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ABSTRACT 

Tritium behaviour in fusion reactor materials. Pajuste E., scientific supervisors 

Dr.chem., Ķizāne G., Dr. phys. Coad J.P. Doctoral thesis, 118 pages, 63 figures, 5 tables, 179 

references, 1 appendix. In English. 

 

NUCLEAR FUSION, TRITIUM, TRITIUM BREEDING BLANKET, BERYLLIUM, 

CARBON FIBRE COMPOSITE TILES, PLASMA FACING MATERIALS, DIFFUSION, 

MAGNETIC FIELD, IONIZING RADIATION.  

 

Fusion reactor is very complex device and requires scrupulous selection of the materials to 

meet both technological and safety needs. These materials must resist the conditions of the 

reactor, at the same time perform their functions with high efficiency, retention of fusion fuel – 

radioactive hydrogen isotope tritium is also not acceptable.  

The objective of this dissertation is to develop the knowledge base for fusion applications 

of two materials that are promising candidates for use in future fusion power reactors: beryllium 

and carbon fibre composites (CFC).  

High radioactivity beryllium pebbles (neutron multiplayer) that have been exposed to 

neutron flux in the High Flux Reactor in Petten, the Netherlands, and carbon fibre composition 

tiles (plasma facing material) from the plasma chamber of the fusion device JET (Joint European 

Torus) in Culham, United Kingdom are analysed within this research. 

Methods and techniques developed in the UL Institute of Chemical Physics Laboratory of 

Radiation Chemistry of Solids have been used in this study. Synergetic facilitating effect of 

accelerated electrons and high magnetic field on tritium release from materials has been found 

and its overall contribution estimated. Recommendations regarding the nuclear waste reduction 

based on the results on tritium behaviour studies have been provided.  
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ANOTĀCIJA 

Tritija uzvedība kodolsintēzes reaktora materiālos. Pajuste E., zinātniskie vadītāji 

Dr.ķīm. Ķizāne G., Dr. fiz. Coad J.P. Promocijas darbs. 118 lapaspuses 63 attēli, 5 tabulas, 179 

literatūras atsauces, 1 pielikums. Angļu valodā. 

 

KODOLSINTĒZE, TRITIJS, BERILIJS, OGLEKĻA KOMPOZĪTI, BLANKETA ZONA, 

PLASMAS KONTAKTMATERIĀLI, DIFŪZIJA, MAGNĒTISKAIS LAUKS, JONIZĒJOŠAIS 

STAROJUMS. 

 

Viena no kodolsintēzes reaktora tehnoloģiskā risinājuma pamatproblēmām ir materiālu 

izvēle. Reaktora materiāliem jāspēj saglabāt savu funkciju izpilde reaktora darbības smagajos 

apstākļos, kā arī nav pieļaujama kodolsintēzes izejvielu uzkrāšanās materiālos, jo pretējā 

gadījumā tie būs pieskaitāmi radioaktīvajiem atkritumiem radioaktīvā ūdeņraža izotopa- tritija 

satura dēļ.  

Disertācijas mērķis ir pilnveidot zināšanu bāzi par nākotnes kodolsintēzes enerģijas 

reaktoru divu daudzsološo materiālu - berilija un oglekļa šķiedru kompozītu, pielietojuma 

iespējām un ierobežojumiem. 

Pētījumam izmantotas augstas radioaktivitātes berilija lodītes (reaktorā pilda neitronu 

pavairotāja funkciju), kas bijušas pakļautas neitronu starojumam Augstas plūsmas reaktorā (HFR) 

Pettenā, Nīderlandē, kā arī berilija un oglekļa šķiedru kompozītu ķieģeļi (plazmas kameras sienu 

aizsargmateriāls) no kodolsintēzes iekārtas JET (Joint European Toruss, Apvienotais Eiropas 

Torss) plazmas kameras Kalemā, Lielbritānijā. 

 Darbā izmantotas LU Ķīmiskās Fizikas Institūta Cietvielu Radiācijas Ķīmijas Laboratorijā 

izstrādātas metodes un iekārtas. Novērots sinerģētisks jonizējošā starojuma un magnētiskā lauka 

efekts tritija izdalīšanās veicināšanā un novērtēts tā kopējais ieguldījums. Balsoties uz iegūtajiem 

rezultātiem izstrādātas rekomendācijas attiecībā uz radioaktīvo atkritumu daudzuma mazināšanu 

kodolsintēzes reaktoros.  
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ABBREVIATIONS  

AEUL – Association EURATOM – University of Latvia 

ANFIBE - ANalysis of Fusion Irradiated BEryllium 

appm – atomic parts per million 

CFC – Carbon Fibre Composite 

CMT – Computer Aided Microtomography 

DEMO – DEMOnstration reactor 

dpa – displacement per atom 

DTE-1 – First Deuterium Tritium Experiment 

EURATOM – European Atomic Energy Community 

EXOTIC – EXtraction Of Tritium In Ceramics 

FRP – Fluoride Reduction Process 

HCLL – Helium Cooled Liquid Lead 

HCPB – Helium Cooled Pebble Bed 

HFR – High Flux Reactor 

HI – Hyperfine Interactions 

HICU – High dose irradiation of Li-ceramic pebbles 

HIDOBE – HIgh DOse irradiation of BEryllium  

HIP – Hot Isostatic Pressing 

IAEA – International Atomic Energy Agency 

ICF – Inertial Confinement Fusion 

IGA – Inert Gas Atomization 

ILW – ITER Like Wall 

ITER –International Thermonuclear Experimental Reactor 

JET – Joint European Torus 

LIBRETTO- Tritium production, extraction and release from liquid Pb-Li 

eutectic and tritium permeation under irradiation 

M – Magnetic field 

MCF – Magnetic Confinement Fusion 

NIF – National Ignition Facility 

PARIDE – Plasma facing material specimens, divertor and primary wall sub-

assemblies 
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PBA – Pebble Bed Assembly 

ppm – parts per million 

PTE – Preliminary Tritium Experiment 

R – Ionizing radiation 

RAFM – Reduced Activation Ferritic Martensitic 

REP – Rotating Electrode Process 

SRP –Septum Replacement Plate 

STP – Standard Temperature and Pressure 

T – Temperature 

TBM – Tritium Breeder Module 

TDS – Thermo Desorption Spectra 

TPD – Temperature programmed desorption 

TTE – Trace Tritium experiment 

WCSB – Water Cooled Solid Breeder 

ZE – Zeeman Effect 
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INTRODUCTION 

Increasing energy demands, concerns over climate change and limited supplies of fossil 

fuels mean that the world needs to find new, ecologically safe and high efficiency energy source. 

Nuclear fusion of hydrogen isotopes, the process that powers the Sun, is one of the most 

perspective sources in the future that fulfils the condition described above. Research on solving 

fundamental and technological problems in development of fusion reactor is carried out 

worldwide. 

Scientific organizations in Latvia are also taking part in this research since year 2000 and 

are coordinated by association AEUL (Association EURATOM – University of Latvia). Several 

organizations of the University of Latvia are included in this Association and among them - 

Laboratory of Radiation Chemistry of Solids of the Institute of Chemical Physics. This laboratory 

has carried out research on accumulation and release of tritium from fusion reactor blanket zone 

and plasma facing materials within frames of EURATOM. 

Construction of the first experimental fusion reactor ITER has been commenced in 

Cadarache (France). ITER is a joint international research and development project that aims to 

demonstrate the scientific and technical feasibility of fusion power. The next step will be the 

demonstration reactor DEMO where energy will be obtained practically. Current expectations are 

that first industrial fusion reactors will be constructed in the years 2050 – 2060.  

Fusion reactor is very complex device and requires scrupulous selection of the materials to 

meet both technological and safety needs. These materials must resist the conditions of the 

reactor; at the same time perform their functions with high efficiency. Retention of fusion fuel –

radioactive hydrogen isotope tritium in these materials is also not acceptable. The majority of 

experimental systems in use up to now in the development of fusion have employed carbon as the 

plasma-facing material, either in the form of graphite tiles or CFC tiles for devices with higher 

power loads to the plasma-facing surfaces. The primary reasons for this are its durability under 

high thermal stress, and its low atomic number which limits the deleterious effects of atoms that 

may be eroded and enter the plasma. The other light metallic elements boron and beryllium are 

also used as additions to the plasma-facing surface and have been beneficial in controlling plasma 

density and stability, whilst beryllium has also been used for solid plasma-facing components in 

JET. The next generation experimental fusion device, ITER, plans to use both solid beryllium and 

CFC as plasma-facing components, and these materials are likely to continue as plasma-facing 

materials in the future development of power reactors. Beryllium, however will have an 
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additional new and crucially important role in the future. Fusion power reactors will have to 

breed tritium (probably by using the fusion reaction between lithium and neutrons) to provide 

fuel for the fusion process, in order to become self-sufficient in this scarce commodity: beryllium 

will be a key component of this breeding process as it is an extremely effective neutron 

multiplier. 

The objective of this dissertation is to develop the knowledge base for fusion applications 

of two materials that are promising candidates for use in future fusion power reactors: beryllium 

and carbon fibre composites (CFC).  

High radioactivity beryllium pebbles (neutron multiplayer) that have been exposed to 

neutron flux in the High Flux Reactor in Petten, Netherlands, beryllium and carbon fiber 

composition tiles (plasma facing material) from the plasma chamber of fusion device JET (Joint 

European Torus) in Culham, United Kingdom are analysed within this research.  

The objectives of this dissertation are two-fold. Firstly, to pull together knowledge gained 

in other fields such as nuclear fission on neutron damage and on tritium retention in CFC and 

beryllium, especially on the very relevant experiences with beryllium pebbles used as neutron 

multipliers. Secondly, a programme of novel investigations and experiments has also been 

conducted that extend the knowledge of these materials under fusion power reactor relevant 

conditions, for example by studying the synergy of magnetic fields, fast electron bombardment 

and high temperature, and the results are described. Conclusions have then been drawn about the 

applicability of the materials for their fusion reactor roles.  

The tasks carried out in the frameworks of this project are as follows: 

 Develop and apply methods for tritium total amount, spatial distribution and 

chemical forms measurements in tritium containing materials; 

 Estimate the role of the structure of the material and chemical impurities on tritium 

retention; 

 Perform and analyze tritium thermal desorption experiments and estimate the role of 

the material properties and tritium initial chemical form on tritium desorption 

processes; 

 Estimate effects of simultaneous and separate action of ionizing radiation and 

magnetic field on tritium desorption processes; 

 Develop recommendations regarding the nuclear waste reduction based on the 

results on tritium behavior studies. 
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Novelty: Impact of ionizing radiation and magnetic field has been assessed on tritium 

containing materials regarding the problem of tritium retention. Tritium accumulation in structure 

and functional materials is limited to 350 g due to safety reasons. As soon as this limit will be 

reached reactor will be shut down for detritiation procedure. Many experiments have been 

performed worldwide for precise estimation of the tritium retention rates and most of the 

attention has been paid to the plasma facing materials and tritium breeding blanket materials 

since they will have either direct contact to tritium containing plasma or tritium will be produced 

within these materials (tritium breeder materials and neutron multipliers). Up to now there is no 

data on tritium behaviour under simultaneous action of ionizing radiation and magnetic field.  

Practical significance: Although CFC and beryllium will have pivotal roles in the 

development of fusion power, the fusion community has no experience of these materials in the 

harsh environment that they will experience in a power reactor. Indeed, the database on beryllium 

is particularly sparse due to the hazardous nature of the material in some forms. Specifically, 

neutron damage will be many orders of magnitude greater than in any current fusion experiment, 

and there will also be synergistic effects of that damage with magnetic field, high temperature etc 

on tritium retention that have not be addressed by the fusion community heretofore. Results 

obtained in this work can be used to make corrections in tritium behaviour prediction and 

estimation of its overall retention in fusion devices as it provides information about tritium 

behaviour under simultaneous action of radiation and high magnetic field in beryllium and CFC 

materials. This study has been carried out within the EURATOM (European Atomic Energy 

Community) projects JW10-FT-3.62 - EFDA Fusion Technology “Post mortem analysis of 

tritium accumulated in selected plasma facing components”, TW5-TTBB-006-D08 - EFDA 

Fusion Technology “Assessment of the effects of magnetic field, radiation and temperature on 

the tritium release from beryllium pebbles”, JW8-FT-1.12 “Determination of tritium and 

analysis of carbon-based plasma-facing components before and after their detritiation with 

different methods”, JW6-FT-2.27 JET Task Fusion Technology “Magnetic field effect on 

technologies for detritiation of beryllium materials” that demonstrates its scientific and practical 

relevance.  

Publicity: Results of this research have been presented in 5 international conferences and 8 

scientific papers have been published in international, cited journals.  

Acknowledgements: I wish to express my sincere gratitude to my scientific supervisor   

Dr. chem. Gunta Kizane for guidance and support during these years. I would like to thank my 
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1. LITERATURE REVIEW 

1.1 Fusion Energy on Earth 

In 1920, British physicist and chemist F.W. Aston made an essential experimental 

observation that four hydrogen atoms are slightly heavier than one helium atom. Another British 

scientist, astrophysicist Sir A. Eddington immediately recognized importance of this discovery 

and realized that by converting hydrogen into helium the Sun releases about 0.7% of its mass into 

energy according to the famous Einstein’s equation E = mc
2
. In 1939, German physicist H. Bethe 

proposed a full quantitative theory explaining the generation of fusion energy in stars [1]. All 

these crucial discoveries led to an idea of controllable fusion energy here on Earth for practical 

purposes. Shortly after the World War II research in the field of fusion spread worldwide, but due 

to its military significance, most of experiments were secret. Situation changed in 1955 at the 

United Nations International Conference on the Peaceful Uses of Atomic Energy (“Atom for 

Peace”) in Geneva where fusion research programs were declassified as secret and international 

scientific collaboration could be started. In Europe, associations were established between 

European Atomic Agency EURATOM and the scientific institutions of the member states. 

Fusion reaction of hydrogen isotopes – deuterium 
2
H and tritium 

3
H, is considered to be the 

most convenient for energy production due to its high energy yield (1.1) 

2
H +

3
H→ 

4
He + n + 17.6 MeV 1.1 

Deuterium is a stable isotope of hydrogen that can be extracted from sea water (its 

abundance is 0.0156% of all naturally occurring hydrogen) [2]. Whereas tritium is a radioactive 

isotope with relatively short half-life (12.3 years) and has to be produced artificially by 

interaction of neutrons with lithium isotopes, according to reactions (1.2, 1.3) 

6
Li + n (thermal)  

4
He + 

3
H                         940.4 b 1.2 

7
Li + n (E > 17MeV)   

3
H + 

4
He + n           0.026 b 1.3 

Tritium could be produced in reaction with 
6
Li with low energy thermal neutrons, cross-

section of the reaction - 940.4 barns. 
7
Li can also take part in generation of tritium, but reaction 

requires neutrons with higher energy and its cross-section is considerably smaller - 0.3 barns [3].  

For fusion reaction to occur the electrostatic repulsion between hydrogen isotopes must be 

overcome. In order to attain this, atoms must have a temperature of several tens of millions of 

degrees whereby they become completely ionized (turn into plasma state). In addition, sufficient 

density and energy confinement are required, as specified by the Lawson criterion [4]. Magnetic 

http://en.wikipedia.org/wiki/Coulomb_barrier
http://en.wikipedia.org/wiki/Lawson_criterion
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confinement fusion (MCF) attempts to create the conditions needed for fusion energy production 

by using the electrical conductivity of the plasma to contain it with magnetic fields [5]. In 1968, 

at the third IAEA International Conference on Plasma Physics and Controlled Nuclear Fusion 

Research at Novosibirsk, Soviet scientists A. D. Sakharov and I. E. Tamm announced that they 

had achieved unprecedented results with a tokamak
1
 magnetic confinement device with a special 

geometry in a shape of torus [6]. Nowadays, tokamaks are the dominant experimental technique 

for studying fusion. The largest present-day tokamak device, The Joint European Torus (JET), 

located near Oxford in United Kingdom, was put into operation in 1983 (more information in 

chapter 1.4) [7]. Nevertheless, another type of magnetic confinement device stellarator invented 

by American physicist L.Spitzer should also be mentioned since it is still considered as an 

alternative for a tokamak [8]. The largest stellarator device Wendelstein 7-X is currently under 

construction in Greifswald, Germany [9]. List of major toroidal confinement devices, their 

location, approximate years of operation and used materials can be found in the review article 

provided by G. Frederici et al [10]. 

Alternative technique to the magnetic confinement fusion (MCF) is an inertial confinement 

fusion (ICF) that is based on a process where nuclear fusion reactions are initiated by heating 

(usually by lasers) and compressing a fuel target, typically in the form of a pellet that contains a 

mixture of deuterium and tritium. The largest inertial confinement device National Ignition 

Facility (NDF) is located in Livermore, California (United States) and it was put into operation in 

2009 [11].  

Currently one of the World’s most expensive scientific experimental devices – tokamak 

device ITER is already under construction in South of France. This will be followed by an 

exploitation phase lasting about 20 years, afterwards demonstration reactor DEMO will be built 

where energy will be obtained practically. Current expectations are that first industrial tokamak 

type fusion reactors will be constructed in the years 2050 – 2060 [12]. More detailed information 

is given in the following chapter 1.2. 

Public acceptance of a new energy source is also an important problem and probably not 

less crucial than technological issues for its implementation in industry. Recent events in Japan 

(leakage of radioactive material from the Fukushima Daiichi power plant caused by the 

magnitude - 9 earthquake and following tsunami in March 2011) have made society more aware 

of everything related to the nuclear energy [13]. Estimation of the radioactive waste production 

                                                 
1
 From Russian: тороидальная камера в магнитных катушках 

http://en.wikipedia.org/wiki/Electrical_conductivity
http://en.wikipedia.org/wiki/Lyman_Spitzer
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and overall safety during the fusion reactor operation has been performed with a high accuracy. 

Main advantage of fusion energy is the total absence of high level radioactive spent fuel as 

produced in fission reactors [14]. As mentioned above the product of fusion reaction is inert 

helium gas. Nevertheless, some amount of radioactive materials will be produced as a result of 

neutron induced activation of structural materials and tritium inventory [15]. Therefore lot of 

effort is put to develop low-activation materials and methods for sufficient material detritiation 

(see chapter 1.7). Moreover, it must be mentioned that combustion of coal introduces more 

radioactive long living isotopes in the atmosphere than any nuclear facility if normalized to the 

energy output [16].  

1.2 ITER and beyond 

ITER (International Thermonuclear Experimental Reactor) is a joint international research 

and development project that aims to demonstrate the scientific and technical feasibility of fusion 

power. It will be equipped with complete deuterium-tritium fuel cycle [17]. Its construction was 

begun in 2008 in Cadarache, France, whereas the first plasma is expected in 2018. The project's 

members are the European Union, Japan, China, the United States, South Korea, India and 

Russia. EU as a host party for ITER will contribute 45% of the cost, with the other parties 

contributing 9% each. The fusion reactor itself has been designed to produce 500 MW of output 

power for 50 MW of input power, or ten times the amount of energy put in. Hereby the machine 

is expected to demonstrate the principle of getting more energy out of the fusion process than is 

used to initiate it, something that has not been achieved with previous fusion reactors [12, 18].  

Schematic view of ITER machine is demonstrated in Figure 1.1. Main components of a 

tokamak are magnets, vaccum vessel, blanket, divertor, diagnostics, external heating and cryostat. 

Also the external systems are of great importance – vaccum and cryogenics, remote handling, 

powere supply, hot cells, cooling water and tritium breding. Short description of each component 

of a tokamak taken from the official ITER web page (www.iter.org) is given below.  

Magnet System comprises 18 superconducting Toroidal Field and 6 Poloidal Field coils, a 

Central Solenoid, and a set of Correction coils that magnetically confine, shape and control the 

plasma inside the Vacuum Vessel. 

Vacuum Vessel is a hermetically-sealed steel container inside the Cryostat that houses the 

fusion reaction and acts as a first safety containment barrier. In its doughnut-shaped chamber, or 

torus, the plasma particles spiral around continuously without touching the walls. 

http://www.iter.org/
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Figure 1.1 International Thermonuclear Experimental Reactor [www.iter.org] 

 

Blanket covers the interior surfaces of the Vacuum Vessel, providing shielding to the 

Vessel and the superconducting Magnets from the heat and neutron fluxes of the fusion reaction. 

The neutrons are slowed down in the Blanket where their kinetic energy is transformed into heat 

energy and collected by the coolants. In a fusion power plant, this energy will be used for 

electrical power production. Also tritium production will be realized within the blanket.  

Divertor is situated along the bottom of the Vacuum Vessel, its function is to extract heat 

and Helium ash — both products of the fusion reaction — and other impurities from the plasma, 

in effect acting like a giant exhaust system. It will comprise two main parts: a supporting 

structure made primarily from stainless steel, and the plasma-facing components (either carbon or 

tungsten), weighing about 700 tons.  

An extensive diagnostic system will be installed on the ITER machine to provide the 

measurements necessary to control, evaluate and optimize plasma performance in ITER and to 

http://www.iter.org/
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further the understanding of plasma physics. These include measurements of temperature, 

density, impurity concentration, and particle and energy confinement times. 

Heating System: ITER Tokamak will rely on three sources of external heating that work in 

concert to provide the input heating power of 50 MW required to bring the plasma to the 

temperature necessary for fusion. These are neutral beam injection and two sources of high-

frequency electromagnetic waves. 

Cryostat is a large, stainless steel structure surrounding the Vacuum Vessel and 

superconducting Magnets, providing a super-cool, vacuum environment. It is made up of a single 

wall cylindrical construction, reinforced by horizontal and vertical ribs. The Cryostat is 29.3 

metres tall and 28.6 metres wide [19]. 

Significant information and technologies provided by ITER will be crucial for development 

of a demonstration reactor DEMO (DEMOnstration Power Plant). DEMO's goal is to produce 25 

times as much power as introduced and its 2 to 4 gigawatts of thermal output will be on the scale 

of a modern electric power plant [12]. DEMO’s linear dimensions will be about 15% larger than 

ITER and a plasma density about 30% greater. A very optimistic report on the official ITER 

website states that a prototype commercial fusion reactor DEMO could make fusion energy 

available within 20 years, based on a  conceptual design for DEMO machine being completed by 

2017, and “if everything goes well, DEMO will lead fusion into its industrial era, beginning 

operations in the early 2030s, and putting fusion power into the grid as early as 2040” [19].  

In this study, more attention will be paid on the progress related to development of the 

functional materials used in a blanket and as a plasma facing. Therefore overview of the 

European Union concept and research activities of blanket design and development of plasma 

facing material combination will be given in more detail in the following chapters. 

1.3 The EU blanket design, research and development (R&D) activities prior to 

installation in ITER 

Dominating fraction (about 80%) of the power generated by fusion will be captured by 

neutron moderation in the breeding blanket surrounding the plasma where tritium production and 

energy extraction take place. Due to its exceptional relevance, the question on the right breeding 

blanket concept has frequently been discussed in literature [20-26]. 

European Union proposes two concepts of helium cooled tritium breeding blanket modules 

for testing in ITER: Helium - Cooled Lithium - Lead (HCLL) blanket which uses the eutectic Pb-
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15.7 Li at 90% 
6
Li enrichment as both breeder and neutron multiplier, and Helium - Cooled 

Pebble Bed (HCPB) blanket where lithium ceramic pebbles (Li4SiO4 or Li2TiO3, 
6
Li enrichment 

40% or 70%, respectively) are used as a breeder and beryllium pebbles as a neutron multiplier. 

HCPB concept is demonstrated in Figure 1.2. Both blankets will use pressurized helium 

technology for the power conversation cycle (8MPa, inlet/outlet temperature 300
o
C/500

o
C) and 

Reduced Activation Ferritic Martensitic (RAFM) steel as structural material, the EUROFER [25, 

27, 28]. The EU Testing programme foresees several TBMs (Tritium Breeding Module) during 

the first 10 years of ITER operation [22]. Also other partners are planning to test their blanket 

concepts in ITER, for example, Water Cooled Solid Breeder blanket concept WCSB proposed by 

Japan [29]. 

 

Figure 1.2 Helium Cooled Pebble Bed concept of a blanket module [30] 

 

The choice of breeding blanket concepts has been based on the following issues: overall 

system and development cost, risks including all related sub-system outside the reactor like 

tritium extraction, heat exchangers and power conversation, tritium control, technical feasibility, 

reliability, ease of manufacture, maintainability, compatibility with advanced reactor layouts and 

safety [20]. A lot of effort has been concentrated on the functional material testing under relevant 

conditions of the reactor to ensure requirements regarding the issues mentioned above. 

Neutron irradiation is one of the main obstacles complicating the material choice due to the 

problems it causes; e.g., neutron-induced transmutations (long - term activation, tritium inventory 

in beryllium materials) and structure degradation (brittleness, swelling, etc) [31, 32]. A wide 
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variety of neutron irradiation projects for breeding blanket materials have been undertaken or are 

in progress. The major facility in Europe providing irradiation of blanket relevant materials is the 

High Flux Reactor (HFR), located in Petten, the Netherlands. The following experiments has 

been or is going to be performed: EXOTIC - Tritium production and release from Li-ceramics 

[33], Pebble-Bed Assemblies (PBA) - thermo-mechanical behaviour of breeder pebble-beds [34], 

HICU- High dose irradiation of Li-ceramic pebbles, effect of tailored neutron-spectrum on pebble 

(stack) integrity [35], HIDOBE - High Dose Beryllium, effect of He-bubbles on tritium-inventory 

and pebble-bed behaviour [36, 37], LIBRETTO [38]: Tritium production, extraction and release 

from liquid Pb-Li eutectic and tritium permeation under irradiation, PARIDE - Plasma facing 

material specimens, divertor and primary wall sub-assemblies [39]. All of these experiments give 

a possibility to do both in-pile and out-pile or post irradiation measurements.  

Great input in blanket development has been provided by Karlsruhe Institute of 

Technologies. Lot of investigations performed by this scientific institution are related to 

understanding and predicting release of gaseous neutron transmutation products from materials 

irradiated under fusion conditions (in collaboration with HFR), as well as detailed structure 

analysis [27, 40-42]. Calculations and experiments related to tritium breeding self - sufficiency 

based on neutronic analysis are also of great importance and have been done by number of 

institutions all across the Europe and Asia [43-45]. Issues related to fabrication technologies of 

blanket modules are also under discussion [23]. 

1.4 Research and development activities related to Tokamak performance - the Joint 

European Torus 

In order to solve fundamental and technological problems related to tokamak system 

performance under complex conditions of fusion reactors, research is carried out worldwide and 

plenty of experiments are performed on the tokamak devices such as DIII-D (USA), EAST 

(China), KSTAR (South Korea), TFTR (USA), Joint European Torus (UK), JT-60 (Japan), Tore 

Supra (France), T-15 (Russia), etc [10].  

The largest current experiment is the Joint European Torus (JET) – tokamak device with 

unique scientific and technical features (Figure 1.3) [46]. Comparison of JET and ITER technical 

parameters is given in Table 1.1. 

JET is equipped with a sophisticated diagnostics system that gives possibility to obtain 

crucial information about the plasma behaviour and material compatibility with real reactor 

http://en.wikipedia.org/wiki/DIII-D
http://en.wikipedia.org/wiki/EAST
http://en.wikipedia.org/wiki/KSTAR
http://en.wikipedia.org/wiki/TFTR
http://en.wikipedia.org/wiki/Joint_European_Torus
http://en.wikipedia.org/wiki/JT-60
http://en.wikipedia.org/wiki/Tore_Supra
http://en.wikipedia.org/wiki/Tore_Supra
http://en.wikipedia.org/wiki/T-15
http://en.wikipedia.org/wiki/Joint_European_Torus
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conditions. Remote handling system developed and used at JET is also an essential step towards 

safe maintenance of the reactors.  

Table 1.1 Technical data on JET and ITER 

Parameters JET[7]  ITER [19] 

Plasma major radius, m 3.0 6.2 

Plasma minor radius, m 1.25 2,00 

Plasma current, MA 7.0 15.0 

Plasma volume, m
3
 200 840 

Toroidal magnetic on axes, T 4.0 5.3 

Burn flat top, seconds 60 >400 

Fusion power, MW 16 500 

 

 
 

Figure 1.3 The photograph of the JET vessel interior taken in September 2010 

[www.efda.jet.org] 

 

In 1997, during the deuterium – tritium campaign DTE1, JET produced a peak of 16.1 MW 

of fusion power (65% of input power), with fusion power of over 10 MW sustained for over 0.5 

seconds [47]. There have been several deuterium–tritium experiments in JET. First of them was 

performed in the end of the year 1991 and it was called The Preliminary tritium experiment PTE, 

where total amount of tritium injected into torous was 53 (±4) Ci or 1,96 TBq [48]. Plasma 

containing 11% of tritium in deuterium produced a peak fusion power of 1.7 MW for 2 seconds 

and a fusion gain 0.12 [47]. The most recent experiment involving tritium was Trace Tritium 

Experiment TTE in 2003, where the fraction of tritium was kept at “trace” level, i.e. <1-2% of the 

deuterium majority fuel [49, 50]. Though in the TTE type experiments trace levels of tritium have 

been used the differences between requirements for TTE and full DT operations are relatively 

small [49, 51-53].  

http://en.wikipedia.org/wiki/Megawatt
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Currently JET tokamak is operating within the ITER Like Wall (ILW) project. The aim of 

this project is to test plasma facing materials relevant to ITER. Carbon tiles had been removed 

and combination of beryllium (Be), tungsten (W), W-coated carbon fibre composites (CFC) and 

Be-coated inconel
2
 tiles are introduced into the vessel instead [46, 54-56]. Up to now ITER 

relevant materials have been tested only in isolation in tokamaks, plasma simulators, ion beams 

and high flux test beds. An integrated test demonstrating both acceptable tritium retention and 

ability to operate ITER-relevant plasmas with high power input within the limits set by these 

materials will be demonstrated for the first time [55].  

1.5 Issues related to tritium accumulation in fusion reactor materials 

Tritium is produced in the process of fusion reaction, in nuclear reactions of neutrons with 

lithium in the blanket zone. To guarantee uninterrupted operation of reactor it is necessary to 

ensure sufficient tritium is bred in the blanket, extracted and delivered to the tritium storage unit 

to replace the tritium consumed by fusion reactions and lost in the fuel cycle. As mentioned in T. 

Nishitami et al review on fusion reactor materials development “a basic tritium behaviour 

database must be developed containing information such as solubility, diffusivity, permeability, 

characteristics of trapping, release, replacement, reactions etc. for advanced materials for 

DEMO” [26]. Schematic view of fuel (deuterium and tritium) cycle is given in Figure 1.4.  

 

Figure 1.4 Fuel cycle in ITER [www.iter.org] 

                                                 
2
 A registered trademark of Special Metals Corporation that refers to a family of austenitic nickel-chromium-based 

super alloys. Inconel alloys are typically used in high temperature applications. 
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From blanket, where it is produced, tritium is carried by the helium purge gas (+0.1% H2 as 

an isotope swamping) to a tritium recovery system and then introduced into plasma chamber by a 

combination of gas and pellet (ice) injection [57]. In case of ITER tritium will be mostly procured 

from the worlds inventories, whereas DEMO will demonstrate full tritium breeding self-

sufficiency [19]. 

Tritium accumulation in fusion reactor materials is a significant safety issue. Tritium 

control in a breeding blanket and vacuum vessel is a key issue in terms of both tritium breeding 

self-sufficiency and safety of the fusion plant. Estimations of tritium inventory in the reactor 

materials have been done both experimentally and by theoretical modelling by a number of 

scientific institutions [57-59]. Safety requirements limit the in-vessel inventory to the total of 

350 g of tritium; this is due to risk of its release at accidental heat transients.  

Tritium retention is especially critical for solid breeding blanket materials and plasma 

facing materials; therefore further in this work focus will be put on these materials. 

1.6 Functional material development and research for fusion applications 

In this work main focus will be put on beryllium as a neutron multipliers and plasma facing 

component and on carbon based material that is considered as a divertor material in a high flux 

areas. Therefore literature about these materials will be reviewed in more detail.  

1.6.1 Beryllium and its alloys 

Beryllium is a light metal with unique properties that makes it attractive for the nuclear 

applications, including fusion. It is a hard, low Z metal, and excellent ability to moderate and 

multiply neutrons. However, its melting point (1285
o
C) is not particularly high. In the EU 

Helium Cooled Pebble Bed breeder blanket concept beryllium is used as a neutron multiplier. 

Reference material is chosen to be 1 mm pebbles fabricated by NGK Inc by Rotating electrode 

process (REP). For a tritium breeding ratio above 1, the volume taken up by the Be pebble bed 

has to be approximately four times larger than for the Li-ceramic pebbles. In the vacuum vessel 

of ITER it is foreseen also as a plasma facing material due to its good mechanical properties and 

low impact on plasma performance. The ITER reference design has a nearly continuous actively 

cooled Be wall surface [56]. 

Beryllium performance under neutron irradiation is an important issue and has been studied 

widely.  
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o Swelling, embrittlement and hardening 

Beryllium swelling, embrittlement and hardening as a result of the neutron irradiation are 

important issues regarding its mechanical performance. Swelling in neutron-irradiated materials 

is interpreted in two general mechanisms. First is a direct consequence of the crystal lattice 

radiation damage. High energy neutrons knock out the atoms in the lattice and generate defects 

such as vacancies and interstitials[60]. In beryllium irradiated at low temperatures (below 200
o
C) 

dislocations loops have been observed experimentally by several authors. Moreover, the 

accumulation of the dislocations in different lattice planes depends on the type of the dislocation; 

vacancy loops are located on the basal planes, whereas interstitials on the prismatic ones [61, 62]. 

Another observation made by the same authors is that in the case of beryllium, amount of neutron 

created vacancies are larger by several orders than interstitials [63]. Through the classical 

mechanism of vacancy accumulation, voids are formed. Accumulation of these voids on the grain 

boundaries leads to the embrittlement of a polycrystalline beryllium [61]. Therefore it might be 

assumed that large grains are more desirable regarding the mechanical durability of beryllium. 

Second type of swelling is a consequence of the gaseous nuclear reaction products. The second 

mechanism is dominant in the limiting of the lifetime of the beryllium pebbles [60]. 

Mathematical approach of swelling model has been provided by several authors. The parameters 

used in these calculations are the neutron flux, initial porosity, amount of impurities, grain size 

[64]. Neutron induced hardening caused by the produced helium has also been described by 

number of authors [63]. Production of the gaseous species as a result of neutron irradiation is a 

one of the main problems of beryllium performance; therefore plenty of investigations on their 

behaviour in the solid beryllium have been done worldwide. 

o Gaseous products of nuclear reactions  

As a result of neutron induced transmutations of beryllium helium and tritium gas is 

produced in considerable amounts. In the frame of the European Power Plant Conceptual Study, 

the peak integral gas production in beryllium, at the End-Of-Life of HCPB modules (40 000 h 

operation), has been assessed as 25 700 appm helium and 640 appm tritium, taking account in-

pile tritium decay. The global tritium production in the whole of the blanket (390 tons of 

beryllium) is 23.8 kg [40]. Neutron reactions with beryllium are demonstrated below (1.4-

1.8) [65].  
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Tritium and helium production and accumulation under different irradiation conditions 

(temperature, neutron flux, and time) has been investigated by a number of authors.  

It is assumed that initially helium and tritium form a dynamic solution throughout the entire 

lattice. Due to low solubility, helium tends to form gas clusters that performs as a nucleation site 

for further formation of bubbles [66]. In fact, grain boundaries are a strong sinks for such defects, 

therefore large fraction of these clusters could be formed nearby them. Nevertheless, it must be 

noted that formation of these clusters is only a theoretical assumption - it has never been 

observed experimentally due to the extremely small size. Process of the bubble formation occurs 

via gas precipitation and a vacancy capture and this process is strongly temperature dependent 

[60]. After irradiation at temperatures below 200
o
C no bubbles can be observed, whereas at the 

temperatures above this level - bubbles of few nanometres start to appear [61, 67]. Interesting fact 

is that this tendency remains even at very long exposure time and large helium amount. In the 

low temperature (70
o
C) irradiation experiment of beryllium that lasted for 15 years (helium 



25 

 

content reached 2.2 at%), no bubbles were observed although significant swelling of the sample 

was obvious. Bubbles appeared only during post irradiation thermo annealing of the sample [68]. 

Another phenomena described in the literature is a specific crystallographic form of the bubbles 

inside the grains - it was found to be a hexagonal prism and more likely it is related to beryllium 

lattice parameters [66].  

Tritium is assumed not to form its own gas inclusions since its overall concentration is very 

low if compared with helium. It is believed to accumulate as an interstitial atom or to be trapped 

by the structural or chemical traps. In contrast to helium tritium has a high chemical reactivity 

and it can form chemical bonds with impurities, mostly with beryllium oxide forming the 

hydroxide. It has been found that besides oxide layer on the surface BeO inclusions have a 

tendency to accumulate on the grain boundaries [61], therefore it can be expected that chemically 

bonded tritium can be found either on grain boundaries or in the surface layer. However, it is 

assumed that most of the tritium resides mostly in the helium gas inclusions as a molecule [69]. 

Direct measurements of the tritium chemical state in a beryllium bulk have not been done. All the 

assumptions are based on the measurements of tritium released at the thermo desorption 

experiments and cannot be precisely interpreted for the real situation in a solid matrix.  

For modelling tritium behaviour in beryllium it is necessary to know such parameters as 

solubility, trapping energies and diffusivity. Some properties might be extrapolated from 

available data about protium or deuterieum, however, isotopic effects must be taken into account 

[70]. Ratio of diffusivities of the isotopes is equivalent to the inverse ratio of the square root of 

the masses of the isotopes and can be described by the equation 1.9: 

  
  

 √
  

  
 

1.9 

 

In fact, it should be mentioned that in one of the first successful attempts to measure 

hydrogen solubility in beryllium tritium was used instead due to its simple detection based on its 

radioactivity [71]. Comprehensive overview of the experimentally obtained data on hydrogen 

solubility, diffusivity and permeation has been provided by R. A. Causey in 2002 [72]. Graphical 

view of the diffusion coefficients (in a logarithmic scale) from different authors are presented in 

Figure 1.5. There is a large discrepancy in the data obtained by different authors. This might be 

explained both by the differences of beryllium grades used in the experiment and different 

technique. In this work diffusion coefficients are attempted to be classified according to the 

source of hydrogen isotope: (I) hydrogen sorption in a material as a result of exposure to its gas at 
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a given pressure and temperature (H, D and T) [71, 73], (II) tritium formed as a result of exposure 

to a neutron irradiation (only tritium) [74, 75] and (III) implantation of the energetic ions (usually 

deuterium) [76, 77]. 

It is clear that diffusion is not the single mechanisms of tritium transport in beryllium. 

Trapping phenomena and influence of oxide layer have a crucial role. M. G. Ganchenkova has 

provided a theoretical model of tritium trapping on the imperfections of the lattice, such as 

vacancies, grain boundaries, etc. [78]. Reported diffusion coefficients might be better considered 

as an effective ones due to fact that classical diffusion approach cannot be applied (beryllium 

lattice is not an ideal one, especially after neutron irradiation or ion implantation). Gaseous 

sorption of hydrogen isotopes has been used in work of P.M.S. Jones and R. Giboson [71] and E. 

Abramov et al [73]. In the work of E. Abramov et al deuterium diffusivity in two grades of 

beryllium (high and extra grade beryllium, with 99% and 99.8% beryllium content, respectively) 

has been measured, whereas P.M.S. Jones and R. Gibson have used tritium. Differences in 

diffusion results of these two author groups could be explained by the fact that E. Abramov et al 

have taken into account contribution of beryllium oxide. It is well known that hydrogen diffusion 

in BeO is much lower than that in pure beryllium [79-82]. In 2011, V. Chakin et al [83] published 

work about possibility to simulate neutron irradiation by loading beryllium with hydrogen/tritium 

gas mixture at high temperatures with the aspect of hydrogen isotopes accumulation in beryllium 

pebbles. An intense oxidation of beryllium during thermo sorption at high temperatures limits 

application of this method, whereas low temperature sorption (<700
o
C) might be used as a 

simulation tool for a low tritium concentrations [83]. However, neutron induced lattice damage 

and helium production in real irradiation conditions have a crucial role in tritium behaviour. 

Diffusion coefficient of neutron produced tritium has been measured by I. Tazhibaeva et al [84], 

D.L Baldwin and M.C. Billone [75] and S. Cho et al [74]. Whereas transport mechanisms and 

overall behaviour of tritium in neutron irradiated beryllium has been studied by a number of 

authors, even a special codes or models have been developed [40, 43, 74, 80, 85-88].  

D.L. Baldwin and M.C. Billone have studied tritium diffusion process dependency on the 

beryllium density. An interesting phenomenon was revealed within this study- tritium diffusivity 

in a low density beryllium (81%TD) is lower than that for 100% or 99% theoretical density (TD) 

beryllium. It could be related to larger free surface within beryllium material where tritium could 

be trapped. 
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Figure 1.5 Diffusion coefficients of hydrogen isotopes in beryllium (in logarithmic scale) by 

different authors  

(I) 

(II) 

(III) 
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Great effort in explaining tritium behaviour in irradiated beryllium is given by F. Scaffidi - 

Argentina and his colleagues. In their work tritium and helium release during thermo-annealing 

of irradiated beryllium pebbles has been analysed in detail and a computer code for its prediction 

ANFIBE (Analysis of Fusion Irradiated Beryllium) has been developed. This code further was 

improved by E. Rabaglino. ANFIBE provides comprehensive model describing tritium trapping 

mechanisms in presence of both pressurized traps and chemical traps. This code includes a 

number of physical properties and the equations describing them.  

Tritium and helium thermo-desorption spectra had been analysed widely in order to get 

comprehensive overview of the processes occurring during thermo annealing of irradiated 

beryllium [40, 60, 87, 89-91]. It is believed that most of tritium releases together with helium, 

whereas helium can be released at temperatures close to the melting point of beryllium. 

Nevertheless, low temperature peaks of tritium release have been observed in several 

experiments. Some authors believe that it is a tritium located close to the surface and is escaping 

through the micro cracks created by the irradiation [91]. Other associates it with the diffusion of 

the tritium existing as an interstitial [40, 89]. Beryllium microstructure after the irradiation and 

also after thermo annealing of the tritium has been also studied by number of authors [61, 66, 68, 

89, 92]. Micro structural analysis gave an understanding about processes regarding helium bubble 

behaviour during thermo – annealing; bubbles tend to grow and coalescence that results in a 

venting process when all the gaseous products are released [40, 41, 92]. High quality 

visualization of the porosity is provided by A. Mӧslang et al by using a computer aided 

microtomography (Figure 1.6).  

 

Figure 1.6 Evolution of pores and cracks during thermo-annealing published by A. Mӧslang et 

al in 2009. Method of computer aided microtomography CMT. Horizontal CMT cross sections of a 

Be pebble before (a) and after (b) neutron irradiation at 770 K and annealing at 1500 K. [41] 
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Studies of the ion implantation in the surface of beryllium are particularly important for 

prediction its durability as a plasma facing material. Ion implantation as a loading method has 

been use in works of D. Keroack et al [77] and J.P. Pemlser et al [93]. The values of diffusion 

coefficients are comparably close, but the activation energy differs (graphically it can be 

observed as a slope angle). Ion implementation process results in lattice damage and therefore 

formation of the traps for hydrogen. Ion induced damage can be observed physically as a blisters 

and pores on the surface. It could be assumed that in the beryllium used in this two studies 

different amount of traps were formed due to differences in implantation temperature, ion 

energies, beryllium grade, etc.  

o Interaction with plasma 

Since beryllium tiles are planned to be used as a plasma facing material its interaction with 

plasma is a significant field of studies. Great input in beryllium and plasma compatibility studies 

had been provided by JET. 1989 to 2009 beryllium was evaporated periodically within the main 

chamber onto the carbon plasma-facing tiles. Experiments were also carried out with solid Be 

tiles as plasma-facing surfaces in certain areas, such as a limiter (1989-92), lower dump plate 

(1991-2) or divertor (1995) [94, 95]. In 2010-2011 all the carbon plasma-facing tiles were 

removed, and in 2011 JET began operating with the ITER like wall which uses beryllium as one 

of the main components. Main problems regarding beryllium use as a plasma facing material is 

its low melting point and high electrical conductivity, also tritium inventory is a significant issue 

[96, 97]. Comprehensive overview of research activities related to plasma wall interactions is 

given by J. Roth in 2009 [98]. Plasma caused beryllium melting, erosion and re-deposition have 

been described widely by number of authors [10, 56, 72, 95, 97, 99, 100]. In this work, main 

focus is put on tritium, therefore studies about plasma – beryllium interaction effect on the tritium 

accumulation will be reviewed. There is more pathways of tritium accumulation besides neutron 

induced transmutations in beryllium used as plasma facing, such as direct implantation of ions, 

diffusion and migration into the bulk and co-deposition [31]. Plasma driven accumulation of 

tritium has been described by A.A. Pisarev et al in 1996 [101]. Tritium permeation through 

beryllium wall coating has also been studied since it is a safety issue [102]. 

o Thermomechanical behaviour 

Besides behaviour under neutron irradiation and plasma exposure other beryllium 

properties has been investigated regarding its performance in fusion reactor. Thermo mechanical 
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properties of the beryllium pebble beds is also an issue to be taken in account and has been 

described in the literature. Maximum temperature of Be pebble bed is supposed to be approx. 

650
o
C in the HCPB design (a strong upper limit does not exist but the decreasing of mechanical 

properties and swelling suggest to limit the max temperature below 700
o
C) [27]. Temperature 

differences and different thermal expansion coefficients between pebble beds and structural 

materials result in constrained strains, which cause elastic and plastic pebble deformations. These 

deformations is also an important issue for prediction of the pebble bed behaviour [103]. 

o Impurities 

An important issue is the impurity level in beryllium used for fusion applications. 

Impurities could act as a parasitic thermal neutron absorbents and therefore decreasing tritium 

breeding self-sufficiency. Some of the impurities could cause induced radioactivity of the 

material. The impact on tritium breeding has been studied by Y. Verzilov el al. They found that 

such impurities as Li, B, Cd and other can affect tritium breeding ratio even if their content is less 

than 10ppm [104]. Comprehensive overview on issues related to a long – term activation has 

been given by N.P.Tailor et al in 2000 [32]. In case of beryllium, 
59

Co is a significant problem 

due to its transmutation into 
60

Co that is an emitter of high energy gamma rays.  

o Compatibility 

Compatibility issues are also still under discussion. Beryllium reactivity with steel and 

lithium compounds could be a problem in real reactor conditions [105]. 

o Alternative to beryllium - beryllides 

Currently beryllium pebbles is the main reference material for the HCPB, nevertheless 

titanium beryllide must be mentioned since it is considered as an alternative due to its higher 

melting point and smaller reactivity with other blanket components [106]. 

o Toxicity 

Safety issues regarding toxicity of beryllium itself are also of great importance and studies 

related to it have been carried out [94, 107].  
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1.6.2 Carbon based materials 

Carbon fibre composites (CFC) or carbon fibre reinforced carbons are a candidate material 

for divertor areas near the plasma strike points in future fusion devices. This choice is based on 

the ability of carbon to handle off–normal heat loads without melting and its low Z.  

Carbon fibre reinforced carbon is a composite material consisting of carbon fibre 

reinforcement in a matrix of graphite. The atomic structure of carbon fibre is similar to that of 

graphite and consists of sheets of carbon atoms (graphene sheets) arranged in a regular hexagonal 

pattern. The difference lies in the way these sheets interlock. Graphite is a crystalline material in 

which the sheets are stacked parallel to one another regularly. Whereas carbon fibre may be 

turbostratic
3
 or graphitic depending upon the precursor to make the fibre, or have a hybrid 

structure with both graphitic and turbostratic parts present (Figure 1.7) [108].  

In the EU divertor concept for ITER the Carbon Fibre Reinforced Carbon Material of 

SNECMA NB41 Grade (Manufactured by SNECMA PROPULSION SOLIDE, Public Limited 

Company, France) has been chosen [109]. 

 

 

Figure 1.7 Turbostratic arrangement of graphene sheets[108] 

 

The SNECMA NB41 grade is a 3D material with the fibres oriented in the 3 orthogonal 

spatial directions. With regard to fusion applications the fibres oriented in the high heat flux 

direction are made of pitch precursors while in the other two directions the fibres used are PAN-

fibres In particular the fibres are forming a 2D laminar structure consisting of ex-pitch and ex-

PAN fibres layers which is then reinforced in the third direction by a so-called needling process. 

                                                 
3
 A type of crystalline structure where the basal planes have slipped sideways relative to each other, causing the 

spacing between planes to be greater than ideal 

http://en.wikipedia.org/wiki/Composite_material
http://en.wikipedia.org/wiki/Carbon_fiber
http://en.wikipedia.org/wiki/Graphite
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This is causing the reorientation of a part of the ex-PAN fibres, which provide a higher flexibility 

than the ex-pitch fibres [109].  

In the plasma chamber the first wall materials are exposed to the severe conditions, such as 

bombardment by energetic ions and neutrals, plasma exposure, neutron irradiation. Experimental 

data on CFC behaviour in similar conditions are obtained mainly from testing in tokamak devices 

(JET, TFTR etc), plasma devices and simulations in the laboratory conditions. 

o Dimensional stability 

There have been several studies on CFC performance under neutron irradiation [62, 110-

113]. Neutron irradiation mainly affects the dimensional stability of these materials as a result of 

carbon atom displacements (Figure 1.8) [111]. If one compares with beryllium, the carbon 

application in fusion devices is not limited by the neutron irradiation. However, the increase of 

the traps for hydrogen adsorption as a result of neutron exposure must be emphasized (this topic 

will be in more detail discussed below).  

 

Figure 1.8 Neutron damage mechanism in graphite according to Snead et al [111] 

 

o Erosion and re-deposition 

High physical and chemical erosion yields leads to a limit to the lifetime of the plasma-

facing component, whereas build-up of tritium inventory is an important safety issue [114]. As a 

result of plasma induced erosion large amounts of carbon are introduced into the plasma edge and 

then re-deposited at different locations of the chamber together with the hydrogen isotopes. This 

co-deposition is considered the dominant fuel retention mechanism in fusion devices. Deposited 

layer mostly consist of so called hydrogenated amorphous carbon or amorphous hydrocarbon, 

denoted as a-C:H, with some metals species (mostly beryllium since it has been introduced into 

plasma chamber and used as oxygen scavenger and wall conditioner) and oxygen. Hydrogenated 

amorphous carbon films have been investigated widely beyond the fusion studies due to 

interesting mechanical and optical properties and therefore possible application in different areas 
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[115, 116]. The a-C:H has been found even in interstellar media in the carbonaceous dust and 

therefore is an investigation object also in astrophysics [117]. In the plasma chamber of fusion 

reactor such films form as unwanted by-product on the first wall as a re-deposited layers from 

previously eroded carbon and abundantly available hydrogen [118]. The film consists of a cross-

linked three dimensional network in which the small graphite clusters are embedded and are 

usually obtained by plasma deposition. Crosslinking is possible due to tetrahedrally coordinated 

carbon atoms (sp
3
 hybrids), whereas graphite clusters are composed of threefold coordinated sp

2
 

hybrids (Figure 1.9). 

 

Figure 1.9 Structure of hydrogenated amorphous carbon (fragment) 

 

Different forms of hydrogenated amorphous carbon films can be distinguished by the 

content of sp
3
 and sp

2
 carbon and hydrogen. F. W. Smith in 1991 [119] introduced a ternary 

phase diagram for such films based on experimental and theoretical data (Figure 1.10).  

 

Figure 1.10 Ternary phase diagram of bonding in amorphous hydrogenated carbon films, 

where a-C:H is an amorphous hydrocarbon, ta-C:H - tetrahedral amorphous hydrocarbon, ta-C - 

tetrahedral carbon (also called diamond like carbon). The area close to the hydrogen rich corner 

marks the region where no stable film can be formed (volatile hydrocarbons), this region is limited 

by long chain polymers 

 

Diagram was later used and improved by W. Jacob and W. Moller in 1993 [116]. Three 

components are included in this diagram– carbon in sp
3
 and sp

2 
hybridization and hydrogen (in 

atomic % units) [116].  
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Critical dependency of the energy of incident hydrogen flux has been found by group of 

authors. Energetic ions lead to the deposition of hard films with hydrogen concentrations H/C of 

about 0.4 (~30%), while low energy thermal hydrogen leads to the formation of soft films, with 

H/C concentration exceeding 1 (>50%) [120]. In the ternary phase diagram it is the region of a-

C:H type material. In the deposition layers from JET plasma chamber the ratio D/C (D- 

deuterium) has been found to be ~0.75 (~40% of deuterium) [121].  

There is lot of experimental data and theoretical assumptions about pure a-C:H films, 

however deposition layer in the fusion reactor plasma chamber is presumably more complex 

systems due to presence of other elements, such as beryllium, boron, oxygen and impurities from 

the Inconel. All these factors more likely have an impact also on hydrogen isotope (including 

tritium) bonding and behaviour in the deposits and must be taken into account. The chemical 

composition and structure of the deposition layer on the surfaces of sampler exposed in the 

plasma chamber of the fusion devices have been studied by different methods in number of 

institutions [122-129]. A comprehensive overview on the re-deposition of hydrocarbon layers in 

fusion devices has been given by W. Jacob in 2005 [130].  

Certainly, there are more mechanisms responsible for the hydrogen isotope retention in the 

carbon based materials beyond co-deposition with eroded particles. These mechanisms include 

implantation of energetic ions in the near surface layers, absorption on internal porosity, and 

transgranular diffusion into the bulk. All of them can make significant contributions to the fuel 

immobilization [72].  

o Ion implantation 

In the fusion devices, plasma facing materials are bombarded by energetic ions and neutrals 

from the plasma with energies of up to a few keV [10]. Ion-solid interactions include such 

processes as backscattering, sputtering and displacement, as well as implantation of the 

impinging species in the surface layer. Since ions are immediately neutralized upon approaching 

the surface, the interaction of ions and neutrals with solid surface might be considered as 

identical [118]. Interaction depends on the energy of the incident particle. Energies, slightly 

higher than thermal (few tens of an eV), allow overcoming the activation barriers to surface 

adsorption. At energies in the range of several eV of the particles is sufficient to break bonds at 

the surface, therefor new reaction channels might be open and surface diffusion increased. At 

higher energies (above few tens of eV), impinging species may penetrate the surface and be 
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trapped in the bulk. The last can be referred to an implantation [118]. R. B. Wright et al had 

carried out study on ion implantation in graphite by bombardment it with 15 keV protons and 

deuterons. They found out that conjugated acetylenic bonds were formed in the near surface layer 

[131]. The thickness of the saturated layer is limited to only about 0.1 m and therefore has a 

limited effect on the tritium inventory for D-T burning devices [72].  

In contrast to fine grain graphite no saturation of implantation layer has been observed for 

the carbon fibre composites which is a more porous material. Instead, the retained amount of 

hydrogen increases close to square root of the ion fluence due to diffusion deep in the bulk [120]. 

o Hydrogen isotope transport, interaction with carbon 

Several explanations of the hydrogen migration within the bulk of carbon based materials 

have been proposed by a number of scientists. According to M. Warrier et al hydrogen transport 

in the bulk of the carbon based materials is contributed by following processes: 

 Trapping – detrapping; 

 Recombination, dissociation and molecule formation; 

 Transgranular diffusion; 

 Diffusion along voids [132]. 

In their work M. Warrier et al have studied hydrogen transport mechanism at different 

temperatures. At the temperature below 900 K transport of hydrogen is assumed to be due to 

surface diffusion of atoms on the void – granule surface (activation energy ~0.9 eV). At higher 

temperature adsorption - desorption mechanisms starts to dominate (activation energy ~1.9 eV) 

due to larger jump size (surface diffusion is constrained to jumps on the surface, whereas 

desorbed particle might jump across voids) [132]. Trapping –detrapping mechanism requires 

even more energy determined by the type of the trap (in this work traps of 4.3 eV energy has 

been studied). An interesting study on hydrogen trapping mechanisms has been performed by S. 

L. Kanashenko et al in 1996 [133]. They proposed that hydrogen – graphite interaction is based 

on its adsorption on three different types of sites in the lattice:  

 Un-relaxed dangling bonds on edge carbon atoms of carbon interstitial loops 

(cluster) with the hydrogen adsorption energy of – 4.4 eV/H2 (trap 1); 

 Relaxed dangling bonds on grain surfaces of the carbon lattice with the hydrogen 

adsorption enthalpy of -2.3 eV/H2 (trap 2); 
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 Basal plane adsorption sites with the hydrogen adsorption enthalpy of +2.43 eV/H2 

(trap 3). This adsorption might be thought also as the true solution [133]. 

Returning to the work of M. Warrier et al it might be assumed that trap 3 proposed by S.L. 

Kanashenko is responsible for the adsorption –desorption mechanism, whereas traps 1 and 2 for 

trapping –detrapping mechanism. 

H. Atsumi el al have studied hydrogen adsorption in carbon materials regarding the 

possibilities of hydrogen storage [134]. They have studied different trapping sites in their work in 

2003. Schematic illustration of the trapping mechanisms proposed by H. Atsumi et al (according 

to S. L. Kanashenko) is given in Figure 1.11. 

 

Figure 1.11 Schematic illustration of the hydrogen trapping in a graphite material [134] 

 

Different types of carbon based materials contain different concentration of the traps due to 

differences in microstructure. Atomic displacements produced by neutron irradiation increases 

the number of traps 1 and 2 while number of trap 3 remains constant. At the damage levels of 

1dpa (at room temperature) concentration of traps 1 and 2 was found to increase to 1500 and 

3000 appm, respectively [133].  

The effect of the free surface within the carbon fibre composites on tritium inventory has 

also been studied by group of authors [132, 135].  

 Due to complex characteristics of hydrogen transport it cannot be considered as a classical 

diffusion, however it is possible to though on effective diffusion parameters. R. A. Causey has 

made an overview of the experimentally obtained coefficients of effective diffusion of hydrogen 

isotopes in carbon based materials (Figure 1.12) [72].  

Comprehensive studies on hydrogen isotope behaviour in the carbon based materials by 

taking into account all transport and retention mechanisms are of great importance. Experimental 

data for such studies can be obtained merely in the real tokamak devices, such as JET, Tora 

Supra, TRFR etc. Fuel retention and liberation characteristics in the materials exposed in plasma 
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chambers in a tokamak devices both in-situ and post-mortem has been performed by number of 

scientists and gives a possibility to extrapolate the results to the larger devices such as ITER or 

DEMO. 

 

Figure 1.12 Diffusion coefficients of hydrogen isotopes in carbon (in logarithmic scale) by 

different authors  

 

Most of performed experiments regarding the fuel retention include deuterium (or in some 

cases tritium) depth profile measurement and its release during the temperature programmed 

desorption process. For the depth profile of tritium in the JET CFC tiles full combustion has been 

used both by R.-D. Penzhorn et al in 2001 [136] and N. Bekris in 2003 [137]. Both authors have 

observed that tritium can be found throughout all of the bulk of the tiles, indicating to the 

significance of bulk diffusion and trapping. Another important data can be obtained by 

determination of gaseous species releases during the thermal treatment. Such work has also been 

performed by N. Bekris et al. By the masspectrometry method they have recorded methanated 

species such as CHxQy (where Q is D and/or T, x+y = 4) [138]. 

An interesting study has been published by A. Pisarev et al in 2011. They have compared 

the thermal desorption spectra of deuterium from carbon fibre composite exposed to deuterium 

plasma, deuterium gas and after deuterium ion implantation [139]. Such experimental data 

provides material for interpretation of the TDS spectra of materials exposed to less predictable 

conditions such as those in a tokamak.  

It must be emphasized that most of the experiments have been performed with deuterium 

and results later extrapolated to tritium. However, it has been proven experimentally by R. D. 

Penzhorn et al that more energy is required to liberate tritium than deuterium in the similar 

conditions. Authors explain it with stronger bonding of tritium to the graphite matrix caused by 

the damage resulting from radiation-induced gas/solid interactions [136]. Wherewith, it could be 
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concluded that there are lot of uncertainties and more experimental data on tritium behaviour in 

carbon materials is needed.  

1.7 Detritiation methods 

Tritium accumulation in the fusion reactor is a problem that ought to be solved. First 

approach is an appropriate choice of materials and mitigation of its retention during operation. To 

mitigate tritium inventory several approaches have been provided, for instance, minimizing 

tritium introduced, tailoring isotope ratio, ending every shot in deuterium-only phase with 

sweeping of the divertor strike points, seeding the plasma with nitrogen, ammonia, etc [120, 140, 

141]. Nevertheless it is not possible to achieve no inventory at all. Therefore lot of work is 

devoted to development of an efficient and low-cost detritation method both in-situ and after 

exploitation in a reactor. Detritiation of the materials would give an option to reclassify these 

materials for disposal from intermediate-level waste to low level wastes. Low-level wastes are 

much easier and less expensive to dispose [142] .  

There have been different detritiation methods and their combination considered: 

 Superficial cleaning and washing; 

 Vacuuming, purging; 

 Thermal desorption; 

 Isotopic exchange; 

 Chemical or electrochemical etching; 

 Plasma discharge methods; 

 Radiofrequency heating; 

 Laser scanning and ablation (laser induced desorption of tritium [143] and laser 

ablation as a method for removing co-deposited material [144]); 

 Flash lamps (photon cleaning) [145]; 

 Destructive techniques such as melting and dissolution [146]. 

Regarding the detritiation alternatives distinction must be made between surface tritium 

(co-deposited) and bulk tritium. Tritium-rich deposited films on plasma facing materials might be 

removed by in-reactor techniques, such as treatment with argon plasma, an open flame (nitrous 

oxide-acetylene), radio frequency heating and scanning laser, etc. [147-151]. To remove tritium 

from the bulk the high-temperature annealing or methods including full destruction (melting, 

dissolution) might be considered as appropriate options.  



39 

 

1.8 Magnetic field effects on physical and chemical processes 

In physics, magnetic field is defined as a field of a force associated with electric charge in 

motion, having both electric and magnetic components and containing a definite amount of 

electromagnetic energy.  

Magnetic field can be described by following quantities: magnetic field strength H (A∙m-1
= 

J∙T-1∙m-3
), magnetic flux density B (T = Wb∙m-2

) and magnetization M (A∙m-1
 = J∙T-1∙m-3

) that are 

correlated mutually by the following equation: 

          1.10 

where 0 is the permeability of a vacuum (4∙10
-7

 H∙m-1
). 

For characterizing the substance regarding the magnetic field the main quantities are 

magnetic susceptibility   (dimensionless) and permeability  (H∙m-1
). Magnetic susceptibility 

indicates the degree of magnetization of a material and is defined by the equation:  

     1.11 

Permeability is defined by the following equation: 

     1.12 

 

Magnetic field energy is considerably smaller than thermal energy or electrical energy; 

nevertheless it could have a great effect on processes by utilizing appropriate mechanisms based 

on quantum mechanics, electromagnetism and magnetic properties of materials. Magnetic field 

effects can be classified according to the properties of fields (steady or time varying, homogenous 

of gradient). Classification is given in a [152] and some of the effects described below.  

 

Table 1.2 Summary of magnetic field effects 

Magnetic field properties 
Effect 

Time properties Space properties 

Steady field homogenous 

Quantum effect (Zeeman effect) 

Magneto-thermodynamic effect 

Magnetic torque 

Lorentz force 

Time-varying field 

Gradient field Magnetic force (Faraday force) 

Alternating field Eddy current 

High-frequency field Energy injection 
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o Magneto-thermodynamic effect 

In the early stage of the studies on the role of magnetic field in chemical processes, main 

theoretical assumptions were based on thermodynamics.  

Every substance has its magnetic free energy under the influence of a magnetic field. If this 

energy is considerably different for a reactant and a product, the reaction tends to proceed 

towards the lower magnetic free energy. The magnetic contribution Gm to the free enthalpy of a 

reaction in a magnetic field of strength B
0
 in a vacuum can be expressed by the following 

equation: 

     
 
 ⁄      

  1.13 

Where     is a change of the magnetic susceptibility during the reaction [153].  

The value of Gm is usually much smaller than that for a thermal energy even at high 

magnetic fields. However, if the ferromagnetic components take part in a reaction, the change in 

magnetic free energy might reach up to several tens of a percent of the thermal energy [152]. 

o Lorentz force 

When charged particle moves in a magnetic field, it receives a Lorentz force that is 

proportional to the charge and velocity of the particle and the magnetic flux density according to 

the equation. 

       1.14 

where q – an electric charge, v – velocity of charged particle and B applied magnetic field. 

In solutions, ions and charged particles cannot move alone due to the collisions with the solvent. 

As a result, Lorentz forces cause a convection of the solutions. This phenomena is on a basis of 

magnetohydrodynamics [152]. 

o Magnetic force 

Magnetic force, called the Faraday force, is acting on a magnetic substance if it is 

positioned in a gradient field. This force is usually very weak for diamagnetic substances, 

however, some diamagnetic substances, such as water and organic compounds, can be levitated 

in air by applied fields up to 20 T and more. In contrast to Lorentz force where interacting 

quantity is an electrical charge, magnetic force is determined by the magnetic susceptibility of a 

substance.  
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1.15 

 

where   – isotropic magnetic susceptibility,       the gradient of H (magnetic field 

strength) in the z-direction. 

o Quantum effects and dynamic spin chemistry 

In quantum theory, the particle having a spin is accompanied by a magnetic moment and 

can interact with a magnetic field. Nowadays, the magnetic field effects on the chemical reactions 

are mainly explained by these interactions and specific sub-field called spin chemistry has been 

developed. Spin chemistry can be regarded as a modern magnetochemistry. Dynamic aspects, 

such as chemical reactivity, dynamics and kinetics of magnetic phenomena in chemistry, may be 

called dynamic spin chemistry [152].  

In contrast to thermodynamic and kinetic effects, the effects of external magnetic fields on 

a reaction involving a radical pair can be substantial [153]. Effects of magnetic field on the 

processes where radicals are involved can be explained by so called radical pair mechanism.  

The radical has an unpaired electron and its spin can interact with a magnetic field. The 

spin can be described by the spin angular momentum operator  ̂. 

 ̂   ̂   ̂ 1.16 

 

Where  ̂ is a position vector operator and  ̂ momentum operator. The most used operators 

are  ̂  and  ̂   ̂   ̂   ̂ . The eigenstates of these operators are as follows: 

 

 ̂ |   ⟩    |   ⟩ 1.17 

 ̂ |   ⟩   (   ) |   ⟩ 1.18 

 

For a single spin 
 

 
 (spin of the electron) the value of l is 

 

 
. The value of m may be 

 

 
 or - 

 

 
, 

so there are two eigenstates of  ̂ : 
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Following alternative abbreviation for these will be used further in the text: 
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If two electron spins interact there can be four combinations:{|  ⟩ |  ⟩ |  ⟩ |  ⟩ }, 

where |  ⟩ means | ⟩ , | ⟩ , etc. The corresponding Hamiltonians are as follows: 

 |  ⟩  
 

 
 |  ⟩ 
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1.25 

 

Where J is an isotropic exchange coupling parameter. The eigenstates of these four 

configurations are E = J/4 (3 times) and E =- 3J/4. The first three form a triplet and the last one a 

singlet. These configurations might be rewritten as follows: 

|  ⟩  |    ⟩ 1.26 

|  ⟩  
 

√ 
{|    ⟩  |    ⟩} 

1.27 

|  ⟩  |    ⟩ 1.28 

| ⟩  
 

√ 
{|    ⟩  |    ⟩} 

1.29 

 

Where  and  correspond to | ⟩ and | ⟩, respectively. The eigenvectors of these 

configurations are written below. 
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Where corresponds to a triplet state T+, To and T-, respectively. Whereas  to a 

singlet. The four possible configurations are illustrated in Figure 1.13 [154].  
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Figure 1.13 Configuration of triplet and singlet states or electron pair 

 

However, the spin state of the radical pair is not stationary. A pair of spins in singlet 

configuration can be induced into a triplet if their individual precession frequencies differ. If the 

frequencies differ by , complete conversation will occur in a time . A difference of 

frequencies about the z-direction depends on the two spins experienced different fields along z. It 

is also possible for spins to experience different local field along the x and y directions. In this 

case twist of into  and vice versa is possible, therefore S can be evolved into T- or T+.  

These transitions are the result of magnetic interactions that are included in the Hamiltonian 

of a radical pair. The Hamiltonian of radical pair AB could be written as follows: 

      (         )        
  ∑      

 

 

       
  ∑      

 

 

 1.31 

Where S1, S2 and gA, gB are the angular spin momentum operators and the g-tensors of 

unpaired electrons on radicals A and B, J is an isotropic exchange coupling parameter, e- Bohr 

magneton (5.78∙10
-5

 eV/T), B- the flux density of applied external magnetic field, Ai, Ak and Ii, Ik 

are the isotropic hyperfine coupling tensors and nuclear spins in radicals A and B, respectively. 

Term -  (         ) corresponds to exchange interaction between electrons (Heisenberg 

exchange),       
  and       

  Zeeman interactions (direction of external field is taken as the z 

axis) and ∑     
 
    and ∑     

 
    electron -nuclear hyperfine interactions [155].  

The hyperfine interaction (HI) is based on the interaction between spins of electron and 

nucleus. The hyperfine Hamiltonian has components of magnetic field in all three directions and 

therefore can induce transitions between the electronic singlet and all three triplet states. The rate 

of interconversations under the influence of HI depends on nuclear spin states of the radicals and 

therefore chemical reactions could be used for isotope separation on the basis of their spins rather 
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than masses [156]. This interactions leads also to a such phenomenon as magnetic polarization of 

both nuclei and electrons (CIDNP and CIDEP - chemically induced dynamic nuclear (electron) 

polarization) [155, 157]. 

Zeeman Effect (ZE) is based on the increase difference between g1 and g2 that is 

proportional to the applied magnetic field. This difference corresponds to a relative re-phasing of 

two spins around z- direction. It means that only S→T0 transition is possible. If the external field 

is >0.1T then Zeeman effect is dominant and S →T± transitions are negligible.  

Radiolysis of a molecule (T2 or a-C:H, for example) leads to a formation of a singlet radical 

pair. The components of the radical pair diffuse apart, but they have a significant probability of 

re-encountering each other. If they re-encounter they may form a bond: this is geminate 

recombination and the product is called cage product. The bond will form, however, only if the 

radicals have single-phased electron spins when they re-encounter: if the electrons are triplet 

phased (parallel) the bond will not form and the encounter will be unproductive. If a singlet 

phasing of the radical pair is transferred into triplet, it follows that the probability of geminate 

recombination is reduced. In this case proportion of cage products declines relative to the escape 

products. Therefore the magnetic field will affect the proportions of cage and escape 

products [156].  

1.9 Summary 

The World is on its way to a new, efficient and safe energy source – nuclear fusion. 

Scientists and engineers worldwide have done a great work to make this a near future reality. But 

still there is a lot of work ahead.  

A lot of effort has been put into studies on tritium behaviour in the fusion reactor materials. 

Pathways of its accumulation and release have been studied both experimentally and 

theoretically. Several modelling codes have been developed. Mechanism of tritium transport in 

the lattice of beryllium has been estimated, but there is a lack measurement that would prove 

these assumptions. Initial and post - annealing chemical forms of tritium within the material 

lattice have not been analysed, only its chemical state in the purge gas. There is a lack of 

information of tritium behaviour in a real reactor conditions. Up to now tritium release 

experiments have been done by heating the sample, whereas influence of other factors present in 

the reactor has not been taking into account. It is well known that ionizing radiation can have a 

great impact of the physical and chemical processes, for example, radiation enhanced diffusion. 
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Effectd of the magnetic field that is an obligated component of the reactors also should be 

considered. The crucial effects of the magnetic field on the chemical and radiolysis processes has 

been described widely, but there is no data about its impact on tritium behaviour accumulated in 

the functional materials. Another important point is the detritiation of the fusion reactor 

materials; there are a number of proposed methods, but all of them have their advantages and 

disadvantages. If the use of the already existing factors in the reactor purposefully as a 

dertitiation tools would be possible it would be an excellent way to decrease detritiation 

expenses. 

Methods and equipment developed in the UL Laboratory of Radiation Chemistry of Solids 

can attempt to solve these unanswered questions and give a input in further explanation and 

prediction of tritium behaviour in a real reactor conditions. These studies could also give a 

possibility to introduce corrections into the estimations of total tritium inventory in reactor 

materials. Estimation of the use of magnetic field and radiation as a potential detritiation tool also 

is possible with the equipment available in our laboratory. 
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2. EXPERIMENTAL 

In this chapter studied samples are described, including the production methods and 

irradiation conditions, as well as experimental methods applied both to obtain information on the 

initial properties of the samples and accumulated tritium and to study tritium behaviour at 

different conditions. Some of these methods are developed in the laboratory of Radiation 

Chemistry of Solids, University of Latvia.  

2.1 Samples 

In this study, several types of tritium containing materials have been investigated: 

(1) neutron multipliers - neutron irradiated beryllium pebbles, 

(2) plasma facing materials - beryllium and carbon fibre tiles exposed in plasma 

chamber of the fusion device Joint European Torus (JET). 

Specification of these samples (production method, dimensions, etc) and the exposure, 

irradiation condition are described below.  

2.1.1 Neutron multiplier – neutron irradiate beryllium samples 

Two types of beryllium samples that have been irradiated in the experiments EXOTIC 8/3 

(Extraction Of Tritium In Ceramics) and PBA (Pebble Bed Assembly) have been studied. All 

these irradiation programs have been performed in the High Flux Reactor (HFR) in Petten, the 

Netherlands. Description of the samples is given below.  

o Production  

Beryllium pebbles types have been produced by different methods. Metallic beryllium is 

obtained from the betrandite and beryl ores by the methods of chemical extraction, where the last 

step is beryllium fluoride reduction by magnesium metal. At this stage beryllium metal is 

obtained as spherical pebbles of (of ~2 mm in diameter) [158]. Further these pebbles can be 

processed by vacuum melting to eliminate impurities. Spherical beryllium powder (of 0.1-0.5 mm 

in diameter) that has been used in the experiment EXOTIC 8/3 is obtained by the Inert Gas 

Atomization method (IGA, manufacturer Brush Wellman, Inc, USA) [159], whereas pebbles of 

0.9-1.1 mm used in PBA experiment by the Rotating Electrode Method (REP, manufacturer 

NGK, Inc, Japan) [160]. IGA is a commonly used technique for the production of metal powders 

requiring low oxygen content and spherically shaped particles. A high pressure (0.6 to 1.4 MPa at 
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BrushWellman, Inc), high velocity gas stream is used to break up a molten metal stream to form 

powder particles. The particles cool as they fall to the base of chamber where the powder is 

collected.  

Pebbles for PBA experiment have been produced by the improved REP method that has 

been patented in 1999 by NGK, Inc [160, 161]. Production method is based on making an arc 

between plasma dissoluble electrode and a cylindrical column-like metal beryllium consumable 

electrode, both of which being disposed in a closed container filled with an inert gas as an 

atmosphere. While rotating, the beryllium electrode is melting and splashing droplets due to the 

centrifugal force. These droplets cool and solidify during their flight in helium. This method 

produces coarser material than the IGA method [160].  

Pebbles have always a coarse grain microstructure, with much larger grains than beryllium 

materials produced by Hot Isostatic Pressing (40-200m compared to 10m) [162].  

o Irradiation conditions  

EXOTIC 8/3–Tritium production and release from Li-ceramics. End of irradiation 2000. 

This irradiation experiment was mainly foreseen to test lithium ceramics, nevertheless some 

beryllium samples were also included to study compatibility with structure materials.  

Experiment EXOTIC 8/3 were designed to reach relatively high lithium burnup, >10%. For 

that purpose pebbles with 50% Li-6 enrichment were enclosed in a three coaxial annular beds: 

two beds with lithium containing pebbles separated by a bed with beryllium pebbles. These 

beryllium pebbles are used in this study. Annular beds were made of stainless steel and purged 

with helium and 0.1% H2 mixture. Temperature of the beryllium was assumed to be 520-620
o
C. 

EXOTIC 8/3 was in irradiation for 8 cycles, 449.8 full power days. The irradiation was 

performed in the core position with the typical neutron fluence rate of about 9×10
17

m
-2

s
-1

 (fast, 

En > 0.1 MeV) and 5×10
17

 m
-2

s
-1

 (thermal). Total flux of fast neutrons - 2.70  10
25

 m
-2

.
 
[163]. 

PBA – Pebble Bed Assembly - thermo-mechanical behaviour of breeder pebble-beds End of 

irradiation 2004. The aim of this experiment was to test breeder pebble beds.  

The basic tests elements were EUROFER-97 cylinders with a horizontal bed of ceramic 

breeder pebbles, either Li4SiO4 or Li2TiO3 (with a natural Li-6 abundance, 7%), sandwiched 

between two beryllium pebble beds from where samples for this study were obtained. The 

breeder and beryllium pebble beds were separated by EUROFER-97 steel plates (14 mm) and 

purged with helium and 0.1% H2 mixture. Temperature of beryllium was in range of 150-550
o
C 
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depending on the position. Total flux of fast neutrons - 3-4  10
25

 m
-2 

(En>0.1 MeV) and 1.5-2 

10
25

 m
-2 

(En>1 MeV) [34]. 

Basic description of the samples and irradiation conditions are summarized in the Table 2.1 

Table 2.1 Description of the samples 

 PBA EXOTIC 8/3-13 

Manufacturer NGK Insulators Ltd., Handa City, 

Japan 

Brush Wellman Inc., Cleveland, 

Ohio, USA 

Production process Rotating Electrode Process (REP) Inert Gas Atomization (IGA) 

Pebble diameter, 

mm 

0.9-1.1  0.1-0.2 

Main impurities 2300 ppm BeO, 

300 ppm Mg 

3400 ppm BeO, 

100 ppm Mg 

Irradiation time 294 days  449.8 days 

Neutron fluence 

(E>0.1 MeV) 
3-4  10

25
 m

-2
  2.70  10

25
 m

-2
 

Irradiation temp. 150-550 
o
C  520 -620

o
C  

4
He content 300-600 appm  285 appm  

Year of end of 

irradiation 

2004 2000 

o Sample preparation 

These samples did not require any specific preparation since they were in a form of small 

pebbles. In case of PBA in each experiment one pebble per test were used. Each pebble were 

weighed with the analytical balance (d=0.00001 g). In case of EXOTIC 8/3 2-4 mg of the pebbles 

in each test were used (due to very small size of a separate pebble). 

2.1.2 Plasma facing materials (limiters) - beryllium tiles exposed in JET plasma 

chamber 

The analysed samples were beryllium belt-limiters that protected the main plasma chamber 

wall during the campaigns in 1989-1992 operation period of JET. In this study two exposed tiles 

and one unexposed tiles were used (Figure 2.1).  
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Figure 2.1 Beryllium tiles: a) overall view of two exposed and one unexposed tiles, b) 

castellated plasma facing surface with deposition layer (above) and melted parts (below) 

o Production 

Analysed tiles were manufactured to near net shape by a (JET-developed) HIP (Hot 

Isostatic pressed) method from the S65b powder with addition sinter and cold-pressing 

process [95]. At the HIP process loose beryllium powder are placed in a steel can which is 

welded shut after degassing at elevated temperature. The sealed can is then placed into a pressure 

vessel where it is heated and then pressed from all directions simultaneously (isostatically) by 

argon gas. Simple shapes made by HIP have minimal anisotropy in mechanical properties [159]. 

Castellation and plasma-facing surface of the tiles were machined after fabrication [95]. 

o Exposure conditions 

Analysed tiles have been placed in a plasma chamber with the castellated surface facing the 

plasma. Tiles were separated by 4-5 mm wide gaps with inconel plates as spacers. All castellated 

groves were toroidal, whereas the gaps between tiles were in poloidal direction. Beryllium belt-

limiter tiles had operated for approximately 56,000 s in the plasma chamber. In the 1990-1992 

JET configurations, limiter plasmas were obtained up to a maximum plasma current of 7 MA. In 

the end of the year 1991 The Preliminary tritium experiment (PTE) has been performed with a 

total amount of tritium injected into torous of 53 (±4) Ci or 1,96 TBq [164] Plasma containing 

11% of tritium in deuterium produced a peak fusion power of 1.7 MW for 2 s and a fusion gain 

0.12 [47]. Both the plasma facing surface and the inner surface of castellation have a visible 

deposition layer or melted areas.  
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o Preparation of samples 

The exposed beryllium tiles investigated were denoted as tiles “A” and “B”. Samples 

having a defined surface area about 0.5 cm
2
 and thickness of 2–3 mm were cut from separate 

“teeth” (area between castellation) of the operating surface. Activities with beryllium materials 

were performed in a special beryllium workshop developed in the laboratory according to the 

European safety standards on the work with beryllium (due to its high toxicity). 

2.1.3 Plasma facing materials (divertor) - CFC tiles exposed in JET plasma 

chamber 

The analysed tile was from the MkII Septum Replacement Plate (MkII SRP) divertor used 

in the 2001-2004 operation period of JET: a cross-sectional view is shown in Figure 2.2.  

o Production  

The analysed tile is made of Carbon Fibre Composite, Concept I manufactured by Dunlop 

Ltd (CFC) [165]. It is manufactured from fibre reinforced graphite by chemical vapour deposition 

(graphitization) with methane and it has a 2D woven fibre sheets arrangment.  

 

 

Figure 2.2 Cross -section of the JET MkII Septum Replacement Plate divertor (SRP) 

o Exposure conditions 

Tile were placed in the plasma chamber with the weave planes normal to the plasma facing 

surface [137]. The divertor tiles are bolted to carriers connected to a water cooled structure, so 

the backs of the tiles are indirectly cooled following plasma heating of the front surfaces: bulk 

temperature between pulses is ~100
o
C. 
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Since the greatest tritium accumulation occurs on the inner divertor shadowed areas [166], 

tile 4 (14BWG4B) has been selected for this investigation (Figure 2.2). During the operation 

period no full D-T mixture discharges were made, however in the year 2003 the Trace Tritium 

Experiment had been performed with an introduction of 380 mg tritium (133.5 TBq) into the 

vacuum chamber. Tritium was introduced by the methods of gas puffing and neutral beam 

injection; therefore, both the thermalised T
+
 and fast T

+
 (~100 kV) were present in the plasma 

chamber. During the exploitation period tritium ions with energy up to 1 MeV had also been 

produced as a result of D + D reactions [167].  

Plasma interaction was essentially limited to the sloping part of tile 4, since the rest of the 

tile was shadowed. During the SRP campaign the inner strike point was on tile 4 for a total of 

~4·10
4
 seconds, and, assuming a similar distribution of ion fluxes per second for pulses with 

strike points on tile 3 (which can be measured by Langmuir probes ), the integrated ion flux for 

the campaign would be of the order 10
27 

ions·m
-2

 [145]. 

o Preparation of samples 

Samples for the analysis of tritium and structure were made by a core-drilling method. 

Cylinders (ø 1 cm and 1.5 cm) were cut from the CFC tiles normal to the plasma exposed surface 

(and thus parallel to the tile planes, including a number of such planes) and sliced into separate 

slices of thickness 1 mm. From tile 14BWG4B 66 cylinders were core- drilled (11 rows in 

poloidal and 6 rows in toroidal directions) in order to give a comprehensive picture of the tile (see 

below) and each sliced into 11 – 23 slices depending on the thickness of the tile at the particular 

position. In Figure 2.3 the labelling and positions of the 1
st
 row cylinders drilled out of the tile is 

shown. Because of the differences in exposure conditions, the tile was divided virtually in three 

parts (Figure 2.2 and Figure 2.3): 

I “SRP part” - horizontal part of tile nearest the SRP that has some exposure to plasma and 

some shadowing from SRP tile. Deposition layer about 10m or less [165]. 

II  “Sloping part” – sloping part of the tile that has been exposed to plasma and is the 

furthest part into the corner of the divertor that can be reached by the plasma. Deposition layer 

can reach thickness up to 300m, dusty in nature and of low density [165]. 

III “Shadowed part” – horizontal part of tile shadowed from the plasma by tile 3, deposition 

layer up to 250 m in form of a smooth, dense film with high H/C ratio [145]. 
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Figure 2.3 Preparation and labelling of the carbon tile samples 

2.2 Methods 

Both destructive and non-destructive methods have been used in this study.  

2.2.1 Structure and chemical composition 

Methods used for structure and chemical composition analysis were scanning electron 

microscopy SEM, energy dispersive X-ray analysis EDX and X-ray diffraction analysis XRD. 

Structure of the materials could have a crucial role both in the durability of a material in the 

reactor condition and in the tritium inventory processes. Evaluation of the chemical impurities in 

the fusion reactor materials is an important issue due to several reasons. The main of them are:  

 chemical interactions with tritium (especially in case of oxygen);  

 activation as a result of neutron induced transmutation (cobalt, etc);  

 creep phenomena in the beryllium materials due to impurities with low melting 

point [168]. 

Analysis of the neutron irradiated beryllium samples is quite complicated due to their 

gamma activity (even in high purity beryllium there is appm level of 
59

Co that transforms into 

unstable 
60

Co as a result of neutron irradiation). This radioactivity leads to significant restrictions 
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on the sample handling. Chemical analysis of the beryllium pebbles is complicated also due to 

the beryllium transparency to x-rays (EDX and other methods based on detection of the X-rays). 

SEM method has been used for the structure analysis of both beryllium and CFC samples. 

Metallic samples were prepared by the polishing with SiC sandpaper and then by diamond pastes 

of 6, 3, 1 and 0.05 m. CFC samples were prepared by cutting slices and then cleaning from the 

dust mechanically (possible impact of the mechanical cleaning on the structure were controlled). 

Two Scanning electron microscope devices were used in this study - Hitachi S-4800 and Zeiss 

EVO-50. The latter was equipped with an EDX detector and gave a possibility to obtain 

information on the chemical composition of the sites of interest of the samples. For the structure 

analysis beam energy 2 kV and beam current 15 A were chosen, whereas for the chemical 

composition up to 22 kV was used. XRD analysis has been used to assess BeO content in the 

samples from the plasma facing materials and tile structure itself in case of CFC. X-ray 

diffraction analysis device Bruker D8 Advanced has been used. 

SEM and BSE images have been analysed by the ImageJ program [Developed by W. 

Rasband, National Institute of Health]. 

2.2.2 Tritium distribution and chemical forms  

In order to determine total tritium activity, bulk distribution and abundance ratios of 

chemical forms (T2,T
0
,T

+
) in irradiated beryllium samples, chemical scavenger and dissolution 

method has been used. This method had been originally developed in the UL Laboratory of 

Radiation Chemistry of Solids within this study.  

Samples are dissolved in the solutions of                 and                 

                       in a special setup (Figure 2.4) [169].  

 

Figure 2.4 Scheme of a setup for dissolution of beryllium samples 
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Following processes are taking place during the dissolution: 

                 2.1 

         (        )        
             2.2 

         (        )        
             2.3 

   (  )       
                             

                     

2.4 

 

   (         )     (        ) 2.5 

   (         )     (          ) 2.6 

In the solution of                 molecular and atomic tritium (T2 and T
0
) of the 

activities AT2 and AT
0
 respectively, present in a Be sample transfer as T2+HT into a flow of carrier 

gas, where the tritium activity released (1) was measured with tritium monitor TEM 2100A with 

a proportional gas flow-through detector DDH 32. Detector has been calibrated with tritiated 

water of definite activity (calibration factor KD, Bq·cps
-1

·m
-3

). 

                     2.7 

T
+ 

localized in a Be layer remains in the solution and the tritium activity AT_sol_acid was 

measured with liquid scintillation method. Solution containing tritium was distilled and 1 or 5 

mL (depending of a tritium activity, in case of 1mL of sample solution 4mL of distilled water 

added) aliquot mixed with 15 mL of Ultima Gold scintillation cocktail and analysed for total 

tritium with a TRi-Carb 2910TR counter [PerkinElmer, Inc].  

90% of H
0
 (T

0
) reacts with the scavenger          in the solution of                 

                       and remains in the solution. Activity of the tritium released into a gas 

phase and retained in the solution are the respective sums:  

          (  )           2.8 

          (  )      (   )    2.9 

Where value x was found experimentally to be 0.1 (10%). The contents of T
0
,T2, T

+
(Bq g

−1
) 

in a sample were determined separately from the corresponding differences in the activities by 

following equations: 

    
                        (  )

(   )
 

2.10 

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6TXN-4V82HPJ-26&_mathId=mml1&_user=8300085&_cdi=5595&_pii=S0022311508010088&_rdoc=2&_ArticleListID=1402249642&_issn=00223115&_acct=C000058630&_version=1&_userid=8300085&md5=27a15c970303cbc4a711443c182bdef4
http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6TXN-4V82HPJ-26&_mathId=mml3&_user=8300085&_cdi=5595&_pii=S0022311508010088&_rdoc=2&_ArticleListID=1402249642&_issn=00223115&_acct=C000058630&_version=1&_userid=8300085&md5=8675c884ab241dd736c7e22ee9748180
http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6TXN-4V82HPJ-26&_mathId=mml4&_user=8300085&_cdi=5595&_pii=S0022311508010088&_rdoc=2&_ArticleListID=1402249642&_issn=00223115&_acct=C000058630&_version=1&_userid=8300085&md5=3c767b48888f7bf3eaebbf1a5fc3948f
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                     2.11 

                 2.12 

Activity of tritium in a gas flow is calculated by the following Equation 2.13 

 T

D

T R
tvK

A 





10003600
 

2.13 

 

where, AT – the released tritium activity, Bq; 

ν –gas flow, L·h
-1

; 

KD – calibration factor, Bq·cps
-1
m

-3
; 

∆t – experiment time, s; 

RT – mean anticoincidence value, cps. 

Amount of released tritium atoms can be calculated by means of the tritium decay constant 

λ = 1,75 10
-9 

s
-1

 (Equation 2.14) 


T

T

A
N   

2.14 

 

where, NT – detected quantity of tritium atoms; 

AT – the released tritium activity, Bq; 

λ – tritium decay constant, s
-1

. 

Calculations on tritium distribution in the bulk of the pebble are based on the controlled 

dissolution process of pebble and simultaneous tritium measurements. One hydrogen molecule 

corresponds to one beryllium atom (1) and the dissolution rate of beryllium (and hereby also the 

thickness of dissolved layer for the estimation of tritium bulk distribution) can be calculated from 

the hydrogen measurements. The rate of hydrogen evolution was measured with a katharometer 

If dissolution process of the beryllium pebble starts at t = t0 and radius of the pebble in this 

moment is r0, it could be calculated as follows (Figure 2.5): 

3
0

0
4

3

Be

m
r


  

2.15 

where, r0 – theoretical radius of the pebble, cm; 

m0 – mass of the pebble, g; 

Be – beryllium density, g/cm
3
. 

Radius of the pebble in the moment t therefore is calculated as follows: 
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 
3

0

4

3

Be

t
t

mm
r




  

2.16 

 

Where mt is a mass of dissolved beryllium at the moment t and can be calculated from the 

released hydrogen amount (tritium gas contribution is negligible and therefore is not taken into 

account).  

    
   

      
 

2.17 

 

Figure 2.5 Estimation of dissolved layer 

 

 

Specific mass tritium activity of beryllium pebble: 

0

0

m

dtA

A

bt

t

T
  

2.18 

 

where, A - relative tritium activity in the beryllium, Bq·g
-1

; 

AT – the released tritium activity, Bq; 

m0 – mass of pebble, g. 

In this method pebble is regarded as a perfect sphere and assumed that tritium 

concentrations in all points of a sphere with radius rt is equal. Therefore only the overall tendency 

of tritium distribution is obtained.  

o Wet oxidation method (carbon based materials) 

In order to determine tritium content in carbon fibre samples wet oxidation (combustion) 

technique proposed by Vance et al. [170] and employed in study JET-P(99)53 [171] was used. A 

scheme of the glass experimental apparatus used is shown in Figure 2.6. Combustion of a 

separate carbon disc was normally performed at a temperature of 850-870
o
C in a flow rate of 
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moistened air of 15-20 mL/min. Tritium was collected in two bubblers (volumes of distilled 

water 100-200 mL and 100 mL respectively); 98-99% of tritium was collected in the first 

bubbler. The time for complete combustion, 4-6 h, depends on the mass of the sample being 

combusted. After each combustion 5 mL water aliquots were taken from each of the two 

bubblers. Each of these aliquots was mixed with 15 mL of Ultima Gold scintillation cocktail and 

analysed for total tritium with a TRi-Carb 2910TR counter [PerkinElmer, Inc].  

 

Figure 2.6 Scheme of a modified Vance apparatus for the combustion of carbon samples 

2.2.3 Tritium thermo desorption 

Tritium release experiments were performed in a setup enabling annealing at temperatures 

up to 1040-1280
o
C with and without exposure to the fast electrons (5 MeV) and magnetic field 

(1.7 T). So called Thermo-magnetic rig has been developed in the Laboratory of Radiation 

Chemistry of Solids (UL) and is based on the electron accelerator LINAC-4. Schematic view of 

this original experiment setup is given in Figure 2.7. 

Tritium release from beryllium samples was performed in a quartz tube of 156 cm
3
, 

consisting of two compartments – one for the sample and one for a bed of granulated zinc. The 

tritium release was performed in a continuous flow of the purge gas He + 0.1% H2 of the rate 

14.5-14.9 L/h. The sample temperature was initially increased linearly with time at a constant rate 

of 2.3-4.8
o
C/min from room temperature up to an end temperature (varies in different 

experiments from 280
o
C up to 1280

o
C), which was kept constant for a determined time (from 1 h 

up to 5 h). 
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Temperature of the sample (thermo-emfs of the type S and K thermocouples) and the Zn 

bed (thermo-emf of the type K thermocouple) were continuously measured. Tritium activity in 

the purge gas, which was derived from the count rate of proportional detector DDH 32 of the 

operating volume 300 cm
3
, was continuously measured with tritium monitor TEM 2102A  

 

Figure 2.7 Schematic view of a Thermo-magnetic rig 

 

Energy transfer of the external fields in the desorption experiments has been calculated for 

better interpretation of the results later. 

o Thermal heating 

Absorbed energy by the sample during thermal treatment can be calculated based on 

thermal properties of the material (thermal capacity) according to the following equation. 

            (     )  
 

 
 (  

    
 )     (

 

  
 
 

  
) 

2.19 
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Where T1 and T2 are the start and the end temperature, respectively, whereas values of a, b, 

c are the constants. For beryllium, in the temperature range of 25-1283
o
C these constants are:  

a = 19.16; b = 0.00887; c = -477000. 

 According to the equation above, in the experiment where 1 mg beryllium pebbles is 

heated up to 280
o
C the absorbed energy is 0.567 J per pebble 

o Fast electron flux 

Fast electrons carries considerable amount of energy that is transferred to the sample during 

exposure.  

    
 

   
 

2.20 

where  

I - current (in the irradiation experiments - 6A) 

e - elementary charge (1.602·10
-19

C) 

S - electron beam cross section (0.000314 m
2
).  

The calculated value of electron flux is 1.19·10
17

electrons·m
-2

·s
-1

. Energy flux therefore is 

electron flux multiplied with energy of one electron, in this case 5 MeV. That gives the value of 

energy flux carried by electrons 5.96·10
23

eV·m
-2

·s
-1

 or 95.5 kJ·m
-2

·s
-1

. 

Total energy of electrons exposing the sample during experiment can be calculated as 

follows: 

           2.21 

where 

S – exposed area of a sample, m
2
; 

t – time of the exposure, s. 

Energy absorbed by a sample: 

              
 
 
 
  
 

2.22 

where 

 – mass attenuation coefficient, m
2
kg

-1
; 

l – thickness of a sample, m. 

Absorbed energy by a beryllium tile sample of the size 0.5×0.5×0.5 cm (dimensions of the 

samples cut from the beryllium tiles, Figure 2.8) is 4.7 J∙s-1
. If experiment lasts for one hour, then 

total absorbed energy is about 17,13 kJ. 
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Figure 2.8 Schematic view of electrons penetrating the cubic beryllium sample 

 

For the samples of different shape these calculations are more complicated. Calculations for 

a beryllium pebble are given below (Figure 2.9).  

 

Figure 2.9 Schematic view of electrons penetrating beryllium pebble 

 

The average thickness of a sample is calculated by transferring mathematically sphere into 

cylinder by dividing its volume by cross section, V·S
-1

, m. 

 

 

Figure 2.10 Mathematical transfer of sphere into cylinder 

 

If to assumed that pebble is 1 mg of mass and ideally spherical the absorbed energy in 

experiment 1h long is 0.85 kJ 

o Fast electron flux in a magnetic field 

To ensure that magnetic field effect is correctly estimated, its impact on the electron beam 

and transferred energy has been measured experimentally and calculation done. It was found that 

electron beam is focused.  
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Figure 2.11 Focusing of the electron beam in the magnetic field 

 

If to compare absorbed energy by one 1 mg beryllium pebble in all three experiments then 

it can be found that at treatment in temperature it is 0.6 J, radiation - 848.1 J, radiation in the 

presence of magnetic field - 932.9 J (due to the focusing of the beam).  

2.2.4 Tritium effective diffusion coefficient 

Tritium effective diffusion coefficient has been calculated from the thermo desorption data. 

Calculation method has been developed by A. Vitins and it is based on an equation for diffusion 

in a sphere in non-steady state. Tritium distribution in a pebble is assumed to be uniform and a 

surface concentration - constant. Total amount of diffusing substance leaving a sphere of radius r0 

is given as a function of time, t: 
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2.23 

 

where f is a fraction of released tritium and D-its diffusion coefficient. For approximation 

when f>0.4, only the first term of the series may be used and then the equation 2.23 can be 

reduced to a linear equation 2.24. 

  (   )   
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2.2.5 Tritium thermo sorption 

Tritium sorption experiments have been performed to study mechanisms of tritium 

accumulation in beryllium materials in plasma chamber. For investigations of tritium sorption, 

5mm×5mm×5mm cube-shaped Be samples from the non-irradiated limiter tile were used. A Be 

pebble irradiated in the BERYLLIUM experiment was used as a tritium source in an ampoule 
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(one Be pebble in each ampoule for three Be samples). Quartz ampoules 50cm in length were 

degassed to pressure 0.13 Pa and sealed. The Be pebble placed apart from Be samples was heated 

at 1030
o
C for 3 h. After that thermal sorption of gaseous tritium T2 in the cube-shaped Be 

samples was performed at 500
o
C for 3 h both without and with electron radiation and/or MF. The 

partial pressure of tritium in the ampoules after the tritium sorption was determined in the 

following way. A single ampoule was broken with flat nose pliers in a bendable plastic tube with 

flowing moistened air (15 L/h) inside. The airflow was maintained by a built-in air pump WISA 

300 of a tritium monitor TEM 2100A. The tritium activity in the airflow was measured with a 

tritium monitor TEM 2100A with a detector DDH 32. The total activity of tritium in the ampoule 

was determined. Taking the volume of the ampoule (9–13 cm
3
) into account, the partial pressure 

of tritium in the ampoule was calculated according to the rule of ideal gases (Equation 2.25):  

pV = NkT, 2.25 

where p is the pressure, V is the volume, N is the number of molecules, k is the Boltzmann 

constant and T is the temperature. 2.8–6.2MBq of tritium had been released into gaseous phase 

corresponding to the partial pressure of T2 0.8–1.7 Pa at 500
o
C. The concentration of T2 in 

ampoules was 8×10
13

 to 2×10
14

 molecules·cm
−3

, which corresponds to the conditions of JET. 
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3. RESULTS AND DISCUSSION 

In this study, materials foreseen for the application in two conceptually different fusion 

reactor components, blanket modules and vacuum vessel, has been investigated. Due to large 

differences in application and exposure conditions these two groups of materials are discussed 

separately. First part of the results and discussion section is devoted to neutron multipliers - 

beryllium pebbles, second - to the plasma facing materials - solid beryllium and carbon fibre 

composite tiles. In the third part the main tendencies of tritium behaviour under the specific 

conditions of fusion reactor materials are discussed. 

One of the most efficient methods for behaviour studies of tritium accumulated in solid 

materials is the temperature programmed desorption (TPD). Tritium desorption from the 

materials has been studied also under action of such external energetic factors as fast electron 

irradiation and high magnetic field. Results of these experiments provide better understanding on 

tritium behaviour in the conditions similar to the magnetic confinement fusion (MCF) devices 

and give possibility to compare material reliability for fusion applications regarding the 

detritiation options. In order to describe and predict tritium behaviour during desorption from 

neutron irradiated or tritium containing plasma exposed samples, it is necessary to estimate 

factors that may affect transport mechanisms. Therefore preliminary examination of the samples 

has been performed before the tritium release measurements for each group of the materials. Such 

crucial properties as structure, chemical impurities of the samples as well as tritium initial bulk 

distribution and chemical forms have been assessed.  

3.1 Neutron multipliers – neutron irradiated beryllium pebbles 

As a result of neutron irradiation helium and tritium generate in the bulk of beryllium 

pebbles. Accumulation of these gaseous species depends highly on the structure of the pebble and 

the chemical impurities.  

3.1.1 Preliminary examination  

o Structure and chemical composition  

Structure and chemical composition analysis has been performed for the samples irradiated 

with neutrons in the PBA and EXOTIC 8/3 experiments. If one compares the surface morphology 

and overall shape of pebbles it is obvious that pebbles irradiated in PBA experiment and 

produced by REP method are more spherical and the surfaces are smoother than that for pebbles 
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produced by IGA method from EXOTIC 8/3 irradiation. Pebbles from EXOTIC 8/3 are irregular, 

several of them stacked together and the surface seems to have layers (Figure 3.1). 

   

Figure 3.1 Beryllium pebbles from PBA and EXOTIC 8/3 experiments. a) PBA pebble, b) 

EXOTIC 8/3 pebbles  

 

Pebbles from the EXOTIC 8/3 experiment can be classified into three groups according to 

the structure: spherical pebbles with a smooth surface (I), pebbles with layers on a surface (II) 

and pebbles with porous structure reminding a strawberry (III) (Figure 3.2).  

 

Figure 3.2 Three types of the beryllium pebbles form EXOTIC8/8 experiment: (I) smooth and 

spherical, (II) layered, (III) porous (“strawberry” structure) 

 

There is also significant size diversity of the pebbles form experiment EXOTIC 8/3. Size 

distribution of the pebbles has been also studied to ease the interpretation of data on tritium 

diffusion (Figure 3.3). 

(III) 

(II) (I) 

a) b) 
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Figure 3.3 Distribution of the EXOTIC 8/3 pebbles size 

 

Chemical composition of the pebbles from experiments EXOTIC 8/3 and PBA were 

analysed and compared by the EDX method in the Institute of Solid State Physics. Analyses 

revealed that fraction of EXOTIC 8/3 pebbles is strongly oxidized (pebbles type 3, porous – 

“strawberry” structure) (Figure 3.4), whereas PBA pebbles have comparably small content of 

oxygen (thin oxide layer on the surface). Description given by the manufactures (see chapter 

2.1.1) did not show significant differences in oxide content, therefore it might be assumed that 

oxidation of beryllium pebbles took place during the irradiation. That could be a result of 

interaction with lithium silicates. Although the experimental setup of irradiation beryllium and 

silicate samples are separated by the annular steel tubes [163], some signs of Si were found on 

the surface of beryllium pebbles that might prove the fact of direct contact during the irradiation. 

One example of the chemical interactions between lithium orthosilicate and beryllium during 

neutron irradiation is shown below (T2 and He in the right side of the reaction come from neutron 

induced transmutations, one Be atom might be transformed into one helium plus one tritium 

atom):  

                                                        3.1 [172]  
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Figure 3.4 (I) SEM image of EXOTIC 8/3 pebbles and (II) oxygen map of the same pebbles 

showing the oxidized pebble (white pattern shows the concentration of the oxygen) 

 

Another reason for higher oxide content is the difference in irradiation conditions. 

Beryllium tends to oxidize at the temperature above 400
o
C (even if the oxygen concentration is 

very small). Since the data of irradiation temperature in experiment EXOTIC is given in a large 

range it is possible that some fraction was exposed to that high temperature.  

Chemical composition of the PBA pebbles has been analysed by two different equipment to 

ensure reliability of the results. Pebbles were analysed also in the Ion Implantation Laboratory of 

Sussex University by the method of Particle Induced X-ray emission (PIXE). With both methods 

such elements as Cr, Fe, Ni, Cu were determined. These elements could come from the stainless 

steel that has been also irradiated in PBA experiment. Ca could appear from sample preparation 

process (C tape could be touched by fingers before using). It was not possible to see signs of Co 

and Mg since their concentration in these samples are very low. 

Inner structure and chemical impurities of the bulk was studied both for the pebbles from 

the PBA and EXOTIC 8/3 experiments, nevertheless more measurements were done for the PBA 

pebbles since it was technically easier than that for pebbles form EXOTIC 8/3 due to size 

differences.  

Large voids became visible in the bulk of most of the examined PBA pebbles after 

polishing (Figure 3.5).  
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Figure 3.5 SEM image of polished cross-section of PBA pebble: a) large void , b) absence of 

visible pores (lines comes from the polishing) 

 

These voids are generated during the cooling phase of the fabrication process and might be 

called “technical voids”. Contents and purpose of the technical void are described in the patent of 

the Rotating Electrode Process method for beryllium pebble production [160]. This void also has 

its own patent where it is said that it is developed to prevent beryllium swelling and failure when 

irradiated with neutrons - helium produced in the nuclear reactions is stored in this void instead 

of beryllium lattice [161]. Nevertheless, existence of such technical void increases tritium 

retention since it may act as a sink for tritium trapping [90]. Inventors of the REP method also 

admit the disadvantage of this technology regarding the tritium retention together with helium. 

Cross-section diameter of these voids ranges from 100 – 250 m that corresponds to 

approximately 0.5 % of the pebble volume.  

According to the chemical composition of the bulk both pebbles were found to be very 

clean (amount and type of the impurities do not exceed those given by the manufacturers). An 

interesting phenomenon has been observed regarding the BeO localization. The backscattered 

electron images shows that beryllium oxide tends to accumulate on the boundaries of poly 

crystals; therefore it works also as “decorator” of their boundaries. It could be assumed that 

grains consist of small crystals that are having the same orientations within one grain. 

Porosity of the PBA pebbles before thermal treatment was found to insignificant – few 

pores with the size several tens of nanometers. This corresponds also to the information found in 

literature [62, 67] - at the irradiation temperatures below ~400
0
C size of helium inclusions are 

less than several tens of nm.  

a) b) 
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Figure 3.6 Backscattered electron image of PBA pebble cross section showing the oxygen on 

the poly crystal boundaries (elemental composition of these lines measured by EDX showed high 

content of oxygen) 

 

In the bulk of pebbles from EXOTIC 8/3 experiment technical void was not observed, 

nevertheless some small pores were present in a fraction of pebbles. In the areas where two 

pebbles have stacked together interlayer has been observed (Figure 3.7).  

  

 Figure 3.7 SEM image of polished cross-section of EXOTIC8/3 pebble: a) cross section of a 

pebble, interlayer between stacked pebbles(marked with red), b) separate pores in the bulk of the 

pebble 

o Initial tritium content, chemical forms and distribution 

Initial tritium content and chemical forms have been analysed for all samples, whereas bulk 

distribution only for the pebbles from PBA experiments since pebbles from EXOTIC 8/3 were 

too small for such measurements. Methods for distinguishing chemical forms and measuring the 

bulk distribution in beryllium have been developed within this work in the UL Laboratory of 

Radiation Chemistry of Solids.  

Tritium content of the beryllium pebbles was different due to different irradiation 

conditions (irradiation length, neutron flux, temperature, etc.) and the properties of the samples 

a) b) 
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(diameter, structure, impurities). Content of tritium in the pebbles experiments by the time of 

measurements was as follows: 

 PBA: (2-4) GBq·g
-1

 

 EXOTIC 8/3: (0.002-0.02) GBq·g
-1

 

Tritium produced in the neutron induced transmutation of beryllium can diffuse into the 

lattice or can be trapped by structure traps (such as intragranular He bubbles, closed porosity, 

grain boundaries, etc.) or it may react with BeO to form   (  )  (3.2) with the formation energy 

of -0.7 eV at the standard temperature, pressure(STP) [87]. 

          (  )     3.2 

The abundance ratio of tritium chemical forms in the beryllium pebbles was measured for 

samples from both irradiation experiments (Figure 3.8).  

  

Figure 3.8 Abundance ratios of tritium chemical forms in the beryllium pebbles irradiated in 

experiments EXOTIC 8/3 and PBA 

 

Large fraction (up to 96%) of the tritium accumulated in irradiated beryllium pebbles was 

found to be in the molecular form. It can coexist with the helium in the gas inclusions. Large 

fraction of gaseous species very likely is trapped also in the technical void in the bulk of the 

pebbles that might explain the highest T2 content in the pebbles from the PBA experiment 

(fabricated by the REP method). Presence of molecular tritium in the pebbles is undesirable. In 

order to extract T2 from the metallic matrix it is required T2 to dissociate into T
0
 (dissociation 

energy for hydrogen - 4.52 eV). 

In the investigated samples fraction of atomic tritium was in range from 1 – 32%. Atomic 

tritium can either exist as interstitial or can be trapped in the vacancy–based defect of the 

beryllium [173]. Atomic tritium can diffuse without any transformation - energy is required only 
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for passing through the diffusion energy barrier. The role of molecular and atomic tritium ratio is 

obvious if one compares the tritium release from EXOTIC 8/3 and PBA pebbles (see chapter 

3.1.2). 

Chemically bonded tritium T
+
 was found to be in range from 3-12%. Highest concentration 

of T
+
 was in the pebbles from the experiment EXOTIC 8/3. According to the chemical analysis 

these pebbles have the highest beryllium oxide content. Tritium retained in the form of beryllium 

hydroxide stays immobile unless temperature required for dehydration of Be(OT)2 is reached 

(complete dehydration is reached at temperatures above 950
o
C) [158]. Tritium possible states are 

shown schematically in Figure 3.9.  

 

Figure 3.9 Schematic view of possible tritium states in the neutron irradiated beryllium pebble 

 

Bulk distribution of tritium in the pebbles has been determined for the pebbles of PBA 

experiments (Figure 3.10). Distribution was calculated by measuring tritium activity in the gas 

phase released during the dissolution, therefore distribution of chemically bonded tritium T
+
 was 

not determined (more likely most of it is in the surface oxide layer and in the oxide inclusions in 

the bulk). For both types of samples distribution of tritium was similar – low concentration in the 

first micrometers from the surface, more or less uniform distribution in the bulk and in some 

pebbles a sharp peak somewhere in the bulk. The peak might indicate the position of the large 

void that was found during the structure investigations. Whereas low concentration in the first 

micrometers from surface indicates tritium desorption during storage in the ambient conditions.  
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 Figure 3.10 Tritium distributions in the bulk of pebbles irradiated in PBA  

 
Summary 

In neutron irradiated beryllium tritium can be accumulated as an interstitial atom (T
o
), a 

molecule in gas inclusions (T2) or it can be chemically bonded to impurities (T
+
). Total content of 

tritium and fractional distribution of chemical forms depend both on beryllium material itself 

(existence of voids where gaseous species might accumulate, oxygen content that might form 

chemical bond with tritium) and irradiation conditions (temperature, length, etc). 

3.1.2 Tritium desorption 

Tritium thermo desorption experiments has been performed at a constant temperature 

increase rate of ~2.5
o
C·min

-1
 and ~5.0

o
C·min

-1
 up to 280

o
C, 500

o
C, 850

o
C, 1050 and 1250

o
C and 

then held for 1 to 4 h in a constant temperature in a flow of purge gas (He with 0.1% H2). 

Maximum temperature of thermal treatment was chosen based on the experimental results and 

correspond to the temperature where tritium desorption maximum peak starts to decrease. 

Radiation facilitated diffusion and radiolysis in a high magnetic field condition must have a 

significant role in the desorption process of tritium. Therefore, tritium thermo desorption has 

been studied also with the presence of magnetic field and ionizing radiation. After desorption 

experiments remaining tritium has been determined by the method of dissolution.  

In Figure 3.11 tritium thermo desorption spectra (TDS) from EXOTIC 8/3 and PBA 

pebbles has been compared at similar conditions (5
o
C·min

-1
, 850

o
C, 3 h). Tritium amount units 

are per cents of its total amount in particular samples.  
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Figure 3.11 Tritium thermo desorption from pebbles irradiated in EXOTIC 8/3 and PBA 

experiments (heating rate ~5
o
C∙min

-1
 up to 850

o
C, held at constant temperature for 3 h) 

 

Heating at 850
o
C is sufficient to release all tritium from the pebbles irradiated in EXOTIC 

8/3 experiment, whereas in pebbles from PBA experiment there is still some tritium remaining. 

Moreover, tritium desorption from the EXOTIC 8/3 pebbles starts at considerably lower 

temperature ((90±10)
o
C at a temperature increase rate of 5

o
C/min) than that for PBA pebbles 

((682±25) 
o
C at a temperature increase rate of 5

o
C/min and (628 ± 12)

o
C at the increase rate of 

2.4
o
C/min). In tritium TDS for EXOTIC 8/3 at the conditions described above two small and one 

large peak can be observed that might indicate presence of three desorption mechanisms where 

one of them is dominant. PBA tritium desorption starts at the approximately the same 

temperature where the dominant peak of EXOTIC TDS start to appear that follows by a second 

peak that is not observed for EXOTIC 8/3.  

This significant difference might be caused by several factors; main of them are assumed to 

be as follows:  

 size of the pebble(diffusion length); 

 structure (accumulation in the pores, grain boundaries, transportation along the 

cracks, etc); 

 concentration of the helium gas inclusions, size of the gas bubbles (tritium 

accumulation together with helium); 

 chemical impurities, oxide content (tritium chemical bonding). 

First of all size differences must be emphasized - pebbles used in the EXOTIC 8/3 

experiment have much smaller diameter (0.1 mm in average, see Figure 3.3) than that for PBA 
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(1mm). Therefore tritium diffusion length from the bulk of the pebble to the surface for EXOTIC 

8/3 pebbles are smaller up to a factor 10.  
 

Another important factor is the structure differences. Pebbles used in the PBA experiment 

have a technical void in the bulk due to production technology (see chapter 3.1.1). In this void 

large fraction of the gases might be accumulated and can be released sufficiently only if the crack 

or open porosity have formed connecting this void with the surface. Tritium chemical forms 

should also have considerable role in its extraction from metallic beryllium. In the pebbles from 

EXOTIC 8/3 experiment comparably high content of atomic tritium (up to 32%) were found in 

contrast to PBA pebbles where its content was less than 3% (see chapter 3.1.1). Therefore, from 

the PBA pebbles tritium starts to release either when molecular tritium starts to dissociate into 

mobile T
o
 or molecules have travelled through pores and cracks to the surface.  

To explain the role of tritium chemical forms in tritium desorption process the evolution of 

chemical forms were studied in the samples irradiated in the EXOTIC 8/3 experiment. Pebbles 

were heated up to temperatures 280
o
C and 500

o
C as long as 15-20% of tritium is released (3 and 

1 hour, respectively). Distribution of chemical forms of the remaining tritium in the pebbles was 

measured (Figure 3.12).  

 

Figure 3.12 Evolution of tritium chemical forms remaining after thermo-annealing at different 

temperatures (first point 20
o
C refers to storage temperature and describes initial state of tritium in 

the samples) 

 

Results show that the amount of chemically bonded tritium changes insignificantly after the 

thermal treatment of pebbles. At low temperature (280
o
C) only content of atomic tritium has 

decreased (32% into 16%), other forms had stayed immobile. Heating at higher temperature 

500
o
C decreases the T2 content due to the molecule dissociation into the mobile T

o
. Dissociation 
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of molecular tritium is also the reason the atomic form content has increased (16% back into 

34%). 

Concentration and size of helium gas inclusions and bubbles are also of great importance. It 

is believed that most of the tritium is trapped in the helium gas inclusions therefore their 

behaviour during thermo annealing affects tritium release from the pebbles.  

The effective diffusion coefficients have been also calculated from the thermal desorption 

spectra according to the method described in Chapter 2.2.4. 

For the samples from EXOTIC 8/3 experiment effective diffusion coefficient were 

estimated at the temperatures 720 and 850
o
C, and were (4.6±0.1)×10

-14
 m

2∙s-1
 and (4.4±0.2)×10

-14
 

m
2∙s-1

 respectively. As mentioned above these pebbles have different sizes. In calculations the 

average diameter 0.1 mm has been used. For the samples from PBA experiment effective 

diffusion coefficient was estimated at 772
o
C and 815

o
C, and were 2.5×10

-13
 m

2∙s-1
 and (7±2)×10

-

13
 m

2∙s-1
 respectively. Effective diffusion coefficient in EXOTIC 8/3 pebbles is almost for an 

order smaller than that for the PBA pebbles. There might be two reasons for that. First, EXOTIC 

8/3 pebbles have higher oxide content where tritium diffusion is slower than in pure metal. 

Second, specific surface of EXOTIC 8/3 is larger by a factor OF 10 than for pebbles from PBA 

experiment (approximately 32430 cm
2
·g

-1
, 3140 cm

2
·g

-1
, respectively). One of the limiting 

factors for tritium desorption is its release from surface where it tends to adsorb. Only when all of 

the surface is covered by hydrogen atoms (tritium and protium from the purge gas) they start to 

recombine forming a molecule and release into the purge gas.   

To understand tritium behaviour during thermal treatment thermo desorption spectra (TDS) 

have been studied in more detail for each group of samples.  

EXOTIC 8/3 

In the thermo desorption spectra of tritium from EXOTIC 8/3 pebbles three separate peaks 

can be distinguished (Figure 3.11) that might indicate presence of three mechanisms of 

desorption. To study these mechanisms in detail tritium thermo desorption has been performed at 

different temperatures that are chosen to exclude one or more mechanisms. For example, to study 

process occurring at the low temperatures, sample was heated up to a temperature that is below 

the temperature at which the next mechanisms first appears.  

After heating sample up to 280
o
C and held for 3 h at this temperature 14±6 % of the total 

tritium amount is released. A typical spectrum is shown in Figure 3.13.  
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Figure 3.13 Tritium thermo desorption from pebbles irradiated in EXOTIC 8/3 experiment (heating 

rate ~5
o
C∙min

-1
 up to 280

o
C, held at constant temperature for 3 h) 

 

Low temperature release might be related to surface processes (isotopic exchange with 

hydrogen from the purge gas) due to high specific surface area. According to chemical form 

evolution (considerable decrease of atomic tritium content) it is also related to release of tritium 

that was accumulated initially as separate interstitial atoms. Increase of the temperature increases 

the kinetic energy of tritium atoms. Beryllium structure cannot be considered as an ideal crystal – 

in the diffusion path tritium atom might meet crystal defects such as vacancies or grain 

boundaries, as well as impurity inclusions. Beryllium like aluminium tends to have thin oxide 

layer on its surface and this might acts as a barrier - hydrogen diffusion coefficient in beryllium 

oxide is much smaller than that for the metallic beryllium and it can be also trapped chemically. 

Therefore not all of atomic tritium is released by this mechanism. No structure changes have been 

observed after heating at 100
o
C which corresponds to the initial release temperature.  

Tritium desorption has been also studied under action of accelerated electron radiation. 

During these experiments the temperature has been measured. Accelerated electron irradiation 

considerably heats the sample, approximately up to 200 - 280
o
C. To ensure that temperature 

measurements in these experiments are adequate, appropriate calculations have been done. It was 

assumed that experiment of heating up to 280
o
C and experiment of exposing to accelerated 

electrons are comparable according the temperature. Nevertheless, difference in the temperature 

increase rate must be noted - in case of radiation heat maximum temperature is reached almost 

instantly, whereas in thermal heating it takes almost an hour. Comparison of tritium desorption 

spectra under different conditions is shown in Figure 3.14. 
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Figure 3.14 Tritium desorption from pebbles irradiated in EXOTIC 8/3 experiment, where “T” 

heated up to 280
o
C, “TR” exposed to accelerated electrons (5 MeV, 14 MGy∙h-1

), “TRM”– 

simultaneously exposed to accelerated electrons and magnetic field 

 

If one compares tritium release by thermal and radiation heating it is noticeable that in the 

case of radiation heat tritium release starts in a few minutes with a sharp peak, whereas at thermal 

heating release starts after a longer period of time and peak is flatter. This might be related to the 

temperature increase rate differences - if one compares temperatures of release start it should be 

noted that these temperatures are more of less similar (about 100
o
C). At electron radiation heating 

also higher fraction of tritium is released 20±4 %. Therefore radiation facilitated diffusion might 

be considered. This might be explained by several ways of impact. First is the high kinetic energy 

that can be transferred from the fast electron in case of collision. Second is effects based on 

radiation chemistry - molecular tritium localized somewhere in lattice defects can be dissociated 

into two atoms that might migrate away from each other (and also recombine with a high 

probability). Tritium chemically bonded in beryllium hydroxide in the surface oxide layer might 

be also released if the hydroxide molecule is split as a result of encounter with fast electron. Fast 

electrons might cause also some short lived structure damages that would facilitate transport of 

gaseous species. 

In case of tritium radiolysis driven dissociation it must be magnetic field sensitive since 

magnetic field changes electron spins and therefore probability of recombination back to 

immobile molecule. However, the desorption process can be delayed by a magnetic field since it 

decreases the probability of tritium atom recombination into a molecule that can leave the surface  
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Experiments of thermal and accelerated electron heating have been performed also under 

action of high magnetic field (up to 1.7 T). At this point it must be noted that beryllium has very 

low magnetic susceptibility, therefore magnetic field within beryllium material stays almost 

unchanged. Results shows that simultaneous action of radiation and magnetic field has a 

synergetic facilitating effect on tritium desorption. To see the role the evolution of chemical 

forms of tritium during annealing at these conditions remaining tritium measurements has been 

done and compared (Figure 3.15). It is obvious that accelerated electrons considerably decreases 

amount of molecular tritium (57 to 43%) that hasn’t change in case of thermal heating at similar 

temperature. At the simultaneous action of accelerated electrons and magnetic field fraction of 

molecular tritium has decreased even more (57 to 36%). These results prove the hypothesis about 

radiation and magnetic field effects stated above.  

 

Figure 3.15 Distribution of the chemical forms of tritium in beryllium pebbles after thermo-

annealing experiments, where “T” heated up to 280
o
C, “TR” exposed to accelerated electrons 

(5 MeV, 14 MGy∙h-1
), “TRM”– simultaneously exposed to accelerated electrons and magnetic field 

 

As temperature is increased second desorption peak appears (Figure 3.16). At higher 

temperatures gas trapped in the inclusions and bubbles according to the gas law gains its pressure 

(at this temperature pressure is increased by factor ~2.5) that at some point starts to force tritium 

gas to move into the lattice. Since tritium molecule is too large to migrate through the beryllium 

lattice it dissociates into atomic tritium (re-dissolution) that afterwards follows the same 

mechanism as described above. This process starts at temperatures above 300
o
C in these 

particular samples. In thermo desorption experiments where temperature has been raised up to 

500
o
C and then held for 1 h tritium release was (21±4) % from total.  
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Figure 3.16 Tritium thermo desorption from pebbles irradiated in EXOTIC 8/3 experiment (heating 

rate ~5
o
C∙min

-1
 up to 500

o
C, held at constant temperature for 1 h) 

 

 
Figure 3.17 Tritium thermo desorption from pebbles irradiated in EXOTIC 8/3 experiment where 

“T” heated up to 500
o
C, “TR” exposed to accelerated electrons (5 MeV, 14 MGy∙h-1

), “TRM”– 

simultaneously exposed to accelerated electrons and magnetic field  
 

If an accelerated electron radiation is added to the thermal heating second peak starts to 

appear already at lower temperatures (Figure 3.17) and total tritium release reaches (27±6) %. It 

could be assumed that tritium re-dissolution in beryllium lattice from gas inclusions starts at 

lower temperature as a result radiation induced radiolysis of tritium molecule. If the magnetic 

field is also added tritium release is even more efficient ((34±3)% ). 

As the temperature is further raised beryllium structure starts to change. SEM images 

have been taken of pebbles after thermal treatment at 650
o
C (Figure 3.18). At this temperature so 

called burst release starts (Figure 3.19). 
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Figure 3.18 SEM images of EXOTIC 8/3 pebbles after treatment in He+0.1H2 at 650
o
C (heating rate 

~5
o
C∙min

-1
 up to 650

o
C, held at constant temperature for 1 h) when rapid tritium release is started 

 
Figure 3.19 Tritium thermo desorption from pebbles irradiated in EXOTIC 8/3 experiment (heating 

rate ~5
o
C∙min

-1
 up to 850

o
C, held at constant temperature for 3h) 

 

Increasing pressure in the gas inclusion starts to deform beryllium lattice until coalescence 

of bubbles forms the interlinked network porosities connected to the surface where gas might 

freely migrate without penetration into tight lattice of beryllium. In the code ANFIBE that 

describes tritium and helium behaviour in the neutron irradiated beryllium it is assumed that these 

networks are formed only along the grain boundaries and gas migration within the interlinked 

pore system is considered to be the only mechanism of the release of gaseous products [162]. 

Nevertheless, pebbles used in EXOTIC 8/3 experiment is so small that they might consist of only 

one grain. Therefore, there are no grain boundaries and these networks are supposed to be formed 

also within the grain. Beryllium become also more brittle in the high temperature therefore 

formation of cracks also can occur that acts similar to the open porosity (Figure 3.20).  
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Figure 3.20 SEM images of EXOTIC 8/3 pebbles after treatment in He+0.1H2 at 850
o
C (heating rate 

~5
o
C∙min

-1
 up to 850

o
C, held at constant temperature for 1 h) when rest of the tritium is released 

 

By this the rest of the tritium is released. Gas migration through open porosity and cracks 

formed due to the temperature and gas inclusion pressure governed structure changes of 

beryllium itself could be assumed to be the main tritium release mechanism. Therefore it might 

be concluded that for detrititation process temperature supposed to be at least 620
o
C. Chemically 

bonded tritium (in hydroxide) could be released as a result of isotope exchange process with the 

hydrogen in the purge gas. 

In Table 3.1 summary of tritium release under different condition is given. 

 

Table 3.1 Tritium desorption from EXOTIC 8/3 pebbles under different conditions 

Tritium desorption conditions Tritium release, % 

from total  Abbrev. Experiment details 

T1 5
o
C ∙min

-1
 up to 280

o
C, 3 h constant 14±6 

R Accelerated electron beam, 5 MeV, 14 MGy∙h-1
 (200-280

o
C) 20±4 

RM Accelerated electron beam, 5 MeV, 14 MGy∙h-1
 (200-

280
o
C), magnetic field, 1.7 T 

29±10 

T2 5
o
C ∙min

-1
 up to 500

o
C, 1 h constant 20±5 

TR 5
o
C ∙min

-1
 up to 500

o
C, 1 h constant, Accelerated electron 

beam, 5 MeV, 14 MGy∙h-1
  

29±11 

TRM 5
o
C∙min

-1
 up to 500

o
C, 1 h constant, Accelerated electron 

beam, 5 MeV, 14 MGy∙h-1
 , magnetic field, 1.7 T 

35±2 

T3 5
o
C∙min

-1
 up to 850

o
C, 3 h constant 100 
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PBA 

PBA pebbles have been heated at temperatures up to 850
o
C - 1250

o
C with a temperature 

increase rate ~ 2.5 and ~5 
o
C·min

-1
. Typical thermo desorption spectra are demonstrated in Figure 

3.21. In the experiments at high temperature 100% of tritium has released. 

From PBA pebbles tritium desorption starts at much higher temperatures and spectra are 

having different shape than that for EXOTIC 8/3. This is due to the fact that there is almost no 

atomic tritium in the lattice that might release at low temperature and fraction of the gas is 

accumulated in the technical void. 

 

 

Figure 3.21 Tritium thermo desorption from PBA pebbles at 867
o
C and 1258

o
C (temperature 

increase rate 2.5
o
C·min

-1
)  

 

An important issue that should be mentioned is the pressure in the technical void. 

According to the pebble fabrication method this void is generated during the solidification phase 

of melted beryllium droplet. Since droplet is cooled from the outside (cold inert gas atmosphere) 

solidification is starting from the outer surface and due to shrinkage of material volume (density 
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of liquid beryllium at the melting temperature is about 10% lower than that for a solid material, 

1.69 and 1.85 g·cm
-3

, respectively) the void is formed in a centre of solid pebble. Therefore the 

initial pressure (before irradiation) could be assumed to be lower than an atmospheric one. After 

neutron irradiation it has been estimated to contain 300-600 appm He that corresponds to roughly 

0.00075-0.0015 cm
-3

 volume of the helium gas in 1mg pebble. According to these rough 

calculations it might be assumed that gaseous species formed as a result of neutron induced 

transmutation cannot fill more that about 10% of the void volume and therefore it could be 

concluded that even after irradiation gas pressure in the void is negative relative to atmospheric 

pressure.  

Thermo-annealing experiment at the temperature of 650
o
C that correspond to the release 

start has been performed and SEM images of the inner structure of the pebbles taken. At this 

temperature visible porosity starts to appear. Pores up to 500 nm can be distinguished and 

indicates the start of the migration of gaseous species within the lattice of beryllium (Figure 

3.22).  

  

Figure 3.22 SEM image of PBA pebble after treatment in He + 0.1%H2 at 650
o
C (5

o
C/min and 

2h at constant temperature) that corresponds to the tritium release start temperature 

 

Another important issue is the fact that due to the accumulation of gases in the void instead 

of lattice, beryllium itself is less damaged and formation of open porosity and cracks might 

appear later than that for the samples where swelling had taken place. Burst release typical for the 

transport through the cracks connecting the void and surface starts at a temperature 933±4
o
C and 

a considerable fraction of tritium is released at this stage. 

In SEM images taken after thermal treatment at 950
o
C it is obvious that structure has 

changed considerably – there are large cracks connecting the technical void with a surface and 
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also the connected pore system has been formed. Moreover, the size of the pores has increased up 

to several tens of micrometres.  

  

Figure 3.23 SEM image of PBA pebble after treatment in He + 0.1%H2 at 950
o
C (5

o
C/min and 2 h at 

constant temperature) that corresponds to the tritium burst release start temperature 

 

 Therefore it might be concluded that for detritiation of this type of pebbles required 

temperature is at least 935
o
C. It is about 300

o
C more than that for EXOTIC 8/3 pebbles.  

After heating of the sample at high temperature (up to 1260
0
C) when all tritium is released 

structure had been changed drastically – large radial cracks and high porosity can be observed 

(Figure 3.24). The pebble was very brittle and broke into pieces instead of being polished.  

     

 Figure 3.24 SEM images of PBA pebble after treatment in in He + 0.1%H2 at 1260
o
C when all 

tritium is released 

 

In the experiment where sample has been heated up to ~850
o
C ~90% of total tritium 

content was released, whereas at temperature close to the melting point of beryllium 100% of 

tritium was released. Contribution of each mechanism, dissolution into lattice followed by 

diffusion to surface and molecule transport through cracks connecting void with a surface, in both 

experiments are quite similar. Main difference is in a time required for desorption - in high 

temperature (>930
o
C) burst release starts due to intense crack and pore formation in the pebble 
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and tritium release peak is very sharp and narrow. Whereas at lower temperatures this release is 

slow, that might indicate formation of few small cracks that are not sufficient for efficient gas 

transport.  

3.1.3 Tritium behaviour model in neutron irradiated beryllium pebbles 

According to the results described above and literature data a simplified model of tritium 

behaviour can be built (Figure 3.25).  

After its production by nuclear transmutation of beryllium tritium atom is situated in a 

lattice vacancy or in an interstitial space. For approximation vacancy will not be considered. 

Further tritium diffuses as interstitial through the beryllium lattice (I) until it reaches one of the 

following: grain boundary, helium gas inclusion (helium production in beryllium is significantly 

higher than that for tritium), beryllium oxide layer, other tritium atom. According to the results 

about tritium chemical forms - most of the tritium is accumulated in a molecular form, therefore 

it can be concluded that tritium is trapped by helium inclusions. Probability to meet another 

tritium atom is small due to its low concentration and even if two atoms have met they will not 

form the molecule since in the metal lattice it is not energetically favourable. Further each 

situation will be discussed in more detail: 

Tritium diffusion in beryllium lattice (process I in Figure 3.25) depends on the diffusion 

coefficient, activation energy and temperature. Diffusion coefficient and activation energy have 

been measured by number of authors, therefore literature data can be used. Only variable is 

temperature. 

Tritium diffusion in beryllium oxide layer is unavoidable since this layer is always present 

on the surfaces. For tritium to release from the pebble it must get through this layer. Besides 

diffusion process as such tritium might chemically react with the BeO to form Be(OT)2. 

Beryllium oxide effect on tritium effective diffusion is obvious if to compare EXOTIC 8/3 and 

PBA pebbles – in EXOTIC 8/3 that has higher oxide content tritium diffusion coefficient is 

considerably smaller. The overall process therefore depends on the following parameters: 

diffusion coefficient, activation energy, temperature, reaction probability of tritium with BeO. 

After diffusion through oxide layer tritium has reached the surface. To release into the 

purge gas tritium has to form a molecule either with another tritium atom or protium atom (0.1% 

of H2 is present in the purge gas). Energetically it is more favourable to stay on the surface as 

adsorbed atom. The recombination occurs only if the whole surface is covered with tritium and 
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protium atoms (protium atoms comes from the purge gas) or/and the temperature is high enough 

to cross the desorption energy barrier (III). This process might be influenced by the magnetic 

field - in the presence of magnetic field recombination yield must be decreased due to spin 

transformations.  

Tritium diffusion along grain boundaries (process IV) might be faster that in the lattice 

according to the literature data on other materials. However, grain boundaries might contain also 

trapping sites for tritium. Therefore this process depends on the following variables: total surface 

of grain boundaries, diffusion coefficient along grain boundaries, number of trapping sites.  

Another possibility for tritium is to reach helium gas inclusions and to be trapped there 

(VI). This process depends mainly on the sizes and concentration of the helium bubbles. It can be 

either modelled (helium formation, behaviour etc) or can be estimated from the available 

literature data. To release from the pebbles this tritium should either re-dissolve into the 

beryllium lattice (V) or follow the helium gas through the open porosity network to the surface 

(IX). Tritium re-dissolution into the lattice might be facilitated by the ionizing radiation since it 

would cause an intensified dissociation of tritium molecules into atoms, whereas IX process 

might be predicted according to the experimental data. According to the results on beryllium 

structure evolution during thermo annealing obtained in this study, process IX starts to evolve 

above 600
o
C and does not depend on the size and production method of the pebbles. 
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Figure 3.25 Schematic view of tritium behaviour in neutron irradiated beryllium  
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3.2 Plasma facing materials – beryllium and carbon fibre tiles exposed in JET 

plasma chamber 

Metallic beryllium and carbon fibre composites are materials of different properties but 

similar application in the fusion devices – protection of other components from direct impact of 

plasma. 

3.2.1 Preliminary examination 

o Structure and chemical composition 

During the exploitation in the plasma chamber both beryllium and carbon materials change 

their structure due to neutron irradiation and plasma exposure. Pre-eroded particles and other 

impurities from the plasma deposit on the surfaces of these materials and form so called 

deposition layers of a complex chemical composition and structure. These deposition layers are 

crucial regarding the tritium inventory. 

Beryllium  

Surface of the beryllium tiles is either coated by the deposition layer (up to 40m) or it is 

melted as a result of the interaction with plasma (Figure 3.26). Analysis revealed that deposition 

layer itself consist of several layers with different structure and chemical composition. XRD 

analysis performed at the Department of Chemistry showed beryllium oxide presence in the 

plasma facing surface, whereas EDX analysis gave possibility to see heavier impurities. 

According to literature the deposition on the Be tiles is predominantly carbon [174]. Main 

impurity besides carbon and oxygen that was found on the surface of the beryllium tiles was 

nickel. It has come from the Inconel used in the plasma chamber. Such elements as Al, Si, Fe, S 

were also present (Figure 3.27).  

  

Figure 3.26 SEM images of beryllium tiles: a) of the cross-section of the beryllium tile with a 

deposition layer, b) structure of the deposition layer  

a) b) 
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Figure 3.27 EDX spectra of the plasma facing surface of beryllium tiles and SEM image 

showing the locations spectra have been obtained from 

 

According to the literature beryllium material used in production of the tiles has 

significantly smaller grain sizes than that for pebbles [162]. No significant pores and cracks were 

observed.  

Carbon fibre composite 

Surface of divertor tiles are also coated with a deposition layer that is in fact thicker than 

that for the limiter tiles. In some positions of the divertor deposition layer could reach up to 300 

m of thickness [165]. Properties of these layers have been described widely in literature [145, 

165, 175]. Therefore in this study structure of the tile material itself has been analysed. The 

structure analysis of the carbon fibre material was performed in different positions- both close to 

the surface and in the bulk of the tile. The fibres deep in the bulk of the tile were assumed not to 

have any modification and were used as a reference. The structure of the separate individual 

fibres corresponds to the core-sheath type of fibre [176] and has a diameter of (31.10.1) m 

(Figure 3.28). On the erosion dominated areas of the plasma facing surface (some areas in the 

SRP part) the bending or complete destruction of the fibres was observed. 

 

Figure 3.28 SEM images of carbon fibres in the bulk of JET divertor tile (on the right) and 

separate fibre cross-section  
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To estimate the changes of the material structure the carbon fibre modifications were 

analysed. An increase of the fibre diameter close to the backside surface was observed to be up to 

30% (in the sloping part), see Figure 3.29 

There was also a small increase near the plasma facing surface of the SRP part. Increase of 

fibre diameter can be caused by neutron irradiation as a result of formation of extra graphite 

planes [177] or interplanar voids [178]. However, the neutron flux in the JET is not sufficient to 

cause such changes (3.60·10
14

n·cm
-2 

for the 2001-2004 operation period [179]) and neutron 

damage would be uniform through the tile: the largest modification was observed at the backside 

of the tile. This might mean that fibre modifications have been caused by some other reason, e.g. 

mechanical forces due to the method of mounting the tile in the divertor. The tile is mounted by 

pulling down on a central bolt from the backside with the tile supported at the corners, so that the 

backside is in tension. Therefore, there are no extra graphite planes but existing planes have 

separated as a result of the deformation, and extra space for tritium to migrate has appeared. 

 

 

Figure 3.29 Increase of the fibre diameter in the tile 14BWG4B: a plot showing the increase of 

the fibre diameter with depth through the tile and distribution of the fibre swelling within the tile 
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Another process that might have an effect on the structure is CFC interactions with oxygen 

during the storage in air. Whereas the plasma facing surface could be protected from an action of 

atmospheric oxygen by the deposition layer, it might explain small changes of the fibres in the 

SRP part where the deposition layer is relatively thin. Note, however, these interactions are at 

room temperature so would be expected to have a small effect. Increase of specific surface area 

and concentration of trapping sites resulting from destruction of fibres that follows from the 30% 

radial growth could lead to increased tritium retention [135]. 

Chemical composition analysis was done for unexposed carbon fibre tiles that were found 

to be comparably pure- XRF spectra showed just small amounts of impurities, such as Fe.  

o Initial tritium content, chemical forms and distribution 

Beryllium 

Tritium content and chemical forms varies a lot depending on the location on tile and 

interaction with plasma. Because of the differences in exposure conditions, the tile was divided 

virtually in three parts of analysed areas: 1 plasma facing surface or operating surface of a 

“tooth” of beryllium tile, 2 lateral surfaces and 3 lateral surfaces between “teeth” of beryllium 

tile. Melted areas were also distinguished separately (Figure 3.30). Differences of tritium content 

in these separate parts are significant ( 

Figure 3.31). The highest content was found to be in the plasma facing surface except for the 

melted areas where tritium is likely to be released as a result of exposure to high temperature. 

 

  

Figure 3.30 Fragment of a beryllium tile showing different parts studied: 1 - plasma facing 

surface, 2- lateral surface, 3- lateral surface between castellation 

1 

3 

2 



91 

 

 

Figure 3.31 Tritium content in different parts of a beryllium tile 

 

Distribution of tritium chemical forms differs in these parts. The largest differences were 

observed in melted areas of a beryllium tile surface (Figure 3.32). In the melted areas only 

chemically bonded tritium was found, it might remain in the surface of tile after heat exposure in 

contrast to the molecular and atomic tritium.  

  

 
 

Figure 3.32 Distribution of tritium chemical forms in different parts of a beryllium tile 

 

Tritium bulk measurement in beryllium tiles revealed that the highest content of tritium is 

in the depth of about 10 -50 m from the surface and then it decreases roughly exponentially 

until it is not detectable at the depth of about 150 m (Figure 3.33). It must be emphasized that 
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tritium distribution has been measured only in metallic beryllium since method is based on 

chemical reactions between acid and metal. Tritium in deposition layer is most likely chemically 

bonded with carbon and therefore remains in the solution.  

To estimate tritium accumulation mechanisms tritium sorption experiments have been 

performed on non-exposed beryllium tile. Sample has been exposed to tritium gas in 500
o
C 

temperature for three hours and then tritium distribution measured.  

 

Figure 3.33 Tritium distribution in the surface layer of beryllium tile (0 corresponds to 

surface): a) tile exposed in JET plasma chamber and b) tile after thermo sorption experiment 

 

It was found that tritium distribution in beryllium tile after thermo sorption experiments is 

quite similar. Differences in distribution are related to the exposure time - in tile from plasma 

chamber tritium has been diffused deeper into the surface, whereas deposition layer on the 

surface delays tritium desorption from the surface, in contrast to the tile from sorption experiment 

that has a clean surface where tritium might freely release. This proves that tritium diffusion from 

the environment (in case of tiles exposed in plasma chamber term “environment” includes also 

the tritium containing deposition layer on the surface of the tile) into bulk of beryllium had been 

the main mechanism of accumulation, whereas energetic ion implantation from plasma has 

insignificant contribution. In real fusion reactor conditions where in contrast to JET high neutron 

a) Beryllium tile exposed in 
JET plasma chamber 

b) Beryllium tile after tritium 

thermo sorption experiment 
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flux will be present tritium will be produced also as a result of neutron induced transmutation of 

beryllium and this tritium will be distributed more of less evenly. 

Carbon fibre composites 

Depth profiles of tritium trapped in the CFC tile were determined. In contrast to beryllium 

samples in CFC tiles tritium distribution was not measured continuously but by separate data 

point due to different methods. Tritium mass activity of the plasma surface layers (within the 

depth of 1mm), the bulk and the backside layers have been compared in the cylinders from 

different parts of the tile. Data points of the tritium mass activity of a typical cylinders cut from 

each of the three areas of the tile 14BWG4B are shown in logarithmic scale in Figure 3.34, the x-

axis shows the depth position in millimetres and the last point of each figure represents the 

backside surface (cylinders from sloping part were also cut perpendicular to the plasma facing 

surface). 

 

Figure 3.34 Tritium depth profiles in selected cylinders representing SRP, Sloping and 

Shadowed parts of the tile (in logarithmic scale) 

 

A common feature for all the cylinders investigated is that a large fraction of the tritium is 

localized in the plasma-facing surface slices of 1mm. This is due to the co-deposition of tritium in 

the thick deposition layers that are present on the tile 4 and also the implantation of the high 

energy tritons coming from the plasma could have some contribution. There is then a sharp 

decrease by 2-4 orders of magnitude to a bulk tritium activity which is at a more or less uniform 
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level until it reaches the backside layers where the activity increases again by about one order of 

magnitude. The phenomenon of increasing tritium content in the backside layer has been 

observed also by other authors [137] and no explanation has been given yet.  

The highest surface activities of tritium were found in the shadowed part of the tile. For 

instance, the mass activity of the surface slice of Cyl10 was 0.156 GBq·g
-1

, while in Cyl 2 

representing the SRP part it was only 0.006 GBq·g
-1

. Tritium activity in the surface layer can be 

described as a variable proportional to the thickness of deposition layer and inversely 

proportional to the energy deposited on a tile since tritium accumulated in the co-deposition layer 

and the hydrocarbon species would be released at a high temperature [134]. The shadowed area 

has both a thick deposition layer and no contact with plasma, in contrast to other parts of the tile. 

The sloping part of the tile has the thickest deposition layer (up to 300 m), but at the same time 

it has been subjected to high temperature due to the plasma striking the surface and ELMs. 

Therefore tritium surface activity has similar values to that in the SRP part where the deposition 

layer is only 10 m or less. 

Migration of tritium into the bulk of a tile may be expected at high temperatures [170]. The 

surface of the sloping part of the tile may reach 1000
o
C during plasma exposure: this is clearly 

reflected in the results from the sloping part in figure 3 where the tritium mass activity of the bulk 

was found to be about an order of magnitude higher than in other parts of the tile. 

Chemical forms of tritium in carbon based tiles were not measured due to reasons 

mentioned above.  

o Summary 

In plasma facing material main tritium accumulation source is its co-deposition on the 

surface and subsequent diffusion into the bulk of material. To prove this mechanism tritium 

thermo sorption experiments have been performed with unexposed beryllium tiles and it was 

found that spatial distribution of diffused tritium is similar to that from plasma facing tiles. If one 

compares beryllium and carbon fibre composition tiles it is obvious that tritium accumulation in 

CFC tiles is much higher - in beryllium tiles tritium were found only in the surface layer of about 

150 m, whereas in CFC it was found to be distributed through all the bulk.  
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3.2.2 Tritium desorption 

Beryllium 

Tritium release from beryllium tiles must be considered to consist of several mechanisms. 

Major fraction of tritium is accumulated in the co-deposition layer where it is more likely 

chemically bonded with carbon [138]. Therefore, from this part tritium can be released as a 

tritium gas or as a tritium containing gaseous hydrocarbons. In beryllium itself it can be a 

molecule, atom or chemically bonded with impurities, mainly oxygen. At the same time 

deposition layer might work as physical barrier for tritium to release from the tile surface. Due to 

complicity of this system interpretation of the tritium desorption spectra is quite intricate. Tritium 

release starts at about 250
o
C which is remarkably high for considering that tritium is accumulated 

so close to the surface.  

 

Figure 3.35 Tritium thermo desorption from sample of beryllium tile exposed in JET plasma 

chamber 

Tritium desorption has also been studied under action of such factors as accelerated 

electron radiation and magnetic field (Figure 3.35). It is obvious that these samples are more 

sensitive to the external factors if one compares with the beryllium pebbles. This phenomenon 

could have several explanations. Firstly, tritium accumulated in the deposition layer could be 

more sensitive to these external fields. In case of tritium chemically bonded in hydrocarbon 

radiolysis might have large contribution to its release; therefore also the processes during 

radiolysis in magnetic field could have significant impact. Secondly, tritium is located in a thin 

surface layer of the beryllium in contrast to pebbles where it is distributed in all the bulk. 
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Figure 3.36 Tritium thermo desorption from beryllium tiles (heating rate ~5
o
C∙min

-1
 up to 500

o
C, 

held at constant temperature for 1 h) under action of accelerated electrons (5 MeV, 14 MGy∙h-1
) and 

magnetic field (1.7 T) 

 

Fractions of released tritium during thermo annealing for 1 hour at 500
o
C at different 

conditions are compared in Table 3.2 

Table 3.2 Tritium desorption from beryllium tiles under different conditions 

 

Tritium desorption conditions Tritium release, % 

from total  Abbrev. Experiment details 

T 5
o
C ∙min

-1
 up to 500

o
C, 2 h 40 min constant 9±3 

TR 5
o
C ∙min

-1
 up to 500

o
C, 2 h 40 min constant, accelerated 

electron beam, 5 MeV, 14 MGy∙h-1
 

45±13 

TRM 5
o
C ∙min

-1
 up to 500

o
C, 2h 40 min constant, accelerated 

electron beam, 5 MeV, 14 MGy∙h-1
 (200-280

o
C), magnetic 

field, 1.7 T 

63±11 

 

 

Carbon fibre composite 

Tritium desorption experiments has been performed with surface disks of cylinders from 

different parts of the divertor tile. Samples were heated up to 1100
o
C. It is obvious that 

desorption process depends a lot on a position on a tile (Figure 3.37).  
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Figure 3.37 Tritium release by thermal desorption from the surface disks of cylinders 1, 4 and 

11 of tile 14BWG4B  

 

It might be assumed that all desorption curves are combination of similar processes, but in 

different contribution ratios. As mentioned above - surface of the plasma facing materials consist 

of two different parts – deposition layer and substrate, in this particular case, the carbon fibre 

composite. According to the work of Kanashenko et al, there are three types of tritium 
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adsorption/trapping sites in a carbon structure: relaxed and un-relaxed dangling bonds on the 

edges of interstitial carbon clusters and grain surfaces, respectively, and adsorption on a basal 

planes (true solution) (see chapter 1.6.2), whereas deposition layers mostly consist of 

hydrogenated amorphous carbon where tritium is chemically bonded to the carbon either in sp
3
 or 

sp
2
 hybridization. Therefore we may consider tritium to be bonded with at least 5 different 

energies. Also the tritium containing species might be of different composition, such as T2 (TH, 

TD), CHxQy (where Q is D and/or T, x + y = 4) and longer tritium containing hydrocarbon 

chains. With the method used in this study it was not possible to distinguish these different 

chemical forms as it is based on tritium radioactivity measurements in a purge gas.  

Cylinder 1 is from horizontal part of tile nearest the Septum Replacement Plate that has 

some shadowing from SRP tile. Desorbed tritium reached 1.2 MBq∙cm
-2

 and release started at ≤ 

200°C. Cylinder 4 is also from horizontal part of tile nearest the Septum Replacement Plate but 

has some exposure to plasma (deposition layer about 10 m). Amount of desorbed tritium 2.1 

MBq∙cm
-2

 and release started at ≤ 100°C. Cylinder 11 is from horizontal part of the tile shadowed 

from the plasma by tile 3 with thick deposition layer (smooth, dense film with high H/C ratio). 

Desorbed tritium: ~10 MBq/cm2 (due to the “tail” of the TDS no precise value can be 

calculated), release started at ≤ 50°C. Deposition layer is a very complex material and its 

composition and properties might differ a lot depending on a position in the vessel or even on a 

single tile. Cylinder 11 represents the shadowed area of a tile that is not subjected to a plasma 

impact; therefore tritium could be also trapped by a weak interactions that in cases of other 

cylinders has been released already during exposure in the plasma chamber. That could also 

explain the fast start of the release of tritium from cylinder 11 in the temperature programmed 

desorption experiment.  

3.2.3 Tritium behaviour model in plasma facing materials 

In general, plasma facing material might be considered as a dual system consisting of a 

substrate and a deposition layer. These two parts have significant differences regarding tritium 

transport and accumulation mechanisms.  

Dominant mechanism of tritium accumulation is its co-deposition with eroded particles 

form plasma facing materials (process I in scheme, see Figure 3.38). It is well known that carbon 

erosions are considerably higher than that for beryllium or other metallic materials, therefore in 

JET plasma chamber this deposition layer mostly consist of carbon and hydrogen. Tritium release 
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from this layer occurs as a result of C-H or C-C bond breaking where tritium molecule of short 

chain hydrocarbon molecule is produced. Exposure to accelerator electron radiation must be 

facilitating this process considerably. Magnetic field could have two opposite effects – formation 

of tritium molecules would be slowed down, whereas short chain hydrocarbon segregation would 

be facilitated.  

Another tritium accumulation mechanism is its implantation as an energetic ion (II). As a 

result of this process tritium is trapped in the first nanometers of the material. In carbon based 

materials it is trapped on the trapping sites, whereas in beryllium it is most likely as an interstitial. 

From beryllium samples tritium will released by diffusion to the surface and then recombination 

into molecule, whereas from carbon based – by trapping – detrapping process and then 

recombination into molecules (IV, V).  

According to the results on tritium bulk distribution it is clear that tritium has diffused also 

into the bulk of the materials. Especially in CFC tiles where it was found to be accumulation 

throughout all the bulk. In carbon based material tiritum is most likely bonded on trapping sites 

of different energies (see chapter 1.6.2) and might be release by trapping-detrapping mechanism 

or by diffusion through the pore channels (CFC material is very porous) (IV). In beryllium 

tritium could be accumulated as interstitial or chemically bonded with oxygen impurities. From 

bulk of beryllium tiles it releases by diffusion (through lattice or along grain boundaries) to the 

surface and recombination into molecules (IV).  
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Figure 3.38 Schematic view of tritium behaviour in plasma facing materials 
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Summary 

 

Tritium thermodesorption is governed by two main mechanisms – desorption from the 

substrate material and a deposition layer. Substrate material (either CFC or beryllium) might be 

expected to have similar properties all over the plasma vessel, except for eroded or melted areas. 

Properties of deposition layer vary a lot depending on the position in a plasma chamber. 

Facilitating effect of ionizing radiation on tritium desorption has been observed and might be 

assumed to occur due to hydrocarbon radiolysis for deposition layer of plasma exposed samples. 

If the magnetic field is added in the process the synergetic effect can be observed.  

3.3 Role of high magnetic field and ionizing radiation in tritium behaviour in fusion 

reactor materials 

In post irradiation/exposure tritium desorption studies performed within this work it has 

been found that simultaneous action of ionizing radiation and high magnetic field facilitates 

tritium release.  However, up to now in situ measurements of tritium desorption rates under 

conditions similar to reactor no magnetic field has been used. Therefore it might be concluded 

that at least for beryllium materials situation in real reactor conditions where high magnetic field 

is present situation could be more optimistic as it is predicted based on in situ experiments with 

no magnetic field.  

Mechanisms of the facilitating effect of irradiation and magnetic field on tritium desorption 

from beryllium could be explained by radiation chemistry of gases in the presence of high 

magnetic field.  

As a result of interaction with fast electrons molecular tritium dissociates into atoms. 

Though, the recombination back to molecule probability is very high. However, in the presence 

of magnetic field the electron spins of tritium might be changed to parallel due to the Zeeman 

effect and atoms do not react and therefore move away from each other (Figure 3.39). 

Furthermore atomic tritium can diffuse through the lattice.  

 

Figure 3.39 Mechanism of tritium radiolysis in presence of magnetic field 
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That might be the dominant process responsible for the magnetic field effect in the 

irradiated beryllium pebbles - beryllium/tritium/helium system.  

3.4 Recommendations regarding nuclear waste reduction  

Fusion reactor materials after exploitation can be classified as nuclear wastes due to 

radioactive tritium inventory. Recommendations regarding the nuclear waste reduction could be 

developed based on the results obtained in this work. 

(1) Contribution of synergetic magnetic field and irradiation effect must be taken into 

account when estimating tritium inventory in materials according to in-pile desorption rates. 

Presence of magnetic field increases tritium release by 5-10% for neutron multiplier beryllium 

pebbles. 

(2) Detritiation methods based on material thermo-annealing could be improved by 

introduction of an extra factor - simultaneous irradiation and exposure to magnetic field, since it 

could decrease temperature of thermal treatment, and therefore there would be no need to handle 

liquid beryllium (melted). 
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3.5 Summary 

The objective of this dissertation was to develop the knowledge base for fusion applications 

of beryllium and carbon fibre composites (CFC). This has been achieved by 

 collating the mass of data from fission experiments relevant for future fusion 

requirements, particularly on beryllium pebbles 

 using metallurgical techniques to increase the understanding of neutron damage in 

the materials 

 developing the Chemical Scavenger method in UL Laboratory of Radiation 

Chemistry of Solids for analysis of radioactive samples for fusion application 

 determining the degree of tritium accumulation that may occur in neutron irradiated 

materials 

 demonstrating that accelerated electrons can improve the detritiation process, and 

that the presence of a strong magnetic field has a beneficial synergism for 

detritiation  
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CONCLUSIONS 

1. The structure of neutron irradiated beryllium materials and presence of impurities 

have been shown to have a significant role in tritium accumulation process. In neutron irradiated 

beryllium tritium can be accumulated as an interstitial atom (T
o
), a molecule in gas inclusions 

(T2) or it can be chemically bonded to impurities (T
+
). Main chemical form of the tritium 

localized in the irradiated beryllium pebbles is T2 (up to 96%). High content of this immobile 

form might significantly extend the time and therefore increase the cost of detritiation method 

based on thermo-annealing processes.  

2. If one compares beryllium and carbon fibre composition tiles it is obvious that 

tritium accumulation in CFC tiles is much higher - in beryllium tiles tritium was found only in a 

surface layer of about 150 m, whereas in CFC it was found to be distributed through all the 

bulk.  

3. The increase of the specific surface area and concentration of the hydrogen traps 

in the CFC material as a result of deformations and destruction of the fibres was shown to 

increase total tritium accumulation.  

4. The chemical forms of tritium before and after thermal treatment under different 

conditions have been determined, from which the processes occurring during the thermo-

annealing have been estimated. Several stages of tritium transport process in neutron irradiated 

beryllium have been distinguished (interstitial diffusion and diffusion along grain boundaries at 

low temperature, transport along open pore network system and cracks as temperature is raised).  

5. Tritium release is much faster and requires lower temperature from 0.1 mm 

pebbles produced by Inert Gas Atomization (IGA) method than that for pebbles of 1.0 mm 

pebbles produced by Rotating Electrode Process (REP) method. It can be explained by both 

smaller diffusion length in IGA pebbles and the existence of voids in REP methods, where 

molecular tritium is trapped. 

6. Desorption of tritium from plasma exposed samples strongly depends of the 

location on the plasma facing sample within the torus and hence the extent of direct interaction of 

the surface with the plasma. The pathways for tritium introduction into the sample have been 

estimated from the thermal desorption spectra. 

7. Accelerated electron radiation has been demonstrated to facilitate tritium 

desorption from materials. This phenomenon is postulated to be related to molecular tritium 

radiolysis in case of neutron irradiated beryllium and hydrocarbon radiolysis for deposition layer 
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of plasma exposed samples. However, the synergetic effect of accelerated electron irradiation and 

magnetic field has been shown to considerably increase tritium release. Presence of magnetic 

field increases tritium release by 5-10% for neutron multiplier beryllium pebbles, and by up to 

50% for plasma facing materials – beryllium tiles. Thus detritiation methods based on material 

thermo-annealing could be improved by the introduction of an extra factor - simultaneous 

irradiation and exposure to magnetic field.  
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