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Annotation

According to the author’s observations two mainstreams in the development of
the theory of fuzzy sets can be isolated: the fuzzification of already known no-
tions and the development of notions which either were originated in the frame
of the theory of fuzzy sets or are tightly related to the theory. Many approaches
and notions in topology, algebra, financial calculus and other fields were gener-
alized by using fuzzy sets. Under the second mainstream we can mention such
notions as the extension principle, a t-norm, a possibility distribution and oth-
ers.
The goal of the thesis is to contribute to the both mainstreams. The following
task is completed in the thesis: the theory of fuzzy matrices and the theory of
generalized aggregation operators are developed and possible practical applica-
tions of the obtained results are outlined.
Years over years fuzzy sets community comes with a plenty of new and in-
teresting results in the theory of fuzzy sets. Introduction of new and bright
results is the complimentary but not easy task. This contribution has already
interested at least one scientist from the community, i.e. the scientific supervi-
sor of the thesis, thus the author considers that its development was not useless.

MSC: 15A09, 65G30, 94D05, 03E72, 91B99, 62P20, 62P99.

Key words and phrases: Interval matrix, interval inverse matrix, fuzzy ma-
trix, fuzzy inverse matrix, system of interval linear equations, system of fuzzy
linear equations, fuzzy input-output model, aggregation operator, generalized
aggregation operator, pointwise extension, t-norm, T -extension.
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Anotācija

Pēc autores domām nestrikto kopu teorijas (NKT) att̄ıst̄ıbā var iez̄ımēt divus
konceptuāli dažādus virzienus:
1. jau zināmo jēdzienu un koncepciju fazifikācija un
2. jēdzienu, kas radušies NKT kontekstā vai ar̄ı ir saist̄ıti ar NKT, att̄ıst̄ıba.
Daudzi topoloǧijas, algebras, finanšu matemātikas un citu nozaru jēdzieni ir
vispārināti izmantojot nestriktas kopas. Pie otrā virziena mēs nosac̄ıti varam
pieskait̄ıt turpinājuma principu, t-normas, iespējamı̄bu sadal̄ıjumu un citus jēdzie-
nus.
Disertācijas mērķis ir sniegt ieguld̄ıjumu abu virzienu att̄ıst̄ıbā. Darbā ir re-
alizēts sekojos uzdevums: att̄ıst̄ıti nestriktu matricu un vispārināto agregācijas
operatoru teorijas un iez̄ımēti praktisko lietojumu sfēras.
Gadu pēc gada arvien jauni rezultāti paceļ NKT jaunā att̄ıst̄ıbas l̄ımen̄ı. Jauno
un interesanto rezultātu izstrāde ir apsveicams uzdevums, bet tas nav viegls.
Darbā iegūtie rezultāti ir ieinteresējuši vismaz vienu cilvēku, kas pieder pie
NKT kopienas, t.i prof. A.Šostaku, kas ir darba zinātniskais vad̄ıtājs, un tāpēc
autore uzskata, ka izvirz̄ıtais mērķis ir sasniegts.

MSC: 15A09, 65G30, 94D05, 03E72, 91B99, 62P20, 62P99.

Atslēgas vārdi: intervāla matrica, inversā intervāla matrica, nestrikta ma-
trica, inversā nestrikta matrica, lineāro intervālo vienādojumu sistēma, lineāro
nestrikto vienādojumu sistēma, nestriktais input-output modelis, agregācijas
operators, vispārinātais agregācijas operators, punktveida turpinājums, t-norma,
T-turpinājums.
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0.1 Introduction

Processing of inexact data is one of the challenging problems for modern engi-
neers and practitioners in different areas. Since Kolmogorov has introduced the
axiomatic of the modern probability theory in 1933 and even before it was the
main tool used by scientists. But the apparatus of probability theory can not
treat all kinds of vagueness, thus necessity of new approach was obvious.
At the beginning of 20th century philosophers actively discussed impossibility
of putting real processes or objects into the strict frames based on the principles
of bivalent logic (C. Peirce, B. Russell , I.M.Copilowish, C.G.Hempel. M. Black
and others). On the other hand active work in this direction was performed
by logicians (J. Lukasiewicz and his school), who have developed logics with
intermediary truth values.
Polish mathematician and painter L. Chwistek did not believed in philosopher’s
attempts to reform traditional philosophy by means of mathematical logic (he
believed that there are many realities therefore it is impossible to describe the
reality by a homogeneous system). But his idea of using intervals instead of sin-
gle numbers was developed and extended in different directions by many other
scientists and as a one direction the interval mathematics (see e.g. Moore [32])
can be mentioned. The theory allowed to look at inexact data from the another
perspective.
Provided intensive and fruitful work in 20th century in the circles of philoso-
phers and mathematicians the prompt emergency of the theory of fuzzy sets
was obvious. And it was crystallized in Zadeh’s pioneering paper [53] in 1965
where foundations of the theory of fuzzy sets were presented. Two years later in
1967 Goguen ([14]) put the basis for the theory of L-fuzzy sets thus extending
the theory proposed by Zadeh. On the one hand fuzzy set is a generalization of
an interval, on the other it models a set with vague borders and it also can be
treated as a function. The opulence of the structure of a fuzzy set makes the
theory rich and flexible. Since these historical publications the era of the theory
of fuzzy sets started ([7]). Also other close theories such as Dempster - Shafer
theory of evidence, Pawlak rough sets theory and others appeared.
In the last forty five years many contributions have developed the theory of
fuzzy sets to the impressive theory with the extensive list of notions, tools,
theoretical results and the broad area of applications. Such a charming com-
bination of the significant theoretical base and the admirable suitability of the
theoretical results for the modeling of real world processes forms the unques-
tionable motivation for scientists-practitioners. The author includes herself to
this community and thus would like to contribute to the theoretical part of
the fuzzy sets theory, which can be used for practical applications and this
is the goal of the thesis.
In order to reach the goal the following task was defined: to develop the theory
of fuzzy matrices and the theory of generalized aggregation operators and
to outline possible applications of the obtained results.
Results provided in the contribution can be divided into two mainstreams: gen-
eralization of classical mathematical notions by means of fuzzy sets and contri-
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bution to the integral part of the fuzzy sets theory.
The structure of the thesis is the following: we recall the basic notions and re-
sults of the fuzzy sets theory necessary for our further study in the first chapter;
the second chapter is the author’s contribution to the generalization of the the-
ory of matrices and tight connection between interval computations and fuzzy
sets is highlighted; and the last chapter is devoted to the development of the
theory of generalized aggregation operators. The second and the third chapters
contain independent results, but they employ the same idea, i.e. generalization
of the notion by choosing the next complexity level for the input objects, and
namely - a fuzzy set.
For enjoyable reading the second and the third chapters start with detailed de-
scription of the structure with brief overview of existing results and the author’s
contribution.
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1 Preliminaries

We flash results of the theory of fuzzy sets in this chapter. We focus mainly
on the theoretical results required for our further considerations. Sets, which
are called [0, 1]-sets in the modern terminology, are considered, although all
presented results or their modifications hold for L-sets, where L is an arbitrary
infinitely distributive lattice. Mainly the source [46] in the bibliography list is
cited, but other sources, e.g. [7, 26] can be used.

1.1 Fuzzy sets theory: basic definitions

Definition 1 ([46]). A mapping M : X → [0, 1] is called a fuzzy subset of the
set X or simply a fuzzy set.

The set of all fuzzy subsets of X will be denoted F (X).
If M,N : X → [0, 1] are fuzzy sets then operations of union, intersection and
complement are defined in the following way ([46]):

(M ∨N)(x) = max(M(x), N(x))

(M ∧N)(x) = min(M(x), N(x))

M c(x) = 1−M(x).

Definition 2 ([46]). A fuzzy set M is a subset of a fuzzy set N if M(x) ≤
N(x) ∀x ∈ X.

1.2 Decomposition of fuzzy sets

Let a fuzzy set M be given, if we fix α ∈ [0, 1] then:

Definition 3 ([46]). Mα = {x : M(x) ≥ α} is called the α-cut of the fuzzy set
M .

Definition 4 ([46]). Mα = {x : M(x) > α} is called a strict α-cut of the fuzzy
set M .

M0 is called the support of M .
If α, β ∈ [0, 1] and α ≤ β then the following inclusions hold:

Mβ ⊂Mα,Mβ ⊂Mα,Mα ⊂Mα

Results formulated below hold for α-cuts and strict α-cuts:

Theorem 1.1 ([46], 1.3.6.). Fuzzy sets M,N : X → [0, 1] are given and α ∈
[0, 1] then

(M ∨N)α = Mα ∪Nα

and
(M ∧N)α = Mα ∩Nα
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Theorem 1.2 ([46], 1.3.9.). Fuzzy sets M,N : X → [0, 1] are given and α ∈
[0, 1] then

(M ∨N)α = Mα ∪Nα
and

(M ∧N)α = Mα ∩Nα

1.3 The extension principle

Extension principle is one of the ways how to extend known results to more
general cases, and in particular to fuzzy sets.

Definition 5 ([46]). Let a mapping ϕ : X×Y → Z be given, then the mapping
ϕ̃ : F (X)× F (Y )→ F (Z) defined by the formula

ϕ̃(M,N)(z) = sup{min(M(x), N(y))|x ∈ X, y ∈ Y, ϕ(x, y) = z},

where M ∈ F (X), N ∈ F (Y ),
is called the extension of the function ϕ(x, y) to the sets F (X), F (Y ).

The extension of the n-argument function is done in the same manner:

Definition 6 ([46]). Let a mapping ϕ : X1 × ...×Xn → Z be given, then the
mapping ϕ̃ : F (X1)× ...× F (Xn)→ F (Z) defined by the formula

ϕ̃(M1, ...,Mn)(z) = sup{min(M1(x1), ...,Mn(xn))|x1 ∈ X1, ..., xn ∈ Xn,

ϕ(x1, ..., xn) = z},

where M1 ∈ F (X1),..., Mn ∈ F (Xn),
is called the extension of the function ϕ(x1, ..., xn) to the sets F (X1), ..., F (Xn).

Any arithmetic operation can be extended to the operation on fuzzy sets of real
numbers.
Although definitions 5 and 6 employ min t-norm other t-norms can be used also,
and

ϕ̃(M1, ...,Mn)(z) = sup{T (M1(x1), ...,Mn(xn))|x1 ∈ X1, ..., xn ∈ Xn,

ϕ(x1, ..., xn) = z} (1)

is extension of the function ϕ via an arbitrary t-norm.

1.4 Fuzzy quantities, fuzzy intervals and fuzzy numbers

Different properties of fuzzy sets play an important role in the theory of fuzzy
sets:

Definition 7 ([46]). A fuzzy set M : R→ [0, 1] is convex provided that

∀x, y, z : x ≤ y ≤ z ⇒M(y) ≥ min(M(x),M(z))
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The notion of upper semicontinuous fuzzy set is extensively used in our further
study:

Definition 8 ([46]). A mapping f : X → R is upper semicontinuous, if for all
t ∈ R the set {x|f(x) ≥ t} is closed.

It is a known fact that M : R → [0, 1] is an upper semicontinuous fuzzy set if
and only if for α > 0 Mα are closed sets.
Theorems formulated below characterize upper semicontinuous fuzzy sets from
the prospective of application of a continuous operation:

Theorem 1.3 ([46], theorem 6.2.3.). If ◦ : R×R→ R is a continuous operation
and P,Q ∈ F (R) are upper semicontinuous fuzzy sets with bounded α-cuts ∀α >
0 then for all z ∈ R, z = x◦y ∃x0, y0 ∈ R such that z = x0 ◦y0 and (P ◦Q)(z) =
min(P (x0), Q(y0))

Theorem 1.4 ([46], theorem 6.2.5.). If ◦ : R×R→ R is a continuous operation
and P,Q ∈ F (R) are upper semicontinuous fuzzy sets with bounded α-cuts ∀α >
0 then

(P ◦Q)α = Pα ◦Qα

for all α > 0

Fuzzy quantities is a special class of fuzzy sets:

Definition 9 ([46]). A convex, upper semicontinuous fuzzy set M : R→ [0, 1]
with bounded α-cuts for all α > 0 is called a fuzzy quantity.

The class of all fuzzy quantities will be denoted FQ(R) and it is characterized
by the following results:

Theorem 1.5 ([46], theorem 6.3.2.). P ∈ FQ(R)⇔ ∀α > 0, Pα = {x : P (x) ≥
α} is a closed interval.

Theorem 1.6 ([46], theorem 6.3.3.). If ◦ : R×R→ R is a continuous operation
and P,Q ∈ FQ(R) then P ◦Q ∈ FQ(R)

Further in section 3.4.1 we generalize results of theorems 1.3, 1.4, 1.6 for an
arbitrary continuous t-norm.
Fuzzy intervals (FI(R)) and fuzzy numbers (FN(R)) are subclasses of fuzzy
quantities:

Definition 10 ([46]). A fuzzy quantity P is called a fuzzy interval if ∃I =
[a, b] ⊆ (−∞,+∞) : P (x) = 1⇔ x ∈ I. Interval I is called the vertex of P .

Definition 11 ([46]). Fuzzy quantity P is called a fuzzy number if ∃!x ∈ R :
P (x) = 1. Point x is called the vertex of P .
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Triangular fuzzy numbers are fuzzy sets, which have a form of a triangle, and
are defined in the following way:

M(x) =


0, if x < m1
x−m1

m2−m1
, x ∈ [m1;m2]

x−m3

m2−m3
, x ∈ [m2;m3]

0, if x > m3

for some m1,m2,m3 ∈ R, s.t. m1 ≤ m2 ≤ m3 and:

M(m1) =
m2 −m1

m2 −m1
= 1, when m1 = m2

M(m2) =
m3 −m2

m3 −m2
= 1, when m2 = m3

and sometimes we use notation M = (m1,m2,m3) for a fuzzy triangular num-
ber.
Trapezoidal intervals are fuzzy sets, which have a form of a trapeze:

N(x) =


0, if x < n1
x−n1

n2−n1
, x ∈ [n1;n2]

1, x ∈ [n2, n3]
x−n4

n3−n4
, x ∈ [n3;n4]

0, if x > n4

for some n1, n2, n3, n4 ∈ R s.t. n1 ≤ n2 ≤ n3 ≤ n4 and:

N(n1) =
n2 − n1

n2 − n1
= 1, when n1 = n2

N(n3) =
n3 − n4

n3 − n4
= 1, when n3 = n4

and sometimes we use notation N = (n1, n2, n3, n4) for a fuzzy trapezoidal
interval.

1.5 t-norms

The notion of a t-norm is fundamental in different areas of fuzzy sets theory,
and it plays an important role in our study. Detailed information on t-norms
can be found e.g. in [22, 46]:

Definition 12 ([46]). A mapping T : [0, 1] × [0, 1] → [0, 1] is called a t-norm
provided that:
(1) T (x, y) = T (y, x) - symmetry
(2) T (T (x, y), z) = T (x, T (y, z)) - associativity
(3) x1 ≤ x2 ⇒ T (x1, y) ≤ T (x2, y)) - monotonicity
(4) T (x, 1) = x
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According to definition 12 an arbitrary t-norm fulfills:

(3
′
) if x1 ≤ x2, y1 ≤ y2 then T (x1, y1) ≤ T (x2, y2)

(4
′
) T (1, y) = y

(5) T (x, 0) = T (0, y) = 0.

Examples of t-norms:
Min t-norm:

TM (x, y) = min(x, y)

Drastic t-norm:

TW (x, y) =

{
min(x, y), if max(x, y) = 1
0, otherwise

Product t-norm:
TP (x, y) = x · y

Lukasiewicz t-norm:

TL(x, y) = max{x+ y − 1, 0}.

For an arbitrary t-norm T the following holds:

TW ≤ T ≤ TM
Continuous t-norms:

Definition 13 ([46]). A t-norm T : [0, 1] × [0, 1] → [0, 1] is continuous if it is
continuous as the first argument function.

Symmetry of t-norm and definition 13 imply t-norm’s continuity as the second
argument function. If t-norm is continuous in the sense of definition 13 then it
is continuous as the two arguments function.

Definition 14 ([46]). A t-norm T : [0, 1]×[0, 1]→ [0, 1] is lower semicontinuous,
if for an arbitrary sequence (xi)i∈I ⊂ [0, 1] and for an arbitrary y ∈ [0, 1] :

sup
i∈I

T (xi, y) = T (sup
i∈I

xi, y).

Definition 15 ([46]). A t-norm T : [0, 1]× [0, 1]→ [0, 1] is upper semicontinu-
ous, if for an arbitrary sequence (xi)i∈I ⊂ [0, 1] and for an arbitrary y ∈ [0, 1] :

inf
i∈I

T (xi, y) = T (inf
i∈I

xi, y).

A t-norm is continuous if and only if it is lower and upper semicontinuous
simultaneously.

Remark 1. In [22] we can find the following result:

Proposition 1.7 ([22], p.17). A non-decreasing function F : [0, 1]2 → [0, 1] is
lower semiontinuous if and only if it is left-continuous in each component.

Since an arbitrary t-norm is non-decreasing and commutative, it is lower semi-
continuous if and only if it is left-continuous in its first component.
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2 The theory of fuzzy matrices: theoretical foun-
dations and practical applications

The modern mathematics is considering more and more general problems. Dif-
ferent types of generalization are proposed. Classical notions of mathematics
need to be generalized as well in order to provide tool for further investigation
of generalized problems, otherwise successful development is impossible. The
theory of fuzzy matrices, foundations of which are developed in this chapter, is
author’s small contribution to the field of generalization of classical notions of
mathematics.
Although notion of fuzzy matrix rather often appears in literature, mainly in
relation to systems of fuzzy linear equations, it is not studied by itself. We carry
over the crisp notion to the fuzzy case and study the most important notions
related to the theory of matrices. We call a matrix with entries in the form of
fuzzy numbers a fuzzy matrix. Apologies should be addressed to W.B. Vasantha
Kandasamy, Florentin Smarandache, K. Ilanthenral and others who have devel-
oped theory of fuzzy matrices ([49]). Although our object and approaches differ
from the mentioned above we use the same term as it reflects the essence of the
topic. The chapter is divided into five sections devoted to different aspects of
the theory of fuzzy matrices. Mentioned sections include conclusion.
We introduce the notion of a fuzzy matrix in Section 1. We also define mathe-
matical operations with fuzzy matrices and prove some related results. Through-
out the chapter we assume that extension principle is performed via min t-norm.
Section 2 is devoted to the notion of the inverse of a fuzzy matrix. The notion
of the inverse matrix of an interval matrix ([41]) is the base of the fuzzy notion
introduced further, and we recall necessary results at first. Afterwards we con-
tribute to the fuzzy inverse. The notion of regularity of a fuzzy matrix is tightly
related to the notion of regularity of an interval matrix ([37, 41]). Calculation of
the fuzzy inverse in some special cases is provided. In the case when calculation
of a fuzzy inverse is not reasonable due to time resources its estimation can be
used, and we provide it here. Examples of the fuzzy inverse and some useful
notes on calculation of the fuzzy inverse conclude the section.
Section 3 deals with the fuzzy analogue of identity matrix, so called fuzzy
identity matrix. We briefly review and prove some properties of fuzzy identity
matrix and provide its estimation.
We specify practical applications of the theoretical results obtained in this chap-
ter in Section 4. Fuzzy approximate solution (FAS) for the system of fuzzy
linear equations is introduced. Applicability of the fuzzy inverse to the economic
tasks is outlined.
And we conclude the chapter in the last section.
Throughout the work an interval matrix and a fuzzy matrix are typed as bold-
face uppercase letters with lower indices I and F correspondingly. We provide
clarifications if we use different notations for these notions. Matrices with real
values are called matrices or crisp matrices and usually are denoted with up-
percase letters.
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2.1 Fuzzy matrix: basic notions

2.1.1 Definition

We introduce the notion of a fuzzy matrix:

Definition 16. A matrix AF = (Aij)m×n, where Aij ∀i, j is a fuzzy number
is called a fuzzy matrix.

We remind that the set of fuzzy numbers is denoted FN(R).
(AF )T denotes transposed fuzzy matrix. One column matrix AF = (Aij)m×1

is called fuzzy vector. Evidently each crisp matrix is a fuzzy matrix.
We introduce definitions of lower and upper dominants of a fuzzy matrix. Let
fuzzy matrices AF = (Aij)n×n, AU

F = (AUij)n×n and AL
F = (ALij)n×n be given,

we say that:

Definition 17. AU
F is an upper dominant of AF , if Aij(x) ≤ AUij(x), ∀x ∈

R,∀i, j ∈ 1, n.

Definition 18. AL
F is a lower dominant of AF , if Aij(x) ≥ ALij(x), ∀x ∈

R,∀i, j ∈ 1, n.

The set of all n×m fuzzy matrices further will be denoted Mn×m. We are mainly
interested in square fuzzy matrices, thus if index n indicating the dimension of
a fuzzy matrix is omitted we by default assume that fuzzy matrix is square and
its dimension is n, the corresponding set of fuzzy matrices is denoted M.

2.1.2 Operations with fuzzy matrices

This section is devoted to the definition of operations with fuzzy matrices. We
remind that all operations with fuzzy numbers are extension of classical opera-
tions via min t-norm.
Similarly like in the crisp case fuzzy matrices with the same dimension can be
summed:

Definition 19. The sum of fuzzy matrices AF = (Aij)m×n, BF = (Bij)m×n
is a fuzzy matrix

CF = AF + BF ,

where CF = (Cij)m×n = (Aij +Bij)m×n.

We define fuzzy matrix multiplication with a fuzzy number C in the following
way:

Definition 20. Multiplication of a fuzzy matrix AF = (Aij)m×n with a fuzzy
number C is a fuzzy matrix

BF = CAF ,

where BF = (Bij)m×n = (CAij)m×n.

14



Evidently in the role of C we can take a crisp number, then we obtain a fuzzy
matrix multiplication with a constant from R.
Multiplication of a fuzzy matrix AF with −1 ∈ R and its subsequent addition
to a fuzzy matrix BF with the same dimension defines subtraction of two fuzzy
matrices.
Product of two fuzzy matrices is defined in the following way:

Definition 21. Multiplication of two fuzzy matrices AF = (Aij)m×n, BF =
(Bij)n×l is a fuzzy matrix:

CF = AFBF ,

where CF = (Cij)m×l = (
n∑
k=1

AikBkj)m×l.

The following result shows that definitions 19, 20 and 21 define fuzzy matrices:

Proposition 2.1. The set M is closed w.r.t. fuzzy matrices addition, multipli-
cation and multiplication with C ∈ FN(R).

Proof. Fuzzy numbers are special class of fuzzy quantities and operations of
addition and multiplication are continuous therefore according to theorem 1.6
TM -extension of a corresponding operation to the set of fuzzy numbers is a fuzzy
number.

2.2 Fuzzy inverse matrix

2.2.1 The inverse matrix of an interval matrix

We define the fuzzy inverse matrix in the next section, the notion of which
is based on the inverse of an interval matrix, therefore we devote this section
to the main results on the inverse of an interval matrix. Moore’s pioneering
work on interval arithmetic [32] can serve as reference on the basic of interval
arithmetic. We use approach provided by J. Rohn on the inverse matrix of an
interval matrix and all theoretical results presented in this section can be found
in [25], [37], [38] and [41].
An interval matrix AI is a matrix, whose elements are closed intervals. AI

can be written by means of the lower bounds matrix A and the upper bounds
matrix A:

AI = [A,A].

The centre matrix Ac of an interval matrix AI and its radius matrix ∆ are
defined in the following way:

Ac =
1

2
(A+A)

∆ =
1

2
(A−A).

An interval matrix is called regular ([41]) if all A ∈ AI are non-singular (here
A is matrix, whose elements belong to the corresponding intervals of the matrix
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AI).
For each regular interval matrix we define the inverse matrix ([41]) as the nar-
rowest interval matrix, which contains all inverse matrices: (AI)

−1 = {A−1 :
A ∈ AI}.
J.Rohn has proved that we do not need to use all 2n

2

vertex matrices in order
to find the inverse matrix of a regular interval matrix: it is sufficient to ver-
ify only 22n−1 vertex matrices of a special type Ayz (the result holds for other
properties as well). Later V.Kreinovich ([25]) showed that further reduction
is impossible: without checking all 22n−1 matrices Ayz one cannot guarantee
that desired property holds for all A ∈ AI for an arbitrary n and AI . Thus,
these special vertex matrices provide an optimal finite characterization of linear
problems with inexact data.
In the sequel we will provide the main results by J.Rohn, which are necessary
for determination of the inverse matrix of an interval matrix.
First we recall the definition of vertex matrices Ayz ([38]):
given an m×n interval matrix AI , y ∈ Ym, z ∈ Yn, where Ym, Yn are sets of all
m-dimensional and n-dimensional vectors with components of 1 and -1 then:

(Ayz)ij = (Ac)ij − yi∆ijzj =

{
aij , if yizj = −1,
aij , if yizj = 1

Theorem 2.2. ([38], p.17) An n × n elements interval matrix AI = [A;A] is
regular if and only if

(detAyz)(detAy′z′ ) > 0,

∀y, z, y′ , z′ ∈ Yn.

Example 1. Let an interval matrix AI =

(
[1; 2] [3; 4]

[−9; 1] [8; 10]

)
be given.

Then A =

(
1 3
−9 8

)
and A =

(
2 4
1 10

)
, Ac =

(
1, 5 3, 5
−4 9

)
, ∆ =(

0, 5 0, 5
5 1

)
, Y = ((1, 1)T , (−1, 1)T , (1,−1)T , (−1,−1)T )

If we take y = (1, 1)T and z = (−1,−1)T then corresponding Ayz is:

Ayz =

(
2 4
1 10

)
Similarly we receive other matrices Ayz:(

1 3
−9 8

)
,

(
1 4
−9 10

)
,

(
2 3
1 8

)
,

(
2 3
−9 10

)
,

(
2 4
−9 8

)
,

(
1 3
1 10

)
,

(
1 4
1 8

)
.

Determinants of matrices Ayz are positive and therefore according to theorem
2.2 AI is regular.
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Theorem 2.3. ([38], p. 20 ) If AI is an n× n regular interval matrix then its
inverse matrix (AI)

−1 = BI = [B;B] can be determined in the following way:

B = min
y,z∈Yn

A−1
yz

and
B = max

y,z∈Yn
A−1
yz ,

where min and max are determined componentwise.

According to theorem 2.3 the inverse matrix of the interval matrix given in
example 1 is the following:

BI =

(
[0.154; 2] [−1;−0.0638]

[−0.25; 0.257] [0.022; 0.25]

)
Inversion of an interval matrix can be very time consuming, therefore sometimes
estimation of a matrix which includes the inverse is more reasonable. Algorithms
for bounding the inverse of an interval matrix can be found e.g. in [18].

2.2.2 The inverse matrix of a fuzzy matrix

Let’s consider a square fuzzy matrix AF = (Aij)n×n. If one fixes an arbitrary
α ∈ (0; 1] then Aα

F =
([

(a)αij , (a)αij
])
n×n , is an interval matrix, whose elements

are the corresponding α-cuts of the elements Aij . When α = 0 we take the clo-
sure of the strict α-cut of Aij ,∀i, j in the role of elements of A0

F , thus obtaining
an interval matrix.
An infinite sequence 0, α1, ..., αn, ...1 induces a sequence of interval matrices

A0
F ,A

α1

F , ...,Aαn
F , ...A1

F

The corresponding sequence of interval inverse matrices is

B0
F ,B

α1

F , ...,Bαn
F , ...B1

F ,

where Bα
F = (Aα

F )−1; ij-th element is denoted [(b)αij ; (b)αij ].
Now we introduce the notion of regularity of a fuzzy matrix :

Definition 22. A fuzzy matrix AF is regular if for each α ∈ [0; 1] the interval
matrix Aα

F is regular.

We will show that for verification of regularity of a matrix AF it is enough
to verify regularity of A0

F .

Proposition 2.4. A fuzzy matrix AF is regular if and only if the interval
matrix A0

F is regular interval matrix.
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Proof. Let’s assume that A0
F is regular. It is true that

(A1
F )ij ⊆ ...(AαF )ij .... ⊆ (A0

F )ij ,∀α ∈ [0; 1],∀i, j ∈ 1;n.

Therefore we can write

A1
F ⊆ ...A

α
F .... ⊆ A0

F ,∀α ∈ [0; 1]

understanding the inclusion of interval matrices as the inclusion of all corre-
sponding elements.
If we take an arbitrary A ∈ Aα

F and an arbitrary α ∈ [0, 1] then A is regular,
since A ∈ Aα

F ⊆ A0
F and each A from A0

F is non singular. As it is true for
an arbitrary A then we can state that Aα

F is a regular interval matrix for an
arbitrary α ∈ [0, 1]. And this means that AF is regular.
The regularity of A0

F follows from the definition of regularity of AF .

Now we are ready to give definition of the fuzzy inverse. We will define it
by means of inversion of corresponding interval matrices:

AF −→ A0
F , ...A

α
F , ...A

1
F −→ B0

F , ...B
α
F , ...B

1
F −→ BF

Definition 23. A matrix BF = (Bij)n×n with its elements Bij : R → [0, 1]
defined in the following way:

Bij(x) = max{α : x ∈ [(b)αij ; (b)αij ]} ∀x ∈ R

is called the inverse matrix of a regular fuzzy matrix AF = (Aij)n×n.

The following assertion holds:

Proposition 2.5. BF is a fuzzy matrix.

Proof. We will show that mappings Bij(x) ∀i, j = 1, n are fuzzy numbers.
According to the definition elements of Bα

F , α ∈ [0, 1] are closed intervals, thus
using definition 23 we obtain that α-cuts of Bij(x) are closed intervals. So,
Bij(x) are fuzzy quantities (see theorem 1.5).
Since (b)1

ij = (b)1
ij , because A1

F and correspondingly B1
F are crisp matrices, we

have that Bij((b)
1
ij) = Bij((b)

1
ij) = 1.

For all other x ∈ R Bij(x) < 1.

Let’s A
′

F be an upper dominnat of AF , and (A
′

F )−1 = B
′

F , (AF )−1 = BF then:

Proposition 2.6. B
′

F is an upper dominant of BF .

Proof. AF ≤ A
′

F componentwise and this implies that Aα
F ⊆ A

′α
F for arbitrary

α.
Let’s assume that there exists α such that Bα

F ⊆ B
′α
F is not true. This means

that there exists B ∈ Bα
F and B /∈ B

′α
F . We can find A such that B = A−1,

A ∈ Aα
F but A /∈ A

′α
F , because otherwise B would be in B

′α
F . We received

contradictory statement, so, our assumption was not true.
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The same result holds for lower dominant of a fuzzy matrix and its inverse.
Calculation of the fuzzy inverse is related to the calculation of the inverse matri-
ces of interval matrices, and this is a time consuming task, when n is large. We
contributed to the question of simplification of calculation of the fuzzy inverse
in the next section.

2.2.3 Calculation of the fuzzy inverse in the case of 2×2 fuzzy matrix
with the same sign pattern elements

Numerous calculations and specificity of matrices Ayz design allow us to raise
hypotheses that for special type interval matrices the inverse matrix is not de-
fined by all 22n−1 Ayz matrices. The fuzzy inverse calculation is based on
inversion of interval matrices, therefore the main results of this section refer to
interval matrices and the same result for fuzzy matrices follows as a corollary
from the main result.
We consider a 2×2 interval matrix with the same sign pattern elements and we
introduce the careful notation system, i.e. we fix matrices Ayz design:
let’s use A = ([aij ; aij ])n×n for interval matrix notation, the corresponding in-

verse matrix will be B = A−1 = ([bij ; bij ])n×n.
When n = 2 we need 8 matrices Ayz, let’s numerate them from 1 to 8 in the
following way:

A1 =

(
a11 a12

a21 a22

)
, A2 =

(
a11 a12

a21 a22

)
, A3 =

(
a11 a12

a21 a22

)
,

A4 =

(
a11 a12

a21 a22

)
, A5 =

(
a11 a12

a21 a22

)
, A6 =

(
a11 a12

a21 a22

)
,

A7 =

(
a11 a12

a21 a22

)
, A8 =

(
a11 a12

a21 a22

)
.

Numeration does not apply any restrictions, and further results will not depend
on it.
Corresponding inverse matrices will be denoted by Bj , j = 1, 8 and ∆i, i = 1, 8
will denote determinants of Ai.
It can be shown that in the case, when interval matrix elements are positive,
the following statement is valid:

∆8 ≤ ∆i ≤ ∆5, i = 1, 2, 3, 4, 6, 7.

And in the case of the negative sign, we have:

∆8 ≥ ∆i ≥ ∆5, i = 1, 2, 3, 4, 6, 7.

Basically for this special type interval matrices in order to check regularity it is
enough to verify ∆8 (∆5) or both ∆8 and ∆5.
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Proposition 2.7. If A = ([aij ; aij ])2×2 is a regular interval matrix with the
same sign pattern elements then

B = A−1 = ([bij ; bij ])2×2 =

(
[b511; b811] [b812; b512]
[b821; b521] [b522; b822]

)
,

where b5ij are elements of B5 and b8ij are elements of B8 .

Proof. We will consider the case when all elements of A are positive intervals.
When dimension is 2 then Bj , j = 1, 8 can be written in the analytical form:

B1 =
1

∆1

(
a22 −a12

−a21 a11

)
, B2 =

1

∆2

(
a22 −a12

−a21 a11

)
, B3 =

1

∆3

(
a22 −a12

−a21 a11

)
,

B4 =
1

∆4

(
a22 −a12

−a21 a11

)
, B5 =

1

∆5

(
a22 −a12

−a21 a11

)
, B6 =

1

∆6

(
a22 −a12

−a21 a11

)
,

B7 =
1

∆7

(
a22 −a12

−a21 a11

)
, B8 =

1

∆8

(
a22 −a12

−a21 a11

)
.

Elements, which can qualify for bij i, j = 1, 2, can be split into 2 sets: X defined
by aij and Y defined by aij .
For b11 corresponding sets are:

X =

{
a22

∆2
,
a22

∆4
,
a22

∆5
,
a22

∆7

}
, Y =

{
a22

∆1
,
a22

∆3
,
a22

∆6
,
a22

∆8

}
(2)

b12 : X =

{
−a12

∆2
,
−a12

∆4
,
−a12

∆6
,
−a12

∆8

}
, Y =

{−a12

∆1
,
−a12

∆3
,
−a12

∆5
,
−a12

∆7

}
(3)

b21 : X =

{
−a21

∆3
,
−a21

∆4
,
−a21

∆7
,
−a21

∆8

}
, Y =

{−a21

∆1
,
−a21

∆2
,
−a21

∆5
,
−a21

∆6

}
(4)

b22 : X =

{
a11

∆3
,
a11

∆4
,
a11

∆5
,
a11

∆6

}
, Y =

{
a11

∆1
,
a11

∆2
,
a11

∆7
,
a11

∆8

}
. (5)

According to (2) minX = a22
∆5

as ∆5 is the greatest determinant.

We will show that a22
∆5

<
a22
∆i
, i = 1, 3, 6, 8.
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a22

∆5
<
a22

∆i
⇔ a22∆i < a22∆5.

If one performs multiplication he can see that minuend of the left part is
equal to a11a22a22 , (here and after aij without underline or overline means
that aij can take both values aij or aij). Minuend of the right part is equal to
a11a22a22. Always a11a22a22 ≤ a11a22a22.
Subtrahend of the left part is equal to a12a21a22. Subtrahend of the right part
is equal to a12a21a22. Always a12a21a22 > a12a21a22.

This means that a22
∆5

<
a22
∆i
, i = 1, 3, 6, 8 and b11 = a22

∆5
.

According to (2) maxY =
a22
∆8

as ∆8 is the smallest determinant.

We will show that
a22
∆8

> a22
∆i
, i = 2, 4, 5, 7.

a22

∆8
>
a22

∆i
⇔ a22∆i > a22∆8.

Minuend of the left part is equal to a11a22a22. Minuend of the right part is
equal to a11a22a22. Always a11a22a22 ≥ a11a22a22.
Subtrahend of the left part is equal to a12a21a22. Subtrahend of the right part
is equal to a12a21a22. Always a12a21a22 < a12a21a22.

This means that
a22
∆8

> a22
∆i
, i = 2, 4, 5, 7 and b11 =

a22
∆8

.
Proof of the rest part (in the case of negative interval matrix) is analogous, and
can be performed just carrying out careful calculations.

Proposition 2.7 allows us to simplify the calculation of the interval inverse
in the case of the same sign pattern elements. But the same is true for the
fuzzy inverse as it’s definition is based on the interval inverse. Only two inverse
matrices B5 and B8 on each α-cut need to be calculated.

2.2.4 Calculation of the fuzzy inverse in the case of an M - fuzzy
matrix

We consider another special case in this section and namely the class of M-
matrices. The class of M-matrices was originally proposed by Alexander Os-
trowski in 1937 ([12]). A symmetric M-matrix is sometimes called a Stieltjes
matrix. M-matrices have found broad application in economics and they are
also known as Metzler matrices.
One of the important characteristics of a crisp M-matrix is positivity of its in-
verse, but in economics as well as other sciences, the inverse-positivity of real
square matrices has been an important topic.
Many different definitions of a class of M-matrices can be found in the literature
(see e.g. [1]) for the further characterization of a class of M-matrices notions of
Z-matrix and P-matrix will be required:
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in linear algebra the class of Z-matrices includes matrices whose off-diagonal
entries are less than or equal to zero; that is, a Z-matrix A satisfies

A = (aij)n×n, aij ≤ 0, i 6= j.

A P-matrix is a complex square matrix such that every principal minor is pos-
itive (principal minor is determinant of the submatrix, where the same row
and the same column are eliminated). A closely related class is the class of
P0-matrices, i.e. the class of P-matrices, such that every principal minor is ≥ 0.

Definition 24. [1] An M-matrix is a Z-matrix with eigenvalues whose real parts
are positive.

Another common characterizations of a crisp M-matrix are given below, how-
ever we have not find in the literature any prove of equivalence of the following
statements:
1. An M -matrix is a non-singular, inverse-positive Z-matrix;
2. All matrices that are both Z-matrices and P-matrices are nonsingular M-
matrices;
3. An M-matrix is a square matrix with non-positive off-diagonal entries, posi-
tive diagonal entries, non-negative row sums, and at least one positive row sum.
4. A = (aij)n×n is an M-matrix, if aij ≤ 0,∀i 6= j and Au > 0 for some positive
vector u.
The inverse positivity of an M-matrix is crucial for us.
Later the notion of an interval M-matrix appeared in the literature (e.g. [34] ):

Definition 25. [34] An interval matrix A is an interval M-matrix if ∀A ∈ A is
an M-matrix.

We introduce the notion of a fuzzy M-matrix:

Definition 26. A fuzzy matrix AF is a fuzzy M-matrix if ∀α ∈ [0, 1] the interval
matrix Aα

F is an interval M-matrix.

The following results for interval matrices can be found in [34]:

Theorem 2.8. [34] An interval matrix A is an interval M-matrix if and only
if A and A are M-matrices.

As a corollary from this result we obtain the following theorem:

Theorem 2.9. A fuzzy matrix AF is a fuzzy M-matrix if and only if the interval
matrix A0

F is an interval M-matrix.

Theorem 2.10. [34] If A is an interval M-matrix then A−1 = [A
−1
, A−1].

So, regardless the dimension of AF , only 2 inverse matrices need to be calculated
on each α level.
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2.2.5 Estimation of the fuzzy inverse

Calculation of the fuzzy inverse is time consuming in an arbitrary case, especially
when n is large and no simplification can be used. In such cases estimation of the
fuzzy inverse is more reasonable than direct calculation. For further reasoning
we need the following auxiliary lemma:

Lemma 2.11. For determinants of vertex matrices Ayz (introduced in section
2.2.1) the following inequality holds:

∆1 ≤ detAyz ≤ ∆2,

where

∆1 =


n!
2 (an − an), if a, a ≥ 0
n!
2 (an − an), if a, a ≤ 0 and n = 2k + 1, k ∈ N
n!
2 (an − an), if a, a ≤ 0 and n = 2k, k ∈ N
−n!an, if a ≤ 0, a ≥ 0

∆2 =


n!
2 (an − an), if a, a ≥ 0
n!
2 (an − an), if a, a ≤ 0 and n = 2k + 1, k ∈ N
n!
2 (an − an), if a, a ≤ 0 and n = 2k, k ∈ N
n!an, if a ≤ 0, a ≥ 0,

where a = mini,j aij , a = maxi,j aij , a = max{|a|, |a|}.

Proof. For arbitrary crisp matrix ([19], p. 20)A = (aij)n×n we have:

detA =
∑
σ

sgnσ

n∏
i=1

aiσ(i),

where σ runs over the set of all n! permutations of the set {1, 2, ..., n};
sgnσ denotes the sign of permutation σ: it is + (−) if number of transposi-
tions (number of necessary rearrangements in the set σ in order to receive set
{1, 2, ..., n}) in the permutation σ is even (odd);
σ(i) is number on the i-th position in σ.
So, each product a1σ(1)a2σ(2)...anσ(n) enters detA with + or − sign. Moreover,
exactly n!/2 products have sign of permutation (not final sign though)+ and
the same number have sign −.
Matrices Ayz have elements aij and aij . Evidently, a (a) is the smallest (the
greatest) element, which can appear in any matrix Ayz and a ≤ a. Further we
consider different cases:
a) a ,a ≥ 0:
then each product a1σ(1)a2σ(2)...anσ(n) ≥ 0 (aij denotes aij or aij) and it n!/2
times enters detAyz with + sign and it n!/2 times enters detAyz with − sign.
The inequality:

an ≤ a1σ(1)a2σ(2)...anσ(n) ≤ an
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is true.
Using provided inequality we obtain the upper estimation:

detAyz ≤
n!

2
an − n!

2
an =

n!

2
(an − an)

the same inequality gives us the following lower estimation:

detAyz ≥
n!

2
an − n!

2
an =

n!

2
(an − an).

So,
n!

2
(an − an) ≤ detAyz ≤

n!

2
(an − an).

b) a ,a ≤ 0, n = 2k, k ∈ N:
then a1σ(1)a2σ(2)...anσ(n) ≥ 0 and for an arbitrary a1σ(1)a2σ(2)...anσ(n) the fol-
lowing estimations hold (|a| ≥ |a|, because a ≤ a ≤ 0):

an ≤ a1σ(1)a2σ(2)...anσ(n) ≤ an,

then detAyz from the above is estimated in the following way:

detAyz ≤
n!

2
an − n!

2
an =

n!

2
(an − an).

In the same manner we get estimation from the bellow:

detAyz ≥
n!

2
an − n!

2
an =

n!

2
(an − an).

So,
n!

2
(an − an) ≤ detAyz ≤

n!

2
(an − an).

c) a ,a ≤ 0, n = 2k + 1, k ∈ N:
then a1σ(1)a2σ(2)...anσ(n) ≤ 0 and for an arbitrary a1σ(1)a2σ(2)...anσ(n) the fol-
lowing estimations hold:

an ≤ a1σ(1)a2σ(2)...anσ(n) ≤ an,

then detAyz from the above is estimated in the following way:

detAyz ≤
n!

2
an − n!

2
an =

n!

2
(an − an).

In the same manner we get estimation form the bellow:

detAyz ≥
n!

2
an − n!

2
an =

n!

2
(an − an).

So,
n!

2
(an − an) ≤ detAyz ≤

n!

2
(an − an).
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d)a ≤ 0, a ≥ 0:
we introduce notation: a = max{|a|, |a|}; an arbitrary product a1σ(1)a2σ(2)...anσ(n)

is ≥ 0 or ≤ 0, but definitely inequality

−an ≤ a1σ(1)a2σ(2)...anσ(n) ≤ an

is true. So we receive:
−n!an ≤ detAyz ≤ n!an.

Now we start construction of an upper dominant of the fuzzy inverse. At
first lemma estimating the interval inverse is given, after that we build upper
dominant of the fuzzy inverse.

Lemma 2.12. Let AI = ([aij , aij ])n×n be an arbitrary regular interval matrix

and BI = ([bij , bij ])n×n be its inverse matrix, then for [bij , bij ] the following
estimations hold:

[bij , bij ] ⊆
[
a−1
ij − 2

∆n−1
2

∆
, a−1
ij + 2

∆n−1
2

∆

]⋂[
a−1
ij − 2

∆n−1
2

∆
, a−1
ij + 2

∆n−1
2

∆

]
,

where
A−1 = (a−1

ij )n×n, A
−1

= (a−1
ij )n×n,

∆n−1
2 is estimation from lemma 2.11, which is based on (n − 1)-dimensional

matrix, ∆ = mink=1,...,22n−1(|detAk|).

Proof. According to Rohn’s results we have 22n−1 vertex matrices, numerated
in an arbitrary way:

A1, A2, ..., A22n−1

and their inverses
B1, B2, ...Bk = (Ak)−1, ...B22n−1

should be calculated in order to calculate BI .
We use notation

Bk =
1

detAk

 Ak11 Ak21... Akn1

... ... ...
Ak1n Ak2n... Aknn

 ,

where Akij is cofactor of matrix

Ak =

 ak11 ak12... ak1n
... ... ...
akn1 akn2... aknn


and akij is equal to aij or aij according to the definition of vertex matrices.
According to the definition of the inverse matrix and theorem 2.3 ij-th element
of BI is equal to:

[bij , bij ] =

[
Asji

detAs
;
Atji

detAt

]
, (6)
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where
Asji

detAs
= min
k=1,...,22n−1

Akji
detAk

and
Atji

detAt
= max
k=1,...,22n−1

Akji
detAk

.

First we determine the maximal possible length of intervals of the interval inverse
matrix:

bij − bij ≤ |bij |+ |bij | =
∣∣∣∣ Atji
detAt

∣∣∣∣+

∣∣∣∣ Asji
detAs

∣∣∣∣ (7)

we assume that
∣∣∣ Atji

detAt

∣∣∣ ≥ ∣∣∣ Asji
detAs

∣∣∣ then formula (7) can be continued in the

following way:

bij − bij ≤ 2

∣∣∣∣ Atji
detAt

∣∣∣∣ (8)

Atji is cofactor of the vertex matrix At, thus estimations from lemma 2.11 hold,
the only thing what need to be noticed that dimension is n − 1. Using these
estimations and applying ∆ = mink=1,...,22n−1(|detAk|) for the estimation of
the denominator we obtain:

bij − bij ≤ 2
∆n−1

2

∆
. (9)

Thus, formula (9) gives us an upper estimation of the length of an arbitrary
interval of the inverse interval matrix.
A−1 = (a−1

ij )n×n, A
−1

= (a−1
ij )n×n ∈ BI thus the following estimations hold:

[bij , bij ] ⊆
[
a−1
ij − 2

∆n−1
2

∆
, a−1
ij + 2

∆n−1
2

∆

]
(10)

[bij , bij ] ⊆
[
a−1
ij − 2

∆n−1
2

∆
, a−1
ij + 2

∆n−1
2

∆

]
(11)

and as a result:

[bij , bij ] ⊆
[
a−1
ij − 2

∆n−1
2

|∆|
, a−1
ij + 2

∆n−1
2

|∆|

]⋂[
a−1
ij − 2

∆n−1
2

|∆|
, a−1
ij + 2

∆n−1
2

|∆|

]
(12)

Now we provide construction, which builds an upper dominant of the fuzzy
inverse:

Construction 1. We have an arbitrary fuzzy matrix AF and corresponding
set of interval matrices:

A0
F , ...,A

α
F = [Aα, A

α
] = ([aαij , a

α
ij ])n×n, ...,A

1
F .
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According to lemma 2.12 for an arbitrary element of interval matrix (Aα
F )−1 =

Bα
F = ([bαij , b

α

ij ])n×n α ∈ [0, 1) the following estimation holds:

[bαij , b
α

ij ] ⊆
[
(aαij)

−1 − 2
∆n−1

2

∆
, (aαij)

−1 + 2
∆n−1

2

∆

]⋂
⋂[

(aαij)
−1 − 2

∆n−1
2

∆
, (aαij)

−1 + 2
∆n−1

2

∆

]
, (13)

where
(Aα)−1 = ((aαij)

−1)n×n, (A
α

)−1 = ((aαij)
−1)n×n,

∆n−1
2 is estimation from lemma 2.11, which is based on n−1-dimensional matrix,

∆ = mink=1,...,22n−1(|detAk|) and Ak are vertex matrices of interval matrix Aα
F .

When α = 1 elements of the crisp matrix B1
F = (b1ij)n×n are evaluated by means

of corresponding elements of the crisp matrix:

(A1
F )−1 = ((a1

ij)
−1)n×n (14)

We denote Iα, α ∈ [0, 1] interval, which includes [bαij , b
α

ij ] according to formulas
(13) and (14).
For all x ∈ R we assign the set of indices Nx in the following way:

α ∈ Nx ⇔ x ∈ Iα (15)

The upper dominant BU
F = (BUij)n×n of the fuzzy inverse matrix BF = (Bij)n×n

is defined in the following way:

BUij(x) = max
α∈Nx

α, ∀i, j = 1, ..., n. (16)

Obviously Bij(x) ≤ BUij(x) ∀x ∀i, j = 1, ..., n and we finish construction here.

Construction of BL
F = (BLij)n×n i.e. the lower dominant of BF is accomplished

in the same manner. At first we build intervals, which are included into elements
of the interval inverse and then we apply construction 1 (namely formulas (15),
(16)).
Let’s consider an arbitrary interval matrix Aα

F , α ∈ [0, 1) which coincides with
fuzzy matrix AF .
(Aα)−1, (A

α
)−1 ∈ Bα

F , therefore the following inclusion holds:

[bαij , b
α

ij ] ⊇ [min{(aαij)−1, (aαij)
−1},max{(aαij)−1, (aαij)

−1}] (17)

Elements of the crisp matrix B1
F = (b1ij)n×n are calculated directly B1

F =

(A1
F )−1 = ((a1

ij)
−1)n×n.

We use estimation (17), elements of B1
F and apply construction 1, as a result

we get BL
F .
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2.2.6 Examples of the fuzzy inverse

We give examples of the fuzzy inverse in this section. Values of the fuzzy inverse
are given on α-cuts. bij and bij denote correspondingly the maximal and the
minimal elements of α-cut.

Example 2. Let AF1 =

(
(0.5; 1.5; 2) (3; 3.5; 4)
(9; 13; 20) (8; 8.5; 10)

)
be a fuzzy matrix with

entries in the form of positive triangular numbers.
Then its inverse is BF1

:

α b11 b11 b12 b12 b21 b21 b22 b22

0.0 -1.43 -0.11 0.05 0.43 0.26 1.29 -0.29 -0.01
0.1 -1.04 -0.11 0.06 0.32 0.27 0.99 -0.21 -0.01
0.2 -0.81 -0.12 0.06 0.26 0.28 0.82 -0.16 -0.01
0.3 -0.66 -0.13 0.06 0.22 0.29 0.71 -0.13 -0.01
0.4 -0.55 -0.14 0.07 0.19 0.30 0.62 -0.11 -0.02
0.5 -0.47 -0.15 0.07 0.17 0.31 0.56 -0.09 -0.02
0.6 -0.41 -0.17 0.08 0.15 0.32 0.51 -0.08 -0.02
0.7 -0.36 -0.19 0.08 0.14 0.33 0.48 -0.07 -0.03
0.8 -0.32 -0.21 0.09 0.12 0.35 0.45 -0.06 -0.03
0.9 -0.29 -0.23 0.10 0.11 0.37 0.42 -0.05 -0.04
1.0 -0.26 -0.26 0.11 0.11 0.40 0.40 -0.05 -0.05

Example 3. Let AF2
=

(
(−2; −1.5; −0.5) (−5.5; −3.5; −3)
(−18; −13; −9) (−11; −8.5; −8)

)
be a fuzzy

matrix with entries in the form of negative triangular numbers.
Then its inverse is BF2

:

α b11 b11 b12 b12 b21 b21 b22 b22

0 0.08 2.20 -0.60 -0.06 -1.80 -0.19 0.01 0.40
0.1 0.09 1.39 -0.40 -0.06 -1.22 -0.20 0.01 0.25
0.2 0.10 1.01 -0.30 -0.06 -0.94 -0.21 0.01 0.18
0.3 0.11 0.78 -0.24 -0.07 -0.77 -0.22 0.01 0.14
0.4 0.12 0.63 -0.20 -0.07 -0.67 -0.24 0.01 0.11
0.5 0.13 0.52 -0.17 -0.07 -0.59 -0.25 0.02 0.09
0.6 0.15 0.44 -0.15 -0.08 -0.53 -0.27 0.02 0.08
0.7 0.17 0.38 -0.14 -0.08 -0.49 -0.29 0.02 0.07
0.8 0.19 0.33 -0.13 -0.09 -0.45 -0.32 0.03 0.06
0.9 0.22 0.29 -0.12 -0.10 -0.42 -0.35 0.04 0.05
1 0.26 0.26 -0.11 -0.11 -0.40 -0.40 0.05 0.05

Example 4. Let AF3
=

(
(−1; 1.5; 2) (3; 3.5; 4)
(9; 13; 20) (8; 8.5; 10)

)
be a fuzzy matrix with

entries in the form of triangular numbers.
Then its inverse is BF3

:
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α b11 b11 b12 b12 b21 b21 b22 b22

0 -1.43 -0.09 0.04 0.43 0.20 1.29 -0.29 0.03
0.1 -1.04 -0.10 0.05 0.32 0.21 0.99 -0.21 0.02
0.2 -0.81 -0.11 0.05 0.26 0.23 0.82 -0.16 0.01
0.3 -0.66 -0.11 0.05 0.22 0.24 0.71 -0.13 0.01
0.4 -0.55 -0.13 0.06 0.19 0.26 0.62 -0.11 0.00
0.5 -0.47 -0.14 0.06 0.17 0.28 0.56 -0.09 0.00
0.6 -0.41 -0.15 0.07 0.15 0.29 0.51 -0.08 -0.01
0.7 -0.36 -0.17 0.07 0.14 0.31 0.48 -0.07 -0.02
0.8 -0.32 -0.19 0.08 0.12 0.33 0.45 -0.06 -0.02
0.9 -0.29 -0.22 0.09 0.11 0.36 0.42 -0.05 -0.03
1 -0.26 -0.26 0.11 0.11 0.40 0.40 -0.05 -0.05

2.2.7 Concluding remarks on the fuzzy inverse

Practical calculations show that in the case of elements with the same sign
pattern the interval inverse for an arbitrary CI ⊆ AI (⊆ we understand here as
componentwise intervals inclusion) is based on the same design vertex matrices
adjusted to the matrix CI . We use an arbitrary numeration of vertex matrices.
This can be explained on the following theoretical example:

Example 5. Interval matrices AI ,CI such that

CI ⊆ AI

and
AI ≥ 0

are given.
Let’s assume that

A−1
I = ([alij , a

k
ij ])n×n,

where indices l and k indicate vertex matrices, where corresponding element is
coming from. Then the inverse of CI is the following:

C−1
I = ([clij , c

k
ij ])n×n,

where indices l and k are the same as for A−1
I .

The hypothesis risen above would be very useful if its statement is proven.
We can take an arbitrary interval matrix AI with sufficiently big radius ma-
trix ∆, calculate its inverse and fix numbers of vertex matrices Ak, which are
necessary for calculation of the inverse. Then for any other interval matrix CI ,
CI ⊆ AI only inverse matrices of vertex matrices with fixed numbers need to
be calculated. This evidently decreases time of calculation of C−1

I .
This result is directly applicable to the simplification of the calculation of the
fuzzy inverse. For any arbitrary fuzzy matrix AF , A1

F ⊆ Aα
F ⊆ A0

F , α ∈ (0, 1),
therefore only for (A0

F )−1 all 22n−1 inverses of vertex matrices need to be cal-
culated. Further we use knowledge obtained before, and not more than 2n2

29



inverses of vertex matrices need to be calculated.
Although the statement risen above is not carefully proven, Sherman-Morrison
and Woodbury formulas ([3]) for crisp matrices advocate for its correctness.
Suppose A is an invertible square matrix and u, v are vectors. Suppose fur-
thermore that 1 + vTA−1u 6= 0. Then the Sherman−Morrison formula states
that

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
(18)

Generalized Sherman-Morrison formula is called Sherman-Morrison-Woodbury
or just Woodbury formula:

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1, (19)

where A = (aij)n×n, U = (uij)n×k, C = (cij)k×k and V = (aij)k×n matrices.
In the special case where C is constant Woodbury formula reduces to the
Sherman-Morrison formula.
Evidently when change of initial matrix is small then the inverse of the new
matrix tends to be very close to the inverse of initial matrix. In the case of an
interval matrix it is applicable in the following way: let’s assume that intervals
are reduced a little in the initial interval matrix, and the inverse of the vertex
matrix Ak determines the lower bound of the ij − th element of the interval
inverse. Then the same design matrix Ak (only adjusted to the new interval
matrix) determines the lower bound of the ij-th element of the inverse matrix
of the new interval matrix.
In any case formulas (18) and (19) provide a significant assistance in calcula-
tion of the fuzzy inverse. All vertex matrices based on A0

F need to be inverted,
further for α > 0 matrix inversion can be substituted with less time consuming
operations, i.e. matrix multiplication and addition. Thus using formulas (18) if
appropriate or (19) we simplify calculation of the fuzzy inverse.

2.3 Fuzzy identity matrix

2.3.1 Definition and properties

Multiplication of a matrix with its inverse gives identity matrix in the crisp case.
Multiplication of AF and its inverse matrix BF is identity matrix analogue,
we call it fuzzy identity matrix, and this section is devoted to its definition,
properties and estimation.

Definition 27. We say that AFBF is right fuzzy identity matrix, and corre-
spondingly BFAF is left fuzzy identity matrix.

Proposition 2.13. Generally AFBF 6= BFAF .

Proof. The assertion of the proposition is implied by the fact that multiplication
of crisp matrices is not symmetric.

Proposition 2.14. AFBF ,BFAF are fuzzy matrices.
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Proof. See proposition 2.1.

Let AFBF = (Erij)n×n and BFAF = (Elij)n×n and according to the defini-
tion of BF the following hold:

Erij(1) = Elij(1) = 1 if i = j

Erij(0) = Elij(0) = 1 if i 6= j

2.3.2 Estimation of a fuzzy identity matrix

Various calculations performed for two dimensional fuzzy matrices showed inter-
esting feature of fuzzy identity matrices, namely if we take an arbitrary element
of AFBF and the same element of BFAF then either the former is fuzzy subset
of the latest or vice versa. If we take AF1

from example 2 in the pior section
and perform multiplication AF1

BF1
= (ABij)2×2 and BF1

AF1
= (BAij)2×2 we

receive the following results:

AB11(x) ≤ BA11(x) ∀x

AB12(x) ≤ BA12(x) ∀x

AB21(x) ≥ BA21(x) ∀x

AB22(x) ≥ BA22(x) ∀x

Calculation of fuzzy identity matrix is the same complexity task as calculation
of the fuzzy inverse, therefore evaluation of fuzzy identity matrix maybe useful.
The following results hold:

Proposition 2.15. If ◦ is one of the following operations: addition, multipli-
cation or multiplication with fuzzy number, AF and BF are arbitrary fuzzy
matrices and C is an arbitrary fuzzy number then the following assertions are
true:
(1) AU

F ◦BU
F , AU

F ◦BF , AF ◦BU
F are upper dominants of AF ◦BF

(2) AL
F ◦BL

F , AL
F ◦BF , AF ◦BL

F are lower dominants of AF ◦BF

(3) BU
F ◦AU

F , BU
F ◦AF , BF ◦AU

F are upper dominants of BF ◦AF

(4) BL
F ◦AL

F , BL
F ◦AF , BF ◦AL

F are lower dominants of BF ◦AF

(5) CU ◦AU
F , C

U ◦AF , C ◦AU
F are upper dominants of C ◦AF

(6) CL ◦AL
F , C

L ◦AF , C ◦AL
F are lower dominants of C ◦AF ,

where AU
F ,B

U
F , C

U are upper dominants correspondingly of AF ,BF and C;
AL
F ,B

L
F , C

L are lower dominants correspondingly of AF ,BF and C.

Proof of proposition 2.15 is evident and is implied by the definition of extension
principle.
Now given a fuzzy matrix AF and using results of proposition 2.15, upper and
lower dominants of the fuzzy inverse matrix obtained in section 2.2.5 we can
build lower and upper dominants of left and right fuzzy identity matrices.
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2.4 Application of the fuzzy inverse

The main results of the second chapter are related to the inverse of a fuzzy
matrix. Therefore the question ”are these results a mathematical abstraction
only or not?” naturally arises. We provide possible practical applications of the
theoretical results obtained in this chapter and thus give the negative answer
on the question above.

2.4.1 Estimation of the approximate fuzzy solution of the system of
fuzzy linear equations

Finding the solution of the system of the fuzzy linear equations (hereinafter
SFLE) has been extensively studied after [11] appeared in 1998. Since then
many conceptually different methods and algorithms has been proposed for the
finding the solution of SFLE (e.g. [28], [29], [33], [36], [44], [51] and others.)
Personal contribution and very good extensive summary of the results of other
authors in the field of SFLE is provided in [45]. We contribute to this topic and
define different types of solutions of SFLE and outline the possible calculation
methods. Also we define the approximate fuzzy solution (AFS), provide its
estimations, but calculation of AFS directly follows from theoretical results of
this chapter.
Solution of the system of interval linear equations (SILE) is the base for many
method and algorithms of finding SFLE. For the basic results on SILE interested
reader can refer e.g. to [27], [38], [39], [40].
We recall that different types of solutions are defined in the case of SILE, e.g,
solution set (or united solution set):

ϕ = {x ∈ Rn/∃A ∈ A,∃b ∈ b : Ax = b},

tolerable solution set:

π = {x ∈ Rn/∀A ∈ A,∃b ∈ b : Ax = b},

the hull solution:

AHb i.e., the smallest box that encloses the solution set,

the interval solution:
A−1b

and others.
By the analogue with interval case different types of solutions are defined for
SFLE (e.g. [45]).
Let’s consider SFLE:

AFx = cF , (20)

where AF ∈M is an n× n matrix, cF ∈M is one column matrix.
It can be decomposed into spectrum of SILE:

Aα
Fx = cαF , (21)
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where α ∈ [0, 1] and Aα
F , c

α
F are corresponding interval matrices.

In particular cases for reasonable considerations we can choose final number
of SILE from the spectrum, and this number is determined by the required
accurateness.
Let Sαπ , S

α
hull, S

α
interval denote correspondingly the smallest box that encloses

the tolerable solution set (further the tolerable solution set), the hull solution
and the interval solution of SILE (21):

Definition 28. A fuzzy vector Shull = (S1, ..., Sn)T , where for all i ∈ {1, ..., n}
Si : R→ [0, 1] is a fuzzy set and

Si(x) =

{
0, if ¬∃(x1, ..., xn) ∈ S0

hull : x = xi
sup{α|x = xi for some (x1, ..., xn) ∈ Sαhull} otherwise

is called fuzzy solution, which coincides with solution sets Sαhull, α ∈ [0, 1].

Hereinafter in this section vectors, which elements are fuzzy sets (not only fuzzy
numbers) will be called fuzzy vectors.
Fuzzy solutions of SFLE (20), which coincide with the tolerable solution set and
the interval solution are defined similarly and are denoted Sπ, Sinterval. These
fuzzy solutions are based on solutions of SILE therefore methods described in
previously mentioned references can be used for calculation.
Now we define AFS:

Definition 29. A fuzzy vector

x = A−1
F cF = BF cF

is called AFS of SFLE.

We have shown previously that BF ∈ M, thus AFS BF cF ∈ M because M
is closed w.r.t. to continuous operations.
As it can be seen from the definition of AFS it is upper dominant of fuzzy
solutions Sπ, Shull, Sinterval.
If BF is available we directly apply it to the calculation of AFS, otherwise upper
and lower dominants of BF can be built and according to proposition 2.15:

AFSU = BU
F cF (22)

AFSL = BL
F cF (23)

Practical calculations of AFSU , AFSL show not very good results sometimes,
but these evaluations can serve as the start and the end points for iterative
algorithms dedicated to calculation of ASF.
When we speak about another types of fuzzy solutions only AFSU can be taken
in the role of the start point for iterative algorithms, because AFSL is not a
lower dominant (neither an upper) for an arbitrary type of solution of SFLE
apart from AFS.
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2.4.2 Fuzzy input-output analysis

This section is devoted to the fuzzy inverse in economical applications. Fuzzified
approach for input-output analysis is considered. Different methods of process-
ing of inexact data in input-output analysis can be found in the literature, the
interest to this topic is explained by high practical value of such a view on eco-
nomical problem. Rohn in [42] and Jerrell in [20], [21] offer an interval approach
for input-output analysis, Buckley in [4] considers the next level of uncertainty
and uses a fuzzy model. We extend the fuzzified approach and it differs from
the one in [4].
First we give economical background of input-output model (more detailed ex-
planation can be found e.g. in [13], [31]) and after that we explain the fuzzified
model.
The interactions of linkages between sectors of economics are significant for
planners, who simultaneously need to keep overall macroeconomic balances in
view to ensure consistency. The tool designed to accomplish these tasks is
the input-output or interindustry table. Its two inventors suggest its flexibility
and usefulness. The Russian-born economist Wassily Leontief developed input-
output tables at Harvard during the 1930s to help understand the working of a
modern economy and later to help with postwar planning in the United States.
About the same time, though working independently, the Russian economist
Leonid Kantorovich developed the same tool to help planners in his country set
quantity targets for Soviet production, allowing both for final demands and for
the use of intermediate products within industry. The two economists eventu-
ally won Nobel prizes for their efforts.
The essence of an input-output table is to display the flow of output from one
industry to another and to final users (consumers, investors, and exporters).
Let’s assume that there are n ≥ 2 sectors in a national economy and each sector
produces a single kind of goods. A part (possibly zero) of the gross output of
each sector is consumed by some other sectors as inputs for their own produc-
tions; the amount of the i-th goods consumed by the j-th sector is supposed
to be proportional to the gross output xj of the j-th sector with the coefficient
of proportionality a0

ij . Thus the total amount of the i-th goods consumed for

production purposes within the national economy is equal to
n∑
j=1

a0
ijxj . Hence

we have:

xi =

n∑
j=1

a0
ijxj + yi, i = 1, ..., n, (24)

where, for each i, xi denotes the gross output and yi the net output of the i-th
sector (measured ususally in monetary units). The a0

ij are called input coeffi-

cients and are assumed to be constant. Taking A = (a0
ij)n×n, x = (x1, ..., xn)T ,

y = (y1, ..., yn)T the matrix form of (24) is the following:

(E −A0)x = y (25)
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which is the basic equation in the input-output analysis. Matrix E−A0, where
E is identity matrix, is usually called Leontief matrix.
Clearly, A0 and x are nonnegative and so is y in case the workability of all
sectors is supposed. The profitability of the j-th sector means that the value of
its production is greater than that of components used, i.e.

xj >

n∑
j=1

a0
ijxj , (26)

which leads to

1 >

n∑
j=1

a0
ij . (27)

Thus the profitability of all sectors can be written as

eT (E −A0) > 0T , (28)

where e = (1, ..., 1)T .

For a given net output y the number
n∑
i=1

yi = eT y is called the national income.

The model (25) is used to solve the two main problems in planning:
(P1) to find a gross output x which yields a given net output y
(P2) to find a net output y corresponding to a given gross output x.
The national economy is completely characterized by the matrix A0, but, in
practice, it is difficult to find exact values of a0

ij , because the data from which
they are determined is both inexact and incomplete.
We assume that a0

ij are not known precisely, but each of them can be estimated
by fuzzy number Aij , such that A(aij) > 0 and thus the matrix of technical
coefficients A0 can be substituted with fuzzy matrix AF = (Aij)n×n.

A0
F , ...,A

α
F = ([Aα, A

α
]) = ([aαij , a

α
ij ])n×n, ...,A

1
F are corresponding interval ma-

trices.
We assume that additionally for AF the following holds:

[A0, A
0
] ≥ 0 (29)

eT (E −A0
F ) > 0 (30)

These conditions translated into language of economics mean profitability of all
sectors in fuzzy input-output model and consistency of linkages.
Rohn has shown in [42], that (29) and (30) are equivalent to:

A0 ≥ 0 (31)

eT (E −A0) > 0T (32)

Solving problems (P1) or (P2) we assume that some knowledge on vectors x and
y is also available. Namely, that in the fuzzy model x and y can be evaluated
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by means of fuzzy vectors XF = (X1, ..., Xn)T and YF = (Y1, ..., Yn)T and the
following conditions hold:

Xi(xi) > 0, i = 1, ..., n (33)

and
Yi(yi) > 0, i = 1, ..., n (34)

X0
F , ...,X

α
F = ([xα1 , x

α
1 ], ..., [xαn, x

α
n]), ...,X0

F and
Y0
F , ...,Y

α
F = ([yα

1
, yα1 ], ..., [yα

n
, yαn]), ...,Y0

F are interval vectors corresponding to
fuzzy vectors XF and YF (i.e. elements of interval vectors are α-cuts of the
corresponding fuzzy numbers).
Thus we have all elements of fuzzy input-output model:

(E −AF )XF = YF , (35)

where E is the crisp identity matrix.
If (P2) need to be solved then we apply extension principle and calculate YF .
Interpretability of YF is tightly related to assumptions put on AF and XF .
Problem (P1) is more complicated and we consider it in more details further.
First we define fuzzy feasible solution (FFS) of fuzzy input-output equation
(35):

Definition 30. A fuzzy vector XF is FFS if it is a fuzzy solution, which coin-
cides with tolerable solution set for all α ∈ [0, 1]

Definition of FFS ensures that ∀α ∈ [0, 1]

(E −Aα
F )Xα

F ⊆ Yα
F (36)

and as a result for (E − AF )XF = (Z1, ..., Zn)T and YF = (Y1, ..., Yn)T the
following holds:

Zi(x) ≤ Yi(x)∀x ∈ R,∀i = 1, ..., n (37)

If for some α ∈ [0, 1]
(E −Aα

F )Xα
F ⊃ Yα

F (38)

then there exists x ∈ Xα
F which leads out of the apriory given Yα

F and thus Xα
F

is not a solution of the corresponding interval problem and as a result XF is
not a solution of (35).
Calculation and estimation of FFS can be performed in different ways. E.g.,
(35) can be decomposed into SILE:

(E −Aα
F )Xα

F = Yα
F , α ∈ [0, 1] (39)

and tolerable solution for each α needs to be found or estimated. Different
algorithms can be applied for these purposes, but we advise to follow reference
[42], because the author considers this solution in the frame of input-output
analysis and extensive explanations on interpretability of obtained results are
also available in [42].
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Another approach for the estimation of XF is to apply the fuzzy inverse of
(E −AF ) and use AFS of (35), which is defined in the previous section.

(E −AF )−1YF = (Z
′

1, ..., Z
′

n)T (40)

According to the construction of AFS Z
′

i(x) ≥ Xi(x),∀x ∈ R,∀i = 1, ..., n.
Calculation of the fuzzy inverse within this economic background is simplified,
because for A0

F the following result is provided in [42]:

Proposition 2.16. [42] Let [A0, A
0
] be a nonnegative interval matrix and

eT (E −A0
F ) > 0T then (1) and (2) hold:

(1) E −A0
F is nonnegatively invertible

(2) (E −A0
F )−1 ⊆ [(E −A0)−1, (E −A0

)−1].

Accordingly the calculation of the fuzzy inverse is simplified.
Although AFS overestimates FFS it provides an idea about gross output re-
quired to satisfy the needs of the national economics, and it maybe useful on
the pre-planning stage.

2.4.3 Fuzzy economic multipliers

We briefly outline another possible application of the fuzzy inverse in this sub-
section, namely estimation of economic multipliers.
In the most general sense, an economic multiplier is a quantitative measure
of economic impact that explicitly recognizes that economies (local, state, re-
gional, national, or global) are interconnected networks of interdependent ac-
tivity. When a change takes place in one part of such a network, its effects
propagate throughout the system. These effects typically result in a larger total
impact than the original change would have caused in isolation. More detailed
theory on economic multipliers can be found e.g. in [31], [35].
Ordinarily economic multipliers are calculated on the basis of mathematical
model of the relationships in that economy, e.g. input-output modeling tech-
nique. Let’s assume we have an input-output model in the matrix form:

(E −A0)x = y (41)

Much knowledge can be gained without knowing net output vector y, by con-
sidering how economic activity will change if there is a change in the vector y.
This does not require computing the level of economic activity, only the change.
One method of examining how a change in net output will affect an economy is
to construct multipliers.
There are different types of multipliers, e.g. typeI, typeII and typeIII which dif-
fer in the way what kind of effects (direct, indirect, induced) and in what way
are taken into calculation. Another classification is based on the area where
multiplier can be applied, e.g. income estimation, employment estimation and
others. Despite the economic interpretation the generalized mathematical form
of the economic multiplier based on (41) is the following:

M = (L−1)
′
(1, 1, ..., 1), (42)
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where L is Leontief matrix E −A0.
In particular as an example income and employment multipliers can be calcu-
lated:

Ii =
[(L−1)

′
h]i

hi
, (43)

where hi = ii
si

and ii- household income generated by industry i, si - total
outlays in industry i.

Ei =
[(L−1)

′
e]i

ei
, (44)

where ei- employment in industry i.
Employment multiplier application can be found in the following example usu-
ally given by economists. Let’s assume that company A has hired 100 additional
workers in order to increase production and meet increased demand. But sup-
pliers of company A need to increase human resources as well in order to satisfy
company’s A demand (e.g. produce more materials for A). We can therefore
define the employment multiplier as the number that is multiplied by the num-
ber of jobs directly involved in company A to yield the total number of jobs
created, directly and indirectly, as a result of the increased demand of company
A production. If the total number of jobs created were 200, the employment
multiplier in this example would be 2.
There are two main sources of error in economic multipliers derived from input-
output models:
1) incomplete and imperfect data used to estimate the input-output coefficients
of the model
2) imperfections of the design and structure of the model itself,
therefore substitution of the Leontief matrix L by its fuzzy estimation, i.e. LF
is reasonable. Thus fuzzy economic multiplier, which can be considered as esti-
mation of crisp analogue, can be presented in the following form:

M = (L−1
F )

′
(1, 1, ..., 1) (45)

Fuzzy multiplier is a fuzzy vector and its economic interpretation is based on
assumptions put on LF .

2.5 Concluding remarks on fuzzy matrices

The notion of the fuzzy inverse is central in this chapter because it has the
largest practical value. As the first priority directions for further study we
outline the following:

• development of simpler algorithms for calculation of the fuzzy inverse

• development of algorithms for more accurate estimation of the fuzzy in-
verse.

Also it is interesting to know what happens with the fuzzy inverse if operations
with fuzzy matrices are defined by means of some other t-norm, not only TM .
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3 Generalized aggregation: theoretical founda-
tions and practical applications

This chapter is dealing with questions related to the generalized aggregation.
Term ”generalized” refers to the generalized input and output of these objects,
i.e. generalized aggregation operators (hereinafter gagops) aggregate fuzzy sets.
We require that the input elements should follow the following:
(i) upper semicontinuous fuzzy sets
(ii) fuzzy sets with bounded α-cuts, for all α > 0.
Aggregation operators (hereinafter agops) according to the tradition can now
be called crisp agops versus generalized ones mentioned above.
We study gagops from the two main aspects: representative properties and
preservation of boundary conditions and monotonicity property.
We also introduce and study in the work a new class of agops, namely γ-agops.
γ-agops also generalize the notion of agop in some sense. But this generalization
differs from the one mentioned before.
The chapter is divided into nine sections including conclusion. Materials of Sec-
tion 1 and partly of Section 3 and of Section 5 recall known results, all other
sections are author’s contribution to the topic.
Section 1 provides the fundamental results on agops, which are necessary for
our further study. We refer to the source [5] from the list of references and we
flash agops from the two aspects, namely the main results and their properties.
For more information on recent results in the field of agops the reader can refer
e.g. to [5],[6].
Section 2 is author’s contribution to the theory of agops. We introduce the
notion of a γ-agop, which generalizes the notion of an agop, if we consider it
for an arbitrary γ and we study it. Although γ agops have some disadvantages
they simplify the aggregation process. And this is due to the equivalence rela-
tion induced on the [0, 1]n.
Section 3 is the library of order relations which are used further in the study.
We summarize already known order relations (which can be found in e.g. [46],[47])
and also we introduce new classes. The notion of order is tightly related to the
notion of gagop, because the monotonicity property should be considered within
the framework of some order.
Section 4 contains generalization of some results from [46] for an arbitrary
continuous t-norm. Also auxiliary construction is provided.
We start the topic of generalized aggregation with Section 5. First we give
definition and construction methods of generalized agops ([47]). We conclude
the section with definitions of properties of gagops, which are adopted to the
fuzzy input.
We continue the topic of generalized aggregation in Section 6, where we con-
tribute to generalized aggregation with study on pointwise extension of an agop.
We investigate pointwise extension according to the following scheme:

• possible sets of inputs
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• properties

• preservation of boundary conditions and the monotnicity property.

We show that some properties of pointwise extension mainly depend on the
same properties of the extended agop. In the list of observed properties shift-
invariance distinguished by a more complicated nature. And this is naturally,
because additional operation with fuzzy sets (apart from extension of an agop)
appears. And we conclude this section with results related to the boundary
conditions and monotonicity preservation w.r.t. the order relations presented
in Section 3.
Section 7 is devoted to the study of T -extension (i.e. extension of an arbitrary
agop by means of a continuous t-norm). T -extension is an another method of
construction of a gagop. The scheme of investigation is the same like in the case
of pointwise extension. Properties of T -extension depend on properties of the
t-norm and the agop, which we extend. We show that some properties have a
place only when we use a particular t-norm, e.g. idempotence of T -extension
hold only for TM . The section is concluded by results on preservation of the
boundary conditions and monotnicity w.r.t. order relations introduced before.
The section before the last one contains a brief outline of possible practical
applications of the apparatus investigated in this chapter.
And we conclude the chapter by Section 9, where we outline directions of the
further research.

3.1 Fundamentals on aggregation operators

The aim of this section is to give a look at aggregation domain. We use the
source [5] for reference and try to hold its style of notations and pitching and
also we try to follow the same conventions if any is required. In the author’s
opinion the source [5] is well structured and it contains the recent results. Also
many important information related to the aggregation operators can be found
e.g. in [6]. Information in some specific information domain, particularly in the
triangular norms, which play an important role in this work can be found e.g.
in [22].
Generalized aggregation, which is the central matter of the third chapter, is
broadly flashed from the aspect of its properties, and therefore we pay attention
to properties of agops in this section. Other important parts of the aggregation
domain such as classes and construction methods can be found in the already
mentioned sources.
Problem of aggregation is very broad in general, and we use the following two
restrictions in the work: the number of input values is finite and I = [0, 1] is
the set of inputs and outputs. If the second restriction is a matter of rescaling
then the first divides the global aggregation into two parts, i.e aggregation of
finite number of inputs and aggregation of infinite number of inputs. But even
with a such restriction the problem of aggregation is still very general.
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3.1.1 Definition

Definition 31 ([5]). A mapping A : ∪n∈N[0, 1]n → [0, 1] is an agop on the unit
interval if for every n ∈ N the following conditions hold:
(A1) A(0, ..., 0) = 0
(A2) A(1, ..., 1) = 1
(A3) (∀i = 1, n) (xi ≤ yi)⇒ A(x1, x2, ..., xn) ≤ A(y1, y2, ..., yn)

Conditions (A1) and (A2) are called boundary conditions, and they ensure
that aggregation of completely bad (good) results will give the completely bad
(good) output. Condition (A3) resembles the monotonicity property of A.
In general, the number of the input values to be aggregated is unknown, and
therefore an agop can be presented as a family A = (A(n))n∈N, where A(n) =
A|[0,1]n . Operators A(n) and A(m) for different n and m need not be related.
A specific case is the aggregation of a singleton, i.e., the unary operator A(1) :
[0, 1] → [0, 1]. For many scientists the aggregation of a singleton is not an ag-
gregation and they propose as a convention A(1)(x) = x, x ∈ [0, 1]. Throughout
the work we will follow this convention.
This framework is enough general to include most of the relevant operators used
for the fusion of the input data, however e.g. Godel implication IG is not an
agop in the sense of definition 31:

IG(x, y) =

{
1, if x ≤ y,
y, else

Definition 32 ([5]). Let A,B : ∪n∈N[0, 1]n → [0, 1] be two agops. We say that
A is weaker than B, with notation A ≤ B, if

∀n ∈ N,∀(x1, ..., xn) ∈ [0, 1]n : A(x1, ..., xn) ≤ B(x1, ..., xn)

The weakest and the strongest agops are defined correspondingly:

∀n ≥ 2, (x1, ..., xn) 6= (1, ..., 1) : Aw(x1, ..., xn) = 0

and
∀n ≥ 2, (x1, ..., xn) 6= (0, ..., 0) : As(x1, ..., xn) = 1.

For any agop A we have:
Aw ≤ A ≤ As.

For the agops
Π(x1, ..., xn) = Πn

i=1xi,

M(x1, ..., xn) =
1

n

n∑
i=1

xi,

max(x1, ..., xn) = max(x1, ..., xn),

min(x1, ..., xn) = min(x1, ..., xn)
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we have:
Aw ≤ Π ≤ min ≤M ≤ max ≤ As.

Important examples of agops are projections PF (the projection of the first
coordinate) and PL (the projection of the last coordinate):

PF (x1, ..., xn) = x1, PL(x1, ..., xn) = xn.

Often only a binary form A(2) of an agop is known. The ternary form A(3) of
that operator needs not to have any relationship with A(2) in general. However
if only A(2) is known, we have several ways for extending it to a complete agop.
One possibility is the backward inductive extension of the binary operator, i.e.,

A∗(x1, ..., xn) = A(2)(x1, A(2)(...A(2)(xn−1, xn)...)), n > 2

and A∗(x) = x. An alternative approach is the forward inductive extension of
the binary operator, i.e.,

A∗(x1, ..., xn) = A(2)(...(A(2)(A(2)(x1, x2)x3))..., xn), n > 2

and A∗(x) = x. Observe that A∗ = A∗ iff A(2) is associative.

3.1.2 The main properties

Idempotence

Definition 33 ([5]). An element x ∈ [0; 1] is called an A-idempotent element
whenever A(n)(x, ..., x) = x, ∀n ∈ N. A is called an idempotent agop if each
x ∈ [0; 1] is an idempotent element of A.

Boundary conditions mean that 0 and 1 are A-idempotent elements for each
agop A. Therefore 0 and 1 are called trivial idempotent elements. Idempotent
agops are also called averaging operators. For agops in the sence of definition 31
the idempotency of an operator A is equivalent to the so called compensation
property:

min ≤ A ≤ max

Now it is evident that min,max,M are idempotent agops while Aw,Π, As are
not. Observe that agop constructed in the spirit given by A∗ and A∗ based on an
idempotent binary agop A(2) are idempotent as well. The compensation prop-
erty also ensures another important feature of idempotent operators: for any in-
terval [c, d] ⊂ [0, 1], any idempotent agop A and any n-tulpe (x1, ..., xn) ∈ [c, d]n,
also the value A(x1, ..., xn) ∈ [c, d]. Consequently, A|∪n∈N[c,d]n is an idempotent
agop acting on [c, d]. Obviously for a general agop A and for fixed c, d the last
claim (without idempotecy) is true iff c and d are idempotent elements of A.
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Continuity

The continuity of an agop A is simply the continuity of all n-ary operators A(n)

in the standard sense of the continuity of real functions of n variables.

Definition 34 ([5]). An agop A : ∪n∈N[0, 1]n → [0, 1] is called a continuous
agop if for all n ∈ N the operators A(n) : [0, 1]n → [0, 1] are continuous, that is,
if

∀x1, ..., xn ∈ [0, 1],∀(x1j)j∈N, ..., (xnj)j∈N ∈ [0, 1]N : lim
j→∞

xij = xi

for i = 1, ..., n then

lim
j→∞

A(n)(x1j , ..., xnj) = A(n)(x1, ..., xn).

In engineering applications continuous agops are usually applied, reflecting
the property that a ’small’ error in inputs cannot cause a ’big’ error in the
output. From the mathematical point of view, because of the compactness of
domains [0, 1]n, n ∈ N, the continuity of an agop A is equivalent to its uniform
continuity:

∀ε > 0,∀n ∈ N,∃δ > 0 : |xi − yi| < δ, i = 1, ..., n⇒

⇒ |A(x1, ..., xn)−A(y1, ..., yn)| < ε.

Because of the monotonicity condition the continuity of an agop A is also equiv-
alent to the intermediate value property:

Definition 35 ([5]). Let (x1, ..., xn), (y1, ..., yn) ∈ [0, 1]n, n ∈ N any n-tulpes
such that xi ≤ yi, i = 1, ..., n. An agop A has the intermediate value property if

∀z ∈ [A(x1, ..., xn), A(y1, ..., yn)]

∃zi ∈ [xi, yi], i = 1, ..., n : A(z1, ..., zn) = z

The intermediate value property allows to introduce the equivalent of conti-
nuity in the case of agops acting on ordinal (discrete) scales.
An agop A fulfils the Lipschitz property with a constant c ∈ (0,∞) if

∀n ∈ N,∀(x1, ..., xn), (y1, ..., yn) ∈ [0, 1]n

|A(x1, ..., xn)−A(y1, ..., yn)| ≤ c
n∑
i=1

|xi − yi|

Clearly, the Lipschitz property with an arbitrary c ensures continuity but not
vice-versa. Among the already introduced agops, the operators Aw and As are
examples of non-continuous agops.
An agop A is called lower (upper) semicontinuous if for all n ∈ N, the operator
A(n) is lower (upper) semicontinuous. Recall that:
A(n) is lower semicontinuous if:

∀(x1j)j∈N, ..., (xnj)j∈N ∈ [0, 1]N :
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sup
j
A(n)(x1j , ..., xnj) = A(n)(sup

j
x1j , ..., sup

j
xnj)

and upper semicontinuous if

∀(x1j)j∈N, ..., (xnj)j∈N ∈ [0, 1]N :

inf
j
A(n)(x1j , ..., xnj) = A(n)(inf

j
x1j , ..., inf

j
xnj)

As usually, the continuity of an agop A is equivalent to its simultaneous lower
and upper semicontinuity.

Symmetry

Definition 36 ([5]). An agop A : ∪n∈N[0, 1]n → [0, 1] is called a symmetric
agop if

∀n ∈ N,∀x1, ..., xn ∈ [0; 1] : A(x1, ..., xn) = A(xπ(1), ..., xπ(n))

for all permutations π = (π(1), ..., π(n)) of (1, ..., n).

A weighted mean W (x1, ..., xn) =
n∑
i=1

wixi, where
n∑
i=1

wi = 1 is an example of a

nonsymmetric agop.
Any non-symmetric agop can be symmetrised in the following way: ∀n ∈
N,∀x1, ..., xn ∈ [0, 1] let vector (x

′

1, ..., x
′

n) be a non-decreasing (non-increasing)
permutation of the input vector (x1, ..., xn), and defineA

′
(x1, ..., xn) = A(x

′

1, ..., x
′

n).
Obviously, A

′
is a symmetric agop and A

′
= A iff A is symmetric.

Associativity

Definition 37 ([5]). An agop A : ∪n∈N[0, 1]n → [0, 1] is associative if

∀n,m ∈ N,∀x1, ..., xn, y1, ..., ym ∈ [0; 1] :

A(x1, ..., xn, y1, ..., ym) = A(A(x1, ..., xn), A(y1, ..., ym))

The associativity of an agop allows to aggregate first some subsystems of all
inputs, and then the partial outputs. For practical purposes we can start with
aggregation procedure before knowing all inputs to be aggregated. New (ad-
ditional) input data are then simply aggregated with the actual aggregated
output. From the structural point of view, an associative agop is uniquely de-
termined by A(2). As examples of associative agops recall Aw, As,min,max,Π;
non-associative agops are M and geometric mean:

G(x1, ..., xn) = (Πn
i=1xi)

1/n.

Associativity is too strong and rather restrictive property, therefore sometimes
some modifications of associativity preserving its advantages (from the compu-
tational aspect) are introduced.
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Bisymmetry

Definition 38 ([5]). An agop A : ∪n∈N[0, 1]n → [0, 1] is bisymmetric if

∀n,m ∈ N,∀x11, ..., xmn ∈ [0; 1] :

A(mn)(x11, ..., xmn) = A(m)(A(n)(x11, ..., x1n), ..., A(n)(xm1, ..., xmn)) =

= A(n)(A(m)(x11, ..., xm1), ..., A(m)(x1n, ..., xmn))

The bisymmetry allows to aggregate first rows and then partial outputs or first
columns and then partial outputs if information is stored in the form of a matrix.
Bisymmetry is implied by associativity and symmetry, but neither symmetry,
nor associativity is implied by bisymmetry. Operators Aw, As,Π,min and max
are examples of symmetric, associative and as a result bisymmetric agops. M
and G are symmetric and bisymmetric but not associative.

Neutral element

Definition 39 ([5]). An element e ∈ [0; 1] is called a neutral element of A if
∀n ∈ N,∀x1, ..., xn,∈ [0; 1] if xi = e for some i ∈ {1, ..., n} then

A(x1, ..., xn) = A(x1, ..., xi−1, xi+1, ..., xn)

So, the neutral element can be omitted from aggregation inputs without influ-
encing the final output.
A typical examples are the product Π with e = 1, min with e = 1 and max
with e = 0. The existence of the neutral element is not related to the previous
properties as continuity, symmetry, associativity or bisymmetry. M,G,As, Aw
are examples of agops without neutral element.

Absorbing element

Definition 40 ([5]). An element a ∈ [0; 1] is called an absorbing element of A
if

∀n ∈ N,∀x1, ..., xn,∈ [0; 1] : a ∈ {x1, ..., xn} ⇒ A(x1, ..., xn) = a

OperatorsAw,Π, G,min are examples of agops with a = 0 the operatorsAs,max
have a = 1.
Note that a is necessarily an A-idempotent element, that is a is a trivial idem-
potent element. Note also that an agop A with absorbing element a ∈ (0, 1)
cannot have neutral element e. However, A may have a neutral element e if its
absorbing element a ∈ {0, 1}, and e 6= a.
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Some other properties

Definition 41 ([5]). An agop A : ∪n∈N[0, 1]n → [0, 1] is said to be:
(1) shift-invariant if

∀n ∈ N,∀b ∈ (0, 1),∀x1, ..., xn ∈ [0, 1− b] :

A(x1 + b, ..., xn + b) = A(x1, ..., xn) + b

(2) homogeneous if

∀n ∈ N,∀b ∈ (0, 1),∀x1, ..., xn ∈ [0, 1] :

A(bx1, ..., bxn) = bA(x1, ..., xn)

(3) linear if it homogeneous and shift-invariant
(4) additive if

∀n ∈ N,∀x1, ..., xn, y1, ..., yn ∈ [0, 1] such that x1 + y1, ..., xn + yn ∈ [0, 1] :

A(x1 + y1, ..., xn + yn) = A(x1, ..., xn) +A(y1, ..., yn)

Note that additivity ensures linearity. Because of the boundary conditions any
agop fulfilling at least one of the properties introduced in definition 41 is idem-
potent.

3.2 New class of aggregation operators: γ-agops

3.2.1 Definition of γ-agop

This section is devoted to γ-agops, which are a generalization of the class of
agops in some sense.
We introduce the notion of a γ-agop by means of additional property (Aγ). Let
γ ∈ [0; 1] and ϕγ : [0, 1]→ {0} ∪ [γ, 1] be defined in the following way:

ϕγ(x) =

{
0, if x < γ,
x, if x ≥ γ

Definition 42. A : ∪n∈N[0, 1]n → [0, 1] is an γ-agop on the unit interval if the
following conditions hold:
(A1) A(0, ..., 0) = 0
(A2) A(1, ..., 1) = 1
(Aγ) (∀i = 1, n, γ ∈ [0, 1]) (ϕγ(xi) ≤ ϕγ(yi))⇒ A(x1, ...xn) ≤ A(y1, ..., yn)

Remark 2. In case γ = 0 ϕ0(x) = x and condition (Aγ) reduces to condition
(A3) in definition 31.

Proposition 3.1. If A satisfies (Aγ) and γ > γ
′

then A satisfies (Aγ′ ).
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Proof. Let’s take arbitrary (x1, ..., xn), (y1, ..., yn) satisfying

ϕγ′ (xi) ≤ ϕγ′ (yi), ∀i = 1, n.

Since ϕγ′ (xi) ≤ ϕγ′ (yi) and γ > γ
′
, from the definition of ϕγ it follows that

ϕγ(xi) ≤ ϕγ(yi)

Therefore by condition (Aγ):

A(x1, ..., xn) ≤ A(y1, ..., yn)

and thus (Aγ′ ) is satisfied.

Proposition 3.2. Each γ- agop A satisfies (A3), and hence is an agop.

Proof. Proof immediately follows from the definition of ϕγ

It is intuitively clear that the formula of γ-agop should neutralize all arguments
less than γ. Otherwise the left part of implication (Aγ) will be true, but the
right part will contradict the monotonicity property. The following example
illustrates this fact:

Example 6. Let’s consider vectors x = (0.3, 0.2), y = (0.3, 0.1), ϕ0.3(x) and
an arbitrary binary 0.3-agop A. If we apply transformation ϕ0.3(x) to vectors
x and y we obtain correspondingly vectors x

′
= (0.3, 0) and y

′
= (0.3, 0). Since

y
′ ≤ x

′
according to (Aγ) A(y) ≤ A(x), but this contradicts the monotonicity

property.

The class of γ-agops in the case of some fixed γ > 0 is narrower than the class
of agops. As an example we can mention usual arithmetic mean, which does
not satisfy (Aγ) for any γ > 0. But if we consider γ-agops for an arbitrary
γ ∈ [0, 1] we obtain a class which contains agops. Although γ-agops miss many
important properties they can be useful as we show in the section related to the
generalized aggregation.

3.2.2 Examples of γ- agops

We provide examples of γ-agops. We consider n-ary form for an arbitrary n ∈ N:

Example 7.

A1(x1, ..., xn) =

n∑
i=1

wixi,

where

wi =

{
0, if xi < γ,
1/n, if xi ≥ γ
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Example 8.
A2(x1, ..., xn) = min(w1x1, ..., wnxn),

where

wi =

{
0, if xi < γ,
1, if xi ≥ γ

Example 9.
A3(x1, ..., xn) = max(w1x1, ..., wnxn),

where

wi =

{
0, if xi < γ,
1, if xi ≥ γ

We see that above provided γ-agops are defined on the base of agops (M,min,max).

3.2.3 Equivalence relation induced by ϕγ

Let’s introduce relation ≡ϕγ on [0, 1]n in the following way:

(x1, ..., xn) ≡ϕγ (y1, ..., yn)⇔

⇔ (ϕγ(x1), ..., ϕγ(xn)) = (ϕγ(y1), ..., ϕγ(yn)). (46)

Further we show that ≡ϕγ is an equivalence relation:
reflexivity:

(ϕγ(x1), ..., ϕγ(xn)) = (ϕγ(x1), ..., ϕγ(xn))⇒ (x1, ..., xn) ≡ϕγ (x1, ..., xn)

symmetry:

(x1, ..., xn) ≡ϕγ (y1, ..., yn)⇒

(ϕγ(x1), ..., ϕγ(xn)) = (ϕγ(y1), ..., ϕγ(yn))⇒

(ϕγ(y1), ..., ϕγ(yn)) = (ϕγ(x1), ..., ϕγ(xn))⇒

(y1, ..., yn) ≡ϕγ (x1, ..., xn)

transitivity:

(x1, ..., xn) ≡ϕγ (y1, ..., yn) and (y1, ..., yn) ≡ϕγ (z1, ..., zn)⇒

(ϕγ(x1), ..., ϕγ(xn)) = (ϕγ(y1), ..., ϕγ(yn)) and

(ϕγ(y1), ..., ϕγ(yn)) = (ϕγ(z1), ..., ϕγ(zn))⇒

(ϕγ(x1), ..., ϕγ(xn)) = (ϕγ(z1), ..., ϕγ(zn))⇒

(x1, ..., xn) ≡ϕγ (z1, ..., zn).

When γ < 1 the number of equivalence classes s is infinite. In the particular
case, when γ = 1, s is finite and is determined by the formula:

s = 1 + Cn−1
n + Cn−2

n + ...+ C1
n + 1. (47)
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When n = 2 then we have to deal only with 4 classes with the following repre-
sentatives:

(0; 0), (0; 1), (1; 0), (1; 1).

We will denote equivalence classes Xk, k = 1, 2, ...

Proposition 3.3. If (x1, ..., xn), (y1, ..., yn) ∈ Xk, A is γ-agop thenA(x1, ..., xn) =
A(y1, .., yn)

Proof. Let’s take (x1, ..., xn), (y1, ..., yn) ∈ Xk, then according to the definition
of ≡γ we can write:

ϕγ(x1, ..., xn) = ϕγ(y1, ..., yn).

Let’s assume that
A(x1, ..., xn) 6= A(y1, ..., yn).

Then (Aγ) implies:
A(x1, ..., xn) < A(y1, ..., yn).

The same reasoning will lead us to the inequality:

A(y1, ..., yn) < A(x1, ..., xn).

The above derived inequalities cannot be true at the same time, and this means
that our assumption on A(x1, ..., xn) 6= A(y1, ..., yn) is not true.

As corollaries from proposition 3.3 we obtain the following results:

Corollary 1. γ-agops ∀γ > 0 are not idempotent.

Proof. Proof immediately follows from the result of proposition 3.3 and the
definition of ϕγ :
∀(x, ..., x) : 0 < x < γ,

A(n)(x, ..., x) = A(n)(0, ..., 0) = 0 6= x

Corollary 2. γ-agops ∀γ > 0 are not shift-invariant, are not homogeneous and
hence are not linear.

Proof. Shift-invariance
According to proposition 3.3:
∀(x, ..., x) ∈ [0, 1− b]n, b ∈ (0, 1): x < γ and x+ b = 1 we have

A(n)(x+ b, ..., x+ b) = A(n)(1, ..., 1) = 1

A(n)(x, ..., x) + b = A(n)(0, ..., 0) + b = b < 1

and thus
A(n)(x+ b, ..., x+ b) 6= A(n)(x, ..., x) + b
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Homogeneity
According to proposition 3.3:
∀(x, ..., x) ∈ [0, 1]n, b ∈ (0, 1): x = 1 and bx < γ we have

A(n)(bx, ..., bx) = A(n)(0, ..., 0) = 0

bA(n)(x, ..., x) = bA(n)(1..., 1) = b > 0

and thus
A(n)(bx, ..., bx) 6= bA(n)(x, ..., x)

Absence of linearity follows from the preceding reasoning.

Corollary 3. If Aγ , γ ∈ (0, 1] is a γ-agop and a is its absorbing element then
a = 0 or a > γ.

Proof. Let’s assume that a ∈ (0; γ], then ∀(x1, ..., xn): xi < γ and a ∈ {x1, ..., xn}
we obtain
on the one hand according to the definition of absorbing element:

A(x1, ..., xn) = a 6= 0

but on the other hand according to proposition 3.3:

A(x1, ..., xn) = A(n)(0, ..., 0) = 0

we have obtained a contradiction.

Remark 3. γ-agops provided in the examples 8 and 9 have absorbing elements,
correspondingly 0 and 1, and this coincides with the assertion of corollary 3.

3.3 Order relations

In this section we summarize order relations considered further in the work.
Some of them are reflexive, antisymmetric and transitive. While others are
transitive and asymmetric (strict order relation). For the sake of brevity all of
them are called further order relations.
All observed order relations are divided into two groups: vertical orders and
horizontal orders. If order relation is based on comparison of fuzzy sets values
then we call it vertical order relation, because it acts on vertical axis y. If order
relation compares x values then we call it horizontal order relation, because
horizontal axis is used. We refer to already known order relations and we also
introduce new classes of order relations. Together with the definition of an order
relation we specify the greatest and the least elements (w.r.t. the order relation)
denoted correspondingly 1̃(x) and 0̃(x). Sometimes we define the whole classes.
Hereinafter in this section F (R) = {P |P : R → [0, 1]} is the set of all fuzzy
subsets of R. Different order relations may have particular requirements to the
elements of F (R) and also to the domain. We introduce clarifications if it is
required.
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3.3.1 Vertical order relations ⊆F1 and ⊆αF1

We recall definition of fuzzy sets order by inclusion. It is naturally based on the
classical definition of fuzzy subsets (definition 2), see e.g. [47]:

Definition 43. [47] P,Q ∈ F (R),

P ⊆F1
Q⇔ (∀x ∈ R)(P (x) ≤ Q(x)).

Then
1̃(x) = 1,∀x ∈ R,

0̃(x) = 0,∀x ∈ R

are correspondingly the greatest and the least elements w.r.t. ⊆F1 .
We introduce order ⊆αF1 on F (R) in the following way:

Definition 44. Let α ∈ [0, 1], P,Q ∈ F (R)

P ⊆αF1 Q⇔ (∀x ∈ R)(P (x) ≥ α⇒ P (x) ≤ Q(x)).

The greatest element w.r.t. ⊆αF1 is defined in the following way:

1̃(x) = 1,∀x ∈ R. (48)

Let
Θ = {0̃(x)|0̃(x) ≤ α,∀x ∈ R}. (49)

Capital Θ denotes the class of elements, where 0̃(x) = 0,∀x ∈ R is the least.
Provided the essence of the parameter α (it ”ignores” value if it is less than
α) we consider all elements of Θ to be equivalent. Further speaking about
boundary condition of a generalized agop (w.r.t.⊆αF1

) we require that ∀n ∈ N
n-ary aggregation of arbitrary elements from this class should be equal to an
element from this class, then we say that the boundary condition is satisfied
(accurate requirement is provided in the sequel).
Further we call Θ the class of minimal elements.
As one can see 1̃ for ⊆F1 and ⊆αF1 is defined in the same manner. And 0̃ for
⊆F1 is one particular representative of the class of minimal elements for ⊆αF1.
It immediately follows from order definitions that ⊆F1 is a particular case of
⊆αF1 (when α = 0).

Remark 4. Order relation ⊆F1 is reflexive, antisymmetric and transitive.
While ⊆αF1 is transitive and asymmetric.

3.3.2 Horizontal order relations ≺I and ⊆αF2

Order relations presented in this section act on fuzzy sets defined on the real
line closed intervals, therefore the assumption [a; b] ⊆ R and correspondingly
F ([a, b]) = {P |P : [a, b]→ [0, 1]} is required.
At the beginning we recall order relation introduced by Bodenhofer in [2] and
modified by Takači in [47]. We adopt these definitions for X = [a, b] ⊆ R:

51



Definition 45. [2] Let P ∈ F ([a, b]), a fuzzy superset of P denoted by LTR(P)
is defined as:

LTRP (x) = sup{P (y)|y < x}

Similarly, RTL(P) is defined as:

RTLP (x) = sup{P (y)|x < y}

LTR(P) is actually the smallest fuzzy superset of P with a non-decreasing mem-
bership function. Likewise, LTR(P) is the smallest fuzzy superset of P with a
non-increasing membership function.

Definition 46. [2] If P,Q ∈ F ([a, b]) then we define an ordering ≺I on F([a,b])
in the following way:

P ≺I Q⇔ LTRQ ⊆F1
LTRP and RTLP ⊆F1

RTLQ

It can be easily seen that two fuzzy sets with different heights cannot be
compared. Thus, a new ordering ≺”

I was proposed by Takači. First, a new set
dP e is defined:

dP e (x) =

{
1, if x : P (x) = height(P ),
P (x), otherwise

For an arbitrary P,Q ∈ F ([a, b]), a new ordering which can be applied to larger
number of fuzzy sets was proposed:

Definition 47. [47] If P,Q ∈ F ([a, b]) then we define an ordering ≺”
I on F([a,b])

in the folllowing way:
P ≺”

I Q⇔ dP e ≺I dQe

0̃(x) =

{
1, if x = a
0 otherwise.

1̃(x) =

{
1, if x = b
0 otherwise.

Now we introduce another horizontal order relation ⊆αF2
defined on F ([a, b]) in

the following way:

Definition 48. Let α ∈ (0, 1], P,Q ∈ F ([a, b])

P ⊆αF2
Q⇔ P

α ≤ Qα,

where

Pα = {x : P (x) ≥ α}, minPα = Pα, maxPα = P
α

Qα = {x : Q(x) ≥ α}, minQα = Qα, maxQα = Q
α
.
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The classes

Θ = {0̃(x)|0̃(x) = 1, if x = a and 0̃(x) < α if x ∈ (a, b]},

Σ = {1̃(x)|1̃(x) = 1, if x = b and 1̃(x) < α if x ∈ [a, b)}

we will call correspondingly the class of minimal and maximal elements. The
least element is defined in the following way:

0̃(x) =

{
1, if x = a
0, otherwise

but the greatest element does not exist.
The necessity of the whole class instead of just one the least (or the greatest)
element is motivated by the essence of parameter α. Further in the context of
generalized aggregation (w.r.t.⊆αF2

) we require that ∀n ∈ N n-ary aggregation
of an arbitrary element from the class of minimal (maximal) elements is equal
to an arbitrary element from the same class, if this holds we say that boundary
condition is satisfied.
It is clear that ∀0̃ ∈ Θ (correspondingly ∀1̃ ∈ Σ), ∀α∗ ∈ [α, 1] α∗-cut contains
exactly one element - a (correspondingly b):

0̃α
∗

= {a} and a = 0̃
α∗

= 0̃
α∗

,

1̃α
∗

= {b} and b = 1̃
α∗

= 1̃
α∗

.

Property of α-cuts implies the following result:

P ⊆α1

F2
Q⇒ P ⊆α2

F2
Q, ∀α2 > α1.

Remark 5. Order relation ≺”
I is reflexive, antisymmetric and transitive. While

⊆αF2
is trasitive and asymmetric.

3.4 Auxiliary results

3.4.1 Generalization of some results for continuous t-norms

Further we generalize results provided in section 1.4 and namely results of the-
orems 1.3, 1.4 and 1.6 are formulated for an arbitrary continuous t-norm. So
we extend operations to the set F (R) by means of continuous t-norm.

Theorem 3.4. If ◦ : R× R → R is a continuous operation, T is a continuous
t-norm and P,Q ∈ F (R) are upper semicontinuous fuzzy sets with bounded α-
cuts ∀α > 0 then for all z ∈ R, z = x ◦ y ∃x0, y0 ∈ R such that z = x0 ◦ y0 and
(P ◦Q)(z) = T (P (x0), Q(y0)).

Proof. According to the extension principle

(P ◦Q)(z) = sup
x◦y=z

T (P (x), Q(y)).
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The case when (P ◦Q)(z) = 0 is evident. Therefore we assume that (P ◦Q)(z) =
α > 0 and

T (P (x), Q(y)) < α = sup
x,y∈R:x◦y=z

T (P (x), Q(y))

for all x, y : x ◦ y = z.
According to the definition of supremum there exists a sequence (αn): αn → α
from below and moreover we can construct sequences (xn), (yn) : ∀n xn ◦yn = z
and T (P (xn), Q(yn)) ≥ αn.
P,Q are upper semicontinuous fuzzy sets with bounded α-cuts Pα, Qα ∀α > 0,
this implies that ∀α > 0 α-cuts are closed and bounded intervals and as a result
sequences (xn), (yn) are bounded. It is a known fact that a bounded sequence
has a convergent subsequence, therefore ∃(xnk) ⊆ (xn) which converges to some
point x0. Obviously

x0 ∈
⋂
n

Pαn .

Further we consider (ynk) a subsequence of (yn) with corresponding to (xnk)
numbers. Again (ynk) is a bounded sequence in compact sets Qαn and we can
extract (ynkl ):

(ynkl ) ⊆ (ynk) and ynkl → y0 when l→∞.

We go back to (xnk) and extract subsequence (xnkl ) with corresponding to
(ynkl ) numbers. xnkl → x0 (as a subsequence of the convergent sequence). The
continuity of ◦ and constructions of (xn), (yn) allow us to state that x0 ◦y0 = z.
Further we assume that

P (xnkl ) = βnkl

Q(ynkl ) = γnkl .

As (βnkl ), (γnkl ) are bounded sequences, then we can extract convergent sub-
sequences (similar reasoning like above allows us to extract subsequences with
the same index numbers):

(βm) ⊆ (βnkl ) and βm → β when m→∞

(γm) ⊆ (γnkl ) and γm → γ when m→∞.

By construction of (βm), (γm) we have:

T (βm, γm) ≥ αm.

By construction of the sequence (αm) αm → α from below.
By continuity of ◦:

x0 ◦ y0 = z,

by continuity of T :
T (β, γ) ≥ α.
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Since P (xm) ≥ βm,∀m this implies that P (x0) ≥ βm,∀m and as a result
P (x0) ≥ β, and similarly Q(y0) ≥ γ.
Using monotonicity of T we can write:

T (P (x0), Q(y0)) ≥ T (β, γ) ≥ α,

thus we have obtained that T (P (x0), Q(y0)) ≥ α, but α is the supremum, so
only the equality is possible.

Theorem 3.5. If ◦ : R×R→ R is a continuous operation, T is a continuous t-
norm and P,Q ∈ F (R) are upper semicontinuous fuzzy sets with bounded α-cuts
∀α > 0 then

(P ◦Q)T (α,β) = Pα ◦Qβ .
Proof. We take z ∈ (P ◦Q)T (α,β) then according to theorem 3.4 ∃x, y ∈ R :

z = x ◦ y, x ∈ Pα, y ∈ Qβ .

The extension principle implies that z ∈ Pα ◦Qβ and thus

(P ◦Q)T (α,β) ⊂ Pα ◦Qβ .

Now we assume that z ∈ Pα ◦ Qβ then ∃x ∈ Pα and y ∈ Qβ : z = x ◦ y,
but the extension principle implies that (P ◦ Q)(z) ≥ T (α, β) and thus z ∈
(P ◦Q)T (α,β)

Theorem 3.6. If ◦ : R× R → R is a continuous operation, T is a continuous
t-norm and P,Q ∈ FQ(R) then P ◦Q ∈ FQ(R).

Proof. First we show that if P = [a, b] and Q = [c, d] then P ◦ Q is a closed
interval.
Indeed, if P,Q are closed intervals then P ×Q is a closed rectangle in the plane
R2. It is known from Topology that rectangle is a compact and connected set.
◦ is a continuous two argument function then the image of P ×Q
◦(P ×Q) = P ◦Q is a compact R subset.
On the other hand the image of connected set P ×Q is a connected R subset,
and thus P ◦Q is a compact and connected set.
But it is known from Topology that only closed bounded intervals are subsets
of R, which are compact and connected simultaneously.
Now we consider an arbitrary situation when P,Q ∈ FQ(R), then according to
theorem 3.5 (P ◦Q)T (α,β) = Pα ◦Qβ ,∀α, β > 0.
Since P,Q ∈ FQ(R) therefore ∀α, β > 0 the cuts Pα, Qβ are closed and bounded
intervals.
Above proved allows us to state that ∀T (α, β) > 0

(P ◦Q)T (α,β) = Pα ◦Qβ

are closed and bounded intervals as thus P ◦Q ∈ FQ(R).

Remark 6. Results of theorems 3.4, 3.5 and 3.6 hold for the case n > 2. We
do not provide proofs for those cases here as they employ the same ideas and
are much more complicated from the notations prospective.
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3.4.2 Upper semicontinuous transformation of a function

We provide construction which transforms an arbitrary non continuous function
into an upper semicontinuous function in the sense of definition 8.
The idea of construction was proposed by professor A.Šostaks.
Further the construction will be used for transformation of an output of gagop
into an upper semicontinuous fuzzy set.
Let’s assume that f : R → [a, b] is an arbitrary function, we define the class of
functions

Z = {z : R→ [a, b]|z(x) ≥ f(x)∀x ∈ R and z(x) is upper semicontinuous}.
(50)

Now we take pointwise infimum of the class Z for all x ∈ R:

inf
z∈Z

z(x0) = f̃(x0),∀x0 ∈ R (51)

According to R. Engelking ([10], p.87) f̃(x) is an upper semicontinuous function
and it is the smallest upper semicontinuous function which is greater or equal
to f(x). Thus f̃(x) coincides with f(x) in the points where the latest is con-
tinuous or upper semicontinuous and f̃(x) ”makes” f(x) upper semicontinuous
otherwise.

3.5 Generalized aggregation: introduction

The problem of aggregation can be generalized if we use fuzzy subsets as input
information. Functions are aggregated in this case. We are further developing
this approach, which is initiated by Takači in [47]. However other interesting,
conceptually different approaches of generalization can be found in literature,
e.g. in [30],[43],[52] and others.
General results related to the gagops, such as definition, definition of properties
and construction methods, employ the set F (R), i.e. the set of all fuzzy subsets
defined on R. Within the framework of detailed study on pointwise extension
and T -extension (sections 3.6-3.9) we put additional requirements on elements
of F (R). Namely F (R) = {P |P : R→ [0, 1]} in the sequel will denote the set of
all upper semicontinuous fuzzy sets with bounded α-cuts for every α > 0.

3.5.1 Definition of a generalized agop

We give the definition of a gagop ([47]). This notion is the base of our further
considerations.
Let ≺ be some order relation on F (R) with the least element 0̃ ∈ F (R) and the
greatest element 1̃ ∈ F (R).

Definition 49. [47] A mapping Ã : ∪n∈NF (R)n → F (R) is called a generalized
aggregation operator w.r.t. the order relation ≺, if for every n ∈ N the following
conditions hold:
(Ã1) Ã(0̃, ..., 0̃) = 0̃
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(Ã2) Ã(1̃, ..., 1̃) = 1̃
(Ã3) (∀i = 1, n) (Pi ≺ Qi)⇒ Ã(P1, ..., Pn) ≺ Ã(Q1, ..., Qn),
where P1, ..., Pn, Q1, ..., Qn ∈ F (R).

Gagop can be presented as a family Ã = (Ã(n))n∈N, usually we consider an
arbitrary n-ary restriction of this family.
We use convention Ã(1)(P (x)) = P (x) ∀P (x) ∈ F (R).

Remark 7. We do not restrict definition 49 to the particular type of order
relations. Relation ≺ can be a partial ordering with properties of reflexivity,
antisymmetry and transitivity or it can be a strict ordering satisfying transitivity
and asymmetry.

Further in the work we consider also the following sets of inputs: FQ(R) -
fuzzy quantities, FI(R) - fuzzy intervals and FN(R) - fuzzy numbers. Some-
times we consider special subclass of FI(R), i.e., the set of trapezoidal intervals,
denoted FTI(R), and special subclass of FN(R), i.e., the set of triangular num-
bers, denoted FTN(R).
According to definition 49 the set of output values of a gagop should be the same
like the class of input objects. Therefore additionally to properties (Ã1)− (Ã3)
we should verify the coherence of the set of inputs and definition of gagop.
For the mentioned sets the following inclusions hold:

FTN(R) ⊆ FN(R) ⊆ FI(R) ⊆ FQ(R) ⊆ F (R)

and
FTI(R) ⊆ FI(R).

Such a narrowing of set of inputs is necessary in the cases when a property does
not hold for F (R) but it holds for the smaller class.
The study given in the subsequent sections flashes gagops from the most impor-
tant aspects and provides foundations of the theory of gagops.

3.5.2 Generalization methods

Takači in [47] summarizes methods of generalization of agops. We recall these
results here and adopt them to the fuzzy sets defined on the real line. The
author in [47] employs an arbitrary universe X for the definition of the input
information.
Let P1, ..., Pn ∈ F (R), Ã : ∪n∈NF (R)n → F (R) and A be an ordinary agop on
the unit interval:

Definition 50. [47] Ã is a pointwise extension of A provided that:

∀x ∈ R Ã(P1, ..., Pn)(x) = A(P1(x), ..., Pn(x)).

Ã(P1, ..., Pn) is the fuzzy set obtained as a result of application of the operator
Ã to the fuzzy sets P1, ..., Pn.
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Definition 51. [47] Let T be an arbitrary t-norm. Ã is a T -extension of an
agop A provided that:

Ã(P1, ..., Pn)(x) = sup{T (P1(x1), ..., Pn(xn))|(x1, ..., xn) ∈ Rn : A(x1, ..., xn) = x}.

Definition 52. [47] Ã is defined as an A-extension of some increasing operator
φ : Rn → R if:

Ã(P1, ..., Pn)(x) = sup{A(P1(x1), ..., Pn(xn))|x = φ(x1, ..., xn), xi ∈ Pi}.

It is worth to mention that definitions 50, 51, 52 provide a possible construction
method of a gagop. And some order relation ≺ should be specified in order to
determine if they define a gagop.

3.5.3 Properties of a generalized agop

We define mathematical properties of a gagop Ã : ∪n∈NF (R)n → F (R) w.r.t.
some order relation ≺ with the least element 0̃ ∈ F (R) and the greatest element
1̃ ∈ F (R). Crisp case definitions from section 3.1.2 are careffully generalized
and adopted. Also some related results are proven.
Ã(n) stands for an n-ary restriction of a gagop. Normally we will not use the
index n, when we consider an arbitrary restriction, only in some cases when
misunderstanding can arise. E.g. we use the following notations:

Ã(P1, ..., Pn)

Ã(n)(P, ..., P ).

The number of arguments in the first case shows that it is a restriction to an
n-ary aggregation. The second case needs clarifications therefore we use the
index n.

Definition 53 (IDEMPOTENCE). An element P ∈ F (R) is called an Ã-
idempotent element whenever Ã(n)(P, ..., P ) = P,∀n ∈ N. Ã is called an idem-

potent gagop if each P ∈ F (R) is an idempotent element of Ã.

Definition 54 (SYMMETRY). A gagop Ã : ∪n∈NF (R)n → F (R) is called a
symmetric gagop if

∀n ∈ N,∀P1, ..., Pn ∈ F (R) : Ã(P1, ..., Pn) = Ã(Pπ(1), ..., Pπ(n))

for all permutations π = (π(1), ..., π(n)) of (1, ..., n).

Definition 55 (ASSOCIATIVITY). A gagop Ã : ∪n∈NF (R)n → F (R) is asso-
ciative if

∀n,m ∈ N,∀P1, ..., Pn, Q1, ..., Qm ∈ F (R) :

Ã(P1, ..., Pn, Q1, ..., Qm) = Ã(Ã(P1, ..., Pn), Ã(Q1, ..., Qm)).
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Definition 56 (BISYMMETRY). A gagop Ã : ∪n∈NF (R)n → F (R) is bisym-
metric if

∀n,m ∈ N,∀P11, ..., Pmn ∈ F (R) :

Ã(mn)(P11, ..., Pmn) = Ã(m)(Ã(n)(P11, ..., P1n), ..., Ã(n)(Pm1, ..., Pmn)) =

= Ã(n)(Ã(m)(P11, ..., Pm1), ..., Ã(m)(P1n, ..., Pmn)).

It directly follows from definitions 54, 55 and 56 that bisymmetry of a gagop is
implied by associativity and symmetry regardless the way of construction.

Definition 57 (NEUTRAL ELEMENT). An element E ∈ F (R) is called a
neutral element of Ã if ∀n ∈ N,∀P1, ..., Pn,∈ F (R) if Pi = E for some i ∈
{1, ..., n} then

Ã(P1, ..., Pn) = Ã(n−1)(P1, ..., Pi−1, Pi+1, ..., Pn).

The following result holds for the neutral element of a gagop:

Proposition 3.7. If Ã : ∪n∈NF (R)n → F (R) is a gagop w.r.t. ≺ and E ∈ F (R)
is a neutral element of Ã then it is unique.

Proof. Let’s assume that E and E∗ are neutral elements of Ã and E 6= E∗.
We consider an arbitrary n ∈ N and vector (P1, ..., Pn) s.t.:

Pi =

{
E, if i ∈ I1
E∗, if i ∈ I2,

where I1 6= ∅, I2 6= ∅ and I1 ∪ I2 = {1, ..., n}.
Using neutrality of Ã versus E we obtain:

Ã(P1, ..., Pn) = Ã(n−1) = ... = Ã(k)(E
∗, ..., E∗) (52)

now we apply neutrality of E∗, convention Ã(1)(P ) = P and continue (52):

Ã(k)(E
∗, ..., E∗) = Ã(k−1)(E

∗, ..., E∗) = ... = Ã(1)(E
∗) = E∗. (53)

In the same way first employing neutrality of E∗ and then neutrality of E we
obtain:

Ã(P1, ..., Pn) = Ã(n−1) = ... = Ã(s)(E, ..., E)

Ã(s)(E, ..., E) = Ã(s−1)(E, ..., E) = ... = Ã(1)(E) = E. (54)

We have obtained a contradiction.

Definition 58 (ABSORBING ELEMENT). An element R ∈ F (R) is called an
absorbing element of Ã if

∀n ∈ N,∀P1, ..., Pn,∈ F (R) : R ∈ {P1, ..., Pn} ⇒ Ã(P1, ..., Pn) = R.

The absorbing element like the neutral element is unique if it exists:
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Proposition 3.8. If Ã : ∪n∈NF (R)n → F (R) is a gagop w.r.t. ≺ and R ∈ F (R)
is the absorbing element of Ã, then it is unique.

Proof. Let’s assume that R and R∗ are absorbing elements of Ã and R 6= R∗.
We consider an arbitrary n ∈ N and vector (P1, ..., Pn) s.t. R,R∗ ∈ {P1, ..., Pn}.
R is the absorbing element therefore according to definition 58

Ã(P1, ..., Pn) = R. (55)

R∗ as well is the absorbing element of Ã, therefore:

Ã(P1, ..., Pn) = R∗. (56)

We have obtained contradiction, thus our assumption on existence of R∗ is
incorrect.

Definition 59 (OTHER). A gagop Ã : ∪n∈NF (R)n → F (R) is said to be:
(1) shift-invariant if

∀n ∈ N,∀B ∈ F (R),∀P1, ..., Pn ∈ F (R) :

Ã(P1 +B, ..., Pn +B) = Ã(P1, ..., Pn) +B

(2) homogeneous if

∀n ∈ N,∀B ∈ F (R),∀P1, ..., Pn ∈ F (R) :

Ã(BP1, ..., BPn) = BÃ(P1, ..., Pn)

(3) linear if it homogeneous and shift-invariant.

We note that addition and multiplication in definition 59 are extended by
means of extension principle based on an arbitrary continuous t-norm.
We have restricted ourselves to the most interesting properties, which character-
ize gagops in the most broad sense. Other properties of gagops can be defined
in the same manner, just carrying over crisp definitions.

3.6 Generalized aggregation: Pointwise extension

We start the study of a pointwise extension of an arbitrary agop A in the next
subsections. At the beginning we shortly review possible sets of inputs, later we
consider properties and we finalize the section considering a pointwise extension
of an arbitrary agop and an arbitrary γ-agop w.r.t. to order relations defined
in section 3.3.
We recall that

Ã : ∪n∈NF (R)n → F (R)

is a pointwise extension of an arbitrary agop A provided that:

∀x ∈ R Ã(P1, ..., Pn)(x) = A(P1(x), ..., Pn(x)). (57)

Hereinafter F (R) = {P |P : R→ [0, 1]} will denote the set of all upper semicon-
tinuous fuzzy sets with bounded α-cuts for every α > 0.
Further when we speak about particular agops A we use notations introduced
in section 3.1, for the notations of t-norms we refer to section 1.5.
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3.6.1 The set of inputs

When A is a continuous agop, the result of formula (57) (for the finite number
of inputs) is an upper semicontinuous fuzzy set with bounded α-cuts ∀α > 0, so
the output belongs to F (R). If A is not continuous then upper semicontinuity of
the output is lost, but we can apply construction introduced in section 3.4.2 and
thus we harmonize the set of inputs F (R) and definition of pointwise extension
given by formula (57).
If we take inputs from FQ(R) then applying formula (57) we can lose the con-
vexity of the aggregated result. The following example illustrates this: let’s
P1, P2 ∈ FQ(R) and P1, P2 have disjunctive supports then Ã(P1, P2), where
A > min is not a convex fuzzy set.
The convexity is the necessary characteristic of the elements of the classes
FQ(R), F I(R), FN(R), FTN(R), FTI(R), therefore none of them can be taken
in the role of the set of inputs of a pointwise extension of an arbitrary agop
without serious restrictions.
Thus F (R) is the only possible set of inputs among the sets defined previously,
and R is the only thing open for changes, e.g. we can take [a, b] ⊆ R instead of
R.

3.6.2 Properties of a pointwise extension

We assume in this section that ≺ is the order relation defined on F (R) and
Ã : ∪n∈NF (R)n → F (R) defined by formula (57) is a gagop w.r.t. ≺.
Further in this section we determine and prove necessary conditions for Ã to be
symmetric, associative, bisymmetric and idempotent gagop, also conditions for
the existence of neutral and absorbing elements are considered.

Proposition 3.9. Let Ã be a pointwise extension of A, then the following
assertions hold:
(1) if A is symmetric then Ã is symmetric,
(2) if A is associative then Ã is associative,
(3) if A is bisymmetric then Ã is bisymmetric,
(4) if A is idempotent then Ã is idempotent.

Proof. In order to prove (1) we need to show that ∀P1, ..., Pn ∈ F (R),∀x ∈
R,∀n ∈ N :

Ã(P1, ..., Pn)(x) = Ã(Pπ(1), ..., Pπ(n))(x) (58)

for all permutations π = (π(1), ..., π(n)) of (1, ..., n).
Due to definition of Ã and symmetry of A we can write:

Ã(P1, ..., Pn)(x) = A(P1(x), ..., Pn(x)) =

= A(Pπ(1)(x), ..., Pπ(n)(x)) (59)

for an arbitrary permutation π = (π(1), ..., π(n)) of (1, ..., n).
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We again recall definition of Ã and continue (59):

A(Pπ(1)(x), ..., Pπ(n)(x)) = Ã(Pπ(1), ..., Pπ(n))(x). (60)

The proof of (2) and (3) is analogous to (1) and we skip it here.
In order to prove (4) we need to show that ∀Pi ∈ F (R),∀x ∈ R,
∀n ∈ N:

Ã(n)(Pi, ...Pi)(x) = Pi(x). (61)

It immediately follows from the definition of Ã and idempotence of A:

Ã(n)(Pi, ...Pi)(x) = A(n)(Pi(x), ..., Pi(x)) = Pi(x). (62)

Proposition 3.10. If Ã is a pointwise extension of A, a and e are correspond-
ingly absorbing and neutral elements of A, then the following assertions hold:
(1) R(x) = a, ∀x ∈ R is the absorbing element of Ã,
(2) E(x) = e, ∀x ∈ R is the neutral element of Ã.

Proof. In order to prove (1) we need to show that

∀P1, ..., Pn ∈ F (R),∀x ∈ R,∀n ∈ N

Ã(P1, ..., Pn)(x) = R(x) (63)

if R ∈ {P1, ..., Pn}.
Let’s consider an arbitrary x ∈ R, then according to the definition of Ã we can
write:

Ã(P1, ..., Pn)(x) = A(P1(x), ..., Pn(x)). (64)

Since R ∈ {P1, ..., Pn} and R(x) = a,∀x ∈ R, one of A(P1(x), ..., Pn(x)) argu-
ments is a.
Since a is the absorbing element of A, then (64) can be continued in the following
way:

A(P1(x), ..., Pn(x)) = a (65)

for an arbitrary chosen x ∈ R.
Thus, we have received that

∀P1, ..., Pn ∈ F (R),∀x ∈ R

Ã(P1, ..., Pn)(x) = a (66)

if R ∈ {P1, ..., Pn}.
And according to proposition 3.8 R is the unique absorbing element.
In order to prove (2) we need to show that

∀P1, ..., Pn ∈ F (R),∀x ∈ R,∀n ∈ N
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Ã(n)(P1, ...Pi, ..., Pn)(x) = Ã(n−1)(P1, ...Pi−1, Pi+1..., Pn)(x) (67)

if Pi = E for some i ∈ {1, ..., n}.
We consider an arbitrary x ∈ R and assume that Pi(x) = E(x) = e,∀x for some
i ∈ {1, ..., n}, then exploiting definition of Ã we can write:

Ã(n)(P1, ...Pi, ..., Pn)(x) = A(n)(P1(x), ..., Pi(x), ..., Pn(x)). (68)

Since i-th argument of A(n)(P1(x), ..., Pi(x), ..., Pn(x)) is e and can be omitted
as it is the neutral element of A.
Thus we continue (68) in the following way:

A(n)(P1(x), ..., Pi(x), ..., Pn(x)) = A(n−1)(P1(x), ..., Pi−1(x), Pi+1(x)..., Pn(x)) =

= Ã(n−1)(P1, ...Pi−1, Pi+1, ..., Pn)(x). (69)

We remind that throughout the work we follow the convention A(1)(x) = x,

thus Ã(1)(P ) = P and according to proposition 3.7 E is the unique neutral
element.

3.6.3 Shift - invariance of a pointwise extension

We explore shift-invariance property of a pointwise extension

Ã : ∪n∈NF (R)n → F (R)

which is a gagop w.r.t. some order relation ≺ defined on F (R).
Ã is a shift invariant if

∀n ∈ N,∀B ∈ F (R),∀P1, ..., Pn ∈ F (R) :

Ã(P1 +B, ..., Pn +B) = Ã(P1, ..., Pn) +B. (70)

We have already established that F (R) is the only possible set of inputs, but
similarly like before we assume that all intermediary operations do not lead out
of F (R), i.e. P1, ..., Pn and B are chosen appropriately.
We consider a pointwise extension of shift-invariant agops. Shift-invariance of
an agop implies its idempotence and as a result compensation property, thus,
for the agops observed in this section the following holds:

(min(x1, ..., xn) ≤ A(x1, ..., xn) ≤ max(x1, ..., xn))⇒ (T ≤ A), (71)

where T is a contiuous t-norm used for the extension of an addition operation.
Further we specify A, T and figure out cases where shift-invariance holds or
does not hold.
First we consider a case when A = T . Evidently, the equality is possible only
when A = T = min. The following result holds:

Proposition 3.11. Let Ã : ∪n∈NF (R)n → F (R) be the pointwise extension of
A = min and T = TM , then the folowing inequaliy holds:

(Ã(P1, ..., Pn) +B)(z) ≤ Ã(P1 +B, ..., Pn +B)(z),∀z ∈ R,∀n ∈ N.
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Proof. We consider an arbitrary n ∈ N and z ∈ R such that (Ã(P1, ..., Pn) +
B)(z) > 0 and Ã(P1 +B, ..., Pn +B)(z) > 0.
Consider (Ã(P1, ..., Pn) +B)(z):
according to theorem 3.4 ∃x∗, y∗ : x∗ + y∗ = z and

(Ã(P1, ..., Pn) +B)(z) = T (Ã(P1, ..., Pn)(x∗), B(y∗)). (72)

We use definition of a pointwise extension and its idempotence implied by shift-
invariance of A and continue formula (72):

(Ã(P1, ..., Pn) +B)(z) = T (Ã(P1, ..., Pn)(x∗), B(y∗)) =

= T (A(P1(x∗), ..., Pn(x∗)), B(y∗)) =

= T (A(P1(x∗), ..., Pn(x∗)), A(n)(B(y∗), ..., B(y∗))). (73)

Since A = T , we substitute A by T and apply t-norm associativity and symme-
try:

(Ã(P1, ..., Pn) +B)(z) = T (T (P1(x∗), ..., Pn(x∗)), T(n)(B(y∗), ..., B(y∗))) =

= T (T (P1(x∗), B(y∗)), ..., T (Pn(x∗), B(y∗))). (74)

Now we consider Ã(P1 +B, ..., Pn +B)(z):
according to the definition of a pointwise extension :

Ã(P1 +B, ..., Pn +B)(z) = A((P1 +B)(z), ..., (Pn +B))(z). (75)

We refer to theorem 3.4 and according to it ∀i = 1, n ∃xi, yi : xi + yi = z and

(Pi +B)(z) = T (Pi(xi), B(yi)), (76)

thus

A((P1 +B)(z), ..., (Pn +B))(z) = A(T (P1(x1), B(y1)), ..., T (Pn(xn), B(yn))).
(77)

Since A = T it allows us to continue formula (77):

A((P1 +B)(z), ..., (Pn +B))(z) = T (T (P1(x1), B(y1)), ..., T (Pn(xn), B(yn))).
(78)

According to the definition of xi, yi ∀i = 1, ..., n

T (Pi(xi), B(yi)) ≥ T (Pi(x
∗), B(y∗)),∀i = 1, n, (79)

therefore according to the monotonicity of T we obtain that (78) ≥ (74) and
thus

Ã(P1 +B, ..., Pn +B)(z) ≥ (Ã(P1, ..., Pn) +B)(z). (80)

The graphical example provided below shows that the strict inequality observed
in proposition 3.11 is possible.
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Example 10. Let Ã be a pointwise extension of min(x1, x2) = min(x1, x2),
TM (x1, x2) = min(x1, x2), P1 = (10, 20, 30), P2 = (30, 40, 50), B = (40, 50, 60) -
triangular numbers.
Figure below (Ã(P1 +B,P2 +B) is marked in red and Ã(P1, P2) +B is marked
in black on the graph) shows that Ã(P1 +B,P2 +B) > Ã(P1, P2) +B.

Figure 1: Pointwise extension of min(x1, x2) = min(x1, x2)

Thus Ã being the pointwise extension of min is not a shift-invariant gagop,
when T = TM .

Proposition 3.12. Let Ã : ∪n∈NF (R)n → F (R) be the pointwise extension of
A = max and T is an arbitrary continuous t-norm, then Ã is a shift-invariant
gagop.

Proof. We need to show that

Ã(P1 +B, ..., Pn +B)(z) = (Ã(P1, ..., Pn) +B)(z),∀z ∈ R. (81)

We consider an arbitrary z ∈ R: Ã(P1+B, ..., Pn+B)(z) > 0 and (Ã(P1, ..., Pn)+
B)(z) > 0.
According to the definition of pointwise-extension

Ã(P1 +B, ..., Pn +B)(z) = max((P1 +B)(z), ..., (Pn +B)(z)). (82)

According to theorem 3.4 ∀i = 1, ..., n ∃ xi, yi : xi + yi = z and

(Pi +B)(z) = T (Pi(xi), B(yi)), (83)

we put the results of formula (83) into (82) and obtain the following result:

Ã(P1 +B, ..., Pn +B)(z) = max(T (P1(x1), B(y1)), ..., T (Pn(xn), B(yn))) =

= T (Ps(xs), B(ys)), (84)

where 1 ≤ s ≤ n.
Now we consider (Ã(P1, ..., Pn) + B)(z), according to theorem 3.4 ∃x∗, y∗ :
x∗ + y∗ = z and

(Ã(P1, ..., Pn) +B)(z) = T (Ã(P1, ..., Pn)(x∗), B(y∗)). (85)
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According to the definition of pointwise extension:

Ã(P1, ..., Pn)(x∗) = max(P1(x∗), ..., Pn(x∗)) = Pk(x∗), (86)

where 1 ≤ k ≤ n.
Thus we obtain:

(Ã(P1, ..., Pn) +B)(z) = T (Pk(x∗), B(y∗)). (87)

It is obvious that Ã(P1 +B, ..., Pn +B)(z) ≥ (Ã(P1, ..., Pn) +B)(z), because:

T (Ps(xs), B(ys))) ≥ T (Pi(xi), B(yi))∀i = 1, n (88)

and in particular

T (Ps(xs), B(ys)) ≥ T (Pk(xk), B(yk)). (89)

But according to the definition of xk, yk:

T (Pk(xk), B(yk)) ≥ T (Pk(x∗), B(y∗)). (90)

If we assume, that Ã(P1 +B, ..., Pn+B)(z) > (Ã(P1, ..., Pn) +B)(z) and return
to formulas (84), (87) we get:

T (Ps(xs), B(ys)) > T (Pk(x∗), B(y∗)). (91)

But then ∃xs, ys : xs + ys = z and

T (Ã(P1, ..., Pn)(xs), B(ys)) = T (max(P1(xs), ..., Pn(xs)), B(ys))

≥ T (Ps(xs), B(ys)) > T (Pk(x∗), B(y∗)) = (Ã(P1, ..., Pn) +B)(z) (92)

but this impossible due to the definition of x∗, y∗.

The results of this section allow us to state that in general, i.e. for an arbitrary
shift-invariant agop and an arbitrary continuous t-norm pointwise extension is
not a shift-invariant gagop.
The proof of propositions 3.11 and 3.12 can be redone in the same manner with-
out any changes for another continuous operations e.g. multiplication. Thus we
can state that Ã is a homogeneous and linear gagop when A = max and T is an
arbitrary continuous t-norm and it is not homogeneous and linear in general.
All properties of Ã observed in the preceding section showed good correspon-
dence with analogous properties of an agop A, i.e. symmetry of A implied
symmetry of Ã and so on. Shift-invariance does not comply with this scheme,
because it employs extension of an addition via extension principle, and this is
not harmonized with the definition of Ã. Thus shift-invariance of Ã is not obvi-
ous and even uncommon. We face similar problems when consider homogeneity
and linearity.
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3.6.4 Pointwise extension w.r.t. vertical order relations

Studing properties of Ã we assumed that it is a gagop w.r.t. some order relation.
Now we study Ã from the prospective to preserve boundaries and monotonicity,
i.e. we show that there exist order relations such that Ã is a gagop w.r.t. them.
We start with vertical orders defined previously in the work. It is proved (see
[47]) that pointwise extension is a gagop w.r.t. ⊆F1.
The central matter of this section is the order relation ⊆αF1

.

We remind that speaking about boundary condition (Ã1) w.r.t.⊆αF1
we require

that ∀n ∈ N n-ary aggregation of arbitrary elements from the class of minimal
elements should be equal to an element from the same class, then we say that
the boundary condition (Ã1) in definition 49 is satisfied.
More accurately:

∀n ∈ N,∀0̃1, ..., 0̃n ∈ Θ ∃0̃k ∈ Θ :

Ã(n)(0̃1, ..., 0̃n) = 0̃k (93)

The definition of γ-agop agrees with the definition of a pointwise extension,
therefore at the beginning we formulate conditions under which a pointwise
extension of a γ-agop A will be a gagop w.r.t. ⊆αF1

. Later we consider the same
problem for an arbitrary agop.

Theorem 3.13. If Ã is a pointwise extension of a γ-agop A, and γ > α, then
it is a gagop w.r.t. order relation ⊆αF1.

Proof. We need to show Ã1− Ã3 from definition 49.
Ã1:
According to definitions of pointwise extension and formula (49) for an arbitrary
x ∈ R, n ∈ N and 0̃1, ..., 0̃n ∈ Θ we can write:

Ã(n)(0̃1, ..., 0̃n)(x) = A(n)(0̃1(x), ..., 0̃n(x)) = A(n)(x1, ..., xn), (94)

where xi ≤ α,∀i = 1, ..., n.
Since xi ≤ α < γ, then according to proposition 3.3 we can continue (94):

A(n)(x1, ..., xn) = A(n)(0, ..., 0) = 0. (95)

So, ∀x ∈ R for an arbitrary n ∈ N and 0̃1, ..., 0̃n ∈ Θ

Ã(n)(0̃1, ..., 0̃n)(x) = 0 ≤ α

and this means that formula (93) holds.
Ã2 :
According to definitions of the pointwise extension and 1̃ for an arbitrary x ∈ R
and n ∈ N we can write:

Ã(n)(1̃, ..., 1̃)(x) = A(n)(1̃(x), ..., 1̃(x)) = A(n)(1, ..., 1). (96)

The equality A(n)(1, .., 1) = 1 follows from the boundary condition for γ-agop.
Thus,

Ã(n)(1̃, ..., 1̃)(x) = 1 = 1̃(x), ∀x ∈ R. (97)
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Ã3 :
It is given that (∀i = 1, n) (Pi ⊆αF1 Qi) and we need to show that

Ã(P1, ..., Pn) ⊆αF1 Ã(Q1, ..., Qn). (98)

According to definition of pointwise extension ∀x ∈ R we can write :

Ã(P1, ..., Pn)(x) = A(P1(x), ..., Pn(x)) (99)

Ã(Q1, ..., Qn)(x) = A(Q1(x), ..., Qn(x)). (100)

If Pi(x) ≥ α then according to the inclussion Pi(x) ⊆αF1
Qi(x) Pi(x) ≤ Qi(x).

If Pi(x) < α and thus Pi(x) < γ, then ϕγ(Pi(x)) = 0 and according to proposi-
tion 3.3 formula (99) can be continued in the following way:

Ã(P1, ..., Pn)(x) = A(P1(x), ...0..., Pn(x)), (101)

where 0 stands on the positions, which belong to the index set I1 = {i1, ..., ik} ⊆
{1, ..., n} : Pi(x) < α, ∀i ∈ I1.
Anyhow for i ∈ I1 Qi(x) ≥ 0 and therefore Pi(x) ≤ Qi(x).
Thus

Pi(x) ≤ Qi(x)∀i

and hence monotonicity of A provides the following inequality:

A(P1(x), ..., Pn(x)) ≤ A(Q1(x), ..., Qn(x)). (102)

So, we have shown (98)

We have mentioned at the beginning of the section that pointwise extension of
an arbitrary agop is a gagop w.r.t. ⊆F1

, and it also follows as a corollary from
theorem 3.13 when α = 0 and γ = 0. In this case condition γ > α is not needed,
because xi = 0 ∀i and formula (95) holds due to the boundary condition. The
proof of the second boundary condition and monotonicity does not require con-
dition γ > α.
Following the proof of theorem 3.13 we see that idempotence of an agop is nec-
essary for modified condition (Ã1). Compensation property implied by idem-
potence of A provides the following implications:

A(P1(x), ..., Pn(x)) ≥ α⇒compensation ∀i Pi(x) ≥ α⇒⊆
α
F1

⇒⊆
α
F1 ∀i Pi(x) ≤ Qi(x)⇒monotonicity

⇒monotonicity A(P1(x), ..., Pn(x)) ≤ A(Q1(x), ..., Qn(x))

and thus the following assertion holds:

Theorem 3.14. If Ã is a pointwise extension of an idempotent agop A, then
it is a gagop w.r.t. order relation ⊆αF1.

We have shown that γ-agops are not idempotent, but on the other hand theorem
3.13 illustrates that property (Aγ) can compensate idempotence in some cases.

68



3.6.5 Pointwise extension w.r.t. horizontal order relations

We again refer to [47], where we can find that Ã is not a gagop w.r.t. ≺I .
Further in this section we study ⊆αF2

.
We declared before that elements of Θ are equivalent, thus speaking about
boundary conditions (Ã1) w.r.t. ⊆αF2

we require that ∀n ∈ N n-ary aggregation
of arbitrary elements from Θ should be equal to an element from the same class,
then we say that the boundary condition (Ã1) in definition 49 is satisfied. The
same we require for the second boundary condition (Ã2) w.r.t. ⊆αF2

.
More accurately:

∀n ∈ N,∀0̃1, ..., 0̃n ∈ Θ ∃0̃k ∈ Θ :

Ã(n)(0̃1, ..., 0̃n) = 0̃k (103)

∀n ∈ N,∀1̃1, ..., 1̃n ∈ Σ ∃1̃k ∈ Σ :

Ã(n)(1̃1, ..., 1̃n) = 1̃k (104)

At first we construct example showing that monotonicity does not hold (in
different situations), then we study boundary conditions (Ã1) and (Ã2) w.r.t
⊆αF2

.

Example 11. Let’s consider triangular numbers

P1 = (1, 2, 3), P2 = (5, 6, 7), Q1 = (3, 4, 5), Q2 = (7, 8, 9)

and pointwise extension of max(x1, x2) = max(x1, x2):

P1 ⊆αF2
Q1 and P2 ⊆αF2

Q2, ∀α ∈ (0, 1].

Ã(P1, P2)(x) = max(P1(x), P2(x)) =

=


x− 1, if x ∈ [1; 2]
3− x, if x ∈ (2; 3]
x− 5, if x ∈ [5; 6]
7− x, if x ∈ (6; 7]
0, otherwise.

(105)

Ã(Q1, Q2)(x) = max(Q1(x), Q2(x)) =

=


x− 3, if x ∈ [3; 4]
5− x, if x ∈ (4; 5]
x− 7, if x ∈ [7; 8]
9− x, if x ∈ (8; 9]
0, otherwise.

(106)

According to formulas (105) and (106)

Ã(P1, P2)(6) = 1, Ã(Q1, Q2)(4) = 1, (107)

thus for an arbitrary α∗ ∈ (0, 1]

max{x : Ã(P1, P2) ≥ α∗} ≥ 6 (108)
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and
min{x : Ã(Q1, Q2) ≥ α∗} ≤ 4 (109)

and therefore Ã(P1, P2)¬ ⊆αF2
Ã(Q1, Q2),∀α ∈ (0, 1].

Pointwise extension of max is not a gagop w.r.t. ⊆αF2
for an arbitrary α ∈ (0, 1].

Thus we have shown that in general monotonicity does not hold when we con-
sider a pointwise extension of an idempotent agop.

Pointwise extension of non idempotent agops is not a gagop w.r.t. ⊆αF2
. It can

be shown if we substitute max with the strongest agop As in example 11.
Application of γ-agop, γ ∈ [0; 1]:

Aγ = max(ω1x1, ω2x2),

where

ωi =

{
0, if x < γ
1 if x ≥ γ

in example 11 shows that pointwise extension of γ-agops need not be a gagop
w.r.t ⊆αF2

.
Below formulated results show that pointwise extension of a γ-agop and point-
wise extension of an idempotent agop preserves boundaries w.r.t. ⊆αF2

:

Proposition 3.15. Let Ã : ∪n∈NF (R)n → F (R) be a pointwise extension of
γ-agop A, and γ ≥ α, then for an arbitrary n ∈ N and arbitrary 0̃1, ..., 0̃n ∈ Θ

Ã(n)(0̃1, ..., 0̃n) ∈ Θ.

Proof. Let’s take arbitrary elements 0̃i ∈ Θ, i = 1, ..., n:

0̃i(x) =

{
1, if x = a
αx < α, otherwise.

(110)

We consider x 6= a.
According to the definitions of pointwise extension and 0̃i and using the fact
that αx < α ≤ γ we can write:

Ã(n)(0̃1, ..., 0̃n)(x) = A(n)(0̃1(x), ..., 0̃n(x)) =

= A(n)(αx, ..., αx) = A(n)(0, ..., 0) = 0 < α. (111)

We consider x = a. According to the definitions of a pointwise extension and
0̃i we can write:

Ã(n)(0̃1, ..., 0̃n)(x) = A(n)(0̃1(x), ..., 0̃n(x)) = A(n)(1, ..., 1) = 1. (112)

Formulas (111),(112) show that the assertion holds.

Proposition 3.16. Let Ã : ∪n∈NF (R)n → F (R) be a pointwise extension of
γ-agop A, and γ ≥ α, then for an arbitrary n ∈ N and arbitrary 1̃1, ..., 1̃n ∈ Σ

Ã(n)(1̃1, ..., 1̃n) ∈ Σ.
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Proof. Let’s take arbitrary elements 1̃i ∈ Σ, i = 1, ..., n:

1̃i(x) =

{
1, if x = b
αx < α, otherwise.

(113)

We consider x 6= b. According to the definitions of a pointwise extension and 1̃i
and given the fact that αx < α ≤ γ, we can write:

Ã(n)(1̃1, ..., 1̃n)(x) = A(n)(1̃1(x), ..., 1̃n(x)) =

= A(n)(αx, ..., αx) = A(n)(0, ..., 0) = 0 < α. (114)

Now we consider x = b and apply definitions of a pointwise extension and 1̃i:

Ã(n)(1̃1, ..., 1̃n)(x) = A(n)(1̃1(x), ..., 1̃n(x)) = A(n)(1, ..., 1) = 1 (115)

Formulas (114),(115) show that the assertion holds.

Remark 8. Result of propositions 3.15 and 3.16 hold for idempotent agops.

3.7 Generalized aggregation: T -extension of an agop A

We study a T -extension of an arbitrary agop in this section. The extension
of γ-agop is not considered here as its definition is not in accordance with the
definition of T -extension. In order to distinguish between pointwise extension
and T -extension we will denote the latest Â.
We recall that

Â(P1, ..., Pn)(x) = sup{T (P1(x1), ..., Pn(xn))|

(x1, ..., xn) ∈ Rn : A(x1, ..., xn) = x} (116)

is called a T -extension of an agop A, where T is an arbitrary t-norm. We
consider the case when T is a continuous t-norm in the work.
We consider agops defined on a closed interval, and definition of an agop on
an arbitrary interval [a, b] ⊆ R is a matter of the rescaling, if compared with
agop defined on [0, 1], therefore we study T -extension of A defined over the unit
interval:

Â(P1, ..., Pn)(x) = sup{T (P1(x1), ..., Pn(xn))|

(x1, ..., xn) ∈ [0, 1]n : A(x1, ..., xn) = x}. (117)

By F ([0, 1]) = {P |P : [0, 1]→ [0, 1]} we will denote the set of upper semicontin-
uous fuzzy sets. The set of fuzzy quantities, intervals and numbers defined over
the unit interval will be denoted FQ([0, 1]), FN([0, 1]), FI([0, 1]), FTI([0, 1])
and FTN([0, 1]).
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3.7.1 The set of inputs

We determine possible sets of inputs of a T -extension Â of an agop A.
It is obvious that upper semicontinuity maybe lost when we aggregate the finite
number of upper semicontinuous fuzzy sets, e.g. when A is not continuous. But
we treat this problem similarly like we did in the case of a pointwise extension
and thus we consider that the set of inputs F ([0, 1]) is coherent with the def-

inition of Â. Additionally, definition of input values over [0, 1] provides that
α-cuts are bounded for all α ≥ 0.
In the sequent sections we examine FQ([0, 1]), FI([0, 1]), FN([0, 1]), FTI([0, 1])
and FTN([0, 1]) and define necessary conditions for the corresponding set to be
the set of inputs.

Fuzzy quantities

We explore FQ([0, 1]) in the role of the set of inputs of Â.
The following results for T -extension by means of any continuous t-norm imme-
diately follows as a corollary from theorem 3.6:

Corollary 4. If Â is a T -extension of a continuous agop A and P1, ..., Pn ∈
FQ([0, 1]) then

Â(P1, ..., Pn) ∈ FQ([0, 1]).

Fuzzy intervals

We explore FI([0, 1]) (definition 10) in the role of the set of inputs of T -
extension.
The proposition formulated below shows that the result of aggregation of fuzzy
intervals in the case of T -extension is a fuzzy interval.

Proposition 3.17. If P1, ..., Pn ∈ FI([0, 1]), I1, ..., In are their corresponding

vertices and A is a continuous agop then Â(P1, ..., Pn) ∈ FI([0, 1]) and its vertex
is I = {A(x1, ..., xn)|(x1, ..., xn) : xi ∈ Ii, i = 1...n}.

Proof. The class of fuzzy intervals is a subclass of fuzzy quantities, therefore
according to the results of corollary 4 Â(P1, ..., Pn) will be a fuzzy quantity

at least, when P1, ..., Pn ∈ FI([0, 1]). This implies, that if Â(P1, ..., Pn) has a

vertex, then it is in the form of continuous interval, otherwise Â(P1, ..., Pn) will
not be convex.
Now we show that Â(P1, ..., Pn)(x)=1 iff x ∈ I.
For an arbitrary (x1, ..., xn) : x1 ∈ I1, ..., xn ∈ In we have:

Â(P1, ..., Pn)(A(x1, ..., xn)) = T (P1(x1), ..., Pn(xn)) = T (1, ..., 1) = 1. (118)

Now we show that if (x1, ..., xn) is not of the form x1 ∈ I1, ..., xn ∈ In then

Â(P1, ..., Pn)(A(x1, ..., xn)) 6= 1.
If we consider (y1, ..., yn) : ∃yi1 , ..., yik : yis /∈ Iis , s = 1, ..., k then Pis(yis) < 1
and by neutrality of T versus 1 we obtain:

Â(P1, ..., Pn)(A(y1, ..., yn)) = T (P1(y1), ..., Pn(yn)) < 1. (119)
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Since A is a continuous agop and I1 × ... × In is a compact and connected set
its image is an interval, thus I is the vertex of Â(P1, ..., Pn).

Fuzzy numbers

We consider FN([0, 1]) in this section. We show that continuity of A is a
sufficient condition for the aggregated result to be a fuzzy number in the case
when input values are in the form of fuzzy numbers.

Proposition 3.18. If P1, ..., Pn ∈ FN([0, 1]), x∗1, ..., x
∗
n are their corresponding

vertices and A is continuous then Â(P1, ..., Pn) ∈ FN([0, 1]) and A(x∗1, ..., x
∗
n) is

its vertex.

Proof. immediately follows from proposition 3.17.

Triangular fuzzy numbers

We are interested in the preservation of triangular form of the elements of
FTN([0, 1]). We say that the form is preserved if aggregated result is in the
form of a triangular number when the input information is in the form of trian-
gular numbers.
Preservation of the form is more sensitive to the choice of A and T . Continu-
ity of A may be deficient. E.g. it is a known fact that addition of triangular
numbers and multiplication with constant (when extension principle employs
TM , see e.g. [46]) is a triangular number again, therefore TM -extension of an
arithmetic mean or weighted mean should be a triangular number. On the other
hand multiplication of triangular numbers and raise to the n-th power do not
preserve the shape, and as a result TM -extension of a geometric mean is not a
triangular number any more. The following graphical examples illustrates this.
We aggregate triangular numbers P1 = (0.5, 0.65, 0.8), P2 = (0, 0.5, 1) in all fol-
lowing examples. Throughout this section P1 is coloured in black, P2 in red and
aggregated result in blue colour on the charts.

Example 12. Let

Â(P1, ..., Pn)(x) = sup{TM (P1(x1), P2(x2))|(x1, x2) ∈ [0, 1]n :
x1 + x2

2
= x}

in the first case and

Â(P1, ..., Pn)(x) = sup{TM (P1(x1), P2(x2))|(x1, x2) ∈ [0, 1]n : 0.3x1+0.7x2 = x}

in the second case.
Figure below shows that TM -extension of arithmetic mean and weighted mean
preserves the shape:
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Figure 2: Left graph: TM -extension of M(x1, x2) = x1+x2

2 ; Right graph: TM
extension of W (x1, x2) = 0.3x1 + 0.7x2

Example 13. Let

Â(P1, ..., Pn)(x) = sup{TM (P1(x1), P2(x2))|(x1, x2) ∈ [0, 1]n :
√
x1x2 = x}.

The next figure indicates that TM -extension of G(x1, x2) =
√
x1x2 does not

preserve the shape:

Figure 3: TM -extension of G(x1, x2) =
√
x1x2

So, we can conclude that TM -extension not always preserves the shape. When
A is a combination of operations, which preserve triangular shape, then TM -
extension preserves the shape, otherwise the shape can be lost.
Now we consider another continuous t-norms: TP and TL. TP is not a linear
and TL is a piecewise linear t-norm.
TP -extension of x1+x2

2 does not preserve the shape as different to TM -extension,
as we can see from the example below.

Example 14. Let

Â(P1, ..., Pn)(x) = sup{TP (P1(x1), P2(x2))|(x1, x2) ∈ [0, 1]n :
x1 + x2

2
= x}.
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Figure 4: TP -extension of M(x1, x2) = x1+x2

2

But TL- extension of M(x1, x2) = x1+x2

2 preserves the shape:

Example 15. Let

Â(P1, ..., Pn)(x) = sup{TL(P1(x1), P2(x2))|(x1, x2) ∈ [0, 1]n :
x1 + x2

2
= x}.

Figure 5: TL-extension of M(x1, x2) = x1+x2

2

Presentating these results at the conference FSTA 2010 the author was suggested
by prof. R.Mesiar to investigate the additive generator of the t-norm T ([22])
and the generator of the agop A ([6]). When they both have a linear form (e.g.
in the example 15) the form of an aggregated result should be again triangular.
In a more broad sense: when additive generator of a t-norm and generator of
an agop are harmonized, (e.g. log for the first and exp for the last) then we can
expect good accordance of the input and output values in terms of the shape.
We did not get any particular results in this area yet, but this is an open problem
for the author and the study is in the process.

3.7.2 Symmetry, associativity and bisymmetry of a T -extension

This and the three subsequent sections are devoted to the properties of T -
extension. We assume that there exists an order relation such that T -extension

75



is a gagop w.r.t. this order relation and we explore properties of the gagop. This
assumption is justifiable because further in sections 3.7.7 and 3.7.8 we show that
such order relations exist.
Hereinafter we assume continuity of a t-norm and normally we use a continuous
agop. We show that it is easy to obtain symmetric, associative or bisymmetric Â,
and the corresponding property is implied by the same property of A. Properly,
the same property of t-norm is essential, but any t-norm is symmetric and
associative (and as a result bisymmetric) by definition, therefore additional
conditions for t-norm are not required.

Proposition 3.19. If A is a continuous and symmetric agop then

Â : ∪n∈NF ([0, 1])n → F ([0, 1])

is a symmetric gagop.

Proof. We need to show that:

∀P1, ..., Pn ∈ F ([0, 1]),∀x ∈ [0, 1]

Â(P1, ..., Pn)(x) = Â(P(π1), ..., P(πn))(x), (120)

where π = (π(1), ..., π(n)) is an arbitrary permutation of (1, ..., n).

First we consider Â(P1, ..., Pn)(x):
A is continuous therefore according to theorem 3.4
∃ x∗1, ..., x∗n :

A(x∗1, ..., x
∗
n) = x (121)

and
T (P1(x∗1), ..., Pn(x∗n)) = sup{T (P1(x1), ..., Pn(xn))|

(x1, ..., xn) ∈ [0, 1]n : A(x1, ..., xn) = x}. (122)

Now we consider Â(P(π1), ..., P(πn))(x):

similarly: ∃ x′1, ..., x
′

n :

A(x
′

1, ..., x
′

n) = x (123)

and
T (P(π1)(x

′

1), ..., P(πn)(x
′

n)) = sup{T (P(π1)(x1), ..., P(πn)(xn))|

(x1, ..., xn) ∈ [0, 1]n : A(x1, ..., xn) = x}. (124)

We assume that

Â(P1, ..., Pn)(x) > Â(P(π1), ..., P(πn))(x)

thus we obtain

T (P1(x∗1), ..., Pn(x∗n)) > T (P(π1)(x
′

1), ..., P(πn)(x
′

n)). (125)
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Symmetry of t-norm allows us to write

T (P1(x∗1), ..., Pn(x∗n)) = T (P(π1)(x
∗
(π1)), ..., P(πn)(x

∗
(πn))) >

> T (P(π1)(x
′

1), ..., P(πn)(x
′

n)). (126)

Now we consider vector (x∗(π1), ..., x
∗
(πn)) and apply symmetry of A

A(x∗(π1), ..., x
∗
(πn)) = A(x∗1, ..., x

∗
n) = x. (127)

But according to formula (126)

T (P(π1)(x
∗
(π1)), ..., P(πn)(x

∗
(πn))) > T (P(π1)(x

′

1), ..., P(πn)(x
′

n)),

however this is impossible, thus we have obtained a contradiction.
Assumption on Â(P1, ..., Pn)(x) < Â(P(π1), ..., P(πn))(x) will lead to the similar
contradiction.

Proposition 3.20. If A is a continuous and associative agop then

Â : ∪n∈NF ([0, 1])n → F ([0, 1])

is an associative gagop.

Proof. We need to show that

∀n,m ∈ N ∀P1, ..., Pn, Q1, ..., Qm ∈ F ([0, 1])

Â(P1, ..., Pn, Q1, ..., Qm) = Â(Â(P1, ..., Pn), Â(Q1, ..., Qm)). (128)

We consider the left and the right parts of (128) in an arbitrary z ∈ [0, 1].

Consider Â(P1, ..., Pn, Q1, ..., Qm)(z) :
According to theorem 3.4 ∃ s∗1, ..., s∗n, t∗1, ..., t∗m:

A(s∗1, ..., s
∗
n, t
∗
1, ..., t

∗
m) = z (129)

and

Â(P1, ..., Pn, Q1, ..., Qm)(z) = T (P1(s∗1), ..., Pn(s∗n), Q1(t∗1), ..., Qm(t∗m)). (130)

Consider Â(Â(P1, ..., Pn), Â(Q1, ..., Qm))(z) :
Let’s assume that

Â(P1, ..., Pn) = P ∗

and
Â(Q1, ..., Qm) = Q∗,

where P ∗, Q∗ ∈ F ([0, 1]).

Thus we consider Â(P ∗, Q∗)(z) :
according to theorem 3.4 ∃ x∗, y∗:

A(x∗, y∗) = z (131)
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and
Â(P ∗, Q∗)(z) = T (P ∗(x∗), Q∗(y∗)). (132)

Following the definition of P ∗, Q∗ and employing theorem 3.4 for an arbitrary
x∗, y∗ ∈ [0, 1] we can write:

P ∗(x∗) = T (P1(x∗1), ..., Pn(x∗n)), (133)

where x∗1, ..., x
∗
n : A(x∗1, ..., x

∗
n) = x∗ and

Q∗(y∗) = T (Q1(y∗1), ..., Qm(y∗n)), (134)

where y∗1 , ..., y
∗
m : A(y∗1 , ..., y

∗
m) = y∗.

We put (133) and (134) into (132) and obtain:

Â(P ∗, Q∗)(z) = T (T (P1(x∗1), ..., Pn(x∗n)), T (Q1(y∗1), ..., Qm(y∗n))), (135)

where
A(A(x∗1, ..., x

∗
n), A(y∗1 , ..., y

∗
m)) = z. (136)

Using associativity of T and A we continue (135) and (136) in the following
way:

Â(P ∗, Q∗)(z) = T (P1(x∗1), ..., Pn(x∗n), Q1(y∗1), ..., Qm(y∗n)) (137)

A(x∗1, ..., x
∗
n, y
∗
1 , ..., y

∗
m) = z. (138)

If we assume that Â(P1, ..., Pn, Q1, ..., Qm)(z) > Â(Â(P1, ..., Pn), Â(Q1, ..., Qm))(z),
then we take vector (s∗1, ..., s

∗
n, t
∗
1, ..., t

∗
m) in the role of (x∗1, ..., x

∗
n, y
∗
1 , ..., y

∗
m) and

we obtain a higher value of Â(Â(P1, ..., Pn), Â(Q1, ..., Qm))(z), but this contra-
dicts the definition of (x∗1, ..., x

∗
n, y
∗
1 , ..., y

∗
m).

Similar contradiction we obtain if we assume that Â(P1, ..., Pn, Q1, ..., Qm)(z) <

Â(Â(P1, ..., Pn), Â(Q1, ..., Qm))(z).

The result related to bisymmetry of T -extension we state without proof, because
it can be performed combining ideas used in the proofs of the previous results:

Proposition 3.21. If A is a continuous and bisymmetric agop then

Â : ∪n∈NF ([0, 1])n → F ([0, 1])

is a bisymmetric gagop.

We have shown that in the case of a continuous agop A in the role of the set
of inputs we can take FQ([0, 1]), F I([0, 1]) and FN([0, 1]). Thus the results of
this section hold for other sets of inputs:

Corollary 5. If A is a continuous and symmetric agop then the following as-
sertations hold:
(1) Â : ∪n∈NFQ([0, 1])n → FQ([0, 1]) is a symmetric gagop;

(2) Â : ∪n∈NFI([0, 1])n → FI([0, 1]) is a symmetric gagop;

(3) Â : ∪n∈NFN([0, 1])n → FN([0, 1]) is a symmetric gagop.
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Corollary 6. If A is a continuous and associative agop then the following as-
sertions hold:
(1) Â : ∪n∈NFQ([0, 1])n → FQ([0, 1]) is an associative gagop;

(2) Â : ∪n∈NFI([0, 1])n → FI([0, 1]) is an associative gagop;

(3) Â : ∪n∈NFN([0, 1])n → FN([0, 1]) is an associative gagop.

Corollary 7. If A is a continuous and bisymmetric agop then the following
assertions hold:
(1) Â : ∪n∈NFQ([0, 1])n → FQ([0, 1]) is a bisymmetric gagop;

(2) Â : ∪n∈NFI([0, 1])n → FI([0, 1]) is a bisymmetric gagop;

(3) Â : ∪n∈NFN([0, 1])n → FN([0, 1]) is a bisymmetric gagop.

3.7.3 Idempotence of a T -extension

We consider idempotence property of Â in this section. Similarly like previously
we expect that idempotence of A and T should imply idempotence of Â, but
as the following graphical example shows this implication does not hold. In
general, i.e, if we take an idempotent T and an idempotent A, T -extension is
not idempotent:

Example 16.

Â(P, P )(x) = sup{TM (P (x1), P (x2))|(x1, x2) ∈ [0, 1]n :
x1 + x2

2
= x}

Figure 6: Left graph: not convex fuzzy set P (x); Right graph: Â(P, P )(x)

P is not a convex fuzzy set in example 16, and the following result shows that
convexity is crucial for the idempotence of Â:

Proposition 3.22. If Â : ∪n∈NFQ([0, 1])n → FQ([0, 1]) is TM -extension of an
arbitrary continuous, idempotent agop A then it is an idempotent gagop.

Proof. We need to show that

Ã(n)(P, ..., P )(x) = P (x),∀n ∈ N,∀x ∈ [0, 1]. (139)
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We consider an arbitrary P (x) ∈ FQ([0, 1]) and x∗ ∈ [0, 1], then according to
the definition of a T -extension and theorem 3.4 ∃ x∗1, ..., x∗n s.t.:

A(x∗1, ..., x
∗
n) = x∗

and
Â(n)(P, ..., P )(x∗) = TM (P (x∗1), ..., P (x∗n)). (140)

We denote S = {(x1, ..., xn) : A(x1, ..., xn) = x∗} and (x∗1, ..., x
∗
n) ∈ S.

A is an idempotent agop, therefore (x∗, ..., x∗) ∈ S and TM (P (x∗), ..., P (x∗)) =
P (x∗).
Idempotence ofA implies compensation property, i.e. for an arbitrary (x1, ..., xn) ∈
S the following holds:

min
i=1,...,n

xi ≤ A(x1, ..., xn) ≤ max
i=1,...,n

xi (141)

min
i=1,...,n

xi ≤ x∗ ≤ max
i=1,...,n

xi. (142)

For an arbitrary (x1, ..., xn) ∈ S s.t. (x1, ..., xn) 6= (x∗, ..., x∗) one of the follow-
ing properties holds:
(i): ∃ xi1 , ..., xik , 1 ≤ k ≤ n− 1: xij < x∗ ∀j = 1, ..., k and for the rest
xis s /∈ {1, ..., k}: xis ≥ x∗
(ii): ∃ xi1 , ..., xik , 1 ≤ k ≤ n− 1: xij > x∗ ∀j = 1, ..., k and for the rest
xis s /∈ {1, ..., k}: xis ≤ x∗.
If neither (i) no (ii) hold then (x1, ..., xn) s.t.

xi < x∗ ∀i

or
xi > x∗ ∀i.

But in the first case according to the compensation property ((141), (142)) we
obtain

A(x1, ..., xn) ≤ max(x1, ..., xn) < x∗

in the second case we obtain

x∗ < min(x1, ..., xn) ≤ A(x1, ..., xn)

but then (x1, ..., xn) /∈ S.
Now we take an arbitrary (x1, ..., xn) ∈ S and assume that (i) holds:
for an arbitrary xl < x∗ and arbitrary xk ≥ x∗ convexity of P implies that

P (x∗) ≥ TM (P (xl), P (xk)). (143)

If we add the rest coordinates of the vector we can only reduce the minimum
thus we can continue formula (143) in the following way:

P (x∗) ≥ TM (P (x1), ..., P (xn)). (144)
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So, we have obtained that for an arbitrary vector (x1, ..., xn) ∈ S

TM (P (x∗), ..., P (x∗)) = P (x∗) ≥ TM (P (x1), ..., P (xn)),

and this means that

Â(n)(P, ..., P )(x∗) = TM (P (x∗), ..., P (x∗)) = P (x∗).

The assumption that (ii) holds will lead us to the same result.

As a corollary from the previous proposition we obtain the next result:

Corollary 8. If A is a continuous, idempotent agop then for TM -extension Â
the following assertions hold:
(1) Â : ∪n∈NFI([0, 1])n → FI([0, 1]) is an idempotent gagop;

(2) Â : ∪n∈NFN([0, 1])n → FN([0, 1]) is an idempotent gagop.

Remark 9. Recall that TM is the only idempotent t-norm. Now we show that
only TM -extension ensures idempotence of Â (given conditions of proposition
3.22).
If we take an arbitrary t-norm T < TM then according to the proof of proposition
3.22

∀(x1, ..., xn) ∈ S, P (x∗) = TM (P (x∗), ..., P (x∗)) =

= max{TM (P (x1), ..., P (xn))|(x1, ..., xn) ∈ S}. (145)

Now applying the upper bound of the class of t-norms we obtain

max{TM (P (x1), ..., P (xn))|(x1, ..., xn) ∈ S} >

max{T (P (x1), ..., P (xn))|(x1, ..., xn) ∈ S} = Â(n)(P, ..., P )(x∗). (146)

Combining the result of formulas (145) and (146) we obtain:

P (x∗) > Â(n)(P, ..., P )(x∗). (147)

Similarly, idempotence of Â does not hold when t-norm differs from TM and the
set of inputs is a subset of FQ([0, 1]).

3.7.4 Neutral and absorbing elements of a T -extension

Further formulated results outline the nature of neutral and absorbing elements
of Â.

Proposition 3.23. Let Â : ∪n∈NF ([0, 1])n → F ([0, 1]) be an arbitrary T -
extension of a continuous agop A, and e is the neutral element of A, then

E(x) =

{
1, if x = e
0, if x 6= e

is the neutral element of Â.
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Proof. P1, ..., Pn are given and Pi = E for some i, then we need to show that
for an arbitrary x ∈ [0, 1]

Â(P1, ..., Pn)(x) = Ân−1(P1, ..., Pi−1, Pi+1, ..., Pn)(x). (148)

First we consider Â(P1, ..., Pn)(x):
According to theorem 3.4 ∃ x∗1, ..., x∗n :

A(x∗1, ..., x
∗
n) = x (149)

and
Â(P1, ..., Pn)(x) = T (P1(x∗1), ..., Pn(x∗n)). (150)

Since x∗i = e in the formula (149), therefore applying neutrality of A versus e
we can continue (149):

A(x∗1, ..., x
∗
n) = A(x∗1, ..., x

∗
i−1, e, x

∗
i+1, ...x

∗
n) =

= A(n−1)(x
∗
1, ..., x

∗
i−1, x

∗
i+1, ...x

∗
n) = x. (151)

As Pi(x
∗
i ) = Pi(e) = 1, applying neutrality of t-norm T versus 1 we continue

formula (150) in the following way:

Â(P1, ..., Pn)(x) = T (P1(x∗1), ..., Pn(x∗n)) =

= T (P1(x∗1), ..., Pi−1(x∗i−1), 1, Pi+1(x∗i+1), ..., Pn(x∗n)) =

= T(n−1)(P1(x∗1), ..., Pi−1(x∗i−1), Pi+1(x∗i+1), ..., Pn(x∗n)). (152)

Now we consider Ân−1(P1, ..., Pi−1, Pi+1, ..., Pn)(x):
according to theorem 3.4 ∃ y∗1 , ..., y∗i−1, y

∗
i+1, ..., y

∗
n−1 :

A(y∗1 , ..., y
∗
i−1, y

∗
i+1, ..., y

∗
n−1) = x (153)

and
Ân−1(P1, ..., Pi−1, Pi+1, ..., Pn)(x) =

= T (P1(y∗1), ..., Pi−1(y∗i−1), Pi+1(y∗i+1), ..., Pn(y∗n−1)). (154)

If we assume that Â(P1, ..., Pn)(x) > Ân−1(P1, ..., Pi−1, Pi+1, ..., Pn)(x), then
according to formulas (152) and (154) we can take vector (x∗1, ..., x

∗
n), x∗i = e

instead of (y∗1 , ..., y
∗
i−1, y

∗
i+1, ..., y

∗
n−1) and we obtain a higher value of

Ân−1(P1, ..., Pi−1, Pi+1, ..., Pn)(x) than obtained previously, but this contradicts
the definition of vector (y∗1 , ..., y

∗
i−1, y

∗
i+1, ..., y

∗
n−1).

To the similar contradiction will lead us the assumption Â(P1, ..., Pn)(x) <

Ân−1(P1, ..., Pi−1, Pi+1, ..., Pn)(x).

According to proposition 3.7 E(x) is the unique neutral element.
Since FN([0, 1]) ⊂ FI([0, 1]) ⊂ FQ([0, 1]) and E(x) ∈ FN([0, 1]) then defining
T -extension on the classes FN([0, 1]), F I([0, 1]) or FQ([0, 1]) we obtain a gagop
with the neutral element given in proposition 3.23.
Now we consider the absorbing element of an arbitrary T -extension.
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Proposition 3.24. Let Â : ∪n∈NF ([0, 1])n → F ([0, 1]) be an arbitrary T -
extension of a continuous agop A, then

R(x) = 0 ∀x ∈ [0, 1]

is the absorbing element of Â.

Proof. P1, ..., Pn are given and Pi = R for some i, then we need to show that
for an arbitrary x ∈ [0, 1]

Â(P1, ..., Pn)(x) = R(x) = 0. (155)

According to theorem 3.4 ∃ x∗1, ..., x∗n s.t.:

A(x∗1, ..., x
∗
n) = x (156)

and
Â(P1, ..., Pn)(x) = T (P1(x∗1), ..., R(x∗i ), ..., Pn(x∗n)). (157)

For an arbitrary x∗i ∈ [0, 1] R(x∗i ) = 0, using this fact and applying absorbing
property of 0 for an arbitrary t-norm T we continue (157):

Â(P1, ..., Pn)(x) = 0. (158)

We have shown that for an arbitrary x ∈ [0, 1] Â(P1, ..., Pn)(x) = 0 and thus
the assertion holds.

There is no other absorbing element as the uniqueness of R(x) is ensured by
proposition 3.8.
The question how to interpret R(x) arises. On the one hand element R belongs
to the class F ([0, 1]), but on the other hand it does not have any real value,
i.e. in any point its value 0. Thus question on the nature of R is rather philo-
sophical. We skip the philosophical part of this question and consider that the
absorbing element of T -extension exists, it is from the class F ([0, 1]) and it is
given in proposition 3.24.
Since R(x) ∈ FQ([0, 1]), T -extension defined on the class FQ([0, 1]) has the
same absorbing element.
ElementR(x) /∈ FN([0, 1]) and there is no other absorbing element in FN([0, 1]).
If we assume that there exists R∗(x) ∈ FN([0, 1]) and it differs from R(x) then
R∗(x) ∈ F ([0, 1]), but this contradicts the result of proposition 3.8. Thus defin-
ing a T -extension on the class FN([0, 1]) or FI([0, 1]) we deal with a gagop
without the absorbing element.
The interesting fact should be noticed here: T -extension of an agop without the
absorbing element can result in a gagop with the absorbing element.
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3.7.5 Shift-invariance of a T -extension

We consider a shift-invariance of a T -extension in this section. As we agreed
before Â acts on F ([0, 1]) therefore we should give clarifications to the defini-
tion of shift-invariance regarding possible values of B,P1, ..., Pn in order to stay
within the same class:

Definition 60. A gagop Â : ∪n∈NF ([0, 1])n → F ([0, 1]) is said to be shift-
invariant if

∀n ∈ N,∀B,P1, ..., Pn ∈ F ([0, 1]) :

∀i = 1, n Pi +B ∈ F ([0, 1]),

Â(P1 +B, ..., Pn +B), Â(P1, ..., Pn), Â(P1, ..., Pn) +B ∈ F ([0, 1])

Â(P1 +B, ..., Pn +B) = Â(P1, ..., Pn) +B

When we consider shift-invariance of a T -extension we understand it in the sense
of definition 60.
Further we denote T1 a continuous t-norm, which is used for the extension of
an addition operation and T2 will denote a continuous t-norm, which is used for
the extension of a continuous agop A.
In general shift-invariance of an agop A does not imply shift invariance of Â.
This property depends not only on A, T1, T2 but also on the properties of the
set of inputs.
Further we indicate special conditions, which preserve shift-invariance of a T -
extension.

Proposition 3.25. If T1 = T2 = TM , A is a continuous shift-invariant agop
defined by means of operations of addition and multiplcation with c ∈ R, then

Â : ∪n∈NFTN([0, 1])n → FTN([0, 1])

is a shift-invariant gagop.

Proof. We use the following notations:
Pi = (pi1, p

i
2, p

i
3), i = 1, n, B = (b1, b2, b3), then T1 = T2 = TM and properties of

A allow us write the same form for fuzzy triangular number Â(P1, ..., Pn):

Â(P1, ..., Pn) = (A(p1
1, ..., p

n
1 ), A(p1

2, ..., p
n
2 ), A(p1

3, ..., p
n
3 )).

And then Â(P1, ..., Pn) +B ∈ FTN([0, 1]):

Â(P1, ..., Pn)+B = (A(p1
1, ..., p

n
1 )+b1, A(p1

2, ..., p
n
2 )+b2, A(p1

3, ..., p
n
3 )+b3). (159)

On the other hand Pi +B = (pi1 + b1, p
i
2 + b2, p

i
3 + b3) ∈ FTN([0, 1]) and hence

Â(P1 +B, ..., Pn +B) ∈ FTN([0, 1]) has the following form:

Â(P1 +B, ..., Pn +B) =
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= (A(p1
1 + b1, ..., p

n
1 + b1), A(p1

2 + b2, ..., p
n
2 + b2), A(p1

3 + b3, ..., p
n
3 + b3)). (160)

Given shift-invariance of A we can continue formula (160) in the following way:

Â(P1 +B, ..., Pn +B) =

= (A(p1
1, ..., p

n
1 ) + b1, A(p1

2, ..., p
n
2 ) + b2, A(p1

3, ..., p
n
3 ) + b3). (161)

We see that formulas (159) and (161) give us the same result.

The next result does not allow us to state that Â is a shift-invariant in the sense
of definition 60, because it requires a special form of B. We consider this special
case as shift-invariance of Â w.r.t. B:

Proposition 3.26. If T1 = T2 = T is an arbitrary t-norm, A is a continuous,
additive agop, B is a crisp interval and Â : ∪n∈NF ([0, 1])n → F ([0, 1]), then

Â(P1, ..., Pn) +B = Â(P1 +B, ..., Pn +B).

Proof. We consider an arbitrary z:

(Â(P1, ..., Pn) +B)(z) > 0,

then according to theorem 3.4 ∃ x∗, y∗ : x∗ + y∗ = z and

(Â(P1, ..., Pn) +B)(z) = sup{T1(Â(P1, ..., Pn)(x), B(y))| (x, y) : x+ y = z} =

= T1(Â(P1, ..., Pn)(x∗), B(y∗)). (162)

It follows that B(y∗) = 1 otherwise T1(Â(P1, ..., Pn)(x∗), B(y∗)) =

= T1(Â(P1, ..., Pn)(x∗), 0) = 0, but then (Â(P1, ..., Pn) +B)(z) = 0.
Applying T1 neutrality versus 1 we can continue formula (162) in the following
way:

(Â(P1, ..., Pn) +B)(z) = Â(P1, ..., Pn)(x∗). (163)

According to the definition of T -extension and theorem 3.4 ∃ (x∗1, ..., x
∗
n) :

A(x∗1, ..., x
∗
n) = x∗ and

Â(P1, ..., Pn)(x∗) = sup{T2(P1(x1), ..., Pn(xn))| (x1, ..., xn) : A(x1, ..., xn) = x∗} =

= T2(P1(x∗1), ..., Pn(x∗n)). (164)

We summarize the nature of the vector (x∗1, ..., x
∗
n):

∃y∗ : A(x∗1, ..., x
∗
n) + y∗ = z (165)

and the above reasonings give us the following result:

(Â(P1, ..., Pn) +B)(z) = T2(P1(x∗1), ..., Pn(x∗n)). (166)

Now in the similar manner we consider

Â(P1 +B, ..., Pn +B)(z) > 0.
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According to the definition of T -extension and theorem 3.4 ∃ (z1, ..., zn) :A(z1, ..., zn) =
z and

Â(P1 +B, ..., Pn +B)(z) =

= sup{T2((P1 +B)(x1), ..., (Pn +B)(xn))| (x1, ..., xn) : A(x1, ..., xn) = z} =

T2((P1 +B)(z1), ..., (Pn +B)(zn)). (167)

On the other hand ∀i = 1, n ∃ (s∗i , t
∗
i ): s

∗
i + t∗i = zi

(Pi +B)(zi) = sup{T1(Pi(si), B(ti))| (si, ti) : si + ti = zi} =

= T1(Pi(s
∗
i ), B(t∗i )). (168)

It follows that B(t∗i ) = 1 ∀i = 1, n otherwise T1(Pi(s
∗
i ), B(t∗i )) = T1(Pi(s

∗
i ), 0) =

0 and thus Â(P1 +B, ..., Pn +B)(z) = 0.
We use T1 neutrality versus 1 and continue (168) in the following way:

(Pi +B)(zi) = Pi(s
∗
i ). (169)

We apply formula (169) to (167):

Â(P1 +B, ..., Pn +B)(z) = T2(P1(s∗1), ..., Pn(s∗n)), (170)

where (s∗1, ..., s
∗
n):

∃ (t∗1, ..., t
∗
n) : A(t∗1 + s∗1, ..., t

∗
n + s∗n) = z. (171)

Now if we assume that (Â(P1, ..., Pn) + B)(z) > Â(P1 +B, ..., Pn +B)(z) then
using aditivity of A (and its idempotence implied by aditivity) and comparing
formulas (165),(171) we conclude that if we take:

(s∗1, ..., s
∗
n) = (x∗1, ..., x

∗
n)

and
(t∗1, ..., t

∗
n) = (y∗, ..., y∗)

we obtain value of Â(P1+B, ..., Pn+B)(z) higher than its value given by formula
(170), but this contradicts definition of vector (s∗1, ..., s

∗
n).

Similarly if we assume that (Â(P1, ..., Pn) + B)(z) < Â(P1 + B, ..., Pn + B)(z)
we obtain contradiction to the definition of vector (x∗1, ..., x

∗
n).

Example 17. Let P1 = (0.01, 0.02, 0.03), P2 = (0.03, 0.04, 0.05) be triangular
numbers and B = [0.05, 0.07] a crisp interval.
1st case:

Â(P1, P2)(x) = sup{TM (P1(x1), P2(x2))|(x1, x2) ∈ [0, 1]n :
x1 + x2

2
= x}

and T1 = TM .
2nd case:

Â(P1, P2)(x) = sup{TP (P1(x1), P2(x2))|(x1, x2) ∈ [0, 1]n :
x1 + x2

2
= x}

and T1 = TP .
On the figures below the black dashed line denote Â(P1, P2) + B and the red

continuous line denotes Â(P1 +B,P2 +B).
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Figure 7: Left graph: T1 = T2 = TM ; Right graph: T1 = T2 = TP

We can see that on the both graphs values of Â(P1, P2) + B match values of

Â(P1 +B,P2 +B).

Proposition 3.27. If T1 = T2 = T is an arbitrary t-norm, A is a continuous
and additive agop, Â : ∪n∈NFQ([0, 1])n → FQ([0, 1]) is an idempotent gagop

then Â is a shift-invariant gagop.

Proof. We again consider Â(P1 + B, ..., Pn + B)(z) and (Â(P1, ..., Pn) + B)(z)
and z is such that both values are greater than 0.
According to theorem 3.4 ∃ (z1, ..., zn) : A(z1, ..., zn) = z and

Â(P1 +B, ..., Pn +B)(z) = T ((P1 +B)(z1), ..., (Pn +B)(zn)). (172)

On the other hand ∀i = 1, n ∃ (s∗i , t
∗
i ) : s∗i + t∗i = zi and

(Pi +B)(zi) = T (Pi(s
∗
i ), B(t∗i )). (173)

Summarizing the above considerations we have

∃ (s∗1, ..., s
∗
n), (t∗1, ..., t

∗
n) : A(s∗1 + t∗1, ..., s

∗
n + t∗n) = z (174)

and

Â(P1 +B, ..., Pn +B)(z) = T (T (P1(s∗1), B(t∗1)), ..., T (Pn(s∗n), B(t∗n))). (175)

Now we use the idempotence of Â and consider (Â(P1, ..., Pn) +B)(z):

(Â(P1, ..., Pn) +B)(z) = (Â(P1, ..., Pn) + Â(n)(B, ..., B))(z). (176)

Again we use theorem 3.4 and find (x∗, y∗) : x∗ + y∗ = z and

(Â(P1, ..., Pn) + Â(B, ..., B))(z) = T (Â(P1, ..., Pn)(x∗), Â(B, ..., B)(y∗)). (177)

Similarly like previously referring to the definition of T -extension and theorem
3.4 we get (x∗1, ..., x

∗
n), (y∗1 , ..., y

∗
n) : A(x∗1, ..., x

∗
n) = x∗, A(y∗1 , ..., y

∗
n) = y∗ and

Â(P1, ..., Pn)(x∗) = T (P1(x∗1), ..., Pn(x∗n)) (178)
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Â(B, ..., B)(y∗) = T (B(y∗1), ..., B(y∗n)). (179)

Thus we obtain:

∃ (x∗1, ..., x
∗
n), (y∗1 , ..., y

∗
n) : A(x∗1, ..., x

∗
n) +A(y∗1 , ..., y

∗
n) = z (180)

and

(Â(P1, ..., Pn) +B)(z) = T (T (P1(x∗1), ..., Pn(x∗n)), T (B(y∗1), ..., B(y∗n))). (181)

Further we apply T associativity and symmetry and continue formula (181) in
the following way:

(Â(P1, ..., Pn) +B)(z) = T (T (P1(x∗1), B(y∗1)), ..., T (Pn(x∗n), B(y∗n))). (182)

Considering the nature of vectors (s∗1, ..., s
∗
n), (t∗1, ..., t

∗
n) and (x∗1, ..., x

∗
n), (y∗1 , ..., y

∗
n)

given by formulas (174) and (180) and using the aditivity of A we conclude that

Â(P1 +B, ..., Pn +B)(z) = (Â(P1, ..., Pn) +B)(z).

As we have shown in section 3.7.3 only in the case when T2 = TM we can obtain
an idempotent gagop, therefore T1 = T2 = TM in proposition 3.27 and it can
not be considered as a generalization of proposition 3.26.
We go over example 17 again with the only change - in the role of B we take
the triangular number B = (0.05, 0.06, 0.07), then we can see that in the case
of T1 = T2 = TP shift-invariance does not hold.

Example 18. Let P1 = (0.01, 0.02, 0.03), P2 = (0.03, 0.04, 0.05),
B = (0.05, 0.06, 0.07) be triangular numbers.
1st case:

Â(P1, P2)(x) = sup{TM (P1(x1), P2(x2))|(x1, x2) ∈ [0, 1]n :
x1 + x2

2
= x}

and T1 = TM .
2nd case:

Â(P1, P2)(x) = sup{TP (P1(x1), P2(x2))|(x1, x2) ∈ [0, 1]n :
x1 + x2

2
= x}

and T1 = TP .
On the figures below the black dashed line denote Â(P1, P2) + B and the red

continuous line denotes Â(P1 +B,P2 +B).
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Figure 8: Left graph: T1 = T2 = TM ; Right graph: T1 = T2 = TP

So, TP does not preserve shift-invarinace in a more general case, however it does
in a special case, when B is a crisp interval.
Idempotence is a necessary condition for an agop (and a t-norm as well) to be
shift-invariant, but only TM is an idempotent t-norm, therefore it is the only
shift-invariant t-norm. Thus only in the case of TM -extension we can speak
about shift-invariant gagop in a general sense.

3.7.6 Concluding remarks on properties of a T -extension

All observed properties of a T -extension (apart from the absorbing element) are
determined by the same property of the agop A and the t-norm T . Absorbing
element stands alone in this context as an arbitrary T -extension will have ab-
sorbing element regardless A has it or not.
Properties of T -extension are tightly related to properties of the t-norm and
sometimes we can manage a desired property by choosing an appropriate t-
norm, but not always it is possible. For an example in the case of absorbing
element, the form of absorbing element can not be changed, because 0 is the
absorbing element of any t-norm. Thus such cases can not be managed by
changing t-norm. But substituting t-norm in the formula (116) with e.g. a
nullnorm ([6]) N we obtain N -extension:

Â(P1, ..., Pn)(x) = sup{N(P1(x1), ..., Pn(xn)|(A(x1, ..., xn) = x)}. (183)

Performing U -extension, i.e. extension via uninorm U ([6]) we can obtain neutral
element with different properties and also we can use compensation property of
uninorms.
If we consider shift-invariance of a T -extension then we can see that substitution
of a t-norm with another operator can bring benefits, because we can extend
the list of idempotent gagops.
The definition of a T -extension can be generalized via an arbitrary agop A∗

(with desired properties):

Â(P1, ..., Pn)(x) = sup{A∗(P1(x1), ..., Pn(xn)|A(x1, ..., xn) = x}. (184)

Such flexibility of the definition gives many advantages related to properties of
a T -extension.
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3.7.7 T -extension w.r.t. vertical order relations

In the preceding sections we considered properties of a T -extension with as-
sumption that it is a gagop. Now we show accuracy of this assumption, i.e. we
prove that there exist order relations such that T -extension is a gagop w.r.t.
these order relations.
We start with the class of vertical order relations introduced in section 3.3.1
and namely ⊆αF1

. The following result shows that Â is a gagop w.r.t. ⊆αF1
.

Idempotence of A is not required regardless that it was required in the case of
pointwise extension. Similarly like previously we consider continuous t-norms.

Theorem 3.28. An arbitrary T -extension Â : ∪n∈NF ([0, 1])n → F ([0, 1]) of an
arbitrary continuous agop A is a gagop w.r.t. ⊆αF1

.

Proof. We need to show modified (Ã1) (see formula (93)) and (Ã2), (Ã3) from
definition 49.
In order to prove boundary conditions (Ã1) and (Ã2) we need to show, that:

Â(n)(0̃1, ..., 0̃n)(x) = sup{T (0̃1(x1), ..., 0̃n(xn))|A(x1, ..., xn) = x} ∈ Θ (185)

and

Â(n)(1̃, ..., 1̃)(x) = sup{T (1̃(x1), ..., 1̃(xn))|A(x1, ..., xn) = x} = 1̃(x) (186)

for an arbitrary n ∈ N and arbitrary x ∈ [0, 1].
If we consider an arbitrary vector (x1, ..., xn) ∈ [0, 1]n then applying the restric-
tion from above of an arbitrary t-norm by TM we obtain:

T (0̃1(x1), ..., 0̃n(xn)) ≤ TM (0̃1(x1), ..., 0̃n(xn)). (187)

According to the definition of 0̃i, ∀xi ∈ [0, 1] 0̃i(xi) ≤ α thus the same is true
for the minimum, i.e.:

TM (0̃1(x1), ..., 0̃n(xn)) ≤ α. (188)

Evidently using formulas (187), (188) for an arbitrary x ∈ [0, 1] we obtain

Â(n)(0̃, ..., 0̃)(x) ≤ α and therefore according to the definition of 0̃i (formula
(49))

Â(n)(0̃1, ..., 0̃n)(x) ∈ Θ. (189)

According to the definition of 1̃ (formula 48) for an arbitrary vector (x1, ..., xn) ∈
[0, 1]n the following holds:

T (1̃(x1), ..., 1̃(xn)) = T (1, ..., 1) = 1 = 1̃(x) for an arbitrary x ∈ [0, 1] (190)

and thus formula (186) is straight forward.
The proof of (Ã3) requires the following implication:

(∀i = 1, ..., n, Pi ⊆αF1
Qi)⇒ (Â(P1, ..., Pn) ⊆αF1

Â(Q1, ..., Qn)). (191)
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We take an arbitrary x ∈ [0, 1] : Â(P1, ..., Pn)(x) ≥ α and consider Â(P1, ..., Pn)(x)

and Â(Q1, ..., Qn)(x):
according to theorem 3.4 ∃ (x∗1, ..., x

∗
n) :

A(x∗1, ..., x
∗
n) = x (192)

and
Â(P1, ..., Pn)(x) = T (P1(x∗1), ..., Pn(x∗n)). (193)

Similarly ∃ (x
′

1, ..., x
′

n) :

A(x
′

1, ..., x
′

n) = x (194)

and
Â(Q1, ..., Qn)(x) = T (Q1(x

′

1), ..., Qn(x
′

n)). (195)

We remind that
Â(P1, ..., Pn)(x) ≥ α (196)

and using ∀i Pi ⊆αF1
Qi, i.e.:

(Pi(x
∗
i ) ≥ α)⇒ (Pi(x

∗
i ) ≤ Qi(x∗i )) (197)

and formula (193) we can write

α ≤ T (P1(x∗1), ..., Pn(x∗n)) ≤ Pi(x∗i ) ≤ Qi(x∗i ), ∀i. (198)

Using the monotonicity of t-norm we can continue in the following way:

T (P1(x∗1), ..., Pn(x∗n)) ≤ T (Q1(x∗1), ..., Qn(x∗n)). (199)

But according to the definition of vector (x
′

1, ..., x
′

n)

T (Q1(x∗1), ..., Qn(x∗n)) ≤ T (Q1(x
′

1), ..., Qn(x
′

n)) (200)

and thus
Â(P1, ..., Pn)(x) ≤ Â(Q1, ..., Qn)(x). (201)

Point x was chosen according to the formula (196) and we obtained inequality
(201), thus we have shown that (Ã3) holds.

⊆F1 is a special case of the class of order relations ⊆αF1
thus as a corollary from

theorem 3.28 we obtain:

Corollary 9. An arbitrary T -extension Â : ∪n∈NF ([0, 1])n → F ([0, 1]) of an
arbitrary continuous agop A is a gagop w.r.t. ⊆F1

.

Evidently that results of theorem 3.28 and corollary 9 hold for other sets of
inputs: FQ([0, 1]), FI([0, 1]) and FN([0, 1]).
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3.7.8 T -extension w.r.t. horizontal order relations

It is proven in [47] that TM -extension is a gagop w.r.t. ≺I defined in section
3.3.2.
Further in this section we study an arbitrary T -extension w.r.t. ⊆αF2

, defined
in section 3.3.2. Again we use an arbitrary lower continuous t-norm and an
arbitrary continuous agop A. We prove that T -extension is a gagop w.r.t. ⊆αF2

.

Throughout the work Â aggregates fuzzy sets defined on the interval [0, 1],
therefore we introduce clarifications to definition 48 of order relation ⊆αF2

:

Definition 61. Let α ∈ (0, 1], P,Q ∈ F ([0, 1])

P ⊆αF2
Q⇔ P

α ≤ Qα,

where

Pα = {x : P (x) ≥ α}, minPα = Pα, maxPα = P
α

Qα = {x : Q(x) ≥ α}, minQα = Qα, maxQα = Q
α
.

The classes

Θ = {0̃(x)|0̃(x) = 1, if x = 0 and 0̃(x) < α if x ∈ (0, 1]},

Σ = {1̃(x)|1̃(x) = 1, if x = 1 and 1̃(x) < α if x ∈ [0, 1)}

we will call correspondingly the class of minimal and maximal elements.

Theorem 3.29. An arbitrary T -extension Â : ∪n∈NF ([0, 1])n → F ([0, 1]) of an
arbitrary continuous agop A is a gagop w.r.t. ⊆αF2

.

Proof. First we show that the modified border condition (Ã1) (see formula
(103)) holds.

We consider Â(n)(0̃1, ..., 0̃n)(x) in an arbitrary point x ∈ [0, 1] and for arbitrary

n ∈ N and arbitrary 0̃1, .., 0̃n ∈ Θ. Two different cases x = 0 and x 6= 0 will be
considered separately.
1st case x = 0:
according to theorem 3.4 and definition of T -extension ∃ (x∗1, ..., x

∗
n):

A(x∗1, ..., x
∗
n) = 0 and

Â(n)(0̃1, ..., 0̃n)(0) = T (0̃1(x∗1), ..., 0̃n(x∗n)). (202)

Evidently (x∗1, ..., x
∗
n) = (0, ..., 0). In such case A(x∗1, ..., x

∗
n) = A(0, ..., 0) = 0

and
Â(n)(0̃1, ..., 0̃n)(0) = T (0̃1(0), ..., 0̃n(0)) = T (1, ..., 1) = 1 (203)

as according to definition 61 0̃i(0) = 1.
If (x∗1, ..., x

∗
n) 6= (0, ..., 0) then among x∗i , i = 1, .., n exists at least one x∗k such

that x∗k 6= 0 and as a result according to definition 61 0̃k(x∗k) < α and thus

T (0̃1(x∗1), ..., 0̃n(x∗n)) < α ≤ 1. (204)
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2nd case x 6= 0:
according to theorem 3.4 and definition of T -extension ∃ (x

′

1, ..., x
′

n):
A(x

′

1, ..., x
′

n) = x and

Â(n)(0̃1, ..., 0̃n)(x) = T (0̃1(x
′

1), ..., 0̃n(x
′

n)) (205)

(x
′

1, ..., x
′

n) 6= (0, ..., 0) otherwise A(x
′

1, ..., x
′

n) = A(0, ..., 0) = 0, but we consider
x 6= 0. Thus among x

′

i, i = 1, .., n exists at least one x
′

k such that x
′

k 6= 0 and

according to definition of 0̃, 0̃k(x
′

k) < α. Evidently using t-norm neutrality
versus 1 formula (205) can be continued in the following way:

Â(n)(0̃1, ..., 0̃n)(x) = T (0̃1(x
′

1), ..., 0̃n(x
′

n)) ≤ 0̃(x
′

k) < α. (206)

Thus we have obtained that

Â(n)(0̃1, ..., 0̃n) ∈ Θ (207)

and this means that modified (Ã1) holds. Similarly we show that modified (Ã2)
holds.
In order to prove the monotonicity (Ã3) we should show the following implica-
tion:

(∀i = 1, ..., n, Pi ⊆αF2
Qi)⇒ (Â(P1, ..., Pn) ⊆αF2

Â(Q1, ..., Qn)). (208)

We denote AαP α-cut of Â(P1, ..., Pn), i.e.

AαP = {x : Â(P1, ..., Pn)(x) ≥ α}. (209)

We take an arbitrary x ∈ AαP according to the definition of T -extension and
theorem 3.4 ∃ (x∗1, ..., x

∗
n): A(x∗1, ..., x

∗
n) = x and

Â(P1, ..., Pn)(x) = T (P1(x∗1), ..., Pn(x∗n)) ≥ α. (210)

Formula (210) give us the following result:

Pi(x
∗
i ) ≥ α ∀i = 1, ..., n (211)

and this means, that
x∗i ∈ {x : Pi(x) ≥ α} (212)

that is x∗i belong to the α-cut of Pi.

Similarly AαQ denotes α-cut of Â(Q1, ..., Qn):

AαQ = {y : Â(Q1, ..., Qn)(y) ≥ α} (213)

and for arbitrary y ∈ AαQ ∃ (y∗1 , ..., y
∗
n): A(y∗1 , ..., y

∗
n) = y and

Â(Q1, ..., Qn)(y) = T (Q1(y∗1), ..., Qn(y∗n)) ≥ α. (214)
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The same reasoning like above leads us to the following result:

y∗i ∈ {y : Qi(y) ≥ α}. (215)

If we translate the left part of the implication (208) into language of α-cuts we
get:

P
α

i ≤ Q
α

i
, (216)

where P
α

i = maxx{x : Pi(x) ≥ α} and Qα
i

= miny{y : Qi(y) ≥ α}. Given this
fact we refer to formulas (212) and (216) and get the following result:

x∗i ≤ y∗i ∀i = 1, ..., n. (217)

Applying the monotonicity of agop A we get:

A(x∗1, ..., x
∗
n) ≤ A(y∗1 , ..., y

∗
n), (218)

thus for an arbitrary x ∈ AαP and an arbitrary y ∈ AαQ we get inequality

x ≤ y (219)

and as a result:
maxAαP ≤ minAαQ. (220)

Evidently results of theorem 3.29 can be extended to another sets of inputs:
FQ([0, 1]), FI([0, 1]) and FN([0, 1]).

3.8 Outline of practical applications of gagops

The notion of a gagop, which is widely studied in this chapter, is not a math-
ematical abstraction although it is a very interesting mathematical object. We
outline possible applications of gagops in this section.
To make more clear potential of gagops in practical applications we start with
agops. Agops are an indispensable tool for different communities dealing with
procession of information coming from different sources. Production of more
accurate and often more reliable and stable estimation is an important task for
many real-world problems, which can be considered within the framework of
aggregation of information.
This final evaluation is a base for conclusion or decision, therefore agops are
widely used in multi-criteria decision making and multi-attributes classifica-
tion. An example of application of information aggregation in financial decision
making can be found e.g. in [30].
More sophisticated decision and classification problems based on interacting cri-
teria or attributes can be solved by means of fuzzy integrals, which are a special
class of agops ([15],[16]).
Aggregation of information represented by fuzzy sets is a central matter in in-
telligent systems where fuzzy rule base and reasoning mechanism are applied.
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Application of generalized aggregation operators in intelligent systems is shown
e.g. in [43].
The list of areas where agops play an important role can be continued, and this
is important motivation for the development of this theory.
Gagops are fuzzified analogue of agops, therefore fuzzified analogue of the initial
problem, where agops are applied, can be solved by means of gagops. Further
we briefly outline some problems, where processing of inexact data can be done
by means of gagops.

Multi-criteria decision making and multi-attributes classification

Problems of multi-criteria decision making and multi-attributes classification
usually are associated with a class of attributes and data coming from different
sources and describing these attributes. Production of a single value associated
with each alternative and characterizing it as much as possible is the important
stage of task. Afterwards values are compared or put into classification algo-
rithms and thus decision is made.
Let’s assume we have m alternatives, which are characterized by n attributes.
Data are vague and imprecise therefore the set of values of each attribute can be
modelled by means of fuzzy sets. Thus an arbitrary alternative is characterized
by the fuzzy vector:

ai = (ai1, ..., a
i
n), i = 1, ...,m,

where aij is a fuzzy set.
Gagops deal with aggregation of a fuzzy vector into a single fuzzy set, which is
a basis for decision makers.
If we have a matrix of coefficients, which is a fuzzy matrix (due to vagueness of
available data)

MF = (Mij)n×n

then the minimax decision rule (used for minimizing the maximum possible loss
in decision theory or game theory) in the fuzzy framework has the following
form:

minimaxj(Mij),

where min,max are generalized min and max operators, and thus the gagops
apparatus can be used.
The maximin and other decision rules are generalized in the same manner.

Aggregation of fuzzy relations

Aggregation of fuzzy relations is a popular topic in the community of researches,
who deal with fuzzy sets and practical applications (see e.g. [9], [17]). One of
the important aims in the aggregation is preservation of desired properties of
fuzzy relations. Apriori known properties of aggregation function can help to
determine if an aggregated fuzzy relation has the desired property or not. The
pointwise extension and the T -extension whose properties are studied in this
chapter can be an appropriate tool.
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Fuzzy cognitive maps

The notion of fuzzy cognitive map (FCM) was introduced by Bart Kosko in
1986 ([23]). More on FCMs can be found e.g. in [23],[24],[50].
The definition of FCM is the following:

Definition 62 ([50]). An FCM is a directed graph with concepts like policies,
events etc. as nodes and causalities as edges. It represents causal relationship
between concepts

Causalities show relation between concepts, and usually have values from the
interval [0, 1]. But to deal with uncertainty of the real world it is more appro-
priate to model them by means of fuzzy sets, thus the apparatus of gagops is
applicable again. Application of gagops can be useful in so called fuzzy casual
algebra ([23]) for estimation of indirect effect of a concept Ci to a concept Cj
and for estimation of the total effect ([23]). Also application of other agops
apart from min and max can be considered in this framework.
FCMs play major role when concerned data is unsupervised, therefore experts
opinions are crucial. When many experts provide a FCM related to some pro-
cess then aggregation of these FCM (e.g. by means of gagops) give more reliable
FCM.
We have outlined some possible areas, where theoretical results provided in this
chapter can be used. Evidently that provided list is not limited to these areas.
The only price what we have to pay for processing of inexact data by means of
gagops is fuzzy output.

3.9 Concluding remarks on generalized aggregation

We summarize results of the third chapter and outline directions for further
study in this section. Notion of a γ-agop which is introduced at the very begin-
ning is generalization of the class of agops if we consider it for an arbitrary γ.
Although γ-agops have some disadvantages they simplify aggregation process
and yield to be studied in more details. Different modifications of transforma-
tion ϕγ can be considered, e.g. we can take:

ϕγ(x) =


0, if x < γ1,
γ1, if γ1 ≤ x ≤ γ2

...
γn−1, if γn−1 ≤ x ≤ γn,

where 0 < γ1 ≤ γ2 ≤ .... ≤ γn ≤ 1, in the role of transformation. This transfor-
mation partitions [0, 1]n into finite number of classes of equivalences. Applying
different partitions γ = {γ1, ..., γn} , β = {β1, ..., βm} we can employ ideas of
the theory of rough sets and build upper and lower estimation of an arbitrary
set S, such that S ⊆ [0, 1]n and study agop behaviour on it. Ability of γ-agops
to join ideas of rough sets and fuzzy sets is charming and serves as motivation
for further study.
Generalized aggregation, which forms the biggest part of author’s contribution is
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performed for two generalization methods (pointwise extension and T -extension)
and is studied according to the joint scheme. It is shown that pointwise exten-
sion does not preserve convexity of fuzzy sets, e.g. aggregating fuzzy numbers
as an output we can obtain more general fuzzy set without necessary proper-
ties. And this is an obvious disadvantage of pointwise extension. T -extension
preserves convexity and even straight lines in some particular cases, therefore it
is more applicable when identity of input and output information is important.
From the prospective of symmetry, associatively and bisymmetry the both gen-
eralization methods have the same position: none special requirements for A is
necessary.
The idempotence property, which is straight forward for pointwise extension, is
a more complicated in the case of T -extension, only TM and convexity of the
input information can ensure idempotence of T -extension.
Neutral and absorbing elements are straight forward for pointwise extension
and are implied by the corresponding element of agop A. Neutral element of
T -extension is quite specific, but absorbing element is constant zero.
Shift-invariance (and in the same manner can be considered homogeneity and
linearity properties) turned out to be non trivial property in both cases. And
this is obviously due to additional operation of addition, which needs to be
performed (apart from the extension of an agop A) according to the extension
principle. This additional action narrows the list of cases when the property
holds and it puts restrictions on an agop A and a t-norm.
Pointwise extension preserves boundary conditions and monotonicity w.r.t. ver-
tical order relations considered in the work. But it does not work w.r.t. hor-
izontal order relations. Although it is not carefully proved, but it seems that
pointwise extension is not a gagop w.r.t. order relations which act on the hori-
zontal axis. T -extension is a gagop w.r.t. vertical and horizontal order relations
observed in the work. And it seems that it will be a gagop w.r.t. organically
defined order relations. From this prospective T -extension has more advantages
than pointwise extension. In the author’s opinion T -extension is more natural
than pointwise extension in the framework of generalized aggregation.
Concluding on properties of T -extension we have already outlined possible di-
rections for future study of gagops. Namely we can consider an A∗-extension as
an another method of generalization:

Â(P1, ..., Pn)(x) = sup{A∗(P1(x1), ..., Pn(xn)) : A(x1, ..., xn) = x},

where A∗ is an arbitrary agop or another specific monotone function (e.g. any
generator of a special class of agops). Appropriately chosen A∗ determines
the properties of A∗-extension, and in such manner we can manage desired
properties and avoid unnecessary difficulties.
Opulence of generalized aggregation with new results and urgency of practical
applications make this theory charming for us for further development.
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