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Abstract

Wireless sensor networks is a technology that was originally envisioned as a tool for
broad range of purposes and target audiences. However, wireless sensor network
software development is complicated, because it brings together the complexity of
resource-constrained embedded system software and the complexity of distributed
system software. This is one of the reasons why sensor networks have not yet
become an ubiquitous technology.

This problem is partially solvable by decreasing the accidental software devel-
opment complexity that is at the moment present in the process of sensor network
application development. The sensor network application developer must be pro-
vided with appropriate development tools, languages and libraries in order to allow
him to focus on the essential complexity of software development. Therefore this
dissertation presents a number of approaches that facilitate sensor network applica-
tion programming, including: a new application development language that allows
to write applications in more concise and less complex way, and an approach to in-
crease the resource-efficiency of sensor network operating systems. The approaches
are integrated in a unified framework, along with other software designed by the
author and his research group.

This framework is targeted towards two categories of users: firstly, novice pro-
grammers, secondly, professional programmers, including programmers with limited
experience in wireless sensor networks.

The evaluation shows that these approaches lead to applications with decreased
resource usage and lower code complexity.

Keywords: Wireless sensor networks, domain-specific languages, operating
systems
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Introduction

Among the components that are needed to make computing truly pervasive, wireless
sensor network technology is one of the key pieces in the puzzle. Small, spatially
distributed and interconnected autonomous nodes with low energy requirements
and low price can truly change the way computers are perceived and used. They
can enable the people to interact with the environment and with each other in ways
previously unimaginable. They can allow us to capture the important information
that is out there, in the physical world, but inaccessible and unobserved at the
present. Or can they?

Programming wireless sensor networks is difficult enough to hinder the fulfill-
ment of their promise. Along with other factors, this issue during the last decade
has turned WSN from a new and exciting research area into a much-researched
technology that is still on a brink of unlocking its true potential. The sensor net-
work business is expected to become “multibillion dollar industry”, but only when
there is “major progress with technology” [BusinessWire 2012].

Wireless sensor network programming is still an unresolved research problem
[Welsh 2010]. Their software is inherently complex because it brings together the
complexity of resource-constrained embedded system software and the complexity
of distributed system software. Still, a distinction between essential and accidental
complexity can be made [Brooks 1987]. Essential complexity stems from the the
inherent nontrivial structure of software artifacts, while accidental complexity is
caused by the approaches used to create and manage those artifacts. Progress in
software engineering can only decrease the accidental complexity. We1 believe that
at least wireless sensor network application (rather than system) programming com-
plexity at the moment is essential only partially. It is partially accidental because
of the mismatch between the skills & experience of the sensor network application
programmers (both current and potential ones) from one side, and the software
libraries, tools and interfaces for sensor network programming from the other side.
As a consequence, the accidental complexity can be decreased by providing these
application developers with better fitting software libraries, tools, and interfaces.

For instance, the existing sensor network operating systems are characterized
either by a steep learning curve for system programmers without sensor network ex-
perience, or by suboptimal use of resources. This thesis shows that these drawbacks
can be ameliorated.

Furthermore, sensor network applications at the moment are usually developed
by the computer science professional. This approach leads to several difficulties for
the sensor network end user, who has limited programming skills. First, it requires
participation of a qualified computer scientist in the sensor network development
and deployment processes. Second, it requires constant availability of the profes-

1Throughout the thesis this term is used to denote the author individually, rather than the
members of his research group.
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sional to perform maintenance operations. As a consequence, the labor costs of
qualified engineers adds up to the largest cost factor in real-world sensor network
deployments [Corke 2012]. The problem is exacerbated by the fact that many net-
works are deployed in remote areas that are far more frequently visited by domain
experts than by computer scientists. Finally, it puts the domain expert in the role
of a passive user rather than an active contributor. Therefore, there are both finan-
cial and scientific incentives to empower these users and allow them to write and
maintain sensor network applications on their own. One may speculate that these
issues will became even more important in the future, if expenditures for hardware
will go down in proportion to expedintures for software creation and maintenance,
as it has already happened [Van Vliet 2008] in the areas of desktop and mainframe
computing.

A number of sensor network programming approaches at medium or high level
of abstraction already has been proposed by the research community. Some of the
approaches are targeted specifically towards domain experts. However, compared
to them, the results of this thesis:

• are integrated in a single framework, therefore their usability is improved by
offering a number of interfaces in different levels of abstraction, suitable for
distinct groups of users, and resource usage efficiency is improved by offering
cross-layer optimizations;

• are suitable for a wide range of sensor network applications, instead of being
restricted to solving a particular programming problem or to a particular
type of application;

• take into account research results about novice programming;

• have been experimentally tested in preliminary user studies and in a real-
world use case.

Assumptions

This work is based on the assumptions (discussed in detail in Chapter 1 and sup-
ported by research literature) that:

1. A significant part of the prospective wireless sensor network application de-
velopers are so-called novice programmers, who are unskilled in any of general
purpose programming languages.

2. Excluding this novice programming group, the remaining application pro-
grammers are more likely to have C programming language experience than
specific sensor network operating system programming language experience.
They are also likely to prefer to implement at least some of common sensor
network applications using a thread-based, rather than event based model of
concurrent execution.



Introduction 3

3. The programming approaches (languages, libraries, and middleware) suitable
for wireless sensor network application development should be made more
accessible for these two target audiences.

Theses

The following theses are put forward in this work:

1. The accessibility of sensor network application programming approaches for
novice programmers can be increased by offering these programmers:

• a domain specific language with high level of abstraction;
• an integrated development environment;
• a visual programming interface.

2. From application programmer’s point-of-view, several improvements are pos-
sible in the design of wireless sensor network operating systems compared to
the state-of-art. They include:

• improving resource usage efficiency for typical applications, by offering
a semiautomatic, modular component selection mechanism;

• improving learnability (for already experienced programmers) of sen-
sor network operating systems without loss of resource usage efficiency,
by providing the application programmers with programming models
and software abstractions that are appropriate for wireless sensor net-
works, and are either generally known, or are well-known among system
programmers.

Research objective

The objective of this thesis is to develop a prototype of resource-efficient software
framework that would facilitate the development of wireless sensor network appli-
cations for two groups of users:

1. novice programmers;

2. professional programmers, including programmers with limited experience in
wireless sensor networks.

Brief description of methods

The tasks performed during the development of this thesis includes conducting a
literature survey. The outcome of the survey includes description and comparison of
23 wireless sensor network programming approaches and 4 sensor network operating
systems.

For the experimental part of the thesis, a number of software prototypes has been
developed and analyzed. The analysis includes quantitative measurements using
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software engineering metrics (cyclomatic complexity, lines of code, programmer’s
effort according to Halstead complexity measures) and other metrics (binary code
size, RAM usage, upload time, energy consumption). Usability tests of the software
were conducted, with 30 participants in total. Finally, practical evaluation of the
functionality of software on real sensor network hardware has been performed for
several months in outdoor conditions.

Author’s contribution

Most of the approaches and the software described in the thesis are developed
personally by the author. For example, the SEAL programming language was
created and implemented by himself. Important exceptions are:

• MansOS sensor network operating system was initially envisioned by Leo
Selavo, and later developed by himself and a number of people. More detailed
list of contributions is available at the Introduction section of Chapter 2.
• SEAL integrated development environment was developed by Janis Judvaitis

under author’s supervision.
• SEAL-Blockly language and development environment was developed by Ja-

nis Judvaitis and Leo Selavo, with only a small author’s participation.

SADmote sensor device hardware was designed by Rihards Balass and Leo
Selavo with author’s participation.

Thesis outline

The thesis includes introduction chapter, four body chapters, conclusion chapter,
and one appendix.

Chapter 1 gives a brief overview of wireless sensor network hardware and its
specific properties. After this, the chapter overviews the target audience of this
work, the specifics of it, and the software that is appropriate for this audience. The
rest of the chapter is devoted to the results of the literature survey.

Chapter 2 describes system level support for wireless sensor network appli-
cation development framework, specifically, the MansOS operating system. The
chapter in detail describes several aspects of MansOS (code architecture, compo-
nent selection mechanism, concurrent execution models, etc.) that are directly
relevant to this thesis. The chapter also includes results of MansOS evaluation and
describes two of its applications.

Chapter 3 includes one of the cornerstones of this work: the description and
evaluation of the wireless sensor network application development language SEAL.
The design choices of SEAL are described and justified. The place of SEAL among
the related work is briefly discussed, as well as its elements, architecture, and the
software development tools built on top of SEAL. Substantial qualitative and quan-
titative evaluation results of four aspects of SEAL are given. The evaluation includes
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complexity evaluation of the language and applications written in it, efficiency eval-
uation, applicability scope evaluation, and usability test results.

Chapter 4 describes a wireless sensor network application for environmental
monitoring in precision agriculture. The system itself already has been described
in more detail in author’s publications; dissertation focuses on what lessons were
learned from this sensor network use case.

Chapter 5 (the conclusion) lists the main results and conclusions from this
work, as well as author’s publications and presentations related to the dissemination
of research results.

The appendix includes the grammar of SEAL.
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Programming wireless sensor
networks
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1.1 Introduction

Despite the relatively small size, sensor network software is quite complex
[Picco 2010] and its development is characterized as “difficult” [Welsh 2004]
[Casati 2012] [Chu 2007] and “challenging” [Rubio 2007]. Indeed, the complexity of
sensor network software comes from two aspects: it includes the specific complex-
ity of embedded software and the specific complexity of networked software. WSN
challenges already familiar to the developers of networked software include need for
distributed algorithms, unreliable communication, the need for QoS guarantees, and
the need for synchronization. WSN challenges already familiar to embedded system
developers include hard computational resource constraints, nontrivial debugging,
and (for a subset of WSN software) the need for real-time operation. Furthermore,
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sensor networks place new, specific constraints on the software, most prominently,
the energy constraint. Since sensor networks often are powered from low-capacity
and/or non-rechargeable power sources, persistently continuous operation is not an
option; energy-efficient software with a low duty cycle should be used. All of this
shows that specific software should be developed for sensor networks; reusing ex-
isting software (such as operating systems or network protocol implementations) is
not the best solution in most of cases.

The designer of an application development framework has to work at different
levels of abstraction (in contrast, a user may choose to work only at one level).
The following quote shows how this term (“abstraction”) is defined in the existing
research literature: “An abstraction for a software artifact is a succinct description
that suppresses the details that are unimportant to a software developer and em-
phasizes the information that is important. For example, the abstraction provided
by a high-level programming language allows a programmer to construct algorithms
without having to worry about the details of hardware register allocation. Software
typically consists of several layers of abstraction built on top of raw hardware.“
[Krueger 1992].

More specifically to this dissertation, two critical levels of abstraction are sep-
arated: the system level and the high-level language level. Our contributions at
the system level of abstraction are described in Chapter 2; our contributions at
the higher level of abstraction are described in Chapter 3. In contrast, the current
chapter reviews the state of art in sensor network programming at both levels: first,
at the system level (Section 1.4), then at the high level (Section 1.5).

The current chapter starts with a brief introduction into sensor network hard-
ware (Section 1.2). After that, it turns its attention to sensor network users that are
novice programmers (Section 1.3). (In the scope of this thesis, a novice programmer
is defined as a person not skilled in any of general purpose programming languages.)
We believe this group of users is an important stakeholder in the future of sensor
networks. The rest of the chapter is devoted to survey of state-of-art sensor network
software (operating systems and programming approaches).

1.2 The hardware of sensor networks

All software is ultimately constrained by the hardware on which is executing. Hard-
ware constraints are especially important in the context of embedded systems.

It is typical of the existing wireless sensor deployments [Strazdins 2013] to use
specific hardware devices: motes, either custom or commercial off-the-shelf. Tmote
Sky [Moteiv Corporation 2006] (Fig. 1.1) is a prominent example. It is also an
example of a TelosB hardware architecture compatible mote.

A mote typically consists of several integrated blocks:

• a low-power microcontroller;
• a radio transceiver;
• on-board sensors;
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Figure 1.1: Tmote Sky sensor node [Moteiv Corporation 2006]

• peripheral extension connectors (analog and digital input/output ports, USB
ports);
• an external storage device (a flash mempory chip or a microSD card);
• a power source (typically batteries).

The software is largely restricted by the resources of the microcontroller. Micro-
controllers with very low energy consumption are typically used [Strazdins 2013],
such as the 16-bit Texas Instruments MSP430 [Texas Instruments 2013] or 8-bit At-
mel AVR [Atmel Corporation 2013] MCU families. Notable sensor network hard-
ware platform examples that use MSP430 MCU include Tmote Sky, Zolertia Z1
[Zolertia 2013] and AdvanticSYS XM1000 [AdvanticSYS 2013]; notable examples
that use AVR MCU include Arduino [Brock 2009]. In future, ARM Cortex-M0+
[ARM Holdings 2013] family can be expected to gain prominence, as it offers full
32-bit computation with active-mode energy consumption comparable to MSP430.

What can typical low-power MCU (like MSP430F1611 [MSP 2011] from
MSP430 family or ATmega328p [atm 2011] from AVR family) offer to the sensor
network programmer? Quite a lot. These devices feature a number of peripher-
als, such as general purpose input/output pins, multiple hardware timers, digitally
configurable oscillator (determines the frequency of the MCU), watchdog, and oth-
ers. Analog inputs can be sampled using the built-in ADC circuitry. There is
hardware support for several popular digital data communication protocols: asyn-
chronous 2-wire serial (USART), synchronous 3-wire serial (SPI) and 2-wire serial
(I2C). More advanced or newer MCU also include additional functionality, such as
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Table 1.1: Comparative data of Texas Instruments MSP430 Series-2 microcon-
trollers and ARM Cortex M0+ based Freescale Kinetis microcontrollers. Represen-
tative sample from DigiKey catalog in March, 2013. Order quantity: 1000 units

MCU Code memory RAM LPM3 current Price
MSP430F2618TPM 116 kb 8 kb 1.1µA 7.14 $
MSP430F2417TPM 92 kb 8 kb 1.1µA 5.40 $
MSP430F2491TPM 64 kb 2 kb 1.0µA 4.27 $
MSP430F2471TPM 32 kb 4 kb 1.0µA 3.54 $
MSP430F233TPMR 8 kb 1 kb 1.0µA 2.42 $
MSP430F2131TPWR 8 kb 256 bytes 0.9µA 1.52 $1

MSP430F2001IPWR 1 kb 128 bytes 0.9µA 0.51 $1

MCU Code memory RAM Stop mode current Price
Freescale Kinetis KL2 128 kb 16 kb 345µA 4.19 $2

Freescale Kinetis KL1 64 kb 8 kb 345µA 1.70 $3

Freescale Kinetis KL0 8 kb 1 kb 273µA 0.78 $4

real-time clock (RTC) circuitry, or even universal serial bus (USB) support, but the
previously described set of basic features usually remains included.

Table 1.1 describes the raw data for MSP430 and Cortex-M0+ MCU, while Fig.
1.2 visualises the correlation between memory capacity and price for MSP430 MCU.

The price of desktop-computer’s CPU for the several recent decades has been
mainly determined by its operating frequency and the number of cores. In contrast,
the price of a very low power MCU strongly correlates with its memory capacity,
including both code memory and RAM. For example, the seven MSP430 MCU
selected for the sample has correlation coefficient 0.965 for the selected metric. (The
correlation is not as strongly expressed for this sample if either only RAM size or
only flash memory size is considered, therefore a combined memory usage index is
used instead: flash memory usage plus RAM usage multiplied by 10. The selection
of this specific index is justified by a rule of thumb described in [Levis 2012]: typical
TinyOS applications use 10 times more code memory than RAM.) The correlation
provides financial incentive to develop software that fits into the minimal amount
of code memory and uses the minimal amount of RAM.

There is also another aspect of WSN hardware: the tremendous reduction of
energy usage enabled by low-power modes. For some of the MCU the current
consumption in sleep mode (shown in Table 1.1) is than 1000 times lower than the
consumption in active mode (frequency-dependent & voltage-dependent; not shown
in the table, but in order of several milliamperes, rather than microamperes). This
necessitates the development of software that spends as much of time as possible
in the lowest-power mode possible. (Actually this is a simplification of the real

1Minimal order quantity: 2000 units
2Order quantity: 1 unit
3Order quantity: 96 units
4Order quantity: 490 units
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Figure 1.2: The price versus memory capacity of Texas Instruments MSP430
Series-2 microcontrollers. Representative sample from DigiKey catalog in March,
2013. Order quantity: 1000 units

situation; transitions between modes take non-negligible amount of energy as well,
complicating the matter [Karl 2007].)

1.3 The programmers of sensor networks

This thesis is concerned with the usability of software for wireless sensor network
application development (software such as operating systems or programming lan-
guages). ISO standards [Abran 2003] formally define usability as: “The capability
of the software product to be understood, learned, used and attractive to the user,
when used under specified conditions” (ISO/IEC 9126-1, 2000). In this work, us-
ability is generally understood as continuous rather than binary property. The
usability of a particular software artifact is inversely proportional to the cognitive
effort required to use it.

Since, by definition, usability is user-dependent property, in order to discuss
usability of a particular software artifact, its users must be identified and described
first.
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1.3.1 The target audience of WSN programming tools

Besides professional software developers, in existing literature a target group named
domain experts are identified as one of the users of WSN programming tools
[Mottola 2011] [Bai 2009] [Miller 2009]. They include research scientists (for exam-
ple, physicists and environmental scientists), civil engineers, and electronics hob-
byists. The experts are believed to start with less programming background than
traditional (desktop) application developers [Miller 2009]. Since the sensor network
programming is unlikely to become one of their main activities, it is assumed that
“the application domain expert will remain a perpetual novice, or, at best, an inter-
mediate programmer” [Miller 2009]. However, “close collaboration between users,
application domain experts, hardware designers and software developers is needed
to implement efficient systems” [Romer 2004].

WSN users

System
programmers

App. programmers

Figure 1.3: Euler diagram showing three levels of WSN users

In our opinion [Elsts 2012d] WSN application programmers is going to come
from two fields: (1) advanced WSN users with programming experience; (2) pro-
fessional application programmers with no WSN experience. Members of both of
these groups lack system programming experience and have to learn a new pro-
gramming languages in order to program sensor network applications. They form
the grey area (Fig. 1.3) between operating system implementers and everyday users
of WSN.

To use an analogy, the relation between these users and WSN programming
professionals is similar to the relation between server operating system develop-
ers and server administrators. The administrators are not required to develop an
operating system on their own; they are not even required to understand all the
internal details; however, what they are required is to apply user-space tools pro-
vided by system programmers. The programmers, on the other hand, are required
to develop tools that are easy to use for administrators and have comprehensive
coverage of common administrative tasks. No coincidence that there is a number of
domain-specific languages developed for system administration: for example, bash.
In contrast, the WSN research community as yet has failed to develop a software
tool with significant adoption in the target audience.

The task of a WSN programming tool or an approach is twofold. For the
professional programmer it is to reduce her cognitive effort, the burden on her
working memory, and to automate common tasks. For the novice programmer it is
to make the programming feasible.



Chapter 1. Programming wireless sensor networks 12

1.3.2 Assessment of computing courses in science study programs

The envisioned target audience of high-level sensor network programming tools
comes from applied sciences. At the moment we are not concerned with computer
science students (who can be expected to have proficiency in at least one general
purpose programming language), but rather with persons with college-level training
in other applied sciences. In order to evaluate the computing background of this
target audience, we performed an examination of undergraduate study programs
in University of Latvia (Table 1.2). We analyzed five study programs: Biology,
Chemistry, Economics, Physics, Mathematics. (The study programs were selected
in order to keep compatible with Kaplan’s study [Kaplan 2004], described later in
this section.)

We looked for courses in which either the basics of programming is taught or
where programming skills are explicitly required. Courses that teach only applied
informatics were not considered. We believe the results give some indication about
the situation other areas of applied science as well, i.e. the domain in which WSN
are useful as tools.

As the data shows, only students from mathematics and physics departments
have computing as a part of their standard curriculum. The rest of them can take
introduction to computing as a free choice course in another faculty – an option
that can hardly be expected to be exploited by many undergraduate students.

Table 1.2: Computing course requirements for undergraduate science students (ex-
cluding computer science) in University of Latvia [LU 2012], school year 2011/2012

Program Mandatory Optional
Biology1 − −

Chemistry − −
Economics2,3 − −

Physics − + 4

Mathematics + +

Our findings are confirmed by an earlier study concerning teaching computing
for undergraduate scientists in the USA [Kaplan 2004]. The curricula of nation’s
top ten liberal arts colleges were examined (Table 1.3). In universities of the USA,
comparably low numbers of computing courses were required to be taken by science
students (at least up to 2004, when the study was conducted).

We conclude that it is reasonable to expect that domain scientists won’t have
any significant training in computer programming beyond school level (with the

1A mandatory course in biometrics is offered, which mentions use of R software environment
2A related study program “E-business and logistics” is offered which features programming

courses
3At masters level, one lecture in informatics course is devoted to Business Process Modeling

Language (BPML)
4The programming course is listed as “mandatory choice” (B level), but is required to be taken

to collect sufficient number of credit points for the semester
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Table 1.3: Major requirements for computational courses in the United States of
America [Kaplan 2004]

Department Required Allowed No Mention
Biology 0 0 10

Chemistry 0 1 9
Economics 0 0 10

Physics 0 4 6
Mathematics 1 3 6

possible exception of physicists).
A separate question is whether school-level training can offset, on average, the

lack of programming courses later on. This is an important question as program-
ming is often taught in schools. However, we believe there are some indicators that
school-level programming training is not a good predictor whether the transition be-
tween novice and non-novice programmers will be successfully made later (typically,
at a university). For example, several respectable universities do not list school-
level programming as a prerequisite for their introductory computer science class.
(“Programming experience is good, but not necessarily required”1 – Massachusetts
Institute of Technology; “The course [CS106A] requires no previous background in
programming”2 – Stanford University; “There is no formal programming-related
prerequisites for admission to 61A [Structure and Interpretation of Computer Pro-
grams]”3 – University of California, Berkeley.) It is likely that these institutions
believe that there is no critical knowledge gap between those whose have studied
programming at school-level and those who have not. The author himself has only
limited, one-semester exposure to basics of Pascal programming in school, giving a
personal example of how formally limited school-level programming knowledge did
not lead to delays when moving beyond novice programming level at the university.

1.3.3 Research about novice programmers

Novice programmers have been mostly studied in context of imperative general-
purpose programming languages [Pane 1996]. Other areas, such as declarative
domain-specific languages and novice programmers (the topic of this work) have
“much room for investigation” [Pane 1996]. We speculate that it may be because
differences between application domains are large, making programming approach
well-suited for one domain useless in another. We examine the former studies, but
acknowledge that they have only limited value in context of DSL for WSN.

[Robins 2003] mentions the generally accepted belief that it takes about 10 years
to turn into expert programmer. Therefore, the gap between beginners and experts

1http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/
6-01sc-introduction-to-electrical-engineering-and-computer-science-i-spring-2011/
Syllabus/

2http://www.stanford.edu/class/cs106a/handouts/03-course-placement.pdf
3http://www-inst.eecs.berkeley.edu/~cs61a/su13/about.html

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-01sc-introduction-to-electrical-engineering-and-computer-science-i-spring-2011/Syllabus/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-01sc-introduction-to-electrical-engineering-and-computer-science-i-spring-2011/Syllabus/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-01sc-introduction-to-electrical-engineering-and-computer-science-i-spring-2011/Syllabus/
http://www.stanford.edu/class/cs106a/handouts/03-course-placement.pdf
http://www-inst.eecs.berkeley.edu/~cs61a/su13/about.html
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is huge. However, many of the issues that novices face are related explicitly to the
nature of imperative programming. For example, “poor grasp of the basic sequential
nature of program execution”, loops and conditionals (for loop in particular), the
use of arrays, recursion, and especially “issues relating to flow of control”. Most of
these issues are not present in a declarative domain-specific language that forbids
recursion, such as SEAL (Chapter 3).

[Maloney 2008] describes a simple visual language Scratch and its “edutainment”
(education + entertainment) use by 8 to 18 year old novice programmers. By
analyzing hundreds of real programs created by this group, Maloney et al. have
identified the usage of several concepts in these programs. The study identified that
three concepts (loops, Boolean logic, and variables) out of seven concepts considered
were increasingly prevalent between “second year” rather that “first year” students,
i.e. they were valuable concepts, but with nontrivial learning curves.

In general, the novice programmer has to learn not only the features of the
language, but also program design skills and problem-solving skills [Robins 2003].
Even if the language is trivial to learn (as are quite a few DSL), the skills are
still required. However, if the user is a domain expert, she already has the domain
knowledge, therefore the problem solving skills are reduced to solution formalization
skills, which is arguably easier and has greater dependence on the language used.

[Neal 1989] stresses the fact that novice users often use examples to learn pro-
gramming. The authors designed a programming IDE that made program examples
easy to access and performed a test that required to develop an application using
this IDE. Even though few of the test subjects actually copied example programs,
the programs were used as visual aids. 15 of 16 subjects used the examples for ”more
tricky parts”. Authors conclude that example-based programming is a promising
approach, because “the response [of the audience] was extremely positive, and they
found examples very helpful”.

1.3.4 Examples of novice programmers

In order to get a more concrete notion of our target audience, let us consider a few
specific examples.

Philip the Physicist is working on models of radio propagation. He has a test
setup consisting of number of spatially distributed outdoor antennas equipped with
transceivers. The antennas stay in fixed locations during the length of the whole
experiment, which can take several weeks. Philip would like to register environ-
mental parameters (precipitation, air temperature) that affect signal propagation
in his test.

The specialty of Elizabeth the Environmental scientist is microbiological plant
diseases. In order to pinpoint the exact correlations between microclimate and
prevalence of these diseases, she wants to record temperature, humidity and solar
radiation in tree canopies during vegetation season. To get statistically significant
data, she has to sample a number of trees; the number grows if several methods are
applied to prevent these diseases.



Chapter 1. Programming wireless sensor networks 15

Harry the Hacker is interested in so-called “smart houses” and is working on
distributed energy consumption system in his free time. He wants to measure the
energy consumption patters of each appliance, and automate some of them, so that
less the energy has to be used in the peak hours.

Even though all these examples are fictional, they are based on real people, with
whom the author is acquainted. And all of them could benefit from WSN in their
work – even if they don’t know that yet!

The knowledge and skills of this small group are vastly different. Philip knows
some FORTRAN for scientific computing, the basics of a few scripting languages,
advanced mathematics, including some experience with MatLab, and maybe even
some data-flow languages such as LabVIEW or Simulink. Elizabeth has studied
some statistics, uses spreadsheets almost daily, and has been taught how to use at
least one statistical package in the university (Section 1.3.2). Harry knows some C
and assembly language, as well as basics of electronics, but tends to get confused if
source code size is large.

What is common for all of them is that they are not only experts of their
respective application domains, but also novice programmers. None of them has ever
been a professional software developer; none of them has single-handedly written a
program larger than a thousand lines of code; none is familiar with formal methods
and tools of software engineering. Nevertheless, they are all technologically-literate,
and willing to adopt and use new methods and tools. However, the learning curve
of the existing programming tools can be an impassable barrier for a domain expert,
because few of them have the willingness to spend significant time learning skills
only marginally related to their main interests. Either they are able to learn how
to use the tool “on the fly”, or the tool becomes next to worthless – no matter how
well designed and intentioned it was.

1.3.5 Applicability of software engineering concepts to WSN

Software engineering aims to bring reliability and predictability in software develop-
ment by attempting to make it more like other engineering disciplines. The methods
of classical software engineering were created with large projects in mind: ”Software
engineering concerns methods and techniques to develop large software systems.
The engineering metaphor is used to emphasize a systematic approach to develop
systems that satisfy organizational requirements and constraints.” [Van Vliet 2008].
One has to wonder whether software engineering has something to offer to WSN pro-
grammers at all, since WSN software is (1) relatively small, (2) authored by people
from diverse backgrounds instead of software professionals, (3) usually developed
as research prototypes with few organizational requirements and constraints. As
examples show, even software that is apparently terrible in performing its intended
tasks can be used as a base for WSN conference paper with large research impact
[Langendoen 2006].

This question was tackled by [Picco 2010]. The author’s response is overwhelm-
ingly positive: he concludes that “software engineering is unavoidable in WSN”.
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Firstly, Picco reminds that WSN software, despite being small, is nevertheless quite
complex. Secondly, he argues that focus on quality requirements is inevitable, if
WSN ever can hope to become a useful tool for the society in large. It is of secondary
importance whether WSN software will achieve the quality needed through formal
methodologies, model checking, or other software engineering subdisciplines; the
point remains that software engineering methods are needed. The above-mentioned
[Langendoen 2006] article is a case in point: WSN projects that ignore basic soft-
ware engineering rules are doomed to fail to meet their primary research goals.

The key idea in [Picco 2010] in the context of our work is his separation of
two WSN programmer classes: the “end user” and the “WSN geek,” who have
very different concerns and skills. The objective of our work is to facilitate WSN
programming for both of these groups; the main focus of SEAL is on the first group,
and the main focus of MansOS is on the second group.

Although WSN applications come from diverse domains and show great variabil-
ity in scale and requirements, they all have one domain in common: the domain of
sensor networks. Two common approaches for domain-specific programming exist
[Van Deursen 2000], the first being software libraries and component frameworks,
the second: domain-specific languages (DSL). The first approach consists of building
modules that support domain-specific concepts. Informally speaking, not only the
so-called middleware, but also WSN OS falls in this category, including MansOS.

Domain-specific languages can be further divided by the means they are imple-
mented: there are standalone languages and embedded domain-specific languages
(DSeL). The second approach allows to facilitate domain-specific programming
(compared to the library approach) by embedding a novel notation in an exist-
ing language. Several WSN programming approaches have chosen to go this way,
for example Kairos [Gummadi 2005] and Pleiades [Kothari 2007]. A standalone
language, compared with the other approaches, requires the largest implementation
effort in contrast with the smallest client effort. By building a standalone DSL,
the notation can be kept minimal and as relevant to the domain as possible. Com-
pared with the library approach, DSL is also more amenable to automatic code
optimizations and parallel execution, as it is easier to reason about.

1.3.6 Choosing appropriate level of abstraction

Modern software is characterized by great complexity; an opinion expressed in
[Brooks 1987] is that “software entities are more complex for their size than perhaps
any other human construct”, because they contain very few redundant high-level
elements. One of the main objectives of software engineering as a discipline is to
fight against this complexity. This task can be approached by developing various
tools. (In this context this term is understood broadly, and includes not only, for
example, software development environments, but also thinking tools, such as soft-
ware abstractions, and other means that facilitate software development, such as
software libraries or languages.)

Let us consider two, somewhat contradictory, ways how the complexity in soft-
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ware development can be reduced: the first is to raise the level of abstraction pro-
vided by the tools in question, and the second is to raise level of concreteness.
Consider these three very simple software libraries as an example of tools with
different levels of abstraction:

• The first library for arithmetic operations implements a function that calcu-
lates the sum of an arbitrary rational number and 2.
• The second library implements a function that calculates the sum of two

arbitrary rational numbers.
• The third library implements a function that calculates the sum of two arbi-

trary p-adic numbers.

The first library is too restricted to be useful for large number of applications.
The last one may be too generic for many applications, and may require additional
learning overhead, as non-mathematician users are frequently not familiar with p-
adic numbers (they are a generalization of rational numbers). The second one in
this example clearly has the widest scope of application.

One can conclude that it is not enough to offer the most abstract tools (in
particular, thinking tools), as the tools themselves will become hard to comprehend,
especially for practically-minded users. It is not enough to offer the most concrete
tools either, as in this case all possible applications of these tools will be tied to
one particular problem; the tools will lack generality and flexibility. Abstraction is
beneficial to software reuse [Krueger 1992].

Therefore we argue that it is important to get the right level of abstraction.
The appropriate level is determined by the users and their previous experience. In
our opinion, the scientists from experimental and applied sciences, who deal with
hands-on experiments using physical world objects, are less likely to have preference
towards the abstract, detached thinking typical of theoretical computer scientists
and software developers, whose work focuses on the purely virtual. This implies that
the software abstractions presented to domain experts should be with concrete real-
world counterparts when possible. (A similar suggestion was distilled from novice
programming literature by Pane and Myers in their survey article [Pane 1996].)

1.4 Operating systems

1.4.1 Design overview of sensor network operating systems

The tasks of a traditional operating system include managing resources, protecting
access to them and allocating these resources to multiple users, as well as support
for concurrent execution of several processes and communication between them
[Tanenbaum 2006]. In contrast, a sensor network operating system typically has
to serve only a single application belonging to a single user. The severe hardware
limitations means that it may be impossible (or at least undesirable) to implement
all the functionality of a typical traditional operating system. However, there are
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some specific tasks that have paramount importance in wireless sensor networks,
namely, concurrent processing and energy management. Sensor network operating
systems should have support for these tasks.

Some common services that a WSN OS should offer to the user include: net-
working (routing, forwarding, MAC layer, time synchronization); sensor/actuator/-
transceiver access protocols; nonvolatile memory access; a library of common func-
tions (such as calculation of cyclic redundancy check error detection codes); time
accounting; setting system policies (such as policies for energy usage), and so on
[Karl 2007].

The operating system should also support reprogramming [Wang 2006]. Since
a sensor network typically consists of a large number of devices deployed in a re-
mote environment, it should be possible to reprogram them remotely. Implementing
reprogramming is nontrivial, because these devices are battery powered; the appli-
cation code should be as small as possible in order to save energy required for data
transfer in the reprogramming process. One idea is to run the application on top
of a virtual machine; the size of the bytecode for a virtual machine tailored for
WSN typically can kept much smaller than the size of equivalent machine code for
a MCU [Levis 2002]. However, being able to use only pre-defined bytecodes limits
flexibility of applications. Therefore less exotic alternatives should be supported in
WSN OS as well, such as partial reprogramming: a process where only part of the
binary code is replaced, rather than all of it.

In contrast to desktop systems that are executing on platforms with hardware
support for multiple access levels, the distinction between “user” and “system”
execution contexts is usually not as strongly pronounced in sensor network operating
systems. In fact, both “user” code and “system” code may access the underlying
hardware directly. Furthermore, the system and the user code are usually not put
in distinct addressing spaces. The sensor network “operating system” code does not
exist separately from the “user application” code; they are compiled separately, but
linked together to produce a single, optimized binary image. (Further in the text,
we sometimes use the term “application” in order to refer to the final binary image
of an executable, even though it includes not only user code, but also operating
system code. This is justified by the fact the the image is sometimes built and
optimized in application-specific way, as discussed below.)

In fact, it may be disputed whether the term “operating system” applies to sen-
sor network software like TinyOS [Levis 2004b] at all; Karl and Willig [Karl 2007]
mention that “perhaps the term execution environment is the more appropriate
one”. However, in this dissertation we retain the traditional terminology of the
WSN research community, and call TinyOS (for example) an operating system.

The fact that the whole operating system may easily be recompiled whenever
a user application is recompiled can be used to adjust the operating system for
the needs of each particular application. Only the components actually used by the
application have to be included in the binary image; furthermore, extensive compile-
time and link-time optimizations on these components become possible. However,
from all of the operating systems discussed below, only TinyOS adopts this design
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idea to the fullest; the implementation of this idea in this OS required development
of a special programming language nesC and a compiler for this language.

1.4.2 Execution models of sensor network operating systems

The execution model of a software artifact influences not only energy-efficiency,
but also determines the programming model that is appropriate for this software
artifact. Therefore “execution model” and “programming model” are sometimes
used interchargeably in this dissertation.

A purely sequential model of execution is inappropriate for sensor network soft-
ware. Data may come in from “arbitrary sources at arbitrary points of time”
[Karl 2007]; some data may have higher priority. Several approaches how to imple-
ment concurrency in WSN OS exists:

• Event-based. The operating system reacts on hardware events, such as re-
ception of a radio packet, data from a sensor, or expiration of a hardware
timer. The event handler may schedule the so-called “task” (callback func-
tion) and return. The task does the actual information processing; e.g. looks
what it inside the radio packets and decides which application-specific actions
to perform. Tasks are run to completion and cannot be interrupted by other
tasks; they can be interrupted only by events.
• Preemptive multithreading. In this model, different services and appli-

cations correspond to different threads of execution. The hardware signals
when the currently active thread should be replaced with another one. It
may happen either when the time-slice of the current thread has expired, or
when an event has happened that should be processed in some other thread.
In any case, the so-called “context switch” takes place: the state of the cur-
rent thread is stored to memory, and the state of the thread that is to be
run is retrieved from memory. Each thread must have its own stack space
preallocated during program initialization; thread-local context is stored in
this stack space.
• Cooperative multithreading. This model is similar to the previous one,

except that threads cannot be preempted by other threads, only by event
handlers. However, a thread can give up its execution context voluntarily.

The initial idea of WSN research community was to go for event-based OS design
at all costs, because it provides the maximal efficiency. For example, [Karl 2007]
(first published in 2005) advocates event-based programming model as “the only fea-
sible way”. However, the book based this view on a single evaluation [Li 2003] that
compared TinyOS with an existing, relatively “heavyweight” embedded operating
system eCos. Later development of WSN-specific operating systems with multi-
threading (such as Mantis [Bhatti 2005]) forced a reevaluation. Even though the
current multithreading OS are still not as energy-efficient as TinyOS [Duffy 2008]
[Lajara 2010], the prevailing mood in the community has changed; energy efficiency
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gains that compromise programming efficiency now are shunned upon. In partic-
ular, [Duffy 2008] shows that threaded operating systems are preferable in many
WSN application areas.

1.4.3 The current tradeoff between efficiency and learnability

One way to characterize the current WSN system level software design space is by
plotting it across two dimensions: the first being efficiency, the second – how easy
the system is to learn (Fig. 1.4). For example, TinyOS puts efficiency and reliabil-
ity over simplicity [Levis 2012] and is marked by a steep learning curve [Levis 2012]
[Cao 2008] [Bhatti 2005]. It can be put approximately at one corner of the design
space. In contrast, Arduino [Brock 2009] allows to write a few typical applications
with remarkable simplicity [Faludi 2010] [Brock 2009]. The time required to start
using their software libraries is short, as a relatively simple IDE and programming
examples are provided; however, the feature set is severely limited (no multithread-
ing, no OS-level support for low power modes and so on), and the energy efficiency
of the system is not as great [Wheat 2011]. It can be put at the opposite corner.

TinyOS

Arduino

Easy to learn

Hard to learn

Less efficient More efficient

Software design space

Figure 1.4: Sensor network software design space approximately projected to the
dimensions of efficiency and learnability (qualitative estimation)

A yet unreached goal in WSN OS design is to create a WSN OS with efficiency
comparable to TinyOS and usability comparable to Arduino. This dissertation is
an attempt to move in that direction. Admittedly, classical WSN OS are inherently
more complex, because they support networking and take distributed processing
and energy efficiency as core issues, while Arduino software libraries do not. For
example, Arduino only supports sequential execution model, which is insufficient
for WSN, as was argued above. Therefore, equally high usability for WSN OS may
be impossible to fully reach without moving to higher abstraction layers. However,
higher-level interfaces come at the price of decreased flexibility, which not all are
willing to pay.

1.4.4 Sensor network operating system examples

In this survey of the existing WSN OS we have included four well-known research-
oriented WSN OS together with Arduino. A brief timeline of the academically-
oriented WSN OS analyzed in this thesis is shown in Fig. 1.5.
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Figure 1.5: Timeline of wireless sensor network operating systems (by the date of
the first publication)

1.4.4.1 TinyOS

TinyOS is a seminal sensor network OS that has very high impact in the research
community. A primary goal of TinyOS was to enable and accelerate WSN research
[Levis 2004b].

The initial hardware supported by TinyOS was a very limited 8-bit MCU with
8 KB flash, 512 byte RAM, and bit-level radio [Hill 2000]. Although later the focus
of the system changed to more typical WSN hardware, efficiency has remained a
primary concern.

TinyOS is written (and requires applications to be written) in a specific pro-
gramming language: nesC. The need to learn a new language makes using the OS
more complicated for non-expert users. Additionally, there are more factors that
contribute to the steepness of TinyOS learning curve: novel software abstractions
present (static virtualization, parametrized components, etc.), the fact that concur-
rency is fully exposed to the user, and high generality and modularity of the OS
itself.

Application building was often very hard with TinyOS 1 [Levis 2005]. TinyOS 2
was an attempt to ameliorate these difficulties in two ways: first, by allowing build
applications on top of service distributions, second, by increasing the reliability
of the system. Even a trivial sense-and-send application was shown to behave
incorrectly in TinyOS 1 [Levis 2005].

The initial design of TinyOS included support only for run-to-completion tasks.
Multiple ideas how to integrate threads in TinyOS were soon proposed, until TinyOS
2.1 included support for TOSThreads [Klues 2009]. TOSThreads do not break
TinyOS concurrency model, because the kernel is still event-based. Kernel tasks are
not interruptible by user threads, basically meaning that two priority-level scheduler
is in place.

In contrast to many early attempts to move TinyOS out of the lab and apply
to real-world deployments, in more recent years academic deployments of TinyOS
powered sensor networks often turn out to be a complete success [Levis 2012]. Nev-
ertheless, finding new contributors to the core code itself turned out to be chal-
lenging. The authors of TinyOS admit that both over-generalization and too finely
grained components add to the difficulty of understanding and modifying the OS
itself. For example, the code for CC2420 radio driver is distributed across 40 source
files, making it very hard to build a mental model of it.
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1.4.4.2 Contiki

Contiki is a lightweight operating system created at the Swedish Institute of Com-
puter Science [Dunkels 2004]. Contiki applications are written in plain C, support
dynamic loading and unloading of components, and run on top of many popular
WSN hardware platforms (for example, TelosB and Zolertia Z1 [Zolertia 2013]).

Contiki is recognized for its unique execution model, which is a form of coopera-
tive multithreading: on top of event-based kernel lightweight cooperative threading
primitives are executed, called protothreads [Dunkels 2006]. Although not without
limitations (see Section 2.4), protothreads is a simple and elegant alternative both
to event-driven application code and to preemptive multithreading. Protothreads
are widely used in design of Contiki; most of its stateful system services (network-
ing etc.) are implemented as protothreads. The system also provides an interface
for writing platform-specific preemptive multithreading schedulers, although this
approach appears to be much less popular. Such a scheduler is not present in the
distribution of Contiki itself.

Contiki is also renowned for its timely inclusion of resource-efficient implementa-
tions for IPv4 and IPv6 networking, bringing the vision of Internet of Things closer.
There is also an option to use a more lightweight communication stack called RIME.
Contiki includes support for low power listening and energy efficient (low duty cycle)
data forwarding, as well as many other typical networking primitives.

Contiki has quite efficient code architecture that separates the MCU layer from
hardware platform layer. MCU family, such as MSP430 and AVR, code is put
separately from platform-specific code (like TelosB-specific code, Zolertia-specific
etc.). However, some code duplication is present (see Section 2.2.3).

Contiki adopts “most of functionality is included by default” strategy, which
leads to large binary code size (Section 2.6.2). However, for some components
the user may replace the default implementation with a version that simpler or
more appropriate to his application (for example, the default Contiki-MAC protocol
can be replaced with a dummy “null” MAC protocol). Even more, networking
subsystem can disabled in total; IPv4 and IPv6 support in the network stack can
also be disabled separately.

1.4.4.3 Mantis

Mantis OS is a WSN OS created at University of Colorado at Boulder. The date
of the first Mantis publication is 2005 [Bhatti 2005].

Multithreading is a key design feature of this WSN OS. The design goal of mul-
tithreading in Mantis was to naturally interleave processing-intensive tasks (such as
data encryption or compression) with time-sensitive tasks (such as network commu-
nication). The authors stress that manual partitioning of complex tasks in smaller
time slices is not trivial and sometimes require knowledge about the semantics of the
algorithm. If the programmer is merely porting the processing-intensive algorithm
to a WSN hardware platform, she might lack the necessary knowledge. At the same
time, failure to partition the tasks in small-enough slices might lead to contention



Chapter 1. Programming wireless sensor networks 23

of memory buffers and dropped data packets, because the consumer task unable to
execute active while the producer task is running to completion, as in TinyOS (see
also Section 2.4.1). The programmer also has to ensure that no components use
busy-waiting polling and infinite loops. In contrast, if preemptive multithreading
is used, the scheduler is going to automatically time-slice between threads. Thus,
usability is the primary motivation of this Mantis feature.

The scheduler can handle threads with multiple priority levels and provides
round-robin based scheduling within a single priority level. The scheduler also
handles sleeping when all threads are idle and have explicitly enabled power save
mode. The questionable choice to make this the non-default behavior was motivated
by the desire to keep compatibility with UNIX sleep() behavior.

Mantis is designed to work on multiple hardware platforms. In particular, ap-
plication code can also be compiled to run natively on x86 architecture. This allows
multimodal sensor network prototyping, where part of network consists of hardware
sensor devices and part consists of virtual nodes simulated on the PC.

1.4.4.4 LiteOS

LiteOS is a relative latecomer to the WSN OS stage (first publication in 2008
[Cao 2008]) and takes the ideas already seen in Contiki and Mantis to the logical
extreme, making the OS as much UNIX-like as possible. Being easy-to-use is de-
clared as one of LiteOS primary design goals, approached through features like (1)
a distributed file system as an abstraction for the sensor network, (2) dynamic load-
ing of separate “applications” (i.e. threads), (3) advanced event logging, dynamic
memory support and other features.

The trump card of usability for LiteOS is arguably the reuse of concepts from
UNIX operating system, which is familiar to many of the potential WSN pro-
grammers. LiteOS authors point out that this reduces the steepness of the learning
curve, as existing knowledge of the system programmer is reused. Namely, the shell,
filesystem, and threads are familiar concepts, as is the C programming language it-
self. However, the suitability of these concepts to WSN is not always clearly shown.
In particular, there is no evidence that the “network as a file system” abstraction
is easy to grasp, especially because it often diverges from the tacitly assumed be-
havior. For example, a mounted directory usually guarantees data availability –
something that might be impossible to achieve in WSN with their characteristically
unreliable communication. Furthermore, a seemingly innocent operation like simple
file access might in fact require relatively large energy usage, causing the lifetime of
the network to be significantly reduced. Other abstractions are not without faults
as well. LiteOS shell command ps lists different threads as different applications,
which is a questionable choice, because UNIX processes are typically marked by
lack of shared memory, while WSN OS threads often share a global state. The
LiteFS file system uses POSIX-like (but not POSIX-compatible!) API arbitrary
extended with WSN-specific functions, for example, fsearch, fcheckEEPROM etc.

LiteOS runs on a single hardware architecture: Atmel. The portability of the
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system is low, because inline assembly is frequently used.
To demonstrate the usability of LiteOS, the authors have ported a number of

TinyOS applications to it [Cao 2008]. An interesting observation is that the number
of threads required for each application is small – from the 20 applications ported,
only eight use more than one thread, and only two use the maximum of three
threads (see also Section 2.4 on how to exploit this fact). (We acknowledge that
most of these applications are trivial.)

1.4.4.5 Arduino

While not generally considered a WSN platform, Arduino can be used to successfully
build sensor networks [Faludi 2010], and Arduino software libraries often fulfills the
role of an operating system. Therefore it is included in this survey twice: first
here, among operating systems, and then in the next section, among programming
approaches.

What exactly is Arduino? Just a “low-cost platform for embedded computing”
[Brock 2009]. Arduino, which is printed circuit board with an ATmega microcon-
troller, surrounded by several digital and analog I/O pins, can be easily turned into
a sensor device by attaching external inputs to the pins. Arduino can be interfaced
to, for example, “switches, sensors, lights, and motors” [Brock 2009].

The popularity of Arduino software can be explained by two reasons: the pop-
ularity of its hardware; and the large, friendly and enthusiastic user community.
There are more than 300 000 hardware units sold [Arduino Team 2012]. Both Ar-
duino software and hardware are perceived as novice user-friendly.

While the site claims that “the Arduino board is programmed using the Arduino
programming language, which resembles C with a touch of C++,” the Arduino
programming language is in fact a subset of C++. Arduino is built around the
Wiring project, which is an electronic version of Processing programming language.
Arduino IDE is derived from the Processing IDE. (See also Fig. 3.7.)

Efficiency is not a primary concern, neither in Arduino software nor in hardware.
First, the MCU is Atmega, which is not as energy efficient as the ultra-low power
MSP430. A typical Arduino also requires 5 V input voltage, making it harder to
power the board in field conditions.

Regarding software, the user-friendly, but inefficient design is evidenced by an
example from [Wheat 2011]: a simple call to digitalWrite() function takes 66
MCU cycles in average. For comparison, in MansOS the same code (which is a
C preprocessor macro instead of a function) takes 8 cycles: 4 for setting a pin in
output mode, and 4 for setting its value.

Support for low-power mode management is not included in the Arduino soft-
ware libraries. If a user wants to put the system in a sleep mode, she not only has
to do it manually, but also to use API provided by the manufacturer of the MCU.

Arduino applications are single-threaded and based on a very simple and rather
restricted execution model. The user has to provide code for two functions: ini-
tialization function and a “loop” function. The latter is called repeatedly in an
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infinite loop in the Arduino core library. While simple to understand, the model
is not always as simple to apply: for example, all external events must be handled
by polling in the loop function. If the application has to implement, for example,
handling of two concurrent data streams with various QoS requirements (reliability,
delay tolerance), writing the user code become far from trivial. At the same time,
requirements like these are nothing untypical for WSN applications.

All of this allows to conclude that while remaining highly usable in general,
Arduino puts simplicity over usability in this, specific, WSN context.

1.5 Programming approaches

Survey of several of existing WSN programming languages, libraries, and middle-
ware is given in Table 1.4 (ordered alphabetically). Following the practice of several
existing survey articles [Rubio 2007] [Mottola 2011], all these software artifacts to-
gether are called programming approaches.

Compared to existing work, in what ways this survey is different? One drawback
of Rubio et al. [Rubio 2007] is that it is very concise and do not list details of each
approach. More importantly, several more practically-oriented qualities such as the
ones described in the last six columns of Table 1.4 were not analyzed in either
of the two surveys. In general, the qualities we were looking for were specifically
determined by the goals and scope of this dissertation.

Several of these approaches are classified as so-called macroprogramming
[Mottola 2011]. This term refers to WSN programming “at large”, at the level
of whole network or its region, rather than at level of a single node. It is contrasted
with “microprogramming”, i.e. single node programming.

Although majority of the approaches listed here recognize the importance of
powering application experts with the tools to program WSN, only a few of them
pay attention to user evaluation studies, IDE, and visual programming options.
Their focus, understandably, is different; however, if we expect a programming
approach that ir popular in the real world to appear, user input and real-world
evaluation results is of critical importance. SEAL (Chapter 3) is also included in
the table.
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Table 1.4: WSN programming languages and models

Approach Type Scope Univer-
sality

Made
for
novices

Simple
con-
cepts
only

Visual
pro-
gram-
ming

IDE Usab-
ility
eval-
uation

Real-
world
ap-
plica-
tions

Abstract Re-
gions

API Regional + +/− + − − − −

Abstract
Task Graph

DSL Global + + + +/− − − −

Arduino API Node-
local

− + + +1 + ? +

Erlang API Node-
local

+ − − − − − −

Flask Embedded
DSL

Node-
local

+ − − − − − −

Kairos Embedded
DSL

Global + − +/− − − − −

Logical Neig-
borhoods

DSL Regional − − + − − − −

makeSense Embedded
DSL

Global + + + ? ? − +

nesC Embedded
DSL

Node-
local

+ − − − − − +

Pleiades Embedded
DSL

Global + − + − − − −

PySense Embedded
DSL

Global + − + − − − −

Regiment DSL Global +/− +/− − − − − −
SEAL2 DSL Node-

local
+ + + +3 + + +

1Using BlocklyDuino [Lin 2012]
2Described in Chapter 3
3Using SEAL-Blockly (Section 3.3.5)
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Table 1.5: WSN programming languages and models (continued)

Approach Type Scope Univer-
sality

Made
for
novices

Simple
con-
cepts
only

Visual
pro-
gram-
ming

IDE Usab-
ility
eval-
uation

Real-
world
ap-
plica-
tions

SenQ DSL Global − − + − − − +
SensorBASIC Embedded

DSL
Node-
local

+ + + − − + −

SNACK DSL Node-
local

+ +/− − − − − −

Snlog DSL Global +/− − − − − − −
Squawk API Node-

local
+/− − − − + − +

TeenyLIME API Global − − − − − − +
TinyDB DSL Global − − + − − − +
TinyScript DSL Node-

local
+ + + − + − −

TinySOA API Global − +/− + − + + +
WASP DSL Node-

local
− + + − + + −

Column titles of Table 1.4:

• Type – domain-specific language, embedded domain-specific language, or
library API?
• Scope – node-local, regional, or macroprogramming focus? (Note: the mar-

gins often are somewhat blurred)
• Universality – universal or restricted applications?
• Made for novices – does the model: (a) declare domain experts as their

target audience, and (b) for a typical use case1 does not require to imple-
ment advanced distributed algorithm (as in Abstract Regions) or understand
internal workings of OS-level concepts (as in SNACK).
• Simple concepts only – no advanced programming concepts used? (For

example, functional reactive programming, logical programming, functions
as first class values are counted as advanced concepts)
• Visual programming – applications can be developed by manipulating

program elements graphically?
• IDE – integrated development environment present?
• Usability evaluation – user evaluation studies performed?

1See e.g. [Strazdins 2013] for survey of typical applications
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• Real-world application – real-world use cases known to us? (Either from
the corresponding publications or by some other means.)

In the table, ’+’ means “fully supported”, ’−’ means “not supported”, ’+/−’:
“partially supported”, and ’?’ is “unknown”.

The goal of Abstract Regions is “to simplify application level design by pro-
viding a new set of programming primitives” [Welsh 2004] for addressing, data
sharing, and aggregation among nodes in the network. Multiple implementations
of a region is possible and several kind of examples are provided by the authors
(e.g. where region is the single-hop neighborhood of a node). Their vision is to sim-
plify programming for domain experts; however, the identified “core difficulty” they
want to overcome is the difficulty of expressing global interaction in terms of com-
plex local actions. This view is not well supported by the current real-world WSN
applications, where complicated processing is an exception rather than a norm.

Abstract Task Graph (ATaG) [Bakshi 2005] is a data-driven method for spec-
ifying sensor network programs using mixed imperative-declarative syntax. It uses
abstract tasks, abstract channels, and abstract data as main primitives. The focus
is on macroprogramming and information flow in the network. The model is archi-
tecture independent and network independent, although “network-aware”. ATaG
features two-phase code development: first the declarative part is specified graphi-
cally, then programmer inputs code in the generated template. In our opinion, the
additional complexity of separating the two-phases (the programmer has to learn
and use two completely different programming paradigms) is not outweighed by
the gains in cohesion and conceptual simplicity. The ATaG programmer also has to
know a traditional programming language, such as C or Java, to be able to program
the imperative part.

The primary task of Arduino software libraries is to support embedded pro-
gramming on Arduino boards, but they can be used to program WSN as well
[Faludi 2010]. In contrast to other approaches, its roots are not in the WSN re-
search community, but rather from Processing environment, which has the objective
to teach basics of computer programming to nonspecialists [Reas 2003]. Therefore,
its usability is good (empirically supported by the large number of Arduino users),
while compatibility to WSN-specific requirements is limited. Also, users cannot be
completely shielded away from low-level memory access details, because Arduino
uses C++ as the programming language.

There also is an attempt to adopt Erlang programming language for sensor
network programming [Sivieri 2012]. Erlang is a functional language with many
practical applications in networking domain; the strength of Erlang is its good
language-level support for concurrency. The attempt is still in early stages and the
technical aspects are described only in cursory detail in the published work. The
main problem of this approach is high storage and memory footprint, even though
a custom, stripped down version of Erlang interpreter was developed for sensor
networks. The exact numbers are not given, but the author himself describes it as
“quite high” (order-of-magnitude estimate: megabytes).
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Flask [Mainland 2008] is an attempt to bring functional reactive programming
to sensor networks. The authors use a real application (Ecuador volcano monitor-
ing [Werner-Allen 2006]) as their showcase; however, the intuitiveness of the syntax
and concepts used to domain experts is dubious at best. Being a domain-specific
language embedded in Haskell, Flask takes a lot of its expressive power from higher
level abstractions that are built using combinators. Due to this high level of ab-
straction and amount of prerequisite knowledge required from the user, Flask is not
applicable in the context of novice programmers.

Kairos [Gummadi 2005] focuses on expressing global behavior of distributed
computation, rather than on node local and regional abstractions. Kairos is im-
plemented as an extension to Python (traditionally considered novice-friendly lan-
guage). Kairos provides three simple abstractions: (1) node abstraction – manipu-
late nodes and lists of nodes; (2) neighborhood abstraction – one hop neighbors of
node; (3) remote data access abstraction – the ability to read variables from named
nodes. The tasks Kairos article lists are either not suitable for novice program-
mers (building a routing tree and localizing sensor nodes) or not frequently met in
real-world WSN deployments (distributed vehicle tracking – not met in the sample
analyzed in [Strazdins 2013]).

Logical Neigborhoods (LN) [Mottola 2006] is a programming abstraction
that allows to group neighboring nodes not only by physical, but also by logical
attributes. The abstraction is implemented in SPIDEY language proposed by the
authors. The support of Wireless Sensor and Actuator Networks with multiple
sinks is stated as their main goal; therefore, in contrast to the above described
WSN programming models, LN is limited rather than universal in scope. LN uses
two-phase approach to programming – templates and instantiation. Informally,
they correspond to what is useful to the application, and how it can be used. In
contrast to ATaG, both phases are implemented in the same language. In our
opinion, although the concepts used by LN (virtual neighborhoods, virtual sensors)
have no real-world counterparts, they should be simple enough for domain experts
to grasp.

makeSense [Casati 2012] is a new development that explicitly declares in-
creased industrial adoption of WSN a problem they want to address. The authors
name lack of unification in WSN software and lack of its integration with business
processes as the two main problems. The result of the project is expected to be
“not another macroprogamming language”, but a framework for integrating exist-
ing solutions. Event though our goals are closely overlapping, the target audience
of makeSense project is different: users familiar with Business Process Modelling
Language (BPML).

nesC [Gay 2003] is the language of the most popular WSN operating system:
TinyOS. As such, it has many successful real-world applications. However, the
unsuitability of nesC to novice users has been long lamented by WSN research
community. Using this language not only requires understanding TinyOS internals,
but also using split-phase programming model (which is arguably harder to grasp),
because the language and OS targets event-based execution flow. As our evaluation
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show (Section 3.5.1) it leads to high cyclomatic code complexity.
Pleiades [Kothari 2007] is an extension of C language for WSN macroprogram-

ming. The Pleiades compiler generates code for individual motes, and takes care
of distributed locking and “serialization” of code execution. However, in contrast
to some other global WSN programming approaches (e.g. data query languages),
access to node’s single-hop neighborhood is still possible. Among the features of
Pleiades compiler is the support for program migration from node to node. In
our opinion, Pleiades is one of the most promising WSN macroprogramming ap-
proaches up to date, but not very well suited for novice programmers because C
is used. Among the drawbacks of this embedded DSL is the lack of node failure
handling, making the version of the language reported in the paper unsuitable for
practical usage.

Among the mainstream programming languages that had been applied to sen-
sor network programming not only Java, but also Python is prominent. Pysense
[pys 2013] is a sensor network macroprogramming approach that extends Python
language with custom decorators. One of main design goals of Pysense is to re-
duce energy consumption in data transmission by supporting intra-network data
processing, as well as by allowing to cluster nodes in regions. The Pysense is “still
incomplete to be used in real-world applications”.

Similarly to most of the approaches described here, Regiment [Newton 2007]
aims to solve the complexity problem of WSN programming. It explicitly men-
tions accessibility to nonexpert as the vision of WSN programming tools. However,
this macroprogramming framework is based on functional reactive programming,
evaluated for distributed event detection scenarios (not among the most popular
real-world WSN applications), and uses highly abstract concepts (e.g. sensor net-
work state is represented as time-varying signals). All of this makes Regiment better
suited for the WSN programming professional than the domain expert. Regiment
targets a specific application class: “spatiotemporal macroprograms”; however, the
paper states the belief that it is possible to “make macroprogramming viable for ma-
jority of applications”. The authors of Regiment also state an important point that
it is apparently impossible to completely abstract away performance implications
of WSN programs.

SenQ [Wood 2008] is a distributed query system for WSN, similar to TinyDB.
The infrastructure of SenQ provides support for multiple distributed data streams
in the network, while the application logic is specified using a declarative query
language SenQL. This approach is too limiting to be considered a direct competi-
tor to our target software. However, in contrast to most of approaches described
here SenQ was used in real-word WSN deployments [Selavo 2007] and prototypes
[Wood 2006].

SensorBASIC [Miller 2009] explicitly addresses the problem of bringing WSN
to domain experts by applying a dialect of BASIC language to WSN programming.
Somewhat counterintuitively (c.f. Section 1.3.3), the authors state that imperative
loop oriented programming was the most successful for the users tested. The ef-
ficiency of BASIC interpreter on WSN motes leaves a lot to be desired; however,
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the authors counter this overhead by claiming that, first, WSN applications are not
computationally intensive; second, that the code can be compiled to run natively.
In any case, the size of the interpreter is relatively large – 38 kb in flash: impractical
for some popular motes as Tmote Sky. This is one of the few articles where user
evaluation results were presented. The results were favorable. However, regrad-
ing domain experts as users: only a small-scale anecdotal study was performed,
using only two participants. The authors explicitly encourage more work in this
direction. In general, our goals are similar to the goals of [Miller 2009], but the
details are very different – we use declarative instead of imperative programming,
and a novel, rather than existing programming language. The authors argue that
BASIC provides easy-to-understand execution model; we respond that program-
ming in declarative languages lessens the need to understand the execution model
at all. Programming in a correctly designed restricted, declarative language makes
it harder to write incorrect or inefficient code compared to imperative language,
where the programmer has to explicitly describe program flow.

SNACK is an early, but impressive work in this field that presents “a new
configuration language, component and service library, and compiler that make it
easier to develop efficient sensor network applications” [Greenstein 2004]. It does
not introduce new programming paradigms per se, but is a tool to build systems
from blocks implemented either in SNACK itself or in lower level languages. The
idea is to raise abstraction level by avoiding working with low-level individual com-
ponents. The target audience of SNACK consists of three types of programmers.
First: system designers, who should be nesC and operating system experts; they
create components to be used by the others. Second: service designers, who bind
the components together in service libraries; they should be experienced WSN users.
Third: application programmers, whose tasks “should be simple enough for scien-
tists to do, powerful enough to support a wide range of applications, and generate
efficient enough programs”. However, even for the application programmer signif-
icant entry barriers are present. The concepts used in SNACK (e.g. transitive
arrows) are sometimes not straightforward. The syntax is based on the syntax of
the Click modular router and is in some aspects similar to Perl syntax. In our view,
it could be cleaner: it features large proportion of non-alphanumeric characters,
and looks rather cryptic at times. Our other points of critique for SNACK are: lack
of usability study; lack of validation of the solution in real deployments; TinyOS-
specificity of the solution, as it depends heavily on the way components in TinyOS
are developed and used. Finally, the components used in SNACK are generally too
low level to be directly usable by domain experts.

Snlog [Chu 2006] [Chu 2007] [Tavakoli 2007] shows how to build several WSN
services and applications fully declaratively, thus introducing a new WSN program-
ming paradigm. The language is a dialect of Datalog, and has the look-and-feel of
Prolog. The application code written in Snlog is much shorter than code developed
using less high-level approaches. However, we doubt that it is much simpler to write
and read for the nonprogrammer, because studies show [Pane 1996] that Prolog is
“notoriously difficult to grasp for novice programmers”.
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Squawk [Simon 2006] is a Java virtual machine that allows to program Sun
SPOT (Sun Small Programmable Object Technology) motes that run “Java directly,
without operating system” [Smith 2007]. Even though the Sun SPOT hardware is
characterized as “small”, it still has much more resources (512 kb RAM, 4 Mb flash
memory) than a typical sensor network mote like Tmote Sky. These resources
are required to run Squawk (80 kb RAM usage, 270 kb storage usage). Therefore
Squawk is not directly applicable to the context of this work, in which more resource
constrained devices-are considered.

TeenyLIME [Costa 2007] is a WSN middleware founded on the notion of tu-
ple space and is focused on sense-and-react applications. The notion of tuple space
is understand as distributed repository of tuples; a tuple is a list of typed fields.
TeenyLIME applications manipulate the tuple space (e.g. remote sensor readings)
using TeenyLIME API. The API is implemented as a library in nesC, therefore its
suitability for direct usage by novice programmers is rather doubtful. Furthermore,
all TeenyLIME operations are asynchronous and split-phase, arguably complicat-
ing writing the application code. Finally, to manipulate the tuple space, pattern
matching is used – the novice programmers might not be perceive it as conceptually
simple.

TinyDB [Madden 2005] is a query processing system for WSN focused on effi-
ciently sampling and aggregating the data. It is a completely global programming
approach with no option to address sensor nodes individually. Support for novice
programmers was not stated as explicit goal, but is a possibility taking into account
the simplicity of application logic implemented as TinyDB queries. All in all, it is
a rather limiting approach to be considered a direct competitor to our target soft-
ware. The code of TinyDB is comparatively large (approximately 20 000 lines of
code) and apparently difficult to maintain – despite its popularity in WSN research
community, in 2012 there is still no port of TinyDB to TinyOS 2.x (which itself was
released in 2006).

TinyScript [Levis 2004a] is a high-level WSN language that compiles to Maté
virtual machine bytecode. It uses event-driven execution model and is dynamically
typed (although explicit data conversion operators must be used). The language
was one of the first to address the problem of high-level WSN application program-
ming. Byte code generated by TinyScript compiler is usually very short compared
to sensor node MCU machine code, allowing efficient run-time reprogramming of
the motes. All source code in TinyScript applications must be written as part of
predefined event handler, a concept that was shown to be confusing for novice users
[Miller 2009].

There also is another approach to sensor network programming – using web
services. One example of this approach is TinySOA web service architecture
[Avilés-López 2009]. The architecture allows programmers to “access” sensor net-
works by using their preferred programming language. The architecture was eval-
uated in a usability test and is used for a real world application – crop monitoring
in precision agriculture. The API is characterized as “simple”, and since a custom
programming language can be used to access it, IDE of programmer’s choice can
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be used. The one large drawback of TinySOA is the very limited intra-network
data processing support. All sensor data is sent to a gateway, using network-wide
measurement interval.

The authors of WASP [Bai 2009] categorize all WSN applications into seven
archetypes, and present WASP, a simple language that is targeted towards one
of the archetypes. The authors advocate design of archetype-specific languages
in general. Although the idea is not without its merits, we feel that designing
a universal WSN programming language is a more promising approach. It may
very well be that a particular domain expert only has to work within one WSN
archetype; however, not being knowledgeable in WSN, she will have difficulties
recognizing the proper archetype and therefore also the language best suited for
her needs. Furthermore, if the application requirements (and also the archetype)
changes, she will be required to study and use a new language, rather than a different
subset of the same language. Finally, a single, general-purpose WSN programming
language is much more likely to gain the “critical mass” of popularity required to
reach domain experts outside the small WSN programming community, and even
in the community itself. [Bai 2009] is notable as one of the few papers that has
performed a scientific user study. The authors compared WASP with four other
languages and got favorable results. The results were even improved in the second
version of the test, where a modified version WASP2 was used. The chief difference
between WASP and WASP2 is the presence of IDE: another point typically ignored
by other researchers.

1.6 Concluding remarks

The hardware of sensor networks is instrumental in determining the non-functional
requirements of sensor network software. The heavy resource constraints of sensor
network hardware stem mostly from the fact that it is powered from low capacity
energy sources that frequently are non-rechargeable. However, there is also another
factor – more constrained hardware is cheaper to build. As preliminary market
research data (Table 1.1) shows, the code memory and RAM capacity of sensor
network microcontrollers have relatively low correlation with its energy efficiency,
but high correlation with its price. Therefore, developing more resource-efficient
software (with smaller code memory and RAM footprints) allows to significantly
reduce hardware costs.

Many of the prospective sensor network application developers are novice pro-
grammers. They are not likely to have extensive academic background in computer
programming. Therefore, general purpose programming languages are not well
suited for them; instead, DSL are more promising tools for sensor network applica-
tion development for this target audience, because they allow to keep the notation
minimal. Many of the issues that novice programmers face are related explicitly to
the nature of imperative programming, therefore it makes sense to use language that
is declarative in the core. Application examples or code templates should be easily
accessible, as they are helpful for novices, who lack skills for program composition
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on their own.
The plethora of existing wireless sensor network programming approaches cover

the software design space quite well, and each has its own strengths. How-
ever, each also has its own problems. Many are unsuitable for novice program-
mers. The few approaches that are targeted specifically to novice program-
mers could be improved if declarative approach was used [Miller 2009] or gener-
ality of the approach was increased [Bai 2009]. Macroprogramming (for exam-
ple, [Kothari 2007], [Gummadi 2005] and [Newton 2007]) and query processing
(for example, [Madden 2005] and [Wood 2008]) approaches have limited general-
ity and sometimes are too abstract for the target audience of domain experts.
The approaches that use abstractions that are familiar to the system programmer
[Cao 2008], fail to convince us that they are well-suited for sensor networks. The ap-
proaches that adapt existing programming languages [Sivieri 2012] [pys 2013] are
heavyweight; furthermore, they are not as well suited for novices as specifically-
developed languages (DSL) can be. The commercial approaches are not very pop-
ular and also require extensive hardware resources (Squawk [Simon 2006] on Sun
SPOT mote).
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2.1 Introduction

A wireless sensor network operating system should provide clean and flexible ser-
vices that allow the developer to create low duty-cycle applications naturally, and
handle highly concurrent execution flow reliably (Section 1.4.1). TinyOS [Hill 2000]
was the first to address this challenge. It is a small, efficient and highly influential
system created at the beginning of 2000-ties at the University of Berkeley. Unfor-
tunately, the system has gained notoriety as being difficult to learn [Levis 2012].
Sensor network operating systems developed after TinyOS tried to increase usabil-
ity in several ways: by allowing to write applications in plain C [Dunkels 2004],
using preemptive multithreading [Bhatti 2005], or supporting UNIX-like abstrac-
tions [Cao 2008].

As the sensor network research field matures, there is an increasing need for an
operating system targeted towards applications rather than research itself. MansOS
[Elsts 2012e] is a WSN OS developed with this goal in mind. It is implemented in
plain C; one of the objectives of MansOS since its inception has been declared “to
be easy-to-use for people without extensive WSN research background”.

We believe that while TinyOS did great by introducing many new ideas suitable
for WSN, more attention could have been devoted making these ideas accessible
for broader range of programmers. The ideas in TinyOS could have more real-
world impact and be better understood if they were made available for plain C
programmers.

The objective of MansOS related to the state of art is to complement TinyOS
in the areas of usability and learnability, and to complement other C-based WSN
operating systems (Contiki, Mantis, LiteOS) with more superior technical solutions
in some areas.

The author of this dissertation is not the sole author of MansOS operating
system. Notably, the initial architecture of MansOS, initial example applications
and initial platforms (telosb and pc out of the 10 current) were developed by Leo
Selavo, who also had the initial vision and outlined initial design directions. The
initial multithreading scheduler (replaced in 2011) was ported from Mantis OS by
Girts Strazdins. Girts was also responsible for other aspects of MansOS, including
ports to Atmega and Epic mote (now defunct) platforms, unified implementation
of SPI protocol, port of protothreads from Contiki, and drivers for several devices,
including the internal ADC module and the external flash chip. Andrey Vihrov
contributed a file-system, device drivers, and several ideas related to function-
granularity optimizations in application build process. The MansOS IDE and a
few drivers were developed by Janis Judvaitis. Reinholds Zviedris contributed a
port to MSP430 Launchpad platform. The web interface was initially developed by
the author and greatly improved by Dzintars Kanasevics and Georgijs Kanonirs.
Several others have contributed device drivers, bugfixes, bug reports and general
suggestions. However, most of the aspects of MansOS analyzed in this thesis (in-
cluding the component selection mechanism, the current multithreading scheduler,
thread safety mechanisms, accurate time accounting, four-level code architecture,
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reprogramming mechanism) are developed by the author himself.
This chapter uses materials from [Elsts 2012e] and [Elsts 2013b]. Section about

MansOS applications also uses text from [Zviedris 2010] and [Elsts 2014].

2.2 Code architecture

2.2.1 Motivation and overview

The portability of an software artifact is dependent on the amount of platform-
specific code it has; there is an inverse correlation between these two variables.
Since one of our design goals is to minimize the effort required to port MansOS
to new hardware platforms, the code architecture is designed to reduce platform-
specific code proportion. The design ideas author has developed (together with
Girts Strazdins) and adopted, include: separate platform-specific and architecture-
specific code; write multiplatform drivers and system code, where possible; allow the
application user to access hardware drivers at all levels, but also provide hardware-
independent API.

The hardware abstraction model in MansOS (Fig. 2.1) is based on a key ob-
servation from [Handziski 2005]: due to requirements of energy efficiency in WSN
it is not enough to expose only a single, strictly platform-independent hardware
abstraction layer. The users should be allowed to exploit device-specific hardware
features for increased efficiency and flexibility.

In MansOS, chip-specific code is separated from platform-specific and platform-
independent routines. Driver code is designed to be platform-independent where
possible, therefore a single MansOS driver may be usable across multiple platforms.
Examples of such multi-platform drivers include Texas Instruments CC2420 radio
chip driver, Sensirion SHT humidity and temperature sensor driver, and Maxim
Integrated DS2401 serial chip driver.

Initially MansOS adopted a three-level code organization. Hardware chip drivers
were in the lowest layer, platform-specific code in the middle layer, and hardware-
independent code above them. However, this model had two drawbacks:

• First, with introduction of support for multiple similar hardware platforms
(for example, the MSP430 MCU based family: TelosB, Epic mote, and
“generic” MSP430) most of platform-specific code was actually repeated in
the source directories of all platforms. As a result, code maintainability
rapidly declined, because every modification had to be repeated in several
directories.

• Second, implementation was not clearly separated from interface. While this
was acceptable for lower-level components such as hardware chip drivers,
which essentially were self-contained device drivers and were placed each in
its own subdirectory, it was not so acceptable for the upper-layer interface,
because this interface was meant to be used by people who are not experts in
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Figure 2.1: Architecture layers of MansOS code

the internals of MansOS. It is neither neccessary nor desirable to show them
the details of the implementation.

To solve the latter issue, high-level API was separated from the rest of the code
and put in include directory. Nevertheless, the advanced user is still allowed to use
platform-specific and chip-specific code for utmost efficiency and platform-specific
features, as platform and chip-specific header files are included in the top-level
include file.

The code repetition issue was solved by separating architecture and platform
layers. To take a concrete example, before the separation TelosB platform directory
had 695 lines of code (evaluated excluding comments and empty lines); a lot of
this code was similar or equal to code in similar platforms, for example, to the
code in the directory of Epic Mote hardware platform. After the change, TelosB
plaform directory had only 216 lines of code. There are a few other places where
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platform-specific code has always been present in MansOS (for example, in the
chips directory, and in the Makefile directory), but the size of this code is not
large. At the moment, MansOS supports ten hardware platforms, but only three
hardware (MCU) architectures: Texas Instruments MSP430, Atmel AVR, and x86.
Adding support for a TelosB-like sensor device such as AdvancticSYS XM1000
[AdvanticSYS 2013] now became possible within a few hours.

Taking into account these changes, the final MansOS code architecture consists
of four layers:

• device-specific code (placed in directory chips) – drivers for individual de-
vices and microcontrollers;
• architecture-specific code (directory arch) – code particular to a specific ar-

chitecture (such as MSP430 or AVR);
• platform-specific code (directory platforms) – code particular to a specific

platform (such as TelosB, Zolertia Z1, or Arduino).
• platform independent code. This code is further separated in two parts: the

interface (directory include) and the implementation (directory hil, named
after “hardware interface layer”).

Architecture-specific code and platform-specific code include the so-called
“wiring” (i.e. matching specific software interfaces with corresponding hardware
interfaces), function binding (i.e. matching specific software interfaces with their
software implementations), and definitions of platform or architecture-specific con-
stants and algorithms. To take an example, radio driver’s interface is defined in
the hardware interface layer. At compile time the interface is bound to a specific
implementation, which is chosen at the platform layer, containing the glue code.
For TelosB platform, CC2420 radio driver is chosen, and so on. The driver code (at
chip layer) implement hardware access functionality.

2.2.2 The proportion of device-dependent code

The term portability is used to refer to “the ability of a software unit to be ported
(to a given environment). A program is portable if and to the degree that the cost
of porting is less than the cost of redevelopment.” [Mooney 1993]. Our objective
is to support multiple hardware platforms, and (with a lower priority) to support
multiple hardware architectures. Clearly, a system with no hardware-specific code
would have the perfect portability; unfortunately, it is not possible in practice. In
converse, a system that has only code that is specific to a single hardware platform
is completely nonportable.

As a working approximation we assume that MansOS code is hardware-specific
(device-dependent) in the case when it is platform- or architecture-specific, and also
in the case when it is chip-specific (i.e. situated in platform, architecture and
chip directories). The error in this assumption is likely to cause the results of the
following evaluations to be skewed towards fewer lines of portable code detected



Chapter 2. Building system-level support 40

Table 2.1: Source code organization. The table lists directory names in MansOS,
and their most closely corresponding counterparts in TinyOS, Contiki and Mantis

MansOS TinyOS Contiki Mantis
platforms platforms platform kernel

arch platforms platform kernelchips cpu

chips chips
cpu dev

core/dev com
platform/<name>/dev

include interfaces core <directory>/include

hil interfaces core sys

kernel system core/sys kernel

lib lib core/lib lib

than it is actually the case – as mentioned above, some of MansOS chip drivers are
cross-platform, therefore also device-independent to some extent. However, we go
by the rule of thumb that different sensor network hardware platforms use distinct
set of chips, and that therefore chip drivers are device-dependent code.

The code that is device-dependent must be redeveloped when MansOS is ported
to a new hardware architecture; the code that device-independent may be reused.
Therefore, the portability of MansOS can be approximated by finding out the pro-
portion of device-independent code.SourceBreakdown
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Figure 2.2: MansOS code analysis. The area filled with horizontal line pattern
corresponds to device-specific code

Fig. 2.2 shows the breakdown of MansOS code with regard to components.
In total there was 25 701 non-empty non-comment lines in the core MansOS on
18th May, 2013 (version control system revision 918). While approximately half of
MansOS code is platform dependent (48.9 %, Fig. 2.2a), comparison is more fair
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when a specific platform is fixed, because the amount of hardware-dependent code
varies greatly with the number of hardware platforms supported. When TelosB
is selected as the platform (Fig. 2.2b), only a quarter of the code (23.9 %) turns
out to be chip- or platform-specific. Most of the hardware-dependent code is plain
C; assembly language is used only in a few, specific places, such as thread context
switching (in contrast to LiteOS: see Section 1.4).

Also, the proportion of platform-specific code is small when compared to the
rest of device-dependent code. This means that the system should be easy to port
to platforms that have the same hardware architecture as TelosB, and similar sets
of chips. Indeed, that was the case when porting to AdvancticSYS XM1000 (see
Section 2.2.1 and Section 2.2.3).

2.2.3 MansOS code architecture compared with the state of art

MansOS code organization has both similarities and differences to TinyOS, Contiki
and Mantis (Table 2.1). In general, the amount of platform-specific code is lower
in MansOS compared to the other OS because of three reasons:

• architecture-specific code is separated from platform-specific code (partially
also done in Contiki);
• code for system initialization is unified across all platforms (partially also

done in Mantis);
• device drivers and system services (e.g. the scheduler) are implemented in

platform-independent way where possible (partially also done in all of the
other OS).

Architecture-specific code roughly corresponds to to cpu directory in Contiki,
but the unification of shared code is not a complete in Contiki as it is in MansOS.
For example, only in MansOS and Mantis the periodic timer interrupt handler code
(the “heartbeat” of the system) is unified and shared by all platforms.

The core system initialization code is unified for all platforms in MansOS.
Platform-specific initialization code is still present, but significantly shorter in com-
parison: the system initialization file (kernelmain.c) contains 206 lines of code,
while a platform’s initialization file has only 11.3 lines of code on average! This uni-
fication was made possible because of the component selection mechanism (Section
2.3). The platform-specific conmponents are enabled in platform’s configuration
file; therefore, component initialization code can be put in kernel code; initializa-
tion code of a particular components either is or isn’t called depending on whether
the selected platform has this component. The scheduler code is also unified for
all platforms; only relatively small platform-specific fragments such as macros for
context switching are put in platform directories.

Device drivers are portable because they use software abstractions for common
tasks, such as SPI bus access, rather than talk to hardware directly. The tradeoff
of this design choice is reduced hardware access speed is some cases. However, high
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data bandwidth support is usually not among the primary requirements of WSN
applications [Strazdins 2013].

For a case study of a specific hardware platform we are going to take Ad-
vancticSYS XM1000 sensor device. The official Contiki code (evaluated including
Makefiles, excluding comments and empty lines) for XM1000 sensor device pro-
vided by AdvancticSYS has 1920 lines of code (excluding BSL script, application
examples, and file checkpoint-arch.c because MansOS has no equivalent func-
tionality). Their TinyOS code has 1228 lines of code (excluding BSL script, MAC
protocol, and CC2420X driver). MansOS, in turn, has only 629 lines of XM1000
specific code. The rest of the code is reused from TelosB platform without copying
it. Some of the new code (for MSP430 Series-2 MCU support) is actually reused by
other platforms (e.g. Zolertia Z1). Excluding that code, there are only 251 lines,
in other words, 7.6 times less than in Contiki, and 4.9 times less than in TinyOS.
Clearly, this leads to faster portability, and, more importantly, better maintainabil-
ity.
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Figure 2.3: The result of applying MansOS code organization to three Contiki
hardware platforms and MSP430 MCU architecture

In order to show that the gains are present specifically because of MansOS
code organization and not due to other unrelated reasons, we also modified the
source code of Contiki itself. We selected just three hardware platforms (Tmote
Sky, Zolertia Z1, and AdvancticSYS XM1000) that share a common MCU archi-
tecture MSP430 (in contrast, they do not share a common MCU family, as the
examples include both MSP430 Series-1 and MSP430 Series-2 MCU!). We simply
moved all files that correspond to arch code in MansOS from platform folders into
cpu/msp430 folder in Contiki. Creating a new arch folder in Contiki would have
lead to better code organization, but was not necessary to prove the point of this
optimization. The result (excluding platform-specific example application code)
is shown in Fig. 2.3. The Contiki source code size was reduced by 1570 lines of
code, which is 17.7 % of code in directories of these three platforms (platform/sky,
platform/z1, platform/xm1000) and cpu/msp430 directory, in sum. Applying the
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same technique to more platforms with the same MCU architecture would lead to
increased gains. On the other hand, supporting more MCU architectures would
lead to unchanged code sizes. Since the code is simply moved around rather than
written anew, the net change in line count cannot be positive.

Another difference between MansOS and Contiki source code organization is
related to function binding: in Contiki it is not done at compile time. Compile-
time binding allows to reduce both binary code size and RAM usage, as well as run-
time overhead. (This idea is not specific to MansOS; compile-time binding is also
preferred in design of TinyOS and Mantis.) To take a concrete example, in Contiki
the radio driver is accessed through function pointers in struct radio_driver
structure. The structure itself takes twenty bytes in RAM. Furthermore, indirect
function calls have to be used, which adds two byte flash usage overhead for each call,
as well as CPU run-time overhead, because an extra mov instruction is generated.
The extra mov takes two CPU cycles to execute, because on MSP430 instruction
execution takes an extra CPU cycle for each memory access. In MansOS all calls
are direct, therefore extra resources are not used.

The authors of Mantis adopt another approach to fight code duplication by
separating code that is common to all microcontroller platforms, in contrast to code
that is used for the x86 platform. However, architecture specific-code separation
(as in MansOS, and, partially, in Contiki) is more scalable; the Mantis approach is
going to feasible only while the number microcontroller architectures is small and
the microcontrollers are reasonably similar.

More interestingly, for peripheral access device abstraction is extensively used.
Each device driver can be accessed using POSIX-like system call API, consisting of
six functions: dev_read(dev, buf, count) (“reads count bytes from a device and
stores the result in the provided buffer”1), dev_write(dev, buf, count) (“writes
count bytes to a device from the provided buffer”), dev_mode(dev, mode) (“set
the mode of a device”), dev_ioctl(dev, request, args...) (used to “send arbi-
trary commands to a device”), dev_open(dev) (“gain an exclusive lock on a device
driver”), and dev_close(dev) (“release an exclusive lock on a device driver”).
For communication, a similar (but separate) API exists, including functions:
com_send(iface, buf) (“send data over specified interface”), com_recv(iface)
(“receive data from a specified interface”), com_mode(iface, mode) (“pass the
mode setting down to the given interface”), and com_ioctl(iface, request,
args...) (“pass ioctl flag and data down to the given interface”).

Listing 2.1: Flash memory access example in Mantis
1 uint32_t address = 0 x1234 ;
2 uint32_t writeValue = 123 , readValue ;
3
4 dev_mode ( DEV_TELOS_FLASH , DEV_MODE_ON );
5 dev_ioctl ( DEV_TELOS_FLASH , TELOS_FLASH_SECT_ERASE , address );
6 dev_ioctl ( DEV_TELOS_FLASH , DEV_SEEK , address );
7 dev_write ( DEV_TELOS_FLASH , & writeValue , sizeof ( writeValue ));
8 dev_ioctl ( DEV_TELOS_FLASH , DEV_SEEK , address );

1Descriptions here and further are quoted from Mantis source code
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9 dev_read ( DEV_TELOS_FLASH , &readValue , sizeof ( readValue ));
10 dev_ioctl ( DEV_TELOS_FLASH , TELOS_FLASH_BULK_ERASE );

Listing 2.2: Equivalent code in MansOS
1 uint32_t address = 0 x1234 ;
2 uint32_t writeValue = 123 , readValue ;
3
4 extFlashWake ();
5 extFlashEraseSector ( address );
6 extFlashWrite (address , & writeValue , sizeof ( writeValue ));
7 extFlashRead (address , &readValue , sizeof ( readValue ));
8 extFlashBulkErase ();

In our opinion, the device abstraction, at least as implemented in Mantis, is a
tradeoff that is not worth the cost. It is much more useful in classical UNIX systems,
where the overhead of C language switch-case statements can be easily ignored, but
the system call interface must be kept small because it crosses the boundary between
user and kernel spaces. In sensor network hardware, there is no explicit system/user
boundary, and using ordinary calls-by-name allow to reduce flash-memory usage
significantly. Last but not least, using several distinct functions with descriptive
names and parameter sets compared to calling dev_ioctl repeatedly leads to code
that has fewer redundant details. For example, Mantis code in Listing 2.1 can be
replaced with MansOS code in Listing 2.2.

2.3 The component selection mechanism

Since a sensor network operating system usually runs only one application, it is
possible to optimize the OS in application-specific way. In practice this means that
only a subset of MansOS source-level components is selected for compilation, linking
and inclusion in the final binary image that contains both application code and OS
code (Fig. 2.4). A mechanism that allows the user to select OS components in a
natural way should be integrated in the application development process.

TinyOS allows (and requires) the application developer to specify which com-
ponents to use. This must be done in application-specific source file: the config-
uration file. This leads to two benefits: firstly, optimal binary code size, as only
components that are actually used are included in the final application; secondly,
extensibility and flexibility, as it now becomes simple to integrate platform-specific
or application-specific components in the OS. The configuration file in TinyOS is
processed by the nesC compiler.

The solution that MansOS adopts is similar to TinyOS: to use an additional,
“configuration” file next to application source code. The configuration file allows
to select or exclude components to use in a specific application. It is also useful for
setting system-wide policies, e.g. the radio channel to use, the serial port baudrate
to use, the MAC protocol to use, its queue size and so on. These policies cannot
be set in C source code in equally efficient way, because setting them either in a
function call or by changing a global variable adds to run-time overhead.
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Even though these policies could be set in system header files at compile time,
the MansOS approach is better, because by requiring that the configuration is put
in a distinct file, MansOS enforces clear separation, at the level of source code,
between what is used and how it is used. Furthermore, now there is no need to
modify system header files in order to get application specific behavior.

In contrast, other C-based operating systems such as Contiki and Mantis have
limited means to achieve something similar. Mantis allows to select components
with large granularity – high-level components are compiled as a separate libraries,
which may or may not be linked against the application. Unfortunately, not only
this becomes unreasonable if smaller component granularity is needed, but also
tends to create unresolvable circular dependencies between the libraries.

As mentioned in Section 1.4.4, Contiki adopts the “most of functionality is
included by default” strategy, which leads to large code size and suboptimal energy
usage. However, there is a set of options that can to enabled and configured at
compile time by using “project’s configuration file” (a C header). This Contiki
approach has severe limitations:

• It is not uniform, but rather ad-hoc for each of the few configurable compo-
nents.
• It applies only to the networking stack rather than to the whole system.
• It cannot be used to exclude or include files in a build; at least not without

stretching the definition of “reconfiguration” as far as including Makefile
changes in it, which means that a distinct file written in another language
has to be modified by the user.
• It is not enabled by default. Furthermore, it cannot be enabled by default, at

least not in an easy way, because of technical limitations. There is no way how
to instruct C compiler to “#include a file only if it exists” at the level of C
source code. As a consequence, in order to use some non-default configuration
in Contiki, first a new header file has to be created (called project-conf.h),
then compilation flags have to be modified in Makefile in order to enable
preprocessing of this header. Therefore usability is decreased, especially for
inexperienced users.

Even when “minimalistic” configuration is selected, the resulting application’s re-
source usage is much larger in Contiki than in other operating systems (Fig. 2.22).

The syntax of configuration file is very simple; it consists of variable assignments
(Listing 2.3). There are three types of variables:

• Variables with prefix “USE_”. Used to include or exclude components from
the final executable.
• Variables with prefix “CONST_”. Used to define compile-time constants.
• Special variables, like “DEBUG”. Used for various purposes as described in the

documentation of MansOS1.
1http://mansos.edi.lv/wiki/doku.php?id=mansos_configuration_system

http://mansos.edi.lv/wiki/doku.php?id=mansos_configuration_system
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Listing 2.3: Example MansOS configuration file
1 #
2 # Configuration file of a multihop routing testing application
3 #
4
5 # Use threaded kernel
6 USE_THREADS =y
7 # Use nondefault radio channel
8 CONST_RADIO_CHANNEL =11
9 # Use SAD routing and MAC protocols

10 CONST_MAC_PROTOCOL = MAC_PROTOCOL_SAD
11 CONST_ROUTING_PROTOCOL = ROUTING_PROTOCOL_SAD
12 # Function as data forwarder in the network ( other roles are possible )
13 USE_ROLE_FORWARDER =y
14 # Enable debugging
15 DEBUG =y

The syntax is compatible with GNU make utility, allowing simple integration in
MansOS build process; in contrast to TinyOS (with its nesC compiler), no additional
compiler has to be installed. Learning requirements also are reduced compared with
TinyOS, as MansOS configuration file allows to write nothing more than variable
assignments, but nesC syntax includes more details (see Section 3.5.1).

The resulting component granularity is larger than in TinyOS. For example,
there are no separate components for each timer, but rather one component that
allows to use timer functionality as such. Similarly, there are no separate com-
ponents for reading from external flash memory (BlockRead in TinyOS) and for
writing to it (BlockWrite in TinyOS), but rather a single component for external
flash memory access (with read/write/erase functions). This allows to keep the
configuration file small while remaining reasonably flexible.

MansOS build system ensures that each platform by default enables a reasonable
set of components. Dependencies between components may exist; they are resolved
automatically. Therefore, the component selection in MansOS is a semi-automatic.
The novice user may successfully start using MansOS without being aware that
such a mechanism exists. On the other hand, the experienced user may optimize
or extend her applications easily by excluding and including components manually.

Essentially, the component selection mechanism allows to move towards the vi-
sion of sensor network software outlined in [Romer 2004]: “a modular software ar-
chitecture would then be needed, together with tools that would semi-automatically
select the implementations that best fitted the application and hardware require-
ments”.
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There are three benefits brought by such a mechanism:

• Modularity: components that implement the same interface can be used in-
terchangeably, often without changing application’s C source code. For exam-
ple, two versions of the kernel (event-based and thread-based) can be replaced
with each another by changing just a single line in the configuration file.
• Extensibility: application-specific or platform-specific components can be

easily added and used. For example, if a platform has a specific actuator
and a driver of that actuator is added to MansOS, the actuator can be en-
abled for that platform by adding only a line in platform’s configuration file.
If the hardware actuator is also added for a specific application on another
platform, it can be enabled by adding a line in application’s configuration file.
• Efficiency: unused components are not included in the binary image (Algo-

rithm 2.2). This allows to achieve more efficient binary code and RAM usage,
which in turn reduces prototyping and debugging time (Section 2.6.2).

The whole build process is shown in Fig. 2.5 and elaborated in more technical
detail in Algorithm 2.1.

The pseudo-code of Algorithm 2.2 is also given (it corresponds to the “Are
pruned” step in Fig. 2.5). This algorithm takes list of object files and list of con-
figuration options as inputs, and produces the list list of object files that may have
some code that should be included in the final binary image of the executable. It
implements file-granularity binary code component selection, therefore allows to
optimize the size of the binary image.

In addition to this, MansOS (similarly to Contiki) also allows to achieve
function-granularity binary code selection, using combination of GCC compiler
and linker features. If the source code is compiled with -fdata-sections
-ffunction-sections flags, each function is put in a separate object file section.
If the code is then linked with –gc-sections option, the linker discards unused
sections. Since each .text subsection contains just a single function, the result is
the desired.

Now the question may arise – why there is a need for file-granularity binary code
component selection (Algorithm 2.2) when the finer-grained function-granularity
selection is already in place? Still, code size measurements confirm that the best
results are achieved when both file-granularity and function-granularity garbage
collection are combined (Section 2.6.2, Fig. 2.20). The answer lies in the fact that
the selection mechanism is semi-automatic. In order to provide reasonable defaults
for the unexperienced user, a few components (such as ADC driver) are enabled by
default. If they are present in the final binary image, they also must be initialized
by the kernel of the operating system itself. For each enabled component, an ini-
tialization function is called from the system-wide initialization code placed in the
kernel. Because of this, a reference to component’s initialization function is added
to the kernel. Now the component cannot be garbage-collected automatically, as
the linker will see the component as being used. However, if the component is not
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Algorithm 2.1 The component selection algorithm
Include the default configuration file
Include platform-specific configuration file . Overrides default settings
Include application-specific configuration file, if present . Overrides platform settings

. Build compile-time flags and definitions
for each variable defined in form USE_xxx=y do

Add compile-time definition USE_xxx=1
end for
for each variable defined in form CONST_xxx=value do

Add compile-time definition xxx=value
end for

. Select potentially required files
applicationSourceF iles← application’s .c files
systemSourceF iles←hardware-independent ∪ architecture- ∪ platform-specific .c files
enabledSourceF iles← ∅
for file ∈ allSourceF iles do

component← the component this file belongs to
if USE_component = y then

enabledSourceF iles← enabledSourceF iles ∪ {file}
end if

end for
. Compile all potentially required files

applicationObjectF iles← compile(applicationSourceF iles)
systemObjectF iles← compile(systemSourceF iles)

. Link the required files together
executable← link(FindRequiredFiles(applicationObjectF iles, systemObjectF iles))

. The function FindRequiredFiles is defined in Algorithm 2.2
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Algorithm 2.2 Pruning of unused components
function FindRequiredFiles(appFiles, systemFiles)

librarySymbols← {’printf’, ’malloc’, . . . } . All functions from C library
symbolsFound← librarySymbols
symbolsUnresolved← ∅

. Determine which symbols are required by the application
for file ∈ appFiles do

localExports← symbols exported from file
localImports← external symbols required to file
symbolsUnresolved← symbolsUnresolved ∪ (localImports\symbolsFound)
symbolsUnresolved← symbolsUnresolved \ localExports
symbolsFound← symbolsFound ∪ localExports

end for
. Determine which files are required; start with all application’s files

result← appFiles
. Process system files while all symbols are found or all files included

progress← true
while symbolsUnresolved 6= ∅ AND systemFiles 6= ∅ AND progress do

progress← false
for file ∈ systemFiles do

localExports← symbols exported from file
localImports← external symbols required to file

. Does this file include new symbols?
if symbolsUnresolved ∩ localExports = ∅ then continue
end if
symbolsUnresolved← symbolsUnresolved \ localExports
systemFiles← systemFiles \ {file}
symbolsUnresolved← symbolsUnresolved ∪ (localImports\symbolsFound)
symbolsFound← symbolsFound ∪ localExports
result← result ∪ {file} . This file will be linked
progress← true

end for
end while
return result

end function



Chapter 2. Building system-level support 52

used, neither from user’s application code nor by other components, but only from
the system-wide initialization code, we know that it is safe to exclude the compo-
nent from the binary image. Algorithm 2.2 does exactly that: excludes components
that have these properties. However, after exclusion there is a new problem: how
to deal with the reference to the initialization function? This problem is solved by
the GCC extension __attribute__((weak)), which is used to signal that the GCC
linker may leave the reference to the function unresolved in the final binary image.

In practice, there is another aspect why file-granularity optimization may be
needed: for several versions of msp430-gcc linker, the function-granularity opti-
mization was working incorrectly [Elsts 2012e] and had to be disabled1. Also, build
systems other than the GCC may not implement this optimization at all.

In order to show that MansOS approach effectively scales to other sensor network
operating systems, we partially implemented the component selection algorithm
not only for MansOS itself, but also for Contiki. The implementation contains just
Algorithm 2.1, and does not include Algorithm 2.2. It consists of a patch that is
applied to the development version of the Contiki source code repository, changes
37 source files and includes 272 code insertions and 41 deletions2. The results are
promising and are discussed in the evaluation section of this chapter (Section 2.6.2).

2.4 Execution models

One example of an interchangeable component in MansOS is the kernel itself. Two
versions of the core scheduler exists: one that uses preemptive threads, and one
that uses only callback functions that react on specific events.

2.4.1 Threads or events?

Much has been written as part of the debate about thread-based versus event-based
execution models. Lauer and Needham in their seminal article [Lauer 1979] attempt
to settle the debate by proving that both models are equivalent from theoretical
point of view. However, that does not make discussion about the two options
meaningless, merely constrain it to practical implications; the pragmatic difference
remains. For example, the thread approach requires more memory (for additional
stack space). On the other hand, the event approach uses run-to-completion event
handlers that may make applications unresponsive. Usability of the two models
also is not the same. Since the Lauer and Needham’s paper, new arguments have
been formulated by both sides of the debate [Von Behren 2003] [Ousterhout 1996].

When narrowing the debate to WSN OS context, the outcome is still inconclu-
sive, and none of the approaches is superior in all contexts [Duffy 2008]. Threads

1For detailed description of the problem, see: http://comments.gmane.org/gmane.comp.
hardware.texas-instruments.msp430.gcc.user/9615

2The modified version of the Contiki operating system is available at https://github.com/
atiselsts/contiki-optimized.

http://comments.gmane.org/gmane.comp.hardware.texas-instruments.msp430.gcc.user/9615
http://comments.gmane.org/gmane.comp.hardware.texas-instruments.msp430.gcc.user/9615
https://github.com/atiselsts/contiki-optimized
https://github.com/atiselsts/contiki-optimized
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are generally seen as easier-to use, because it is believed that threaded code bet-
ter reflects the control flow of applications (in WSN context). On the other hand,
event-based code is not only more efficient, but also better reflects the underlying
hardware execution model (which is always event-driven).
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(b) Preemptive scheduling

Figure 2.6: Scheduling algorithm behavior: run-to-completion scheduling causes
the second packet to be dropped

To show one of the problems with run-to-completion scheduling (as implemented
by TinyOS) in WSN context let us consider a specific example (Fig. 2.6), an
application that includes two kinds of tasks:

• A data processing task T1 that takes long to complete. For example, T1 may
execute a compression algorithm or Fourier transform on sensor data.
• A packet forwarding task T2 that requires low delay. The T2 does not take

long to complete, but has another limitation: whenever there is a data packet
in a temporary buffer waiting for T2 to start execution, each subsequently
received data packet is dropped. (In WSN systems single-packet-only buffers
are common.)

Fig. 2.6a illustrates event-based approach to scheduling. First, the T1 task
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starts and runs to completion. Somewhere in the middle of its execution, a network
packet (packet #1) is received; this event is signaled by the hardware, and processed
immediately by the corresponding interrupt handler. The handler reads the packet
and puts it in a temporary buffer. Some time later, another packet (packet #2)
is received and another interrupt processed. Since the temporary buffer is already
full, the packet is dropped. After T1 is completed, T2 finally starts and processes
the first packet.

Fig. 2.6b illustrates thread-based approach. Task T1 starts, but can be pre-
empted (interrupted) by task T2. As soon as the first packet is received, the sched-
uler starts task T2, which processes the packet and frees the temporary buffer.
Afterwards, T1 is continued from where it left. The same sequence is repeated once
the second packet arrives. No packets are lost: in this example run-to-completion
scheduling causes the second packet to be dropped, while preemptive scheduling
does not. (The second packet would be lost only if it arrived before T2 was com-
pleted.) The example also shows that the preemptive multithreading approach
allows to easier implement more strict QoS requirements in the network; the de-
lay in packet processing is much smaller in Fig. 2.6b than in Fig. 2.6a, with no
additional effort from the programmer. Alternative would be to partition the long-
running task T1 in smaller sub-tasks “by hand”. However, it may require substantial
programmer effort [Bhatti 2005] – first, the WSN programmer may be unfamiliar
with the semantics and internal details of the algorithm, especially if the algorithm
is ported to a WSN system from some common library, rather than developed by
the programmer or his colleagues; second, some algorithms may be hard to divide
in parts by design (e.g. compression algorithms).
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Figure 2.8: State-of-art preemptive multithreading scheduler (Mantis)
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Figure 2.10: MansOS multithreading scheduler

Fig. 2.7 to Fig. 2.10 depicts execution flow of a simple application that reacts on
radio packets and timer events. The different approaches to scheduling in TinyOS,
Mantis, and MansOS are visualized.

Taking into account the conclusion from the discussion above (each model has
its own benefits), it is no surprise that existing WSN OS already fully cover the
design space, with systems like TinyOS 1 being restricted to events (Fig. 2.7),
TinyOS 2 allowing to optionally enable TOSThreads [Klues 2009], and Mantis or
LiteOS using preemptive multithreading (Fig. 2.8). All of this hints that none of
the two options is superlative (superior in all contexts). Automated methods for
conversion from threaded applications to event-based applications do exist, for an
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example see [McCartney 2011], but they are thread implementation-specific.
A different approach is taken by Contiki, which uses so-called protothreads,

which is a cooperative stack-less execution model. This approach is not without
minor usability problems: lack of thread-local variables, nontransparent execution
flow because a lot of macros are used, and nontrivial learning curve because of a
novel programming paradigm. However, protothreads can be easily incorporated in
WSN OS as a library running on top of either event-based or thread-based kernel,
therefore it is not necessary to discuss them as a full-scale alternative to the two
other models. (They are not depicted a separate figure in this thesis; if taken as
implemented in Contiki, they would look like the multithreading picture (Fig. 2.8),
except that there would be no “idle” thread, and the other threads would not be
preemptible. A protothread can be preempted only by event handlers; however, it
can also give up the MCU to another protothread voluntarily.)

MansOS implements both event-based (Fig. 2.9) and thread-based (Fig. 2.10)
kernels, and allows the user to choose (at compile time) which to use. The event
based version’s core functionality revolves around processing a global list of software
timers, on which callback functions for various tasks are chained. The multithreaded
version adopts the same idea as TOSThreads and uses at least two priority levels:
the highest level for the kernel thread and lower levels for user threads. Therefore
the kernel thread, which handles delay-sensitive tasks like packet forwarding, can
never be preempted by a user thread. The specific contribution of MansOS is
simplification of the scheduler made taking into account WSN specifics: the low
number of threads expected, and separation between kernel and user threads.

2.4.1.1 Event-based execution

This (Fig. 2.9) is the default implementation used in MansOS. In event-based
execution model, the user registers callbacks and writes code for callback handler
functions.

Take software timers (named alarms in MansOS) as an example. Alarm callback
function pointers are put in a global list, ordered by alarm firing time. The list is
processed in the periodic timer interrupt handler, executed 1000 times per second.
Therefore, software timers with precision up to 1 ms are available. (Section 2.5.2
has more in-depth discussion about timer precision and accuracy; however, for this
example such an approximation is sufficient.)

Similar callbacks can be registered for packet reception, whether serial or radio.
User callbacks, if present, are executed immediately after their corresponding inter-
rupt handler is entered (when the hardware signals arrival of new data), therefore
the delay is as small as possible. However, user callback code is executed in the
interrupt context and can cause problems either if the execution blocks for too long,
or if the user code re-enables interrupts. In the first case, the result is a completely
blocked system. In the second case, nested interrupts become possible, so the devel-
oper has to ensure that all of OS code is reentrant. Also, stack overflow becomes a
very real threat. An active interrupt handler creates a new stack frame in the stack
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space of the previous execution context; N nested, active interrupt handlers means
that N new stack frames are allocated. Since the value of N cannot be determined
at compile time, it is impossible to reserve enough stack space for all cases.

To enter a low power mode, the user has to manually call sleep() function in
the main loop of her application.

2.4.1.2 Threaded execution

Thread implementation in a WSN OS can be simplified if two observations are taken
into account. First, the number of threads typically required by a WSN application
is small (Section 1.4.4.4). If the operating system provides core functionality as
separate services, a single user thread that allows blocking function calls is sufficient
for most of simple WSN applications. Second, in contrast to processes in a desktop
OS, threads in WSN OS can be expected to be cooperative (because they all belong
to the same application). The first observation motivates the OS to provide simpler
scheduler version by default, supporting only two threads. The second allows to
think about fairness guarantees as an optional, rather than critical requirement.
Implementation that takes into account these observations leads to reduced code
memory and RAM usage (see the evaluation in Section 2.6.3).

In MansOS, at least two threads are always created: a user thread and the
kernel thread. Multiple user threads are optionally available. In the latter case, two
scheduling policies are available: round-robin, in which the least-recently run user
thread is always selected, and priority-based, in which the thread with the highest
priority is always selected from threads that are ready to run (not in sleeping or
waiting states). The round-robin policy is active by default, the priority-based is
selectable by a configuration option.

A thread can be in one of three states: ready to run, sleeping until wakeup time
or interrupt, and waiting when blocked by some other thread, or waiting for an
external condition.

The MansOS scheduling pseudocode is given in Algorithm 2.3. The pseudocode
is for the round-robin scheduler; priority based version simply selects the thread
that has the highest priority from those that are not in waiting or sleeping states.

We note that the algorithms at the moment do not incorporate deadlock detec-
tion and prevention (e.g. in case of priority inversion). This is an area for future
work. In any case, deadlock detection would not be as simple as checking whether
all threads are in WAITING state, as that is a valid case – the threads may be wait-
ing for some external event signaled by a hardware interrupt. Also, even though
a WAITING thread may be “selected” by the scheduler, the thread will not become
active; the thread will check for the condition it was waiting for, determine that it
is still not fulfilled, and give back control over execution to the scheduler (i.e. call
schedule()).

Both the policy and the maximal number of threads are selected at compile-time.
This allows to include only one of the functions SelectNextThreadSimple and
SelectNextThreadManyThreads in the binary image. Specifically, binary image size
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Algorithm 2.3 Thread scheduling algorithm (for round-robin scheduling)
function Schedule( )

. currentThread is the currenly active thread
Save all MCU registers to stack
if numberOfThreads = 2 then

nextThread← SelectNextThreadSimple( )
else

nextThread← SelectNextThreadManyThreads( )
end if
currentThread.stackPointer ← stack point register value
currentThread← nextThread
Set stack pointer register value from currentThread.stackPointer
Restore all MCU registers from stack

end function

function SelectNextThreadSimple( ) . Next thread’s selection, 2 threads total
. otherThread is the currenly inactive thread

if otherThread.state = READY then return otherThread
end if
if currentThread.state = WAITING then return otherThread
end if
if otherThread.state = WAITING then return currentThread
end if
if currentThread.timeUntilWakeup > otherThread.timeUntilWakeup then

return otherThread
end if
return currentThread

end function
. Next thread’s selection, > 2 threads total

function SelectNextThreadManyThreads( )
From all threads with state = READY , return thread run least recently
From all threads with state = SLEEPING, return thread with the soonest wakeup
return currentThread

end function
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is significantly reduced when only a single user thread is used (see Fig. 2.24 and the
discussion surrounding it). The decision not to use thread queues or other advanced
data structures was motivated by the suboptimal code size and performance of the
Mantis scheduler in the context of a typical WSN application (Section 2.6.3).

Mutexes are available as means of synchronization. Sequential execution of two
threads can be implemented using a mutex.

2.4.2 Avoiding stack overflow

Use of multiple threads may make application code easier to write, but care must
be taken because it may also make it easier to write incorrect application code.
Specifically, stack overflow becomes a very real and hard-to-debug problem if small
and fixed-size thread stacks are used. To facilitate writing more reliable programs,
MansOS includes a tool for worst-case stack usage analysis. The analysis process
takes short time (fractions of second) to complete and is integrated in the MansOS
build process. If the reported worst-case stack usage is larger than the stack allo-
cated, the build is aborted with a descriptive error message.

Since the use of function pointers is not prohibited in MansOS, the analysis
cannot always be accurate. However, by specifying certain policies to be followed
by the core system developers, we limit this problem. Namely, in the core system
we do not use recursion, and, in case of thread-based kernel, do not use calls-by-
pointer in interrupt handlers. Therefore, the analysis is accurate for user threads
unless the user herself uses recursion or calls-by-pointer in application code. In the
latter cases, warning messages are issued: “Recursion detected” and “Unhandled
call-by-pointer in function ...”, respectively, followed by the message: “Stack usage
analysis results may be incorrect!”.

It is hard to avoid calls-by-pointer in the kernel thread completely. However,
estimating the stack usage for the kernel thread is not as important (on a typical
system), since its stack is allocated by the compiler and, if sufficient system memory
is available, can grow to significant size without overlapping any other memory
regions. (With a “typical system” we mean TelosB or its clones, where flash memory
is the limiting resource instead of RAM. [Levis 2012] mentions a rule of thumb that
a typical TinyOS WSN application uses approximately 10 times more flash memory
than RAM memory; we have observed similar results for MansOS.)

In cases when compile-time stack usage estimation is insufficient, MansOS pro-
vides run-time stack overflow early-detection macros. They include a STACK_GUARD
macro, which causes immediate abort of the system in case stack pointer is out of
the currently used stack region. This macro can be used from application’s code,
but is also called from several places in MansOS system source code, being included
in a number of functions that are usually at the bottom of the call chain.
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2.5 Interfaces and functionality

2.5.1 Run-time management and reprogramming

Occasionally WSN applications require interactive management of specific re-
sources, whether sensors, actuators, or software variables. Management interface is
also a useful tool to non-programmers; it gives them a hands-on experience with
the network.

2.5.1.1 Management via shell

In order to perform run-time management an efficient protocol (named SSMP) is
implemented. Each available resource on the sensor device is assigned an object
ID, which uniquely identifies the resource in device-local scope. An object ID is a
binary string with arbitrary length. The object IDs form a hierarchical space; for
example, object ID for LEDs is a prefix for object ID for red LED. In this way,
multiple resources can be accessed at once, by specifying only the common prefix
of their object IDs. To continue with the example, not only each LED, such as the
red LED may be turned on/off separately by completely specifying its n byte long
object ID OIDredLED (which is “0x01, 0x03, 0x00” in MansOS), but also all LEDs
can be turned on/off at once by specifying the n−1 byte long prefix of OIDredLED

(“0x01, 0x03” in MansOS).

Figure 2.11: MansOS shell interface

A command line shell is implemented to provide user access to the management
interface (Fig. 2.11). The shell can be used both interactively, and non-interactively
(from scripts). The shell allows to access arbitrary object IDs. Named shortcuts
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for the some common object IDs are present, for example led (LED control and
status) and sense (sensor status). The shell can function in broadcast or unicast
modes; in the first, all reachable sensor devices in the network are accessed; in the
second, only a single device, specified by its address, is queried.

2.5.1.2 Management via web interface

Later on, a different management interface was added (Fig. 2.12). This interface
is usable from web browser, and allows to specify sensor read intervals by entering
numbers in fields in a simple web form. The form is generated in platform-specific
way, so only the sensors that are present are shown. The interface also features a
form that visualizes sensor data.

Figure 2.12: MansOS web interface

Both management interfaces are intended to be used from a computer that has
base station device directly attached. The attachment does not need to be physical –
if the device has, for example, so called Ethernet extension shield that adds support
for TCP/IP networking, it can be attached “virtually”, over Ethernet [Clark 1997].

Web interface is currently tailored for the needs of sensor network deployment
in a test bed infrastructure, and presupposes a wired, Ethernet connection to each
sensor node in the network. Integrating the web interface in a network with wireless
sensor network links is a future work item.
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Another plan for future work: not only provide a data entry form where the
user can input the desired sensor reading intervals, but also generate SEAL / SEAL-
Blockly (Chapter 3) application code based on this input. This would add another
level of abstraction on top of the framework described in this thesis: a level where
the user is not a programmer anymore, but merely inputs data a web form in order
to program or configured a sensor network. Similar approach has been described
by [Van Deursen 1997].

2.5.1.3 Reprogramming

Reprogramming is an action that replaces the binary code that is executing on a
sensor network device. Normally, a sensor node can be reprogrammed without the
support of its operating system, using a personal computer physically attached to
a programming board, which in turn has direct physical connection to the sensor
device. (In some cases the programming board can avoided, e.g. when the sen-
sor device has an USB interface. However, the direct physical connection is still
required.)

A more enticing form of reprogramming is run-time reprogramming, also called
over-the-air reprogramming. The benefits of run-time reprogramming are apparent.
For example, in our environmental monitoring use case (Chapter 4), reprogramming
just nine sensor nodes in outdoor conditions took more than two hours. Using over-
the-air reprogramming would reduce time requirements by an order of magnitude.

The task of run-time reprogramming is the same as that of “regular” reprogram-
ming: transfer a binary image of an application from developer’s computer (or a
server) to a specific sensor mote; once the transfer is completed, execute the image.
The image of an application includes both user code and operating system code.

Run-time reprogramming in MansOS is performed in four steps (the first three
are performed in parallel):

1. Code loading. The binary code of an application is read from a file on disk
and sent out to the sensor network.

2. Dissemination. The code is transported through the network.
3. Code storing. The code is received and stored on the target devices.
4. Image replacement. The target devices reprogram themselves and run the

received application.

The first step is performed by MansOS shell (Fig. 2.11). It should be executed
from a personal computer with a sensor node attached (the so-called “base station
node”). For reprogramming purposes the shell is extended with Intel IHEX file
parser and multiple reprogramming related commands (such as “load [<file>]
- load an ihex file” and “program [<address>] - upload code (from ihex
file) on a specific mote”). The shell sends out the code in binary data packets;
each packet includes a memory address relative to the start of the executable, and
a blob of machine code instructions among other information.
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For the second step, SSMP is reused. A special object ID signaling binary data
is used for code packets. The base station node functions as a gateway between the
sensor network and the personal computer. Since the management protocol runtime
is a system service in MansOS, no specific user application has to be developed for
the base station. Almost any application can be used for this purpose; all that is
required is to explicitly enable SSMP in the application’s configuration file.

The third step is also done by another system service of MansOS. This, “re-
programming”, service is included in application’s binary image by specifying
USE_REPROGRAMMING=y in its configuration file. The service subscribes to the SSMP
service for binary machine code packets. Once a packet is received, it is written
in external flash memory at an address determined from contents of the received
packet. Once the whole image of an application is received, it is marked (in the
external flash memory) as complete: ready to be used.

MansOS bootloader is responsible for the final step, the most complicated one:
the replacement of active application with the new one, received in previous steps.
The bootloader is another MansOS component which can be optionally included
in application’s binary file. If present, the bootloader is executed before any other
MansOS code. If the reprogramming component has signaled the need to replace
the existing program image (by writing a Boolean flag to the nonvolatile memory of
sensor node before reboot), the bootloader performs the actual rewrite: it replaces
MCU program memory contents with a new OS image taken from the device’s
external flash memory.

Memory address Function

0xFFE0 

Interrupt vector table

32 bytes

0xF000 

User code

 4064 bytes max

0x5000 

System code
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0x4000 

Bootloader code

4096 bytes max
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RAM

10 kb 

0x0 

Hardware access registers
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Figure 2.13: MansOS memory layout of a Tmote Sky application compiled with
run-time reprogramming support

Partial run-time reprogramming is supported for energy-efficiency purposes.
Partial reprogramming means that only portions of the binary image are replaced,
rather than the whole image.

We observe that in WSN applications user code is smaller and require changes
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much more often than OS code. Therefore, it makes sense to separate system and
user code, and allow to reprogram only one of them without changing the other. In
MansOS, partial reprogramming is implemented through address space separation
of system and user code (Fig. 2.13). For user section only 4 KB of memory space is
allocated, since the user code can be expected to be much smaller, as evidenced later
in Table 2.3. For an even more striking example, DemoRedLed reprogramming demo
application in MansOS is 14259 bytes long, of which only 56 bytes are user code.
Therefore, avoiding system code reprogramming leads to great efficiency gains.

However, the implementation of partial reprogramming in MansOS at the mo-
ment is conflicting with the component selection mechanism. Therefore it is not
enabled by default and must be explicitly enabled in configuration file. Doing that
disables both component-granularity and function-granularity optimizations. It is
easy to see why: application-specific optimizations are not possible since the appli-
cation logic itself may be subject to change!

2.5.2 Timing

When studying the source code state-of-art operating systems that run on TelosB
platform, we made an interesting conclusion: none of the three systems analyzed
(TinyOS, Mantis, and Contiki) provide high-accuracy millisecond-precision timers.
Furthermore, out of the three only the latter provides high-accuracy long-term time
accounting in SI units.

This is an usability problem because diversity of measurement units and lack
of coordination between their naming in different areas may lead to confusion,
and to occasional errors. The world, with few exceptions, has converged to the
metric system (Le Système international d’unités) because using one, generally
accepted system of measurements helps to avoid misunderstandings. In information
technology, some confusion between binary and decimal units already exists (e.g.
“kilobyte” is frequently used where “kibibyte” should be used); however, author’s
opinion is that there are few fields when such a confusion is as undesirable as the
field of time measurements. Applications typically do not crash or have long-term
problems because hardware memory capacity is 2.4 % (for example) smaller than
expected; in contrast, timing errors are cumulative and potentially dangerous.

The cause of the problem lies in the fact that hardware timer ticks used for time
accounting do not allow to have 1:1 mapping to milliseconds in whole numbers. In
TelosB-based and similar platforms (Tmote Sky, Zolertia Z1 [Zolertia 2013], Ad-
vanticSYS XM1000 [AdvanticSYS 2013], SADmote (Section 4.3), and others), two
hardware clock sources are generally available: a high-frequency digital oscillator
and a low-frequency crystal. If a timer is sourced from the digital oscillator, imple-
menting a millisecond counter becomes trivial. Unfortunately, the oscillator is not
stable enough for accurate long-term time accounting (for example, it has large tem-
perature drift: 0.38 % per degree Celsius [MSP 2011]). Therefore the low-frequency
crystal has to be used, as it is comparatively much more stable: for example, the
standard crystal used in design of SADmote has only 20 parts-per-million maximal
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error, which corresponds approximately to clock drift of one minute per month.
Since a hardware timer sourced from the crystal can have 32 768 Hz maximal gran-
ularity, it is not possible to trigger an interrupt precisely every millisecond.

While in active mode, Mantis is triggering the interrupt approximately every mil-
lisecond. In the interrupt function, plus one is added to the system time counter.
In contrast, while in sleep mode, Mantis triggers the interrupt when the next event
should be processed. In this case, a value calculated from the number of hardware
timer ticks passed since last interrupt is added to a system time counter. Unfortu-
nately, the timing error accumulates with time, and is nondeterministic (dependent
on whether the system was in active or in sleep mode).

TinyOS puts the responsibility for time correction on the user. The accounted
milliseconds are called “binary milliseconds” in TinyOS; every wall-clock second
contains 1024 binary milliseconds. For novice users, this approach is confusing, as
nothing in the name of TMilli suggests that it does not refer to the ordinary (SI
time unit) milliseconds. The confusion is evidenced by the number of questions and
help requests at TinyOS user mailing list1.

The timing accuracy in the C code generated by TinyOS nesC compiler could
be easily fixed: in fact, only one line must be changed, replacing a binary shift
operation with multiplication. However, the TinyOS timers API [Sharp 2007] is so
generic and multifaceted that introducing such a fix in it is much harder.

The Contiki solution is to not to provide milliseconds as time accounting units
at all. Instead, CLOCK_SECOND macro is defined for mapping from hardware timer
ticks to SI units. Contiki also provides a highly accurate global time counter, but
only with second granularity.

The fact that such a timing inaccuracy (or lack of milliseconds as timing units
as in Contiki) has existed for such a long time in WSN OS hints that one of the
following might be the case:

a) accurate software-based time accounting is not required in WSN (either be-
cause it is not required at all, or can be achieved with other, such as hardware-
based methods).

b) millisecond timers and accurate long-term time accounting in millisecond
units is either not useful, or not feasible to implement on sensor network
hardware.

In our experience we have met at least one case when (a) is false: such an
accounting was required and could not be implemented using other means (at
least not without rethinking the system architecture). In our precision agricul-
ture deployment (Chapter 4) we met with a situation where the users of our system
wanted to record timestamped microclimate data from multiple locations. Time-
synchronization protocol was enabled in the network, but was of limited help: the

1For some examples, see: http://mail.millennium.berkeley.edu/pipermail/tinyos-devel/
2010-March/004317.html, http://mail.millennium.berkeley.edu/pipermail/tinyos-users/
2003-October/000319.html, and https://www.millennium.berkeley.edu/pipermail/
tinyos-help/2007-July/026965.html

http://mail.millennium.berkeley.edu/pipermail/tinyos-devel/2010-March/004317.html
http://mail.millennium.berkeley.edu/pipermail/tinyos-devel/2010-March/004317.html
http://mail.millennium.berkeley.edu/pipermail/tinyos-users/2003-October/000319.html
http://mail.millennium.berkeley.edu/pipermail/tinyos-users/2003-October/000319.html
https://www.millennium.berkeley.edu/pipermail/tinyos-help/2007-July/026965.html
https://www.millennium.berkeley.edu/pipermail/tinyos-help/2007-July/026965.html
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network often become partitioned, because some of intermediate nodes died, and
because the users of the sensor system wanted us to deploy nodes even in places
where network coverage was not planned. The sensor nodes we were using had
neither Real Time Clock chip nor GNSS receiver (absence of both is typical for
the current generation of WSN hardware [Strazdins 2013]). Therefore the only way
to generate accurate timestamps was to rely on time accounting algorithms imple-
mented in software. The case for software-based time accounting is also supported
by the fact that both TinyOS and Contiki do provide an API for it; we criticize
them for the limitations of this API, rater than for absence of it.

As for (b), while milliseconds as time units is not required by the user, it in-
creases the usability of the operating system by allowing to use familiar rather than
unfamiliar measurement units. One can say that there is need for the millisecond
abstraction at the system level: i.e. the system should abstract away the applica-
tion developer from the low-level details of hardware timing, unless using hardware
explicity is enforced by application requirements. Additionally, if we want to build
higher-level programming interfaces (such as SEAL: see Chapter 3) on top of the
OS, they certainly will not use hardware ticks as time units. It is better if the
underlying OS can provide 1:1 mapping to units used in higher-layer interfaces. In
this case the mapping between SEAL code and C code is more clearly visible to
the reader, and the generated code is more concise, as it contains no conversion
functions or macros. (At the moment the generated C code is used not only by
automated tools! We also have anecdotal evidence that people write SEAL applica-
tions and study the generated C code in order to learn sensor network programming
in MansOS.)

Implementation alternatives require some thought. What we are looking for is
a timing API that keeps track of the current time, and supports multiple software
timers. There should be at least the following operations: scheduling, removing
from schedule, and querying time-to-fire. Both the current-time counter and timer
periods should be expressed in milliseconds.

The first option is to count hardware timer ticks at the system level, and convert
timer milliseconds to hardware ticks every time a user exploits the timer API. This
option can be discarded at once as having significant overhead due to a lot of division
operations required.

The other option is to start with what Contiki has: a two-level hierarchy of
accurate time counters, consisting of hardware tick-based units at the lower layer
and a second counter at the higher layer. Developing the idea to match our re-
quirements, the timer API may provide two versions of functions: one that takes
parameters expressed as seconds, and another that takes milliseconds. Now only
the latter version must use long-division for conversion, increasing the efficiency
somehow. However, the API becomes less clear; usability is reduced.

Nevertheless, Contiki faces another performance penalty: to support timers with
periods longer than hardware timer overflow interval, the system has to periodically
wake up and modify all timers. This wastes MCU cycles, especially if the application
uses lot of timers. The modification period may be increased by using lower time
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Figure 2.14: Timing accuracy comparison

unit granularity. However, in this case a third time accounting layer must be used
to achieve high precision. (The reason why Contiki has clock_fine() function.)
Additionally, in Contiki an interrupt is generated for each second-layer timer tick,
even when the system is in low-power mode. This does not allow to achieve the
smallest duty-cycle possible, and poses a problem for applications with very low
power budget. (See also Section 2.6.5 for discussion about energy consumption of
Contiki applications.)

Let us describe the capabilities of hardware in more detail. Once again, plat-
forms similar to TelosB feature a high-accuracy, but low frequency crystal oscillator.
The oscillator is accessible from software by using hardware timer API provided by
the manufacturer of MSP430 MCU. The API consists of definitions that allow to
work with maximum of two hardware timers: TimerA and TimerB. Each timer has
multiple 16-bit hardware counters (not to be confused with the millisecond counter,
which is a variable in code!). Their number is dependent on the model of the MCU;
for example, for MSP430F1611 MCU (used in Tmote Sky) there are ten counters
in total: three counters for TimerA (named TimerA0, TimerA1, and TimerA2)
and seven counters for TimerB. In any case, MansOS wires the oscillator to the
TimerA during system initialization sequence. Each counter can be independently
configured to generate an interrupt once a custom numerical 16-bit value Tcounter

value is reached. The frequency of the crystal oscillator is Fmax = 32 768 Hz.
Therefore the maximum interrupt generation frequency of all counters also is

32 768 Hz, which corresponds to period Tcounter = 1. Table 2.2 shows other valid
counter periods and corresponding interrupt frequencies. In contrast, interrupt
frequencies such as 3, 10, 100 or 1000 Hz cannot be generated using counters with
fixed period.

The objective is to develop algorithm that would be as simple as possible (be-
cause more complex algorithms require more code memory), would account mil-
liseconds with reasonable accuracy in the short term, and would be error-free (have
accuracy that is limited by hardware only) in the long term.

The idea adopted in MansOS is to use two hardware timers (see Algorithm 2.4):
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Table 2.2: Examples of valid timer counter periods and corresponding interrupt
frequencies

Period, Tcounter Frequency, Fcounter

1 ticks 32 768 Hz
2 ticks 16 384 Hz
4 ticks 8192 Hz

128 ticks 256 Hz
256 ticks 128 Hz
215 ticks 1 Hz

216 − 1 ticks ~0.5 Hz

a “millisecond” timer running with approximately 1000 Hz frequency, and a “cor-
rection” timer that would correct the timer drift once it is large enough. A suitable
value for millisecond timer is Tmillisecond = 32, leading to Fmillisecond = 1024. An
ideal value for Fcorrection in this case is 24 Hz. However, this ideal value does not
correspond to a valid (i.e. integer) period. The largest factor of 24 that can be imple-
mented with the counter is 8, therefore we set Fcorrection = 8 and Tcorrection = 4096.
Every time the millisecond timer fires, the global millisecond time counter is in-
creased by one. Every time the correction timer fires, the counter is decreased by
three (because 24/8 = 3). The accuracy error, which is cumulative in TinyOS, is
kept bounded to 3 milliseconds in MansOS (Fig. 2.14).

Algorithm 2.4 The essential elements of MansOS time accounting algorithm
function Msp430InitClocks . Called during system initialization

milliseconds← 0
wire TimerA to the low-frequency crystal . 32 768 ticks per second
set TimerA0 period to 32 ticks . 1024 times per second
set TimerA1 period to 4096 ticks . 8 times per second
start TimerA

end function

function TimerA0Interrupt . Called on TimerA0 hardware interrupt
milliseconds← milliseconds+ 1

end function

function TimerA1Interrupt . Called on TimerA1 hardware interrupt
milliseconds← milliseconds− 3

end function

In order to keep timing accuracy high even when the system is not in the active
mode, another solution is adopted. In low-power mode, the high-frequency timer
interrupts are not generated. However, the hardware timer is still ticking. First,
time spent in sleep mode (in milliseconds, with rounding error) is calculated each
time the MCU wakes up after sleep mode. Second, in every time the timer generates
overflow interrupt (at exactly 16 seconds in sleep mode) a correction is applied,
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comparing the calculated value with the exact value (i.e. 16 000 milliseconds). This
is implemented in a few small blocks of code and is additionally using only 4 bytes
of RAM storage for file-scope variables.

Losing short-time accuracy is the tradeoff of MansOS solution. 3 millisecond er-
ror is not noticeable by a human directly (for example, when used to calculate time
when to sample environmental monitoring sensors), but might make a functional
difference when, for example, time slots for high-contention TDMA MAC protocol
need to be allocated with high precision (arguably, not a typical application-level
task). In such a case, the application programmer is better off by using hardware
timers directly. In contrast, there are no long-term penalties. When 32-bit mil-
lisecond counter is used, the algorithm correctly runs up to 49 days; when 64-bit
counter (enabled by a configuration option): up to millions of years.

Another tradeoff is the fact that an additional hardware timer counter must
be reserved for the correction timer. However, as described above, Tmote Sky has
10 independent hardware counters, and two of them are used by the operating
system in any case (one for counting ticks, one for low-power mode). Enabling the
correction timer merely means that three rather than two out of 10 timers are going
to be used.

2.5.3 Memory allocation

Initially the memory for system-level objects (sockets, files, queued packets) in
MansOS was allocated statically, using file-scope array variables. The size of the
arrays was either guessed by the system developer, or was determined in configura-
tion files of applications. It was hard to extrapolate the correct size that a “typical”
application is going to need, therefore the memory was often either wasted or allo-
cated insufficiently.

In order to solve the problem, a simple but ingenious solution was discovered:
make the object’s user responsible for memory allocation for that object. Now all
respective object initialization functions take a pointer to the object as an argument.
For example, instead of POSIX FILE *fopen(const char *path, const char
*mode) function now there is FILE *fopenEx(const char *path, const char
*mode, FILE *result) function with three arguments instead of two; instead
of POSIX int socket(int domain, int type, int protocol) now there is
int8_t socketOpen(Socket_t *socket, SocketRecvFunction callback) that
takes a pointer to the socket structure as an argument. Similarly, allocation of
queued packets is now done at MAC protocol level. Each protocol driver can rea-
sonably well estimate how large packet queue it is going to need. For most of MAC
protocols, a buffer of just one packet is sufficient.

All threads are also allocated statically, avoiding the potential reliability prob-
lems inherent in systems like Mantis, which allow dynamic memory allocation for
new threads at run-time, and making the code more amenable to static analysis
and checking.

However, dynamic memory allocation as such is also available in MansOS. While
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not used in the system code in order to avoid compromising reliability, it can be
used as part of application code, if the user needs it. For example, the user may
want to port existing code that uses dynamic memory allocation to sensor device
hardware. Availability of dynamic allocation API makes her task easier.

2.5.4 TinyOS-like design elements and MansOS: a discussion

MansOS includes some TinyOS-like design elements (for example: (1) component
selection as part of application building, (2) static memory allocation, and (3)
pruning of unused code). The assumption behind this is that these elements should
be implemented in plain C, so that they become available to users who do not
known nesC programming language. In this way, the usability of existing WSN OS
design elements can be increased.

In this section we briefly discuss some elements that are partially implemented,
point out what is still missing, and discuss implementation ideas for future work.

2.5.4.1 Parametrized hardware components

msp430UsartSerialInit0

serialInit

appMain

msp430UsartSerialInit1

references

references

references

Source code: Binary code:

- user code

- C source code

- binary code

GCC
compile & link

msp430UsartSerialInit0

serialInit

appMain

msp430UsartSerialInit1

does not call

calls

calls

- excluded binary code

Figure 2.15: Parametrized hardware interface optimization

Some of TinyOS design elements are partially implemented. For exam-
ple, an abstraction similar to parametrized hardware components are used to
ensure smaller binary code sizes. While in TinyOS the functions for sepa-
rate hardware components are generated by the nesC compiler, in MansOS
they are written by hand. To take a concrete example, consider an ap-
plication that prints characters using USART #1 serial interface on a TelosB
node. (There are two, USART #0 and USART #1 hardware interfaces on this
node; both are supported by MansOS software drivers.) Such an application
requires that the USART module is initialized in serial protocol mode. In
TinyOS, the task is done by HplMsp430Usart1P__Usart__setModeUart() func-
tion that is generated by nesC compiler. Since USART #0 is not used, the re-
sulting application code is smaller than if a generic configuration function was
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used. MansOS achieves the same result by providing two different functions:
msp430UsartSerialInit0() and msp430UsartSerialInit1(), and a high-level,
inline wrapper function serialInit(). If GCC linker optimizations are enabled,
the resulting code is as small as in TinyOS, because msp430UsartSerialInit0()
code is optimized away (i.e. excluded from the binary image) (Fig. 2.15). Essen-
tially, the idea is to design the code in such a way that it can be optimized by the
common GCC, rather that to write a custom optimizing compiler.

2.5.4.2 Differentiating execution contexts

Similarly to desktop operating systems, there are different contexts in which code
may be execution: for example, the interrupt context (inside interrupt handlers),
which is characterized by limited stack space available and (usually) disabled inter-
rupts; the system context, which usually can be interrupted by hardware events,
but cannot be preempted by a user application; and the user application context,
which is the least privileged of all. TinyOS explicitly separates, at syntax level,
between event handler code (the interrupt context) and task code (interruptible by
events, but not interruptible by other tasks). In contrast, at the moment different
execution contexts (such as the interrupt context, the system code context, and
the user code context) are not recognized in MansOS. If such a recognition was
implemented, it would be possible to automatically check that appropriate syn-
chronization primitives are used; for example, atomic sections rather than mutexes
must be used in interrupt context. It would also allow to enforce the requirement
that whenever variables variables that can also be accessed from interrupt context
are accessed from system or user code context, they are accessed with interrupts
disabled; this would lead to higher reliability [Levis 2004b].

Differentiation of execution context at syntax level would also be in accor-
dance with general usability guidelines that “different things should look different”
[Nielsen 1994]. Code annotations may be one way of implementing this.

2.5.4.3 Memory allocation for global objects

The memory requirements of embedded applications can frequently be known in
advance. Therefore static memory allocation is possible. Levis [Levis 2012] praises
the static memory allocation implemented in TinyOS as one of its most worthy
features. He mentions two core benefits:

1. Efficiency. It allows to waste no additional memory for meta information.
2. Reliability. Pointers may be avoided for memory allocation, therefore the

“dangling pointer” problem is frequently avoided as well.

To see how this works in detail, consider the problem of how to allocate global,
system-wide objects. (A short preliminary discussion: the kernel of the operating
system should know the addresses of all open sockets, all active timers, all open
files etc. Furthermore, it makes some sense to assume (as does TinyOS) that the
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ratio of active objects to all objects is close to one (e.g. almost all sockets are open
all the time), therefore the system code can be simplified by processing not only
active objects, but all objects in a unified way.)

There are two straightforward ways how to make these global objects accessible
by system code: by putting them in a global list, and by putting them in a global
array.

It is easy to see that in the “global list” approach a single misbehaving object
may wreak havoc on the whole system, simply by setting an invalid value as its
next pointer (the pointer that should reference either the next object in the list,
or be set to NULL). In TinyOS, all system-wide objects are placed in a continuous
memory array, therefore this problem is avoided. (This is the “reliability” point
brought up by Levis.)

It is equally easy to see that the next pointer is going to take up memory:
at least two bytes per object. (This is the “efficiency” point.) In contrast, the
array approach allows to pack the objects as densely as possible – but only if their
count is known at compile time! (Once again, an assumption is made, following
TinyOS, that this count may be known in advance, i.e. at compile time.) TinyOS
nesC compiler provides a predefined function for this purpose: uniqueCount() that
allows to know the exact number of a specific type of objects used in the applications
at compile time.

How does MansOS fare at the moment? Similarly to the other C-based WSN
operating systems analyzed, MansOS puts objects (such system timers and sockets)
in global lists. (See Section 2.5.3 for more details on this memory allocation for
global objects.) This means that MansOS faces the two problems described by
Levis.

Firstly, there are no compile-time checks that the user is doing something obvi-
ously incorrect, e.g. inserting a function-local variable in the system timers list and
returning from the function. To mitigate this issue, MansOS implements and uses
bool isStackAddress(void *p) function that check whether p is allocated in the
stack. It causes an immediate abort in the case described.

Secondly, memory usage is slightly larger compared to the array approach since
a single pointer is required as a part of the structure. However, this is a tradeoff
for increased run-time efficiency. TinyOS work less efficiently in some cases, for
example, when there are many timers and at least one of them fires frequently.
This operating system processes (and changes) all the timers used, even those that
are inactive. MansOS, in contrast, processes only the initial part of the timer list.
Of course, it in turn works less efficiently if there a lot of timers and proportionally
the number of timers are rescheduled, and are not the first in the list. However, for
the second problem there is an easy workaround at the application level: instead
of rescheduling the timer, allow it to fire, and then use a counter to count all
the times it would have been rescheduled. For the first problem there is no such
workaround, as both (a) a lot of timers and (b) at least one frequently running
timer are simultaneously required by many WSN applications.
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The “global array” (rather than “global list”) approach was not implemented
in MansOS, because, once again, it requires to know the exact count of statically
allocated run-time objects (like timers or sockets) at compile-time. TinyOS relies
on the nesC compiler to do that. However, it is possible even without using nesC.
One option is to use template metaprogramming present in C++. By using it,
a counter that computes that number of instantiations of a specific object can
be implemented. Such a counter can do instantiation count across even multiple
compilations units, because C++ template macroprogramming is a Turing-complete
compile-time computation method. Unfortunately, C preprocessor is less powerful.
It provides __COUNTER__ macro, but the macro allows to count instantiations only
in a single compilation unit.

Actually, the “global array” approach is already implemented in MansOS, but
for just one type of system objects: threads. We believe this approach is more
appropriate for threads compared with other system objects. Why? The number
of threads is expected to be small (Section 2.4.1) even compared with the num-
ber of timers and sockets, therefore MansOS assumes that it is efficient to loop
through all threads (Algorithm 2.3) every time the system scheduler code is exe-
cuted. There is also the requirement that the maximal number of threads must be
set in configuration file, therefore it is always known at compile time.

2.6 Evaluation

In this section, aspects of MansOS are experimentally evaluated and compared with
aspects of TinyOS, Contiki, and Mantis. LiteOS and Arduino are not included in
this comparison because they lack TelosB support. The versions used for evaluation
were: MansOS revision 918 (May 2013), TinyOS revision 6033 (December 2012),
Contiki git commit f5c8 . . . (October 2012), and the latest public release of Mantis,
1.0-beta (October 2007).

2.6.1 Source code compactness

Four applications were implemented in each operating system: Active – busy looping
application, RadioRx – radio packet reception, RadioTx – radio packet transmis-
sion, Combined – a sense-and-send application that also writes sensor values to the
external flash memory1.

First we compared source code size of the combined application in all imple-
mentations. (Contiki-optimized is an implementation that will be discussed in the
next section. It has optimized resource usage, rather that source size.) The size
was evaluated excluding comments and empty lines, but including configuration
files. The source of nesC and Contiki applications were formatted by using TinyOS
and Contiki example applications as basis, respectively, while C applications were
formatted according to MansOS coding guidelines2.

1The implementations of these applications are available at http://mansos.edi.lv/dissert/
testapps.tgz

2Available at http://mansos.edi.lv/wiki

http://mansos.edi.lv/dissert/testapps.tgz
http://mansos.edi.lv/dissert/testapps.tgz
http://mansos.edi.lv/wiki
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Source code for the combined application’s event-based implementation in
MansOS is also given in Listing 2.4.

Listing 2.4: The combined application
1 # include <stdmansos .h>
2 // define sampling period in miliseconds
3 # define SAMPLING_PERIOD 5000
4 // declare our packet structure
5 struct Packet_s {
6 uint16_t voltage ;
7 uint16_t temperature ;
8 };
9 typedef struct Packet_s Packet_t ;

10 // declare a software timer
11 Alarm_t timer ;
12 // declare flash address variable
13 uint32_t extFlashAddress ;
14
15 // Timer callback function . The main work is done here.
16 void onTimer (void * param ) {
17 Packet_t packet ;
18 // turn on LED
19 ledOn ();
20 // read MCU core voltage
21 packet . voltage = adcRead ( ADC_INTERNAL_VOLTAGE );
22 // read internal temperature
23 packet . temperature = adcRead ( ADC_INTERNAL_TEMPERATURE );
24 // send the packet to radio
25 radioSend (& packet , sizeof ( packet ));
26 // write the packet to flash
27 extFlashWake ();
28 extFlashWrite ( extFlashAddress , &packet , sizeof ( packet ));
29 extFlashAddress += sizeof ( packet );
30 extFlashSleep ();
31 // reschedule our alarm timer
32 alarmSchedule (& timer , SAMPLING_PERIOD );
33 // turn off LED
34 ledOff ();
35 }
36
37 // Application initialization
38 void appMain (void) {
39 // wake up external flash chip
40 extFlashWake ();
41 // prepare space for new records to be written
42 extFlashBulkErase ();
43 // initialize and schedule our alarm timer
44 alarmInit (& timer , onTimer , NULL);
45 alarmSchedule (& timer , SAMPLING_PERIOD );
46 // enter low - power mode
47 for (;;) sleep (1);
48 }

The results (Fig. 2.16) suggest that compared to other WSN OS, MansOS allows
to write applications with the same functionality using shorter code. The difference
is rather small and inconclusive compared to Contiki and Mantis, but more than
two times compared to TinyOS. This is an important usability benefit of the sys-
tem, because shorter code is more easy to understand and manage (at least when
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Figure 2.16: Source code size comparison of the combined application

all the other aspects, such as familiarity and complexity of the code are equivalent).
In contrast, lengthy source code in TinyOS signals a potential usability problem.
We point out that even though TinyOS applications are written in a different pro-
gramming language (nesC), the level of abstraction of TinyOS code is roughly the
same, since both C and nesC are high level languages. Even more, since nesC is
a superset of C [Gay 2009], it allows for more concise syntax in some cases, rather
than the opposite.

Further analysis is required to determine whether the complexity per line is
small enough in TinyOS to balance out the additional code size.

2.6.2 Binary code size and RAM usage

The RAM usage and code sizes were obtained by compiling with msp430-gcc version
4.5.3, using the default optimization level of each operating system. For MansOS
applications, 256 byte stacks were used.

There were four versions of MansOS and two versions of Contiki applications.
First we discuss the difference and motivations between “release” and “default”
MansOS versions. Since WSN applications are often prototyped on more powerful
devices than are used for the final deployment, we also consider a size-optimized
(“release”) versions of MansOS applications. To build such a release version, only
one change was required: addition of USE_PRINT=n configuration option. As the
motes in the deployed WSN usually cannot be monitored using serial interface, such
a change is natural at the end of software prototyping, when it is prepared for the
release. (If wireless debugging is required in a deployed WSN, MansOS also offers a
configuration option to redirect debug output to radio.) Certain parts of debugging
code (e.g. the ASSERT macro) remained even in the “release” versions.

Now we turn to the question of Contiki. The applications were initially im-
plemented using the default, limited component selection mechanism present in
this operating system. nullmac_driver, nullrdc_driver, and framer_nullmac
options were selected for all of the applications, and CONTIKI_NO_NET define was
also selected in Makefile of the loop application. Then, in order to show the im-
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Figure 2.18: Application RAM usage comparison. Contiki RAM usage is not
shown in full

provements possible in this default configuration mechanism we also ported the ap-
plications to the optimized version of Contiki that partially incorporated MansOS
component selection mechanism (Section 2.3), leading to “optimized” versions of
the same applications.

The results are given in Fig. 2.17 and Fig. 2.18. As for code sizes (Fig. 2.17),
MansOS shows the best results in three of four test cases, the only exception being
loop program: in Mantis it uses only 102 bytes, compared to 944 bytes in MansOS
release version, without threads. In Fig. 2.18 Contiki RAM usage is not shown
in full; for all applications it is between 4240 and 4540 bytes for the unoptimized
version and (excluding loop) between 3680 and 3980 bytes for the optimized version.

All of the WSN OS analyzed try to reduce binary code size in some way.
MansOS: by using the configuration mechanism (Algorithm 2.1 and Algorithm 2.2)
and by enabling linker optimizations, essentially achieving garbage collection of un-
used functions; Mantis: by building separate components as libraries and linking
them together (allows to discard unused libraries), TinyOS: by topologically sort-
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Figure 2.19: Application compile & upload time comparison of the combined
application

ing all functions in source files and pruning unused ones from the final binary code.
Contiki enables function-granularity garbage collection (implemented by the GCC
compiler and linker themselves), but demonstrates the worst results of all OS, as it
also enables most of components by default.

MansOS compared with Contiki and Mantis additionally benefits from the
component-granularity link time optimization (Section 2.3), and by parametrized
hardware component optimization (Section 2.5.4). The effects caused by disabling
these techniques are show in Fig. 2.20 (for MansOS; this, in contrast to the rest of
results in this chapter, was evaluated on MansOS revision 981) and Fig. 2.21 (for
Contiki). In MansOS, enabling function-granularity optimization also caused un-
used parametrized hardware components to be optimized away. In contiki, function-
granularity optimizations were already present in the mainstream version, so only
componenent-granularity optimizations is considered. The effect of this optimiza-
tion is comparatively much larger in Contiki than in MansOS, because only the
optimized version of Contiki does not enable and use all of the components by
default.

The effects of file-granularity optimization are more pronounced on simpler ap-
plications, as the combined application uses most of the components enabled by
default, while the simpler ones do not. Therefore, they may be optimized away.

Interestingly, judging by the publication [Cao 2008] LiteOS also achieves small
application code size. LiteOS applications use system calls, which allows to include
only the user logic in the code of the application itself, rather than to build a
monolitic binary image that includes the whole kernel functionality.

Larger binary code size in TinyOS is partially caused by limitations in this OS
hardware abstraction model: direct access to radio chip’s driver code is prohibited
and Active Message interface has to be used.

The optimized version of Contiki demonstrates good results for this set of ap-
plications (Fig. 2.21): at least 30.1 % reduction in flash usage and at least 12.3 %
reduction in RAM usage, showing that the MansOS component selection mecha-
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Figure 2.20: Effects of enabling link-level optimizations in MansOS (event-based,
“release” version)

nism is a viable way how to reduce superfluous resource usage in other operating
systems as well.

As for Mantis, their approach is efficient, but suffers from usability problems. A
number of changes are required to build their latest release with the current GNU
compiler version, including defining putchar() as dummy function in user code and
commenting out multiple references to mos_led_display() function in kernel code.
The problems are caused by circular dependencies of the libraries. We can conclude
that increasing the number of separately linked components is detrimental to the
usability of the core system, since the number of inter-component dependencies
grows too fast.

Shorter binary code size leads to tangible benefits for the WSN OS user. Firstly,
energy requirements in reprogramming are directly proportional to the code size, if
full run-time reprogramming is used. Every byte of code transmitted through the
air requires spending a small, but substantial amount of energy. Even though all of
the analyzed OS allow some kind of partial run-time reprogramming, it is not always
sufficient. Whenever core parts of the system are changed, full reprogramming is
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Figure 2.21: Effects of enabling link-level optimizations in Contiki

still required. Therefore, the number of bytes that need to be transmitted ought to
be kept small.

Secondly, smaller code leads to shorter development times, as putting the pro-
gram on sensor devices becomes faster. To show this, we measured combined com-
pilation and upload time on TelosB platform (Fig. 2.19). The arithmetical average
of three measurements was used; the standard deviation was too small to show it in
the figure, no larger than 1.1 % of the corresponding average value. Faster upload
is important because code-and-fix approach is currently typically used in the sensor
network software development process [Picco 2010]. Due to limited WSN debugging
options, when debugging a specific problem, sometimes it is required to reprogram
the device large number of times to test a specific hypothesis about the problem.
The author has spent hours doing this kind of debugging. If the reprogramming
process can be made just 20 seconds faster, the length of a debugging session some-
times can be reduced by half an hour. (The measured average difference between
Contiki and MansOS without threads was 20.33 seconds.) Also, if the number of
sensor nodes for a deployment is great, their programming time can be significantly
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Table 2.3: Flash memory usage in the combined application, bytes

Subsystem No threads With threads
Kernel 952 1090
Radio 1064 1288

USART & SPI 412 468
Flash 544 544
ADC 154 154
LEDs 38 94

Arch & platform 310 310
Compiler & library code 142 244

User code 154 152
Threads 0 588

Total 3770 4932

Table 2.4: RAM usage in the combined application, bytes

Subsystem No threads With threads
Kernel 12 17
Radio 6 6

USART & SPI 6 6
Flash 1 1

User code 12 17
Threads 0 36

Total 39 70

reduced. If 20 second shorter binary code upload takes place, for a network of ten
nodes, programmed sequentially, the difference is 3 min 20 sec in total, but for 100
nodes: more than 33 minutes. (The sensor devices typically cannot be programmed
in parallel, as this process requires programming hardware; the number of these
hardware programming devices is not likely to scale close to the number of sensor
devices.)

Furthermore, building MansOS programs is faster than their counterparts in
other OS, because MansOS configuration mechanism excludes most of unnecessary
source files from the build by default. TinyOS approach is efficient in this regard
as well – we hypothesize it’s because all nesC files are pre-compiled to a single C
file for fast processing.

The MansOS in event-based form takes considerably less flash space than the
threaded version. The difference is mostly due to the complexity of the thread im-
plementation itself (Table 2.3). While using more resources in general, the threaded
version leads to shorter user code and smaller RAM usage in it, because smaller
state information has to be kept inside application’s logic.

RAM usage is given without including memory allocated for stacks (512 bytes
for each thread by default, 256 bytes configured for this test). Even though compar-
atively large amount of memory is used in this way, it seldom would cause problems
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for real applications, because code memory, not RAM, is the scarcest resource on
Tmote Sky. This is evidenced by the example application (Table 2.3, Table 2.4,
Fig. 2.22), because it uses proportionally more of total code memory (4932 bytes
of 48 kB, i.e. 10.0 % of it) than of total RAM (70 + 256 bytes of 10 kB, i.e. only
3.2 % of it).
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Figure 2.22: Subsystem resource usage in the combined application

2.6.3 Thread implementation

Thread implementation is compared with Mantis, because of the four operating
systems considered only MansOS and Mantis enable preemptive multithreading
by default. Both include support for theoretically unlimited number of threads,
although in MansOS the upper bound must be specified at compile time, and usually
is small. The thread structure takes 12 to 16 bytes in RAM in MansOS (minimal
and maximal configuration) and 21 bytes in Mantis. The maximal number of total
threads in Mantis is 10, defined as a system-level constant. Since one of those
threads is a system thread, the maximum number of user threads in Mantis is 9. In
MansOS the number of user threads is defined as a application-level constant, and
by default is just 1.

Two distinctive features of MansOS thread implementation are apparent:

• Lower resource requirements (Fig. 2.23). The scheduler used in MansOS is
simpler, e.g. it has no separate queues for ready and sleeping threads. This
tradeoff is justified by the low number of threads typical in a WSN application
(see Section 1.4.4.4), which allows the scheduler to process all threads in each
context switch. Furthermore, in WSN OS user threads can be expected to be
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cooperative (because for a single-application WSN, all user threads belong to
the same application), so the fairness of the scheduler becomes an optional,
rather than a critical requirement.
• Better adaptation (Fig. 2.23, and especially Fig. 2.24). Mantis memory re-

quirements are constant and do not depend on the number of threads used
(the flash usage changes in the figures are due to longer user code only).
MansOS requirements are flexible.

The RAM usage was evaluated without including stacks. The required stack
size is dependent on compiler version and on system libraries being used. MansOS
leaves large safety margin and uses 512 byte stacks by default (except on low-
memory platforms); the choice is motivated by large stack space requirements of
library functions. For example, the PRINTF macro in MansOS eventually calls libc
functions. The macro, when called without arguments, already uses 62 bytes of
stack space (msp430-gcc version 4.5; the usage is even higher in msp430-gcc version
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4.6). The arguments passed to PRINTF can easily use ten or more bytes additionally.
Therefore, future work includes implementing formatted print in the OS itself and
in a more optimized fashion, as is done in Mantis. On the other hand, Mantis
allocates stacks in heap, so more than the amount pictured in Fig. 2.23 is used.

The heart of the thread implementation in MansOS is the schedule() function
that selects which thread to run next. The binary code size of this function depends
on the number of threads used (Fig. 2.24). Round-robin based scheduling is more
costly, partially because 32-bit last-time-run values are used instead of 8-bit priority
values, and partially because thread’s last-time-run is updated every time a thread
is run, while priorities are kept unchanged during whole execution time. However,
in all cases the resource requirements can be easily satisfied by a typical WSN sensor
node.

2.6.4 Execution flow analysis

Taking into account the lower binary code size of MansOS applications compared
to TinyOS, analysis is needed to convince the reader that MansOS is not missing
some essential functionality that would render its application useless in real-world
conditions.

When tracing the execution, one discovers that both operating systems do sim-
ilar tasks:

• initialize the watchdog;
• calibrate the digitally-configurable oscillator;
• initialize hardware timers;
• initialize LEDs;
• put the external flash chip in deep sleep mode;
• initialize the list (MansOS) or array (TinyOS) of software timers;
• run the core function / scheduler / loop.

In MansOS event-based version, appMain() is used for user initialization only
and for entering an infinite loop which calls sleep(). The real work is done by a
timer callback function that is called repeatedly by the system alarm list processing
code.

In MansOS multithreaded version, an array of two threads is initialized, and the
user thread is started. (System thread is executed in the main execution context.)
The user thread’s start function is appMain(), which never returns, but performs
all the work and calls sleep() in a loop.

In, TinyOS a task loop runs all tasks that are scheduled and are ready to run.
If no tasks are scheduled, the scheduler puts system in a low-power mode. Each
interrupt in turn causes the associated event handler with it to execute; these
handlers may schedule tasks for later execution.

The MansOS code usually is smaller not because it is missing some critical
functionality, but because TinyOS offers much more options to the user (in ADC
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control and radio control most prominently for this example). Other that that,
TinyOS also includes this extra functionality:

• code for 8 hardware timers by default, even though not all of them are used
by the application;
• code for CSMA access of the CC2420 radio, while MansOS uses it at the

PHY layer directly;
• code for Active Message creation and management, which MansOS send out

data in an untyped C structure;
• code for resource arbitration (has to be done partly manually in MansOS).

The extra RAM usage in TinyOS is mostly because of arbitration code: more
variables are required to keep in track the state of the system. Also, some compo-
nents (such as CC2420 radio driver) use run-time variables where MansOS allows
only compile-time changes (for example, whether to ACK automatically, whether
to do address recognition, etc.). In several cases the state is stored in parallel to
hardware, which also stores the same state (for example, for radio channel). There
is also a buffer for radio packet reception, even though it is never required by the
application logic.

From all of this, only manual calls to sleep() and manual resource arbitration
(avoided in chip drivers that were implemented later) decrease usability. None of
the problems make MansOS impractical to use.

2.6.5 Energy consumption evaluation

Experimental setup. We measured the energy consumption of the combined
application in one sensor read period (5 seconds) with PowerScale ACM probe, using
20 kHz sampling frequency (maximal measurement error: ±0.5µA by datasheet).
We used a simple, synthetic application on purpose, in order to keep the number of
experimentally controlled variables manageable and the analysis accurate. We also
disabled all MAC-level activity, which turned out to be the biggest energy-consumer
in a preliminary evaluation. Although radio packet transmission is present in this
application, the long-term average energy consumption is MCU-bounded rather
than radio-bounded.

We compared MansOS with TinyOS and Contiki. Mantis was not included
in this test because even simple Mantis applications that were compiled for TelosB
with a recent GCC compiler (mp430-gcc 4.6.3) failed to start (including on a Tmote
Sky sensor node). However, existing research [Duffy 2008][Lajara 2010] already has
demonstrated that Mantis is not as energy efficient as TinyOS.

The test applications were running on a single AdvanticSYS XM1000 sensor
node with on-board light and humidity sensors. It had MSP430F2618 MCU clocked
at 8 MHz active-mode frequency. Although it is known [Sieber 2013] that sensor
network nodes show significant variance in energy consumption, we did not include
more than one device in the test because we were primarily interested in the relative
performance of the software under test rather than absolute consumption values.
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In TinyOS, the listening interval of the low-power duty cycle MAC protocol
provided by this system must be configured from the application; the maximum
interval between consecutive listening periods is 64 seconds, and listening cannot
be disabled completely, unless the low-power listening component is modified or
replaced. By asking to replace an integral part of the system such as a MAC protocol
in order to optimize energy usage, TinyOS puts a rather stringent requirement on
the users. In any case, for this test we modified the core code of the existing
implementation in order to disable listening altogether.

In Contiki, the behavior of the default MAC protocol also can be optionally
be configured from the application (rather than must be configured – in contrast
with TinyOS). We changed the MAC protocol back to the default (from null_mac
to Contiki MAC), as well as disabled all other custom configuration options; we
also added a single line of code to the C code of the Contiki application to turn
MAC protocol off. The sensors also had to be turned on and off manually (see the
discussion below), which required additional 4 lines of code.

There is one more, qualitative aspect of energy usage that should be discussed
before review of quantitative results. An operating system is easier to use if it
does the resource management more implicitly. With regard to this criteria, there
is no clear winner. All of the OS make MCU power management implicit, except
MansOS without threads, which requires explicit calls to sleep() function. Al-
though this usage pattern (demonstrated in Listing 2.4) is not complicated, it still
puts some effort on the user. All of the OS also make radio power management
partially implicit: after sending is completed, the radio enters the idle mode au-
tomatically. However, TinyOS requires explicit low-power listening configuration;
otherwise radio is constantly in the listening mode. TinyOS makes external flash
chip power management implicit; in MansOS it is explicit, and Contiki follows “do
not care” policy and offers no API for this purpose at all. Finally, MansOS and
TinyOS make ADC-based sensor power management implicit, but Contiki requires
explicit calls to turn the sensors off. When porting the combined application be-
tween platforms, we used the explicit API where necessary; in contrast, we did not
use explicit hardware-level commands where no API was provided. Therefore, the
external flash memory chip was not turned off on Contiki platform.

Results. The average, minimal and maximal current consumption of a single
sensor reading period is given in Table 2.5 and in Fig. 2.25. The results are average
of three samples; the standard deviations between these samples are also included
in the table. Several interesting values are highlighted.

At the first approximation, for all of the operating systems, the energy consump-
tion pattern for this application looks like a single peak (repeated every 5 seconds),
while the absolute majority of the time is spent in a low-power mode (below 1 mA)
(see also Fig. 2.26). The peak corresponds to the time interval when LED is lit,
ADC sampled, data written to flash and transmitted to radio.

The length of the peak period is approximately 3.7 milliseconds for Contiki and
5.4 to 5.7 milliseconds for MansOS. It is only 1.5 milliseconds for TinyOS; however,
the slope at the sides of this peak is not steep, and increased energy consumption
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Table 2.5: Average, minimal and maximal current consumption of the combined
application. In brackets: standard deviation of the three samples, expressed as %
of value

Average Min Max
MansOS w/o threads 21.8µA (1.86 %) 10.2µA (0.28 %) 25.7 mA (1.17 %)
MansOS with threads 28.2µA (1.54 %) 10.2µA (0.28 %) 25.8 mA (1.05 %)

TinyOS 69.9µA (17.41 %) 10.8µA (0.27 %) 25.5 mA (0.30 %)
Contiki 787.2 µA (0.02 %) 231.4 µA (1.98 %) 26.1 mA (1.66 %)

(more than +3µA compared to the baseline) is present for up to 10 milliseconds.
Almost all of the rest of the time was spent in low-power mode (with MCU and

radio turned off). The typical current consumption in this sleep mode was between
10µA and 20µA for MansOS and for TinyOS (slightly smaller for MansOS), but
750 to 770µA for Contiki.
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Figure 2.25: Average, minimal and maximal current consumption of the combined
application (logarithmic scale)

Fig. 2.26 shows the proportions of each energy usage levels in different operating
systems. It can be seen that both TinyOS and MansOS spend almost all of the time
in very low current consumption mode: below 100µA. Contiki spends majority of
the time consuming between 0.32 mA and 1 mA. No OS spends large proportion of
time at levels above 10 mA.

Discussion. First of all, in this example application MansOS and TinyOS
demonstrate average energy usage on this platform that is an order of magnitude
better than that of Contiki. The average usage of MansOS is also significantly better
than that of TinyOS; the average usage of MansOS without thread is significantly
better that of MansOS without threads.

The minimal energy usage of Contiki is relatively very high, but there are no
significant differences (at this level of precision) between the minimal energy usage
of TinyOS and MansOS. The maximal energy consumption is similar on all OS.
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Figure 2.26: Proportions of time spent in specific current consumption levels in
the combined application

The variance of minimal and maximal energy consumption between samples is
low; on the other hand, the variance for average consumption is high at least for
TinyOS. More research is needed to determine the cause of this variance, as well
as the reasons behind the difference between the average consumption on MansOS
and on TinyOS.

This example application also demonstrates the cost of threads in MansOS.
Adding threads increases average energy consumption by 29 %, although this in-
crease in energy is going to be proportionally smaller in more computationally-
intensive or communication-intensive applications. The threaded version of MansOS
consumes more, because the scheduler itself is run periodically even if there are no
active tasks. The times when scheduler is run are observable as small bumps in the
energy consumption profile of the device; the average period between then is 100
milliseconds for this application.

It was already known [Lajara 2010] that Contiki consumes more energy than
other popular WSN operating systems. This is primary because the system by
default configures and leaves on everything it supports. Even though there is ex-
plicit code in this application that turns off MAC protocol and ADC hardware,
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high energy efficiency is still not achieved. For example, Contiki does not turn off
the voltage reference generators: one is of the radio chip, one of the internal ADC
(200µA consumption). It initializes and does not put in deep-sleep mode the exter-
nal flash chip. All this leads to power consumption that is from 750 to 770µA even
in the sleep mode. Periodic low peaks are also present (up to 1200µA, with 7 to 8
millisecond period). The lowest energy consumption values were recorded directly
after radio transmission is completed.

What do these results mean? If the sensor node was programmed using this
application written in MansOS and powered from a pair of typical alkaline AA
batteries with 2700 mAh capacity, it would take more than 14 years to deplete the
batteries. If MansOS with threads was used, the system would last 10 years and 11
months. If TinyOS: 4 years and 5 months, if Contiki: just 143 days (between four
and five months). (We are aware of the limits of such an extrapolation and include
it pedagogical and explanatory reasons, rather than as a scientific claim expected
to hold in real-world conditions. This extrapolation is limited by many factors, e.g.
it uses a simple linear discharge model, it ignores self-discharge current, which in
real-world would be comparable if not bigger, and it uses absolute consumption
values from results that are not validated on more than one device.)

MansOS superiority in energy efficiency is going to become smaller both as the
applications get more complicated (e.g. more communication is required), and if
the user adds application-specific extensions to the OS. Still, for simple applications
like this the MansOS approach leads to notable gains compared to Contiki. The
user who wants to write a typical sense-and-send application will be better off by
choosing MansOS, as it offers higher system lifetime directly out-of-the-box.

Also, even if the assumption that energy consumption in most of sensor network
applications is radio-bounded rather than MCU-bounded holds, our selection of this
specific application for testing is still justified. The energy consumption of radio-
bounded applications is dependent primarily on network protocols. If a hypothetical
application is energy-efficient in Contiki, it is so because it uses an energy-efficient
network protocol stack. It is likely that these protocols can be ported to MansOS
without changing the core of MansOS. (For an example see the note at the end of
Concluding remarks of this chapter.) Therefore, it makes sense to compare energy
efficiency of just this core part, rather than of the whole networking stack.

2.6.6 User study

A small-scale user study was performed to compare success in sensor network ap-
plication development on TinyOS and on MansOS for first-time users. The par-
ticipants were third year computer science students taking a WSN course. The
test took place in the first month of the course, and none of the users had previ-
ous WSN programming experience. However, all of them had been taught a C++
course before.

The task was to modify a simple sense-and-send application. The code of the
application was provided to the users as a template. Originally it read light sensor
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with 3 second interval and sent out the values to a base station. The users had to
add humidity sensor reading, change the interval to 2 seconds, and send a two-field
packet to the base station rather than a single value.

The users were separated in three groups, four users in each: TinyOS users,
MansOS using event-based programming model, and MansOS using thread-based
programming model. According to usability testing research [Barnum 2010], four
user large sample size can uncover approximately 75% of all possible findings for a
particular test. Usability testing
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Figure 2.27: Results of the experimental evaluation and opinion poll

The results are presented in Fig. 2.27. Student solutions were judged by their
completeness and correctness (Fig. 2.27a), and the students were asked to estimate
the “expert-level usability” of their respective environment (Fig. 2.27b).

Discussion. Even though the sample size is small, it is still enough to draw
statistically significant conclusion that TinyOS usability for the first-time user is
lower (P < 0.02, i.e. the null hypothesis that OS choice has no effect on usability
has probability lower than 2 %; for the null hypothesis we assumed that a randomly
picked student had the same, 25 % probability to achieve any of the four outcomes
in the test).

The conclusion is hardly surprising, as all of the users had programmed in
C++ (which is nearly backwards compatible to C) before, and none of them had
programmed in nesC before. Still, the evaluation is useful, because it experimentally
validates the assumption that for simple applications, for IT professionals C-based
sensor network operating systems are easier to start using than TinyOS.

There were complaints about usability problems in all three groups (“limited
or hard-to-understand documentation” was especially prominent); however, only
in the TinyOS group they caused majority of participants end the study without
creating any solution at all.

Threads and events, in contrast, have statistically indistinguishable usability in
the context of the test (P > 0.05), although thread-based group performed worse.
It is possible that this was because of the event-based nature of the task. The
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implementation of “thread” group used polling, which did not reflect this nature as
well as the implementation of the “event” group that used callback functions.

The students who used MansOS were sometimes confused by the need to modify
configuration file in addition to C source code. Apparently, the confusion was due
to unfamiliarity, rather than inherent complexity of using it.

The students did not expect that using TinyOS at the “expert-level” (i.e. as
confident and experienced users) is going to be significantly harder than MansOS
(Fig. 2.27b), but they admitted that “becoming an expert” may take longer.

2.7 Applications

The most successful MansOS application up to date, environmental monitoring in
precision agriculture, is described in details in Chapter 4. This section lists a few
other MansOS applications or potential applications.

2.7.1 Wild animal monitoring

One prospective application of MansOS is wild animal (lynx) monitoring
[Zviedris 2010] (see also Listing 3.29). While environmental monitoring is not a
new application area for MansOS, the system requirements of mobile object mon-
itoring in large areas with sparse connectivity are very different compared to the
requirements for microclimate monitoring in an orchard. For example, wild animals
are neither stationary nor cooperative, therefore human access to the data and the
device itself during the lifetime of the system is problematic.

The key part of the LynxNet hardware is the collar device. It is an inte-
grated hardware solution that consists of Tmote Mini sensor device, external radio
transceiver, attached sensors (accelerometer, temperature and humidity) and a GPS
device. We decided to use low-cost radio chip: LINX TRM, 433 MHz frequency,
on-off keying modulation. The chip offered no software abstractions for packet-level
access or byte-level access to radio data; it had to be sent and received bit by bit.
Therefore the PHY level communication protocol (data coding and decoding) had
to be implemented in software. Nevertheless, the radio communication worked for
300 meter distances (both line-of-sight and in a forest, where the signal propaga-
tion path was occluded by leaves). Later, forward error correction (using Hamming
codes) was added to the communication protocol and MansOS; it should increase
the communication distance by exploiting redundancy.

This radio communication distance is not large enough to cover a significant
part of activity area of a typical lynx, but could be useful for a number of base-
stations placed in the forest. The base stations should be situated in places which
the lynx visits frequency. The base stations should also be equipped with mobile
Internet connection in order to upload the data in a database server once they are
received from a lynx.

In order to increase robustness of the system, a number of MansOS features
would be used. In order reboot the system in case software freezes there is a watch-
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dog timer. Then there is code for periodic digitally-configurable oscillator reconfig-
uration. The high-frequency oscillator has period that is sensitive to temperature
changes, therefore in the forest conditions it should be periodically re-calibrated.
MansOS allows to do it automatically.

2.7.2 Automotive applications

Vehicular sensor networks is a promising subfield of WSN, and EDI is carrying
out a number of research activities in this area. MansOS has been used in two
of them: road surface monitoring and vehicle mode detection. The embedded
hardware platform used for both of these projects is the CarMote [Mednis 2012b]
device. The device is similar to the LynxNet hardware prototype described above,
but unlike it the CarMote is meant to be placed in a car. Compared to commercial
off-the-shelf devices used for similar tasks (most typically smartphones), CarMote
has lower production cost and lower energy consumption.

MansOS supports CarMote as a hardware platform and includes a number of
applications implemented for it. Code listings in Chapter 3 (Listing 3.32 to Listing
3.35) show details on how MansOS can be applied to road surface monitoring.
Listing 3.36 shows how MansOS can be used to program an application that uses
accelerometer sensor to detect whether a vehicle is driving or standing in place
(including standing, but with engine on – small vibrations are filtered out).

The latter application has also been implemented separately in MansOS for
Zolertia Z1 hardware platform, using a more advanced algorithm based on Bayesian
networks [Elsts 2014]. A Bayesian network is a form of probabilistic graphical
model that describes a set of random variables and their probabilistic relationships.
Bayesian networks are frequently used in areas where automated reasoning with
uncertainty is required.

The algorithm in question used a pre-created Bayesian network that inferred
the probability that the car is moving. In order to do that, the algorithm in turn
used a set of classifiers with observable, dynamically changing values and their prior
probabilities. The classifiers included examples such as whether the case was moving
before and whether the readings of the accelerometer cross specific thresholds. The
algorithm was tested on a test set that contained a number of everyday driving
scenarios. The algorithm showed 100 % vehicle mode detection accuracy on these
31 scenarios (they included starting driving, starting in reverse gear, starting while
turning, driving at various speeds, and coming to a halt). The algorithm positively
compares to the algorithm previously developed by Mednis et al. [Mednis 2011]
(which demonstrated only up to 80.6 % detection accuracy on the same test set).

An important point our experiments show is that it is possible to implement
complicated probabilistic graphical models on very low-power MCU. The target
MCU was MSP430F2617 (82 kb flash memory, 8 kb RAM) running at 16 MHz fre-
quency. It required less than 30 milliseconds to execute the algorithm on this MCU.
From this time, approximately 90 % was spent in calculating the classifier values,
and only the remaining 10 % in the probability inference process itself. Such a per-
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Table 2.6: WSN OS and Arduino feature comparison

MansOS TinyOS Contiki Mantis LiteOS Arduino

Multiple architectures + + + + − −
Preemptive multithreading + +1 − + + −
Event-based programming + + +2 − − −
App. development in C + − + + +/−3 +/−4

Millisecond timing on
TelosB

+ +/− +/− +/− n/a n/a

formance was more than satisfactory for our application. The system requirements
required that the detection is performed with granularity not higher than 1 second;
in order to achieve this granularity, the device is required to be powered no more
than 30/1000 = 3% of the time.

2.8 Concluding remarks

We have presented aspects of MansOS and compared it with state-of-art WSN
operating systems and Arduino (Table 2.6).

MansOS demonstrates advances over other C-based WSN operating systems
(Contiki, Mantis, LiteOS) in several areas: modularity, portability, and, to a lesser
extent, reliability. It shows that it is possible to implement some of the ideas
inherent in TinyOS in a different way, leading to an operating system that has
better usability and is easier to learn.

We have identified several specific benefits present in MansOS. It provides:

• Learnability. The key is to provide abstractions that are either already
familiar to the user, or require short time to grasp. For example, a Con-
tiki programmer who wants to use software timers has to think in terms of
hardware timer ticks. TinyOS programmer has to either do the same or to
learn about binary milliseconds. In contrast, MansOS allows to use standard
milliseconds as time units even on TelosB platform (Section 2.5.2). MansOS
also uses POSIX API for several system modules rather than sensor network-
specific abstractions, in order to better accommodate the existing program-
ming knowledge of those target users who are experienced in programming,
but novices in WSN. However, in some cases it turned out to be more pro-
ductive to tweak the standard slightly because of efficiency reasons (Section
2.5.3). Superior usability of C-based operating system such as MansOS over
a nesC-based operating system (TinyOS) for inexperienced (first-time) WSN
users is evidenced by results in a small-scale user study.

1Through TOSThreads [Klues 2009]
2Beyond the protothread abstraction
3LiteC++ is used
4A subset of C++ is used



Chapter 2. Building system-level support 94

• Modularity. The hard challenge is to implement high usability while not
giving up on WSN-specific design goals, in particular, resource and energy
efficiency. We solve it by providing it a semi-automatic component selec-
tion mechanism (previously seen in C-based WSN operating systems only in
much more limited implementations) that allows to modularize the system
and to include only those components the application needs. One example
of an modular, interchangeable component in MansOS is the kernel itself.
Two versions of the core scheduler exists: one that uses preemptive threads,
and one that uses only callback functions that react on specific events. For
many applications the kernel can be switched without changing the C source
code of the application. MansOS also does extensive compile-time and link-
time optimizations to remove unused code, and implements some aspects of
parametrized hardware interfaces, allowing to reduce binary code size and
RAM usage.

• Reliability. While there is still a long way to go in making MansOS more
reliable, it is already able to help the developer in several ways. Firstly,
it provides a set of macros for debugging (such as the ASSERT macro and a
macro for run-time stack overflow checking), which are included in the system
code and enabled by default. Secondly, to avoid stack overflow, worst-case
stack usage checking is integrated in the build process (Section 2.4.2) Thirdly,
it uses simple and clear API. This reduces the chance that the developer
is going to get lost in technical details, and helps to gain the developer a
clear mental image of the services that the OS is offering. It also allows to
write shorter application source code (Section 2.6.1). Fourthly, the simpler
API does not include functionality that can be reliably implemented only in
specific conditions, rather than on the typical WSN hardware. For example,
TinyOS offers periodic timers, while MansOS does not, because non-realtime
OS on top of current WSN hardware cannot guarantee execution of periodic
timers with arbitrary, user specified frequency. (Instead, MansOS allows to
periodically reschedule a timer.) Finally, the core system uses only static
memory allocation.

• Portability. In contrast to their desktop counterparts, WSN hardware archi-
tectures and platforms come in great variety and are often specially adapted
to concrete applications. Therefore portability is a critical requirement for
WSN software. MansOS is portable and runs on several WSN hardware plat-
forms (Section 2.2.2). Because of the architecture of the code, the amount
of platform dependent code in MansOS is small (e.g. 629 lines of XM1000
platform-specific code), and porting to new platforms is fast.

Some of the results (component selection mechanism and four-layer code archi-
tecture) have been adapted to Contiki with good results (more than 12 % reduction
in resource usage, and more than 17 % reduction in source code size, respectively).

While learnability and portability have been MansOS design goals since incep-
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tion, the methods with which they have been approached have changed through
time. For example, the emphasis on UNIX-like abstractions was gradually reduced,
as several of the initial approaches were discarded because they showed insufficient
efficiency in the context of sensor networks. All in all, efficiency has become a pri-
mary design goal (along with the two others mentioned above) in time. This is easy
to understand, when the constraint of limited number of man-hours spent devel-
oping the system is taken into account. The number of features and especially the
flexibility of MansOS is lower than that of major existing WSN operating systems
(TinyOS and Contiki), since it has been developed for a shorter time and by fewer
people. On the other hand, the reduced flexibility has in many cases lead to actual
superiority of MansOS: simpler API, fewer application code lines, reduced binary
code size and RAM usage, reduced energy consumption (Section 2.6) for simple
applications. We believe that the typical sensor network developer for the typical
WSN use case does not need the full flexibility of the hardware level exported to
the level of an operating system; instead, she wants a system that is efficient and
easy-to-learn (i.e. fast to start using). By cutting the corner cases, we managed to
advance in the directions of efficiency and simplicity.

Compared to the state of art operating systems, MansOS often lacks advanced
functionality. However, clear separation must be made between missing functional-
ity that can be added without fundamental changes in OS architecture, and missing
functionality that cannot. The former requires implementation-only level work; the
second also conceptual changes. For an example of the former, TinyOS and Contiki
implements more advanced networking protocols; however, these protocols can be
adopted to MansOS if there is a need. For example, the IPv6 networking stack in
Contiki can be compiled as library; the author has successfully linked this library
to MansOS applications, essentially showing that IPv6 support is possible without
system-level changes. More examples include: API for advanced ADC functional-
ity, API for advanced hardware timer functionality, more device drivers (e.g. for
real-time clocks, for liquid-crystal displays, for USB communication).

An example of the latter kind of work: a fully automatic mechanism of resource
arbitration (not present in other C-based WSN operating systems as well). See also
Section 2.5.4 for more examples of this kind.

However, system-level only support for application development is insufficient
to reach the objectives of this dissertation. As long as there is the requirement
that applications should be developed in C programming language, the application
developer cannot be fully freed from low-level details. For example, knowledge is
required of details such as pointer semantics, memory allocation issues, the way un-
aligned structure fields are padded by the compiler, and so on. This puts stringent
prerequisites on the application developer. These prerequisites cannot be expected
to be satisfied when application developers are without professional or educational
background in programming. Therefore, the sensor network application develop-
ment framework described in this thesis is extended with a high-level language: the
topic of the next chapter.
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3.1 Introduction

As argued in the Introduction and Chapter 1, many of those who would benefit
from wireless sensor networks are novice programmers or nonprogrammers. Due
to their number, their needs are important enough to be taken into account when
designing sensor network programming languages and tools.
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However, up to this date no single novice-friendly programming toolkit, model
or language has gained significant recognition both in WSN user and researcher
communities.

There are several possible reasons. First, the early research had theoretical
emphasis. From 28 WSN programming approaches reviewed in a recent survey
[Mottola 2011] only approximately half have real hardware implementations, and
only one has been used in a real-world deployment [Mottola 2011]. Therefore they
are not validated against real-world requirements.

Second, many of the approaches require prerequisites that are not realistic for
application domain experts. For example, [Newton 2007] [Mainland 2008] use id-
ioms from functional programming, which might be hard to grasp for people with-
out computer science background. Pleiades [Kothari 2007] extend C programming
language for WSN macroprogramming, therefore putting C knowledge as a prereq-
uisite. Snlog [Chu 2006] use Prolog-like programming paradigm that is confusing
to all but seasoned computer science professionals (to repeat one more time, pro-
gramming in Prolog “is notoriously difficult for novices” [Pane 1996]).

Third, many are either limited by design to only a particular kind of WSN appli-
cations (as [Madden 2005] and [Bai 2009]), or only solve a particular programming
problem (as [Mottola 2006] and [Newton 2007]).

Inspired by the work done in novice programming research [Pane 1996]
[Robins 2003] [Maloney 2008] [Neal 1989], we propose Sensor Application Devel-
opment Language (SEAL): a programming language and development environment
for WSN application development.

Our contribution is to show that even a very restricted language with no loops or
recursion can handle the requirements of sensor network applications well enough,
enabling WSN application programming for people who do not want to learn numer-
ous computer science concepts first. (There is a number of research articles that
survey the current sensor network applications and describe their typical traits,
for example, [Romer 2004] [García-Hernández 2007] [Strazdins 2013], or categorize
them, for example, [Bai 2009].)

SEAL features declarative syntax that is specifically tuned for the requirements
of a typical sensor network application and therefore allows to describe application
logic in more concise and less complex way (Section 3.5.1) compared to alternatives.
For example, SEAL applications transparently include control flow elements com-
mon to most of WSN applications, such as setting up event handlers and switching
to low-power modes. This allows the programmer to focus on the application logic
itself, which typically consists of reading, processing, and dissemination of sensor
data generated by hardware (Fig. 3.1).

A SEAL application consists of component use cases and their parameters (Sec-
tion 3.3). SEAL allows the domain expert to think in terms that either are already
familiar to her, or have concrete real-world counterparts (such as physical sensors).
For example, SEAL has support for numeric literals with custom suffixes, allowing
the user to specify constants in physical units (such as degrees or luxes) rather than
raw sensor readings.
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Figure 3.1: Typical data flow in a sensor node

SEAL code is compiled to C. For typical WSN applications SEAL runtime adds
only a small or no overhead (Section 3.5.2). Therefore the code written by novice
users can be used not only for application prototypes created during learning but
also for real-world deployments.

This chapter uses materials from [Elsts 2012d] and [Elsts 2013a].

3.2 Our approach to design of a high-level sensor net-
work programming language

3.2.1 Domain specific languages

As argued in section 1.3.5, domain-specific programming may be facilitated by of-
fering the programmer either a domain-specific software library, embedded domain-
specific language (eDSL), or a standalone domain-specific languages (DSL). The
last approach has the highest implementation effort, but the lowest client effort of
these three (i.e. the user has to do the least amount of learning).

It is generally believed that “programs written in a DSL also have one other im-
portant characteristic: they can often be written by non-programmers” [Hudak 1997]
(emphasis ours). Using general purpose programming language such as C the novice
user is confused by low-level details, such as pointer semantics and alignment of
structure fields. Higher-level languages such as Java and Python are more forth-
coming, but still require understanding of computer science concepts, for instance,
loops and recursion. Another reason for choosing a DSL or an eDSL is that they
both allow direct mapping between domain objects & processes and language ele-
ments. The result is the desired: abstractions with real-world counterparts.

One common problem from which DSL suffer is that of extensibility
[Van Deursen 1997]. This is especially important because a lot of WSN applica-
tions use custom hardware [Strazdins 2013], which implies the need for application-
specific software as well. Therefore the DSL should be designed in away that custom
extensions can be added easily (without compiler modifications).

A DSL survey article [Van Deursen 2000] mentions a few other DSL benefits:
their “programs are concise, self-documenting to a large extent, and can be reused
for different purposes” and “DSLs enhance productivity, reliability, maintainability,
and portability”.
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The same article also lists six disadvantages of DSL: (1) “the costs of designing,
implementing and maintaining a DSL”, (2) “the limited availability of DSLs”, (3)
“the costs of education for DSL users”, (4) “the difficulty of finding the proper
scope for a DSL”, (5) “the difficulty of balancing between domain-specificity and
general-purpose programming language constructs” and (6) “the potential loss of
efficiency when compared with hand-coded software”.

In response to the first two points: by implementing the SEAL compiler and
runtime, we showed that a DSL for WSN is feasible. The costs mentioned in
the third point may be an issue, but they are insignificant compared with the
costs of educating a domain-expert in a general purpose programming language.
Scope (the fourth point) is indeed an issue, and is discussed in more detail in
Section 3.2.2. The balance between programming constructs was tipped towards
specific syntax, as it can be expected that the prospective users are not going to
have extensive programming knowledge (Chapter 1), therefore using syntax that
is similar to the syntax of some general purpose programming language would not
help much. Finally, efficiency of applications programmed in SEAL is shown to be
comparable to hand-written code (Section 3.5.2).

3.2.2 Separating user code from system code

Some aspects of WSN system programming are likely to remain complex. Often
only application-specific hardware and software designs can achieve the necessary
longevity of the system. Nevertheless, the application logic of real-world WSN
applications is often trivial [Strazdins 2013]. Therefore, there is a need for clear
demarcation line between system code and user code.

The system code is written by the WSN professional. The code describes internal
mechanisms of WSN operating system (e.g. scheduling), device drivers (e.g. for
sensors), and distributed algorithms (e.g. multihop routing).

The user code describes application logic for sense-and-send or event detection,
as well as basic data processing, such as aggregation and filtering. It uses the system
code to achieve its goals, but abstracts away from the low level details of the latter.

Therefore, a WSN programming approach should provide sandbox environment,
where the users cannot do much harm for themselves, are not required to know
computer science abstractions (such as classical data structures and algorithms),
and are not confused by the too-many choices that are available.

3.2.3 Declarative or imperative?

Imperative languages (such as BASIC) are common for teaching novice program-
mers. In general, they allow to have clear mapping between the source code and
the execution flow.

However, we argue that a declarative language is preferable in the context of
our work. First, many WSN applications are event-based, which means that an
imperative language will fail to reflect the execution flow as well! Therefore, the
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main strength of imperative languages is going to lose its importance in this domain.
Rather, such a language would require explicit setup of event handling functions. If
an imperative language and a polling-based approach is used, there are other issues:
in this case a global execution loop is required, and low power mode semantics
becomes explicit. A WSN-specific declarative language can hide all of the three:
low level details of event handling, the global loop, and the usage of low-power
modes.

Second, there is also the question of efficiency. In an imperative language, the
behavior of a WSN node (e.g. the radio channel to use) can be set by modifying
a variable or by changing some hardware state. This requires run-time overhead,
code memory overhead, and, in the former case, RAM overhead as well. Declarative
language allows to declare the behavior of the system. An advanced compiler can
analyze this declaration and implement it in the compile time, avoiding any run-
time overhead, except for hardware initialization. It is a well-known fact that for
embedded software, efficiency is often more important than run-time flexibility!

At the same time, several typical WSN applications (for example, event detec-
tion based on sensor readings) are naturally expressed using finite state-machine
abstraction, which is hard to implement in a declarative fashion. Therefore, a hy-
brid language that allows to have describe global system states may be expected to
show the best results.

3.2.4 The design decisions of SEAL

• It should be a DSL with small grammar, and compact & intuitively readable
syntax. Rationale: minimize client effort.
• Low level concepts should not be available (from the language). Rationale:

limit the number of choices.
• Concepts with steep learning curves should be absent or not mandatory.

Rationale: the novice user should be able to learn the toolset “on the fly”.
• The expressiveness should be limited to application logic, not system logic.

Rationale: see Section 3.2.2.
• Make commonly used patterns (the global loop, event handler setup, us-

ing low-power modes) implicit. Rationale: shorter, cleaner code. Studies
show that novice users are confused by the semantics of low-power modes
[Miller 2009].
• Make examples easy to access. Rationale: see [Neal 1989].
• Do as much as possible at compile time. Rationale: see Section 3.2.3.
• Hiding the control structures is a good idea. Rationale: the success of spread-

sheets [Pane 1996], the success of SwissQM and WASP2 [Bai 2009].
• There should be an interactive IDE. Rationale: input aids provide hints and

help to prevent syntax errors [Pane 1996].
• The IDE should be simple, not require learning more than 7–9 elements to

program and test an application. Rationale: Miller’s Law [Miller 1956].
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• There should be a choice between textual and visual programming. Rationale:
none of the two choices are superlative [Pane 1996].
• Usability evaluation and real-world use case evaluation should be present.

Rationale: user behavior may be very different from designers expectations
[Bai 2009].

3.3 Design and implementation

Consider the example application in Listing 3.1. The code reads temperature sensor
with 10 second period and outputs the readings to the network. (Since no parame-
ters are specified, the default collection tree protocol is used to transport the data
to the base station.) It also monitors whether the temperature is above 40 degrees
Celsius and turns the a LED on when this alarm condition is reached. Predefined
suffixes, such as ’s’ and ’C’ are used to specify physical units. The code generator
automatically converts from these human-readable values to raw sensor readings.
(Similar conversions cannot always be done with, for example, the C preprocessor,
as it is not Turing-complete.)

Listing 3.1: Temperature monitoring application
1 read Temperature , period 10s;
2 output Network ;
3 when Temperature > 40C:
4 use Led , on;
5 end

3.3.1 Overview

Code written in SEAL is characterized by periodic execution flow. At the high
level, the code is structured in branches: groups of statements. An active branch
is a branch whose statements are executing (i.e. they are executed by the runtime,
periodically; they may or may not be executing at a concrete moment). An inactive
branch starts execution whenever all conditions that enclose it are satisfied. An
active branch finishes execution either when all the statements in the branch have
executed fixed number of times (as specified in parameters), or some of the condi-
tions enclosing the branch are not satisfied anymore. Subbranches are created and
controlled using specific statement types: when statements and do statements.

Table 3.1 shows language elements and their usage. The complete grammar of
SEAL is given in Appendix A.

There are only two types of executable statements: component use cases and
set statements. The former are executed periodically by default, the latter: just
once. The rest of statements define or structure something.

There are three component types in SEAL: sensors (their “use” action is to
read and return a value), actuators (their action: component-specific activation),
and outputs (action: print, store or send sensor values, once they become available).
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Table 3.1: Elements of SEAL

Element Description Templatized examples

Comp-
onent
use case

Specifies that the named component
should be used (read or activated) in the
current code branch, using the specific pa-
rameters supplied in parameter list. Starts
with keyword use (can be replaced by read
as a synonym for sensors, and by output
as a synonym for system outputs), fol-
lowed by the name of the component and
list of parameters. The comma-separated
list of parameters may include usage pe-
riod, number of times to execute, and
component-specific parameters.

// light up the default LED
use Led, period 1000ms, once;
// “use” (i.e. read) temperature sensor
periodically
read Temperature;
// “use” (i.e. output to) the network;
// enable checksumming and select TDMA
MAC protocol
output Network, checksum, protocol TDMA;

when
state-
ment

Determines which subbranches to execute
depending on conditional expressions. A
subbranch of a when statement is active
whenever the condition that is associated
with it (defined immediately after the
opening when/elsewhen keyword) is satis-
fied, and no conditions associated with pre-
viously defined subbranches of this when
statement are satisfied. There must be
exactly one when subbranch, and can be
zero or more elsewhen subbranches as well.
The else subbranch has no associated con-
dition. If present, it always must be the
last.
SEAL is flexible with regard to what can
be used as a conditional expression. It can
be a literal, a symbolic constant, system
state, a (function of) sensor value, or any
syntactically valid combination of the op-
tions, constructed using comparison oper-
ators and logical connectives. In the end,
any nonzero integer value maps to Boolean
true, zero – to false.

when <condition_1>:
// executed when <condition_1> is true

use <component1>;
elsewhen <condition_2>:
// executed when <condition_1> is false
// and <condition_2> true

use <component2>;
else:
// executed when both cond. are false

use <component3>;
end

do
state-
ment

Determines the execution order of sub-
branches depending on their order in
source code. The do subbranch that is first
in the code becomes active immediately af-
ter the whole do statement itself starts exe-
cuting. The subsequent then subbranches
are optional; each of them becomes active
after all the previous do/then subbranches
have finished execution.

do, once:
// executed just once
use <component1>;

then, times 2:
// executed afterwards, twice
use <component2>;

then:
// executed infinitely,
// after 1st & 2nd subbranch
use <component3>;

end
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Table 3.2: Elements of SEAL (continued)

Element Description Templatized examples

define
state-
ment

Defines a new, “virtual” sensor as a func-
tion (possibly parametrized) of the cur-
rently defined sensors. After the definition,
the new sensor can be used as any other
sensor would be.

// temperature maximum during
application lifetime
define MaxTemp max(Temperature);
// a parametrized analog input
define MyIn AnalogInput, port 2, pin 6;

set
state-
ment

Initializes or changes a system state. A
state can take any integer or Boolean val-
ues. Their value can be set from a literal,
a sensor, a function, and a state (the same
or another).

// assign a constant
set temperatureCritical False;
// increment
set counter add(counter, 1);

const
state-
ment

Defines a symbolic constant. The name of
the constant can be used in place of nu-
merical literals.

const MAX_TEMP 40C;

pattern
state-
ment

Defines a named array of constants // “P“ is the name of the array
pattern P (100ms, 200, 300ms, 1s, 2s);

load
state-
ment

Loads component library extension code (a
Python file) or runtime extension code (a
C file).

// component definitions
load “ExtensionLibrary.py“;
// runtime implementation
load “ExtensionLibrary.c“;

config
state-
ment

Operating-system specific configuration,
expressed in free-form string literal. In
code generated for MansOS a single config
statement corresponds to a single line in
application’s configuration file

// Tell MansOS to disable networking
config “USE_NET=n“;

Active outputs process values of all currently active sensors (unless specific subset
of sensors is listed in parameters of the output’s use case).

Wherever a numerical literal can be used, the same literal suffixed with symbolic
suffix that carry type information can also be used. Futhermore, for some physical
units the literal syntax is allowed to be put down in more complicated format
as well; for example, a single time period can be equivalenty expressed in these
multiple forms: 3785000, 3785s, 63min5s, and 1h3min5s. These dimensional values
are converted to platform-specific sensor values or operating system-specific timer
units in the compilation process.

SEAL is ultimately constrained by the fact that it is not Turing-complete. Pre-
defined functions can be used and parametrized, but no new functions can be defined
at the language level.
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3.3.2 Semantics

In the design of the SEAL we had two conflicting requirements – we wanted to keep
the syntax simple, and at the same time we wanted to provide expressive power.
The solution was to delegate semantics to the level of individual components. In this
way, behavior details are hidden in the user-configurable parameters of components.
Additional expressive power comes from the unrestricted semantics of predefined
data processing functions.

The benefits of this approach come from the fact that a single specific user is
likely to use SEAL for just a single specific application (or for just a few specific
applications), therefore she going to require relatively few of the components and
data processing functions that the current SEAL runtime provides. Less effort is
required to gain sufficient understanding of the behavior of specific, small subset
of system-level components and data processing functions, compared to the effort
required to learn and understand the more expressive and general syntactical con-
structions of other programming languages (such as loops, recursion, rich control
structures such as the switch/case statement of C, pattern matching, etc.), their
semantic counterparts, and their pragmatic implications.

In case the users of SEAL are given access only to simple components with
straightforward semantics, the system should be suitable for teaching the basics of
sensor network programming to complete novices. In case the users are allowed to
access more complicated and powerful components (for example, components with
a large number of static parameters, or components with dynamically adaptive
behavior), the system is powerful enough for prototypes of real-world applications.
Therefore the language can be adapted to different audiences without changing its
syntax.

3.3.2.1 Sensing and actuating

Each run-time component to be used from SEAL applications must provide a C
function for at least one action. The function should be provided as a name at
the component library level, and as a definition (to use the C term) at the runtime
library level. This default action is performed every time the component is “used”
(i.e. a component use case is executed). For components that are sensors, this C
function must read and return the value of this sensor. For components that are
actuators, this function must perform some action; the return value of this function,
if any, is ignored. (The third type of components, system outputs, will be discussed
in the next subsection.) Additionally, components may have functions for turning
them on and off. Sensors may optionally also have a function that allows to act
using a “sensor” ; for example, a digital input/output pin can be both read and
written to, therefore its implementation-specific “use” function may be to write to
this pin or to toggle its value. Some sensors also have a “pre-read” function, used
to start the data acquisition operation on this sensor (see Section 3.3.3.4 for the
motivation of such a function).
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A single execution of a component use case (as defined in Table 3.1) corresponds
to a single call of one of these functions. The exact function is dependent on
the parameters of the use case; for example, parameter on tells to call the “turn
on” function of the component rather than the default function. If parameters
are contradictory, a compile-time warning is issued, and the run-time behavior is
undefined.

The frequency of the execution of a component use case is also dependent on
its parameters. The parameters that affect execution frequency and duration (exe-
cution parameters) are:

• period parameter tells to execute the use case periodically, using the time
period specified.
• duration parameter tells to execute the use case no longer than for the time

period specified.
• times parameter tells to execute it no more than the number of times specified

(there are also shortcuts: once and twice parameters with no arguments).
• on and off parameters tell to execute it just once.

By default, a use case is executed as if it had a period parameter with value of one
second.

All counters (duration, number of times already executed etc.) are reset once
the subbranch in which the component use case is declared is reactivated after being
inactive (because of a conditional expression that failed to hold).

More advanced control over execution timing is also available. Consider a user
that wants to transmit a periodic, constant Morse-coded message using a LED. The
desired on-and-off time intervals may be encoded as a list of constant numbers and
put down in a SEAL application by using the pattern construct, which defines a
named array of constants. The name of this pattern can then be used as a parameter
to a component use case in order to perform the action of this component using a
periodic pattern of timing. For example, Listing 3.2 shows how to transmit the SOS
signal (“· · · – – – · · ·” in Morse code) using the default LED. 100 millisecond time
corresponds to both duration of a dot and a pause between dots; 300 millisecond
time corresponds both to a dash and pause between letters; 700 millisecond – to
pause at the end of the signal.

Listing 3.2: Using a LED to submit SOS signal in Morse code
1 pattern SOS (100 , 100 , 100 , 100 , 100 , 300 ,
2 300 , 100 , 300 , 100 , 300 , 300 ,
3 100 , 100 , 100 , 100 , 100 , 700);
4 use Led , pattern SOS;

The idea of user controlled execution timing and intervals breaks down in the
case of hardware sensors that themselves decide when to give data to the user, and
in the case of sensors that are “read” from the network. However, in the first case,
the sensors themselves signal about the new data (for example, by triggering an
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interrupt), and in the second case, library-level code makes sure that the SEAL
application is notified about reception of new data packets (see Section 3.3.2.6 for
details). These two kinds of sensors are described as self-reading in the documen-
tation and the component library. Any attempt to read them by using explicitly
specified execution parameters (period, duration or times) gives the user a com-
pile time warning and has no effect on the run-time behavior.

SEAL applications can also include event-based logic. when conditions are used
to match against specific runtime events; the execution of the component use cases
included in the first subbranch of the when statement (e.g. reading a sensor or using
an actuator) will be triggered by this event.

At the level of runtime-execution, polling-based event detection is always used
for the typical sensors (the ones that are neither self-reading nor network-based).
This means that these sensors cannot be referenced solely in when conditions; they
must be explicitly read as well. For example, Listing 3.3 would not be a valid SEAL
application with its first line removed.

Listing 3.3: Conditionally turning on LED
1 read Light ;
2 when Light > 100 lux:
3 use Led , on;
4 end

The syntax in case of self-reading sensors or network-based sensors is the same
as in Listing 3.3 (read statement should be present, execution parameters should
be absent), but semantics are different. For these sensors, runtime execution may
be made more efficient, because polling is not performed; instead, the logic asso-
ciated with reading a sensor (such as the re-evaluation of conditional expressions)
is triggered by other means (such as a hardware interrupt) when the new data is
ready.

Finally, each sensor may also have meta-information to be read in addition to
the value itself. Access to this information is supported through notation that is
similar to the notation used to access object members in object-oriented program-
ming languages. For example, the current implementation of the humidity sensor
driver allows to read not only the value of the sensor, but also whether an error has
occurred while trying to read the value. The value itself may be accessed either im-
plicitly through read Humidity or explicitly through read Humidity.value; the
error information: only explicitly, through read Humidity.isError. The compo-
nent library describes which additional fields can be read for which sensors.

3.3.2.2 Outputting data

There can be multiple consumers of the sensor data. The most common ones
are: the base station in the network, other nodes in the network, local storage
devices, and local outputs (the serial interface, analog output pins, or attached
actuators that accept incoming data values). All of these outputs can be accessed
by using implementation-specific communication protocols; the protocols can range



Chapter 3. High-level programming language and tools 107

from very simple (e.g. for local outputs) to very complicated (e.g. dynamically
adaptive routing and forwarding for multihop networks). The components can be
used in various ways; for example, the network component can be used to send data
either to the base station, to broadcast it, or to unicast it to some specific node
in the network. Nevertheless, the protocol logic is encapsulated in runtime library
components, and only high-level interfaces are exposed to SEAL via component
library.

SEAL allows to use output components similarly to other components – i.e.
under specific conditions, and using specific parameters. The action of a output
component is to send out sensor values associated with this output. By default,
all sensors read in an application are associated with each output. To limit the
output to just a specific subset of sensors, the names of sensors in this subset
should be enclosed as parameters to the output. For example, Listing 3.4 shows
an application that reads both light and temperature sensors, but outputs just the
light sensor readings to the network’s base station.

Listing 3.4: Sending only light sensor readings to the base station
1 read Light ; read Temperature ;
2 output Network ( Light );

Due to efficieny reasons, it is not always the best option to send out a stream
of single sensor values. Therefore the sensors associated with an output are put in
a packet, and send out all at once. This behavior can be reverted by specifying
parameter aggregate False to the output use case – in this case sensor readings
are sent one-by-one, as soon as they are read.

In case packets are used, a packet is sent out only when all the sensors that
should be in this packet have been read. What if sensors are read using different
time periods, but sending them out one-by-one is inefficient? There is also an
option to include multiple readings of a single sensor within a packet. To do this,
the number of the readings to include must be specified after the name of the sensor
in output parameters (Listing 3.5).

Listing 3.5: Light sensor is read twice as often as temperature sensor and included
in the network packet two times

1 read Light ; read Temperature , period 2s;
2 output Network ( Light 2, Temperature );

In order to efficiently determine which sensors already have been read and are
present in the packet, a bitmask field is used. In the generated code, the bitmask is
also included in the packet that is sent out, to allow the receiver to determine which
sensors are present in the packet. (See Section 3.3.3.2 for more technical details.)

The field sizes of the packet can be determined by the code generator using
information from component library. In general, the size of the field and its signed-
ness should be compatible with the dynamic range of values for each sensor, which
is specified in the component library by its designer (the default type of the field is
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32-bit, signed integer). Structured data is not supported at the moment, and is not
likely to be supported in the future. To allow the SEAL programmer to use e.g.
three-axis accelerometer with three data channels, the component library designer
either has to define three different components, or a single parametrized component
that allows to read one of x, y, and z channels depending on which parameters are
specified in SEAL code.

The outputs can be configured in application-specific way by specifying static
parameters in SEAL code. The run-time behavior is implementation specific; the
current implementation of the network component, which uses MansOS runtime,
uses MansOS network sockets internally. The sockets provide an interface that
allows both to send data to the network root node (the default behavior), to broad-
cast the data, and to send the data to a specific node described by its address. Of
course, not all three options are supported by all MansOS routing protocols, but
that is an implementation-level detail.

For example, the current component library code of the networking component
allows to specify the following options:

• protocol – name of MAC protocol to use;
• routing – name of routing protocol to use;
• destination – specific destination address to use (use 0xffff to broadcast the

packet; omit this parameter to send to the root node);
• address – Boolean parameter that tells whether to include the local address

in data packets;
• hopcount – number of maximum hops a data packet can traverse in the

network before being dropped.

The future work is also likely to add other parameters to the network component:
physical layer parameters such as radio channel and radio output power; MAC layer
parameters such as time-slot length and the maximum size of forwarding queue;
routing layer parameters such as link selection policy, and so on.

These parameters allow to configure the network stack to suit application-
specific needs. In case dynamically adaptive behavior is desired, it should be imple-
mented at the level of underlying components. SEAL allows the developer to specify
compile-time policies, rather than have the full flexibility of run-time changes.

SEAL also has syntactical sugar for working with files, in case a filesystem
is implemented on local-storage devices (flash memory or SD card). Listing 3.6
shows how to output data to files: first, a binary file, which consists of a num-
ber of fixed-size records with structure similar to the structure used for network
packets; second, an ASCII file, which consists of a number of lines in format “sen-
sor_name=sensor_value”.

Listing 3.6: Outputting sensor data to binary and text file
1 read Light ;
2 output File , filename " lightData .bin", binary ;
3 output File , filename " lightData .txt", text;
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In contrast, Listing 3.7 shows how to output data from a file to the network. It
includes a parameter named “where”, after which a conditional expression follows.
This conditional expression is used to select a subset of the values in a file. In this
example only light values larger than 100 luxes are sent to the network (i.e. the
base station). In real world application, outputting from a file is not likely to be
used in the way shown in the listing; it is more likely to be used in context of a when
statement, with condition triggered by reception of some interactive “data query”
command from the base station. An efficient implementation of query processing
without building an on-node database is an area of future work.

Listing 3.7: Outputting data to a file and from a file
1 read Light ;
2 output File , filename " Light .bin";
3 output Network , file " Light .bin", where Light > 100 lux;

3.3.2.3 Processing data

In between reading and outputting data, the data may also need to be processed.
For example, an application might want to calculate the average of multiple sensor
readings and output only this average value in order to be more energy efficient.
SEAL supports multiple pre-defined functions for data processing; it also allows to
combine these functions to create derived functions.

Since SEAL has neither loops nor recursion, it cannot always do all of the
required data processing on its own. However, in case more advanced processing
is required, it can always be done at the system level, possibly implemented as an
application-specific extension. On the other hand, if the processing is generic enough
and can be implemented in efficient way without taking into account application-
specific knowledge, it should be added as a predefined function at the compiler
level. The SEAL compiler can be expected to slowly and naturally grow, as more
applications are implemented in SEAL.

There are multiple families of predefined data processing functions:

• arithmetic;
• data agregation;
• filtering;
• signal processing;
• logical;
• special purpose and subset selection.

The functions, when applied to sensor values and constants, can be read just
like any other sensors. They can also be used in conditional expressions.

Arithmetic functions include functions such as plus (addition), minus (sub-
traction), multiply (multiplication), abs (taking the absolute value), neg (nega-
tion), etc. For example, the value of the function plus is the sum of its two argu-
ments. Each argument can be either a constants, a sensor, or a function of sensor
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values that returns a scalar value (as almost all functions do; the few exceptions
belong to the “subset selection” family, and will be discussed later).

Listing 3.8: Using an arithmetic function
1 // return the sum of Light1 sensor and a constant
2 read plus(Light1 , 13);

Data aggregation functions include min & max (taking minimum value and
maximum value), avg (taking average value), stdev (taking standard deviation),
etc. These functions have different semantics depending on their usage. If they
are used as unary functions, they act on the stream of the past value of the sensor
specified as their argument. If they are used as n-ary functions, they act on the the
latest readings of their arguments (Listing 3.9).

Listing 3.9: Using a data aggregation function
1 // return the minimal value of Light1 sensor during the execution time of

the program
2 read min( Light1 );
3 // return the minimal value of the three light sensors at the moment
4 read min(Light1 , Light2 , Light3 );

Filtering functions allow to reduce the frequency of sensor reading by out-
putting only readings that match specific conditions and suppressing the rest. They
include filterLess & filterMore (allow to pass only values less/more than a spe-
cific threshold), filterRange (values in between two specific thresholds), match
(allow to pass only values that match one of several constants), and invertFilter
(invert the actions of all previously applied filters).

Listing 3.10: Using a filtering function
1 // return the values of the Light sensor that are below 100 luxes
2 read filterLess (Light , 100 lux);

Signal processing functions may work either on a single value of a sensor
reading, such as map function, which maps the sensor value from one dynamic range
to a different dynamic range (the lower and upper bounds of the two ranges must
be specified in parameters), or on the last n values (n should be specified as an
argument) of sensor readings, such as the functions sharpen and smoothen, which
use signal processing techniques to increase or decrease contrast between these
multiple last readings. All these functions return a single value that corresponds to
the latest value of the processed signal that can be calculated at the time they are
called.

Listing 3.11: Using a signal processing function
1 // map the values of the Light sensor from 16- bit range (from 0 to 65535)

to 10- bit range (from 0 to 1023) .
2 read map(Light , 0, 65535 , 0, 1023) ;

There is only one logical function in SEAL: if function. It allows to implement
conditional data processing. if evaluates its first argument. If nonzero, it returns
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the value of its second argument; otherwise it returns its third argument. The third
argument is optional; if not specified, and the first argument is zero, if function
works the same way as a filter, by not allowing the values of the second argument
to pass through.

Listing 3.12: Using the if function
1 // return the value of Light1 sensor if the random number generator
2 // returns nonzero ; otherwise return the value of Light2 sensor
3 read if(Random , Light1 , Light2 );

Last but not least, there are special-purpose functions. However, before
continuing with the description of these functions, it must be made clear that SEAL
functions are allowed to be combined with each another. For example, SEAL can
be used as a simple calculator by applying arithmetical functions on constants. The
following line calculates and outputs the value of 13 + 25 * 4:

1 read plus (13 , times (25 , 4));

All of the functions discussed before can be combined with each another, not just
arithmetical functions.

As for subset selection, the special-purpose function take allows to take multiple
values of a single sensor. For example, it can be applied to calculate the minimal
or average values – not during program’s lifetime, but during the last n samples!
There is also similar takeRecent function that allows to take values during the last
t seconds, minutes, or hours.

Listing 3.13: Using an aggregate functions together with subset selection
1 // return the minimum of last six light sensor readings
2 read min(take(Light , 6));
3 // return the minimum of readings during the last 60 seconds
4 read min( takeRecent (Light , 60s));

As seen from the code example (Listing 3.13), take and takeRecent functions
can be used as arguments to data aggregation functions, making the latter much
more powerful. To clarify, a data aggregation function can actually take three
types of parameters: the two types already discussed above, and a subset selection
function. If, on the other hand, a subset selection function is used as an argument
to any other SEAL function, compile-time error is generated.

The special-purpose function sync allows to read multiple sensors syn-
chronously; its usage is described in Section 3.3.2.4.

In order to simplify the use of complicated functional expressions and allow
shorter syntax, functions and their combinations, applied on specific sensor values
or constants, can be named. In this way new, “virtual”, sensors can be created.
Listing 3.14 shows how to define a virtual sensor named MinLight that corresponds
to the minimum of light sensor readings:

Listing 3.14: Defining a virtual sensor named MinLight
1 define MinLight min( Light );
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The MinLight sensor can be used just like any other sensor, including use in con-
ditional expressions. Furthermore, virtual sensors can also be parametrized. For
example, the line:

1 define MyIn AnalogIn , channel 1;

defines an analog input named MyIn that by default reads the input channel #1.

3.3.2.4 Time-dependent algorithms

Temporal dependencies between actions can exist (for example, actions A and B,
which both are triggered by the condition C, may always have to be performed in
the order “first A, then B”). In the real world, the requirements for dependencies
can frequently be more detailed than that; for example, “always perform action B

exactly three seconds after action A is performed” may be a rule of application-level
logic. Temporal actions between actions and data can exist as well: for example,
activating an actuator may impact the environment, therefore changing the values
of subsequent sensor readings.

One application example where time-dependent algorithm is required: a moni-
toring device attached to a larger system, observes the behavior of this system and
tries to reset it in case “receiving high logic level from the digital input #1 tells
that something is wrong; if this happens, try to reset the attached device by writing
to the digital output #2, for three times with 2 second intervals; if this fails, start
to blink the LED and give up”. In order to implement this algorithm, the do/then
syntactical construction is used (Listing 3.15). (Assume that using a digital output
component means “set to high logic level for a short, system-dependent time and
then release it”. This logic could also be written down in SEAL, but is not done
here, as that is not essential to the example.)

Listing 3.15: Using the do statement to achieve delayed action
1 define MyIn DigitalIn , port 1;
2 define MyOut DigitalOut , port 2;
3 read MyIn;
4 when MyIn == 1:
5 do , times 3, period 2s:
6 use MyOut ;
7 then:
8 use Led;
9 end

10 end

The whole do statement in this case is enclosed in when ... end brackets, therefore
it starts and continues its execution only while the input remains high. In case the
input falls low, the next reading of the MyIn “sensor” (performed periodically in the
example, could also be interrupt-based) is going to force reevaluation of the when
condition, and stop the execution of all of the logic inside the do/then statement.

As a side note, the do statement can also be used to group use cases that
should be executed at approximately the same time. The benefit: code duplication
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is avoided, because paramaters such as period can now be specified only once
(Listing 3.16).

Listing 3.16: Reading multiple sensors with the same period
1 do , period 2s:
2 read Light ; read Temperature ; read Humidity ;
3 end

In case a sensor in a do statement requires different execution parameters, it
may override the values from the statement by specifying its own values.

However, even in the example above, fully synchronous reading of the multiple
sensors is not guaranteed. In the current implementation, each sensor is still going
to have a separate software timer associated with it. The timers are likely to fire
one after each another, but this order may also be interrupted by a completely
unrelated timer scheduled to fire at the same millisecond. As time passes, this may
lead to sensor reading timers drifting away from each another, because at least in
the current implementation, each timer is rescheduled in its own callback. In case
sensors have to be read immediately one after each another, more strict guarantees
are required. This can be achieved by using a special purpose function named sync.
It takes sensor names as an arguments, and is guaranteed to read all of these sensors
in a single timer callback.

Listing 3.17: Reading multiple sensors synchronously
1 read sync(Light , Temperature , Humidity ), period 2s;

Returning to the do statement: it may be applied in case when multiple actions
must be carried out in strict order, by putting them in different subbranches of
the do/then/then/.../end syntactical construction. It can also be applied to
avoid indeterminism caused by dependencies between sensors and actuators, e.g.
by forcing always to read the sensor first and only then use the actuator which may
affect the sensor readings.

As the reader can see, do statements essentially allow to enforce sequential ex-
ecution flow – to simulate the behavior of imperative programming languages. For
example, when a whole SEAL application consisting solely of non-periodic compo-
nent use cases, line by line, is enclosed in the do/then/then/.../end syntactical
construction, the execution flow essentially mimics that of an imperative program-
ming language. Explicitly controlling execution flow is not required often in the
sensor network application examples we have met, therefore such a control is an
optional feature. The user may specify it if needed, but does not have to write
additional code or think about this feature otherwise.

3.3.2.5 State-dependent algorithms

The examples so far show how to implement algorithms that are dependent on
time and on the current physical state of the system, as determined by sensor
readings. However, algorithms that are dependent on the previous physical state
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of the system may be required as well. Also, the underlying software components
from the runtime library often have more state on their own, state that is not fully
accessible by a single “read” function.

Consider an application that implements the functionality of a thermostat. It
runs on a device that has temperature sensor and a software-controllable heater
attached, and tries to keep the temperature close to 20 degrees Celsius. If the
heater was turned on and off as soon the 20 degree threshold was crossed, it would
lead to frequent oscillations, which may be undesirable for some reasons. Therefore
let us assume that the heater should be turned on only when the temperature is
significantly lower (say, 19 degrees) and turned off when it is significantly higher
(say, 21 degrees). In order to implement such an algorithm with hysteresis (i.e.
dependence on past environment), a SEAL application has to remember whether
it is in the “heating” phase or in the “allowing to cool” phase. To do this, the set
statement is used (Listing 3.18). It allows to implement state-machine like logic.

Listing 3.18: A heating system with hysteresis
1 set isHeating false ; // initially not heating
2 when Temperature < 19C:
3 set isHeating true;
4 end
5 when Temperature > 21C:
6 set isHeating false ;
7 end
8 when isHeating :
9 use Heater , on; // turn on heating

10 else:
11 use Heater , off; // turn off heating
12 end

The underlying system-level (C code) variables and constants can also be read
from SEAL. (Variables cannot be written from SEAL in order to keep the semantics
simple; a component may still allow to configure its variables by exporting them as
parameters through the component library).

To access these variables and constants, two pseudo-sensors were added to the
component library. These pseudo-sensors are named “Variables” and “Constants”,
respectively, and can be used similarly to any other sensors, except that the field to
read must always be explicitly specified (see note at the end of Section 3.3.2.1). The
name of this field corresponds to the name of a constant or a variable in C header
files of the system. For example, Variables.localAddress may be used to access
the network address of the current node. By using a when statement with condition
dependent on the value of this variable, the developer may create an application
that is going to behave differently depending on the node on which it is running.

3.3.2.6 Distributed algorithms

In sensor network, decisions based on sensor data from multiple nodes sometimes
must be made. Intra-network data aggregation from multiple nodes is also fre-
quently required. Therefore support for acquiring and processing remote data must
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be present.
For this reason, remote sensors were added to SEAL. These sensors are recog-

nized by their names. The name of a remote sensor always starts with Remote, after
which name of a remotely available sensor follows. This remotely available sensor
can be either a physical or a virtual sensor that is present as a component on some
remote platform.

For example, RemoteLight and RemoteTemperature are both names of remote
sensors. There are also a few special values that are not sensors, but can be pre-
fixed with Remote, for example RemoteCommand and RemoteAddress. The names
of remote sensors can also belong to virtual sensors, defined in SEAL application
code. RemoteCommand corresponds to a command that is received from some remote
device; RemoteAddress is the address of this remote device.

Unlike the local sensors, remote values cannot be read periodically, but must be
processed whenever they become available, i.e. are received from the network. How-
ever, they can be queried periodically, for example, by sending a RemoteCommand
with a specific value.

Listing 3.19: Data query processing (fragment)
1 when RemoteCommand == QUERY_DATA :
2 // temperature data stream from past is unicast to the querying node
3 read Temperature , file "Data.bin", output Network , destination

RemoteAddress ;
4 end

The communication idiom supported by SEAL can be described as “pushing”
the data, rather than “pulling” it. A node can ask and receive data from an another,
remote node, but only if the remote node is running an application that explicitly
outputs the required data. Therefore, distinct client-side and server-side application
logic is required. Even though this communication pattern can be implemented in
a more efficient way than using the traditional client-server architecture (e.g. us-
ing the “publish/subscribe” messaging pattern), it still requires explicit server-side
support. In contrast, WSN macroprogramming frameworks that implement data
pulling, such as Pleiades [Kothari 2007], allow to implement e.g. access to remote
variables without additional server-side code. The approach used by Pleiades al-
lows much higher expressiveness: it allows to implement the street-parking demo
[Kothari 2007] in a single application code listing, while SEAL requires at least two
separate listings.

One idea how to extend SEAL is to add input keyword in symmetry with
the currently existing output. The keyword would allow the local node to ask
for remote data without remote-side support at the application-level. However,
this approach also complicates the semantics and the implementation; the decision
whether and how to implement requires careful cost-benefit analysis, and clarifica-
tion of application-level requirements.
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3.3.3 Implementation and runtime

SEAL parser, semantical analyzer, code generator and component library are all
implemented in Python, with help of a Python module called PLY (Python Lex-
Yacc [ply 2012]). The current code generator produces OS-specific C source code,
which then can be compiled to platform-specific executable.

The first three elements (parser, semantical analyzer, and code generator) are
within a single application; this application is called the SEAL compiler in this
thesis. This name is justified by many precedents in research literature (such as
“the nesC compiler”, which translates code from another high-level language to C),
and the fact that for the SEAL compiler, the C code generator could be relatively
easily (without changing majority of source code) replaced by a bytecode generator,
leading to a “true” compiler.

Applications written in SEAL relies on operating system services for runtime
execution support (Fig. 3.2). The OS behind SEAL runtime at the moment is
MansOS, and the C code generated by the SEAL compiler uses MansOS networking
services, sensor drivers, permanent data storage library, and other components and
services. However, there are no conceptual obstacles why another WSN OS could
not be used, as long as implements at least software timers and a few of SEAL
components. There is a proof-of-concept implementation of SEAL subset in Contiki
[Elsts 2012d]. The rest of the discussion in this section is OS-agnostic, except where
explicitly said otherwise; algorithm pseudocodes do not contain MansOS-specific
details.

There are 121 regression test cases included in the distribution to ensure con-
tinuous quality of the parser and code generator. The implementation is publicly
available [sea 2012] under the NewBSD license.

3.3.3.1 The component library

In order to generate OS-specific C source code from SEAL application, OS-specific
library of components is required. Among other things, the library stores C code
templates for reading sensors, activating actuators, using outputs and so on. The
code templates are stored as ASCII strings; these templates contain OS-specific
function calls. For example, if light sensor is read from SEAL code, the code gener-
ator searches for a component named “LightSensor”, looks up its reading function
(this function is named “readLight” and is without parameters in MansOS), and
generates C code that calls this function.

In general, each component that is accessible from SEAL application syntax
corresponds to a Python class in the component library. Each hardware platform
on which SEAL runtime may be executed corresponds to a Python module. When
loaded, this module instantiates all components that are available on that particular
platform. In the design of the component library, class inheritance is heavily used
in order to avoid code duplication between similar components (e.g. two versions of
a light sensor); conversely, module inclusion is heavily used in order to avoid code
duplication between similar platforms (e.g. TelosB and Zolertia Z1). For example,
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SEAL

Component library

Runtime

TinyOSTinyOSTinyOSContikiTinyOSMansOS

(Python)

(C/nesC)

TinyOSLight

TinyOSHumidity

TinyOSTemperature
TinyOSLED

TinyOSRadio

TinyOSSerial
TinyOSAccelerometer

TinyOSSensor statements

TinyOSActuator statements

TinyOSOutput statements

TinyOSProcessing statements

TinyOSConditions

TinyOSState statements

Figure 3.2: Elements of SEAL, SEAL component library, and the current and
potential execution environments

there is a SealSensor base class that is common to all components that are sensors,
and there is a msp430.py module that is included by telosb.py and other modules
that use this MCU architecture.

The component library is designed to be easily extensible. For example, if a
new component has to be added, only 5–10 additional lines of Python code are
required. (For a concrete example, see Listing 3.28 and the discussion preceding
it.) Furthermore, the new code is not required to be placed in the main component
library; it can be put in an application-specific source file. Using load statement,
the component may be made available from SEAL code. In this way SEAL can be
be extended in application-specific way easily (without modifying the compiler or
the default component library).

3.3.3.2 Runtime

The generated C code schedules software timers in order to read sensors and per-
form other actions periodically, and sets up hardware interrupt handlers to read
interrupt-based sensors. Consider the example in Listing 3.1 again. Take just the
first line: “read Temperature, period 10s;”. If that would be the whole applica-
tion, the corresponding generated code would be similar to pseudocode in Algorithm
3.1.

Now add the second line as well: “output Network;”. This tells that the tem-
perature sensor value should be not only read, but also used. The essential struc-
ture of the code generated from this updated applications is shown in Algorithm 3.2
(code repeated from Algorithm 3.1 is grayed out).

In the current implementation, a special kind of network packets is used to
exchange information between nodes (see also Section 3.3.2.2). The details are
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Algorithm 3.1 Pseudocode of temperature-reading application
Declare a global software timer named temperatureAlarm

function appMain( )
Initialize temperatureAlarm with function pointer to temperatureCallback function
temperatureCallback( )

end function

function temperatureCallback( )
. The name of the function to call comes from the component library

value← readTemperature( )
Schedule next temperatureAlarm callback after 10 seconds

end function

Algorithm 3.2 Pseudocode of temperature-reading application with output
Declare a global software timer named temperatureAlarm
Declare a global structure named networkPacket with temperature field

function appMain( )
Initialize temperatureAlarm with function pointer to temperatureCallback function
Initialize networkPacket with empty data fields
temperatureCallback( )

end function

function temperatureCallback( )
value← readTemperature( )
networkPacket.temperature← value
if all data fields of networkPacket are nonempty then networkPacketSend( )
end if
Schedule next temperatureAlarm callback after 10 seconds

end function

function networkPacketSend( )
. The name of the function to call comes from the component library

socketSend(networkPacket)
Initialize networkPacket with empty fields

end function



Chapter 3. High-level programming language and tools 119

not shown in the pseudocode, but the packet contains not only data, but also 4
byte header (2 byte field that signals the packet type, 2 byte checksum). After
that, a bitmask describing the fields that are included in the packet follows. The
bitmask is variable length, 4 bytes by default, but can be extended if necessary.
The bitmask is used to determine which fields are empty and which are not in an
efficient way. After the bitmask, data fields follow in the packet. Currently each
field is always 4 byte long and contains a single sensor value. An area for future
optimizations is to reduce these size requirements, especially since the component
library already includes information about ranges of sensor values. The values used
as sensor identifiers are compile time constants; they are allocated in application-
specific way in order to reduce the length of the bitmask. The checksum field is
filled in with checksum calculated on the rest of the packet, immediately before the
packet is sent out.

SEAL code relies on the operating system for network communication. The
maximal complexity of applications that can be implemented in SEAL are bounded
by the capabilities of the runtime, which in turn is determined by the capabilities
of the OS. The one extreme is application with no network communication at all,
for wired sensor networks, or sensor-actuator “networks” where all communication
is local to a single sensor node. The other extreme is a network that requires full
point-to-point communication possibilities. In the latter case, these capabilities can
be used from SEAL by specifying destination parameter for a network output
statement, or by “reading” and checking the remote address of received data packets.

Now consider the whole application in Listing 3.1. The application contains not
only data reading and output, but also conditional branching. The SEAL compiler
translates it to the pseudocode in Algorithm 3.3 (code repeated from Algorithm 3.2
is grayed out).

The run-time state of each conditional expression (in SEAL syntax, conditional
expressions are part of when statements) is stored in a Boolean variable. The
state is reevaluated whenever it may change; e.g. when a sensor that is part of
the conditional expression is read. This allows to implement event-based actions.
Whenever a conditional expression changes its value, code subbranches associated
with it are started or stopped.



Chapter 3. High-level programming language and tools 120

Algorithm 3.3 Pseudocode of temperature monitoring application (Listing 3.1)
Declare a global software timer named temperatureAlarm
Declare a global software timer named ledAlarm
Declare a global structure named networkPacket with temperature field
Define NUM_BRANCHES 1
Define NUM_CONDITIONS 1
Declare a global Boolean array branchActive with size NUM_BRANCHES
Declare a global Boolean array conditionsFulfilled with size NUM_CONDITION

function appMain( )
Initialize temperatureAlarm with function pointer to temperatureCallback function
Initialize ledAlarm with function pointer to ledCallback function
Initialize networkPacket with empty data fields
temperatureCallback( )

. Similar code is generated for each non-default branch
branchActive[1]← branch1Evaluate( )
if branchActive[1] then branch1Start( )
end if

end function

function temperatureCallback( )
value← readTemperature( )
condition1Callback(value)
networkPacket.temperature← value
if all data fields of networkPacket are nonempty then networkPacketSend( )
end if
Schedule next temperatureAlarm callback after 10 seconds

end function

function ledCallback( )
Turn LED on

end function
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Algorithm 3.4 Algorithm 3.3, continued
function networkPacketSend( )

socketSend(networkPacket)
Initialize networkPacket with empty fields

end function

function branch1Evaluate( )
. The code generator has determined the relationship

. between condition #1 and branch #1
return conditionsFulfilled[1] = True

end function

function branch1Start( )
ledCallback( )

end function

function branch1Stop( )
. This is code is optional for this application – an area for future optimization!

Deactivate ledAlarm
end function

function condition1Callback(temperatureValue)
conditionsFulfilled[1]← temperatureV alue > 40C

. Similar code is generated for each branch dependent on this condition
oldActive← branchActive[1]
branchActive[1]← branch1Evaluate( )

if oldActive 6= branchActive[1] then
if branchActive[1] then branch1Start( )
else branch1Stop( )
end if

end if
end function
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3.3.3.3 Cache

The sensors used in WSN have wide range of characteristics and usage patterns.
Karl and Willig [Karl 2007] report that “for some of them [..] the power consump-
tion can perhaps be ignored is comparison to other devices on a wireless node. [..]
For others, in particular, active devices like sonar, power consumption can be quite
considerable. [..] In addition, the sampling rate evidently is quite important.”

Consider just two specific examples: Sensirion SHT75 temperature sensor
[Sensiron 2011] and an analog accelerometer sensor. By WSN standards, it is quite
expensive to read the digital SHT75 sensor: the data conversion consumes 1 mA
current for up to 320 milliseconds. Frequent sampling is not suggested for another
reason as well: reading frequency higher than 1 Hz leads to self-heating of the
sensor, causing incorrect measurement results.

Reading the analog accelerometer sensor, on the other hand, is cheap: all that
is required is to sample internal ADC of the microcontroller. Reading frequencies
100 Hz or more are common.

To use these sensors, application developer has to remember minimal sensor
read periods for each, and other constraints (power consumption, self-heating). It
becomes a burden the developers working memory.

Our solution is to use cache for sensor readings. In order to save RAM the
cache is disabled by default and used only for those sensors that are read faster
in the application than their maximal reading frequency. The maximal frequency
is specified in description of each component. Using cache is transparent to the
user by default, although may be controlled from SEAL applications by specifying
cache parameter in a component use case (the component must be a sensor). The
parameter takes a Boolean value and tells whether to use cache or not.

For example, take the one-line SEAL application “read Temperature,
cache;”. The logic of the C code generated from this application is sim-
ilar to the logic described in Algorithm 3.1. The one difference is that
readTemperature() is not called directly from temperatureCallback() func-
tion. Instead, temperatureCallback() calls function cacheReadSensor, passing
application-specific ID of the sensor and pointer to readTemperature as parame-
ters.

Algorithm 3.5 Caching sensor values
function cacheReadSensor(code, readFunction, expireTime)

now ← getTime( )
if now > sensorCache[code].expireT ime then

sensorCache[code].value← readFunction( ) . Expired: update!
sensorCache[code].expireT ime← now + expireT ime

end if
return sensorCache[code].value

end function

The function cacheReadSensor (Algorithm 3.5) is implemented at system level.
It uses an array named sensorCache statically allocated in RAM that stores most
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recently read sensor values, as well as the time when they were read. The function
also takes parameter expireTime that describes (in milliseconds) how old sensor
reading values are considered “fresh”; for example, if expireTime is 100 millisec-
onds, then all values read more recently than 100 milliseconds ago are not re-read
from sensors, but returned straight from the sensorCache array.

The expireTime in code generated by the SEAL compiler is dependent on
sensor-specific information described in the component library; by default this time
is one second.

3.3.3.4 Synchronizing sensor readings

In order to perform a measurement, the SHT humidity sensor needs to collect and
internally integrate data. Doing this requires significant time. Once the measure-
ment is completed, its result is stored on an internal hardware buffer of the sensor
chip. As a consequence, reading this result is much faster than measuring it. On
typical sensor network hardware like TelosB, reading it can be completed in several
microseconds.

Therefore, there is no need that the MCU of the sensor device remains active
during the whole measurement sequence. In order to save energy, it can schedule
measurement, go to low power mode (“sleep”) while the measurement is performed,
and wake up to read the result.

Gas sensors, such as for detection of Carbon monoxide (CO) or Nitrogen oxide
(NOx) levels require event more time to complete their measurements – up to several
seconds. The same strategy should be applied to them.

Additional problems are created if the sensing device is mobile. For example, if
the SHT humidity sensor is mounted on a car that is moving with speed 50 km/h,
and the measurement takes 320 ms, the start and end locations of measurement are
separated by 4.4 meters. This separation is going to increase in higher speeds and
for sensors that require longer reading periods.

If multiple sensors are read sequentially (Fig. 3.3a, Algorithm 3.6), reading
each sensor will take place at a different location. There is no reason to assume, by
default, that this is what the user wants.
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Figure 3.3: The behavior of two efficient algorithms for reading multiple sensors
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Algorithm 3.6 Sequentially reading multiple sensors
Declare global software timers temperatureAlarm, COsensorAlarm, NOxsensorAlarm

function temperatureCallback( )
value← readTemperature( )
Schedule next COsensorAlarm callback immediately

end function

function COsensorCallback( )
value← readCOsensor( )
Schedule next NOxsensorAlarm callback immediately

end function

function NOxsensorCallback( )
value← readNOxsensor( )
Schedule next temperatureAlarm callback after sensor read period

end function

Algorithm 3.7 Synchronously reading multiple sensors
Declare global software timers allSensorAlarm, temperatureAlarm, COsensorAlarm,
NOxsensorAlarm

function allSensorCallback( )
valueTemp ← readTemperature( )
valueCO ← readCOsensor( )
valueNOx ← readNOxsensor( )
period← sensor read period
Schedule next allSensorAlarm callback after period
Schedule next temperatureSensorAlarm callback after period−READ_TIMETemp

Schedule next COsensorAlarm callback after period−READ_TIMECO

Schedule next NOxsensorAlarm callback after period−READ_TIMENOx

end function

function TemperatureSensorCallback( )
Start temperature measurement and return

end function

function COsensorCallback( )
Start CO level measurement and return

end function

function NOxsensorCallback( )
Start NOx level measurement and return

end function
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Therefore SEAL translator may generate code that uses the synchronous sen-
sor reading algorithm (Fig. 3.3b). To achieve similar results in manually coded C
application, relatively complex state machine logic is needed, or an extra timer for
each sub-sensor is required. (Algorithm 3.7 implements the latter; generating code
that would use just no extra timer variables is an area for future optimization.) In
contrast, SEAL allows to do the same (i.e. use the synchronous algorithm) with sim-
ply specifying sync function on multiple sensors. For example, define AllSensors
sync(SHT75, NOx, CO); defines a virtual sensor AllSensors that simultaneously
reads SHT75 and the two gas sensors from the example.

Synchronizing sensor readings also helps in case packets are used: the user can
be sure that all fields in the packet are filled in at the same time, and sensor periods
have not occasionally desynchronized due to timer jitter.

3.3.4 Integrated development environment

Two graphical interfaces have been built in order to help the application programmer
programming in SEAL. First, there is SEAL integrated development environment
(IDE; Fig. 3.4).

Figure 3.4: Editing SEAL application in IDE
The IDE can be used to enter code either by writing it on the left side of

the window, or by selecting components and their parameters from dropboxes on
the right side of the window. The latter approach allows to program by using
only mouse clicks. As Fig. 3.4 shows, there are two types of elements on the edit
window: dropboxes and checkboxes. The dropboxes with a few exceptions allows to
enter integer parameters; the checkboxes: Boolean parameters. The form with the
boxes is component-specific, and is automatically generated from the component’s
description in SEAL component library.
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In the bottom of the screen, output window tabs are placed. One tab shows
syntax errors and compilation messages. Another tab prints serial output of con-
nected sensor nodes. The IDE allows single-click compilation and uploading from
the toolbar. Last but not least, it simplifies access to examples: the IDE has a
menu item that expands to a selection of example applications. The user can read
their names and categories, and open their code with a single mouse click. The IDE
was used throughout the second user study (Section 3.5.4).

3.3.5 SEAL-Blockly – sensor network visual programming

Figure 3.5: Editing SEAL-Blockly application in Web browser

Then there also is SEAL-Blockly: a purely-visual interface to SEAL using
Google Blockly [blo 2012] as a base. Scratch, a similar visual programming lan-
guage [Maloney 2008] has been successfully used in teaching novice programmers.
An interesting and important fact: using Scratch is so far removed from the usual
perception how software development is performed that the users of the Maloney
et al. research experiments failed to recognize their activities as programming!

SEAL-Blockly allows to create applications by putting puzzle-like blocks to-
gether and is usable from a web browser (Fig. 3.5). The basic idea is to translate
each SEAL-Blockly block to a specific syntactic construction of SEAL language.
The translated code is then automatically processed by SEAL IDE, which func-
tions as a proxy between the hardware serial ports and the JavaScript executing in
user’s web browser. Eventually, the SEAL code is translated to C-code, which is
the compiled in platform-specific way (Fig. 3.6).

Visual programming allows to avoid syntax errors and reduce working memory
load, since all the possible blocks and their possible combinations are predefined.
On the other hand, visual programming is not superior to textual in all contexts
[Pane 1996], and visual programs can be harder to read [Green 1992], therefore
we envision SEAL-Blockly only as one of several front-ends. Since SEAL code
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Figure 3.6: Software development workflow using SEAL / SEAL-Blockly

is automatically generated from SEAL-Blockly puzzle blocks, the user can switch
between these two representations, choosing the one that she prefers.

3.4 SEAL in the context of related work

3.4.1 SEAL and the existing approaches

A partial relationship between SEAL and the related work (Chapter 1) is shown
in Fig. 3.7. More complete overview of existing WSN programming approaches is
given in Section 1.5; SEAL is compared with them in Table 1.4. Among the other ap-
proaches, there are few that take into account novice programming research. From
these, SensorBASIC [Miller 2009] is an imperative language with large interpreter
overhead. WASP [Bai 2009] is a language that is limited to a single application
archetype.

TinyScript [Levis 2004a] is imperative language with event-driven execution
mode that requires use of multiple source files even for simple applications.

makeSense framework [Casati 2012] is a new development with objectives similar
to ours, but their target audience is different: users familiar with Business Process
Modeling Language (BPML). Also, they use a three-level approach: the top level is
a visual modeling language (an extension of the BPML), the medium level: a pow-
erful custom Java-like macroprogramming language, the bottom: platform-specific
executable code, in contrast to SEAL, which uses only two levels (as said before,
the visual front-end SEAL-Blockly is roughly at the same level of abstraction).

The component model accessible from SEAL is conceptually close to SNACK
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[Greenstein 2004], but the components in the component library of SEAL are
higher-level; for example, “hardware timer” is a separate component accessible
from SNACK. Also, SNACK uses advanced computer science concepts, is TinyOS-
specific, and the authors did not perform usability study or validate their work in
real deployments.

Multiple integrated, higher-level programming or data querying interfaces for
sensor networks exists, TinyDB [Madden 2005] being the most prominent, but they
lack the generality we are looking for. Similar arguments stand against sensor
network programming using Web service architectures. (At least the currently
existing.) For example, TinySOA [Avilés-López 2009] is too limiting as it offers no
support for in-network data processing.

Sensor networks can be programmed using general purpose high-level languages
such as Java [Smith 2007] or Python [pys 2013], but none of these options have
gained high acceptance. First, they are heavyweight; second, unsuitable for novice
programmers, as they presuppose existing programming language knowledge.

Embedded software programming languages (rather than formal specification
languages or modeling languages) that try to do as much as possible at compile
time is not as well explored research direction, although in author’s opinion, a
promising one. One example of such a language is Virgil, which enables building
of complex data structures at compile time, and is able to execute the binary “di-
rectly on the bare hardware without a virtual machine or any language runtime”
[Titzer 2006]. However, Virgil is meant for resource-constrained embedded systems
in general rather than sensor networks. Much can be done at compile time using the
C preprocessor; however, it is not Turing-complete (since recursion is not possible),
the syntax is not straightforward (especially for debugging), and the behavior is
not always intuitive (leading to bugs when, for example, macro parameters such as
i++ are unexpectedly evaluated multiple times).

As for formal specification languages or modeling languages as such, they may
require prerequisite knowledge, and invariably add one more layer of abstraction,
which increases the time-to-learn and may increase the total complexity of the
system (Section 1.3.6).

In our opinion, the problem is to choose the right tradeoff between being too
restrictive (like TinyDB and WASP) and being too allowing – so allowing that
users tend to get confused. The objective of SEAL is to allow to wide range of
applications (Section 3.5.3.1), while purposefully keeping the complex parts of the
application out of the reach of a SEAL programmer (Section 3.2.2).

In contrast to most of the models overviewed in Section 1.5, SEAL comes with
an integrated development environment. Experimental results from [Bai 2009] and
the success of Arduino both show the importance of IDE.

Whether visual programming that exceeds simple code wizards and helpers is
needed – that, however, is a contentious issue. Research shows that visual pro-
gramming is not better in all contexts, for example, visual programs may be harder
to read [Green 1992]. Nevertheless, the members of author’s research group have
implemented SEAL-Blockly: a visual sensor network programming environment. It
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is available as one of the two front-ends to SEAL. Therefore the novice can read
example programs using textual interface, but modify or extend the program using
visual tools, enjoying the best of both worlds.

3.4.2 SEAL and macroprogramming

There are two very different ways how future evolution of SEAL may accomodate
existing work in WSN macroprogramming and distributed processing abstractions.

The first is to create or adopt a macroprogramming framework to generate
SEAL code (i.e. macroprogramming on top of SEAL). The second way is to allow
to access macroprogramming constructs from SEAL (i.e. SEAL on top of macro-
programming).

The first way was apparently envisioned by the authors of SNACK, who claim
that “higher level mechanisms [on top of SNACK] are natural and probably in-
evitable”. The second way was taken by makeSense team, where macroprogram-
ming code is generated from BPML models created by the users of the system.

Properly implemented macroprogramming on top of SEAL would make possi-
ble implementations of SEAL code migration from node to node, adaptive self-
optimization of SEAL applications, and complex distributed processing algorithms
that require e.g. write access of remote variables. These programming models pro-
posed by the WSN community are so far not considered in our work. (We note that
they are absent in mainstream WSN programming as well, and their applicability
to real-world WSN is yet a question.) Such an extension would provide higher-level
view of WSN. However, the exact requirements of it in the context of novice users
are far from being clear.

SEAL on top of macroprogramming is far more straightforward to implement
and use. Leveraging on existing macroprogramming ideas, the functionality of
SEAL applications would be extended. Additional runtime components could offer
support for e.g. iteration over not only physical, but also logical neighborhoods (us-
ing e.g. [Welsh 2004] and [Mottola 2006]), serialized access to variables on neighbor-
ing nodes, distributed locking and distributed resource arbitration. However, this
approach would be limited by the expressivity of SEAL syntax; additional changes
may be required in it in order to fully accomodate the power of distributed algorithm
in SEAL; for example, the addition of input keyword (see Section 3.3.2.6).

We have evaluated the adoption of existing frameworks. Pleiades [Kothari 2007]
is a reasonable choice, because it is an extension of C language, so it is straight-
forward to adopt the SEAL compiler to generate Pleiades code. There could be
a specific network component accesible from SEAL for e.g. searching a value in
network that would internally use Pleiades cfor loop. This specific type of for
loop provides support for serialization, distributed locking, and break functional-
ity. The logic of the for loop would be transparent to the SEAL user; he would be
see only the result of the search operationg, likely as a stream of values presented
as a specific sensor-type component.
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Figure 3.7: SEAL in the context of related work
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3.5 Evaluation

3.5.1 Analytical evaluation

The usability of SEAL can be shown analytically in two ways:

1. by comparing application metrics (source code length, cyclomatic complexity,
and programmer’s effort according to Halstead complexity measures);

2. by comparing the complexity of the syntax of the language.

The code generated by the SEAL compiler puts the system in low power mode
by default. In contrast, when programming in a language like SensorBASIC with its
single-flow imperative execution model is used, the application developer is required
to include explicit sleep commands. Studies have shown [Miller 2009] that novice
users do not have clear grasp of low-power mode semantics and fail to use the sleep
keyword correctly.

Compared with programmers using languages with explicit event-based execu-
tion flow (like TinyScript), SEAL developer does not have to think in terms of event
handlers, and implicit state machines, which are arguably hard for novices to grasp.

3.5.1.1 Syntax complexity comparison

The language is small compared even to an already parsimonious general-purpose
language like C (Table 3.3). It has shorter grammar, fewer keywords, fewer oper-
ators (only arithmetical and comparison), and smaller character set, therefore the
cognitive effort required to learn the syntax of the language is reduced. The com-
plexity of SEAL syntax is comparable to TinyScript and nesC, although the user
of nesC has to know C as well.

Table 3.3: Metrics of several sensor network programming languages: SEAL, C
[c-i 1999], nesC [Gay 2009], and TinyScript [Levis 2004a]

SEAL TinyScript C nesC
Nonterminal symbols 36 31 70 24 new + 13 changed

Keywords 19 15 31 15 new
Operators 8 23 46 1 new

Non-alphanumeric characters 14 19 30 0 newwith special meaning

There are 19 keywords in SEAL:
and, config, const, define, do, else, elsewhen, end, load, not, pattern, read,
or, output, set, then, use, when, where.

The number is smaller than the number of keywords in C (31 keywords). As for
WSN DSL: nesC has 15 additional keywords [Gay 2009] to all of C keywords. The
usage scope of keywords is actually greater in SEAL: C includes specific characters
(such as & and |) for logical operations while in SEAL the operations require key-
words. Therefore the number of operators can be greatly reduced: 8 in SEAL vs.
46 is C. Operators in SEAL are used only for comparison.
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The C keywords are (31 total):
auto, break, case, char, const, continue, default, do, double, else, enum,
extern, float, for, goto, if, int, long, register, return, short, signed,
sizeof, static, struct, switch, typedef, union, unsigned, void, volatile,
while.

Additional nesc keywords (15 total):
as, call, command, components, configuration, event, implementation,
interface, module, post, provides, signal, task, uses, includes.

SEAL grammar is also quite short: as specified in Appendix A, it has only 36
nonterminals.

For comparison, C grammar (C9x ISO draft) [c-i 1999] has 70 nonterminals.

We hypothesize that a large number of non-alphanumeric characters is confusing
for novice users, because it increases the unfamiliarity of the notation. This is
especially true with regard to characters other than the well-known grammatical
symbols (e.g. comma) and arithmetical operators. To put it simply, large number
of strange characters makes the code less readable for novices. It is harder to
intuitively grasp the intent of unfamiliar code that is full of symbols whose meaning
is not recognizable from everyday contexts, compared to unfamiliar code that uses
plain English and a few well-known characters.

Also, some of the characters used in C-like syntax may be unfamiliar to the user
as such. For example, when teaching how to perform a task (unrelated to SEAL)
to users who belonged to the potential target audience, we recorded a case when a
user failed to find the ’|’ character on keyboard.

SEAL keeps the number of non-alphanumeric characters small: only the fol-
lowing are present in the language: ’.’, ’,’, ’:’, ’;’, ’(’, ’)’, ’<’, ’>’,
’+’, ’-’, ’!’, ’=’, ’"’, ’_’.

Additionally, two ’/’ signal the start of comments.

In contrast, C has additional characters [c-i 1999]:

’{’, ’}’, ’[’, ’]’, ’~’, ’^’, ’/’, ’*’, ’?’, ’%’, ’ ’ ’, ’&’, ’|’,
’#’, ’\’.

SEAL has 16 extra characters in total, while C has almost twice as much: 30
(excluding well-known arithmetical operators: 14 and 26 respectively). In typical
applications, the non-alphanumeric characters are also used with higher frequency
in C than in SEAL.

Last but not least, SEAL syntax is insensitive to case, helping to avoid subtle
syntax errors [Pane 1996].

In sum, SEAL has simpler syntax. Even though syntax is not the sole component
of a language, it is still an integral and necessary part, required to use the language
confidently. Therefore simpler syntax should lead to a language that is easier to
learn.
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3.5.1.2 Application source code metrics

Source code metric comparison. Initially, four test applications were imple-
mented:

• Empty – an application with no user logic;
• Sense & print – periodically sample sensors (light, humidity, and tempera-

ture) and send results to serial port;
• Sense & send – same as Sense & print, except that sensor values are sent to

network and stored in external flash memory;
• SAD – a real-world application for environmental monitoring, conceptually

similar to the third application (Chapter 4).

For comparison, the first three applications were also implemented in nesC,
plain C (using MansOS API), TinyScript, and SensorBASIC. SAD was implemented
only in SEAL and in plain C, as TinyOS lacked certain specific components. The
MansOS C implementation adhered to MansOS coding guidelines; TinyOS imple-
mentation used the same coding style as in TinyOS application examples.

Afterwards, a second batch of applications was implemented, as a prerequisite
for the user evaluation study (Section 3.5.4). SensorBASIC implementations for
these were taken from [Miller 2009]. We were unable to test any of SensorBASIC
implementations because the interpreter is not publicly available.

We used three metrics: number of lines of code, cyclomatic complexity, and
programmer’s effort according to Halstead complexity measures [Halstead 1977].

Cyclomatic complexity is essentially the measure of the branches in the control
flow of a program [Jones 1994]. High cyclomatic complexity implies convoluted,
hard-to-understand branching. This metric shows good results even when compar-
isons are done across multiple programming languages.

Line count also gives some suggestions how easily the code can be understood,
especially if the languages have similar levels of abstraction. It was evaluated ex-
cluding comments and empty lines, but including MansOS configuration files.

The last metric is a software complexity measure based on the numbers of
operators and operands in an application. Operator is something that carries out an
action; operand is something that participates in an action. According by Halstead,
the effort required to create an application is directly proportional both to its volume
and difficulty. The difficulty measure suggests how difficult it is to develop or
understand the code of the application. Halstead metrics identifies new operators
and repeated operands as the he sources of difficulty in an application.

More formally, for a given problem, let [Halstead 1977]:
• η1 = the number of distinct operators
• η2 = the number of distinct operands
• N1 = the total number of operators
• N2 = the total number of operands

From these numbers, derived measures are calculated:
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Table 3.4: Cyclomatic complexity comparison

SEAL BASIC TinyScript C nesC
Empty 0 0 0 1 1

Sense & print 1 1 2 2 5
Sense & send 1 1 2 2 23

SAD 2 n/a n/a 4 n/a
Exercise 1 1 1 4 2 2
Exercise 2 2 2 4 4 5
Exercise 3 3 3 4 4 5
Exercise 4 1 3 3 4 6

Table 3.5: Lines of code comparison

SEAL BASIC TinyScript C nesC
Empty 0 0 0 3 6

Sense & print 4 6 6 15 49
Sense & send 5 9 7 42 179

SAD 14 n/a n/a 185 n/a
Exercise 1 1 5 8 8 24
Exercise 2 4 4 8 13 48
Exercise 3 5 5 11 14 34
Exercise 4 4 11 16 22 56

• Program vocabulary: η = η1 + η2

• Program length: N = N1 +N2

• Volume: V = N × log2 η
• Difficulty: D = η1

2 ×
N2
η2

• Effort: E = D × V

According to the original Halstead’s interpretation, the “effort” was directly
proportional to the time required to developed the application; he provided ap-
proximation for time T: T = E

18 seconds. However, this interpretation cannot be
simply extrapolated to domain-specific declarative languages without additional
research.

The Halstead complexity metric was not calculated for nesC implementations
(except for the first application, in order to show that it much higher than in high-
level languages), and also not for the implementation of SAD application in C,
as exact calculation of these metrics would be to time-consuming. It is clear that
compared to SEAL, the complexity would be higher by several orders of magnitude.
The empty application was not included in the comparison of Halstead complexity,
as the formula for calculating Halstead complexity breaks down in case the number
of operands is zero.

SEAL component use case parameters were counted as operators in Halstead
complexity measures. External function calls were also counted as operators (except



Chapter 3. High-level programming language and tools 135

Table 3.6: Effort comparison according to Halstead complexity measures

SEAL BASIC TinyScript C nesC
Sense & print 134.8 67.5 1617.5 2443.6 1 310 048.9
Sense & send 180.0 199.7 2244.0 32 352.2 n/a

SAD 5725.8 n/a n/a n/a n/a
Exercise 1 31.0 183.6 1353.7 495.0 n/a
Exercise 2 421.9 561.2 1294.9 1832.0 n/a
Exercise 3 419.4 552.0 2871.9 3664.6 n/a
Exercise 4 917.4 7625.3 14 592.4 17 849.7 n/a

sensor reading function calls, in order not to penalize languages that use implemen-
tations with a separate “read” function for each sensor). In contrast, function
definitions were counted as operands.

Results and discussion. The results are given in Table 3.4, Table 3.5, and
Table 3.6. For applications with no source code the cyclomatic complexity of the
applications code was evaluated as zero.

As expected, SEAL source code sizes are much smaller (at least 4 times, more for
complicated applications) than those of C and nesC (which is especially verbose).

Languages that make event-handing explicit (TinyScript and nesC) unsurpris-
ingly have noticeably higher cyclomatic complexity.

TinyScript and BASIC source line count is similar to SEAL. However, they
are more complex, especially TinyScript, which utilizes several additional concepts:
variable declarations, array element access, data types, and explicit usage of timers.

SEAL showed lower programmer’s effort according to Halstead complexity mea-
sures compared to BASIC, TinyScript, and C in all except one cases: for the very
simple “Sense & print” application, BASIC performed better. The outlier case
can be explained by the fact that BASIC uses the newline character as an implicit
separator between statements, while SEAL uses the “;” character as an explicit
separator. The newlines were not counted as operators in the evaluation; the semi-
colons were; therefore the number of operators in this SEAL application was higher.
Interestingly, the complexity of implementations in plain C comparable to those in
TinyScript, with just one exception.

We admit that the differences between SEAL and BASIC for the very simple
applications are inconclusive; in fact, BASIC achieves great clarity and simplicity
of code. However, the advantages of SEAL become visible as the applications
get a little more complicated. The contrast is especially high for “Exercise 4”
implementations. The SEAL implementation was shorter because it used primitives
provided by the language to calculate absolute and average values of sensor readings;
in the other languages, this functionality had to implemented in the application
itself.

In whole this evaluation, which includes comparison of three metrics on 34
implementations of 8 applications in 5 languages, there is only one case in which
SEAL scores lower than any of the competitors in either of the metrics.
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Table 3.7: Code memory and RAM usage overhead of SEAL applications

Code memory RAM
TelosB SADmote TelosB SADmote

Empty 75.8 % 26.0 % 7.0 % 2.1 %
Sense & print 21.1 % 7.1 % 29.9 % 15.0 %
Sense & send 23.8 % 16.7 % 39.1 % 9.8 %

SAD n/a 11.6 % n/a 4.8 %

Data processing support. For data processing SEAL offers several dozen
built-in functions. The application in Listing 3.20 demonstrates their usage: it cal-
culates the absolute difference of two light sensor readings, averages last 10 readings,
and outputs the result. The code is understandable by nonprogrammers (Section
3.5.4). Equivalent TinyScript and SensorBASIC applications are 10–20 lines long
and contain much more details.

Listing 3.20: Calculating the average difference
1 define Diff difference ( TotalSolarRadiation , PhotosyntheticRadiation );
2 define AverageDifference average (take(Diff , 10));
3 read AverageDifference , period 500 ms;
4 output Serial ;

Network-programming support. The SEAL compiler also facilitates WSN
programming by automatically generating code for different roles in the network.
In particular, SAD application requires the user to write the code not only for the
mote, but also for the base station role and two data-forwarder roles. The code
is short, but has to be placed in 6 additional files. The SEAL compiler generates
source code for each of these roles automatically, after the user has named the
desired data collection protocol and its parameters in application’s code.

3.5.2 Efficiency and feasibility evaluation

We measured binary code size and static RAM usage of the test applications for
TelosB and SADmote platforms (SADmote is a custom MSP430-based hardware
platform used in SAD application, see Chapter 4). The versions of the operating
systems used were the same as for MansOS evaluation (Section 2.6).

Compared with native implementations in MansOS, applications generated by
the SEAL compiles have only 7–24 % code memory overhead and 2–40 % RAM us-
age overhead, excluding the empty application (Fig. 3.8, Table 3.7). Compared
with TinyOS on TelosB, SEAL applications actually demonstrate better results.
One reason lies in the declarative nature of SEAL: the programmer is allowed to
declare system’s behavior and policies at compile-time, avoiding any run-time over-
head. In sum, our implementation of SEAL is certainly feasible on very low-power
microcontrollers.

MansOS has support for partial runtime reprogramming (see Section 2.5.1.3).
Specifically, user code (application logic) is distinguished from system code (OS
services) and can be reprogrammed separately. Therefore it is profitable to reduce



Chapter 3. High-level programming language and tools 137
Binary

Page 1

Empty
Sense & print

Sense & send & store
SAD

0

5000

10000

15000

20000

25000

1
2

8

1
3

6
8

6

1
9

7
0

6

1
3

3
0 4

1
4

2

7
1

1
6

2
3

3
8 5

0
1

6

8
8

1
2

2
2

4
8

6
5

1
2

1
0

0
7

8

1
5

0
8

8

2
8

3
2

6
9

7
6

1
1

7
6

6

1
6

8
3

8

 nesC (TinyOS), TelosB

 C, TelosB

 SEAL, TelosB

 C, SADmote

 SEAL, SADmote

b
yt

e
s

(a) Code memory usage

Binary

Page 1

Empty
Sense & print

Sense & send & store
SAD

0

200

400

600

800

1000

1200

1400

1600

1800

0

7
3

4

6
7

7

1
4

2

1
5

4 2
2

0

1
5

2

2
0

0 3
0

6

2
8

2

2
9

4

8
7

4

1
5

4
0

2
8

8

3
3

8

9
6

0

1
6

1
4

nesC (TinyOS), TelosB

C, TelosB

SEAL, TelosB

C, SADmote

SEAL, SADmote

b
yt

e
s

(b) RAM usage

Figure 3.8: Application binary code size and RAM usage comparison of SEAL
applications

the size of the user code. The user code portion sizes in example applications
(implemented in SEAL) are: 384 bytes for Sense & print, 2212 bytes for Sense &
send & store, and 4454 bytes for SAD (all evaluated on SADmote platform), making
partial reprogramming several times less expensive.

Energy usage was not evaluated separately for SEAL applications (see Section
2.6.5). While energy usage as such is extremely important in WSN context, SEAL
adds few new aspects to the problem. SEAL applications are compiled to C code,
which uses execution model comparable to that of hand-written MansOS applica-
tions. The execution model at the lowest level uses: software timers for all periodic
operations, interrupts for all event-based operations, and spends the rest of the time
in the lowest-power mode that is safe to use. Therefore the energy usage footprint
of node-local SEAL applications is also comparable to hand-written applications.

The situation is more complicated with regard to network communications. As
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the current implementation is on top of MansOS, it does not provide support for
multihop unicast communication in the network (except to and from the base sta-
tion). Efficient implementation of such a communication is a future challenge. For
other forms of communication, there is some overhead associated with the extra
fields included in the packets used for communication: packet type (2 bytes), and a
bitmask of the sensors included in the packet (at least 4 bytes). The sensors at the
moment also are packed inefficiently: a 4 byte field is always used for a single sensor
reading, even though the dynamic range of the sensor might be much smaller. Fi-
nally, there is no doubt that a generic implementation using SEAL network packets
would look very inefficient compared to customized implementations that provide
application-specific data compression [Cardell-Oliver 2013] or message suppression
based on statistical techniques [Raza 2012]. At the moment we do not see an easy
way out of this tradeoff between generality and efficiency of communications.

To the energy-conscious developer, SEAL and its compiler offers several features
worth mentioning. First, there is the turnOnOff parameter that allows to power
on hardware components only during their usage. This parameter is useful in case
some infrequently-read sensors have high current consumption in the default, idle,
mode. Second, there is the option to synchronize readings of multiple sensors in
a way that minimizes the time the MCU has to spend in active mode (Section
3.3.3.4). There is also a caching mechanism (Section 3.3.3.3) that helps to avoid
unnecessary extra reads.

3.5.3 Applicability evaluation

SEAL and its runtime are tuned specifically for sense-and-send type of applications.
However, is can be used for other application archetypes a well (though it may not be
the best choice for all of them!). The versatility of SEAL is demonstrated by the fact
that it supports both periodic and event driven sampling and data transmission. It
allows to write applications that include support for actuation, interactivity (queries
can be defined and handled), data interpretation (using predefined functions and
their combinations), and data aggregation across nodes.

3.5.3.1 Application classes

In order to evaluate the WSN application design space covered by SEAL, first we
discuss whether and how SEAL supports the seven WSN application characteristics
defined in [Bai 2009]:

• Sampling – both periodic (using period parameter) and event-driven (au-
tomatically for interrupt-based sensors, using event-specific when conditions
for the rest of sensors).
• Data transmission – similarly, both periodic and event driven.
• Actuation support – yes. First, actuators can be activated or deactivated

(with specific parameters), second, a system input can be linked to an actu-
ator input (for example, analog-in port to analog-out port).
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• Interactivity support – yes. Queries can be both issued and handled using
SEAL. The former by using output statement with explicit list of fields to
include and their values; the latter: by matching the query against a when
condition.
• Data interpretation support – yes. SEAL features limited in-language

support for new algorithm definition by combining pre-defined primitive func-
tions (currently the default implementation includes 36 such functions).
• Data aggregation support – yes. SEAL allows defining data aggregation

across multiple nodes, although the language has limited support for complex
custom algorithm description (no loops or recursion).
• Heterogeneous network support – yes. First, SEAL applications are

architecture-independent in the sense that they can be compiled for multiple
architectures. Not all components are supported on all hardware, of course.
Second, architecture-specific decisions can be described in the language.
• Mobility support – library level only (for example, GPS can be added as

one of the sensors).

As it can be seen, SEAL at least partially supports all six out of seven design
characteristics at language level. It can be used to program applications belong-
ing to any of WSN application archetypes (as defined in [Bai 2009]). Therefore,
SEAL can be classified as a WSN application programming language with universal
applicability.

3.5.3.2 Concrete scenarios

We have identified a number of scenarios (Table 3.8) where it can be used to pro-
gram the application logic. The scenarios were selected by two methods. There are
four scenarios that are based on WSN deployments presented at high-impact con-
ferences. The deployments are well-known in the community [Werner-Allen 2006]
[Selavo 2007] [Ceriotti 2011] [Kothari 2007]. All the deployments are fairly tradi-
tional sense-and-send applications, but each with a particular twist. The remaining
nine scenarios are based on problems that have been met in WSN and cyber-physical
system projects in Institute of Electronics and Computer Science (EDI) and Uni-
versity of Latvia. They all belong either to realized or projected deployments.

The deployments roughly belong to three groups: sensor networks for environ-
mental monitoring, functionality of “classical” embedded system software, including
signal processing, and sensor networks or embedded systems for vehicular applica-
tions. Several belong to more than one group.

A distinction must carefully be made between the statement that SEAL sup-
ports a scenario and that our software framework fully supports a scenario. The
first means that the application logic can be implemented using SEAL; the second
means that there is also full support for OS level logic according to the pragmatic
requirements of each scenario. We claim the former – that SEAL fully supports
each scenario, as it is described here. We do not claim the latter, as that would
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Table 3.8: SEAL application scenarios

Scenario Feature demonstrated
Measuring microclimate [Elsts 2012a] Periodic sampling
Controlling a watering system [Elsts 2012a] Distributed processing
Collecting light measurements [Selavo 2007] Interactive query support
Detecting seismic activity [Werner-Allen 2006] Event-driven processing
Light monitoring in tunnels [Ceriotti 2011] Intra-node proc. (using C)
Building a backup controller [Zviedris 2010] Imperative elements
Analog signal processing [Strazdins 2011] Intra-node processing
Generating a signal [Mednis 2012c] Sequential execution
Detecting potholes #1 [Mednis 2011] Intra-node processing
Detecting potholes #2 [Mednis 2011] Intra-node processing
Detecting vehicle movement [Mednis 2012a] Optimized intra-node processing
Finding parking space [Kothari 2007] Distributed processing

require full implementation of many elements beyond the scope of this work, for
example, LiteTDMA [Selavo 2007] protocol.

In total, twelve SEAL usage examples are presented. They demonstrate both
practical applications of the language, and different features of SEAL. The language
is used in sensor network and in other embedded system context. In most cases (for
example, Listing 3.37), the implementation in SEAL code is straightforward after
the algorithm description is given. However, in case many sensors are present, the
code size is large, because it grows linearly with the number of components used;
this is already hinted by Listing 3.27. Future improvements should be expected
in this area. Some cases do not allow to be fully specified in SEAL itself (Listing
3.27 again) or can only be implemented syntactically (Listing 3.31, which require
microsecond timers), because the system-level support is not there yet. Therefore
the listings not only demonstrate the strengths of SEAL, but also suggest future
research directions.

Microclimate measurements.
Scenario (Listing 3.21, 3.22): our microclimate monitoring system in precision

agriculture (SAD) [Elsts 2012a] reads microclimate measurements on motes de-
ployed in an orchard, stores the measurements locally and forwards them to the
network towards of the base station. According to the wishes of agriculture scien-
tists (the users of the system), the data can be sampled with frequency as low as
one sample in 10 minutes.

The first version of the code (Listing 3.21) is a straightforward translation of
the requirements. However, taking in account the experience from 2011 deployment
and additional user wishes, we made a number of modifications (Listing 3.22).

The first line in Listing 3.22 tells that the system is to be used for extended
periods of time. The peculiar requirements of SAD application come from the facts
that, simultaneously, the application should be long-lived (we aim a lifetime that is
equal to whole vegetation season), and the hardware has no support for real-time
clock. Hence, the internal system uptime counter is used. The counter registers
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milliseconds since system’s start and by default is 32 bits wide, which means that it
wraps back to zero every 40 days. If USE_LONG_LIFETIME option is used, the counter
becomes 64 bits wide. The code is slightly less efficient, but allows generating more
useful timestamps.

The second line defines a helper actuator (LED in this case) that is used in
line 9. Using this code helps domain experts to effectively discover failed nodes.
Once again, the specific of SAD application is that the harsh conditions of the
orchard sometimes cause sensor failures. In particular, the application sometimes
freezes when trying to read SHT75 humidity sensor. Using the helper LED allows
to visually diagnose such situations, as the LED is turned on before sensor reading
is started, and turned off after it is successfully completed. If the LED remains
bright, reading the sensors has failed.

Lines 4–8 defines a virtual light sensor. Not all motes in the deployment have
the same sensors; most have the default light sensor for the SADmote hardware
platform, but the one with address (ID) 0x0796 has more a precise SQ100 solar
radiation sensor.

Line 9 tells that all the sensors should be read simultaneously, not using a
different timer for each; this helps to avoid relative drifting of measurement intervals.

Finally, line 10 puts it all together, as well as tells that the sensors should be
turned on before reading and off afterwards (turnOnOff parameter). In this way,
additional energy savings are made.

The difference between the two versions illustrates the importance of real-world
evaluation of high-level WSN programming approaches. Were it not evaluated in
the field, the first version would look just fine; but in reality, it can be greatly
improved (the second version).

Listing 3.21: Conceptual version of SAD application
1 // define system sensors
2 read Light , period 10 min;
3 read Humidity , period 10 min;
4 read Temperature , period 10 min;
5 // define system outputs
6 output SdCard ;
7 output Network , protocol CSMA;

Listing 3.22: Real-world version of SAD application
1 config " USE_LONG_LIFETIME =y";
2 define HelperLed RedLed , blink ;
3 // define system sensors
4 when Variables . localAddress == 0 x0796 :
5 define TheLight SQ100Light ;
6 else:
7 define TheLight Light ;
8 end
9 define AllSensors sync(TheLight , Humidity , Temperature );

10 read AllSensors , period 10min , associate HelperLed , turnOnOff ;
11 // define system outputs
12 output SdCard ;
13 output Network , protocol CSMA;
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Controlling a watering system.
Among our future plans for SAD is to control a watering system automatically.

The idea is that when the soil in an orchard or a greenhouse becomes too dry, a
number of actuators should automatically turn on the water flow. Each actuator
device receives data from multiple sensors in its single-hop neighborhood, and uses
the minimal of soil moisture readings received to determine the course of action.

Listing 3.23 shows the straightforward code on a sensor device. The code on
actuator devices (Listing 3.24) demonstrates how distributed processing can be im-
plemented using SEAL. The values of RemoteSoilHumidity are taken from network;
they correspond to humidity sensor readings on remote nodes.

Listing 3.23: On sensor device
1 // read soil humidity sensor
2 use SoilHumidity ;
3 // send the measurements to radio
4 output Radio ;

Listing 3.24: On actuator device
1 const MIN_HUMIDITY_THRESHOLD 20%;
2
3 // define the minimal humidity as minimum of values
4 // in last 60 seconds , max 20 value array
5 define MinHumidity min( takeRecent ( RemoteSoilHumidity , 60s, 20));
6
7 when MinHumidity < MIN_HUMIDITY_THRESHOLD :
8 // use watering system in this case
9 use Watering ;

10 end;

Collecting light measurements.
Scenario: light monitoring under shrub thicket in a remote island is performed.

In order to make data retention and data delivery rates higher, data storage nodes
are deployed throughout the network in addition to the regular sensor nodes. The
regular sensor nodes produce data (light sensor measurements together with origi-
nator’s address and timestamp) and send it out to the network. The storage nodes
(Listing 3.25) overhear all radio traffic and log the data to SD card. LiteTDMA
protocol is employed for efficient communication (line 11).

The example shows SEAL code on data storage node, as the sensor node code
is trivial. The data on storage nodes is used only in case a data packet has not
reached the base station. In this case, the base station issues a query asking for
the lost data. The query includes address of the node whose data was lost and a
timestamp that corresponds to the start of the missing data. The storage nodes
process the query and respond to it (line 11) if the data is present (lines 13–14).

Listing 3.25: On data storage node
1 // On data storage node
2 const DATA_QUERY_COMMAND 1;
3
4 // remote light packet



Chapter 3. High-level programming language and tools 143

5 read RemoteLight ; read RemoteAddress ; read RemoteTimestamp ;
6 output File ( RemoteLight , RemoteAddress , RemoteTimestamp ), filename "

LightData .bin";
7
8 // storage query packet
9 read RemoteCommand ;

10 when RemoteCommand = DATA_QUERY_COMMAND :
11 output Network , protocol LiteTDMA , file " LightData .bin",
12 where
13 Address = RemoteAddress
14 and Timestamp >= RemoteTimestamp ;
15 end

Detecting seismic activity.
Scenario: a sensor network is deployed on an active volcano. The network per-

forms high-rate (100 Hz, multiple channel) seismoacoustic monitoring and detects
events of interest (e.g. small earthquakes). Since the data rate is so high, it is not
feasible to transmit all of the data to the base station. Triggered data collection is
used instead, and data is downloaded from each sensor device following a significant
earthquake or eruption.

Listing 3.26: On sensor node
1 const COMMAND_EVENT_DETECTED 1;
2 const COMMAND_REQUEST_DATA 2;
3 const DATA_COLLECTION_INTERVAL 60s;
4 const EWMA_COEFF_1 0.15;
5 const EWMA_COEFF_2 0.2;
6 const EVENT_DETECTION_THRESHOLD 0 x1234 ;
7
8 // read sensors
9 read AcousticSensor , period 10 ms;

10 read SeismicSensor , period 10 ms;
11 output File ( AcousticSensor , SeismicSensor , Timestamp ),
12 name " SensorData .bin";
13
14 // detect events
15 define CombinedSensor sum( AcousticSensor , SeismicSensor );
16 define EventDetectionFunction difference (
17 EWMA( CombinedSensor , EWMA_COEFF_1 ),
18 EWMA( CombinedSensor , EWMA_COEFF_2 ));
19 read EventDetectionFunction ;
20 when EventDetectionFunction > EVENT_DETECTION_THRESHOLD :
21 output Network ( Command ), command COMMAND_EVENT_DETECTED ;
22 end;
23
24 // respond to queries
25 when RemoteCommand == COMMAND_REQUEST_DATA :
26 output Network , file " SensorData .bin",
27 where RemoteTimestamp >= Timestamp
28 and RemoteTimestamp <= add(Timestamp , DATA_COLLECTION_INTERVAL );
29 end

The application logic (Listing 3.26) consists of three parts. First, the ap-
plication samples acoustic and seismic sensors and stores the data locally (lines
9–12). Second, event detection algorithm is continuously run, as described in
[Werner-Allen 2006] (lines 15–22). Node detects an event when the ratio be-
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tween two exponentially weighted moving average (EWMA) functions becomes large
enough. In this case the node sends event notification to the base station. If high
enough number of nodes has detected an event at the same time, the base station
issues data collection query. Third, the node handles data collection query com-
mand (lines 25–29). The command includes a timestamp. Data from the interval
[timestamp; timestamp + 60 seconds] is sent back to the base station.

Light monitoring in tunnels.
Scenario: a wireless sensor and actuator network is deployed in a traffic tunnel.

The sensor devices (Listing 3.27) sample light values, aggregate them, calculate
average in 5 second period, and send it to network, where they are intercepted by
tunnel control infrastructure, which in turn controls the artificial light level. Sam-
pling frequency is location-dependent; interior nodes are sampled less often than
motes in entrance and exit zones. SEAL uses a OS-level variable moteIsInInterior
to determine whether it is the case (lines 13–17), assuming it can be set by man-
agement protocol or at compile time.

Listing 3.27: On sensor device
1 const SAMPLING_INTERVAL 5s;
2 const INTERIOR_REPORT_INTERVAL 5min;
3 const ENTRANCE_REPORT_INTERVAL 30s;
4 const SATURATED_VALUE 0 xffff ;
5
6 // Load C- based extensions for this scenario
7 load " TunnelDataCollector .py"; // component description
8 load " TunnelDataCollector .c"; // component implementatio
9

10 // choose the sampling interval depending on system variables
11 // ( assume that moteIsInInterior is a variable
12 // that can be changed via management protocol )
13 when Variables . moteIsInInterior :
14 set reportInterval INTERIOR_REPORT_INTERVAL ;
15 else:
16 set reportInterval ENTRANCE_REPORT_INTERVAL ;
17 end
18
19 // there are 4 light sensors ; ignore the ones that are saturated
20 define Light1 filterLess ( LightWithId , SATURATED_VALUE ), id 1;
21 define Light2 filterLess ( LightWithId , SATURATED_VALUE ), id 2;
22 define Light3 filterLess ( LightWithId , SATURATED_VALUE ), id 3;
23 define Light4 filterLess ( LightWithId , SATURATED_VALUE ), id 4;
24 // one measurement is an average of all valid light sensors
25 define LightAvg average ( tuple (Light1 , Light2 , Light3 , Light4 ));
26 // read the average value with 5 second period
27 read LightAvg , period SAMPLING_INTERVAL ;
28 // use a custom data collector component
29 output TunnelDataCollector , interval reportInterval ;

The application logic is the following [Ceriotti 2011]: “when reporting to the
sink, the average sall of all [non-saturated] values si is computed. For each si, if
the difference |sall−si| differs from sall by more than 50%, si is discarded and sall
recomputed.” In our code, si corresponds to Lighti (lines 20–23) and sall (before
recomputation) to LightAvg (line 27).

This example is interesting because it demonstrates the limitations of SEAL
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and how they can be overcome. The recalculation of sall is hard to implement in
SEAL due to scarcity of imperative programming constructs. We address this prob-
lem by defining application-specific extension: TunnelDataCollector component
described in TunnelDataCollector.py file (line 7) together with its implementa-
tion in TunnelDataCollector.c file (line 8), which recalculates the value of sall, if
necessary, and sends it to actuator nodes.

The complete component library “glue” code is given in Listing 3.28 and consists
of only 6 lines of Python code.

Listing 3.28: Component library code
1 from testarch import *
2
3 class TunnelDataCollector ( SealOutput ):
4 def __init__ (self):
5 super ( TunnelDataCollector , self). __init__ (" TunnelDataCollector ")
6 self. useFunction . value = " tunnelDataCollectorSend (&

tunnelDataCollectorPacket ,␣ sizeof ( tunnelDataCollectorPacket ))"
7
8 tunnelDataColl = TunnelDataCollector ()

Building a backup controller.
EDI is developing a wild animal monitoring system [Zviedris 2010] (see also

Section 2.7.1). The system consists of collars with embedded sensor hardware,
supporting base stations placed in the forest, and a mobile data acquisition sta-
tion. For reliability reasons, the collar devices are equipped with a second (backup)
microcontroller. Listing 3.29 presents the code of this microcontroller (MCU).

The backup system has two inputs and two outputs. One input of the system
is a pin that signals when the battery of the main MCU goes low, and another is
a pin that is periodically toggled to signal that the main system is still alive. The
outputs of the system are a pin that allows putting the main MCU in reset, and a
pin that allow to completely disabling it.

The logic, in outline, is to detect situations when the main MCU should
be reset or turned off, and act correspondingly. In addition, the backup sys-
tem is equipped with a radio that transmits the carrier signal periodically
(CarrierSignalGenerator component in code). The frequency of the carrier signal
transmissions allows detecting whether the main MCU is alive or turned off.

Listing 3.29: On backup device
1 const RESET_PORT 1; const RESET_PIN 1;
2 const POWER_PORT 1; const POWER_PIN 2;
3 const BATTERY_LOW_PORT 1; const BATTERY_LOW_PIN 3;
4 const WATCHDOG_PORT 1; const WATCHDOG_PIN 4;
5
6 define ResetOut DigitalOut , port RESET_PORT , pin RESET_PIN ;
7 define PowerOut DigitalOut , port POWER_PORT , pin POWER_PIN ;
8 define BatteryLow DigitalIn , port BATTERY_LOW_PORT , pin BATTERY_LOW_PIN ;
9 define Watchdog DigitalIn , port WATCHDOG_PORT , pin WATCHDOG_PIN , interrupt

, risingEdge ;
10
11 // The logic is simple :
12 // when battery of the main controller is low , turn it off ,
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13 // but turn it back on after a while (however , limit the number of tries )
14 read BatteryLow ;
15 when BatteryLow :
16 use PowerOut , off;
17 else:
18 do , initialTimeout 10min , once: // add 10 minute hysteresis
19 use PowerOut , on;
20 end
21 end
22
23 // check for watchdog signal , and if none received , reset the main MCU
24 const WATCHDOG_MAX_TIME 20s; // seconds
25 const MAX_RETRY 5;
26 when not Watchdog :
27 // at the end of 10 seconds : turn power off
28 do , period WATCHDOG_MAX_TIME , times MAX_RETRY :
29 use ResetOut ;
30 then:
31 // give up
32 end
33 end

Analog signal processing.
EDI was a participant in the first Grand Cooperative Driving Challenge

[Strazdins 2011]. The vehicle we used was a modified Mazda 6, which had an
option to electronically control accelerator pedal. By default the pedal receives in-
put directly from car’s electronic control block. Our modification was to include a
Tmote Sky sensor device in the path. The mote functions as a bridge (Listing 3.30);
it has wires attached to its ADC and DAC ports; as resistors are used, the input
signal is range is different from the output signal range and has to be compensated
in the program. In addition, the output wire must supply at least minimum if 1.6 V
voltage. In addition, the application logs the signal values; they can be used to
analyze and replay the usage of the accelerator.

Listing 3.30: On controller device
1 // define input signal channel
2 define InputPin AnalogIn , channel 6;
3 // define output signal channel
4 define OutputPin AnalogOut , pin 3, port 3;
5 // define input -> output mapping : input range is 120..255 , output : 0..100
6 define MySignal map(InputPin , 120 , 255 , 0, 100) , out OutputPin ;
7 // define the action
8 use MySignal ;

Generating a signal.
Scenario: in order to understand a communication protocol, an electrical engi-

neer has to regenerate a test signal pattern that was recorded in an experimental
measurement. The signal is binary (on/off), has microsecond gradation.

In order to describe this signal in SEAL (Listing 3.31), a pattern construct
is used. The signal is repeated periodically every 100 milliseconds. In order to
implement this feature, two nested do statements are used. The outer statement is
a wrapper that contains all the logic; it specified with no parameters, therefore is
executed continuously and periodically. The logic of the inner statement is executed
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just once per every execution of the outer statement. Before the execution of the
inner statement there is always 100 millisecond timeout. The inner statement could
also be written in another way, without the initialTimeout parameter; in that
case then branch would have to be added, with empty logic and 100 millisecond
duration.

Listing 3.31: On generator device
1 // define a signal using pattern declaration with microsecond intervals
2 pattern P (300us , 100us , 300us , 400us , 300us , 200 us);
3 do:
4 do , once , initialTimeout 100 ms:
5 // output this pattern to a specific pin
6 use DigitalOut , port 1, pin 6, pattern P;
7 end
8 end

Detecting potholes #1.
Scenario: a vehicle is equipped with a sensing device that records accelerometer

readings continuously. The purpose of the sensing device is to detect potholes (irreg-
ularities in road surface). Multiple detection algorithms are possible [Mednis 2011]
(see also Section 2.7.2).

The idea of STDEV algorithm (Listing 3.32) is to look at standard deviation of
the latest readings of accelerometer’s Z axis, and declare a pothole detected when
STDEV is larger than the threshold.

Z-DIFF algorithm (Listing 3.33) applies thresholding to the difference of last two
Z axis measurements. It is implemented as a special case of STDEV algorithm, using
the mathematical relation between standard deviation of the last two measured
values and the difference between them.

Threshold algorithm (Listing 3.34) simply detects a pothole when absolute val-
ues of Z axis exceeds or falls below some specific thresholds.

Finally, G-ZERO algorithm (Listing 3.35) is based on the observation that driv-
ing into a pothole leads to a short-time free fall effect. As known, during free fall
there is no acceleration. Regardless of the accelerometer position, measurements
on all three axis are going to be close to zero.

In all algorithms the accelerometer is read with 10 Hz frequency.

Listing 3.32: STDEV algorithm
1 const ACCEL_Z 2; // channel number for Z axis
2
3 const THRESHOLD 100;
4
5 define AccelZ AnalogIn , channel ACCEL_Z ;
6 define Deviation stdev (take(AccelZ , 10));
7
8 read Deviation , period 100 ms;
9 when Deviation > THRESHOLD :

10 use RedLed , on;
11 use Beeper , on , duration 200 , frequency 1000;
12 else:
13 use RedLed , off;
14 end
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Listing 3.33: Z-DIFF algorithm
1 const ACCEL_Z 2; // channel number for Z axis
2
3 const THRESHOLD 100;
4
5 define AccelZ AnalogIn , channel ACCEL_Z ;
6 define Difference multiply ( stdev (take(AccelZ , 2)), 2)
7
8 read Difference , period 100 ms;
9 when Difference > THRESHOLD :

10 use redLed , on;
11 use Beeper , on , duration 200 , frequency 1000;
12 else:
13 use redLed , off;
14 end

Listing 3.34: Threshold algorithm
1 // Z axis measurements :
2 // 1680 - norm (1g)
3 // 2080 - weightless (0g)
4 // 1280 ( assumed ) - (2g)
5 const THRESHOLD_LOW 1360;
6 const THRESHOLD_HIGH 2000;
7
8 // channel number for Z axis
9 const ACCEL_Z 2;

10
11 define AccelZ AnalogIn , channel ACCEL_Z ;
12
13 read AccelZ , period 100 ms;
14 when AccelZ < THRESHOLD_LOW or AccelZ > THRESHOLD_HIGH :
15 use RedLed , on;
16 use Beeper , on , duration 200 , frequency 1000;
17 else:
18 use RedLed , off;
19 end

Listing 3.35: G-ZERO algorithm
1 // 0g is ~2080 accel value .
2 const THRESHOLD_LOW 1930;
3 const THRESHOLD_HIGH 2230;
4
5 // channels for X, Y, and Z axis
6 define AccelX AnalogIn , channel 0;
7 define AccelY AnalogIn , channel 1;
8 define AccelZ AnalogIn , channel 2;
9

10 read AccelX , period 100 ms;
11 read AccelY , period 100 ms;
12 read AccelZ , period 100 ms;
13 when AccelX > THRESHOLD_LOW and AccelX < THRESHOLD_HIGH
14 and AccelY > THRESHOLD_LOW and AccelY < THRESHOLD_HIGH
15 and AccelZ > THRESHOLD_LOW and AccelZ < THRESHOLD_HIGH :
16 use RedLed , on;
17 use Beeper , on , duration 200 , frequency 1000;
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18 else:
19 use RedLed , off;
20 end

Detecting potholes #2.
Pothole detection described in the previous scenario can be made more precise;

the noise can filtered out before running the detection algorithms. Accelerometer is
typically read with relatively high frequency (100 Hz reading is typical) on a budget
commercial-off-the-shelf hardware, therefore high frequency noise is present, and
low-pass filtering can help. In this example scenario (Listing 3.36), data is output
to serial port for later off-line processing instead of applying an online detection
algorithm as in previous example.

Listing 3.36: On intra-vehicle sensor device
1 // constants
2 const NUM_SAMPLES 5;
3 const ADJUSTMENT_WEIGHT 5;
4 const ACCEL_CHANNEL 2;
5 // define our accelerometer sensor
6 define Accelerometer AnalogIn , channel ACCEL_CHANNEL ;
7 // define accelerometer sensor with low -pass filter applied
8 define SmoothedAccelerometer smoothen ( Accelerometer , NUM_SAMPLES ,

ADJUSTMENT_WEIGHT );
9 // read the noise - removed sensor

10 read SmoothedAccelerometer , period 10 ms;
11 // output to serial port
12 output Serial , aggregate ;

Detecting the state of a vehicle.
Scenario: the device from previous scenarios is used to detect whether the vehi-

cle is in driving or standing mode. Such a detection has practical uses, for example,
for car companies. The algorithm (Listing 3.37) cannot expect complete absence
of movement even from a vehicle, as small movements are possible due to engine
vibrations and other factors even when the vehicle is standing. Furthermore, some
hysteresis should be present to “lock” a vehicle in its current state and avoid “jump-
ing” between the states. The algorithm is as follows [Mednis 2012a]:

1. sample accelerometer readings on all three axis with 100Hz frequency for a
second;

2. calculate standard deviation of the readings on each axis;
3. sum the deviations and compare them to predefined set of thresholds (must

be calibrated or determined otherwise for each vehicle):

• if the sum is more that thresholdhigh, set the detected mode to “moving”.
• else if the sum is less than thresholdlow, set the detected mode to “stand-

ing”.
• else the detected mode is not changed.
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Listing 3.37: On intra-car sensor device
1 const THRESHOLD_LOW 50;
2 const THRESHOLD_HIGH 100;
3
4 set isMoving False ; // vehicle mode
5
6 define AccelX AnalogIn , channel 1, period 10 ms;
7 define AccelY AnalogIn , channel 2, period 10 ms;
8 define AccelZ AnalogIn , channel 3, period 10 ms;
9

10 define X_dev stdev (take(AccelX , 100));
11 define Y_dev stdev (take(AccelY , 100));
12 define Z_dev stdev (take(AccelZ , 100));
13
14 define SDev sum(X_dev , Y_dev , Z_dev ), lazy;
15
16 read SDev;
17 when SDev > THRESHOLD_HIGH :
18 set isMoving True; // movement detected
19 elsewhen SDev < THRESHOLD_LOW :
20 set isMoving False ; // absence of movement detected
21 end

Finding parking space.
The goal of this application is “to identify a sensor node with a free spot that is

as close to the desired destination of the driver as possible” [Kothari 2007]. Since
there is no macroprogramming support in SEAL, the application is divided in two
separate parts: the part that is executed on stationary nodes (corresponding to
parking spaces) and on mobile nodes (corresponding to would-be parked vehicles).
The code is shown in Listing 3.38 and Listing 3.39, respectively.

The free-space search algorithm uses ever-expanding search space (limited by
the maximum number of hops a routing protocol supports). The example relies on
system-level support for multihop broadcast and unicast communications.

The reservation is done in two steps. In the first, the parking node receives
a query message, and, in case it is free, responds back with a reply message. A
temporary reservation (for one second) is made. If during this time reservation
confirmation message is received, the node advances to “permanently reserved”
state. Otherwise it falls back to free state.

The mobile node queries its neighborhood for free parking locations. If no such
location is found, the search space is enlarged and a new iteration starts.

The main drawback of this SEAL implementation is that compared to the
Pleiades version [Kothari 2007], this algorithm is not as resilient to communication
timeouts. However, unlike the TinyOS versions, it is both reliable and efficient.
The first property is entailed by the fact that if communication succeeds, one and
only one reservation will always be made when there is free space available. The
second property by the fact that the search space is incrementally expanding.

Listing 3.38: On stationary ("parking space") nodes
1 const CMD_QUERY_STATUS 1;
2 const CMD_REPLY_STATUS 2;
3 const CMD_RESERVE 3;



Chapter 3. High-level programming language and tools 151

4
5 set IsFree true; // is free for new reservations ?
6 set IsWaiting false ; // is waiting for reservation confirmation ?
7
8 when RemoteCommand = CMD_QUERY_STATUS and IsFree :
9 // move to " waiting " state

10 set IsFree false ;
11 set IsWaiting true;
12 output Network (Command , Status ), command CMD_REPLY_STATUS , Status

IsFree ;
13 end
14
15 when IsWaiting :
16 do , initialTimeout 1s:
17 // fall back to "free" state
18 set IsWaiting false ;
19 set IsWaiting true;
20 end
21 end
22
23 when RemoteCommand = CMD_RESERVE :
24 // move to " reserved " state
25 set IsWaiting false ;
26 end

Listing 3.39: On mobile ("vehicle") nodes
1 const CMD_QUERY_STATUS 1;
2 const CMD_REPLY_STATUS 2;
3 const CMD_RESERVE 3;
4
5 set HasReservation false ; // whether a place to stay is found
6 set Hops 1; // how far the queries will go
7
8 read HasReservation ;
9 when not HasReservation :

10 output Network ( Command ), command CMD_QUERY_STATUS , hopcount Hops;
11 set Hops add(Hops , 1);
12 end
13
14 when RemoteCommand = CMD_REPLY_STATUS and not HasReservation :
15 output Network ( Command ), command CMD_RESERVE , destination

RemoteAddress ;
16 set Hops 1;
17 set HasReservation True;
18 end

3.5.4 Empirical usability evaluation

In order to evaluate the usability of our software we conducted two preliminary user
studies.

We were looking for answers to the following questions:

• Can novice programmers successfully develop applications in SEAL?
• Can novice WSN users successfully develop applications in SEAL?
• Can programmers understand the intent of unfamiliar code written in SEAL?
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• How does the developer success rate in SEAL compare with that of existing
WSN languages?
• What are the specific difficulties in using SEAL?

Figure 3.9: Usability problems found as a function of number of test users
[Nielsen 2000]

What is the minimal sample size that allows to achieve good results? Before the
end of the 20th century usability testing was treated as formal process and employed
methods typically used in research experiments [Barnum 2010]. This allowed to ap-
ply statistical analysis on the results, but made the experiments expensive, time
consuming, and requiring many participants. More recently, researchers determined
that the law of diminishing return applies very strongly here: “the maximum cost-
benefit ratio, derived by weighing the costs of testing and the benefits gained, is
achieved when you test with three to five participants” [Barnum 2010]. The Fig.
3.9 shows that even a single user helps greatly, and that increasing the number of
users above five leads to smaller improvements. However, the curve only applies to a
particular usability test; the number of tests required to find all the usability prob-
lems in a product is very large. Therefore it is more profitable to conduct several
tests with fewer users than a single test with a lot of users. Our first study included
8 users (6 valid results); our second study included 14 users (12 valid results) in 4
groups (3 valid results in each group).

The first study took place in November 2011. We used the MansOS usability
evaluation methodology (Section 2.6.6) as the basis for this study as well.

Firstly, four additional third year computer students (with no experience in
WSN) were asked to implement the exercise in SEAL. The results are shown in
Fig. 3.10 (cf. with Fig. 2.27 and discussion in Section 2.6.6). For first-time user
with background in computer science, the usability of SEAL is better than that of
TinyOS (we calculated P < 0.02). SEAL also scored higher than MansOS, although
the difference in this four-user test was not statistically significant. The users also
expect that it is going to be much easier to become an “expert” SEAL programmer
than “expert” MansOS or TinyOS programmer.

Secondly, four agriculture scientists from Latvia State Institute of Fruit-Growing
were asked to program the same solution using SEAL GUI. After initial help with
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Figure 3.10: The results of the first SEAL usability study

installation and setup, all were able to complete this assignment on their own or
using only discussions with colleagues. (However, only 2 results were finally sub-
mitted to instructors e-mail.) Such as result would be unthinkable with C, where
they would have to battle with issues such as C pointer semantics and memory
alignment.

There were number of issues with SEAL syntax that created difficulties, leading
to solutions that were partially correct – the programmer’s intention was clear,
but, for example, brackets were not used where they should have been. After the
tests these syntax problems were ruled out, leading to an updated version of SEAL
grammar.

The second study took place in October 2012. We adopted methodology and
exercises from the SensorBASIC user study [Miller 2009].

For evaluation we recruited computer science undergraduate students with no
WSN programming experience (the “intermediate programmers”), as well as stu-
dents and scientific staff from other domains with little or no programming experi-
ence (the “novice programmers”). The participants were given access to computers
with IDE installed (SEAL or TinyScript, depending on their group), and attached
sensor devices equipped with light, temperature and humidity sensors.

At the start of the test, the participants were instructed to read the tutorial and
study the IDE for 20 minutes. After this time, four exercises were revealed. Each
participant was given 70 minutes to complete them. At the end they had to send
in their solutions to instructors e-mail, as well as fill in and hand in a questionnaire
documenting their specialty and previous programming experience.

For the novice programmers, we were primary interested in the users ability to
complete the tasks at all. For the experienced programmers, we were also interested
in success rate comparison with TinyScript.

The first three exercises asked to code specific applications (adopted from
[Miller 2009]):
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Table 3.9: Exercise completion success rate

Ex. 1 Ex.2 Ex.3 Ex.4 Total, %
TinyScript, intermed. 3/3 3/3 3/3 3/3 100 %

SEAL, intermed. 3/3 3/3 3/3 3/3 100 %
SEAL, novice 1 3/3 0/3 2/3 n/a 55.6 %
SEAL, novice 2 3/3 2/3 2/3 2/3 75 %

1. Blink a LED with 2 second period (Listing 3.40);
2. Send a message to the base station if the light sensor is covered (Listing 3.41);
3. Turn on the LED if and only if the light sensor is covered (Listing 3.42).

The fourth exercise asked to ”describe the meaning of the code in Listing 3.20”.

Listing 3.40: Solution to exercise 1
1 use RedLed , period 2s;

Listing 3.41: Solution to exercise 2
1 when Light < 100:
2 use Print , format "No␣ light ", out Radio ;
3 end

Listing 3.42: Solution to exercise 3
1 when Light < 100:
2 use RedLed , on;
3 else:
4 use RedLed , off;
5 end

From the 14 participants we recruited, two were unable to test their solutions to
programming exercises because of hardware or system problems. That left us with
twelve: six computer science students, three physicists, two agricultural scientists,
and one electrical engineer; seven were undergraduate students, five – graduate
students or scientific staff. The results of the study are given in Table 3.9.

The first exercise was completed by all subjects.
Second and third exercises were completed by all computer science students in

both groups. However, the second was not completed by anyone in “novice 1” group.
The translation of the exercise was misguided and suggested to do something that
in fact was impossible in SEAL at that moment. After this group we reformulated
the exercise, improved SEAL documentation, added printing to network (used in
Listing 3.41), and the results were improved.

The third exercise was completed by most, although some SEAL users had
included unnecessary read Light statement before when statement. Seeing these
results, we decided to modify the semantics of the language and require explicit
reading even for sensors that are used only in conditions. (This feature is included
in the current, May 2013 version of SEAL.)

The fourth exercise was completed by all who attempted it.
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The study demonstrates that the computer science students with no WSN ex-
perience succeeded in all (12 out of 12) cases when using SEAL, and the novice
programmers succeeded in 2

3 (14 out of 21) cases using SEAL.
Our results are comparable with outcomes from [Miller 2009] (54 %, 45 %, and

46 % in the group with no programming experience, 100 %, 89 % and 67 % with
limited programming experience). The user study from [Bai 2009] (three differ-
ent exercises) similarly reported 40.6 % average success rate (although WASP and
WASP2 had 80.6 % average).

We draw attention to the fact that solutions in SEAL are ~35 % shorter than in
SensorBASIC (9 versus 14 lines in total) and contain fewer syntactic elements.

Most of the results form the questionnaire show no statistically significant dif-
ferences. The exception is SEAL IDE, which was perceived as more easily usable
than TinyScript IDE (P < 0.05). The average mark was 5 out of 7 for SEAL IDE
and 2 out of 7 for TinyScript IDE.

Research suggestion that “control structures are hard for novices to grasp”
[Pane 1996] was confirmed: many novice users struggled with syntax of when state-
ments.

Archetype-specific languages as WASP are smaller than SEAL, therefore they
can be faster to learn and more successful in tests like this. Nevertheless, [Bai 2009]
suggests the results would be improved if we provided either code templates (as in
WASP or TinyTemplate), or forced visual-only programming (as in WASP2 or
SwissQM).

The IDE has a menu item for browsing example applications. We did not
encourage the participants to use it; we feared that it would make the task too
trivial. In retrospect, that was a mistake. None from the first study group had
discovered this menu item for themselves, and were excited about this feature when
informed about it after the study. Many users also suggested using more examples
in the documentation.

The users described the visual edit window as helpful and frequently used it
during the study.

3.6 Concluding remarks

This chapter addresses the problems faced by novice programmers as sensor net-
work application developers. Using lessons from novice programming theory, we
show that it is possible to design an easy-to-learn WSN application description lan-
guage: SEAL, and develop its compiler and component library. The language and
its compiler includes a number of features not present or not common in the current
WSN node-level programming languages, for example, custom suffixes for mapping
between physical units and raw sensor measurements, easily extensible component
library (including application-specific extensions), and fully transparent low power
mode handling. SEAL offers the virtual sensor abstraction instead of the func-
tion abstraction, as the former has more direct real-world counterparts (physical
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sensors).
SEAL allows to write compact and simple code, is compiled to efficient binary

code (less than 40 % resource usage overhead), and is suitable for typical WSN usage
scenarios. The syntax of SEAL is shown to be simpler and the grammar smaller than
those of general purpose programming languages, such as C. In order to increase the
usability of SEAL and compare it with similar languages, we conducted multiple
user studies. The studies both lead to improvements in the language, and showed
that the existing version of the language already demonstrates good usability.

Applying formal methods (such as model checking) to analyze the source code
of SEAL in order to increase the reliability of its applications is one direction of
future work. A sensor network specific language like SEAL is much more amenable
to compile-time analysis and correctness deduction, compared with C. Its compiler
is smaller (therefore the number of its semantic rules also is smaller), and more
accessible for modifications. For example, the result of such a formal analysis of
a particular application could be a comprehensive test set of this application that
would allow to trace all possible paths of execution.

It is likely that there are many sensor network users who do not want to learn
programming even in its simplest forms, but instead prefer to use web-based forms
to configure their sensor network applications. In order to take into account their
needs, hypertext form generator should be added to the SEAL compiler. It would
generate application-specific hypertext form with input fields that would allow to
configure variables of interest, such as sensor read intervals.

Another item of future work: better support for transformations between dif-
ferent notations (metamodels). For example, at the moment, the transformation
between SEAL-Blockly blocks and SEAL code is possible only in one direction
(from visual to textual representation); support for reverse transformations should
be added. There is no need to stop here – other notations and presentations may
be added, since no notation is universally preferable.

Last, but not least item of future work: macroprogramming support. Macro-
programming is an important area of WSN programming, and SEAL support for
it is limited. Firstly, at the moment there is no option to pull the data from re-
mote nodes, therefore client-server logic must be used to implement distributed
algorithms in SEAL. Secondly, as mentioned in Section 3.5.1, the compiler can gen-
erate code for multiple roles in the network, such as “base station”, “sensor node”,
and “data forwarder”; however, using a full-scale macroprogramming framework
together with SEAL would provide the user additional abstractions and mech-
anisms, such as code migration from node to node, adaptive self-optimizations,
logical neighborhoods. It would also allow to leverage existing implementations of
complex algorithms: serialized access to variables on neighboring nodes, distributed
locking and distributed resource arbitration. This is another research direction.
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4.1 Introduction

Accurate and easily accessible microclimate data coming from spatially distributed
range of locations is useful for both for agricultural scientists researching the effects
of various environmental parameters in an orchard, and for agriculture practitioners
willing to increase yield quantity and quality from their plantations.

SAD is a wireless sensor network application for collecting microclimate data
in precision agriculture. This chapter describes the custom hardware solution, the
software created and adapted, and the three pilot sensor network deployments car-
ried out in the orchard of Latvia State Institute of Fruit-Growing. The first pilot
sensor network was deployed in 2009, used 8 motes, and harvested data for a month;
the second deployment took place in 2011, used 17 motes (12 of them custom-made)
and lasted for one and a half month; the third deployment took place in 2012, used
maximum of 19 motes (18 of them custom made), and lasted for six and half months,
from April to November.

In SAD project our research group experimentally evaluates suitability of wire-
less sensor networks for microclimate (light, temperature, humidity) monitoring in
precision agriculture. This task is carried out in collaboration with Latvia State In-
stitute of Fruit-Growing (LSIFG), as part of a greater precision agriculture research
project “Development and adaptation of innovative risk reducing technologies for
fruit and berry growing in conditions of Latvia”. Informal name of the project is
“Sensors in Fruit Garden”, which has the Latvian abbreviation “SAD”. The name
has good suitability for our project, as in Russian “sad” means “orchard”.

The work on SAD project was primarily done by a research group formed by
the author, Rihards Balass and Janis Judvaitis, working under the guidance of Leo
Selavo. This chapter uses materials from [Elsts 2012a] and [Elsts 2012b].
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4.2 The motivation

Microclimate factors have tremendous influence on fruit crop yield quantity and
quality. For instance, the fruits that have received smaller amount of sunlight during
the growth process are going to have lower quality and market value, because of
reduced sugar contents and less attractive coloring (for example, apples being sour
and green, rather than sweet and red).

In past, these microclimate factors were largely unmanageable, but this has
changed with the proliferation of protective covers for fruit species (such as apples,
sweet cherries, strawberries and raspberries), precise watering systems, and other
precision agriculture technologies. In the modern orchard, microclimate can be
controlled and changed. For example, by using covers, the fruits are protected from
rain and hail that can damage the yield. On the other hand, the cover itself can
have a negative influence on the yield – it not only protects the plants and helps
to establish optimal moisture conditions, but also reduces the amount of sunlight
that plants receive, and is beneficial for development of pathogens and pests.

It is essential to have a high-quality microclimate monitoring solution in place to
fully exploit the options offered by such a microclimate control system, register its
own effects, and to provide near real-time alarm signals in case some of parameters
reach values dangerous either for the yield or the plants themselves. Wireless sensor
networks is a technology that naturally fits in this role, and as such have been fre-
quently used in precision agriculture [Baggio 2005] [Wark 2007] and environmental
monitoring [Tolle 2005] [Selavo 2007] applications.

Several distributed microclimate monitoring systems have been built and used
in Latvia. One of the first, [Baums 2007] describes a 1-wire sensor based system
used in the Botanical garden of University of Latvia. There is also the bee-hive
monitoring system [Zacepins 2010] developed in Latvia University of Agriculture.
However, literature survey did not show any other publication describing a wireless
sensor networks deployed in Latvia for this purpose up to 2012, except ours. Using
wireless communication allows to significantly expand the network, but makes the
system construction much more difficult, especially if multihop routing has to be
used. Recently this challenge has also been taken up by Institute of Mathematics
and Computer Science of the University of Latvia, where a sensor network system
for cranberry field monitoring is developed [Alberts 2013].

Back in 2009 the researchers at Latvia State Institute of Fruit-Growing (LSIFG)
[LSI 2013] were looking for a way to record and store micro-climate data at various
points of the institute’s orchard. Before the start of SAD project, microclimate
measurements from the orchard were collected manually using data-loggers. This
method was labor intensive and offer limited precision, as well as made it impossible
to achieve synchronous sensor reading in multiple locations. Our research group saw
that it was possible to get rid of these limitations by deploying a sensor network.

The author and Girts Strazdins conducted a pilot research experiment in 2009
that used eight Tmote Sky sensor devices with built-in sensors. The sensors mea-
sured humidity, total solar radiation, and photosynthetically active radiation. The
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data was collected by a single-hop sensor network. This network was active from
August 17th until September 15th, 2009. A total of 661 hours of real time data
included 405 061 measurements collected at 20 second intervals.

From this initial experiment several lessons were learned. Firstly, the author
become convinced that custom sensors are necessary for this application. The de-
fault light sensors located on Tmote Sky are not suitable for agricultural monitoring
due to their limited dynamic range. During sunlight the sensors become saturated,
yielding inaccurate data about the amount of radiation received by the plants. Fur-
thermore, the spectral response of the photosynthetically active light sensor was
very different from the actual spectral response of photosynthesis process in the
plants.

Also, the agroscientists desired higher resolution than Tmote Sky could provide
with the 12-bit ADC. Although the SHT11 sensor had sufficient precision, it was
located on-board, inside the weatherproof box, where humidity and temperature
values are significantly different from the conditions outside, in the orchard.

Secondly, a significant proportion of the pilot measurements were lost due to
erratic radio links. Packet delivery failures, being frequently encountered in WSN,
ought to be taken in account as one of design considerations. If the data was stored
on the sensor nodes, using a flash storage chip or card, it could be collected manually
at a later time.

Thirdly, a network with multiple hops is necessary. The ability to attach an
external antenna and use radios with higher transmission power could be useful as
well, at least for a second-tier, long-haul network.

4.3 Hardware

To face the challenges outlined by our pilot study one could purchase an existing
sensor platform and extend it with appropriate sensors. This has the benefit of
simplicity, however, this may also result in suboptimal extendibility, energy con-
sumption and cost.

A TelosB-compatible [Polastre 2005] sensor device, such as Tmote Sky, is a pop-
ular first choice due to its ultra-low energy consumption, versatility, and reasonable
100$ price range. Tmote Sky has Texas Instruments MSP430F1611 MCU, IEEE
802.15.4 compatible radio transceiver, 1MB external flash memory chip, and 16 pin
expansion port with ADC and digital inputs. However, the size of the flash may
be insufficient for long-term micro-climate data. The storage capacity could be in-
creased by attaching a larger data storage entity, such as an extension shield with
SD card slot. Unfortunately, the MSP430 SPI interface is not fully exported, mak-
ing it hard to interface with SD card. Another drawback is the 2.7 V power voltage
required for successful flash data storage, limiting the useful battery lifetime.

Another option was to use a commercially available off-the-shelf (COTS) em-
bedded device such as Arduino [Arduino Team 2012], with accompanying extension
shields for sensors and communication. The cost would be reasonable. However,
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the target application would require many extension shields increasing the cost
and complexity. Arduino has significant drawbacks in comparison with Tmote Sky
– higher energy consumption and less resources (RAM, flash memory, IO ports).
Therefore, Arduino is as platform more suited for hobbyist projects and rapid pro-
totyping rather than for long-living sensor networks.

A reasonable alternative is a COTS sensor mote outfitted for agricultural moni-
toring such as Waspmote [was 2012]. Using such a device would reduce the amount
of the required to deploy the network. However, the cost is much higher: 135
Euro for the mote and 250 Euro for Agriculture PRO extension board (the official
prices in Libelium home page in 2011), not counting additional equipment, such as
custom rechargeable batteries and enclosures. Also, Waspmote has higher energy
consumption than MSP430-based devices. It has Atmega1281 MCU, which is one
of the largest and most energy hungry MCUs in Atmega family. However, these
drawbacks are partially countered by the expected simplicity and ease-to-use. Li-
belium provides simple API and software library for radio communication and for
accessing various sensors. In the end, our research group purchased eight Wasp-
motes with corresponding extension boards and sensors, and five more Waspmotes
without sensors.

The final option is to design a custom hardware. A significant number of WSN
deployments still design their own hardware, citing for the following reasons: “max-
imum power efficiency” [Dyo 2010], “specific sensor, size and power requirements”
[Suh 2006], “specific sensing needs” [Franceschinis 2009] and “specific packaging”
[Detweiler 2010] [Dyo 2010]. In our case, by leaving out the components nonessen-
tial to our application (such as USB interface, LDO, on-board sensors), the cost and
energy efficiency can be optimized. Also, by limiting the number of components
the design becomes more robust.

The design of SADmote has gone through multiple revisions (Table 4.1), gradu-
ally including number of incremental improvements. The second version (SADmote
v02) is the one our research group used for the deployment in 2011, and the third
version (SADmote v03) is the one used for the deployment in 2012 and (with small
modifications) in 2013.

Table 4.1: Comparison between Tmote Sky and different versions of SADmote

Tmote Sky SADmote
2011 2012 2013

Microcontroller MSP430F1611 MSP430F1611
Radio CC240 MRF24J40 AMB8420 AMB8420

Radio freq. band 2.4 GHz 2.4 GHz 868 MHz 868 MHz
Ext. memory size 1 MB 2 MB 2 GB+ 2 GB+

LED Three One Three Three
Onboard sensors Light, Temp., Humidity None

Programming interfaces USB, JTAG SD-card, JTAG
Real Time Clock No No No Yes

The SADmote (Fig. 4.1) is built on a two-layer printed circuit board and fea-
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Figure 4.1: SADmote v02, front and back views

tures ultra-low energy consumption MCU MSP430F1611 (code memory size 48 kb,
RAM size 8 kb). The MCU was selected as a true-and-tried design choice (also
used on Tmote SKy), and because our software already had support for it. As for
the radio, Microchip’s MRF24J40MA radio module was initially selected (2.4–3.6 V
operational voltage, 18 / 22 mA Tx/Rx current consumption, -94 dBm sensitivity).
Even though the chip used in this module (MRF24J40) has slightly worse charac-
teristics than, for example, CC2420 transceiver chip used by Tmote Sky (2.1–3.6 V,
18.8 / 17.4 mA, -95 dBm), it was a first choice. The reasons: first, our research
group lacked the experience to build our own radio module; second, other avail-
able radio modules (e.g. Amber Wireless AMB2720) were approximately two times
more expensive. MRF24J40MA also has the benefit that it can easily be replaced
by other modules from the same manufacturer, such as MRF24J40MB-I, which fea-
tures higher Tx power, or MRF24WB0MB, which has external antenna connector –
these options would be useful for construction of a second-tier, longer haul network.

However, the Microchip radio, although behaving good in synthetic tests (Fig.
4.2, tested using nine receiver & one transmitter SADmote v02 motes in line-of-sight
conditions and Fig. 4.3, tested using ten SADmote v02 motes in a hall), failed to
demonstrate the required stability in real world conditions. The reasons included
high radio signal absorption by tree foliage, and periodical freezing of the system,
with probability proportional to number of packets received and transmitted in-
terchangeably. One the reviewers of our SADmote article [Elsts 2012b] pointed at
Amber Wireless radio modules; for new revisions of SADmode, AMB8420 was se-
lected, because of this recommendation and the fact that modules with sub-GHz
frequency were available.

The first versions of SADmote had AT25DF161 flash chip (2 MB storage size).
The storage size was sufficient for our current needs (maximum 6 full month deploy-
ment, restricted by the length of the vegetation season in Latvia), but did not leave
large margin of safety for longer deployments. More importantly, the chip was very
cumbersome to use: due to severe serial interface speed limitations, data extraction
from a single mote could take as long as 20 minutes. Therefore newer version of
SADmotes feature 2 GB and 4 GB micro-SD cards. The card can be easily removed
or replaced within seconds; afterward the data can be extracted by using any SD
card reader connected to a PC.

SADmotes also have ADS111x 16-bit ADC chip (with one or two analog inputs)
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Figure 4.2: SADmote v02 packet delivery ratio (PDR) (top), RSSI (bottom left)
and LQI (bottom right) in comparison with Tmote Sky

and DS2401P+ unique serial number chip, which is useful for automatic generation
of a network address and unique identification of a mote. SADmote can be powered
either from a programming board (also custom-built for this project) or two AA
batteries.

There are several common components that were purposefully left out of SAD-
mote in order to reduce its production cost and improve robustness, for example,
on-board sensors, FTDI chip, LDO element, and USB connectors. To connect the
mote to a programmer, either JTAG interface or SD-card compatible interface can
be used. On mote’s side, the SD card connector pads are simply plated on PCB. It
was chosen as the simplest and most cost effective solution, not requiring any extra
components.

External sensor boards can be attached to SADmote through expansion inter-
face (analog and digital ports). A light sensor board was developed, specifically,
two versions of it – one features Intersil ISL29003 sensor, the other Avago Tech-
nologies APDS9300. Both sensors measure irradiance (received energy level) are
controlled through digital I2C interface. The other sensors experimentally tested
include SHT75 humidity and temperature sensor (digital interface) and a high-
precision solar radiation sensor SQ-110 (analog interface) that measures photosyn-
thetic photon flux density, i.e. the number of photons received in a given time on
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Figure 4.3: Measured SADmote v02 radiation pattern (left), in comparison with
Tmote Sky (right)

a given area. Other sensors can be attached to SADmote as well, as soon as they
are available – for example, soil humidity and temperature sensors, air chemical
content sensors etc.

Our initial tests showed that in active mode SADmote v02 has energy con-
sumption comparable to Tmote Sky (7.5 mW versus 6.9–8.4 mW); when radio is
also turned on, then efficiency is slightly worse (76.5 mW versus 63.9 mW). SAD-
mote v02 has radio communication range comparable to Tmote Sky: reliable line-
of-sight links can be established in 150 meter distance and more. SADmote v03
has much greater radio rangle (more than 30 % of radio packets received at 1 km
line-of-sight distance using external monopole antennas), partially due to increased
maximal transmit power (10 dBm versus 0 dBm), and partially due to the longer
wavelength being used.

The behavior of SADmote radio [Elsts 2012b] confirm the findings of
[Ganesan 2002]. First, the received packet distribution has “long tail”, i.e. the
occasional packet on the occasional link is received at distances far exceeding the
reliable communication range. Second, even at short distances no link is completely
reliable; rather, received packet ratio from 70 % to 100 % is typical.

4.4 System architecture

The expected basic functionality of the system is the following:

• sensor motes measure microclimate parameters, store locally and transmit to
the forwarder nodes;
• forwarder nodes forward data to base station using low-power wireless net-

work;
• base station forwards data to a IEEE 802.11 wireless router;
• IEEE 802.11 wireless network transmits the data to a server;
• the server application parses the received data stream, performs consistency

and validity checks, and stores the data in a database;
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Table 4.2: Summary of SAD WSN deployments

Period Activity
2009, 17 August – 15 September Eight Tmote Sky motes and their supporting infras-

tructure (an outdoor router) deployed
2011, 19 September – 2 November Twelve SADmote v02 with sensors, five Waspmotes and

supporting infrastructure (server software, indoor and
outdoor routers, roof antenna) deployed

2012, 16 April – 1 November Nine SADmote v02 motes deployed as data loggers;
from 30th August: 16 SADmote v03 motes with sen-
sors, 2 SADmote v03 motes with directional antennas,
and a single Zolertia Z1 mote deployed

• web interface makes the data accessible to authorized users anywhere on the
Internet.

Figure 4.4: The conceptual architecture of SAD WSN

Taking into account the requirements, a hierarchical two-tier sensor network
was designed for the SAD deployments (Fig. 4.4, Fig. 4.5). Tier one consisted of
motes placed in the field and equipped with sensors (Fig. 4.6), which functioned
as data sources. Tier two was formed by data forwarder motes with external (in
some cases directional) antennas. Initially, static routing was used, but in 2012
deployment it was replaced by a self-configuring routing protocol. We exploited the
fact that a weather station with external power was already present in the orchard,
and put a IEEE 802.11 wireless router on its mast in order to reduce the number
of forwarding hops required in the sensor network.

Waspmote [was 2012] devices were initially used for data forwarding as they
had more powerful batteries (rechargeable, estimated 6600 mAh versus estimated
2700–2800 mAh of AA batteries used by SADmotes), and featured more powerful
radio modules with external antennas. However, in the 2011 deployment we discov-
ered that the larger batteries does not compensate the larger energy consumption
(measured 3.07 milliwats even in the sleep mode, compared to tens of microwatts
on SADmotes), and the field lifetime is quite short. Therefore in 2012 all of the
network was formed by SADmotes, except base station, for which Zolertia Z1 was
used.
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Figure 4.5: The structure and location of SAD WSN in 2011. The points in the
middle mark repeater and base station locations

The data gathering motes were placed from 0.1 m to 2 m above ground. The
forwarding motes and the base station were placed from 3 m to 8 m above ground
depending on the position. The terrain of the orchard, as well as several intermedi-
ate rows of trees occluded the lines-of-sight for wireless communications. At least
the Fresnel zone (for 800 MHz frequency band) was always obstructed.

MansOS was used for the software, which provided a number of useful features:

• Routing (collection-tree) protocol with built-in millisecond-precision time
synchronization;
• A TDMA MAC protocol with four mote roles (data originator, data collector,

data forwarder, and base station);
• Accurate software-based current time estimation even when a mote becomes

severed from the network (Section 2.5.2);
• Relatively simple API that allowed to to program the SAD application (sep-

arate for each mote role) in 200–300 lines of code in 2011;
• Last but not least, SEAL integration, that allowed to program the SAD

application (for whole network all mote roles at once) in only 14 lines of code
in 2012.

Over-the-air reprogramming is a MansOS feature in development (Section 2.5.1.3)
that may be utilized in the future for this application.



Chapter 4. A sensor network use case 166

Figure 4.6: A SADmote in raspberries

The SAD application code (using SEAL) is given in Listing 3.22 and analyzed
in Section 3.5.3.2.

4.5 Lessons learned

The deployments in 2011 and 2012 were able to gather number of microclimate
measurements. In 2011 the sensor devices recorded 50 006 measurements (using 5
minute interval), in 2012: 140 267 measurements (majority of them was recorded
using 10 minute interval, the rest: using 5 minute interval). Nevertheless, the
deployments were plagued with number of problems, as well as missing features.
Here we analyze these problems and show how they were solved.

Data quality. M. Welsh [Welsh 2010] describes his own experience with a
sensor network deployment (also described in [Werner-Allen 2006]) and stresses
the fact that initially in their deployment “data quality was not what the real
scientists expected”. He names three aspects of the problem: “missing samples”,
“bad timing”, and “uncalibrated readings”. Our experience matches not only his
observation that achieving research-grade data quality is hard, but also precisely
matches the three aspects of this problem!

• Missing samples. In the 2009 pilot deployment, missing samples were an
issue because of the unreliability of radio communication. In subsequent
deployments the data was also stored locally. Even so, the deployments also
experienced this problems, because of shorter-than-expected battery lifetime.
The reasons: software failing to enter low-power mode, and failures because
of rain and dew getting into the device enclosures, and causing hardware to
fail. At the moment both of these problems have been fixed.
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• Bad timing. The potential problems with timestamps that are off were
initially handled by developing a routing protocol that includes time syn-
chronization. It turned out that it was insufficient in case where the network
became partitioned and the motes were left “on their own”. In order to keep
time accounting accurate even in this case, we implemented advanced timing
correction in MansOS (Section 2.5.2).

• Uncalibrated readings. There are three incompatible light measurement
methods: measuring the perceived power of light (expressed in luxes), mea-
suring the energy of light (in W m−2), and measuring the quantum flux of the
light (in µmol m−2 s−1). The perceived power of the light (luxes) are related
to the physiology of human eye and cannot be used to measure the radiation
usable by plants. From the two others, quantum flux value is most directly
correlated to the amount of energy that plants can extract in photosynthesis
process. This is because the energy a plant can use from light waves does not
increase as the wavelength decreases beyond 700 nm wavelength. Shorter-
wave length light is going to have more energy (when W m−2 are measured)
while having the same amount of energy that is usable for photosynthesis.

Initially the environmental scientists wanted light readings in luxes, as this
measurement unit was familiar to them; they suggested using a luxometer
for sensor calibration. We tried to correct their understanding and offered
reading both the energy and quantum flux, and optionally converting between
them after applying spectral correction to the measured energy values.

There was also the problem by different light values registered by different
sensors of a single kind, which could be solved by calibrating the sensors and
applying postprocessing to the data.

Extending the radio range. High number of intermediate hops has the
drawbacks of both decreased packet delivery rate and higher energy consumption.
Taking this in account, one of our objectives was to reduce the number of interme-
diate hops needed, by increasing motes’ radio range and radio link stability. We
saw a number of ways how it would be achieved:

• Use directional antennas for some of the intermediate hops, or at least for the
base station placed next to the router. The motes in the middle would benefit
from dual-beam antennas. Taking in account that the forwarding path is not
always a straight line, the beams of the antenna should be apart not for 180
degrees, but a deployment-specific number of degrees. The construction of
such antennas is an interesting engineering challenge in itself.

• Use lower radio frequencies. Sub-1GHz electromagnetic waves are not ab-
sorbed by foliage and other small obstacles as much as 2.4 GHz waves, as
they have longer wavelengths. For example, assuming a 200 m distance be-
tween radio receivers, 100 m of foliage within the line-of-sight path, and using
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Weissenberg’s modified exponential decay model [Seybold 2005] one can cal-
culate path loss using the formula:

Loss(dB) = 1.33F 0.284d0.588

where F is frequency in GHz, and d is foliage depth in meters. The resulting
loss is 25.73 dB for 2.450 GHz frequency, and 19.16 dB for 0.868 GHz – a
difference of 6.57 dB, allowing to approximately double the communication
distance.
• Place repeater motes higher above ground. For this purpose, some of the

higher trees located in the orchard, large poles or small towers placed there
could be used. However, due to elevated ground in the middle of the deploy-
ment site, a single line-of-sight radio link reaching the farthest parts of the
orchard does not appear to be feasible, at least not without mayor invest-
ments in tower construction.

The first two options were implemented for the 2012 deployment, leading to
reduced number of intermediate hops (two hops in 2012 versus four hops in 2011).

Avoiding a single point-of-failure. Having a single forwarding path in the
network means that a single failed node can cause the data to no longer be accessible
online. As our experience with failing Waspmotes shows, this problem should be
taken in account for network design considerations. Fault-tolerance is especially
important if sensor readings are used to generate alerts, or to activate orchard
watering or other control systems. The solutions are:

• Place repeater motes more frequently, so that each mote can see not only the
nearest neighbor in both directions, but one or two next neighbors as well.
In this case, the path is still functional even if some of the motes fail, but
then we have to cope with the previously described drawbacks of having too
many repeater motes, as well as more radio collisions.
• Construct two parallel forwarding paths. To avoid interference, non-

intersecting radio channels should be used. This is a robust solution, although
relatively expensive and labor-intensive to set up, as twice as many motes and
mounting locations are required. It would benefit from an advanced multi-
path routing protocol, which would provide a kind of load-balancing, thus
increasing the lifetime of the motes by decreasing their energy expenditure.

Our research group plan to implement the first option for 2013 deployment.
Unit testing each component. Before the deployment in 2011 the author

performed unit testing on each mote by uploading a specifically designed MansOS
SAD testing application and checking whether all the components are working.
Specifically, the software checked light and humidity sensor output, radio transmis-
sion and reception, writing in and reading from external flash, and other hardware
components on SADmote. In the deployment our research group learned both the
value of these tests and that our testing was incomplete. It turned out that most
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of the motes deployed were unable to enter low-power modes correctly. No one can
know whether all of them had this defect initially; in any case, when testing after-
wards, only one from all of the motes deployed was able to enter this mode. Since
energy consumption in active mode is much higher than consumption in sleep mode
(current draw is 2.5 mA in active mode versus tens of microamperes in sleep mode),
and a normally functioning mote ought to spend most of the time in this sleep mode
(as much as 99.9%, the measurement and data transmission takes approximately
0.3 seconds and is performed once in every five minutes), the consequences on long-
term energy efficiency are dramatic. These 2011 test deployments were too short,
but a quick calculation shows that the motes would certainly fail in a deployment
that would last at least for two months. Assuming battery capacity 2800 mAh, op-
erating voltage of 3.0 V, and average current consumption of 2.8 mA (active mode
with the occasional radio packet transmission and reception), the result is 1000 hour
lifetime from a pair of batteries, which corresponds to approximately 41 days. Con-
sequently, in 2012 unit testing was extended with low-power mode testing, which
allowed to solve this problem.

System level testing. Unit testing is useful, but not sufficient to discover all
the problems that can manifest themselves only in real-world settings. For exam-
ple, expected radio communication quality cannot be reliably modelled from based
only on data from a few site surveys. A survey helps in modelling the topographic
relief of the site with high precision, but other factors like precipitation, presence
or absence of snow cover, vegetation and leaf growth are season-dependent or oc-
casional, therefore cannot be discovered by short-term studies. Nevertheless, they
have tremendous influence on radio signal propagation as well [Seybold 2005].

In the deployments, our research group encountered both problems that could
be discovered by more careful system level testing in-house, and problems that
apparently could not.

First, it was the failure of the Libelium Meshlium router after trying to recon-
figure it. Eventually the router had to be sent for warranty repair back to the man-
ufacturer, which took almost two months, re-engineer the WiFi part of the network
and use a MikroTik router instead, which significantly delayed our deployment.

Second, some of the SADmote v02 motes exhibited tendency to hang when radio
was actively used. The author had not encountered this problem in in-house testing
because transmit and receive modes were usually tested separately, while this prob-
lem manifests itself only when packet transmissions are mixed packet receptions,
which are common in real-world settings.

Another problem that the author suspects was triggered by radio packet re-
ception is the constant rebooting of Waspmotes. It is possible that our Waspmote
software had some errors, but we note that the examples provided by Libelium were
used as the basis of our code. Because of this problem, the forwarding path was
never reliable in 2011 and completely stopped working after only a few days. The
motes also soon ran out of batteries.

In 2012 the design of a new version of SADmote changed the radio chip (as
described in Section 4.3), and the radio stability problem was solved.
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Closing the control loop. A natural extension of the SAD WSN design is to
close the control loop and use the network not only to monitor the microclimate,
but also to control the watering and other systems in the field. So far this has not
been a typical use of sensor networks due to the experimental status and perceived
instability of this technology, although some projects with positive real-world expe-
rience exist [Ceriotti 2011]. We consider such an extension to be a future research
goal. The first step in implementation of such a system would be an alarm signal in
case some microclimate parameters reach critical values. Such an extension would
still require a human operator in the loop, but would provide a significant assistance
in detection of such critical events, for example, frost.

Mechanisms for run time control and assurance. Domain scientists, hav-
ing no previous WSN experience, no programming skills and lack of intent to setup
complicated development environments on their computers, require an intuitive vi-
sual feedback on the way network functions. Current version of SADmote features
a single LED, initially intended for debugging purposes. As it turns out, LEDs
are useful for run-time assurance as well. In the end of our experiment some of
the motes apparently had frozen when trying to read their humidity sensors, which
were damaged because of their incomplete protection from precipitation. Since our
software turns on LED during the sensor reading activity, one can quickly tell which
motes are not functioning anymore – their LED is constantly either on or off. The
domain scientists suggested extending this approach and use multiple LEDs, each
corresponding to a specific sensor. For example, the mote could have red, green
and blue LEDs, and each of these was associated with a specific sensor. Glowing
red LED would mean that light sensor has failed; blue LED: humidity sensor, and
so on.

Run-time reprogramming. MansOS supports over-the-air reprogramming;
however, this feature is in experimental status. It was not included it in these initial
tests, as firstly, we did not want to compromise the initial deployment of our sensor
network by software bugs, and secondly, we wanted to have a stable minimal base
of the software tested in field conditions, useful as a benchmark for later tests, when
more features will be added and the unavoidable software bugs start to creep out.

The deployments convinced us about the necessity of such a feature even in
medium size networks. At the first inspection of the first network (7th October,
2011) our research group discovered that the motes are not functioning correctly and
need to be updated. Afterwards some of them were reprogrammed. Reprogramming
a mote meant that it should be not only physically accessed, but also taken out of
the box, attached to the programming board, which in turn is attached to a laptop,
and so on. As a consequence, reprogramming just nine motes (eight successfully,
one could not be programmed at that time) took two hours (from 18:00 till 20:00
that evening). Even if this procedure took just five minutes for each mote, a network
from 66 motes (our target size for the 2013 deployment) would require more than
five hours for a single person to reprogram! Hence, support for reprogramming the
motes in a non-interactive mode without physical access is essential.

Usability aspects of WSN applications. Even more, reprogramming the
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motes – updating software versions, reconfiguring sensor reading frequency and
other parameters – should be easy enough for agro-scientists to do on their own,
without the help of computer professionals. Understanding of this, as well as the
observation that a typical applications are conceptually simple. Both were the
impulses that led to the creation of SEAL. By working close to the practitioners,
the author was able to envision software that can be more usable and easier to
learn for them compared with low-level APIs, and more flexible compared with
application-specific configuration interfaces.

4.6 Concluding remarks

The design of a WSN system is an iterative and incremental process. Deploying a
sensor network which can consist of tens of motes is a significant engineering chal-
lenge, being ridden with unexpected problems [Langendoen 2006]. Nevertheless,
our deployments were able to gather data for several months.

Deploying wireless sensor networks is still a global research problem. The au-
thor hopes that the lessons his research group has learned will be useful to other
prospective WSN designers and users, either in precision agriculture or in other
areas. To the best of our knowledge, SAD (in years 2009 and 2011) was the first
time a wireless sensor network was used in Latvia for environmental monitoring in
precision agriculture. Therefore, our work helps by discovering the specific local
conditions & problems and investigating the specific requirements.

At the moment there are two main outcomes of the still ongoing SAD project.
The first is the custom sensor device, SADmote, designed specifically for this
application. We wanted the adaptability, simplicity and efficiency offered by a
application-specific hardware design. SADmote has fewer components than state-
of-art WSN motes such as Tmote Sky, therefore the production cost is lower and
the number of potential failure points are limited. On the other hand, it has a
micro-SD card slot, allowing to store much larger quantities of data. Also, it has a
radio with higher communication distance.

The second set of outcomes is related to the role that SAD played in the de-
velopment of our software. We realized the importance of real-world validation, as
well as the importance of feedback from users. As a result, SAD project largely
directed the development of SEAL and MansOS in the last few years (starting from
2011 summer). SAD has helped us understand and specify the requirements of
WSN software, as well as to evaluate our software in field condition (SEAL in 2012
deployment, MansOS in all deployments).
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5.1 Results

The main results of the dissertation are a number of approaches and tools that
facilitate wireless sensor network application development, including:

• SEAL, a domain-specific language suitable for development of wireless sensor
network applications, with relatively short grammar, and with concise syntax
(Chapter 3);
• the compiler of this domain-specific language, which supports automatic in-

clusion of low-level operations in the binary code image, for example, auto-
matic usage of low-power modes, or numerical constant scaling in order to
map them between physical units and sensor measurement domains (Section
3.3);
• visual programming language SEAL-Blockly, and visual development envi-

ronment suitable for sensor network application development (Section 3.3.5);
• the idea and implementation of a semi-automatic software component selec-

tion mechanism for sensor network operating systems that are implemented
in C programming language (Section 2.3);
• approach for millisecond-accuracy time accounting in wireless sensor network

operating systems (Section 2.5.2);
• approach for reducing the amount of platform-dependent code in wireless sen-

sor network operating systems by using four-layer code architecture (Section
2.2).

The results are integrated in a single framework. Even though most the results at
this point are implemented in a specific operating system MansOS and in a specific
programming language SEAL, they can be applied to other suitable contexts as
well, for example, integrated in other sensor network operating systems. Some
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initial steps already have been taken in this direction (Chapter 2) and some of the
results (the component selection mechanism and the code architecture) have been
partially adopted in Contiki with good results (more than 12 % reduction in both
RAM and code memory usage in the first case, and more than 17 % reduction in
source code size in the second case).

The central theses that were put forward in the Introduction chapter are sup-
ported by these results. The analysis of the existing sensor network programming
approaches show that they already implement many ideas appropriate for develop-
ment of wireless sensor network applications, but frequently at the cost of being not
straightforward to use, and, especially, not straightforward to start using. Therefore
their accessibility for novice programmers should be increased. Chapter 3 details
our approach to this: creating a custom sensor network application development
language. The language is compared with several other DSL and general purpose
programming languages, shown to have smaller syntax & grammar, and shorter
& less complex application source code. The integrated development environment
helps by allowing to start application prototyping (i.e. to get visible results) faster;
the visual programming language and environment helps by providing set of prede-
fined blocks, therefore syntax errors are impossible, and load on developer’s working
memory is reduced.

The component selection mechanism (Section 2.3) turned out to be surprisingly
versatile and powerful tool that allows to: (1) modularize the operating system
by allowing to exchange components used in an application without changing its
source code; (2) extend the operating system in application-specific or platform-
specific ways without modifying the core of it; (3) optimize the operating system
and applications by pruning unused components from the final binary code image.

Our framework at the system level offers both preemptive multithreading and
event-based execution out of the box. The application developer can choose the
execution mode she prefers for each particular application. The thread-based con-
currency model is likely to be more familiar, the event-based – more efficient. An-
other notable system-level features are static memory allocation and parametrized
hardware interfaces; they are adopted from TinyOS, but are implemented in a way
that makes them accessible from C rather than nesC code, so system programmers
without WSN experience can use them without learning an additional program-
ming language. Finally, there is the millisecond abstraction (used for timers and
time accounting) that is familiar to everyone, but so far has lacked an accurate
implementation on several popular WSN platforms.

5.2 Conclusions

1. Implementation of sensor network applications in a domain specific program-
ming language allows the code to be much more concise and more free from
low-level details compared to implementation of the same applications in C,
while not necessarily leading to loss of efficiency. For example, for the non-
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empty applications analyzed in this thesis, the resource overhead of SEAL
does not exceed 40 % (which, for comparison, is smaller than the resource
usage overhead for MansOS C applications than enable multithreading).

2. Implementation of sensor network applications in a domain specific program-
ming language allows to use concepts that are either already familiar to the
users or are easy to grasp, such as concepts with concrete real-world coun-
terparts. For example, SEAL allows to use components that correspond to
physical sensors and constants expressed in generally-known units of physical
measurements.

3. A domain-specific language with high level of abstraction can be eas-
ily adapted for visual development environments, as our experience with
SEAL / MansOS IDE and SEAL-Blockly IDE shows.

4. Semi-automatic component selection mechanism allows the user to easily ex-
tend, modularize and optimize both the sensor network operating system and
its applications, leading to executables with smaller code memory and RAM
usage footprint.

5. The code architecture of a wireless sensor network operating system has sig-
nificant impact on the amount of platform-specific code, therefore also on its
portability. For example, by fully separating architecture-specific code, the
amount of platform-specific code can be reduced.

6. The state-of-art wireless sensor network operating systems lack such an ob-
vious functionality as millisecond-accuracy time accounting, even though the
hardware allows to implement it without great loss of efficiency.

7. Evaluation of software in a real-world use case not only allows to test the
software, but also creates preconditions for better understanding of real-world
issues (such as radio signal absorption in tree foliage) and requirements (such
as data quality requirements) in wireless sensor networks.

5.3 List of publications

The results of this thesis have been included in a number of scientific publications,
listed below. The total number of publications is 13 (including short papers and
poster abstracts). Five of them have been indexed in SCOPUS database, and at
least two more are expected. The author personally has contributed at least 70 %
of text in every publication in which he is named as the first among respective
collaborating authors.

Publications related to SEAL:
•A. Elsts and L. Selavo, "A User-Centric Approach to Wireless Sensor Network

Programming Languages," in Proceedings of the Third International Workshop on
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Software Engineering for Sensor Network Applications (SESENA 12), pp. 29–30,
ACM, 2012 [Elsts 2012d], indexed in SCOPUS.
•A. Elsts, J. Judvaitis, and L. Selavo, "Poster Abstract: SEAL: An Easy-to-use

Sensor Node Application Development System," in Poster and Demo Proceedings of
9th European Conference on Wireless Sensor Networks (EWSN 2012), pp. 31–32,
Trento, Italy, 2012 [Elsts 2012c].
• J. Judvaitis, A. Elsts, and L. Selavo, "Demo Abstract: SEAL-Blockly: Sensor

Network Visual Programming Using a Web Browser," in Poster and Demo Proceed-
ings of 10th European Conference on Wireless Sensor Networks (EWSN 2013), 4
pp., 2013 [Judvaitis 2013].
• A. Elsts, J. Judvaitis, and L. Selavo, "SEAL: a Domain-Specific Language

for Novice Wireless Sensor Network Programmers," in Proceedings of the 39th
EUROMICRO Conference on Software Engineering and Advanced Applications
(SEAA 2013), pp. 220–227, IEEE, 2013 [Elsts 2013a], expected to be indexed in
SCOPUS.

Publications related to MansOS:
• G. Strazdins, A. Elsts, and L. Selavo, "MansOS: easy to use, portable and

resource efficient operating system for networked embedded devices," in Proceedings
of the 8th ACM Conference on Embedded Networked Sensor Systems (SenSys’10),
ACM, New York, NY, USA, pp. 427–428, 2010 [Strazdins 2010], indexed in SCO-
PUS.
• A. Elsts, G. Strazdins, A. Vihrov, and L. Selavo, "Design and Implementa-

tion of MansOS: a Wireless Sensor Network Operating System," Scientific Papers,
University of Latvia, pp. 79–105, 2012 [Elsts 2012e].
• G. Strazdins, A. Elsts, K. Nesenbergs and L. Selavo, "Wireless Sensor Net-

work Operating System Design Rules Based on Real World Deployment Survey,"
Journal of Sensor and Actuator Networks, pp. 509–556, vol. 2(3), ISSN 2224-2708,
MPDI, 2013 [Strazdins 2013].
• A. Elsts and L. Selavo, "Improving the Usability of Wireless Sensor Network

Operating Systems," Position Papers of the Federated Conference On Computer
Science and Information Systems 2013 (FedCSIS 2013), pp. 89–94, Polskie
Towarzystwo Informatyczne, 2013 [Elsts 2013b].

Publications related to applications of MansOS and SEAL:
• R. Zviedris, A. Elsts, G. Strazdins, A. Mednis, and L. Selavo, "LynxNet: Wild

Animal Monitoring Using Sensor Networks," Lecture Notes in Computer Science,
2010, Volume 6511, Real-World Wireless Sensor Networks (REALWSN’10), pp.
170–173, Springer, 2010 [Zviedris 2010], indexed in SCOPUS.
• A. Elsts, R. Balass, J. Judvaitis, and L. Selavo, "SAD: Wireless Sensor Net-

work System for Microclimate Monitoring in Precision Agriculture," in Proceedings
of the 5-th international scientific conference Applied information and communica-
tion technologies (AICT 2012), Jelgava, Latvia, April 26-27, ISBN 978-9984-48-065-
7, pp. 271–281, 2012 [Elsts 2012a].
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• A. Elsts, R. Balass, J. Judvaitis, R. Zviedris, G. Strazdins, A. Mednis, and
L. Selavo, "SADmote: A Robust and Cost-Effective Device for Environmental Mon-
itoring," in Proceedings of the conference on Architecture of Computing Systems
(ARCS 2012), pp. 225–237, Springer-Verlag Berlin Heidelberg, 2012 [Elsts 2012b],
indexed in SCOPUS.
• A. Mednis, A. Elsts, and L. Selavo, "Embedded Solution for Road Condition

Monitoring Using Vehicular Sensor Networks," in proceedings of the 6th Interna-
tional Conference on Application of Information and Communication Technologies
(AICT2012), pp. 1–5, Georgia, Tbilisi, IEEE, 2012 [Mednis 2012b], indexed in
SCOPUS.
• A. Elsts, A. Mednis, and L. Selavo, "Bayesian Network Approach to Vehicle

Mode Monitoring Using Embedded System with 3-axis Accelerometer," in Special
Issue on Artificial Intelligence in Robotics and Imaging of International Journal of
Imaging & Robotics, pp. 67–80, vol. 12(1), ISSN 2231-525X, CESER Publications,
2014 [Elsts 2014], expected to be indexed in SCOPUS.

The author has presented the results in a number of international scientific
conferences:

Oral presentations:
• "A User-Centric Approach to Wireless Sensor Network Programming Lan-

guages," Third International Workshop on Software Engineering for Sensor Network
Applications (SESENA 12), Zurich, Switzerland, June 2, 2012.
• "SADmote: A Robust and Cost-Effective Device for Environmental Monitor-

ing," Architecture of Computing Systems (ARCS 2012), Garching, TU Muenchen,
Germany, February 28–March 02, 2012.
• "SEAL: a Domain-Specific Language for Novice Wireless Sensor Network Pro-

grammers," 39th EUROMICRO Conference on Software Engineering and Advanced
Applications, Santander, Spain, September 4–6, 2013.
• "Improving the Usability of Wireless Sensor Network Operating Systems,"

Federated Conference On Computer Science and Information Systems 2013
(FedCSIS 2013), Krakow, Poland, September 8–11, 2013.

Poster & demo presentations:
• "MansOS: easy to use, portable and resource efficient operating system for

networked embedded devices," 8th ACM Conference on Embedded Networked Sensor
Systems (SenSys’10), Zurich, Switzerland, November 3–5, 2010.
• "SEAL: An Easy-to-use Sensor Node Application Development System," 9th

European Conference on Wireless Sensor Networks (EWSN 2012), Trento, Italy,
February 14–17, 2012.
• "SEAL-Blockly: Sensor Network Visual Programming Using a Web Browser,"

10th European Conference on Wireless Sensor Networks (EWSN 2012), Ghent,
Belgium, February 13–15, 2013.
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The author has also presented the results in a number in local scientific
conferences and seminars, including the 68th Scientific Conference of the Univer-
sity of Latvia, 2010 (presentation “SAD – bezvadu sensoru t̄ıkls augļu dārzā”, the
70th Scientific Conference of the University of Latvia, 2012 (“SADmote: A Robust
and Budget-Efficient Device for Environmental Monitoring”), the First Smart
Sensors seminar, 2010 (“MansOS: operētājsistēma sensoru t̄ıkliem un iegultajām
ier̄ıcēm”), the Third Smart Sensors seminar, 2011 (“SeAdScript: deklarat̄ıvā
sensoru programmēšana nespeciālistiem”), the Fifth Smart Sensors seminar, 2012
(“Praktiskas sarunas cilvēkiem ar viediem sensoriem valodā SEAL”), and the
Second University of Latvia and Latvijas mobilais telefons computer science days,
2012 (“Bezvadu sensoru t̄ıklu programmēšana nespeciālistiem”).

One dissertation-related bachelor’s thesis was supervised by the author. The
thesis, "Visual wireless sensor network programming environment" [Judvaitis 2012]
was successfully defended (grade 10 out of 10) by Janis Judvaitis at Faculty of
Computing, University of Latvia, and was selected for the national IT student
thesis contest in 2012.
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Appendix A

SEAL grammar

〈program〉 ::= 〈declaration〉*

〈declaration〉 ::= 〈component_use_case〉
| 〈when_block〉
| 〈do_block〉
| 〈system_configuration〉
| 〈pattern_declaration〉
| 〈const_statement〉
| 〈set_statement〉
| 〈define_statement〉
| 〈load_statement〉
| ’;’

〈component_use_case〉 ::= ’use’ 〈identifier〉 〈parameter_list〉 ’;’
| ’read’ 〈functional_expression〉 〈parameter_list〉 ’;’
| ’output’ 〈identifier〉 〈output_fields〉 〈parameter_list〉 ’;’

〈system_configuration〉 ::= ’config’ 〈identifier〉 〈value〉 ’;’

〈pattern_declaration〉 ::= ’pattern’ 〈identifier〉 ’(’ 〈value_list〉 ’)’ ’;’

〈const_statement〉 ::= ’const’ 〈identifier〉 〈value〉 ’;’

〈set_statement〉 ::= ’set’ 〈identifier〉 〈functional_expression〉 ’;’

〈define_statement〉 ::= ’define’ 〈identifier〉 〈functional_expression〉
〈parameter_list〉 ’;’

〈load_statement〉 ::= ’load’ 〈string_literal〉 ’;’

〈functional_expression〉 ::= 〈identifier〉 ’(’ 〈argument_list〉 ’)’
| 〈identifier〉 〈value〉
| 〈value〉

〈argument_list〉 ::= 〈functional_expression〉 ’,’ 〈argument_list〉
| 〈functional_expression〉

〈output_fields〉 ::= ’(’ 〈output_field_list〉 ’)’
| ε
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〈output_field_list〉 ::= 〈output_field_spec〉 ’,’ 〈output_field_list〉
| 〈output_field_spec〉

〈output_field_spec〉 ::= 〈identifier〉
| 〈identifier〉 〈integer_literal〉

〈when_block〉 ::= ’when’ 〈condition〉 ’:’ 〈declaration〉* 〈elsewhen_block〉 ’end’

〈elsewhen_block〉 ::= ’elsewhen’ 〈condition〉 ’:’ 〈declaration〉* 〈elsewhen_block〉
| ’else’ ’:’ 〈declaration〉 *
| ε

〈do_block〉 ::= ’do’ 〈parameter_list〉 ’:’ 〈declaration〉* 〈then_block〉 ’end’

〈then_block〉 ::= ’then’ 〈parameter_list〉 ’:’ 〈declaration〉* 〈then_block〉
| ε

〈condition〉 ::= 〈condition_term〉
| 〈condition〉 ’or’ 〈condition_term〉

〈condition_term〉 ::= 〈condition_factor〉
| 〈condition_term〉 ’and’ 〈condition_factor〉

〈condition_factor〉 ::= 〈logical_statement〉
| ’not’ 〈condition_factor〉

〈logical_statement〉 ::= 〈functional_expression〉
| ’(’ 〈condition〉 ’)’
| 〈functional_expression〉 〈equality_comparison〉 〈functional_expression〉
| 〈functional_expression〉 〈nonequality_comparison〉 〈functional_expression〉
| 〈functional_expression〉 ’>’ 〈functional_expression〉
| 〈functional_expression〉 ’〈’ <functional_expression〉
| 〈functional_expression〉 ’>=’ 〈functional_expression〉
| 〈functional_expression〉 ’〈=’ <functional_expression〉

〈parameter_list〉 ::= 〈parameter_list〉 ’,’ 〈parameter〉 | ε

〈parameter〉 ::= 〈identifier〉
| 〈identifier〉 〈value〉
| ’pattern’ 〈value〉
| ’parameters’ 〈value〉
| ’where’ 〈value〉

〈value_list〉 ::= 〈value_list〉 ’,’ 〈value〉 | 〈value〉

〈value〉 ::= 〈boolean_literal〉
| 〈floating_point_literal〉
| 〈integer_literal〉
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| 〈string_literal〉
| 〈complex_identifier〉

〈complex_identifier〉 ::= 〈identifier〉
| 〈identifier〉 ’.’ 〈identifier〉

〈equality_comparison〉 ::= ’==’
| ’=’

〈nonequality_comparison〉 ::= ’!=’
| ’<>’

〈boolean_literal〉 ::= ’true’
| ’false’

〈integer_literal〉 ::= 〈decimal_literal〉
| 〈hexadecimal_literal〉

〈decimal_literal〉 ::= digit + alphabetic character *

〈hexadecimal_literal〉 ::= ’0x’ hex_digit +

〈floating_point_literal〉 ::= 〈decimal_literal〉 . digit +

〈string_literal〉 ::= ’ ” ’ (any character except quote and newline) * ’ ” ’

〈identifier〉 ::= alphabetic character (alphabetic character | digit) *

All syntax is case-insensitive.


