For the advanced mapping features (in RDB20OWL Core Plus described
in section [4.3]) we include, however, the (optional) subclassOf information for OWL
classes, as well as domain information for OWL properties and range information for
OWL object properties.

47

RDB MM (fragment . TableRef OWL metamodel (fragment)

[T tName:String
: alias:String [0..1]

OWLOntology
1 | ontologyURI: String

* baseURI: String

Database
dbName: String
connection: String

*fordered} ClassMapRef
1 mark:{<s>,<t>} OWLEntity
* Jref 1 """" localName: String[0..1]
: TableExpression ExprRef entityURI:String[1]
Table filter: FilterExpression alas: Strin
- String [0..1]
tName:String Y
1 1 ll
*
ClassMap 0.1
Column uriPattern: ValueExpression | =
colName: String isVirtual: Boolean=false m
.
ltarget
: i .
1 {source :
datatype |1 $ o ObjectPropertyMap |
SQLDatatype PropertyMap

typeName: String DatatypePropertyMap
. expr: ValueExpression *

XSDdatatype
XSD Ref 55— typeName:String | default
typeName:String

.. 1
* Iref

Fig. 15. Raw RDB20OWL Raw mapping metamodel

FilterExpression Filteritem ColumnExpr f——mt Ql;.a!iﬁEd.CNUmHEXET
opName: {true, false, =,<,>,<>, 1 prefix: String
<=, >=, like, is null, is not null} Q—r
1..2|{ordered}
Constant ColurlnnR_ef
{ordered}|0..2 I cvalue: String | String colName: String
/ref: Column
ValueExpression
/datatype: SQL Datatype [0..1] Compound Function
Expiession fName:String
1.*|{{ordered}

CompoundFilter
cond: {AND,OR,NOT}

BinaryExpression
opName: {=,<,>,<>,<=, >=+,
-,*/,div,mod}

E sQL

Function

FunctionExpr

Fig. 16. Expression and filter metamodel

An RDB20OWL mapping consists of “elementary mappings”, or maps, that are
instances of ClassMap, ObjectPropertyMap and DatatypePropertyMap classes in the
mapping metamodel. In typical use cases the class maps (ClassMap instances) are
responsible for Table-to-OWL Class mappings (with options to add filtering
expressions and linked tables); datatype property maps (DatatypePropertyMap
instances) provide Column-to-OWL DatatypeProperty mappings and object property
maps (ObjectPropertyMap instances) establish OWL object property links that
correspond to related tables in the database. In non-standard mapping patterns, for
example, a class map can be defined without linked OWL class but is referenced from
property maps; a datatype property maps may be based on any value expression and
not merely on table column. The standard and non standard mapping techniques will
be shown on examples further.

48

A class map (ClassMap instances) establish link from OWL Class to database table
context using TableExpression instance in order to produce information necessary for
RDF triples generation for OWL class instances . When OWL class C is linked to a
database table T with row filtering expression F, then mapping is done by instances

and links of:
OWLClass (localName=C) 2> ClassMap—>
TableExpression (filter=F) > TableRef> Table (tName=T)

If an OWL class is mapped to a table context consisting of several tables then class
map’s TableExpression instance contain more Refltem instances of TableRef type
each referencing one table of the context. The tables are joined by filtering expression
in filter attribute. There is some similarity with how in SQL statement several tables
are introduced by optional aliases in FROM clause and joined in WHERE clause.

The ExprRef class help building nested table expressions (7TableExpression >
ExprRef2> TableExpression). Nesting table expressions are shown in section about
RDB20OWL syntax and they are used in transformation steps from RDB2OWL Core
to RDB2OWL Raw.

The class maps that are denoted as virtual (isVirtual=true) are not used for the
RDF triple generation themselves, still, they can be referred to from object and
datatype property maps. In order to obtain RDF triples for OWL class C we require
that OWLClass instance for class C (localName="C") should be linked to at least one
non-virtual class map.

The datatype property maps (DatatypePropertyMap instances) provide Column-to-
OWL DatatypeProperty mappings in typical cases and value expression-to-OWL
DatatypeProperty in more general cases. Value of attribute expr is built according to
expression and filter metamodel in Fig. 16 and specifies value calculation for OWL
datatype property. Each datatype property map is based on a source class map (linked
to source link end) and can access the class map’s table information; it can introduce
further linked tables and filters into the table context for column expression
evaluation by TableExpression instance attached directly to DatatypePropertyMap.

The object property maps (ObjectPropertyMap instances) establish OWL object
property links that correspond to related tables in the database. The tables to be
related generally come from source and target class maps (source and target
association ends) of the object property map; they are joined using explicit join
condition specification in the object property map’s table expression’s filter attribute,
with option to include further linked tables and filters through TableExpression
instance attached directly to ObjectPropertyMap.

For OWL datatype or object property p a property map m (linked to p) has source
link (PropertyMap->ClassMap) to class map that is responsible for subject part
generation of the RDF triples for property p. For OWL object property p a property
map m (linked to p) has also target link (ObjectPropertyMap-> ClassMap) to class
map that is responsible for object part generation of the RDF triples for property p.
For property map we call these class maps as source class map and target class map.

In typical cases these class maps can be deduced from ontology structure when the
source class map resp. range class map is the only class map that is ascribed to
property’s domain class resp. range class. If this detection is not possible (eg., OWL
property has no named class as its domain or range) then source or target class maps
can be defined and linked manually by the mapping’s author.

49

For a datatype property map x and its source class map s we require that the table
expression attached to x has a class map reference (a ClassMapRef instance) with
mark ‘<s>’ that points to s as ref.

Similarly, we require for an object property map x and its source and target class
maps s and ¢ that the table expression attached to x has a class map reference (an
ClassMapRef instance) with mark ‘<s>’ that points to s as ref, and class map
reference with mark ‘<t>’ that points to 7 as ref.

4.1.2 RDB2OWL Raw syntax

Syntactically the RDB2OWL mapping definition is achieved by storing textual
class map and property map descriptions in the annotations to the respective OWL
classes and properties (we assume a fixed annotation property DBExpr is used for this
purpose). An OWL class may have several annotations each describing a class map;
an OWL datatype or object property may have several annotations describing
datatype or object property maps respectively. The syntax structure resembles
RDB20OWL Raw metamodel of Fig. 15. We present the grammar in simplified form
for readability purpose. The detail grammar written in ALTLRWorks tool is given in
appendix [9.7]. Its parser java implementation in JavaCC (Java Compiler Compiler
JavaCC - The Java Parser Generator) [74] generates instances of syntactic part
RDB20OWL full semantic metamodel shown in appendix [9.8]. by using MII REP
repository [22] and its java API.

We start mapping syntax explanation by table expressions that is the base for table
context definition for class maps and property maps. A table expression description
consists of a comma-separated list of reference items, followed by optional filter
expression that is separated from the reference item list by a semicolon. Each
reference item can be:

(i) atable name possibly followed by an alias,

(ii) a class map reference (one of strings ‘<s>’ or ‘<¢>’, optionally preceded by a

class map description), or

(iii) a table expression enclosed in parentheses possibly followed by an alias string.
The filter expression is built in accordance to the abstract syntax of expression and
filter metamodel of Fig. 16. Syntax diagrams for EBNF expressions are created in
ALTLRWorks tool [73].

tablempr ——(Fra

50

refItem tableRef alias ~
T—[classMap]—r{ '<s>’l——

T.[clas sMap]—r{ '<t>'|—

Lo et

tableRef _r—[dbAlias }_.l tot

Fig. 17. RDB2OWL Raw table expression syntax

The concrete syntax of expressions is based on SQL expression syntax, however
not including SQL-style sub-queries. Since the RDB2OWL table expressions form a

hierarchical structure where every hierarchy level can be identified by an alias
tableExpr>refltem—> (tableExpr) alias
We let the fully qualified names (fgn, for short) for columns to be expressions of the
form
A (g (Aneze ... (ar.(ap.C))...)),
where ¢ is a source database table column name, a, is a table name and a; ... a, are
prefixes; each prefix is an alias or a class map reference mark. We let a column be
identified within a table context not only by its fgn, but also by shorter forms (some of
prefixes omitted) if that allows unique column identification.
Presenting the syntax we presume the use of parentheses to allow unique identifi-
cation of abstract syntax structure from the expression text. Some table expressions
are:
- STUDENT
- STUDENT S, REGISTRATION R; S.student id=R.student id
- STUDENT S, REGISTRATION R, COURSE C;
S.student id=R.student id AND R.course_ id=C.course_id

- (STUDENT S, REGISTRATION R; S.student id=R.student id) SR,
(TEACHER T, COURSE C; T.teacher id=C.teacher_id);
SR. (R.course_id)= COURSE.course_id

- <s>, <t>; <s>.teacher id = <t>.teacher_id

A class map description is obtained by adding to a table expression description an
uri pattern description in the form {uri=(<item;>,...,<item;>)}, where each item; is a
value expression (typically, a textual constant, or a reference to a database table
column); such pattern describes a conversion to uri form and concatenation of all
values item;. If ‘!No’ decoration is added at the end of class map description it means
that the class map is virtual- no instance triples should be generated from it.

51

classvap —+{ iablomepr

uriPattern——{' fari={(" H uriltem }—r{——") |——{ uriltem }j—}—" J 3! }——

Fig. 18. RDB2OWL Raw class map syntax

Some class map examples are (the first two are equivalent- the second used explicit
SQL concatenation operator ||:

- STUDENT {uri=(’Person’,student id)}

- STUDENT {uri=(’Person’ || student id)}

- STUDENT S, PROGRAM P;

S.program id=P.program id
{uri=(‘program ’ || P.pname, ’ student’, S.student id)}

An object property map is described by a table expression, containing exactly one
source class map reference (a class map reference with mark=<s>) and exactly one
target class map reference (mark=<t>) within the expression’s declaration structure.
Some examples of object property descriptions:

- <s>, <t>; <s>.course id = <t>.course id

- (STUDENT {uri=(‘Student’, student id)}) <s>,

REGISTRATION R,
(COURSE {uri=(‘Course’, course id)}) <t>;
<s>.student id =R.student.id AND R.course id=<s>.course_ id

A class map reference mark <s> or <¢> can be included into object property p
map expression structure either with a preceding class map description, or without it.
The inclusion of a class map description within an object property map expression
means defining in-place a new class map that the object property map is going to refer
to as its source or target. The most common usage of the construct, however, is
without the explicit class map description; in this case the mark <s> (resp. <¢>)
refers to the single class map that is ascribed to the domain (resp. range) class of p.

If the first of the above expressions is attached to the object property teaches
(Teacher teaches Course) then <s> means a reference to the sole class map that is
attached to the Teacher class (domain class for the property).

A datatype property map is described by a table expression which is required to
contain a single <s>-marked reference to the source class map, followed by a value
expression (built in accordance to the abstract syntax of expression and filter
metamodel of Fig. 16) that is attached to the table expression using a dot notation and
further on by an optional datatype specification preceded by the string ‘.

datauap i EETEy) il

Fig. 19. RDB2OWL Raw data property map syntax

Some examples of datatype properety descriptions are:
- <s>.name

52

- <s>.name’™'xsd:String

- (Teacher {uri=("Teacher’ teacher id)} <s>).name

- (COURSE {uri=("Teacher teacher id)} <s>,

PROGRAM P; <s>.program_id=P.program_id
).(‘program: ‘|| P.name || ‘, course: || <s>.name)
- ((TABLEI {uri=("Something’, tablel id)}) <s>,
TABLE2 T2, TABLE3 T3, TABLE4,
<s>.table2 id=T2.table2 id
AND T2.table3 id=T3.table3 id AND T3.table4_id=T4.table4 id
)(<s>.name || * “|| T2.name || * *|| T3.name || * || T4.name)

The last of the above expressions is for far table linking example [2.3.2] where 4
tables are joined and data value is formed by concatenating name column value from
all these tables. What was said about inline class map definitions for reference marks
<s> and <t> in object property map description can be applied also for datatype
property map descriptions but with respect to mark <s> only. In the case when the
table expression part for a datatype property map is just <s>, we allow omitting it
together with the following dot symbol when using a short form of mapping
specification. The following expressions are equivalent:

- <s>.name

- name

Similarly, the declaration part (together with the following semicolon) may be
omitted for an object property map, if it is just <s>, <¢> therefore the following
expressions are equivalent either:

- <s> <t>; <s>.course_id = <t>.course_id

- <s>.course_id = <t>.course_id

4.1.3 RDB2OWL Raw mapping specification usage

If an OWL class is mapped to a table context consisting of several tables then class
map’s TableExpression instance contain more Refltem instances of TableRef type
each referencing one table of the context. The tables are joined by SQL expression in
filter attribute. There is some similarity with how in SQL statement several tables are
introduced by optional aliases in FROM clause and joined in WHERE clause. For
case when tables TABLE I, TABLE 2, ..., TABLE n are introduced with optional
aliases A1, A2, ..., An and joined by expression JOIN EXP(Al, A2,..., An) that
references columns with prefix of aliases or tables names or without prefix (if

evaluation is unambiguous). In SQL one would write
SELECT ..
FROM TABLE 1 Al, TABLE 2 A2, .., TABLE n An
WHERE JOIN EXPR(Al, A2, .., An)

But in RDB2OWL metamodel tables are introduced and joined to OWL class C as
shown in figure below followed by ClassMap description in concrete syntax

53

:ClassMap :OWLClass
uriPattern="X_" || Al.id || A2.id || ... || An localName="C"

:TableExpression
filter = JOIN_EXP(AL, A2, An)

:TableRef :TableRef :TableRef
alias="A1" alias="A2" alias="An"
:Table :Table e :Table
tName="TABLE_1" tName="TABLE_2" tName="TABLE_n"

Fig. 20. Class map linked to table context of many joined tables

TABLE 1 Al, TABLE 1 Al, .., TABLE n An;

JOIN EXPR(Al, A2, .., An) {uri=(‘X_’ || Al.id || A2.id || .|| An.id)}

Fig. 21 defines in abstract syntax via RDB20OWL metamodel instances all class
maps for the mini-university example (if not stated otherwise examples further will be
based on mini-university example). Note that there are two class maps, generating
instances of OWL class “PersonID”. Note also that the Teacher and Course classes
are based on virtual class maps because instance triples for these classes would be
superfluous as their subclasses (Assistant, Professor, AssocProfessor and
MandatoryCourse, OptionalCourse) are based on non-virtual class maps for instance
triple generation. The table expressions for subclasses show a typical subclass
mapping pattern if their instances correspond to subset of all table rows: superclass
and subclass are both mapped to the same table but subclass has additional row
filtering expression, for example, superclass Course and subclass MandatoryCourse
are both mapped to table COURSE but filter="required=1" is added for subclass.

54

:TableExpression

:OWLClass

:ClassMap

filter="levelCode='"Assistant' "

uriPattern="Teacher" || teacher_id

localName="Assistant'

Table :TableRef
tName="TEACHER"

:TableRef

:TableRef

:TableRef
:TableRef

:TableExpression

:ClassMap

:OWLClass

filter="levelCode="Professor" "

uriPattern="Teacher" || teacher_id

localName="Professor"

:TableExpression

:ClassMap

:OWLClass

filter="levelCode="Professor" "

uriPattern=Teacher' || teacher_id

localName="
AssociateProfessor"

:ClassMap

:TableExpression I_

uriPattern="Teacher" || teacher_id
isVirtual=true

:OWLClass

localName="Teacher"

:TableExpression

:Table

:TableRef H

:TableExpression

tName="STUDENT"

:TableRef

:TableExpression

:TableExpression

:ClassMaj

:OWLClass

uriPattern="PersonID' || idcode

localName="PersonID"

:ClassMaj

uriPattern="PersonlID' || idcode

:ClassMap

:OWLClass

uriPattern="Student' || student_id

localName="Student"

:ClassMap

:OWLClass

uriPattern="Course' || course_id

localName="Course"

~LableRel isVirtual=true
—_MIE— -TableRef :TableExpression :ClassMap :OWLClass
tName="COURSE : filter="required=1" uriPattern="Course' || course_id | | localName="
MandatoryCourse"
TableRef [——-Lablebxpression - iClassMap || :OWLClass
filter="required=0" uriPattern="Course' || course_id localName="
OptionalCourse™
:Table TableRef | | :TableExpression :ClassMap DVV_':C'aSS
tName="PROGRAM" | uriPattern="Student || student_id localName=
AcademicProgram"”

Table

Table

tName="TEACHER_LEVELI"

tName="REGISTRATION"

Fig. 21. RDB20OWL Raw Mapping instances for Mini-university example: class maps

Below are three class maps in concrete syntax for Teacher, Course and

MandatoryCourse respectively (note decoration “!No” for virtual class map) :

TEACHER;

levelCode='Assistant’
COURSE {uri=(‘Course,

course_1id)}

{uri=
!'No

(‘Teacher’,

COURSE; required=1 {uri=(‘Course’, course_id)}

teacher id)}

The instance model shows that two tables are not mapped to class maps, in this
case normal intension of mapping author, but the model can help to detect omissions
by mistake. Other validation features are also possible, eg. un-mapped OWL classes
or classes with unintended double class maps.

OWL classes Teacher and Course may relate to class maps that are based on DB
tables TEACHER and COURSE, respectively. An object property map for the
property feaches has a table expression with two class map refs (ClassMapRef) with
aliases <s> and <t> and that has ref links to the same class maps that are attached to
Teacher and Course classes respectively, that is, to the source and target class maps.
Observe that the property teaches is implemented using virtual class maps to the
classes Teacher and Course (the “real” instance generation in Teacher and Course

55

classes has been specified for their subclasses). Similarly, datatype property map for
property courseName has a table expression with <s>-marked class map ref link to
the same class map that is attached to Course class (see Fig. 22 below).

I—I : '7 :ClassMay :OWLClass
TableRef :TableExpression - ~-asshap - T — e
| . uriPattern="Teacher' || teacher_id localName="Teacher"
| (i isVirtual=true source
:Table
tName="TEACHER" :ClassMapRef
alias=<s>
:ObjectPropertyMa
filter="<s>.teacher_id = <t>.teacher_id" .)
:TableExpression — _OWLObjectProperty |
localName="teaches
:ClassMapRef
Table alias=<t>
tName="COURSE"
L :ClassMap target
| ref [uriPattern="Course’ || course_id -OWLClass
| :TableRef |—| :TableExpression l— isVirtual=true TocalName="Course"
ref source
:ClassMapRef :DatatypePropertyMap :OWL DatatypePropert
mark=<s> expr=tName localName="courseName"

Fig. 22. RDB2OWL Raw Mapping instances for Mini-university example: object and datatype
property maps

Concrete syntax for ClassMap, ObjectPropertyMap, ClassMap and
DatatypePropertyMap of Fig. 22:

- TEACHER {uri=('Teacher', teacher id)} !No

- <s>, <t>; <s>.teacher id = <t>.teacher id

- COURSE {uri=('Course', course id)} !No

- <s>.Name

The “standard” solution to specification of the object property takes that is mapped
to join of tables STUDENT and COURSE through intermediate REGISTRATION
table is shown in Fig. 23 below. We notice that the subclass optimization feature of
RDB2OWL Raw Plus discussed in section [4.3.1] would achieve a similar effect also,
if the class maps referred to in the teaches property map definition were not virtual.
The virtual class maps allow achieving the needed triple set locally, without invoking
the general subclass optimization principle.

56

:TableRef :TableExpression — :ClassMap || :OWLClass
uriPattern="Student' || student_id localName="Student"

Table ref source
tName="STUDENT"

:TableRef :ClassMapRef
alias="R" alias=<s>
| :ObjectPropertyMap :OWLObjectProperty
:TableExpression filter="<s>.student_id=R.student_id [~ | localName="takes"
:Table and R.course_id=<t>.course_id "

tName="
REGISTRATION" |

:ClassMapRef

alias=<t>
:Table
tName="COURSE" ref target
:ClassMap | :OWLClass
i :TableExpression uriPattern='Course' || course_id localName="Course"
TableRef isVirtual=true

Fig. 23. Mapping instances: property mapping through linked table

There is, however, an alternative solution that is based on not using the “real” class
maps for Student and Course table-to-class mappings, but defining virtual class maps
for OWL class Student and Course URI generation directly from the REGISTRATION
table (that contains the student id and course_id columns that are needed for URI
generation). The alternative object property map definition is shown in Fig. 24. The
down side of this solution is the need to re-specify the URI patterns for subject and
object URI generation, however this possibility outlines the power of the virtual class
maps.

The virtual class maps in the style of Fig. 24 are essential, if we want to define
several RDB-to-RDF/OWL mappings, each of them responsible for a certain source
database, and if we want to create some cross-database linking properties (e.g. on the
basis of certain field value equality), where the mapping A cannot access the instance-
generating class map that is defined within the mapping B.

57

| :TableRef I_I :TableExpression |—

:Table
tName="
REGISTRATION"

:ClassMap :OWLObjectProperty
uriPattern="Student' || student_id localName="takes"
ref | isVirtual=true
:ClassMapRef source
alias=<s>
l_ :ObjectPropertyMap

—

:TableExpression

filter="<s>.registration_id = <t>.registration_id "

:ClassMapRef

alias=<t>

target

:ClassMap

:TableRef |—|

:TableExpression

uriPattern="Course' || course_id

f
re

isVirtual=true

Fig. 24. Linking through table: virtual class maps

Fig. 25 shows how 3 additional tables are joined to datatype property map through
it’s table expression. The datatype property farName from far table linking example
[2.3.2] have a table context comprising with 4 tables- one from source class map’s
table expression and 3 added. Attribute filter contain table joining expression and expr
attribute contain expression- column from the 4-th table TABLE4.

‘Table

tName="TABLE1"

:TableRef

|| :TableExpression

:OWLClass
localName="Something"

:ClassMapRef

:ClassMap

ref

source

tName="TABLE2"

alias=<s> uriPattern="Something' || table1_id
Table :TableRef | | ;TableExpression :DataPropertyMay

—— alias="T2"
:Table :TableRef
tName="TABLE3" alias="T3"
:Table :TableRef /
tName="TABLE4" alias="T4"

filter="<s>.table2_id=T2.table2_id
and T2.table3_id=T3.table3_id
and T3.table4_id=T4.table4_id"

expr="T4.name"

:OWL DatatypeProperty

localName="farName"

Fig. 25. RDB20OWL Raw Mapping instances for far table linking example

4.1.4 RDB20OWL Raw annotations for Mini-University example

For a complete example we show RDB-to-OWL mapping specifications as
annotations in the target ontology according to RDB2OWL Raw language. The target
ontology and source database for mini-university example is described in section

[2.3.1].

58

All mapping definitions are shown in Fig. 26 below. We use here a custom
extension of UML-style OWL Graphic Notation editor OWLGrEd [94] depicting
DBExpr annotations in the form ‘{DB: <annotation_text>} to show graphically the
ontology together with the annotations. The class and object property annotations in
the example are shown in italics, while the datatype property annotations use plain
text. The naming convention is used to writing database table names in uppercase
letters in order to distinguish class names from table names, for example, Student
class from STUDENT table.

The RDB20OWL raw mapping format reveals the structure of the information that
needs to be specified in order to define the mapping. The syntactic presentation of the
mapping, however, is less than satisfactory, especially for not 1:1 correspondence
cases between the RDB and ontology structure. For example, a personID property has
explicit class map definitions included within each of property maps description. The
uri pattern for Teacher class map is repeated for all 3 subclass class maps (the same
for Course class). The foreign key and primary key columns are explicitly written to
specify table joining for object property maps, eg., <s>.teacher id=<t>.teacher id. It
means long typing especially if more than two tables joined, eg. for object property
takes.

These and other issues, as well as more compact and better structure revealing
forms for class and property map definitions are handled in RDB2OWL Core notation
in Section [4.2] where some information can be omitted that can be deduced from
database and ontology structure.

I\

Person ID
IDValue:String ’ {disjoint}
{DB: (TEACHER {uri=(PersonID',IDCode)}).IDCode} Person

{DB: (STUDENT {uri=('PersonID,IDCode)}).IDCode}

personName:String
{DB: (TEACHER {uri=(Teacher', teacher_id)}).name}

gg: ;EGCDTEE?' gﬁ::zgzz:zﬁ; :g:gggg:gg {DB: (STUDENT {uri=(Student, student_id)}).name} | {(rp.
: : 0.1 |person program_id=<t>.program_id}
personiD | {DB: (TEACHER {uri=(Teacher', teacher_id)}) <s>, J belongsTo
TEACHER {uri:_(‘PersonID',ID_Code))) <t>; Academic Program
<s >:teacherild—qitleacherifd}) programName:String {DB: name}
{DB: STUDEI_IT{unf(Student, student_id)}) <s>, {DB: PROGRAM {uri=(Program’, program _id)}}
STUDENT{uri=(PersonID',IDCode)}) <t>;
<s>.student_id=<t>.student_id} enrolledJA(DB: <s>.program_id=<t>.program_id}
Teacher Student isTakenBy
{DB: TEACHER {DB:STUDENT {DB: <s> REGISTRATION R,<t>;
{uri=(Teacher, teacher_id)} INo} {uri=(‘Student, student_id)}} <s>.student_id=R.student_id AND | takes
tisTaughtBy R.course_id=<t>.course_id } {<>teaches} |includes
let
{CorT'P e_ e} Course
{disjoint} | teaches | courseName:String {DB: name}
B i=(P id)} !
Assistant {DB: <s>teacher_id=<t>teacher_id } {DB: COURSE {uri=('Course’, course_id)} No}
{DB: TEACHER; level="Assistant' %
{uri=(Teacher, teacher_id)}} {complete} -I—I— {disjoint}
Associate Professor i Profvessovr i Optional Course Mandatory Course
{DB: TEACHER; level="AssocProf {DB: TEACHER level=Professor {DB: COURSE; required=0 | | < isTaughtBy only Professor
{uri=(Teacher', teacher)}} {uri=(Teacher teacher_id)}} {uri=(Course’, course_id)}} ||{DB: COURSE; required=1
{uri=("Course’, course_id)}}

59

Fig. 26. Annotated mini-University ontology using RDB20OWL Raw model

4.1.5 RDB2OWL Raw Mapping Semantics

By mapping semantic we mean specification how to generate RDF triples from
mapping expressions (class maps and property maps) and source database data. It
should be taken into consideration for tool developers that process RDB20WL
mapping annotations.

If class map reference mark <s> resp. <> in property map pm for property p is
spelled without inline defined class map then by simple transformation a referenced
class map can be copied it in:

(a) lookup domain resp. range class ¢ for property p from ontology structure

information,

(b) find the only class map expression m that is ascribed to class p,

(c) copy m into property map pm behind the <s> resp. <t> mark:

“L<s> 2. (m)<s>..%or “... <> 2> L (m)<t>...”

Therefore we can assume without loosing generality that the source (resp. target)
class map descriptions for property maps are textually included behind the
corresponding <s> (resp. <¢>) marks and treat the marks <s> and <¢> themselves as
ordinary aliases.

The context C(t) for the table expression ¢ is built inductively following ¢ structure:

(a) iftis areference to a table with name tName, then C(?) consists of expressions

tName.cName for cName ranging over all ¢ column names;
(b) iftis of the form ¢’ a for table or a table expression ¢’ and an alias a, then
Cit)={ax|x eCt)}

(c) ift consists of items ¢, ..., t, with no aliases specified then
Ct) = C(t)) UC(ty) v ... UCl(t,), if for some ¢, there is an alias specified, the
rule (b) is to be applied on this item before (c).

We require that the fully qualified names in the table expression context be
distinct; if that is not the case, the table expression is not well formed.

Given a table expression ¢ for a property map m, we denote by src(?) (resp. trg(t))
the column prefix within C(?) that ends in <s> (resp. <¢>); the requirements on ¢
structure ensure that src(t) (resp. trg(t)) is uniquely defined. Note that, for instance,
for a table expression t=(4 <s>) El, B <t> we have src(t)=FE1.<s> and trg(t)=<t>.

For a value expression x and a string a we define the a-lifted form of x by replacing
every column reference ¢ within the x structure by a.z.

The semantics R(?) of a table expression ¢ on the source database § is defined as a
set of rows with columns corresponding to the table expression context C(?) the
following way. If there is no filter expression specified as part of ¢, then

(a) iftis atable, then R(?) consists of all its rows

(b) if ¢ is of the form ¢’ a for a table expression ¢’ and an alias a, then R(?) is

obtained by renaming R(z’) columns via adding the prefix ‘a.’
(c) if ¢ consists of items ¢, ..., ¢, with no aliases involved then R(?) is formed by
taking all row combinations from the row sets R(?,), ..., R(%,).

60

If, however, there is a filter specified as part of ¢, only the rows that satisfy the
filter are retained in R(?), as obtained above.

For every row r € R(t) there is defined notion of value expression evaluation: the
column expressions are looked up within the row; the constants and standard
operators have their usual meaning. Let concat be a function concatenating all its
arguments.

Given the source database schema S, the corresponding RDF triples are defined for
each class map and property map separately.

For a class map or property map m let ¢ be the table expression contained in m and
let e be the OWL entity (OWL class or OWL property) that m is ascribed to (we
consider only class maps ascribed to OWL classes here). Let » be the baseURI
specified for the target OWL ontology. In order to form the RDF triples that
correspond to S, we form in each case the row set R(?) by evaluating ¢ on S. For each
row in R(t) we then proceed, as follows:

- if m is a class map, evaluate the expression contained in m’s wuriPattern
attribute obtaining a string value v; then form the RDF triple <concat(r,v),
‘http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type’, e.entityURI>;

- if m is an object property map, evaluate the src(?)-lifted form of m’s source
class map wuriPattern to obtain u and the trg(?)-lifted form of m’s target class
map uriPattern to obtain v, form the triple <concat(r,u), e.entityURI,
concat(r,v)>;

- if m is a datatype property map, let d be the value of m’s expr attribute
evaluation; let s be obtained by evaluating the src(z)-lifted form of m’s source
class map wuriPattern value. Further on we find dr: XSD datatype
corresponding to d the following way:

e ifthere is an XSD datatype specified within m, take this datatype

o if the XSD datatype can be found as a default XSD datatype for d’s
SQL datatype, take this datatype

o if the XSD datatype has been specified as e.range, take this datatype

e ifnone of the above applies take df to have typeName="xsd:String’.

The resulting triple is <concat(r,s),e.entityURI concat(d, ™', dt.typeName)>.

For example, let us see what triples are created for class map
“COURSE; required=1 {uri=(‘Course’,course id)}”
that is attached to class MandatoryCourse (see Fig. 26). The table exprsession
included is t="COURSE; required=1" and R(t) is set of COURSE table rows
satisfying condition “required=1" (see Table 3 in section [2.3.1]):

Rows(course _id, name) = {(2,”Semantic Web’) , (3,”Computer Networks’) }

uriPattern evaluation v= {‘Course2’, ‘Course3’}

If baseURI of target ontology r="http://lumii.lv/ex# then we obtain RDF triples
calculating <concat(r,v), ‘http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type’,
e.entityURI>:

Subject Predicate Object
http:/lumii.lv/ex#Course2 | http://www.w3. | http://lumii.lv/ex#MandatoryCourse
org/1999/02/22-
rdf-syntax-
ns#type
http://lumii.lv/ex#Course2 | http://www.w3. | http://lumii.lv/ex#MandatoryCourse

61

http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type

0rg/1999/02/22-
rdf-syntax-
ns#type

4.2 RDB2OWL Core

RDB20OWL core language augments RDB20OWL raw metamodel (Fig. 15, Fig. 16)
with a possibility to label a reference item (Refltem class element) a top-constrained
element of a table expression. The semantics of such an element el, if designated for a
table expression t, is reflected in the row set R(t) construction for t in that only the
specified rows (e.g., only a top row) for columns corresponding to el is included into
R(t) for a combination of values in other t columns. Syntactically we write
(Student <s>, Program <t> {top 1 PName asc}; PName >’’) to
denote all students and the first program with non-empty name for each of them.

The RDB2OWL core language constructs are summarized in Fig. 27. The core
language constructs are semantically explained via their translation into the
augmented RDB2OWL raw language. The principal novelties here are:

- a more refined table expression structure (each table expression reference list

item now may be expressed as list-like navigation item and link structure);

- the primary key and foreign key information within RDB MM; this allows:

(i) introducing default entity URI patterns on the basis of RDB schema struc-
ture: the default uri pattern for a class map, whose table expression is a single
table X having a sole primary key column P, is defined as uri(‘X’,P); and

(i1) avoiding the necessity to specify column names in linked table conditions,
if these correspond to a unanimously clear table key information;

- the naming of class maps (defName attribute), together with a possibility to
refer within a table expression item (a NamedRef element) either to such a
defined class map, or to the sole un-named class map defined for a certain
OWL class c; a named reference syntactically is represented as ‘//R]]’, where
‘R’ is either the name of an owl class, or the defined name of a class map.

62

RDB MM (extended)

OWL metamodel (fragment)
leftC
o ValueList 17 NavigLink * TableRel
atabase symbol:{->=>} EliLExE

dbName:String orderBy htC tName:String OWL Ontolog
connection:String '1'9; alias:String[0..1] 1 [ontologyURI: String
owner:String baseURI: String
isAuxDB: Boolean % 0.1|rLink 0..1{lLink F

initSQLScript: String

OWL Entity
localName: String[0..1]
entityURI:String[1]

left| 0.1 right| 0.1

main| 0..1 \V,

Table
tName:String
insertSQLScript: String

Q

* Irefl1

Emptyltem
CMapRef |
mark:{<s>,<t>}
[Navigitem | NamedRef
5 <t
Filteritem: refName:String

.* | FilterExpression[*]
{ordered}
ExprRef
alias: String [0..1]

ClassMap
URIPattern: ValueExpression|
defName:String[0..1]

—
subclassOff * }

OWL Class

Topltem
count:Integer
percent:1..100

0.1lfrange 0..1|domain

0.1

OWL Property

1|/source 1|narget

* *
tPropertyMap OWL DatatypeProperty

PropertyMap Object
2 1
typeName:String = " Iref :
ref

Fig. 27. RDB20OWL Core metamodel

OWL ObjectProperty

—

The principal building blocks of the RDB2OWL Core metamodel, as in the model
Raw version, are class maps and property maps that are based on table expressions,
consisting of reference items. A reference item can contain a singleton list of
navigation items thus subsuming the reference item structure of Raw metamodel. The
navigation item and navigation link structure of a reference item allows encoding
filters in simple table expressions as equality conditions between columns in two
adjacent navigation items. For instance,
Student[Program_ID]->[Program_ID]XProgram
is a reference item presentation in a navigation item and link form, where Student and
Program are navigation items and [Program_ID]->[Program_ID] is a navigation
link with Program_ID being its left and right value lists (and the sole value items
within these lists) respectively. The presented navigation item and link structure can
be translated into an equivalent table expression Student E1, Program EZ2;
E1.Program_ID=E2. Program_ID, where E1 and E2 are unique system generated
aliases introduced to avoid potential table name conflicts. The navigation structures
can form also longer chains as, for example, the following (*):
<s>[StudentID]->[Student_ID]Registration[Course_ID]->[Course_ID]<t>.

We allow an empty navigation item only in linked navigation structures (the ones
containing link symbol -> or => adjacent to the empty item); in this case the empty
item is shorthand for a class map reference <s> or <t>, and it is replaced by the refe-
rence during the expression’s short form unwinding, as explained below in steps 1. ..
4.

For a navigation link A[F1]->[F2]B between two single table items A and B
(possibly included in expressions with filters and aliases, or being class map
references or named references to single table class maps) the table column list [F2]
may be omitted, if it corresponds to the primary key of B. Furthermore, [F1] may be
omitted, as well, if there is a single foreign-to-primary key reference in the source

63

RDB from A to B and it is based on the equality of the foreign key columns F1 to
primary key columns F2. For the case when A[F1]->[F2]B is a primary-to-foreign
key relation, we allow omitting both [F1] and [F2], in this case presenting the
expression as A=>B. The above navigation structure (*), given the mini-University
database schema of Fig.2, for the property takes can then be presented as
<s>=>Registration-><t>.

The table expressions corresponding to the RDB2OWL Core metamodel are

transformed into the (augmented) RDB2OWL Raw format via the following steps:

A. Unwinding of the short form of table expressions (insertion of <s> and <z>
class map references, where appropriate) for datatype and object properties,
following the rules explained below in steps 1. .. 4.

B. Insertion of explicit uri pattern definitions for class maps, in place of default
uri expressions (including both class maps ascribed to classes and defined
inline).

C. Replacing named references by their referred class maps defined inline.

D. Insertion of explicit column information definition in navigation links.

E. Converting the navigation expression structure into reference item structure.

For a table expression reference list structure consisting of expression and

navigation items we define its leftmost (resp. rightmost) item by recursively choosing
expression’s leftmost (resp. rightmost) reference or navigation item, until an item that
is an empty item, a table reference, a class map reference (with or without an explicit
class map specification), or a named reference, is found.

The rules for unwinding the short form of a table expression e corresponding to an

object property map are, as follows:

1. if e’s reference item list is empty define this list to be <s>,<¢>;

2. if the leftmost (resp. rightmost) item is an empty item, replace this item by
<s> (resp. <t>); e.g. any of ‘<g>->’ ‘-><¢>’ and ‘->’ is replaced by
‘<s>-><¢>’ and ‘(Person <s>)->’ is replaced by ‘(Person <s>)-><t>’;

3. if <s> (resp. <t>) is not present in e reference list structure and is explicitly
referenced from the filter expression, add <s> (resp. <¢>) as a new leftmost
(resp. rightmost) reference item;
for instance ‘Registration;<s>. Student ID =Student ID’ is replaced by
‘<s>, Registration;<s>. Student ID = Student ID’;

4. if <s> (resp. <t>) is not present in e reference list structure, add <s> (resp.
<¢>) as an alias for the e’s leftmost (resp. rightmost) item; for instance
‘Person, Program’ is replaced by ‘Person <s>, Program <t>’.

Similar rules (in the part regarding <s>) apply also for unwinding of the short

form of table expressions involved in datatype property map definitions.

64

Person ID

IDValue:String 1 W
{DB: [[T]].IDCode} {DB: [S]]IDCode} Person _ T isjoint
{DB: T=Teacher {uri=(Person_Id",IDCode)}} personName:String
{DB: S=Student {uri=(Person_id"IDCode)}} {DB: [[Teacher].Name}

5 T\DE: [Teacherlisacher RIS {DB: [[Student].Name} {DB: ->}{pelongs To
person N eacherl|[teacher_id}->| A A

. "y 0..2person Academic Program
{DB: [[Student[student_id]->{[S]} enrolled_| programName:String {DB: Name}
J ({DB: ->{|{DB: Program}
Teacher | Student isTakenBy
{DB: Teacher} | {RESTcent)
\sTaughtBy {DB: =>Registration-> }jtakes includes
- Course
{disjoint} teaches _| courseName:String {DB: Name}
{complete} l {DB: =>} | {DB: Course}
Associt] feomplet)

" Sociate isjoin
___Assistant Professor _||Professor Mandatory Course
{DB: [[Teacherl; | \{pg: [Teacher; {DB: [[Teacher} Optional Course <isTaughtBy only Profes sor
Level=Assistant} ||| evel=AssocProf} | |-€vel=Professor} | i5ETicourse]); isRequired=0} | |{DB: [Course]]; isRequired=1}

Fig. 28. Annotated mini-University ontology using RDB20WL Core model

Figure 7 shows annotated mini-university ontology of Fig. 3, this time being re-
worked in accordance to the core language constructs. Note the simple °->’
annotations for object properties enrolled and belongsTo, as well as ‘=>" for teaches.
We note also the use of named references expressed as [/Teacher]] (referring to the
class map defined for the Teacher class) and [/S]] and [[T]] referring to the class
maps defined as named class maps for PersoniD class.

We demonstrate the steps A .. E, as defined above, on the object property map
expression [/ Teacher]][teacher id]->[[T]] of object property personlID in Figure 7.

A. ([[Teacher]] <s>)[teacher id]->([[T]] <t>) (unwinding rule 4. used).

B. Applies to converting Teacher into Teacher {uri=(‘Teacher’, teacher id)}
within Teacher class ([[T]] already denotes an expression with wuri
specified).

C. ((Teacher {uri=(‘Teacher’, teacher_id)}) <s>) [teacher id] ->
((Teacher {uri=(‘PersonID’,IDCode)}) <t>);

D. ((Teacher {uri=(‘Teacher’, teacher_id)}) <s>) [teacher id] ->
[teacher_id] ((Teacher {uri=(‘PersonID’,IDCode)}) <t>)

E. ((Teacher {uri=(‘Teacher’, teacher id)}) <s>) E1,

((Teacher {uri=(‘PersoniD’,IDCode)}) <t>) E2;
El.(<s>. teacher_id)=E2.(<t>. teacher_id) (the filter can be written also as
El. teacher id =E2. teacher_id or <s>. teacher_id =<t>. teacher_id).

Fig. 28 shows that mapping definition for a simple (still not completely
straightforward) mapping case of mini-University can be done in RDB20WL Core
language in a very compact, yet intuitive way.

65

4.3 RDB2OWL Core Plus

RDB2OWL Core mapping language can be sufficient for simple applications but
real life practical use cases show the need for various extensions while keeping the
mappings compact and intuitive. The extensions described in this section are related
to their practical use in a case study of using RDB2OWL approach to migration into
RDF format of 6 Latvian medical registries [23, 24].

4.3.1 Multiclass Conceptualization

0.1 domain *

0.1

OWL Class OWL Property

PropertyMap

ClassMap "
URIPattern:

ValueExpression
defName:String[0..1]

0.1

|_classconstraint |
req: {In, Out, Any}
=Out

0.1
0.1

exception

Fig. 29. Class and property constraint metamodel

The meta-models of OWL ontology and RDB schema differ in that the former
foresees a subclass relation, while the latter does not. We enhance RDB2OWL
mapping language to deal with use cases where this difference is exploited. A
multiclass conceptualization is a mapping pattern where one database table T is
mapped to several ontology classes C1, C2,..., Cn each one reflecting some subset of
T columns as the class’ properties. In a standard way one would map each of Ci to the
table T and would add to the respective class maps for Ci filtering expressions stating
that only those rows of T correspond to Ci instances where at least one of the columns
from the column set corresponding to the class’ property column set has been filled.
Mappings of Latvian Medicine registries contain such patterns where tables with
several hundred columns are split into subsets of 20-30 columns. Filtering conditions
for these mappings are lengthy and difficult to write and read.

Table T OWL Class | OWL Lenghty filtering conditions to be
Property avoided in the class map

col al ClassA propAl col al IS NOT NULL
col a2 propA2 OR col a2 IS NOT NULL
.c-(.)l 260 i;;-ropA6O OR col a60 IS NOT NULL
col bl ClassB propBl1 col bl IS NOT NULL
col b2 propB2 OR col b2 IS NOT NULL
;;-;)1 b40 ii;i'OpB40 OR col b40 IS NOT NULL

To handle issue we introduce a ClassConstraint

class whose instances specify

requirement: a RDF triple <x, 'rdf:type’,0> can exist in the target triple set only if a
triple <x,p,y> exists for some property p with domain o and some resource y (in the
terms of the last paragraph x would be an individual corresponding to a row in table T
and o would be some class Ci).

66

If a class constraint is attached to an OWL class ¢ it means that all generated
instances x of ¢ (the triples <x, rdf:type’,c>) should be checked for existence of
property p instances for incoming (p.range=o), outgoing (p.domain=o, the default) or
any (incoming or outgoing) properties. If a class constraint is attached to a class map,
then it applies only to class instances that are created in accordance to this class map.
The exception link from a class constraint specifies what properties are not to be
looked at when determining the property existence. In Latvian Medical registries we
have used class level constraints for 54 out of 172 OWL classes with 514 out of 814
OWL datatype properties belonging to these constrained classes.

A PropertyConstraint class instance attached to a property p means requirement:
check if for the subject s (mode=Src) or object t (mode=Trg) from a <s,p,> triple
there exists the triple <s,’rdf:type’, p.domain > (or <t,’rdf:type’, p.range>) generated
by the mapping (if the check fails, delete the <s,p,#> triple). The checks associated
with property constraints are to be applied after the class constraint resolution. Note
that the property constraints with mode=Trg apply only for object properties. In
Latvian Medicine registries there is a case of sugar diabetes mapping where property
constraint appear essential in conjunction with class constraint use.

The class and property constraints are part of the mapping definition, not part of
the target OWL ontology. The meaning of these constraints is fully “closed world”:
delete the triple, if the additional context is not created by the mapping.

4.3.2 Auxiliary Database Objects

There are cases when direct mapping between source RDB and the target ontology is
not possible or requires complex expressions involving manual SQL scripts.
Additional databases and its tables can be introduced for the mapping purpose. There
can be multiple Database class instances in RDB2OWL core metamodel (see Fig.
27). If the value of isAuxDB attribute is true then the database is auxiliary; otherwise
it is a source database. A SQL script can be executed (attribute initSQLScript) to
create necessary schema objects in auxiliary database and populate the tables with the
needed data (attribute insertSQLScript of Table class). The definition and data of new
auxiliary schema objects are considered to be part of the mapping specification.

The auxiliary tables and views can be used to simplify mapping presentation.

Another, more fundamental, usage context for auxiliary tables is ontology class or
property that would naturally correspond to a database schema object that does not
exist in the source RDB schema. A typical case of this category is a non-existing
classifier table, which naturally appears in the ontological (conceptual) design of the
data. In Fig. 30, the OWL class PrescribedTreatment is based on database table
PatientData. The PatientData table has “similar” binary attributes indicating that
certain treatments on the patient have been performed. In the ontological modeling
one would introduce a single diabetesTreatment property to reflect all the “similar”
fields from the PatientData table, the different fields being distinguished by different
instances of the DiabetesTreatment class. The instances within the DiabetesTreament
class may be specified either by directly entering them into the target ontology, or one
could create an extra classifier table within an auxiliary database (a

67

TreatmentCategory table in the example) that can be seen as a source for
DiabetesTreatment instances.

Ontology
PrescribedTreatment diabotesTreament,] _DiabetesTreatment | | 1-Treatmenta
DB:Patendaa} __|* * (DB:TreatmentFieldA=1 and Code=1 } | code:Number {DB: Code} | _ |2-TreatmentB
{DB: TreatmentFieldB=1 and Code=2 } |description:String {DB: Value} 3-TreatmentC
{DB: TreatmentFieldC=1 and Code=3 }|{DB: TreatmentCategory} 4-TreatmentD
{DB: TreatmentFieldD=1 and Code=4 } S-TreatmentE
mapped {DB: TreatmentFieldE=1 and Code=5 }
Database mapped
i patientData ElTreatmentCategory Code, Value:
RecordID : INTEGER Code : INTEGER | e
TreatmentFieldA : BIT Value : VARCHAR 7777771, '"TreatmentA
TreatmentFieldB : BIT 2, 'TreatmentB'
TreatmentFieIdC :BIT 3, 'TreatmentC'
TreatmentFl_eIdD BIT 4, 'TreatmentD'
'_I'_r_eatmentFleIdE :BIT 5, 'TreatmentE'

Fig. 30. Ontology and Database fragment for Diabetes Treatment modeling

4.3.3 RDB2OWL functions in general

Possibility of function definition and use increases substantially the abstraction level
of programming notation. In practical RDB2OWL mapping use cases the functions
have been important e.g. to cope concisely with legacy design patterns present in the
source database. A basic RDB2OWL function metamodel is shown in Fig. 31.

*

FunctionDef o Parameter DefFunctionExpr
fName:String {ordered} | pName:String
isAggregate:Boolean | /o - tion %
0.1 /application
args
functionBody| 1 ValueExpression {ordered} -
1 " FunctionExpr
DataExpression fName:String
<
1
0.1 0.1
XSDRef TableExpression
typeName:String SourceDBFunction SQLFunction

{ordered}|*

ColDef TableFunction RDB20OWLFunction

colName:String

Fig. 31. RDB2OWL Function metamodel

We introduce scalar-argument as well as aggregate functions into RDB2OWL
(aggregate functions are shown in Fig. 32 and are described in section 4.3.6). The
scalar-argument (non-aggregate) functions in RDB2OWL are:

1) built-in functions (class RDB2OWLFunction),

68

2) user defined functions (class FunctionDef for definition and associated class
DefFunctionExpr for application),

3) functions based on stored functions in the source database (class
SourceDBFunction),

4) functions whose argument-value pairs are stored in table with two columns
(class TableFunction) and

5) SQL functions (class SOLFunction).

4.3.4 Built-in functions

There are some functions that are frequently needed in different concrete mapping
cases. For example, SQL numeric literals 1 / 0 generally are used for boolean frue /
false values therefore we have rationale to build-in 7if function. For every mapping
case the ultimate target is generated triples set, the function uri may be helpful for
custom URI pattern definition. Built-in function names are prefixed by # to dis-
tinguish from user-defined functions. Function parameter names are prefixed by @.

Table 14. RDB2OWL built-in functions

#varchar(@a) Converts a single argument to SQL varchar type

tovarchar(@a) | Converts a single argument to varchar, eliminates leading and
trailing spaces

#concat(...) Takes any number of arguments, converts them into the SQL
varchar type and then concatenates

#xconcat(...) Takes any number of arguments, converts into the SQL varchar
type, eliminates leading and trailing spaces and then concatenates

Huri(@a) Converts a single argument to varchar, eliminates leading and

trailing spaces, converts to uri encoding

#uriConcat(...) Takes any number of arguments, converts them into the SQL
varchar type, eliminates leading and trailing spaces, converts to uri
encoding and then concatenates

#exists(...) Can take any number of arguments and returns 1, if at least one
argument is not null, otherwise returns 0.

The form #exists(Coll, Col2,..,Colk) is used in Latvian
Medicine registry case as an alternative to multiclass
conceptualization approach, if k is small.

#iif(@a,@b,@c) | Chooses the value of b or ¢ depending on a value being 1 or 0.
Example: #iif(is_resident, 'true’, false’)

#all(...) Can take any number of arguments and returns 1, if all arguments
are not null, otherwise returns 0.

4.3.5 User defined functions

An important feature of RDB20OWL is possibility for user-defined functions which
can be referenced from class map and property map definitions. Function value is

69

obtained by evaluating its value expression in the context of the function call. The
definition of a simple function (e.g., f(@x)=2*@x+1) consists just of value
expression, referring to function parameters. For simple functions no TableExpres-
sion instance is linked to DataExpression instance (see metamodel in Figure 7).

A user-defined function, however, may include also a table expression (an
additional data context for expression evaluation) and a list of column expressions
(=calculated columns) relying both on function’s arguments and function’s table
expression and used in further value expression evaluation. Syntactically we have the
function definition in the following form:

f@X;,@X,, ...,@X,)=(T; filter; colDef}, ...,colDef,).val “xsd_datatype
where T;filter is a table expression and each colDef; is in form var;=e; for a value
expression e;. The table expression with column definitions, as well as optional
datatype specification (“xsd_datayppe) may be omitted. When the defined function is
called as f{(V}, V), ..., V) in some table context 4, it is evaluated as:

(A, T,filter’; colDef’;, ...,colDef",,).val[V,/@X,, ..., V,/@X,], where [V /(@X], ...,
V,/@X,] means substitution of the value V; for the variable @JX; for all i,
filter’= filter[V /@X;, ..., V,/@X,] and each colDef’;= colDef; [V /@X, ..., V/@X,].

As simple function example with no tables attached is function that converts
integer values of 0/ 1 to ‘true’™xsd:Boolean’ / false "xsd:Boolean’ is:

BoolT(@X) = #iif (@X, 'true’, false’)xsd:Boolean.

Another simple example: Plus(@X, @Y) = @X + @Y.

In Latvian medical registries there have been numerous situations where many year
values were stored in one varchar type field value (e.g., ‘199920012005°) but
corresponding datatype property having separate instances for each value {‘1999’,
2001°, ‘2005°}. The value splitting can be implemented by joining the source table
with auxiliary table Numbers having single integer type column filled with values
from 1 to 999 (see [75]), as in the function:
splitd(@X)=((Numbers;len(@X)>=N*4).substring(@X,N*4-3,4)), The application
split4(FieldX) then splits character string into set of substrings of length 4.

If calculated values colDef;: var;=e; are included in the function definition, these
can be referenced from the function’s value expression. This enables to write more
structured and readable code. A simple example function that takes values from two

tables and stores intermediate values in variables courseName and teacherName is:
FullCourselInfo (@cId)=((XCourse c)->(XTeacher t); c.AutoId=Q@cId;
courseName=#concat (c.CName, #iif(c.required,’ required’,’ free’)),
teacherName=t .TName)
.#concat (courseName, ’ by ’, teacherName)

We can look on the database table with two columns 7(C;,, C,) as a storage
structure with rows containing argument-value pairs of some function f. We call this
function fa table function based on table T. If the column C; has a unique constraint
(e.g., a primary key column), f'is a single-valued function; otherwise f'is multi-valued
function. Multi-valued functions are appropriate for property maps of properties with
cardinality larger than 1.

A table function based on table 7(C;, C,) actually is shorthand of user-defined
function with table expression comprising table T: f{ @X) = (T; C;=@X).C,

A typical usage of table functions is for classifier tables containing code and value
columns. For example, to associate country codes with full country names a table

70

Country(code varchar(2), description varchar(40)) with data {(‘de’,’Germany’),
(‘en’,’England’), (‘Iv’,’Latvia’),...} could be used for a table function.

4.3.6 Aggregate functions

/def

Parameter AggregateFunctionDef CustomAggregate
pName:String /application aggrName:String
*|{ordered} ———>
Parameters
@TExpr, @Col BuiltinAggregateExpr
FunctionDef aggrName:{Sum, 0.1
fName:String Count, Min, Max, Avg} -
isAggregate:Boolean OrderList
V
L — AggregateExpr
functionBody| 1 0.1 {ordered}| *
@@aggregate(@1, i
DataExpression conca(@1,, ", @2)) RawAggregationExpr Orderltem
desc: Boolean

firstTl joinOpTl

ValueExpression

Refltem

)

1

T U

TableExpression

/ref 6
AggrBaseRef

mark:{}

{ordered}
—

{ordered}| 1..*

Navigltem

KeySequence K>

Q
. Keyltem

{ordered}

Fig. 32. RDB20OWL Aggregate Function metamodel

RDB2OWL has aggregate functions (built-in and user defined) whose application
to appropriate arguments yield aggregate expressions (AggregateExpr instances).
Aggregate expression is kind of value expression therefore it can be substituted for
value part of datatype property: T.<aggregate expression™>, where table expression T
is context in which aggregate function is calculated; we call it a base table expression
of aggregate function application. An aggregate expression specifies 2 things: which
aggregate function f'to execute (built in Sum, Count, Min, Max, Avg or user defined)
and what data should be passed to f'in terms of data expression D (DataExpression
instance) that contain an optional table expression E (TableExpression instance) and a
value expression V (ValueExpression instance).

With these denotations an aggregate expression application takes a form: T.f{ E.V),
where base table expression 7 is explicitly or implicitly referenced by <6>-mark from
within E table expression reference structure. A base table expression 7' can be
thought of as a starting point from which table reference or navigation list of E are
started to get to the table in which the value expression V is evaluated as an argument
for the aggregate function f. For example, to calculate total salary for a person where

71

Person-to-Work tables are in l:n relation one would write datatype property map

expression in one of the forms:
Person.Sum (=>Work.Salary)
Person.Sum (=>Work.Salary)
Person. Sum(
({key=(PersonlID)}, Work w; .PersonID=w.PersonID).Salary)

In this example Person is the base table referenced by (omitted in the short
form). The longest form shows the use of explicit key sequence (KeySequence,
Keyltem instance) that specifies grouping by option. When key sequence is omitted,
the primary key column sequence for base table expression is assumed. The above

example expression can translate into an execution environment as:
SELECT sum(Salary)
FROM Person p, Work w
WHERE p.PersonID=w.PersonID
GROUP BY p.PersonID

In the mini-University example (recall Fig 2. and Fig. 3. Mini-university
ontology), to calculate the course count that each teacher teaches, one can use
[[Teacher]] notation to refer to the sole class map for the Teacher class, thus writing:
[[Teacher]].Count({key=(teacher id)} => Course.course_id)

RDB20OWL has built-in function @@aggregate (RawAggregationExpr instance)
offering custom aggregate expression definitions. @@aggregate takes 4 arguments:

- atable expression, including a reference to the -tagged context
expression and a defined key list (within the -tagged expression), and
optionally an order by clause;

- avalue expression to be aggregated over

- asingle argument function for first value processing in the aggregate
formation (the sole variable for this function is denoted by @1)

- atwo argument function for adding the next value to the aggregate (the value
accumulated so far is denoted by @1 and the next value is denoted by @2).

For example, to get the course list (comma-separated code list) each student is
registered to, one would write: [/Student]].@@aggregate((=>Registration->
Course {Code asc}), Code, @1, #concat(@l1, *, , @2)).

User defined aggregate functions (AggregateFunctionDef instance) can be defined
with @@aggregate function. If variables named @7TExpr (denotes a table expression)
and @Col (denotes columns for value expression) are present in the context of the call
to @@aggregate, the first two arguments in the call may be omitted, they are filled
by the values of these variables. This allows shorter forms of user-defined aggregate
function definition (‘@@ is the name prefix for user-defined aggregate functions) :

@@List(@TExpr,@Col) = @@aggregate(@1, #concat(@l1, ', ', @2))

Shorter forms of aggregate function definition omit variables @7TExpr and @Col:

@@List()= @@aggregate(@1, #concat(@l, ', ', @2)).

To get course list one can apply this user-defined aggregate function @@List:
[[Student]].@@List((=>Registration->Course {Code asc}).Code)

In this example the table expression =>Registration->Course {Code asc} is assigned
to variable @TExpr and the value expression Code — to variable @Col.

72

4.3.7 Extended mapping example

We present an example illustrating the advanced RDB2OWL construct application.
Fig. 33 and Fig. 34 show extended mini-University DB schema and target ontology
example with mapping annotations. Ontology level annotations describe two database
schemas- one for source database (referenced by ‘M’) and auxiliary database
(referenced by ‘A”) for which SQL script RDB2OWL _init is specified to be executed
before start of mapping processing for triple generation. The list of user-defined
function definitions is located also in ontology level annotations. Note that definition
for split function references auxiliary database A where auxiliary table Numbers
resides. This function split splits a coma separated value into its parts, e.g.,
11,12,13°>{11°,’12°,°13"}, its definition uses another RDB2OWL function encoma
that puts comas around string value (‘11°>’,11,”).

Aggregate built-in function Sum is applied to define datatype property map for
property creditsTaken. Because expression Sum(=>XRegistration->XCourse.Credits)
omits an explicit base table expression it is assumed to be the one defined for the sole
class map of Student class which is XStudent. Expanded form would be
XStudent.Sum({key=(AutolD)}=>XRegistration->XCourse.Credits). ~Aggregate
expression for creditsPaid property is defined similarly; it uses also row filtering
condition.

[E XTEACHER | [E xcourse | [EXREGISTRATION] [xstubent | [E xPRoGRAM |
- 7 |AUTOID - 7~ JAUTOID
t COURSEID_FK PNAME
STUDENTID_FK
ISPAID
i
I
I
. I . I I R
Fig. 33. An extended mini-university database schema
<<Ontology annotations>>
DBRef ("refname='M',default=1, dbname="univ', connection="",owner="'dbo',aux=0")
DBRef ("refname='A',dbname="'univ_aux',6connection='"',owner="'dbo"',aux=1, script='RDB20WL_Init'")
@@List ()= @Raggregate(@1, #concat (@1, ', ', €2))
encomma (@X)= {* insert @X into enclosing commas *} concat(',',@X,"',")
split (€X)= {* split the string @X into comma-separated parts *}
(A.Numbers; N<len (encomma (@X)) AND substring(encomma (@X),N,1) =',").
(substring (encomma (@X) ,N+1, charindex (', "',encomma (@X),N+1)-N-1))
BoolT (@X)=1if (@X, 'true', 'false') ""xsd:Boolean
Person > Thing
{disjoint}
Course
f {DB: XCourse}
takes "[DB: =>XRegistration:isPaid=1->}
r 4 | isTakenBy.
Teacher Student
worksPermanently:Boolean | |creditsTaken:integer {DB: Sum(=>XRegistration->XCourse.Credits)}
{DB: BoolT(CoreStaff)} creditsPaid:Integer {DB: Sum(=>XRegistration:isPaid=1'->XCourse.Credits)}
{DB: XTeacher} prevCourseName:String {DB: [split(Prev_Course_List)]->[Code]XCourse.CName}
prevCourseNameList:String {DB: @@List([split(Prev_Course_List)]->[Code]XCourse.CName;Code asc)}
{DB:XStudent}

73

Fig. 34. Extended ontology example

In this extended mini-University example table XStudent has column
prev_course_list to hold comma-separated list of codes of previous course list, e.g.,
‘semweb,prog01,prog02,softeng’ (not a good database design but ontologies should
be map-able to real databases). In ontology prevCourseName property is with
cardinality larger than 0. The mapping expression for this property
[split(Prev_Course_List)]->[Code] XCourse.CName specifies 2-step transformation:

1) split(Prev_Course List) means splitting of comma-separated value in
prev_course_list into separate parts: ‘semweb,prog01,prog02,softeng’ > {‘semweb’,
prog01°, *prog02’, ‘softeng’},

2) separate value list from step (1) is put into navigation link structure as column
value to join with XCourse table to get name list from code list, e.g., [{ ‘semweb’,
‘prog01’, ’prog02’, ‘softeng’}]->[Code] XCourse.CName 2{ ‘Semantic =~ Web’,
‘Programming 1°, ‘Programming?2’, ‘Software Engineering’}.

Datatype property map expression for property prevCourseNamelList is bit more
complicated: the same expression as for property prevCourseName is put as argument
in application of user defined @@List function to obtain the list of previous course
names into comma-separated string.

74

5 RDB2OWL mapping implementation using relational
schema

5.1 The mapping execution framework

Figure 1 shows the architecture of RDB-to-RDF/OWL mapping process in the
RDB20OWL framework.

Relational |Uses RDB2OWL uses| OWL Ontology/
DB schema mapping RDF schema

lis compiled into

SQL script

corresponds
corresponds

executes
produces
output

RDF data
(triples)

Fig. 35. RDB20OWL framework architecture

The task of the RDB20OWL mapping is to establish a correspondence between a
relational database schema (or several schemas) and elements (entities) of OWL
ontology (its schema part) or RDF schema (a single mapping can involve possibly
several OWL ontologies), so that the corresponding RDB records could be translated
(dumped) into RDF triples that correspond to the given ontology or RDF schema.

The process leading to generatiom of RDF triples for the target ontology consists
of two phases. In the first step the RDB2OWL mapping information that is stored in
relational database is processed by SQL commands to generate another SQL scripts
for RDF triples generation. In the second step the generated SQL scripts ar executed
in the source database to get RDF triples that correspond to the target ontology.

75

5.2 Mapping schema description and its semantics for triple generation

LA 1 A

“pB_DATABASE E TABLE_LINK = 0BJECT_PROPERTY_MAP i onNTOLOGY
DATABASE_ID TABLE_LINK_ID OBJECT _PROPERTY_MAP_ID ONTOLOGY_ID
CONNECTION 1~ ~<NEXT_TABLE_LINK_ID OWL_OBJECT_PROPERTY_ID XML_BASE Fom5
DATABASE_NAME| | |MID_TABLE_ID - ~<SOURCE_CLASS_MAP_ID TYPE_URI "

. 3 SOURCE COLUMN EXPR | |/ <TARGET_CLASS_MAP_ID ‘ . i 3

i - — |

I _| I - -
& pB_TABLE | ' 3} TARGET_COLUMN_EXPR LowL_0BJECT_PROPERTY
DB_TABLED F=='______ : ! 1l FILTER_EXPR g:'v#afgésclEjRoPERw,m !
TABLE_NAME ! ! i} RO L
Rl Aild | | o CLASS_MAP DOMAIN_ID |
EDZL;LLGE%NE%; | | Il CLASS_MAP_ID RANGE_ID |
A I 1 | OWL_CLASS_ID > --, |REQUIRED_RANGE |

DATABAS;E‘ID [f O — —<DB_TABLE_ID 3 VY PR |

A | INSTANCE_URI_PREFIX | e L Vo
& | ID_COLUMN_EXPR | B owciass !

DB_COLUMN ! GENERATE_INSTANCES *T7OWL_CLASS.ID !

DB_COLUMN_ID | EITERIERAR] SUBCLASSOF_ID >
DB_TABLE_ID 1 = . ONTOLOGY_ID -
COLUMN_NAME i A RDF_ID
SQL_DATATYPE_ID 1 EDATATYPE_PROPERTY_MAP REQUIRED_PROPERTIES

4 i DATATYPE_PROPERTY_MAP_ID IS_ABSTRACT

s ~<TABLE_LINK_ID ?T /‘\

OWL_DATATYPE_PROPERTY_ID
EisaL_DATATYPE EIxsD_DATATYPE CLASS MAP.ID - | [FlowL_DATATYPE_PROPERTY
SQL_DATATYPE_ID >~ - -~ XSD_DATATYPEID -~~~ COLUMN_EXPR |-~ OWL_DATATYPE_PROPERTY_ID
I;PDEE)NA{T&EYPE - TYPE_NAWME i IS_COLUMN_EXPR ONTOLOGY_ID P
- — | SOURCE_COLUMN_EXPR DOMAIN_ID
"~~~ =XSD_DATATYPE_ID RDF_ID

Fig. 36. RDB20WL mapping RDB schema

We assume that the relational database and OWL ontology are given - this is a typical situation
where OWL ontology is an end-user-oriented representation of the data contained in RDB.
Figure 2 shows relational database schema that stores the RDB20OWL mappings. The mapping
information relies on the source database schema description stored in tables db_database,
db_table, and db_column and the target OWL ontology or RDF schema description stored in
tables ontology, owl_object_property and owl_datatype _property. Only part of database or
ontology information is stored in the mapping schema. The URI of ontology entities is obtained
by concatenating ontology.xml_base field with rdf id field from owl_class,
owl_datatype_property or owl_object_property tables.

The mappings are specified in records of tables class_map, object_property_map,
datatype_property_map. For class_map record x we call base table of x a source database table
that is specified in db_table record linked to x. Each record r in the class_map table specifies
triple generation of the form <s, 'rdf:type’,0>, where o is URI of the owl_class record linked to
r. The URI of the subject s in the above triple is formed using the instance_uri_prefix in r,
concatenated to the value of the expression specified in r in id_column_expr evaluated in
records of the base table t of r. If filter_expr is specified in r, then only those records of t that
satisfy it are considered for the subject’s s generation. There are possibly several class_map
records corresponding to a single owl_class record. The class_map records with
generate_instances=0 are not used for the triple generation but may later be referenced from
property maps.

A record ro of object property map table specifies generation of triples <s,p,0>
where the predicate p is the URI of the owl_object _property record linked to ro. We
let src and trg to denote the class map records that are referred in ro via the
source_class map_id -> class _map_id and target class map id -> class map id
links, respectively. Let, furthermore, ¢ src and ¢ trg be the base tables of src and trg,
respectively. The s and o values in the above triple are obtained from all rows in the
join of ¢ src and ¢ trg on the equality of columns specified in ro fields
source_column_expr and target column_expr, further filtered by ro’s filter expr.

76

Similarly, a datatype_property_map record rd specifies generation of triples <s,p,0>,
where p is URI from the linked owl! datatype property record. Let src be the
class_map record that is linked to rd. Then s and o are obtained from each row of
src’s base table — s by means of class map URI formation and o as a value of ro’s
column_expr expression.

object datatype
property table table table property table table table
map link link link map link link link

o] | ek FeRHE] I

¢

-
pgiiogic

r T
[t_mid, | ‘t_midz‘/Jt_midg‘

T =T

G fRHE] | i
meiin\iingin

L~
g i
\ t_mid, | |t_mid, t_nﬁ

Fig. 37. Intermediate tables in property maps’ definitions

use this vaiue }
(may refer to
all t_mid,)

The table_link table allows introducing intermediate steps in table joining in object
property definition, as well as auxiliary linked tables in datatype property definition.
Figure 3 sketches the table linking schema in case of table link usage (s stands for
source_column_expr, t for target_column_expr and ¢ for column_
expr; the arrow stands for column belonging to a table, and the bold line for equality
condition; note that each iteration via fable link introduces a new table into the join
expression).

The table below outlines some class map information (with linked OWL class
rdf id and DB table name).

Table 15. Some class map information for Mini-University example

class_map_id |OWL klase [table_name |filter_expr [id_column_expr |instance_ |generate_
(rdf_id) uri_ prefix_|instances

1 Teacher teacher teacher_id Teacher 0

2 Student student student_id Student 1

3 Course course course_id Course 0

4 Mandatory |course required=1 |course_id Course 1
Course

5 PersonID teacher idcode PersonID |1

6 PersonID student idcode PersoniD |1

The tables below outline some datatype and object property maps (s and ¢ denote
source and target class map id’s).

Table 16. Some property map information for Mini-University example

s datatype_property.rdf table_name column_expr filter_expr
3 courseName course name
1 personName teacher name
2 personName student name
s [t |object property|table name(s) |table name(t) source_col_expr |target_col_expr
2 16 |personID student student student_id student_id
1 |5 [personID teacher teacher teacher_id teacher_id
1 |3 [teaches Teacher course teacher_id teacher_id

Note that the maps for datatype and object properties can refer to class maps with
id’s 1 and 3 that are not used for class instance triple generation.

77

5.3 Advanced mapping schema features

There are cases when a large database table, say ¢, is modeled by a set of OWL
classes, each class ¢ responsible for a certain subset of the table columns (e.g. there
are different groups of measurements taken during a clinical anamnesis, all recorded
into a single table). Mapping such table onto all the classes, would require writing
lengthy filtering conditions involving all the group columns.

Our proposal is to introduce into the mapping schema explicit features allowing to
specify generation of only those <x,’rdf:type’,0> instance triples, where a generated
triple <x,p,y> exists for some property p whose domain is o. This allows us to keep
the simple mapping from ¢ to all classes ¢ associated to parts of ¢ with no filtering. We
specify this requirement by owl class.required properties=1 and implement by
deleting triples without property instances in the 2™ phase of the mapping generation.
This feature is extensively used in the mapping definition for Latvian medical
registries case (for 54 out of 172 OWL classes; 542 out of 814 OWL datatype
properties on them).

The field required range in owl object property table specifies requirement to
delete those OWL object property instance triples <x,op,y> for which there are no
<y,’rdf:type’,r> triple with r being the range of op, after the required properties
optimization.

Auxiliary tables and temporary tables can be introduced allowing to use standard
SQL for mapping specification. We have used a few auxiliary tables — the tables for
classifiers not properly introduced in source database schema; and the Numbers table
(with all numbers from 1 up to 999) used for field value splitting into multiple
datatype property values (we used this pattern for 111 datatype property maps).
Auxilary tables can be placed in a different database pointed to from database table
TOW.

5.4 RDF triple generation

5.4.1 Class instance triple generation

In this section we show triple generation on Mini-university example [2.3.1]. In the
next table there are listed OWL class mappings. In the example there are used
mappings only to database tables. Below data from tables class_map and referenced
tables ow!_class, db_table are listed.

Table 17. OWL class maps to database tables

class_ |OWL class table_name (filter_expr |id_column_ |instance_ |generate_
map_ |(rdf_id) expr uri_ prefix [instances
id

1 Teacher teacher teacher id |Teacher 0

78

2 Assistant teacher level code= [teacher id |Teacher 1
'Assistant’
3 AssocProfessor teacher level code= [teacher id |Teacher 1
'Associate
Professor’
4 Professor teacher level code= [teacher id |Teacher 1
'Professor’
5 Student student student id [Student 1
6 Course course course id |Course 0
7 MandatoryCourse |course required=1 |course id |Course 1
8 OptionalCourse course required=0 |course id |Course 1
9 PersonID teacher idcode PersonID 1
10 PersonlD student idcode PersonlD 1
11 AcademicProgram |program program id |Program 1

Most of the class mappings are used for the real OWL class instance generation.
There are, however, a few class mappings that are not used in the class instance
generation, but which will be further referenced in datatype property mappings.

With mere SQL statement it is possible to generate another SQL statement which
executed in sample DB would generate instance RDF triples. Executing script
OWL _instance_gen.sql (see Appendix [9.6] for code) against our sample data, we

obtain row set with generated SQL statements, one of which is:
SELECT '<http://lumii.lv/ex#Course'
|| course.course id || '>' as subject,
'<type>' as predicate,
'<lumii#MandatoryCourse>' as object
FROM course
WHERE required=1

Executing all generated statements in our sample source DB we obtain the
following triples, duplicates removed. The duplicates in the example come from the
fact that one teacher table row and one student table row have the same idcode value
(the same person being student and teacher at the same time). We use in Table 8 the
prefix “lumii” to denote “http://lumii.lv/ex”, and the predicate notation “type” to stand
for http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type.

Table 18. Generated OWL class instance RDF tripples

Subject Predicate Object

< lumii #Course1> <type> <lumii#OptionalCourse>

< lumii #Course2> <type> <lumii#MandatoryCourse>
< lumii #Course3> <type> <lumii#MandatoryCourse>
<lumii#Course4> <type> <lumii#Optional Course>
<lumii#PersonlD123456789> <type> <lumii#PersonlD>
<lumii#PersonlD345453432> <type> <lumii#PersonlD>
<lumii#PersonID555555555> <type> <lumii#PersonID>
<lumii#PersonlD777777777> <type> <lumii#PersonID>
<lumii#PersonlD987654321> <type> <lumii#PersonID>
<lumii#Person]D999999999> | <type> <lumii#PersonID>
<lumii#Program1> <type> <lumii#AcademicProgram>
<lumii#Program2> <type> <lumii#AcademicProgram>
<lumii#Student1> <type> <lumii#Student>

79

http://lumii.lv/ex
http://www.w3.org/1999/02/22-rdf-syntax-ns#type

Subject Predicate Object
<lumii#Student2> <type> <lumii#Student>
<lumii#Student3> <type> <lumii#Student>
<lumii#Student4> <type> <lumii#Student>
<lumii#Teacherl> <type> <lumii#Professor>
<lumii#Teacher2> <type> <lumii#Professor>
<lumii#Teacher3> <type> <lumii#Assistant>

5.4.2 OWL datatype property value triple generation

Table 19. shows data in table datatype property map and referenced tables
class_ map and owl datatype property in case when no table link is used (no
table_link table usage). One can compare the first column in Table 7 and Table 9
below. For example, property personName is linked to class map id=1 and
class_map_id=5 that correspond to class maps for OWL classes Teacher and Student.
For Teacher class instances are not directly generated (generate_instances=0). Class
instances are generated for subclasses Professor, AsocProfessor and Asistant classes.
But as far as instance uri_prefix, table name and id _column_expr have the same
value in the class map for superclass (Teacher in this case), this enable correct
generation of the subject part of triples for OWL datatype properties. There is no need
to make class map for each subclass. As to correctness of the mapping, the class map
to super class should have the same filtering as union of all subclasses. In the case of
Teacher it has no filter (filter_expr is empty for class_map id=1) but filters for sub-
class maps (class_map id:2,3,4) are level code='Assistant', level code='Associate
Professor' and level code='Professor'. All these together give all teacher rows and
Teacher class map with no filtering correspond to the same row set.

Table 19. OWL datatype property class mappings to database table column expressions (data
from tables datatype property map and referenced class map, db table and
owl_datatype property)

class map_id OWL _datatype | table name | column_expr | filter_expr
property

6 courseName Course name

11 programName Program name

1 personName Teacher name

5 personName Student name

9 IDValue Teacher idcode

10 IDValue Student idcode

Executing script generate_sql4datatype props.sql (see Appendix [9.6] for code)
against our sample data, we obtain row set with generated SQL statements one of
which is:

SELECT

'<lumii#optionalCourse’

|| course.course id || '>' as subject,
'<lumiif#courseName>' as predicate,
name as object

80

FROM course
WHERE required=0

Executing all generated statements in our sample source DB we obtain the
following triples, duplicates removed (note the abbreviations, as in Table 18):

Table 20. Generated OWL datatype property instance RDF triples

Subject Predicate Object
<lumii#Course1> <lumii#courseName> Programming Basics
<lumii#Course2> <lumii#courseName> Semantic Web
<lumii#Course3> <lumii#courseName> Computer Networks
<lumii#Course4> <lumii#courseName> Quantum Computations
<lumii#PersonID123456789> | <lumii#IDValue> 123456789
<lumii#PersonlD345453432> | <lumii#IDValue> 345453432
<lumii#PersonID555555555> | <lumii#IDValue> 555555555
<lumii#PersonID777777777> | <lumii#IDValue> 777777777
<lumii#PersonID987654321> | <lumii#IDValue> 987654321
<lumii#PersonlD999999999> | <lumii#IDValue> 999999999
<lumii#Student1> <lumii#personName> Dave
<lumii#Student2> <lumii#personName> Eve

<lumii#Student3> <lumii#personName> Charlie
<lumii#Student4> <lumii#personName> Ivan
<lumii#Teacherl> <lumii#personName> Alice
<lumii#Teacher2> <lumii#personName> Bob

<lumii#Teacher3> <lumii#personName> Charlie
<lumii#Program1> <lumii#programName> Computer Science
<lumii#Program2> <lumii#programName> Computer Engeneering

5.4.3 OWL object property value triple generation

In Table 21. data from object_property_map, and referenced owl object _property,
as well as two class_map rows for subject and object and corresponding db_table

rows are shown. See Table 7 for more details on referenced class_map rows.

Table 21. owl object property mappings to database tables pairs for domain and range

class_ class_ object_ [table_name |table_name |source_ target
map_id map_id |property |[(domain) |(range) col_expr col_expr
(domain) | (range)

11 6 includes |program course program id |program id
5 10 personlD |student student student id student id

1 9 personlD |teacher teacher teacher id teacher id
5 11 enrolled |student program program id |program id
1 6 teaches teacher course teacher id teacher id

As data shows OWL object properties generally map to table pairs corresponding
to domain and range class pair. Exception is personID object property because it has
Person class as domain and PersonID class as range and both these classes has
mapping to 2 tables: student and teacher. For this property there exist two mappings
(object_property_map rows) one of which maps student table for domain to student

81

table for range and the mapping is based on student id column (source column_expr,
target column_expr). The second row maps feacher table to teacher table based on
teacher id column in a similar way.

To generate RDF triples for OWL object property instances the data shown above
in Table 21 can be used. A skeleton of SQL for main information retrieval for
generation process is, as follows:

SELECT

<domain table> 1.<domain class map id->class map.id column_expr>,
<range table> 2.<range class map id=2>class map.id column_ expr>

FROM <domain table> AS <domain table> 1

INNER JOIN <range table> AS <range_ table> 2
ON <domain table> 1.<domain column_ expr>
= <range_ table> 2.<range column expr>
The suffixes 1 and 2 are added here to prevent name collision. For example, in the
case of one mapping for PersonID property (for student) query joins student table to
itself because object property _map table specifies two tables via domain_class_map
and range_class_map although the tables are the same:

SELECT student 1.student id, student l.program id

FROM student AS student 1

INNER JOIN student AS student 2

ON student l.student id = student 2.student id

For enrolled property the query is

SELECT student 1.student id, program 2.program id

FROM student AS student 1

INNER JOIN program AS program 2

ON student l.program id = program 2.program id

An SQL script for OWL object property instance generation can be defined in a
similar way, as for OWL class and OWL datatype property instance generation.

Executing script generate sql4object props.sql (see Appendix for code) against
our sample data, we got row set with generated SQL statements one of which was:

82

SELECT

'<lumii#Program' || program l.program id || '>' as subject,
'<lumii#includes>' as predicate,
'<lumii#Course' || course 2.course id || '>' as object

FROM program program 1 INNER JOIN course course 2
ON program l.program id = course 2.program_ id

WHERE 1=1 AND 1=1
Executing all generated statements in our sample source DB we got following

triples (note the abbreviations, as in Table 18):

Table 22. Generated OWL object property instance RDF triples

Subject Predicate Object

<lumii#Student1> <lumii#enrolled> <lumii#Program1>
<lumii#Student2> <lumii#enrolled> <lumii#Program2>
<lumii#Student3> <lumii#enrolled> <lumii#Program1>
<lumii#Student4> <lumii#enrolled> <lumii#Program2>
<lumii#Program1> <lumii#includes> <lumii#Course4>
<lumii#Program1> <lumii#includes> <lumii#Course2>
<lumii#Program2> <lumii#includes> <lumii#Coursel>
<lumii#Program2> <lumii#includes> <lumii#Course3>
<lumii#Student1> <lumii#personlD> <lumii#PersonlD123456789>
<lumii#Student2> <lumii#personlD> <lumii#PersonlD987654321>
<lumii#Student3> <lumii#personID> <lumii#PersonID555555555>
<lumii#Student4> <lumii#personIlD> <lumii#PersonlD345453432>
<lumii#Teacherl> <lumii#personID> <lumii#PersonD999999999>
<lumii#Teacher2> <lumii#personlD> <lumii#PersonlD777777777>
<lumii#Teacher3> <lumii#personlD> <lumii#PersonlD555555555>
<lumii#Teacherl> <lumii#teaches> <lumii#Course2>
<lumii#Teacher2> <lumii#teaches> <lumii#Course3>
<lumii#Teacher2> <lumii#teaches> <lumii#Course4>
<lumii#Teacher3> <lumii#teaches> <lumii#Coursel>

Now we discuss the table link usage. It is needed for instance generation of OWL
object property fakes which is between Student and Course OWL classes and need to
join tables student and course through registration. Table object property _map links
to class_map two rows for subject and object through domain class map id and
range_class_map_id foreign keys. That gives pair of two relations (tables). To join
these tables source _column_expr and target column_expr are used. If these tables
cannot be joined directly then fable link table is to be used. It stores information
about middle steps in table traversing. To support joining table ¢/ with ¢2 through
middle table the fable_link columns has these meanings:

mid_table name- table name in the middle step,

source_column_expr- joins <mid_table_name> table to ¢ by this column expr.,

target _column_expr- joins <mid_table name> table to ¢2 by this column expr.,

filter _expr- additional filter expression on table <mid table name>
next_table link id- foreign key to the same table to implement more intermediate
steps if needed (t1 >mid_table 1->mid table 2 > ... >mid table n>12).

Table 13 and Table 14 show OWL object property mapping data for properties that
needs table links (object property map.table_link is not null). Data are from tables
owl_object property, object property map as well as their referenced table rows.

83

After that the corresponding table link data is shown also. Filter expr is not used in
the example.

Table 23. owl object property mappings to database tables pairs for domain and range when
table link is used

class_ class_ object_ |table_name |table_name |source_ target
map_id map_id |property |[(domain) |(range) column_ column_
(domain) | (range) expr expr

5 6 takes student Course student id course_id

Table 24. table_link table data

mid_table_name source_column_expr [target column_expr |next table link id
registration student id course id
The join condition is:
<domain_table>.<source_column_expr>=
<mid_table name>.<table link.source_ column_expr>
AND
<mid table name>.<table link.target column expr>=
<range table>.<target column expr>
In this case the concrete condition is:
student.student id=registration.student id
AND
registration.course id=course.course_ id

Executing script generate_sqldobject props_table links.sql (see Appendix for
code) against our sample data, we obtain row set with generated SQL statements, one

of which is:
SELECT
'<lumii#Student' || student l.student id || '>' as subject,
'<lumii#takes>' as predicate,
'<lumii#Course' || course 2.course id || '>' as object

FROM student student 1
INNER JOIN registration registration 3

ON student l.student id = registration 3.student id
INNER JOIN course course 2

ON registration 3.course id = course_ 2.course_id
WHERE 1=1 AND 1=1 AND 1=1 AND 1=1

Executing it in sample source DB we get the following triples:

Table 25. Generated OWL object property instance RDF triples when table link table used

Subject Predicate Object

<lumii#Student1> <lumii#takes> <lumii#Course2>
<lumii#Student2> <lumii#takes> <lumii#Course4>
<lumii#Student3> <lumii#takes> <lumii#Coursel>
<lumii#Student4> <lumii#takes> <lumii#Course3>
<lumii#Student5> <lumii#takes> <lumii#Course2>

84

5.4.4 The result of RDF triple generation for Mini-university example

When all generated SQLs were executed in our example database we get following
triple set essentially being data export from original relational database to RDF format
for target OWL ontology. It is union of data showed in Tables 18, 20, 22 and 25 with

shorthands “lumii” and “type” expanded.
<http:/lumii.lv/ex#Course1> <http://lumii.lv/ext#courseName> Programming Basics
<http://lumii.lv/ex#Course2> <http://lumii.lv/ex#courseName> Semantic Web
<http://lumii.lv/ex#Course3> <http://lumii.lv/ex#courseName> Computer Networks
<http:/lumii.lv/ex#Course4> <http://lumii.lv/ex#courseName> Quantum Computations
<http:/lumii.lv/ex#Student1> <http://lumii.lv/ex#tenrolled> <http:/lumii.lv/ex#Program1>
<http://lumii.lv/ex#Student2> <http://lumii.lv/ex#enrolled> <http://lumii.lv/ex#Program2>
<http:/lumii.lv/ex#Student3> <http:/lumii.lv/ex#enrolled> <http://lumii.lv/ex#Program1>
<http:/lumii.lv/ex#Student4> <http://lumii.lv/ex#enrolled> <http://lumii.lv/ex#Program2>
<http://lumii.lv/ex#PersonID123456789> <http://lumii.lv/ex#IDValue> 123456789
<http:/lumii.lv/ex#PersonlD345453432> <http://lumii.lv/ex#IDValue> 345453432
<http://lumii.lv/ex#PersonID555555555> <http://lumii.lv/ex#|DValue> 555555555
<http:/lumii.lv/ex#PersonlD777777777><http:/lumii.lv/ex#|DValue> 777777777
<http://lumii.lv/ex#PersonID987654321> <http://lumii.lv/ex#IDValue> 987654321
<http:/lumii.lv/ex#PersonID999999999> <http://lumii.lv/ex#IDValue> 999999999
<http:/lumii.lv/ex#Program1> <http:/lumii.lv/ex#includes> <http://lumii.lv/ex#Course2>
<http:/lumii.lv/ex#Program1> <http:/lumii.lv/ex#includes> <http://lumii.lv/ex#Course4>
<http:/lumii.lv/ex#Program2> <http:/lumii.lv/ex#includes> <http://lumii.lv/ex#Course3>
<http:/lumii.lv/ex#Program2> <http:/lumii.lv/ex#includes> <http://lumii.lv/ex#Course 1>
<http:/lumii.lv/ex#Student1> <http://lumii.lv/ex#personID> <http:/lumii.lv/ex#PersonlD123456789>
<http:/lumii.lv/ex#Student2> <http://lumii.lv/ex#personiD> <http:/lumii.lv/ex#PersonID987654321>
<http:/lumii.lv/ex#Student3> <http://lumii.lv/ex#person|D> <http:/lumii.lv/ex#PersonlD555555555>
<http:/lumii.lv/ex#Student4> <http://lumii.lv/ex#personiD> <http:/lumii.lv/ex#PersonlD345453432>
<http:/lumii.lv/ex#Teacher1><http://lumii.lv/ex#personID> <http://lumii.lv/ex#PersonlD999999999>
<http:/lumii.lv/ex#Teacher2><http://lumii.lv/ex#personiD> <http:/lumii.lv/ex#PersonID777777777>
<http:/lumii.lv/ex#Teacher3><http://lumii.lv/ex#personID> <http:/lumii.lv/ex#PersonlD555555555>
<http:/lumii.lv/ex#Student1> <http:/lumii.lv/ex#personName> Dave
<http:/lumii.lv/ex#Student2> <http://lumii.lv/ex#personName> Eve
<http:/lumii.lv/ex#Student3> <http://lumii.lv/ex#personName> Charlie
<http:/lumii.lv/ex#Student4> <http://lumii.lv/ex#personName> Ivan
<http:/lumii.lv/ex#Teacher1><http://lumii.lv/ex#personName> Alice
<http:/lumii.lv/ex#Teacher2><http://lumii.lv/ex#personName> Bob
<http://lumii.lv/ex#Teacher3><http://lumii.lv/ex#personName> Charlie
<http:/lumii.lv/ex#Program1> <http:/lumii.lv/ex#programName>
<http:/lumii.lv/ex#Program2> <http:/lumii.lv/ex#programName>

Computer Science
Computer Engeneering

<http:/lumii.lv/ex#Student1> <http:/lumii.lv/ex#takes>
<http:/lumii.lv/ex#Student1> <http://lumii.lv/ex#takes>
<http:/lumii.lv/ex#Student2> <http://lumii.lv/ex#takes>
<http:/lumii.lv/ex#Student2> <http://lumii.lv/ex#takes>
<http:/lumii.lv/ex#Student3> <http://lumii.lv/ex#takes>

<http:/lumii.lv/ex#Course4>
<http://lumii.lv/ex#Course2>
<http://lumii.lv/ex#Course3>
<http://lumii.lv/ex#Course 1>
<http://lumii.lv/ex#Course2>

<http:/lumii.lv/ex#Teacher1><http://lumii.lv/ex#teaches> <http://lumii.lv/ex#Course2>
<http:/lumii.lv/ex#Teacher2><http://lumii.lv/ex#teaches> <http://lumii.lv/ex#Course3>
<http:/lumii.lv/ex#Teacher2><http://lumii.lv/ex#teaches> <http:/lumii.lv/ex#Course4>
<http:/lumii.lv/ex#Teacher3><http://lumii.lv/ex#teaches> <http://lumii.lv/ex#Course1>
<http://lumii.lv/ex#Course1> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>

<http://lumii.lv/ex#Course2> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>

<http:/lumii.lv/ex#Course3> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://lumii.lv/ex#Course4> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>

<http:/lumii.lv/ex#PersonID123456789> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://lumii.lv/ex#PersonID345453432> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http:/lumii.lv/ex#PersonID555555555> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http:/lumii.lv/ex#PersonlD777777777><http://lwww.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://lumii.lv/ex#PersonID987654 321> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http:/lumii.lv/ex#PersonlD999999999> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://lumii.lv/ex#Program1> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http:/lumii.lv/ex#Program2> <http://www.w3.0rg/1999/02/22-rdf-syntax-nsttype>

<http://lumii.lv/ex#OptionalCourse>
<http:/lumii.lv/ex#MandatoryCourse>
<http://lumii.lv/ex#MandatoryCourse>
<http://lumii.lv/ex#OptionalCourse>

<http://lumii.lv/ex#Person|D>
<http://lumii.lv/ex#PersonID>
<http://lumii.lv/ex#PersonID>
<http://lumii.lv/ex#PersonID>
<http://lumii.lv/ex#PersonID>
<http://lumii.lv/ex#PersonID>

<http://lumii.lv/ex#AcademicProgram>
<http:/flumii.lv/ex#AcademicProgram>

<http://lumii.lv/ex#Student1> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://lumii.lv/ex#Student>
<http:/lumii.lv/ex#Student2> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://lumii.lv/ex#Student>
<http://lumii.lv/ex#Student3> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://lumii.lv/ex#Student>
<http:/lumii.lv/ex#Studentd> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://lumii.lv/ex#Student>

85

<http://lumii.lv/ex#Teacher1><http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http:/lumii.lv/ex#Professor>
<http:/lumii.lv/ex#Teacher2><http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://lumii.lv/ex#Professor>
<http://lumii.lv/ex#Teacher3><http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> <http://lumii.lv/ex#Assistant>

5.5 Mapping Validation

Since the mapping definition is stored in a RDB, validation is possible by using
SQL. One can perform Omission checks: OWL classes or properties without
corresponding class or property maps; DB tables not used in any class maps; DB
columns not used in any column expression. Consistency checks may be used for
property map-to-class map relation correspondence to property-to-class
domain/range relation. The results of these checks are to be evaluated to decide,
whether an error has been found, or the irregularity is by the mapping design. After
loading the data into the target RDF data store, further checks of ontology data-to-
schema consistency can be performed by means of SPARQL queries or invoking
reasoners such as Pellet.

For example list of OWL classes without class maps can be returned by simple
SQL:

SELECT rdf id AS class FROM owl class c

WHERE NOT EXISTS

(
SELECT 1 FROM class map cm WHERE c.owl class id=cm.owl class id

) AND c.is abstract=0

A list of OWL datatype properties without maps can be abtained by folowing SQL:
SELECT
c.rdf id AS domain,
dp.rdf id AS owl datatype property
FROM owl datatype property dp
INNER JOIN owl class ¢ ON dp.domain id=c.owl class_id AND
c.is_abstract=0
WHERE NOT EXISTS

(

SELECT1 FROM datatype property map dpm
WHERE dpm.owl datatype property id=dp.owl datatype property id
)

5.6 Implementation as java application

The RDF triple generation two step processes (Fig. 35) we implementated as user
interface java application. When connection information to the mapping and source
databases are entered then both processes can be executed by pressing corresponding
command button.

86

B rdbzowl application v.1.0

Press button <Generate target RDF triples> and wait...
E rdbZowl application ¥.1.0

when the process done:

87

Erthowl application v.1.0 (=]]

Mapping DB
JDEC class name Icom‘microsoft.sqlserver.jdbc.SQLServerDriver
ConnectionString debc:sqlserver:,l’,l’GUNTARS-PC: 1433;databaseName=owlzrdb;user=owlzrdb; password=o
Target DB
IDEC class name Icom‘microsoFt.sqlserver.jdbc.SQLServerDriver
ConnectionString debc:sulserver:,l’,l’GUNTARS-PC: 1433;databaseName=preda_DE;user=preda; password=p

Generate SCL statements For RDF triple generation

Generate Target RDF triples |

|42E|73981 triples has heen generated.

5.7 Latvian Medicine Registries: A Case Study

The data mapped from RDB to OWL format consists of 6 Latvian medical registries
(Sugar registry, Multiple screlosis registry, Injury registry, Mental inlness registry,
Cancer regsitry and Narcotic registry) [23],[24], including 106 source database tables,
1353 table columns and total more that 3 million rows, altogether 3 GB of data. The
corresponding OWL ontology had 172 OWL classes, 814 OWL datatype properties
and 218 OWL object properties.

The mapping has been implemented on a laptop computer with Intel Mobile Core
2 Duo T6570 processor running Windows Vista, 3 GB of RAM. The mapping DB as
well as source DB (Medicine DB) was served by Microsoft SQL Server 2005. The
triple generation process from source DBs produced about 42.8 million triples and it
has taken 18.5 minutes, out of which 6.5 minutes for raw triple generation, 8 minutes
for indexing, 4 minutes for ClassConstraint enforcement and 6 minutes for triple
exporting from table to text files in N-TRIPLE format (total file size 3.4GB).

Timing details and statistics follows.

Table 26. Element counts in target ontology

Item Count

OWL Classes (non abstract) 168

OWL datatype properties (domain non abstract) 810

OWL object properties (domain and rangr non 198
abstract)

88

| Total objects | 1176

Table 27. Mapping counts in RDB2OWL database

Item Count
Class_map rows 170
Datatype property map rows 832
Object_property map rows 220
Total objects 1222

Migration done 100%

Table 28. Generated SQL counts for RDF generation

Item Count
SQL for OWL class instances 169
SQL for OWL datatype property instances 832
SQL for OWL object property instances 220
Total objects 1221

Table 29. Source DB (database file size: 3G)

Item Count
Tables 106
Table Columns 1353
Total rows in all tables 3054618

Table 30. Generated triples

Item Count

Class instance count 5411395-32084=5 379 311
Datatype property instance count 17 953 290

Object property instance count 19 509 296

Total 42 841 897

Table 31. Timings for triple generation

Step Time
(min:sec)

RDF triple generation (42,84 milj) 6:30

Triple indexing 8:05

Deletion of OWL class instance triples without required 3:55
properties (deleted 32084 of 5411395 or 0,6%)

Export to RDF dump file 6:18

Total time 24:48

After storing triples (indexed) in source DB its DF file size grew from 3G to 7G.

89

6 Overall implementation architecture RDB2OWL
language

Metamodel repozitory
MIl REP

- — Relational DB
Transformation definitions (IQuery lang.) ‘ v

RDB20OWL RDB20OWL RDB20OWL
RDB20OWL |- full —>| reduced mapping
xx.owl with sintax MM semantic semantic schema
mapping MM MM
annotations

‘-' _>-' _)-' .| mapping
Import (java)
+ parser (javacc) ‘ Transformation execution ‘ MIl REP java API
+ jdbc

Fig. 38. Ite implementation architecture of RDB2OWL language

Fig. 38 shows the total implementation schema of RDB20OWL language. We
briefly describe the main process steps of multistep transformation process leading
from annotated ontology file to the RDB20OWL mapping schema from which RDF
triples are generated as described in sections 5.1 and 5.2.

The process starts by reading the target ontology annotated with RDB2OWL
mapping language. The annotations are parsed (javacc [74]) into RDB20WL
metamodel instances in repository. These instances correspond to mere syntactic
structure of mapping expressions. Then these instances are analysed to add missing
information. Example of missing information: expression credits=amount+100
contain literal ‘amount’ but it is not clear if it stands for defined variable name,
function name or database table column name. After the syntax parsing completion,
another process is starter that analyses what instances are created and creates
additional instances or links for semantic information. For example if ‘amount’ is not
found as defined function name or variable name but is found to be table column
name from table context the this literal stands for column and this information is
recorded. The omissions are also filled, for example explicite columns name
omissions in navigation links. At the end of semantic analysis RBB20OWL semantic
MM instances are obtained. At this point metamodel the instances correspond to
RDB20OWL Core Plus language. Then another transformation step converts the
metamodel instances from RDB2OWL Core Plus level in to RDB20WL Raw

90

language level: changing navigation links into reference item lists, changes high level
constructs into lower, for example, changes function calls into basic expressions
(merging callers table expression with table expression of the called function). The
last step is to transform the RDB2OWL Raw metamodel instances into RDB20OWL
mapping schema data, from which RDB2OWL triples can be generated.

The full RDB2OWL language metamodel is packed in appendix [9.8].

The associations and classes displayed in solid lines comprise a full syntax
metamodel whose instances can be obtained by parsing of RDB2OWL annotations
(using javacc). The classes and associations denoted by dotted lines comprise full
semantic metamodel (RDB20OWL core language). Its instances can be calculated by
analyzing instances of full syntax metamodel.

NamedRef instances are split into DevVarRef or ClassMap instances depending on
weather refName attribute value is found as Reference.varName attribute value or
OWLClass.localName attribute value.

There are various ref links (ClassRef > OWLClass, TableRef->Table,
TableColname DTable, etc) that can be calculated during semantic analysis after full
syntax metamodel is filled with instances by grammatical parsing.

After full syntax metamodel instances are generated the transformation steps are
executed that reduces the metamodel to RDB2OWL raw level. It is done mainly by
transformation navigation item links to table ref item lists (e.g. “Course->Teacher” to
“Course C, Teacher T; C.TeacherID FK=T.AutoID”).

91

7 Conclusion

We have presented RDB20OWL approach to RDB-to-RDF/OWL mapping
specification that re-uses the ontology structure as the backbone of the mapping
specification by putting the mapping definitions in the OWL ontology entity
annotations.

As the mapping examples show, the approach can be used for a convenient
mapping definition. Combining the power of the RDB2OWL mapping definition
approach with visual ontology modeling means such as OWLGrEd [25,26] notation
and editor can be a viable mechanism for the RDB semantic re-engineering task.
Since the ontology annotation mechanism is a part of ontology definition means, the
RDB20OWL-annotated ontologies can be used also outside the concrete ontology
editor.

The RDB20OWL approach has been successfully used for a “real-size” task of
semantic re-engineering of databases in Latvian medical domain. There is work in
progress towards the implementation of the full set of RDB20OWL constructs,
including RDB2OWL parsing on a concrete syntax level and integrating into
OWLGrEd editor.

It seems to be a plausible and interesting task to adapt the mapping constructions
considered here also for RDF/OWL-to-RDF/OWL mapping definition that may be
useful in transformation from the “technical data ontology” to the conceptual one,
after the initial data — be these in RDB or some other format — have been exposed to
the RDF format using a straightforward and technical structure preserving embedding.

The main goal of the thesis work was about make relational databases accessable
to semantic web technologies, and particulary, accomplished by mappings between
RDB and RDF/OWL. The main results are:

e RDB-to-RDF/OWL mapping language RDB20OWL was designed which is
oriented to be readable by humans, concise and with high level constructs.

e Created RDB2OWL language syntax parser.

e RDB20OWL mapping implementation was developed where the RDB-to-
RDF/OWL mapping information is stored in relational database schema
and RDF triples are generated by SQL based processes. For these
processes a user interface application was developed.

e RDB20OWL mapping implementation was applied to semantic re-
engeneering of Latvia Medicine 6 registry databases where 42 milj. triples
were generated in 18,5 minutes (without dump export to text file).

e Ontology of Latvia Medicine registries was annotated with RDB20OWL
mappings language expressions showing that the language is aplicable to
pactical industry use_case.

The development of Semantic analyser is in progress that transformes the domain
ontology annotations into REB20OWL mapping schema for execution. One of future
perspectives is to create compiler from RDB20OWL into emerging W3C standard
language R2ZRML. Then RDB2OWL could be used as convenient language to define
mappings and triple execution could be delegated to RZRML supporting tools.

92

8 References

w

(9}

. Resource Description Framework (RDF), http://www.w3.org/RDF/

. RDF Vocabulary Description Language: RDF Schema, http://www.w3.org/TR/rdf-
schema/

. Web Ontology Language (OWL), http://www.w3.0rg/2004/OWL/

. OWL 2 Web Ontology Language, Structural Specification and Functional-Style Syntax
http://www.w3.org/TR/owl2-syntax/

. W3C RDF Validation Service http://www.w3.org/RDF/Validator/

. Christian Perez de Laborda and Stefan Conrad: Bringing Relational Data into the
Semantic Web using SPARQL and Relationa. OWL Semantic Web and Databases. In
Third International Workshop, SWDB 2006, Co-located with ICDE, Atlanta, USA,
April 2006

. Christian Perez de Laborda and Stefan Conrad: Database to Semantic Web Mapping
using RDF Query Languages LNCS 4215, pp. 241-254. Springer, Heidelberg, 2006.

. J.Barrasa, O.Corcho, G.Shen, A.Gomez-Perez: R20: An extensible and semantically
based database-to-ontology mapping language. In: SWDB'04, 2nd Workshop on
Semantic Web and Databases, 2004.

. D2RQ Platform. Treating Non-RDF Relational Databases as Virtual RDF Graphs.
http://www4.wiwiss.fu-berlin.de/bizer/D2RQ/spec/

10. C.Blakeley: “RDF Views of SQL Data (Declarative SQL Schema to RDF Mapping)”,

1

OpenLink Software, 2007.

1. Wu, Z., Chen, H., Wang, H., Wang, Y., Mao, Y., Tang, J., Zhou, C.: “Dartgrid: a
Semantic Web Toolkit for Integrating Heterogeneous Relational Databases”,
Semantic Web Challenge at 4th International Semantic Web Conference (ISWC
2006), Athens, USA, 5-9 November 2006.

12. Sequeda, J.F., Cunningham, C., Depena, R., Miranker, D.P. Ultrawrap: Using SQL

Views for RDB2RDF. In Poster Proceedings of the 8th International Semantic Web
Conference (ISWC2009), Chantilly, VA, USA. (2009)

3. Auer, S., Dietzold, S., Lehmann, J., Hellmann, S., Aumueller, D.: Triplify: Light-
weight linked data publication from relational databases. In Proceedings of the 18th
International Conference on World Wide Web (2009).

14. W3C RDB2RDF Working Group, http://www.w3.0rg/2001/sw/rdb2rdf/
15. A Survey of Current Approaches for Mapping of Relational Databases to RDF,

http://www.w3.0rg/2005/Incubator/rdb2rdf/RDB2RDF_SurveyReport.pdf

16. R2RML: RDB to RDF Mapping Language, http://www.w3.org/TR/r2rml/
17. A Direct Mapping of Relational Data to RDF, http:/www.w3.org/TR/2011/WD-rdb-

direct-mapping-20110324/

18. Bizer, C., Schultz, A.: The R2R Framework: Publishing and Discovering Mappings

on the Web. 1st International Workshop on Consuming Linked Data (COLD 2010),
Shanghai, November 2010.

19. S.Rikacovs, J.Barzdins, Export of Relational Databases to RDF Databases: a Case

Study, in P. Forbrig and H. Giinther (eds.), Perspectives in Business Informatics
Research, Springer LNBIP 64 (2010), 203-211.

20. G.Barzdins, J.Barzdins, K.Cerans: From Databases to Ontologies, Semantic Web

2

Engineering in the Knowledge Society; J.Cardoso, M.Lytras (Eds.), IGI Global, 2008
(ISBN: 978-1-60566-112-4) pp. 242-266

1. W3C SWEO Linking Open Data community project URL:
http://www.w3.org/wiki/Sweol G/TaskForces/CommunityProjects/LinkingOpenData

93

http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/2004/OWL/
http://www4.wiwiss.fu-berlin.de/bizer/D2RQ/spec/
http://www.w3.org/TR/r2rml/
http://www.w3.org/TR/2011/WD-rdb-direct-mapping-20110324/
http://www.w3.org/TR/2011/WD-rdb-direct-mapping-20110324/

22.

23.

24.

25.

26.
27.

28.

29.

30.
31.
32.

33.

34.
35.
36.
37.
38.
39.
40.

41.
42.
43.
44.
45.

46.

47.
48.

49.

J.Barzdins, G.Barzdins, R.Balodis, K.Cerans, et.al.: (2006). Towards Semantic
Latvia. In Communications of 7th International Baltic Conference on Databases and
Information Systems, pp.203-218.

G.Barzdins, E.Liepins, M.Veilande, M.Zviedris: Semantic Latvia Approach in the
Medical Domain. Proc. 8th International Baltic Conference on Databases and
Information Systems. H.M.Haav, A.Kalja (eds.) Tallinn University of Technology
Press, pp. 89-102. (2008).

G.Barzdins, S.Rikacovs, M.Veilande, and M.Zviedris: Ontological Re-engineering of
Medical Databases, Proceedings of the Latvian Academy of Sciences. Section B, Vol.
63 (2009), No. 4/5 (663/664), pp. 20-30.

J.Barzdins, G.Barzdins, K.Cerans, R.Liepins, A.Sprogis: OWLGrEd: a UML Style
Graphical Editor for OWL, to appear in Proceedings of ORES 2010, ESWC 2010
Workshop on Ontology Repositories and Editors for the Semantic Web, 2010.
OWLGrEd, http://owlgred.lumii.lv/

Ontology Definition Metamodel. OMG Adopted Specification. Document Number:
ptc/2007-09-09, November 2007. http://www.omg.org/docs/ptc/07-09-09.pdf
G.Barzdins, S.Rikacovs, M.Zviedris: Graphical Query Language as SPARQL
Frontend. In Grundspenkis, J., Kirikova, M., Manolopoulos, Y., Morzy, T., Novickis,
L., Vossen, G. (Eds.), Local Proceedings of 13th East-European Conference (ADBIS
2009), pp- 93—107. Riga Technical University, Riga, 2009.

Open Government Directive of December 8, 2009:
http://www.whitehouse.gov/sites/default/files/omb/assets/memoranda 2010/m10-
06.pdf

The UK public data website, http://data.gov.uk

TED2009 conference, URL: http://conferences.ted.com/TED2009/

T.Berners-Lee: Relational Databases on the Semantic Web.
http://www.w3.org/Designlssues/RDB-RDF.html, 1998.

Wu, Z., Chen, H., Wang, H., Wang, Y., Mao, Y., Tang, J., Zhou, C.: “Dartgrid: a
Semantic Web Toolkit for Integrating Heterogeneous Relational Databases”,
Semantic Web Challenge at 4th International Semantic Web Conference (ISWC
2006), Athens, USA, 5-9 November 2006

Spyder tool, URL: http://www.revelytix.com/content/spyder

Semantic SQL: http://semanticsql.com/

OMG's MetaObject Facility, http://www.omg.org/mof/

MOF QVT, http://www.omg.org/spec/QVT/1.0/

MOLA resources. URL:http://mola.mii.lu.lv/

The <AGG> Homepage, http://user.cs.tu-berlin.de/~gragra/agg/

Data for Adam and Eve's Posterity.
http://www.johnpratt.com/items/docs/adam_gen/adam.html#

Relational. OWL application http://sourceforge.net/projects/relational-owl/

RDQuery application http://sourceforge.net/projects/rdquery/

Pellet, http://clarkparsia.com/pellet

Relational. OWL ontology http://www.dbs.cs.uni-duesseldorf.de/RDF/relational.owl#
Relational. OWL Application documentation
http://dbs.cs.uni-duesseldorf.de/RDF/docs/ROWLApp/

Renato lannella. Representing vCard Objects in RDF/XML.
http://www.w3.org/TR/vcard-rdf, 2010. W3C Member Submission 20 January 2010.
SPARQL 1.1 Query Language, http://www.w3.org/TR/sparql11-query/

SPARQL New Features and Rationale. W3C Working Draft 2 July 2009
http://www.w3.org/TR/sparql-features/

Konstantinos Makris, Nikos Bikakis, Nektarios Gioldasis, Chrisa Tsinaraki, Stavros
Christodoulakis: Towards a Mediator Based on OWL and SPARQL. In WSKS 2009,

94

http://www.whitehouse.gov/sites/default/files/omb/assets/memoranda_2010/m10-06.pdf
http://www.whitehouse.gov/sites/default/files/omb/assets/memoranda_2010/m10-06.pdf
http://conferences.ted.com/TED2009/
http://www.omg.org/spec/QVT/1.0/
http://user.cs.tu-berlin.de/~gragra/agg/
http://sourceforge.net/projects/relational-owl/
http://sourceforge.net/projects/rdquery/
http://clarkparsia.com/pellet
http://www.dbs.cs.uni-duesseldorf.de/RDF/relational.owl%23
http://dbs.cs.uni-duesseldorf.de/RDF/docs/ROWLApp/
http://www.w3.org/TR/sparql-features/

50.
51.
52.
53.

54.
55.

56.
57.
58.
59.
60.
61.
62.
63.
64.

65.

66.

67.

68.

69.
70.

71.
72.
73.

2nd World Summit on the Knowledge Society, Lecture Notes In Artificial
Intelligence; Vol. 5736, pp. 326 - 335. Springer-Verlag, Berlin, Heidelberg, 2009
Christian Bizer, Richard Cyganiak: D2RQ — Lessons Learned. Position paper for the
W3C Workshop on RDF Access to Relational Databases, 2007. url:
http://www.w3.0rg/2007/03/RdfRDB/papers/d2rq-positionpaper/

Jena- A Semantic Web Framework for Java. http://jena.sourceforge.net/

Sesame- Java based framework for storage, inferencing and querying of RDF data.
http://www.openrdf.org/

ODEMapster engine. url: http://neon-toolkit.org/wiki’ODEMapster

NeOn toolkit. url: http://neon-toolkit.org

N. Cullot, R. Ghawi and K. Yetongnon. In Proc. of 15th Italian Symposium on
Advanced Database Systems (SEBD 2007), pages 491-494, Torre Canne, Italy, 17-20
June 2007,

url:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.5970&rep=rep 1 &type=
pdf

R. Ghawi, N. Cullot: Database-to-Ontology Mapping Generation for Semantic
Interoperability. A slideshow, http://www.slideshare.net/rajighawi/db2owl

Triplify website, URL: http://Triplify.org.

W3C RDB2RDF Incubator Group, http://www.w3.0rg/2005/Incubator/rdb2rdf/
R2RML: RDB to RDF Mapping Language, http:/www.w3.org/TR/r2rml/

A Direct Mapping of Relational Data to RDF, http://www.w3.org/TR/2011/WD-rdb-
direct-mapping-20110324/

Spyder tool, URL: http://www.revelytix.com/content/spyder

R.Fagin, L. Haas, M. Hernandez, R. Miller, L. Popa, Y. Velegrakis: Clio: Schema
Mapping Creation and Data Exchange. In Conceptual Modeling: Foundations and
Applications, 2009.

G.Bumans, Mapping between Relational Databases and OWL Ontologies: an
Example, to appear in Scientific Papers of University of Latvia, Computer Science
and Information Technologies, 2010.

Y.An, A.Borgida, J.Mylopoulos: Inferring complex semantic mappings between
relational tables and ontologies from simple correspondences. In: OTM’05, On The
Move Federated Conference, 2005.

E.Kalnina, A.Kalnins, E.Celms, A.Sostaks: Graphical template language for
transformation synthesis. In: M. van den Brand, D.GaSevi¢, J.Gray (Eds.),
Proceedings of Second International Conference, SLE 2009, Denver, CO, USA,
October 5-6, 2009 Revised Selected Papers, LNCS 5969, pp. 244--253. Springer,
Heidelberg, 2010.

Barrasa,J., Gomez-Pérez, A, Upgrading relational legacy data to the semantic web,
In Proc. of 15th international conference on World Wide Web Conference (WWW
2006), pages 1069-1070, Edinburgh, United Kingdom, 23-26 May 2006.

OpenLink Virtuoso Platform. Automated Generation of RDF Views over Relational
Data Sources. URL: http://docs.openlinksw.com/virtuoso/rdfrdfviewgnr.html

Object Management Group MOF QVT Final Adopted Specification. URL:
http://www.omg.org/cgi-bin/apps/doc?ptc/05-11-01.pdf

ATLAS Model Transformation Language. URL:http://www.eclipse.org/m2m/atl/
Eclipse Modeling Framework Project (EMF). URL:
http://www.eclipse.org/modeling/emf/

Semantic SQL: http://semanticsgl.com/

Linked data: http://linkeddata.org/

ANTLRWorks: The ANTLR GUI Development Environment, URL:
http://www.antlr.org/works/index.html

95

http://jena.sourceforge.net/
http://www.openrdf.org/
http://neon-toolkit.org/wiki/ODEMapster
http://neon-toolkit.org/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.5970&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.5970&rep=rep1&type=pdf
http://www.eclipse.org/modeling/emf/
http://semanticsql.com/
http://linkeddata.org/
http://www.antlr.org/works/index.html

74.

75.

Java Compiler Compiler [tm] (JavaCC [tm]) - The Java Parser Generator, URL:
http:/javacc.java.net/

JModen. The "Numbers" or "Tally" Table: What it is and how it replaces a loop.
http://www.sqlservercentral.com/articles/T-SQL/62867/

96

9 Apendice

9.1 Relational. OWL platform

9.1.1 DDL SQL transformation patterns to Relational. OWL instances

Data Definition Language (DDL) SQL statement transformation to OWL described
in this section is not taken from original contribution of Cristian P erez de Laborda,
Stefan Conrad but are deduced from what they described in papers [6],[7]. If
definition of DB schema is given as a list of SQL statements then automatic process
of creating Relational. OWL instance is possible based on given below translation
patterns.

Pattern 1.

SQL command for table definition in the folowing pattern, where tab, col(l),
...col(n), type(l), ...type(n) and comment are variables and n- natural number

CREATE TABLE tab

(
col(l) db type(l) PRIMARY KEY,
col(2) db_type(2),

col(n) db type(n),
)i
COMMENT ON TABLE tab is comment;

is translated to the folowing OWL class definition code to represent DB table

97

<rdf:RDF xmlns="http://lumii.lv/mini university schema#"
xmlns:dbs="http://www.dbs.cs.uni-
duesseldorf.de/RDF/relational.owl#"

>
<owl:Class rdf:ID="tab">
<rdf:type rdf:resource="&dbs;Table"/>
<rdfs:label>comment</rdfs:label>

<dbs:hasColumn rdf:resource="#tab.col (1)"/>
<dbs:hasColumn rdf:resource="#tab.col (2)"/>

<dbs:hasColumn rdf:resource="#tab.col (n)"/>
<dbs:isIdentifiedBy>
<dbs:PrimaryKey>
<dbs:hasColumn rdf:resource="#tab.col(1l)"/>
</dbs:PrimaryKey>
</dbs:isIdentifiedBy>
</owl:Class>

Pattern 2.

SQL command for table definition in the following pattern, where tab, col(1),
...col(n), type(l), ...type(n) and comment are variables, n- natural number and pl,
..pm- natural numbers from set {1, 2, ...n}

CREATE TABLE tab

(
Col(1l) db type (1),
col(2) db_type(2),

col(n) db_type (n),

PRIMARY KEY (col(pl), col(p2), .., col(pm))
)
COMMENT ON TABLE tab is comment;

is translated to the folowing OWL class definition code to represent DB table

98

<owl:Class rdf:ID="tab">
<rdf:type rdf:resource="&dbs;Table"/>
<rdfs:label>comment</rdfs:label>
<dbs:hasColumn rdf:resource="#tab.col (1)"/>
<dbs:hasColumn rdf:resource="#tab.col (2)"/>

<dbs:hasColumn rdf:resource="#tab.col (n)"/>
<dbs:isIdentifiedBy>
<dbs:PrimaryKey>
<dbs:hasColumn rdf:resource="#tab.col (pl)"/>
<dbs:hasColumn rdf:resource="#tab.col (p2)"/>

<dbs:hasColumn rdf:resource="#tab.col (pm)"/>
</dbs:PrimaryKey>
</dbs:isIdentifiedBy>
</owl:Class>

Pattern 3.
SQL command for table definition in the folowing pattern, where col(1), ...col(n),
type(l), ...type(n) and comment are variables and n- natural number

CREATE TABLE tab

(
Col(1l) db_type (1),
col(2) db_type(2),

col(n) db type(n),
)
COMMENT ON COLUMN tab.col(l) is comment (1) ;
COMMENT ON COLUMN tab.col(2) is comment (2);

COMMENT ON COLUMN tab.col (n) is comment (n);

is translated to the folowing OWL class definition codes for DB table column
definition. For each i from 1 to n:

<owl:DatatypeProperty rdf:ID="tab.col (i)">
<rdfs:label> comment (i) </rdfs:label>
<rdf:type rdf:resource="&dbs;Column"/>
<rdfs:domain rdf:resource="#tab"/>
<rdfs:range rdf:resource="&xsd;
xsd type for(type(i))" />
</owl:DatatypeProperty>

xsd_type_for(type(i)) denotes xsd type corresponding to the type of DB table
column. Some correspondences are lested below.

99

SQL type XSD type
CHAR(n) &xsd;string
VARCHAR(n) &xsd;string
NUMBER(n,m) &xsd;decimal, specifying totalDigits
and fractionDigits
INTEGER &xsd;integer
INTEGER ar ierobezojumu >0 xsd;positivelnteger
DATE &xsd;date
DATETIME &xsd;datetime
BOOLEAN &xsd;Boolean
Pattern 4.

SQL statement for foreign key creation with the folowing pattern where tab(1),
tab(2), col(1), col(2) and FK name are variables

ALTER TABLE tab (1)
ADD CONSTRAINT FK name FOREIGN KEY (col(1l))
references tab(2) (col(2));

is translated to the folowing OWL DatatypeProperty constraint ,,dbs:references”
according to algorithm: first the OWL code is found that describes tab.col(i) column
definition according to Pattern 3 and then ,,<dbs:references ...” is added before
closing </owl.DatatypeProperty>:

<owl:DatatypeProperty rdf:ID="tab(l).col(1l)">

<dbs:references rdf:resource="#tab(2).col(2)"/>
</owl:DatatypeProperty>

9.1.2 RDB schema transformation to OWL

This section describes transformation from relational schema to OWL ontology
ROWL that is instance of Relational. OWL ontology. Relational schema from mini-
university example [2.3.1] will be used. Table and column description will be
according to pattern described in section [9.1.1].

First thing to describe is relational database schema and tables belonging to it.
Namespace dbs to Relationa.OWL ontology is defined also.

<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [
<!ENTITY xsd "http://www.w3.0rg/2001/XMLSchema#">
<!ENTITY dbs "http://www.dbs.cs.uni-
duesseldorf.de/RDF/relational.owl#">
1>
<rdf:RDF xmlns="http://lumii.lv/mini university schema#"
xmlns:dbs=http://www.dbs.cs.uni-duesseldorf.de/RDF/relational.owl#
xml:base="http://lumii.lv/mini university schema#"

>
<owl:Ontology rdf:about="mini university rowl"></owl:Ontology>
<owl:Class rdf:ID="MINI UNIVERSITY">

100

http://www.dbs.cs.uni-duesseldorf.de/RDF/relational.owl

<rdf:type rdf:resource="&dbs;Database"/>
<dbs:hasTable rdf:resource="#COURSE"/>
<dbs:hasTable rdf:resource="#STUDENT"/>
<dbs:hasTable rdf:resource="#REGISTRATION"/>
<dbs:hasTable rdf:resource="#TEACHER" />
<dbs:hasTable rdf:resource="#TEACHER LEVEL"/>
<dbs:hasTable rdf:resource="#PROGRAM" />
</owl:Class>

Here 6 classes for table definitions are referenced. We show one of them. Class for
table course is described listing all tables by means of OWL datatype property
dbs:hasColumn. Here class COURSE is defined as being instance of class Table from
Relational. OWL ontology. Class being instance of another class means that OWL Full

language is used.
<owl:Class rdf:ID="COURSE">
<rdf:type rdf:resource="&dbs;Table"/>
<dbs:hasColumn rdf:resource="#COURSE.COURSE ID"/>
<dbs:hasColumn rdf:resource="#COURSE.TEACHER ID"/>
<dbs:hasColumn rdf:resource="#COURSE.PROGRAM ID"/>
<dbs:hasColumn rdf:resource="#COURSE.NAME"/>
<dbs:hasColumn rdf:resource="#COURSE.REQUIRED"/>
<dbs:isIdentifiedBy>
<dbs:PrimaryKey>
<dbs:hasColumn rdf:resource="#COURSE.COURSE ID"/>
</dbs:PrimaryKey>
</dbs:isIdentifiedBy>
</owl:Class>

DB table columns ar described by OWL datatype properties that in the same time
are instances of Column class from Relational. OWL ontology. This again requires
OWL Full usage. Columns references to other columns (FK keys) are recorded by

dbs:references property.

<owl:DatatypeProperty rdf:ID="COURSE.COURSE ID">
<rdf:type rdf:resource="&dbs;Column"/>
<rdfs:domain rdf:resource="#COURSE" />
<rdfs:range rdf:resource="&xsd;int"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="COURSE.TEACHER ID">
<rdf:type rdf:resource="&dbs;Column"/>
<rdfs:domain rdf:resource="#COURSE"/>
<rdfs:range rdf:resource="&xsd;int"/>
<dbs:references rdf:resource="#TEACHER.TEACHER ID"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="COURSE.PROGRAM ID">
<rdf:type rdf:resource="&dbs;Column"/>
<rdfs:domain rdf:resource="#COURSE" />
<rdfs:range rdf:resource="&xsd;int"/>
<dbs:references rdf:resource="#PROGRAM.PROGRAM ID"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="COURSE.NAME">
<rdf:type rdf:resource="&dbs;Column"/>
<rdfs:domain rdf:resource="#PERSON"/>
<rdfs:range rdf:resource="&xsd;string"/>
<dbs:length>40</dbs:length>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="COURSE.REQUIRED">
<rdf:type rdf:resource="&dbs;Column"/>

101

<rdfs:domain rdf:resource="#PERSON"/>

<rdfs:range rdf:resource="&xsd;int"/>

<dbs:length>1</dbs:length>
</owl:DatatypeProperty>

Full source code for ROWL for mini-university example is given in apendice
[9.1.1]

9.1.3 RDB data transformation to RDF

To get RDF triple set acording relational data we need to create instances of clases
and properties in ROWL ontology (described in previous section [9.1.1]). Classes for
tables are named (rdf:ID) as pattern TABLE NAME, datatype property ar named as
pattern TABLE NAME.COLUMN NAME. The triple set for one row for table

TABLE NAME that has n columns is obtained in folowing pattern:
<x> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> TABLE NAME
<x> <URI_OF ROWL#TABLE NAME.COLUMN NAME 1> COLUMN VALUE 1
<x> <URI_OF ROWL#TABLE NAME.COLUMN NAME 2> COLUMN VALUE 2

<x> <URI_OF ROWL#TABLE NAME.COLUMN NAME n> COLUMN VALUE n

Here we are not assigning any URI to subjects as one of columns should be
primary key so any blank note for x sufices. For other rows and tables different blank
notes should be used. Taking these requirenments into account the above given triples

can be rewriten in RDF/XML notion:
<rdf:RDF
xmlns="URI_OF ROWL"
>
<TABLE_NAME>
<TABLE_NAME.COLUMN NAME 1>
COLUMN_VALUE_1
</TABLE_NAME.COLUMN NAME 1>
</TABLE_NAME>
<TABLE_NAME>
<TABLE_NAME.COLUMN NAME 2>
COLUMN_VALUE_2
</TABLE_NAME.COLUMN NAME 2>
</TABLE_NAME>

<TABLE NAME>
<TABLE NAME.COLUMN NAME n>
COLUMN VALUE n
</TABLE NAME.COLUMN NAME n>
</TABLE_NAME>

Some of RDF triples for mini-university example data (described in section

[2.3.1]) are, assuming URI_OF ROWL=http:/lumii.lv/mini_university schema#:

<rdf:RDF
xmlns="http://lumii.lv/mini university schema#"
xml:base="http://lumii.lv/mini university data#"

>

<PROGRAM>
<PROGRAM.PROGRAM ID>1</PROGRAM.PROGRAM ID>
<PROGRAM.NAME>Computer Science</PROGRAM.NAME>

</PROGRAM>

102

http://lumii.lv/mini_university_schema

<PROGRAM>
<PROGRAM.PROGRAM ID>2</PROGRAM.PROGRAM ID>
<PROGRAM.NAME>Computer Engeneering</PROGRAM.NAME>
</PROGRAM>

<TEACHER_LEVEL>
<TEACHER_LEVEL.LEVEL_CODE>Assistant</TEACHER_LEVEL.LEVEL_CODE>

</TEACHER LEVEL>

<TEACHER LEVEL>
<TEACHER_LEVEL.LEVEL_CODE>Associate

Professor</TEACHER LEVEL.LEVEL_CODE>

</TEACHER LEVEL>

<TEACHER LEVEL>
<TEACHER_LEVEL.LEVEL CODE>Professor</TEACHER_LEVEL.LEVEL CODE>

</TEACHER LEVEL>

<TEACHER>
<TEACHER.TEACHER ID>1</TEACHER.TEACHER ID>
<TEACHER.LEVEL CODE>Professor</TEACHER.LEVEL_CODE>
<TEACHER.IDCODE>999999999</TEACHER.IDCODE>
<TEACHER.NAME>Alice</TEACHER.NAME>

</TEACHER>

<TEACHER>
<TEACHER.TEACHER_ID>2</TEACHER.TEACHER ID>
<TEACHER.LEVEL CODE>Professor</TEACHER.LEVEL_CODE>
<TEACHER.IDCODE>777777777</TEACHER. IDCODE>
<TEACHER.NAME>Bob</TEACHER.NAME>

</TEACHER>

Full source code for RDF triples for mini-university example is given in apendice
[9.1.5]

9.1.4 Relational. OWL ontology for mini-university example database schema

mini_university schema.owl code

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [
<!ENTITY xsd "http://www.w3.0rg/2001/XMLSchema#">
<!ENTITY dbs "http://www.dbs.cs.uni-

duesseldorf.de/RDF/relational.owl#">

1>

<rdf:RDF xmlns="http://lumii.lv/mini university schema#"
xmlns:dbs="http://www.dbs.cs.uni-

duesseldorf.de/RDF/relational.owl#"
xmlns:owl="http://www.w3.0rg/2002/07/owl#"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xml:base="http://lumii.lv/mini university_ schema#"

>

<owl:0Ontology rdf:about=""></owl:Ontology>
<l--

DB Schema for mini university

-=>

<owl:Class rdf:ID:"MINI_UNIVERSITY">
<rdf:type rdf:resource="&dbs;Database"/>
<dbs:hasTable rdf:resource="#COURSE"/>
<dbs:hasTable rdf:resource="#STUDENT"/>
<dbs:hasTable rdf:resource="#REGISTRATION"/>

103

<dbs:hasTable rdf:resource="#TEACHER" />
<dbs:hasTable rdf:resource="#TEACHER LEVEL"/>
<dbs:hasTable rdf:resource="#PROGRAM" />
</owl:Class>
<!--
Table COURSE
-—>
<owl:Class rdf:ID="COURSE">
<rdf:type rdf:resource="&dbs;Table"/>
<dbs:hasColumn rdf:resource="#COURSE.COURSE ID"/>
<dbs:hasColumn rdf:resource="#COURSE.TEACHER ID"/>
<dbs:hasColumn rdf:resource="#COURSE.PROGRAM ID"/>
<dbs:hasColumn rdf:resource="#COURSE.NAME"/>
<dbs:hasColumn rdf:resource="#COURSE.REQUIRED"/>
<dbs:isIdentifiedBy>
<dbs:PrimaryKey>
<dbs:hasColumn rdf:resource="#COURSE.COURSE ID"/>
</dbs:PrimaryKey>
</dbs:isIdentifiedBy>
</owl:Class>
<l=-
Columns of Table COURSE
-—>
<owl:DatatypeProperty rdf:ID="COURSE.COURSE ID">
<rdf:type rdf:resource="&dbs;Column"/>
<rdfs:domain rdf:resource="#COURSE"/>
<rdfs:range rdf:resource="&xsd;int"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="COURSE.TEACHER ID">
<rdf:type rdf:resource="&dbs;Column"/>
<rdfs:domain rdf:resource="#COURSE" />
<rdfs:range rdf:resource="&xsd;int"/>
<dbs:references rdf:resource="#TEACHER.TEACHER ID"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="COURSE.PROGRAM ID">
<rdf:type rdf:resource="&dbs;Column"/>
<rdfs:domain rdf:resource="#COURSE" />
<rdfs:range rdf:resource="&xsd;int"/>
<dbs:references rdf:resource="#PROGRAM.PROGRAM ID"/>
</owl:DatatypeProperty> B
<owl:DatatypeProperty rdf:ID="COURSE.NAME">
<rdf:type rdf:resource="&dbs;Column"/>
<rdfs:domain rdf:resource="#PERSON"/>
<rdfs:range rdf:resource="&xsd;string"/>
<dbs:length>40</dbs:length>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="COURSE.REQUIRED">
<rdf:type rdf:resource="&dbs;Column"/>
<rdfs:domain rdf:resource="#PERSON"/>
<rdfs:range rdf:resource="&xsd;int"/>
<dbs:length>1</dbs:length>
</owl:DatatypeProperty>

<l--
Table STUDENT
—-—>
<owl:Class rdf:ID="STUDENT">
<rdf:type rdf:resource="&dbs;Table"/>
<dbs:hasColumn rdf:resource="#STUDENT.STUDENT ID"/>
<dbs:hasColumn rdf:resource="#STUDENT.PROGRAM ID"/>

104

<dbs:hasColumn rdf:resource="#STUDENT.IDCODE" />
<dbs:hasColumn rdf:resource="#STUDENT.NAME" />
<dbs:isIdentifiedBy>
<dbs:PrimaryKey>
<dbs:hasColumn rdf:resource="#STUDENT.STUDENT ID"/>
</dbs:PrimaryKey>

</dbs:isIdentifiedBy>

</owl:Class>

<l==
Columns of Table STUDENT
-——>

<owl:DatatypeProperty rdf:ID="STUDENT.STUDENT ID">
<rdf:type rdf:resource="&dbs;Column"/>
<rdfs:domain rdf:resource="#STUDENT"/>
<rdfs:range rdf:resource="&xsd;int"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="STUDENT.PROGRAM ID">
<rdf:type rdf:resource="&dbs;Column"/>
<rdfs:domain rdf:resource="#STUDENT"/>
<rdfs:range rdf:resource="&xsd;int"/>
<dbs:references rdf:resource="#PROGRAM.PROGRAM ID"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="STUDENT.IDCODE">
<rdf:type rdf:resource="&dbs;Column"/>
<rdfs:domain rdf:resource="#STUDENT"/>
<rdfs:range rdf:resource="&xsd;string"/>
<dbs:length>30</dbs:length>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="STUDENT.NAME">
<rdf:type rdf:resource="&dbs;Column"/>
<rdfs:domain rdf:resource="#STUDENT"/>
<rdfs:range rdf:resource="&xsd;string"/>
<dbs:length>80</dbs:length>

</owl:DatatypeProperty>

<I--
Table REGISTRATION
-—>
<owl:Class rdf:ID="REGISTRATION">
<rdf:type rdf:resource="&dbs;Table"/>
<dbs:hasColumn rdf:resource="#REGISTRATION.REGISTRATION ID"/>
<dbs:hasColumn rdf:resource="#REGISTRATION.COURSE_ID"/>7
<dbs:hasColumn rdf:resource="#REGISTRATION.STUDENT ID"/>
<dbs:isIdentifiedBy> B
<dbs:PrimaryKey>
<dbs:hasColumn
rdf:resource="#REGISTRATION.REGISTRATION ID"/>
</dbs:PrimaryKey> B
</dbs:isIdentifiedBy>
</owl:Class>
<l--
Columns of Table REGISTRATION
-—>
<owl:DatatypeProperty rdf:ID="REGISTRATION.REGISTRATION_ID">
<rdf:type rdf:resource="&dbs;Column"/>
<rdfs:domain rdf:resource="#REGISTRATION"/>
<rdfs:range rdf:resource="&xsd;int"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="REGISTRATION.COURSE ID">
<rdf:type rdf:resource="&dbs;Column"/>

105

<rdfs:domain rdf:resource="#REGISTRATION"/>
<rdfs:range rdf:resource="&xsd;int"/>
<dbs:references rdf:resource="#COURSE.COURSE ID"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="REGISTRATION.STUDENT ID">
<rdf:type rdf:resource="&dbs;Column"/>
<rdfs:domain rdf:resource="#REGISTRATION"/>
<rdfs:range rdf:resource="&xsd;int"/>
<dbs:references rdf:resource="#STUDENT.STUDENT ID"/>
</owl:DatatypeProperty>

<l--

Table TEACHER

-—>

<owl:Class rdf:ID="TEACHER">
<rdf:type rdf:resource="&dbs;Table"/>
<dbs:hasColumn rdf:resource="#TEACHER.TEACHER ID"/>
<dbs:hasColumn rdf:resource="#TEACHER.LEVEL CODE"/>
<dbs:hasColumn rdf:resource="#TEACHER.IDCODE"/>
<dbs:hasColumn rdf:resource="#TEACHER.NAME"/>
<dbs:isIdentifiedBy>
<dbs:PrimaryKey>
<dbs:hasColumn rdf:resource="#TEACHER.TEACHER ID"/>
</dbs:PrimaryKey>
</dbs:isIdentifiedBy>
</owl:Class>

<l--

Columns of Table TEACHER

-—>

<owl:DatatypeProperty rdf:ID="TEACHER.TEACHER ID">
<rdf:type rdf:resource="&dbs;Column"/>
<rdfs:domain rdf:resource="#TEACHER"/>
<rdfs:range rdf:resource="&xsd;int"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="TEACHER.LEVEL CODE">
<rdf:type rdf:resource="&dbs;Column"/>
<rdfs:domain rdf:resource="#TEACHER"/>
<rdfs:range rdf:resource="&xsd;string"/>
<dbs:length>30</dbs:length>
<dbs:references rdf:resource="#TEACHER LEVEL.LEVEL CODE"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="TEACHER.IDCODE">
<rdf:type rdf:resource="&dbs;Column"/>
<rdfs:domain rdf:resource="#TEACHER"/>
<rdfs:range rdf:resource="&xsd;string"/>
<dbs:length>30</dbs:length>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="TEACHER.NAME">
<rdf:type rdf:resource="&dbs;Column"/>
<rdfs:domain rdf:resource="#TEACHER"/>
<rdfs:range rdf:resource="&xsd;string"/>
<dbs:length>40</dbs:length>

</owl:DatatypeProperty>

<l--

Table TEACHER LEVEL

-—>

<owl:Class rdf:ID="TEACHER LEVEL">
<rdf:type rdf:resource="&dbs;Table"/>
<dbs:hasColumn rdf:resource="#TEACHER LEVEL.LEVEL CODE"/>

106

<dbs:isIdentifiedBy>
<dbs:PrimaryKey>
<dbs:hasColumn rdf:resource="#TEACHERfLEVEL.LEVEL7CODE"/>
</dbs:PrimaryKey>
</dbs:isIdentifiedBy>
</owl:Class>
<l--
Columns of Table TEACHER LEVEL
-—>
<owl:DatatypeProperty rdf:ID="TEACHER LEVEL.LEVEL_ CODE">
<rdf:type rdf:resource="&dbs;Column"/>
<rdfs:domain rdf:resource="#TEACHER LEVEL"/>
<rdfs:range rdf:resource="&xsd;string"/>
<dbs:length>30</dbs:length>
</owl:DatatypeProperty>

<l--
Table PROGRAM
-—>
<owl:Class rdf:ID="PROGRAM">
<rdf:type rdf:resource="&dbs;Table"/>
<dbs:hasColumn rdf:resource="#PROGRAM.PROGRAM ID"/>
<dbs:hasColumn rdf:resource="#TEACHER.NAME"/>
<dbs:isIdentifiedBy>
<dbs:PrimaryKey>
<dbs:hasColumn rdf:resource="#PROGRAM.PROGRAM ID"/>
</dbs:PrimaryKey>
</dbs:isIdentifiedBy>
</owl:Class>
<l--
Columns of Table PROGRAM
-—>
<owl:DatatypeProperty rdf:ID="PROGRAM.PROGRAM ID">
<rdf:type rdf:resource="&dbs;Column"/>
<rdfs:domain rdf:resource="#PROGRAM" />
<rdfs:range rdf:resource="&xsd;int"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="PROGRAM.NAME">
<rdf:type rdf:resource="&dbs;Column"/>
<rdfs:domain rdf:resource="#PROGRAM" />
<rdfs:range rdf:resource="&xsd;string"/>
<dbs:length>80</dbs:length>
</owl:DatatypeProperty>

</rdf :RDF>

9.1.5 Relational. OWL ontology instance data for mini-university example

mini_university data.rdf code
<rdf:RDF

xmlns="http://lumii.lv/mini university schema#"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.0rg/2002/07/owl#"
xml:base="http://lumii.lv/mini university data#"

>

<PROGRAM>

107

<PROGRAM.PROGRAM ID>1</PROGRAM.PROGRAM ID>
<PROGRAM.NAME>Computer Science</PROGRAM.NAME>
</PROGRAM>
<PROGRAM>
<PROGRAM.PROGRAM ID>2</PROGRAM.PROGRAM ID>
<PROGRAM.NAME>Computer Engeneering</PROGRAM.NAME>
</PROGRAM>

<TEACHER LEVEL>

<TEACHER LEVEL.LEVEL CODE>Assistant</TEACHER LEVEL.LEVEL CODE>
</TEACHER LEVEL>
<TEACHER LEVEL>

<TEACHER LEVEL.LEVEL CODE>

AssociateProfessor

</TEACHER_LEVEL.LEVEL CODE>
</TEACHER7LEVEL>
<TEACHER LEVEL>

<TEACHER_LEVEL.LEVEL_CODE>Professor</TEACHER_LEVEL.LEVEL_CODE>
</TEACHER LEVEL>

<STUDENT>
<STUDENT.STUDENT ID>1</STUDENT.STUDENT ID>
<STUDENT.PROGRAM ID>1</STUDENT.PROGRAM ID>
<STUDENT.IDCODE>123456789</STUDENT.IDCODE>
<STUDENT .NAME>Dave</STUDENT .NAME>

</STUDENT>

<STUDENT>
<STUDENT.STUDENT ID>2</STUDENT.STUDENT ID>
<STUDENT.PROGRAM ID>2</STUDENT.PROGRAM ID>
<STUDENT.IDCODE>987654321</STUDENT.IDCODE>
<STUDENT .NAME>Eve</STUDENT .NAME>

</STUDENT>

<STUDENT>
<STUDENT.STUDENT ID>3</STUDENT.STUDENT ID>
<STUDENT.PROGRAM ID>1</STUDENT.PROGRAM ID>
<STUDENT.IDCODE>555555555</STUDENT . IDCODE>
<STUDENT.NAME>Charlie</STUDENT.NAME>

</STUDENT>

<STUDENT>
<STUDENT.STUDENT ID>4</STUDENT.STUDENT ID>
<STUDENT.PROGRAM ID>2</STUDENT.PROGRAM ID>
<STUDENT.IDCODE>345453432</STUDENT . IDCODE>
<STUDENT.NAME>Ivan</STUDENT . NAME>

</STUDENT>

<TEACHER>
<TEACHER.TEACHER ID>1</TEACHER.TEACHER ID>
<TEACHER.LEVEL CODE>Professor</TEACHER.LEVEL CODE>
<TEACHER.IDCODE>999999999</TEACHER.IDCODE>
<TEACHER.NAME>Alice</TEACHER.NAME>

</TEACHER>

<TEACHER>
<TEACHER.TEACHER ID>2</TEACHER.TEACHER ID>
<TEACHER.LEVEL CODE>Professor</TEACHER.LEVEL CODE>
<TEACHER.IDCODE>777777777</TEACHER.IDCODE>
<TEACHER.NAME>Bob</TEACHER.NAME>

</TEACHER>

<TEACHER>
<TEACHER.TEACHER ID>2</TEACHER.TEACHER ID>
<TEACHER.LEVEL CODE>Assistant</TEACHER.LEVEL CODE>

108

<TEACHER.IDCODE>555555555</TEACHER. IDCODE>
<TEACHER.NAME>Charlie</TEACHER.NAME>

</TEACHER>

<COURSE>

<COURSE.COURSE_ID>1</COURSE.COURSE ID>
<COURSE.PROGRAM ID>2</COURSE.PROGRAM ID>
<COURSE.TEACHER ID>3</COURSE.TEACHER ID>
<COURSE .NAME>Programming Basics</COURSE.NAME>
<COURSE .REQUIRED>0</COURSE .REQUIRED>

</COURSE>
<COURSE>

<COURSE.COURSE_ID>2</COURSE.COURSE ID>
<COURSE.PROGRAM ID>1</COURSE.PROGRAM ID>
<COURSE.TEACHER ID>1</COURSE.TEACHER ID>
<COURSE.NAME>Semantic Web</COURSE.NAME>
<COURSE.REQUIRED>1</COURSE.REQUIRED>

</COURSE>
<COURSE>

<COURSE.COURSE_ID>3</COURSE.COURSE ID>
<COURSE.PROGRAM ID>2</COURSE.PROGRAM ID>
<COURSE.TEACHER ID>2</COURSE.TEACHER ID>
<COURSE.NAME>Computer Networks</COURSE.NAME>
<COURSE.REQUIRED>1</COURSE.REQUIRED>

</COURSE>
<COURSE>

<COURSE.COURSE_ID>4</COURSE.COURSE_ID>
<COURSE.PROGRAM_ID>1</COURSE.PROGRAM_ID>
<COURSE.TEACHER ID>2</COURSE.TEACHER ID>
<COURSE.NAME>Quantum Computations</COURSE.NAME>
<COURSE.REQUIRED>0</COURSE.REQUIRED>

</COURSE>

<REGISTRATION>

<REGISTRATION.
<REGISTRATION.
<REGISTRATION.

</REGISTRATION>
<REGISTRATION>

<REGISTRATION.
<REGISTRATION.
<REGISTRATION.

</REGISTRATION>
<REGISTRATION>
<REGISTRATION

<REGISTRATION.

<REGISTRATION
</REGISTRATION>
<REGISTRATION>

<REGISTRATION.
<REGISTRATION.
<REGISTRATION.

</REGISTRATION>
<REGISTRATION>

<REGISTRATION.
<REGISTRATION.

<REGISTRATION
</REGISTRATION>

</rdf :RDF>

REGISTRATION ID>1</REGISTRATION.REGISTRATION ID>
STUDENT ID>1</REGISTRATION.STUDENT ID>
COURSE_ID>2</REGISTRATION.COURSE ID>

REGISTRATION ID>2</REGISTRATION.REGISTRATION ID>
STUDENT ID>1</REGISTRATION.STUDENT ID>
COURSE_ID>4</REGISTRATION.COURSE ID>

.REGISTRATION ID>3</REGISTRATION.REGISTRATION ID>
STUDENT ID>2</REGISTRATION.STUDENT ID>
.COURSE_ID>1</REGISTRATION.COURSE ID>

REGISTRATION ID>4</REGISTRATION.REGISTRATION ID>
STUDENT ID>2</REGISTRATION.STUDENT ID>
COURSE_ID>3</REGISTRATION.COURSE ID>

REGISTRATION ID>5</REGISTRATION.REGISTRATION ID>
STUDENT ID>3</REGISTRATION.STUDENT ID>
.COURSE ID>2</REGISTRATION.COURSE ID>

109

9.1.6 SPARQL scripts to map ROWL (RelationaOWL instance) to target
ontology and listing for mini-university example

SPARQL statement list can implement mapping between not only ROWL and
target ontology but between any two separate ontologies. Mappings are
implementated as a list of SPARQL statements map 1, map 2, ..., map_n each in
form, defining triples for target ontology in CONSTRUCT clause and selecting triples
from source ontology(ies) in WHERE clause:

CONSTRUCT

{

target triple patterns

}

WHERE

{

sourse tripple patterns

}

To get all target ontology triples one need to execute all the mapping construct
queries map_1, map 2, ..., map_n, merging obtained triple sets.

The mappings by SPARQL will be illustrated for mini-iniversity example [2.3.1].
In examples schema namespace is for ROWL ontology and target namespace- for
target ontology. Next mapping SPARQL maps TEACHER table rows having
“Professor” value in LEVEL CODE field to Professor class instances in target
ontology:

PREFIX schema:<http://lumii.lv/mini university schema#>
PREFIX target:<http://lumii.lv/mini university#>
CONSTRUCT {

?teacher a target:Professor
}
WHERE {

?teacher a schema:TEACHER ;

schema:TEACHER.LEVEL CODE "Professor"

}

The next mapping is for OWL object propery fakes having Student class as domain
and Course class as range. In Database tables STUDENT and COURSE are in n:n
relation through third table REGISTRATION. The joins are done in a similar way as
it would be done in SQL (prefix definitions omited in following mapping scripts):

CONSTRUCT {
?student target:takes ?course
}
WHERE {
?student a schema:STUDENT ;
schema:STUDENT.STUDENT_ID ?studentId .
?registration schema:REGISTRATION.STUDENT ID ?studentId ;
schema:REGISTRATION.COURSE ID ?courseld
?course schema:COURSE.COURSE ID ?courseld
}
Mapping for Student class instances together with data property personName:
CONSTRUCT {
?student a target:Student ;
target:personName ?studentName

}
WHERE {
?student a schema:STUDENT ;

110

schema: STUDENT.NAME ?studentName
}
Executing it in triple store where ROWL instances are loaded (tried in Sesame
repository) the folowing triples were generated (subject blank nodes simplified)

Table 32. Generated instances for Student class

Subject Predicate Object

_mnl <type> <target:Student>
_mnl <target:personName> “Dave”

n2 <type> <target:Student>
_m2 <target:personName> “Eve”

_n3 <type> <target:Student>
3 <target:personName> “Charlie”

4 <type> <target:Student>
4 <target:personName> “Ivan”

The most nontrivial mapping is for Class PersonID and its property [Dvalue.
Instance data are taken from two tables STUDENT and TEACHER filling property
ldvalue from STUDENT.IDCODE and TEACHER.IDCODE fields and finally
creating links from Student and Teacher classe instances to PersonID instances
(property personiD):

CONSTRUCT {

_tX a target:PersonlD ;
target:IDvalue ?idvalue .
?person target:personlID :x

}

WHERE

{

{
?person a schema:TEACHER ;
schema:TEACHER.IDCODE ?idvalue
}
UNION
{
?person a schema:STUDENT ;
schema: STUDENT.IDCODE ?idvalue
}
}

Here ?person in CONSTRUCT clause creates instance of Student or Teacher class
depending from which side of UNION it is filled: if from “?person a
schema:TEACHER?” then Teacher class otherwise Student class. This is because of
other mapping scripts: from the first mapping script shown above: “?person a
schema:TEACHER” - Professor instance - Teacher instance (as superclass).

Mapping script class_AcademicProgram.sparqgl
PREFIX schema:<http://lumii.lv/mini university schema#>
PREFIX target:<http://lumii.lv/mini university#>
CONSTRUCT {
?program a target:AcademicProgram ;
target:programName ?programName

}
WHERE {

111

?program a schema:PROGRAM ;
schema : PROGRAM.NAME ?programName

}
Mapping script class_Assistant.sparqgl
PREFIX schema:<http://lumii.lv/mini university schema#>
PREFIX target:<http://lumii.lv/mini university#>
CONSTRUCT {

?teacher a target:Assistant

}
WHERE {

?teacher a schema:TEACHER ;

schema:TEACHER.LEVEL CODE "Assistant"

}
Mapping script class_AssocProfessor.sparql
PREFIX schema:<http://lumii.lv/mini university schema#>
PREFIX target:<http://lumii.lv/mini university#>
CONSTRUCT {

?teacher a target:AssocProfessor

}
WHERE {

?teacher a schema:TEACHER ;

schema:TEACHER.LEVEL CODE "AssocProfessor"

}
Mapping script class Professor.spargl
PREFIX schema:<http://lumii.lv/mini university schema#>
PREFIX target:<http://lumii.lv/mini university#>
CONSTRUCT {

?teacher a target:Professor

}
WHERE {
?teacher a schema:TEACHER ;
schema:TEACHER.LEVEL CODE "Professor"
}
Mapping script class_Teacher.sparqgl
PREFIX schema:<http://lumii.lv/mini university schema#>
PREFIX target:<http://lumii.lv/mini university#>
CONSTRUCT {
?teacher a target:Teacher ;
target:personName ?teacherName ;
target:teaches ?course

}
WHERE {

?teacher a schema:TEACHER ;
schema:TEACHER.NAME ?teacherName ;
schema:TEACHER.TEACHER ID ?teacherId

?course schema:COURSE.TEACHER ID “?teacherId

}

Mapping script class MandatoryCourse.sparql

PREFIX schema:<http://lumii.lv/mini university schema#>
PREFIX target:<http://lumii.lv/mini university#>
CONSTRUCT {

?course a target:MandatoryCourse ;

target:courseName ?courseName

}
WHERE {
?course a schema:COURSE ;
schema:COURSE.NAME ?courseName ;
schema:COURSE.REQUIRED "1"

112

Mapping script class_OptionalCourse.spargl
PREFIX schema:<http://lumii.lv/mini university schema#>
PREFIX target:<http://lumii.lv/mini university#>
CONSTRUCT {
?course a target:0OptionalCourse ;
target:courseName ?courseName

}
WHERE {
?course a schema:COURSE ;
schema:COURSE.NAME ?courseName ;

schema :COURSE.REQUIRED "O"

}
Mapping script class_Student.spargl
PREFIX schema:<http://lumii.lv/mini university schema#>
PREFIX target:<http://lumii.lv/mini university#>
CONSTRUCT {
?student a target:Student ;
target:personName ?studentName

}
WHERE {
?student a schema:STUDENT ;
schema: STUDENT.NAME ?studentName

}

Mapping script property_enrolled.spargl

PREFIX schema:<http://lumii.lv/mini university schema#>
PREFIX target:<http://lumii.lv/mini university#>

CONSTRUCT {
?student target:enrolled ?program

}
WHERE {
?student a schema:STUDENT ;
schema: STUDENT.PROGRAM ID ?programId

?program a schema:PROGRAM ;
schema: PROGRAM. PROGRAM ID ?programld

}

Mapping script property_includes.spargl

PREFIX schema:<http://lumii.lv/mini university schema#>
PREFIX target:<http://lumii.lv/mini university#>

CONSTRUCT {
?program target:includes ?course

}
WHERE {
?program a schema:PROGRAM
?course a schema:COURSE ;
schema:COURSE.PROGRAM ID ?programld
?program schema:PROGRAM.PROGRAM ID ?programId

}

Mapping script property_takes.sparqgl
PREFIX schema:<http://lumii.lv/mini university schema#>

PREFIX target:<http://lumii.lv/mini university#>

CONSTRUCT {
?student target:takes ?course

}
WHERE {
?student a schema:STUDENT ;
schema: STUDENT.STUDENT ID ?studentId
?registration schema:REGISTRATION.STUDENT ID ?studentId ;
schema :REGISTRATION.COURSE ID ?courseld

113

?cour
}
Mapping
PREFIX
PREFIX
CONSTRU

_x a

?pers
}
WHERE
{

?pe

}
UNION

{

?pe

se schema:COURSE.COURSE ID ?courseld

script class_PersonID.spargl
schema:<http://lumii.lv/mini university schema#>
target:<http://lumii.lv/mini university#>
CT {

target:PersonlID ;

target:IDvalue ?idvalue
on target:personID :x

rson a schema:TEACHER ;
schema : TEACHER.IDCODE ?idvalue

rson a schema:STUDENT ;
schema : STUDENT.IDCODE ?idvalue

9.2 D2RQ platform

9.2.1 D2RQ mapping script for mini-university example [2.3.1]

@prefix
0.7/sch
@prefix
@prefix
@prefix
@prefix
@prefix
@prefix
@prefix

map:dat

map: <file:/C:/semantic_web/d2r-server-
ool mapping.n3#>

do: <>

rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

xsd: <http://www.w3.0rg/2001/XMLSchema#>

d2rqg: <http://www.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/0.1#>
jdbc: <http://d2rqg.org/terms/jdbc/>

ex: <http://lumii.lv/ex#>

abase a d2rqg:Database;

d2rqg:jdbcDriver "oracle.jdbc.driver.OracleDriver";
d2rg:jdbcDSN "jdbc:oracle:thin:@guntars-PC:1521:gun";
d2rqg:username "schooll";

d2rqg:password "s"

Cours
map:Cou

e class
rse a d2rqg:ClassMap;

d2rg:dataStorage map:database;
d2rg:uriPattern "course@@XCOURSE.COURSE ID@@";
d2rqg:class ex:Course;

prope
map:0pt

rty bridge for OptionalCourse
ionalCourse a d2rqg:PropertyBridge;
d2rqg:belongsToClassMap map:Course;
d2rqg:property rdf:type;
d2rg:condition "required=0";

114

d2rqg:constantValue ex:0ptionalCourse;

property bridge for MandatoryCourse class
map:MandatoryCourse a d2rqg:PropertyBridge;
d2rqg:belongsToClassMap map:Course;
d2rqg:property rdf:type;
d2rg:condition "required=1";
d2rg:constantValue ex:MandatoryCourse;

courseName property

map:courseName a d2rqg:PropertyBridge;
d2rqg:belongsToClassMap map:Course;
d2rqg:property ex:courseName;
d2rg:column "XCOURSE.NAME";
d2rg:datatype xsd:string;

Teacher class

map:Teacher a d2rqg:ClassMap;

d2rqg:dataStorage map:database;

d2rqg:uriPattern "teacher@@XTEACHER.TEACHER IDQR";
d2rqg:class ex:Teacher;

property bridge for Assistant class (subclass of Teacher)
map:Assistant a d2rqg:PropertyBridge;
d2rqg:belongsToClassMap map:Teacher;
d2rqg:property rdf:type;
d2rg:condition "level code = 'Assistant'";
d2rqg:constantValue ex:Assistant;

property bridge for Professor class (subclass of Teacher)
map:Professor a d2rqg:PropertyBridge;
d2rqg:belongsToClassMap map:Teacher;
d2rqg:property rdf:type;
d2rg:condition "level code = 'Professor'";
d2rqg:constantValue ex:Professor;

property bridge for AssocProfessor class (subclass of Teacher)
map:AssocProfessor a d2rqg:PropertyBridge;
d2rqg:belongsToClassMap map:Teacher;
d2rqg:property rdf:type;
d2rqg:condition "level code = 'Associate Professor'";
d2rg:constantValue ex:AssocProfessor;

personName property bridges for Teacher class
map:personName Teacher a d2rq:PropertyBridge;
d2rqg:belongsToClassMap map:Teacher;
d2rqg:property ex:personName;

d2rqg:column "XTEACHER.NAME";

d2rqg:datatype xsd:string;

class map for Student class (subclass of Person)
map:Student a d2rqg:ClassMap;

d2rqg:dataStorage map:database;

d2rqg:uriPattern "student@E@XSTUDENT.STUDENT_ ID@Q";
d2rqg:class ex:Student;

property map for personName for Student domain
map:personName Student a d2rqg:PropertyBridge;
d2rqg:belongsToClassMap map:Student;
d2rqg:property ex:personName;

115

d2rg:column "XSTUDENT.NAME";
d2rg:datatype xsd:string;

class map for AcademicProgram class
map:AcademicProgram a d2rg:ClassMap;
d2rqg:dataStorage map:database;

d2rg:uriPattern "program@E@XPROGRAM.PROGRAM ID@@R";
d2rqg:class ex:AcademicProgram;

map:programName a d2rqg:PropertyBridge;
d2rg:belongsToClassMap map:AcademicProgram;
d2rqg:property ex:programName;

d2rqg:column "XPROGRAM.NAME";

d2rqg:datatype xsd:string;

1. class map for PersonID

map:PersonID teacher a d2rg:ClassMap;
d2rqg:dataStorage map:database;

d2rg:uriPattern "personID@E@XTEACHER.IDCODE@Q";
d2rg:class ex:PersonlD;

map:IDValuel a d2rqg:PropertyBridge;
d2rqg:belongsToClassMap map:PersonlID teacher;
d2rqg:property ex:IDValue;

d2rqg:column "XTEACHER.IDCODE";

d2rqg:datatype xsd:string;

2. class map for PersonID

map:PersonID student a d2rg:ClassMap;
d2rg:dataStorage map:database;

d2rg:uriPattern "personIDE@E@XSTUDENT.IDCODE@R@";
d2rqg:class ex:PersonlD;

map:IDValue2 a d2rqg:PropertyBridge;
d2rqg:belongsToClassMap map:PersonID student;
d2rqg:property ex:IDValue;

d2rg:column "XSTUDENT.IDCODE";

d2rqg:datatype xsd:string;

Now comes object properties
object property teaches between Teacher and Course:

map:teaches a d2rqg:PropertyBridge;
d2rqg:belongsToClassMap map:Teacher;
d2rqg:property ex:teaches;
d2rg:refersToClassMap map:Course;
d2rg:join "XTEACHER.TEACHER ID <= XCOURSE.TEACHER ID";

object property includes between AcademicProgram and Course
map:includes a d2rqg:PropertyBridge;

d2rqg:belongsToClassMap map:AcademicProgram;

d2rqg:property ex:includes;

d2rqg:refersToClassMap map:Course;

d2rqg:join "XPROGRAM.PROGRAM ID => XCOURSE.PROGRAM ID ";

#object property enrolled Student and AcademicProgram
map:enrollod a d2rqg:PropertyBridge;
d2rqg:belongsToClassMap map:Student;
d2rqg:property ex:enrolled;
d2rqg:refersToClassMap map:AcademicProgram;

116

d2rg:join "XSTUDENT.PROGRAM ID => XPROGRAM.PROGRAM ID ";

map:takes a d2rqg:PropertyBridge;
d2rqg:belongsToClassMap map:Student;
d2rqg:property ex:takes;
d2rqg:refersToClassMap map:Course;
d2rg:join "XSTUDENT.STUDENT ID <= XREGISTRATION.STUDENT ID ";
d2rg:join "XREGISTRATION.COURSE ID => XCOURSE.COURSE ID";

object property personID between classes Person and PersonID
one property bridge connects Person class map (1 of 2)

which is for XStudent table to PersonID class map for Xstudent
table (a longer version)

map:personIDl a d2rqg:PropertyBridge;

d2rqg:belongsToClassMap map:Student;

d2rqg:property ex:personlD;

d2rqg:refersToClassMap map:PersonID student;

d2rg:join "XSTUDENT.STUDENT ID => XSTUDENT1.STUDENT_ ID";
d2rg:alias "XSTUDENT AS XSTUDENTL1";

H= o3 H .

three property bridges connects Person class maps
which is for XTeacher table to PersonID class map
which is for XTeacher table (a shorter version)
map:personID2 a d2rqg:PropertyBridge;
d2rqg:belongsToClassMap map:Teacher;
d2rqg:property ex:personlD;
d2rqg:refersToClassMap map:PersonID teacher;

9.2.2 D2RQ mapping script for far-table-linking example [2.3.2]

@prefix d2rqg: <http://www.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/0.14#>
@prefix jdbc: <http://d2rqg.org/terms/jdbc/>
@prefix ex: <http://lumii.lv/ex#>

map:database a d2rqg:Database;

d2rqg:jdbcDriver "oracle.jdbc.driver.OracleDriver";
d2rg:jdbcDSN "jdbc:oracle:thin:@guntars-PC:1521:gun";
d2rqg:username "far links";

d2rqg:password "f";

Something class

map:ClassForTable a d2rqg:ClassMap;
d2rqg:dataStorage map:database;
d2rqg:uriPattern "table@@TABLEL.TABLEl_ IDQ@Q";
d2rqg:class ex: Something;

localName property

map:localName a d2rqg:PropertyBridge;
d2rqg:belongsToClassMap map:ClassForTable;
d2rqg:property ex:localName;

d2rg:column "TABLEl.NAME";

map: farName a d2rqg:PropertyBridge;
d2rqg:belongsToClassMap map:ClassForTable;
d2rqg:property ex:farName;
d2rg:join "TABLEl.TABLE2_ID => TABLEZ.TABLEZ_ID "
d2rg:join "TABLEZ.TABLE3 ID => TABLE3.TABLE3 ID ";

117

d2rg:join "TABLE3.TABLE4 ID => TABLE4.TABLE4 ID
d2rg:column "TABLE4.NAME";

map:farPath a d2rqg:PropertyBridge;
d2rqg:belongsToClassMap map:ClassForTable;
d2rqg:property ex:farPath;
d2rg:join "TABLE1l.TABLE2 ID => TABLE2.TABLE2 ID ";
d2rg:join "TABLE2.TABLE3 ID => TABLE3.TABLE3 ID ";
d2rg:join "TABLE3.TABLE4 ID => TABLE4.TABLE4 ID ";
d2rg:sglExpression "TABLEl.NAME || ' -> ' || TABLE2.NAME

|l " => " || TABLE3.NAME || ' -> ' || TABLE4.NAME";

9.2.3 D2RQ mapping code for genealogy example [2.3.3]

@prefix map: <file:/C:/semantic web/d2r-server-

0.7/school mapping.n3#>

@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#>

@prefix d2rqg: <http://www.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/0.1#>
@prefix ex: <http://lumii.lv/ex#>

map:database a d2rqg:Database;

d2rqg:jdbcDriver "oracle.jdbc.driver.OracleDriver";
d2rg:jdbcDSN "jdbc:oracle:thin:@guntars-PC:1521:gun";
d2rg:username "genealogy";

d2rqg:password "g";

Person class

map:Person a d2rqg:ClassMap;

d2rqg:dataStorage map:database;
d2rg:uriPattern "person@E@PERSON.PERSON ID@R";
d2rqg:class ex:Person;

personName property

map:personName a d2rqg:PropertyBridge;
d2rqg:belongsToClassMap map:Person;
d2rqg:property ex:personName;
d2rg:column "PERSON.NAME";
#d2rg:datatype xsd:string;

birthYear property

map:birthYear a d2rqg:PropertyBridge;
d2rg:belongsToClassMap map:Person;
d2rqg:property ex:birthYear;
d2rg:column "PERSON.BIRTH YEAR";
d2rqg:datatype xsd:integer;

deathYear property

map:deathYear a d2rqg:PropertyBridge;
d2rg:belongsToClassMap map:Person;
d2rqg:property ex:deathYear;
d2rg:column "PERSON.DEATH YEAR";
d2rqg:datatype xsd:integer;

lifeSpan property

map:lifeSpan a d2rqg:PropertyBridge;
d2rqg:belongsToClassMap map:Person;

118

d2rqg:property ex:lifeSpan;
d2rg:sqlExpression "PERSON.DEATH YEAR - PERSON.BIRTH YEAR";
d2rqg:datatype xsd:integer;

map:parent father a d2rq:PropertyBridge;
d2rqg:belongsToClassMap map:Person;

d2rqg:property ex:parent;

d2rqg:refersToClassMap map:Person;

d2rqg:alias "PERSON AS PARENT";

d2rg:join "PERSON.FATHER ID => PARENT.PERSON ID ";

map:parent mother a d2rqg:PropertyBridge;
d2rqg:belongsToClassMap map:Person;

d2rqg:property ex:parent;

d2rqg:refersToClassMap map:Person;

d2rqg:alias "PERSON AS PARENT";

d2rg:join "PERSON.MOTHER ID => PARENT.PERSON ID ";

PersonType class

map:Gender a d2rqg:ClassMap;
d2rqg:dataStorage map:database;
d2rg:uriColumn "PERSON.GENDER";
d2rg:containsDuplicates "true";
d2rqg:class ex:Gender;
d2rqg:translateWith map:GenderTable

map:GenderTable a d2rqg:TranslationTable;

d2rqg:translation [d2rg:databaseValue "f"; d2rqg:rdfvalue
"ex:female";];

d2rqg:translation [d2rg:databaseValue "m"; d2rg:rdfvalue
"ex:male";]

map:gender a d2rqg:PropertyBridge;
d2rg:belongsToClassMap map:Person;
d2rqg:property ex:gender;
d2rqg:refersToClassMap map:Gender;

9.3 Virtuoso RDF Views mapping code for mini-university example [2.3.1]

Ontology mappings:
@prefix owl: <http://www.w3.0rg/2002/07/owl#>
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
@prefix xsd: <http://www.w3.o0rg/2001/XMLSchema#>
@prefix virtrdf: <http://www.openlinksw.com/schemas/virtrdf#>
@prefix DB: <http://lumiiex/school/>

DB:Course a rdfs:Class

DB:courseName a owl:DatatypeProperty
DB:courseName rdfs:range xsd:string
DB:courseName rdfs:domain DB:Course
DB:isTaughtBy a owl:0ObjectProperty
DB:isTaughtBy rdfs:domain DB:Course
DB:isTaughtBy rdfs:range DB:Teacher

DB:MandatoryCourse a rdfs:Class

119

DB:

DB:
DB:

DB:
DB:
DB:
DB:

DB:
DB:
DB:
DB:
DB:

DB:
DB:

DB:
DB:

DB:
DB:

DB:
DB:
DB:
DB:
DB:

DB:
DB:
DB:
DB:
renrolled a owl:0ObjectProperty
DB:

DB

DB

DB

DB

DB:
DB:
DB:
DB:
DB:
DB:
DB:

MandatoryCourse rdfs:subClassOf DB:Course

OptionalCourse a rdfs:Class
OptionalCourse rdfs:subClassOf DB:Course

Person a rdfs:Class

personName a owl:DatatypeProperty
personName rdfs:range xsd:string

personName rdfs:domain DB:Person

Teacher a rdfs:Class

Teacher rdfs:subClassOf DB:Person
teaches a owl:0ObjectProperty
teaches rdfs:domain DB:Teacher
teaches rdfs:range DB:Course

Assistant a rdfs:Class
Assistant rdfs:subClassOf DB:Teacher

Professor a rdfs:Class
Professor rdfs:subClassOf DB:Teacher

AssocProfessor a rdfs:Class
AssocProfessor rdfs:subClassOf DB:Teacher

Student a rdfs:Class

Student rdfs:subClassOf DB:Person
takes a owl:0ObjectProperty

takes rdfs:domain DB:Student
takes rdfs:range DB:Course

AcademicProgram a rdfs:Class

programName a owl:DatatypeProperty
personName rdfs:range xsd:string
personName rdfs:domain DB:AcademicProgram

enrolled rdfs:domain DB:Student

renrolled rdfs:range DB:AcademicProgram
DB:

includes a owl:0bjectProperty

:includes rdfs:domain DB:AcademicProgram
DB:

includes rdfs:range DB:Course

:belongsTo a owl:ObjectProperty
DB:
DB:

belongsTo rdfs:domain DB:Course
belongsTo rdfs:range DB:AcademicProgram

PersonID a rdfs:Class

IDValue a owl:DatatypeProperty
IDValue rdfs:range xsd:string
IDValue rdfs:domain DB:PersonID
personID a owl:ObjectProperty
personlID rdfs:domain DB:Person
personlID rdfs:range DB:PersonID

Data mappings:
grant select on DB.DBA.COURSE to SPARQL SELECT;
grant select on DB.DBA.TEACHER to SPARQL SELECT;
grant select on DB.DBA.STUDENT to SPARQL SELECT;
grant select on DB.DBA.REGISTRATION to SPARQL SELECT;

120

grant select on DB.DBA.PROGRAM to SPARQL SELECT;

SPARQL
drop quad storage virtrdf:school;

SPARQL

prefix DB: <http://lumiiex/school/>

create iri class DB:teacher iri "http://lumiiex/school/teacher%d"
(in TEACHER ID numeric not null) . ;

SPARQL

prefix DB: <http://lumiiex/school/>

create iri class DB:student_iri "http://lumiiex/school/student%d"
(in STUDENT ID numeric not null) . ;

SPARQL

prefix DB: <http://lumiiex/school/>

create iri class DB:program iri "http://lumiiex/school/program%d"
(in PROGRAM ID numeric not null) . ;

SPARQL

prefix DB: <http://lumiiex/school/>

create iri class DB:personID iri "http://lumiiex/school/personID%s"
(in IDCODE varchar not null) . ;

SPARQL

prefix DB: <http://lumiiex/school/>

create iri class DB:course iri "http://lumiiex/school/course%d"
(in _COURSE_ID numeric not null) . ;

SPARQL
Class Course
prefix DB: <http://lumiiex/school/>
create quad storage virtrdf:school
from DB.DBA.COURSE as course s
from DB.DBA.TEACHER as teacher_ s
where (“{course_s.}”.TEACHER ID = "{teacher_s.}”."TEACHER_ ID")
{
create DB:gm-course as graph <http://lumiiex/school/#>
{
DB:course_iri(course s.COURSE _ID) a DB:Course ;
DB:courseName course s.NAME ;
DB:isTaughtBy DB:teacher iri (teacher s.TEACHER ID)
}
}i

SPARQL
Class MandatoryCourse
prefix DB: <http://lumiiex/school/>
alter quad storage virtrdf:school

from DB.DBA.COURSE as course s mand

where ("{course s mand.}”.REQUIRED = 1)

{

create DB:gm-mandatory course as graph <http://lumiiex/school/#>
{

DB:course_iri (course_s mand.COURSE_ID) a DB:MandatoryCourse
}
bi

121

SPARQL
prefix DB: <http://lumiiex/school/>
alter quad storage virtrdf:school

from DB.DBA.COURSE as course_ s0

where ("{course s0.}".REQUIRED = 0)

{

create DB:gm-optional course as graph <http://lumiiex/school/#>
{

Maps from columns of "DB.DBA.COURSE"

DB:course iri (course s0."COURSE ID") a DB:OptionalCourse
}
bi

SPARQL
Class Teacher
prefix DB: <http://lumiiex/school/>
alter quad storage virtrdf:school
from DB.DBA.TEACHER as teacher s
from DB.DBA.COURSE as course_ s
where ("~{course s.}".TEACHER ID = "{teacher s.}”.TEACHER ID)
{
create DB:gm-teacher as graph <http://lumiiex/school/#>
{

Maps from columns of "DB.DBA.TEACHER"

DB:teacher iri(teacher s."TEACHER ID") a DB:Teacher ;
DB:personName teacher s."NAME" as DB:dba-teacher-name ;
DB:teaches DB:course iri (course_s."COURSE ID")
DB:personID DB:personID_iri (teacher_s.IDCODE)

’

}
bi

SPARQL
Assistant (subclass of Teacher)
prefix DB: <http://lumiiex/school/>
alter quad storage virtrdf:school
from DB.DBA.TEACHER as teacher sl
where ("{teacher sl.}”.LEVEL CODE='Assistant')
{
create DB:gm-teacher assistant as graph <http://lumiiex/school/#>
{
DB:teacher iri(teacher s1.TEACHER ID) a DB:Assistant
}
bi

SPARQL
Professor (subclass of Teacher)
prefix DB: <http://lumiiex/school/>
alter quad storage virtrdf:school
from DB.DBA.TEACHER as teacher s2
where (~{teacher_ s2.}".LEVEL CODE='Profssor')
{
create DB:gm-teacher professor as graph <http://lumiiex/school/#>
{
DB:teacher iri(teacher_ s2.TEACHER ID) a DB:Professor
}
bi

122

SPARQL
AssocProfessor (subclass of Teacher)
prefix DB: <http://lumiiex/school/>
alter quad storage virtrdf:school
from DB.DBA.TEACHER as teacher s3
where (”{teacher s3.}".LEVEL CODE='AssocProfessor')
{
create DB:gm-teacher assos professor as graph
<http://lumiiex/school/#>
{
DB:teacher iri(teacher s3.TEACHER ID) a DB:AssocProfessor
}
}i

SPARQL
Class Student, object property takes, etc
prefix DB: <http://lumiiex/school/>
alter quad storage virtrdf:school
from DB.DBA.STUDENT as student s
from DB.DBA.REGISTRATION as registration s
where ("“{registration s.}”.STUDENT ID = "{student s.}”.STUDENT ID
)
from DB.DBA.COURSE as course_ s taken
where ("{course s taken.}”.COURSE ID =
“{registration s.}”.COURSE ID)
{
create DB:gm-student as graph <http://lumiiex/school/#>
{

DB:student iri(student s.STUDENT ID) a DB:Student ;
DB:personName student s.NAME as DB:dba-student-name ;
DB:takes DB:course iri(registration s.COURSE ID) ;
DB:personID DB:personID_iri (student_ s.IDCODE)

}
}i

SPARQL

Class AcademicProgram

prefix DB: <http://lumiiex/school/>

alter quad storage virtrdf:school

from DB.DBA.PROGRAM as program s

from DB.DBA.COURSE as course_s_included
where ("{course s included.}”.PROGRAM ID =

~{program_s.}".PROGRAM ID)

{

create DB:gm-program as graph <http://lumiiex/school/#>
{

DB:program iri (program s.PROGRAM ID) a DB:AcademicProgram ;
DB:programName program s.NAME as DB:dba-program-name ;
DB:includes DB:course_ iri (course_s_included.COURSE_1ID)

}
bi

SPARQL

Class PersonID 1. map

prefix DB: <http://lumiiex/school/>

alter quad storage virtrdf:school

from DB.DBA.TEACHER as teacher s as person

123

{
create DB:gm-teacher-person as graph <http://lumiiex/school/#>
{
DB:personID iri (teacher s as person.IDCODE) a DB:PersonID ;
DB:IDValue teacher s as person.IDCODE
}
i

SPARQL
Class PersonID 2. map
prefix DB: <http://lumiiex/school/>
alter quad storage virtrdf:school
from DB.DBA.STUDENT as student s as person
{
create DB:gm-student-person as graph <http://lumiiex/school/#>
{
DB:personID iri (student s as person.IDCODE) a DB:PersonID ;
DB:IDValue student s as person.IDCODE
}
bi

9.4 D20 mapping code for mini-university example [2.3.1]

<?xml version="1.0" encoding="UTF-8"?>
<r2o>
<dbschema-desc name="db">
<has-table name="PROGRAM">
<keycol-desc name="PROGRAM ID"/>
<nonkeycol-desc name="NAME"/>
</has-table>
<has-table name="STUDENT">
<keycol-desc name="STUDENT ID"/>
<forkeycol-desc name="PROGRAM ID">
<refers-to>PROGRAM.PROGRAM ID</refers-to>
</forkeycol-desc>
<nonkeycol-desc name="NAME"/>
<nonkeycol-desc name="IDCODE"/>
</has-table>
<has-table name="COURSE">
<keycol-desc name="COURSE ID"/>
<forkeycol-desc name="TEACHER ID">
<refers-to>TEACHER.TEACHER ID</refers-to>
</forkeycol-desc>
<forkeycol-desc name="PROGRAM ID">
<refers-to>PROGRAM.PROGRAM ID</refers-to>
</forkeycol-desc>
<nonkeycol-desc name="NAME"/>
<nonkeycol-desc name="REQUIRED"/>

124

</has-table>
<has-table name="TEACHER">
<keycol-desc name="TEACHER ID"/>
<forkeycol-desc name="LEVEL CODE">
<refers-to>TEACHER LEVEL.LEVEL CODE</refers-to>
</forkeycol-desc>
<nonkeycol-desc name="NAME"/>
<nonkeycol-desc name="IDCODE"/>
</has-table>
<has-table name="TEACHER LEVEL">
<keycol-desc name="LEVEL_CODE"/>
</has-table>
<has-table name="REGISTRATION">
<keycol-desc name="REGISTRATION_ ID"/>
<forkeycol-desc name="COURSE ID">
<refers-to>COURSE.COURSE ID</refers-to>
</forkeycol-desc>
<forkeycol-desc name="STUDENT ID">
<refers-to>STUDENT.STUDENT ID</refers-to>
</forkeycol-desc>
</has-table>
</dbschema-desc>
<conceptmap-def name="http://lumii.lv/ex#Student">
<uri-as >
<operation oper-id="concat">
<arg-restriction on-param="stringl">
<has-value>http://lumii.lv/ex#Student</has-value>
</arg-restriction>
<arg-restriction on-param="string2">
<has-column>db.STUDENT.STUDENT ID</has-column>
</arg-restriction>
</operation>
</uri-as>
<described-by>
<attributemap-def name="http://lumii.lv/ex#personName">
<selector>
<aftertransform>
<operation oper-id="concat">
<arg-restriction on-param="stringl">
<has-column>db.STUDENT.NAME</has-column>
</arg-restriction>
<arg-restriction on-param="string2">
<has-transform>
<operation oper-id="concat">
<arg-restriction on-param="stringl">
<has-value>" "</has-value>
</arg-restriction>
<arg-restriction on-param="string2">
<has-column>db.STUDENT.SURNAME</has-column>
</arg-restriction>
</operation>
</has-transform>
</arg-restriction>
</operation>
</aftertransform>
</selector>
</attributemap-def>
<dbrelationmap-def name="http://lumii.lv/ex#enrolled"
toConcept="http://lumii.lv/ex#AcademicProgram">
<joins-via>

125

<condition oper-id="equals">
<arg-restriction on-param="valuel">
<has-column>db.STUDENT.PROGRAM ID</has-column>
</arg-restriction>
<arg-restriction on-param="value2">
<has-column>db.PROGRAM.PROGRAM ID</has-column>
</arg-restriction>
</condition>
</joins-via>
</dbrelationmap-def>
<dbrelationmap-def name="http://lumii.lv/ex#takes"
toConcept="http://lumii.lv/ex#Course">
<joins-via>
<AND>
<condition oper-id="equals">
<arg-restriction on-param="valuel">
<has-column>db.STUDENT.STUDENT ID</has-column>
</arg-restriction>
<arg-restriction on-param="value2">
<haS—COlumn>db.REGISTRATION.STUDENT71D</haS—COlumn>
</arg-restriction>
</condition>
<condition oper-id="equals">
<arg-restriction on-param="valuel">
<haS—COlumn>db.REGISTRATION.COURSE71D</haS—COlumn>
</arg-restriction>
<arg-restriction on-param="value2">
<has-column>db.COURSE.COURSE ID</has-column>
</arg-restriction>
</condition>
</AND>
</joins-via>
</dbrelationmap-def>
</described-by>
</conceptmap-def>
<conceptmap-def name="http://lumii.lv/ex#Teacher">
<uri-as>
<operation oper-id="concat">
<arg-restriction on-param="stringl">
<has-value>http://lumii.lv/ex#Teacher</has-value>
</arg-restriction>
<arg-restriction on-param="string2">
<has-column>db.TEACHER.TEACHER ID</has-column>
</arg-restriction>
</operation>
</uri-as>
<described-by>
<attributemap-def name="http://lumii.lv/ex#personName">
<selector>
<aftertransform>
<operation oper-id="constant">
<arg-restriction on-param="const-val">
<has-column>db.TEACHER.NAME</has-column>
</arg-restriction>
</operation>
</aftertransform>
</selector>
</attributemap-def>
<dbrelationmap-def name="http://lumii.lv/ex#teaches"
toConcept="http://lumii.lv/ex#Course">

126

<joins-via>
<condition oper-id="equals">
<arg-restriction on-param="valuel">
<has-column>db.TEACHER.TEACHER ID</has-column>
</arg-restriction>
<arg-restriction on-param="value2">
<has-column>db.COURSE.TEACHER ID</has-column>
</arg-restriction>
</condition>
</joins-via>
</dbrelationmap-def>
</described-by>
</conceptmap-def>
<conceptmap-def name="http://lumii.lv/ex#Asistant">
<uri-as>
<operation oper-id="concat">
<arg-restriction on-param="stringl">
<has-value>http://lumii.lv/ex#Teacher</has-value>
</arg-restriction>
<arg-restriction on-param="string2">
<haS—Column>db.TEACHER.TEACHER71D</haS—COlumn>
</arg-restriction>
</operation>
</uri-as>
<applies-if>
<condition oper-id="equals">
<arg-restriction on-param="valuel">
<has-column>db.TEACHER.LEVEL CODE</has-column>
</arg-restriction>
<arg-restriction on-param="value2">
<has-value>"Assistant"</has-value>
</arg-restriction>
</condition>
</applies-if>
</conceptmap-def>
<conceptmap-def name="http://lumii.lv/ex#Professor">
<uri-as>
<operation oper-id="concat">
<arg-restriction on-param="stringl">
<has-value>http://lumii.lv/ex#Teacher</has-value>
</arg-restriction>
<arg-restriction on-param="string2">
<has-column>db.TEACHER.TEACHER ID</has-column>
</arg-restriction>
</operation>
</uri-as>
<applies-if>
<condition oper-id="equals">
<arg-restriction on-param="valuel">
<has-column>db.TEACHER.LEVEL CODE</has-column>
</arg-restriction>
<arg-restriction on-param="value2">
<has-value>"Professor"</has-value>
</arg-restriction>
</condition>
</applies-if>
</conceptmap-def>
<conceptmap-def name="http://lumii.lv/ex#AssocProfessor">
<uri-as>
<operation oper-id="concat">

127

<arg-restriction on-param="stringl">
<has-value>http://lumii.lv/ex#Teacher</has-value>
</arg-restriction>
<arg-restriction on-param="string2">
<has-column>db.TEACHER.TEACHER ID</has-column>
</arg-restriction>
</operation>
</uri-as>
<applies-if>
<condition oper-id="equals">
<arg-restriction on-param="valuel">
<has-column>db.TEACHER.LEVEL CODE</has-column>
</arg-restriction>
<arg-restriction on-param="value2">
<has-value>"Associate Professor"</has-value>
</arg-restriction>
</condition>
</applies-if>
</conceptmap-def>
<conceptmap-def name="http://lumii.lv/ex#Course">
<uri-as>
<operation oper-id="concat">
<arg-restriction on-param="stringl">
<has-value>http://lumii.lv/ex#Course</has-value>
</arg-restriction>
<arg-restriction on-param="string2">
<has-column>db.COURSE.COURSE ID</has-column>
</arg-restriction>
</operation>
</uri-as>
<described-by>
<attributemap-def name="http://lumii.lv/ex#courseName">
<selector>
<aftertransform>
<operation oper-id="constant">
<arg-restriction on-param="const-val'">
<has-column>db.COURSE.NAME</has-column>
</arg-restriction>
</operation>
</aftertransform>
</selector>
</attributemap-def>
</described-by>
</conceptmap-def>
<conceptmap-def name="http://lumii.lv/ex#MandatoryCourse">
<uri-as>
<operation oper-id="concat">
<arg-restriction on-param="stringl">
<has-value>http://lumii.lv/ex#MandatoryCourse</has-value>
</arg-restriction>
<arg-restriction on-param="string2">
<has-column>db.COURSE.COURSE ID</has-column>
</arg-restriction>
</operation>
</uri-as>
<applies-if>
<condition oper-id="equals">
<arg-restriction on-param="valuel">
<has-column>db.COURSE.REQUIRED</has-column>
</arg-restriction>

128

<arg-restriction on-param="value2">
<has-value>1</has-value>
</arg-restriction>
</condition>
</applies-if>
</conceptmap-def>
<conceptmap-def name="http://lumii.lv/ex#OptionalCourse">
<uri-as type="DEFAULT">
<operation>
<arg-restriction on-param="stringl">
<has-value>http://lumii.lv/ex#OptionalCourse</has-value>
</arg-restriction>
<arg-restriction on-param="string2">
<has-column>db.COURSE.COURSE ID</has-column>
</arg-restriction>
</operation>
</uri-as>
<applies-if>
<condition oper-id="equals">
<arg-restriction on-param="valuel">
<has-column>db.COURSE.REQUIRED</has-column>
</arg-restriction>
<arg-restriction on-param="value2">
<has-value>0</has-value>
</arg-restriction>
</condition>
</applies-if>
</conceptmap-def>
<conceptmap-def name="http://lumii.lv/ex#AcademicProgram">
<uri-as>
<operation oper-id="concat">
<arg-restriction on-param="stringl">
<has-value>http://lumii.lv/ex#AcademicProgram</has-value>
</arg-restriction>
<arg-restriction on-param="string2">
<has-column>db.PROGRAM.PROGRAM ID</has-column>
</arg-restriction>
</operation>
</uri-as>
<described-by>
<attributemap-def name="http://lumii.lv/exf#programName">
<selector>
<aftertransform>
<operation oper-id="constant">
<arg-restriction on-param="const-val'">
<has-column>db.PROGRAM.NAME</has-column>
</arg-restriction>
</operation>
</aftertransform>
</selector>
</attributemap-def>
</described-by>
</conceptmap-def>
<conceptmap-def name="http://lumii.lv/ex#PersonID">
<uri-as>
<operation oper-id="concat">
<arg-restriction on-param="stringl">
<has-value>http://lumii.lv/ex#PersonID</has-value>
</arg-restriction>
<arg-restriction on-param="string2">

129

<has-column>db.STUDENT.STUDENT ID</has-column>
</arg-restriction>
</operation>
</uri-as>
<described-by>
<attributemap-def name="http://lumii.lv/ex#IDValue">
<selector>
<aftertransform>
<operation oper-id="constant">
<arg-restriction on-param="const-val">
<has-column>db.STUDENT.IDCODE</has-column>
</arg-restriction>
</operation>
</aftertransform>
</selector>
</attributemap-def>
</described-by>
</conceptmap-def>
<conceptmap-def name="http://lumii.lv/ex#PersonID">
<uri-as>
<operation oper-id="concat">
<arg-restriction on-param="stringl">
<has-value>http://lumii.lv/ex#PersonID</has-value>
</arg-restriction>
<arg-restriction on-param="string2">
<haS—Column>db.TEACHER.TEACHER71D</haS—COlumn>
</arg-restriction>
</operation>
</uri-as>
<described-by>
<attributemap-def name="http://lumii.lv/ex#IDValue">
<selector>
<aftertransform>
<operation oper-id="constant">
<arg-restriction on-param="const-val'">
<has-column>db.TEACHER.IDCODE</has-column>
</arg-restriction>
</operation>
</aftertransform>
</selector>
</attributemap-def>
</described-by>
</conceptmap-def>
<conceptmap-def name="http://lumii.lv/ex#Person">
<identified-by>db.TEACHER.TEACHER ID</identified-by>
<uri-as>
<operation oper-id="concat">
<arg-restriction on-param="stringl">
<has-value>http://lumii.lv/ex#PersonID</has-value>
</arg-restriction>
<arg-restriction on-param="string2">
<has-column>db.TEACHER.TEACHER ID</has-column>
</arg-restriction>
</operation>
</uri-as>
<described-by>
<attributemap-def name="http://lumii.lv/ex#IDValue">
<selector>
<aftertransform>
<operation oper-id="constant">

130

<arg-restriction on-param="const-val">
<has-column>db.TEACHER. IDCODE</has-column>
</arg-restriction>
</operation>
</aftertransform>
</selector>
</attributemap-def>
<dbrelationmap-def name="http://lumii.lv/ex#personID"
toConcept="http://lumii.lv/ex#PersonID">
<joins-via>
<!-- Problem to make join as both Classes for domain and range
uses the same table.
R20 language does not has facilities to assign aliases to
tables
-—>
<condition oper-id="equals">
<arg-restriction on-param="valuel">
<has-column>db.TEACHER.TEACHER ID</has-column>
</arg-restriction>
<arg-restriction on-param="value2">
<has-column>db.TEACHER.TEACHER ID</has-column>
</arg-restriction>
</condition>
</joins-via>
</dbrelationmap-def>
</described-by>
</conceptmap-def>
<conceptmap-def name="http://lumii.lv/ex#Person">
<identified—by>db.STUDENT.STUDENT71D</identified—by>
<uri-as>
<operation oper-id="concat">
<arg-restriction on-param="stringl">
<has-value>http://lumii.lv/ex#PersonID</has-value>
</arg-restriction>
<arg-restriction on-param="string2">
<has-column>db.STUDENT.STUDENT ID</has-column>
</arg-restriction>
</operation>
</uri-as>
<described-by>
<attributemap-def name="http://lumii.lv/ex#IDValue">
<selector>
<aftertransform>
<operation oper-id="constant">
<arg-restriction on-param="const-val">
<has-column>db.STUDENT.IDCODE</has-column>
</arg-restriction>
</operation>
</aftertransform>
</selector>
</attributemap-def>
<dbrelationmap-def name="http://lumii.lv/ex#personID"
toConcept="http://lumii.lv/ex#PersonID">
<joins-via>
<!-- Problem to make join as both Classes for domain and range
uses the same table.
R20 language does not has facilities to assign aliases to
tables
-—>
<condition oper-id="equals">

131

<arg-restriction on-param="valuel">
<has-column>db.STUDENT.STUDENT ID</has-column>
</arg-restriction>
<arg-restriction on-param="value2">
<has-column>db.STUDENT.STUDENT ID</has-column>
</arg-restriction>
</condition>
</joins-via>
</dbrelationmap-def>
</described-by>
</conceptmap-def>
</r20>

9.5 R2RML mapping code for mini-university example

TODO: some comments.

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
@prefix xsd: <http://www.w3.o0rg/2001/XMLSchema#>

@prefix ex: <http://lumii.lv/ex#>.

<#TriplesMap Program>
a rr:TriplesMapClass;
rr:tableOwner "SCHOOL";
rr:tableName "PROGRAM";

rr:subjectMap [rr:template "ex:program{program id}";
rr:class ex:Program;

1

rr:predicateObjectMap

[

rr:predicateMap [rr:predicate ex:programName];
rr:objectMap [rr:column "name"]

1i

rr:refPredicateObjectMap
[
rr:refPredicateMap [rr:predicate ex:includes];
rr:refObjectMap
[
rr:parentTriplesMap <#TriplesMap Course>;
rr:joinCondition
"{childAlias.}program id = {parentAlias.}program id"

<#TriplesMap Course>
a rr:TriplesMapClass;
rr:SQLQuery """
Select course id

, teacher_ id
, program_id
, name
, case when required=1 then 'MandatoryCourse'

132

else 'OptionalCourse'
end as subclass_name
from COURSE

www,
7

rr:subjectMap [rr:template "ex:course{course id}";
rr:class ex:Course;

1;

rr:predicateObjectMap

[

rr:predicateMap [rr:predicate rdf:type 1;
rr:objectMap [rr:template "ex:{subclass name}"]
1

rr:predicateObjectMap

[

rr:predicateMap [rr:predicate ex:courseName];
rr:objectMap [rr:column "name"]

1;

<#PredicateObjectMap personName>

a rr:PredicateObjectMapClass

[
rr:predicateMap [rr:predicate ex:personName];
rr:objectMap [rr:column "name"]

1

<#TriplesMap Teacher>
a rr:TriplesMapClass;
rr:tableOwner "SCHOOL";
rr:tableName "TEACHER";

rr:subjectMap [rr:template "ex:teacher{teacher id}";
rr:class ex:Teacher;

17
rr:predicateObjectMap <#PredicateObjectMap personName> ;

rr:refPredicateObjectMap
[
rr:refPredicateMap [rr:predicate ex:teaches];
rr:refObjectMap
[
rr:parentTriplesMap <#TriplesMap Course>;
rr:joinCondition
"{childAlias.}teacher id = {parentAlias.}teacher id"

]

rr:refPredicateObjectMap
[
rr:refPredicateMap [rr:predicate ex:personlD];
rr:refObjectMap
[
rr:parentTriplesMap <#TriplesMap PersonID teacher>;
rr:joinCondition
"{childAlias.}teacher id = {parentAlias.}teacher_ id"

133

<#TriplesMap Assistant>
a rr:TriplesMapClass;
rr:SQLQuery """
Select teacher_ id
, name
from TEACHER
where level code='Assistant'

www,
7

rr:subjectMap [rr:template "ex:teacher{teacher id}";
rr:class ex:Assistant;

1

rr:predicateObjectMap <#PredicateObjectMap personName> ;

<#TriplesMap Professor>
a rr:TriplesMapClass;
rr:SQLQuery """
Select teacher id

, hame
from TEACHER
where level code='Professor'
mwiaw -
;
rr:subjectMap [rr:template "ex:teacher{teacher id}";

rr:class ex:Professor;

1

rr:predicateObjectMap <#PredicateObjectMap personName> ;

<#TriplesMap AssocProfessor>
a rr:TriplesMapClass;
rr:SQLQuery """
Select teacher id

, hame
from TEACHER
where level code='Associate Profssor'
wun
rr:subjectMap [rr:template "ex:teacher{teacher id}";

rr:class ex:AssocProfessor;

1

rr:predicateObjectMap <#PredicateObjectMap personName>;

<#TriplesMap Student>
a rr:TriplesMapClass;
rr:SQLQuery """
Select s.student id

134

, s.program id

, S.name

, r.course id
from STUDENT s, REGISTRATION r
where s.student id=r.student id

www .,
’

rr:subjectMap [rr:template "ex:student{student id}";
rr:class ex:Student;
1

rr:predicateObjectMap <#PredicateObjectMap personName>;

rr:refPredicateObjectMap
[
rr:refPredicateMap [rr:predicate ex:enrolled];
rr:refObjectMap
[
rr:parentTriplesMap <#TriplesMap Program>;
rr:joinCondition
"{childAlias.}program id = {parentAlias.}program id"

1

rr:refPredicateObjectMap
[
rr:refPredicateMap [rr:predicate ex:takes];
rr:refObjectMap
[
rr:parentTriplesMap <#TriplesMap Course>;
rr:joinCondition
"{childAlias.}course id = {parentAlias.}course id"

]

rr:refPredicateObjectMap
[
rr:refPredicateMap [rr:predicate ex:personlD];
rr:refObjectMap
[
rr:parentTriplesMap <#TriplesMap PersonID student>;
rr:joinCondition
"{childAlias.}student id = {parentAlias.}student id"

<#TriplesMap_ PersonID_ teacher>
a rr:TriplesMapClass;
rr:tableOwner "SCHOOL";
rr:tableName "TEACHER";

rr:subjectMap [rr:template "ex:personID{idcode}";
rr:class ex:PersonlD;

1

rr:predicateObjectMap

[
rr:predicateMap [rr:predicate ex:IDValue];
rr:objectMap [rr:column "idcode"]

135

1

<#TriplesMap PersonID student>
a rr:TriplesMapClass;
rr:tableOwner "SCHOOL";
rr:tableName "STUDENT";

rr:subjectMap [rr:template "ex:personID{idcode}";

rr:class ex:PersonlD;

1

rr:predicateObjectMap
[

rr:predicateMap [rr:predicate ex:IDValue];

rr:objectMap [rr:column "idcode"]

1;

9.6 RDB2OWL SQL codes for tripple generations

We provide listings of SQL scripts which when executed in mapping DB generate

SQL scripts which in turn when executed in source DB generate RDF triples for
instances of OWL classes, OWL datatype properties and OWL object properties.

They are not easily readable as two SQL levels are mixed. They show that mere
SQL statement can do the task. They generate SQL statements using string
concatenation operator + as it is in MsSQL Server. They also use MsSQL functions

ISNULL, REPLACE and others. It is easy to rewrite these SQLs for another DB if

needed.

SQL script OWL_instance_gen.sql that generates SQL statement for RDF triple generation for

OWL class instances

SELECT
'SELECT '
+ '"'<" + o.xml base
+ cm.instance uri prefix + '"'''
+ 0+
+ "CAST ('
+ (CASE WHEN t.is column expr=1 THEN ' ' ELSE 't.' END)
+ cm.id column expr + ' AS varchar) + ''>'' as subject'
+ ','"'<" + o.type uri + '>'' as predicate'
+ ', 4+ '<" 4+ o.xml_base + c.rdf _id + '>'' as object'
+ ' FROM '
+ t.table name + ' t '
+ (CASE WHEN cm.filter expr IS NULL THEN ' ' ELSE ' WHERE
ISNULL(cm.filter_expr,") as sqgld4rdf
FROM

ontology o, owl class c, class map cm, db table t

WHERE
o.ontology id = c.ontology id AND
c.owl class_id = cm.owl class_id AND
cm.db_table_id = t.db table id AND
cm.id_column_expr IS NOT NULL AND

136

END)

+

LEN (cm.id column expr)>0 AND
o.ontology id=1 AND cm.generate instances=1

SQL script generate_sqlddatatype_props.sql that generates SQL statements for RDF triple
generation for OWL datatype property instances

SELECT
'SELECT '
+ ''"'<'" + o.xml base
+ cm.instance uri prefix + ''"'
+ ' + CAST(' +
+ (CASE WHEN t.is column expr=1 THEN ' ' ELSE 't.' END)
+ cm.id column expr + ' AS VARCHAR) + ''>'' as subject'
+ 0,
+ o.xml base + dp.rdf id + '>'' as predicate'
+ I’ ll"ll+ L}
+ CASE WHEN sqgld.type name IN ('varchar', 'char', 'nvarchar', 'nchar')

THEN '' ELSE ' CAST (' END
+ CASE WHEN tl.mid table id IS NULL THEN

ELSE
CASE WHEN dpm.is column_expr=1 THEN '' ELSE 't link.' END
END
+ REPLACE (REPLACE(dpm.column expr, 't.',6't link.'), 's.', 't.')

+ CASE WHEN sqgld.type name IN ('varchar', 'char', 'nvarchar', 'nchar')
THEN '' ELSE ' AS varchar)' END
v P

+ ISNULL (xsdd.type name, 'string')
+ '''" as object’

+ ' FROM '

+ t.table name + ' t '

+ CASE WHEN

tl.mid _table id IS NOT NULL AND
tl.source_column_expr IS NOT NULL AND
dpm.source_column_expr IS NOT NULL

THEN
'INNER JOIN ' + t tl.table name + ' t link ON t.'
+ dpm.source_column expr + ' = t link.' + tl.source column_expr
ELSE
T
END

+ CASE WHEN
tl.mid table id IS NOT NULL AND

tl.source_column_expr IS NULL AND dpm.source_column_expr IS NULL
AND
tl.filter expr IS NOT NULL
THEN
"INNER JOIN ' + t_tl.table name + ' t_link ON '
+ REPLACE (REPLACE (tl.filter expr, 't.','t_ link.'), 's.', 't.')
ELSE
LA
END
+ ' WHERE ' + REPLACE(REPLACE(dpm.column expr, 't.',6't link.'),
's.', 't.'") + ' IS NOT NULL '
+ CASE WHEN cm.filter_expr IS NULL THEN ' ' ELSE ' AND ' END
+ ISNULL(cm.filter expr,'') as sqlédrdf,
ISNULL (xsdd.type name, '-"')
FROM
ontology o

INNER JOIN owl datatype property dp ON dp.ontology id=o.ontology id

137

INNER JOIN datatype property map dpm ON
dp.owl datatype property id=dpm.owl datatype property id
LEFT OUTER JOIN table link tl ON dpm.table link id=tl.table link id
LEFT OUTER JOIN db table t tl ON t tl.db table id=tl.mid table id
INNER JOIN class map cm ON dpm.class map id = cm.class map_id
INNER JOIN db _table t ON cm.db table id = t.db table id
LEFT OUTER JOIN db column col ON col.db table id=t.db table id

AND UPPER (col.column name)=UPPER (dpm.column expr)
LEFT OUTER JOIN sgl datatype sqgld

ON sqld.sqgl datatype id=col.sql datatype id
LEFT OUTER JOIN xsd datatype xsdd ON xsdd.xsd datatype id=

CASE WHEN dpm.xsd datatype id IS NULL THEN

sgqld.xsd datatype id
ELSE
dpm.xsd datatype id
END
WHERE

o.ontology id=1 AND
cm.id column expr IS NOT NULL AND
LEN (cm.id column expr)>0

SQL script generate_sqldobject props.sql that generates SQL statements for RDF triple
generation for OWL object property instances without intermediate table link usage

SELECT
'SELECT '
+ ''"'<'" + o.xml base
+ cm_source.instance uri prefix + ''''
+ ' 4+ CAST('
+ (CASE WHEN t source.is column_expr=1
THEN
Al Al
ELSE
't domain.'
END)
+ REPLACE (cm_source.id column expr,'t.','t domain.')
+ ' AS varchar) + ''>'' as subject'
+ N+
+ o.xml base + op.rdf id + '>'' as predicate'

[
’

+
+ '"'"'<" + o.xml base

+ cm target.instance uri prefix + '''"'
+

+

'+ CAST('
(CASE WHEN t target.is column expr=1
THEN
Al Al
ELSE
't range.'
END)
+ REPLACE (cm_target.id column expr, 't.', 't range.')
+ ' AS varchar) + ''>'' as object'
+ ' FROM '
+ t_source.table name + ' t domain '
+ ' INNER JOIN '
+ t_target.table name + ' t range ON '
+ (CASE WHEN opm.source_column_expr IS NOT NULL

AND opm.target column expr IS NOT NULL
THEN

138

' t_domain.' + opm.source_column_expr + ' = t_range.'
+ opm.target column expr

ELSE
LI

END)

+ (CASE WHEN opm.source column_expr IS NOT NULL
AND opm.target column_ expr IS NOT NULL
AND opm.filter expr IS NOT NULL

THEN
' AND '
ELSE

END)

+ (CASE WHEN opm.filter expr IS NOT NULL
THEN
REPLACE (REPLACE (opm.filter expr,'s.', ' t domain.'),
't.', 't _range.')
ELSE
END)
+ ' WHERE ' + REPLACE (
ISNULL (cm_source.filter expr,'l=1"'),'t.','t domain.')
+ ' AND ' + REPLACE (
ISNULL (cm_target.filter expr,'l=1"),'t.','t domain.')
AS generated SQL
FROM
owl object property op,
ontology o,
object property map opm,
class _map cm_source,
class map cm_target,
db table t source,
db_table t_target
WHERE
op.ontology id=o.ontology id AND
op.owl object property id=opm.owl object property id AND
opm.source _class map_id =cm_source.class map id AND
opm.target class map id =cm target.class map id AND
cm_source.db table id=t source.db table id AND
cm_target.db table id=t target.db table id AND
opm.table link id IS NULL AND op.ontology_ id=1
ORDER BY 1

SQL script generate_sqldobject_props_table_links.sql that generates SQL statements for RDF
triple generation for OWL object property instances with one intermediate table link usage

SELECT
'SELECT '
["''<" || o.xml base
|| cm domain.instance uri prefix || '"'''
[N . || c2t_domain.table name || '_1'
Il

'." || cm domain.id column expr || ' T| ''>'' as subject'
[""" |l '<"|| o.xml base || op.rdf id || '>'' as predicate'

[""" [""'<" || o.xml base

|| cm_range.instance uri prefix ||

[" Il'" || c2t _range.table name || ' 2'
[l '." || cm range.id column expr || ' |

''">''" as object'

139

' FROM '

[
|| c2t domain.table name || ' ' || c2t domain.table name || ' 1'
|| " INNER JOIN '
|| tl.mid table name || ' ' || tl.mid table name || ' 3'
[| " ON ' || c2t domain.table name || ' 1. '
|| opm.source column_expr
[1" =" 1] tl.mid table name || ' 3.' || tl.source column expr
|| " INNER JOIN '
|| c2t_range.table name || ' ' || c2t range.table name || ' 2'
[| " ON ' || tl.mid table name || ' 3.' || tl.target column expr
[l " =" 1] c2t range.table name || ' 2.' || opm.target column expr
|| " WHERE ' || NVL(cm domain.filter expr ,' 1=1 ")
|| '"AND ' || NVL(cm range.filter expr , ' 1=1")
|| '"AND ' || NVL(tl.filter expr , ' 1=1")
|| 'AND ' || NVL(tl.filter expr , ' 1=1 ")
AS generated SQL
FROM

owl object property op, ontology o,
object property map opm, class map cm domain,

class map cm_range, class2table c2t domain,
class2table c2t range, table link tl
WHERE

op.ontology id=o.ontology id AND

op.owl object property id=opm.owl object property id AND
opm.domain class map id =cm domain.class map id AND
opm.range class map id =cm range.class map_id AND

cm _domain.class2table id=c2t domain.class2table id AND
cm_range.class2table id=c2t range.class2table id AND
opm.table link id=tl.table link id AND

opm.table link id IS NOT NULL AND op.ontology id=1

9.7 RDB20OWL grammar in BNF notation

The grammar listed below is written in ANTLRWorks tool.
grammar RDB2OWLZ2;
options { backtrack=false; }

gMain : classMap EOF;

classMap : (defName '=')? tableExpr uriPattern? CDecoration*;
objectMap : tableExpr PDecoration*;

dataMap : dataExpr PDecoration?;

ontologyDBExpr : (ontDBExprItem (';' ontDBExprItem)*)?;
ontDBExprItem : funDefPlus | 'CMap' '(' classMap ')' | dbSpec;

funDefPlus: functionDef | aggrFDef;

functionDef : fName ' (' varList ')' '=' functionBody;
varList : (variable (',' variable)*)? ;
functionBody : dataExpr;

aggrFDef : aggrUserFName ' (' aggrArgList? ')' '=' functionBody;
aggrArglList: '@TExpr' '!' '@Col';

uriPattern: '{' 'uri' '=' ' (' uriltem (',' uriltem)* ")' '}';
uriltem : valueExpr;

140

tableExprPlain : simpleTableExpr | ' (' tableExprExt ')';
tRefList : tReflItem (',' tRefltem)*;

tRefltem : tNavigItemE tRefItemlL tExprTopSpec? ;

tRefIteml : (nLinkExpr tRefItemP)? ;
tRefItemP : (tNavigItem tRefltemL) | empty ;
dataExpr : (tableExprPlain)? '.' valueExprPlain ('~"' xsdRef)?;

tExprTopSpec : tTopFilter;
tableExpr : tReflist (';' tFilterExpr? (';' colDeflList)?)?;

tNavigItemBase :simpleTableExpr refMark?|' (' tableExprExt ')'
refMark? ;
simpleTableExpr : tableRefExpr | ClassMapRef | namedRef ;

namedRef : '[[' defName ']]';

nLinkExpr : ('[' valuelList '1'")? ('->'['=>") ('[' valuelist ']')?;
valuelList : valueExpr (',' valueExpr)*;

tNavigItem: tNavigItemBase (':' tNavigFilter)* ;

tNavigItemE : tNavigItem | empty ;

empty : '.'?;

tNavigFilter : tFilterExpr | tTopFilter ;

tTopFilter: '{' ('first'|'top' INT ('percent')?) orderSpec? '}';
orderSpec : valueExpr ('asc']|'desc')?;

tableExprExt : tableExpr (uriPattern|keyPattern)?;
keyPattern: '{' 'key' '=' '(' keyItem (',' keyItem)* ')' '}';
keyItem : valueExpr;

tFilterExpr: filterOrExpr ('or' filterOrExpr) *;
filterOrExpr : filterAndExpr ('and' filterAndExpr) *;
filterAndExpr : filterItem | 'not'? '(#' tFilterExpr '#)';

filterItem: unarybinaryFilterItem | constantFilterItem |
existsFilterItem | betweenFilterItem;

unarybinaryFilterItem: valueExpr ('is' 'not'? 'null' |
binaryFilterOp valueExpr);

constantFilterItem: 'true' | 'false';

binaryFilterOp : '=' | '<' | '>'" | '<=' | '>=' | '<>'" | 'like' | 'in'
;

existsFilterItem: 'exists' '(' tableExpr ')';

betweenFilterItem: valueExprPlain 'between' valueExprPlain 'and'
valueExprPlain;

colDefList: (colDef (',' colDef)*)?;

colDef : VarName '=' valueExpr ;
simpleExpr: valueExprPlain | variable | functionCall | prefixOp
simpleExpr
| aggregateCall ;
valueExpr : simpleExpr (infixOp simpleExpr) *;

141

valueExprPlain : sglExpr | colRef | INT | STRING | '(' valueExpr ')'

sqlExpr :caseTwoOptions | caseManyOptions;

caseTwoOptions: 'case' 'when' tFilterExpr 'then' valueExprPlain
('else' wvalueExprPlain)? 'end';

caseManyOptions: 'case' valueExprPlain ('when' valueExprPlain 'then'
valueExprPlain)+ ('else' valueExprPlain)? 'end';

xsdRef : (XSD_TYPE_PREFIX)? VarName;

colRef : colName | compoundColRef;

compoundColRef : simpleTableExpr '.' (colName | ' (' colRef ")'");
colName : VarName;

colRefPlain: colName | ' (' compoundColRef ')' ;

refMark : VarName | ClassMapRef;

ClassMapRef: '<s>' | '<t>' | '';

defName : VarName;

dbOptionSpec :

fdbname=' VarName

!alias:' VarName

!schema=' STRING
!public_table_prefix:' STRING
!jdbcidriver=' STRING
!connection_string:' STRING
!aux=' ZEROONE

! default="' ZEROONE
!init_script=' STRING

);

dbName : VarName;

dbAlias : VarName;

dbSpec : 'DBRef' ' (' dbOptionSpec (COMMA dbOptionSpec)* ')';
tableRefExpr : (dbAlias ':')? VarName;

variable : '@'VarName;

functionCall : fName ' (' wvaluelList ')';

fName : VarName;

alias : VarName;

infixOp : '+' | '=' | '*' | /' | 'div' | 'mod' ; //* continue
prefixOp : '-' ;

aggregateCall : aggrFName ' (' dataExpr ')' | aggregateWrk;

aggrFName : 'min' | 'max' | 'avg' | 'count' | 'sum' | aggrUserFName;
aggrUserFName : '@' VarName;

aggregateWrk : 'Q@aggregate' '(' tableExpr '!' wvalueExpr ',' valueExpr
', 'valueExpr ") ';

CDecoration : '?' | '?20ut' | '?In' | '!NoMap' | '!SubClean';
PDecoration: '?Domain' | '?Range' ;

VarName s(tat Ltz AL L2) (tata Tz [TA L2 0 L9) R
COMMA :',"';

142

ZEROONE :'0'['1";

INT ::'0'..'9"+;
COMMENT
: Y/ ~("\n'"|'\r")* "\r'? '\n' {Schannel=HIDDEN;}
| '/*' (options {greedy=false;} : .)* '*/!
{$channel=HIDDEN; };
WS (" " | "\t" | "\r'" | '"\n') {Schannel=HIDDEN;} ;
STRING : '\'' (ESC_SEQ | ~('"\\"['"\'"))* '\'';
XSD TYPE PREFIX: 'xsd:"';
fragment
HEX DIGIT : ('0'..'9'|'a'.."f'|'A'..'F") ;
fragment
ESC_SEQ

l\\l (|b|||t|||n|||f|||r|||\”|||\||‘|\\|)
| UNICODE ESC
| OCTAL ESC ;

fragment
OCTAL_ESC
: N (0L T3T) (rorLLtTy (0Lt T
| NP0t Ty (ror LT
| N0t Ty
fragment
UNICODE ESC : '"\\'" 'u' HEX DIGIT HEX DIGIT HEX DIGIT HEX DIGIT;

9.8 RDB2OWL full semantic metamodel

143

OWL Ontology e %
Information ntolo FunctionDef
ontologyURI:String 1 {ordered} fName:StL:ingl
baseURI:String 0.1 isAggregate:Boolean _
.. T LT TSP P P P PP PP PSSP IP PSPPI : e e Pagm.
H— : lame: Strin
1) - ; O —Tordereq)
ClassMap : ffunction
Ly instruction:{?,?Any, B
N 20ut,?In,!No,! Sub} [*] 0.1 + <
OWLProper >——— Reference :
localName:String[0..1] | | _OWLClass | varName:String
entityURI:String localName:String[0..1]
entityURI:String functionBody |1 B
*5ubCl 1 ; Japplication
DataExpression o1 :
5 aggrName:String
OWLObjectProperty 7 ObjectPropertyMap 5
i ion:{?| 2 5
range [by stuctonZRonizRanili] BuiltinAggregateExpr
superCl -
aggrName:{Sum,
- OWLClassExpression 1 0.1 Count, Min, Max, Avg}
domain lexprContext o-t Q@@aggregate(@1, .
TableExpression XSDRef concat(@1,, ", @2))
OWLDataProperty /sqlView:String exists ypeName:String \V/
: | RawAggregationExpr | | AggregateExpr |

ffref 1

XSDDatatype {ordered} first{1 joinOp |1

1 {ordered} F _j

typeName:String
| ValueExpression :
T Hefaut ‘ 1 | /hasXSDRef:Boolean op_{?maryEXpr
: <>,+,-,*,/,div.ymc;d
i 1.* fordered} > ExistsFilter s ;
Q ConstantFit 3 fordered} *@rgs 2| 1| *{ordered} 1 @hﬂd JA
J— N : onstantiiter ordered| :
{ordered} : opName:{true false} ' :
RDB MM (exte?d?gg EOCPERINAaDEEEN00 DBRef prev {ordered} |* 0.1
refDb : dbName:String L NotFilter :
dbAlias:String Refltem —cond:{NOT) _
Database isAUXDB:Boolean fiterBxor [0.1 |1 : Constant ol fName:String
dbName:St % : P [CTE TS
dbName:String isDefaultDB:Boolean : : : A
jdbcDriver:Strini B ? B
J R hasTempSpace:Boolean ClassMapRef : BooleanExpr [AndOrFilter : b
COEHECUDST«S"'HQ tempTDefTable:String mark{<s>,<t>, empty} | : _J cond:{AND,OR} i |__variable
schema.String viewDefTable:String N 2 Q - i [VName:String
publicahleRiefcSiring initSQLScript:String {ordered) 1. AggrBaseRef < i i ; :
5 s BinaryFilteritem

mark:{}

Navigltem

-

filter Expr opName:{=,<,>,
<=,>=,<> like}

S

A e R I 3 0..1 feft 0..1 fight :Iref o .
DBFuncti ' TTableDef } P . H Exorlt UnaryFilterlitem
fName-StrLilr?g = LICTH | I } tName:String H rnklo.1 iLink 0.1 aIias-érrin;m opName:{is null, | o
- : ! insertSQL:String 1 1.* | is not null}
H D p

NavigLink

NamedRef
refName:String

Table
tName:String

: viewName:String :
: viewDBAlias:String

A —]

TableRefExpr
o alias:String

0.1 !main rightC (0.1 leftC [0..1

mainTable (0..1

. TableRef T

* *
{ordered} |1.. {ordered} |1.. : Name:string
Column | dbAlias:String[0..1]
| colName:String :

1 OrderList | * Orderltem H
0.1 ordered g :
TopSpecificationBody KO——— { } | desc: Boolean X -
1 [count: Integer [0..1] :
percent: 1..100 [0..1] 0.1 [E
rowNum: Integer [0..1]

:(ref 1..* fordered}

DBFunctionRef
fName:String
. fDBAlias:String

datatype |1

* [sqLbataype |,
typeName:String

